WorldWideScience

Sample records for stress response elements

  1. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters.

    Science.gov (United States)

    Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2005-02-01

    cis-Acting regulatory elements are important molecular switches involved in the transcriptional regulation of a dynamic network of gene activities controlling various biological processes, including abiotic stress responses, hormone responses and developmental processes. In particular, understanding regulatory gene networks in stress response cascades depends on successful functional analyses of cis-acting elements. The ever-improving accuracy of transcriptome expression profiling has led to the identification of various combinations of cis-acting elements in the promoter regions of stress-inducible genes involved in stress and hormone responses. Here we discuss major cis-acting elements, such as the ABA-responsive element (ABRE) and the dehydration-responsive element/C-repeat (DRE/CRT), that are a vital part of ABA-dependent and ABA-independent gene expression in osmotic and cold stress responses.

  2. Revisiting the Relationship between Transposable Elements and the Eukaryotic Stress Response.

    Science.gov (United States)

    Horváth, Vivien; Merenciano, Miriam; González, Josefa

    2017-11-01

    A relationship between transposable elements (TEs) and the eukaryotic stress response was suggested in the first publications describing TEs. Since then, it has often been assumed that TEs are activated by stress, and that this activation is often beneficial for the organism. In recent years, the availability of new high-throughput experimental techniques has allowed further interrogation of the relationship between TEs and stress. By reviewing the recent literature, we conclude that although there is evidence for a beneficial effect of TE activation under stress conditions, the relationship between TEs and the eukaryotic stress response is quite complex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis.

    Science.gov (United States)

    Le, Tuan-Ngoc; Schumann, Ulrike; Smith, Neil A; Tiwari, Sameer; Au, Phil Chi Khang; Zhu, Qian-Hao; Taylor, Jennifer M; Kazan, Kemal; Llewellyn, Danny J; Zhang, Ren; Dennis, Elizabeth S; Wang, Ming-Bo

    2014-09-17

    DNA demethylases regulate DNA methylation levels in eukaryotes. Arabidopsis encodes four DNA demethylases, DEMETER (DME), REPRESSOR OF SILENCING 1 (ROS1), DEMETER-LIKE 2 (DML2), and DML3. While DME is involved in maternal specific gene expression during seed development, the biological function of the remaining DNA demethylases remains unclear. We show that ROS1, DML2, and DML3 play a role in fungal disease resistance in Arabidopsis. A triple DNA demethylase mutant, rdd (ros1 dml2 dml3), shows increased susceptibility to the fungal pathogen Fusarium oxysporum. We identify 348 genes differentially expressed in rdd relative to wild type, and a significant proportion of these genes are downregulated in rdd and have functions in stress response, suggesting that DNA demethylases maintain or positively regulate the expression of stress response genes required for F. oxysporum resistance. The rdd-downregulated stress response genes are enriched for short transposable element sequences in their promoters. Many of these transposable elements and their surrounding sequences show localized DNA methylation changes in rdd, and a general reduction in CHH methylation, suggesting that RNA-directed DNA methylation (RdDM), responsible for CHH methylation, may participate in DNA demethylase-mediated regulation of stress response genes. Many of the rdd-downregulated stress response genes are downregulated in the RdDM mutants nrpd1 and nrpe1, and the RdDM mutants nrpe1 and ago4 show enhanced susceptibility to F. oxysporum infection. Our results suggest that a primary function of DNA demethylases in plants is to regulate the expression of stress response genes by targeting promoter transposable element sequences.

  4. Functional analysis of the stress response element and its role in the multistress response of Saccharomyces cerevisiae.

    Science.gov (United States)

    Treger, J M; Magee, T R; McEntee, K

    1998-02-04

    The DDR2 gene of Saccharomyces cerevisiae is a multistress response gene whose transcription is rapidly and strongly induced by a diverse array of xenobiotic agents, and environmental and physiological conditions. The multistress response of this gene requires the pentanucleotide, 5' CCCCT, (C4T;STRE (STress Response Element)) and the zinc-finger transcription factors, Msn2p and Msn4p. A 51bp oligonucleotide (oligo 31/32) containing two STREs from the DDR2 promoter region was previously shown to direct heat shock activation of a lacZ reporter gene. In this work we demonstrate that the same element conferred a complete multistress response to an E. coli galK reporter gene introduced into yeast cells. A variant oligonucleotide in which both the STRE spacing and neighboring sequences were altered responded to the same spectrum of stresses, while substitution of nucleotides within the pentanucleotide completely abolished the multistress response. These results directly demonstrate that STREs are not only necessary but are sufficient for mediating a transcriptional response to a surprisingly diverse set of environmental and physiological conditions.

  5. Molecular analysis of UAS(E), a cis element containing stress response elements responsible for ethanol induction of the KlADH4 gene of Kluyveromyces lactis.

    Science.gov (United States)

    Mazzoni, C; Santori, F; Saliola, M; Falcone, C

    2000-01-01

    KlADH4 is a gene of Kluyveromyces lactis encoding a mitochondrial alcohol dehydrogenase activity, which is specifically induced by ethanol and insensitive to glucose repression. In this work, we report the molecular analysis of UAS(E), an element of the KlADH4 promoter which is essential for the induction of KlADH4 in the presence of ethanol. UAS(E) contains five stress response elements (STREs), which have been found in many genes of Saccharomyces cerevisiae involved in the response of cells to conditions of stress. Whereas KlADH4 is not responsive to stress conditions, the STREs present in UAS(E) seem to play a key role in the induction of the gene by ethanol, a situation that has not been observed in the related yeast S. cerevisiae. Gel retardation experiments showed that STREs in the KlADH4 promoter can bind factor(s) under non-inducing conditions. Moreover, we observed that the RAP1 binding site present in UAS(E) binds KlRap1p.

