WorldWideScience

Sample records for stress response model

  1. STRESS RESPONSE STUDIES USING ANIMAL MODELS

    Science.gov (United States)

    This presentation will provide the evidence that ozone exposure in animal models induce neuroendocrine stress response and this stress response modulates lung injury and inflammation through adrenergic and glucocorticoid receptors.

  2. Approaches to modeling the development of physiological stress responsivity.

    Science.gov (United States)

    Hinnant, J Benjamin; Philbrook, Lauren E; Erath, Stephen A; El-Sheikh, Mona

    2018-05-01

    Influential biopsychosocial theories have proposed that some developmental periods in the lifespan are potential pivot points or opportunities for recalibration of stress response systems. To date, however, there have been few longitudinal studies of physiological stress responsivity and no studies comparing change in physiological stress responsivity across developmental periods. Our goals were to (a) address conceptual and methodological issues in studying the development of physiological stress responsivity within and between individuals, and (b) provide an exemplar for evaluating development of responsivity to stress in the parasympathetic nervous system, comparing respiratory sinus arrhythmia (RSA) responsivity from middle to late childhood with middle to late adolescence. We propose the use of latent growth modeling of stress responsivity that includes time-varying covariates to account for conceptual and methodological issues in the measurement of physiological stress responsivity. Such models allow researchers to address key aspects of developmental sensitivity including within-individual variability, mean level change over time, and between-individual variability over time. In an empirical example, we found significant between-individual variability over time in RSA responsivity to stress during middle to late childhood but not during middle to late adolescence, suggesting that childhood may be a period of greater developmental sensitivity at the between-individual level. © 2017 Society for Psychophysiological Research.

  3. Abnormal stress responsivity in a rodent developmental disruption model of schizophrenia.

    Science.gov (United States)

    Zimmerman, Eric C; Bellaire, Mark; Ewing, Samuel G; Grace, Anthony A

    2013-10-01

    Although numerous studies have implicated stress in the pathophysiology of schizophrenia, less is known about how the effects of stress interact with genetic, developmental, and/or environmental determinants to promote disease progression. In particular, it has been proposed that in humans, stress exposure in adolescence could combine with a predisposition towards increased stress sensitivity, leading to prodromal symptoms and eventually psychosis. However, the neurobiological substrates for this interaction are not fully characterized. Previous work in our lab has demonstrated that rats born to dams administered with the DNA-methylating agent methylazoxymethanol acetate (MAM) at gestational day 17 exhibit as adults behavioral and anatomical abnormalities consistent with those observed in patients with schizophrenia. Here, we examined behavioral and neuroendocrine responses to stress in the MAM model of schizophrenia. MAM-treated male rats were exposed to acute and repeated footshock stress at prepubertal, peripubteral, and adult ages. Ultrasonic vocalizations (USVs), freezing, and corticosterone responses were quantified. We found that juvenile MAM-treated rats emitted significantly more calls, spent more time vocalizing, emitted calls at a higher rate, and showed more freezing in response to acute footshock stress when compared with their saline (SAL) treated counterparts, and that this difference is not present in older animals. In addition, adolescent MAM-treated animals displayed a blunted HPA axis corticosterone response to acute footshock that did not adapt after 10 days of stress exposure. These data demonstrate abnormal stress responsivity in the MAM model of schizophrenia and suggest that these animals are more sensitive to the effects of stress in youth.

  4. Reconstructing a Network of Stress-Response Regulators via Dynamic System Modeling of Gene Regulation

    Directory of Open Access Journals (Sweden)

    Wei-Sheng Wu

    2008-01-01

    Full Text Available Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene’s expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specifi c stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably suffi cient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  5. Predictors of responses to stress among families coping with poverty-related stress.

    Science.gov (United States)

    Santiago, Catherine DeCarlo; Etter, Erica Moran; Wadsworth, Martha E; Raviv, Tali

    2012-05-01

    This study tested how poverty-related stress (PRS), psychological distress, and responses to stress predicted future effortful coping and involuntary stress responses one year later. In addition, we explored age, sex, ethnicity, and parental influences on responses to stress over time. Hierarchical linear modeling analyses conducted with 98 low-income families (300 family members: 136 adults, 82 school-aged children, 82 adolescents) revealed that primary control coping, secondary control coping, disengagement, involuntary engagement, and involuntary disengagement each significantly predicted future use of that response. Primary and secondary control coping also predicted less maladaptive future responses to stress, while involuntary responses to stress undermined the development of adaptive responding. Age, sex, and interactions among PRS and prior coping were also found to predict certain responses to stress. In addition, child subgroup analyses demonstrate the importance of parental modeling of coping and involuntary stress responses, and warmth/nurturance and monitoring practices. Results are discussed with regard to the implications for preventive interventions with families in poverty.

  6. Corticosterone mitigates the stress response in an animal model of PTSD.

    Science.gov (United States)

    Jia, Min; Smerin, Stanley E; Zhang, Lei; Xing, Guoqiang; Li, Xiaoxia; Benedek, David; Ursano, Robert; Li, He

    2015-01-01

    Activation of glucocorticoid receptor signaling in the stress response to traumatic events has been implicated in the pathogenesis of stress-associated psychiatric disorders such as post-traumatic stress disorder (PTSD). Elevated startle response and hyperarousal are hallmarks of PTSD, and are generally considered to evince fear (DSM V). To further examine the efficacy of corticosterone in treating hyperarousal and elevated fear, the present study utilized a learned helplessness stress model in which rats are restrained and subjected to tail shock for three days. These stressed rats develop a delayed long-lasting exaggeration of the acoustic startle response (ASR) and retarded body weight growth, similar to symptoms of PTSD patients (Myers et al., 2005; Speed et al., 1989). We demonstrate that both pre-stress and post-stress administration of corticosterone (3 mg/kg/day) mitigates a subsequent exaggeration of the ASR measured 14 days after cessation of the stress protocol. Furthermore, the mitigating efficacy of pre-stress administration of corticosterone (3 mg/kg/day for three days) appeared to last significantly longer, up to 21 days after the cessation of the stress protocol, in comparison to that of post-stress administration of corticosterone. However, pre-stress administration of corticosterone at 0.3 mg/kg/day for three days did not mitigate stress-induced exaggeration of the ASR measured at both 14 and 21 days after the cessation of the stress protocol. In addition, pre-stress administration of corticosterone (3 mg/kg/day for three days) mitigates the retardation of body weight growth otherwise resulting from the stress protocol. Congruently, co-administration of the corticosterone antagonist RU486 (40 mg/kg/day for three days) with corticosterone (3 mg/kg/day) prior to stress diminished the mitigating efficacy of the exogenous corticosterone on exaggerated ASR and stress-retarded body weight. The relative efficacy of pre versus post administration of

  7. Ecological and soil hydraulic implications of microbial responses to stress - A modeling analysis

    Science.gov (United States)

    Brangarí, Albert C.; Fernàndez-Garcia, Daniel; Sanchez-Vila, Xavier; Manzoni, Stefano

    2018-06-01

    A better understanding of microbial dynamics in porous media may lead to improvements in the design and management of a number of technological applications, ranging from the degradation of contaminants to the optimization of agricultural systems. To this aim, there is a recognized need for predicting the proliferation of soil microbial biomass (often organized in biofilms) under different environments and stresses. We present a general multi-compartment model to account for physiological responses that have been extensively reported in the literature. The model is used as an explorative tool to elucidate the ecological and soil hydraulic consequences of microbial responses, including the production of extracellular polymeric substances (EPS), the induction of cells into dormancy, and the allocation and reuse of resources between biofilm compartments. The mechanistic model is equipped with indicators allowing the microorganisms to monitor environmental and biological factors and react according to the current stress pressures. The feedbacks of biofilm accumulation on the soil water retention are also described. Model runs simulating different degrees of substrate and water shortage show that adaptive responses to the intensity and type of stress provide a clear benefit to microbial colonies. Results also demonstrate that the model may effectively predict qualitative patterns in microbial dynamics supported by empirical evidence, thereby improving our understanding of the effects of pore-scale physiological mechanisms on the soil macroscale phenomena.

  8. Longevity and the stress response in Drosophila

    DEFF Research Database (Denmark)

    Vermeulen, Corneel J.; Loeschcke, Volker

    2007-01-01

    briefly review the state of the art of research on ageing and longevity in the model organism Drosophila, with focus on the role of the general stress response. We will conclude by contemplating some of the implications of the findings in this research and will suggest several directions for future...... research. Keywords: Ageing; Stress response; Hsp; Drosophila; Stress......The concept that lifespan is a function of the capacity to withstand extrinsic stress is very old. In concordance with this, long-lived individuals often have increased resistance against a variety of stresses throughout life. Genes underlying the stress response may therefore have the ability...

  9. Agreeableness, Extraversion, Stressor and Physiological Stress Response

    OpenAIRE

    Xiaoyuan Chu; Zhentao Ma; Yuan Li; Jing Han

    2015-01-01

    Based on the theoretical analysis, with first-hand data collection and using multiple regression models, this study explored the relationship between agreeableness, extraversion, stressor and stress response and figured out interactive effect of agreeableness, extraversion, and stressor on stress response. We draw on the following conclusions: (1) the interaction term of stressor (work) and agreeableness can negatively predict physiological stress response; (2) the interaction term of stresso...

  10. Canonical Modeling of the Multi-Scale Regulation of the Heat Stress Response in Yeast

    Directory of Open Access Journals (Sweden)

    Luis L. Fonseca

    2012-02-01

    Full Text Available Heat is one of the most fundamental and ancient environmental stresses, and response mechanisms are found in prokaryotes and shared among most eukaryotes. In the budding yeast Saccharomyces cerevisiae, the heat stress response involves coordinated changes at all biological levels, from gene expression to protein and metabolite abundances, and to temporary adjustments in physiology. Due to its integrative multi-level-multi-scale nature, heat adaptation constitutes a complex dynamic process, which has forced most experimental and modeling analyses in the past to focus on just one or a few of its aspects. Here we review the basic components of the heat stress response in yeast and outline what has been done, and what needs to be done, to merge the available information into computational structures that permit comprehensive diagnostics, interrogation, and interpretation. We illustrate the process in particular with the coordination of two metabolic responses, namely the dramatic accumulation of the protective disaccharide trehalose and the substantial change in the profile of sphingolipids, which in turn affect gene expression. The proposed methods primarily use differential equations in the canonical modeling framework of Biochemical Systems Theory (BST, which permits the relatively easy construction of coarse, initial models even in systems that are incompletely characterized.

  11. Stress proteins and the immune response.

    Science.gov (United States)

    Moseley, P

    2000-07-25

    , 243-282.]. This importance in immune regulation is best addressed using Matzinger's model of the immune response - The Danger Theory of Immunity [Matzinger, P., Fuchs, E.J., 1996. Beyond self and non-self: immunity is a conversation, not a war. J. NIH Res. 8, 35-39.]. Matzinger suggests that an immune system model based on the differentiation between "self and non-self" does not easily account for the changes that occur in the organism with growth and development. Why, for example does an organism not self-destruct when the immune system encounters the myriad of new peptides generated at puberty? Instead, she proposes a model of immune function based on the ability to detect and address dangers. This model states that the basic function of all cells of the organism is appropriately timed death "from natural causes". This type of cell death, or apoptosis, generates no stress signals. If, on the other hand, a cell is "murdered" by an infectious agent or dies an untimely death due to necrosis or ischemia, the cell undergoes a stress response with the liberation of stress protein-peptide complexes into the extracellular environment upon cell lysis. Not only do they serve as a "danger signal" to alert the immune system to the death of a cell under stress, but their role as protein carriers allows the immune effector cells to survey the peptides released by this stressed cell and to activate against new or unrecognized peptides carried by the stress protein. Matzinger bases the Danger Theory of Immunity on three "Laws of Lymphotics". These laws state that: (1) resting T lymphocytes require both antigen stimulation by an antigen-presenting cell (APC) and co-stimulation with a danger signal to become activated; (2) the co-stimulatory signal must be received through the APC; and (3) T cells receiving only antigen stimulation without the co-stimulatory signal undergo apoptosis. The Danger Theory gives a simple model for both tolerance and activation. (ABSTRACT TRUNCATED)

  12. Sulfur mustard induces an endoplasmic reticulum stress response in the mouse ear vesicant model

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yoke-Chen; Wang, James D. [Rutgers University, Pharmacology and Toxicology, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States); Svoboda, Kathy K. [Texas A and M University, Baylor College of Dentistry, Center for Craniofacial Research 3302 Gaston Ave, Dallas, Texas 75246 (United States); Casillas, Robert P. [MRIGlobal, 425 Volker Boulevard, Kansas City, MO 64110 (United States); Laskin, Jeffrey D. [UMDNJ-Robert Wood Johnson Medical School, Environmental and Occupational Medicine, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States); Gordon, Marion K. [Rutgers University, Pharmacology and Toxicology, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States); Gerecke, Donald R., E-mail: gerecke@eohsi.rutgers.edu [Rutgers University, Pharmacology and Toxicology, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States)

    2013-04-15

    The endoplasmic reticulum (ER) stress response is a cell survival pathway upregulated when cells are under severe stress. Severely damaged mouse ear skin exposed to the vesicant, sulfur mustard (bis-2-chloroethyl sulfide, SM), resulted in increased expression of ER chaperone proteins that accompany misfolded and incorrectly made proteins targeted for degradation. Time course studies with SM using the mouse ear vesicant model (MEVM) showed progressive histopathologic changes including edema, separation of the epidermis from the dermis, persistent inflammation, upregulation of laminin γ2 (one of the chains of laminin-332, a heterotrimeric skin glycoprotein required for wound repair), and delayed wound healing from 24 h to 168 h post exposure. This was associated with time related increased expression of the cell survival ER stress marker, GRP78/BiP, and the ER stress apoptosis marker, GADD153/CHOP, suggesting simultaneous activation of both cell survival and non-mitochondrial apoptosis pathways. Dual immunofluorescence labeling of a keratinocyte migration promoting protein, laminin γ2 and GRP78/BIP, showed colocalization of the two molecules 72 h post exposure indicating that the laminin γ2 was misfolded after SM exposure and trapped within the ER. Taken together, these data show that ER stress is induced in mouse skin within 24 h of vesicant exposure in a defensive response to promote cell survival; however, it appears that this response is rapidly overwhelmed by the apoptotic pathway as a consequence of severe SM-induced injury. - Highlights: ► We demonstrated ER stress response in the mouse ear vesicant model. ► We described the asymmetrical nature of wound repair in the MEVM. ► We identified the distribution of various ER stress markers in the MEVM.

  13. STRESS INDUCED OBESITY: LESSONS FROM RODENT MODELS OF STRESS

    Directory of Open Access Journals (Sweden)

    Zachary Robert Patterson

    2013-07-01

    Full Text Available Stress is defined as the behavioral and physiological responses generated in the face of, or in anticipation of, a perceived threat. The stress response involves activation of the sympathetic nervous system and recruitment of the hypothalamic-pituitary-adrenal (HPA axis. When an organism encounters a stressor (social, physical, etc., these endogenous stress systems are stimulated in order to generate a fight-or-flight response, and manage the stressful situation. As such, an organism is forced to liberate energy resources in attempt to meet the energetic demands posed by the stressor. A change in the energy homeostatic balance is thus required to exploit an appropriate resource and deliver useable energy to the target muscles and tissues involved in the stress response. Acutely, this change in energy homeostasis and the liberation of energy is considered advantageous, as it is required for the survival of the organism. However, when an organism is subjected to a prolonged stressor, as is the case during chronic stress, a continuous irregularity in energy homeostasis is considered detrimental and may lead to the development of metabolic disturbances such as cardiovascular disease, type II diabetes mellitus and obesity. This concept has been studied extensively using animal models, and the neurobiological underpinnings of stress induced metabolic disorders are beginning to surface. However, different animal models of stress continue to produce divergent metabolic phenotypes wherein some animals become anorexic and loose body mass while others increase food intake and body mass and become vulnerable to the development of metabolic disturbances. It remains unclear exactly what factors associated with stress models can be used to predict the metabolic outcome of the organism. This review will explore a variety of rodent stress models and discuss the elements that influence the metabolic outcome in order to further our understanding of stress

  14. Stress, and pathogen response gene expression in modeled microgravity

    Science.gov (United States)

    Sundaresan, Alamelu; Pellis, Neal R.

    2006-01-01

    Purpose: Immune suppression in microgravity has been well documented. With the advent of human exploration and long-term space travel, the immune system of the astronaut must be optimally maintained. It is important to investigate the expression patterns of cytokine genes, because they are directly related to immune response. Heat shock proteins (HSPs), also called stress proteins, are a group of proteins that are present in the cells of every life form. These proteins are induced when a cell responds to stressors such as heat, cold and oxygen deprivation. Microgravity is another stressor that may regulate HSPs. Heat shock proteins trigger immune response through activities that occur both inside the cell (intracellular) and outside the cell (extracellular). Knowledge about these two gene groups could lead to establishment of a blueprint of the immune response and adaptation-related genes in the microgravity environment. Methods: Human peripheral blood cells were cultured in 1g (T flask) and modeled microgravity (MMG, rotating-wall vessel) for 24 and 72 hours. Cell samples were collected and subjected to gene array analysis using the Affymetrix HG_U95 array. Data was collected and subjected to a two-way analysis of variance. The genes related to immune and stress responses were analyzed. Results and Conclusions: HSP70 was up-regulated by more than two fold in microgravity culture, while HSP90 was significantly down-regulated. HSP70 is not typically expressed in all kinds of cells, but it is expressed at high levels in stress conditions. HSP70 participates in translation, protein translocation, proteolysis and protein folding, suppressing aggregation and reactivating denatured proteins. Increased serum HSP70 levels correlate with a better outcome for heat-stroke or severe trauma patients. At the same time, elevated serum levels of HSP70 have been detected in patients with peripheral or renal vascular disease. HSP90 has been identified in the cytosol, nucleus and

  15. Ebola Response: Modeling the Risk of Heat Stress from Personal Protective Clothing.

    Directory of Open Access Journals (Sweden)

    Adam W Potter

    Full Text Available A significant number of healthcare workers have responded to aid in the relief and containment of the 2013 Ebola virus disease (EVD outbreak in West Africa. Healthcare workers are required to wear personal protective clothing (PPC to impede the transmission of the virus; however, the impermeable design and the hot humid environment lead to risk of heat stress.Provide healthcare workers quantitative modeling and analysis to aid in the prevention of heat stress while wearing PPC in West Africa.A sweating thermal manikin was used to measure the thermal (Rct and evaporative resistance (Ret of the five currently used levels of PPC for healthcare workers in the West Africa EVD response. Mathematical methods of predicting the rise in core body temperature (Tc in response to clothing, activity, and environment was used to simulate different responses to PPC levels, individual body sizes, and two hot humid conditions: morning/evening (air temperature: 25°C, relative humidity: 40%, mean radiant temperature: 35°C, wind velocity: 1 m/s and mid-day (30°C, 60%, 70°C, 1 m/s.Nearly still air (0.4 m/s measures of Rct ranged from 0.18 to 0.26 m2 K/W and Ret ranged from 25.53 to 340.26 m2 Pa/W.Biophysical assessments and modeling in this study provide quantitative guidance for prevention of heat stress of healthcare workers wearing PPC responding to the EVD outbreak in West Africa.

  16. Ebola Response: Modeling the Risk of Heat Stress from Personal Protective Clothing.

    Science.gov (United States)

    Potter, Adam W; Gonzalez, Julio A; Xu, Xiaojiang

    2015-01-01

    A significant number of healthcare workers have responded to aid in the relief and containment of the 2013 Ebola virus disease (EVD) outbreak in West Africa. Healthcare workers are required to wear personal protective clothing (PPC) to impede the transmission of the virus; however, the impermeable design and the hot humid environment lead to risk of heat stress. Provide healthcare workers quantitative modeling and analysis to aid in the prevention of heat stress while wearing PPC in West Africa. A sweating thermal manikin was used to measure the thermal (Rct) and evaporative resistance (Ret) of the five currently used levels of PPC for healthcare workers in the West Africa EVD response. Mathematical methods of predicting the rise in core body temperature (Tc) in response to clothing, activity, and environment was used to simulate different responses to PPC levels, individual body sizes, and two hot humid conditions: morning/evening (air temperature: 25°C, relative humidity: 40%, mean radiant temperature: 35°C, wind velocity: 1 m/s) and mid-day (30°C, 60%, 70°C, 1 m/s). Nearly still air (0.4 m/s) measures of Rct ranged from 0.18 to 0.26 m2 K/W and Ret ranged from 25.53 to 340.26 m2 Pa/W. Biophysical assessments and modeling in this study provide quantitative guidance for prevention of heat stress of healthcare workers wearing PPC responding to the EVD outbreak in West Africa.

  17. Testing the responses of four wheat crop models to heat stress at anthesis and grain filling.

    Science.gov (United States)

    Liu, Bing; Asseng, Senthold; Liu, Leilei; Tang, Liang; Cao, Weixing; Zhu, Yan

    2016-05-01

    Higher temperatures caused by future climate change will bring more frequent heat stress events and pose an increasing risk to global wheat production. Crop models have been widely used to simulate future crop productivity but are rarely tested with observed heat stress experimental datasets. Four wheat models (DSSAT-CERES-Wheat, DSSAT-Nwheat, APSIM-Wheat, and WheatGrow) were evaluated with 4 years of environment-controlled phytotron experimental datasets with two wheat cultivars under heat stress at anthesis and grain filling stages. Heat stress at anthesis reduced observed grain numbers per unit area and individual grain size, while heat stress during grain filling mainly decreased the size of the individual grains. The observed impact of heat stress on grain filling duration, total aboveground biomass, grain yield, and grain protein concentration (GPC) varied depending on cultivar and accumulated heat stress. For every unit increase of heat degree days (HDD, degree days over 30 °C), grain filling duration was reduced by 0.30-0.60%, total aboveground biomass was reduced by 0.37-0.43%, and grain yield was reduced by 1.0-1.6%, but GPC was increased by 0.50% for cv Yangmai16 and 0.80% for cv Xumai30. The tested crop simulation models could reproduce some of the observed reductions in grain filling duration, final total aboveground biomass, and grain yield, as well as the observed increase in GPC due to heat stress. Most of the crop models tended to reproduce heat stress impacts better during grain filling than at anthesis. Some of the tested models require improvements in the response to heat stress during grain filling, but all models need improvements in simulating heat stress effects on grain set during anthesis. The observed significant genetic variability in the response of wheat to heat stress needs to be considered through cultivar parameters in future simulation studies. © 2016 John Wiley & Sons Ltd.

  18. A response analysis with effective stress model by using vertical input motions

    International Nuclear Information System (INIS)

    Yamanouchi, H.; Ohkawa, I.; Chiba, O.; Tohdo, M.; Kaneko, O.

    1987-01-01

    The nuclear power plant reactor buildings are to be directly supported on a hard soil as a rule in Japan. In case of determining the input motions in order to design those buildings, the amplifications of the hard soil deposits are examined by the total stress analysis in general. However, when the supporting hard soil is replaced with the slightly softer medium such as sandy or gravelly soil, the existence of pore water, in other words, the contribution of the pore water pressure to the total stress cannot be ignored even in a practical sense. In this paper the authors defined an analytical model considering the effective stress-strain relation. In the analyses, the response in the vertical direction is used to evaluate the confining pressure, at first. In the next step, the process of the generation and dissipation of the pore water pressure, is taken into account, together with the effect of the confining pressure. They applied these procedures for the response computations of the horizontally layered soil deposits

  19. Heart rate variability response to mental arithmetic stress in patients with schizophrenia Autonomic response to stress in schizophrenia

    NARCIS (Netherlands)

    Castro, Mariana N.; Vigo, Daniel E.; Weidema, Hylke; Fahrer, Rodolfo D.; Chu, Elvina M.; De Achaval, Delfina; Nogues, Martin; Leiguarda, Ramon C.; Cardinali, Daniel P.; Guinjoan, Salvador N.

    Background: The vulnerability-stress hypothesis is an established model of schizophrenia symptom formation. We sought to characterise the pattern of the cardiac autonomic response to mental arithmetic stress in patients with stable schizophrenia. Methods: We performed heart rate variability (HRV)

  20. Interactions Between Stress and Sex in Microbial Responses Within the Microbiota-Gut-Brain Axis in a Mouse Model.

    Science.gov (United States)

    Tsilimigras, Matthew C B; Gharaibeh, Raad Z; Sioda, Michael; Gray, Laura; Fodor, Anthony A; Lyte, Mark

    2018-05-01

    Animal models are frequently used to examine stress response, but experiments seldom include females. The connection between the microbiota-gut-brain axis and behavioral stress response is investigated here using a mixed-sex mouse cohort. CF-1 mice underwent alternating days of restraint and forced swim for 19 days (male n = 8, female n = 8) with matching numbers of control animals at which point the 16S rRNA genes of gut microbiota were sequenced. Mixed linear models accounting for stress status and sex with individuals nested in cage to control for cage effects evaluated these data. Murine behaviors in elevated plus-maze, open-field, and light/dark box were investigated. Community-level associations with sex, stress, and their interaction were significant. Males had higher microbial diversity than females (p = .025). Of the 638 operational taxonomic units detected in at least 25% of samples, 94 operational taxonomic units were significant: 31 (stress), 61 (sex), and 34 (sex-stress interaction). Twenty of the 39 behavioral measures were significant for stress, 3 for sex, and 6 for sex-stress. However, no significant associations between behavioral measures and specific microbes were detected. These data suggest sex influences stress response and the microbiota-gut-brain axis and that studies of behavior and the microbiome therefore benefit from consideration of how sex differences drive behavior and microbial community structure. Host stress resilience and absence of associations between stress-induced behaviors with specific microbes suggests that hypothalamic-pituitary-adrenal axis activation represents a threshold for microbial influence on host behavior. Future studies are needed in examining the intersection of sex, stress response, and the microbiota-gut-brain axis.

  1. How age, sex and genotype shape the stress response.

    Science.gov (United States)

    Novais, Ashley; Monteiro, Susana; Roque, Susana; Correia-Neves, Margarida; Sousa, Nuno

    2017-02-01

    Exposure to chronic stress is a leading pre-disposing factor for several neuropsychiatric disorders as it often leads to maladaptive responses. The response to stressful events is heterogeneous, underpinning a wide spectrum of distinct changes amongst stress-exposed individuals'. Several factors can underlie a different perception to stressors and the setting of distinct coping strategies that will lead to individual differences on the susceptibility/resistance to stress. Beyond the factors related to the stressor itself, such as intensity, duration or predictability, there are factors intrinsic to the individuals that are relevant to shape the stress response, such as age, sex and genetics. In this review, we examine the contribution of such intrinsic factors to the modulation of the stress response based on experimental rodent models of response to stress and discuss to what extent that knowledge can be potentially translated to humans.

  2. Environmental Stress Responses and Biological Interactions Investigated in the Drosophila Model System

    DEFF Research Database (Denmark)

    Ørsted, Michael

    on their ability to respond on a behavioral, physiological, morphological and/or evolutionary level according to the environmental cues. At the same time, if populations are small and fragmented, and have limited gene flow, environmental change and environmental stress might interact with intrinsic genetic stress...... such as inbreeding and genetic drift, which can exacerbate the effects of one or more environmental stresses. Furthermore, inbred populations often have low genetic variation that might constrain evolutionary responses to rapidly changing environments. This thesis investigates how, and to what extent, insect model......When organisms are faced with changes in their environment, they are forced to respond, if they are to maintain optimal function. Especially ectotherms must deal with environmental changes in e.g. temperature on a regular basis, and thus their survival and reproductive success depend...

  3. Effects of acute psychological stress on placebo and nocebo responses in a clinically relevant model of visceroception.

    Science.gov (United States)

    Roderigo, Till; Benson, Sven; Schöls, Margarita; Hetkamp, Madeleine; Schedlowski, Manfred; Enck, Paul; Elsenbruch, Sigrid

    2017-08-01

    There is evidence to suggest a role of emotions in placebo and nocebo effects, but whether acute psychological stress changes the magnitude of placebo or nocebo responses has not been tested. In a clinically relevant model of visceroception, we assessed effects of acute psychological stress on changes in urgency and pain in response to positive or negative treatment suggestions. In 120 healthy volunteers, perceived urge-to-defecate and pain in response to individually calibrated rectal distensions were measured with visual analogue scales during a BASELINE. Participants then underwent the Trier Social Stress Test (N = 60) or a simple cognitive task (control, N = 60) and were randomized to positive (placebo), negative (nocebo), or neutral treatment information regarding intravenous administration of saline. The series of distensions was repeated, and changes in visual analogue scales from BASELINE to TEST were compared between groups using analysis of covariance and planned post hoc tests. Treatment information emerged as a main factor (P effects for both urgency and pain. Effects for urgency were modulated by stress (interaction effect: P stressed groups. For pain, effects of stress emerged for nocebo responses, which were only evident in stressed groups (P = 0.009). This is the first experimental study supporting effects of acute psychological stress on placebo and nocebo responses in visceroception. Results call for mechanistic as well as patient studies to assess how psychological stress shapes patients' treatment expectations and thereby affects health outcomes.

  4. Stress Responses in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Frees, Dorte; Ingmer, Hanne

    2016-01-01

    stress responses allowing it to sense and adapt to its very different niches. The stress responses often involve dramatic cellular reprogramming, and the technological advances provided by the access to whole genome sequences have let to an unprecedented insight into the global reorganization of gene...... and protein expression following stress-exposure. Characterization of global gene responses has been very helpful both in identifying regulators sensing specific environmental stress signals and overlaps between different stress responses. In this chapter we review the recent progress in our understanding...... of the specific and general S. aureusstress responses, with a special emphasis on how stress responses contribute to virulence and antibiotic resistance in this important human pathogen....

  5. An improved Armstrong-Frederick-Type Plasticity Model for Stable Cyclic Stress-Strain Responses Considering Nonproportional Hardening

    Science.gov (United States)

    Li, Jing; Zhang, Zhong-ping; Li, Chun-wang

    2018-03-01

    This paper modified an Armstrong-Frederick-type plasticity model for investigating the stable cyclic deformation behavior of metallic materials with different sensitivity to nonproportional loadings. In the modified model, the nonproportionality factor and nonproportional cyclic hardening coefficient coupled with the Jiang-Sehitoglu incremental plasticity model were used to estimate the stable stress-strain responses of the two materials (1045HR steel and 304 stainless steel) under various tension-torsion strain paths. A new equation was proposed to calculate the nonproportionality factor on the basis of the minimum normal strain range. Procedures to determine the minimum normal strain range were presented for general multiaxial loadings. Then, the modified model requires only the cyclic strain hardening exponent and cyclic strength coefficient to determine the material constants. It is convenient for predicting the stable stress-strain responses of materials in engineering application. Comparisons showed that the modified model can reflect the effect of nonproportional cyclic hardening well.

  6. The relationship between beginning teachers' stress causes, stress responses, teaching behaviour and attrition

    NARCIS (Netherlands)

    Harmsen, Ruth; Lorenz, Michelle; Maulana, Ridwan; van Veen, Klaas

    2018-01-01

    In this study, the relationships between beginning teachers’ perceived stress causes, stress responses, observed teaching behaviour and attrition is investigated employing structural equation modelling (SEM). A total of 143 BTs were surveyed using the Questionnaire on the Experience and Evaluation

  7. Periodic and chaotic psychological stress variations as predicted by a social support buffered response model

    Science.gov (United States)

    Field, Richard J.; Gallas, Jason A. C.; Schuldberg, David

    2017-08-01

    Recent work has introduced social dynamic models of people's stress-related processes, some including amelioration of stress symptoms by support from others. The effects of support may be ;direct;, depending only on the level of support, or ;buffering;, depending on the product of the level of support and level of stress. We focus here on the nonlinear buffering term and use a model involving three variables (and 12 control parameters), including stress as perceived by the individual, physical and psychological symptoms, and currently active social support. This model is quantified by a set of three nonlinear differential equations governing its stationary-state stability, temporal evolution (sometimes oscillatory), and how each variable affects the others. Chaos may appear with periodic forcing of an environmental stress parameter. Here we explore this model carefully as the strength and amplitude of this forcing, and an important psychological parameter relating to self-kindling in the stress response, are varied. Three significant observations are made: 1. There exist many complex but orderly regions of periodicity and chaos, 2. there are nested regions of increasing number of peaks per cycle that may cascade to chaos, and 3. there are areas where more than one state, e.g., a period-2 oscillation and chaos, coexist for the same parameters; which one is reached depends on initial conditions.

  8. Comfort food is comforting to those most stressed: evidence of the chronic stress response network in high stress women.

    Science.gov (United States)

    Tomiyama, A Janet; Dallman, Mary F; Epel, Elissa S

    2011-11-01

    Chronically stressed rodents who are allowed to eat calorie-dense "comfort" food develop greater mesenteric fat, which in turn dampens hypothalamic-pituitary-adrenocortical (HPA) axis activity. We tested whether similar relations exist in humans, at least cross-sectionally. Fifty-nine healthy premenopausal women were exposed to a standard laboratory stressor to examine HPA response to acute stress and underwent diurnal saliva sampling for basal cortisol and response to dexamethasone administration. Based on perceived stress scores, women were divided into extreme quartiles of low versus high stress categories. We found as hypothesized that the high stress group had significantly greater BMI and sagittal diameter, and reported greater emotional eating. In response to acute lab stressor, the high stress group showed a blunted cortisol response, lower diurnal cortisol levels, and greater suppression in response to dexamethasone. These cross-sectional findings support the animal model, which suggests that long-term adaptation to chronic stress in the face of dense calories result in greater visceral fat accumulation (via ingestion of calorie-dense food), which in turn modulates HPA axis response, resulting in lower cortisol levels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Immediate ketamine treatment does not prevent posttraumatic stress responses in an animal model for PTSD.

    Science.gov (United States)

    Juven-Wetzler, Alzbeta; Cohen, Hagit; Kaplan, Zeev; Kohen, Avi; Porat, Oren; Zohar, Joseph

    2014-03-01

    Clinical studies suggest that administration of ketamine hydrochloride-an antagonist at the N-methyl-d-aspartate ionophore-provides short-term amelioration for depressive symptoms. The effects of a brief course of ketamine given immediately following exposure to psychogenic stress on the behavioral stress responses were assessed in an animal model of posttraumatic stress disorder. Animals exposed to stress were treated 1h later with ketamine (0.5, 5, and 15 mg/kg) or vehicle for three days (N = 107). Outcome measures included behavior in the elevated plus maze (EPM) and acoustic startle response (ASR) tests 30 days after initial exposure and freezing behavior upon exposure to a trauma-cue on day 31. Pre-set cut-off behavioral criteria classified exposed animals according to their EPM and ASR response-patterns into "extreme," "minimal," or "partial" behavioral response for analysis of prevalence rates of "PTSD-like behavior." Circulating corticosterone levels were assessed 20 min after injection of ketamine in exposed and unexposed animals (N = 62). The dexamethasone suppression test was used to assess negative feedback inhibition of the HPA axis. Prevalence rates of extremely-, partially-, or minimally-disrupted behavior demonstrated that ketamine administered immediately following stress exposure was ineffective in alleviating "PTSD-like behavior" at day 30 after exposure. Administration of ketamine was associated with increase in freezing behavior after exposure to a trauma-cue on day 31. Corticosterone levels were significantly suppressed by ketamine only in the exposed animals. Administration of ketamine immediately following trauma-exposure may not only be ineffective but actually detrimental in the long term. A disruption of the post-stress HPA-response has been raised as a contributing factor. © 2013 Published by Elsevier B.V. and ECNP.

  10. Renal sympathetic nerve, blood flow, and epithelial transport responses to thermal stress.

    Science.gov (United States)

    Wilson, Thad E

    2017-05-01

    Thermal stress is a profound sympathetic stress in humans; kidney responses involve altered renal sympathetic nerve activity (RSNA), renal blood flow, and renal epithelial transport. During mild cold stress, RSNA spectral power but not total activity is altered, renal blood flow is maintained or decreased, and epithelial transport is altered consistent with a sympathetic stress coupled with central volume loaded state. Hypothermia decreases RSNA, renal blood flow, and epithelial transport. During mild heat stress, RSNA is increased, renal blood flow is decreased, and epithelial transport is increased consistent with a sympathetic stress coupled with a central volume unloaded state. Hyperthermia extends these directional changes, until heat illness results. Because kidney responses are very difficult to study in humans in vivo, this review describes and qualitatively evaluates an in vivo human skin model of sympathetically regulated epithelial tissue compared to that of the nephron. This model utilizes skin responses to thermal stress, involving 1) increased skin sympathetic nerve activity (SSNA), decreased skin blood flow, and suppressed eccrine epithelial transport during cold stress; and 2) increased SSNA, skin blood flow, and eccrine epithelial transport during heat stress. This model appears to mimic aspects of the renal responses. Investigations of skin responses, which parallel certain renal responses, may aid understanding of epithelial-sympathetic nervous system interactions during cold and heat stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Host homeostatic responses to alcohol-induced cellular stress in animal models of alcoholic liver disease.

    Science.gov (United States)

    Wang, He Joe; Murray, Gary J; Jung, Mary Katherine

    2015-01-01

    Humans develop various clinical phenotypes of severe alcoholic liver disease, including alcoholic hepatitis and cirrhosis, generally after decades of heavy drinking. In such individuals, following each episode of drinking, their livers experience heightened intracellular and extracellular stresses that are closely associated with alcohol consumption and alcohol metabolism. This article focuses on the latest advances made in animal models on evolutionarily conserved homeostatic mechanisms for coping with and resolving these stress conditions. The mechanisms discussed include the stress-activated protein kinase JNK, energy regulator AMPK, autophagy and the inflammatory response. Over time, the host may respond variably to stress with protective mechanisms that are critical in determining an individual's vulnerability to developing severe alcoholic liver disease. A systematic review of these mechanisms and their temporal changes in animal models provides the basis for general conclusions, and raises questions for future studies. The relevance of these data to human conditions is also discussed.

  12. Random cyclic stress-strain responses of a stainless steel pipe-weld metal. II. A modeling

    International Nuclear Information System (INIS)

    Zhao, Y.X.; Wang, J.N.

    2000-01-01

    For pt.I see ibid., vol.199, p.303-14, 2000. This paper pays special attention to an issue that there is a significant scatter of the stress-strain responses of a nuclear engineering material, 1Cr18Ni9Ti stainless steel pipe-weld metal. Efforts are made to reveal the random fatigue damage character by fracture surface observations and to model the random responses by introducing probability-based stress-strain curves of Ramberg-Osgood relation and its modified form. Results reveal that the fatigue damage is subjected to, 3-D interacting and involved microcracks. The three stages, namely microstructural short cracks (MSC), physical short cracks (PSC) and long cracks (LC) subdivided by Miller and de los Rios, can give a good characterization of the damage process. Both micro- and macro-behaviour of the material have the character of three stages. The 3-D effects are strong in the MSC stage, tend to a gradual decrease in the PSC stage, and then show saturation after going to the LC stage. Intrinsic causes of the random behaviour are the difference and evolution of the microstructural conditions ahead of the dominant crack tips. The 'effectively short fatigue crack criterion' introduced by Zhao et al. in observing the material surface short crack behaviour could facilitate an understanding of the mechanism of interaction and evolution. Based on the previous obtained appropriate assumed distribution, normal model, for the cyclic stress amplitude, the probability-based curves are approximated by the mean value and standard deviation cyclic stress-strain curves. Then, fatigue analysis at arbitrarily given reliability can be conveniently made according to the normal distribution function. To estimate these curves, a maximum likelihood method is developed. The analysis reveals that the curves could give a good modeling of the random responses of material. (orig.)

  13. Social stress response in adolescents with bipolar disorder.

    Science.gov (United States)

    Casement, Melynda D; Goldstein, Tina R; Gratzmiller, Sarah M; Franzen, Peter L

    2018-05-01

    Theoretical models posit that stressors contribute to the onset and maintenance of bipolar disorder in adolescence through disruptions in stress physiology, but physiological response to stressors has not been evaluated in adolescents with bipolar illness. The present study tests the hypothesis that adolescents with bipolar disorder will have greater reactivity to a laboratory social stress task than healthy adolescents. Adolescents with bipolar illness (n = 27) and healthy adolescents (n = 28) completed a modified version of the Trier Social Stress Task. Stress response was assessed using high frequency heart rate variability (HF-HRV), heart rate (HR), mean arterial blood pressure (MAP), salivary cortisol, and subjective stress. Multilevel models were used to test for group differences in resting-state physiology, and stress reactivity and recovery. Adolescents with bipolar disorder had greater reactivity in HF-HRV (z = 3.32), but blunted reactivity in MAP (z = -3.08) and cortisol (z = -2.60), during the stressor compared to healthy adolescents. They also had lower resting HF-HRV (z = -3.49) and cortisol (z = -2.86), and higher resting HR (z = 3.56), than healthy adolescents. These results indicate that bipolar disorder is associated with disruptions in autonomic and endocrine response to stress during adolescence, including greater HF-HRV reactivity. Further research should evaluate whether these individual differences in stress physiology precede and predict the onset of mood episodes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses

    Directory of Open Access Journals (Sweden)

    Iwai Ohbayashi

    2018-01-01

    Full Text Available The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized pathway of this stress response involves p53 and MDM2 as key players. p53 is a crucial transcription factor that functions in response to not only nucleolar stress but also other cellular stresses such as DNA damage stress. These cellular stresses release p53 from the inhibition by MDM2, an E3 ubiquitin ligase targeting p53, in various ways, which leads to p53-dependent activation of a set of genes. In plants, genetic impairments of ribosome biogenesis factors or ribosome components have been shown to cause characteristic phenotypes, including a narrow and pointed leaf shape, implying a common signaling pathway connecting ribosomal perturbations and certain aspects of growth and development. Unlike animals, however, plants have neither p53 nor MDM2 family proteins. Then the question arises whether plant cells have a nucleolar stress response pathway. In recent years, it has been reported that several members of the plant-specific transcription factor family NAC play critical roles in the pathways responsive to various cellular stresses. In this mini review, we outline the plant cellular stress response pathways involving NAC transcription factors with reference to the p53-MDM2-dependent pathways of animal cells, and discuss the possible involvement of a plant-unique, NAC-mediated pathway in the nucleolar stress response in plants.

  15. Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses.

    Science.gov (United States)

    Ohbayashi, Iwai; Sugiyama, Munetaka

    2017-01-01

    The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized pathway of this stress response involves p53 and MDM2 as key players. p53 is a crucial transcription factor that functions in response to not only nucleolar stress but also other cellular stresses such as DNA damage stress. These cellular stresses release p53 from the inhibition by MDM2, an E3 ubiquitin ligase targeting p53, in various ways, which leads to p53-dependent activation of a set of genes. In plants, genetic impairments of ribosome biogenesis factors or ribosome components have been shown to cause characteristic phenotypes, including a narrow and pointed leaf shape, implying a common signaling pathway connecting ribosomal perturbations and certain aspects of growth and development. Unlike animals, however, plants have neither p53 nor MDM2 family proteins. Then the question arises whether plant cells have a nucleolar stress response pathway. In recent years, it has been reported that several members of the plant-specific transcription factor family NAC play critical roles in the pathways responsive to various cellular stresses. In this mini review, we outline the plant cellular stress response pathways involving NAC transcription factors with reference to the p53-MDM2-dependent pathways of animal cells, and discuss the possible involvement of a plant-unique, NAC-mediated pathway in the nucleolar stress response in plants.

  16. Bruxism affects stress responses in stressed rats.

    Science.gov (United States)

    Sato, Chikatoshi; Sato, Sadao; Takashina, Hirofumi; Ishii, Hidenori; Onozuka, Minoru; Sasaguri, Kenichi

    2010-04-01

    It has been proposed that suppression of stress-related emotional responses leads to the simultaneous activation of both sympathetic and parasympathetic divisions of the autonomic nervous system (ANS) and that the expression of these emotional states has a protective effect against ulcerogenesis. In the present study, we investigated whether stress-induced bruxism activity (SBA) has a physiological effect of on the stress-induced changes of the stomach, thymus, and spleen as well as blood leukocytes, cortisol, and adrenaline. This study demonstrated that SBA attenuated the stress-induced ulcer genesis as well as degenerative changes of thymus and spleen. SBA also attenuated increases of adrenaline, cortisol, and neutrophils in the blood. In conclusion, expression of aggression through SBA during stress exposure attenuates both stress-induced ANS response, including gastric ulcer formation.

  17. A Model of Teacher Stress

    Science.gov (United States)

    Kyriacou, Chris; Sutcliffe, John

    1978-01-01

    A definition and model of teacher stress is presented which conceptualizes teacher stress as a response syndrome (anger or depression) mediated by (1) an appraisal of threat to the teacher's self-esteem or well-being and (2) coping mechanisms activated to reduce the perceived threat. (Author)

  18. Refining the multisystem view of the stress response: Coordination among cortisol, alpha-amylase, and subjective stress in response to relationship conflict

    Science.gov (United States)

    Powers, Sally I.; Granger, Douglas A.

    2013-01-01

    This study investigated associations among young adults' hypothalamic-pituitary-adrenal axis activity, autonomic nervous system activity, and subjective stress in response to interpersonal conflict to better characterize coordination across stress systems. Seven saliva samples were collected from 199 young adult opposite-sex couples before, during, and after they discussed an unresolved relationship conflict. Samples were later assayed for cortisol and alpha-amylase (sAA). Couples rated anticipatory stress prior to the conflict and perceived stress immediately following the task. Growth curve modeling was used to examine two possible levels of within-person coordination across physiological systems: alignment between cortisol and sAA responses throughout the sampling period (“matched phase coordination”), and association between overall levels of cortisol and sAA in response to conflict (“average level coordination”). Whereas both partners showed the former type of coordination, only women showed the latter type. Positive anticipation of the stressor predicted stronger cortisol-sAA matched phase coordination for women. Pre-task ratings related to women's sAA, and post-task ratings related to both partners' cortisol responses. Implications for a multisystem interpretation of normal and pathological responses to daily stress are discussed. PMID:23684904

  19. Refining the multisystem view of the stress response: coordination among cortisol, alpha-amylase, and subjective stress in response to relationship conflict.

    Science.gov (United States)

    Laurent, Heidemarie K; Powers, Sally I; Granger, Douglas A

    2013-07-02

    This study investigated associations among young adults' hypothalamic-pituitary-adrenal axis activity, autonomic nervous system activity, and subjective stress in response to interpersonal conflict to better characterize coordination across stress systems. Seven saliva samples were collected from 199 young adult opposite-sex couples before, during, and after they discussed an unresolved relationship conflict. Samples were later assayed for cortisol and alpha-amylase (sAA). Couples rated anticipatory stress prior to the conflict and perceived stress immediately following the task. Growth curve modeling was used to examine two possible levels of within-person coordination across physiological systems: alignment between cortisol and sAA responses throughout the sampling period ("matched phase coordination"), and association between overall levels of cortisol and sAA in response to conflict ("average level coordination"). Whereas both partners showed the former type of coordination, only women showed the latter type. Positive anticipation of the stressor predicted stronger cortisol-sAA matched phase coordination for women. Pre-task ratings related to women's sAA, and post-task ratings related to both partners' cortisol responses. Implications for a multisystem interpretation of normal and pathological responses to daily stress are discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Yeast signaling pathways in the oxidative stress response

    Energy Technology Data Exchange (ETDEWEB)

    Ikner, Aminah [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States); Shiozaki, Kazuhiro [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States)]. E-mail: kshiozaki@ucdavis.edu

    2005-01-06

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed.

  1. Yeast signaling pathways in the oxidative stress response

    International Nuclear Information System (INIS)

    Ikner, Aminah; Shiozaki, Kazuhiro

    2005-01-01

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed

  2. Sex hormones affect acute and chronic stress responses in sexually dimorphic patterns: Consequences for depression models.

    Science.gov (United States)

    Guo, Lei; Chen, Yi-Xi; Hu, Yu-Ting; Wu, Xue-Yan; He, Yang; Wu, Juan-Li; Huang, Man-Li; Mason, Matthew; Bao, Ai-Min

    2018-05-21

    Alterations in peripheral sex hormones may play an important role in sex differences in terms of stress responses and mood disorders. It is not yet known whether and how stress-related brain systems and brain sex steroid levels fluctuate in relation to changes in peripheral sex hormone levels, or whether the different sexes show different patterns. We aimed to investigate systematically, in male and female rats, the effect of decreased circulating sex hormone levels following gonadectomy on acute and chronic stress responses, manifested as changes in plasma and hypothalamic sex steroids and hypothalamic stress-related molecules. Experiment (Exp)-1: Rats (14 males, 14 females) were gonadectomized or sham-operated (intact); Exp-2: gonadectomized and intact rats (28 males, 28 females) were exposed to acute foot shock or no stressor; and Exp-3: gonadectomized and intact rats (32 males, 32 females) were exposed to chronic unpredictable mild stress (CUMS) or no stressor. For all rats, plasma and hypothalamic testosterone (T), estradiol (E2), and the expression of stress-related molecules were determined, including corticotropin-releasing hormone, vasopressin, oxytocin, aromatase, and the receptors for estrogens, androgens, glucocorticoids, and mineralocorticoids. Surprisingly, no significant correlation was observed in terms of plasma sex hormones, brain sex steroids, and hypothalamic stress-related molecule mRNAs (p > 0.113) in intact or gonadectomized, male or female, rats. Male and female rats, either intact or gonadectomized and exposed to acute or chronic stress, showed different patterns of stress-related molecule changes. Diminished peripheral sex hormone levels lead to different peripheral and central patterns of change in the stress response systems in male and female rats. This has implications for the choice of models for the study of the different types of mood disorders which also show sex differences. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Post-traumatic stress disorder and beyond: an overview of rodent stress models.

    Science.gov (United States)

    Schöner, Johanna; Heinz, Andreas; Endres, Matthias; Gertz, Karen; Kronenberg, Golo

    2017-10-01

    Post-traumatic stress disorder (PTSD) is a psychiatric disorder of high prevalence and major socioeconomic impact. Patients suffering from PTSD typically present intrusion and avoidance symptoms and alterations in arousal, mood and cognition that last for more than 1 month. Animal models are an indispensable tool to investigate underlying pathophysiological pathways and, in particular, the complex interplay of neuroendocrine, genetic and environmental factors that may be responsible for PTSD induction. Since the 1960s, numerous stress paradigms in rodents have been developed, based largely on Seligman's seminal formulation of 'learned helplessness' in canines. Rodent stress models make use of physiological or psychological stressors such as foot shock, underwater trauma, social defeat, early life stress or predator-based stress. Apart from the brief exposure to an acute stressor, chronic stress models combining a succession of different stressors for a period of several weeks have also been developed. Chronic stress models in rats and mice may elicit characteristic PTSD-like symptoms alongside, more broadly, depressive-like behaviours. In this review, the major existing rodent models of PTSD are reviewed in terms of validity, advantages and limitations; moreover, significant results and implications for future research-such as the role of FKBP5, a mediator of the glucocorticoid stress response and promising target for therapeutic interventions-are discussed. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  4. Reassessment of the cardio-respiratory stress response, using the king penguin as a model.

    Science.gov (United States)

    Willener, Astrid S T; Halsey, Lewis G; Strike, Siobhán; Enstipp, Manfred R; Georges, Jean-Yves; Handrich, Yves

    2015-01-01

    Research in to short-term cardio-respiratory changes in animals in reaction to a psychological stressor typically describes increases in rate of oxygen consumption (V̇(O2)) and heart rate. Consequently, the broad consensus is that they represent a fundamental stressor response generalizable across adult species. However, movement levels can also change in the presence of a stressor, yet studies have not accounted for this possible confound on heart rate. Thus the direct effects of psychological stressors on the cardio-respiratory system are not resolved. We used an innovative experimental design employing accelerometers attached to king penguins (Aptenodytes patagonicus) to measure and thus account for movement levels in a sedentary yet free-to-move animal model during a repeated measures stress experiment. As with previous studies on other species, incubating king penguins (N = 6) exhibited significant increases in both V̇(O2) and heart rate when exposed to the stressor. However, movement levels, while still low, also increased in response to the stressor. Once this was accounted for by comparing periods of time during the control and stress conditions when movement levels were similar as recorded by the accelerometers, only V̇(O2) significantly increased; there was no change in heart rate. These findings offer evidence that changing movement levels have an important effect on the measured stress response and that the cardio-respiratory response per se to a psychological stressor (i.e. the response as a result of physiological changes directly attributable to the stressor) is an increase in V̇(O2) without an increase in heart rate.

  5. Environmental Stress Responses and Experimental Handling Artifacts of a Model Organism, the Copepod Acartia tonsa (Dana

    Directory of Open Access Journals (Sweden)

    Birgitte Nilsson

    2018-05-01

    Full Text Available Handling animals during experiments potentially affects the differential expression of genes chosen as biomarkers of sub-lethal stress. RNA sequencing was used to examine whole-transcriptome responses caused by laboratory handling of the calanoid copepod, Acartia tonsa. Salinity shock (S = 35 to S = 5 was used as positive stress control; individuals not exposed to handling or other stressors served as negative stress control. All copepods were grown from eggs to adults without being handled or exposed to any stressors prior the experiment. Survival of nauplii and adults was estimated for up to 10 min of exposure to handling stress and salinity shock. Only adults exhibited decreased survival (44 ± 7% with 10 min of exposure in response to handling stress and were selected for definitive experiments for RNA sequencing. After 10 min of experimental exposures to handling stress or salinity shock, adults were incubated for 15 min or 24 h at normal culture conditions. A small number of significantly differentially expressed genes (DEGs were observed 15 min after exposure to handling stress (2 DEGs or salinity shock (7 DEGs. However, 24 h after exposure, handling stress resulted in 276 DEGs and salinity shock resulted in 573 DEGs, of which 174 DEGs were overlapping between the treatments. Among the DEGs observed 24 h after exposure to handling stress or salinity shock, some commonly-used stress biomarkers appeared at low levels. This suggests that a stress-response was induced at the transcriptional level for these genes between 15 min and 24 h following exposure. Since handling stress clearly affects transcriptional patterns, it is important to consider handling when designing experiments, by either including additional controls or avoiding focus on impacted genes. Not considering handling in gene expression studies can lead to inaccurate conclusions. The present study provides a baseline for studying handling stress in future studies using this

  6. Stress-specific response of the p53-Mdm2 feedback loop

    Directory of Open Access Journals (Sweden)

    Jensen Mogens H

    2010-07-01

    Full Text Available Abstract Background The p53 signalling pathway has hundreds of inputs and outputs. It can trigger cellular senescence, cell-cycle arrest and apoptosis in response to diverse stress conditions, including DNA damage, hypoxia and nutrient deprivation. Signals from all these inputs are channeled through a single node, the transcription factor p53. Yet, the pathway is flexible enough to produce different downstream gene expression patterns in response to different stresses. Results We construct a mathematical model of the negative feedback loop involving p53 and its inhibitor, Mdm2, at the core of this pathway, and use it to examine the effect of different stresses that trigger p53. In response to DNA damage, hypoxia, etc., the model exhibits a wide variety of specific output behaviour - steady states with low or high levels of p53 and Mdm2, as well as spiky oscillations with low or high average p53 levels. Conclusions We show that even a simple negative feedback loop is capable of exhibiting the kind of flexible stress-specific response observed in the p53 system. Further, our model provides a framework for predicting the differences in p53 response to different stresses and single nucleotide polymorphisms.

  7. Stress potentiates decision biases: A stress induced deliberation-to-intuition (SIDI model

    Directory of Open Access Journals (Sweden)

    Rongjun Yu

    2016-06-01

    Full Text Available Humans often make decisions in stressful situations, for example when the stakes are high and the potential consequences severe, or when the clock is ticking and the task demand is overwhelming. In response, a whole train of biological responses to stress has evolved to allow organisms to make a fight-or-flight response. When under stress, fast and effortless heuristics may dominate over slow and demanding deliberation in making decisions under uncertainty. Here, I review evidence from behavioral studies and neuroimaging research on decision making under stress and propose that stress elicits a switch from an analytic reasoning system to intuitive processes, and predict that this switch is associated with diminished activity in the prefrontal executive control regions and exaggerated activity in subcortical reactive emotion brain areas. Previous studies have shown that when stressed, individuals tend to make more habitual responses than goal-directed choices, be less likely to adjust their initial judgment, and rely more on gut feelings in social situations. It is possible that stress influences the arbitration between the emotion responses in subcortical regions and deliberative processes in the prefrontal cortex, so that final decisions are based on unexamined innate responses. Future research may further test this ‘stress induced deliberation-to-intuition’ (SIDI model and examine its underlying neural mechanisms.

  8. Radish (Raphanus sativus L) - a model for studying plant responses to air pollutants and other environmental stresses

    Energy Technology Data Exchange (ETDEWEB)

    Kostkarick, R.; Manning, W.J. (Technischer Ueberwachungs-Verein Sudwest, Filderstadt (Germany). Fachgruppe fuer Oekologie)

    1993-01-01

    The use of [ital Raphanus sativus L.] as a model crop for studies on plant response to environmental stresses is reviewed with emphasis on the effects of different atmospheric pollutants (O[sub 3], SO[sub 2], NO[sub 2], acidic precipitation) and their combinations. Responses to temperature, light supply, water stress, and atmospheric CO[sub 2] are also studied and discussed. In addition, the references reviewed are evaluated in terms of their experimental protocols on growth conditions and recommendations for optimal ranges of environmental and cultural variables, i.e. light, temperature, nutrient supply are given. Its distinct pattern of biomass partitioning, the small dimensions along with short and easy culture make radish an excellent experimental plant. The fleshy below-ground storage organ, formed by the hypocotyl and upper radicle, acts as the major sink during vegetative development. Abundant assimilate supply due to elevated levels of CO[sub 2] along with high irradiation frequently promote hypocotyl growth more than shoot growth, whereas under conditions of stress shoot growth is maintained at the expense of the hypocotyl. This makes the hypocotyl:shoot ratio of radish a very sensitive and suitable indicator for various environmental stresses. Potential weaknesses and short-comings of radish in its role as a model crop, particularly the high variability of injury and growth responses, are discussed along with possible solutions. Future research needs are derived from the summarized results presented and from some disparities among findings within the literature reviewed.

  9. Erythropoietin Action in Stress Response, Tissue Maintenance and Metabolism

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhang

    2014-06-01

    Full Text Available Erythropoietin (EPO regulation of red blood cell production and its induction at reduced oxygen tension provides for the important erythropoietic response to ischemic stress. The cloning and production of recombinant human EPO has led to its clinical use in patients with anemia for two and half decades and has facilitated studies of EPO action. Reports of animal and cell models of ischemic stress in vitro and injury suggest potential EPO benefit beyond red blood cell production including vascular endothelial response to increase nitric oxide production, which facilitates oxygen delivery to brain, heart and other non-hematopoietic tissues. This review discusses these and other reports of EPO action beyond red blood cell production, including EPO response affecting metabolism and obesity in animal models. Observations of EPO activity in cell and animal model systems, including mice with tissue specific deletion of EPO receptor (EpoR, suggest the potential for EPO response in metabolism and disease.

  10. Response to stress in Drosophila is mediated by gender, age and stress paradigm.

    Science.gov (United States)

    Neckameyer, Wendi S; Nieto-Romero, Andres R

    2015-01-01

    All living organisms must maintain equilibrium in response to internal and external challenges within their environment. Changes in neural plasticity (alterations in neuronal populations, dendritic remodeling, and synaptic turnover) are critical components of the homeostatic response to stress, which has been strongly implicated in the onset of affective disorders. However, stress is differentially perceived depending on the type of stress and its context, as well as genetic background, age and sex; therefore, an individual's maintenance of neuronal homeostasis must differ depending upon these variables. We established Drosophila as a model to analyze homeostatic responses to stress. Sexually immature and mature females and males from an isogenic wild-type strain raised under controlled environmental conditions were exposed to four reproducible and high-throughput translatable stressors to facilitate the analysis of a large number of animals for direct comparisons. These animals were assessed in an open-field arena, in a light-dark box, and in a forced swim test, as well as for sensitivity to the sedative effects of ethanol. These studies establish that immature and mature females and males represent behaviorally distinct populations under control conditions as well as after exposure to different stressors. Therefore, the neural substrates mediating the stress response must be differentially expressed depending upon the hormonal status of the brain. In addition, an adaptive response to a given stressor in one paradigm was not predictive for outcomes in other paradigms.

  11. Investigating the cognitive precursors of emotional response to cancer stress: re-testing Lazarus's transactional model.

    Science.gov (United States)

    Hulbert-Williams, N J; Morrison, V; Wilkinson, C; Neal, R D

    2013-02-01

    Lazarus's Transactional Model of stress and coping underwent significant theoretical development through the 1990s to better incorporate emotional reactions to stress with their appraisal components. Few studies have robustly explored the full model. This study aimed to do so within the context of a major life event: cancer diagnosis. A repeated measures design was used whereby data were collected using self-report questionnaire at baseline (soon after diagnosis), and 3- and 6-month follow-up. A total of 160 recently diagnosed cancer patients were recruited (mean time since diagnosis = 46 days). Their mean age was 64.2 years. Data on appraisals, core-relational themes, and emotions were collected. Data were analysed using both Spearman's correlation tests and multivariate regression modelling. Longitudinal analysis demonstrated weak correlation between change scores of theoretically associated components and some emotions correlated more strongly with cognitions contradicting theoretical expectations. Cross-sectional multivariate testing of the ability of cognitions to explain variance in emotion was largely theory inconsistent. Although data support the generic structure of the Transactional Model, they question the model specifics. Larger scale research is needed encompassing a wider range of emotions and using more complex statistical testing. WHAT IS ALREADY KNOWN ON THIS SUBJECT?: • Stress processes are transactional and coping outcome is informed by both cognitive appraisal of the stressor and the individual's emotional response (Lazarus & Folkman, 1984). • Lazarus (1999) made specific hypotheses about which particular stress appraisals would determine which emotional response, but only a small number of these relationships have been robustly investigated. • Previous empirical testing of this theory has been limited by design and statistical limitations. WHAT DOES THIS STUDY ADD?: • This study empirically investigates the cognitive precedents of a

  12. 2010 MICROBIAL STRESS RESPONSE GORDON RESEARCH CONFERENCE, JULY 18-23, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Sarah Ades

    2011-07-23

    The 2010 Gordon Research Conference on Microbial Stress Responses provides an open and exciting forum for the exchange of scientific discoveries on the remarkable mechanisms used by microbes to survive in nearly every niche on the planet. Understanding these stress responses is critical for our ability to control microbial survival, whether in the context of biotechnology, ecology, or pathogenesis. From its inception in 1994, this conference has traditionally employed a very broad definition of stress in microbial systems. Sessions will cover the major steps of stress responses from signal sensing to transcriptional regulation to the effectors that mediate responses. A wide range of stresses will be represented. Some examples include (but are not limited to) oxidative stress, protein quality control, antibiotic-induced stress and survival, envelope stress, DNA damage, and nutritional stress. The 2010 meeting will also focus on the role of stress responses in microbial communities, applied and environmental microbiology, and microbial development. This conference brings together researchers from both the biological and physical sciences investigating stress responses in medically- and environmentally relevant microbes, as well as model organisms, using cutting-edge techniques. Computational, systems-level, and biophysical approaches to exploring stress responsive circuits will be integrated throughout the sessions alongside the more traditional molecular, physiological, and genetic approaches. The broad range of excellent speakers and topics, together with the intimate and pleasant setting at Mount Holyoke College, provide a fertile ground for the exchange of new ideas and approaches.

  13. Paroxetine blunts the corticosterone response to swim-induced stress and increases depressive-like behavior in a rat model of postpartum depression

    DEFF Research Database (Denmark)

    Overgaard, Agnete; Lieblich, Stephanie E; Richardson, Robin

    2018-01-01

    Perinatal depression (PND) affects 15% of women. During the perinatal period both stress- and gonadal hormones fluctuate widely. Putatively, these fluctuations are involved in PND disease mechanisms. The serotonin system is sensitive to such hormone fluctuations, and serotonin reuptake inhibitors...... depression. In the rat model corticosterone (CORT; 40mg/kgs.c.) was administered in Sprague Dawley rats across postpartum day (PD)2 to PD14. Stress response was measured during the first exposure to the forced swim test (FST1), and depressive-like behavior was measured in both FST1 and FST2. We found...... that paroxetine completely blunted the swim stress-induced CORT response and increased depressive-like behavior in both FST1 and FST2. Our findings suggest that in the postpartum context, SSRIs compromise stress axis dynamics, which are needed for a healthy stress response. This is likely unfavorable...

  14. Examining the intersection of sex and stress in modelling neuropsychiatric disorders.

    Science.gov (United States)

    Goel, N; Bale, T L

    2009-03-01

    Sex-biased neuropsychiatric disorders, including major depressive disorder and schizophrenia, are the major cause of disability in the developed world. Elevated stress sensitivity has been proposed as a key underlying factor in disease onset. Sex differences in stress sensitivity are associated with corticotrophin-releasing factor (CRF) and serotonin neurotransmission, which are important central regulators of mood and coping responses. To elucidate the underlying neurobiology of stress-related disease predisposition, it is critical to develop appropriate animal models of stress pathway dysregulation. Furthermore, the inclusion of sex difference comparisons in stress responsive behaviours, physiology and central stress pathway maturation in these models is essential. Recent studies by our laboratory and others have begun to investigate the intersection of stress and sex where the development of mouse models of stress pathway dysregulation via prenatal stress experience or early-life manipulations has provided insight into points of developmental vulnerability. In addition, examination of the maturation of these pathways, including the functional importance of the organisational and activational effects of gonadal hormones on stress responsivity, is essential for determination of when sex differences in stress sensitivity may begin. In such studies, we have detected distinct sex differences in stress coping strategies where activational effects of testosterone produced females that displayed male-like strategies in tests of passive coping, but were similar to females in tests of active coping. In a second model of elevated stress sensitivity, male mice experiencing prenatal stress early in gestation showed feminised physiological and behavioural stress responses, and were highly sensitive to a low dose of selective serotonin reuptake inhibitors. Analyses of expression and epigenetic patterns revealed changes in CRF and glucocorticoid receptor genes in these mice

  15. Examining the intersection of sex and stress in modeling neuropsychiatric disorders

    Science.gov (United States)

    Goel, Nirupa; Bale, Tracy L.

    2009-01-01

    Sex-biased neuropsychiatric disorders, including major depressive disorder and schizophrenia, are the major cause of disability in the developed world. Elevated stress sensitivity has been proposed as a key underlying factor in disease onset. Sex differences in stress sensitivity are associated with CRF and serotonin neurotransmission, important central regulators of mood and coping responses. To elucidate the underlying neurobiology of stress-related disease predisposition, it is critical to develop appropriate animal models of stress pathway dysregulation. Further, the inclusion of sex difference comparisons in stress responsive behaviors, physiology, and central stress pathway maturation in these models is essential. Recent studies by our lab and others have begun to investigate the intersection of stress and sex where the development of mouse models of stress pathway dysregulation via prenatal stress experience or early life manipulations has provided insight into points of developmental vulnerability. In addition, examination of the maturation of these pathways including the functional importance of the organizational and activational effects of gonadal hormones on stress responsivity is essential for determination of when sex differences in stress sensitivity may begin. In such studies, we have detected distinct sex differences in stress coping strategies where activational effects of testosterone produced females that displayed male-like strategies in tests of passive coping, but were similar to females in tests of active coping. In a second model of elevated stress sensitivity, male mice experiencing prenatal stress early in gestation showed feminized physiological and behavioral stress responses, and were highly sensitive to a low dose of SSRI. Analyses of expression and epigenetic patterns revealed changes in CRF and glucocorticoid receptor genes in these mice. Mechanistically, stress early in pregnancy produced a significant sex-dependent effect on

  16. On the residual stress modeling of shot-peened AISI 4340 steel: finite element and response surface methods

    Science.gov (United States)

    Asgari, Ali; Dehestani, Pouya; Poruraminaie, Iman

    2018-02-01

    Shot peening is a well-known process in applying the residual stress on the surface of industrial parts. The induced residual stress improves fatigue life. In this study, the effects of shot peening parameters such as shot diameter, shot speed, friction coefficient, and the number of impacts on the applied residual stress will be evaluated. To assess these parameters effect, firstly the shot peening process has been simulated by finite element method. Then, effects of the process parameters on the residual stress have been evaluated by response surface method as a statistical approach. Finally, a strong model is presented to predict the maximum residual stress induced by shot peening process in AISI 4340 steel. Also, the optimum parameters for the maximum residual stress are achieved. The results indicate that effect of shot diameter on the induced residual stress is increased by increasing the shot speed. Also, enhancing the friction coefficient magnitude always cannot lead to increase in the residual stress.

  17. Environmental stress responses and experimental handling artifacts of a model organism, the copepod Acartia tonsa (Dana)

    DEFF Research Database (Denmark)

    Nilsson, Birgitte; Jepsen, Per Meyer; Bucklin, Ann

    2018-01-01

    Handling animals during experiments potentially affects the differential expression of genes chosen as biomarkers of sub-lethal stress. RNA sequencing was used to examine whole-transcriptome responses caused by laboratory handling of the calanoid copepod, Acartia tonsa. Salinity shock (S=35 to S=...... studies can lead to inaccurate conclusions. The present study provides a baseline for studying handling stress in future studies using this model organism and others....... for these genes between 15 min and 24 h following exposure. Since handling stress clearly affects transcriptional patterns, it is important to consider handling when designing experiments, by either including additional controls or avoiding focus on impacted genes. Not considering handling in gene expression...

  18. Modelling of loading, stress relaxation and stress recovery in a shape memory polymer.

    Science.gov (United States)

    Sweeney, J; Bonner, M; Ward, I M

    2014-09-01

    A multi-element constitutive model for a lactide-based shape memory polymer has been developed that represents loading to large tensile deformations, stress relaxation and stress recovery at 60, 65 and 70°C. The model consists of parallel Maxwell arms each comprising neo-Hookean and Eyring elements. Guiu-Pratt analysis of the stress relaxation curves yields Eyring parameters. When these parameters are used to define the Eyring process in a single Maxwell arm, the resulting model yields at too low a stress, but gives good predictions for longer times. Stress dip tests show a very stiff response on unloading by a small strain decrement. This would create an unrealistically high stress on loading to large strain if it were modelled by an elastic element. Instead it is modelled by an Eyring process operating via a flow rule that introduces strain hardening after yield. When this process is incorporated into a second parallel Maxwell arm, there results a model that fully represents both stress relaxation and stress dip tests at 60°C. At higher temperatures a third arm is required for valid predictions. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  19. Plant Core Environmental Stress Response Genes Are Systemically Coordinated during Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Kenneth W. Berendzen

    2013-04-01

    Full Text Available Studying plant stress responses is an important issue in a world threatened by global warming. Unfortunately, comparative analyses are hampered by varying experimental setups. In contrast, the AtGenExpress abiotic stress experiment displays intercomparability. Importantly, six of the nine stresses (wounding, genotoxic, oxidative, UV-B light, osmotic and salt can be examined for their capacity to generate systemic signals between the shoot and root, which might be essential to regain homeostasis in Arabidopsis thaliana. We classified the systemic responses into two groups: genes that are regulated in the non-treated tissue only are defined as type I responsive and, accordingly, genes that react in both tissues are termed type II responsive. Analysis of type I and II systemic responses suggest distinct functionalities, but also significant overlap between different stresses. Comparison with salicylic acid (SA and methyl-jasmonate (MeJA responsive genes implies that MeJA is involved in the systemic stress response. Certain genes are predominantly responding in only one of the categories, e.g., WRKY genes respond mainly non-systemically. Instead, genes of the plant core environmental stress response (PCESR, e.g., ZAT10, ZAT12, ERD9 or MES9, are part of different response types. Moreover, several PCESR genes switch between the categories in a stress-specific manner.

  20. Effect of Stress-Response Psycho-Training on the Stress Levels of Mothers with Autistic Children

    Science.gov (United States)

    Karaman, Ömer

    2018-01-01

    The aim of the study was to assess the effect of stress-response psycho-training on the stress levels of mothers with autistic children. The research was experimental in design encompassing a pretest-posttest model with control and placebo groups. Participation in the study was voluntary with a total of 28 mothers of autistic children included…

  1. Perceived stress at work is associated with attenuated DHEA-S response during acute psychosocial stress.

    Science.gov (United States)

    Lennartsson, Anna-Karin; Theorell, Töres; Kushnir, Mark M; Bergquist, Jonas; Jonsdottir, Ingibjörg H

    2013-09-01

    Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEA-S) have been suggested to play a protective role during acute psychosocial stress, because they act as antagonists to the effects of the stress hormone cortisol. This study aims to investigate whether prolonged psychosocial stress, measured as perceived stress at work during the past week, is related to the capacity to produce DHEA and DHEA-S during acute psychosocial stress. It also aims to investigate whether prolonged perceived stress affects the balance between production of cortisol and DHEA-S during acute psychosocial stress. Thirty-six healthy subjects (19 men and 17 women, mean age 37 years, SD 5 years), were included. Perceived stress at work during the past week was measured by using the Stress-Energy (SE) Questionnaire. The participants were divided into three groups based on their mean scores; Low stress, Medium stress and High stress. The participants underwent the Trier Social Stress Test (TSST) and blood samples were collected before, directly after the stress test, and after 30 min of recovery. General Linear Models were used to investigate if the Medium stress group and the High stress group differ regarding stress response compared to the Low stress group. Higher perceived stress at work was associated with attenuated DHEA-S response during acute psychosocial stress. Furthermore, the ratio between the cortisol production and the DHEA-S production during the acute stress test were higher in individuals reporting higher perceived stress at work compared to individuals reporting low perceived stress at work. There was no statistical difference in DHEA response between the groups. This study shows that prolonged stress, measured as perceived stress at work during the past week, seems to negatively affect the capacity to produce DHEA-S during acute stress. Given the protective functions of DHEA-S, attenuated DHEA-S production during acute stress may lead to higher risk for adverse

  2. Inactivation of GABAA receptor is related to heat shock stress response in organism model Caenorhabditis elegans.

    Science.gov (United States)

    Camargo, Gabriela; Elizalde, Alejandro; Trujillo, Xochitl; Montoya-Pérez, Rocío; Mendoza-Magaña, María Luisa; Hernandez-Chavez, Abel; Hernandez, Leonardo

    2016-09-01

    The mechanisms underlying oxidative stress (OS) resistance are not completely clear. Caenorhabditis elegans (C. elegans) is a good organism model to study OS because it displays stress responses similar to those in mammals. Among these mechanisms, the insulin/IGF-1 signaling (IIS) pathway is thought to affect GABAergic neurotransmission. The aim of this study was to determine the influence of heat shock stress (HS) on GABAergic activity in C. elegans. For this purpose, we tested the effect of exposure to picrotoxin (PTX), gamma-aminobutyric acid (GABA), hydrogen peroxide, and HS on the occurrence of a shrinking response (SR) after nose touch stimulus in N2 (WT) worms. Moreover, the effect of HS on the expression of UNC-49 (GABAA receptor ortholog) in the EG1653 strain and the effect of GABA and PTX exposure on HSP-16.2 expression in the TJ375 strain were analyzed. PTX 1 mM- or H2O2 0.7 mM-exposed worms displayed a SR in about 80 % of trials. GABA exposure did not cause a SR. HS prompted the occurrence of a SR as did PTX 1 mM or H2O2 0.7 mM exposure. In addition, HS increased UNC-49 expression, and PTX augmented HSP-16.2 expression. Thus, the results of the present study suggest that oxidative stress, through either H2O2 exposure or application of heat shock, inactivates the GABAergic system, which subsequently would affect the oxidative stress response, perhaps by enhancing the activity of transcription factors DAF-16 and HSF-1, both regulated by the IIS pathway and related to hsp-16.2 expression.

  3. Mechanism Profiling of Hepatotoxicity Caused by Oxidative Stress Using Antioxidant Response Element Reporter Gene Assay Models and Big Data.

    Science.gov (United States)

    Kim, Marlene Thai; Huang, Ruili; Sedykh, Alexander; Wang, Wenyi; Xia, Menghang; Zhu, Hao

    2016-05-01

    Hepatotoxicity accounts for a substantial number of drugs being withdrawn from the market. Using traditional animal models to detect hepatotoxicity is expensive and time-consuming. Alternative in vitro methods, in particular cell-based high-throughput screening (HTS) studies, have provided the research community with a large amount of data from toxicity assays. Among the various assays used to screen potential toxicants is the antioxidant response element beta lactamase reporter gene assay (ARE-bla), which identifies chemicals that have the potential to induce oxidative stress and was used to test > 10,000 compounds from the Tox21 program. The ARE-bla computational model and HTS data from a big data source (PubChem) were used to profile environmental and pharmaceutical compounds with hepatotoxicity data. Quantitative structure-activity relationship (QSAR) models were developed based on ARE-bla data. The models predicted the potential oxidative stress response for known liver toxicants when no ARE-bla data were available. Liver toxicants were used as probe compounds to search PubChem Bioassay and generate a response profile, which contained thousands of bioassays (> 10 million data points). By ranking the in vitro-in vivo correlations (IVIVCs), the most relevant bioassay(s) related to hepatotoxicity were identified. The liver toxicants profile contained the ARE-bla and relevant PubChem assays. Potential toxicophores for well-known toxicants were created by identifying chemical features that existed only in compounds with high IVIVCs. Profiling chemical IVIVCs created an opportunity to fully explore the source-to-outcome continuum of modern experimental toxicology using cheminformatics approaches and big data sources. Kim MT, Huang R, Sedykh A, Wang W, Xia M, Zhu H. 2016. Mechanism profiling of hepatotoxicity caused by oxidative stress using antioxidant response element reporter gene assay models and big data. Environ Health Perspect 124:634-641;

  4. Chasing as a model of psychogenic stress: characterization of physiological and behavioral responses.

    Science.gov (United States)

    Lee, Ji-Hye; Kimm, Sunwhi; Han, Jung-Soo; Choi, June-Seek

    2018-03-25

    Being chased by a predator or a dominant conspecific can induce significant stress. However, only a limited number of laboratory studies have employed chasing by itself as a stressor. In this study, we developed a novel stress paradigm in which rats were chased by a fast-moving object in an inescapable maze. In Experiment 1, defensive behaviors and stress hormone changes induced by chasing stress were measured. During the chasing stress, the chasing-stress group (n = 9) froze and emitted 22-kHz ultrasonic vocalizations (USVs), but the no-chasing control group (n = 10) did not. Plasma corticosterone levels significantly increased following the chasing and were comparable to those of the restraint-stress group (n = 6). In Experiment 2, the long-lasting memory of the chasing event was tested after three weeks. The chasing-stress group (n = 15) showed higher levels of freezing and USV than the no-chasing group (n = 14) when they were presented with the tone associated with the object's chasing action. Subsequently, the rats were subjected to Pavlovian threat conditioning with a tone as a conditioned stimulus and footshock as an unconditioned stimulus. The chasing-stress group showed higher levels of freezing and USV during the conditioning session than the no-chasing group, indicating sensitized defensive reactions in a different threat situation. Taken together, the current results suggest that chasing stress can induce long-lasting memory and sensitization of defensive responses to a new aversive event as well as immediate, significant stress responses.

  5. Distinct Trajectories of Cortisol Response to Prolonged Acute Stress Are Linked to Affective Responses and Hippocampal Gray Matter Volume in Healthy Females.

    Science.gov (United States)

    Admon, Roee; Treadway, Michael T; Valeri, Linda; Mehta, Malavika; Douglas, Samuel; Pizzagalli, Diego A

    2017-08-16

    The development of robust laboratory procedures for acute stress induction over the last decades has greatly advanced our understanding of stress responses in humans and their underlying neurobiological mechanisms. Nevertheless, attempts to uncover linear relationships among endocrine, neural, and affective responses to stress have generally yielded inconsistent results. Here, 79 healthy females completed a well established laboratory procedure of acute stress induction that was modified to prolong its effect. Endocrinological and subjective affect assessments revealed stress-induced increases in cortisol release and negative affect that persisted 65 and 100 min after stress onset, respectively, confirming a relatively prolonged acute stress induction. Applying latent class linear mixed modeling on individuals' patterns of cortisol responses identified three distinct trajectories of cortisol response: the hyper-response ( n = 10), moderate-response ( n = 21), and mild-response ( n = 48) groups. Notably, whereas all three groups exhibited a significant stress-induced increase in cortisol release and negative affect, the hyper-response and mild-response groups both reported more negative affect relative to the moderate-response group. Structural MRI revealed no group differences in hippocampal and amygdala volumes, yet a continuous measure of cortisol response (area under the curve) showed that high and low levels of stress-induced cortisol release were associated with less hippocampal gray matter volume compared with moderate cortisol release. Together, these results suggest that distinct trajectories of cortisol response to prolonged acute stress among healthy females may not be captured by conventional linear analyses; instead, quadratic relations may better describe links between cortisol response to stress and affective responses, as well as hippocampal structural variability. SIGNIFICANCE STATEMENT Despite substantial research, it is unclear whether and how

  6. Physiological stress response patterns during a blood donation.

    Science.gov (United States)

    Hoogerwerf, M D; Veldhuizen, I J T; Tarvainen, M P; Merz, E-M; Huis In 't Veld, E M J; de Kort, W L A M; Sluiter, J K; Frings-Dresen, M H W

    2018-03-24

    Donating blood is associated with increased psychological stress. This study investigates whether a blood donation induces physiological stress and if response patterns differ by gender, donation experience and non-acute stress. In 372 donors, physiological stress [blood pressure, pulse rate, pulse rate variability (PRV)] was measured at seven moments during routine donation. PRV was assessed using time domain [root mean square of successive differences (RMSSD)] and frequency domain [high frequency (HF) and low frequency (LF) power] parameters. Non-acute stress was assessed by questionnaire. Shape and significance of time course patterns were assessed by fitting multilevel models for each stress measure and comparing men and women, first-time and experienced donors, and donors with high and low levels of non-acute stress. Significant response patterns were found for all stress measures, where levels of systolic blood pressure (F(1,1315) = 24·2, P blood pressure (F(1,1326) = 50·9, P blood pressure/pulse rate in women; higher pulse rate in first-time donors; higher RMSSD at arrival and from screening until leaving in first-time donors; and higher LF and HF in first-time donors. This study shows an increase in physiological stress related to needle insertion, followed by a decrease when leaving the donation centre. Some group effects were also found. © 2018 International Society of Blood Transfusion.

  7. Low lifetime stress exposure is associated with reduced stimulus–response memory

    Science.gov (United States)

    Goldfarb, Elizabeth V.; Shields, Grant S.; Daw, Nathaniel D.; Slavich, George M.; Phelps, Elizabeth A.

    2017-01-01

    Exposure to stress throughout life can cumulatively influence later health, even among young adults. The negative effects of high cumulative stress exposure are well-known, and a shift from episodic to stimulus–response memory has been proposed to underlie forms of psychopathology that are related to high lifetime stress. At the other extreme, effects of very low stress exposure are mixed, with some studies reporting that low stress leads to better outcomes, while others demonstrate that low stress is associated with diminished resilience and negative outcomes. However, the influence of very low lifetime stress exposure on episodic and stimulus–response memory is unknown. Here we use a lifetime stress assessment system (STRAIN) to assess cumulative lifetime stress exposure and measure memory performance in young adults reporting very low and moderate levels of lifetime stress exposure. Relative to moderate levels of stress, very low levels of lifetime stress were associated with reduced use and retention (24 h later) of stimulus–response (SR) associations, and a higher likelihood of using context memory. Further, computational modeling revealed that participants with low levels of stress exhibited worse expression of memory for SR associations than those with moderate stress. These results demonstrate that very low levels of stress exposure can have negative effects on cognition. PMID:28298555

  8. Structural modelling and molecular dynamics of a multi-stress responsive WRKY TF-DNA complex towards elucidating its role in stress signalling mechanisms in chickpea.

    Science.gov (United States)

    Konda, Aravind Kumar; Farmer, Rohit; Soren, Khela Ram; P S, Shanmugavadivel; Setti, Aravind

    2017-07-28

    Chickpea is a premier food legume crop with high nutritional quality and attains prime importance in the current era of 795 million people being undernourished worldwide. Chickpea production encounters setbacks due to various stresses and understanding the role of key transcription factors (TFs) involved in multiple stresses becomes inevitable. We have recently identified a multi-stress responsive WRKY TF in chickpea. The present study was conducted to predict the structure of WRKY TF to identify the DNA-interacting residues and decipher DNA-protein interactions. Comparative modelling approach produced 3D model of the WRKY TF with good stereochemistry, local/global quality and further revealed W19, R20, K21, and Y22 motifs within a vicinity of 5 Å to the DNA amongst R18, G23, Q24, K25, Y36, Y37, R38 and K47 and these positions were equivalent to the 2LEX WRKY domain of Arabidopsis. Molecular simulations analysis of reference protein -PDB ID 2LEX, along with Car-WRKY TF modelled structure with the DNA coordinates derived from PDB ID 2LEX and docked using HADDOCK were executed. Root Mean Square (RMS) Deviation and RMS Fluctuation values yielded consistently stable trajectories over 50 ns simulation. Strengthening the obtained results, neither radius of gyration, distance and total energy showed any signs of DNA-WRKY complex falling apart nor any significant dissociation event over 50 ns run. Therefore, the study provides first insights into the structural properties of multi-stress responsive WRKY TF-DNA complex in chickpea, enabling genome wide identification of TF binding sites and thereby deciphers their gene regulatory networks.

  9. Soil Compressibility Models for a Wide Stress Range

    KAUST Repository

    Chong, Song-Hun

    2016-03-03

    Soil compressibility models with physically correct asymptotic void ratios are required to analyze situations that involve a wide stress range. Previously suggested models and other functions are adapted to satisfy asymptotic void ratios at low and high stress levels; all updated models involve four parameters. Compiled consolidation data for remolded and natural clays are used to test the models and to develop correlations between model parameters and index properties. Models can adequately fit soil compression data for a wide range of stresses and soil types; in particular, models that involve the power of the stress σ\\'β display higher flexibility to capture the brittle response of some natural soils. The use of a single continuous function avoids numerical discontinuities or the need for ad hoc procedures to determine the yield stress. The tangent stiffness-readily computed for all models-should not be mistaken for the small-strain constant-fabric stiffness. © 2016 American Society of Civil Engineers.

  10. Controlled reperfusion decreased reperfusion induced oxidative stress and evoked inflammatory response in experimental aortic-clamping animal model.

    Science.gov (United States)

    Jancsó, G; Arató, E; Hardi, P; Nagy, T; Pintér, Ö; Fazekas, G; Gasz, B; Takacs, I; Menyhei, G; Kollar, L; Sínay, L

    2016-09-12

    Revascularization after long term aortic ischaemia in vascular surgery induces reperfusion injury accompanied with oxidative stress and inflammatory responses. The hypothesis of this study was that the aortic occlusion followed by controlled reperfusion (CR) can reduce the ischaemia-reperfusion injury, the systemic and local inflammatory response induced by oxidative stress.Animal model was used. animals underwent a 4-hour infrarenal aortic occlusion followed by continuous reperfusion. Treated group: animals were treated with CR: after a 4-hour infrarenal aortic occlusion we made CR for 30 minutes with the crystalloid reperfusion solution (blood: crystalloid solution ratio 1:1) on pressure 60 Hgmm. Blood samples were collected different times. The developing oxidative stress was detected by the plasma levels of malondialdehyde, reduced glutathion, thiol groups and superoxide dismutase. The inflammatory response was measured by phorbol myristate acetate-induced leukocyte reactive oxygen species production and detection of change in myeloperoxidase levels. The animals were anaesthetized one week after terminating ligation and biopsy was taken from quadriceps muscle and large parenchymal organs.CR significantly reduced the postischaemic oxydative stress and inflammatory responses in early reperfusion period. Pathophysiological results: The rate of affected muscle fibers by degeneration was significantly higher in the untreated animal group. The infiltration of leukocytes in muscle and parenchymal tissues was significantly lower in the treatedgroup.CR can improve outcome after acute lower-limb ischaemia. The results confirm that CR might be also a potential therapeutic approach in vascular surgery against reperfusion injury in acute limb ischaemia. Supported by OTKA K108596.

  11. Generalized Unsafety Theory of Stress: Unsafe Environments and Conditions, and the Default Stress Response.

    Science.gov (United States)

    Brosschot, Jos F; Verkuil, Bart; Thayer, Julian F

    2018-03-07

    Prolonged physiological stress responses form an important risk factor for disease. According to neurobiological and evolution-theoretical insights the stress response is a default response that is always "on" but inhibited by the prefrontal cortex when safety is perceived. Based on these insights the Generalized Unsafety Theory of Stress (GUTS) states that prolonged stress responses are due to generalized and largely unconsciously perceived unsafety rather than stressors. This novel perspective necessitates a reconstruction of current stress theory, which we address in this paper. We discuss a variety of very common situations without stressors but with prolonged stress responses, that are not, or not likely to be caused by stressors, including loneliness, low social status, adult life after prenatal or early life adversity, lack of a natural environment, and less fit bodily states such as obesity or fatigue. We argue that in these situations the default stress response may be chronically disinhibited due to unconsciously perceived generalized unsafety. Also, in chronic stress situations such as work stress, the prolonged stress response may be mainly caused by perceived unsafety in stressor-free contexts. Thus, GUTS identifies and explains far more stress-related physiological activity that is responsible for disease and mortality than current stress theories.

  12. Generalized Unsafety Theory of Stress: Unsafe Environments and Conditions, and the Default Stress Response

    Directory of Open Access Journals (Sweden)

    Jos F. Brosschot

    2018-03-01

    Full Text Available Prolonged physiological stress responses form an important risk factor for disease. According to neurobiological and evolution-theoretical insights the stress response is a default response that is always “on” but inhibited by the prefrontal cortex when safety is perceived. Based on these insights the Generalized Unsafety Theory of Stress (GUTS states that prolonged stress responses are due to generalized and largely unconsciously perceived unsafety rather than stressors. This novel perspective necessitates a reconstruction of current stress theory, which we address in this paper. We discuss a variety of very common situations without stressors but with prolonged stress responses, that are not, or not likely to be caused by stressors, including loneliness, low social status, adult life after prenatal or early life adversity, lack of a natural environment, and less fit bodily states such as obesity or fatigue. We argue that in these situations the default stress response may be chronically disinhibited due to unconsciously perceived generalized unsafety. Also, in chronic stress situations such as work stress, the prolonged stress response may be mainly caused by perceived unsafety in stressor-free contexts. Thus, GUTS identifies and explains far more stress-related physiological activity that is responsible for disease and mortality than current stress theories.

  13. Oxidative stress response pathways: Fission yeast as archetype

    DEFF Research Database (Denmark)

    Papadakis, Manos A.; Workman, Christopher

    2015-01-01

    Schizosaccharomyces pombe is a popular model eukaryotic organism to study diverse aspects of mammalian biology, including responses to cellular stress triggered by redox imbalances within its compartments. The review considers the current knowledge on the signaling pathways that govern the transc...

  14. General Stress Responses in the Honey Bee

    Directory of Open Access Journals (Sweden)

    Naïla Even

    2012-12-01

    Full Text Available The biological concept of stress originated in mammals, where a “General Adaptation Syndrome” describes a set of common integrated physiological responses to diverse noxious agents. Physiological mechanisms of stress in mammals have been extensively investigated through diverse behavioral and physiological studies. One of the main elements of the stress response pathway is the endocrine hypothalamo-pituitary-adrenal (HPA axis, which underlies the “fight-or-flight” response via a hormonal cascade of catecholamines and corticoid hormones. Physiological responses to stress have been studied more recently in insects: they involve biogenic amines (octopamine, dopamine, neuropeptides (allatostatin, corazonin and metabolic hormones (adipokinetic hormone, diuretic hormone. Here, we review elements of the physiological stress response that are or may be specific to honey bees, given the economical and ecological impact of this species. This review proposes a hypothetical integrated honey bee stress pathway somewhat analogous to the mammalian HPA, involving the brain and, particularly, the neurohemal organ corpora cardiaca and peripheral targets, including energy storage organs (fat body and crop. We discuss how this system can organize rapid coordinated changes in metabolic activity and arousal, in response to adverse environmental stimuli. We highlight physiological elements of the general stress responses that are specific to honey bees, and the areas in which we lack information to stimulate more research into how this fascinating and vital insect responds to stress.

  15. Psychophysiological responses to stress after stress management training in patients with rheumatoid arthritis.

    Directory of Open Access Journals (Sweden)

    Sabine J M de Brouwer

    Full Text Available BACKGROUND: Stress management interventions may prove useful in preventing the detrimental effects of stress on health. This study assessed the effects of a stress management intervention on the psychophysiological response to stress in patients with rheumatoid arthritis (RA. METHODS: Seventy-four patients with RA, who were randomly assigned to either a control group or a group that received short-term stress management training, performed a standardized psychosocial stress task (Trier Social Stress Test; TSST 1 week after the stress management training and at a 9-week follow-up. Psychological and physical functioning, and the acute psychophysiological response to the stress test were assessed. RESULTS: Patients in the intervention group showed significantly lower psychological distress levels of anxiety after the training than did the controls. While there were no between-group differences in stress-induced tension levels, and autonomic (α-amylase or endocrine (cortisol responses to the stress test 1 week after the intervention, levels of stress-induced tension and cortisol were significantly lower in the intervention group at the 9-week follow-up. Overall, the response to the intervention was particularly evident in a subgroup of patients with a psychological risk profile. CONCLUSION: A relatively short stress management intervention can improve psychological functioning and influences the psychophysiological response to stress in patients with RA, particularly those psychologically at risk. These findings might help understand how stress can affect health and the role of individual differences in stress responsiveness. TRIAL REGISTRATION: TrialRegister.nl NTR1193.

  16. EFFECTS OF DIAZEPAM ON THE BEHAVIORAL RESPONSE TO STRESS IN NULLIPAROUS AND PRIMIPAROUS RATS

    Directory of Open Access Journals (Sweden)

    C. F. R. Garcia

    2017-10-01

    Full Text Available Reproductive experience (RE, i.e. the conjunct of gestation, parturition and lactation, is associated with alterations in secretions of hormones, reducing, for example, steroids and prolactin, possibly for the rest of a female’s life. Responses to stress are related to a behavioral expression of anxiety in the elevated plus-maze, once stress has an anxiogenic effect in this experimental model; both responses, to stress and anxiety, can be permanently modified in function of the ER. Besides, reduction in seprimiparous females’ sensibility to stress has been demonstrated. In this way, the results obtained until the present moment suggests that stress models the behavioral responses to stress and consequently to reproductive experience and that the hormonal scenery related to the estral cycle phase participates in this modulation. In this way too, the reproductive experience is able to reduce the sensibility to stress; however this fact is also influenced by the estral cycle phase.

  17. Plant responses to water stress

    Science.gov (United States)

    Kar, Rup Kumar

    2011-01-01

    Terrestrial plants most often encounter drought stress because of erratic rainfall which has become compounded due to present climatic changes.Responses of plants to water stress may be assigned as either injurious change or tolerance index. One of the primary and cardinal changes in response to drought stress is the generation of reactive oxygen species (ROS), which is being considered as the cause of cellular damage. However, recently a signaling role of such ROS in triggering the ROS scavenging system that may confer protection or tolerance against stress is emerging. Such scavenging system consists of antioxidant enzymes like SOD, catalase and peroxidases, and antioxidant compounds like ascorbate, reduced glutathione; a balance between ROS generation and scavenging ultimately determines the oxidative load. As revealed in case of defence against pathogen, signaling via ROS is initiated by NADPH oxidase-catalyzed superoxide generation in the apoplastic space (cell wall) followed by conversion to hydrogen peroxide by the activity of cell wall-localized SOD. Wall peroxidase may also play role in ROS generation for signaling. Hydrogen peroxide may use Ca2+ and MAPK pathway as downstream signaling cascade. Plant hormones associated with stress responses like ABA and ethylene play their role possibly via a cross talk with ROS towards stress tolerance, thus projecting a dual role of ROS under drought stress. PMID:22057331

  18. A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response

    Directory of Open Access Journals (Sweden)

    Brian eGriffiths

    2012-10-01

    Full Text Available One function of glucocorticoids is to restore homeostasis after an acute stress response by providing negative feedback to stress circuits in the brain. Loss of this negative feedback leads to elevated physiological stress and may contribute to depression, anxiety and post-traumatic stress disorder. We investigated the early, developmental effects of glucocorticoid signaling deficits on stress physiology and related behaviors using a mutant zebrafish, grs357, with non-functional glucocorticoid receptors. These mutants are morphologically inconspicuous and adult-viable. A previous study of adult grs357 mutants showed loss of glucocorticoid-mediated negative feedback and elevated physiological and behavioral stress markers. Already at five days post-fertilization, mutant larvae had elevated whole body cortisol, increased expression of pro-opiomelanocortin (POMC, the precursor of adrenocorticotropic hormone (ACTH, and failed to show normal suppression of stress markers after dexamethasone treatment. Mutant larvae had larger auditory-evoked startle responses compared to wildtype sibling controls (grwt, despite having lower spontaneous activity levels. Fluoxetine (Prozac treatment in mutants decreased startle responding and increased spontaneous activity, making them behaviorally similar to wildtype. This result mirrors known effects of selective serotonin reuptake inhibitors (SSRIs in modifying glucocorticoid signaling and alleviating stress disorders in human patients. Our results suggest that larval grs357 zebrafish can be used to study behavioral, physiological and molecular aspects of stress disorders. Most importantly, interactions between glucocorticoid and serotonin signaling appear to be highly conserved among vertebrates, suggesting deep homologies at the neural circuit level and opening up new avenues for research into psychiatric conditions.

  19. Virtual Institute of Microbial Stress and Survival: Deduction of Stress Response Pathways in Metal and Radionuclide Reducing Microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-04-17

    The projects application goals are to: (1) To understand bacterial stress-response to the unique stressors in metal/radionuclide contamination sites; (2) To turn this understanding into a quantitative, data-driven model for exploring policies for natural and biostimulatory bioremediation; (3) To implement proposed policies in the field and compare results to model predictions; and (4) Close the experimental/computation cycle by using discrepancies between models and predictions to drive new measurements and construction of new models. The projects science goals are to: (1) Compare physiological and molecular response of three target microorganisms to environmental perturbation; (2) Deduce the underlying regulatory pathways that control these responses through analysis of phenotype, functional genomic, and molecular interaction data; (3) Use differences in the cellular responses among the target organisms to understand niche specific adaptations of the stress and metal reduction pathways; (4) From this analysis derive an understanding of the mechanisms of pathway evolution in the environment; and (5) Ultimately, derive dynamical models for the control of these pathways to predict how natural stimulation can optimize growth and metal reduction efficiency at field sites.

  20. Early post-stressor intervention with minocycline, a second-generation tetracycline, attenuates post-traumatic stress response in an animal model of PTSD.

    Science.gov (United States)

    Levkovitz, Yechiel; Fenchel, Daphna; Kaplan, Zeev; Zohar, Joseph; Cohen, Hagit

    2015-01-01

    We assessed the effects of minocycline, a tetracycline with anti-inflammatory, anti-apoptotic and neuroprotective capacities, in an animal model of post-traumatic stress disorder (PTSD). Rats were exposed to psychogenic stress and treated 1h later with minocycline or saline. Behavioral measures included the elevated plus-maze (EPM) and acoustic startle response (ASR) 7 days post stress-exposure. One day after behavioral testing, animals were exposed to a trauma cue and freezing response was assessed. Local levels of cytokines interleukin-1 (IL-1), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the hippocampus, frontal cortex (FC) and hypothalamus were then examined. Minocycline attenuated anxious-like behaviors in stress-exposed rats. In addition, decreased levels of cytokines were measured in exposed rats treated with minocycline compared to their counterparts treated with saline. This study suggests a potential use of minocycline in preventing physiological and behavioral alternations resulting from acute exposure to psychological stress. As this is the first study to report beneficial outcomes for minocycline treatment in an animal model of PTSD, further investigations of the use of minocycline in stress-related conditions with emphasis on PTSD is needed. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  1. Hydrogen-peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, A.; He, Z.; Redding-Johanson, A.M.; Mukhopadhyay, A.; Hemme, C.L.; Joachimiak, M.P.; Bender, K.S.; Keasling, J.D.; Stahl, D.A.; Fields, M.W.; Hazen, T.C.; Arkin, A.P.; Wall, J.D.; Zhou, J.; Luo, F.; Deng, Y.; He, Q.

    2010-07-01

    To understand how sulphate-reducing bacteria respond to oxidative stresses, the responses of Desulfovibrio vulgaris Hildenborough to H{sub 2}O{sub 2}-induced stresses were investigated with transcriptomic, proteomic and genetic approaches. H{sub 2}O{sub 2} and induced chemical species (e.g. polysulfide, ROS) and redox potential shift increased the expressions of the genes involved in detoxification, thioredoxin-dependent reduction system, protein and DNA repair, and decreased those involved in sulfate reduction, lactate oxidation and protein synthesis. A gene coexpression network analysis revealed complicated network interactions among differentially expressed genes, and suggested possible importance of several hypothetical genes in H{sub 2}O{sub 2} stress. Also, most of the genes in PerR and Fur regulons were highly induced, and the abundance of a Fur regulon protein increased. Mutant analysis suggested that PerR and Fur are functionally overlapped in response to stresses induced by H{sub 2}O{sub 2} and reaction products, and the upregulation of thioredoxin-dependent reduction genes was independent of PerR or Fur. It appears that induction of those stress response genes could contribute to the increased resistance of deletion mutants to H{sub 2}O{sub 2}-induced stresses. In addition, a conceptual cellular model of D. vulgaris responses to H{sub 2}O{sub 2} stress was constructed to illustrate that this bacterium may employ a complicated molecular mechanism to defend against the H{sub 2}O{sub 2}-induced stresses.

  2. Sympathoneural and Adrenomedullary Responses to Mental Stress

    Science.gov (United States)

    Carter, Jason R.; Goldstein, David S.

    2017-01-01

    This concept-based review provides historical perspectives and updates about sympathetic noradrenergic and sympathetic adrenergic responses to mental stress. The topic of this review has incited perennial debate, because of disagreements over definitions, controversial inferences, and limited availability of relevant measurement tools. The discussion begins appropriately with Cannon's "homeostasis" and his pioneering work in the area. This is followed by mental stress as a scientific idea and the relatively new notions of allostasis and allostatic load. Experimental models of mental stress in rodents and humans are discussed, with particular attention to ethical constraints in humans. Sections follow on sympathoneural to mental stress, reactivity of catecholamine systems, clinical pathophysiologic states, and the cardiovascular reactivity hypothesis. Future advancement of the field will require integrative approaches and coordinated efforts between physiologists and psychologists on this interdisciplinary topic. PMID:25589266

  3. Abiotic stressors and stress responses

    DEFF Research Database (Denmark)

    Sulmon, Cecile; Van Baaren, Joan; Cabello-Hurtado, Francisco

    2015-01-01

    Abstract Organisms are regularly subjected to abiotic stressors related to increasing anthropogenic activities, including chemicals and climatic changes that induce major stresses. Based on various key taxa involved in ecosystem functioning (photosynthetic microorganisms, plants, invertebrates), we...... review how organisms respond and adapt to chemical- and temperature-induced stresses from molecular to population level. Using field-realistic studies, our integrative analysis aims to compare i) how molecular and physiological mechanisms related to protection, repair and energy allocation can impact...... life history traits of stressed organisms, and ii) to what extent trait responses influence individual and population responses. Common response mechanisms are evident at molecular and cellular scales but become rather difficult to define at higher levels due to evolutionary distance and environmental...

  4. A kinematic hardening constitutive model for the uniaxial cyclic stress-strain response of magnesium sheet alloys at room temperature

    Science.gov (United States)

    He, Zhitao; Chen, Wufan; Wang, Fenghua; Feng, Miaolin

    2017-11-01

    A kinematic hardening constitutive model is presented, in which a modified form of von Mises yield function is adopted, and the initial asymmetric tension and compression yield stresses of magnesium (Mg) alloys at room temperature (RT) are considered. The hardening behavior was classified into slip, twinning, and untwinning deformation modes, and these were described by two forms of back stress to capture the mechanical response of Mg sheet alloys under cyclic loading tests at RT. Experimental values were obtained for AZ31B-O and AZ31B sheet alloys under both tension-compression-tension (T-C-T) and compression-tension (C-T) loadings to calibrate the parameters of back stresses in the proposed model. The predicted parameters of back stresses in the twinning and untwinning modes were expressed as a cubic polynomial. The predicted curves based on these parameters showed good agreement with the tests.

  5. Effects of a chronic stress treatment on vaccinal response in lambs.

    Science.gov (United States)

    Destrez, A; Boissy, A; Guilloteau, L; Andanson, S; Souriau, A; Laroucau, K; Chaillou, E; Deiss, V

    2017-05-01

    Farming systems can expose animals to chronic mild stress which is known to induce negative affective state. Affective state in animals, as in humans, can be assessed through behavioral cues. This study aimed to describe the effect of a chronic mild stress, known to induce a negative affective state, on sheep health through their response to vaccination. The study used 15 lambs subjected to a model of chronic mild stress for 15 weeks and 15 lambs reared under conventional farming as a control group. After 7 weeks of stressful treatment, the lambs were individually exposed to a judgment bias test to assess a putative stress-induced 'pessimism.' After 15 weeks of stressful treatment, antibody immune response was measured after an injection of a live vaccine challenge (Chlamydia abortus attenuated vaccine strain 1B). Stressed lambs displayed a pessimistic-like perception in the judgment bias test, revealing a negative affective state. Stressed and control animals showed different immunological reactions to vaccine challenge: stressed sheep had lower hemoglobin concentrations and higher platelet, granulocyte and acute-phase protein concentrations. Antibody response induced by the vaccine strain was not different between stressed and control sheep. Our results suggest that negative affective state induced by chronic stress treatment may induce a stronger inflammatory response to vaccine challenge in sheep. Improvement of animal health may be achieved through consideration of stressors that may affect the emotional and immunological state of sheep.

  6. Helical wire stress analysis of unbonded flexible riser under irregular response

    Science.gov (United States)

    Wang, Kunpeng; Ji, Chunyan

    2017-06-01

    A helical wire is a critical component of an unbonded flexible riser prone to fatigue failure. The helical wire has been the focus of much research work in recent years because of the complex multilayer construction of the flexible riser. The present study establishes an analytical model for the axisymmetric and bending analyses of an unbonded flexible riser. The interlayer contact under axisymmetric loads in this model is modeled by setting radial dummy springs between adjacent layers. The contact pressure is constant during the bending response and applied to determine the slipping friction force per unit helical wire. The model tracks the axial stress around the angular position at each time step to calculate the axial force gradient, then compares the axial force gradient with the slipping friction force to judge the helical wire slipping region, which would be applied to determine the bending stiffness for the next time step. The proposed model is verified against the experimental data in the literature. The bending moment-curvature relationship under irregular response is also qualitatively discussed. The stress at the critical point of the helical wire is investigated based on the model by considering the local flexure. The results indicate that the present model can well simulate the bending stiffness variation during irregular response, which has significant effect on the stress of helical wire.

  7. An efficient chronic unpredictable stress protocol to induce stress-related responses in C57BL/6 mice.

    Science.gov (United States)

    Monteiro, Susana; Roque, Susana; de Sá-Calçada, Daniela; Sousa, Nuno; Correia-Neves, Margarida; Cerqueira, João José

    2015-01-01

    Exposure to chronic stress can have broad effects on health ranging from increased predisposition for neuropsychiatric disorders to deregulation of immune responses. The chronic unpredictable stress (CUS) protocol has been widely used to study the impact of stress exposure in several animal models and consists in the random, intermittent, and unpredictable exposure to a variety of stressors during several weeks. CUS has consistently been shown to induce behavioral and immunological alterations typical of the chronic stress-response. Unfortunately C57BL/6 mice, one of the most widely used mouse strains, due to the great variety of genetically modified lines, seem to be resistant to the commonly used 4-week-long CUS protocol. The definition of an alternative CUS protocol allowing the use of C57BL/6 mice in chronic stress experiments is a need. Here, we show that by extending the CUS protocol to 8 weeks is possible to induce a chronic stress-response in C57BL/6 mice, as revealed by abrogated body weight gain, increased adrenals weight, and an overactive hypothalamic-pituitary-adrenal axis with increased levels of serum corticosterone. Moreover, we also observed stress-associated behavioral alterations, including the potentiation of anxious-like and depressive-like behaviors and a reduction of exploratory behavior, as well as subtle stress-related changes in the cell population of the thymus and of the spleen. The present protocol for C57BL/6 mice consistently triggers the spectrum of CUS-induced changes observed in rats and, thus, will be highly useful to researchers that need to use this particular mouse strain as an animal model of neuropsychiatric disorders and/or immune deregulation related to CUS.

  8. The Yeast Environmental Stress Response Regulates Mutagenesis Induced by Proteotoxic Stress

    Science.gov (United States)

    Shor, Erika; Fox, Catherine A.; Broach, James R.

    2013-01-01

    Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR) in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors. PMID:23935537

  9. An efficient chronic unpredictable stress protocol to induce stress-related responses in C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Susana eMonteiro

    2015-02-01

    Full Text Available Exposure to chronic stress can have broad effects on health ranging from increased predisposition for neuropsychiatric disorders to deregulation of immune responses. The chronic unpredictable stress (CUS protocol has been widely used to study the impact of stress exposure in several animal models and consists in the random, intermittent and unpredictable exposure to a variety of stressors during several weeks. CUS has consistently been shown to induce behavioral and immunological alterations typical of the chronic stress response. Unfortunately C57BL/6 mice, one of the most widely used mouse strains, due to the great variety of genetically modified lines, seem to be resistant to the commonly used 4-week-long CUS protocol. The definition of an alternative CUS protocol allowing the use of C57BL/6 mice in chronic stress experiments is a need. Here we show that by extending the CUS protocol to 8 weeks is possible to induce a chronic stress response in C57BL/6 mice, as revealed by abrogated body weight gain, increased adrenals weight and an overactive hypothalamic-pituitary-adrenal (HPA axis with increased levels of serum corticosterone. Moreover, we also observed stress-associated behavioral alterations, including the potentiation of anxious-like and depressive-like behaviors and a reduction of exploratory behavior, as well as subtle stress-related changes in the cell population of the thymus and of the spleen.The present protocol for C57BL/6 mice consistently triggers the spectrum of CUS-induced changes observed in rats and, thus, will be highly useful to researchers that need to use this particular mouse strain as an animal model of neuropsychiatric disorders and/or immune deregulation related to chronic unpredictable stress.

  10. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways

    Science.gov (United States)

    Bergsma, Alexis L.; Senchuk, Megan M.; Van Raamsdonk, Jeremy M.

    2016-01-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage. PMID:27053445

  11. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways.

    Science.gov (United States)

    Dues, Dylan J; Andrews, Emily K; Schaar, Claire E; Bergsma, Alexis L; Senchuk, Megan M; Van Raamsdonk, Jeremy M

    2016-04-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage.

  12. Alternative Splicing Control of Abiotic Stress Responses.

    Science.gov (United States)

    Laloum, Tom; Martín, Guiomar; Duque, Paula

    2018-02-01

    Alternative splicing, which generates multiple transcripts from the same gene, is an important modulator of gene expression that can increase proteome diversity and regulate mRNA levels. In plants, this post-transcriptional mechanism is markedly induced in response to environmental stress, and recent studies have identified alternative splicing events that allow rapid adjustment of the abundance and function of key stress-response components. In agreement, plant mutants defective in splicing factors are severely impaired in their response to abiotic stress. Notably, mounting evidence indicates that alternative splicing regulates stress responses largely by targeting the abscisic acid (ABA) pathway. We review here current understanding of post-transcriptional control of plant stress tolerance via alternative splicing and discuss research challenges for the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Responses to reductive stress in the cardiovascular system.

    Science.gov (United States)

    Handy, Diane E; Loscalzo, Joseph

    2017-08-01

    There is a growing appreciation that reductive stress represents a disturbance in the redox state that is harmful to biological systems. On a cellular level, the presence of increased reducing equivalents and the lack of beneficial fluxes of reactive oxygen species can prevent growth factor-mediated signaling, promote mitochondrial dysfunction, increase apoptosis, and decrease cell survival. In this review, we highlight the importance of redox balance in maintaining cardiovascular homeostasis and consider the tenuous balance between oxidative and reductive stress. We explain the role of reductive stress in models of protein aggregation-induced cardiomyopathies, such as those caused by mutations in αB-crystallin. In addition, we discuss the role of NADPH oxidases in models of heart failure and ischemia-reperfusion to illustrate how oxidants may mediate the adaptive responses to injury. NADPH oxidase 4, a hydrogen peroxide generator, also has a major role in promoting vascular homeostasis through its regulation of vascular tone, angiogenic responses, and effects on atherogenesis. In contrast, the lack of antioxidant enzymes that reduce hydrogen peroxide, such as glutathione peroxidase 1, promotes vascular remodeling and is deleterious to endothelial function. Thus, we consider the role of oxidants as necessary signals to promote adaptive responses, such as the activation of Nrf2 and eNOS, and the stabilization of Hif1. In addition, we discuss the adaptive metabolic reprogramming in hypoxia that lead to a reductive state, and the subsequent cellular redistribution of reducing equivalents from NADH to other metabolites. Finally, we discuss the paradoxical ability of excess reducing equivalents to stimulate oxidative stress and promote injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Maternal depression and trajectories of adolescent depression: The role of stress responses in youth risk and resilience.

    Science.gov (United States)

    Monti, Jennifer D; Rudolph, Karen D

    2017-10-01

    This study examined the independent and interactive contributions of maternal depression and youth stress responses to trajectories of youth depression in adolescence. Youths (n = 165, M age = 12.43, SD = 1.18) and their maternal caregivers participated in a 4-year longitudinal study. Mothers and youths were administered diagnostic interviews assessing depression, and youths provided reports of their responses to peer stress. Consistent with an interactive model, adaptive responses to stress (high effortful engagement and low involuntary disengagement) buffered the effect of maternal depression on initial levels and trajectories of youth depression, with gender differences emerging. Consistent with a dual-risk model, maternal depression and maladaptive responses to stress (high effortful disengagement and involuntary engagement) contributed additive risks such that youths displayed the highest levels of depression when they were exposed to maternal depression and showed maladaptive stress responses. This research provides novel evidence that responses to stress contribute to individual differences in depression among offspring of depressed mothers, and suggests that responses to stress are an important target for efforts to promote resilience in at-risk youth.

  15. Emotional Stress and Cardiovascular Complications in Animal Models: A Review of the Influence of Stress Type.

    Science.gov (United States)

    Crestani, Carlos C

    2016-01-01

    Emotional stress has been recognized as a modifiable risk factor for cardiovascular diseases. The impact of stress on physiological and psychological processes is determined by characteristics of the stress stimulus. For example, distinct responses are induced by acute vs. chronic aversive stimuli. Additionally, the magnitude of stress responses has been reported to be inversely related to the degree of predictability of the aversive stimulus. Therefore, the purpose of the present review was to discuss experimental research in animal models describing the influence of stressor stimulus characteristics, such as chronicity and predictability, in cardiovascular dysfunctions induced by emotional stress. Regarding chronicity, the importance of cardiovascular and autonomic adjustments during acute stress sessions and cardiovascular consequences of frequent stress response activation during repeated exposure to aversive threats (i.e., chronic stress) is discussed. Evidence of the cardiovascular and autonomic changes induced by chronic stressors involving daily exposure to the same stressor (predictable) vs. different stressors (unpredictable) is reviewed and discussed in terms of the impact of predictability in cardiovascular dysfunctions induced by stress.

  16. Transcriptional 'memory' of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes.

    Science.gov (United States)

    Avramova, Zoya

    2015-07-01

    Drought, salinity, extreme temperature variations, pathogen and herbivory attacks are recurring environmental stresses experienced by plants throughout their life. To survive repeated stresses, plants provide responses that may be different from their response during the first encounter with the stress. A different response to a similar stress represents the concept of 'stress memory'. A coordinated reaction at the organismal, cellular and gene/genome levels is thought to increase survival chances by improving the plant's tolerance/avoidance abilities. Ultimately, stress memory may provide a mechanism for acclimation and adaptation. At the molecular level, the concept of stress memory indicates that the mechanisms responsible for memory-type transcription during repeated stresses are not based on repetitive activation of the same response pathways activated by the first stress. Some recent advances in the search for transcription 'memory factors' are discussed with an emphasis on super-induced dehydration stress memory response genes in Arabidopsis. © 2015 The Author The Plant Journal © 2015 John Wiley & Sons Ltd.

  17. Opposite Effects of Stress on Pain Modulation Depend on the Magnitude of Individual Stress Response.

    Science.gov (United States)

    Geva, Nirit; Defrin, Ruth

    2018-04-01

    The effect of acute stress on pain threshold and intolerance threshold are reported as producing either hypoalgesia or hyperalgesia. Yet, the contribution of individual stress reactivity in this respect has not been established. The aim was to test 2 pain modulation paradigms under acute stress manipulation, to our knowledge, for the first time, to study whether stress differentially affects pain modulation, and whether the effect is related to individual stress response. Participants were 31 healthy subjects. Conditioned pain modulation (CPM) and pain adaptation were measured before and after inducing an acute stress response using the Montreal Imaging Stress Task. Subjects' stress response was evaluated according to salivary cortisol, autonomic function, and perceived stress and anxiety. The Montreal Imaging Stress Task induced a validated stress response. On a group level, stress induced reduction in CPM magnitude and increase in pain adaptation compared with baseline. These responses correlated with stress reactivity. When the group was subdivided according to stress reactivity, only high stress responders exhibited reduced CPM whereas only low stress responders exhibited increased pain adaptation. The results suggest that acute stress may induce opposite effects on pain modulation, depending on individual stress reactivity magnitude, with an advantage to low stress responders. This study evaluated the effect of acute stress on pain modulation. Pain modulation under stress is affected by individual stress responsiveness; decreased CPM occurs in high stress responders whereas increased pain adaptation occurs in low stress responders. Identification of high stress responders may promote better pain management. Copyright © 2017 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  18. Personality traits modulate emotional and physiological responses to stress.

    Science.gov (United States)

    Childs, Emma; White, Tara L; de Wit, Harriet

    2014-09-01

    An individual's susceptibility to psychological and physical disorders associated with chronic stress exposure, for example, cardiovascular and infectious disease, may also be predicted by their reactivity to acute stress. One factor associated with both stress resilience and health outcomes is personality. An understanding of how personality influences responses to acute stress may shed light upon individual differences in susceptibility to chronic stress-linked disease. This study examined the relationships between personality and acute responses to stress in 125 healthy adults, using hierarchical linear regression. We assessed personality traits using the Multidimensional Personality Questionnaire (MPQ-BF), and responses to acute stress (cortisol, heart rate, blood pressure, mood) using a standardized laboratory psychosocial stress task, the Trier Social Stress Test. Individuals with high Negative Emotionality exhibited greater emotional distress and lower blood pressure responses to the Trier Social Stress Test. Individuals with high agentic Positive Emotionality exhibited prolonged heart rate responses to stress, whereas those with high communal Positive Emotionality exhibited smaller cortisol and blood pressure responses. Separate personality traits differentially predicted emotional, cardiovascular, and cortisol responses to a psychosocial stressor in healthy volunteers. Future research investigating the association of personality with chronic stress-related disease may provide further clues to the relationship between acute stress reactivity and susceptibility to disease.

  19. Extraversion and cardiovascular responses to recurrent social stress: Effect of stress intensity.

    Science.gov (United States)

    Lü, Wei; Xing, Wanying; Hughes, Brian M; Wang, Zhenhong

    2017-10-28

    The present study sought to establish whether the effects of extraversion on cardiovascular responses to recurrent social stress are contingent on stress intensity. A 2×5×1 mixed-factorial experiment was conducted, with social stress intensity as a between-subject variable, study phase as a within-subject variable, extraversion as a continuous independent variable, and cardiovascular parameter (HR, SBP, DBP, or RSA) as a dependent variable. Extraversion (NEO-FFI), subjective stress, and physiological stress were measured in 166 undergraduate students randomly assigned to undergo moderate (n=82) or high-intensity (n=84) social stress (a public speaking task with different levels of social evaluation). All participants underwent continuous physiological monitoring while facing two consecutive stress exposures distributed across five laboratory phases: baseline, stress exposure 1, post-stress 1, stress exposure 2, post-stress 2. Results indicated that under moderate-intensity social stress, participants higher on extraversion exhibited lesser HR reactivity to stress than participants lower on extraversion, while under high-intensity social stress, they exhibited greater HR, SBP, DBP and RSA reactivity. Under both moderate- and high-intensity social stress, participants higher on extraversion exhibited pronounced SBP and DBP response adaptation to repeated stress, and showed either better degree of HR recovery or greater amount of SBP and DBP recovery after stress. These findings suggest that individuals higher on extraversion exhibit physiological flexibility to cope with social challenges and benefit from adaptive cardiovascular responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Immune and stress responses in oysters with insights on adaptation.

    Science.gov (United States)

    Guo, Ximing; He, Yan; Zhang, Linlin; Lelong, Christophe; Jouaux, Aude

    2015-09-01

    Oysters are representative bivalve molluscs that are widely distributed in world oceans. As successful colonizers of estuaries and intertidal zones, oysters are remarkably resilient against harsh environmental conditions including wide fluctuations in temperature and salinity as well as prolonged air exposure. Oysters have no adaptive immunity but can thrive in microbe-rich estuaries as filter-feeders. These unique adaptations make oysters interesting models to study the evolution of host-defense systems. Recent advances in genomic studies including sequencing of the oyster genome have provided insights into oyster's immune and stress responses underlying their amazing resilience. Studies show that the oyster genomes are highly polymorphic and complex, which may be key to their resilience. The oyster genome has a large gene repertoire that is enriched for immune and stress response genes. Thousands of genes are involved in oyster's immune and stress responses, through complex interactions, with many gene families expanded showing high sequence, structural and functional diversity. The high diversity of immune receptors and effectors may provide oysters with enhanced specificity in immune recognition and response to cope with diverse pathogens in the absence of adaptive immunity. Some members of expanded immune gene families have diverged to function at different temperatures and salinities or assumed new roles in abiotic stress response. Most canonical innate immunity pathways are conserved in oysters and supported by a large number of diverse and often novel genes. The great diversity in immune and stress response genes exhibited by expanded gene families as well as high sequence and structural polymorphisms may be central to oyster's adaptation to highly stressful and widely changing environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Blunted hypothalamo-pituitary adrenal axis response to predator odor predicts high stress reactivity.

    Science.gov (United States)

    Whitaker, Annie M; Gilpin, Nicholas W

    2015-08-01

    Individuals with trauma- and stress-related disorders exhibit increases in avoidance of trauma-related stimuli, heightened anxiety and altered neuroendocrine stress responses. Our laboratory uses a rodent model of stress that mimics the avoidance symptom cluster associated with stress-related disorders. Animals are classified as 'Avoiders' or 'Non-Avoiders' post-stress based on avoidance of predator-odor paired context. Utilizing this model, we are able to examine subpopulation differences in stress reactivity. Here, we used this predator odor model of stress to examine differences in anxiety-like behavior and hypothalamo-pituitary adrenal (HPA) axis function in animals that avoid a predator-paired context relative to those that do not. Rats were exposed to predator odor stress paired with a context and tested for avoidance (24h and 11days), anxiety-like behavior (48h and 5days) and HPA activation following stress. Control animals were exposed to room air. Predator odor stress produced avoidance in approximately 65% of the animals at 24h that persisted 11days post-stress. Both Avoiders and Non-Avoiders exhibited a heightened anxiety-like behavior at 48h and 5days post-stress when compared to unstressed Controls. Non-Avoiders exhibited significant increases in circulating adrenocorticotropin hormone (ACTH) and corticosterone (CORT) concentrations immediately following predator odor stress compared to Controls and this response was significantly attenuated in Avoiders. There was an inverse correlation between circulating ACTH/CORT concentrations and avoidance, indicating that lower levels of ACTH/CORT predicted higher levels of avoidance. These results suggest that stress effects on HPA stress axis activation predict long-term avoidance of stress-paired stimuli, and build on previous data showing the utility of this model for exploring the neurobiological mechanisms of trauma- and stress-related disorders. Copyright © 2015. Published by Elsevier Inc.

  2. A proposed residual stress model for oblique turning

    International Nuclear Information System (INIS)

    Elkhabeery, M. M.

    2001-01-01

    A proposed mathematical model is presented for predicting the residual stresses caused by turning. Effects of change in tool free length, cutting speed, feed rate, and the tensile strength of work piece material on the maximum residual stress are investigated. The residual stress distribution in the surface region due to turning under unlubricated condition is determined using a deflection etching technique. To reduce the number of experiments required and build the mathematical model for these variables, Response Surface Methodology (RSM) is used. In addition, variance analysis and an experimental check are conducted to determine the prominent parameters and the adequacy of the model. The results show that the tensile stress of the work piece material, cutting speed, and feed rate have significant effects on the maximum residual stresses. The proposed model, that offering good correlation between the experimental and predicted results, is useful in selecting suitable cutting parameters for the machining of different materials. (author)

  3. Redox signalling and mitochondrial stress responses; lessons from inborn errors of metabolism

    DEFF Research Database (Denmark)

    Olsen, Rikke K J; Cornelius, Nanna; Gregersen, Niels

    2015-01-01

    Mitochondria play a key role in overall cell physiology and health by integrating cellular metabolism with cellular defense and repair mechanisms in response to physiological or environmental changes or stresses. In fact, dysregulation of mitochondrial stress responses and its consequences...... in the form of oxidative stress, has been linked to a wide variety of diseases including inborn errors of metabolism. In this review we will summarize how the functional state of mitochondria -- and especially the concentration of reactive oxygen species (ROS), produced in connection with the respiratory...... chain -- regulates cellular stress responses by redox regulation of nuclear gene networks involved in repair systems to maintain cellular homeostasis and health. Based on our own and other's studies we re-introduce the ROS triangle model and discuss how inborn errors of mitochondrial metabolism...

  4. Drug-induced and genetic alterations in stress-responsive systems: Implications for specific addictive diseases.

    Science.gov (United States)

    Zhou, Yan; Proudnikov, Dmitri; Yuferov, Vadim; Kreek, Mary Jeanne

    2010-02-16

    From the earliest work in our laboratory, we hypothesized, and with studies conducted in both clinical research and animal models, we have shown that drugs of abuse, administered or self-administered, on a chronic basis, profoundly alter stress-responsive systems. Alterations of expression of specific genes involved in stress responsivity, with increases or decreases in mRNA levels, receptor, and neuropeptide levels, and resultant changes in hormone levels, have been documented to occur after chronic intermittent exposure to heroin, morphine, other opiates, cocaine, other stimulants, and alcohol in animal models and in human molecular genetics. The best studied of the stress-responsive systems in humans and mammalian species in general is undoubtedly the HPA axis. In addition, there are stress-responsive systems in other parts in the brain itself, and some of these include components of the HPA axis, such as CRF and CRF receptors, along with POMC gene and gene products. Several other stress-responsive systems are known to influence the HPA axis, such as the vasopressin-vasopressin receptor system. Orexin-hypocretin, acting at its receptors, may effect changes which suggest that it should be properly categorized as a stress-responsive system. However, less is known about the interactions and connectivity of some of these different neuropeptide and receptor systems, and in particular, about the possible connectivity of fast-acting (e.g., glutamate and GABA) and slow-acting (including dopamine, serotonin, and norepinephrine) neurotransmitters with each of these stress-responsive components and the resultant impact, especially in the setting of chronic exposure to drugs of abuse. Several of these stress-responsive systems and components, primarily based on our laboratory-based and human molecular genetics research of addictive diseases, will be briefly discussed in this review. Copyright 2009 Elsevier B.V. All rights reserved.

  5. Everyday stress response targets in the science of behavior change.

    Science.gov (United States)

    Smyth, Joshua M; Sliwinski, Martin J; Zawadzki, Matthew J; Scott, Stacey B; Conroy, David E; Lanza, Stephanie T; Marcusson-Clavertz, David; Kim, Jinhyuk; Stawski, Robert S; Stoney, Catherine M; Buxton, Orfeu M; Sciamanna, Christopher N; Green, Paige M; Almeida, David M

    2018-02-01

    Stress is an established risk factor for negative health outcomes, and responses to everyday stress can interfere with health behaviors such as exercise and sleep. In accordance with the Science of Behavior Change (SOBC) program, we apply an experimental medicine approach to identifying stress response targets, developing stress response assays, intervening upon these targets, and testing intervention effectiveness. We evaluate an ecologically valid, within-person approach to measuring the deleterious effects of everyday stress on physical activity and sleep patterns, examining multiple stress response components (i.e., stress reactivity, stress recovery, and stress pile-up) as indexed by two key response indicators (negative affect and perseverative cognition). Our everyday stress response assay thus measures multiple malleable stress response targets that putatively shape daily health behaviors (physical activity and sleep). We hypothesize that larger reactivity, incomplete recovery, and more frequent stress responses (pile-up) will negatively impact health behavior enactment in daily life. We will identify stress-related reactivity, recovery, and response in the indicators using coordinated analyses across multiple naturalistic studies. These results are the basis for developing a new stress assay and replicating the initial findings in a new sample. This approach will advance our understanding of how specific aspects of everyday stress responses influence health behaviors, and can be used to develop and test an innovative ambulatory intervention for stress reduction in daily life to enhance health behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Memory responses of jasmonic acid-associated Arabidopsis genes to a repeated dehydration stress.

    Science.gov (United States)

    Liu, Ning; Staswick, Paul E; Avramova, Zoya

    2016-11-01

    Dehydration stress activates numerous genes co-regulated by diverse signaling pathways. Upon repeated exposures, however, a subset of these genes does not respond maintaining instead transcription at their initial pre-stressed levels ('revised-response' genes). Most of these genes are involved in jasmonic acid (JA) biosynthesis, JA-signaling and JA-mediated stress responses. How these JA-associated genes are regulated to provide different responses to similar dehydration stresses is an enigma. Here, we investigate molecular mechanisms that contribute to this transcriptional behavior. The memory-mechanism is stress-specific: one exposure to dehydration stress or to abscisic acid (ABA) is required to prevent transcription in the second. Both ABA-mediated and JA-mediated pathways are critical for the activation of these genes, but the two signaling pathways interact differently during a single or multiple encounters with dehydration stress. Synthesis of JA during the first (S1) but not the second dehydration stress (S2) accounts for the altered transcriptional responses. We propose a model for these memory responses, wherein lack of MYC2 and of JA synthesis in S2 is responsible for the lack of expression of downstream genes. The similar length of the memory displayed by different memory-type genes suggests biological relevance for transcriptional memory as a gene-regulating mechanism during recurring bouts of drought. © 2016 John Wiley & Sons Ltd.

  7. Comparative analyses reveal potential uses of Brachypodium distachyon as a model for cold stress responses in temperate grasses

    Directory of Open Access Journals (Sweden)

    Li Chuan

    2012-05-01

    Full Text Available Abstract Background Little is known about the potential of Brachypodium distachyon as a model for low temperature stress responses in Pooideae. The ice recrystallization inhibition protein (IRIP genes, fructosyltransferase (FST genes, and many C-repeat binding factor (CBF genes are Pooideae specific and important in low temperature responses. Here we used comparative analyses to study conservation and evolution of these gene families in B. distachyon to better understand its potential as a model species for agriculturally important temperate grasses. Results Brachypodium distachyon contains cold responsive IRIP genes which have evolved through Brachypodium specific gene family expansions. A large cold responsive CBF3 subfamily was identified in B. distachyon, while CBF4 homologs are absent from the genome. No B. distachyon FST gene homologs encode typical core Pooideae FST-motifs and low temperature induced fructan accumulation was dramatically different in B. distachyon compared to core Pooideae species. Conclusions We conclude that B. distachyon can serve as an interesting model for specific molecular mechanisms involved in low temperature responses in core Pooideae species. However, the evolutionary history of key genes involved in low temperature responses has been different in Brachypodium and core Pooideae species. These differences limit the use of B. distachyon as a model for holistic studies relevant for agricultural core Pooideae species.

  8. Energetic stress: The reciprocal relationship between energy availability and the stress response.

    Science.gov (United States)

    Harrell, C S; Gillespie, C F; Neigh, G N

    2016-11-01

    The worldwide epidemic of metabolic syndromes and the recognized burden of mental health disorders have driven increased research into the relationship between the two. A maladaptive stress response is implicated in both mental health disorders and metabolic disorders, implicating the hypothalamic-pituitary-adrenal (HPA) axis as a key mediator of this relationship. This review explores how an altered energetic state, such as hyper- or hypoglycemia, as may be manifested in obesity or diabetes, affects the stress response and the HPA axis in particular. We propose that changes in energetic state or energetic demands can result in "energetic stress" that can, if prolonged, lead to a dysfunctional stress response. In this review, we summarize the role of the hypothalamus in modulating energy homeostasis and then briefly discuss the relationship between metabolism and stress-induced activation of the HPA axis. Next, we examine seven mechanisms whereby energetic stress interacts with neuroendocrine stress response systems, including by glucocorticoid signaling both within and beyond the HPA axis; by nutrient-induced changes in glucocorticoid signaling; by impacting the sympathetic nervous system; through changes in other neuroendocrine factors; by inducing inflammatory changes; and by altering the gut-brain axis. Recognizing these effects of energetic stress can drive novel therapies and prevention strategies for mental health disorders, including dietary intervention, probiotics, and even fecal transplant. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Plant Glycine-Rich Proteins in Stress Response: An Emerging, Still Prospective Story

    Directory of Open Access Journals (Sweden)

    Magdalena Czolpinska

    2018-03-01

    Full Text Available Seed plants are sessile organisms that have developed a plethora of strategies for sensing, avoiding, and responding to stress. Several proteins, including the glycine-rich protein (GRP superfamily, are involved in cellular stress responses and signaling. GRPs are characterized by high glycine content and the presence of conserved segments including glycine-containing structural motifs composed of repetitive amino acid residues. The general structure of this superfamily facilitates division of GRPs into five main subclasses. Although the participation of GRPs in plant stress response has been indicated in numerous model and non-model plant species, relatively little is known about the key physiological processes and molecular mechanisms in which those proteins are engaged. Class I, II, and IV members are known to be involved in hormone signaling, stress acclimation, and floral development, and are crucial for regulation of plant cells growth. GRPs of class IV [RNA-binding proteins (RBPs] are involved in alternative splicing or regulation of transcription and stomatal movement, seed, pollen, and stamen development; their accumulation is regulated by the circadian clock. Owing to the fact that the overexpression of GRPs can confer tolerance to stress (e.g., some are involved in cold acclimation and may improve growth at low temperatures, these proteins could play a promising role in agriculture through plant genetic engineering. Consequently, isolation, cloning, characterization, and functional validation of novel GRPs expressed in response to the diverse stress conditions are expected to be growing areas of research in the coming years. According to our knowledge, this is the first comprehensive review on participation of plant GRPs in the response to diverse stress stimuli.

  10. Proteomic studies of drought stress response in Fabaceae

    Directory of Open Access Journals (Sweden)

    Tanja ZADRAŽNIK

    2015-11-01

    Full Text Available Drought stress is a serious threat to crop production that influences plant growth and development and subsequently causes reduced quantity and quality of the yield. Plant stress induces changes in cell metabolism, which includes differential expression of proteins. Proteomics offer a powerful approach to analyse proteins involved in drought stress response of plants. Analyses of changes in protein abundance of legumes under drought stress are very important, as legumes play an important role in human and animal diet and are often exposed to drought. The presented results of proteomic studies of selected legumes enable better understanding of molecular mechanisms of drought stress response. The study of drought stress response of plants with proteomic approach may contribute to the development of potential drought-response markers and to the development of drought-tolerant cultivars of different legume crop species.

  11. Validation of the German version of the Ford Insomnia Response to Stress Test.

    Science.gov (United States)

    Dieck, Arne; Helbig, Susanne; Drake, Christopher L; Backhaus, Jutta

    2018-06-01

    The purpose of this study was to assess the psychometric properties of a German version of the Ford Insomnia Response to Stress Test with groups with and without sleep problems. Three studies were analysed. Data set 1 was based on an initial screening for a sleep training program (n = 393), data set 2 was based on a study to test the test-retest reliability of the Ford Insomnia Response to Stress Test (n = 284) and data set 3 was based on a study to examine the influence of competitive sport on sleep (n = 37). Data sets 1 and 2 were used to test internal consistency, factor structure, convergent validity, discriminant validity and test-retest reliability of the Ford Insomnia Response to Stress Test. Content validity was tested using data set 3. Cronbach's alpha of the Ford Insomnia Response to Stress Test was good (α = 0.80) and test-retest reliability was satisfactory (r = 0.72). Overall, the one-factor model showed the best fit. Furthermore, significant positive correlations between the Ford Insomnia Response to Stress Test and impaired sleep quality, depression and stress reactivity were in line with the expectations regarding the convergent validity. Subjects with sleep problems had significantly higher scores in the Ford Insomnia Response to Stress Test than subjects without sleep problems (P Stress Test had significantly lower sleep quality (P = 0.01), demonstrating that vulnerability for stress-induced sleep disturbances accompanies poorer sleep quality in stressful episodes. The findings show that the German version of the Ford Insomnia Response to Stress Test is a reliable and valid questionnaire to assess the vulnerability to stress-induced sleep disturbances. © 2017 European Sleep Research Society.

  12. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework

    International Nuclear Information System (INIS)

    Calabrese, Edward J.; Bachmann, Kenneth A.; Bailer, A. John; Bolger, P. Michael; Borak, Jonathan; Cai, Lu; Cedergreen, Nina; Cherian, M. George; Chiueh, Chuang C.; Clarkson, Thomas W.; Cook, Ralph R.; Diamond, David M.; Doolittle, David J.; Dorato, Michael A.; Duke, Stephen O.; Feinendegen, Ludwig; Gardner, Donald E.; Hart, Ronald W.; Hastings, Kenneth L.; Hayes, A. Wallace; Hoffmann, George R.; Ives, John A.; Jaworowski, Zbigniew; Johnson, Thomas E.; Jonas, Wayne B.; Kaminski, Norbert E.; Keller, John G.; Klaunig, James E.; Knudsen, Thomas B.; Kozumbo, Walter J.; Lettieri, Teresa; Liu, Shu-Zheng; Maisseu, Andre; Maynard, Kenneth I.; Masoro, Edward J.; McClellan, Roger O.; Mehendale, Harihara M.; Mothersill, Carmel; Newlin, David B.; Nigg, Herbert N.; Oehme, Frederick W.; Phalen, Robert F.; Philbert, Martin A.; Rattan, Suresh I.S.; Riviere, Jim E.; Rodricks, Joseph; Sapolsky, Robert M.; Scott, Bobby R.; Seymour, Colin; Sinclair, David A.; Smith-Sonneborn, Joan; Snow, Elizabeth T.; Spear, Linda; Stevenson, Donald E.; Thomas, Yolene; Tubiana, Maurice; Williams, Gary M.; Mattson, Mark P.

    2007-01-01

    Many biological subdisciplines that regularly assess dose-response relationships have identified an evolutionarily conserved process in which a low dose of a stressful stimulus activates an adaptive response that increases the resistance of the cell or organism to a moderate to severe level of stress. Due to a lack of frequent interaction among scientists in these many areas, there has emerged a broad range of terms that describe such dose-response relationships. This situation has become problematic because the different terms describe a family of similar biological responses (e.g., adaptive response, preconditioning, hormesis), adversely affecting interdisciplinary communication, and possibly even obscuring generalizable features and central biological concepts. With support from scientists in a broad range of disciplines, this article offers a set of recommendations we believe can achieve greater conceptual harmony in dose-response terminology, as well as better understanding and communication across the broad spectrum of biological disciplines

  13. Response of Desulfovibrio vulgaris to Alkaline Stress

    Energy Technology Data Exchange (ETDEWEB)

    Stolyar, S.; He, Q.; He, Z.; Yang, Z.; Borglin, S.E.; Joyner, D.; Huang, K.; Alm, E.; Hazen, T.C.; Zhou, J.; Wall, J.D.; Arkin, A.P.; Stahl, D.A.

    2007-11-30

    The response of exponentially growing Desulfovibrio vulgarisHildenborough to pH 10 stress was studied using oligonucleotidemicroarrays and a study set of mutants with genes suggested by microarraydata to be involved in the alkaline stress response deleted. The datashowed that the response of D. vulgaris to increased pH is generallysimilar to that of Escherichia coli but is apparently controlled byunique regulatory circuits since the alternative sigma factors (sigma Sand sigma E) contributing to this stress response in E. coli appear to beabsent in D. vulgaris. Genes previously reported to be up-regulated in E.coli were up-regulated in D. vulgaris; these genes included three ATPasegenes and a tryptophan synthase gene. Transcription of chaperone andprotease genes (encoding ATP-dependent Clp and La proteases and DnaK) wasalso elevated in D. vulgaris. As in E. coli, genes involved in flagellumsynthesis were down-regulated. The transcriptional data also identifiedregulators, distinct from sigma S and sigma E, that are likely part of aD. vulgaris Hildenborough-specific stress response system.Characterization of a study set of mutants with genes implicated inalkaline stress response deleted confirmed that there was protectiveinvolvement of the sodium/proton antiporter NhaC-2, tryptophanase A, andtwo putative regulators/histidine kinases (DVU0331 andDVU2580).

  14. Neonatal Amygdala Lesions and Stress Responsivity in Rats : Relevance to schizophrenia

    NARCIS (Netherlands)

    Terpstra, Jeroen

    2004-01-01

    "Stress responsiveness in an animal model with relevance to schizophrenia” Rats bearing lesions of the amygdala made on postnatal day 7 (D7 AMX) model aspects of neurodevelopmental psychopathologies, such as schizophrenia. Adult D7 AMX rats display impaired pre-pulse inhibition, impaired

  15. Thermodynamical aspects of modeling the mechanical response of granular materials

    International Nuclear Information System (INIS)

    Elata, D.

    1995-01-01

    In many applications in rock physics, the material is treated as a continuum. By supplementing the related conservation laws with constitutive equations such as stress-strain relations, a well-posed problem can be formulated and solved. The stress-strain relations may be based on a combination of experimental data and a phenomenological or micromechanical model. If the model is physically sound and its parameters have a physical meaning, it can serve to predict the stress response of the material to unmeasured deformations, predict the stress response of other materials, and perhaps predict other categories of the mechanical response such as failure, permeability, and conductivity. However, it is essential that the model be consistent with all conservation laws and consistent with the second law of thermodynamics. Specifically, some models of the mechanical response of granular materials proposed in literature, are based on intergranular contact force-displacement laws that violate the second law of thermodynamics by permitting energy generation at no cost. This diminishes the usefulness of these models as it invalidates their predictive capabilities. [This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

  16. Staphylococcal response to oxidative stress

    Directory of Open Access Journals (Sweden)

    Rosmarie eGaupp

    2012-03-01

    Full Text Available Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria’s interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host.

  17. When does stress help or harm? The effects of stress controllability and subjective stress response on stroop performance.

    Science.gov (United States)

    Henderson, Roselinde K; Snyder, Hannah R; Gupta, Tina; Banich, Marie T

    2012-01-01

    The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, research suggests that the impact of stress on cognitive functioning depends on an individual's response to stressors: moderate responses to stress can lead to improved performance while extreme (high or low) responses can lead to impaired performance. The present studies tested the hypothesis that (1) learning to behaviorally control stressors leads to improved performance on a test of general executive functioning, the color-word Stroop, and that (2) this improvement emerges specifically for people who report moderate (subjective) responses to stress. Experiment 1: Stroop performance, measured before and after a stress manipulation, was compared across groups of undergraduate participants (n = 109). People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest reduction in Stroop interference. In contrast, in the group exposed to uncontrollable events, self-reported stress failed to predict performance. Experiment 2: In a second sample (n = 90), we specifically investigated the role of controllability by keeping the rate of failure feedback constant across groups. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest Stroop

  18. Plant Responses to Nanoparticle Stress

    Directory of Open Access Journals (Sweden)

    Zahed Hossain

    2015-11-01

    Full Text Available With the rapid advancement in nanotechnology, release of nanoscale materials into the environment is inevitable. Such contamination may negatively influence the functioning of the ecosystems. Many manufactured nanoparticles (NPs contain heavy metals, which can cause soil and water contamination. Proteomic techniques have contributed substantially in understanding the molecular mechanisms of plant responses against various stresses by providing a link between gene expression and cell metabolism. As the coding regions of genome are responsible for plant adaptation to adverse conditions, protein signatures provide insights into the phytotoxicity of NPs at proteome level. This review summarizes the recent contributions of plant proteomic research to elaborate the complex molecular pathways of plant response to NPs stress.

  19. Response inhibition and cognitive appraisal in clients with acute stress disorder and posttraumatic stress disorder.

    Science.gov (United States)

    Abolghasemi, Abass; Bakhshian, Fereshteh; Narimani, Mohammad

    2013-08-01

    The purpose of the present study was to compare response inhibition and cognitive appraisal in clients with acute stress disorder, clients with posttraumatic stress disorder, and normal individuals. This was a comparative study. The sample consisted of 40 clients with acute stress disorder, 40 patients with posttraumatic stress disorder, and 40 normal individuals from Mazandaran province selected through convenience sampling method. Data were collected using Composite International Diagnostic Interview, Stroop Color-Word Test, Posttraumatic Cognitions Inventory, and the Impact of Event Scale. Results showed that individuals with acute stress disorder are less able to inhibit inappropriate responses and have more impaired cognitive appraisals compared to those with posttraumatic stress disorder. Moreover, results showed that response inhibition and cognitive appraisal explain 75% of the variance in posttraumatic stress disorder symptoms and 38% of the variance in posttraumatic stress disorder symptoms. The findings suggest that response inhibition and cognitive appraisal are two variables that influence the severity of posttraumatic stress disorder and acute stress disorder symptoms. Also, these results have important implications for pathology, prevention, and treatment of posttraumatic stress disorder and acute stress disorder.

  20. Exercise Enhances the Behavioral Responses to Acute Stress in an Animal Model of PTSD.

    Science.gov (United States)

    Hoffman, Jay R; Ostfeld, Ishay; Kaplan, Zeev; Zohar, Joseph; Cohen, Hagit

    2015-10-01

    This study examined the effects of endurance exercise on the behavioral response to stress and patterns of brain-derived neurotrophic factor (BDNF), neuropeptide Y (NPY), and δ-opioid receptor (phospho-DOR) expression in the hippocampus. Animals ran on a treadmill at 15 m·min, 5 min·d gradually increasing to 20 min·d, 5 d·wk for 6 wk. After training, one group of animals was exposed to a predator scent stress (PSS) protocol for 10 min. Outcome measurements included behavior in an elevated plus-maze (EPM) and acoustic startle response (ASR) 7 d after exposure to stress. Immunohistochemical technique was used to detect the expression of the BDNF, NPY, and phospho-DOR in the hippocampus 8 d after exposure. Sedentary animals exposed to PSS were observed to have a greater incidence of extreme behavior responses including higher anxiety, less total activity in the EPM, and greater amplitude in the ASR than unexposed and/or trained animals. Exercise-trained animals exposed to PSS developed a resiliency to the stress, reflected by significantly greater total activity in the EPM, reduced anxiety, and reduced ASR compared to the sedentary, exposed animals. Exercise in the absence of stress significantly elevated the expression of BDNF and phospho-DOR, whereas exposure to PSS resulted in a significant decline in the expression of NPY, BDNF, and phospho-DOR. Trained animals that were exposed maintained expression of BDNF, NPY, and phospho-DOR in most subregions of the hippocampus. Results indicated that endurance training provided a mechanism to promote resilience and/or recovery from stress. In addition, exercise increased expression of BDNF, NPY, and DOR signaling in the hippocampus that was associated with the greater resiliency seen in the trained animals.

  1. Dysfunctional stress responses in chronic pain.

    Science.gov (United States)

    Woda, Alain; Picard, Pascale; Dutheil, Frédéric

    2016-09-01

    Many dysfunctional and chronic pain conditions overlap. This review describes the different modes of chronic deregulation of the adaptive response to stress which may be a common factor for these conditions. Several types of dysfunction can be identified within the hypothalamo-pituitary-adrenal axis: basal hypercortisolism, hyper-reactivity, basal hypocortisolism and hypo-reactivity. Neuroactive steroid synthesis is another component of the adaptive response to stress. Dehydroepiandrosterone (DHEA) and its sulfated form DHEA-S, and progesterone and its derivatives are synthetized in cutaneous, nervous, and adipose cells. They are neuroactive factors that act locally. They may have a role in the localization of the symptoms and their levels can vary both in the central nervous system and in the periphery. Persistent changes in neuroactive steroid levels or precursors can induce localized neurodegeneration. The autonomic nervous system is another component of the stress response. Its dysfunction in chronic stress responses can be expressed by decreased basal parasympathethic activity, increased basal sympathetic activity or sympathetic hyporeactivity to a stressful stimulus. The immune and genetic systems also participate. The helper-T cells Th1 secrete pro-inflammatory cytokines such as IL-1-β, IL-2, IL-6, IL-8, IL-12, IFN-γ, and TNF-α, whereas Th2 secrete anti-inflammatory cytokines: IL-4, IL-10, IGF-10, IL-13. Chronic deregulation of the Th1/Th2 balance can occur in favor of anti- or pro-inflammatory direction, locally or systemically. Individual vulnerability to stress can be due to environmental factors but can also be genetically influenced. Genetic polymorphisms and epigenetics are the main keys to understanding the influence of genetics on the response of individuals to constraints. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Alternative Strategies in Response to Saline Stress in Two Varieties of Portulaca oleracea (Purslane).

    Science.gov (United States)

    Mulry, Kristina R; Hanson, Bryan A; Dudle, Dana A

    2015-01-01

    Purslane (Portulaca oleracea) is a globally-distributed plant with a long history of use in folk medicine and cooking. We have developed purslane as a model system for exploring plant responses to stress. We exposed two varieties of purslane to saline stress with the objective of identifying differences between the varieties in the plasticity of morphological and physiological traits. The varieties responded to saline stress with significantly different changes in the measured traits, which included inter alia biomass, flower counts, proline concentrations and betalain pigment concentrations. The alternative responses of the two varieties consisted of complex, simultaneous changes in multiple traits. In particular, we observed that while both varieties increased production of betalain pigments and proline under saline stress, one variety invested more in betalain pigments while the other invested more in proline. Proline and betalain pigments undoubtedly play multiple roles in plant tissues, but in this case their role as antioxidants deployed to ameliorate saline stress appears to be important. Taken holistically, our results suggest that the two varieties employ different strategies in allocating resources to cope with saline stress. This conclusion establishes purslane as a suitable model system for the study of saline stress and the molecular basis for differential responses.