  6. Gene expression and stress response mediated by the epigenetic regulation of a transposable element small RNA.

    Directory of Open Access Journals (Sweden)

    Andrea D McCue

    2012-02-01

    Full Text Available The epigenetic activity of transposable elements (TEs can influence the regulation of genes; though, this regulation is confined to the genes, promoters, and enhancers that neighbor the TE. This local cis regulation of genes therefore limits the influence of the TE's epigenetic regulation on the genome. TE activity is suppressed by small RNAs, which also inhibit viruses and regulate the expression of genes. The production of TE heterochromatin-associated endogenous small interfering RNAs (siRNAs in the reference plant Arabidopsis thaliana is mechanistically distinct from gene-regulating small RNAs, such as microRNAs or trans-acting siRNAs (tasiRNAs. Previous research identified a TE small RNA that potentially regulates the UBP1b mRNA, which encodes an RNA-binding protein involved in stress granule formation. We demonstrate that this siRNA, siRNA854, is under the same trans-generational epigenetic control as the Athila family LTR retrotransposons from which it is produced. The epigenetic activation of Athila elements results in a shift in small RNA processing pathways, and new 21-22 nucleotide versions of Athila siRNAs are produced by protein components normally not responsible for processing TE siRNAs. This processing results in siRNA854's incorporation into ARGONAUTE1 protein complexes in a similar fashion to gene-regulating tasiRNAs. We have used reporter transgenes to demonstrate that the UPB1b 3' untranslated region directly responds to the epigenetic status of Athila TEs and the accumulation of siRNA854. The regulation of the UPB1b 3' untranslated region occurs both on the post-transcriptional and translational levels when Athila TEs are epigenetically activated, and this regulation results in the phenocopy of the ubp1b mutant stress-sensitive phenotype. This demonstrates that a TE's epigenetic activity can modulate the host organism's stress response. In addition, the ability of this TE siRNA to regulate a gene's expression in trans blurs

  7. Meta-analysis of the effect of overexpression of C-repeat/dehydration-responsive element binding family genes on temperature stress tolerance and related responses

    Science.gov (United States)

    C-repeat/dehydration-responsive element binding proteins are transcription factors that play a critical role in plant response to temperature stress. Over-expression of CBF/DREB genes has been demonstrated to enhance temperature stress tolerance. A series of physiological and biochemical modificat...

  8. On the residual stress modeling of shot-peened AISI 4340 steel: finite element and response surface methods

    Science.gov (United States)

    Asgari, Ali; Dehestani, Pouya; Poruraminaie, Iman

    2018-02-01

    Shot peening is a well-known process in applying the residual stress on the surface of industrial parts. The induced residual stress improves fatigue life. In this study, the effects of shot peening parameters such as shot diameter, shot speed, friction coefficient, and the number of impacts on the applied residual stress will be evaluated. To assess these parameters effect, firstly the shot peening process has been simulated by finite element method. Then, effects of the process parameters on the residual stress have been evaluated by response surface method as a statistical approach. Finally, a strong model is presented to predict the maximum residual stress induced by shot peening process in AISI 4340 steel. Also, the optimum parameters for the maximum residual stress are achieved. The results indicate that effect of shot diameter on the induced residual stress is increased by increasing the shot speed. Also, enhancing the friction coefficient magnitude always cannot lead to increase in the residual stress.

  9. RING E3 ligases: key regulatory elements are involved in abiotic stress responses in plants.

    Science.gov (United States)

    Cho, Seok Keun; Ryu, Moon Young; Kim, Jong Hum; Hong, Jeong Soo; Oh, Tae Rin; Kim, Woo Taek; Yang, Seong Wook

    2017-08-01

    Plants are constantly exposed to a variety of abiotic stresses, such as drought, heat, cold, flood, and salinity. To survive under such unfavorable conditions, plants have evolutionarily developed their own resistant-mechanisms. For several decades, many studies have clarified specific stress response pathways of plants through various molecular and genetic studies. In particular, it was recently discovered that ubiquitin proteasome system (UPS), a regulatory mechanism for protein turn over, is greatly involved in the stress responsive pathways. In the UPS, many E3 ligases play key roles in recognizing and tethering poly-ubiquitins on target proteins for subsequent degradation by the 26S proteasome. Here we discuss the roles of RING ligases that have been defined in related to abiotic stress responses in plants. [BMB Reports 2017; 50(8): 393-400].

  10. Adaptive response of arbuscular mycorrhizal symbiosis to accumulation of elements and translocation in Phragmites australis affected by cadmium stress.

    Science.gov (United States)

    Huang, Xiaochen; Ho, Shih-Hsin; Zhu, Shishu; Ma, Fang; Wu, Jieting; Yang, Jixian; Wang, Li

    2017-07-15

    Arbuscular mycorrhizal (AM) fungi have been reported to play a central role in improving plant tolerance to cadmium (Cd)-contaminated sites. This is achieved by enhancing both the growth of host plants and the nutritive elements in plants. This study assessed potential regulatory effects of AM symbiosis with regard to nutrient uptake and transport, and revealed different response strategies to various Cd concentrations. Phragmites australis was inoculated with Rhizophagus irregularis in the greenhouse cultivation system, where it was treated with 0-20 mg L -1 of Cd for 21days to investigate growth parameters, as well as Cd and nutritive element distribution in response to AM fungus inoculation. Mycorrhizal plants showed a higher tolerance, particularly under high Cd-level stress in the substrate. Moreover, our results determined the roots as dominant Cd reservoirs in plants. The AM fungus improved Cd accumulation and saturated concentration in the roots, thus inhibiting Cd uptake to shoots. The observed distributions of nutritive elements and the interactions among these indicated the highest microelement contribution to roots, Ca contributed maximally in leaves, and K and P contributed similarly under Cd stress. In addition, AM fungus inoculation effectively impacted Mn and P uptake and accumulation while coping with Cd toxicity. This study also demonstrated translocation factor from metal concentration (TF) could be a good parameter to evaluate different transportation strategies induced by various Cd stresses in contrast to the bioconcentration factor (BCF) and translocation factor from metal accumulation (TF'). Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Mechanism Profiling of Hepatotoxicity Caused by Oxidative Stress Using Antioxidant Response Element Reporter Gene Assay Models and Big Data.