  3. Alternative Strategies in Response to Saline Stress in Two Varieties of Portulaca oleracea (Purslane.

    Directory of Open Access Journals (Sweden)

    Kristina R Mulry

    Full Text Available Purslane (Portulaca oleracea is a globally-distributed plant with a long history of use in folk medicine and cooking. We have developed purslane as a model system for exploring plant responses to stress. We exposed two varieties of purslane to saline stress with the objective of identifying differences between the varieties in the plasticity of morphological and physiological traits. The varieties responded to saline stress with significantly different changes in the measured traits, which included inter alia biomass, flower counts, proline concentrations and betalain pigment concentrations. The alternative responses of the two varieties consisted of complex, simultaneous changes in multiple traits. In particular, we observed that while both varieties increased production of betalain pigments and proline under saline stress, one variety invested more in betalain pigments while the other invested more in proline. Proline and betalain pigments undoubtedly play multiple roles in plant tissues, but in this case their role as antioxidants deployed to ameliorate saline stress appears to be important. Taken holistically, our results suggest that the two varieties employ different strategies in allocating resources to cope with saline stress. This conclusion establishes purslane as a suitable model system for the study of saline stress and the molecular basis for differential responses.

  4. Horizontal rotation of the local stress field in response to magmatic activity: Evidence from case studies and modeling

    Science.gov (United States)

    Roman, D. C.

    2003-12-01

    activity. This horizontal rotation may reflect pressurization and inflation of a conduit system by an influx of magma, and may be related to physical properties (rheology) of the ascending magma. In this regard, horizontal rotations are not observed at volcanoes erupting low-viscosity basaltic magma (e.g., Miyakejima, Japan, Ukawa and Tsukahara 1996). Numerical modeling of Coulomb stress changes induced by inflation of dike-like and cylindrical conduits supports the hypothesis that conduit dilation results in a local reorientation of the maximum compressive stress axis. Modeling results indicate that faults surrounding the conduit experience an increase in Coulomb stress of ten bars or more in response to inflating dike-like and cylindrical conduits make it possible to distinguish between these two geometries based on the locations of earthquakes with rotated fault-plane solutions. Finally, although both case study and modeling results indicate that conduit inflation is likely to produce a local reversal of the positions of minimum and maximum compressive stress axes, it is possible that this phenomenon requires the presence of favorably-oriented faults in the volume of rock surrounding the conduit.

  5. Genome wide transcriptional response of Saccharomyces cerevisiae to stress-induced perturbations

    Directory of Open Access Journals (Sweden)

    Hilal eTaymaz-Nikerel

    2016-02-01

    Full Text Available Cells respond to environmental and/or genetic perturbations in order to survive and proliferate. Characterization of the changes after various stimuli at different -omics levels is crucial to comprehend the adaptation of cells to changing conditions. Genome wide quantification and analysis of transcript levels, the genes affected by perturbations, extends our understanding of cellular metabolism by pointing out the mechanisms that play role in sensing the stress caused by those perturbations and related signaling pathways, and in this way guides us to achieve endeavors such as rational engineering of cells or interpretation of disease mechanisms. Saccharomyces cerevisiae as a model system has been studied in response to different perturbations and corresponding transcriptional profiles were followed either statically or/and dynamically, short- and long- term. This review focuses on response of yeast cells to diverse stress inducing perturbations including nutritional changes, ionic stress, salt stress, oxidative stress, osmotic shock, as well as to genetic interventions such as deletion and over-expression of genes. It is aimed to conclude on common regulatory phenomena that allow yeast to organize its transcriptomic response after any perturbation under different external conditions.

  6. Affective stress responses during leisure time: Validity evaluation of a modified version of the Stress-Energy Questionnaire.

    Science.gov (United States)

    Hadžibajramović, Emina; Ahlborg, Gunnar; Håkansson, Carita; Lundgren-Nilsson, Åsa; Grimby-Ekman, Anna

    2015-12-01

    Psychosocial stress at work is one of the most important factors behind increasing sick-leave rates. In addition to work stressors, it is important to account for non-work-related stressors when assessing stress responses. In this study, a modified version of the Stress-Energy Questionnaire (SEQ), the SEQ during leisure time (SEQ-LT) was introduced for assessing the affective stress response during leisure time. The aim of this study was to investigate the internal construct validity of the SEQ-LT. A second aim was to define the cut-off points for the scales, which could indicate high and low levels of leisure-time stress and energy, respectively. Internal construct validity of the SEQ-LT was evaluated using a Rasch analysis. We examined the unidimensionality and other psychometric properties of the scale by the fit to the Rasch model. A criterion-based approach was used for classification into high and low stress/energy levels. The psychometric properties of the stress and energy scales of the SEQ-LT were satisfactory, having accommodated for local dependency. The cut-off point for low stress was proposed to be in the interval between 2.45 and 3.02 on the Rasch metric score; while for high stress, it was between 3.65 and 3.90. The suggested cut-off points for the low and high energy levels were values between 1.73-1.97 and 2.66-3.08, respectively. The stress and energy scale of the SEQ-LT satisfied the measurement criteria defined by the Rasch analysis and it provided a useful tool for non-work-related assessment of stress responses. We provide guidelines on how to interpret the scale values. © 2015 the Nordic Societies of Public Health.

  7. The wake-promoting drug modafinil stimulates specific hypothalamic circuits to promote adaptive stress responses in an animal model of PTSD.

    Science.gov (United States)

    Cohen, S; Ifergane, G; Vainer, E; Matar, M A; Kaplan, Z; Zohar, J; Mathé, A A; Cohen, H

    2016-10-11

    Pharmacotherapeutic intervention during traumatic memory consolidation has been suggested to alleviate or even prevent the development of posttraumatic stress disorder (PTSD). We recently reported that, in a controlled, prospective animal model, depriving rats of sleep following stress exposure prevents the development of a PTSD-like phenotype. Here, we report that administering the wake-promoting drug modafinil to rats in the aftermath of a stressogenic experience has a similar prophylactic effect, as it significantly reduces the prevalence of PTSD-like phenotype. Moreover, we show that the therapeutic value of modafinil appears to stem from its ability to stimulate a specific circuit within the hypothalamus, which ties together the neuropeptide Y, the orexin system and the HPA axis, to promote adaptive stress responses. The study not only confirms the value of sleep prevention and identifies the mechanism of action of a potential prophylactic treatment after traumatic exposure, but also contributes to understanding mechanisms underlying the shift towards adaptive behavioral response.

  8. Associations between circadian and stress response cortisol in children.

    Science.gov (United States)

    Simons, Sterre S H; Cillessen, Antonius H N; de Weerth, Carolina

    2017-01-01

    Hypothalamic-pituitary-adrenal (HPA) axis functioning is characterized by the baseline production of cortisol following a circadian rhythm, as well as by the superimposed production of cortisol in response to a stressor. However, it is relatively unknown whether the basal cortisol circadian rhythm is associated with the cortisol stress response in children. Since alterations in cortisol stress responses have been associated with mental and physical health, this study investigated whether the cortisol circadian rhythm is associated with cortisol stress responses in 6-year-old children. To this end, 149 normally developing children (M age  = 6.09 years; 70 girls) participated in an innovative social evaluative stress test that effectively provoked increases in cortisol. To determine the cortisol stress response, six cortisol saliva samples were collected and two cortisol stress response indices were calculated: total stress cortisol and cortisol stress reactivity. To determine children's cortisol circadian rhythm eight cortisol circadian samples were collected during two days. Total diurnal cortisol and diurnal cortisol decline scores were calculated as indices of the cortisol circadian rhythm. Hierarchical regression analyses indicated that higher total diurnal cortisol as well as a smaller diurnal cortisol decline, were both uniquely associated with higher total stress cortisol. No associations were found between the cortisol circadian rhythm indices and cortisol stress reactivity. Possible explanations for the patterns found are links with children's self-regulatory capacities and parenting quality.

  9. Stress-related cortisol responsivity modulates prospective memory.

    Science.gov (United States)

    Glienke, K; Piefke, M

    2017-12-01

    It is known that there is inter-individual variation in behavioural and physiological stress reactions to the same stressor. The present study aimed to examine the impact of cortisol responsivity on performance in a complex real life-like prospective memory (PM) paradigm by a re-analysis of data published previously, with a focus on the taxonomy of cognitive dimensions of PM. Twenty-one male subjects were stressed with the Socially Evaluated Cold Pressor Test (SECPT) before the planning of intentions. Another group of 20 males underwent a control procedure. Salivary cortisol was measured to assess the intensity of the biological stress response. Additionally, participants rated the subjective experience of stress on a 5-point rating scale. Stressed participants were post-hoc differentiated in high (n = 11) and low cortisol responders (n = 10). Cortisol niveau differed significantly between the two groups, whereas subjective stress ratings did not. PM performance of low cortisol responders was stable across time and the PM performance of controls declined. High cortisol responders showed a nominally weaker PM retrieval across the early trails and significantly improved only on the last trial. The data demonstrate for the first time that participants with a low cortisol responsivity may benefit from stress exposure before the planning phase of PM. PM performance of high cortisol responders shows a more inconsistent pattern, which may be interpreted in the sense of a recency effect in PM retrieval. Alternatively, high cortisol responses may have a deteriorating effect on PM retrieval, which disappeared on the last trials of the task as a result of the decrease of cortisol levels across time. Importantly, the data also demonstrate that the intensity of cortisol responses does not necessarily correspond to the intensity of the mental experience of stress. © 2017 British Society for Neuroendocrinology.

  10. Eye surface temperature detects stress response in budgerigars (Melopsittacus undulatus).

    Science.gov (United States)

    Ikkatai, Yuko; Watanabe, Shigeru

    2015-08-05

    Previous studies have suggested that stressors not only increase body core temperature but also body surface temperature in many animals. However, it remains unclear whether surface temperature could be used as an alternative to directly measure body core temperature, particularly in birds. We investigated whether surface temperature is perceived as a stress response in budgerigars. Budgerigars have been used as popular animal models to investigate various neural mechanisms such as visual perception, vocal learning, and imitation. Developing a new technique to understand the basic physiological mechanism would help neuroscience researchers. First, we found that cloacal temperature correlated with eye surface temperature. Second, eye surface temperature increased after handling stress. Our findings suggest that eye surface temperature is closely related to cloacal temperature and that the stress response can be measured by eye surface temperature in budgerigars.

  11. Response Inhibition and Cognitive Appraisal in Clients with Acute Stress Disorder and Posttraumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    Abass Abolghasemi

    2013-09-01

    Full Text Available Objective: The purpose of the present study was to compare response inhibition and cognitive appraisal in clients with acute stress disorder, clients with posttraumatic stress disorder, and normal individuals .Method:This was a comparative study. The sample consisted of 40 clients with acute stress disorder, 40 patients with posttraumatic stress disorder, and 40 normal individuals from Mazandaran province selected through convenience sampling method. Data were collected using Composite International Diagnostic Interview, Stroop Color-Word Test, Posttraumatic Cognitions Inventory, and the Impact of Event Scale. Results:Results showed that individuals with acute stress disorder are less able to inhibit inappropriate responses and have more impaired cognitive appraisals compared to those with posttraumatic stress disorder. Moreover, results showed that response inhibition and cognitive appraisal explain 75% of the variance in posttraumatic stress disorder symptoms and 38% of the variance in posttraumatic stress disorder symptoms .Conclusion:The findings suggest that response inhibition and cognitive appraisal are two variables that influence the severity of posttraumatic stress disorder and acute stress disorder symptoms. Also, these results have important implications for pathology, prevention, and treatment of posttraumatic stress disorder and acute stress disorder

  12. Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L. Moench and related model species.

    Directory of Open Access Journals (Sweden)

    Adugna Abdi Woldesemayat

    Full Text Available Crop response to the changing climate and unpredictable effects of global warming with adverse conditions such as drought stress has brought concerns about food security to the fore; crop yield loss is a major cause of concern in this regard. Identification of genes with multiple responses across environmental stresses is the genetic foundation that leads to crop adaptation to environmental perturbations.In this paper, we introduce an integrated approach to assess candidate genes for multiple stress responses across-species. The approach combines ontology based semantic data integration with expression profiling, comparative genomics, phylogenomics, functional gene enrichment and gene enrichment network analysis to identify genes associated with plant stress phenotypes. Five different ontologies, viz., Gene Ontology (GO, Trait Ontology (TO, Plant Ontology (PO, Growth Ontology (GRO and Environment Ontology (EO were used to semantically integrate drought related information.Target genes linked to Quantitative Trait Loci (QTLs controlling yield and stress tolerance in sorghum (Sorghum bicolor (L. Moench and closely related species were identified. Based on the enriched GO terms of the biological processes, 1116 sorghum genes with potential responses to 5 different stresses, such as drought (18%, salt (32%, cold (20%, heat (8% and oxidative stress (25% were identified to be over-expressed. Out of 169 sorghum drought responsive QTLs associated genes that were identified based on expression datasets, 56% were shown to have multiple stress responses. On the other hand, out of 168 additional genes that have been evaluated for orthologous pairs, 90% were conserved across species for drought tolerance. Over 50% of identified maize and rice genes were responsive to drought and salt stresses and were co-located within multifunctional QTLs. Among the total identified multi-stress responsive genes, 272 targets were shown to be co-localized within QTLs

  13. Depression and anxiety predict sex-specific cortisol responses to interpersonal stress.

    Science.gov (United States)

    Powers, Sally I; Laurent, Heidemarie K; Gunlicks-Stoessel, Meredith; Balaban, Susan; Bent, Eileen

    2016-07-01

    Clinical theories posit interpersonal stress as an important factor in the emergence and exacerbation of depression and anxiety, while neuroendocrine research confirms the association of these syndromes with dysregulation in a major stress response system, the hypothalamic-pituitary-adrenal (HPA) axis. However, the proposal that depression and anxiety symptoms and diagnoses are associated with problematic HPA responses to close relationship stress has not been directly tested. We examined 196 heterosexual dating couples' depression and anxiety symptoms and diagnoses, assessed with questionnaires and diagnostic interviews, in relation to cortisol responses to discussion of an unresolved relationship conflict. Participants provided seven salivary samples in anticipation of and directly following the discussion, and throughout an hour-long recovery period, which were assayed for cortisol. Multilevel models of the HPA response predicted by symptoms or diagnoses showed that women's depressive symptoms predicted attenuated cortisol levels, with a flatter response curve. In contrast, men's depression symptoms and women's anxiety symptoms and diagnoses predicted higher cortisol levels. These findings highlight the importance of examining sex differences in responses to interpersonal stressors for understanding HPA dysregulation in internalizing psychopathology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Tonic immobility differentiates stress responses in PTSD.

    Science.gov (United States)

    Fragkaki, Iro; Stins, John; Roelofs, Karin; Jongedijk, Ruud A; Hagenaars, Muriel A

    2016-11-01

    Tonic immobility (TI) is a state of physical immobility associated with extreme stress and the development of posttraumatic stress disorder (PTSD). However, it is unknown whether TI is associated with a distinct actual stress response, i.e., objective immobility measured by a stabilometric platform. This study made a first step in exploring this as well as differences in body sway responses between PTSD patients and healthy controls. We hypothesized that PTSD would be related to increased body sway under stress, whereas TI would be related to decreased body sway under stress. Eye closure was selected as a PTSD-relevant stress induction procedure. Body sway and heart rate (HR) were measured in 12 PTSD patients and 12 healthy controls in four conditions: (1) maintaining a stable stance with eyes open, (2) with eyes closed, (3) during a mental arithmetic task with eyes open, and (4) with eyes closed. As predicted, PTSD patients showed increased body sway from eyes open to eyes closed compared to controls and this effect was eliminated by executing the arithmetic task. Most importantly, retrospective self-reported TI was associated with lower body sway increases in PTSD and higher body sway decreases in controls from eyes-open to eyes-closed conditions. These preliminary findings suggest that eye closure has a different effect on PTSD patients than controls and that high self-reported TI might indicate a distinct stress response pattern, i.e., a proneness for immobility. It may be relevant to take such individual differences in stress-response into account in PTSD treatment.

  15. Neuronal responses to physiological stress

    DEFF Research Database (Denmark)

    Kagias, Konstantinos; Nehammer, Camilla; Pocock, Roger David John

    2012-01-01

    damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses......Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged...... by changes in the environment. Fluctuations in oxygen levels, temperature, and redox state for example, trigger molecular events that enable an organism to adapt, survive, and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner...

  16. From the Stimulus-Response to the Person-Context Model

    Directory of Open Access Journals (Sweden)

    Arturo Barraza Macías

    2007-07-01

    Full Text Available In this manuscript, an alternative reading of the field of study of the stress is made that leads to raise the existence of two models: the Stimulus-Response and the Person-Context Models about Stress. Each one of them is presented with base in four indicators: historical antecedents, postulates, development and characteristics. In the end a critical valuation is made that the author leads to recognize in the Person-Surroundings Research Program of Stress, and in its tendency to the modeling, the route of development of the field of study of stress.

  17. Modeling the Non-Linear Response of Fiber-Reinforced Laminates Using a Combined Damage/Plasticity Model

    Science.gov (United States)

    Schuecker, Clara; Davila, Carlos G.; Pettermann, Heinz E.

    2008-01-01

    The present work is concerned with modeling the non-linear response of fiber reinforced polymer laminates. Recent experimental data suggests that the non-linearity is not only caused by matrix cracking but also by matrix plasticity due to shear stresses. To capture the effects of those two mechanisms, a model combining a plasticity formulation with continuum damage has been developed to simulate the non-linear response of laminates under plane stress states. The model is used to compare the predicted behavior of various laminate lay-ups to experimental data from the literature by looking at the degradation of axial modulus and Poisson s ratio of the laminates. The influence of residual curing stresses and in-situ effect on the predicted response is also investigated. It is shown that predictions of the combined damage/plasticity model, in general, correlate well with the experimental data. The test data shows that there are two different mechanisms that can have opposite effects on the degradation of the laminate Poisson s ratio which is captured correctly by the damage/plasticity model. Residual curing stresses are found to have a minor influence on the predicted response for the cases considered here. Some open questions remain regarding the prediction of damage onset.

  18. Coping as a mediator of the relationship between stress mindset and psychological stress response: a pilot study.

    Science.gov (United States)

    Horiuchi, Satoshi; Tsuda, Akira; Aoki, Shuntaro; Yoneda, Kenichiro; Sawaguchi, Yusuke

    2018-01-01

    Coping, the cognitive and behavioral effort required to manage the effects of stressors, is important in determining psychological stress responses (ie, the emotional, behavioral, and cognitive responses to stressors). Coping was classified into categories of emotional expression (eg, negative feelings and thoughts), emotional support seeking (eg, approaching loved ones to request encouragement), cognitive reinterpretation (eg, reframing a problem positively), and problem solving (eg, working to solve the problem). Stress mindset refers to the belief that stress has enhancing (stress-is-enhancing mindset) or debilitating consequences (stress-is-debilitating mindset). This study examined whether coping mediated the relationship between stress mindset and psychological stress responses. Psychological stress responses were conceptualized as depression-anxiety, irritability-anger, and helplessness. The following two hypotheses were tested: 1) a stronger stress-is-enhancing mindset is associated with less frequent use of emotional expression, emotional support seeking, and problem solving, which in turn is associated with lower levels of depression-anxiety, irritability-anger, and helplessness; 2) a stronger stress-is-debilitating mindset is associated with more frequent use of these coping strategies, which in turn is associated with higher levels of these psychological stress responses. The participants were 30 male and 94 female undergraduate and graduate students (mean age =20.4 years). Stress mindset, coping, and psychological stress responses were measured using self-report questionnaires. Six mediation analyses were performed with stress-is-enhancing mindset or stress-is-debilitating mindset as the independent variable, one of the psychological stress responses as the dependent variable, and the four coping strategies as mediators. Emotional expression partially mediated the relationship between a strong stress-is-debilitating mindset and higher irritability

  19. Relationship between the onset of depression and stress response measured by the Brief Job Stress Questionnaire among Japanese employees: a cohort study.

    Directory of Open Access Journals (Sweden)

    Keiko Wada

    Full Text Available BACKGROUND: The proportion of Japanese workers experiencing intense worry or stress during working life is in excess of 60%, and the incidence of psychiatric disorders and suicide due to psychological burden from work duties is increasing. To confirm whether the stress response measured by the Brief Job Stress Questionnaire (BJSQ can identify risk for depression, a cohort study was conducted to evaluate whether the stress response measured by BJSQ was associated with the onset of depression. METHODS: A total of 1,810 participants aged 20-70 years in 2005 completed the stress response of the BJSQ and were followed-up until August, 2007 by examining sick pay records. Depression was defined by a description in sick pay records that included "depression" or "depressive symptoms" as a reason for sick leave according to a physician's medical certificate. The participants were divided into quartiles (Ql, Q2, Q3, and Q4 according to the total stress response score of BJSQ at baseline. Furthermore, the participants were divided into a higher score category (Q4 and a lower score category (Q1-Q3. Risk ratios of the stress response of the BJSQ for onset of depression were calculated using a multivariable Cox proportional hazard model. RESULTS: Among 1,810 participants, 14 developed depression during a mean of 1.8 years of follow-up. The risk ratio was 2.96 (95% confidence interval [CI], 1.04-8.42, p for trend = 0.002 when the higher stress response score category of BJSQ was compared with the low stress response score category for sick leave due to depression. After adjusting for gender, age, marital status, and having children, the risk ratios were similar to no adjustment. CONCLUSIONS: These findings suggest that the stress response measured by the BJSQ can demonstrate risk for the onset of depression.

  20. Testing the adaptation to poverty-related stress model: predicting psychopathology symptoms in families facing economic hardship.

    Science.gov (United States)

    Wadsworth, Martha E; Raviv, Tali; Santiago, Catherine Decarlo; Etter, Erica M

    2011-01-01

    This study tested the Adaptation to Poverty-related Stress Model and its proposed relations between poverty-related stress, effortful and involuntary stress responses, and symptoms of psychopathology in an ethnically diverse sample of low-income children and their parents. Prospective Hierarchical Linear Modeling analyses conducted with 98 families (300 family members: 136 adults, 82 adolescents and preadolescents, 82 school-age children) revealed that, consistent with the model, primary and secondary control coping were protective against poverty-related stress primarily for internalizing symptoms. Conversely, disengagement coping exacerbated externalizing symptoms over time. In addition, involuntary engagement stress responses exacerbated the effects of poverty-related stress for internalizing symptoms, whereas involuntary disengagement responses exacerbated externalizing symptoms. Age and gender effects were found in most models, reflecting more symptoms of both types for parents than children and higher levels of internalizing symptoms for girls.

  1. Exploring a post-traumatic stress disorder paradigm in Flinders sensitive line rats to model treatment-resistant depression I: bio-behavioural validation and response to imipramine.

    Science.gov (United States)

    Brand, Sarel Jacobus; Harvey, Brian Herbert

    2017-08-01

    Co-morbid depression with post-traumatic stress disorder (PTSD) is often treatment resistant. In developing a preclinical model of treatment-resistant depression (TRD), we combined animal models of depression and PTSD to produce an animal with more severe as well as treatment-resistant depressive-like behaviours. Male Flinders sensitive line (FSL) rats, a genetic animal model of depression, were exposed to a stress re-stress model of PTSD [time-dependent sensitisation (TDS)] and compared with stress-naive controls. Seven days after TDS stress, depressive-like and coping behaviours as well as hippocampal and cortical noradrenaline (NA) and 5-hydroxyindoleacetic acid (5HIAA) levels were analysed. Response to sub-chronic imipramine treatment (IMI; 10 mg/kg s.c.×7 days) was subsequently studied. FSL rats demonstrated bio-behavioural characteristics of depression. Exposure to TDS stress in FSL rats correlated negatively with weight gain, while demonstrating reduced swimming behaviour and increased immobility versus unstressed FSL rats. IMI significantly reversed depressive-like (immobility) behaviour and enhanced active coping behaviour (swimming and climbing) in FSL rats. The latter was significantly attenuated in FSL rats exposed to TDS versus unstressed FSL rats. IMI reversed reduced 5HIAA levels in unstressed FSL rats, whereas exposure to TDS negated this effect. Lowered NA levels in FSL rats were sustained after TDS with IMI significantly reversing this in the hippocampus. Combining a gene-X-environment model of depression with a PTSD paradigm produces exaggerated depressive-like symptoms that display an attenuated response to antidepressant treatment. This work confirms combining FSL rats with TDS exposure as a putative animal model of TRD.

  2. WRKY transcription factors in plant responses to stresses.

    Science.gov (United States)

    Jiang, Jingjing; Ma, Shenghui; Ye, Nenghui; Jiang, Ming; Cao, Jiashu; Zhang, Jianhua

    2017-02-01

    The WRKY gene family is among the largest families of transcription factors (TFs) in higher plants. By regulating the plant hormone signal transduction pathway, these TFs play critical roles in some plant processes in response to biotic and abiotic stress. Various bodies of research have demonstrated the important biological functions of WRKY TFs in plant response to different kinds of biotic and abiotic stresses and working mechanisms. However, very little summarization has been done to review their research progress. Not just important TFs function in plant response to biotic and abiotic stresses, WRKY also participates in carbohydrate synthesis, senescence, development, and secondary metabolites synthesis. WRKY proteins can bind to W-box (TGACC (A/T)) in the promoter of its target genes and activate or repress the expression of downstream genes to regulate their stress response. Moreover, WRKY proteins can interact with other TFs to regulate plant defensive responses. In the present review, we focus on the structural characteristics of WRKY TFs and the research progress on their functions in plant responses to a variety of stresses. © 2016 Institute of Botany, Chinese Academy of Sciences.

  3. The Role of the Transcriptional Response to DNA Replication Stress.

    Science.gov (United States)

    Herlihy, Anna E; de Bruin, Robertus A M

    2017-03-02

    During DNA replication many factors can result in DNA replication stress. The DNA replication stress checkpoint prevents the accumulation of replication stress-induced DNA damage and the potential ensuing genome instability. A critical role for post-translational modifications, such as phosphorylation, in the replication stress checkpoint response has been well established. However, recent work has revealed an important role for transcription in the cellular response to DNA replication stress. In this review, we will provide an overview of current knowledge of the cellular response to DNA replication stress with a specific focus on the DNA replication stress checkpoint transcriptional response and its role in the prevention of replication stress-induced DNA damage.

  4. The Role of the Transcriptional Response to DNA Replication Stress

    Science.gov (United States)

    Herlihy, Anna E.; de Bruin, Robertus A.M.

    2017-01-01

    During DNA replication many factors can result in DNA replication stress. The DNA replication stress checkpoint prevents the accumulation of replication stress-induced DNA damage and the potential ensuing genome instability. A critical role for post-translational modifications, such as phosphorylation, in the replication stress checkpoint response has been well established. However, recent work has revealed an important role for transcription in the cellular response to DNA replication stress. In this review, we will provide an overview of current knowledge of the cellular response to DNA replication stress with a specific focus on the DNA replication stress checkpoint transcriptional response and its role in the prevention of replication stress-induced DNA damage. PMID:28257104

  5. Stress Erythropoiesis Model Systems.

    Science.gov (United States)

    Bennett, Laura F; Liao, Chang; Paulson, Robert F

    2018-01-01

    Bone marrow steady-state erythropoiesis maintains erythroid homeostasis throughout life. This process constantly generates new erythrocytes to replace the senescent erythrocytes that are removed by macrophages in the spleen. In contrast, anemic or hypoxic stress induces a physiological response designed to increase oxygen delivery to the tissues. Stress erythropoiesis is a key component of this response. It is best understood in mice where it is extramedullary occurring in the adult spleen and liver and in the fetal liver during development. Stress erythropoiesis utilizes progenitor cells and signals that are distinct from bone marrow steady-state erythropoiesis. Because of that observation many genes may play a role in stress erythropoiesis despite having no effect on steady-state erythropoiesis. In this chapter, we will discuss in vivo and in vitro techniques to study stress erythropoiesis in mice and how the in vitro culture system can be extended to study human stress erythropoiesis.

  6. The relationship between personality and the response to acute psychological stress.

    Science.gov (United States)

    Xin, Yuanyuan; Wu, Jianhui; Yao, Zhuxi; Guan, Qing; Aleman, André; Luo, Yuejia

    2017-12-04

    The present study examined the relationship between personality traits and the response to acute psychological stress induced by a standardized laboratory stress induction procedure (the Trier Social Stress Test, TSST). The stress response was measured with a combination of cardiovascular reactivity, hypothalamic-pituitary-adrenal axis reactivity, and subjective affect (including positive affect, negative affect and subjective controllability) in healthy individuals. The Generalized Estimating Equations (GEE) approach was applied to account for the relationship between personality traits and stress responses. Results suggested that higher neuroticism predicted lower heart rate stress reactivity, lower cortisol stress response, more decline of positive affect and lower subjective controllability. Individuals higher in extraversion showed smaller cortisol activation to stress and less increase of negative affect. In addition, higher openness score was associated with lower cortisol stress response. These findings elucidate that neuroticism, extraversion and openness are important variables associated with the stress response and different dimensions of personality trait are associated with different aspects of the stress response.

  7. ABA signaling in stress-response and seed development.

    Science.gov (United States)

    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2013-07-01

    KEY MESSAGE : We review the recent progress on ABA signaling, especially ABA signaling for ABA-dependent gene expression, including the AREB/ABF regulon, SnRK2 protein kinase, 2C-type protein phosphatases and ABA receptors. Drought negatively impacts plant growth and the productivity of crops. Drought causes osmotic stress to organisms, and the osmotic stress causes dehydration in plant cells. Abscisic acid (ABA) is produced under osmotic stress conditions, and it plays an important role in the stress response and tolerance of plants. ABA regulates many genes under osmotic stress conditions. It also regulates gene expression during seed development and germination. The ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. ABRE-binding protein (AREB)/ABRE-binding factor (ABF) transcription factors (TFs) regulate ABRE-dependent gene expression. Other TFs are also involved in ABA-responsive gene expression. SNF1-related protein kinases 2 are the key regulators of ABA signaling including the AREB/ABF regulon. Recently, ABA receptors and group A 2C-type protein phosphatases were shown to govern the ABA signaling pathway. Moreover, recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress-response and seed development. The control of the expression of ABA signaling factors may improve tolerance to environmental stresses.

  8. Severe, multimodal stress exposure induces PTSD-like characteristics in a mouse model of single prolonged stress.

    Science.gov (United States)

    Perrine, Shane A; Eagle, Andrew L; George, Sophie A; Mulo, Kostika; Kohler, Robert J; Gerard, Justin; Harutyunyan, Arman; Hool, Steven M; Susick, Laura L; Schneider, Brandy L; Ghoddoussi, Farhad; Galloway, Matthew P; Liberzon, Israel; Conti, Alana C

    2016-04-15

    Appropriate animal models of posttraumatic stress disorder (PTSD) are needed because human studies remain limited in their ability to probe the underlying neurobiology of PTSD. Although the single prolonged stress (SPS) model is an established rat model of PTSD, the development of a similarly-validated mouse model emphasizes the benefits and cross-species utility of rodent PTSD models and offers unique methodological advantages to that of the rat. Therefore, the aims of this study were to develop and describe a SPS model for mice and to provide data that support current mechanisms relevant to PTSD. The mouse single prolonged stress (mSPS) paradigm, involves exposing C57Bl/6 mice to a series of severe, multimodal stressors, including 2h restraint, 10 min group forced swim, exposure to soiled rat bedding scent, and exposure to ether until unconsciousness. Following a 7-day undisturbed period, mice were tested for cue-induced fear behavior, effects of paroxetine on cue-induced fear behavior, extinction retention of a previously extinguished fear memory, dexamethasone suppression of corticosterone (CORT) response, dorsal hippocampal glucocorticoid receptor protein and mRNA expression, and prefrontal cortex glutamate levels. Exposure to mSPS enhanced cue-induced fear, which was attenuated by oral paroxetine treatment. mSPS also disrupted extinction retention, enhanced suppression of stress-induced CORT response, increased mRNA expression of dorsal hippocampal glucocorticoid receptors and decreased prefrontal cortex glutamate levels. These data suggest that the mSPS model is a translationally-relevant model for future PTSD research with strong face, construct, and predictive validity. In summary, mSPS models characteristics relevant to PTSD and this severe, multimodal stress modifies fear learning in mice that coincides with changes in the hypothalamo-pituitary-adrenal (HPA) axis, brain glucocorticoid systems, and glutamatergic signaling in the prefrontal cortex

  9. Mini-review: Biofilm responses to oxidative stress.

    Science.gov (United States)

    Gambino, Michela; Cappitelli, Francesca

    2016-01-01

    Biofilms constitute the predominant microbial style of life in natural and engineered ecosystems. Facing harsh environmental conditions, microorganisms accumulate reactive oxygen species (ROS), potentially encountering a dangerous condition called oxidative stress. While high levels of oxidative stress are toxic, low levels act as a cue, triggering bacteria to activate effective scavenging mechanisms or to shift metabolic pathways. Although a complex and fragmentary picture results from current knowledge of the pathways activated in response to oxidative stress, three main responses are shown to be central: the existence of common regulators, the production of extracellular polymeric substances, and biofilm heterogeneity. An investigation into the mechanisms activated by biofilms in response to different oxidative stress levels could have important consequences from ecological and economic points of view, and could be exploited to propose alternative strategies to control microbial virulence and deterioration.

  10. Gene expression dynamics in the oxidative stress response of fission yeast

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil

    Changes in the environment continuously challenge living organisms during their lifetime. A cell’s survival depends on its ability to coordinate a rapid and successful stress response when exposed to acute doses of damaging agents. Oxidative stress caused by an excess of reactive oxygen species......, especially using model organisms. The fission yeast Schizosaccharomyces pombe is a unicellular eukaryotic organism that possesses genome features and molecular pathways that are highly conserved in humans. Moreover, the limited redundancy of its genome make S. pombe well suited for phenotypic studies...... (HP, 0.5 mM). The applied experimental design allowed us to measure both the activation and recovery phases of the response at a sufficiently high time resolution to model transcription and translation dynamics. Absolute expression levels (copies per cell) and time-resolved expression profiles for 4...

  11. Context and strain-dependent behavioral response to stress

    Directory of Open Access Journals (Sweden)

    Baum Amber E

    2008-06-01

    Full Text Available Abstract Background This study posed the question whether strain differences in stress-reactivity lead to differential behavioral responses in two different tests of anxiety. Strain differences in anxiety-measures are known, but strain differences in the behavioral responses to acute prior stress are not well characterized. Methods We studied male Fisher 344 (F344 and Wistar Kyoto (WKY rats basally and immediately after one hour restraint stress. To distinguish between the effects of novelty and prior stress, we also investigated behavior after repeated exposure to the test chamber. Two behavioral tests were explored; the elevated plus maze (EPM and the open field (OFT, both of which are thought to measure activity, exploration and anxiety-like behaviors. Additionally, rearing, a voluntary behavior, and grooming, a relatively automatic, stress-responsive stereotyped behavior were measured in both tests. Results Prior exposure to the test environment increased anxiety-related measures regardless of prior stress, reflecting context-dependent learning process in both tests and strains. Activity decreased in response to repeated testing in both tests and both strains, but prior stress decreased activity only in the OFT which was reversed by repeated testing. Prior stress decreased anxiety-related measures in the EPM, only in F344s, while in the OFT, stress led to increased freezing mainly in WKYs. Conclusion Data suggest that differences in stressfulness of these tests predict the behavior of the two strains of animals according to their stress-reactivity and coping style, but that repeated testing can overcome some of these differences.

  12. Relationship between cognitive emotion regulation, social support, resilience and acute stress responses in Chinese soldiers: Exploring multiple mediation model.

    Science.gov (United States)

    Cai, Wen-Peng; Pan, Yu; Zhang, Shui-Miao; Wei, Cun; Dong, Wei; Deng, Guang-Hui

    2017-10-01

    The current study aimed to explore the association of cognitive emotion regulation, social support, resilience and acute stress responses in Chinese soldiers and to understand the multiple mediation effects of social support and resilience on the relationship between cognitive emotion regulation and acute stress responses. A total of 1477 male soldiers completed mental scales, including the cognitive emotion regulation questionnaire-Chinese version, the perceived social support scale, the Chinese version of the Connor-Davidson resilience scale, and the military acute stress scale. As hypothesized, physiological responses, psychological responses, and acute stress were associated with negative-focused cognitive emotion regulation, and negatively associated with positive-focused cognitive emotion regulation, social supports and resilience. Besides, positive-focused cognitive emotion regulation, social support, and resilience were significantly associated with one another, and negative-focused cognitive emotion regulation was negatively associated with social support. Regression analysis and bootstrap analysis showed that social support and resilience had partly mediating effects on negative strategies and acute stress, and fully mediating effects on positive strategies and acute stress. These results thus indicate that military acute stress is significantly associated with cognitive emotion regulation, social support, and resilience, and that social support and resilience have multiple mediation effects on the relationship between cognitive emotion regulation and acute stress responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Can the responses of photosynthesis and stomatal conductance to water and nitrogen stress combinations be modeled using a single set of parameters?

    NARCIS (Netherlands)

    Zhang, Ningyi; Li, Gang; Yu, Shanxiang; An, Dongsheng; Sun, Qian; Luo, Weihong; Yin, Xinyou

    2017-01-01

    Accurately predicting photosynthesis in response to water and nitrogen stress is the first step toward predicting crop growth, yield and many quality traits under fluctuating environmental conditions. While mechanistic models are capable of predicting photosynthesis under fluctuating environmental

  14. Identifying salt stress-responsive transcripts from Roselle ( Hibiscus ...

    African Journals Online (AJOL)

    Hibiscus sabdariffa L.). Identifying the potentially novel transcripts responsible for salt stress tolerance in roselle will increase knowledge of the molecular mechanism underlying salt stress responses. In this study, differential display reverse ...

  15. Predator-scent stress, ethanol consumption and the opioid system in an animal model of PTSD.

    Science.gov (United States)

    Manjoch, Hadar; Vainer, Ella; Matar, Michael; Ifergane, Gal; Zohar, Joseph; Kaplan, Zeev; Cohen, Hagit

    2016-06-01

    Emerging literature points to stress exposure as a potential contributor to the development of alcohol abuse, but animal models have yielded inconsistent results. Converging experimental data indicate that the endogenous opioid system modulates alcohol consumption and stress regulation. The aim of the present study is to examine the interplay between stress exposure, behavioral stress responses, ethanol (EtOH) consumption and the endogenous opioid system in an animal model of posttraumatic stress disorder. Rats were exposed to stress and then tested in a two-bottle free choice (TBC) assay or in a conditioned place preference paradigm. In some experiments, the endogenous opioid system was pharmacologically manipulated prior to stress exposure. The behavioral outcomes of stress exposure were assessed in an elevated plus-maze, with the acoustic startle response, and by monitoring the freezing response to trauma reminder. Immunoreactivity of phosphorylated opioid receptors in hippocampal subregions was also measured. Stress significantly increased the consumption of EtOH in the TBC assay. The severity of the behavioral response to stress was associated with EtOH consumption, cue-triggered freezing response to a trauma reminder, and endogenous levels of phosphorylated opioid receptors in the hippocampus. Pharmacologically manipulating the endogenous opioid system prior to stress exposure attenuated trauma cue-triggered freezing responses and blocked predator scent stress-induced potentiation of EtOH consumption. These data demonstrate a stress-induced potentiation of EtOH self-administration and reveal a clear association between individual patterns of the behavioral response to stress and alcohol preference, while indicating a role for the endogenous opioid system in the neurobiological response to stress. Copyright © 2016. Published by Elsevier B.V.

  16. Constitutive differences in glucocorticoid responsiveness to stress are related to variation in aggression and anxiety-related behaviors.

    Science.gov (United States)

    Walker, Sophie E; Zanoletti, Olivia; Guillot de Suduiraut, Isabelle; Sandi, Carmen

    2017-10-01

    Glucocorticoids coordinate responses that enable an individual to cope with stressful challenges and, additionally, mediate adaptation following cessation of a stressor. There are important individual differences in the magnitude of glucocorticoid responsiveness to stressors. However, whether individual differences in glucocorticoid responsiveness to stress are linked to different behavioral strategies in coping with social and non-social challenges is not easily studied, owing to the lack of appropriate animal models. To address this, we generated three lines of Wistar rats selectively bred for the magnitude of their glucocorticoid responses following exposure to a variety of stressors over three consecutive days at juvenility. Here, we present findings following observations of a high level of variation in glucocorticoid responsiveness to stress in outbred Wistar rats, and the strong response to selection for this trait over a few generations. When challenged with different stressful challenges, rats from the three lines differed in their coping behaviors. Strikingly, the line with high glucocorticoid responsiveness to stress displayed enhanced aggression and anxiety-like behaviors. In addition, these rats also showed alterations in the expression of genes within both central and peripheral nodes of the hypothalamic-pituitary-adrenal (HPA) axis and enhanced reactivity to acute stress exposure. Together, these findings strongly link differences in glucocorticoid responsiveness to stress with marked differences in coping styles. The developed rat lines are thus a promising model with which to examine the relationship between variation in reactivity of the HPA axis and stress-related pathophysiology and could be employed to assess the therapeutic potential of treatments modulating stress habituation to ameliorate psychopathology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses

    OpenAIRE

    Iwai Ohbayashi; Munetaka Sugiyama

    2018-01-01

    The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized p...

  18. In response to community violence: coping strategies and involuntary stress responses among Latino adolescents.

    Science.gov (United States)

    Epstein-Ngo, Quyen; Maurizi, Laura K; Bregman, Allyson; Ceballo, Rosario

    2013-01-01

    Among poor, urban adolescents, high rates of community violence are a pressing public health concern. This study relies on a contextual framework of stress and coping to investigate how coping strategies and involuntary stress responses may both mediate and moderate the relation between exposure to community violence and psychological well-being. Our sample consists of 223 ninth grade Latino adolescents from poor, urban families. In response to community violence, these adolescents reported using an array of coping strategies as well as experiencing a number of involuntary stress responses; the most frequent coping responses were turning to religion and seeking social support. Hierarchical regression analyses demonstrated that involuntary stress responses mediated the relations between both witnessing or being victimized by violence and poorer psychological functioning, while coping strategies moderated these relations. These findings suggest that the negative psychological effects of exposure to community violence may, in part, be explained by involuntary stress responses, while religious-based coping may serve as a protective factor.

  19. Psychophysiological responses to stress after stress management training in patients with rheumatoid arthritis.

    NARCIS (Netherlands)

    Brouwer, S.J.M. de; Kraaimaat, F.W.; Sweep, F.C.; Donders, A.R.T.; Eijsbouts, A.; Koulil, S. van; Riel, P.L.C.M. van; Evers, A.W.M.

    2011-01-01

    BACKGROUND: Stress management interventions may prove useful in preventing the detrimental effects of stress on health. This study assessed the effects of a stress management intervention on the psychophysiological response to stress in patients with rheumatoid arthritis (RA). METHODS: Seventy-four

  20. Epidermal stem cells response to radiative genotoxic stress

    International Nuclear Information System (INIS)

    Marie, Melanie

    2013-01-01

    Human skin is the first organ exposed to various environmental stresses, which requires the development by skin stem cells of specific mechanisms to protect themselves and to ensure tissue homeostasis. As stem cells are responsible for the maintenance of epidermis during individual lifetime, the preservation of genomic integrity in these cells is essential. My PhD aimed at exploring the mechanisms set up by epidermal stem cells in order to protect themselves from two genotoxic stresses, ionizing radiation (Gamma Rays) and ultraviolet radiation (UVB). To begin my PhD, I have taken part of the demonstration of protective mechanisms used by keratinocyte stem cells after ionizing radiation. It has been shown that these cells are able to rapidly repair most types of radiation-induced DNA damage. Furthermore, we demonstrated that this repair is activated by the fibroblast growth factor 2 (FGF2). In order to know if this protective mechanism is also operating in cutaneous carcinoma stem cells, we investigated the response to gamma Rays of carcinoma stem cells isolated from a human carcinoma cell line. As in normal keratinocyte stem cells, we demonstrated that cancer stem cells could rapidly repair radio-induced DNA damage. Furthermore, fibroblast growth factor 2 also mediates this repair, notably thanks to its nuclear isoforms. The second project of my PhD was to study human epidermal stem cells and progenitors responses to UVB radiation. Once cytometry and irradiation conditions were set up, the toxicity of UVB radiation has been evaluate in the primary cell model. We then characterized UVB photons effects on cell viability, proliferation and repair of DNA damage. This study allowed us to bring out that responses of stem cells and their progeny to UVB are different, notably at the level of part of their repair activity of DNA damage. Moreover, progenitors and stem cells transcriptomic responses after UVB irradiation have been study in order to analyze the global

  1. Stress field models from Maxwell stress functions: southern California

    Science.gov (United States)

    Bird, Peter

    2017-08-01

    The lithospheric stress field is formally divided into three components: a standard pressure which is a function of elevation (only), a topographic stress anomaly (3-D tensor field) and a tectonic stress anomaly (3-D tensor field). The boundary between topographic and tectonic stress anomalies is somewhat arbitrary, and here is based on the modeling tools available. The topographic stress anomaly is computed by numerical convolution of density anomalies with three tensor Green's functions provided by Boussinesq, Cerruti and Mindlin. By assuming either a seismically estimated or isostatic Moho depth, and by using Poisson ratio of either 0.25 or 0.5, I obtain four alternative topographic stress models. The tectonic stress field, which satisfies the homogeneous quasi-static momentum equation, is obtained from particular second derivatives of Maxwell vector potential fields which are weighted sums of basis functions representing constant tectonic stress components, linearly varying tectonic stress components and tectonic stress components that vary harmonically in one, two and three dimensions. Boundary conditions include zero traction due to tectonic stress anomaly at sea level, and zero traction due to the total stress anomaly on model boundaries at depths within the asthenosphere. The total stress anomaly is fit by least squares to both World Stress Map data and to a previous faulted-lithosphere, realistic-rheology dynamic model of the region computed with finite-element program Shells. No conflict is seen between the two target data sets, and the best-fitting model (using an isostatic Moho and Poisson ratio 0.5) gives minimum directional misfits relative to both targets. Constraints of computer memory, execution time and ill-conditioning of the linear system (which requires damping) limit harmonically varying tectonic stress to no more than six cycles along each axis of the model. The primary limitation on close fitting is that the Shells model predicts very sharp

  2. Towards a better preclinical model of PTSD: characterizing animals with weak extinction, maladaptive stress responses and low plasma corticosterone.

    Science.gov (United States)

    Reznikov, Roman; Diwan, Mustansir; Nobrega, José N; Hamani, Clement

    2015-02-01

    Most of the available preclinical models of PTSD have focused on isolated behavioural aspects and have not considered individual variations in response to stress. We employed behavioural criteria to identify and characterize a subpopulation of rats that present several features analogous to PTSD-like states after exposure to classical fear conditioning. Outbred Sprague-Dawley rats were segregated into weak- and strong-extinction groups on the basis of behavioural scores during extinction of conditioned fear responses. Animals were subsequently tested for anxiety-like behaviour in the open-field test (OFT), novelty suppressed feeding (NSF) and elevated plus maze (EPM). Baseline plasma corticosterone was measured prior to any behavioural manipulation. In a second experiment, rats underwent OFT, NSF and EPM prior to being subjected to fear conditioning to ascertain whether or not pre-stress levels of anxiety-like behaviours could predict extinction scores. We found that 25% of rats exhibit low extinction rates of conditioned fear, a feature that was associated with increased anxiety-like behaviour across multiple tests in comparison to rats showing strong extinction. In addition, weak-extinction animals showed low levels of corticosterone prior to fear conditioning, a variable that seemed to predict extinction recall scores. In a separate experiment, anxiety measures taken prior to fear conditioning were not predictive of a weak-extinction phenotype, suggesting that weak-extinction animals do not show detectable traits of anxiety in the absence of a stressful experience. These findings suggest that extinction impairment may be used to identify stress-vulnerable rats, thus providing a useful model for elucidating mechanisms and investigating potential treatments for PTSD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Coping as a mediator of the relationship between stress mindset and psychological stress response: a pilot study

    Directory of Open Access Journals (Sweden)

    Horiuchi S

    2018-03-01

    Full Text Available Satoshi Horiuchi,1 Akira Tsuda,2 Shuntaro Aoki,3,4 Kenichiro Yoneda,5 Yusuke Sawaguchi6 1Faculty of Social Welfare, Iwate Prefectural University, Iwate, 2Department of Psychology, Kurume University, Fukuoka, 3Research Fellow of Japan Society for the Promotion of Science, Tokyo, 4Graduate School of Psychological Science, Health Sciences University of Hokkaido, Hokkaido, 5Graduate School of Psychology, Kurume University, Fukuoka, 6Graduate School of Social Welfare, Iwate Prefectural University, Iwate, Japan Background: Coping, the cognitive and behavioral effort required to manage the effects of stressors, is important in determining psychological stress responses (ie, the emotional, behavioral, and cognitive responses to stressors. Coping was classified into categories of emotional expression (eg, negative feelings and thoughts, emotional support seeking (eg, approaching loved ones to request encouragement, cognitive reinterpretation (eg, reframing a problem positively, and problem solving (eg, working to solve the problem. Stress mindset refers to the belief that stress has enhancing (stress-is-enhancing mindset or debilitating consequences (stress-is-debilitating mindset. This study examined whether coping mediated the relationship between stress mindset and psychological stress responses. Psychological stress responses were conceptualized as depression-anxiety, irritability-anger, and helplessness. The following two hypotheses were tested: 1 a stronger stress-is-enhancing mindset is associated with less frequent use of emotional expression, emotional support seeking, and problem solving, which in turn is associated with lower levels of depression-anxiety, irritability-anger, and helplessness; 2 a stronger stress-is-debilitating mindset is associated with more frequent use of these coping strategies, which in turn is associated with higher levels of these psychological stress responses. Materials and methods: The participants were 30 male and

  4. Tonic immobility differentiates stress responses in PTSD

    NARCIS (Netherlands)

    Fragkaki, I; Stins, J.F.; Roelofs, K.; Jongedijk, R.A.; Hagenaars, M.A.

    2016-01-01

    Background: Tonic immobility (TI) is a state of physical immobility associated with extreme stress and the development of posttraumatic stress disorder (PTSD). However, it is unknown whether TI is associated with a distinct actual stress response, i.e., objective immobility measured by a

  5. Dominance relationships in Syrian hamsters modulate neuroendocrine and behavioral responses to social stress.

    Science.gov (United States)

    Dulka, Brooke N; Koul-Tiwari, Richa; Grizzell, J Alex; Harvey, Marquinta L; Datta, Subimal; Cooper, Matthew A

    2018-06-22

    Stress is a well-known risk factor for psychopathology and rodent models of social defeat have strong face, etiological, construct and predictive validity for these conditions. Syrian hamsters are highly aggressive and territorial, but after an acute social defeat experience they become submissive and no longer defend their home territory, even from a smaller, non-aggressive intruder. This defeat-induced change in social behavior is called conditioned defeat (CD). We have shown that dominant hamsters show increased neural activity in the ventromedial prefrontal cortex (vmPFC) following social defeat stress and exhibit a reduced CD response at social interaction testing compared to subordinates. Although the vmPFC can inhibit the neuroendocrine stress response, it is unknown whether dominants and subordinates differ in stress-induced activity of the extended hypothalamic-pituitary-adrenal (HPA) axis. Here, we show that, following acute social defeat, dominants exhibit decreased submissive and defensive behavior compared to subordinates but do not differ from subordinates or social status controls (SSCs) in defeat-induced cortisol concentrations. Furthermore, both dominants and SSCs show greater corticotropin-releasing hormone (CRH) mRNA expression in the basolateral/central amygdala compared to subordinates, while there was no effect of social status on CRH mRNA expression in the paraventricular nucleus of the hypothalamus or bed nucleus of the stria terminalis. Overall, status-dependent differences in the CD response do not appear linked to changes in stress-induced cortisol concentrations or CRH gene expression, which is consistent with the view that stress resilience is not a lack of a physiological stress response but the addition of stress coping mechanisms. Lay summary Dominant hamsters show resistance to the behavioral effects of acute social defeat compared to subordinates, but it is unclear whether social status modulates the neuroendocrine stress response

  6. Teacher stress and health; examination of a model.

    Science.gov (United States)

    DeFrank, R S; Stroup, C A

    1989-01-01

    Stress in teaching derives from a variety of sources, and evidence exists linking such stress to physical and mental health concerns. Detailed examination of the linkages among personal factors, job stress, job satisfaction and symptomatology have not been done in this occupation, however, and the present study examines a model interrelating these variables. A survey of 245 predominantly female elementary school teachers in southeast Texas suggested that demographic factors and teaching background do not influence stress, satisfaction or health concerns. However, while job stress was the strongest predictor of job satisfaction, this stress had no direct relationship with health problems, an unexpected finding. Write-in responses by teachers indicated additional sources of stress, many of which were environmental or policy-based in nature. The implications of these findings for future research and stress management interventions for teachers are discussed.

  7. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota; Julkowska, Magdalena; Montero Sommerfeld, Hector; Horst, Anneliek ter; Haring, Michel A; Testerink, Christa

    2016-01-01

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  8. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota

    2016-05-20

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  9. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways

    OpenAIRE

    Dues, Dylan J.; Andrews, Emily K.; Schaar, Claire E.; Bergsma, Alexis L.; Senchuk, Megan M.; Van Raamsdonk, Jeremy M.

    2016-01-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxi...

  10. Work stress and innate immune response.

    Science.gov (United States)

    Boscolo, P; Di Gioacchino, M; Reale, M; Muraro, R; Di Giampaolo, L

    2011-01-01

    Several reports highlight the relationship between blood NK cytotoxic activity and life style. Easy life style, including physical activity, healthy dietary habits as well as good mental health are characterized by an efficient immune response. Life style is related to the type of occupational activity since work has a central part in life either as source of income or contributing to represent the social identity. Not only occupational stress, but also job loss or insecurity are thus considered serious stressful situations, inducing emotional disorders which may affect both neuroendocrine and immune systems; reduced reactivity to mitogens and/or decreased blood NK cytotoxic activity was reported in unemployed workers or in those with a high perception of job insecurity and/or job stress. Although genetic factors have a key role in the pathogenesis of autoimmune disorders, occupational stress (as in night shifts) was reported associated to an increased incidence of autoimmune disorders. Monitoring blood NK response may thus be included in the health programs as an indirect index of stressful job and/or poor lifestyle.

  11. Hormonal modulation of the heat shock response: insights from fish with divergent cortisol stress responses

    DEFF Research Database (Denmark)

    LeBlanc, Sacha; Höglund, Erik; Gilmour, Kathleen M.

    2012-01-01

    shock response, we capitalized on two lines of rainbow trout specifically bred for their high (HR) and low (LR) cortisol response to stress. We predicted that LR fish, with a low cortisol but high catecholamine response to stress, would induce higher levels of HSPs after acute heat stress than HR trout....... We found that HR fish have significantly higher increases in both catecholamines and cortisol compared with LR fish, and LR fish had no appreciable stress hormone response to heat shock. This unexpected finding prevented further interpretation of the hormonal modulation of the heat shock response...

  12. Cortisol responses to naturalistic and laboratory stress in student teachers: comparison with a non-stress control day.

    Science.gov (United States)

    Wolfram, Maren; Bellingrath, Silja; Feuerhahn, Nicolas; Kudielka, Brigitte M

    2013-04-01

    Ambulatory assessments of hypothalamus-pituitary-adrenal axis responses to acute natural stressors yield evidence on stress regulation with high ecological validity. Sampling of salivary cortisol is a standard technique in this field. In 21 healthy student teachers, we assessed cortisol responses to a demonstration lesson. On a control day, sampling was repeated at analogous times. Additionally, the cortisol awakening response (CAR) was assessed on both days. Participants were also exposed to a laboratory stressor, the Trier Social Stress Test, and rated their individual levels of chronic work stress. In pre-to-post-stress assessment, cortisol levels declined after the lesson. However, post-stress cortisol levels were significantly higher compared with those on the control day. Also, the Trier Social Stress Test yielded higher cortisol responses when using the control day as reference baseline. Associations between the CAR and chronic stress measures were observed solely on the control day. There were no significant associations between cortisol responses to the natural and laboratory stressors. Our results indicate that a control day might be an important complement in laboratory but especially in ambulatory stress research. Furthermore, associations between chronic stress measures and the CAR might be obscured by acute stress exposure. Finally, responses to the laboratory stressor do not seem to mirror natural stress responses. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Modulation of immune responses in stress by Yoga

    Directory of Open Access Journals (Sweden)

    Arora Sarika

    2008-01-01

    Full Text Available Stress is a constant factor in today′s fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary system. Various neurotransmitters, neuropeptides, hormones, and cytokines mediate these complex bidirectional interactions between the central nervous system (CNS and the immune system. The effects of stress on the immune responses result in alterations in the number of immune cells and cytokine dysregulation. Various stress management strategies such as meditation, yoga, hypnosis, and muscle relaxation have been shown to reduce the psychological and physiological effects of stress in cancers and HIV infection. This review aims to discuss the effect of stress on the immune system and examine how relaxation techniques such as Yoga and meditation could regulate the cytokine levels and hence, the immune responses during stress.

  14. When does stress help or harm? The effects of stress controllability and subjective stress response on Stroop performance.

    Directory of Open Access Journals (Sweden)

    Roselinde Kaiser Henderson

    2012-06-01

    Full Text Available The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing to clinical therapy. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, research suggests that the impact of stress on cognitive functioning depends on an individual’s response to stressors: moderate responses to stress can lead to improved performance while extreme (high or low responses can lead to impaired performance. The present studies tested the hypothesis that 1 learning to behaviorally control stressors leads to improved performance on a test of general executive functioning, the color-word Stroop, and that 2 this improvement emerges specifically for people who report moderate (subjective responses to stress. Experiment 1: Stroop performance, measured before and after a stress manipulation, was compared across groups of undergraduate participants (n=109. People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest reduction in Stroop interference. In contrast, in the group exposed to uncontrollable events, self-reported stress failed to predict performance. Experiment 2: In a second sample (n=90, we specifically investigated the role of controllability by keeping the rate of failure feedback constant across groups. In the group who learned behavioral control, those who reported moderate levels of stress

  15. Deteriorated stress response in stationary-phase yeast: Sir2 and Yap1 are essential for Hsf1 activation by heat shock and oxidative stress, respectively.

    Directory of Open Access Journals (Sweden)

    Inbal Nussbaum

    Full Text Available Stationary-phase cultures have been used as an important model of aging, a complex process involving multiple pathways and signaling networks. However, the molecular processes underlying stress response of non-dividing cells are poorly understood, although deteriorated stress response is one of the hallmarks of aging. The budding yeast Saccharomyces cerevisiae is a valuable model organism to study the genetics of aging, because yeast ages within days and are amenable to genetic manipulations. As a unicellular organism, yeast has evolved robust systems to respond to environmental challenges. This response is orchestrated largely by the conserved transcription factor Hsf1, which in S. cerevisiae regulates expression of multiple genes in response to diverse stresses. Here we demonstrate that Hsf1 response to heat shock and oxidative stress deteriorates during yeast transition from exponential growth to stationary-phase, whereas Hsf1 activation by glucose starvation is maintained. Overexpressing Hsf1 does not significantly improve heat shock response, indicating that Hsf1 dwindling is not the major cause for Hsf1 attenuated response in stationary-phase yeast. Rather, factors that participate in Hsf1 activation appear to be compromised. We uncover two factors, Yap1 and Sir2, which discretely function in Hsf1 activation by oxidative stress and heat shock. In Δyap1 mutant, Hsf1 does not respond to oxidative stress, while in Δsir2 mutant, Hsf1 does not respond to heat shock. Moreover, excess Sir2 mimics the heat shock response. This role of the NAD+-dependent Sir2 is supported by our finding that supplementing NAD+ precursors improves Hsf1 heat shock response in stationary-phase yeast, especially when combined with expression of excess Sir2. Finally, the combination of excess Hsf1, excess Sir2 and NAD+ precursors rejuvenates the heat shock response.

  16. Deteriorated stress response in stationary-phase yeast: Sir2 and Yap1 are essential for Hsf1 activation by heat shock and oxidative stress, respectively.

    Science.gov (United States)

    Nussbaum, Inbal; Weindling, Esther; Jubran, Ritta; Cohen, Aviv; Bar-Nun, Shoshana

    2014-01-01

    Stationary-phase cultures have been used as an important model of aging, a complex process involving multiple pathways and signaling networks. However, the molecular processes underlying stress response of non-dividing cells are poorly understood, although deteriorated stress response is one of the hallmarks of aging. The budding yeast Saccharomyces cerevisiae is a valuable model organism to study the genetics of aging, because yeast ages within days and are amenable to genetic manipulations. As a unicellular organism, yeast has evolved robust systems to respond to environmental challenges. This response is orchestrated largely by the conserved transcription factor Hsf1, which in S. cerevisiae regulates expression of multiple genes in response to diverse stresses. Here we demonstrate that Hsf1 response to heat shock and oxidative stress deteriorates during yeast transition from exponential growth to stationary-phase, whereas Hsf1 activation by glucose starvation is maintained. Overexpressing Hsf1 does not significantly improve heat shock response, indicating that Hsf1 dwindling is not the major cause for Hsf1 attenuated response in stationary-phase yeast. Rather, factors that participate in Hsf1 activation appear to be compromised. We uncover two factors, Yap1 and Sir2, which discretely function in Hsf1 activation by oxidative stress and heat shock. In Δyap1 mutant, Hsf1 does not respond to oxidative stress, while in Δsir2 mutant, Hsf1 does not respond to heat shock. Moreover, excess Sir2 mimics the heat shock response. This role of the NAD+-dependent Sir2 is supported by our finding that supplementing NAD+ precursors improves Hsf1 heat shock response in stationary-phase yeast, especially when combined with expression of excess Sir2. Finally, the combination of excess Hsf1, excess Sir2 and NAD+ precursors rejuvenates the heat shock response.

  17. Poverty and involuntary engagement stress responses: examining the link to anxiety and aggression within low-income families.

    Science.gov (United States)

    Wolff, Brian C; Santiago, Catherine DeCarlo; Wadsworth, Martha E

    2009-05-01

    Families living with the burdens of poverty-related stress are at risk for developing a range of psychopathology. The present study examines the year-long prospective relationships among poverty-related stress, involuntary engagement stress response (IESR) levels, and anxiety symptoms and aggression in an ethnically diverse sample of 98 families (300 individual family members) living at or below 150% of the US federal poverty line. Hierarchical Linear Modeling (HLM) moderator model analyses provided strong evidence that IESR levels moderated the influence of poverty-related stress on anxiety symptoms and provided mixed evidence for the same interaction effect on aggression. Higher IESR levels, a proxy for physiological stress reactivity, worsened the impact of stress on symptoms. Understanding how poverty-related stress and involuntary stress responses affect psychological functioning has implications for efforts to prevent or reduce psychopathology, particularly anxiety, among individuals and families living in poverty.

  18. Age differences in emotional responses to daily stress: the role of timing, severity, and global perceived stress.

    Science.gov (United States)

    Scott, Stacey B; Sliwinski, Martin J; Blanchard-Fields, Fredda

    2013-12-01

    Research on age differences in emotional responses to daily stress has produced inconsistent findings. Guided by recent theoretical advances in aging theory (S. T. Charles, 2010, Strength and vulnerability integration: A model of emotional well-being across adulthood, Psychological Bulletin, Vol. 136, pp. 1068-1091) that emphasize the importance of context for predicting when and how age is related to affective well-being, the current study examined age differences in emotional responses to everyday stressors. The present study examined how three contextual features (e.g., timing of exposure, stressor severity, global perceived stress [GPS]) moderate age differences in emotional experience in an ecological momentary assessment study of adults (N = 190) aged 18-81 years. Results indicated that older adults' negative affect (NA) was less affected by exposure to recent stressors than younger adults, but that there were no age differences in the effects of stressor exposure 3-6 hr afterward. Higher levels of GPS predicted amplified NA responses to daily stress, and controlling for GPS eliminated age differences in NA responses to stressors. No age differences in NA responses as a function of stressor severity were observed. In contrast, older age was associated with less of a decrease in PA when exposed to recent stressors or with more severe recent stressors. There were no age differences in the effect of previous stressor exposure or severity on PA, or any interactions between momentary or previous stress and GPS on PA. Together, these results support the notion that chronic stress plays a central role in emotional experience in daily life. We discuss the implications of these results for emotion theories of aging. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  19. Stress response in female veterans: an allostatic perspective.

    Science.gov (United States)

    Groër, Maureen Wimberly; Burns, Candace

    2009-01-01

    Women serving in the military face many sources of stress, such as separation from home and family, sexual harassment and assault, and deployment to traumatic war zones. Some women are vulnerable to the effects of these stressors, resulting in deleterious mental and physical health outcomes. Understanding these risks through the theoretical model of allostasis can help identify those who will be most vulnerable and help healthcare providers prevent some negative outcomes and improve rehabilitation for some women when they return stateside. Women may be more likely than men to present with mental health problems such as posttraumatic stress disorder and depression after military service. They also may be at increased risk, based on their war-zone stress response, for disparate illness such as medically unexplained illness, cancer, and heart disease. The need for care for these women is expected to increase as more women are deployed to conflicts.

  20. Mitochondria, Energetics, Epigenetics, and Cellular Responses to Stress

    Science.gov (United States)

    McAllister, Kimberly; Worth, Leroy; Haugen, Astrid C.; Meyer, Joel N.; Domann, Frederick E.; Van Houten, Bennett; Mostoslavsky, Raul; Bultman, Scott J.; Baccarelli, Andrea A.; Begley, Thomas J.; Sobol, Robert W.; Hirschey, Matthew D.; Ideker, Trey; Santos, Janine H.; Copeland, William C.; Tice, Raymond R.; Balshaw, David M.; Tyson, Frederick L.

    2014-01-01

    Background: Cells respond to environmental stressors through several key pathways, including response to reactive oxygen species (ROS), nutrient and ATP sensing, DNA damage response (DDR), and epigenetic alterations. Mitochondria play a central role in these pathways not only through energetics and ATP production but also through metabolites generated in the tricarboxylic acid cycle, as well as mitochondria–nuclear signaling related to mitochondria morphology, biogenesis, fission/fusion, mitophagy, apoptosis, and epigenetic regulation. Objectives: We investigated the concept of bidirectional interactions between mitochondria and cellular pathways in response to environmental stress with a focus on epigenetic regulation, and we examined DNA repair and DDR pathways as examples of biological processes that respond to exogenous insults through changes in homeostasis and altered mitochondrial function. Methods: The National Institute of Environmental Health Sciences sponsored the Workshop on Mitochondria, Energetics, Epigenetics, Environment, and DNA Damage Response on 25–26 March 2013. Here, we summarize key points and ideas emerging from this meeting. Discussion: A more comprehensive understanding of signaling mechanisms (cross-talk) between the mitochondria and nucleus is central to elucidating the integration of mitochondrial functions with other cellular response pathways in modulating the effects of environmental agents. Recent studies have highlighted the importance of mitochondrial functions in epigenetic regulation and DDR with environmental stress. Development and application of novel technologies, enhanced experimental models, and a systems-type research approach will help to discern how environmentally induced mitochondrial dysfunction affects key mechanistic pathways. Conclusions: Understanding mitochondria–cell signaling will provide insight into individual responses to environmental hazards, improving prediction of hazard and susceptibility to

  1. Post-menopausal Women Exhibit Greater Interleukin-6 Responses to Mental Stress Than Older Men.

    Science.gov (United States)

    Endrighi, Romano; Hamer, Mark; Steptoe, Andrew

    2016-08-01

    Acute stress triggers innate immune responses and elevation in circulating cytokines including interleukin-6 (IL-6). The effect of sex on IL-6 responses remains unclear due to important limitations of previous studies. The purpose of this study was to examine sex differences in IL-6 responses to mental stress in a healthy, older (post-menopausal) sample accounting for several moderating factors. Five hundred six participants (62.9 ± 5.60 years, 55 % male) underwent 10 min of mental stress consisting of mirror tracing and Stroop task. Blood was sampled at baseline, after stress, and 45 and 75 min post-stress, and assayed using a high sensitivity kit. IL-6 reactivity was computed as the mean difference between baseline and 45 min and between baseline and 75 min post-stress. Main effects and interactions were examined using ANCOVA models. There was a main effect of time for the IL-6 response (F 3,1512 = 201.57, p = stress compared to males. Results were independent of age, adiposity, socioeconomic position, depression, smoking and alcohol consumption, physical activity, statin use, testing time, task appraisals, hormone replacement, and baseline IL-6. Other significant predictors of IL-6 reactivity were lower household wealth, afternoon testing, and baseline IL-6. Healthy, post-menopausal females exhibit substantially greater IL-6 responses to acute stress. Inflammatory responses if sustained over time may have clinical implications for the development and maintenance of inflammatory-related conditions prevalent in older women.

  2. The surgical stress response: should it be prevented?

    DEFF Research Database (Denmark)

    Kehlet, H

    1991-01-01

    clinical trials have demonstrated a reduction in various aspects of postoperative morbidity by such a nociceptive blockade. Although a causal relationship has still to be demonstrated, these findings strongly argue the concept of "stress-free anesthesia and surgery" as an important instrument in improving......Postoperative complications such as myocardial infarction, pulmonary infection, thromboembolism and fatigue are probably related to increased demands, hypermetabolism, catabolism and other physiologic changes included in the global "surgical stress response." Strategies have been developed...... to suppress the detrimental components of the stress response so as to improve postoperative outcome. Of the various techniques to reduce the surgical stress response, afferent neural blockade with regional anesthesia to relieve pain is the most effective, although not optimal. Data from numerous controlled...

  3. Stress and sleep reactivity: a prospective investigation of the stress-diathesis model of insomnia.

    Science.gov (United States)

    Drake, Christopher L; Pillai, Vivek; Roth, Thomas

    2014-08-01

    To prospectively assess sleep reactivity as a diathesis of insomnia, and to delineate the interaction between this diathesis and naturalistic stress in the development of insomnia among normal sleepers. Longitudinal. Community-based. 2,316 adults from the Evolution of Pathways to Insomnia Cohort (EPIC) with no history of insomnia or depression (46.8 ± 13.2 y; 60% female). None. Participants reported the number of stressful events they encountered at baseline (Time 1), as well as the level of cognitive intrusion they experienced in response to each stressor. Stressful events (OR = 1.13; P stress-induced cognitive intrusion (OR = 1.61; P stressful events on risk for insomnia (P sleep reactivity significantly increased risk for insomnia (OR = 1.78; P sleep reactivity moderated the effects of stress-induced intrusion (P sleep reactivity. Trait sleep reactivity also constituted a significant risk for depression (OR = 1.67; P sleep reactivity is a significant risk factor for incident insomnia, and that it triggers insomnia by exacerbating the effects of stress-induced intrusion. Sleep reactivity is also a precipitant of depression, as mediated by insomnia. These findings support the stress-diathesis model of insomnia, while highlighting sleep reactivity as an important diathesis. Drake CL, Pillai V, Roth T. Stress and sleep reactivity: a prospective investigation of the stress-diathesis model of insomnia.

  4. Sleep restriction alters the hypothalamic-pituitary-adrenal response to stress

    Science.gov (United States)

    Meerlo, P.; Koehl, M.; van der Borght, K.; Turek, F. W.

    2002-01-01

    Chronic sleep restriction is an increasing problem in many countries and may have many, as yet unknown, consequences for health and well being. Studies in both humans and rats suggest that sleep deprivation may activate the hypothalamic-pituitary-adrenal (HPA) axis, one of the main neuroendocrine stress systems. However, few attempts have been made to examine how sleep loss affects the HPA axis response to subsequent stressors. Furthermore, most studies applied short-lasting total sleep deprivation and not restriction of sleep over a longer period of time, as often occurs in human society. Using the rat as our model species, we investigated: (i) the HPA axis activity during and after sleep deprivation and (ii) the effect of sleep loss on the subsequent HPA response to a novel stressor. In one experiment, rats were subjected to 48 h of sleep deprivation by placing them in slowly rotating wheels. Control rats were placed in nonrotating wheels. In a second experiment, rats were subjected to an 8-day sleep restriction protocol allowing 4 h of sleep each day. To test the effects of sleep loss on subsequent stress reactivity, rats were subjected to a 30-min restraint stress. Blood samples were taken at several time points and analysed for adrenocorticotropic hormone (ACTH) and corticosterone. The results show that ACTH and corticosterone concentrations were elevated during sleep deprivation but returned to baseline within 4 h of recovery. After 1 day of sleep restriction, the ACTH and corticosterone response to restraint stress did not differ between control and sleep deprived rats. However, after 48 h of total sleep deprivation and after 8 days of restricted sleep, the ACTH response to restraint was significantly reduced whereas the corticosterone response was unaffected. These results show that sleep loss not only is a mild activator of the HPA axis itself, but also affects the subsequent response to stress. Alterations in HPA axis regulation may gradually appear under

  5. Stress and Bronchodilator Response in Children with Asthma.

    Science.gov (United States)

    Brehm, John M; Ramratnam, Sima K; Tse, Sze Man; Croteau-Chonka, Damien C; Pino-Yanes, Maria; Rosas-Salazar, Christian; Litonjua, Augusto A; Raby, Benjamin A; Boutaoui, Nadia; Han, Yueh-Ying; Chen, Wei; Forno, Erick; Marsland, Anna L; Nugent, Nicole R; Eng, Celeste; Colón-Semidey, Angel; Alvarez, María; Acosta-Pérez, Edna; Spear, Melissa L; Martinez, Fernando D; Avila, Lydiana; Weiss, Scott T; Soto-Quiros, Manuel; Ober, Carole; Nicolae, Dan L; Barnes, Kathleen C; Lemanske, Robert F; Strunk, Robert C; Liu, Andrew; London, Stephanie J; Gilliland, Frank; Sleiman, Patrick; March, Michael; Hakonarson, Hakon; Duan, Qing Ling; Kolls, Jay K; Fritz, Gregory K; Hu, Donglei; Fani, Negar; Stevens, Jennifer S; Almli, Lynn M; Burchard, Esteban G; Shin, Jaemin; McQuaid, Elizabeth L; Ressler, Kerry; Canino, Glorisa; Celedón, Juan C

    2015-07-01

    Stress is associated with asthma morbidity in Puerto Ricans (PRs), who have reduced bronchodilator response (BDR). To examine whether stress and/or a gene regulating anxiety (ADCYAP1R1) is associated with BDR in PR and non-PR children with asthma. This was a cross-sectional study of stress and BDR (percent change in FEV1 after BD) in 234 PRs ages 9-14 years with asthma. We assessed child stress using the Checklist of Children's Distress Symptoms, and maternal stress using the Perceived Stress Scale. Replication analyses were conducted in two cohorts. Polymorphisms in ADCYAP1R1 were genotyped in our study and six replication studies. Multivariable models of stress and BDR were adjusted for age, sex, income, environmental tobacco smoke, and use of inhaled corticosteroids. High child stress was associated with reduced BDR in three cohorts. PR children who were highly stressed (upper quartile, Checklist of Children's Distress Symptoms) and whose mothers had high stress (upper quartile, Perceived Stress Scale) had a BDR that was 10.2% (95% confidence interval, 6.1-14.2%) lower than children who had neither high stress nor a highly stressed mother. A polymorphism in ADCYAP1R1 (rs34548976) was associated with reduced BDR. This single-nucleotide polymorphism is associated with reduced expression of the gene for the β2-adrenergic receptor (ADRB2) in CD4(+) lymphocytes of subjects with asthma, and it affects brain connectivity of the amygdala and the insula (a biomarker of anxiety). High child stress and an ADCYAP1R1 single-nucleotide polymorphism are associated with reduced BDR in children with asthma. This is likely caused by down-regulation of ADRB2 in highly stressed children.