    Science.gov (United States)

    Kim, Marlene Thai; Huang, Ruili; Sedykh, Alexander; Wang, Wenyi; Xia, Menghang; Zhu, Hao

    2016-05-01

    Hepatotoxicity accounts for a substantial number of drugs being withdrawn from the market. Using traditional animal models to detect hepatotoxicity is expensive and time-consuming. Alternative in vitro methods, in particular cell-based high-throughput screening (HTS) studies, have provided the research community with a large amount of data from toxicity assays. Among the various assays used to screen potential toxicants is the antioxidant response element beta lactamase reporter gene assay (ARE-bla), which identifies chemicals that have the potential to induce oxidative stress and was used to test > 10,000 compounds from the Tox21 program. The ARE-bla computational model and HTS data from a big data source (PubChem) were used to profile environmental and pharmaceutical compounds with hepatotoxicity data. Quantitative structure-activity relationship (QSAR) models were developed based on ARE-bla data. The models predicted the potential oxidative stress response for known liver toxicants when no ARE-bla data were available. Liver toxicants were used as probe compounds to search PubChem Bioassay and generate a response profile, which contained thousands of bioassays (> 10 million data points). By ranking the in vitro-in vivo correlations (IVIVCs), the most relevant bioassay(s) related to hepatotoxicity were identified. The liver toxicants profile contained the ARE-bla and relevant PubChem assays. Potential toxicophores for well-known toxicants were created by identifying chemical features that existed only in compounds with high IVIVCs. Profiling chemical IVIVCs created an opportunity to fully explore the source-to-outcome continuum of modern experimental toxicology using cheminformatics approaches and big data sources. Kim MT, Huang R, Sedykh A, Wang W, Xia M, Zhu H. 2016. Mechanism profiling of hepatotoxicity caused by oxidative stress using antioxidant response element reporter gene assay models and big data. Environ Health Perspect 124:634-641;

  12. Cis-regulatory element based targeted gene finding: genome-wide identification of abscisic acid- and abiotic stress-responsive genes in Arabidopsis thaliana.

    Science.gov (United States)

    Zhang, Weixiong; Ruan, Jianhua; Ho, Tuan-Hua David; You, Youngsook; Yu, Taotao; Quatrano, Ralph S

    2005-07-15

    A fundamental problem of computational genomics is identifying the genes that respond to certain endogenous cues and environmental stimuli. This problem can be referred to as targeted gene finding. Since gene regulation is mainly determined by the binding of transcription factors and cis-regulatory DNA sequences, most existing gene annotation methods, which exploit the conservation of open reading frames, are not effective in finding target genes. A viable approach to targeted gene finding is to exploit the cis-regulatory elements that are known to be responsible for the transcription of target genes. Given such cis-elements, putative target genes whose promoters contain the elements can be identified. As a case study, we apply the above approach to predict the genes in model plant Arabidopsis thaliana which are inducible by a phytohormone, abscisic acid (ABA), and abiotic stress, such as drought, cold and salinity. We first construct and analyze two ABA specific cis-elements, ABA-responsive element (ABRE) and its coupling element (CE), in A.thaliana, based on their conservation in rice and other cereal plants. We then use the ABRE-CE module to identify putative ABA-responsive genes in A.thaliana. Based on RT-PCR verification and the results from literature, this method has an accuracy rate of 67.5% for the top 40 predictions. The cis-element based targeted gene finding approach is expected to be widely applicable since a large number of cis-elements in many species are available.

  13. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene.

    Science.gov (United States)

    Schüller, C; Brewster, J L; Alexander, M R; Gustin, M C; Ruis, H

    1994-09-15

    The HOG signal pathway of the yeast Saccharomyces cerevisiae is defined by the PBS2 and HOG1 genes encoding members of the MAP kinase kinase and of the MAP kinase family, respectively. Mutations in this pathway (deletions of PBS2 or HOG1, or point mutations in HOG1) almost completely abolish the induction of transcription by osmotic stress that is mediated by stress response elements (STREs). We have demonstrated previously that STREs also mediate induction of transcription by heat shock, nitrogen starvation and oxidative stress. This study shows that they are also activated by low external pH, sorbate, benzoate or ethanol stress. Induction by these other stress signals appears to be HOG pathway independent. HOG1-dependent osmotic induction of transcription of the CTT1 gene encoding the cytosolic catalase T occurs in the presence of a protein synthesis inhibitor and can be detected rapidly after an increase of tyrosine phosphorylation of Hog1p triggered by high osmolarity. Consistent with a role of STREs in the induction of stress resistance, a number of other stress protein genes (e.g. HSP104) are regulated like CTT1. Furthermore, catalase T was shown to be important for viability under severe osmotic stress, and heat shock was demonstrated to provide cross-protection against osmotic stress.

  14. The cis-regulatory element CCACGTGG is involved in ABA and water-stress responses of the maize gene rab28.

    Science.gov (United States)

    Pla, M; Vilardell, J; Guiltinan, M J; Marcotte, W R; Niogret, M F; Quatrano, R S; Pagès, M

    1993-01-01

    The maize gene rab28 has been identified as ABA-inducible in embryos and vegetative tissues. It is also induced by water stress in young leaves. The proximal promoter region contains the conserved cis-acting element CCACGTGG (ABRE) reported for ABA induction in other plant genes. Transient expression assays in rice protoplasts indicate that a 134 bp fragment (-194 to -60 containing the ABRE) fused to a truncated cauliflower mosaic virus promoter (35S) is sufficient to confer ABA-responsiveness upon the GUS reporter gene. Gel retardation experiments indicate that nuclear proteins from tissues in which the rab28 gene is expressed can interact specifically with this 134 bp DNA fragment. Nuclear protein extracts from embryo and water-stressed leaves generate specific complexes of different electrophoretic mobility which are stable in the presence of detergent and high salt. However, by DMS footprinting the same guanine-specific contacts with the ABRE in both the embryo and leaf binding activities were detected. These results indicate that the rab28 promoter sequence CCACGTGG is a functional ABA-responsive element, and suggest that distinct regulatory factors with apparent similar affinity for the ABRE sequence may be involved in the hormone action during embryo development and in vegetative tissues subjected to osmotic stress.

  15. Deletion of an Endoplasmic Reticulum Stress Response Element in a ZmPP2C-A Gene Facilitates Drought Tolerance of Maize Seedlings.

    Science.gov (United States)

    Xiang, Yanli; Sun, Xiaopeng; Gao, Shan; Qin, Feng; Dai, Mingqiu

    2017-03-06

    Drought is a major abiotic stress that causes the yearly yield loss of maize, a crop cultured worldwide. Breeding drought-tolerant maize cultivars is a priority requirement of world agriculture. Clade A PP2C phosphatases (PP2C-A), which are conserved in most plant species, play important roles in abscisic acid (ABA) signaling and plant drought response. However, natural variations of PP2C-A genes that are directly associated with drought tolerance remain to be elucidated. Here, we conducted a candidate gene association analysis of the ZmPP2C-A gene family in a maize panel consisting of 368 varieties collected worldwide, and identified a drought responsive gene ZmPP2C-A10 that is tightly associated with drought tolerance. We found that the degree of drought tolerance of maize cultivars negatively correlates with the expression levels of ZmPP2C-A10. ZmPP2C-A10, like its Arabidopsis orthologs, interacts with ZmPYL ABA receptors and ZmSnRK2 kinases, suggesting that ZmPP2C-A10 is involved in mediating ABA signaling in maize. Transgenic studies in maize and Arabidopsis confirmed that ZmPP2C-A10 functions as a negative regulator of drought tolerance. Further, a causal natural variation, deletion allele-338, which bears a deletion of ERSE (endoplasmic reticulum stress response element) in the 5'-UTR region of ZmPP2C-A10, was detected. This deletion causes the loss of endoplasmic reticulum (ER) stress-induced expression of ZmPP2C-A10, leading to increased plant drought tolerance. Our study provides direct evidence linking ER stress signaling with drought tolerance and genetic resources that can be used directly in breeding drought-tolerant maize cultivars. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Role of an ER stress response element in regulating the bidirectional promoter of the mouse CRELD2 - ALG12 gene pair

    Directory of Open Access Journals (Sweden)

    Hirata Yoko

    2010-11-01

    Full Text Available Abstract Background Recently, we identified cysteine-rich with EGF-like domains 2 (CRELD2 as a novel endoplasmic reticulum (ER stress-inducible gene and characterized its transcriptional regulation by ATF6 under ER stress conditions. Interestingly, the CRELD2 and asparagine-linked glycosylation 12 homolog (ALG12 genes are arranged as a bidirectional (head-to-head gene pair and are separated by less than 400 bp. In this study, we characterized the transcriptional regulation of the mouse CRELD2 and ALG12 genes that is mediated by a common bidirectional promoter. Results This short intergenic region contains an ER stress response element (ERSE sequence and is well conserved among the human, rat and mouse genomes. Microarray analysis revealed that CRELD2 and ALG12 mRNAs were induced in Neuro2a cells by treatment with thapsigargin (Tg, an ER stress inducer, in a time-dependent manner. Other ER stress inducers, tunicamycin and brefeldin A, also increased the expression of these two mRNAs in Neuro2a cells. We then tested for the possible involvement of the ERSE motif and other regulatory sites of the intergenic region in the transcriptional regulation of the mouse CRELD2 and ALG12 genes by using variants of the bidirectional reporter construct. With regards to the promoter activities of the CRELD2-ALG12 gene pair, the entire intergenic region hardly responded to Tg, whereas the CRELD2 promoter constructs of the proximal region containing the ERSE motif showed a marked responsiveness to Tg. The same ERSE motif of ALG12 gene in the opposite direction was less responsive to Tg. The direction and the distance of this motif from each transcriptional start site, however, has no impact on the responsiveness of either gene to Tg treatment. Additionally, we found three putative sequences in the intergenic region that antagonize the ERSE-mediated transcriptional activation. Conclusions These results show that the mouse CRELD2 and ALG12 genes are arranged as a

  17. Stresses in Circular Plates with Rigid Elements

    Science.gov (United States)

    Velikanov, N. L.; Koryagin, S. I.; Sharkov, O. V.