  6. Plasticity of the MAPK signaling network in response to mechanical stress.

    Directory of Open Access Journals (Sweden)

    Andrea M Pereira

    Full Text Available Cells display versatile responses to mechanical inputs and recent studies have identified the mitogen-activated protein kinase (MAPK cascades mediating the biological effects observed upon mechanical stimulation. Although, MAPK pathways can act insulated from each other, several mechanisms facilitate the crosstalk between the components of these cascades. Yet, the combinatorial complexity of potential molecular interactions between these elements have prevented the understanding of their concerted functions. To analyze the plasticity of the MAPK signaling network in response to mechanical stress we performed a non-saturating epistatic screen in resting and stretched conditions employing as readout a JNK responsive dJun-FRET biosensor. By knocking down MAPKs, and JNK pathway regulators, singly or in pairs in Drosophila S2R+ cells, we have uncovered unexpected regulatory links between JNK cascade kinases, Rho GTPases, MAPKs and the JNK phosphatase Puc. These relationships have been integrated in a system network model at equilibrium accounting for all experimentally validated interactions. This model allows predicting the global reaction of the network to its modulation in response to mechanical stress. It also highlights its context-dependent sensitivity.

  7. Stretching the stress boundary: Linking air pollution health effects to a neurohormonal stress response.

    Science.gov (United States)

    Kodavanti, Urmila P

    2016-12-01

    Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer's and diabetes. A neurohormonal stress response (referred to here as a systemic response produced by activation of the sympathetic nervous system and hypothalamus-pituitary-adrenal (HPA)-axis) has been implicated in a variety of psychological and physical stresses, which involves immune and metabolic homeostatic mechanisms affecting all organs in the body. In this review, we provide new evidence for the involvement of this well-characterized neurohormonal stress response in mediating systemic and pulmonary effects of a prototypic air pollutant - ozone. A plethora of systemic metabolic and immune effects are induced in animals exposed to inhaled pollutants, which could result from increased circulating stress hormones. The release of adrenal-derived stress hormones in response to ozone exposure not only mediates systemic immune and metabolic responses, but by doing so, also modulates pulmonary injury and inflammation. With recurring pollutant exposures, these effects can contribute to multi-organ chronic conditions associated with air pollution. This review will cover, 1) the potential mechanisms by which air pollutants can initiate the relay of signals from respiratory tract to brain through trigeminal and vagus nerves, and activate stress responsive regions including hypothalamus; and 2) the contribution of sympathetic and HPA-axis activation in mediating systemic homeostatic metabolic and immune effects of ozone in various organs. The potential contribution of chronic environmental stress in cardiovascular, neurological, reproductive and metabolic diseases, and the knowledge gaps are also discussed. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu. Published by Elsevier B.V.

  8. A phenomenological model for pre-stressed piezoelectric ceramic stack actuators

    International Nuclear Information System (INIS)

    Wang, D H; Zhu, W

    2011-01-01

    In order to characterize the hysteretic characteristics between the output displacement and applied voltage of pre-stressed piezoelectric ceramic stack actuators (PCSAs), this paper considers that a linear force and a hysteretic force will be generated by a linear extension and a hysteretic extension, respectively, due to the applied voltage to a pre-stressed PCSA and the total force will result in the forced vibration of the single-degree-of-freedom (DOF) system composed of the mass of the pre-stressed PCSA and the equivalent spring and damper of the pre-stressed mechanism, which lets the PCSA be pre-stressed to endure enough tension. On this basis, the phenomenological model to characterize the hysteretic behavior of the pre-stressed PCSA is put forward by using the Bouc–Wen hysteresis operator to model the hysteretic extension. The parameter identification method in a least-squares sense is established by identifying the parameters for the linear and hysteretic components separately with the step and periodic responses of the pre-stressed PCSA, respectively. The performance of the proposed phenomenological model with the corresponding parameter identification method is experimentally verified by the established experimental set-up. The research results show that the phenomenological model for the pre-stressed PCSA with the corresponding parameter identification method can accurately portray the hysteretic characteristics of the pre-stressed PCSA. In addition, the phenomenological model for PCSAs can be deduced from the phenomenological model for pre-stressed PCSAs by removing the terms related to the pre-stressed mechanisms

  9. Cortisol Response to Stress in Adults with Attention Deficit Hyperactivity Disorder.

    Science.gov (United States)

    Corominas-Roso, Margarida; Palomar, Gloria; Ferrer, Roser; Real, Alberto; Nogueira, Mariana; Corrales, Montserrat; Casas, Miguel; Ramos-Quiroga, Josep Antoni

    2015-03-17

    Differences in the cortisol response have been reported between children exhibiting the inattentive and hyperactive/impulsive subtypes of attention deficit hyperactivity disorder. However, there is no such information about adults. The aim of the present study was to determine the possible differences between the combined and inattentive subtypes in the cortisol response to stress. Ninety-six adults with attention deficit hyperactivity disorder, 38 inattentive and 58 combined, without any medical or psychiatric comorbidities and 25 healthy controls were included. The Trier Social Stress Test was used to assess physiological stress responses. Clinical data and subjective stress levels, including the Perceived Stress Scale, were also recorded. No significant differences in the cortisol response to the Trier Social Stress Test were found between patients and controls. However, albeit there were no basal differences, lower cortisol levels at 15 (P=.015), 30 (P=.015), and 45 minutes (P=.045) were observed in the combined compared with the inattentive subtype after the stress induction; these differences disappeared 60 minutes after the stress. In contrast, the subjective stress responses showed significant differences between attention deficit hyperactivity disorder patients and controls (Pattention deficit hyperactivity disorder subtypes. In turn, subjective stress measures, such as the Perceived Stress Scale, positively correlated with the whole cortisol stress response (Pattention deficit hyperactivity disorder adults exhibited a normal cortisol response to stress when challenged. Nevertheless, the inattentive patients displayed a higher level of cortisol after stress compared with the combined patients. Despite the differences in the cortisol response, adults with attention deficit hyperactivity disorder reported high levels of subjective stress in their every-day life. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  10. A WRKY gene from Tamarix hispida, ThWRKY4, mediates abiotic stress responses by modulating reactive oxygen species and expression of stress-responsive genes.

    Science.gov (United States)

    Zheng, Lei; Liu, Guifeng; Meng, Xiangnan; Liu, Yujia; Ji, Xiaoyu; Li, Yanbang; Nie, Xianguang; Wang, Yucheng

    2013-07-01

    WRKY transcription factors are involved in various biological processes, such as development, metabolism and responses to stress. However, their exact roles in abiotic stress tolerance are largely unknown. Here, we demonstrated a working model for the function of a WRKY gene (ThWRKY4) from Tamarix hispida in the stress response. ThWRKY4 is highly induced by abscisic acid (ABA), salt and drought in the early period of stress (stress for 3, 6, or 9 h), which can be regulated by ABF (ABRE binding factors) and Dof (DNA binding with one finger), and also can be crossregulated by other WRKYs and autoregulated as well. Overexpression of ThWRKY4 conferred tolerance to salt, oxidative and ABA treatment in transgenic plants. ThWRKY4 can improve the tolerance to salt and ABA treatment by improving activities of superoxide dismutase and peroxidase, decreasing levels of O2 (-) and H2O2, reducing electrolyte leakage, keeping the loss of chlorophyll, and protecting cells from death. Microarray analyses showed that overexpression of ThWRKY4 in Arabidopsis leads to 165 and 100 genes significantly up- and downregulated, respectively. Promoter scanning analysis revealed that ThWRKY4 regulates the gene expression via binding to W-box motifs present in their promoter regions. This study shows that ThWRKY4 functions as a transcription factor to positively modulate abiotic stress tolerances, and is involved in modulating reactive oxygen species.

  11. Modeling the Effects of Stress: An Approach to Training

    Science.gov (United States)

    Cuper, Taryn

    2010-01-01

    Stress is an integral element of the operational conditions experienced by combat medics. The effects of stress can compromise the performance of combat medics who must reach and treat their comrades under often threatening circumstances. Examples of these effects include tunnel vision, loss of motor control, and diminished hearing, which can result in an inability to perceive further danger, satisfactorily treat the casualty, and communicate with others. While many training programs strive to recreate this stress to aid in the experiential learning process, stress inducement may not always be feasible or desired. In addition, live simulations are not always a practical, convenient, and repeatable method of training. Instead, presenting situational training on a personal computer is proposed as an effective training platform in which the effects of stress can be addressed in a different way. We explore the cognitive and motor effects of stress, as well as the benefits of training for mitigating these effects in real life. While many training applications focus on inducing stress in order to "condition" the stress response, the author explores the possibilities of modeling stress to produce a similar effect. Can presenting modeled effects of stress help prepare or inoculate soldiers for stressful situations in which they must perform at a high level? This paper investigates feasibility of modeling stress and describes the preliminary design considerations of a combat medic training system that utilizes this method of battlefield preparation.

  12. On the use of effective stress in three-dimensional hydro-mechanical coupled model

    International Nuclear Information System (INIS)

    Arairo, W.; Prunier, F.; Djeran-Maigre, I.; Millard, A.

    2014-01-01

    In the last decades, a number of hydro-mechanical elastoplastic constitutive models for unsaturated soils have been proposed. Those models couple the hydraulic and mechanical behaviour of unsaturated soils, and take into account the effects of the degree of saturation on the stress-strain behaviour and the effects of deformation on the soil-water characteristic response with a simple reversible part for the hysteresis. In addition, the influence of the suction on the stress-strain behaviour is considered. However, until now, few models predict the stress-strain and soil-water characteristic responses of unsaturated soils in a fully three-dimensional Finite Element code. This paper presents the predictions of an unsaturated soil model in a Three-dimensional Framework, and develops a study on the effect of partial saturation on the stability of shallow foundation resting on unsaturated silty soil. Qualitative predictions of the constitutive model show that incorporating a special formulation for the effective stress into an elastoplastic coupled hydro-mechanical model opens a full range of possibilities in modelling unsaturated soil behaviour. (authors)

  13. Cell Wall Metabolism in Response to Abiotic Stress

    Science.gov (United States)

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  14. Transcriptome Responses to Combinations of Stresses in Arabidopsis

    DEFF Research Database (Denmark)

    Rasmussen, Simon; Barah, Pankaj; Suarez-Rodriguez, Maria Cristina

    2013-01-01

    In Arabidopsis, the response of the majority of the genes cannot be predicted from single stress experiments and only a small fraction of the genes have potential antagonistic responses, indicating that plants have evolved to cope with combinations of stresses and therefore may be bred to endure...

  15. Evidence of major genes affecting stress response in rainbow trout using Bayesian methods of complex segregation analysis

    DEFF Research Database (Denmark)

    Vallejo, R L; Rexroad III, C E; Silverstein, J T

    2009-01-01

    As a first step toward the genetic mapping of QTL affecting stress response variation in rainbow trout, we performed complex segregation analyses (CSA) fitting mixed inheritance models of plasma cortisol by using Bayesian methods in large full-sib families of rainbow trout. To date, no studies have...... been conducted to determine the mode of inheritance of stress response as measured by plasma cortisol response when using a crowding stress paradigm and CSA in rainbow trout. The main objective of this study was to determine the mode of inheritance of plasma cortisol after a crowding stress....... The results from fitting mixed inheritance models with Bayesian CSA suggest that 1 or more major genes with dominant cortisol-decreasing alleles and small additive genetic effects of a large number of independent genes likely underlie the genetic variation of plasma cortisol in the rainbow trout families...

  16. Accelerometer-determined physical activity and the cardiovascular response to mental stress in children.

    Science.gov (United States)

    Spartano, Nicole L; Heffernan, Kevin S; Dumas, Amy K; Gump, Brooks B

    2017-01-01

    Cardiovascular reactivity has been associated with future hypertension and cardiovascular mortality. Higher physical activity (PA) has been associated with lower cardiovascular reactivity in adults, but little data is available in children. The purpose of this study was to examine the relationship between PA and cardiovascular reactivity to mental stress in children. Cross-sectional study. This study sample included children from the Oswego Lead Study (n=79, 46% female, 9-11 years old). Impedance cardiography was performed while children participated in a stress response protocol. Children were also asked to wear Actigraph accelerometers on their wrists for 3 days to measure intensity and duration of PA and sedentary time. In multivariable models, moderate to vigorous (MV) PA was associated with lower body mass index (BMI) percentile and lower total peripheral resistance (TPR) response to stress (beta=-0.025, p=0.02; beta=-0.009, p=0.05). After additional adjustment for BMI, MVPA was also associated with lower diastolic blood pressure response to stress (beta=-0.01, p=0.03). Total PA and sedentary time were not associated with BMI or cardiovascular responses to stress. A modest, inverse relation of PA to vascular reactivity to mental stress was observed in children. These data provide confirmatory evidence that the promotion of PA recommendations for children are important for cardiovascular health. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  17. Cardiovascular responses to cognitive stress in patients with migraine and tension-type headache

    Directory of Open Access Journals (Sweden)

    Nilsen Kristian B

    2007-08-01

    Full Text Available Abstract Background The purpose of this study was to investigate the temporal relationship between autonomic changes and pain activation in migraine and tension-type headache induced by stress in a model relevant for everyday office-work. Methods We measured pain, blood pressure (BP, heart rate (HR and skin blood flow (BF during and after controlled low-grade cognitive stress in 22 migraineurs during headache-free periods, 18 patients with tension-type headache (TTH and 44 healthy controls. The stress lasted for one hour and was followed by 30 minutes of relaxation. Results Cardiovascular responses to cognitive stress in migraine did not differ from those in control subjects. In TTH patients HR was maintained during stress, whereas it decreased for migraineurs and controls. A trend towards a delayed systolic BP response during stress was also observed in TTH. Finger BF recovery was delayed after stress and stress-induced pain was associated with less vasoconstriction in TTH during recovery. Conclusion It is hypothesized that TTH patients have different stress adaptive mechanisms than controls and migraineurs, involving delayed cardiovascular adaptation and reduced pain control system inhibition.

  18. Sex hormones affect acute and chronic stress responses in sexually dimorphic patterns : Consequences for depression models

    NARCIS (Netherlands)

    Guo, Lei; Chen, Yi-Xi; Hu, Yu-Ting; Wu, Xue-Yan; He, Yang; Wu, Juan-Li; Huang, Man-Li; Mason, M.R.J.; Bao, Ai-Min

    2018-01-01

    BACKGROUND: Alterations in peripheral sex hormones may play an important role in sex differences in terms of stress responses and mood disorders. It is not yet known whether and how stress-related brain systems and brain sex steroid levels fluctuate in relation to changes in peripheral sex hormone

  19. Moving through the Stressed Genome: Emerging Regulatory Roles for Transposons in Plant Stress Response.

    Science.gov (United States)

    Negi, Pooja; Rai, Archana N; Suprasanna, Penna

    2016-01-01

    The recognition of a positive correlation between organism genome size with its transposable element (TE) content, represents a key discovery of the field of genome biology. Considerable evidence accumulated since then suggests the involvement of TEs in genome structure, evolution and function. The global genome reorganization brought about by transposon activity might play an adaptive/regulatory role in the host response to environmental challenges, reminiscent of McClintock's original 'Controlling Element' hypothesis. This regulatory aspect of TEs is also garnering support in light of the recent evidences, which project TEs as "distributed genomic control modules." According to this view, TEs are capable of actively reprogramming host genes circuits and ultimately fine-tuning the host response to specific environmental stimuli. Moreover, the stress-induced changes in epigenetic status of TE activity may allow TEs to propagate their stress responsive elements to host genes; the resulting genome fluidity can permit phenotypic plasticity and adaptation to stress. Given their predominating presence in the plant genomes, nested organization in the genic regions and potential regulatory role in stress response, TEs hold unexplored potential for crop improvement programs. This review intends to present the current information about the roles played by TEs in plant genome organization, evolution, and function and highlight the regulatory mechanisms in plant stress responses. We will also briefly discuss the connection between TE activity, host epigenetic response and phenotypic plasticity as a critical link for traversing the translational bridge from a purely basic study of TEs, to the applied field of stress adaptation and crop improvement.

  20. Moving through the Stressed Genome: Emerging Regulatory Roles for Transposons in Plant Stress Response

    Science.gov (United States)

    Negi, Pooja; Rai, Archana N.; Suprasanna, Penna

    2016-01-01

    The recognition of a positive correlation between organism genome size with its transposable element (TE) content, represents a key discovery of the field of genome biology. Considerable evidence accumulated since then suggests the involvement of TEs in genome structure, evolution and function. The global genome reorganization brought about by transposon activity might play an adaptive/regulatory role in the host response to environmental challenges, reminiscent of McClintock's original ‘Controlling Element’ hypothesis. This regulatory aspect of TEs is also garnering support in light of the recent evidences, which project TEs as “distributed genomic control modules.” According to this view, TEs are capable of actively reprogramming host genes circuits and ultimately fine-tuning the host response to specific environmental stimuli. Moreover, the stress-induced changes in epigenetic status of TE activity may allow TEs to propagate their stress responsive elements to host genes; the resulting genome fluidity can permit phenotypic plasticity and adaptation to stress. Given their predominating presence in the plant genomes, nested organization in the genic regions and potential regulatory role in stress response, TEs hold unexplored potential for crop improvement programs. This review intends to present the current information about the roles played by TEs in plant genome organization, evolution, and function and highlight the regulatory mechanisms in plant stress responses. We will also briefly discuss the connection between TE activity, host epigenetic response and phenotypic plasticity as a critical link for traversing the translational bridge from a purely basic study of TEs, to the applied field of stress adaptation and crop improvement. PMID:27777577

  1. Oxidative stress impairs the heat stress response and delays unfolded protein recovery.

    Directory of Open Access Journals (Sweden)

    Masaaki Adachi

    2009-11-01

    Full Text Available Environmental changes, air pollution and ozone depletion are increasing oxidative stress, and global warming threatens health by heat stress. We now face a high risk of simultaneous exposure to heat and oxidative stress. However, there have been few studies investigating their combined adverse effects on cell viability.Pretreatment of hydrogen peroxide (H(2O(2 specifically and highly sensitized cells to heat stress, and enhanced loss of mitochondrial membrane potential. H(2O(2 exposure impaired the HSP40/HSP70 induction as heat shock response (HSR and the unfolded protein recovery, and enhanced eIF2alpha phosphorylation and/or XBP1 splicing, land marks of ER stress. These H(2O(2-mediated effects mimicked enhanced heat sensitivity in HSF1 knockdown or knockout cells. Importantly, thermal preconditioning blocked H(2O(2-mediated inhibitory effects on refolding activity and rescued HSF1 +/+ MEFs, but neither blocked the effects nor rescued HSF1 -/- MEFs. These data strongly suggest that inhibition of HSR and refolding activity is crucial for H(2O(2-mediated enhanced heat sensitivity.H(2O(2 blocks HSR and refolding activity under heat stress, thereby leading to insufficient quality control and enhancing ER stress. These uncontrolled stress responses may enhance cell death. Our data thus highlight oxidative stress as a crucial factor affecting heat tolerance.

  2. Underground water stress release models

    Science.gov (United States)

    Li, Yong; Dang, Shenjun; Lü, Shaochuan

    2011-08-01

    The accumulation of tectonic stress may cause earthquakes at some epochs. However, in most cases, it leads to crustal deformations. Underground water level is a sensitive indication of the crustal deformations. We incorporate the information of the underground water level into the stress release models (SRM), and obtain the underground water stress release model (USRM). We apply USRM to the earthquakes occurred at Tangshan region. The analysis shows that the underground water stress release model outperforms both Poisson model and stress release model. Monte Carlo simulation shows that the simulated seismicity by USRM is very close to the real seismicity.

  3. Tomato NAC transcription factor SlSRN1 positively regulates defense response against biotic stress but negatively regulates abiotic stress response.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available Biotic and abiotic stresses are major unfavorable factors that affect crop productivity worldwide. NAC proteins comprise a large family of transcription factors that play important roles in plant growth and development as well as in responses to biotic and abiotic stresses. In a virus-induced gene silencing-based screening to identify genes that are involved in defense response against Botrytis cinerea, we identified a tomato NAC gene SlSRN1 (Solanum lycopersicum Stress-related NAC1. SlSRN1 is a plasma membrane-localized protein with transactivation activity in yeast. Expression of SlSRN1 was significantly induced by infection with B. cinerea or Pseudomonas syringae pv. tomato (Pst DC3000, leading to 6-8 folds higher than that in the mock-inoculated plants. Expression of SlSRN1 was also induced by salicylic acid, jasmonic acid and 1-amino cyclopropane-1-carboxylic acid and by drought stress. Silencing of SlSRN1 resulted in increased severity of diseases caused by B. cinerea and Pst DC3000. However, silencing of SlSRN1 resulted in increased tolerance against oxidative and drought stresses. Furthermore, silencing of SlSRN1 accelerated accumulation of reactive oxygen species but attenuated expression of defense genes after infection by B. cinerea. Our results demonstrate that SlSRN1 is a positive regulator of defense response against B. cinerea and Pst DC3000 but is a negative regulator for oxidative and drought stress response in tomato.

  4. Identification and profiling of salinity stress-responsive proteins in Sorghum bicolor seedlings

    DEFF Research Database (Denmark)

    Ngara, Rudo; Ndimba, Roya; Borch-Jensen, Jonas

    2012-01-01

    Sorghum bicolor, a drought tolerant cereal crop, is not only an important food source in the semi arid/arid regions but also a potential model for studying and gaining a better understanding of the molecular mechanisms of drought and salt stress tolerance in cereals. In this study, seeds of a sweet...... sorghum variety, MN1618, were planted and grown on solid MS growth medium with or without 100mM NaCl. Heat shock protein expression immunoblotting assays demonstrated that this salt treatment induced stress within natural physiological parameters for our experimental material. 2D PAGE in combination...... with MS/MS proteomics techniques were used to separate, visualise and identify salinity stress responsive proteins in young sorghum leaves. Out of 281 Coomassie stainable spots, 118 showed statistically significant responses (p...

  5. Presynaptic plasticity as a hallmark of rat stress susceptibility and antidepressant response.

    Directory of Open Access Journals (Sweden)

    Jose Luis Nieto-Gonzalez

    Full Text Available Two main questions are important for understanding and treating affective disorders: why are certain individuals susceptible or resilient to stress, and what are the features of treatment response and resistance? To address these questions, we used a chronic mild stress (CMS rat model of depression. When exposed to stress, a fraction of rats develops anhedonic-like behavior, a core symptom of major depression, while another subgroup of rats is resilient to CMS. Furthermore, the anhedonic-like state is reversed in about half the animals in response to chronic escitalopram treatment (responders, while the remaining animals are resistant (non-responder animals. Electrophysiology in hippocampal brain slices was used to identify a synaptic hallmark characterizing these groups of animals. Presynaptic properties were investigated at GABAergic synapses onto single dentate gyrus granule cells. Stress-susceptible rats displayed a reduced probability of GABA release judged by an altered paired-pulse ratio of evoked inhibitory postsynaptic currents (IPSCs (1.48 ± 0.25 compared with control (0.81 ± 0.05 and stress-resilient rats (0.78 ± 0.03. Spontaneous IPSCs (sIPSCs occurred less frequently in stress-susceptible rats compared with control and resilient rats. Finally, a subset of stress-susceptible rats responding to selective serotonin reuptake inhibitor (SSRI treatment showed a normalization of the paired-pulse ratio (0.73 ± 0.06 whereas non-responder rats showed no normalization (1.2 ± 0.2. No changes in the number of parvalbumin-positive interneurons were observed. Thus, we provide evidence for a distinct GABAergic synaptopathy which associates closely with stress-susceptibility and treatment-resistance in an animal model of depression.

  6. Modelling anelastic contribution to nuclear fuel cladding creep and stress relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Tulkki, Ville, E-mail: ville.tulkki@vtt.fi; Ikonen, Timo

    2015-10-15

    In fuel behaviour modelling accurate description of the cladding mechanical response is important for both operational and safety considerations. While accuracy is desired, a certain level of simplicity is needed as both computational resources and detailed information on properties of particular cladding may be limited. Most models currently used in the integral codes divide the mechanical response into elastic and viscoplastic contributions. These have difficulties in describing both creep and stress relaxation, and often separate models for the two phenomena are used. In this paper we implement anelastic contribution to the cladding mechanical model, thus enabling consistent modelling of both creep and stress relaxation. We show that the model based on assumption of viscoelastic behaviour can be used to explain several experimental observations in transient situations and compare the model to published set of creep and stress relaxation experiments performed on similar samples. Based on the analysis presented we argue that the inclusion of anelastic contribution to the cladding mechanical models provides a way to improve the simulation of cladding behaviour during operational transients.

  7. Stress response in medically important Mucorales.

    Science.gov (United States)

    Singh, Pankaj; Paul, Saikat; Shivaprakash, M Rudramurthy; Chakrabarti, Arunaloke; Ghosh, Anup K

    2016-10-01

    Mucorales are saprobes, ubiquitously distributed and able to infect a heterogeneous population of human hosts. The fungi require robust stress responses to survive in human host. We tested the growth of Mucorales in the presence of different abiotic stress. Eight pathogenic species of Mucorales, including Rhizopus arrhizus, Rhizopus microsporus, Rhizomucor pusillus, Apophysomyces elegans, Licthemia corymbifera, Cunninghamella bertholletiae, Syncephalastrum racemosum and Mucor racemosus, were exposed to different stress inducers: osmotic (sodium chloride and d-sorbitol), oxidative (hydrogen peroxide and menadione), pH, cell wall and metal ions (Cu, Zn, Fe and Mg). Wide variation in stress responses was noted: R. arrhizus showed maximum resistance to both osmotic and oxidative stresses, whereas R. pusillus and M. indicus were relatively sensitive. Rhizopus arrhizus and R. microsporus showed maximum resistance to alkaline pH, whereas C. bertholletiae, L. corymbifera, M. racemosus and A. elegans were resistant to acidic pH. Maximum tolerance was noted in R. microsporus to Cu, R. microsporus and R. arrhizus to Fe and C. bertholletiae to Zn. In contrast, L. corymbifera, A. elegans and M. indicus were sensitive to Cu, Zn and Fe respectively. In conclusion, R. arrhizus showed high stress tolerance in comparison to other species of Mucorales, and this could be the possible reason for high pathogenic potential of this fungi. © 2016 Blackwell Verlag GmbH.

  8. Transcriptome Analysis of Spartina pectinata in Response to Freezing Stress.

    Directory of Open Access Journals (Sweden)

    Gyoungju Nah

    Full Text Available Prairie cordgrass (Spartina pectinata, a perennial C4 grass native to the North American prairie, has several distinctive characteristics that potentially make it a model crop for production in stressful environments. However, little is known about the transcriptome dynamics of prairie cordgrass despite its unique freezing stress tolerance. Therefore, the purpose of this work was to explore the transcriptome dynamics of prairie cordgrass in response to freezing stress at -5°C for 5 min and 30 min. We used a RNA-sequencing method to assemble the S. pectinata leaf transcriptome and performed gene-expression profiling of the transcripts under freezing treatment. Six differentially expressed gene (DEG groups were categorized from the profiling. In addition, two major consecutive orders of gene expression were observed in response to freezing; the first being the acute up-regulation of genes involved in plasma membrane modification, calcium-mediated signaling, proteasome-related proteins, and transcription regulators (e.g., MYB and WRKY. The follow-up and second response was of genes involved in encoding the putative anti-freezing protein and the previously known DNA and cell-damage-repair proteins. Moreover, we identified the genes involved in epigenetic regulation and circadian-clock expression. Our results indicate that freezing response in S. pectinata reflects dynamic changes in rapid-time duration, as well as in metabolic, transcriptional, post-translational, and epigenetic regulation.

  9. The War Fighter's Stress Response: Telemetric and Noninvasive Assessment

    National Research Council Canada - National Science Library

    O'Donnell, Amanda

    2003-01-01

    ... and biological responses to stress. Specifically, stress-hardy individuals retain mental focus and clarity of memory under stress, commit fewer errors during stress, experience less burnout, demonstrate better navigational skills...

  10. Adaptive Responses to Thermal Stress in Mammals

    Directory of Open Access Journals (Sweden)

    Yasser Lenis Sanin

    2015-12-01

    Full Text Available The environment animals have to cope with is a combination of natural factors such as temperature. Extreme changes in these factors can alter homeostasis, which can lead to thermal stress. This stress can be due to either high temperatures or low temperatures. Energy transference for thermoregulation in homoeothermic animals occurs through several mechanisms: conduction, convection, radiation and evaporation. When animals are subjected to thermal stress, physiological mechanisms are activated which may include endocrine, neuroendocrine and behavioral responses. Activation of the neuroendocrine system affects the secretion of hormones and neurotransmitters which act collectively as response mechanisms that allow them to adapt to stress. Mechanisms which have developed through evolution to allow animals to adapt to high environmental temperatures and to achieve thermo tolerance include physiological and physical changes in order to reduce food intake and metabolic heat production, to increase surface area of skin to dissipate heat, to increase blood flow to take heat from the body core to the skin and extremities to dissipate the heat, to increase numbers and activity of sweat glands, panting, water intake and color adaptation of integument system to reflect heat. Chronic exposure to thermal stress can cause disease, reduce growth, decrease productive and reproductive performance and, in extreme cases, lead to death. This paper aims to briefly explain the physical and physiological responses of mammals to thermal stress, like a tool for biological environment adaptation, emphasizing knowledge gaps and offering some recommendations to stress control for the animal production system.

  11. Modelling of the Global Geopotential Energy & Stress Field

    DEFF Research Database (Denmark)

    Schiffer, Christian; Nielsen, S.B.

    Lateral density and topography variations yield in and important contribution to the lithospheric stress field. The leading quantity is the Geopotential Energy, the integrated lithostatic pressure in a rock column. The horizontal gradient of this quantity is related to horizontal stresses through...... the Equations of equilibrium of stresses. The Geopotential Energy furthermore can be linearly related to the Geoid under assumption of local isostasy. Satellite Geoid measurements contain, however, also non-isostatic deeper mantle responses of long wavelength. Unfortunately, high-pass filtering of the Geoid...... flow in the presence of local isostasy and a steady state geotherm. Subsequently we use a FEM code to solve the Equations of equilibrium of stresses for a three dimensional elastic shell. The modelled results are shown and compared with the global stress field and other publications....

  12. Differential relations between youth internalizing/externalizing problems and cortisol responses to performance vs. interpersonal stress.

    Science.gov (United States)

    Laurent, Heidemarie; Vergara-Lopez, Chrystal; Stroud, Laura R

    2016-09-01

    Efforts to define hypothalamic-pituitary-adrenal (HPA) axis profiles conferring risk for psychopathology have yielded inconclusive results, perhaps in part due to limited assessment of the stress response. In particular, research has typically focused on HPA responses to performance tasks, while neglecting the interpersonal stressors that become salient during adolescence. In this study we investigated links between psychosocial adjustment - youth internalizing and externalizing problems, as well as competence - and HPA responses to both performance and interpersonal stressors in a normative sample of children and adolescents. Participants (n = 59) completed a set of performance (public speaking, mental arithmetic, mirror tracing) and/or interpersonal (peer rejection) tasks and gave nine saliva samples, which were assayed for cortisol. Hierarchical linear models of cortisol response trajectories in relation to child behavior checklist (CBCL) scores revealed stressor- and sex-specific associations. Whereas internalizing problems related to earlier peaking, less dynamic cortisol responses to interpersonal stress (across males and females), externalizing problems related to lower, earlier peaking and less dynamic cortisol responses to performance stress for males only, and competence-related to later peaking cortisol responses to interpersonal stress for females only. Implications for understanding contextual stress profiles underlying different forms of psychopathology are discussed.

  13. Intracellular proteins produced by mammalian cells in response to environmental stress

    Science.gov (United States)

    Goochee, Charles F.; Passini, Cheryl A.

    1988-01-01

    The nature of the response of mammalian cells to environmental stress is examined by reviewing results of studies where cultured mouse L cells and baby hamster kidney cells were exposed to heat shock and the synthesis of heat-shock proteins and stress-response proteins (including HSP70, HSC70, HSP90, ubiquitin, and GRP70) in stressed and unstressed cells was evaluated using 2D-PAGE. The intracellular roles of the individual stress response proteins are discussed together with the regulation of the stress response system.

  14. The significance of translation regulation in the stress response

    Science.gov (United States)

    2013-01-01

    Background The stress response in bacteria involves the multistage control of gene expression but is not entirely understood. To identify the translational response of bacteria in stress conditions and assess its contribution to the regulation of gene expression, the translational states of all mRNAs were compared under optimal growth condition and during nutrient (isoleucine) starvation. Results A genome-scale study of the translational response to nutritional limitation was performed in the model bacterium Lactococcus lactis. Two measures were used to assess the translational status of each individual mRNA: the fraction engaged in translation (ribosome occupancy) and ribosome density (number of ribosomes per 100 nucleotides). Under isoleucine starvation, half of the mRNAs considered were translationally down-regulated mainly due to decreased ribosome density. This pattern concerned genes involved in growth-related functions such as translation, transcription, and the metabolism of fatty acids, phospholipids and bases, contributing to the slowdown of growth. Only 4% of the mRNAs were translationally up-regulated, mostly related to prophagic expression in response to stress. The remaining genes exhibited antagonistic regulations of the two markers of translation. Ribosome occupancy increased significantly for all the genes involved in the biosynthesis of isoleucine, although their ribosome density had decreased. The results revealed complex translational regulation of this pathway, essential to cope with isoleucine starvation. To elucidate the regulation of global gene expression more generally, translational regulation was compared to transcriptional regulation under isoleucine starvation and to other post-transcriptional regulations related to mRNA degradation and mRNA dilution by growth. Translational regulation appeared to accentuate the effects of transcriptional changes for down-regulated growth-related functions under isoleucine starvation although m

  15. Hypothalamic oxytocin mediates social buffering of the stress response.

    Science.gov (United States)

    Smith, Adam S; Wang, Zuoxin

    2014-08-15

    While stressful life events can enhance the risk of mental disorders, positive social interactions can propagate good mental health and normal behavioral routines. Still, the neural systems that promote these benefits are undetermined. Oxytocin is a hormone involved in social behavior and stress; thus, we focus on the impact that social buffering has on the stress response and the governing effects of oxytocin. Female prairie voles (Microtus ochrogaster) were exposed to 1 hour immobilization stress and then recovered alone or with their male partner to characterize the effect of social contact on the behavioral, physiological, and neuroendocrine stress response. In addition, we treated immobilized female voles recovering alone with oxytocin or vehicle and female voles recovering with their male partner with a selective oxytocin receptor antagonist or vehicle. Group sizes varied from 6 to 8 voles (N = 98 total). We found that 1 hour immobilization increased anxiety-like behaviors and circulating levels of corticosterone, a stress hormone, in female prairie voles recovering alone but not the female prairie voles recovering with their male partner. This social buffering by the male partner on biobehavioral responses to stress was accompanied by increased oxytocin release in the paraventricular nucleus of the hypothalamus. Intra-paraventricular nucleus oxytocin injections reduced behavioral and corticosterone responses to immobilization, whereas injections of an oxytocin receptor antagonist blocked the effects of the social buffering. Together, our data demonstrate that paraventricular nucleus oxytocin mediates the social buffering effects on the stress response and thus may be a target for treatment of stress-related disorders. Published by Society of Biological Psychiatry on behalf of Society of Biological Psychiatry.

  16. Gender Differences in Animal Models of Posttraumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    Hagit Cohen

    2011-01-01

    Full Text Available Epidemiological studies report higher prevalence rates of stress-related disorders such as acute stress disorder and post-traumatic stress disorder (PTSD in women than in men following exposure to trauma. It is still not clear whether this greater prevalence in woman reflects a greater vulnerability to stress-related psychopathology. A number of individual and trauma-related characteristics have been hypothesized to contribute to these gender differences in physiological and psychological responses to trauma, differences in appraisal, interpretation or experience of threat, coping style or social support. In this context, the use of an animal model for PTSD to analyze some of these gender-related differences may be of particular utility. Animal models of PTSD offer the opportunity to distinguish between biological and socio-cultural factors, which so often enter the discussion about gender differences in PTSD prevalence.

  17. Statistical modeling implicates neuroanatomical circuit mediating stress relief by 'comfort' food.

    Science.gov (United States)

    Ulrich-Lai, Yvonne M; Christiansen, Anne M; Wang, Xia; Song, Seongho; Herman, James P

    2016-07-01

    A history of eating highly palatable foods reduces physiological and emotional responses to stress. For instance, we have previously shown that limited sucrose intake (4 ml of 30 % sucrose twice daily for 14 days) reduces hypothalamic-pituitary-adrenocortical (HPA) axis responses to stress. However, the neural mechanisms underlying stress relief by such 'comfort' foods are unclear, and could reveal an endogenous brain pathway for stress mitigation. As such, the present work assessed the expression of several proteins related to neuronal activation and/or plasticity in multiple stress- and reward-regulatory brain regions of rats after limited sucrose (vs. water control) intake. These data were then subjected to a series of statistical analyses, including Bayesian modeling, to identify the most likely neurocircuit mediating stress relief by sucrose. The analyses suggest that sucrose reduces HPA activation by dampening an excitatory basolateral amygdala-medial amygdala circuit, while also potentiating an inhibitory bed nucleus of the stria terminalis principle subdivision-mediated circuit, resulting in reduced HPA activation after stress. Collectively, the results support the hypothesis that sucrose limits stress responses via plastic changes to the structure and function of stress-regulatory neural circuits. The work also illustrates that advanced statistical methods are useful approaches to identify potentially novel and important underlying relationships in biological datasets.

  18. An Overview of Soil Models for Earthquake Response Analysis

    Directory of Open Access Journals (Sweden)

    Halida Yunita

    2015-01-01

    Full Text Available Earthquakes can damage thousands of buildings and infrastructure as well as cause the loss of thousands of lives. During an earthquake, the damage to buildings is mostly caused by the effect of local soil conditions. Depending on the soil type, the earthquake waves propagating from the epicenter to the ground surface will result in various behaviors of the soil. Several studies have been conducted to accurately obtain the soil response during an earthquake. The soil model used must be able to characterize the stress-strain behavior of the soil during the earthquake. This paper compares equivalent linear and nonlinear soil model responses. Analysis was performed on two soil types, Site Class D and Site Class E. An equivalent linear soil model leads to a constant value of shear modulus, while in a nonlinear soil model, the shear modulus changes constantly,depending on the stress level, and shows inelastic behavior. The results from a comparison of both soil models are displayed in the form of maximum acceleration profiles and stress-strain curves.

  19. Differential p53 engagement in response to oxidative and oncogenic stresses in Fanconi anemia mice

    Science.gov (United States)

    Rani, Reena; Li, Jie; Pang, Qishen

    2008-01-01

    Members of the Fanconi anemia (FA) protein family are involved in repair of genetic damage caused by DNA cross-linkers. It is not clear whether the FA proteins function in oxidative DNA damage and oncogenic stress response. Here we report that deficiency in the Fanca gene in mice elicits a p53-dependent growth arrest and DNA damage response to oxidative DNA damage and oncogenic stress. Using a Fanca-/- Trp53-/- double knockout model and a functionally switchable p53 retrovirus, we define the kinetics, dependence, and persistence of p53-mediated response to oxidative and oncogenic stresses in Fanca-/- cells. Notably, oxidative stress induces persistent p53 response in Fanca-/- cells, likely due to accumulation of unrepaired DNA damage. On the other hand, whereas WT cells exhibit prolonged response to oncogene activation, the p53-activating signals induced by oncogenic ras are short-lived in Fanca-/- cells, suggesting that Fanca may be required for the cell to engage p53 during constitutive ras activation. We propose that the FA proteins protect cells from stress-induced proliferative arrest and tumor evolution by acting as a modulator of the signaling pathways that link FA to p53. PMID:19047147

  20. Differential p53 engagement in response to oxidative and oncogenic stresses in Fanconi anemia mice.

    Science.gov (United States)

    Rani, Reena; Li, Jie; Pang, Qishen

    2008-12-01

    Members of the Fanconi anemia (FA) protein family are involved in repair of genetic damage caused by DNA cross-linkers. It is not clear whether the FA proteins function in oxidative DNA damage and oncogenic stress response. Here, we report that deficiency in the Fanca gene in mice elicits a p53-dependent growth arrest and DNA damage response to oxidative DNA damage and oncogenic stress. Using a Fanca-/-Trp53-/- double knockout model and a functionally switchable p53 retrovirus, we define the kinetics, dependence, and persistence of p53-mediated response to oxidative and oncogenic stresses in Fanca-/- cells. Notably, oxidative stress induces persistent p53 response in Fanca-/- cells, likely due to accumulation of unrepaired DNA damage. On the other hand, whereas wild-type cells exhibit prolonged response to oncogene activation, the p53-activating signals induced by oncogenic ras are short-lived in Fanca-/- cells, suggesting that Fanca may be required for the cell to engage p53 during constitutive ras activation. We propose that the FA proteins protect cells from stress-induced proliferative arrest and tumor evolution by acting as a modulator of the signaling pathways that link FA to p53.

  1. Lipolysis Response to Endoplasmic Reticulum Stress in Adipose Cells*

    Science.gov (United States)

    Deng, Jingna; Liu, Shangxin; Zou, Liangqiang; Xu, Chong; Geng, Bin; Xu, Guoheng

    2012-01-01

    In obesity and diabetes, adipocytes show significant endoplasmic reticulum (ER) stress, which triggers a series of responses. This study aimed to investigate the lipolysis response to ER stress in rat adipocytes. Thapsigargin, tunicamycin, and brefeldin A, which induce ER stress through different pathways, efficiently activated a time-dependent lipolytic reaction. The lipolytic effect of ER stress occurred with elevated cAMP production and protein kinase A (PKA) activity. Inhibition of PKA reduced PKA phosphosubstrates and attenuated the lipolysis. Although both ERK1/2 and JNK are activated during ER stress, lipolysis is partially suppressed by inhibiting ERK1/2 but not JNK and p38 MAPK and PKC. Thus, ER stress induces lipolysis by activating cAMP/PKA and ERK1/2. In the downstream lipolytic cascade, phosphorylation of lipid droplet-associated protein perilipin was significantly promoted during ER stress but attenuated on PKA inhibition. Furthermore, ER stress stimuli did not alter the levels of hormone-sensitive lipase and adipose triglyceride lipase but caused Ser-563 and Ser-660 phosphorylation of hormone-sensitive lipase and moderately elevated its translocation from the cytosol to lipid droplets. Accompanying these changes, total activity of cellular lipases was promoted to confer the lipolysis. These findings suggest a novel pathway of the lipolysis response to ER stress in adipocytes. This lipolytic activation may be an adaptive response that regulates energy homeostasis but with sustained ER stress challenge could contribute to lipotoxicity, dyslipidemia, and insulin resistance because of persistently accelerated free fatty acid efflux from adipocytes to the bloodstream and other tissues. PMID:22223650

  2. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    Directory of Open Access Journals (Sweden)

    Alexandra Avloniti

    2017-01-01

    Full Text Available Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty.

  3. Lifelong Aerobic Exercise Reduces the Stress Response in Rats.

    Science.gov (United States)

    Pietrelli, A; Di Nardo, M; Masucci, A; Brusco, A; Basso, N; Matkovic, L

    2018-04-15

    The aim of this study was to analyze the effects of lifelong aerobic exercise (AE) on the adaptive response of the stress system in rats. It is well known that hypothalamic-pituitary-adrenal axis (HPA) activity differs when triggered by voluntary or forced exercise models. Male Wistar rats belonging to exercise (E) or control (C) groups were subjected to chronic AE, and two cutoff points were established at 8 (middle age) and 18 months (old age). Behavioral, biochemical and histopathological studies were performed on the main components/targets of the stress system. AE increased adrenal sensitivity (AS), brain corticosterone (CORT) and corticotropin-releasing factor (CRF), but had no effect on the thymus, adrenal glands (AGs) weight or plasma CORT. In addition, AE exerted no effect on the sympathetic tone, but significantly reduced anxiety-related behavior and emotionality. Aging decreased AS and deregulated neuroendocrine feedback, leading to an anxiogenic state which was mitigated by AE. Histopathological and morphometric analysis of AGs showed no alterations in middle-aged rats but adrenal vacuolization in approximately 20% old rats. In conclusion, lifelong AE did not produce adverse effects related to a chronic stress state. On the contrary, while AE upregulated some components of the HPA axis, it generated an adaptive response to cumulative changes, possibly through different compensatory and/or super compensatory mechanisms, modulated by age. The long-term practice of AE had a strong positive impact on stress resilience so that it could be recommended as a complementary therapy in stress and depression disease. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Common and distinct organ and stress responsive transcriptomic patterns in Oryza sativa and Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Castleden Ian

    2010-11-01

    Full Text Available Abstract Background Arabidopsis thaliana is clearly established as the model plant species. Given the ever-growing demand for food, there is a need to translate the knowledge learned in Arabidopsis to agronomically important species, such as rice (Oryza sativa. To gain a comparative insight into the similarities and differences into how organs are built and how plants respond to stress, the transcriptomes of Arabidopsis and rice were compared at the level of gene orthology and functional categorisation. Results Organ specific transcripts in rice and Arabidopsis display less overlap in terms of gene orthology compared to the orthology observed between both genomes. Although greater overlap in terms of functional classification was observed between root specific transcripts in rice and Arabidopsis, this did not extend to flower, leaf or seed specific transcripts. In contrast, the overall abiotic stress response transcriptome displayed a significantly greater overlap in terms of gene orthology compared to the orthology observed between both genomes. However, ~50% or less of these orthologues responded in a similar manner in both species. In fact, under cold and heat treatments as many or more orthologous genes responded in an opposite manner or were unchanged in one species compared to the other. Examples of transcripts that responded oppositely include several genes encoding proteins involved in stress and redox responses and non-symbiotic hemoglobins that play central roles in stress signalling pathways. The differences observed in the abiotic transcriptomes were mirrored in the presence of cis-acting regulatory elements in the promoter regions of stress responsive genes and the transcription factors that potentially bind these regulatory elements. Thus, both the abiotic transcriptome and its regulation differ between rice and Arabidopsis. Conclusions These results reveal significant divergence between Arabidopsis and rice, in terms of the

  5. Simplified Model and Response Analysis for Crankshaft of Air Compressor

    Science.gov (United States)

    Chao-bo, Li; Jing-jun, Lou; Zhen-hai, Zhang

    2017-11-01

    The original model of crankshaft is simplified to the appropriateness to balance the calculation precision and calculation speed, and then the finite element method is used to analyse the vibration response of the structure. In order to study the simplification and stress concentration for crankshaft of air compressor, this paper compares calculative mode frequency and experimental mode frequency of the air compressor crankshaft before and after the simplification, the vibration response of reference point constraint conditions is calculated by using the simplified model, and the stress distribution of the original model is calculated. The results show that the error between calculative mode frequency and experimental mode frequency is controlled in less than 7%, the constraint will change the model density of the system, the position between the crank arm and the shaft appeared stress concentration, so the part of the crankshaft should be treated in the process of manufacture.

  6. Oxidative stress response after laparoscopic versus conventional sigmoid resection

    DEFF Research Database (Denmark)

    Madsen, Michael Tvilling; Kücükakin, Bülent; Lykkesfeldt, Jens

    2012-01-01

    Surgery is accompanied by a surgical stress response, which results in increased morbidity and mortality. Oxidative stress is a part of the surgical stress response. Minimally invasive laparoscopic surgery may result in reduced oxidative stress compared with open surgery. Nineteen patients...... scheduled for sigmoid resection were randomly allocated to open or laparoscopic sigmoid resection in a double-blind, prospective clinical trial. Three biochemical markers of oxidative stress (malondialdehyde, ascorbic acid, and dehydroascorbic acid) were measured at 6 different time points (preoperatively......, 1 h, 6 h, 24 h, 48 h, and 72 h postoperatively). There were no statistical significant differences between laparoscopic and open surgery for any of the 3 oxidative stress parameters. Malondialdehyde was reduced 1 hour postoperatively (P...

  7. Beyond the HPA-axis: The role of the gonadal steroid hormone receptors in modulating stress-related responses in an animal model of PTSD.

    Science.gov (United States)

    Fenchel, Daphna; Levkovitz, Yechiel; Vainer, Ella; Kaplan, Zeev; Zohar, Joseph; Cohen, Hagit

    2015-06-01

    The hypothalamic-pituitary-adrenal (HPA) axis, which plays a major role in the response to stress, and the hypothalamic-pituitary-gonadal (HPG) axis are closely linked with the ability to inhibit the other. Testosterone, a product of the HPG, has many beneficial effects beyond its functions as a sex hormone including anti-anxiety properties. In this study we examined the effect of stress exposure on gonadal hormones, and their efficacy in modulating anxiety-like response in an animal model of PTSD. Male rats were exposed to predator scent stress, followed by analysis of brain expression of androgen receptor (AR) receptor and estrogen receptor α (ERα). The behavioral effects of immediate treatment with testosterone, testosterone receptor antagonist (flutamide) or vehicle were evaluated using the elevated plus-maze, acoustic startle response and trauma-cue response. Levels of circulating corticosterone and testosterone were also measured after treatment. The behavioral effects of delayed testosterone treatment were explored in the same manner. We report that animals whose behavior was extremely disrupted (EBR) selectively displayed significant down-regulation of AR and ERα in the hippocampus. Immediate treatment with flutamide or delayed treatment with testosterone significantly increased prevalence rates of minimal behavioral response (MBR) and decreased prevalence of EBR with favorable behavioral results. Testosterone levels were higher in control un-exposed animals, while corticosterone was higher in control exposed animals. This study suggests that gonadal steroid hormones are involved in the neurobiological response to predator scent stress and thus warrant further study as a potential therapeutic avenue for the treatment of anxiety-related disorders. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  8. Immune and stress mediators in response to bilateral adnexectomy: comparison of single-port access and conventional laparoscopy in a porcine model.

    Science.gov (United States)

    Gracia, Meritxell; Sisó, Cristian; Martínez-Zamora, M Àngels; Sarmiento, Laura; Lozano, Francisco; Arias, Maria Teresa; Beltrán, Joan; Balasch, Juan; Carmona, Francisco

    2014-01-01

    To evaluate systemic markers of immune and stress responses after bilateral adnexectomy performed using 2 different laparoscopic techniques in pigs. Prospective comparative study (Canadian Task Force classification II-2). University teaching hospital, research hospital, and tertiary care center. Twenty female Yorkshire pigs undergoing laparoscopic surgery. Animals underwent bilateral salpingo-oophorectomy (ovary and fallopian tube extraction), performed via conventional laparoscopy (n = 10) or the single-port access approach (n = 10). Injury provokes an acute-phase response, primarily produced by cytokines. The inflammatory response has been well described for major surgery and for conventional laparoscopy; however, little information is currently available for single-port laparoscopy, and none in the gynecologic field. This is the first study to compare serum cytokine interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) concentrations at baseline and in the early postoperative period (2, 4, and 20 hours) after bilateral salpingo-oophorectomy performed via conventional laparoscopy (n = 10) or single-port access (n = 10) in a porcine model. The stress response was measured using glucose and cortisol concentrations and the animals' response to surgery via a 6-category observation-based behavior test. Both IL-6 and TNF-α concentrations peaked at 4 hours after surgery, and were significantly lower in the single-port access group (p = .02) than in the conventional laparoscopy group (p = .02). In addition, in the single-port access group, concentrations of stress markers were slightly lower at all intervals recorded and were statistically significant at 2 hours after the operation for glucose concentration (mean [SD], 164.50 [26.73] mg/dL for conventional laparoscopy vs 86.50 [17.93] mg/dL for single-port access; p = .02). Evidence of improved inflammatory and stress responses was recorded in the minimally invasive single-port group. More clinical

  9. The relationship between personality and the response to acute psychological stress

    NARCIS (Netherlands)

    Xin, Yuanyuan; Wu, Jianhui; Yao, Zhuxi; Guan, Qing; Aleman, Andre; Luo, Yuejia

    2017-01-01

    The present study examined the relationship between personality traits and the response to acute psychological stress induced by a standardized laboratory stress induction procedure (the Trier Social Stress Test, TSST). The stress response was measured with a combination of cardiovascular

  10. Analysis of Stress-Responsive Gene Expression in Cultivated and Weedy Rice Differing in Cold Stress Tolerance.

    Directory of Open Access Journals (Sweden)

    Caroline Borges Bevilacqua

    Full Text Available Rice (Oryza sativa L. cultivars show impairment of growth in response to environmental stresses such as cold at the early seedling stage. Locally adapted weedy rice is able to survive under adverse environmental conditions, and can emerge in fields from greater soil depth. Cold-tolerant weedy rice can be a good genetic source for developing cold-tolerant, weed-competitive rice cultivars. An in-depth analysis is presented here of diverse indica and japonica rice genotypes, mostly weedy rice, for cold stress response to provide an understanding of different stress adaptive mechanisms towards improvement of the rice crop performance in the field. We have tested a collection of weedy rice genotypes to: 1 classify the subspecies (ssp. grouping (japonica or indica of 21 accessions; 2 evaluate their sensitivity to cold stress; and 3 analyze the expression of stress-responsive genes under cold stress and a combination of cold and depth stress. Seeds were germinated at 25°C at 1.5- and 10-cm sowing depth for 10d. Seedlings were then exposed to cold stress at 10°C for 6, 24 and 96h, and the expression of cold-, anoxia-, and submergence-inducible genes was analyzed. Control plants were seeded at 1.5cm depth and kept at 25°C. The analysis revealed that cold stress signaling in indica genotypes is more complex than that of japonica as it operates via both the CBF-dependent and CBF-independent pathways, implicated through induction of transcription factors including OsNAC2, OsMYB46 and OsF-BOX28. When plants were exposed to cold + sowing depth stress, a complex signaling network was induced that involved cross talk between stresses mediated by CBF-dependent and CBF-independent pathways to circumvent the detrimental effects of stresses. The experiments revealed the importance of the CBF regulon for tolerance to both stresses in japonica and indica ssp. The mechanisms for cold tolerance differed among weedy indica genotypes and also between weedy indica and

  11. Cortisol stress response in post-traumatic stress disorder, panic disorder, and major depressive disorder patients.

    Science.gov (United States)

    Wichmann, Susann; Kirschbaum, Clemens; Böhme, Carsten; Petrowski, Katja

    2017-09-01

    Previous research has focussed extensively on the distinction of HPA-axis functioning between patient groups and healthy volunteers, with relatively little emphasis on a direct comparison of patient groups. The current study's aim was to analyse differences in the cortisol stress response as a function of primary diagnosis of panic disorder (PD), post-traumatic stress disorder (PTSD), and major depressive disorder (MDD). A total of n=30 PD (mean age±SD: 36.07±12.56), n=23 PTSD (41.22±10.17), n=18 MDD patients (39.00±14.93) and n=47 healthy control (HC) individuals (35.51±13.15) participated in this study. All the study participants were female. The Trier Social Stress Test (TSST) was used for reliable laboratory stress induction. Blood sampling accompanied the TSST for cortisol and ACTH assessment. Panic-related, PTSD-specific questionnaires and the Beck Depression Inventory II were handed out for the characterisation of the study groups. Repeated measure ANCOVAs were conducted to test for main effects of time or group and for interaction effects. Regression analyses were conducted to take comorbid depression into account. 26.7% of the PD patients, 43.5% of the PTSD patients, 72.2% of the MDD patients and 80.6% of the HC participants showed a cortisol stress response upon the TSST. ANCOVA revealed a cortisol hypo-responsiveness both in PD and PTSD patients, while no significant group differences were seen in the ACTH concentrations. Additional analyses showed no impact of comorbid depressiveness on the cortisol stress response. MDD patients did not differ in the hormonal stress response neither compared to the HC participants nor to the PD and PTSD patients. Our main findings provide evidence of a dissociation between the cortisol and ACTH concentrations in response to the TSST in PTSD and in PD patients, independent of comorbid depression. Our results further support overall research findings of a cortisol hypo-responsiveness in PD patients. A hypo-response

  12. Psychological stress during exercise: cardiorespiratory and hormonal responses.

    Science.gov (United States)

    Webb, Heather E; Weldy, Michael L; Fabianke-Kadue, Emily C; Orndorff, G R; Kamimori, Gary H; Acevedo, Edmund O

    2008-12-01

    The purpose of this study was to examine the cardiorespiratory (CR) and stress hormone responses to a combined physical and mental stress. Eight participants (VO2(max) = 41.24 +/- 6.20 ml kg(-1) min(-1)) completed two experimental conditions, a treatment condition including a 37 min ride at 60% of VO2(max) with participants responding to a computerized mental challenge dual stress condition (DSC) and a control condition of the same duration and intensity without the mental challenge exercise alone condition (EAC). Significant interactions across time were found for CR responses, with heart rate, ventilation, and respiration rate demonstrating higher increases in the DSC. Additionally, norepinephrine was significantly greater in the DSC at the end of the combined challenge. Furthermore, cortisol area-under-the-curve (AUC) was also significantly elevated during the DSC. These results demonstrate that a mental challenge during exercise can exacerbate the stress response, including the release of hormones that have been linked to negative health consequences (cardiovascular, metabolic, autoimmune illnesses).

  13. Psychological and hormonal stress response patterns during a blood donation.

    Science.gov (United States)

    Hoogerwerf, M D; Veldhuizen, I J T; Merz, E-M; de Kort, W L A M; Frings-Dresen, M H W; Sluiter, J K

    2017-11-01

    Donating blood has been associated with increased stress responses, with scarce evidence indicating that levels of psychological and hormonal stress are higher pre-donation than post-donation. We investigated whether a blood donation induces psychological and/or hormonal stress during the course of a blood donation, and whether responses differed between men and women, first-time and experienced donors and donors with high or low non-acute stress. In 363 donors, psychological (donation-stress and arousal) and hormonal (cortisol) stress were measured by questionnaire and salivary sample at seven key moments during a routine donation. Non-acute stress was assessed by a questionnaire. Repeated measurement analyses were performed, using the last measurement (leaving the donation center) as reference value. Levels of donation-stress, arousal and cortisol were significantly higher during donation than when leaving the donation center. When compared with men, women reported higher levels of donation-stress and cortisol in the first part of the visit. When compared with first-time donors, experienced donors reported lower levels of donation-stress during the first part of the visit, and higher levels of arousal but less reactivity throughout the visit. When compared to donors high on non-acute stress, donors low on non-acute stress reported lower levels of donation-stress during the first part of the visit, and showed less cortisol reactivity throughout the visit. Donating blood influences psychological and hormonal stress response patterns. The response patterns differ between women and men, first-time and experienced donors and between donors high and low on non-acute stress. © 2017 International Society of Blood Transfusion.

  14. The role of stress mindset in shaping cognitive, emotional, and physiological responses to challenging and threatening stress.

    Science.gov (United States)

    Crum, Alia J; Akinola, Modupe; Martin, Ashley; Fath, Sean

    2017-07-01

    Prior research suggests that altering situation-specific evaluations of stress as challenging versus threatening can improve responses to stress. The aim of the current study was to explore whether cognitive, physiological and affective stress responses can be altered independent of situation-specific evaluations by changing individuals' mindsets about the nature of stress in general. Using a 2 × 2 design, we experimentally manipulated stress mindset using multi-media film clips orienting participants (N = 113) to either the enhancing or debilitating nature of stress. We also manipulated challenge and threat evaluations by providing positive or negative feedback to participants during a social stress test. Results revealed that under both threat and challenge stress evaluations, a stress-is-enhancing mindset produced sharper increases in anabolic ("growth") hormones relative to a stress-is-debilitating mindset. Furthermore, when the stress was evaluated as a challenge, a stress-is-enhancing mindset produced sharper increases in positive affect, heightened attentional bias towards positive stimuli, and greater cognitive flexibility, whereas a stress-is-debilitating mindset produced worse cognitive and affective outcomes. These findings advance stress management theory and practice by demonstrating that a short manipulation designed to generate a stress-is-enhancing mindset can improve responses to both challenging and threatening stress.

  15. Stress responses during ageing: molecular pathways regulating protein homeostasis.

    Science.gov (United States)

    Kyriakakis, Emmanouil; Princz, Andrea; Tavernarakis, Nektarios

    2015-01-01

    The ageing process is characterized by deterioration of physiological function accompanied by frailty and ageing-associated diseases. The most broadly and well-studied pathways influencing ageing are the insulin/insulin-like growth factor 1 signaling pathway and the dietary restriction pathway. Recent studies in diverse organisms have also delineated emerging pathways, which collectively or independently contribute to ageing. Among them the proteostatic-stress-response networks, inextricably affect normal ageing by maintaining or restoring protein homeostasis to preserve proper cellular and organismal function. In this chapter, we survey the involvement of heat stress and endoplasmic reticulum stress responses in the regulation of longevity, placing emphasis on the cross talk between different response mechanisms and their systemic effects. We further discuss novel insights relevant to the molecular pathways mediating these stress responses that may facilitate the development of innovative interventions targeting age-related pathologies such as diabetes, cancer, cardiovascular and neurodegenerative diseases.

  16. Stress and Sleep Reactivity: A Prospective Investigation of the Stress-Diathesis Model of Insomnia

    Science.gov (United States)

    Drake, Christopher L.; Pillai, Vivek; Roth, Thomas

    2014-01-01

    Study Objectives: To prospectively assess sleep reactivity as a diathesis of insomnia, and to delineate the interaction between this diathesis and naturalistic stress in the development of insomnia among normal sleepers. Design: Longitudinal. Setting: Community-based. Participants: 2,316 adults from the Evolution of Pathways to Insomnia Cohort (EPIC) with no history of insomnia or depression (46.8 ± 13.2 y; 60% female). Interventions: None. Measurements and Results: Participants reported the number of stressful events they encountered at baseline (Time 1), as well as the level of cognitive intrusion they experienced in response to each stressor. Stressful events (OR = 1.13; P insomnia one year hence (Time 2). Intrusion mediated the effects of stressful events on risk for insomnia (P insomnia (OR = 1.78; P insomnia as a function of intrusion was significantly higher in individuals with high sleep reactivity. Trait sleep reactivity also constituted a significant risk for depression (OR = 1.67; P Insomnia at Time 2 significantly mediated this effect (P insomnia, and that it triggers insomnia by exacerbating the effects of stress-induced intrusion. Sleep reactivity is also a precipitant of depression, as mediated by insomnia. These findings support the stress-diathesis model of insomnia, while highlighting sleep reactivity as an important diathesis. Citation: Drake CL, Pillai V, Roth T. Stress and sleep reactivity: a prospective investigation of the stress-diathesis model of insomnia. SLEEP 2014;37(8):1295-1304. PMID:25083009

  17. Effect of childhood physical abuse on cortisol stress response.

    Science.gov (United States)

    Carpenter, Linda L; Shattuck, Thaddeus T; Tyrka, Audrey R; Geracioti, Thomas D; Price, Lawrence H

    2011-03-01

    Abuse and neglect are highly prevalent in children and have enduring neurobiological effects. Stressful early life environments perturb the hypothalamic-pituitary-adrenal (HPA) axis, which in turn may predispose to psychiatric disorders in adulthood. However, studies of childhood maltreatment and adult HPA function have not yet rigorously investigated the differential effects of maltreatment subtypes, including physical abuse. In this study, we sought to replicate our previous finding that childhood maltreatment was associated with attenuated cortisol responses to stress and determine whether the type of maltreatment was a determinant of the stress response. Salivary cortisol response to the Trier Social Stress Test (TSST) was examined in a non-clinical sample of women (n = 110). Subjects had no acute medical problems and were not seeking psychiatric treatment. Effects of five maltreatment types, as measured by the Childhood Trauma Questionnaire, on cortisol response to the TSST were investigated. To further examine the significant (p < 0.005) effect of one maltreatment type, women with childhood physical abuse (PA) (n = 20) were compared to those without past PA (n = 90). Women reporting childhood PA displayed a significantly blunted cortisol response to the TSST compared with subjects without PA, after controlling for estrogen use, age, other forms of maltreatment, and other potential confounds. There were no differences between PA and control groups with regard to physiological arousal during the stress challenge. In a non-clinical sample of women with minimal or no current psychopathology, physical abuse is associated with a blunted cortisol response to a psychosocial stress task.

  18. Critical-like features of stress response in frictional packings

    International Nuclear Information System (INIS)

    Cakir, Abdullah; Silbert, Leonardo E

    2015-01-01

    The mechanical response of static, unconfined, overcompressed face centred cubic, granular arrays is studied using large-scale, discrete element method simulations. Specifically, the stress response due to the application of a localised force perturbation—the Green function technique—is obtained in granular packings generated over several orders of magnitude in both the particle friction coefficient and the applied forcing. We observe crossover behaviour in the mechanical state of the system characterised by the changing nature of the resulting stress response. The transition between anisotropic and isotropic stress response exhibits critical-like features through the identification of a diverging length scale that distinguishes the spatial extent of anisotropic regions from those that display isotropic behaviour. A multidimensional phase diagram is constructed that parameterises the response of the system due to changing friction and force perturbations. (paper)

  19. Overexpression of a cytosolic abiotic stress responsive universal stress protein (SbUSP mitigates salt and osmotic stress in transgenic tobacco plants

    Directory of Open Access Journals (Sweden)

    Pushpika eUdawat

    2016-04-01

    Full Text Available The Universal Stress Protein (USP is a ubiquitous protein and plays an indispensable role in plant abiotic stress tolerance. The genome of Salicornia brachiata contains two homologues of intron less SbUSP gene which encodes for salt and osmotic responsive universal stress protein. In vivo localization reveals that SbUSP is a membrane bound cytosolic protein. The role of the gene was functionally validated by developing transgenic tobacco and compared with control (wild type and vector control plants under different abiotic stress condition. Transgenic lines (T1 exhibited higher chlorophyll, relative water, proline, total sugar, reducing sugar, free amino acids, polyphenol contents, osmotic potential, membrane stability and lower electrolyte leakage and lipid peroxidation (malondialdehyde content under stress treatments than control (WT and VC plants. Lower accumulation of H2O2 and O2- radicals was also detected in transgenic lines compared to control plants under stress conditions. Present study confers that overexpression of the SbUSP gene enhances plant growth, alleviates ROS buildup, maintains ion homeostasis and improves the physiological status of the plant under salt and osmotic stresses. Principal component analysis (PCA exhibited a statistical distinction of plant response to salinity stress, and a significant response was observed for transgenic lines under stress, which provides stress endurance to the plant. A possible signaling role is proposed that some downstream genes may get activated by abiotic stress responsive cytosolic SbUSP, which leads to the protection of cell from oxidative damages. The study unveils that ectopic expression of the gene mitigates salt or osmotic stress by scavenging ROS and modulating the physiological process of the plant.

  20. Chronic and acute effects of stress on energy balance: are there appropriate animal models?

    Science.gov (United States)

    Harris, Ruth B S

    2015-02-15

    Stress activates multiple neural and endocrine systems to allow an animal to respond to and survive in a threatening environment. The corticotropin-releasing factor system is a primary initiator of this integrated response, which includes activation of the sympathetic nervous system and the hypothalamic-pituitary-adrenal (HPA) axis. The energetic response to acute stress is determined by the nature and severity of the stressor, but a typical response to an acute stressor is inhibition of food intake, increased heat production, and increased activity with sustained changes in body weight, behavior, and HPA reactivity. The effect of chronic psychological stress is more variable. In humans, chronic stress may cause weight gain in restrained eaters who show increased HPA reactivity to acute stress. This phenotype is difficult to replicate in rodent models where chronic psychological stress is more likely to cause weight loss than weight gain. An exception may be hamsters subjected to repeated bouts of social defeat or foot shock, but the data are limited. Recent reports on the food intake and body composition of subordinate members of group-housed female monkeys indicate that these animals have a similar phenotype to human stress-induced eaters, but there are a limited number of investigators with access to the model. Few stress experiments focus on energy balance, but more information on the phenotype of both humans and animal models during and after exposure to acute or chronic stress may provide novel insight into mechanisms that normally control body weight. Copyright © 2015 the American Physiological Society.

  1. Genome-wide expression analysis offers new insights into the origin and evolution of Physcomitrella patens stress response

    KAUST Repository

    Khraiwesh, Basel

    2015-11-30

    Changes in the environment, such as those caused by climate change, can exert stress on plant growth, diversity and ultimately global food security. Thus, focused efforts to fully understand plant response to stress are urgently needed in order to develop strategies to cope with the effects of climate change. Because Physcomitrella patens holds a key evolutionary position bridging the gap between green algae and higher plants, and because it exhibits a well-developed stress tolerance, it is an excellent model for such exploration. Here, we have used Physcomitrella patens to study genome-wide responses to abiotic stress through transcriptomic analysis by a high-throughput sequencing platform. We report a comprehensive analysis of transcriptome dynamics, defining profiles of elicited gene regulation responses to abiotic stress-associated hormone Abscisic Acid (ABA), cold, drought, and salt treatments. We identified more than 20,000 genes expressed under each aforementioned stress treatments, of which 9,668 display differential expression in response to stress. The comparison of Physcomitrella patens stress regulated genes with unicellular algae, vascular and flowering plants revealed genomic delineation concomitant with the evolutionary movement to land, including a general gene family complexity and loss of genes associated with different functional groups.

  2. Assessing Stress-Induced Sleep Reactivity in College Students: The European Portuguese Version of the Ford Insomnia Response to Stress Test (FIRST)

    OpenAIRE

    Marques, Daniel Ruivo; Allen Gomes, Ana; Drake, Christopher Lawrence; Roth, Thomas; de Azevedo, Maria Helena Pinto

    2016-01-01

    Over the past few years, the comprehensive models of insomnia have exhibited impressive developments. However, there is scarce knowledge on predisposing or vulnerability factors for insomnia. One of the most promising constructs to aid in filling this gap is stress-induced sleep reactivity assessed through self-report. Our aim was to study the psychometric properties of the European Portuguese version of the Ford Insomnia Response to Stress Test (FIRST).

  3. Sex, stress, and epigenetics: regulation of behavior in animal models of mood disorders

    Directory of Open Access Journals (Sweden)

    Hodes Georgia E

    2013-01-01

    Full Text Available Abstract Women have a higher incidence of stress related disorders including depression and generalized anxiety disorder, and epigenetic mechanisms likely contribute to this sex difference. Evidence from preclinical research suggests that epigenetic mechanisms are responsible for both sexual dimorphism of brain regions and sensitivity of the stress response. Epigenetic modifications such as DNA methylation and histone modifications can occur transgenerationally, developmentally, or in response to environmental stimuli such as stress exposure. This review will provide an overview of the various forms of epigenetic modifications observed in the central nervous system and will explain how these mechanisms contribute to a sexually dimorphic brain. It will also discuss the ways in which epigenetic alterations coincide with, and functionally contribute to, the behavioral response to stress across the lifespan. Ultimately, this review will focus on novel research utilizing animal models to investigate sex differences in epigenetic mechanisms that influence susceptibility to stress. Exploration of this relationship reveals epigenetic mechanisms with the potential to explain sexual dimorphism in the occurrence of stress related disorders.

  4. The endoplasmic reticulum stress response in disease ...

    African Journals Online (AJOL)

    Rafael Vincent M. Manalo

    2017-07-12

    Jul 12, 2017 ... Review. The endoplasmic reticulum stress response in disease pathogenesis and pathophysiology .... This is an open access article under the CC BY-NC-ND license ... chain binding protein (BIP); however, ER stress permits the release, .... drugs designed to alleviate it often cause more harm long-term.

  5. Overtime work and stress response in a group of Japanese workers.

    Science.gov (United States)

    Sato, Yuji; Miyake, Hitoshi; Thériault, Gilles

    2009-01-01

    Working long overtime hours is considered a cause of mental health problems among workers but such a relationship has yet to be empirically confirmed. To clarify the influence of overtime work on response to stress and to assess the role of other stress-related factors on this relationship. The study was conducted among 24 685 employees of a company in Japan. Stress response, job stressors and social supports were assessed by the Brief Job Stress Questionnaire. Participants were divided into five categories of overtime (0-19, 20-39, 40-59, >or=60 h of overtime per month and exempted employees). The nonadjusted odds ratios for stress response for 40-59 and >or=60 overtime hours per month in reference to 0-19 overtime hours were 1.11 [95% confidence interval (CI) 1.03-1.19] and 1.62 (95% CI 1.50-1.76), respectively. After adjustment for self-assessed amount of work, mental workload and sleeping time, the association between overtime work and stress response disappeared. This large cross-sectional study shows that overtime work appears to influence stress response indirectly through other stress factors such as self-assessed amount of work, mental workload and sleeping time.

  6. Caffeine Induces the Stress Response and Up-Regulates Heat Shock Proteins in Caenorhabditis elegans.

    Science.gov (United States)

    Al-Amin, Mohammad; Kawasaki, Ichiro; Gong, Joomi; Shim, Yhong-Hee

    2016-02-01

    Caffeine has both positive and negative effects on physiological functions in a dose-dependent manner. C. elegans has been used as an animal model to investigate the effects of caffeine on development. Caffeine treatment at a high dose (30 mM) showed detrimental effects and caused early larval arrest. We performed a comparative proteomic analysis to investigate the mode of action of high-dose caffeine treatment in C. elegans and found that the stress response proteins, heat shock protein (HSP)-4 (endoplasmic reticulum [ER] chaperone), HSP-6 (mitochondrial chaperone), and HSP-16 (cytosolic chaperone), were induced and their expression was regulated at the transcriptional level. These findings suggest that high-dose caffeine intake causes a strong stress response and activates all three stress-response pathways in the worms, including the ER-, mitochondrial-, and cytosolic pathways. RNA interference of each hsp gene or in triple combination retarded growth. In addition, caffeine treatment stimulated a food-avoidance behavior (aversion phenotype), which was enhanced by RNAi depletion of the hsp-4 gene. Therefore, up-regulation of hsp genes after caffeine treatment appeared to be the major responses to alleviate stress and protect against developmental arrest.