    2018-05-01

    Calculations of residual stress fields are carried out by numerical and static methods, using the flat cross-section hypothesis. The failure of metal when exposed to residual stresses is, in most cases, brittle. The presence in the engineering structures of rigid elements often leads to the crack initiation and structure failure. This is due to the fact that rigid elements under the influence of external stresses are stress concentrators. In addition, if these elements are fixed by welding, the residual welding stresses can lead to an increase in stress concentration and, ultimately, to failure. The development of design schemes for such structures is a very urgent task for complex technical systems. To determine the stresses in a circular plate with a welded circular rigid insert under the influence of an external load, one can use the solution of the plane stress problem for annular plates in polar coordinates. The polar coordinates of the points are the polar radius and the polar angle, and the stress state is determined by normal radial stresses, tangential and shearing stresses. The use of the above mentioned design schemes, formulas, will allow more accurate determination of residual stresses in annular welded structures. This will help to establish the most likely directions of failure and take measures at the stages of designing, manufacturing and repairing engineering structures to prevent these failures. However, it must be taken into account that the external load, the presence of insulation can lead to a change in the residual stress field.

  18. Light and abiotic stresses regulate the expression of GDP-L-galactose phosphorylase and levels of ascorbic acid in two kiwifruit genotypes via light-responsive and stress-inducible cis-elements in their promoters.

    Science.gov (United States)

    Li, Juan; Liang, Dong; Li, Mingjun; Ma, Fengwang

    2013-09-01

    Ascorbic acid (AsA) plays an essential role in plants by protecting cells against oxidative damage. GDP-L-galactose phosphorylase (GGP) is the first committed gene for AsA synthesis. Our research examined AsA levels, regulation of GGP gene expression, and how these are related to abiotic stresses in two species of Actinidia (kiwifruit). When leaves were subjected to continuous darkness or light, ABA or MeJA, heat, or a hypoxic environment, we found some correlation between the relative levels of GGP mRNA and AsA concentrations. In transformed tobacco plants, activity of the GGP promoter was induced by all of these treatments. However, the degree of inducibility in the two kiwifruit species differed among the GGP promoter deletions. We deduced that the G-box motif, a light-responsive element, may have an important function in regulating GGP transcripts under various light conditions in both A. deliciosa and A. eriantha. Other elements such as ABRE, the CGTCA motif, and HSE might also control the promoter activities of GGP in kiwifruit. Altogether, these data suggest that GGP expression in the two kiwifruit species is regulated by light or abiotic stress via the relative cis-elements in their promoters. Furthermore, GGP has a critical role in modulating AsA concentrations in kiwifruit species under abiotic stresses.

  19. General Stress Responses in the Honey Bee

    Directory of Open Access Journals (Sweden)

    Naïla Even

    2012-12-01

    Full Text Available The biological concept of stress originated in mammals, where a “General Adaptation Syndrome” describes a set of common integrated physiological responses to diverse noxious agents. Physiological mechanisms of stress in mammals have been extensively investigated through diverse behavioral and physiological studies. One of the main elements of the stress response pathway is the endocrine hypothalamo-pituitary-adrenal (HPA axis, which underlies the “fight-or-flight” response via a hormonal cascade of catecholamines and corticoid hormones. Physiological responses to stress have been studied more recently in insects: they involve biogenic amines (octopamine, dopamine, neuropeptides (allatostatin, corazonin and metabolic hormones (adipokinetic hormone, diuretic hormone. Here, we review elements of the physiological stress response that are or may be specific to honey bees, given the economical and ecological impact of this species. This review proposes a hypothetical integrated honey bee stress pathway somewhat analogous to the mammalian HPA, involving the brain and, particularly, the neurohemal organ corpora cardiaca and peripheral targets, including energy storage organs (fat body and crop. We discuss how this system can organize rapid coordinated changes in metabolic activity and arousal, in response to adverse environmental stimuli. We highlight physiological elements of the general stress responses that are specific to honey bees, and the areas in which we lack information to stimulate more research into how this fascinating and vital insect responds to stress.

  20. Numerical Simulation on Seismic Response of the Filled Joint under High Amplitude Stress Waves Using Finite-Discrete Element Method (FDEM

    Directory of Open Access Journals (Sweden)

    Xiaolin Huang

    2016-12-01

    Full Text Available This paper numerically investigates the seismic response of the filled joint under high amplitude stress waves using the combined finite-discrete element method (FDEM. A thin layer of independent polygonal particles are used to simulate the joint fillings. Each particle is meshed using the Delaunay triangulation scheme and can be crushed when the load exceeds its strength. The propagation of the 1D longitude wave through a single filled joint is studied, considering the influences of the joint thickness and the characteristics of the incident wave, such as the amplitude and frequency. The results show that the filled particles under high amplitude stress waves mainly experience three deformation stages: (i initial compaction stage; (ii crushing stage; and (iii crushing and compaction stage. In the initial compaction stage and crushing and compaction stage, compaction dominates the mechanical behavior of the joint, and the particle area distribution curve varies little. In these stages, the transmission coefficient increases with the increase of the amplitude, i.e., peak particle velocity (PPV, of the incident wave. On the other hand, in the crushing stage, particle crushing plays the dominant role. The particle size distribution curve changes abruptly with the PPV due to the fragments created by the crushing process. This process consumes part of wave energy and reduces the stiffness of the filled joint. The transmission coefficient decreases with increasing PPV in this stage because of the increased amount of energy consumed by crushing. Moreover, with the increase of the frequency of the incident wave, the transmission coefficient decreases and fewer particles can be crushed. Under the same incident wave, the transmission coefficient decreases when the filled thickness increases and the filled particles become more difficult to be crushed.

  1. Bruxism affects stress responses in stressed rats.

    Science.gov (United States)

    Sato, Chikatoshi; Sato, Sadao; Takashina, Hirofumi; Ishii, Hidenori; Onozuka, Minoru; Sasaguri, Kenichi

    2010-04-01

    It has been proposed that suppression of stress-related emotional responses leads to the simultaneous activation of both sympathetic and parasympathetic divisions of the autonomic nervous system (ANS) and that the expression of these emotional states has a protective effect against ulcerogenesis. In the present study, we investigated whether stress-induced bruxism activity (SBA) has a physiological effect of on the stress-induced changes of the stomach, thymus, and spleen as well as blood leukocytes, cortisol, and adrenaline. This study demonstrated that SBA attenuated the stress-induced ulcer genesis as well as degenerative changes of thymus and spleen. SBA also attenuated increases of adrenaline, cortisol, and neutrophils in the blood. In conclusion, expression of aggression through SBA during stress exposure attenuates both stress-induced ANS response, including gastric ulcer formation.

  2. Stress Responses in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Frees, Dorte; Ingmer, Hanne

    2016-01-01

    stress responses allowing it to sense and adapt to its very different niches. The stress responses often involve dramatic cellular reprogramming, and the technological advances provided by the access to whole genome sequences have let to an unprecedented insight into the global reorganization of gene...... and protein expression following stress-exposure. Characterization of global gene responses has been very helpful both in identifying regulators sensing specific environmental stress signals and overlaps between different stress responses. In this chapter we review the recent progress in our understanding...... of the specific and general S. aureusstress responses, with a special emphasis on how stress responses contribute to virulence and antibiotic resistance in this important human pathogen....

  3. Staphylococcal response to oxidative stress

    Directory of Open Access Journals (Sweden)

    Rosmarie eGaupp

    2012-03-01

    Full Text Available Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria’s interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host.

  4. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses.

    Science.gov (United States)

    Narusaka, Yoshihiro; Nakashima, Kazuo; Shinwari, Zabta K; Sakuma, Yoh; Furihata, Takashi; Abe, Hiroshi; Narusaka, Mari; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2003-04-01

    Many abiotic stress-inducible genes contain two cis-acting elements, namely a dehydration-responsive element (DRE; TACCGACAT) and an ABA-responsive element (ABRE; ACGTGG/TC), in their promoter regions. We precisely analyzed the 120 bp promoter region (-174 to -55) of the Arabidopsis rd29A gene whose expression is induced by dehydration, high-salinity, low-temperature, and abscisic acid (ABA) treatments and whose 120 bp promoter region contains the DRE, DRE/CRT-core motif (A/GCCGAC), and ABRE sequences. Deletion and base substitution analyses of this region showed that the DRE-core motif functions as DRE and that the DRE/DRE-core motif could be a coupling element of ABRE. Gel mobility shift assays revealed that DRE-binding proteins (DREB1s/CBFs and DREB2s) bind to both DRE and the DRE-core motif and that ABRE-binding proteins (AREBs/ABFs) bind to ABRE in the 120 bp promoter region. In addition, transactivation experiments using Arabidopsis leaf protoplasts showed that DREBs and AREBs cumulatively transactivate the expression of a GUS reporter gene fused to the 120 bp promoter region of rd29A. These results indicate that DRE and ABRE are interdependent in the ABA-responsive expression of the rd29A gene in response to ABA in Arabidopsis.

  5. Transposable elements in cancer as a by-product of stress-induced evolvability

    DEFF Research Database (Denmark)

    Mourier, Tobias; Nielsen, Lars P.; Hansen, Anders Johannes

    2014-01-01

    Transposable elements (TEs) are ubiquitous in eukaryotic genomes. Barbara McClintock's famous notion of TEs acting as controlling elements modifying the genetic response of an organism upon exposure to stressful environments has since been solidly supported in a series of model organisms. This re...... as an evolutionary by-product of organisms' abilities to genetically adapt to environmental stress....

  6. Finite element stress analysis of brick-mortar masonry under ...

    African Journals Online (AJOL)

    Stress analysis of a brick-mortar couplet as a substitute for brick wall structure has been performed by finite element method, and algorithm for determining the element stiffness matrix for a plane stress problem using the displacement approach was developed. The nodal displacements were derived for the stress in each ...

  7. Neuronal responses to physiological stress

    DEFF Research Database (Denmark)

    Kagias, Konstantinos; Nehammer, Camilla; Pocock, Roger David John

    2012-01-01

    damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses......Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged...... by changes in the environment. Fluctuations in oxygen levels, temperature, and redox state for example, trigger molecular events that enable an organism to adapt, survive, and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner...

  8. Finite element analysis of thermal stress distribution in different ...

    African Journals Online (AJOL)

    Nigerian Journal of Clinical Practice. Journal Home ... Von Mises and thermal stress distributions were evaluated. Results: In all ... distribution. Key words: Amalgam, finite element method, glass ionomer cement, resin composite, thermal stress ...

  9. Plant responses to water stress

    Science.gov (United States)

    Kar, Rup Kumar

    2011-01-01

    Terrestrial plants most often encounter drought stress because of erratic rainfall which has become compounded due to present climatic changes.Responses of plants to water stress may be assigned as either injurious change or tolerance index. One of the primary and cardinal changes in response to drought stress is the generation of reactive oxygen species (ROS), which is being considered as the cause of cellular damage. However, recently a signaling role of such ROS in triggering the ROS scavenging system that may confer protection or tolerance against stress is emerging. Such scavenging system consists of antioxidant enzymes like SOD, catalase and peroxidases, and antioxidant compounds like ascorbate, reduced glutathione; a balance between ROS generation and scavenging ultimately determines the oxidative load. As revealed in case of defence against pathogen, signaling via ROS is initiated by NADPH oxidase-catalyzed superoxide generation in the apoplastic space (cell wall) followed by conversion to hydrogen peroxide by the activity of cell wall-localized SOD. Wall peroxidase may also play role in ROS generation for signaling. Hydrogen peroxide may use Ca2+ and MAPK pathway as downstream signaling cascade. Plant hormones associated with stress responses like ABA and ethylene play their role possibly via a cross talk with ROS towards stress tolerance, thus projecting a dual role of ROS under drought stress. PMID:22057331

  10. Individual heat stress response

    NARCIS (Netherlands)

    Havenith, G.