  7. Comparison of Proteome Response to Saline and Zinc Stress in Lettuce

    Directory of Open Access Journals (Sweden)

    Luigi eLucini

    2015-04-01

    Full Text Available Zinc salts occurring in soils can exert an osmotic stress toward plants. However, being zinc a heavy metal, some more specific effects on plant metabolisms can be forecast. In this work, lettuce has been used as a model to investigate salt and zinc stresses at proteome level through a shotgun tandem MS proteomic approach. The effect of zinc stress in lettuce, in comparison with NaCl stress, was evaluated to dissect between osmotic/oxidative stress-related effects, from those changes specifically related to zinc.The analysis of proteins exhibiting a fold change of 3 as minimum (on log 2 normalized abundances, revealed the involvement of photosynthesis (via stimulation of chlorophyll synthesis and enhanced role of photosystem I as well as stimulation of photophosphorylation. Increased glycolytic supply of energy substrates and ammonium assimilation (through formation of glutamine synthetase were also induced by zinc in soil. Similarly, protein metabolism (at both transcriptional and ribosomal level, heat shock proteins and proteolysis were affected. According to their biosynthetic enzymes, hormones appear to be altered by both the treatment and the time point considered: ethylene biosynthesis was enhanced, while production of abscisic acid was up-regulated at the earlier time point to decrease markedly and gibberellins were decreased at the later one.Besides aquaporin PIP2 synthesis, other osmotic/oxidative stress related compounds were enhanced under zinc stress, i.e. proline, hydroxycinnamic acids, ascorbate, sesquiterpene lactones and terpenoids biosynthesis.Although the proteins involved in the response to zinc stress and to salinity were substantially the same, their abundance changed between the two treatments. Lettuce response to zinc was more prominent at the first sampling point, yet showing a faster adaptation than under NaCl stress. Indeed, lettuce plants showed an adaptation after 30 days of stress, in a more pronounced way in the case

  8. Overexpression of a Cytosolic Abiotic Stress Responsive Universal Stress Protein (SbUSP) Mitigates Salt and Osmotic Stress in Transgenic Tobacco Plants

    Science.gov (United States)

    Udawat, Pushpika; Jha, Rajesh K.; Sinha, Dinkar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    The universal stress protein (USP) is a ubiquitous protein and plays an indispensable role in plant abiotic stress tolerance. The genome of Salicornia brachiata contains two homologs of intron less SbUSP gene which encodes for salt and osmotic responsive USP. In vivo localization reveals that SbUSP is a membrane bound cytosolic protein. The role of the gene was functionally validated by developing transgenic tobacco and compared with control [wild-type (WT) and vector control (VC)] plants under different abiotic stress condition. Transgenic lines (T1) exhibited higher chlorophyll, relative water, proline, total sugar, reducing sugar, free amino acids, polyphenol contents, osmotic potential, membrane stability, and lower electrolyte leakage and lipid peroxidation (malondialdehyde content) under stress treatments than control (WT and VC) plants. Lower accumulation of H2O2 and O2− radicals was also detected in transgenic lines compared to control plants under stress conditions. Present study confers that overexpression of the SbUSP gene enhances plant growth, alleviates ROS buildup, maintains ion homeostasis and improves the physiological status of the plant under salt and osmotic stresses. Principal component analysis exhibited a statistical distinction of plant response to salinity stress, and a significant response was observed for transgenic lines under stress, which provides stress endurance to the plant. A possible signaling role is proposed that some downstream genes may get activated by abiotic stress responsive cytosolic SbUSP, which leads to the protection of cell from oxidative damages. The study unveils that ectopic expression of the gene mitigates salt or osmotic stress by scavenging ROS and modulating the physiological process of the plant. PMID:27148338

  9. Statistical modeling implicates neuroanatomical circuit mediating stress relief by ‘comfort’ food

    Science.gov (United States)

    Ulrich-Lai, Yvonne M.; Christiansen, Anne M.; Wang, Xia; Song, Seongho; Herman, James P.

    2015-01-01

    A history of eating highly-palatable foods reduces physiological and emotional responses to stress. For instance, we have previously shown that limited sucrose intake (4 ml of 30% sucrose twice daily for 14 days) reduces hypothalamic-pituitary-adrenocortical (HPA) axis responses to stress. However, the neural mechanisms underlying stress relief by such ‘comfort’ foods are unclear, and could reveal an endogenous brain pathway for stress mitigation. As such, the present work assessed the expression of several proteins related to neuronal activation and/or plasticity in multiple stress- and reward-regulatory brain regions of rats after limited sucrose (vs. water control) intake. These data were then subjected to a series of statistical analyses, including Bayesian modeling, to identify the most likely neurocircuit mediating stress relief by sucrose. The analyses suggest that sucrose reduces HPA activation by dampening an excitatory basolateral amygdala - medial amygdala circuit, while also potentiating an inhibitory bed nucleus of the stria terminalis principle subdivision-mediated circuit, resulting in reduced HPA activation after stress. Collectively, the results support the hypothesis that sucrose limits stress responses via plastic changes to the structure and function of stress-regulatory neural circuits. The work also illustrates that advanced statistical methods are useful approaches to identify potentially novel and important underlying relationships in biological data sets. PMID:26246177

  10. Stress Response and Artemisinin Resistance in Malaria Parasite

    Science.gov (United States)

    2017-07-01

    AWARD NUMBER: W81XWH-16-1-0241 TITLE: Stress Response and Artemisinin Resistance in Malaria Parasite PRINCIPAL INVESTIGATOR: Juan C. Pizarro...SUBTITLE Stress Response and Artemisinin Resistance in Malaria Parasite 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0241 5c. PROGRAM ELEMENT...13. SUPPLEMENTARY NOTES 14. ABSTRACT In malaria , drug resistance is a major treat to disease control efforts. Unfortunately, there is a significant

  11. Evaluation of the Aqua‎Crop Model to Simulate Maize Yiled Response under Salinity Stress

    Directory of Open Access Journals (Sweden)

    Aida Mehrazar

    2017-01-01

    Full Text Available Introduction: Limited water resources and its salinity uptrend has caused reducing water and soil quality and consequently reducing the crop production. Thus, use of saline water is the management strategies to decrease drought and water crisis. Furthermore, simulation models are valuable tools for improving on-farm water management and study about the effects of water quality and quantity on crop yield.. The AquaCrop model has recently been developed by the FAO which has the ability to check the production process under different propositions. The initial version of the model was introduced for simulation of crop yield and soil water movement in 2007, that the effect of salinity on crop yield was not considered. Version 4 of the model was released in 2012 in which also considered the effects of salinity on crop yield and simulation of solute Transmission in soil profile. Material and methods: In this project, evaluation of the AquaCrop model and its accuracy was studied in the simulating yield of maize under salt stress. This experiment was conducted in Karaj, on maize hybrid (Zea ma ys L in a sandy soil for investigation of salinity stress on maize yield in 2011-2012. This experiment was conducted in form of randomized complete block design in four replications and five levels of salinity treatments including 0, 4.53, 9.06, 13.59 and 18.13 dS/m at the two times sampling. To evaluate the effect of different levels of salinity on the yield of maize was used Version 4 AquaCrop model and SAS ver 9.1 software .The model calibration was performed by comparing the results of the field studies and the results of simulations in the model. In calculating the yield under different scenarios of salt stress by using AquaCrop, the model needs climate data, soil data, vegetation data and information related to farm management. The effects of salinity on yield and some agronomic and physiological traits of hybrid maize (Shoot length, root length, dry weight

  12. Associations between circadian and stress response cortisol in children

    OpenAIRE

    Simons, S.S.H.; Cillessen, A.H.N.; Weerth, C. de

    2017-01-01

    Hypothalamic-pituitary-adrenal (HPA) axis functioning is characterized by the baseline production of cortisol following a circadian rhythm, as well as by the superimposed production of cortisol in response to a stressor. However, it is relatively unknown whether the basal cortisol circadian rhythm is associated with the cortisol stress response in children. Since alterations in cortisol stress responses have been associated with mental and physical health, this study investigated whether the ...

  13. A rate equation model of stomatal responses to vapour pressure deficit and drought

    Directory of Open Access Journals (Sweden)

    Shanahan ST

    2002-08-01

    Full Text Available Abstract Background Stomata respond to vapour pressure deficit (D – when D increases, stomata begin to close. Closure is the result of a decline in guard cell turgor, but the link between D and turgor is poorly understood. We describe a model for stomatal responses to increasing D based upon cellular water relations. The model also incorporates impacts of increasing levels of water stress upon stomatal responses to increasing D. Results The model successfully mimics the three phases of stomatal responses to D and also reproduces the impact of increasing plant water deficit upon stomatal responses to increasing D. As water stress developed, stomata regulated transpiration at ever decreasing values of D. Thus, stomatal sensitivity to D increased with increasing water stress. Predictions from the model concerning the impact of changes in cuticular transpiration upon stomatal responses to increasing D are shown to conform to experimental data. Sensitivity analyses of stomatal responses to various parameters of the model show that leaf thickness, the fraction of leaf volume that is air-space, and the fraction of mesophyll cell wall in contact with air have little impact upon behaviour of the model. In contrast, changes in cuticular conductance and membrane hydraulic conductivity have significant impacts upon model behaviour. Conclusion Cuticular transpiration is an important feature of stomatal responses to D and is the cause of the 3 phase response to D. Feed-forward behaviour of stomata does not explain stomatal responses to D as feedback, involving water loss from guard cells, can explain these responses.

  14. Regulation of water, salinity, and cold stress responses by salicylic acid

    Directory of Open Access Journals (Sweden)

    Kenji eMiura

    2014-01-01

    Full Text Available Salicylic acid (SA is a naturally occurring phenolic compound. SA plays an important role in the regulation of plant growth, development, ripening, and defense responses. The role of SA in the plant-pathogen relationship has been extensively investigated. In addition to defense responses, SA plays an important role in the response to abiotic stresses, including drought, low temperature, and salinity stresses. It has been suggested that SA has great agronomic potential to improve the stress tolerance of agriculturally important crops. However, the utility of SA is dependent on the concentration of the applied SA, the mode of application, and the state of the plants (e.g., developmental stage and acclimation. Generally, low concentrations of applied SA alleviate the sensitivity to abiotic stresses, and high concentrations of applied induce high levels of oxidative stress, leading to a decreased tolerance to abiotic stresses. In this chapter, the effects of SA on the water stress responses and regulation of stomatal closure are reviewed.

  15. The Effect of Music on the Human Stress Response

    Science.gov (United States)

    Thoma, Myriam V.; La Marca, Roberto; Brönnimann, Rebecca; Finkel, Linda; Ehlert, Ulrike; Nater, Urs M.

    2013-01-01

    Background Music listening has been suggested to beneficially impact health via stress-reducing effects. However, the existing literature presents itself with a limited number of investigations and with discrepancies in reported findings that may result from methodological shortcomings (e.g. small sample size, no valid stressor). It was the aim of the current study to address this gap in knowledge and overcome previous shortcomings by thoroughly examining music effects across endocrine, autonomic, cognitive, and emotional domains of the human stress response. Methods Sixty healthy female volunteers (mean age = 25 years) were exposed to a standardized psychosocial stress test after having been randomly assigned to one of three different conditions prior to the stress test: 1) relaxing music (‘Miserere’, Allegri) (RM), 2) sound of rippling water (SW), and 3) rest without acoustic stimulation (R). Salivary cortisol and salivary alpha-amylase (sAA), heart rate (HR), respiratory sinus arrhythmia (RSA), subjective stress perception and anxiety were repeatedly assessed in all subjects. We hypothesized that listening to RM prior to the stress test, compared to SW or R would result in a decreased stress response across all measured parameters. Results The three conditions significantly differed regarding cortisol response (p = 0.025) to the stressor, with highest concentrations in the RM and lowest in the SW condition. After the stressor, sAA (p=0.026) baseline values were reached considerably faster in the RM group than in the R group. HR and psychological measures did not significantly differ between groups. Conclusion Our findings indicate that music listening impacted the psychobiological stress system. Listening to music prior to a standardized stressor predominantly affected the autonomic nervous system (in terms of a faster recovery), and to a lesser degree the endocrine and psychological stress response. These findings may help better understanding the

  16. The calm mouse: an animal model of stress reduction.

    Science.gov (United States)

    Gurfein, Blake T; Stamm, Andrew W; Bacchetti, Peter; Dallman, Mary F; Nadkarni, Nachiket A; Milush, Jeffrey M; Touma, Chadi; Palme, Rupert; Di Borgo, Charles Pozzo; Fromentin, Gilles; Lown-Hecht, Rachel; Konsman, Jan Pieter; Acree, Michael; Premenko-Lanier, Mary; Darcel, Nicolas; Hecht, Frederick M; Nixon, Douglas F

    2012-05-09

    Chronic stress is associated with negative health outcomes and is linked with neuroendocrine changes, deleterious effects on innate and adaptive immunity, and central nervous system neuropathology. Although stress management is commonly advocated clinically, there is insufficient mechanistic understanding of how decreasing stress affects disease pathogenesis. Therefore, we have developed a "calm mouse model" with caging enhancements designed to reduce murine stress. Male BALB/c mice were divided into four groups: control (Cntl), standard caging; calm (Calm), large caging to reduce animal density, a cardboard nest box for shelter, paper nesting material to promote innate nesting behavior, and a polycarbonate tube to mimic tunneling; control exercise (Cntl Ex), standard caging with a running wheel, known to reduce stress; and calm exercise (Calm Ex), calm caging with a running wheel. Calm, Cntl Ex and Calm Ex animals exhibited significantly less corticosterone production than Cntl animals. We also observed changes in spleen mass, and in vitro splenocyte studies demonstrated that Calm Ex animals had innate and adaptive immune responses that were more sensitive to acute handling stress than those in Cntl. Calm animals gained greater body mass than Cntl, although they had similar food intake, and we also observed changes in body composition, using magnetic resonance imaging. Together, our results suggest that the Calm mouse model represents a promising approach to studying the biological effects of stress reduction in the context of health and in conjunction with existing disease models.

  17. Stress response and the adolescent transition: performance versus peer rejection stressors.

    Science.gov (United States)

    Stroud, Laura R; Foster, Elizabeth; Papandonatos, George D; Handwerger, Kathryn; Granger, Douglas A; Kivlighan, Katie T; Niaura, Raymond

    2009-01-01

    Little is known about normative variation in stress response over the adolescent transition. This study examined neuroendocrine and cardiovascular responses to performance and peer rejection stressors over the adolescent transition in a normative sample. Participants were 82 healthy children (ages 7-12 years, n = 39, 22 females) and adolescents (ages 13-17, n = 43, 20 females) recruited through community postings. Following a habituation session, participants completed a performance (public speaking, mental arithmetic, mirror tracing) or peer rejection (exclusion challenges) stress session. Salivary cortisol, salivary alpha amylase (sAA), systolic and diastolic blood pressure (SBP, DBP), and heart rate were measured throughout. Adolescents showed significantly greater cortisol, sAA, SBP, and DBP stress response relative to children. Developmental differences were most pronounced in the performance stress session for cortisol and DBP and in the peer rejection session for sAA and SBP. Heightened physiological stress responses in typical adolescents may facilitate adaptation to new challenges of adolescence and adulthood. In high-risk adolescents, this normative shift may tip the balance toward stress response dysregulation associated with depression and other psychopathology. Specificity of physiological response by stressor type highlights the importance of a multisystem approach to the psychobiology of stress and may also have implications for understanding trajectories to psychopathology.

  18. Eccentric-exercise induced inflammation attenuates the vascular responses to mental stress

    NARCIS (Netherlands)

    Paine, N.J.; Ring, C.; Aldred, S.; Bosch, J.A.; Wadley, A.J.; Veldhuijzen van Zanten, J.J.C.S.

    2013-01-01

    Mental stress has been identified as a trigger of myocardial infarction (MI), with inflammation and vascular responses to mental stress independently implicated as contributing factors. This study examined whether inflammation moderates the vascular responses to mental stress. Eighteen healthy male

  19. Growth and physiological responses to water and nutrient stress in ...

    African Journals Online (AJOL)

    Growth and physiological responses to water and nutrient stress in oil palm. ... changes in growth, physiology and nutrient concentration in response to two watering regimes (well-watered and water-stress conditions) and ... from 32 Countries:.

  20. Differential Response to Heat Stress in Outer and Inner Onion Bulb Scales.

    Science.gov (United States)

    Galsurker, Ortal; Doron-Faigenboim, Adi; Teper-Bamnolker, Paula; Daus, Avinoam; Lers, Amnon; Eshel, Dani

    2018-05-18

    Brown protective skin formation in onion bulbs can be induced by rapid postharvest heat treatment. Onions that were peeled to different depths and were exposed to heat stress showed that only the outer scale formed dry brown skin, whereas the inner scales maintained high water content and did not change color. Our results reveal that browning of the outer scale during heat treatment is due to an enzymatic process that is associated with high levels of oxidation components, such as peroxidase and quercetin glucoside. De-novo transcriptome analysis revealed differential molecular responses of the outer and inner scales to the heat stress. Genes involved in lipid metabolism, oxidation pathways and cell-wall modification were highly expressed in the outer scale during heating. Defense-response-related genes such as those encoding heat-shock proteins, antioxidative stress defense or production of osmoprotectant metabolites were mostly induced in the inner scale in response to the heat exposure. These transcriptomic data led to a conceptual model that suggests sequential processes for browning development and desiccation of the outer scales versus processes associated with defense response and heat tolerance in the inner scale. Thus, the observed physiological differences between the outer and inner scales is supported by the identified molecular differences.

  1. Extending the Challenge-Hindrance Model of Occupational Stress: The Role of Appraisal

    Science.gov (United States)

    Webster, Jennica R.; Beehr, Terry A.; Love, Kevin

    2011-01-01

    Interest regarding the challenge-hindrance occupational stress model has increased in recent years, however its theoretical foundation has not been tested. Drawing from the transactional theory of stress, this study tests the assumptions made in past research (1) that workload and responsibility are appraised as challenges and role ambiguity and…

  2. Loss of melanocortin-4 receptor function attenuates HPA responses to psychological stress

    DEFF Research Database (Denmark)

    Ryan, Karen K; Mul, Joram D; Clemmensen, Christoffer

    2014-01-01

    function. These results support the hypothesis that endogenous MC4R signaling contributes to the HPA axis response to stress. Because MC4R plays a critical role in the regulation of energy balance, the present work suggests that it may also serve as an important communication link between brain metabolic...... in hypothalamic-pituitary-adrenocortical axis (HPA) regulation. The present work investigated the role of chronic Mc4r function to modulate basal HPA axis tone and to facilitate acute HPA responses to psychological stress, using a novel rat model with Mc4r loss-of-function. In this study, adult male rats were......The melanocortin 4 receptor (MC4R), well-known for its role in the regulation of energy balance, is widely expressed in stress-regulatory brain regions, including the paraventricular nucleus of the hypothalamus (PVH) and the medial amygdala (MeA). In agreement with this, MC4R has been implicated...

  3. The significance of translation regulation in the stress response

    OpenAIRE

    Picard, Flora; Loubière, Pascal; Girbal, Laurence; Bousquet, Muriel

    2013-01-01

    Background: The stress response in bacteria involves the multistage control of gene expression but is not entirely understood. To identify the translational response of bacteria in stress conditions and assess its contribution to the regulation of gene expression, the translational states of all mRNAs were compared under optimal growth condition and during nutrient (isoleucine) starvation. Results: A genome-scale study of the translational response to nutritional limitation was performed in t...

  4. Differential p53 engagement in response to oxidative and oncogenic stresses in Fanconi anemia mice

    OpenAIRE

    Rani, Reena; Li, Jie; Pang, Qishen

    2008-01-01

    Members of the Fanconi anemia (FA) protein family are involved in repair of genetic damage caused by DNA cross-linkers. It is not clear whether the FA proteins function in oxidative DNA damage and oncogenic stress response. Here we report that deficiency in the Fanca gene in mice elicits a p53-dependent growth arrest and DNA damage response to oxidative DNA damage and oncogenic stress. Using a Fanca-/- Trp53-/- double knockout model and a functionally switchable p53 retrovirus, we define the ...

  5. HPA axis response to psychological stress and treatment retention in residential substance abuse treatment: a prospective study.

    Science.gov (United States)

    Daughters, Stacey B; Richards, Jessica M; Gorka, Stephanie M; Sinha, Rajita

    2009-12-01

    Substance abuse treatment programs are often characterized by high rates of premature treatment dropout, which increases the likelihood of relapse to drug use. Negative reinforcement models of addiction emphasize an individual's inability to tolerate stress as a key factor for understanding poor substance use treatment outcomes, and evidence indicates that dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis contributes to an individual's inability to respond adaptively to stress. The aim of the current study was to examine whether HPA axis response to stress is predictive of treatment retention among a sample of drug users in residential substance abuse treatment. Prospective study assessing treatment retention among 102 individuals enrolled in residential substance abuse treatment. Participants completed two computerized stress tasks, and HPA axis response to stress was measured via salivary cortisol at five time points from baseline (pre-stress) to 30 min post-stress exposure. The main outcome measures were treatment dropout (categorical) and total number of days in treatment (continuous). A significantly higher salivary cortisol response to stress was observed in treatment dropouts compared to treatment completers. Further, Cox proportional hazards survival analyses indicated that a higher peak cortisol response to stress was associated with a shorter number of days to treatment dropout. Results indicate that a higher salivary cortisol level in response to stress is associated with an inability to remain in substance abuse treatment. These findings are the first to document a biological marker of stress as a predictor of substance abuse treatment dropout, and support the development and implementation of treatments targeting this vulnerability.

  6. Emerging role of amyloid beta in stress response: Implication for depression and diabetes.

    Science.gov (United States)

    Morgese, Maria Grazia; Schiavone, Stefania; Trabace, Luigia

    2017-12-15

    Chronic stress is considered a widely accepted risk factor for the development of neuropsychiatric and neurological disorders. Indeed, high cortisol levels, and, thus, hypothalamic pituitary adrenal (HPA)-axis dysregulation, have been indicated as the most frequent alteration in patients affected by depression, as well as by Alzheimer's disease (AD). Furthermore, depressive state has been pointed as an early manifestation of AD, advocating an overlap between these neuropathological events. We have previously demonstrated that central soluble beta amyloid 1-42 (Aβ) administration peptide induces a depressive like-behavior in rats, with altered HPA axis activation, reduced cortical serotonin and neurotrophin levels. The crucial role of Aβ in stress response is becoming more and more evident, indeed many reports indicate that its release is increased in stressful conditions and stress-based paradigm. Furthermore, it has been reported that stress controls Aβ production and/or clearance. Chronic stress is responsible of inducing neuroinflammation processes and reduced serotoninergic tone, both pathophysiological mechanisms proposed in the association of depression with another chronic disease, such as diabetes. Likewise, AD has also been indicated as type 3 diabetes, considering the large body of literature that suggests common biological bases. Thus, the main aim of the present review is to evaluate the most recent literature findings in humans and animal models in regard to the role of Aβ in stress response and in relation to the biological substrates and pathological pathways common to AD and comorbid diseases, such as depression and diabetes. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Stress variations during a glacial cycle at 500 m depth in Forsmark and Oskarshamn: Earth model effects

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Bjoern [Uppsala Univ. (Sweden). Dept. of Earth Sciences

    2006-06-15

    This study has considered the response to a glaciation of Earth models of increasingly complex structure in elastic parameters and viscosity. The models are one-dimensional in the sense that they vary only in the depth direction, i.e. there are only uniform, horizontal layers in the models. I find that as the complexity of the models increase, and the properties of the uppermost kilometer of the Earth become less affected by average properties from deeper down, the flexural stresses at 500 m depth decrease, as expected. A lower Young's modulus, lower compressibility and lower density in the uppermost layer all act to lower the stresses. However, the three properties act differently on the resulting response. Introducing layering in Young's modulus generally decreases the stresses all along a profile through the ice model. Going from incompressible to compressible models affect the stresses outside the ice edge significantly more than the stresses under the ice sheet. Introducing layering in density conversely affect the stresses under the ice sheet more than those outside the ice edge. The combined effects of the most complex models tested here show that the glacially induced horizontal stresses at 500 m depth decrease to levels very similar in magnitude to the loading stress. There are, however, temporal variations in these horizontal stresses that do not follow the loading stress and which induce tensional or compressional horizontal stresses that persist when no ice is present.As is well known, changes in viscosity structure has a very large effect on the Earth response. Viscosity affect both the magnitudes of the induced stresses and the temporal behavior of the stress evolution. This is confirmed in the current study.The glacially induced stresses for some of the models have been used in combination with the current background stress field at Forsmark and Oskarshamn, as estimated in SKB's site models, to evaluate fault stability throughout a

  8. Stress variations during a glacial cycle at 500 m depth in Forsmark and Oskarshamn: Earth model effects

    International Nuclear Information System (INIS)

    Lund, Bjoern

    2006-06-01

    This study has considered the response to a glaciation of Earth models of increasingly complex structure in elastic parameters and viscosity. The models are one-dimensional in the sense that they vary only in the depth direction, i.e. there are only uniform, horizontal layers in the models. I find that as the complexity of the models increase, and the properties of the uppermost kilometer of the Earth become less affected by average properties from deeper down, the flexural stresses at 500 m depth decrease, as expected. A lower Young's modulus, lower compressibility and lower density in the uppermost layer all act to lower the stresses. However, the three properties act differently on the resulting response. Introducing layering in Young's modulus generally decreases the stresses all along a profile through the ice model. Going from incompressible to compressible models affect the stresses outside the ice edge significantly more than the stresses under the ice sheet. Introducing layering in density conversely affect the stresses under the ice sheet more than those outside the ice edge. The combined effects of the most complex models tested here show that the glacially induced horizontal stresses at 500 m depth decrease to levels very similar in magnitude to the loading stress. There are, however, temporal variations in these horizontal stresses that do not follow the loading stress and which induce tensional or compressional horizontal stresses that persist when no ice is present.As is well known, changes in viscosity structure has a very large effect on the Earth response. Viscosity affect both the magnitudes of the induced stresses and the temporal behavior of the stress evolution. This is confirmed in the current study.The glacially induced stresses for some of the models have been used in combination with the current background stress field at Forsmark and Oskarshamn, as estimated in SKB's site models, to evaluate fault stability throughout a glacial cycle. The

  9. Transactional Associations between Youths' Responses to Peer Stress and Depression: The Moderating Roles of Sex and Stress Exposure

    Science.gov (United States)

    Agoston, Anna M.; Rudolph, Karen D.

    2011-01-01

    This study examined transactional associations between responses to peer stress and depression in youth. Specifically, it tested the hypotheses that (a) depression would predict fewer effortful responses and more involuntary, dysregulated responses to peer stress over time; and (b) fewer adaptive and more maladaptive responses would predict…

  10. Stressor specificity of central neuroendocrine responses: implications for stress-related disorders.

    Science.gov (United States)

    Pacák, K; Palkovits, M

    2001-08-01

    Despite the fact that many research articles have been written about stress and stress-related diseases, no scientifically accepted definition of stress exists. Selye introduced and popularized stress as a medical and scientific idea. He did not deny the existence of stressor-specific response patterns; however, he emphasized that such responses did not constitute stress, only the shared nonspecific component. In this review we focus mainly on the similarities and differences between the neuroendocrine responses (especially the sympathoadrenal and the sympathoneuronal systems and the hypothalamo-pituitary-adrenocortical axis) among various stressors and a strategy for testing Selye's doctrine of nonspecificity. In our experiments, we used five different stressors: immobilization, hemorrhage, cold exposure, pain, or hypoglycemia. With the exception of immobilization stress, these stressors also differed in their intensities. Our results showed marked heterogeneity of neuroendocrine responses to various stressors and that each stressor has a neurochemical "signature." By examining changes of Fos immunoreactivity in various brain regions upon exposure to different stressors, we also attempted to map central stressor-specific neuroendocrine pathways. We believe the existence of stressor-specific pathways and circuits is a clear step forward in the study of the pathogenesis of stress-related disorders and their proper treatment. Finally, we define stress as a state of threatened homeostasis (physical or perceived treat to homeostasis). During stress, an adaptive compensatory specific response of the organism is activated to sustain homeostasis. The adaptive response reflects the activation of specific central circuits and is genetically and constitutionally programmed and constantly modulated by environmental factors.

  11. Limit Stress Spline Models for GRP Composites | Ihueze | Nigerian ...

    African Journals Online (AJOL)

    Spline functions were established on the assumption of three intervals and fitting of quadratic and cubic splines to critical stress-strain responses data. Quadratic ... of data points. Spline model is therefore recommended as it evaluates the function at subintervals, eliminating the error associated with wide range interpolation.

  12. Transgenerational Social Stress Alters Immune–Behavior Associations and the Response to Vaccination

    Directory of Open Access Journals (Sweden)

    Alexandria Hicks-Nelson

    2017-07-01

    Full Text Available Similar to the multi-hit theory of schizophrenia, social behavior pathologies are mediated by multiple factors across generations, likely acting additively, synergistically, or antagonistically. Exposure to social adversity, especially during early life, has been proposed to induce depression symptoms through immune mediated mechanisms. Basal immune factors are altered in a variety of neurobehavioral models. In the current study, we assessed two aspects of a transgenerational chronic social stress (CSS rat model and its effects on the immune system. First, we asked whether exposure of F0 dams and their F1 litters to CSS changes basal levels of IL-6, TNF, IFN-γ, and social behavior in CSS F1 female juvenile rats. Second, we asked whether the F2 generation could generate normal immunological responses following vaccination with Mycobacterium bovis Bacillus Calmette–Guérin (BCG. We report several changes in the associations between social behaviors and cytokines in the F1 juvenile offspring of the CSS model. It is suggested that changes in the immune–behavior relationships in F1 juveniles indicate the early stages of immune mediated disruption of social behavior that becomes more apparent in F1 dams and the F2 generation. We also report preliminary evidence of elevated IL-6 and impaired interferon-gamma responses in BCG-vaccinated F2 females. In conclusion, transgenerational social stress alters both immune–behavior associations and responses to vaccination. It is hypothesized that the effects of social stress may accumulate over generations through changes in the immune system, establishing the immune system as an effective preventative or treatment target for social behavior pathologies.

  13. Comprehensive phenotypic analysis of rice (Oryza sativa) response to salinity stress

    KAUST Repository

    Pires, Inê s S.; Negrã o, Só nia; Oliveira, M. Margarida; Purugganan, Michael D.

    2015-01-01

    affected by salt stress in rice, which puts in question the importance of K+/Na+ when analyzing rice salt stress response. Not only do our results contribute to improve our global understanding of salt stress response in an important crop, but we also use

  14. Depersonalization experiences in undergraduates are related to heightened stress cortisol responses.

    Science.gov (United States)

    Giesbrecht, Timo; Smeets, Tom; Merckelbach, Harald; Jelicic, Marko

    2007-04-01

    The relationship between dissociative tendencies, as measured with the Dissociative Experiences Scale and its amnesia, absorption/imaginative involvement, and depersonalization/derealization subscales, and HPA axis functioning was studied in 2 samples of undergraduate students (N = 58 and 67). Acute stress was induced by means of the Trier Social Stress Test. Subjective and physiological stress (i.e., cortisol) responses were measured. Individuals high on the depersonalization/derealization subscale of the Dissociative Experiences Scale exhibited more pronounced cortisol responses, while individuals high on the absorption subscale showed attenuated responses. Interestingly, subjective stress experiences, as indicated by the Tension-Anxiety subscale of the Profile of Mood States, were positively related to trait dissociation. The present findings illustrate how various types of dissociation (i.e., depersonalization/derealization, absorption) are differentially related to cortisol stress responses.

  15. Extension of the M-D model for treating stress drops in salt

    International Nuclear Information System (INIS)

    Munson, D.E.; DeVries, K.L.; Fossum, A.F.; Callahan, G.D.

    1993-01-01

    Development of the multimechanism deformation (M-D) constitutive model for steady state creep, which incorporates irreversible workhardening and recovery transient strains, was motivated by the need to predict very long term closures in underground rooms for radioactive waste repositories in salt. The multimechanism deformation model for the creep deformation of salt is extended to treat the response of salt to imposed stress drops. Stress drop tests produce a very distinctive behavior where both reversible elastic strain and reversible time dependent strain occur. These transient strains are negative compared to the positive transient strains produced by the normal creep workhardening and recovery processes. A simple micromechanical evolutionary process is defined to account for the accumulation of these reversible strains, and their subsequent release with decreases in stress. A number of experimental stress drop tests for various stress drop magnitudes and temperatures are adequately simulated with the model

  16. Glucocorticoids mediate stress-induced impairment of retrieval of stimulus-response memory.

    Science.gov (United States)

    Atsak, Piray; Guenzel, Friederike M; Kantar-Gok, Deniz; Zalachoras, Ioannis; Yargicoglu, Piraye; Meijer, Onno C; Quirarte, Gina L; Wolf, Oliver T; Schwabe, Lars; Roozendaal, Benno

    2016-05-01

    Acute stress and elevated glucocorticoid hormone levels are well known to impair the retrieval of hippocampus-dependent 'declarative' memory. Recent findings suggest that stress might also impair the retrieval of non-hippocampal memories. In particular, stress shortly before retention testing was shown to impair the retrieval of striatal stimulus-response associations in humans. However, the mechanism underlying this stress-induced retrieval impairment of non-hippocampal stimulus-response memory remains elusive. In the present study, we investigated whether an acute elevation in glucocorticoid levels mediates the impairing effects of stress on retrieval of stimulus-response memory. Male Sprague-Dawley rats were trained on a stimulus-response task in an eight-arm radial maze until they learned to associate a stimulus, i.e., cue, with a food reward in one of the arms. Twenty-four hours after successful acquisition, they received a systemic injection of vehicle, corticosterone (1mg/kg), the corticosterone-synthesis inhibitor metyrapone (35mg/kg) or were left untreated 1h before retention testing. We found that the corticosterone injection impaired the retrieval of stimulus-response memory. We further found that the systemic injection procedure per se was stressful as the vehicle administration also increased plasma corticosterone levels and impaired the retrieval of stimulus-response memory. However, memory retrieval was not impaired when rats were tested 2min after the systemic vehicle injection, before any stress-induced elevation in corticosterone levels had occurred. Moreover, metyrapone treatment blocked the effect of injection stress on both plasma corticosterone levels and memory retrieval impairment, indicating that the endogenous corticosterone response mediates the stress-induced memory retrieval impairment. None of the treatments affected rats' locomotor activity or motivation to search for the food reward within the maze. These findings show that stress

  17. Targeting the cell stress response of Plasmodium falciparum to overcome artemisinin resistance.

    Directory of Open Access Journals (Sweden)

    Con Dogovski

    2015-04-01

    Full Text Available Successful control of falciparum malaria depends greatly on treatment with artemisinin combination therapies. Thus, reports that resistance to artemisinins (ARTs has emerged, and that the prevalence of this resistance is increasing, are alarming. ART resistance has recently been linked to mutations in the K13 propeller protein. We undertook a detailed kinetic analysis of the drug responses of K13 wild-type and mutant isolates of Plasmodium falciparum sourced from a region in Cambodia (Pailin. We demonstrate that ART treatment induces growth retardation and an accumulation of ubiquitinated proteins, indicative of a cellular stress response that engages the ubiquitin/proteasome system. We show that resistant parasites exhibit lower levels of ubiquitinated proteins and delayed onset of cell death, indicating an enhanced cell stress response. We found that the stress response can be targeted by inhibiting the proteasome. Accordingly, clinically used proteasome inhibitors strongly synergize ART activity against both sensitive and resistant parasites, including isogenic lines expressing mutant or wild-type K13. Synergy is also observed against Plasmodium berghei in vivo. We developed a detailed model of parasite responses that enables us to infer, for the first time, in vivo parasite clearance profiles from in vitro assessments of ART sensitivity. We provide evidence that the clinical marker of resistance (delayed parasite clearance is an indirect measure of drug efficacy because of the persistence of unviable parasites with unchanged morphology in the circulation, and we suggest alternative approaches for the direct measurement of viability. Our model predicts that extending current three-day ART treatment courses to four days, or splitting the doses, will efficiently clear resistant parasite infections. This work provides a rationale for improving the detection of ART resistance in the field and for treatment strategies that can be employed in areas

  18. Age-Related Decrease in Stress Responsiveness and Proactive Coping in Male Mice.

    Science.gov (United States)

    Oh, Hee-Jin; Song, Minah; Kim, Young Ki; Bae, Jae Ryong; Cha, Seung-Yun; Bae, Ji Young; Kim, Yeongmin; You, Minsu; Lee, Younpyo; Shim, Jieun; Maeng, Sungho

    2018-01-01

    Coping is a strategic approach to dealing with stressful situations. Those who use proactive coping strategies tend to accept changes and act before changes are expected. In contrast, those who use reactive coping are less flexible and more likely to act in response to changes. However, little research has assessed how coping style changes with age. This study investigated age-related changes in coping strategies and stress responsiveness and the influence of age on the processing of conditioned fear memory in 2-, 12- and 23-month-old male mice. Coping strategy was measured by comparing the escape latency in an active avoidance test and by comparing responses to a shock prod. The results showed that proactivity in coping response gradually decreased with age. Stress responsiveness, measured by stress-induced concentration of corticosterone, was also highest in 2-month-old mice and decreased with age. Consolidation of fear memory was highest in 12-month-old mice and was negatively correlated with the degree of stress responsiveness and proactivity in coping. Fear extinction did not differ among age groups and was not correlated with stress responsiveness or the proactivity of coping. However, the maintenance of extinct fear memory, which was best in 2-month-old mice and worst in 12-month-old mice, was negatively correlated with stress responsiveness but not with coping style. Age-dependent changes in the expression of glucocorticoid receptor (GR) and its regulatory co-chaperones, which are accepted mechanisms for stress hormone stimulation, were measured in the hippocampus. The expression of GR was increased at 12 months compared to other age groups. There were no differences in Hsp70 and BAG1 expression by age. These results can be summarized as follows: (1) stress responsiveness and proactivity in coping decreased with age class; (2) consolidation of fear memory was negatively correlated with both stress responsiveness and proactivity; however, maintenance of

  19. Stress modeling of microdiaphragm pressure sensors

    Science.gov (United States)

    Tack, P. C.; Busta, H. H.

    1986-01-01

    A finite element program analysis was used to model the stress distribution of two monocrystalline silicon diaphragm pressure sensors. One configuration consists of an anisotropically backside etched diaphragm into a 250 micron thick, (100) oriented, silicon wafer. The diaphragm and total chip dimensions are given. The device is rigidly clamped on the back to a support substrate. Another configuration consists of a monocrystalline, (100), microdiaphragm which is formed on top of the wafer and whose area is reduced by a factor of 25 over the first configuration. The diaphragm is rigidly clamped to the silicon wafer. The stresses were calculated at a gauge pressure of 300 mm Hg and used to estimate the piezoresistive responses of resistor elements which were placed parallel and perpendicular near the diaphragm edges.

  20. Modeling baroreflex regulation of heart rate during orthostatic stress

    DEFF Research Database (Denmark)

    Olufsen, Mette; Tran, Hien T.; Ottesen, Johnny T.

    2006-01-01

    . The model uses blood pressure measured in the finger as an input to model heart rate dynamics in response to changes in baroreceptor nerve firing rate, sympathetic and parasympathetic responses, vestibulo-sympathetic reflex, and concentrations of norepinephrine and acetylcholine. We formulate an inverse...... in healthy and hypertensive elderly people the hysteresis loop shifts to higher blood pressure values and its area is diminished. Finally, for hypertensive elderly people the hysteresis loop is generally not closed indicating that during postural change from sitting to standing, the blood pressure resettles......During orthostatic stress, arterial and cardiopulmonary baroreflexes play a key role in maintaining arterial pressure by regulating heart rate. This study, presents a mathematical model that can predict the dynamics of heart rate regulation in response to postural change from sitting to standing...

  1. Sex differences in the stress response in SD rats.

    Science.gov (United States)

    Lu, Jing; Wu, Xue-Yan; Zhu, Qiong-Bin; Li, Jia; Shi, Li-Gen; Wu, Juan-Li; Zhang, Qi-Jun; Huang, Man-Li; Bao, Ai-Min

    2015-05-01

    Sex differences play an important role in depression, the basis of which is an excessive stress response. We aimed at revealing the neurobiological sex differences in the same study in acute- and chronically-stressed rats. Female Sprague-Dawley (SD) rats were randomly divided into 6 groups: chronic unpredictable mild stress (CUMS), acute foot shock (FS) and controls, animals in all 3 groups were sacrificed in proestrus or diestrus. Male SD rats were randomly divided into 3 groups: CUMS, FS and controls. Comparisons were made of behavioral changes in CUMS and control rats, plasma levels of corticosterone (CORT), testosterone (T) and estradiol (E2), and of the hypothalamic mRNA-expression of stress-related molecules, i.e. estrogen receptor α and β, androgen receptor, aromatase, mineralocorticoid receptor, glucocorticoid receptor, corticotropin-releasing hormone, arginine vasopressin and oxytocin. CUMS resulted in disordered estrus cycles, more behavioral and hypothalamic stress-related molecules changes and a stronger CORT response in female rats compared with male rats. Female rats also showed decreased E2 and T levels after FS and CUMS, while male FS rats showed increased E2 and male CUMS rats showed decreased T levels. Stress affects the behavioral, endocrine and the molecular response of the stress systems in the hypothalamus of SD rats in a clear sexual dimorphic way, which has parallels in human data on stress and depression. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Glutaredoxins in plant development, abiotic stress response, and iron homeostasis: From model organisms to crops

    Science.gov (United States)

    Plant growth, development, and response to environmental stress require the judicious balance of reactive oxygen species (ROS). Glutaredoxins (GRXs) are a group of oxidoreductases that participate in the control of ROS and are traditionally defined as redox regulators. New studies suggest the member...

  3. Crosstalk between the Tor and Gcn2 pathways in response to different stresses.

    Science.gov (United States)

    Rødland, Gro Elise; Tvegård, Tonje; Boye, Erik; Grallert, Beáta

    2014-01-01

    Regulating growth and the cell cycle in response to environmental fluctuations is important for all organisms in order to maintain viability. Two major pathways for translational regulation are found in higher eukaryotes: the Tor signaling pathway and those operating through the eIF2α kinases. Studies from several organisms indicate that the two pathways are interlinked, in that Tor complex 1 (TORC1) negatively regulates the Gcn2 kinase. Furthermore, inactivation of TORC1 may be required for activation of Gcn2 in response to stress. Here, we use the model organism Schizosaccharomyces pombe to investigate this crosstalk further. We find that the relationship is more complex than previously thought. First, in response to UV irradiation and oxidative stress, Gcn2 is fully activated in the presence of TORC1 signaling. Second, during amino-acid starvation, activation of Gcn2 is dependent on Tor2 activity, and Gcn2 is required for timely inactivation of the Tor pathway. Our data show that the crosstalk between the two pathways varies with the actual stress applied.

  4. Spaceflight Modifies Escherichia coli Gene Expression in Response to Antibiotic Exposure and Reveals Role of Oxidative Stress Response

    Directory of Open Access Journals (Sweden)

    Thomas R. Aunins

    2018-03-01

    Full Text Available Bacteria grown in space experiments under microgravity conditions have been found to undergo unique physiological responses, ranging from modified cell morphology and growth dynamics to a putative increased tolerance to antibiotics. A common theory for this behavior is the loss of gravity-driven convection processes in the orbital environment, resulting in both reduction of extracellular nutrient availability and the accumulation of bacterial byproducts near the cell. To further characterize the responses, this study investigated the transcriptomic response of Escherichia coli to both microgravity and antibiotic concentration. E. coli was grown aboard International Space Station in the presence of increasing concentrations of the antibiotic gentamicin with identical ground controls conducted on Earth. Here we show that within 49 h of being cultured, E. coli adapted to grow at higher antibiotic concentrations in space compared to Earth, and demonstrated consistent changes in expression of 63 genes in response to an increase in drug concentration in both environments, including specific responses related to oxidative stress and starvation response. Additionally, we find 50 stress-response genes upregulated in response to the microgravity when compared directly to the equivalent concentration in the ground control. We conclude that the increased antibiotic tolerance in microgravity may be attributed not only to diminished transport processes, but also to a resultant antibiotic cross-resistance response conferred by an overlapping effect of stress response genes. Our data suggest that direct stresses of nutrient starvation and acid-shock conveyed by the microgravity environment can incidentally upregulate stress response pathways related to antibiotic stress and in doing so contribute to the increased antibiotic stress tolerance observed for bacteria in space experiments. These results provide insights into the ability of bacteria to adapt under

  5. Spaceflight Modifies Escherichia coli Gene Expression in Response to Antibiotic Exposure and Reveals Role of Oxidative Stress Response.

    Science.gov (United States)

    Aunins, Thomas R; Erickson, Keesha E; Prasad, Nripesh; Levy, Shawn E; Jones, Angela; Shrestha, Shristi; Mastracchio, Rick; Stodieck, Louis; Klaus, David; Zea, Luis; Chatterjee, Anushree

    2018-01-01

    Bacteria grown in space experiments under microgravity conditions have been found to undergo unique physiological responses, ranging from modified cell morphology and growth dynamics to a putative increased tolerance to antibiotics. A common theory for this behavior is the loss of gravity-driven convection processes in the orbital environment, resulting in both reduction of extracellular nutrient availability and the accumulation of bacterial byproducts near the cell. To further characterize the responses, this study investigated the transcriptomic response of Escherichia coli to both microgravity and antibiotic concentration. E. coli was grown aboard International Space Station in the presence of increasing concentrations of the antibiotic gentamicin with identical ground controls conducted on Earth. Here we show that within 49 h of being cultured, E. coli adapted to grow at higher antibiotic concentrations in space compared to Earth, and demonstrated consistent changes in expression of 63 genes in response to an increase in drug concentration in both environments, including specific responses related to oxidative stress and starvation response. Additionally, we find 50 stress-response genes upregulated in response to the microgravity when compared directly to the equivalent concentration in the ground control. We conclude that the increased antibiotic tolerance in microgravity may be attributed not only to diminished transport processes, but also to a resultant antibiotic cross-resistance response conferred by an overlapping effect of stress response genes. Our data suggest that direct stresses of nutrient starvation and acid-shock conveyed by the microgravity environment can incidentally upregulate stress response pathways related to antibiotic stress and in doing so contribute to the increased antibiotic stress tolerance observed for bacteria in space experiments. These results provide insights into the ability of bacteria to adapt under extreme stress

  6. Spaceflight Modifies Escherichia coli Gene Expression in Response to Antibiotic Exposure and Reveals Role of Oxidative Stress Response

    Science.gov (United States)

    Aunins, Thomas R.; Erickson, Keesha E.; Prasad, Nripesh; Levy, Shawn E.; Jones, Angela; Shrestha, Shristi; Mastracchio, Rick; Stodieck, Louis; Klaus, David; Zea, Luis; Chatterjee, Anushree

    2018-01-01

    Bacteria grown in space experiments under microgravity conditions have been found to undergo unique physiological responses, ranging from modified cell morphology and growth dynamics to a putative increased tolerance to antibiotics. A common theory for this behavior is the loss of gravity-driven convection processes in the orbital environment, resulting in both reduction of extracellular nutrient availability and the accumulation of bacterial byproducts near the cell. To further characterize the responses, this study investigated the transcriptomic response of Escherichia coli to both microgravity and antibiotic concentration. E. coli was grown aboard International Space Station in the presence of increasing concentrations of the antibiotic gentamicin with identical ground controls conducted on Earth. Here we show that within 49 h of being cultured, E. coli adapted to grow at higher antibiotic concentrations in space compared to Earth, and demonstrated consistent changes in expression of 63 genes in response to an increase in drug concentration in both environments, including specific responses related to oxidative stress and starvation response. Additionally, we find 50 stress-response genes upregulated in response to the microgravity when compared directly to the equivalent concentration in the ground control. We conclude that the increased antibiotic tolerance in microgravity may be attributed not only to diminished transport processes, but also to a resultant antibiotic cross-resistance response conferred by an overlapping effect of stress response genes. Our data suggest that direct stresses of nutrient starvation and acid-shock conveyed by the microgravity environment can incidentally upregulate stress response pathways related to antibiotic stress and in doing so contribute to the increased antibiotic stress tolerance observed for bacteria in space experiments. These results provide insights into the ability of bacteria to adapt under extreme stress

  7. Effects of systemic glutamatergic manipulations on conditioned eyeblink responses and hyperarousal in a rabbit model of post-traumatic stress disorder.

    Science.gov (United States)

    Burhans, Lauren B; Smith-Bell, Carrie A; Schreurs, Bernard G

    2017-10-01

    Glutamatergic dysfunction is implicated in many neuropsychiatric conditions, including post-traumatic stress disorder (PTSD). Glutamate antagonists have shown some utility in treating PTSD symptoms, whereas glutamate agonists may facilitate cognitive behavioral therapy outcomes. We have developed an animal model of PTSD, based on conditioning of the rabbit's eyeblink response, that addresses two key features: conditioned responses (CRs) to cues associated with an aversive event and a form of conditioned hyperarousal referred to as conditioning-specific reflex modification (CRM). The optimal treatment to reduce both CRs and CRM is unpaired extinction. The goals of the study were to examine whether treatment with the N-methyl-D-aspartate glutamate receptor antagonist ketamine could reduce CRs and CRM, and whether the N-methyl-D-aspartate agonist D-cycloserine combined with unpaired extinction treatment could enhance the extinction of both. Administration of a single dose of subanesthetic ketamine had no significant immediate or delayed effect on CRs or CRM. Combining D-cycloserine with a single day of unpaired extinction facilitated extinction of CRs in the short term while having no impact on CRM. These results caution that treatments may improve one aspect of the PTSD symptomology while having no significant effects on other symptoms, stressing the importance of a multiple-treatment approach to PTSD and of animal models that address multiple symptoms.

  8. Statistics of the Von Mises Stress Response For Structures Subjected To Random Excitations

    Directory of Open Access Journals (Sweden)

    Mu-Tsang Chen

    1998-01-01

    Full Text Available Finite element-based random vibration analysis is increasingly used in computer aided engineering software for computing statistics (e.g., root-mean-square value of structural responses such as displacements, stresses and strains. However, these statistics can often be computed only for Cartesian responses. For the design of metal structures, a failure criterion based on an equivalent stress response, commonly known as the von Mises stress, is more appropriate and often used. This paper presents an approach for computing the statistics of the von Mises stress response for structures subjected to random excitations. Random vibration analysis is first performed to compute covariance matrices of Cartesian stress responses. Monte Carlo simulation is then used to perform scatter and failure analyses using the von Mises stress response.

  9. Sex and stress: Men and women show different cortisol responses to psychological stress induced by the Trier social stress test and the Iowa singing social stress test.

    Science.gov (United States)

    Reschke-Hernández, Alaine E; Okerstrom, Katrina L; Bowles Edwards, Angela; Tranel, Daniel

    2017-01-02

    Acute psychological stress affects each of us in our daily lives and is increasingly a topic of discussion for its role in mental illness, aging, cognition, and overall health. A better understanding of how such stress affects the body and mind could contribute to the development of more effective clinical interventions and prevention practices. Over the past 3 decades, the Trier Social Stress Test (TSST) has been widely used to induce acute stress in a laboratory setting based on the principles of social evaluative threat, namely, a judged speech-making task. A comparable alternative task may expand options for examining acute stress in a controlled laboratory setting. This study uses a within-subjects design to examine healthy adult participants' (n = 20 men, n = 20 women) subjective stress and salivary cortisol responses to the standard TSST (involving public speaking and math) and the newly created Iowa Singing Social Stress Test (I-SSST). The I-SSST is similar to the TSST but with a new twist: public singing. Results indicated that men and women reported similarly high levels of subjective stress in response to both tasks. However, men and women demonstrated different cortisol responses; men showed a robust response to both tasks, and women displayed a lesser response. These findings are in line with previous literature and further underscore the importance of examining possible sex differences throughout various phases of research, including design, analysis, and interpretation of results. Furthermore, this nascent examination of the I-SSST suggests a possible alternative for inducing stress in the laboratory. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. To stress or not to stress: a question of models.

    Science.gov (United States)

    Gray, J Megan; Chaouloff, Francis; Hill, Matthew N

    2015-01-05

    Stress research is a rapidly evolving field that encompasses numerous disciplines ranging from neuroscience to metabolism. With many new researchers migrating into the field, navigating the hows and whys of specific research questions can sometimes be enigmatic given the availability of so many models in the stress field. Additionally, as with every field, there are many seemingly minor experimental details that can have dramatic influences on data interpretation, although many of these are unknown to those not familiar with the field. The aim of this overview is to provide some suggestions and points to guide researchers moving into the stress field and highlight relevant methodological points that they should consider when choosing a model for stress and deciding how to structure a study. We briefly provide a primer on the basics of endpoint measurements in the stress field, factors to consider when choosing a model for acute stress, the difference between repeated and chronic stress, and importantly, influencing variables that modulate endpoints of analysis in stress work. Copyright © 2015 John Wiley & Sons, Inc.

  11. Stress-Related Alterations of Visceral Sensation: Animal Models for Irritable Bowel Syndrome Study

    Science.gov (United States)

    Mulak, Agata; Taché, Yvette

    2011-01-01

    Stressors of different psychological, physical or immune origin play a critical role in the pathophysiology of irritable bowel syndrome participating in symptoms onset, clinical presentation as well as treatment outcome. Experimental stress models applying a variety of acute and chronic exteroceptive or interoceptive stressors have been developed to target different periods throughout the lifespan of animals to assess the vulnerability, the trigger and perpetuating factors determining stress influence on visceral sensitivity and interactions within the brain-gut axis. Recent evidence points towards adequate construct and face validity of experimental models developed with respect to animals' age, sex, strain differences and specific methodological aspects such as non-invasive monitoring of visceromotor response to colorectal distension as being essential in successful identification and evaluation of novel therapeutic targets aimed at reducing stress-related alterations in visceral sensitivity. Underlying mechanisms of stress-induced modulation of visceral pain involve a combination of peripheral, spinal and supraspinal sensitization based on the nature of the stressors and dysregulation of descending pathways that modulate nociceptive transmission or stress-related analgesic response. PMID:21860814

  12. The temporal dynamics of the stress response

    NARCIS (Netherlands)

    Koolhaas, J.M.; Meerlo, P; de Boer, S.F.; Strubbe, J.H.; Bohus, B.G J

    1997-01-01

    This paper summarises the available evidence that failure of defense mechanisms in (semi)-natural social groups of animals may lead to serious forms of stress pathology. Hence the study of social stress may provide animal models with a high face validity. However, most of the animal models of human

  13. Cortisol Stress Response Variability in Early Adolescence Attachment, Affect and Sex

    Science.gov (United States)

    Cameron, Catherine Ann; McKay, Stacey; Susman, Elizabeth J.; Wynne-Edwards, Katherine; Wright, Joan M.; Weinberg, Joanne

    2017-01-01

    Attachment, affect, and sex shape responsivity to psychosocial stress. Concurrent social contexts influence cortisol secretion, a stress hormone and biological marker of hypothalamic–pituitary–adrenal axis activity. Patterns of attachment, emotion status, and sex were hypothesized to relate to bifurcated, that is, accentuated and attenuated, cortisol reactivity. The theoretical framework for this study posits that multiple individual differences mediate a cortisol stress response. The effects of two psychosocial stress interventions, a modified Trier Social Stress Test for Teens and the Frustration Social Stressor for Adolescents were developed and investigated with early adolescents. Both of these protocols induced a significant stress reaction and evoked predicted bifurcation in cortisol responses; an increase or decrease from baseline to reactivity. In Study I, 120 predominantly middle-class, Euro-Canadian early adolescents with a mean age of 13.43 years were studied. The girls' attenuated cortisol reactivity to the public performance stressor related significantly to their self-reported lower maternal-attachment and higher trait-anger. In Study II, a community sample of 146 predominantly Euro-Canadian middle-class youth, with an average age of 14.5 years participated. Their self-reports of higher trait-anger and trait-anxiety, and lower parental attachment by both sexes related differentially to accentuated and attenuated cortisol reactivity to the frustration stressor. Thus, attachment, affect, sex, and the stressor contextual factors were associated with the adrenal-cortical responses of these adolescents through complex interactions. Further studies of individual differences in physiological responses to stress are called for in order to clarify the identities of concurrent protective and risk factors in the psychosocial stress and physiological stress responses of early adolescents. PMID:27468997

  14. Cortisol Stress Response Variability in Early Adolescence: Attachment, Affect and Sex.

    Science.gov (United States)

    Cameron, Catherine Ann; McKay, Stacey; Susman, Elizabeth J; Wynne-Edwards, Katherine; Wright, Joan M; Weinberg, Joanne

    2017-01-01

    Attachment, affect, and sex shape responsivity to psychosocial stress. Concurrent social contexts influence cortisol secretion, a stress hormone and biological marker of hypothalamic-pituitary-adrenal axis activity. Patterns of attachment, emotion status, and sex were hypothesized to relate to bifurcated, that is, accentuated and attenuated, cortisol reactivity. The theoretical framework for this study posits that multiple individual differences mediate a cortisol stress response. The effects of two psychosocial stress interventions, a modified Trier Social Stress Test for Teens and the Frustration Social Stressor for Adolescents were developed and investigated with early adolescents. Both of these protocols induced a significant stress reaction and evoked predicted bifurcation in cortisol responses; an increase or decrease from baseline to reactivity. In Study I, 120 predominantly middle-class, Euro-Canadian early adolescents with a mean age of 13.43 years were studied. The girls' attenuated cortisol reactivity to the public performance stressor related significantly to their self-reported lower maternal-attachment and higher trait-anger. In Study II, a community sample of 146 predominantly Euro-Canadian middle-class youth, with an average age of 14.5 years participated. Their self-reports of higher trait-anger and trait-anxiety, and lower parental attachment by both sexes related differentially to accentuated and attenuated cortisol reactivity to the frustration stressor. Thus, attachment, affect, sex, and the stressor contextual factors were associated with the adrenal-cortical responses of these adolescents through complex interactions. Further studies of individual differences in physiological responses to stress are called for in order to clarify the identities of concurrent protective and risk factors in the psychosocial stress and physiological stress responses of early adolescents.

  15. Vaccine-induced inflammation attenuates the vascular responses to mental stress

    NARCIS (Netherlands)

    Paine, N.J.; Ring, C.; Bosch, J.A.; Drayson, M.T.; Aldred, S.; Veldhuijzen van Zanten, J.J.C.S.

    2014-01-01

    Inflammation is associated with poorer vascular function, with evidence to suggest that inflammation can also impair the vascular responses to mental stress. This study examined the effects of vaccine-induced inflammation on vascular responses to mental stress in healthy participants. Eighteen male

  16. Animal models of social stress: the dark side of social interactions.

    Science.gov (United States)

    Masis-Calvo, Marianela; Schmidtner, Anna K; de Moura Oliveira, Vinícius E; Grossmann, Cindy P; de Jong, Trynke R; Neumann, Inga D

    2018-05-10

    Social stress occurs in all social species, including humans, and shape both mental health and future interactions with conspecifics. Animal models of social stress are used to unravel the precise role of the main stress system - the HPA axis - on the one hand, and the social behavior network on the other, as these are intricately interwoven. The present review aims to summarize the insights gained from three highly useful and clinically relevant animal models of psychosocial stress: the resident-intruder (RI) test, the chronic subordinate colony housing (CSC), and the social fear conditioning (SFC). Each model brings its own focus: the role of the HPA axis in shaping acute social confrontations (RI test), the physiological and behavioral impairments resulting from chronic exposure to negative social experiences (CSC), and the neurobiology underlying social fear and its effects on future social interactions (SFC). Moreover, these models are discussed with special attention to the HPA axis and the neuropeptides vasopressin and oxytocin, which are important messengers in the stress system, in emotion regulation, as well as in the social behavior network. It appears that both nonapeptides balance the relative strength of the stress response, and simultaneously predispose the animal to positive or negative social interactions.

  17. Stress-reducing preventive maintenance model for a unit under stressful environment

    International Nuclear Information System (INIS)

    Park, J.H.; Chang, Woojin; Lie, C.H.

    2012-01-01

    We develop a preventive maintenance (PM) model for a unit operated under stressful environment. The PM model in this paper consists of a failure rate model and two cost models to determine the optimal PM scheduling which minimizes a cost rate. The assumption for the proposed model is that stressful environment accelerates the failure of the unit and periodic maintenances reduce stress from outside. The failure rate model handles the maintenance effect of PM using improvement and stress factors. The cost models are categorized into two failure recognition cases: immediate failure recognition and periodic failure detection. The optimal PM scheduling is obtained by considering the trade-off between the related cost and the lifetime of a unit in our model setting. The practical usage of our proposed model is tested through a numerical example.

  18. Using Phenomic Analysis of Photosynthetic Function for Abiotic Stress Response Gene Discovery

    KAUST Repository

    Rungrat, Tepsuda

    2016-09-09

    Monitoring the photosynthetic performance of plants is a major key to understanding how plants adapt to their growth conditions. Stress tolerance traits have a high genetic complexity as plants are constantly, and unavoidably, exposed to numerous stress factors, which limits their growth rates in the natural environment. Arabidopsis thaliana, with its broad genetic diversity and wide climatic range, has been shown to successfully adapt to stressful conditions to ensure the completion of its life cycle. As a result, A. thaliana has become a robust and renowned plant model system for studying natural variation and conducting gene discovery studies. Genome wide association studies (GWAS) in restructured populations combining natural and recombinant lines is a particularly effective way to identify the genetic basis of complex traits. As most abiotic stresses affect photosynthetic activity, chlorophyll fluorescence measurements are a potential phenotyping technique for monitoring plant performance under stress conditions. This review focuses on the use of chlorophyll fluorescence as a tool to study genetic variation underlying the stress tolerance responses to abiotic stress in A. thaliana.

  19. Similar cold stress induces sex-specific neuroendocrine and working memory responses.

    Science.gov (United States)

    Solianik, Rima; Skurvydas, Albertas; Urboniene, Daiva; Eimantas, Nerijus; Daniuseviciute, Laura; Brazaitis, Marius

    2015-01-01

    Men have higher cold-induced neuroendocrine response than women; nevertheless, it is not known whether a different stress hormone rise elicits different effects on cognition during whole body cooling. The objective was to compare the effect of cold-induced neuroendocrine responses on the performance of working memory sensitive tasks between men and women. The cold stress continued until rectal temperature reached 35.5 degree C or for a maximum of 170 min. Working memory performance and stress hormone concentrations were monitored. During cold stress, body temperature variables dropped in all subjects (P < 0.001) and did not differ between sexes. Cold stress raised plasma epinephrine and serum cortisol levels only in men (P < 0.05). Cold stress adversely affected memory performance in men but not in women (P < 0.05). The present study indicated that similar moderate cold stress in men and women induces sex-specific neuroendocrine and working memory responses.

  20. Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity.

    Science.gov (United States)

    Aschbacher, Kirstin; O'Donovan, Aoife; Wolkowitz, Owen M; Dhabhar, Firdaus S; Su, Yali; Epel, Elissa

    2013-09-01

    Chronic psychological stress appears to accelerate biological aging, and oxidative damage is an important potential mediator of this process. However, the mechanisms by which psychological stress promotes oxidative damage are poorly understood. This study investigates the theory that cortisol increases in response to an acutely stressful event have the potential to either enhance or undermine psychobiological resilience to oxidative damage, depending on the body's prior exposure to chronic psychological stress. In order to achieve a range of chronic stress exposure, forty-eight post-menopausal women were recruited in a case-control design that matched women caring for spouses with dementia (a chronic stress model) with similarly aged control women whose spouses were healthy. Participants completed a questionnaire assessing perceived stress over the previous month and provided fasting blood. Three markers of oxidative damage were assessed: 8-iso-prostaglandin F(2α) (IsoP), lipid peroxidation, 8-hydroxyguanosine (8-oxoG) and 8-hydroxy-2'-deoxyguanosine (8-OHdG), reflecting oxidative damage to RNA/DNA respectively. Within approximately one week, participants completed a standardized acute laboratory stress task while salivary cortisol responses were measured. The increase from 0 to 30 min was defined as "peak" cortisol reactivity, while the increase from 0 to 15 min was defined as "anticipatory" cortisol reactivity, representing a cortisol response that began while preparing for the stress task. Women under chronic stress had higher 8-oxoG, oxidative damage to RNA (pstress and elevated oxidative stress damage, but only among women under chronic stress. Consistent with this model, bootstrapped path analysis found significant indirect paths from perceived stress to 8-oxoG and IsoP (but not 8-OHdG) via anticipatory cortisol reactivity, showing the expected relations among chronically stressed participants (p≤.01) Intriguingly, among those with low chronic stress

  1. Systems responses to progressive water stress in durum wheat.

    Directory of Open Access Journals (Sweden)

    Dimah Z Habash

    Full Text Available Durum wheat is susceptible to terminal drought which can greatly decrease grain yield. Breeding to improve crop yield is hampered by inadequate knowledge of how the physiological and metabolic changes caused by drought are related to gene expression. To gain better insight into mechanisms defining resistance to water stress we studied the physiological and transcriptome responses of three durum breeding lines varying for yield stability under drought. Parents of a mapping population (Lahn x Cham1 and a recombinant inbred line (RIL2219 showed lowered flag leaf relative water content, water potential and photosynthesis when subjected to controlled water stress time transient experiments over a six-day period. RIL2219 lost less water and showed constitutively higher stomatal conductance, photosynthesis, transpiration, abscisic acid content and enhanced osmotic adjustment at equivalent leaf water compared to parents, thus defining a physiological strategy for high yield stability under water stress. Parallel analysis of the flag leaf transcriptome under stress uncovered global trends of early changes in regulatory pathways, reconfiguration of primary and secondary metabolism and lowered expression of transcripts in photosynthesis in all three lines. Differences in the number of genes, magnitude and profile of their expression response were also established amongst the lines with a high number belonging to regulatory pathways. In addition, we documented a large number of genes showing constitutive differences in leaf transcript expression between the genotypes at control non-stress conditions. Principal Coordinates Analysis uncovered a high level of structure in the transcriptome response to water stress in each wheat line suggesting genome-wide co-ordination of transcription. Utilising a systems-based approach of analysing the integrated wheat's response to water stress, in terms of biological robustness theory, the findings suggest that each durum

  2. Conceptual framework and trend analysis of water-level responses to hydrologic stresses, Pahute Mesa–Oasis Valley groundwater basin, Nevada, 1966-2016

    Science.gov (United States)

    Jackson, Tracie R.; Fenelon, Joseph M.

    2018-05-31

    This report identifies water-level trends in wells and provides a conceptual framework that explains the hydrologic stresses and factors causing the trends in the Pahute Mesa–Oasis Valley (PMOV) groundwater basin, southern Nevada. Water levels in 79 wells were analyzed for trends between 1966 and 2016. The magnitude and duration of water-level responses to hydrologic stresses were analyzed graphically, statistically, and with water-level models.The conceptual framework consists of multiple stress-specific conceptual models to explain water-level responses to the following hydrologic stresses: recharge, evapotranspiration, pumping, nuclear testing, and wellbore equilibration. Dominant hydrologic stresses affecting water-level trends in each well were used to categorize trends as nonstatic, transient, or steady state.The conceptual framework of water-level responses to hydrologic stresses and trend analyses provide a comprehensive understanding of the PMOV basin and vicinity. The trend analysis links water-level fluctuations in wells to hydrologic stresses and potential factors causing the trends. Transient and steady-state trend categorizations can be used to determine the appropriate water-level data for groundwater studies.

  3. Plant responses to simultaneous stress of waterlogging and shade: amplified or hierarchical effects?

    NARCIS (Netherlands)

    Lenssen, J.P.M.; Menting, F.B.J.; Putten, van der W.H.

    2003-01-01

    Community ecologists often assume a hierarchy of environmental sieves to predict the impact of multiple stresses on species distribution. We tested whether this assumption corresponds to physiological responses using impact of water level and shade in wetland vegetation as a model. Seedlings of four

  4. Dopamine response to psychosocial stress in humans and its relationship to individual differences in personality traits.

    Science.gov (United States)

    Suridjan, Ivonne; Boileau, Isabelle; Bagby, Michael; Rusjan, Pablo M; Wilson, Alan A; Houle, Sylvain; Mizrahi, Romina

    2012-07-01

    Previous studies have reported inter-individual variability in the dopamine (DA) response to stress. This variability might be related to individual differences in the vulnerability to experience the negative effect of stress. To investigate whether personality traits as measured by the revised NEO personality inventory explain variability in DA response to a psychosocial stress task. Eleven healthy adults, mean age of 26 ± 3.87 underwent two positron emission tomography (PET) scans using the dopamine D(2/3) agonist, [11C]-(+)-PHNO under a control and stress condition. The simplified reference tissue model (SRTM) was used to obtain [11C]-(+)-PHNO binding potential (BP(ND)). Stress-induced DA response was indexed as a percent change in [11C]-(+)-PHNO BP(ND) between control and stress conditions. The regions of interest were defined into D2-rich regions, which included the Associative and Sensorimotor Striatum (AST and SMST); D(2/3) mixed regions, which included the limbic striatum (LST) and globus pallidus (GP); and D3-rich region, which included the Substantia Nigra (SN). Several personality traits within the Neuroticism and Openness to Experience domain were significantly correlated with blunted DA response to stress. Specifically, the Angry-Hostility, Vulnerability, and Depression trait were associated with blunted DA stress response in the AST (r = -0.645, p = 0.032), LST (r = -0.677, p = 0.022) and GP (r = -0.736, p = 0.010), respectively. The Openness to Values was correlated with a decreased DA release in the SN (r = -0.706, p = 0.015). Variability in DA stress response might be related to individual differences in personality. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  5. Deciphering hepatocellular responses to metabolic and oncogenic stress

    Directory of Open Access Journals (Sweden)

    Kathrina L. Marcelo

    2015-08-01

    Full Text Available Each cell type responds uniquely to stress and fractionally contributes to global and tissue-specific stress responses. Hepatocytes, liver macrophages (MΦ, and sinusoidal endothelial cells (SEC play functionally important and interdependent roles in adaptive processes such as obesity and tumor growth. Although these cell types demonstrate significant phenotypic and functional heterogeneity, their distinctions enabling disease-specific responses remain understudied. We developed a strategy for the simultaneous isolation and quantification of these liver cell types based on antigenic cell surface marker expression. To demonstrate the utility and applicability of this technique, we quantified liver cell-specific responses to high-fat diet (HFD or diethylnitrosamine (DEN, a liver-specific carcinogen, and found that while there was only a marginal increase in hepatocyte number, MΦ and SEC populations were quantitatively increased. Global gene expression profiling of hepatocytes, MΦ and SEC identified characteristic gene signatures that define each cell type in their distinct physiological or pathological states. Integration of hepatic gene signatures with available human obesity and liver cancer microarray data provides further insight into the cell-specific responses to metabolic or oncogenic stress. Our data reveal unique gene expression patterns that serve as molecular “fingerprints” for the cell-centric responses to pathologic stimuli in the distinct microenvironment of the liver. The technical advance highlighted in this study provides an essential resource for assessing hepatic cell-specific contributions to metabolic and oncogenic stress, information that could unveil previously unappreciated molecular mechanisms for the cellular crosstalk that underlies the continuum from metabolic disruption to obesity and ultimately hepatic cancer.

  6. Short-term spatial memory responses in aged Japanese quail selected for divergent adrenocortical stress responsiveness.

    Science.gov (United States)

    Suhr, C L; Schmidt, J B; Treese, S T; Satterlee, D G

    2010-04-01

    Stress-induced glucocorticoids can dampen learning and spatial memory via neuronal damage to the hippocampus. Cognition losses can be transient (associated with acute stress episodes) or permanent as in aged individuals who show chronic glucocorticoid-induced accelerated brain aging and neurodegeneration (dementia). Thus, chronic versus acute stress effects on spatial memory responses of quail selected for reduced (low stress, LS) or exaggerated (high stress, HS) plasma corticosterone (B) response to brief restraint were assessed. Aged food-motivated male LS and HS quail were tested for 10 min in a feed-baited 8-arm radial arm maze (RAM) 1) at 255 d of age (quail who had experienced lifelong management stressors but who were otherwise never intentionally stressed; that is, chronically stressed birds), 2) on the next day post-acute stressor treatment (5 min of restraint), and 3) on the next day without treatment (acute stress recovery). The RAM tests used the win-shift procedure in which visited arms were not rebaited. Radial arm maze performance was measured by determination of the total number of arm choices made, the number of correct entries made into baited arms out of the first 8 choices, the time required to make a choice, and the number of pellets eaten. Line effects (P LS), and number of pellets eaten (HS RAM testing nor its interaction with line further influenced these variables. Thus, although selection for divergent plasma B responsiveness to an acute stressor was found to be associated with severe impairment of spatial memory in aged male HS compared with LS quail, the observed spatial memory impairments (HS > LS) could not be further altered by acute stressor treatment. Line differences in cognition may reflect lifelong management-induced stress episodes that periodically produce higher plasma B responses in HS than LS quail, which underlie HS quail memory deficits, or other etiologies, or both.

  7. Reproduction elevates the corticosterone stress response in common fruit bats.

    Science.gov (United States)

    Klose, Stefan M; Smith, Carolynn L; Denzel, Andrea J; Kalko, Elisabeth K V

    2006-04-01

    Changes in reproductive state or the environment may affect the sensitivity of the hypothalamic-pituitary-andrenal (HPA) axis. However, little is known about the dynamics of the resulting corticosteroid stress response, in particular in tropical mammals. In this study, we address the modulation of corticosterone release in response to different reproductive conditions and seasonality in 326 free-living common fruit-eating bats (Artibeus jamaicensis) on Barro Colorado Island in Panama during dry and wet seasons. We present strong evidence that stress sensitivity is primarily modulated by reproductive condition. In reproductively active females, corticosterone increases were more rapid and reached higher levels, but also decreased significantly faster than in inactive females. The corticosterone response was weaker in reproducing males than in females and delayed compared to non-reproductive males. Testes volume in reproductively active males was negatively correlated with corticosterone concentrations. Our findings suggest differentiated dynamics in the corticosterone stress response between sexes, potentially reflecting conflicting ecological demands. In females, a strong acute corticosterone response may represent high stress- and risk-sensitivity that facilitates escape and thus helps to protect reproduction. In males, suppression during reproductive activity could reflect lowered stress sensitivity to avoid chronically elevated corticosterone levels in times of frequent aggressive and therefore costly inter-male encounters.

  8. Stress tolerances of nullmutants of function-unknown genes encoding menadione stress-responsive proteins in Aspergillus nidulans.

    Science.gov (United States)

    Leiter, Éva; Bálint, Mihály; Miskei, Márton; Orosz, Erzsébet; Szabó, Zsuzsa; Pócsi, István

    2016-07-01

    A group of menadione stress-responsive function-unkown genes of Aspergillus nidulans (Locus IDs ANID_03987.1, ANID_06058.1, ANID_10219.1, and ANID_10260.1) was deleted and phenotypically characterized. Importantly, comparative and phylogenetic analyses of the tested A. nidulans genes and their orthologs shed light only on the presence of a TANGO2 domain with NRDE protein motif in the translated ANID_06058.1 gene but did not reveal any recognizable protein-encoding domains in other protein sequences. The gene deletion strains were subjected to oxidative, osmotic, and metal ion stress and, surprisingly, only the ΔANID_10219.1 mutant showed an increased sensitivity to 0.12 mmol l(-1) menadione sodium bisulfite. The gene deletions affected the stress sensitivities (tolerances) irregularly, for example, some strains grew more slowly when exposed to various oxidants and/or osmotic stress generating agents, meanwhile the ΔANID_10260.1 mutant possessed a wild-type tolerance to all stressors tested. Our results are in line with earlier studies demonstrating that the deletions of stress-responsive genes do not confer necessarily any stress-sensitivity phenotypes, which can be attributed to compensatory mechanisms based on other elements of the stress response system with overlapping functions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Physiological Responses to Thermal Stress and Exercise

    Science.gov (United States)

    Iyota, Hiroyuki; Ohya, Akira; Yamagata, Junko; Suzuki, Takashi; Miyagawa, Toshiaki; Kawabata, Takashi

    The simple and noninvasive measuring methods of bioinstrumentation in humans is required for optimization of air conditioning and management of thermal environments, taking into consideration the individual specificity of the human body as well as the stress conditions affecting each. Changes in human blood circulation were induced with environmental factors such as heat, cold, exercise, mental stress, and so on. In this study, the physiological responses of human body to heat stress and exercise were investigated in the initial phase of the developmental research. We measured the body core and skin temperatures, skin blood flow, and pulse wave as the indices of the adaptation of the cardiovascular system. A laser Doppler skin blood flowmetry using an optical-sensor with a small portable data logger was employed for the measurement. These results reveal the heat-stress and exercise-induced circulatory responses, which are under the control of the sympathetic nerve system. Furthermore, it was suggested that the activity of the sympathetic nervous system could be evaluated from the signals of the pulse wave included in the signals derived from skin blood flow by means of heart rate variability assessments and detecting peak heights of velocity-plethysmogram.

  10. Preliminary analysis of cold stress responsive proteins in Mesocestoides corti larvae.

    Science.gov (United States)

    Canclini, Lucía; Esteves, Adriana

    2007-07-01

    Many parasites undergo sudden changes in environmental conditions at some stage during their life cycle. The molecular response to this variation is characterised by a rapid transcriptional activation of a specific set of genes coding for proteins generically known as stress proteins. They appear to be also involved in various biological processes including cell proliferation and differentiation. The platyhelminth parasite, Mesocestoides corti (Cestoda) presents important properties as a model organism. Under stress conditions, key molecules involved in metabolic pathways as well as in the growth and differentiation of the parasite can be identified. 2D protein expression profile of tetrathyridia of M. corti, submitted to nutritional starvation and cold stress is described, as well as the recovery pattern. A set of specifically expressed proteins was observed in each experimental condition. Quantitative and qualitative differences and stress recovery pattern are also reported. This work makes evident the high plasticity and resistance to extreme environmental conditions of these parasites at the molecular level.

  11. The Response to Heat Shock and Oxidative Stress in Saccharomyces cerevisiae

    Science.gov (United States)

    Morano, Kevin A.; Grant, Chris M.; Moye-Rowley, W. Scott

    2012-01-01

    A common need for microbial cells is the ability to respond to potentially toxic environmental insults. Here we review the progress in understanding the response of the yeast Saccharomyces cerevisiae to two important environmental stresses: heat shock and oxidative stress. Both of these stresses are fundamental challenges that microbes of all types will experience. The study of these environmental stress responses in S. cerevisiae has illuminated many of the features now viewed as central to our understanding of eukaryotic cell biology. Transcriptional activation plays an important role in driving the multifaceted reaction to elevated temperature and levels of reactive oxygen species. Advances provided by the development of whole genome analyses have led to an appreciation of the global reorganization of gene expression and its integration between different stress regimens. While the precise nature of the signal eliciting the heat shock response remains elusive, recent progress in the understanding of induction of the oxidative stress response is summarized here. Although these stress conditions represent ancient challenges to S. cerevisiae and other microbes, much remains to be learned about the mechanisms dedicated to dealing with these environmental parameters. PMID:22209905

  12. Cumulative exposure to prior collective trauma and acute stress responses to the Boston marathon bombings.

    Science.gov (United States)

    Garfin, Dana Rose; Holman, E Alison; Silver, Roxane Cohen

    2015-06-01

    The role of repeated exposure to collective trauma in explaining response to subsequent community-wide trauma is poorly understood. We examined the relationship between acute stress response to the 2013 Boston Marathon bombings and prior direct and indirect media-based exposure to three collective traumatic events: the September 11, 2001 (9/11) terrorist attacks, Superstorm Sandy, and the Sandy Hook Elementary School shooting. Representative samples of residents of metropolitan Boston (n = 846) and New York City (n = 941) completed Internet-based surveys shortly after the Boston Marathon bombings. Cumulative direct exposure and indirect exposure to prior community trauma and acute stress symptoms were assessed. Acute stress levels did not differ between Boston and New York metropolitan residents. Cumulative direct and indirect, live-media-based exposure to 9/11, Superstorm Sandy, and the Sandy Hook shooting were positively associated with acute stress responses in the covariate-adjusted model. People who experience multiple community-based traumas may be sensitized to the negative impact of subsequent events, especially in communities previously exposed to similar disasters. © The Author(s) 2015.

  13. Stress, Roles and Responsibilities of Single Mothers in Malaysia

    Directory of Open Access Journals (Sweden)

    Mohd Hashim Intan Hashimah

    2015-01-01

    Full Text Available Life as a single mother is often associated with great demands and many challenges. This study examines how a group of single mothers in Malaysia views sources of stress and challenges in their lives. It also investigates perceived roles and responsibilities of single mothers. Three hundred single mothers from all over Malaysia were interviewed in this study. Single mothers reported relatively low level of stress that was mostly related to financial (insufficient pay and day-to-day living. They had fairly low stress on issues related to romantic partner and romantic relationships. They however reported extensive roles and responsibilities. Single mothers reported feeling responsible across various domains of life including for their own health and well-being and also for the health and wellbeing of their family and friends. They reported high level of coping and particularly oriented towards solving the problems. They also reported general satisfaction over life. Correlation analysis indicated significant positive relationships between roles and responsibilities and life satisfaction and coping in which coping was associated with higher level of roles and responsibilities and life satisfaction. There was also a negative correlation between stress and life satisfaction in which more stress was associated with lower life satisfaction. Findings indicated a substantial nurturing role of single mothers and provided important policy and practice implications that highlights the important to study and continuously improve quality of life for these women. Finally, this study highlights the important to continuously study and support, important but marginalized groups in society such as single mothers.

  14. Cellular stress responses for monitoring and modulating ageing

    DEFF Research Database (Denmark)

    Demirovic, Dino; Schnebert, Sylvianne; Nizard, Carine

    2013-01-01

    biochemical methods, detecting one or more proteins exclusively involved in the specific stress response pathways. The results indicate that the ageing phenotype is a result of an ineffective probability for cells to respond to stress. http://dx.doi.org/10.1016/j.freeradbiomed.2013.08.023...

  15. Proteomic analysis of cold stress responses in tobacco seedlings ...

    African Journals Online (AJOL)

    Cold stress is one of the major abiotic stresses limiting the productivity and the geographical distribution of many important crops. To gain a better understanding of cold stress responses in tobacco (Nicotiana tabacum), we carried out a comparative proteomic analysis. Five-week-old tobacco seedlings were treated at 4°C ...

  16. Stress Induces a Shift Towards Striatum-Dependent Stimulus-Response Learning via the Mineralocorticoid Receptor.

    Science.gov (United States)

    Vogel, Susanne; Klumpers, Floris; Schröder, Tobias Navarro; Oplaat, Krista T; Krugers, Harm J; Oitzl, Melly S; Joëls, Marian; Doeller, Christian F; Fernández, Guillén

    2017-05-01

    Stress is assumed to cause a shift from flexible 'cognitive' memory to more rigid 'habit' memory. In the spatial memory domain, stress impairs place learning depending on the hippocampus whereas stimulus-response learning based on the striatum appears to be improved. While the neural basis of this shift is still unclear, previous evidence in rodents points towards cortisol interacting with the mineralocorticoid receptor (MR) to affect amygdala functioning. The amygdala is in turn assumed to orchestrate the stress-induced shift in memory processing. However, an integrative study testing these mechanisms in humans is lacking. Therefore, we combined functional neuroimaging of a spatial memory task, stress-induction, and administration of an MR-antagonist in a full-factorial, randomized, placebo-controlled between-subjects design in 101 healthy males. We demonstrate that stress-induced increases in cortisol lead to enhanced stimulus-response learning, accompanied by increased amygdala activity and connectivity to the striatum. Importantly, this shift was prevented by an acute administration of the MR-antagonist spironolactone. Our findings support a model in which the MR and the amygdala play an important role in the stress-induced shift towards habit memory systems, revealing a fundamental mechanism of adaptively allocating neural resources that may have implications for stress-related mental disorders.

  17. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants

    Directory of Open Access Journals (Sweden)

    Jong-Myong eKim

    2015-03-01

    Full Text Available Chromatin regulation is essential to regulate genes and genome activities. In plants, the alteration of histone modification and DNA methylation are coordinated with changes in the expression of stress-responsive genes to adapt to environmental changes. Several chromatin regulators have been shown to be involved in the regulation of stress-responsive gene networks under abiotic stress conditions. Specific histone modification sites and the histone modifiers that regulate key stress-responsive genes have been identified by genetic and biochemical approaches, revealing the importance of chromatin regulation in plant stress responses. Recent studies have also suggested that histone modification plays an important role in plant stress memory. In this review, we summarize recent progress on the regulation and alteration of histone modification (acetylation, methylation, phosphorylation, and SUMOylation in response to the abiotic stresses, drought, high-salinity, heat, and cold in plants.

  18. The CRF Family of Neuropeptides and their Receptors - Mediators of the Central Stress Response

    Science.gov (United States)

    Dedic, Nina; Chen, Alon; Deussing, Jan M.

    2018-01-01

    Background: Dysregulated stress neurocircuits, caused by genetic and/or environmental changes, underlie the development of many neuropsychiatric disorders. Corticotropin-releasing factor (CRF) is the major physiological activator of the hypothalamic-pituitary-adrenal (HPA) axis and conse-quently a primary regulator of the mammalian stress response. Together with its three family members, urocortins (UCNs) 1, 2, and 3, CRF integrates the neuroendocrine, autonomic, metabolic and behavioral responses to stress by activating its cognate receptors CRFR1 and CRFR2. Objective: Here we review the past and current state of the CRF/CRFR field, ranging from pharmacologi-cal studies to genetic mouse models and virus-mediated manipulations. Results: Although it is well established that CRF/CRFR1 signaling mediates aversive responses, includ-ing anxiety and depression-like behaviors, a number of recent studies have challenged this viewpoint by revealing anxiolytic and appetitive properties of specific CRF/CRFR1 circuits. In contrast, the UCN/CRFR2 system is less well understood and may possibly also exert divergent functions on physiol-ogy and behavior depending on the brain region, underlying circuit, and/or experienced stress conditions. Conclusion: A plethora of available genetic tools, including conventional and conditional mouse mutants targeting CRF system components, has greatly advanced our understanding about the endogenous mecha-nisms underlying HPA system regulation and CRF/UCN-related neuronal circuits involved in stress-related behaviors. Yet, the detailed pathways and molecular mechanisms by which the CRF/UCN-system translates negative or positive stimuli into the final, integrated biological response are not completely un-derstood. The utilization of future complementary methodologies, such as cell-type specific Cre-driver lines, viral and optogenetic tools will help to further dissect the function of genetically defined CRF/UCN neurocircuits in the context of

  19. Methods for monitoring endoplasmic reticulum stress and the unfolded protein response.

    LENUS (Irish Health Repository)

    Samali, Afshin

    2010-01-01

    The endoplasmic reticulum (ER) is the site of folding of membrane and secreted proteins in the cell. Physiological or pathological processes that disturb protein folding in the endoplasmic reticulum cause ER stress and activate a set of signaling pathways termed the Unfolded Protein Response (UPR). The UPR can promote cellular repair and sustained survival by reducing the load of unfolded proteins through upregulation of chaperones and global attenuation of protein synthesis. Research into ER stress and the UPR continues to grow at a rapid rate as many new investigators are entering the field. There are also many researchers not working directly on ER stress, but who wish to determine whether this response is activated in the system they are studying: thus, it is important to list a standard set of criteria for monitoring UPR in different model systems. Here, we discuss approaches that can be used by researchers to plan and interpret experiments aimed at evaluating whether the UPR and related processes are activated. We would like to emphasize that no individual assay is guaranteed to be the most appropriate one in every situation and strongly recommend the use of multiple assays to verify UPR activation.

  20. Methods for Monitoring Endoplasmic Reticulum Stress and the Unfolded Protein Response

    Directory of Open Access Journals (Sweden)

    Afshin Samali

    2010-01-01

    Full Text Available The endoplasmic reticulum (ER is the site of folding of membrane and secreted proteins in the cell. Physiological or pathological processes that disturb protein folding in the endoplasmic reticulum cause ER stress and activate a set of signaling pathways termed the Unfolded Protein Response (UPR. The UPR can promote cellular repair and sustained survival by reducing the load of unfolded proteins through upregulation of chaperones and global attenuation of protein synthesis. Research into ER stress and the UPR continues to grow at a rapid rate as many new investigators are entering the field. There are also many researchers not working directly on ER stress, but who wish to determine whether this response is activated in the system they are studying: thus, it is important to list a standard set of criteria for monitoring UPR in different model systems. Here, we discuss approaches that can be used by researchers to plan and interpret experiments aimed at evaluating whether the UPR and related processes are activated. We would like to emphasize that no individual assay is guaranteed to be the most appropriate one in every situation and strongly recommend the use of multiple assays to verify UPR activation.

  1. Aged rats are hypo-responsive to acute restraint: implications for psychosocial stress in aging

    Directory of Open Access Journals (Sweden)

    Heather M Buechel

    2014-02-01

    Full Text Available Cognitive processes associated with prefrontal cortex and hippocampus decline with age and are vulnerable to disruption by stress. The stress/ stress hormone/ allostatic load hypotheses of brain aging posit that brain aging, at least in part, is the manifestation of life-long stress exposure. In addition, as humans age, there is a profound increase in the incidence of new onset stressors, many of which are psychosocial (e.g., loss of job, death of spouse, social isolation, and aged humans are well-understood to be more vulnerable to the negative consequences of such new-onset chronic psychosocial stress events. However, the mechanistic underpinnings of this age-related shift in chronic psychosocial stress response, or the initial acute phase of that chronic response, have been less well-studied. Here, we separated young (3 mo. and aged (21 mo. male F344 rats into control and acute restraint (an animal model of psychosocial stress groups (n = 9-12/ group. We then assessed hippocampus-associated behavioral, electrophysiological, and transcriptional outcomes, as well as blood glucocorticoid and sleep architecture changes. Aged rats showed characteristic water maze, deep sleep, transcriptome, and synaptic sensitivity changes compared to young. Young and aged rats showed similar levels of distress during the three hour restraint, as well as highly significant increases in blood glucocorticoid levels 21 hours after restraint. However, young, but not aged, animals responded to stress exposure with water maze deficits, loss of deep sleep and hyperthermia. These results demonstrate that aged subjects are hypo-responsive to new-onset acute psychosocial stress, which may have negative consequences for long-term stress adaptation and suggest that age itself may act as a stressor occluding the influence of new onset stressors.

  2. Aged rats are hypo-responsive to acute restraint: implications for psychosocial stress in aging

    Science.gov (United States)

    Buechel, Heather M.; Popovic, Jelena; Staggs, Kendra; Anderson, Katie L.; Thibault, Olivier; Blalock, Eric M.

    2013-01-01

    Cognitive processes associated with prefrontal cortex and hippocampus decline with age and are vulnerable to disruption by stress. The stress/stress hormone/allostatic load hypotheses of brain aging posit that brain aging, at least in part, is the manifestation of life-long stress exposure. In addition, as humans age, there is a profound increase in the incidence of new onset stressors, many of which are psychosocial (e.g., loss of job, death of spouse, social isolation), and aged humans are well-understood to be more vulnerable to the negative consequences of such new-onset chronic psychosocial stress events. However, the mechanistic underpinnings of this age-related shift in chronic psychosocial stress response, or the initial acute phase of that chronic response, have been less well-studied. Here, we separated young (3 month) and aged (21 month) male F344 rats into control and acute restraint (an animal model of psychosocial stress) groups (n = 9–12/group). We then assessed hippocampus-associated behavioral, electrophysiological, and transcriptional outcomes, as well as blood glucocorticoid and sleep architecture changes. Aged rats showed characteristic water maze, deep sleep, transcriptome, and synaptic sensitivity changes compared to young. Young and aged rats showed similar levels of distress during the 3 h restraint, as well as highly significant increases in blood glucocorticoid levels 21 h after restraint. However, young, but not aged, animals responded to stress exposure with water maze deficits, loss of deep sleep and hyperthermia. These results demonstrate that aged subjects are hypo-responsive to new-onset acute psychosocial stress, which may have negative consequences for long-term stress adaptation and suggest that age itself may act as a stressor occluding the influence of new onset stressors. PMID:24575039

  3. Proteomics analysis of alfalfa response to heat stress.

    Directory of Open Access Journals (Sweden)

    Weimin Li

    Full Text Available The proteome responses to heat stress have not been well understood. In this study, alfalfa (Medicago sativa L. cv. Huaiyin seedlings were exposed to 25 °C (control and 40 °C (heat stress in growth chambers, and leaves were collected at 24, 48 and 72 h after treatment, respectively. The morphological, physiological and proteomic processes were negatively affected under heat stress. Proteins were extracted and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE, and differentially expressed protein spots were identified by mass spectrometry (MS. Totally, 81 differentially expressed proteins were identified successfully by MALDI-TOF/TOF. These proteins were categorized into nine classes: including metabolism, energy, protein synthesis, protein destination/storage, transporters, intracellular traffic, cell structure, signal transduction and disease/defence. Five proteins were further analyzed for mRNA levels. The results of the proteomics analyses provide a better understanding of the molecular basis of heat-stress responses in alfalfa.

  4. Regulation of cellulose synthesis in response to stress.

    Science.gov (United States)

    Kesten, Christopher; Menna, Alexandra; Sánchez-Rodríguez, Clara

    2017-12-01

    The cell wall is a complex polysaccharide network that provides stability and protection to the plant and is one of the first layers of biotic and abiotic stimuli perception. A controlled remodeling of the primary cell wall is essential for the plant to adapt its growth to environmental stresses. Cellulose, the main component of plant cell walls is synthesized by plasma membrane-localized cellulose synthases moving along cortical microtubule tracks. Recent advancements demonstrate a tight regulation of cellulose synthesis at the primary cell wall by phytohormone networks. Stress-induced perturbations at the cell wall that modify cellulose synthesis and microtubule arrangement activate similar phytohormone-based stress response pathways. The integration of stress perception at the primary cell wall and downstream responses are likely to be tightly regulated by phytohormone signaling pathways in the context of cellulose synthesis and microtubule arrangement. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. The stress response system of proteins: Implications for bioreactor scaleup

    Science.gov (United States)

    Goochee, Charles F.

    1988-01-01

    Animal cells face a variety of environmental stresses in large scale bioreactors, including periodic variations in shear stress and dissolved oxygen concentration. Diagnostic techniques were developed for identifying the particular sources of environmental stresses for animal cells in a given bioreactor configuration. The mechanisms by which cells cope with such stresses was examined. The individual concentrations and synthesis rates of hundreds of intracellular proteins are affected by the extracellular environment (medium composition, dissolved oxygen concentration, ph, and level of surface shear stress). Techniques are currently being developed for quantifying the synthesis rates and concentrations of the intracellular proteins which are most sensitive to environmental stress. Previous research has demonstrated that a particular set of stress response proteins are synthesized by mammalian cells in response to temperature fluctuations, dissolved oxygen deprivation, and glucose deprivation. Recently, it was demonstrated that exposure of human kidney cells to high shear stress results in expression of a completely distinct set of intracellular proteins.

  6. The Stress and Coping Responses of Certified Graduate Athletic Training Students

    Science.gov (United States)

    Reed, Sarah

    2004-01-01

    Objective: To assess the sources of stress and coping responses of certified graduate athletic training students. Design and Setting: We interviewed certified graduate athletic training students 3 times over a 9-month period. We transcribed the interviews verbatim and used grounded theory analytic procedures to inductively analyze the participants' sources of stress and coping responses. Subjects: Three male and 3 female certified graduate athletic training students from a postcertification graduate athletic training program volunteered to participate in this investigation. The participants were full-time graduate students, with a mean age of 23 years, who had worked an average of 1.5 years as certified athletic trainers at the time of the first interview. Measurements: We used grounded theory analytic procedures to inductively analyze the participants' sources of stress and coping responses. Results: A total of 6 general sources of stress and 11 coping dimensions were revealed. The stress dimensions were labeled athletic training duties, comparing job duties, responsibilities as student, time management, social evaluation, and future concerns. The coping responses were planning, instrumental social support, adjusting to job responsibilities, positive evaluations, emotional social support, humor, wishful thinking, religion, mental or behavioral disengagement, activities outside the profession, and other outcomes. Conclusions: Certified graduate athletic training students should be encouraged to use problem-focused (eg, seeking advice, planning) and emotion-focused (eg, positive evaluations, humor) forms of coping with stress. PMID:15173872

  7. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters.

    Science.gov (United States)

    Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2005-02-01

    cis-Acting regulatory elements are important molecular switches involved in the transcriptional regulation of a dynamic network of gene activities controlling various biological processes, including abiotic stress responses, hormone responses and developmental processes. In particular, understanding regulatory gene networks in stress response cascades depends on successful functional analyses of cis-acting elements. The ever-improving accuracy of transcriptome expression profiling has led to the identification of various combinations of cis-acting elements in the promoter regions of stress-inducible genes involved in stress and hormone responses. Here we discuss major cis-acting elements, such as the ABA-responsive element (ABRE) and the dehydration-responsive element/C-repeat (DRE/CRT), that are a vital part of ABA-dependent and ABA-independent gene expression in osmotic and cold stress responses.

  8. Associations Between Paternal Responsiveness and Stress Responsiveness in the Biparental California Mouse, Peromyscus californicus

    OpenAIRE

    Chauke, Miyetani

    2012-01-01

    The mechanistic basis of paternal behavior in mammals is poorly understood. Assuming there are parallels between the factors mediating maternal and paternal behavior, it can be expected that the onset of paternal behavior is facilitated by reductions in stress responsiveness, as occurs in females of several mammalian species. This dissertation describes studies investigating the role of stress responsiveness in the expression of paternal behavior in biparental, monogamous California mice (Per...

  9. Sex differences in chronic stress responses and Alzheimer's disease.

    Science.gov (United States)

    Yan, Yan; Dominguez, Sky; Fisher, Daniel W; Dong, Hongxin

    2018-02-01

    Clinical studies indicate that Alzheimer's disease (AD) disproportionately affects women in both disease prevalence and severity, but the mechanisms underlying this sex divergence are unknown. Though some have suggested this difference in risk is a reflection of known differences in longevity between men and women, mounting clinical and preclinical evidence supports women also having intrinsic susceptibilities towards the disease. While a number of potential risk factors have been hypothesized to affect these differences in risks, none have been definitively verified. In this review, we discuss a novel hypothesis whereby women's susceptibility to chronic stress also mediates increased risk for AD. As stress is a risk factor for AD, and women are twice as likely to develop mood disorders where stress is a major etiology, it is possible that sex dimorphisms in stress responses contribute to the increase in women with AD. In line with this, sex divergence in biochemical responses to stress have been noted along the hypothalamic-pituitary-adrenal (HPA) axis and among known molecular effectors of AD, with crosstalk between these processes also being likely. In addition, activation of the cortical corticotrophin-releasing factor receptor 1 (CRF1) signaling pathway leads to distinct female-biased increases in molecules associated with AD pathogenesis. Therefore, the different biochemical responses to stress between women and men may represent an intrinsic, sex-dependent risk factor for AD.

  10. Thermoregulatory responses to environmental toxicants: The interaction of thermal stress and toxicant exposure

    International Nuclear Information System (INIS)

    Leon, Lisa R.

    2008-01-01

    Thermal stress can have a profound impact on the physiological responses that are elicited following environmental toxicant exposure. The efficacy by which toxicants enter the body is directly influenced by thermoregulatory effector responses that are evoked in response to high ambient temperatures. In mammals, the thermoregulatory response to heat stress consists of an increase in skin blood flow and moistening of the skin surface to dissipate core heat to the environment. These physiological responses may exacerbate chemical toxicity due to increased permeability of the skin, which facilitates the cutaneous absorption of many environmental toxicants. The core temperature responses that are elicited in response to high ambient temperatures, toxicant exposure or both can also have a profound impact on the ability of an organism to survive the insult. In small rodents, the thermoregulatory response to thermal stress and many environmental toxicants (such as organophosphate compounds) is often biphasic in nature, consisting initially of a regulated reduction in core temperature (i.e., hypothermia) followed by fever. Hypothermia is an important thermoregulatory survival strategy that is used by small rodents to diminish the effect of severe environmental insults on tissue homeostasis. The protective effect of hypothermia is realized by its effects on chemical toxicity as molecular and cellular processes, such as lipid peroxidation and the formation of reactive oxygen species, are minimized at reduced core temperatures. The beneficial effects of fever are unknown under these conditions. Perspective is provided on the applicability of data obtained in rodent models to the human condition

  11. Review of Signal Crosstalk in Plant Stress Responses

    Science.gov (United States)

    This book was prepared to summarize the current understanding of the dynamics of plant response to biotic and abiotic stresses. The preface of the book sets the stage for the contents of the different chapters by outlining that plants defend themselves from various environmental stresses through a v...

  12. Acute stress responses: A review and synthesis of ASD, ASR, and CSR.

    Science.gov (United States)

    Isserlin, Leanna; Zerach, Gadi; Solomon, Zahava

    2008-10-01

    Toward the development of a unifying diagnosis for acute stress responses this article attempts to find a place for combat stress reaction (CSR) within the spectrum of other defined acute stress responses. This article critically compares the diagnostic criteria of acute stress disorder (ASD), acute stress reaction (ASR), and CSR. Prospective studies concerning the predictive value of ASD, ASR, and CSR are reviewed. Questions, recommendations, and implications for clinical practice are raised concerning the completeness of the current acute stress response diagnoses, the heterogeneity of different stressors, the scope of expected outcomes, and the importance of decline in function as an indicator of future psychological, psychiatric, and somatic distress. PsycINFO Database Record 2009 APA.

  13. Assessing Stress Responses in Beaked and Sperm Whales in the Bahamas

    Science.gov (United States)

    2016-05-23

    sex and reproductive status (i.e. other physiologic influences) when interpreting levels of GCs as indicators of stress responses. 2.2 2.2 0 Adult... Stress Responses in Beaked and Sperm Whales in the Bahamas" Please find attached final reports for the above referenced ONR award for the period ending...Assessing Stress Responses in Beaked and Sperm Whales in the Bahamas Rosalind M. Rolland D.V.M., Kathleen E. Hunt Ph.D., Elizabeth A. Burgess M.Sc. Ph.D

  14. Resident and attending physician perception of maladaptive response to stress in residents

    Directory of Open Access Journals (Sweden)

    Lee Ann Riesenberg

    2014-11-01

    Full Text Available Background: Residency stress has been shown to interfere with resident well-being and patient safety. We developed a survey research study designed to explore factors that may affect perception of a maladaptive response to stress. Methods: A 16-item survey with 12 Likert-type perception items was designed to determine how often respondents agreed or disagreed with statements regarding the resident on the trigger tape. A total of 438 respondents from multiple institutions completed surveys. Results: Attending physicians were more likely than residents to agree that the resident on the trigger tape was impaired, p<0.0001; needed to seek professional counseling, p=0.0003; should be removed from the service, p=0.002; was not receiving adequate support from the attending physician, p=0.007; and was a risk to patient safety, p=0.02. Attending physicians were also less likely to agree that the resident was a good role model, p=0.001, and that the resident should be able to resolve these issues herself/himself, p<0.0001. Conclusion: Our data suggest that resident physicians may not be able to adequately detect maladaptive responses to stress and that attending physicians may be more adept at recognizing this problem. More innovative faculty and resident development workshops should be created to teach and encourage physicians to better observe and detect residents who are displaying maladaptive responses to stress.

  15. Chronic stress affects immunologic but not cardiovascular responsiveness to acute psychological stress in humans

    NARCIS (Netherlands)

    Benschop, R. J.; Brosschot, J. F.; Godaert, G. L.; de Smet, M. B.; Geenen, R.; Olff, M.; Heijnen, C. J.; Ballieux, R. E.

    1994-01-01

    This study deals with the effect of chronic stress on physiological responsiveness to an acute psychological stressor in male high school teachers. Chronic stress was operationalized as the self-reported number of everyday problems. Twenty-seven subjects reporting extremely low or high numbers of

  16. Transcriptome response mediated by cold stress in Lotus japonicus

    Directory of Open Access Journals (Sweden)

    Pablo Ignacio Calzadilla

    2016-03-01

    Full Text Available Members of the Lotus genus are important as agricultural forage sources under marginal environmental conditions given their high nutritional value and tolerance of various abiotic stresses. However, their dry matter production is drastically reduced in cooler seasons, while their response to such conditions is not well studied. This paper analyzes cold acclimation of the genus by studying Lotus japonicus over a stress period of 24 h. High-throughput RNA sequencing was used to identify and classify 1077 differentially expressed genes, of which 713 were up-regulated and 364 were down-regulated. Up-regulated genes were principally related to lipid, cell wall, phenylpropanoid, sugar, and proline regulation, while down-regulated genes affected the photosynthetic process and chloroplast development. Together, a total of 41 cold-inducible transcription factors were identified, including members of the AP2/ERF, NAC, MYB, and WRKY families; two of them were described as putative novel transcription factors. Finally, DREB1/CBFs were described with respect to their cold stress expression profiles. This is the first transcriptome profiling of the model legume L. japonicus under cold stress. Data obtained may be useful in identifying candidate genes for breeding modified species of forage legumes that more readily acclimate to low temperatures

  17. Quantitative Phosphoproteomic Analysis Provides Insight into the Response to Short-Term Drought Stress in Ammopiptanthus mongolicus Roots

    Directory of Open Access Journals (Sweden)

    Huigai Sun

    2017-10-01

    Full Text Available Drought is one of the major abiotic stresses that negatively affects plant growth and development. Ammopiptanthus mongolicus is an ecologically important shrub in the mid-Asia desert region and used as a model for abiotic tolerance research in trees. Protein phosphorylation participates in the regulation of various biological processes, however, phosphorylation events associated with drought stress signaling and response in plants is still limited. Here, we conducted a quantitative phosphoproteomic analysis of the response of A. mongolicus roots to short-term drought stress. Data are available via the iProx database with project ID IPX0000971000. In total, 7841 phosphorylation sites were found from the 2019 identified phosphopeptides, corresponding to 1060 phosphoproteins. Drought stress results in significant changes in the abundance of 103 phosphopeptides, corresponding to 90 differentially-phosphorylated phosphoproteins (DPPs. Motif-x analysis identified two motifs, including [pSP] and [RXXpS], from these DPPs. Functional enrichment and protein-protein interaction analysis showed that the DPPs were mainly involved in signal transduction and transcriptional regulation, osmotic adjustment, stress response and defense, RNA splicing and transport, protein synthesis, folding and degradation, and epigenetic regulation. These drought-corresponsive phosphoproteins, and the related signaling and metabolic pathways probably play important roles in drought stress signaling and response in A. mongolicus roots. Our results provide new information for understanding the molecular mechanism of the abiotic stress response in plants at the posttranslational level.

  18. Aggression, Social Stress, and the Immune System in Humans and Animal Models

    Directory of Open Access Journals (Sweden)

    Aki Takahashi

    2018-03-01

    Full Text Available Social stress can lead to the development of psychological problems ranging from exaggerated anxiety and depression to antisocial and violence-related behaviors. Increasing evidence suggests that the immune system is involved in responses to social stress in adulthood. For example, human studies show that individuals with high aggression traits display heightened inflammatory cytokine levels and dysregulated immune responses such as slower wound healing. Similar findings have been observed in patients with depression, and comorbidity of depression and aggression was correlated with stronger immune dysregulation. Therefore, dysregulation of the immune system may be one of the mediators of social stress that produces aggression and/or depression. Similar to humans, aggressive animals also show increased levels of several proinflammatory cytokines, however, unlike humans these animals are more protected from infectious organisms and have faster wound healing than animals with low aggression. On the other hand, subordinate animals that receive repeated social defeat stress have been shown to develop escalated and dysregulated immune responses such as glucocorticoid insensitivity in monocytes. In this review we synthesize the current evidence in humans, non-human primates, and rodents to show a role for the immune system in responses to social stress leading to psychiatric problems such as aggression or depression. We argue that while depression and aggression represent two fundamentally different behavioral and physiological responses to social stress, it is possible that some overlapped, as well as distinct, pattern of immune signaling may underlie both of them. We also argue the necessity of studying animal models of maladaptive aggression induced by social stress (i.e., social isolation for understanding neuro-immune mechanism of aggression, which may be relevant to human aggression.

  19. Aggression, Social Stress, and the Immune System in Humans and Animal Models.

    Science.gov (United States)

    Takahashi, Aki; Flanigan, Meghan E; McEwen, Bruce S; Russo, Scott J

    2018-01-01

    Social stress can lead to the development of psychological problems ranging from exaggerated anxiety and depression to antisocial and violence-related behaviors. Increasing evidence suggests that the immune system is involved in responses to social stress in adulthood. For example, human studies show that individuals with high aggression traits display heightened inflammatory cytokine levels and dysregulated immune responses such as slower wound healing. Similar findings have been observed in patients with depression, and comorbidity of depression and aggression was correlated with stronger immune dysregulation. Therefore, dysregulation of the immune system may be one of the mediators of social stress that produces aggression and/or depression. Similar to humans, aggressive animals also show increased levels of several proinflammatory cytokines, however, unlike humans these animals are more protected from infectious organisms and have faster wound healing than animals with low aggression. On the other hand, subordinate animals that receive repeated social defeat stress have been shown to develop escalated and dysregulated immune responses such as glucocorticoid insensitivity in monocytes. In this review we synthesize the current evidence in humans, non-human primates, and rodents to show a role for the immune system in responses to social stress leading to psychiatric problems such as aggression or depression. We argue that while depression and aggression represent two fundamentally different behavioral and physiological responses to social stress, it is possible that some overlapped, as well as distinct, pattern of immune signaling may underlie both of them. We also argue the necessity of studying animal models of maladaptive aggression induced by social stress (i.e., social isolation) for understanding neuro-immune mechanism of aggression, which may be relevant to human aggression.

  20. Variability of Hormonal Stress Markers and Stress Responses in a Large Cross-Sectional Sample of Elephant Seals

    Science.gov (United States)

    2015-09-30

    regulation in a captive dolphin population PI: Cory Champagne This project examines roles of CBG and rT3 in the sister study on the Navy captive...bottlenose dolphin population. Molecular indicators of chronic stress in a model pinniped - the northern elephant seal. PI: Cory Champagne This...Khudyakov J.I., C.D. Champagne , L. Preeyanon, R.M. Ortiz, D.E. Crocker. 2015. Muscle transcriptome response to ACTH administration in a free-ranging

  1. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Christen, Verena [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Capelle, Martinus [Crucell, P.O. Box 2048, NL-2301 Leiden (Netherlands); Fent, Karl, E-mail: karl.fent@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology Zürich, Department of Environmental Systems Science, CH-8092 Zürich (Switzerland)

    2013-10-15

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes.

  2. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    International Nuclear Information System (INIS)

    Christen, Verena; Capelle, Martinus; Fent, Karl

    2013-01-01

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes

  3. Auxin Response Factors (ARFs are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Sarah Bouzroud

    Full Text Available Survival biomass production and crop yield are heavily constrained by a wide range of environmental stresses. Several phytohormones among which abscisic acid (ABA, ethylene and salicylic acid (SA are known to mediate plant responses to these stresses. By contrast, the role of the plant hormone auxin in stress responses remains so far poorly studied. Auxin controls many aspects of plant growth and development, and Auxin Response Factors play a key role in the transcriptional activation or repression of auxin-responsive genes through direct binding to their promoters. As a mean to gain more insight on auxin involvement in a set of biotic and abiotic stress responses in tomato, the present study uncovers the expression pattern of SlARF genes in tomato plants subjected to biotic and abiotic stresses. In silico mining of the RNAseq data available through the public TomExpress web platform, identified several SlARFs as responsive to various pathogen infections induced by bacteria and viruses. Accordingly, sequence analysis revealed that 5' regulatory regions of these SlARFs are enriched in biotic and abiotic stress-responsive cis-elements. Moreover, quantitative qPCR expression analysis revealed that many SlARFs were differentially expressed in tomato leaves and roots under salt, drought and flooding stress conditions. Further pointing to the putative role of SlARFs in stress responses, quantitative qPCR expression studies identified some miRNA precursors as potentially involved in the regulation of their SlARF target genes in roots exposed to salt and drought stresses. These data suggest an active regulation of SlARFs at the post-transcriptional level under stress conditions. Based on the substantial change in the transcript accumulation of several SlARF genes, the data presented in this work strongly support the involvement of auxin in stress responses thus enabling to identify a set of candidate SlARFs as potential mediators of biotic and abiotic

  4. Cytokinin Cross-talking During Biotic and Abiotic Stress Responses

    Directory of Open Access Journals (Sweden)

    Jose Antonio O'Brien

    2013-11-01

    Full Text Available As sessile organisms, plants have to be able to adapt to a continuously changing environment. Plants that perceive some of these changes as stress signals activate signaling pathways to modulate their development and to enable them to survive. The complex responses to environmental cues are to a large extent mediated by plant hormones that together orchestrate the final plant response. The phytohormone cytokinin is involved in many plant developmental processes. Recently, it has been established that cytokinin plays an important role in stress responses, but does not act alone. Indeed, the hormonal control of plant development and stress adaptation is the outcome of a complex network of multiple synergistic and antagonistic interactions between various hormones. Here, we review the recent findings on the cytokinin function as part of this hormonal network. We focus on the importance of the crosstalk between cytokinin and other hormones, such as abscisic acid, jasmonate, salicylic acid, ethylene, and auxin in the modulation of plant development and stress adaptation. Finally, the impact of the current research in the biotechnological industry will be discussed.

  5. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold and heat

    Directory of Open Access Journals (Sweden)

    Kazuo eNakashima

    2014-05-01

    Full Text Available Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs are master regulators of gene expression. ABRE-binding protein (AREB and ABRE-binding factor (ABF TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein (DREB TFs and NAC TFs are also involved in stress responses including drought, heat and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these transcription factors in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.

  6. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat.

    Science.gov (United States)

    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2014-01-01

    Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA) is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs) are master regulators of gene expression. ABRE-binding protein and ABRE-binding factor TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein TFs and NAC TFs are also involved in stress responses including drought, heat, and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these TFs in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.

  7. The role of dehydroepiandrosterone on functional innate immune responses to acute stress.

    Science.gov (United States)

    Prall, Sean P; Larson, Emilee E; Muehlenbein, Michael P

    2017-12-01

    The androgen dehydroepiandrosterone (DHEA) responds to stress activation, exhibits anti-glucocorticoid properties, and modulates immunity in diverse ways, yet little is known of its role in acute stress responses. In this study, the effects of DHEA and its sulfate ester DHEA-S on human male immune function during exposure to an acute stressor is explored. Variation in DHEA, DHEA-S, testosterone, and cortisol, along with bacterial killing assays, was measured in response to a modified Trier Social Stress test in 27 young adult males. Cortisol was positively related to salivary innate immunity but only for participants who also exhibited high DHEA responses. Additionally, DHEA positively and DHEA-S negatively predicted salivary immunity, but the opposite was observed for serum-based innate immunity. The DHEA response to acute stress appears to be an important factor in stress-mediated immunological responses, with differential effects on immunity dependent upon the presence of other hormones, primarily cortisol and DHEA-S. These results suggest that DHEA plays an important role, alongside other hormones, in modulating immunological shifts during acute stress. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Plant responsiveness to root-root communication of stress cues.

    Science.gov (United States)

    Falik, Omer; Mordoch, Yonat; Ben-Natan, Daniel; Vanunu, Miriam; Goldstein, Oron; Novoplansky, Ariel

    2012-07-01

    Phenotypic plasticity is based on the organism's ability to perceive, integrate and respond to multiple signals and cues informative of environmental opportunities and perils. A growing body of evidence demonstrates that plants are able to adapt to imminent threats by perceiving cues emitted from their damaged neighbours. Here, the hypothesis was tested that unstressed plants are able to perceive and respond to stress cues emitted from their drought- and osmotically stressed neighbours and to induce stress responses in additional unstressed plants. Split-root Pisum sativum, Cynodon dactylon, Digitaria sanguinalis and Stenotaphrum secundatum plants were subjected to osmotic stress or drought while sharing one of their rooting volumes with an unstressed neighbour, which in turn shared its other rooting volume with additional unstressed neighbours. Following the kinetics of stomatal aperture allowed testing for stress responses in both the stressed plants and their unstressed neighbours. In both P. sativum plants and the three wild clonal grasses, infliction of osmotic stress or drought caused stomatal closure in both the stressed plants and in their unstressed neighbours. While both continuous osmotic stress and drought induced prolonged stomatal closure and limited acclimation in stressed plants, their unstressed neighbours habituated to the stress cues and opened their stomata 3-24 h after the beginning of stress induction. The results demonstrate a novel type of plant communication, by which plants might be able to increase their readiness to probable future osmotic and drought stresses. Further work is underway to decipher the identity and mode of operation of the involved communication vectors and to assess the potential ecological costs and benefits of emitting and perceiving drought and osmotic stress cues under various ecological scenarios.

  9. Psychological stress during exercise: immunoendocrine and oxidative responses.

    Science.gov (United States)

    Huang, Chun-Jung; Webb, Heather E; Evans, Ronald K; McCleod, Kelly A; Tangsilsat, Supatchara E; Kamimori, Gary H; Acevedo, Edmund O

    2010-12-01

    The purpose of this study was to examine the changes in catecholamines (epinephrine [EPI] and norepinephrine [NE]), interleukin-2 (IL-2) and a biomarker of oxidative stress (8-isoprostane) in healthy individuals who were exposed to a dual challenge (physical and psychological stress). Furthermore, this study also examined the possible relationships between catecholamines (NE and EPI) and 8-isoprostane and between IL-2 and 8-isoprostane following a combined physical and psychological challenge. Seven healthy male subjects completed two experimental conditions. The exercise-alone condition (EAC) consisted of cycling at 60% VO(2max) for 37 min, while the dual-stress condition (DSC) included 20 min of a mental challenge while cycling. DSC showed greater EPI and 8-isoprostane levels (significant condition by time interaction). NE and IL-2 revealed significant change across time in both conditions. In addition, following dual stress, EPI area-under-the-curve (AUC) demonstrated a positive correlation with NE AUC and IL-2 AUC. NE AUC was positively correlated with IL-2 AUC and peak 8-isoprostane, and peak IL-2 was positively correlated with peak 8-isoprostane in response to a dual stress. The potential explanation for elevated oxidative stress during dual stress may be through the effects of the release of catecholamines and IL-2. These findings may further provide the potential explanation that dual stress alters physiological homeostasis in many occupations including firefighting, military operations and law enforcement. A greater understanding of these responses to stress can assist in finding strategies (e.g. exercise training) to overcome the inherent psychobiological challenges associated with physically and mentally demanding professions.

  10. [Construction of the Time Management Scale and examination of the influence of time management on psychological stress response].

    Science.gov (United States)

    Imura, Tomoya; Takamura, Masahiro; Okazaki, Yoshihiro; Tokunaga, Satoko

    2016-10-01

    We developed a scale to measure time management and assessed its reliability and validity. We then used this scale to examine the impact of time management on psychological stress response. In Study 1-1, we developed the scale and assessed its internal consistency and criterion-related validity. Findings from a factor analysis revealed three elements of time management, “time estimation,” “time utilization,” and “taking each moment as it comes.” In Study 1-2, we assessed the scale’s test-retest reliability. In Study 1-3, we assessed the validity of the constructed scale. The results indicate that the time management scale has good reliability and validity. In Study 2, we performed a covariance structural analysis to verify our model that hypothesized that time management influences perceived control of time and psychological stress response, and perceived control of time influences psychological stress response. The results showed that time estimation increases the perceived control of time, which in turn decreases stress response. However, we also found that taking each moment as it comes reduces perceived control of time, which in turn increases stress response.

  11. Sex Differences in Relationship between Stress Responses and Lifestyle in Japanese Workers

    Directory of Open Access Journals (Sweden)

    Akiko Suzuki

    2014-03-01

    Conclusion: This study showed that stress responses were related to lifestyle among women but not among men. Among women, stress responses were related to sleeping for shorter periods, whereas they were related to working long hours among men. In addition, stress responses were related to eating at night in the univariate analysis, although this relationship was not seen in the multivariate analysis, in either sex.

  12. Dietary l-tryptophan leaves a lasting impression on the brain and the stress response

    DEFF Research Database (Denmark)

    Höglund, Erik; Øverli, Øyvind; Åberg Andersson, Madelene

    2017-01-01

    Comparative models suggest that effects of dietary tryptophan (Trp) on brain serotonin (5-hydroxytryptamine; 5-HT) neurochemistry and stress responsiveness are present throughout the vertebrate lineage. Moreover, hypothalamic 5-HT seems to play a central role in control of the neuroendocrine stre...

  13. Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part II: responses in the leaves and general conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Vanhoudt, Nathalie, E-mail: nvanhoud@sckcen.be [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Hasselt University, Environmental Biology, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Cuypers, Ann [Hasselt University, Environmental Biology, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Horemans, Nele [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Remans, Tony; Opdenakker, Kelly; Smeets, Karen [Hasselt University, Environmental Biology, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Bello, Daniel Martinez [Hasselt University, Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Agoralaan Building D, 3590 Diepenbeek (Belgium); Havaux, Michel [Commissariat a l' Energie Atomique (CEA)/Cadarache, Direction des Sciences du Vivant, Departement d' Ecophysiologie Vegetale et de Microbiologie, Laboratoire d' Ecophysiologie de la Photosynthese, 13108 Saint-Paul-lez-Durance (France); Wannijn, Jean; Van Hees, May [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Vangronsveld, Jaco [Hasselt University, Environmental Biology, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Vandenhove, Hildegarde [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium)

    2011-06-15

    The cellular redox balance seems an important modulator under heavy metal stress. While for other heavy metals these processes are well studied, oxidative stress related responses are also known to be triggered under uranium stress but information remains limited. This study aimed to further unravel the mechanisms by which plants respond to uranium stress. Seventeen-day-old Arabidopsis thaliana seedlings, grown on a modified Hoagland solution under controlled conditions, were exposed to 0, 0.1, 1, 10 and 100 {mu}M uranium for 1, 3 and 7 days. While in Part I of this study oxidative stress related responses in the roots were discussed, this second Part II discusses oxidative stress related responses in the leaves and general conclusions drawn from the results of the roots and the leaves will be presented. As several responses were already visible following 1 day exposure, when uranium concentrations in the leaves were negligible, a root-to-shoot signaling system was suggested in which plastids could be important sensing sites. While lipid peroxidation, based on the amount of thiobarbituric acid reactive compounds, was observed after exposure to 100 {mu}M uranium, affecting membrane structure and function, a transient concentration dependent response pattern was visible for lipoxygenase initiated lipid peroxidation. This transient character of uranium stress responses in leaves was emphasized by results of lipoxygenase (LOX2) and antioxidative enzyme transcript levels, enzyme capacities and glutathione concentrations both in time as with concentration. The ascorbate redox balance seemed an important modulator of uranium stress responses in the leaves as in addition to the previous transient responses, the total ascorbate concentration and ascorbate/dehydroascorbate redox balance increased in a concentration and time dependent manner. This could represent either a slow transient response or a stable increase with regard to plant acclimation to uranium stress

  14. Global analysis of the yeast osmotic stress response by quantitative proteomics

    DEFF Research Database (Denmark)

    Soufi, Boumediene; Kelstrup, C.D.; Stoehr, G.

    2009-01-01

    a comprehensive, quantitative, and time-resolved analysis using high-resolution mass spectrometry of phospho-proteome and proteome changes in response to osmotic stress in yeast. We identified 5534 unique phosphopeptide variants and 3383 yeast proteins. More than 15% of the detected phosphorylation site status...... changed more than two-fold within 5 minutes of treatment. Many of the corresponding phosphoproteins are involved in the early response to environmental stress. Surprisingly, we find that 158 regulated phosphorylation sites are potential substrates of basophilic kinases as opposed to the classical proline......-directed MAP kinase network implicated in stress response mechanisms such as p38 and HOG pathways. Proteome changes reveal an increase in abundance of more than one hundred proteins after 20 min of salt stress. Many of these are involved in the cellular response to increased osmolarity, which include proteins...

  15. MDMA does not alter responses to the Trier Social Stress Test in humans.

    Science.gov (United States)

    Bershad, Anya K; Miller, Melissa A; de Wit, Harriet

    2017-07-01

    ±3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") is a stimulant-psychedelic drug with unique social effects. It may dampen reactivity to negative social stimuli such as social threat and rejection. Perhaps because of these effects, MDMA has shown promise as a treatment for post-traumatic stress disorder (PTSD). However, the effect of single doses of MDMA on responses to an acute psychosocial stressor has not been tested. In this study, we sought to test the effects of MDMA on responses to stress in healthy adults using a public speaking task. We hypothesized that the drug would reduce responses to the stressful task. Volunteers (N = 39) were randomly assigned to receive placebo (N = 13), 0.5 mg/kg MDMA (N = 13), or 1.0 mg/kg MDMA (N = 13) during a stress and a no-stress session. Dependent measures included subjective reports of drug effects and emotional responses to the task, as well as salivary cortisol, heart rate, and blood pressure. The stress task produced its expected increase in physiological responses (cortisol, heart rate) and subjective ratings of stress in all three groups, and MDMA produced its expected subjective and physiological effects. MDMA alone increased ratings of subjective stress, heart rate, and saliva cortisol concentrations, but contrary to our hypothesis, it did not moderate responses to the Trier Social Stress Test. Despite its efficacy in PTSD and anxiety, MDMA did not reduce either the subjective or objective responses to stress in this controlled study. The conditions under which MDMA relieves responses to negative events or memories remain to be determined.

  16. Heart rate response to post-learning stress predicts memory consolidation.

    Science.gov (United States)

    Larra, Mauro F; Schulz, André; Schilling, Thomas M; Ferreira de Sá, Diana S; Best, Daniel; Kozik, Bartlomiej; Schächinger, Hartmut

    2014-03-01

    Stressful experiences are often well remembered, an effect that has been explained by beta-adrenergic influences on memory consolidation. Here, we studied the impact of stress induced heart rate (HR) responses on memory consolidation in a post-learning stress paradigm. 206 male and female participants saw 52 happy and angry faces immediately before being exposed to the Cold Pressor Test or a non-stressful control procedure. Memory for the faces and their respective expression was tested twice, after 30 min and on the next day. High HR responders (in comparison to low HR responders as well as to the non-stressful control group) showed enhanced recognition memory one day after learning. Our results show that beta-adrenergic activation elicited shortly after learning enhances memory consolidation and that the stress induced HR response is a predictor for this effect. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. A stressful microenvironment: opposing effects of the endoplasmic reticulum stress response in the suppression and enhancement of adaptive tumor immunity.

    Science.gov (United States)

    Rausch, Matthew P; Sertil, Aparna Ranganathan

    2015-03-01

    The recent clinical success of immunotherapy in the treatment of certain types of cancer has demonstrated the powerful ability of the immune system to control tumor growth, leading to significantly improved patient survival. However, despite these promising results current immunotherapeutic strategies are still limited and have not yet achieved broad acceptance outside the context of metastatic melanoma. The limitations of current immunotherapeutic approaches can be attributed in part to suppressive mechanisms present in the tumor microenvironment that hamper the generation of robust antitumor immune responses thus allowing tumor cells to escape immune-mediated destruction. The endoplasmic reticulum (ER) stress response has recently emerged as a potent regulator of tumor immunity. The ER stress response is an adaptive mechanism that allows tumor cells to survive in the harsh growth conditions inherent to the tumor milieu such as low oxygen (hypoxia), low pH and low levels of glucose. Activation of ER stress can also alter the cancer cell response to therapies. In addition, the ER stress response promotes tumor immune evasion by inducing the production of protumorigenic inflammatory cytokines and impairing tumor antigen presentation. However, the ER stress response can boost antitumor immunity in some situations by enhancing the processing and presentation of tumor antigens and by inducing the release of immunogenic factors from stressed tumor cells. Here, we discuss the dualistic role of the ER stress response in the modulation of tumor immunity and highlight how strategies to either induce or block ER stress can be employed to improve the clinical efficacy of tumor immunotherapy.

  18. Social evaluative threat with verbal performance feedback alters neuroendocrine response to stress.

    Science.gov (United States)

    Phan, Jenny M; Schneider, Ekaterina; Peres, Jeremy; Miocevic, Olga; Meyer, Vanessa; Shirtcliff, Elizabeth A

    2017-11-01

    Laboratory stress tasks such as the Trier Social Stress Test (TSST) have provided a key piece to the puzzle for how psychosocial stress impacts the hypothalamic-pituitary-adrenal axis, other stress-responsive biomarkers, and ultimately wellbeing. These tasks are thought to work through biopsychosocial processes, specifically social evaluative threat and the uncontrollability heighten situational demands. The present study integrated an experimental modification to the design of the TSST to probe whether additional social evaluative threat, via negative verbal feedback about speech performance, can further alter stress reactivity in 63 men and women. This TSST study confirmed previous findings related to stress reactivity and stress recovery but extended this literature in several ways. First, we showed that additional social evaluative threat components, mid-task following the speech portion of the TSST, were still capable of enhancing the psychosocial stressor. Second, we considered stress-reactive hormones beyond cortisol to include dehydroepiandrosterone (DHEA) and testosterone, and found these hormones were also stress-responsive, and their release was coupled with one another. Third, we explored whether gain- and loss-framing incentive instructions, meant to influence performance motivation by enhancing the personal relevance of task performance, impacted hormonal reactivity. Results showed that each hormone was stress reactive and further had different responses to the modified TSST compared to the original TSST. Beyond the utility of showing how the TSST can be modified with heightened social evaluative threat and incentive-framing instructions, this study informs about how these three stress-responsive hormones have differential responses to the demands of a challenge and a stressor. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Anion channels: master switches of stress responses.

    Science.gov (United States)

    Roelfsema, M Rob G; Hedrich, Rainer; Geiger, Dietmar

    2012-04-01

    During stress, plant cells activate anion channels and trigger the release of anions across the plasma membrane. Recently, two new gene families have been identified that encode major groups of anion channels. The SLAC/SLAH channels are characterized by slow voltage-dependent activation (S-type), whereas ALMT genes encode rapid-activating channels (R-type). Both S- and R-type channels are stimulated in guard cells by the stress hormone ABA, which leads to stomatal closure. Besides their role in ABA-dependent stomatal movement, anion channels are also activated by biotic stress factors such as microbe-associated molecular patterns (MAMPs). Given that anion channels occur throughout the plant kingdom, they are likely to serve a general function as master switches of stress responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Prediction of thermal and mechanical stress-strain responses of TMC's subjected to complex TMF histories

    Science.gov (United States)

    Johnson, W. S.; Mirdamadi, M.

    1994-01-01

    This paper presents an experimental and analytical evaluation of cross-plied laminates of Ti-15V-3Cr-3Al-3Sn (Ti-15-3) matrix reinforced with continuous silicon-carbide fibers (SCS-6) subjected to a complex TMF loading profile. Thermomechanical fatigue test techniques were developed to conduct a simulation of a generic hypersonic flight profile. A micromechanical analysis was used. The analysis predicts the stress-strain response of the laminate and of the constituents in each ply during thermal and mechanical cycling by using only constituent properties as input. The fiber was modeled as elastic with transverse orthotropic and temperature-dependent properties. The matrix was modeled using a thermoviscoplastic constitutive relation. The fiber transverse modulus was reduced in the analysis to simulate the fiber-matrix interface failures. Excellent correlation was found between measured and predicted laminate stress-strain response due to generic hypersonic flight profile when fiber debonding was modeled.

  1. Genetic Differences in the Immediate Transcriptome Response to Stress Predict Risk-Related Brain Function and Psychiatric Disorders

    Science.gov (United States)

    Arloth, Janine; Bogdan, Ryan; Weber, Peter; Frishman, Goar; Menke, Andreas; Wagner, Klaus V.; Balsevich, Georgia; Schmidt, Mathias V.; Karbalai, Nazanin; Czamara, Darina; Altmann, Andre; Trümbach, Dietrich; Wurst, Wolfgang; Mehta, Divya; Uhr, Manfred; Klengel, Torsten; Erhardt, Angelika; Carey, Caitlin E.; Conley, Emily Drabant; Ripke, Stephan; Wray, Naomi R.; Lewis, Cathryn M.; Hamilton, Steven P.; Weissman, Myrna M.; Breen, Gerome; Byrne, Enda M.; Blackwood, Douglas H.R.; Boomsma, Dorret I.; Cichon, Sven; Heath, Andrew C.; Holsboer, Florian; Lucae, Susanne; Madden, Pamela A.F.; Martin, Nicholas G.; McGuffin, Peter; Muglia, Pierandrea; Noethen, Markus M.; Penninx, Brenda P.; Pergadia, Michele L.; Potash, James B.; Rietschel, Marcella; Lin, Danyu; Müller-Myhsok, Bertram; Shi, Jianxin; Steinberg, Stacy; Grabe, Hans J.; Lichtenstein, Paul; Magnusson, Patrik; Perlis, Roy H.; Preisig, Martin; Smoller, Jordan W.; Stefansson, Kari; Uher, Rudolf; Kutalik, Zoltan; Tansey, Katherine E.; Teumer, Alexander; Viktorin, Alexander; Barnes, Michael R.; Bettecken, Thomas; Binder, Elisabeth B.; Breuer, René; Castro, Victor M.; Churchill, Susanne E.; Coryell, William H.; Craddock, Nick; Craig, Ian W.; Czamara, Darina; De Geus, Eco J.; Degenhardt, Franziska; Farmer, Anne E.; Fava, Maurizio; Frank, Josef; Gainer, Vivian S.; Gallagher, Patience J.; Gordon, Scott D.; Goryachev, Sergey; Gross, Magdalena; Guipponi, Michel; Henders, Anjali K.; Herms, Stefan; Hickie, Ian B.; Hoefels, Susanne; Hoogendijk, Witte; Hottenga, Jouke Jan; Iosifescu, Dan V.; Ising, Marcus; Jones, Ian; Jones, Lisa; Jung-Ying, Tzeng; Knowles, James A.; Kohane, Isaac S.; Kohli, Martin A.; Korszun, Ania; Landen, Mikael; Lawson, William B.; Lewis, Glyn; MacIntyre, Donald; Maier, Wolfgang; Mattheisen, Manuel; McGrath, Patrick J.; McIntosh, Andrew; McLean, Alan; Middeldorp, Christel M.; Middleton, Lefkos; Montgomery, Grant M.; Murphy, Shawn N.; Nauck, Matthias; Nolen, Willem A.; Nyholt, Dale R.; O’Donovan, Michael; Oskarsson, Högni; Pedersen, Nancy; Scheftner, William A.; Schulz, Andrea; Schulze, Thomas G.; Shyn, Stanley I.; Sigurdsson, Engilbert; Slager, Susan L.; Smit, Johannes H.; Stefansson, Hreinn; Steffens, Michael; Thorgeirsson, Thorgeir; Tozzi, Federica; Treutlein, Jens; Uhr, Manfred; van den Oord, Edwin J.C.G.; Van Grootheest, Gerard; Völzke, Henry; Weilburg, Jeffrey B.; Willemsen, Gonneke; Zitman, Frans G.; Neale, Benjamin; Daly, Mark; Levinson, Douglas F.; Sullivan, Patrick F.; Ruepp, Andreas; Müller-Myhsok, Bertram; Hariri, Ahmad R.; Binder, Elisabeth B.

    2015-01-01

    Summary Depression risk is exacerbated by genetic factors and stress exposure; however, the biological mechanisms through which these factors interact to confer depression risk are poorly understood. One putative biological mechanism implicates variability in the ability of cortisol, released in response to stress, to trigger a cascade of adaptive genomic and non-genomic processes through glucocorticoid receptor (GR) activation. Here, we demonstrate that common genetic variants in long-range enhancer elements modulate the immediate transcriptional response to GR activation in human blood cells. These functional genetic variants increase risk for depression and co-heritable psychiatric disorders. Moreover, these risk variants are associated with inappropriate amygdala reactivity, a transdiagnostic psychiatric endophenotype and an important stress hormone response trigger. Network modeling and animal experiments suggest that these genetic differences in GR-induced transcriptional activation may mediate the risk for depression and other psychiatric disorders by altering a network of functionally related stress-sensitive genes in blood and brain. Video Abstract PMID:26050039

  2. In silico identification of known osmotic stress responsive genes from Arabidopsis in soybean and Medicago

    Directory of Open Access Journals (Sweden)

    Nina M. Soares-Cavalcanti

    2012-01-01

    Full Text Available Plants experience various environmental stresses, but tolerance to these adverse conditions is a very complex phenomenon. The present research aimed to evaluate a set of genes involved in osmotic response, comparing soybean and medicago with the well-described Arabidopsis thaliana model plant. Based on 103 Arabidopsis proteins from 27 categories of osmotic stress response, comparative analyses against Genosoja and Medicago truncatula databases allowed the identification of 1,088 soybean and 1,210 Medicago sequences. The analysis showed a high number of sequences and high diversity, comprising genes from all categories in both organisms. Genes with unknown function were among the most representative, followed by transcription factors, ion transport proteins, water channel, plant defense, protein degradation, cellular structure, organization & biogenesis and senescence. An analysis of sequences with unknown function allowed the annotation of 174 soybean and 217 Medicago sequences, most of them concerning transcription factors. However, for about 30% of the sequences no function could be attributed using in silico procedures. The establishment of a gene set involved in osmotic stress responses in soybean and barrel medic will help to better understand the survival mechanisms for this type of stress condition in legumes.

  3. The stress response and the hypothalamic-pituitary-adrenal axis: from molecule to melancholia.

    LENUS (Irish Health Repository)

    O'Connor, T M

    2012-02-03

    Organisms survive by maintaining equilibrium with their environment. The stress system is critical to this homeostasis. Glucocorticoids modulate the stress response at a molecular level by altering gene expression, transcription, and translation, among other pathways. The effect is the inhibition of the functions of inflammatory cells, predominantly mediated through inhibition of cytokines, such as IL-1, IL-6, and TNF-alpha. The central effectors of the stress response are the corticotrophin-releasing hormone (CRH) and locus coeruleus-norepinephrine (LC-NE)\\/sympathetic systems. The CRH system activates the stress response and is subject to modulation by cytokines, hormones, and neurotransmitters. Glucocorticoids also modulate the growth, reproductive and thyroid axes. Abnormalities of stress system activation have been shown in inflammatory diseases such as rheumatoid arthritis, as well as behavioural syndromes such as melancholic depression. These disorders are comparable to those seen in rats whose CRH system is genetically abnormal. Thus, the stress response is central to resistance to inflammatory and behavioural syndromes. In this review, we describe the response to stress at molecular, cellular, neuroendocrine and behavioural levels, and discuss the disease processes that result from a dysregulation of this response, as well as recent developments in their treatment.

  4. Revisiting the Relationship between Transposable Elements and the Eukaryotic Stress Response.

    Science.gov (United States)

    Horváth, Vivien; Merenciano, Miriam; González, Josefa

    2017-11-01

    A relationship between transposable elements (TEs) and the eukaryotic stress response was suggested in the first publications describing TEs. Since then, it has often been assumed that TEs are activated by stress, and that this activation is often beneficial for the organism. In recent years, the availability of new high-throughput experimental techniques has allowed further interrogation of the relationship between TEs and stress. By reviewing the recent literature, we conclude that although there is evidence for a beneficial effect of TE activation under stress conditions, the relationship between TEs and the eukaryotic stress response is quite complex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Linking physiological and cellular responses to thermal stress: β-adrenergic blockade reduces the heat shock response in fish.

    Science.gov (United States)

    Templeman, Nicole M; LeBlanc, Sacha; Perry, Steve F; Currie, Suzanne

    2014-08-01

    When faced with stress, animals use physiological and cellular strategies to preserve homeostasis. We were interested in how these high-level stress responses are integrated at the level of the whole animal. Here, we investigated the capacity of the physiological stress response, and specifically the β-adrenergic response, to affect the induction of the cellular heat shock proteins, HSPs, following a thermal stress in vivo. We predicted that blocking β-adrenergic stimulation during an acute heat stress in the whole animal would result in reduced levels of HSPs in red blood cells (RBCs) of rainbow trout compared to animals where adrenergic signaling remained intact. We first determined that a 1 h heat shock at 25 °C in trout acclimated to 13 °C resulted in RBC adrenergic stimulation as determined by a significant increase in cell swelling, a hallmark of the β-adrenergic response. A whole animal injection with the β2-adrenergic antagonist, ICI-118,551, successfully reduced this heat-induced RBC swelling. The acute heat shock caused a significant induction of HSP70 in RBCs of 13 °C-acclimated trout as well as a significant increase in plasma catecholamines. When heat-shocked fish were treated with ICI-118,551, we observed a significant attenuation of the HSP70 response. We conclude that circulating catecholamines influence the cellular heat shock response in rainbow trout RBCs, demonstrating physiological/hormonal control of the cellular stress response.

  6. Role of the autonomic nervous system and baroreflex in stress-evoked cardiovascular responses in rats.

    Science.gov (United States)

    Dos Reis, Daniel Gustavo; Fortaleza, Eduardo Albino Trindade; Tavares, Rodrigo Fiacadori; Corrêa, Fernando Morgan Aguiar

    2014-07-01

    Restraint stress (RS) is an experimental model to study stress-related cardiovascular responses, characterized by sustained pressor and tachycardiac responses. We used pharmacologic and surgical procedures to investigate the role played by sympathetic nervous system (SNS) and parasympathetic nervous system (PSNS) in the mediation of stress-evoked cardiovascular responses. Ganglionic blockade with pentolinium significantly reduced RS-evoked pressor and tachycardiac responses. Intravenous treatment with homatropine methyl bromide did not affect the pressor response but increased tachycardia. Pretreatment with prazosin reduced the pressor and increased the tachycardiac response. Pretreatment with atenolol did not affect the pressor response but reduced tachycardia. The combined treatment with atenolol and prazosin reduced both pressor and tachycardiac responses. Adrenal demedullation reduced the pressor response without affecting tachycardia. Sinoaortic denervation increased pressor and tachycardiac responses. The results indicate that: (1) the RS-evoked cardiovascular response is mediated by the autonomic nervous system without an important involvement of humoral factors; (2) hypertension results primarily from sympathovascular and sympathoadrenal activation, without a significant involvement of the cardiac sympathetic component (CSNS); (3) the abrupt initial peak in the hypertensive response to restraint is sympathovascular-mediated, whereas the less intense but sustained hypertensive response observed throughout the remaining restraint session is mainly mediated by sympathoadrenal activation and epinephrine release; (4) tachycardia results from CSNS activation, and not from PSNS inhibition; (5) RS evokes simultaneous CSNS and PSNS activation, and heart rate changes are a vector of both influences; (6) the baroreflex is functional during restraint, and modulates both the vascular and cardiac responses to restraint.

  7. Stress and Protists: No life without stress.

    Science.gov (United States)

    Slaveykova, Vera; Sonntag, Bettina; Gutiérrez, Juan Carlos

    2016-08-01

    We report a summary of the symposium "Stress and Protists: No life without stress", which was held in September 2015 on the VII European Congress of Protistology in partnership with the International Society of Protistologists (Seville, Spain). We present an overview on general comments and concepts on cellular stress which can be also applied to any protist. Generally, various environmental stressors may induce similar cell responses in very different protists. Two main topics are reported in this manuscript: (i) metallic nanoparticles as environmental pollutants and stressors for aquatic protists, and (ii) ultraviolet radiation - induced stress and photoprotective strategies in ciliates. Model protists such as Chlamydomonas reinhardtii and Tetrahymena thermophila were used to assess stress caused by nanoparticles while stress caused by ultraviolet radiation was tested with free living planktonic ciliates as well as with the symbiont-bearing model ciliate Paramecium bursaria. For future studies, we suggest more intensive analyses on protist stress responses to specific environmental abiotic and/or biotic stressors at molecular and genetic levels up to ecological consequences and food web dynamics. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Stretching the Stress Boundary: Linking Air Pollution Health Effects to a Neurohormonal Stress Response

    Science.gov (United States)

    Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer’s and diabetes. A neurohormonal stress response (referred here as a systemic response produced by activation ...

  9. Genetic and Computational Approaches for Studying Plant Development and Abiotic Stress Responses Using Image-Based Phenotyping

    Science.gov (United States)

    Campbell, M. T.; Walia, H.; Grondin, A.; Knecht, A.

    2017-12-01

    The development of abiotic stress tolerant crops (i.e. drought, salinity, or heat stress) requires the discovery of DNA sequence variants associated with stress tolerance-related traits. However, many traits underlying adaptation to abiotic stress involve a suite of physiological pathways that may be induced at different times throughout the duration of stress. Conventional single-point phenotyping approaches fail to fully capture these temporal responses, and thus downstream genetic analysis may only identify a subset of the genetic variants that are important for adaptation to sub-optimal environments. Although genomic resources for crops have advanced tremendously, the collection of phenotypic data for morphological and physiological traits is laborious and remains a significant bottleneck in bridging the phenotype-genotype gap. In recent years, the availability of automated, image-based phenotyping platforms has provided researchers with an opportunity to collect morphological and physiological traits non-destructively in a highly controlled environment. Moreover, these platforms allow abiotic stress responses to be recorded throughout the duration of the experiment, and have facilitated the use of function-valued traits for genetic analyses in major crops. We will present our approaches for addressing abiotic stress tolerance in cereals. This talk will focus on novel open-source software to process and extract biological meaningful data from images generated from these phenomics platforms. In addition, we will discuss the statistical approaches to model longitudinal phenotypes and dissect the genetic basis of dynamic responses to these abiotic stresses throughout development.

  10. Investigating genotype specific response in photosynthetic behavior under drought stress and nitrogen limitation in Brassica rapa.

    Science.gov (United States)

    Pleban, J. R.; Mackay, D. S.; Ewers, B. E.; Weinig, C.; Aston, T.

    2015-12-01

    Challenges in terrestrial ecosystem modeling include characterizing the impact of stress on vegetation and the heterogeneous behavior of different species within the environment. In an effort to address these challenges the impacts of drought and nutrient limitation on the CO2 assimilation of multiple genotypes of Brassica rapa was investigated using the Farquhar Model (FM) of photosynthesis following a Bayesian parameterization and updating scheme. Leaf gas exchange and chlorophyll fluorescence measurements from an unstressed group (well-watered/well-fertilized) and two stressed groups (drought/well-fertilized and well-watered/nutrient limited) were used to estimate FM model parameters. Unstressed individuals were used to initialize Bayesian parameter estimation. Posterior mean estimates yielded a close fit with data as observed assimilation (An) closely matched predicted (Ap) with mean standard error for all individuals ranging from 0.8 to 3.1 μmol CO2 m-2 s-1. Posterior parameter distributions of the unstressed individuals were combined and fit to distributions to establish species level Bayesian priors of FM parameters for testing stress responses. Species level distributions of unstressed group identified mean maximum rates of carboxylation standardized to 25° (Vcmax25) as 101.8 μmol m-2 s-1 (± 29.0) and mean maximum rates of electron transport standardized to 25° (Jmax25) as 319.7 μmol m-2 s-1 (± 64.4). These updated priors were used to test the response of drought and nutrient limitations on assimilation. In the well-watered/nutrient limited group a decrease of 28.0 μmol m-2 s-1 was observed in mean estimate of Vcmax25, a decrease of 27.9 μmol m-2 s-1 in Jmax25 and a decrease in quantum yield from 0.40 mol photon/mol e- in unstressed individuals to 0.14 in the nutrient limited group. In the drought/well-fertilized group a decrease was also observed in Vcmax25 and Jmax25. The genotype specific unstressed and stressed responses were then used to

  11. Persistent response of Fanconi anemia haematopoietic stem and progenitor cells to oxidative stress.

    Science.gov (United States)

    Li, Yibo; Amarachintha, Surya; Wilson, Andrew F; Li, Xue; Du, Wei

    2017-06-18

    Oxidative stress is considered as an important pathogenic factor in many human diseases including Fanconi anemia (FA), an inherited bone marrow failure syndrome with extremely high risk of leukemic transformation. Members of the FA protein family are involved in DNA damage and other cellular stress responses. Loss of FA proteins renders cells hypersensitive to oxidative stress and cancer transformation. However, how FA cells respond to oxidative DNA damage remains unclear. By using an in vivo stress-response mouse strain expressing the Gadd45β-luciferase transgene, we show here that haematopoietic stem and progenitor cells (HSPCs) from mice deficient for the FA gene Fanca or Fancc persistently responded to oxidative stress. Mechanistically, we demonstrated that accumulation of unrepaired DNA damage, particularly in oxidative damage-sensitive genes, was responsible for the long-lasting response in FA HSPCs. Furthermore, genetic correction of Fanca deficiency almost completely abolished the persistent oxidative stress-induced G 2 /M arrest and DNA damage response in vivo. Our study suggests that FA pathway is an integral part of a versatile cellular mechanism by which HSPCs respond to oxidative stress.

  12. Does spending time outdoors reduce stress? A review of real-time stress response to outdoor environments

    Science.gov (United States)

    Michelle C. Kondo; Sara F. Jacoby; Eugenia C. South

    2018-01-01

    Everyday environmental conditions impact human health. One mechanism underlying this relationship is the experience of stress. Through systematic review of published literature, we explore how stress has been measured in real-time non-laboratory studies of stress responses to deliberate exposure to outdoor environments. The types of exposures evaluated in this review...

  13. gender and school types as factors responsible for job stress

    African Journals Online (AJOL)

    Emeka Egbochuku

    public Universities should be looked into so that all factors responsible for stress might be .... universities in Malaysia, university academic staffs faced more problems .... adjustment with different coping styles. .... in college students: The role of rumination and stress. ... International Journal of Stress Management, 8, 285–29.

  14. Stress induction in the bacteria Shewanella oneidensis and Deinococcus radiodurans in response to below-background ionizing radiation.

    Science.gov (United States)

    Castillo, Hugo; Schoderbek, Donald; Dulal, Santosh; Escobar, Gabriela; Wood, Jeffrey; Nelson, Roger; Smith, Geoffrey

    2015-01-01

    The 'Linear no-threshold' (LNT) model predicts that any amount of radiation increases the risk of organisms to accumulate negative effects. Several studies at below background radiation levels (4.5-11.4 nGy h(-1)) show decreased growth rates and an increased susceptibility to oxidative stress. The purpose of our study is to obtain molecular evidence of a stress response in Shewanella oneidensis and Deinococcus radiodurans grown at a gamma dose rate of 0.16 nGy h(-1), about 400 times less than normal background radiation. Bacteria cultures were grown at a dose rate of 0.16 or 71.3 nGy h(-1) gamma irradiation. Total RNA was extracted from samples at early-exponential and stationary phases for the rt-PCR relative quantification (radiation-deprived treatment/background radiation control) of the stress-related genes katB (catalase), recA (recombinase), oxyR (oxidative stress transcriptional regulator), lexA (SOS regulon transcriptional repressor), dnaK (heat shock protein 70) and SOA0154 (putative heavy metal efflux pump). Deprivation of normal levels of radiation caused a reduction in growth of both bacterial species, accompanied by the upregulation of katB, recA, SOA0154 genes in S. oneidensis and the upregulation of dnaK in D. radiodurans. When cells were returned to background radiation levels, growth rates recovered and the stress response dissipated. Our results indicate that below-background levels of radiation inhibited growth and elicited a stress response in two species of bacteria, contrary to the LNT model prediction.