    1997-01-01

    In 5 experiments, heterogeneous subject groups (large variations in _VO2 max, regular daily activity level, mass, body surface area (AD), % body fat, and AD/mass ratio) were tested for their physiological response while exercising on a cycle ergometer at a relative (45% _VO2 max; REL) or an absolute

  11. ABFs, a family of ABA-responsive element binding factors.

    Science.gov (United States)

    Choi, H; Hong, J; Ha, J; Kang, J; Kim, S Y

    2000-01-21

    Abscisic acid (ABA) plays an important role in environmental stress responses of higher plants during vegetative growth. One of the ABA-mediated responses is the induced expression of a large number of genes, which is mediated by cis-regulatory elements known as abscisic acid-responsive elements (ABREs). Although a number of ABRE binding transcription factors have been known, they are not specifically from vegetative tissues under induced conditions. Considering the tissue specificity of ABA signaling pathways, factors mediating ABA-dependent stress responses during vegetative growth phase may thus have been unidentified so far. Here, we report a family of ABRE binding factors isolated from young Arabidopsis plants under stress conditions. The factors, isolated by a yeast one-hybrid system using a prototypical ABRE and named as ABFs (ABRE binding factors) belong to a distinct subfamily of bZIP proteins. Binding site selection assay performed with one ABF showed that its preferred binding site is the strong ABRE, CACGTGGC. ABFs can transactivate an ABRE-containing reporter gene in yeast. Expression of ABFs is induced by ABA and various stress treatments, whereas their induction patterns are different from one another. Thus, a new family of ABRE binding factors indeed exists that have the potential to activate a large number of ABA/stress-responsive genes in Arabidopsis.

  12. Abiotic stressors and stress responses

    DEFF Research Database (Denmark)

    Sulmon, Cecile; Van Baaren, Joan; Cabello-Hurtado, Francisco

    2015-01-01

    Abstract Organisms are regularly subjected to abiotic stressors related to increasing anthropogenic activities, including chemicals and climatic changes that induce major stresses. Based on various key taxa involved in ecosystem functioning (photosynthetic microorganisms, plants, invertebrates), we...... review how organisms respond and adapt to chemical- and temperature-induced stresses from molecular to population level. Using field-realistic studies, our integrative analysis aims to compare i) how molecular and physiological mechanisms related to protection, repair and energy allocation can impact...... life history traits of stressed organisms, and ii) to what extent trait responses influence individual and population responses. Common response mechanisms are evident at molecular and cellular scales but become rather difficult to define at higher levels due to evolutionary distance and environmental...

  13. Nuclear responses in INTOR plasma stabilization elements

    International Nuclear Information System (INIS)

    Gohar, Y.; Gilligan, J.; Jung, J.; Mattas, R.F.; Miley, G.H.; Wiffen, F.W.; Yang, S.

    1985-01-01

    Nuclear responses in the plasma stabilization elements were studied in a parametric fashion as a part of the transient electromagnetics critical issue C of ETR/INTOR activity. The main responses are neutron fluence and radiation dose in the insulator material, induced resistivity and atomic displacement in the conductor material, nuclear heating and life analysis for the elements. Copper and aluminum conductors with either MgAl 2 O 4 or MgO insulating material were investigated. Radiation damage and life analysis for these elements were also discussed

  14. The finite element response matrix method

    International Nuclear Information System (INIS)

    Nakata, H.; Martin, W.R.

    1983-02-01

    A new technique is developed with an alternative formulation of the response matrix method implemented with the finite element scheme. Two types of response matrices are generated from the Galerkin solution to the weak form of the diffusion equation subject to an arbitrary current and source. The piecewise polynomials are defined in two levels, the first for the local (assembly) calculations and the second for the global (core) response matrix calculations. This finite element response matrix technique was tested in two 2-dimensional test problems, 2D-IAEA benchmark problem and Biblis benchmark problem, with satisfatory results. The computational time, whereas the current code is not extensively optimized, is of the same order of the well estabilished coarse mesh codes. Furthermore, the application of the finite element technique in an alternative formulation of response matrix method permits the method to easily incorporate additional capabilities such as treatment of spatially dependent cross-sections, arbitrary geometrical configurations, and high heterogeneous assemblies. (Author) [pt

  15. finite element model for predicting residual stresses in shielded

    African Journals Online (AJOL)

    eobe

    This paper investigates the prediction of residual stresses developed ... steel plates through Finite Element Model simulation and experiments. ... The experimental values as measured by the X-Ray diffractometer were of ... Based on this, it can be concluded that Finite Element .... Comparison of Residual Stresses from X.

  16. Thermal stresses in rectangular plates: variational and finite element solutions

    International Nuclear Information System (INIS)

    Laura, P.A.A.; Gutierrez, R.H.; Sanchez Sarmiento, G.; Basombrio, F.G.

    1978-01-01

    This paper deals with the development of an approximate method for the analysis of thermal stresses in rectangular plates (plane stress problem) and an evaluation of the relative accuracy of the finite element method. The stress function is expanded in terms of polynomial coordinate functions which identically satisfy the boundary conditions, and a variational approach is used to determine the expansion coefficients. The results are in good agreement with a finite element approach. (Auth.)