  15. Microarray Analysis of Transcriptional Responses to Abscisic Acid and Salt Stress in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yucheng Wang

    2013-05-01

    Full Text Available Abscisic acid (ABA plays a crucial role in plant responses to abiotic stress. To investigate differences in plant responses to salt and ABA stimulus, differences in gene expression in Arabidopsis in response to salt and ABA were compared using an Agilent oligo microarray. A total of 144 and 139 genes were significantly up- and downregulated, respectively, under NaCl stress, while 406 and 381 genes were significantly up- and downregulated, respectively, under ABA stress conditions. In addition, 31 genes were upregulated by both NaCl and ABA stresses, and 23 genes were downregulated by these stressors, suggesting that these genes may play similar roles in plant responses to salt and ABA stress. Gene ontology (GO analysis revealed four subgroups of genes, including genes in the GO categories “Molecular transducer activity”, “Growth”, “Biological adhesion” and “Pigmentation”, which were expressed in response to ABA stress but not NaCl stress. In addition, genes that play specific roles during salt or ABA stress were identified. Our results may help elucidate differences in the response of plants to salt and ABA stress.

  16. Differentiating anticipatory from reactive cortisol responses to psychosocial stress

    NARCIS (Netherlands)

    Engert, V.; Efanov, S.I.; Duchesne, A.; Vogel, S.; Corbo, V.; Pruessner, J.C.

    2013-01-01

    Most psychosocial stress studies assess the overall cortisol response without further identifying the temporal dynamics within hormone levels. It has been shown, however, that the amplitude of anticipatory cortisol stress levels has a unique predictive value for psychological health. So far, no

  17. Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part II: responses in the leaves and general conclusions.

    Science.gov (United States)

    Vanhoudt, Nathalie; Cuypers, Ann; Horemans, Nele; Remans, Tony; Opdenakker, Kelly; Smeets, Karen; Bello, Daniel Martinez; Havaux, Michel; Wannijn, Jean; Van Hees, May; Vangronsveld, Jaco; Vandenhove, Hildegarde

    2011-06-01

    The cellular redox balance seems an important modulator under heavy metal stress. While for other heavy metals these processes are well studied, oxidative stress related responses are also known to be triggered under uranium stress but information remains limited. This study aimed to further unravel the mechanisms by which plants respond to uranium stress. Seventeen-day-old Arabidopsis thaliana seedlings, grown on a modified Hoagland solution under controlled conditions, were exposed to 0, 0.1, 1, 10 and 100 μM uranium for 1, 3 and 7 days. While in Part I of this study oxidative stress related responses in the roots were discussed, this second Part II discusses oxidative stress related responses in the leaves and general conclusions drawn from the results of the roots and the leaves will be presented. As several responses were already visible following 1 day exposure, when uranium concentrations in the leaves were negligible, a root-to-shoot signaling system was suggested in which plastids could be important sensing sites. While lipid peroxidation, based on the amount of thiobarbituric acid reactive compounds, was observed after exposure to 100 μM uranium, affecting membrane structure and function, a transient concentration dependent response pattern was visible for lipoxygenase initiated lipid peroxidation. This transient character of uranium stress responses in leaves was emphasized by results of lipoxygenase (LOX2) and antioxidative enzyme transcript levels, enzyme capacities and glutathione concentrations both in time as with concentration. The ascorbate redox balance seemed an important modulator of uranium stress responses in the leaves as in addition to the previous transient responses, the total ascorbate concentration and ascorbate/dehydroascorbate redox balance increased in a concentration and time dependent manner. This could represent either a slow transient response or a stable increase with regard to plant acclimation to uranium stress. Copyright

  18. Prefrontal cortex activity is associated with biobehavioral components of the stress response

    Directory of Open Access Journals (Sweden)

    Muriah D Wheelock

    2016-11-01

    Full Text Available Contemporary theory suggests that prefrontal cortex (PFC function is associated with individual variability in the psychobiology of the stress response. Advancing our understanding of this complex biobehavioral pathway has potential to provide insight into processes that determine individual differences in stress susceptibility. The present study used functional magnetic resonance imaging (fMRI to examine brain activity during a variation of the Montreal Imaging Stress Task (MIST in fifty-three young adults. Salivary cortisol was assessed as an index of the stress response, trait anxiety was assessed as an index of an individual’s disposition towards negative affectivity, and self-reported stress was assessed as an index of an individual’s subjective psychological experience. Heart rate and skin conductance responses were also assessed as additional measures of physiological reactivity. Dorsomedial PFC, dorsolateral PFC, and inferior parietal lobule demonstrated differential activity during the MIST. Further, differences in salivary cortisol reactivity to the MIST were associated with ventromedial PFC and posterior cingulate activity, while trait anxiety and self-reported stress were associated with dorsomedial and ventromedial PFC activity respectively. These findings underscore that PFC activity regulates behavioral and psychobiological components of the stress response.

  19. Plant Responses to Abiotic Stress Regulated by Histone Deacetylases

    Directory of Open Access Journals (Sweden)

    Ming Luo

    2017-12-01

    Full Text Available In eukaryotic cells, histone acetylation and deacetylation play an important role in the regulation of gene expression. Histone acetylation levels are modulated by histone acetyltransferases and histone deacetylases (HDACs. Recent studies indicate that HDACs play essential roles in the regulation of gene expression in plant response to environmental stress. In this review, we discussed the recent advance regarding the plant HDACs and their functions in the regulation of abiotic stress responses. The role of HDACs in autophagy was also discussed.

  20. [The relationship of quality of life (QOL) with physical fitness, competence and stress response in elderly in Japan].

    Science.gov (United States)

    Uemura, Shinichi; Machida, Kazuhiki

    2003-09-01

    In order to evaluate the relationship of quality of life (QOL) with physical fitness, competence and stress response in the elderly population in Japan, a cross sectional field survey of elderly subjects was conducted. This survey was taken in Naguri village, Saitama. The data collected included physical fitness, competence, stress response and QOL in addition to demographic variables. As for physical fitness indexes, grip strength (GS), single leg balance with eyes closed (SLB), bar grip ping reaction time (RT), trunk flexion (RF), ten-meter walking time (WT) and vital capacity (VC) were measured. The SF-36 was used for QOL assessment. A total of 120 elderly subjected participated to the survey. There were 42 males (73.5 +/- 5.74 years) and 78 females (74.2 +/- 6.17 years). The associations between physical health parameters in SF-36 and WT were highly significant: physical functioning (beta = -2.96, p fit indexes of the structural equation model describing the relationships among physical fitness, competence, stress response and QOL indicated excellent fit to the data with GFI = 0.95 and AGFI = 0.88. Stress response showed relatively stronger influence on QOL than physical fitness or competence. Although there were slight differences in degree of influence, physical fitness, stress response and competence were found to be clearly related to QOL in elderly subjects. To keep good QOL status, it is important to maintain good physical fitness and level of competence and to reduce stress response.

  1. Transcriptional responses of Arabidopsis thaliana plants to As (V stress

    Directory of Open Access Journals (Sweden)

    Yuan Joshua S

    2008-08-01

    Full Text Available Abstract Background Arsenic is toxic to plants and a common environmental pollutant. There is a strong chemical similarity between arsenate [As (V] and phosphate (Pi. Whole genome oligonucleotide microarrays were employed to investigate the transcriptional responses of Arabidopsis thaliana plants to As (V stress. Results Antioxidant-related genes (i.e. coding for superoxide dismutases and peroxidases play prominent roles in response to arsenate. The microarray experiment revealed induction of chloroplast Cu/Zn superoxide dismutase (SOD (at2g28190, Cu/Zn SOD (at1g08830, as well as an SOD copper chaperone (at1g12520. On the other hand, Fe SODs were strongly repressed in response to As (V stress. Non-parametric rank product statistics were used to detect differentially expressed genes. Arsenate stress resulted in the repression of numerous genes known to be induced by phosphate starvation. These observations were confirmed with qRT-PCR and SOD activity assays. Conclusion Microarray data suggest that As (V induces genes involved in response to oxidative stress and represses transcription of genes induced by phosphate starvation. This study implicates As (V as a phosphate mimic in the cell by repressing genes normally induced when available phosphate is scarce. Most importantly, these data reveal that arsenate stress affects the expression of several genes with little or unknown biological functions, thereby providing new putative gene targets for future research.

  2. Transcriptomic responses to darkness stress point to common coral bleaching mechanisms

    Science.gov (United States)

    Desalvo, M. K.; Estrada, A.; Sunagawa, S.; Medina, Mónica

    2012-03-01

    Coral bleaching occurs in response to numerous abiotic stressors, the ecologically most relevant of which is hyperthermic stress due to increasing seawater temperatures. Bleaching events can span large geographic areas and are currently a salient threat to coral reefs worldwide. Much effort has been focused on understanding the molecular and cellular events underlying bleaching, and these studies have mainly utilized heat and light stress regimes. In an effort to determine whether different stressors share common bleaching mechanisms, we used complementary DNA (cDNA) microarrays for the corals Acropora palmata and Montastraea faveolata (containing >10,000 features) to measure differential gene expression during darkness stress. Our results reveal a striking transcriptomic response to darkness in A. palmata involving chaperone and antioxidant up-regulation, growth arrest, and metabolic modifications. As these responses were previously measured during thermal stress, our results suggest that different stressors may share common bleaching mechanisms. Furthermore, our results point to hypoxia and endoplasmic reticulum stress as critical cellular events involved in molecular bleaching mechanisms. On the other hand, we identified a meager transcriptomic response to darkness in M. faveolata where gene expression differences between host colonies and sampling locations were greater than differences between control and stressed fragments. This and previous coral microarray studies reveal the immense range of transcriptomic responses that are possible when studying two coral species that differ greatly in their ecophysiology, thus pointing to the importance of comparative approaches in forecasting how corals will respond to future environmental change.

  3. Global Transcriptional Responses to Osmotic, Oxidative, and Imipenem Stress Conditions in Pseudomonas putida.

    Science.gov (United States)

    Bojanovič, Klara; D'Arrigo, Isotta; Long, Katherine S

    2017-04-01

    Bacteria cope with and adapt to stress by modulating gene expression in response to specific environmental cues. In this study, the transcriptional response of Pseudomonas putida KT2440 to osmotic, oxidative, and imipenem stress conditions at two time points was investigated via identification of differentially expressed mRNAs and small RNAs (sRNAs). A total of 440 sRNA transcripts were detected, of which 10% correspond to previously annotated sRNAs, 40% to novel intergenic transcripts, and 50% to novel transcripts antisense to annotated genes. Each stress elicits a unique response as far as the extent and dynamics of the transcriptional changes. Nearly 200 protein-encoding genes exhibited significant changes in all stress types, implicating their participation in a general stress response. Almost half of the sRNA transcripts were differentially expressed under at least one condition, suggesting possible functional roles in the cellular response to stress conditions. The data show a larger fraction of differentially expressed sRNAs than of mRNAs with >5-fold expression changes. The work provides detailed insights into the mechanisms through which P. putida responds to different stress conditions and increases understanding of bacterial adaptation in natural and industrial settings. IMPORTANCE This study maps the complete transcriptional response of P. putida KT2440 to osmotic, oxidative, and imipenem stress conditions at short and long exposure times. Over 400 sRNA transcripts, consisting of both intergenic and antisense transcripts, were detected, increasing the number of identified sRNA transcripts in the strain by a factor of 10. Unique responses to each type of stress are documented, including both the extent and dynamics of the gene expression changes. The work adds rich detail to previous knowledge of stress response mechanisms due to the depth of the RNA sequencing data. Almost half of the sRNAs exhibit significant expression changes under at least one

  4. Transcriptome Profiling of Watermelon Root in Response to Short-Term Osmotic Stress.

    Science.gov (United States)

    Yang, Yongchao; Mo, Yanling; Yang, Xiaozheng; Zhang, Haifei; Wang, Yongqi; Li, Hao; Wei, Chunhua; Zhang, Xian

    2016-01-01

    Osmotic stress adversely affects the growth, fruit quality and yield of watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai). Increasing the tolerance of watermelon to osmotic stress caused by factors such as high salt and water deficit is an effective way to improve crop survival in osmotic stress environments. Roots are important organs in water absorption and are involved in the initial response to osmosis stress; however, few studies have examined the underlying mechanism of tolerance to osmotic stress in watermelon roots. For better understanding of this mechanism, the inbred watermelon accession M08, which exhibits relatively high tolerance to water deficits, was treated with 20% polyethylene glycol (PEG) 6000. The root samples were harvested at 6 h after PEG treatment and untreated samples were used as controls. Transcriptome analyses were carried out by Illumina RNA sequencing. A total of 5246 differentially expressed genes were identified. Gene ontology enrichment and biochemical pathway analyses of these 5246 genes showed that short-term osmotic stress affected osmotic adjustment, signal transduction, hormone responses, cell division, cell cycle and ribosome, and M08 may repress root growth to adapt osmotic stress. The results of this study describe the watermelon root transcriptome under osmotic stress and propose new insight into watermelon root responses to osmotic stress at the transcriptome level. Accordingly, these results allow us to better understand the molecular mechanisms of watermelon in response to drought stress and will facilitate watermelon breeding projects to improve drought tolerance.

  5. Gender differences in acculturation, stress, and salivary cortisol response among former Soviet immigrants.

    Science.gov (United States)

    Nicholson, Lisa M; Miller, Arlene Michaels; Schwertz, Dorie; Sorokin, Olga

    2013-06-01

    Post-immigration adaptation is characterized by chronic and acute acculturative stressors. Salivary cortisol is a commonly used hormonal marker of stress, but few studies have investigated its use as an indicator of acculturative stress and adjustment in immigrants. The purpose of this study was to examine relationships among predictors of adjustment (environmental and language mastery), self-reported stress outcomes (depressive symptoms, perceived stress, alienation), and salivary cortisol response in immigrants from the former Soviet Union. The sample included 137 married men and women aged 42-80 who lived in the U.S. for 1-13 years. Results indicated that while men and women had similar values for cortisol response, relationships among adjustment measures, stress outcomes, and cortisol differed by gender. Among men, environmental mastery significantly reduced depressive symptoms, perceived stress, and cortisol response. Among women, environmental mastery also reduced depressive symptoms, perceived stress, and alienation, but language mastery increased cortisol response and decreased alienation.

  6. Hormonal contraception use alters stress responses and emotional memory.

    Science.gov (United States)

    Nielsen, Shawn E; Segal, Sabrina K; Worden, Ian V; Yim, Ilona S; Cahill, Larry

    2013-02-01

    Emotionally arousing material is typically better remembered than neutral material. Since norepinephrine and cortisol interact to modulate emotional memory, sex-related influences on stress responses may be related to sex differences in emotional memory. Two groups of healthy women - one naturally cycling (NC women, n=42) and one using hormonal contraceptives (HC women, n=36) - viewed emotionally arousing and neutral images. Immediately after, they were assigned to Cold Pressor Stress (CPS) or a control procedure. One week later, participants received a surprise free recall test. Saliva samples were collected and later assayed for salivary alpha-amylase (biomarker for norepinephrine) and cortisol. Compared to NC women, HC women exhibited significantly blunted stress hormone responses to the images and CPS. Recall of emotional images differed between HC and NC women depending on noradrenergic and cortisol responses. These findings may have important implications for understanding the neurobiology of emotional memory disorders, especially those that disproportionately affect women. Published by Elsevier B.V.

  7. Stress Transmission in Granular Packings: Localization and Cooperative Response

    Science.gov (United States)

    Ramola, Kabir

    We develop a framework for stress transmission in two dimensional granular media that respects vector force balance at the microscopic level. For a packing of grains interacting via pairwise contact forces, we introduce local gauge degrees of freedom that determine the response of the system to external perturbations. This allows us to construct unique force-balanced solutions that determine the change in contact forces as a response to external stress. By mapping this response to diffusion in the underlying contact network, we show that this naturally leads to spatial localization of forces. We present numerical evidence for stress localization using exact diagonalization studies of network Laplacians associated with soft disk packings. We use this formalism to characterize the deviation from elastic behaviour as the amount of disorder in the underlying network is varied. We discuss generalizations to systems with large friction between grains and other networks that display topological disorder. This work has been supported by NSF-DMR 1409093 and the W. M. Keck Foundation.

  8. Abnormal Stress Responsivity in a Rodent Developmental Disruption Model of Schizophrenia

    OpenAIRE

    Zimmerman, Eric C; Bellaire, Mark; Ewing, Samuel G; Grace, Anthony A

    2013-01-01

    Although numerous studies have implicated stress in the pathophysiology of schizophrenia, less is known about how the effects of stress interact with genetic, developmental, and/or environmental determinants to promote disease progression. In particular, it has been proposed that in humans, stress exposure in adolescence could combine with a predisposition towards increased stress sensitivity, leading to prodromal symptoms and eventually psychosis. However, the neurobiological substrates for ...

  9. The influence of maternal care and overprotection on youth adrenocortical stress response: a multiphase growth curve analysis.

    Science.gov (United States)

    Vergara-Lopez, Chrystal; Chaudoir, Stephenie; Bublitz, Margaret; O'Reilly Treter, Maggie; Stroud, Laura

    2016-11-01

    We examined the association between two dimensions of maternal parenting style (care and overprotection) and cortisol response to an acute laboratory-induced stressor in healthy youth. Forty-three participants completed the Parental Bonding Instrument and an adapted version of the Trier Social Stress Test-Child (TSST-C). Nine cortisol samples were collected to investigate heterogeneity in different phases of youth's stress response. Multiphase growth-curve modeling was utilized to create latent factors corresponding to individual differences in cortisol during baseline, reactivity, and recovery to the TSST-C. Youth report of maternal overprotection was associated with lower baseline cortisol levels, and a slower cortisol decline during recovery, controlling for maternal care, puberty, and gender. No additive or interactive effects involving maternal care emerged. These findings suggest that maternal overprotection may exert a unique and important influence on youth's stress response.

  10. Early life adversity influences stress response association with smoking relapse.

    Science.gov (United States)

    al'Absi, Mustafa; Lemieux, Andrine; Westra, Ruth; Allen, Sharon

    2017-11-01

    We examined the hypothesis that stress-related blunting of cortisol in smokers is particularly pronounced in those with a history of severe life adversity. The two aims of this study were first to examine hormonal, craving, and withdrawal symptoms during ad libitum smoking and after the first 24 h of abstinence in smokers who experienced high or low levels of adversity. Second, we sought to examine the relationship between adversity and hypothalamic-pituitary-adrenal (HPA) hormones to predict relapse during the first month of a smoking cessation attempt. Hormonal and self-report measures were collected from 103 smokers (49 women) during ad libitum smoking and after the first 24 h of abstinence. HPA hormones were measured during baseline rest and in response to acute stress in both conditions. All smokers were interested in smoking cessation, and we prospectively used stress response measures to predict relapse during the first 4 weeks of the smoking cessation attempt. The results showed that high adversity was associated with higher distress and smoking withdrawal symptoms. High level of early life adversity was associated with elevated HPA activity, which was found in both salivary and plasma cortisol. Enhanced adrenocorticotropic hormone (ACTH) stress response was evident in high-adversity but not in low-adversity relapsers. This study demonstrated that early life adversity is associated with stress-related HPA responses. The study also demonstrated that, among smokers who experienced a high level of life adversity, heightened ACTH and cortisol responses were linked with increased risk for smoking relapse.

  11. Integrated Inflammatory Stress (ITIS) Model

    DEFF Research Database (Denmark)

    Bangsgaard, Elisabeth O.; Hjorth, Poul G.; Olufsen, Mette S.

    2017-01-01

    maintains a long-term level of the stress hormone cortisol which is also anti-inflammatory. A new integrated model of the interaction between these two subsystems of the inflammatory system is proposed and coined the integrated inflammatory stress (ITIS) model. The coupling mechanisms describing....... A constant activation results in elevated levels of the variables in the model while a prolonged change of the oscillations in ACTH and cortisol concentrations is the most pronounced result of different LPS doses predicted by the model....

  12. Tissue distribution of 3H-corticosterone in response to stress

    International Nuclear Information System (INIS)

    Kolta, M.G.; Soliman, K.F.A.

    1981-01-01

    The level and distribution of 3 H-corticosterone ( 3 H-B) was investigated in adult male Sprague-Dawley rats in response to diethyl ether stress, epinephrine (EP) and/or dexamethasone administration. Diethyl ether stress caused a significant increase in the 3 H-B counts by some of the body tissues and brain regions studied. Plasma 3 H-B counts in the stressed rats were found to be twice as much as in the control animals. When EP (1.0 mg/kg) was injected, the tissue-plasma ratios of 3 H-B were significantly lower (P 3 H-B count in the plasma in response to diethyl ether stress or EP may indicate a decline in rate of corticosterone metabolism. (author)

  13. heat shock factor genes of tall fescue and perennial ryegrass in response to temperature stress by RNA-Seq analysis

    Directory of Open Access Journals (Sweden)

    Yan eWang

    2016-01-01

    Full Text Available Heat shock factors (Hsfs are important regulators of stress-response in plants. However, our understanding of Hsf genes and their responses to temperature stresses in two Pooideae cool-season grasses, Festuca arundinacea and Lolium perenne, is limited. Here we conducted comparative transcriptome analyses of plant leaves exposed to heat or cold stress for 10 h. Approximately, 30% and 25% of the genes expressed in the two species showed significant changes under heat and cold stress respectively, including subsets of Hsfs and their target genes. We uncovered 74 Hsfs in F. arundinacea and 52 Hsfs in L. perenne, and categorized these genes into three subfamilies, HsfA, HsfB, and HsfC based on protein sequence homology to known Hsf members in model organisms. The Hsfs showed a strong response to heat and/or cold stress. The expression of HsfAs was elevated under heat stress, especially in class HsfA2, which exhibited the most dramatic responses. HsfBs were upregulated by the both temperature conditions, and HsfCs mainly showed an increase in expression under cold stress. The target genes of Hsfs, such as heat shock protein (HSP, ascorbate peroxidase (APX, inositol-3-phosphate synthase (IPS, and galactinol synthase (GOLS1, showed strong and unique responses to different stressors. We comprehensively detected Hsfs and their target genes in F. arundinacea and L. perenne, providing a foundation for future gene function studies and genetic engineering to improve stress tolerance in grasses and other crops.

  14. Ruminant Nutrition Symposium: ruminant production and metabolic responses to heat stress.

    Science.gov (United States)

    Baumgard, L H; Rhoads, R P

    2012-06-01

    Heat stress compromises efficient animal production by marginalizing nutrition, management, and genetic selection efforts to maximize performance endpoints. Modifying farm infrastructure has yielded modest success in mitigating heat stress-related losses, yet poor production during the summer remains arguably the costliest issue facing livestock producers. Reduced output (e.g., milk yield and muscle growth) during heat stress was traditionally thought to result from decreased nutrient intake (i.e., a classic biological response shared by all animals during environmental-induced hyperthermia). Our recent observations have begun to challenge this belief and indicate heat-stressed animals employ novel homeorhetic strategies to direct metabolic and fuel selection priorities independently of nutrient intake or energy balance. Alterations in systemic physiology support a shift in carbohydrate metabolism, evident by increased basal and stimulated circulating insulin concentrations. Perhaps most intriguing given the energetic shortfall of the heat-stressed animal is the apparent lack of basal adipose tissue mobilization coupled with a reduced responsiveness to lipolytic stimuli. Thus, the heat stress response markedly alters postabsorptive carbohydrate, lipid, and protein metabolism independently of reduced feed intake through coordinated changes in fuel supply and utilization by multiple tissues. Interestingly, the systemic, cellular, and molecular changes appear conserved amongst different species and physiological states. Ultimately, these changes result in the reprioritization of fuel selection during heat stress, which appears to be primarily responsible for reduced ruminant animal productivity during the warm summer months.

  15. Genome-wide analysis identifies chickpea (Cicer arietinum) heat stress transcription factors (Hsfs) responsive to heat stress at the pod development stage.

    Science.gov (United States)

    Chidambaranathan, Parameswaran; Jagannadham, Prasanth Tej Kumar; Satheesh, Viswanathan; Kohli, Deshika; Basavarajappa, Santosh Halasabala; Chellapilla, Bharadwaj; Kumar, Jitendra; Jain, Pradeep Kumar; Srinivasan, R

    2018-05-01

    The heat stress transcription factors (Hsfs) play a prominent role in thermotolerance and eliciting the heat stress response in plants. Identification and expression analysis of Hsfs gene family members in chickpea would provide valuable information on heat stress responsive Hsfs. A genome-wide analysis of Hsfs gene family resulted in the identification of 22 Hsf genes in chickpea in both desi and kabuli genome. Phylogenetic analysis distinctly separated 12 A, 9 B, and 1 C class Hsfs, respectively. An analysis of cis-regulatory elements in the upstream region of the genes identified many stress responsive elements such as heat stress elements (HSE), abscisic acid responsive element (ABRE) etc. In silico expression analysis showed nine and three Hsfs were also expressed in drought and salinity stresses, respectively. Q-PCR expression analysis of Hsfs under heat stress at pod development and at 15 days old seedling stage showed that CarHsfA2, A6, and B2 were significantly upregulated in both the stages of crop growth and other four Hsfs (CarHsfA2, A6a, A6c, B2a) showed early transcriptional upregulation for heat stress at seedling stage of chickpea. These subclasses of Hsfs identified in this study can be further evaluated as candidate genes in the characterization of heat stress response in chickpea.

  16. The endocrine stress response is linked to one specific locus on chromosome 3 in a mouse model based on extremes in trait anxiety

    Directory of Open Access Journals (Sweden)

    Gonik Mariya

    2012-10-01

    Full Text Available Abstract Background The hypothalamic-pituitary-adrenal (HPA axis is essential to control physiological stress responses in mammals. Its dysfunction is related to several mental disorders, including anxiety and depression. The aim of this study was to identify genetic loci underlying the endocrine regulation of the HPA axis. Method High (HAB and low (LAB anxiety-related behaviour mice were established by selective inbreeding of outbred CD-1 mice to model extremes in trait anxiety. Additionally, HAB vs. LAB mice exhibit comorbid characteristics including a differential corticosterone response upon stress exposure. We crossbred HAB and LAB lines to create F1 and F2 offspring. To identify the contribution of the endocrine phenotypes to the total phenotypic variance, we examined multiple behavioural paradigms together with corticosterone secretion-based phenotypes in F2 mice by principal component analysis. Further, to pinpoint the genomic loci of the quantitative trait of the HPA axis stress response, we conducted genome-wide multipoint oligogenic linkage analyses based on Bayesian Markov chain Monte Carlo approach as well as parametric linkage in three-generation pedigrees, followed by a two-dimensional scan for epistasis and association analysis in freely segregating F2 mice using 267 single-nucleotide polymorphisms (SNPs, which were identified to consistently differ between HAB and LAB mice as genetic markers. Results HPA axis reactivity measurements and behavioural phenotypes were represented by independent principal components and demonstrated no correlation. Based on this finding, we identified one single quantitative trait locus (QTL on chromosome 3 showing a very strong evidence for linkage (2ln (L-score > 10, LOD > 23 and significant association (lowest Bonferroni adjusted p -28 to the neuroendocrine stress response. The location of the linkage peak was estimated at 42.3 cM (95% confidence interval: 41.3 - 43.3 cM and was shown to be in

  17. Identification of drought, cadmium and root-lesion nematode infection stress-responsive transcription factors in ramie

    Directory of Open Access Journals (Sweden)

    Zheng Xia

    2016-01-01

    Full Text Available Drought, cadmium (Cd stress, and root lesion nematode (RLN infection are three of the most important stresses affecting ramie growth and development; therefore, ramie breeding programs focus on their management more than on any other abiotic or biotic stresses. The fact that only a small number of stress-responsive transcription factors (TFs have been identified so far is a major obstacle in the elucidation of mechanisms regulating the response to these three stresses in ramie. In this study, in order to uncover more stress-responsive TFs, a total of 179 nonredundant genes with full-length open reading frames from the MYB, AP2/ERF, bZIP, HD-ZIP, and COL families were obtained by searching for against the ramie transcriptome. Expression pattern analysis demonstrated that most of these genes showed relatively higher expression in the stem xylem and bast than in other tissues. Among these genes, 96 genes were found to be involved in responses to drought, Cd exposure, or RLN-infection. The expression of 54 of these genes was regulated by at least two stresses. These stress-responsive TFs probably have roles in the regulation of stress tolerance. The discovery of these stress-responsive TFs will be helpful for furthering our understanding of the mechanisms that regulate stress responses in ramie.

  18. Response of CO and H2 uptake to extremes of water stress in saline and non-saline soils

    Science.gov (United States)

    King, G.

    2017-12-01

    Neither carbon monoxide (CO) nor hydrogen (H2) have direct impacts on radiative forcing, but both play important roles in tropospheric chemistry. Soils affect both the fate and significance of atmospheric CO and H2 by acting as strong global gas sinks ( 15% and >75 %, respectively), but much remains unknown about the microbiology of these gases, including responses to key environmental drivers. The role of water availability, measured as water potential, has been addressed to a limited extent by earlier studies with results suggesting that CO and H2 uptake are strongly limited by water stress. However recent results indicate a much greater tolerance of water stress than previously suspected. Ex situ assays have shown that non-saline playa soils from the Alvord Basin (Oregon, USA) consumed atmospheric and exogenous hydrogen and CO under conditions of severe water stress. CO uptake occurred at water potentials values considered optimal for terrestrial bacterial growth. Surface soils that had been exposed to water potentials as low as -300 MPa also oxidized CO and H2 after brief equilibration at higher potentials (less water stress), indicating remarkable tolerance of desiccating conditions. Tolerance to water stress for CO and H2 uptake was also observed for soils from a montane rainforest (Hawai`i, USA). However, unlike playa soils rainforest soils seldom experience extended drought that would select for desiccation tolerance. While CO uptake by forest soils was more sensitive to water stress (limits -10MPa) than in playa soils, H2 uptake was observed at -90 MPa to -100 MPa. Tolerance at these levels might be due to the formation of intracellular water that limits the local effects of stress. Comparisons of water stress responses between saline and non-saline soils further suggested that communities of CO- and H2-oxidizing were generally robust with respect to stresses resulting from solute and matric effects. Collectively the results indicate that models of global

  19. Chronic subordinate colony housing (CSC as a model of chronic psychosocial stress in male rats.

    Directory of Open Access Journals (Sweden)

    Kewir D Nyuyki

    Full Text Available Chronic subordinate colony housing (CSC is an adequate and reliable mouse model of chronic psychosocial stress, resulting in reduced body weight gain, reduced thymus and increased adrenal weight, long-lasting anxiety-like behaviour, and spontaneous colitis. Furthermore, CSC mice show increased corticotrophin (ACTH responsiveness to acute heterotypic stressors, suggesting a general mechanism which allows a chronically-stressed organism to adequately respond to a novel threat. Therefore, the aim of the present study was to extend the CSC model to another rodent species, namely male Wistar rats, and to characterize relevant physiological, immunological, and behavioural consequences; placing particular emphasis on changes in hypothalamo-pituitary-adrenal (HPA axis responsiveness to an acute heterotypic stressor. In line with previous mouse data, exposure of Wistar rats to 19 days of CSC resulted in a decrease in body weight gain and absolute thymus mass, mild colonic barrier defects and intestinal immune activation. Moreover, no changes in stress-coping behaviour or social preference were seen; again in agreement with the mouse paradigm. Most importantly, CSC rats showed an increased plasma corticosterone response to an acute heterotypic stressor (open arm, 5 min despite displaying similar basal levels and similar basal and stressor-induced plasma ACTH levels. In contrast to CSC mice, anxiety-related behaviour and absolute, as well as relative adrenal weights remained unchanged in CSC rats. In summary, the CSC paradigm could be established as an adequate model of chronic psychosocial stress in male rats. Our data further support the initial hypothesis that adrenal hyper-responsiveness to ACTH during acute heterotypic stressors represents a general adaptation, which enables a chronically-stressed organism to adequately respond to novel challenges.

  20. Roads are associated with a blunted stress response in a North American pit viper.

    Science.gov (United States)

    Owen, Dustin A S; Carter, Evin T; Holding, Matthew L; Islam, Kamal; Moore, Ignacio T

    2014-06-01

    Whereas numerous studies have examined roads as anthropogenic stressors in birds and mammals, comparatively few studies have been undertaken on reptiles. We investigated plasma corticosterone (CORT) levels at baseline and following 30min of restraint stress in free-ranging copperhead snakes (Agkistrodon contortrix) captured within the forest interior or while in contact with public roads. There was no difference in baseline CORT levels between snakes in the forest and on roads. Copperheads responded to restraint stress by increasing plasma levels of CORT; however snakes on roads exhibited a lower CORT stress response compared to forest snakes. Additionally, among snakes captured on roads there was a negative association between road traffic and baseline CORT, stressed CORT, and the magnitude of the CORT response. Our results suggest that roads are associated with a blunted stress response in copperheads. Reduced stress responses may be indicative of acclimation, the inhibited ability to mount a stress response in the face of prolonged chronic stress, or that road environments select for individuals with lower CORT responsiveness. Either scenario could result in increased road mortality if snakes do not perceive roads as a potential threat. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Analysis of Brassica oleracea early stage abiotic stress responses reveals tolerance in multiple crop types and for multiple sources of stress.

    Science.gov (United States)

    Beacham, Andrew M; Hand, Paul; Pink, David Ac; Monaghan, James M

    2017-12-01

    Brassica oleracea includes a number of important crop types such as cabbage, cauliflower, broccoli and kale. Current climate conditions and weather patterns are causing significant losses in these crops, meaning that new cultivars with improved tolerance of one or more abiotic stress types must be sought. In this study, genetically fixed B. oleracea lines belonging to a Diversity Fixed Foundation Set (DFFS) were assayed for their response to seedling stage-imposed drought, flood, salinity, heat and cold stress. Significant (P ≤ 0.05) variation in stress tolerance response was found for each stress, for each of four measured variables (relative fresh weight, relative dry weight, relative leaf number and relative plant height). Lines tolerant to multiple stresses were found to belong to several different crop types. There was no overall correlation between the responses to the different stresses. Abiotic stress tolerance was identified in multiple B. oleracea crop types, with some lines exhibiting resistance to multiple stresses. For each stress, no one crop type appeared significantly more or less tolerant than others. The results are promising for the development of more environmentally robust lines of different B. oleracea crops by identifying tolerant material and highlighting the relationship between responses to different stresses. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. A role for SR proteins in plant stress responses.

    Science.gov (United States)

    Duque, Paula

    2011-01-01

    Members of the SR (serine/arginine-rich) protein gene family are key players in the regulation of alternative splicing, an important means of generating proteome diversity and regulating gene expression. In plants, marked changes in alternative splicing are induced by a wide variety of abiotic stresses, suggesting a role for this highly versatile gene regulation mechanism in the response to environmental cues. In support of this notion, the expression of plant SR proteins is stress-regulated at multiple levels, with environmental signals controlling their own alternative splicing patterns, phosphorylation status and subcellular distribution. Most importantly, functional links between these RNA-binding proteins and plant stress tolerance are beginning to emerge, including a role in the regulation of abscisic acid (ABA) signaling. Future identification of the physiological mRNA targets of plant SR proteins holds much promise for the elucidation of the molecular mechanisms underlying their role in the response to abiotic stress.

  3. Contingent self-worth moderates the relationship between school stressors and psychological stress responses.

    Science.gov (United States)

    Ishizu, Kenichiro

    2017-04-01

    This study examined the moderating role of contingent self-worth on the relationships between school stressors and psychological stress responses among Japanese adolescents. A total of 371 Japanese junior high school students (184 boys and 187 girls, M age  = 12.79 years, SD = 0.71) completed the Japanese version of the Self-Worth Contingency Questionnaire and a mental health checklist at two points separated by a two-month interval. Hierarchical multiple regression analyses were then used to determine whether contingent self-worth moderated the relationship between school stressors and psychological stress responses. The results indicated that, when psychological stress responses were controlled for at Time 1, contingent self-worth did not predict the psychological stress responses at Time 2. However, a two-way interaction between contingent self-worth and stressors was found to significantly influence psychological stress responses, thus indicating that stressors had a stronger impact on psychological stress responses among those with high contingent self-worth compared to those with low contingent self-worth. Copyright © 2017 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  4. Role of high-fat diet in stress response of Drosophila.

    Directory of Open Access Journals (Sweden)

    Erilynn T Heinrichsen

    Full Text Available Obesity is associated with many diseases, one of the most common being obstructive sleep apnea (OSA, which in turn leads to blood gas disturbances, including intermittent hypoxia (IH. Obesity, OSA and IH are associated with metabolic changes, and while much mammalian work has been done, mechanisms underlying the response to IH, the role of obesity and the interaction of obesity and hypoxia remain unknown. As a model organism, Drosophila offers tremendous power to study a specific phenotype and, at a subsequent stage, to uncover and study fundamental mechanisms, given the conservation of molecular pathways. Herein, we characterize the phenotype of Drosophila on a high-fat diet in normoxia, IH and constant hypoxia (CH using triglyceride and glucose levels, response to stress and lifespan. We found that female flies on a high-fat diet show increased triglyceride levels (p<0.001 and a shortened lifespan in normoxia, IH and CH. Furthermore, flies on a high-fat diet in normoxia and CH show diminished tolerance to stress, with decreased survival after exposure to extreme cold or anoxia (p<0.001. Of interest, IH seems to rescue this decreased cold tolerance, as flies on a high-fat diet almost completely recovered from cold stress following IH. We conclude that the cross talk between hypoxia and a high-fat diet can be either deleterious or compensatory, depending on the nature of the hypoxic treatment.

  5. Structure, function and networks of transcription factors involved in abiotic stress responses

    DEFF Research Database (Denmark)

    Lindemose, Søren; O'Shea, Charlotte; Jensen, Michael Krogh

    2013-01-01

    Transcription factors (TFs) are master regulators of abiotic stress responses in plants. This review focuses on TFs from seven major TF families, known to play functional roles in response to abiotic stresses, including drought, high salinity, high osmolarity, temperature extremes...... and the phytohormone ABA. Although ectopic expression of several TFs has improved abiotic stress tolerance in plants, fine-tuning of TF expression and protein levels remains a challenge to avoid crop yield loss. To further our understanding of TFs in abiotic stress responses, emerging gene regulatory networks based...... on TFs and their direct targets genes are presented. These revealed components shared between ABA-dependent and independent signaling as well as abiotic and biotic stress signaling. Protein structure analysis suggested that TFs hubs of large interactomes have extended regions with protein intrinsic...

  6. Commonly used air filters fail to eliminate secondhand smoke induced oxidative stress and inflammatory responses.

    Science.gov (United States)

    Muthumalage, Thivanka; Pritsos, Karen; Hunter, Kenneth; Pritsos, Chris

    2017-07-01

    Secondhand smoke (SHS) causes approximately 50,000 deaths per year. Despite all the health warnings, smoking is still allowed indoors in many states exposing both workers and patrons to SHS on a daily basis. The opponents of smoking bans suggest that present day air filtration systems remove the health hazards of exposure to SHS. In this study, using an acute SHS exposure model, we looked at the impact of commonly used air filters (MERV-8 pleated and MERV-8 pleated activated charcoal) on SHS by assessing the inflammatory response and the oxidative stress response in C57BL/6 mice. In order to assess the inflammatory response, we looked at the tumor necrosis factor alpha (TNF-α) cytokine production by alveolar macrophages (AMs), and for the oxidative response, we quantified the products of lipid peroxidation and the total glutathione (tGSH) production in lung homogenates. Our results showed that SHS caused significant immune and oxidative stress responses. The tested filters resulted in only a modest alleviation of inflammatory and oxidative responses due to SHS exposure. Our data show that these air filters cannot eliminate the risk of SHS exposure and that a short-term exposure to SHS is sufficient to alter the inflammatory cytokine response and to initiate a complex oxidative stress response. Our results are consistent with the statement made by the Surgeon General's reports that there is no risk free level of exposure to SHS.

  7. Physiological responses of genotypes soybean to simulated drought stress

    Directory of Open Access Journals (Sweden)

    Eleonóra Krivosudská

    2016-12-01

    Full Text Available The objective of this research was to investigate possible genetic variation in the sensitivity of soybean cultivars for nitrogen fixation rates in response to soil drying. The work confirmed that the selected physiological characteristics (RWC, osmotic potential, stress index and created nodules on roots are good evaluating parameters for the determination of water stress in plant. In the floricultural year 2014 an experiment with four genetic resources of soybean was launched. Sowing of Maverick (USA, Drina (HRV, Nigra (SVK and Polanka (CZK genotypes was carried out in the containers of 15 l capacity. This stress had a negative impact on the physiological parameters. By comparing the RWC values, the decrease was more significant at the end of dehydration, which was monitored in Maverick and Drina genotypes using the Nitrazon inoculants and water stress effect. Inoculated stressed Nigra and Polanka genotypes have kept higher water content till the end of dehydration period. Also the proline accumulation was monitored during the water stress, whilst higher content of free proline reached of Maverick. More remarkable decrease of osmotic potential was again registered in a foreign Drina and Maverick genotypes in the inoculated variations. Nigra and Polanka genotypes responses not so significant in the given conditions.

  8. Straightened cervical lordosis causes stress concentration: a finite element model study

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wei; Shi, Shiyuan; Fei, Jun; Wang, Yifan; Chen, Chunyue [Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, (China); Liao, Shenhui [School of Information Science and Engineering, Central South University, Changsha, Hunan (China)

    2013-03-15

    In this study, we propose a finite element analysis of the complete cervical spine with straightened and normal physiological curvature by using a specially designed modelling system. An accurate finite element model is established to recommend plausible approaches to treatment of cervical spondylosis through the finite element analysis results. There are few reports of biomechanics influence of the straightened cervical curve. It is difficult to measure internal responses of cervical spine directly. However, the finite element method has been reported to have the capability to quantify both external and internal responses to mechanical loading, such as the strain and stress distribution of spinal components. We choose a subject with a straightened cervical spine from whom to collect the CT scan data, which formed the basis of the finite element analysis. By using a specially designed modelling system, a high quality finite element model of the complete cervical spine with straightened curvature was generated, which was then mapped to reconstruct a normal physiological curvature model by a volumetric mesh deformation method based on discrete differential properties. Then, the same boundary conditions were applied to do a comparison. The result demonstrated that the active movement range of straightened cervical spine decreased by 24–33 %, but the stress increased by 5–95 %. The stress was concentrated at the facet joint cartilage, uncovertebral joint and the disk. The results suggest that cervical lordosis may have a direct impact on cervical spondylosis treatment. These results may be useful for clinical treatment of cervical spondylosis with straightened curvature.

  9. Straightened cervical lordosis causes stress concentration: a finite element model study

    International Nuclear Information System (INIS)

    Wei, Wei; Shi, Shiyuan; Fei, Jun; Wang, Yifan; Chen, Chunyue; Liao, Shenhui

    2013-01-01

    In this study, we propose a finite element analysis of the complete cervical spine with straightened and normal physiological curvature by using a specially designed modelling system. An accurate finite element model is established to recommend plausible approaches to treatment of cervical spondylosis through the finite element analysis results. There are few reports of biomechanics influence of the straightened cervical curve. It is difficult to measure internal responses of cervical spine directly. However, the finite element method has been reported to have the capability to quantify both external and internal responses to mechanical loading, such as the strain and stress distribution of spinal components. We choose a subject with a straightened cervical spine from whom to collect the CT scan data, which formed the basis of the finite element analysis. By using a specially designed modelling system, a high quality finite element model of the complete cervical spine with straightened curvature was generated, which was then mapped to reconstruct a normal physiological curvature model by a volumetric mesh deformation method based on discrete differential properties. Then, the same boundary conditions were applied to do a comparison. The result demonstrated that the active movement range of straightened cervical spine decreased by 24–33 %, but the stress increased by 5–95 %. The stress was concentrated at the facet joint cartilage, uncovertebral joint and the disk. The results suggest that cervical lordosis may have a direct impact on cervical spondylosis treatment. These results may be useful for clinical treatment of cervical spondylosis with straightened curvature.

  10. Measuring general and specific stress causes and stress responses among beginning secondary school teachers in the Netherlands

    NARCIS (Netherlands)

    Harmsen, R; Helms-Lorenz, M.; Maulana, R; van Veen, K; van Veldhoven, M.J.P.M.

    2018-01-01

    The main aim of this study was to adjust the Questionnaire on the Experience and Evaluation of Work (QEEW) in order to measure stress causes and stress responses of beginning secondary school teachers in the Netherlands. First, the suitability of the original QEEW stress scales for use in the

  11. A phenomenological model of coating/substrate adhesion and interfacial bimetallic peeling stress in composite mirrors

    Science.gov (United States)

    Mcelroy, Paul M.; Lawson, Daniel D.

    1990-01-01

    Adhesion and interfacial stress between metal films and structural composite material substrates is discussed. A theoretical and conceptual basis for selecting coating materials for composite mirror substrates is described. A phenomenological model that interrelates cohesive tensile strength of thin film coatings and interfacial peeling stresses is presented. The model serves as a basis in determining gradiated materials response and compatibility of composite substrate and coating combinations. Parametric evaluation of material properties and geometrical factors such as coating thickness are used to determine the threshold stress levels for maintaining adhesion at the different interfaces.

  12. Chronic Stress Impairs Prefrontal Cortex-Dependent Response Inhibition and Spatial Working Memory

    Science.gov (United States)

    Mika, Agnieszka; Mazur, Gabriel J.; Hoffman, Ann N.; Talboom, Joshua S.; Bimonte-Nelson, Heather A.; Sanabria, Federico; Conrad, Cheryl D.

    2012-01-01

    Chronic stress leads to neurochemical and structural alterations in the prefrontal cortex (PFC) that correspond to deficits in PFC-mediated behaviors. The present study examined the effects of chronic restraint stress on response inhibition (using a response-withholding task, fixed-minimum interval schedule of reinforcement, or FMI), and working memory (using a radial arm water maze, RAWM). Adult male Sprague Dawley rats were first trained on the RAWM and subsequently trained on FMI. Following acquisition of FMI, rats were assigned to a restraint stress (6h/d/28d in wire mesh restrainers) or control condition. Immediately after chronic stress, rats were tested on FMI and subsequently on RAWM. FMI results suggest that chronic stress reduces response inhibition capacity and motivation to initiate the task on selective conditions when food reward was not obtained on the preceding trial. RAWM results suggest that chronic stress produces transient deficits in working memory without altering previously consolidated reference memory. Behavioral measures from FMI failed to correlate with metrics from RAWM except for one in which changes in FMI timing precision negatively correlated with changes in RAWM working memory errors for the controls, a finding that was not observed following chronic stress. Fisher’s r to z transformation revealed no significant differences between control and stress with correlation coefficients. These findings are the first to show that chronic stress impairs both response inhibition and working memory, two behaviors that have never been direct compared within the same animals following chronic stress, using FMI, an appetitive task, and RAWM, a non-appetitive task. PMID:22905921

  13. Emotional coping response to hassles and stress experienced in wilderness settings

    Science.gov (United States)

    Rudy M. Schuster; W. E. Hammitt

    2003-01-01

    Stress/coping theory was used to understand recreationists' appraisal of stressful situations, coping processes, and the outcomes of the process. Specifically, stress was conceptualized as hassles in recreation settings. Specifically, the objective of this paper was to discuss the emotion focused coping response of visitors to stress encountered while on a...

  14. Stress and cortisol responses in men: differences according to facial symmetry.

    Science.gov (United States)

    Borráz-León, Javier I; Cerda-Molina, Ana Lilia; Mayagoitia-Novales, Lilian

    2017-11-01

    Stress response is associated with increased activity in the hypothalamic-pituitary-adrenocortical axis. Chronic stress-induced elevation in cortisol may alter its own negative regulation with multiple long-term consequences for physical and psychological health. One of the most reliable physical traits associated with mental, apparent physical health, and competitiveness is the degree of facial fluctuating asymmetry. However, to our knowledge there are no studies regarding the relationship between cortisol levels, facial symmetry and male competitiveness, and how cortisol changes after a stressful test depending on these traits. Here, a group of 100 college men were photographed to obtain their facial asymmetry levels. They then, answered the perceived stress scale and the intrasexual competition test and donated two saliva samples (pre-and post-test sample) to measure the change in their cortisol levels after a stressful test. We found that basal cortisol levels were positively correlated with both perceived stress and competitiveness, but not with facial fluctuating asymmetry. Cortisol levels increased in most symmetrical men after a short stressful test, but it decreased in most asymmetrical men. The results suggest differences in endocrine responses according to facial fluctuating asymmetry in men and how these responses could be related to the maintenance of social status.

  15. Kinetics model of bainitic transformation with stress

    Science.gov (United States)

    Zhou, Mingxing; Xu, Guang; Hu, Haijiang; Yuan, Qing; Tian, Junyu

    2018-01-01

    Thermal simulations were conducted on a Gleeble 3800 simulator. The main purpose is to investigate the effects of stress on the kinetics of bainitic transformation in a Fe-C-Mn-Si advanced high strength bainitic steel. Previous studies on modeling the kinetics of stress affected bainitic transformation only considered the stress below the yield strength of prior austenite. In the present study, the stress above the yield strength of prior austenite is taken into account. A new kinetics model of bainitic transformation dependent on the stress (including the stresses below and above the yield strength of prior austenite) and the transformation temperature is proposed. The new model presents a good agreement with experimental results. In addition, it is found that the acceleration degree of stress on bainitic transformation increases with the stress whether its magnitude is below or above the yield strength of austenite, but the increasing rate gradually slows down when the stress is above the yield strength of austenite.

  16. Cardiorespiratory Dynamic Response to Mental Stress: A Multivariate Time-Frequency Analysis

    Directory of Open Access Journals (Sweden)

    Devy Widjaja

    2013-01-01

    out continuously in time to evaluate the dynamic response to mental stress and attention. The results show an increased heart and respiratory rate during stress and attention, compared to a resting condition. Also a fast reduction in vagal activity is noted. The partial TF analysis reveals a faster reduction of RRV power related to (3 s than unrelated to (30 s respiration, demonstrating that the autonomic response to mental stress is driven by mechanisms characterized by different temporal scales.

  17. WRKY proteins: signaling and regulation of expression during abiotic stress responses.

    Science.gov (United States)

    Banerjee, Aditya; Roychoudhury, Aryadeep

    2015-01-01

    WRKY proteins are emerging players in plant signaling and have been thoroughly reported to play important roles in plants under biotic stress like pathogen attack. However, recent advances in this field do reveal the enormous significance of these proteins in eliciting responses induced by abiotic stresses. WRKY proteins act as major transcription factors, either as positive or negative regulators. Specific WRKY factors which help in the expression of a cluster of stress-responsive genes are being targeted and genetically modified to induce improved abiotic stress tolerance in plants. The knowledge regarding the signaling cascade leading to the activation of the WRKY proteins, their interaction with other proteins of the signaling pathway, and the downstream genes activated by them are altogether vital for justified targeting of the WRKY genes. WRKY proteins have also been considered to generate tolerance against multiple abiotic stresses with possible roles in mediating a cross talk between abiotic and biotic stress responses. In this review, we have reckoned the diverse signaling pattern and biological functions of WRKY proteins throughout the plant kingdom along with the growing prospects in this field of research.

  18. Mechanisms of Response to Salt Stress in Oleander (Nerium oleander L.

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar

    2016-11-01

    Full Text Available Elucidating the mechanisms of abiotic stress tolerance in different species will help to develop more resistant plant varieties, contributing to improve agricultural production in a climate change scenario. Basic responses to salt stress, dependent on osmolyte accumulation and activation of antioxidant systems, have been studied in Nerium oleander, a xerophytic species widely used as ornamental. Salt strongly inhibited growth, but the plants survived one-month treatments with quite high NaCl concentrations, up to 800 mM, indicating the the species is relatively resistant to salt stress, in addition to drought. Levels of proline, glycine betaine and soluble sugars increased only slightly in the presence of salt; however, soluble sugar absolute contents were much higher than those of the other osmolytes, suggesting a functional role of these compounds in osmotic adjustment, and the presence of constitutive mechanisms of response to salt stress. High salinity generated oxidative stress in the plants, as shown by the increase of malondialdehyde levels. Antioxidant systems, enzymatic and non-enzymatic, are generally activated in response to salt stress; in oleander, they do not seem to include total phenolics or flavonoids, antioxidant compounds which did not accumulate significantly in salt-trated plants

  19. Failure to upregulate Agrp and Orexin in response to activity based anorexia in weight loss vulnerable rats characterized by passive stress coping and prenatal stress experience.

    Science.gov (United States)

    Boersma, Gretha J; Liang, Nu-Chu; Lee, Richard S; Albertz, Jennifer D; Kastelein, Anneke; Moody, Laura A; Aryal, Shivani; Moran, Timothy H; Tamashiro, Kellie L

    2016-05-01

    We hypothesize that anorexia nervosa (AN) poses a physiological stress. Therefore, the way an individual copes with stress may affect AN vulnerability. Since prenatal stress (PNS) exposure alters stress responsivity in offspring this may increase their risk of developing AN. We tested this hypothesis using the activity based anorexia (ABA) rat model in control and PNS rats that were characterized by either proactive or passive stress-coping behavior. We found that PNS passively coping rats ate less and lost more weight during the ABA paradigm. Exposure to ABA resulted in higher baseline corticosterone and lower insulin levels in all groups. However, leptin levels were only decreased in rats with a proactive stress-coping style. Similarly, ghrelin levels were increased only in proactively coping ABA rats. Neuropeptide Y (Npy) expression was increased and proopiomelanocortin (Pomc) expression was decreased in all rats exposed to ABA. In contrast, agouti-related peptide (Agrp) and orexin (Hctr) expression were increased in all but the PNS passively coping ABA rats. Furthermore, DNA methylation of the orexin gene was increased after ABA in proactive coping rats and not in passive coping rats. Overall our study suggests that passive PNS rats have innate impairments in leptin and ghrelin in responses to starvation combined with prenatal stress associated impairments in Agrp and orexin expression in response to starvation. These impairments may underlie decreased food intake and associated heightened body weight loss during ABA in the passively coping PNS rats. Published by Elsevier Ltd.

  20. Comparison of Damage Models for Predicting the Non-Linear Response of Laminates Under Matrix Dominated Loading Conditions

    Science.gov (United States)

    Schuecker, Clara; Davila, Carlos G.; Rose, Cheryl A.

    2010-01-01

    Five models for matrix damage in fiber reinforced laminates are evaluated for matrix-dominated loading conditions under plane stress and are compared both qualitatively and quantitatively. The emphasis of this study is on a comparison of the response of embedded plies subjected to a homogeneous stress state. Three of the models are specifically designed for modeling the non-linear response due to distributed matrix cracking under homogeneous loading, and also account for non-linear (shear) behavior prior to the onset of cracking. The remaining two models are localized damage models intended for predicting local failure at stress concentrations. The modeling approaches of distributed vs. localized cracking as well as the different formulations of damage initiation and damage progression are compared and discussed.

  1. Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress.

    Science.gov (United States)

    Mutava, Raymond N; Prince, Silvas Jebakumar K; Syed, Naeem Hasan; Song, Li; Valliyodan, Babu; Chen, Wei; Nguyen, Henry T

    2015-01-01

    Many sources of drought and flooding tolerance have been identified in soybean, however underlying molecular and physiological mechanisms are poorly understood. Therefore, it is important to illuminate different plant responses to these abiotic stresses and understand the mechanisms that confer tolerance. Towards this goal we used four contrasting soybean (Glycine max) genotypes (PI 567690--drought tolerant, Pana--drought susceptible, PI 408105A--flooding tolerant, S99-2281--flooding susceptible) grown under greenhouse conditions and compared genotypic responses to drought and flooding at the physiological, biochemical, and cellular level. We also quantified these variations and tried to infer their role in drought and flooding tolerance in soybean. Our results revealed that different mechanisms contribute to reduction in net photosynthesis under drought and flooding stress. Under drought stress, ABA and stomatal conductance are responsible for reduced photosynthetic rate; while under flooding stress, accumulation of starch granules played a major role. Drought tolerant genotypes PI 567690 and PI 408105A had higher plastoglobule numbers than the susceptible Pana and S99-2281. Drought stress increased the number and size of plastoglobules in most of the genotypes pointing to a possible role in stress tolerance. Interestingly, there were seven fibrillin proteins localized within the plastoglobules that were up-regulated in the drought and flooding tolerant genotypes PI 567690 and PI 408105A, respectively, but down-regulated in the drought susceptible genotype Pana. These results suggest a potential role of Fibrillin proteins, FBN1a, 1b and 7a in soybean response to drought and flooding stress. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Dynamic Response in Transient Stress-Field Behavior Induced by Hydraulic Fracturing

    Science.gov (United States)

    Jenkins, Andrew

    Hydraulic fracturing is a technique which is used to exploit geologic features and subsurface properties in an effort to increase production in low-permeability formations. The process of hydraulic fracturing provides a greater surface contact area between the producing formation and the wellbore and thus increases the amount of recoverable hydrocarbons from within the reservoir. The use of this stimulation technique has brought on massive applause from the industry due to its widespread success and effectiveness, however the dynamic processes that take part in the development of hydraulic fractures is a relatively new area of research with respect to the massive scale operations that are seen today. The process of hydraulic fracturing relies upon understanding and exploiting the in-situ stress distribution throughout the area of study. These in-situ stress conditions are responsible for directing fracture orientation and propagation paths throughout the period of injection. The relative magnitude of these principle stresses is key in developing a successful stimulation plan. In horizontal well plan development the interpretation of stress within the reservoir is required for determining the azimuth of the horizontal well path. These horizontal laterals are typically oriented in a manner such that the well path lies parallel to the minimum horizontal stress. This allows for vertical fractures to develop transversely to the wellbore, or normal to the least principle stress without the theoretical possibility of fractures overlapping, creating the most efficient use of the fluid energy during injection. The orientation and magnitude of these in-situ stress fields however can be dynamic, controlled by the subsequent fracture propagation and redistribution of the surrounding stresses. That is, that as the fracture propagates throughout the reservoir, the relative stress fields surrounding the fractures may see a shift and deviate from their original direction or

  3. Enterovirus Control of Translation and RNA Granule Stress Responses.

    Science.gov (United States)

    Lloyd, Richard E

    2016-03-30

    Enteroviruses such as poliovirus (PV) and coxsackievirus B3 (CVB3) have evolved several parallel strategies to regulate cellular gene expression and stress responses to ensure efficient expression of the viral genome. Enteroviruses utilize their encoded proteinases to take over the cellular translation apparatus and direct ribosomes to viral mRNAs. In addition, viral proteinases are used to control and repress the two main types of cytoplasmic RNA granules, stress granules (SGs) and processing bodies (P-bodies, PBs), which are stress-responsive dynamic structures involved in repression of gene expression. This review discusses these processes and the current understanding of the underlying mechanisms with respect to enterovirus infections. In addition, the review discusses accumulating data suggesting linkage exists between RNA granule formation and innate immune sensing and activation.

  4. Fluoride-elicited developmental testicular toxicity in rats: Roles of endoplasmic reticulum stress and inflammatory response

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shun [Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei (China); Jiang, Chunyang [Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei (China); Department of Thoracic Surgery, Tianjin Union Medicine Centre, 190 Jieyuan Road, Hongqiao District, Tianjin 300121, Tianjin (China); Liu, Hongliang [Tianjin Center for Disease Control and Prevention, Huayue Road 6, Hedong Region, Tianjin 300011, Tianjin (China); Guan, Zhizhong [Department of Pathology, Guiyang Medical College, Guiyang 550004, Guizhou (China); Zeng, Qiang [Tianjin Center for Disease Control and Prevention, Huayue Road 6, Hedong Region, Tianjin 300011, Tianjin (China); Zhang, Cheng; Lei, Rongrong; Xia, Tao; Gao, Hui; Yang, Lu; Chen, Yihu; Wu, Xue; Zhang, Xiaofei [Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei (China); Cui, Yushan; Yu, Linyu [Tianjin Center for Disease Control and Prevention, Huayue Road 6, Hedong Region, Tianjin 300011, Tianjin (China); Wang, Zhenglun [Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei (China); Wang, Aiguo, E-mail: wangaiguo@mails.tjmu.edu.cn [Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei (China)

    2013-09-01

    Long-term excessive fluoride intake is known to be toxic and can damage a variety of organs and tissues in the human body. However, the molecular mechanisms underlying fluoride-induced male reproductive toxicity are not well understood. In this study, we used a rat model to simulate the situations of human exposure and aimed to evaluate the roles of endoplasmic reticulum (ER) stress and inflammatory response in fluoride-induced testicular injury. Sprague–Dawley rats were administered with sodium fluoride (NaF) at 25, 50 and 100 mg/L via drinking water from pre-pregnancy to gestation, birth and finally to post-puberty. And then the testes of male offspring were studied at 8 weeks of age. Our results demonstrated that fluoride treatment increased MDA accumulation, decreased SOD activity, and enhanced germ cell apoptosis. In addition, fluoride elevated mRNA and protein levels of glucose-regulated protein 78 (GRP78), inositol requiring ER-to-nucleus signal kinase 1 (IRE1), and C/EBP homologous protein (CHOP), indicating activation of ER stress signaling. Furthermore, fluoride also induced testicular inflammation, as manifested by gene up-regulation of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in a nuclear factor-κB (NF-κB)-dependent manner. These were associated with marked histopathological lesions including injury of spermatogonia, decrease of spermatocytes and absence of elongated spermatids, as well as severe ultrastructural abnormalities in testes. Taken together, our results provide compelling evidence that ER stress and inflammation would be novel and significant mechanisms responsible for fluoride-induced disturbance of spermatogenesis and germ cell loss in addition to oxidative stress. - Highlights: • We used a rat model to simulate the situations of human fluoride (F) exposure. • Developmental F exposure induces testicular damage related with oxidative stress.

  5. Fluoride-elicited developmental testicular toxicity in rats: Roles of endoplasmic reticulum stress and inflammatory response

    International Nuclear Information System (INIS)

    Zhang, Shun; Jiang, Chunyang; Liu, Hongliang; Guan, Zhizhong; Zeng, Qiang; Zhang, Cheng; Lei, Rongrong; Xia, Tao; Gao, Hui; Yang, Lu; Chen, Yihu; Wu, Xue; Zhang, Xiaofei; Cui, Yushan; Yu, Linyu; Wang, Zhenglun; Wang, Aiguo

    2013-01-01

    Long-term excessive fluoride intake is known to be toxic and can damage a variety of organs and tissues in the human body. However, the molecular mechanisms underlying fluoride-induced male reproductive toxicity are not well understood. In this study, we used a rat model to simulate the situations of human exposure and aimed to evaluate the roles of endoplasmic reticulum (ER) stress and inflammatory response in fluoride-induced testicular injury. Sprague–Dawley rats were administered with sodium fluoride (NaF) at 25, 50 and 100 mg/L via drinking water from pre-pregnancy to gestation, birth and finally to post-puberty. And then the testes of male offspring were studied at 8 weeks of age. Our results demonstrated that fluoride treatment increased MDA accumulation, decreased SOD activity, and enhanced germ cell apoptosis. In addition, fluoride elevated mRNA and protein levels of glucose-regulated protein 78 (GRP78), inositol requiring ER-to-nucleus signal kinase 1 (IRE1), and C/EBP homologous protein (CHOP), indicating activation of ER stress signaling. Furthermore, fluoride also induced testicular inflammation, as manifested by gene up-regulation of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in a nuclear factor-κB (NF-κB)-dependent manner. These were associated with marked histopathological lesions including injury of spermatogonia, decrease of spermatocytes and absence of elongated spermatids, as well as severe ultrastructural abnormalities in testes. Taken together, our results provide compelling evidence that ER stress and inflammation would be novel and significant mechanisms responsible for fluoride-induced disturbance of spermatogenesis and germ cell loss in addition to oxidative stress. - Highlights: • We used a rat model to simulate the situations of human fluoride (F) exposure. • Developmental F exposure induces testicular damage related with oxidative stress.

  6. Stress on stress response of wild mussels, Mytilus edulis and Mytilus trossulus, as an indicator of ecosystem health

    International Nuclear Information System (INIS)

    Hellou, J.; Law, R.J.

    2003-01-01

    Mussels' health as indicated by the survival time of 50% of sampled animals (LT 50 ) when maintained in air at 15 deg. C was examined at three sites in Halifax Harbour with expected differing levels of contamination. Condition and gonad indices, lipid content and the body burden of polycyclic aromatic compounds (PACs) were compared with this stress response in 60 groups of mussels covering two species. At each sampling time, the bioaccumulation of PACs, lipid content and condition indices were higher whithin Mytilus edulis and Mytilus trossulus displaying shorter survival than at the other sites. M. edulis was generally more tolerant than M. trossulus (for n=11, LT 50 of 9.3 and 7.9 days), with indications of shorter and later gonad development in M. trossulus. Minimum and maximum tolerance was apparent in June and October (LT 50 spanning 3-14 days), respectively. Our results indicate that the stress on stress response provides a simple and sensitive indicator of environmental health, which could be integrated with mussel watch studies. - Stress on stress response is a simple and sensitive indicator of environmental condition

  7. Stress- and glucocorticoid-induced priming of neuroinflammatory responses: potential mechanisms of stress-induced vulnerability to drugs of abuse.

    Science.gov (United States)

    Frank, Matthew G; Watkins, Linda R; Maier, Steven F

    2011-06-01

    Stress and stress-induced glucocorticoids (GCs) sensitize drug abuse behavior as well as the neuroinflammatory response to a subsequent pro-inflammatory challenge. Stress also predisposes or sensitizes individuals to develop substance abuse. There is an emerging evidence that glia and glia-derived neuroinflammatory mediators play key roles in the development of drug abuse. Drugs of abuse such as opioids, psychostimulants, and alcohol induce neuroinflammatory mediators such as pro-inflammatory cytokines (e.g. interleukin (IL)-1β), which modulate drug reward, dependence, and tolerance as well as analgesic properties. Drugs of abuse may directly activate microglial and astroglial cells via ligation of Toll-like receptors (TLRs), which mediate the innate immune response to pathogens as well as xenobiotic agents (e.g. drugs of abuse). The present review focuses on understanding the immunologic mechanism(s) whereby stress primes or sensitizes the neuroinflammatory response to drugs of abuse and explores whether stress- and GC-induced sensitization of neuroimmune processes predisposes individuals to drug abuse liability and the role of neuroinflammatory mediators in the development of drug addiction. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Stress Response Pathways in Ameloblasts: Implications for Amelogenesis and Dental Fluorosis

    Directory of Open Access Journals (Sweden)

    John D. Bartlett

    2012-08-01

    Full Text Available Human enamel development of the permanent teeth takes place during childhood and stresses encountered during this period can have lasting effects on the appearance and structural integrity of the enamel. One of the most common examples of this is the development of dental fluorosis after childhood exposure to excess fluoride, an elemental agent used to increase enamel hardness and prevent dental caries. Currently the molecular mechanism responsible for dental fluorosis remains unknown; however, recent work suggests dental fluorosis may be the result of activated stress response pathways in ameloblasts during the development of permanent teeth. Using fluorosis as an example, the role of stress response pathways during enamel maturation is discussed.

  9. Global Transcriptional Responses to Osmotic, Oxidative, and Imipenem Stress Conditions in Pseudomonas putida

    DEFF Research Database (Denmark)

    Bojanovic, Klara; D'Arrigo, Isotta; Long, Katherine

    2017-01-01

    functional roles in the cellular response to stress conditions. The data show a larger fraction of differentially expressed sRNAs than of mRNAs with >5-fold expression changes. The work provides detailed insights into the mechanisms through which P. putida responds to different stress conditions...... intergenic and antisense transcripts, were detected, increasing the number of identified sRNA transcripts in the strain by a factor of 10. Unique responses to each type of stress are documented, including both the extent and dynamics of the gene expression changes. The work adds rich detail to previous......Bacteria cope with and adapt to stress by modulating gene expression in response to specific environmental cues. In this study, the transcriptional response of Pseudomonas putida KT2440 to osmotic, oxidative, and imipenem stress conditions at two time points was investigated via identification...

  10. Molecular and physiological responses of trees to waterlogging stress.

    Science.gov (United States)

    Kreuzwieser, Jürgen; Rennenberg, Heinz

    2014-10-01

    One major effect of global climate change will be altered precipitation patterns in many regions of the world. This will cause a higher probability of long-term waterlogging in winter/spring and flash floods in summer because of extreme rainfall events. Particularly, trees not adapted at their natural site to such waterlogging stress can be impaired. Despite the enormous economic, ecological and social importance of forest ecosystems, the effect of waterlogging on trees is far less understood than the effect on many crops or the model plant Arabidopsis. There is only a handful of studies available investigating the transcriptome and metabolome of waterlogged trees. Main physiological responses of trees to waterlogging include the stimulation of fermentative pathways and an accelerated glycolytic flux. Many energy-consuming, anabolic processes are slowed down to overcome the energy crisis mediated by waterlogging. A crucial feature of waterlogging tolerance is the steady supply of glycolysis with carbohydrates, particularly in the roots; stress-sensitive trees fail to maintain sufficient carbohydrate availability resulting in the dieback of the stressed tissues. The present review summarizes physiological and molecular features of waterlogging tolerance of trees; the focus is on carbon metabolism in both, leaves and roots of trees. © 2014 John Wiley & Sons Ltd.

  11. Familial Risk for Insomnia Is Associated With Abnormal Cortisol Response to Stress.

    Science.gov (United States)

    Drake, Christopher L; Cheng, Philip; Almeida, David M; Roth, Thomas

    2017-10-01

    Abnormalities in the stress system have been implicated in insomnia. However, studies examining physiological stress regulation in insomnia have not consistently detected differences in the hypothalamic-pituitary-adrenal (HPA)-axis response to stress. One explanation may be that deficits in the stress system are associated specifically with a biological vulnerability to insomnia rather than the phenotypic expression of insomnia. To examine stress response as a function of vulnerability to insomnia, this study tested response to the Trier Social Stress Test in a sample of healthy sleepers with varying familial risks for insomnia. Thirty-five healthy individuals with and without familial risk for insomnia were recruited to complete a laboratory stressor. Participants with one or both biological parents with insomnia were categorized as positive for familial risk, whereas those without biological parents with insomnia were categorized as negative for familial risk. Participants completed the Trier Social Stress Test in the laboratory, and psychological and physiological (autonomic and HPA-axis) responses were compared. Despite self-reported increases in anxiety, those positive for familial risk exhibited a blunted cortisol response relative to those without familial risk for insomnia. Individuals with blunted cortisol also reported heightened reactivity to personal life stressors, including increased sleep disturbances, elevated cognitive intrusions, and more behavioral avoidance. Findings from this study provide initial evidence that abnormal stress regulation may be a biological predisposing factor conferred via familial risk for insomnia. This deficit may also predict negative consequences over time, including insomnia and the associated psychiatric comorbidities. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  12. Environmental stress responses and experimental handling artifacts of a model organism, the copepod Acartia tonsa (Dana)

    DEFF Research Database (Denmark)

    Nilsson, Birgitte; Jepsen, Per Meyer; Bucklin, Ann

    2018-01-01

    for these genes between 15 min and 24 h following exposure. Since handling stress clearly affects transcriptional patterns, it is important to consider handling when designing experiments, by either including additional controls or avoiding focus on impacted genes. Not considering handling in gene expression...... studies can lead to inaccurate conclusions. The present study provides a baseline for studying handling stress in future studies using this model organism and others....

  13. Salivary kynurenic acid response to psychological stress: inverse relationship to cortical glutamate in schizophrenia.

    Science.gov (United States)

    Chiappelli, Joshua; Rowland, Laura M; Notarangelo, Francesca M; Wijtenburg, S Andrea; Thomas, Marian A R; Pocivavsek, Ana; Jones, Aaron; Wisner, Krista; Kochunov, Peter; Schwarcz, Robert; Hong, L Elliot

    2018-04-18

    Frontal glutamatergic synapses are thought to be critical for adaptive, long-term stress responses. Prefrontal cortices, including the anterior cingulate cortex (ACC) contribute to stress perception and regulation, and are involved in top-down regulation of peripheral glucocorticoid and inflammatory responses to stress. Levels of kynurenic acid (KYNA) in saliva increase in response to psychological stress, and this stress-induced effect may be abnormal in people with schizophrenia. Here we test the hypothesis that ACC glutamatergic functioning may contribute to the stress-induced salivary KYNA response in schizophrenia. In 56 patients with schizophrenia and 58 healthy controls, our results confirm that levels of KYNA in saliva increase following psychological stress. The magnitude of the effect correlated negatively with proton magnetic resonance spectroscopy (MRS) glutamate + glutamine (r = -.31, p = .017) and glutamate (r = -0.27, p = .047) levels in the ACC in patients but not in the controls (all p ≥ .45). Although, a causal relationship cannot be ascertained in this cross-sectional study, these findings suggest a potentially meaningful link between central glutamate levels and kynurenine pathway response to stress in individuals with schizophrenia.

  14. The Cortisol Awakening Response Mediates the Relationship Between Acculturative Stress and Self-Reported Health in Mexican Americans.

    Science.gov (United States)

    Garcia, Antonio F; Wilborn, Kristin; Mangold, Deborah L

    2017-12-01

    The assessment of acculturative stress as synonymous with acculturation level overlooks the dynamic, interactive, and developmental nature of the acculturation process. An individual's unique perception and response to a range of stressors at each stage of the dynamic process of acculturation may be associated with stress-induced alterations in important biological response systems that mediate health outcomes. Evidence suggests the cortisol awakening response (CAR) is a promising pre-clinical biomarker of stress exposure that may link acculturative stress to self-reported health in Mexican Americans. The aim of the current study was to examine whether alterations in the CAR mediate the relationship between acculturative stress and self-reported health in Mexican Americans. Salivary cortisol samples were collected at awakening, 30, 45, and 60 min thereafter, on two consecutive weekdays from a sample of adult Mexican Americans. Acculturative stress and self-reported health were assessed. Data were aggregated and analyzed (n = 89) using a mixed effects regression model and path analysis. Poorer self-reported health was associated with attenuated CAR profiles (primarily due to a diminished post-awakening rise in cortisol) predicted by both moderate and high levels of exposure to acculturative stress. Stress-induced alterations in the CAR mediated the relationship between exposure to acculturative stressors and self-reported health. Findings demonstrate that different levels of acculturative stress are associated with distinct CAR profiles and suggest the CAR is one possible biological pathway through which exposure to culturally unique stressors may be linked to health disparities.

  15. Integrated Stress Response Mediates Epithelial Injury in Mechanical Ventilation.

    Science.gov (United States)

    Dolinay, Tamas; Himes, Blanca E; Shumyatcher, Maya; Lawrence, Gladys Gray; Margulies, Susan S

    2017-08-01

    Ventilator-induced lung injury (VILI) is a severe complication of mechanical ventilation that can lead to acute respiratory distress syndrome. VILI is characterized by damage to the epithelial barrier with subsequent pulmonary edema and profound hypoxia. Available lung-protective ventilator strategies offer only a modest benefit in preventing VILI because they cannot impede alveolar overdistension and concomitant epithelial barrier dysfunction in the inflamed lung regions. There are currently no effective biochemical therapies to mitigate injury to the alveolar epithelium. We hypothesize that alveolar stretch activates the integrated stress response (ISR) pathway and that the chemical inhibition of this pathway mitigates alveolar barrier disruption during stretch and mechanical ventilation. Using our established rat primary type I-like alveolar epithelial cell monolayer stretch model and in vivo rat mechanical ventilation that mimics the alveolar overdistension seen in acute respiratory distress syndrome, we studied epithelial responses to mechanical stress. Our studies revealed that the ISR signaling pathway is a key modulator of epithelial permeability. We show that prolonged epithelial stretch and injurious mechanical ventilation activate the ISR, leading to increased alveolar permeability, cell death, and proinflammatory signaling. Chemical inhibition of protein kinase RNA-like endoplasmic reticulum kinase, an upstream regulator of the pathway, resulted in decreased injury signaling and improved barrier function after prolonged cyclic stretch and injurious mechanical ventilation. Our results provide new evidence that therapeutic targeting of the ISR can mitigate VILI.

  16. Sex differences in neural responses to stress and alcohol context cues.

    Science.gov (United States)

    Seo, Dongju; Jia, Zhiru; Lacadie, Cheryl M; Tsou, Kristen A; Bergquist, Keri; Sinha, Rajita

    2011-11-01

    Stress and alcohol context cues are each associated with alcohol-related behaviors, yet neural responses underlying these processes remain unclear. This study investigated the neural correlates of stress and alcohol context cue experiences and examined sex differences in these responses. Using functional magnetic resonance imaging, brain responses were examined while 43 right-handed, socially drinking, healthy individuals (23 females) engaged in brief guided imagery of personalized stress, alcohol-cue, and neutral-relaxing scenarios. Stress and alcohol-cue exposure increased activity in the cortico-limbic-striatal circuit (P left anterior insula, striatum, and visuomotor regions (parietal and occipital lobe, and cerebellum). Activity in the left dorsal striatum increased during stress, while bilateral ventral striatum activity was evident during alcohol-cue exposure. Men displayed greater stress-related activations in the mPFC, rostral ACC, posterior insula, amygdala, and hippocampus than women, whereas women showed greater alcohol-cue-related activity in the superior and middle frontal gyrus (SFG/MFG) than men. Stress-induced anxiety was positively associated with activity in emotion-modulation regions, including the medial OFC, ventromedial PFC, left superior-mPFC, and rostral ACC in men, but in women with activation in the SFG/MFG, regions involved in cognitive processing. Alcohol craving was significantly associated with the striatum (encompassing dorsal, and ventral) in men, supporting its involvement in alcohol "urge" in healthy men. These results indicate sex differences in neural processing of stress and alcohol-cue experiences and have implications for sex-specific vulnerabilities to stress- and alcohol-related psychiatric disorders. Copyright © 2010 Wiley-Liss, Inc.

  17. The Contribution of Deficits in Emotional Clarity to Stress Responses and Depression

    Science.gov (United States)

    Flynn, Megan; Rudolph, Karen D.

    2010-01-01

    This research investigated the contribution of deficits in emotional clarity to children's socioemotional adjustment. Specifically, this study examined the proposal that deficits in emotional clarity are associated with maladaptive interpersonal stress responses, and that maladaptive interpersonal stress responses act as a mechanism linking…

  18. The Tyrosyl-DNA Phosphodiesterase 1β (Tdp1β Gene Discloses an Early Response to Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Maria Elisa Sabatini

    2017-11-01

    Full Text Available Tyrosyl-DNA phosphodiesterase 1 (Tdp1 is involved in DNA repair pathways as it mends the topoisomerase I—DNA covalent complexes. In plants, a small Tdp1 gene family, composed by Tdp1α and Tdp1β genes, was identified, but the roles of these genes in abiotic stress responses are not fully understood. To investigate their specific stress response patterns, the present study made use of bioinformatic and molecular tools to look into the Tdp1β gene function, so far described only in the plant kingdom, and compare it with Tdp1α gene coding for the canonical, highly conserved α isoform. The expression profiles of Tdp1α and Tdp1β genes were examined under abiotic stress conditions (cold, heat, high osmolarity, salt, and UV-B in two model species, Arabidopsis thaliana and Medicago truncatula. The two isoforms of topoisomerase I (TOP1α and TOP1β were also taken into consideration in view of their known roles in DNA metabolism and cell proliferation. Data relative to gene expression in Arabidopsis were retrieved from the AtGenExpress microarray dataset, while quantitative Real-Time PCR was carried out to evaluate the stress response in M. truncatula cell cultures. These analyses revealed that Tdp1β gene expression was enhanced during the first hour of treatment, whereas Tdp1α enhanced expression succeeded at subsequent timepoints. In agreement with the gene-specific responses to abiotic stress conditions, the promoter regions of Tdp1α and Tdp1β genes are well equipped with stress-related cis-elements. An in-depth bioinformatic characterization of the HIRAN motif, a distinctive feature of the Tdp1β protein, showed its wide distribution in chromatin remodeling and DNA repair proteins. The reported data suggests that Tdp1β functions in the early response to abiotic stresses.

  19. [BEHAVIORAL, PHYSIOLOGICAL AND MORPHOLOGICAL CHARACTERISTICS ASSOCIATED WITH POST-TRAUMATIC RESPONSE TO CONTINUOUS EXPOSURE VERSUS ALTERNATE EXPOSURE IN AN ANIMAL MODEL OF POST-TRAUMATIC STRESS DISORDER].

    Science.gov (United States)

    Ostfeld, Ishay; Kaplan, Zeev; Cohen, Hagit

    2016-12-01

    The aim of this study was to approximate these conditions in an animal model of post-traumatic stress disorder (PTSD). More specifically, the neurobiological basis of these conditions, focusing on stress-related behavioral changes, HPA-axis and morphological were evaluated. The intention was to employ this well-validated, reproducible and reliable model for PTSD, to elicit data which will provide some guidance in the planning of a prospective study involving military personal. Combat personnel are exposed to significant stress and hardship, both physical and emotional, during their service and especially during active combat. Military forces are increasingly involved in conflicts involving nonmilitary or paramilitary adversaries in which they are exposed not to battles but to sporadic events, in what has come to be labeled "low intensity conflict". "Low intensity conflict" refers to a level of hostilities or use of military power that falls short of a full scale conventional or general war. These are characterized by brief periods of extreme stress and tangible danger interspersed by prolonged periods of siege. Whereas the potentially traumatizing effect of battle conditions is well documented, the risks of the sporadic highly stressful nature of "low intensity conflict" have not been studied. Furthermore, in recent years, soldiers commonly receive "relaxation periods" before re-engaging in battle. This new policy may possibly contradict the traditional treatment principles, focusing on "proximity" and "continuity" to the battlefield and its effects have not been studied. Continuous and sporadic stresses, representing battlefield conditions, were induced in a validated rat animalmodel for PTSD and behavioral changes, hormonal levels and brain morphology were evaluated. Behavioral response, hormonal levels and brain morphological changes suggest that PTSD-like reactions were significantly higher in rats exposed to continuous stress compared to those exposed to

  20. Stress-induced endocrine response and anxiety: the effects of comfort food in rats.

    Science.gov (United States)

    Ortolani, Daniela; Garcia, Márcia Carvalho; Melo-Thomas, Liana; Spadari-Bratfisch, Regina Celia

    2014-05-01

    The long-term effects of comfort food in an anxiogenic model of stress have yet to be analyzed. Here, we evaluated behavioral, endocrine and metabolic parameters in rats submitted or not to chronic unpredictable mild stress (CUMS), with access to commercial chow alone or to commercial chow and comfort food. Stress did not alter the preference for comfort food but decreased food intake. In the elevated plus-maze (EPM) test, stressed rats were less likely to enter/remain in the open arms, as well as being more likely to enter/remain in the closed arms, than were control rats, both conditions being more pronounced in the rats given access to comfort food. In the open field test, stress decreased the time spent in the centre, independent of diet; neither stress nor diet affected the number of crossing, rearing or grooming episodes. The stress-induced increase in serum corticosterone was attenuated in rats given access to comfort food. Serum concentration of triglycerides were unaffected by stress or diet, although access to comfort food increased total cholesterol and glucose. It is concluded that CUMS has an anorexigenic effect. Chronic stress and comfort food ingestion induced an anxiogenic profile although comfort food attenuated the endocrine stress response. The present data indicate that the combination of stress and access to comfort food, common aspects of modern life, may constitute a link among stress, feeding behavior and anxiety.

  1. Adaptive and Pathogenic Responses to Stress by Stem Cells during Development

    OpenAIRE

    Mansouri, Ladan; Xie, Yufen; Rappolee, Daniel A

    2012-01-01

    Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induce...

  2. Activation of Brain Somatostatin Signaling Suppresses CRF Receptor-Mediated Stress Response.

    Science.gov (United States)

    Stengel, Andreas; Taché, Yvette F

    2017-01-01

    Corticotropin-releasing factor (CRF) is the hallmark brain peptide triggering the response to stress and mediates-in addition to the stimulation of the hypothalamus-pituitary-adrenal (HPA) axis-other hormonal, behavioral, autonomic and visceral components. Earlier reports indicate that somatostatin-28 injected intracerebroventricularly counteracts the acute stress-induced ACTH and catecholamine release. Mounting evidence now supports that activation of brain somatostatin signaling exerts a broader anti-stress effect by blunting the endocrine, autonomic, behavioral (with a focus on food intake) and visceral gastrointestinal motor responses through the involvement of distinct somatostatin receptor subtypes.

  3. Abiotic stress responses in plants: roles of calmodulin-regulated proteins

    Science.gov (United States)

    Virdi, Amardeep S.; Singh, Supreet; Singh, Prabhjeet

    2015-01-01

    Intracellular changes in calcium ions (Ca2+) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca2+-sensing proteins and has been shown to be involved in transduction of Ca2+ signals. After interacting with Ca2+, CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants. PMID:26528296

  4. Gene Expression Dynamics Accompanying the Sponge Thermal Stress Response.

    Science.gov (United States)

    Guzman, Christine; Conaco, Cecilia

    2016-01-01

    Marine sponges are important members of coral reef ecosystems. Thus, their responses to changes in ocean chemistry and environmental conditions, particularly to higher seawater temperatures, will have potential impacts on the future of these reefs. To better understand the sponge thermal stress response, we investigated gene expression dynamics in the shallow water sponge, Haliclona tubifera (order Haplosclerida, class Demospongiae), subjected to elevated temperature. Using high-throughput transcriptome sequencing, we show that these conditions result in the activation of various processes that interact to maintain cellular homeostasis. Short-term thermal stress resulted in the induction of heat shock proteins, antioxidants, and genes involved in signal transduction and innate immunity pathways. Prolonged exposure to thermal stress affected the expression of genes involved in cellular damage repair, apoptosis, signaling and transcription. Interestingly, exposure to sublethal temperatures may improve the ability of the sponge to mitigate cellular damage under more extreme stress conditions. These insights into the potential mechanisms of adaptation and resilience of sponges contribute to a better understanding of sponge conservation status and the prediction of ecosystem trajectories under future climate conditions.

  5. Osmotic stress response in the wine yeast Dekkera bruxellensis.

    Science.gov (United States)

    Galafassi, Silvia; Toscano, Marco; Vigentini, Ileana; Piškur, Jure; Compagno, Concetta

    2013-12-01

    Dekkera bruxellensis is mainly associated with lambic beer fermentation and wine production and may contribute in a positive or negative manner to the flavor development. This yeast is able to produce phenolic compounds, such as 4-ethylguaiacol and 4-ethylphenol which could spoil the wine, depending on their concentration. In this work we have investigated how this yeast responds when exposed to conditions causing osmotic stress, as high sorbitol or salt concentrations. We observed that osmotic stress determined the production and accumulation of intracellular glycerol, and the expression of NADH-dependent glycerol-3-phosphate dehydrogenase (GPD) activity was elevated. The involvement of the HOG MAPK pathway in response to this stress condition was also investigated. We show that in D. bruxellensis Hog1 protein is activated by phosphorylation under hyperosmotic conditions, highlighting the conserved role of HOG MAP kinase signaling pathway in the osmotic stress response. Gene Accession numbers in GenBank: DbHOG1: JX65361, DbSTL1: JX965362. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Sex differences in the hemodynamic responses to mental stress: Effect of caffeine consumption.

    Science.gov (United States)

    Farag, Noha H; Vincent, Andrea S; McKey, Barbara S; Al'Absi, Mustafa; Whitsett, Thomas L; Lovallo, William R

    2006-07-01

    The effect of caffeine on stress responses was compared in 25 men and 22 women in a 2-week placebo-controlled, double-blind, randomized crossover trial. On each week, participants abstained from all dietary sources of caffeine before undergoing a 6-h laboratory protocol under placebo or caffeine exposure followed by a 30-min mental stressor with blood pressure (BP) and cardiovascular hemodynamic assessments. On the placebo session, men and women showed a significant BP increase to stress, although women had significant cardiac responses whereas men had vascular responses. Caffeine ingestion before stress caused both men and women to have enhanced hemodynamic responses to the stressor associated with an increase in cardiac index and a drop in the peripheral resistance index. Caffeine enhances the cardiovascular fight-or-flight response pattern to stress in men and women.

  7. Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses.

    Science.gov (United States)

    Bonnavion, Patricia; Jackson, Alexander C; Carter, Matthew E; de Lecea, Luis

    2015-02-19

    The hypothalamic-pituitary-adrenal (HPA) axis functions to coordinate behavioural and physiological responses to stress in a manner that depends on the behavioural state of the organism. However, the mechanisms through which arousal and metabolic states influence the HPA axis are poorly understood. Here using optogenetic approaches in mice, we show that neurons that produce hypocretin (Hcrt)/orexin in the lateral hypothalamic area (LHA) regulate corticosterone release and a variety of behaviours and physiological hallmarks of the stress response. Interestingly, we found that Hcrt neuronal activity and Hcrt-mediated stress responses were inhibited by the satiety hormone leptin, which acts, in part, through a network of leptin-sensitive neurons in the LHA. These data demonstrate how peripheral metabolic signals interact with hypothalamic neurons to coordinate stress and arousal and suggest one mechanism through which hyperarousal or altered metabolic states may be linked with abnormal stress responses.

  8. Response of rocks to large stresses

    International Nuclear Information System (INIS)

    Schock, R.N.

    1976-01-01

    To predict the dimensions and characteristics of impact- and explosion-induced craters, one must know the equation of state of the rocks in which the crater is formed. Recent experimental data shed light upon inelastic processes that influence the stress/strain behavior of rocks. We examine these data with a view to developing models that could be used in predicting cratering phenomena. New data is presented on the volume behavior of two dissimilar rocks subjected to tensile stresses

  9. The Transcriptomic Responses of Pinus massoniana to Drought Stress

    Directory of Open Access Journals (Sweden)

    Mingfeng Du

    2018-06-01

    Full Text Available Masson pine (Pinus massoniana is a major fast-growing timber species planted in southern China, a region of seasonal drought. Using a drought-tolerance genotype of Masson pine, we conducted large-scale transcriptome sequencing using Illumina technology. This work aimed to evaluate the transcriptomic responses of Masson pine to different levels of drought stress. First, 3397, 1695 and 1550 unigenes with differential expression were identified by comparing plants subjected to light, moderate or severe drought with control plants. Second, several gene ontology (GO categories (oxidation-reduction and metabolism and Kyoto Encyclopedia of Genes and Genomes (KEGG pathways (plant hormone signal transduction and metabolic pathways were enriched, indicating that the expression levels of some genes in these enriched GO terms and pathways were altered under drought stress. Third, several transcription factors (TFs associated with circadian rhythms (HY5 and LHY, signal transduction (ERF, and defense responses (WRKY were identified, and these TFs may play key roles in adapting to drought stress. Drought also caused significant changes in the expression of certain functional genes linked to osmotic adjustment (P5CS, abscisic acid (ABA responses (NCED, PYL, PP2C and SnRK, and reactive oxygen species (ROS scavenging (GPX, GST and GSR. These transcriptomic results provide insight into the molecular mechanisms of drought stress adaptation in Masson pine.

  10. Optimism moderates psychophysiological responses to stress in older people with Type 2 diabetes.

    Science.gov (United States)

    Puig-Perez, S; Hackett, R A; Salvador, A; Steptoe, A

    2017-04-01

    Optimism is thought to be beneficial for health, and these effects may be mediated through modifications in psychophysiological stress reactivity. Type 2 diabetes (T2D) is associated with reduced cardiovascular responses to stress and heightened cortisol over the day. This study assessed the relationships between optimism, stress responsivity, and daily cortisol output in people with T2D. A total of 140 participants with T2D were exposed to laboratory stress. Heart rate (HR), systolic (SBP), diastolic blood pressure (DBP), and cortisol were measured throughout the session. Cortisol output over the day was also assessed. Optimism and self-reported health were measured using the revised Life Orientation Test and the Short Form Health Survey. Optimism was associated with heightened SBP and DBP stress reactivity (ps Optimism was not related to HR, cortisol stress responses, or the cortisol awakening response (ps > .180). Low optimism was related to poorer self-reported physical and mental health (ps Optimism could have a protective role in modulating stress-related autonomic and neuroendocrine dysregulation in people with T2D. © 2016 The Authors. Psychophysiology published by Wiley Periodicals, Inc. on behalf of Society for Psychophysiological Research.

  11. Psychological and hormonal stress response patterns during a blood donation

    NARCIS (Netherlands)

    Hoogerwerf, M. D.; Veldhuizen, I. J. T.; Merz, E.-M.; de Kort, W. L. A. M.; Frings-Dresen, M. H. W.; Sluiter, J. K.

    2017-01-01

    Background and ObjectivesDonating blood has been associated with increased stress responses, with scarce evidence indicating that levels of psychological and hormonal stress are higher pre-donation than post-donation. We investigated whether a blood donation induces psychological and/or hormonal

  12. The relation of somatotypes and stress response to central serous chorioretinopathy.

    Science.gov (United States)

    Schwartz, Roy; Rozenberg, Assaf; Loewenstein, Anat; Goldstein, Michaella

    2017-12-01

    To investigate a possible relationship between central serous chorioretinopathy (CSC) and specific body types and compositions (somatotypes), and to examine the cortisol stress response among CSC patients of different somatotypes in comparison with healthy subjects. Prospective case-control study. A group of 28 patients with a previous or current diagnosis of CSC was compared with a group of 26 healthy subjects. Anthropometric measurements were used to estimate somatotype ratings in all subjects. Serum cortisol was measured at rest and following a stress-inducing computerized test in order to estimate response to stress in both groups. The main outcome measures included somatotype categorization and the change in serum cortisol following stress in both groups. No significant difference in somatotype composition was found between the groups. There was no statistically significant difference between the groups in the elevation of cortisol following the stress-inducing test. The sample size was too small to exclude or find any significant difference between the different 13 subgroups of somatotype composition in the elevation of cortisol. Our study did not show a typical somatotype related to CSC. While previous studies showed higher cortisol values in CSC patients, we did not see a higher elevation in blood cortisol following a stress response in this group in comparison with healthy subjects.

  13. Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome

    Directory of Open Access Journals (Sweden)

    Ferrari Francesco

    2009-06-01

    Full Text Available Abstract Background Water stress during grain filling has a marked effect on grain yield, leading to a reduced endosperm cell number and thus sink capacity to accumulate dry matter. The bread wheat cultivar Chinese Spring (CS, a Chinese Spring terminal deletion line (CS_5AL-10 and the durum wheat cultivar Creso were subjected to transcriptional profiling after exposure to mild and severe drought stress at the grain filling stage to find evidences of differential stress responses associated to different wheat genome regions. Results The transcriptome analysis of Creso, CS and its deletion line revealed 8,552 non redundant probe sets with different expression levels, mainly due to the comparisons between the two species. The drought treatments modified the expression of 3,056 probe sets. Besides a set of genes showing a similar drought response in Creso and CS, cluster analysis revealed several drought response features that can be associated to the different genomic structure of Creso, CS and CS_5AL-10. Some drought-related genes were expressed at lower level (or not expressed in Creso (which lacks the D genome or in the CS_5AL-10 deletion line compared to CS. The chromosome location of a set of these genes was confirmed by PCR-based mapping on the D genome (or the 5AL-10 region. Many clusters were characterized by different level of expression in Creso, CS and CS_AL-10, suggesting that the different genome organization of the three genotypes may affect plant adaptation to stress. Clusters with similar expression trend were grouped and functional classified to mine the biological mean of their activation or repression. Genes involved in ABA, proline, glycine-betaine and sorbitol pathways were found up-regulated by drought stress. Furthermore, the enhanced expression of a set of transposons and retrotransposons was detected in CS_5AL-10. Conclusion Bread and durum wheat genotypes were characterized by a different physiological reaction to water

  14. Selection for stress responsiveness and slaughter stress affect flesh quality in pan-size rainbow trout, Oncorhynchus mykiss

    OpenAIRE

    Lefevre, Florence; Cos, Isabelle; Pottinger, Tom G.; Bugeon, Jérôme

    2016-01-01

    The control of slaughter stress is of importance with regard to both fish welfare and flesh quality. Muscle characteristics and instrumentally measured quality parameters were determined in rainbow trout lines selected for high-responsiveness (HR) or low-responsiveness (LR) of plasma cortisol to an acute confinement stressor. Measurements were made in both unstressed and stressed fish (a 15 min period of confinement before slaughter) from both lines. Compared to LR fish, HR fish were smaller,...

  15. Behavioural response to combined insecticide and temperature stress in natural populations of Drosophila melanogaster.

    Science.gov (United States)

    Fournier-Level, A; Neumann-Mondlak, A; Good, R T; Green, L M; Schmidt, J M; Robin, C

    2016-05-01

    Insecticide resistance evolves extremely rapidly, providing an illuminating model for the study of adaptation. With climate change reshaping species distribution, pest and disease vector control needs rethinking to include the effects of environmental variation and insect stress physiology. Here, we assessed how both long-term adaptation of populations to temperature and immediate temperature variation affect the genetic architecture of DDT insecticide response in Drosophila melanogaster. Mortality assays and behavioural assays based on continuous activity monitoring were used to assess the interaction between DDT and temperature on three field-derived populations from climate extremes (Raleigh for warm temperate, Tasmania for cold oceanic and Queensland for hot tropical). The Raleigh population showed the highest mortality to DDT, whereas the Queensland population, epicentre for derived alleles of the resistance gene Cyp6g1, showed the lowest. Interaction between insecticide and temperature strongly affected mortality, particularly for the Tasmanian population. Activity profiles analysed using self-organizing maps show that the insecticide promoted an early response, whereas elevated temperature promoted a later response. These distinctive early or later activity phases revealed similar responses to temperature and DDT dose alone but with more or less genetic variance depending on the population. This change in genetic variance among populations suggests that selection particularly depleted genetic variance for DDT response in the Queensland population. Finally, despite similar (co)variation between traits in benign conditions, the genetic responses across population differed under stressful conditions. This showed how stress-responsive genetic variation only reveals itself in specific conditions and thereby escapes potential trade-offs in benign environments. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European

  16. Stress response in postpartum women with and without obsessive–compulsive symptoms: an fMRI study

    Science.gov (United States)

    Lord, Catherine; Steiner, Meir; Soares, Claudio N.; Carew, Caitlin L.; Hall, Geoffrey B.

    2012-01-01

    Background During the postpartum period, some women might be under a considerable amount of stress and at increased risk for onset or exacerbation of obsessive–compulsive disorder (OCD). Little is known about the stress response correlates during the postpartum period and in patients with OCD. This study aimed to examine the cerebral, psychologic and endocrine correlates of the stress response in patients with OCD and during the postpartum period. Methods Women with postpartum OCD, healthy postpartum women and healthy mothers past the postpartum period underwent functional magnetic resonance imaging while facing a reliable psychosocial stressor (the Montreal Imaging Stress Task). Stress-related psychologic and endocrine responses (i.e., cortisol) were obtained. Results We enrolled 12 women with postpartum OCD, 16 healthy postpartum women and 11 healthy mothers past the postpartum period in our study. Compared with healthy postpartum counterparts, postpartum women with OCD had a heightened self-reported and endocrine stress response associated with a distinct brain activation pattern in response to psychosocial stress involving the orbitofrontal and temporal cortices. Moreover, compared with mothers assessed in a period of time beyond the postpartum period, healthy postpartum women did not differ in psychologic and cortisol response to stress, but recruited different brain regions, such as the dorsolateral pre-frontal cortex and the anterior cingulate cortex, during exposure to stress. Limitations Potential confounding factors, such as medication use, breastfeeding, parity and personality factors, may have modulated the stress-related endocrine response and could not be assessed in this study. Conclusion Obsessive–compulsive disorder and the postpartum period differentially influence the brain circuitry underlying psychosocial stress as well as the psychologic and endocrine responses. PMID:22122779

  17. MicroRNA-target gene responses to lead-induced stress in cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    He, Qiuling; Zhu, Shuijin; Zhang, Baohong

    2014-09-01

    MicroRNAs (miRNAs) play key roles in plant responses to various metal stresses. To investigate the miRNA-mediated plant response to heavy metals, cotton (Gossypium hirsutum L.), the most important fiber crop in the world, was exposed to different concentrations (0, 25, 50, 100, and 200 µM) of lead (Pb) and then the toxicological effects were investigated. The expression patterns of 16 stress-responsive miRNAs and 10 target genes were monitored in cotton leaves and roots by quantitative real-time PCR (qRT-PCR); of these selected genes, several miRNAs and their target genes are involved in root development. The results show a reciprocal regulation of cotton response to lead stress by miRNAs. The characterization of the miRNAs and the associated target genes in response to lead exposure would help in defining the potential roles of miRNAs in plant adaptation to heavy metal stress and further understanding miRNA regulation in response to abiotic stress.

  18. Response of the Benguela upwelling systems to spatial variations in the wind stress

    Science.gov (United States)

    Fennel, Wolfgang; Junker, Tim; Schmidt, Martin; Mohrholz, Volker

    2012-08-01

    In this paper we combine field observations, numerical modeling and an idealized analytical theory to study some features of the Benguela upwelling system. The current system can be established through a combination of observations and realistic simulations with an advanced numerical model. The poleward undercurrent below the equator-ward coastal jet is often found as a countercurrent that reaches the sea surface seaward of the coastal jet. The coastal band of cold upwelled water appears to broaden from south to north and at the northern edge of the wind band an offshore flow is often detected, which deflects the coastal Angola current to the west. These features can be explained and understood with an idealized analytical model forced by a spatially variable wind. A crucial role is played by the wind stress curl, which shapes the oceanic response through Ekman-pumping. The interplay of the curl driven effects and the coastal Ekman upwelling together with the coastal jet, Kelvin waves, and the undercurrent is the key to understand the formation of the three-dimensional circulation patterns in the Benguela system. While the numerical model is based on the full set of primitive equations, realistic topography and forcing, the analytic model uses a linear, flat-bottomed f-plane ocean, where the coast is a straight wall and the forcing is represented by an alongshore band of dome-shaped wind stress. Although the analytical model is highly idealized it is very useful to grasp the basic mechanisms leading to the response patterns.

  19. Pairing of heterochromatin in response to cellular stress

    International Nuclear Information System (INIS)

    Abdel-Halim, H.I.; Mullenders, L.H.F.; Boei, J.J.W.A.

    2006-01-01

    We previously reported that exposure of human cells to DNA-damaging agents (X-rays and mitomycin C (MMC)) induces pairing of the homologous paracentromeric heterochromatin of chromosome 9 (9q12-13). Here, we show that UV irradiation and also heat shock treatment of human cells lead to similar effects. Since the various agents induce very different types and frequencies of damage to cellular constituents, the data suggest a general stress response as the underlying mechanism. Moreover, local UV irradiation experiments revealed that pairing of heterochromatin is an event that can be triggered without induction of DNA damage in the heterochromatic sequences. The repair deficient xeroderma pigmentosum cells (group F) previously shown to fail pairing after MMC displayed elevated pairing after heat shock treatment but not after UV exposure. Taken together, the present results indicate that pairing of heterochromatin following exposure to DNA-damaging agents is initiated by a general stress response and that the sensing of stress or the maintenance of the paired status of the heterochromatin might be dependent on DNA repair

  20. Social stress models in rodents : Towards enhanced validity

    NARCIS (Netherlands)

    Koolhaas, J M; de Boer, S F; Buwalda, B; Meerlo, P

    Understanding the role of the social environment in the development of stress related diseases requires a more fundamental understanding of stress. Stress includes not only the stimulus and the response but also the individual appraisal of the situation. The social environment is not only essential

  1. Restraint training for awake functional brain scanning of rodents can cause long-lasting changes in pain and stress responses.

    Science.gov (United States)

    Low, Lucie A; Bauer, Lucy C; Pitcher, Mark H; Bushnell, M Catherine

    2016-08-01

    With the increased interest in longitudinal brain imaging of awake rodents, it is important to understand both the short-term and long-term effects of restraint on sensory and emotional processing in the brain. To understand the effects of repeated restraint on pain behaviors and stress responses, we modeled a restraint protocol similar to those used to habituate rodents for magnetic resonance imaging scanning, and studied sensory sensitivity and stress hormone responses over 5 days. To uncover lasting effects of training, we also looked at responses to the formalin pain test 2 weeks later. We found that while restraint causes acute increases in the stress hormone corticosterone, it can also cause lasting reductions in nociceptive behavior in the formalin test, coupled with heightened corticosterone levels and increased activation of the "nociceptive" central nucleus of the amygdala, as seen by Fos protein expression. These results suggest that short-term repeated restraint, similar to that used to habituate rats for awake functional brain scanning, could potentially cause long-lasting changes in physiological and brain responses to pain stimuli that are stress-related, and therefore could potentially confound the functional activation patterns seen in awake rodents in response to pain stimuli.

  2. Stress modeling in colloidal dispersions undergoing non-viscometric flows

    Science.gov (United States)

    Dolata, Benjamin; Zia, Roseanna

    2017-11-01

    We present a theoretical study of the stress tensor for a colloidal dispersion undergoing non-viscometric flow. In such flows, the non-homogeneous suspension stress depends on not only the local average total stresslet-the sum of symmetric first moments of both the hydrodynamic traction and the interparticle force-but also on the average quadrupole, octupole, and higher-order moments. To compute the average moments, we formulate a six dimensional Smoluchowski equation governing the microstructural evolution of a suspension in an arbitrary fluid velocity field. Under the conditions of rheologically slow flow, where the Brownian relaxation of the particles is much faster than the spatiotemporal evolution of the flow, the Smoluchowski equation permits asymptotic solution, revealing a suspension stress that follows a second-order fluid constitutive model. We obtain a reciprocal theorem and utilize it to show that all constitutive parameters of the second-order fluid model may be obtained from two simpler linear-response problems: a suspension undergoing simple shear and a suspension undergoing isotropic expansion. The consequences of relaxing the assumption of rheologically slow flow, including the appearance of memory and microcontinuum behaviors, are discussed.

  3. Effects of response-independent stimuli on fixed-interval and fixed-ratio performance of rats: a model for stressful disruption of cyclical eating patterns.

    Science.gov (United States)

    Reed, Phil

    2011-03-01

    Binge eating is often associated with stress-induced disruption of typical eating patterns. Three experiments were performed with the aim of developing a potential model for this effect by investigating the effect of presenting response-independent stimuli on rats' lever-pressing for food reinforcement during both fixed-interval (FI) and fixed-ratio (FR) schedules of reinforcement. In Experiment 1, a response-independent brief tone (500-ms, 105-dB, broadband, noisy signal, ranging up to 16 kHz, with spectral peaks at 3 and 500 Hz) disrupted the performance on an FI 60-s schedule. Responding with the response-independent tone was more vigorous than in the absence of the tone. This effect was replicated in Experiment 2 using a within-subject design, but no such effect was noted when a light was employed as a disrupter. In Experiment 3, a 500-ms tone, but not a light, had a similar effect on rats' performance on FR schedules. This tone-induced effect may represent a release from response-inhibition produced by an aversive event. The implications of these results for modeling binge eating are discussed.

  4. Pseudomonas putida response in membrane bioreactors under salicylic acid-induced stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Sergio; Rosas, Irene; González, Elena; Gutierrez-Lavin, Antonio; Diaz, Mario, E-mail: mariodiaz@uniovi.es

    2014-02-01

    Highlights: • MBR under feed-induced stress conditions: starvation and changing feeding conditions. • High capacity of MBR to withstand high variations in feed loads. • Slow biofilm formation under starvation conditions during the first days. • Observed growth of P. putida for substrate to microorganism ratio higher than 0.6 g/g. • Maximum specific growth rate and growth yield values of around 37.5 h{sup −1} and 0.5 g/g. - Abstract: Starvation and changing feeding conditions are frequently characteristics of wastewater treatment plants. They are typical causes of unsteady-state operation of biological systems and provoke cellular stress. The response of a membrane bioreactor functioning under feed-induced stress conditions is studied here. In order to simplify and considerably amplify the response to stress and to obtain a reference model, a pure culture of Pseudomonas putida was selected instead of an activated sludge and a sole substrate (salicylic acid) was employed. The system degraded salicylic acid at 100–1100 mg/L with a high level of efficiency, showed rapid acclimation without substrate or product inhibition phenomena and good stability in response to unsteady states caused by feed variations. Under starvation conditions, specific degradation rates of around 15 mg/g h were achieved during the adaptation of the biomass to the new conditions and no biofilm formation was observed during the first days of experimentation using an initial substrate to microorganisms ratio lower than 0.1. When substrate was added to the reactor as pulses resulting in rapidly changing concentrations, P. putida growth was observed only for substrate to microorganism ratios higher than 0.6, with a maximum Y{sub X/S} of 0.5 g/g. Biofilm development under changing feeding conditions was fast, biomass detachment only being significant for biomass concentrations on the membrane surface that were higher than 16 g/m{sup 2}.

  5. Pseudomonas putida response in membrane bioreactors under salicylic acid-induced stress conditions

    International Nuclear Information System (INIS)

    Collado, Sergio; Rosas, Irene; González, Elena; Gutierrez-Lavin, Antonio; Diaz, Mario

    2014-01-01

    Highlights: • MBR under feed-induced stress conditions: starvation and changing feeding conditions. • High capacity of MBR to withstand high variations in feed loads. • Slow biofilm formation under starvation conditions during the first days. • Observed growth of P. putida for substrate to microorganism ratio higher than 0.6 g/g. • Maximum specific growth rate and growth yield values of around 37.5 h −1 and 0.5 g/g. - Abstract: Starvation and changing feeding conditions are frequently characteristics of wastewater treatment plants. They are typical causes of unsteady-state operation of biological systems and provoke cellular stress. The response of a membrane bioreactor functioning under feed-induced stress conditions is studied here. In order to simplify and considerably amplify the response to stress and to obtain a reference model, a pure culture of Pseudomonas putida was selected instead of an activated sludge and a sole substrate (salicylic acid) was employed. The system degraded salicylic acid at 100–1100 mg/L with a high level of efficiency, showed rapid acclimation without substrate or product inhibition phenomena and good stability in response to unsteady states caused by feed variations. Under starvation conditions, specific degradation rates of around 15 mg/g h were achieved during the adaptation of the biomass to the new conditions and no biofilm formation was observed during the first days of experimentation using an initial substrate to microorganisms ratio lower than 0.1. When substrate was added to the reactor as pulses resulting in rapidly changing concentrations, P. putida growth was observed only for substrate to microorganism ratios higher than 0.6, with a maximum Y X/S of 0.5 g/g. Biofilm development under changing feeding conditions was fast, biomass detachment only being significant for biomass concentrations on the membrane surface that were higher than 16 g/m 2

  6. Role of Heat Shock Protein 70 in Induction of Stress Fiber Formation in Rat Arterial Endothelial Cells in Response to Stretch Stress

    International Nuclear Information System (INIS)

    Luo, Shan-Shun; Sugimoto, Keiji; Fujii, Sachiko; Takemasa, Tohru; Fu, Song-Bin; Yamashita, Kazuo

    2007-01-01

    We investigated the mechanism by which endothelial cells (ECs) resist various forms of physical stress using an experimental system consisting of rat arterial EC sheets. Formation of actin stress fibers (SFs) and expression of endothelial heat-shock stress proteins (HSPs) in response to mechanical stretch stress were assessed by immunofluorescence microscopy. Stretch stimulation increased expression of HSPs 25 and 70, but not that of HSP 90. Treatment with SB203580, a p38 MAP kinase inhibitor that acts upstream of the HSP 25 activation cascade, or with geldanamycin, an inhibitor of HSP 90, had no effect on the SF formation response to mechanical stretch stress. In contrast, treatment with quercetin, an HSP 70 inhibitor, inhibited both upregulation of endothelial HSP 70 and formation of SFs in response to tensile stress. In addition, treatment of stretched ECs with cytochalasin D, which disrupts SF formation, did not adversely affect stretch-induced upregulation of endothelial HSP 70. Our data suggest that endothelial HSP 70 plays an important role in inducing SF formation in response to tensile stress

  7. Yeast aquaporin regulation by 4-hydroxynonenal is implicated in oxidative stress response.

    Science.gov (United States)

    Rodrigues, Claudia; Tartaro Bujak, Ivana; Mihaljević, Branka; Soveral, Graça; Cipak Gasparovic, Ana

    2017-05-01

    Reactive oxygen species, especially hydrogen peroxide (H 2 O 2 ), contribute to functional molecular impairment and cellular damage, but also are necessary in normal cellular metabolism, and in low doses play stimulatory role in cell proliferation and stress resistance. In parallel, reactive aldehydes such as 4-hydroxynonenal (HNE), are lipid peroxidation breakdown products which also contribute to regulation of numerous cellular processes. Recently, channeling of H 2 O 2 by some mammalian aquaporin isoforms has been reported and suggested to contribute to aquaporin involvement in cancer malignancies, although the mechanism by which these membrane water channels are implicated in oxidative stress is not clear. In this study, two yeast models with increased levels of membrane polyunsaturated fatty acids (PUFAs) and aquaporin AQY1 overexpression, respectively, were used to evaluate their interplay in cell's oxidative status. In particular, the aim of the study was to investigate if HNE accumulation could affect aquaporin function with an outcome in oxidative stress response. The data showed that induction of aquaporin expression by PUFAs results in increased water permeability in yeast membranes and that AQY1 activity is impaired by HNE. Moreover, AQY1 expression increases cellular sensitivity to oxidative stress by facilitating H 2 O 2 influx. On the other hand, AQY1 expression has no influence on the cellular antioxidant GSH levels and catalase activity. These results strongly suggest that aquaporins are important players in oxidative stress response and could contribute to regulation of cellular processes by regulation of H 2 O 2 influx. © 2017 IUBMB Life, 69(5):355-362, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  8. Stress and fear responses in the teleost pallium

    DEFF Research Database (Denmark)

    Silva, Patricia Isabel da Mota E.; Martins, C.I.M.; Khan, Uniza Wahid

    2015-01-01

    Evolution has resulted in behavioural responses to threat which show extensive similarities between different animal species. The reaction to predator cues is one example of such prevailing responses, and functional homologies to mammalian limbic regions involved in threat-sensitive behaviour hav...... to chemical alarm cues, but this effect did not reach the level of statistical significance. Hence, limbic responses to stress and fear, akin to those seen in extant mammals, are also present in the teleost lineage...

  9. Oxidative stress contributes to outcome severity in a Drosophila melanogaster model of classic galactosemia

    Directory of Open Access Journals (Sweden)

    Patricia P. Jumbo-Lucioni

    2013-01-01

    Classic galactosemia is a genetic disorder that results from profound loss of galactose-1P-uridylyltransferase (GALT. Affected infants experience a rapid escalation of potentially lethal acute symptoms following exposure to milk. Dietary restriction of galactose prevents or resolves the acute sequelae; however, many patients experience profound long-term complications. Despite decades of research, the mechanisms that underlie pathophysiology in classic galactosemia remain unclear. Recently, we developed a Drosophila melanogaster model of classic galactosemia and demonstrated that, like patients, GALT-null Drosophila succumb in development if exposed to galactose but live if maintained on a galactose-restricted diet. Prior models of experimental galactosemia have implicated a possible association between galactose exposure and oxidative stress. Here we describe application of our fly genetic model of galactosemia to the question of whether oxidative stress contributes to the acute galactose sensitivity of GALT-null animals. Our first approach tested the impact of pro- and antioxidant food supplements on the survival of GALT-null and control larvae. We observed a clear pattern: the oxidants paraquat and DMSO each had a negative impact on the survival of mutant but not control animals exposed to galactose, and the antioxidants vitamin C and α-mangostin each had the opposite effect. Biochemical markers also confirmed that galactose and paraquat synergistically increased oxidative stress on all cohorts tested but, interestingly, the mutant animals showed a decreased response relative to controls. Finally, we tested the expression levels of two transcripts responsive to oxidative stress, GSTD6 and GSTE7, in mutant and control larvae exposed to galactose and found that both genes were induced, one by more than 40-fold. Combined, these results implicate oxidative stress and response as contributing factors in the acute galactose sensitivity of GALT-null Drosophila and, by

  10. Reciprocal Regulation of the TOR Kinase and ABA Receptor Balances Plant Growth and Stress Response.

    Science.gov (United States)

    Wang, Pengcheng; Zhao, Yang; Li, Zhongpeng; Hsu, Chuan-Chih; Liu, Xue; Fu, Liwen; Hou, Yueh-Ju; Du, Yanyan; Xie, Shaojun; Zhang, Chunguang; Gao, Jinghui; Cao, Minjie; Huang, Xiaosan; Zhu, Yingfang; Tang, Kai; Wang, Xingang; Tao, W Andy; Xiong, Yan; Zhu, Jian-Kang

    2018-01-04

    As sessile organisms, plants must adapt to variations in the environment. Environmental stress triggers various responses, including growth inhibition, mediated by the plant hormone abscisic acid (ABA). The mechanisms that integrate stress responses with growth are poorly understood. Here, we discovered that the Target of Rapamycin (TOR) kinase phosphorylates PYL ABA receptors at a conserved serine residue to prevent activation of the stress response in unstressed plants. This phosphorylation disrupts PYL association with ABA and with PP2C phosphatase effectors, leading to inactivation of SnRK2 kinases. Under stress, ABA-activated SnRK2s phosphorylate Raptor, a component of the TOR complex, triggering TOR complex dissociation and inhibition. Thus, TOR signaling represses ABA signaling and stress responses in unstressed conditions, whereas ABA signaling represses TOR signaling and growth during times of stress. Plants utilize this conserved phospho-regulatory feedback mechanism to optimize the balance of growth and stress responses. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. A phenomenological model for iodine stress corrosion cracking of zircaloy

    International Nuclear Information System (INIS)

    Miller, A.K.; Tasooji, A.

    1981-01-01

    To predict the response of Zircaloy tubing in iodine environments under conditions where either crack initiation or crack propagation predominates, a unified model of the SCC process has been developed based on the local conditions (the local stress, local strain, and local iodine concentration) within a small volume of material at the cladding inner surface or the crack tip. The methodology used permits computation of these values from simple equations. A nonuniform distribution of local stress and strain results once a crack has initiated. The local stress can be increased due to plastic constraint and triaxiality at the crack tip. Iodine penetration is assumed to be a surface diffusion-controlled process. Experimental data are used to derive criteria for intergranular failure, transgranular failure, and ductile rupture in terms of the local conditions. The same failure criteria are used for both crack initiation and crack propagation. Irradiation effects are included in the model by changing the value of constants in the equation governing iodine penetration and by changing the values used to represent the mechanical properties of the Zircaloy. (orig./HP)

  12. Dose response relationship in anti-stress gene regulatory networks.

    Science.gov (United States)

    Zhang, Qiang; Andersen, Melvin E

    2007-03-02

    To maintain a stable intracellular environment, cells utilize complex and specialized defense systems against a variety of external perturbations, such as electrophilic stress, heat shock, and hypoxia, etc. Irrespective of the type of stress, many adaptive mechanisms contributing to cellular homeostasis appear to operate through gene regulatory networks that are organized into negative feedback loops. In general, the degree of deviation of the controlled variables, such as electrophiles, misfolded proteins, and O2, is first detected by specialized sensor molecules, then the signal is transduced to specific transcription factors. Transcription factors can regulate the expression of a suite of anti-stress genes, many of which encode enzymes functioning to counteract the perturbed variables. The objective of this study was to explore, using control theory and computational approaches, the theoretical basis that underlies the steady-state dose response relationship between cellular stressors and intracellular biochemical species (controlled variables, transcription factors, and gene products) in these gene regulatory networks. Our work indicated that the shape of dose response curves (linear, superlinear, or sublinear) depends on changes in the specific values of local response coefficients (gains) distributed in the feedback loop. Multimerization of anti-stress enzymes and transcription factors into homodimers, homotrimers, or even higher-order multimers, play a significant role in maintaining robust homeostasis. Moreover, our simulation noted that dose response curves for the controlled variables can transition sequentially through four distinct phases as stressor level increases: initial superlinear with lesser control, superlinear more highly controlled, linear uncontrolled, and sublinear catastrophic. Each phase relies on specific gain-changing events that come into play as stressor level increases. The low-dose region is intrinsically nonlinear, and depending on

  13. Dose response relationship in anti-stress gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2007-03-01

    Full Text Available To maintain a stable intracellular environment, cells utilize complex and specialized defense systems against a variety of external perturbations, such as electrophilic stress, heat shock, and hypoxia, etc. Irrespective of the type of stress, many adaptive mechanisms contributing to cellular homeostasis appear to operate through gene regulatory networks that are organized into negative feedback loops. In general, the degree of deviation of the controlled variables, such as electrophiles, misfolded proteins, and O2, is first detected by specialized sensor molecules, then the signal is transduced to specific transcription factors. Transcription factors can regulate the expression of a suite of anti-stress genes, many of which encode enzymes functioning to counteract the perturbed variables. The objective of this study was to explore, using control theory and computational approaches, the theoretical basis that underlies the steady-state dose response relationship between cellular stressors and intracellular biochemical species (controlled variables, transcription factors, and gene products in these gene regulatory networks. Our work indicated that the shape of dose response curves (linear, superlinear, or sublinear depends on changes in the specific values of local response coefficients (gains distributed in the feedback loop. Multimerization of anti-stress enzymes and transcription factors into homodimers, homotrimers, or even higher-order multimers, play a significant role in maintaining robust homeostasis. Moreover, our simulation noted that dose response curves for the controlled variables can transition sequentially through four distinct phases as stressor level increases: initial superlinear with lesser control, superlinear more highly controlled, linear uncontrolled, and sublinear catastrophic. Each phase relies on specific gain-changing events that come into play as stressor level increases. The low-dose region is intrinsically nonlinear

  14. Acute and chronic stress and the inflammatory response in hyperprolactinemic rats.

    Science.gov (United States)

    Ochoa-Amaya, J E; Malucelli, B E; Cruz-Casallas, P E; Nasello, A G; Felicio, L F; Carvalho-Freitas, M I R

    2010-01-01

    Prolactin (PRL), a hormone produced by the pituitary gland, has multiple physiological functions, including immunoregulation. PRL can also be secreted in response to stressful stimuli. During stress, PRL has been suggested to oppose the immunosuppressive effects of inflammatory mediators. Therefore, the aim of the present study was to analyze the effects of short- and long-term hyperprolactinemia on the inflammatory response in rats subjected to acute or chronic cold stress. Inflammatory edema was induced by carrageenan in male rats, and hyperprolactinemia was induced by injections of the dopamine receptor antagonist domperidone. The volume of inflammatory edema was measured by plethysmography after carrageenan injection. Additionally, the effects of hyperprolactinemia on body weight and serum corticosterone levels were evaluated. Five days of domperidone-induced hyperprolactinemia increased the volume of inflammatory edema. No differences in serum corticosterone levels were observed between groups. No significant differences were found among 30 days domperidone-induced hyperprolactinemic animals subjected to acute stress and the inflammatory response observed in chronic hyperprolactinemic animals subjected to chronic stress. The results suggest that short-term hyperprolactinemia has pro-inflammatory effects. Because such an effect was not observed in long-term hyperprolactinemic animals, PRL-induced tolerance seems likely. We suggest that short-term hyperprolactinemia may act as a protective factor in rats subjected to acute stress. These data suggest that hyperprolactinemia and stress interact differentially according to the time period. Copyright 2010 S. Karger AG, Basel.

  15. Activation of Brain Somatostatin Signaling Suppresses CRF Receptor-Mediated Stress Response

    Directory of Open Access Journals (Sweden)

    Andreas Stengel

    2017-04-01

    Full Text Available Corticotropin-releasing factor (CRF is the hallmark brain peptide triggering the response to stress and mediates—in addition to the stimulation of the hypothalamus-pituitary-adrenal (HPA axis—other hormonal, behavioral, autonomic and visceral components. Earlier reports indicate that somatostatin-28 injected intracerebroventricularly counteracts the acute stress-induced ACTH and catecholamine release. Mounting evidence now supports that activation of brain somatostatin signaling exerts a broader anti-stress effect by blunting the endocrine, autonomic, behavioral (with a focus on food intake and visceral gastrointestinal motor responses through the involvement of distinct somatostatin receptor subtypes.

  16. Time-dependent leaf proteome alterations of Brachypodium distachyon in response to drought stress.

    Science.gov (United States)

    Tatli, Ozge; Sogutmaz Ozdemir, Bahar; Dinler Doganay, Gizem

    2017-08-01

    For the first time, a comprehensive proteome analysis was conducted on Brachypodium leaves under drought stress. Gradual changes in response to drought stress were monitored. Drought is one of the major stress factors that dramatically affect the agricultural productivity worldwide. Improving the yield under drought is an urgent challenge in agriculture. Brachypodium distachyon is a model species for monocot plants such as wheat, barley and several potential biofuel grasses. In the current study, a comprehensive proteome analysis was conducted on Brachypodium leaves under different levels of drought application. To screen gradual changes upon drought, Brachypodium leaves subjected to drought for 4, 8 and 12 days were collected for each treatment day and relative water content of the leaves was measured for each time point. Cellular responses of Brachypodium were investigated through a proteomic approach involving two dimensional difference gel electrophoresis (2D-DIGE) and mass spectrometry (MS). Among 497 distinct spots in Brachypodium protein repertoire, a total of 13 differentially expressed proteins (DEPs) were identified as responsive to drought by mass spectrometry and classified according to their functions using bioinformatics tools. The biological functions of DEPs included roles in photosynthesis, protein folding, antioxidant mechanism and metabolic processes, which responded differentially at each time point of drought treatment. To examine further transcriptional expression of the genes that code identified protein, quantitative real time PCR (qRT-PCR) was performed. Identified proteins will contribute to the studies involving development of drought-resistant crop species and lead to the delineation of molecular mechanisms in drought response.

  17. Linear and non-linear dose-response functions reveal a hormetic relationship between stress and learning.

    Science.gov (United States)

    Zoladz, Phillip R; Diamond, David M

    2008-10-16

    Over a century of behavioral research has shown that stress can enhance or impair learning and memory. In the present review, we have explored the complex effects of stress on cognition and propose that they are characterized by linear and non-linear dose-response functions, which together reveal a hormetic relationship between stress and learning. We suggest that stress initially enhances hippocampal function, resulting from amygdala-induced excitation of hippocampal synaptic plasticity, as well as the excitatory effects of several neuromodulators, including corticosteroids, norepinephrine, corticotropin-releasing hormone, acetylcholine and dopamine. We propose that this rapid activation of the amygdala-hippocampus brain memory system results in a linear dose-response relation between emotional strength and memory formation. More prolonged stress, however, leads to an inhibition of hippocampal function, which can be attributed to compensatory cellular responses that protect hippocampal neurons from excitotoxicity. This inhibition of hippocampal functioning in response to prolonged stress is potentially relevant to the well-described curvilinear dose-response relationship between arousal and memory. Our emphasis on the temporal features of stress-brain interactions addresses how stress can activate, as well as impair, hippocampal functioning to produce a hormetic relationship between stress and learning.

  18. Leptin regulates dopamine responses to sustained stress in humans.

    Science.gov (United States)

    Burghardt, Paul R; Love, Tiffany M; Stohler, Christian S; Hodgkinson, Colin; Shen, Pei-Hong; Enoch, Mary-Anne; Goldman, David; Zubieta, Jon-Kar

    2012-10-31

    Neural systems that identify and respond to salient stimuli are critical for survival in a complex and changing environment. In addition, interindividual differences, including genetic variation and hormonal and metabolic status likely influence the behavioral strategies and neuronal responses to environmental challenges. Here, we examined the relationship between leptin allelic variation and plasma leptin levels with DAD2/3R availability in vivo as measured with [(11)C]raclopride PET at baseline and during a standardized pain stress challenge. Allelic variation in the leptin gene was associated with varying levels of dopamine release in response to the pain stressor, but not with baseline D2/3 receptor availability. Circulating leptin was also positively associated with stress-induced dopamine release. These results show that leptin serves as a regulator of neuronal function in humans and provides an etiological mechanism for differences in dopamine neurotransmission in response to salient stimuli as related to metabolic function. The capacity for leptin to influence stress-induced dopaminergic function is of importance for pathological states where dopamine is thought to play an integral role, such as mood, substance-use disorders, eating disorders, and obesity.

  19. Individual differences in anxiety responses to stressful situations : A three-mode component analysis model

    NARCIS (Netherlands)

    Van Mechelen, Iven; Kiers, Henk A.L.

    1999-01-01

    The three-mode component analysis model is discussed as a tool for a contextualized study of personality. When applied to person x situation x response data, the model includes sets of latent dimensions for persons, situations, and responses as well as a so-called core array, which may be considered

  20. Long-term programing of psychopathology-like behaviors in male rats by peripubertal stress depends on individual's glucocorticoid responsiveness to stress.

    Science.gov (United States)

    Walker, Sophie E; Sandi, Carmen

    2018-02-07

    Experience of adversity early in life and dysregulation of hypothalamus-pituitary-adrenocortical (HPA) axis activity are risk factors often independently associated with the development of psychopathological disorders, including depression, PTSD and pathological aggression. Additional evidence suggests that in combination these factors may interact to shape the development and expression of psychopathology differentially, though little is known about underlying mechanisms. Here, we studied the long-term consequences of early life stress exposure on individuals with differential constitutive glucocorticoid responsiveness to repeated stressor exposure, assessing both socio-affective behaviors and brain activity in regions sensitive to pathological alterations following stress. Two rat lines, genetically selected for either low or high glucocorticoid responsiveness to repeated stress were exposed to a series of unpredictable, fear-inducing stressors on intermittent days during the peripuberty period. Results obtained at adulthood indicated that having high glucocorticoid responses to repeated stress and having experience of peripuberty stress independently enhanced levels of psychopathology-like behaviors, as well as increasing basal activity in several prefrontal and limbic brain regions in a manner associated with enhanced behavioral inhibition. Interestingly, peripuberty stress had a differential impact on aggression in the two rat lines, enhancing aggression in the low-responsive line but not in the already high-aggressive, high-responsive rats. Taken together, these findings indicate that aberrant HPA axis activity around puberty, a key period in the development of social repertoire in both rats and humans, may alter behavior such that it becomes anti-social in nature.

  1. Exploring valid internal-control genes in Porphyra yezoensis (Bangiaceae) during stress response conditions

    Science.gov (United States)

    Wang, Wenlei; Wu, Xiaojie; Wang, Chao; Jia, Zhaojun; He, Linwen; Wei, Yifan; Niu, Jianfeng; Wang, Guangce

    2014-07-01

    To screen the stable expression genes related to the stress (strong light, dehydration and temperature shock) we applied Absolute real-time PCR technology to determine the transcription numbers of the selected test genes in P orphyra yezoensis, which has been regarded as a potential model species responding the stress conditions in the intertidal. Absolute real-time PCR technology was applied to determine the transcription numbers of the selected test genes in P orphyra yezoensis, which has been regarded as a potential model species in stress responding. According to the results of photosynthesis parameters, we observed that Y(II) and F v/ F m were significantly affected when stress was imposed on the thalli of P orphyra yezoensis, but underwent almost completely recovered under normal conditions, which were collected for the following experiments. Then three samples, which were treated with different grade stresses combined with salinity, irradiation and temperature, were collected. The transcription numbers of seven constitutive expression genes in above samples were determined after RNA extraction and cDNA synthesis. Finally, a general insight into the selection of internal control genes during stress response was obtained. We found that there were no obvious effects in terms of salinity stress (at salinity 90) on transcription of most genes used in the study. The 18S ribosomal RNA gene had the highest expression level, varying remarkably among different tested groups. RPS8 expression showed a high irregular variance between samples. GAPDH presented comparatively stable expression and could thus be selected as the internal control. EF-1α showed stable expression during the series of multiple-stress tests. Our research provided available references for the selection of internal control genes for transcripts determination of P. yezoensis.

  2. Allelopathic Responses of Rice Seedlings under Some Different Stresses

    Directory of Open Access Journals (Sweden)

    Tran Dang Khanh

    2018-05-01

    Full Text Available The objective of this study was to evaluate the allelopathic responses of rice seedlings under submergence stress at different temperatures (10, 25, 32, and 37 °C. The results showed that a wide range of allelopathic responses of rice seedlings depended on varieties and stress conditions, with temperature was being a key factor. It showed that the extracts of rice seedlings induced significant suppression on lettuce and radish seedling germination, but had negligible allelopathic effects on growth of barnyardgrass, whilst the emergence and growth of natural weeds was stimulated. In contrast, the root exudates of Koshihikari rice seedlings (K32 at 32 °C reduced the number of total weeds by ≈60.0% and the total dry weight of weeds by 93.0%; i.e., to a greater extent than other root exudates. Among the 13 identified phenolic acids, p-hydroxybenzoic, vanillic, syringic, sinapic and benzoic acids—at concentrations of 0.360, 0.045, 3.052, 1.309 and 5.543 μg/mL might be involved in allelopathic responses of K32, inhibiting the growth of barnyardgrass and natural weeds. Findings of the present study may provide useful information on allelopathic responses of rice under environmental stresses and thus further understand of the competitive relationships between rice and weeds under natural conditions.

  3. The emission factor of volatile isoprenoids: stress, acclimation, and developmental responses

    Directory of Open Access Journals (Sweden)

    Ü. Niinemets

    2010-07-01

    Full Text Available The rate of constitutive isoprenoid emissions from plants is driven by plant emission capacity under specified environmental conditions (ES, the emission factor and by responsiveness of the emissions to instantaneous variations in environment. In models of isoprenoid emission, ES has been often considered as intrinsic species-specific constant invariable in time and space. Here we analyze the variations in species-specific values of ES under field conditions focusing on abiotic stresses, past environmental conditions and developmental processes. The reviewed studies highlight strong stress-driven, adaptive (previous temperature and light environment and growth CO2 concentration and developmental (leaf age variations in ES values operating at medium to long time scales. These biological factors can alter species-specific ES values by more than an order of magnitude. While the majority of models based on early concepts still ignore these important sources of variation, recent models are including some of the medium- to long-term controls. However, conceptually different strategies are being used for incorporation of these longer-term controls with important practical implications for parameterization and application of these models. This analysis emphasizes the need to include more biological realism in the isoprenoid emission models and also highlights the gaps in knowledge that require further experimental work to reduce the model uncertainties associated with biological sources of variation.

  4. Personality, Stressful Life Events, and Treatment Response in Major Depression

    Science.gov (United States)

    Bulmash, Eric; Harkness, Kate L.; Stewart, Jeremy G.; Bagby, R. Michael

    2009-01-01

    The current study examined whether the personality traits of self-criticism or dependency moderated the effect of stressful life events on treatment response. Depressed outpatients (N = 113) were randomized to 16 weeks of cognitive-behavioral therapy, interpersonal psychotherapy, or antidepressant medication (ADM). Stressful life events were…

  5. The Effects of Diesel Exhaust and Stress on the Acute Phase Response and Symptoms in the Chemically Intolerant

    National Research Council Canada - National Science Library

    Fiedler, Nancy L; Laumbach, Robert; Kipen, Howard; Lioy, Paul; Zhang, Lunfeng

    2004-01-01

    Purpose: The proposed study is designed to test a model of Gulf War Illness, in which simultaneous acute exposures to DE and psychological stress cause increased symptoms via the acute phase response (APR...

  6. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Cláudia Regina Batista de Souza

    2012-07-01

    Full Text Available Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops.

  7. Flow stress asymmetry and cyclic stress--strain response in a BCC Ti--V alloy

    International Nuclear Information System (INIS)

    Koss, D.A.; Wojcik, C.C.

    1976-01-01

    The cyclic stress-strain response of relatively stable bcc β-phase Ti--40 percent V alloy single crystals was studied. Flow stress asymmetry found in the alloy is attributed to the fact that screw dislocations, when gliding on a (211) plane, are more mobile in the twinning direction than in the antitwinning direction. Thus the flow stress of the crystal is greater when it is sheared in the antitwinning direction than in the twinning direction (the latter case results when crystals of the 100 orientation are stressed in tension and those of the 110 orientation are stressed in compression). Such behavior can be a result of the core of a screw dislocation being asymmetric under stress which causes the flow stress asymmetry observed. It should be noted that screw dislocations dominate the low temperature deformation structure of Ti-40V, which strongly suggests deformation is controlled by screw dislocation motion. The observation in Mo that the microyield stress is independent of crystal orientation could be a result of edge dislocation motion controlling microyield in that instance and this observation would not be inconsistent with screw dislocation motion controlling the macroscopic (epsilon/sub p/ greater than 0.05 percent) deformation measured here

  8. Low Lifetime Stress Exposure Is Associated with Reduced Stimulus-Response Memory

    Science.gov (United States)

    Goldfarb, Elizabeth V.; Shields, Grant S.; Daw, Nathaniel D.; Slavich, George M.; Phelps, Elizabeth A.

    2017-01-01

    Exposure to stress throughout life can cumulatively influence later health, even among young adults. The negative effects of high cumulative stress exposure are well-known, and a shift from episodic to stimulus-response memory has been proposed to underlie forms of psychopathology that are related to high lifetime stress. At the other extreme,…

  9. The endoplasmic reticulum stress response in disease ...

    African Journals Online (AJOL)

    These proteins are essential for cell survival, and intuitively the ER must activate stress responses to evade immediate cell dysfunction as the cell processes lag behind. This review will discuss mainly the ER and its role in the pathogenesis and pathophysiology of epidemiologically-relevant diseases, as well as updates on ...

  10. Stress responses during aerobic exercise in relation to motivational dominance and state.

    Science.gov (United States)

    Thatcher, Joanne; Kuroda, Yusuke; Legrand, Fabien D; Thatcher, Rhys

    2011-02-01

    We examined the hypothesis that congruence between motivational dominance and state results in optimal psychological responses and performance during exercise. Twenty participants (10 telic dominant and 10 paratelic dominant) rated their stress at 5 min intervals as they cycled on an ergometer at gas exchange threshold for 30 min in both telic and paratelic state manipulated conditions. Participants then performed a test to exhaustion at a resistance equivalent to 110% of VO(2max). The hypothesized interaction between condition and dominance was significant for internal tension stress, as paratelic dominants were more stressed than telic dominants when exercising in the telic state and telic dominants were more stressed than paratelic dominants when exercising in the paratelic state. Similarly, the condition × dominance interaction for internal stress discrepancy was significant, as paratelic dominants reported greater internal stress discrepancy exercising in the telic compared with the paratelic state. Findings are discussed in relation to the application of reversal theory for understanding stress responses during aerobic exercise.

  11. Sex-specific hippocampal 5-hydroxymethylcytosine is disrupted in response to acute stress.

    Science.gov (United States)

    Papale, Ligia A; Li, Sisi; Madrid, Andy; Zhang, Qi; Chen, Li; Chopra, Pankaj; Jin, Peng; Keleş, Sündüz; Alisch, Reid S

    2016-12-01

    Environmental stress is among the most important contributors to increased susceptibility to develop psychiatric disorders. While it is well known that acute environmental stress alters gene expression, the molecular mechanisms underlying these changes remain largely unknown. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive epigenetic modification that is highly enriched in neurons and is associated with active neuronal transcription. Recently, we reported a genome-wide disruption of hippocampal 5hmC in male mice following acute stress that was correlated to altered transcript levels of genes in known stress related pathways. Since sex-specific endocrine mechanisms respond to environmental stimulus by altering the neuronal epigenome, we examined the genome-wide profile of hippocampal 5hmC in female mice following exposure to acute stress and identified 363 differentially hydroxymethylated regions (DhMRs) linked to known (e.g., Nr3c1 and Ntrk2) and potentially novel genes associated with stress response and psychiatric disorders. Integration of hippocampal expression data from the same female mice found stress-related hydroxymethylation correlated to altered transcript levels. Finally, characterization of stress-induced sex-specific 5hmC profiles in the hippocampus revealed 778 sex-specific acute stress-induced DhMRs some of which were correlated to altered transcript levels that produce sex-specific isoforms in response to stress. Together, the alterations in 5hmC presented here provide a possible molecular mechanism for the adaptive sex-specific response to stress that may augment the design of novel therapeutic agents that will have optimal effectiveness in each sex. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. FoxO and stress responses in the cnidarian Hydra vulgaris.

    Directory of Open Access Journals (Sweden)

    Diane Bridge

    2010-07-01

    Full Text Available In the face of changing environmental conditions, the mechanisms underlying stress responses in diverse organisms are of increasing interest. In vertebrates, Drosophila, and Caenorhabditis elegans, FoxO transcription factors mediate cellular responses to stress, including oxidative stress and dietary restriction. Although FoxO genes have been identified in early-arising animal lineages including sponges and cnidarians, little is known about their roles in these organisms.We have examined the regulation of FoxO activity in members of the well-studied cnidarian genus Hydra. We find that Hydra FoxO is expressed at high levels in cells of the interstitial lineage, a cell lineage that includes multipotent stem cells that give rise to neurons, stinging cells, secretory cells and gametes. Using transgenic Hydra that express a FoxO-GFP fusion protein in cells of the interstitial lineage, we have determined that heat shock causes localization of the fusion protein to the nucleus. Our results also provide evidence that, as in bilaterian animals, Hydra FoxO activity is regulated by both Akt and JNK kinases.These findings imply that basic mechanisms of FoxO regulation arose before the evolution of bilaterians and raise the possibility that FoxO is involved in stress responses of other cnidarian species, including corals.

  13. THE CONTAMINANT-ASSOCIATED STRESS RESPONSE AND ITS RELATIONSHIP TO PLASMA STRESS AND SEX STERIOD CONCENTRATIONS IN THE FLORIDA GAR, LEPISOSTEUS PLATYRHINCUS

    Science.gov (United States)

    Contaminants can alter the stress response. This study examined the stress response, defined by plasma cortisol concentration, and its relationship to plasma estradiol-17b and testosterone concentrations in adult gar collected from Lake Apopka, Orange Lake and Lake Woodruff NWR, ...

  14. Comparative transcriptome profiling of chilling stress responsiveness in grafted watermelon seedlings.

    Science.gov (United States)

    Xu, Jinhua; Zhang, Man; Liu, Guang; Yang, Xingping; Hou, Xilin

    2016-12-01

    Rootstock grafting may improve the resistance of watermelon plants to low temperatures. However, information regarding the molecular responses of rootstock grafted plants to chilling stress is limited. To elucidate the molecular mechanisms of chilling tolerance in grafted plants, the transcriptomic responses of grafted watermelon under chilling stress were analyzed using RNA-seq analysis. Sequencing data were used for digital gene expression (DGE) analysis to characterize the transcriptomic responses in grafted watermelon seedlings. A total of 702 differentially-expressed genes (DEGs) were found in rootstock grafted (RG) watermelon relative to self-grafted (SG) watermelon; among these genes, 522 genes were up-regulated and 180 were down-regulated. Additionally, 164 and 953 genes were found to specifically expressed in RG and SG seedlings under chilling stress, respectively. Functional annotations revealed that up-regulated DEGs are involved in protein processing, plant-pathogen interaction and the spliceosome, whereas down-regulated DEGs are associated with photosynthesis. Moreover, 13 DEGs were randomly selected for quantitative real time PCR (qRT-PCR) analysis. The expression profiles of these 13 DEGs were consistent with those detected by the DGE analysis, supporting the reliability of the DGE data. This work provides additional insight into the molecular basis of grafted watermelon responses to chilling stress. Copyright © 2016. Published by Elsevier Masson SAS.

  15. Correlation of EPO resistance with oxidative stress response and inflammatory response in patients with maintenance hemodialysis

    Directory of Open Access Journals (Sweden)

    Xiao-Hui Yan

    2017-08-01

    Full Text Available Objective: To study the correlation of erythropoietin (EPO resistance with oxidative stress response and inflammatory response in patients with maintenance hemodialysis. Methods: A total of 184 patients with end-stage renal disease who received maintenance hemodialysis in Shaanxi Provincial People’s Hospital between March 2015 and October 2016 were selected as dialysis group, 102 volunteers who received physical examination in Shaanxi Provincial People’s Hospital during the same period were selected as control group, the EPO resistance index was assessed, the median was calculated, and serum oxidative stress and inflammatory response indexes were detected. Results: Serum T-AOC, SOD and CAT levels in dialysis group were significantly lower than those in control group while MDA, AOPP, IFN-γ, HMGB-1, ICAM-1, IL-4 and IL-10 levels were significantly higher than those in control group; serum T-AOC, SOD and CAT levels in patients with high ERI were significantly lower than those in patients with low ERI while MDA, AOPP, IFN-γ, HMGB-1, ICAM-1, IL-4 and IL-10 levels were significantly higher than those in patients with low ERI. Conclusion: The degree of EPO resistance in patients with maintenance hemodialysis is closely related to the activation of oxidative stress response and inflammatory response.

  16. Gender differences in stress response: Role of developmental and biological determinants

    Directory of Open Access Journals (Sweden)

    Rohit Verma

    2011-01-01

    Full Text Available Stress response is associated with manifestations of various psychosomatic and psychiatric disorders. Hence, it is important to understand the underlying mechanisms that influence this association. Moreover, men and women tend to react differently with stress-both psychologically and biologically. These differences also need to be studied in order to have a better understanding in the gender difference observed for many disorders, which are likely to be contributed by the gender difference in stress reactivity and responses. Such an understanding would have a significant impact on our understanding about how adult health is set during early life and how adult disease could be prevented in men and women.

  17. TRANSCRIPTOMIC CHANGES DRIVE PHYSIOLOGICAL RESPONSES TO PROGRESSIVE DROUGHT STRESS AND REHYDRATION IN TOMATO

    Directory of Open Access Journals (Sweden)

    Paolo eIovieno

    2016-03-01

    Full Text Available Tomato is a major crop in the Mediterranean basin, where the cultivation in the open field is often vulnerable to drought. In order to adapt and survive to naturally occurring cycles of drought stress and recovery, plants employ a coordinated array of physiological, biochemical and molecular responses. Transcriptomic studies on tomato responses to drought and subsequent recovery are few in number. As the search for novel traits to improve the genetic tolerance to drought increases, a better understanding of these responses is required. To address this need we designed a study in which we induced two cycles of prolonged drought stress and a single recovery by rewatering in tomato. In order to dissect the complexity of plant responses to drought, we analyzed the physiological responses (stomatal conductance, CO2 assimilation and chlorophyll fluorescence, abscisic acid (ABA and proline contents. In addition to the physiological and metabolite assays, we generated transcriptomes for multiple points during the stress and recovery cycles. Cluster analysis of differentially expressed genes between the conditions has revealed potential novel components in stress response. The observed reduction in leaf gas exchanges and efficiency of the photosystem PSII was concomitant with a general down-regulation of genes belonging to the photosynthesis, light harvesting and photosystem I and II category induced by drought stress. Gene ontology (GO categories such as cell proliferation and cell cycle were also significantly enriched in the down-regulated fraction of genes upon drought stress, which may contribute to explain the observed growth reduction. Several histone variants were also repressed during drought stress, indicating that chromatin associated processes are also affected by drought. As expected, ABA accumulated after prolonged water deficit, driving the observed enrichment of stress related GOs in the up-regulated gene fractions, which included

  18. Pasireotide treatment does not modify hyperglycemic and corticosterone acute restraint stress responses in rats.

    Science.gov (United States)

    Ribeiro-Oliveira, Antônio; Schweizer, Junia R O L; Amaral, Pedro H S; Bizzi, Mariana F; Silveira, Warley Cezar da; Espirito-Santo, Daniel T A; Zille, Giancarlo; Soares, Beatriz S; Schmid, Herbert A; Yuen, Kevin C J

    2018-04-17

    Pasireotide is a new-generation somatostatin analog that acts through binding to multiple somatostatin receptor subtypes. Studies have shown that pasireotide induces hyperglycemia, reduces glucocorticoid secretion, alters neurotransmission, and potentially affects stress responses typically manifested as hyperglycemia and increased corticosterone secretion. This study specifically aimed to evaluate whether pasireotide treatment modifies glucose and costicosterone secretion in response to acute restraint stress. Male Holtzman rats of 150-200 g were treated with pasireotide (10 µg/kg/day) twice-daily for two weeks or vehicle for the same period. Blood samples were collected at baseline and after 5, 10, 30, and 60 min of restraint stress. The three experimental groups comprised of vehicle + restraint (VEHR), pasireotide + restraint (PASR), and pasireotide + saline (PASNR). Following pasireotide treatment, no significant differences in baseline glucose and corticosterone levels were observed among the three groups. During restraint, hyperglycemia was observed at 10 min (p stressed groups when compared to the non-stressed PASNR group (p stressed groups at 5 min (p stressed PASNR group (p stress responses, thus preserving acute stress regulation.

  19. Internal stress model for pre-primary stage of low-stress creep

    International Nuclear Information System (INIS)

    Kloc, L

    2010-01-01

    Initial transient stage in low-stress creep experiments was observed in all such experiments. Recently, evidences were presented that this stage cannot be considered as a normal creep primary stage, though the shape of the creep curve is similar. The strain reached during this so called pre-primary stage is fully recoverable upon unloading; the internal stresses must play important role in the effect. Model of standard linear anelastic solid was modified by introduction of creeping body instead of viscous dashpot. Both power law and hyperbolic sine creep law were used to fit observed creep curves of model and structural materials. Mainly the model using hyeprbolic sine creep law provides good fit to individual creep curves and sets of creep curves at different stresses.

  20. Neonatal stress tempers vulnerability of acute stress response in adult socially isolated rats

    Directory of Open Access Journals (Sweden)

    Mariangela Serra

    2014-06-01

    Full Text Available Adverse experiences occurred in early life and especially during childhood and adolescence can have negative impact on behavior later in life and the quality of maternal care is considered a critical moment that can considerably influence the development and the stress responsiveness in offspring. This review will assess how the association between neonatal and adolescence stressful experiences such as maternal separation and social isolation, at weaning, may influence the stress responsiveness and brain plasticity in adult rats. Three hours of separation from the pups (3-14 postnatal days significantly increased frequencies of maternal arched-back nursing and licking-grooming by dams across the first 14 days postpartum and induced a long-lasting increase in their blood levels of corticosterone. Maternal separation, which per sedid not modified brain and plasma allopregnanolone and corticosterone levels in adult rats, significantly reduced social isolation-induced decrease of the levels of these hormones. Moreover, the enhancement of corticosterone and allopregnanolone levels induced by foot shock stress in socially isolated animals that were exposed to maternal separation was markedly reduced respect to that observed in socially isolated animals. Our results suggest that in rats a daily brief separation from the mother during the first weeks of life, which per se did not substantially alter adult function and reactivity of hypothalamic-pituitary-adrenal (HPA axis, elicited a significant protection versus the subsequent long-term stressful experience such that induced by social isolation from weaning. Proceedings of the 10th International Workshop on Neonatology · Cagliari (Italy · October 22nd-25th, 2014 · The last ten years, the next ten years in NeonatologyGuest Editors: Vassilios Fanos, Michele Mussap, Gavino Faa, Apostolos Papageorgiou