  17. Finite Element Residual Stress Analysis of Planetary Gear Tooth

    Directory of Open Access Journals (Sweden)

    Jungang Wang

    2013-01-01

    Full Text Available A method to simulate residual stress field of planetary gear is proposed. In this method, the finite element model of planetary gear is established and divided to tooth zone and profile zone, whose different temperature field is set. The gear's residual stress simulation is realized by the thermal compression stress generated by the temperature difference. Based on the simulation, the finite element model of planetary gear train is established, the dynamic meshing process is simulated, and influence of residual stress on equivalent stress of addendum, pitch circle, and dedendum of internal and external meshing planetary gear tooth profile is analyzed, according to non-linear contact theory, thermodynamic theory, and finite element theory. The results show that the equivalent stresses of planetary gear at both meshing and nonmeshing surface are significantly and differently reduced by residual stress. The study benefits fatigue cracking analysis and dynamic optimization design of planetary gear train.

  18. Plant Responses to Nanoparticle Stress

    Directory of Open Access Journals (Sweden)

    Zahed Hossain

    2015-11-01

    Full Text Available With the rapid advancement in nanotechnology, release of nanoscale materials into the environment is inevitable. Such contamination may negatively influence the functioning of the ecosystems. Many manufactured nanoparticles (NPs contain heavy metals, which can cause soil and water contamination. Proteomic techniques have contributed substantially in understanding the molecular mechanisms of plant responses against various stresses by providing a link between gene expression and cell metabolism. As the coding regions of genome are responsible for plant adaptation to adverse conditions, protein signatures provide insights into the phytotoxicity of NPs at proteome level. This review summarizes the recent contributions of plant proteomic research to elaborate the complex molecular pathways of plant response to NPs stress.

  19. Fillet Weld Stress Using Finite Element Methods

    Science.gov (United States)

    Lehnhoff, T. F.; Green, G. W.

    1985-01-01

    Average elastic Von Mises equivalent stresses were calculated along the throat of a single lap fillet weld. The average elastic stresses were compared to initial yield and to plastic instability conditions to modify conventional design formulas is presented. The factor is a linear function of the thicknesses of the parent plates attached by the fillet weld.

  20. Stress-compatible embedded cohesive crack in CST element

    DEFF Research Database (Denmark)

    Olesen, John Forbes; Poulsen, Peter Noe

    2010-01-01

    A simple element with an embedded strong discontinuity for modeling cohesive cracking of concrete is presented. The element differs from previous elements of the embedded type, in that a consistent stress field is obtained by direct enforcement of stress continuity across the crack....... The displacement discontinuity is modeled in an XFEM fashion; however, the discontinuous displacement field is special, allowing for the direct enforcement of stress continuity. This in turn allows for elimination of extra degrees of freedom necessary for describing the crack deformations, thus the element has...... the same number of freedoms as its continuous basis: CST. The good performance of the element is demonstrated by its ability to simulate threepoint bending of a notched concrete beam. The advantage of the element is its simplicity and the straightforward implementation of it. Handling situations...

  1. Finite element calculation of stress induced heating of superconductors

    International Nuclear Information System (INIS)

    Akin, J.E.; Moazed, A.

    1976-01-01

    This research is concerned with the calculation of the amount of heat generated due to the development of mechanical stresses in superconducting composites. An emperical equation is used to define the amount of stress-induced heat generation per unit volume. The equation relates the maximum applied stress and the experimental measured hysteresis loop of the composite stress-strain diagram. It is utilized in a finite element program to calculate the total stress-induced heat generation for the superconductor. An example analysis of a solenoid indicates that the stress-induced heating can be of the same order of magnitude as eddy current effects

  2. Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA

    DEFF Research Database (Denmark)

    Christensen, S.K.; Pedersen, K.; Hansen, Flemming G.

    2003-01-01

    Prokaryotic chromosomes encode toxin-antitoxin loci, often in multiple copies. In most cases, the function of these genes is not known. The chpA (mazEF) locus of Escherichia coli has been described as a cell killing module that induces bacterial apoptosis during nutritional stress. However, we...... found recently that ChpAK (MazF) does not confer cell killing but rather, induces a bacteriostatic condition from which the cells could be resuscitated. Results presented here yield a mechanistic explanation for the detrimental effect on cell growth exerted by ChpAK and the homologous ChpBK protein of E......AK cleaved tmRNA in its coding region. Thus, ChpAK and ChpBK inhibit translation by a mechanism very similar to that of E. coli RelE. On the basis of these results, we propose a model that integrates TA loci into general prokaryotic stress physiology....

  3. Integrating Responsive Building Elements in Buildings

    DEFF Research Database (Denmark)

    Haase, Matthias; Amato, Alex; Heiselberg, Per

    2006-01-01

    energy strategies to develop guidelines and procedures for estimation of environmental performance of responsive building elements and integrated building concepts This paper introduces the ideas of this collaborative work and discusses its usefulness for Hong Kong and China. Special focus was put...

  4. Finite element analysis of thermal stress distribution in different ...

    African Journals Online (AJOL)

    Nigerian Journal of Clinical Practice • Jan-Feb 2016 • Vol 19 • Issue 1. Abstract ... Key words: Amalgam, finite element method, glass ionomer cement, resin composite, thermal stress ... applications for force analysis and assessment of different.

  5. Elastic-plastic and creep analyses by assumed stress finite elements

    International Nuclear Information System (INIS)

    Pian, T.H.H.; Spilker, R.L.; Lee, S.W.

    1975-01-01

    A formulation is presented of incremental finite element solutions for both initial stress and initial strain problems based on modified complementary energy principle with relaxed inter-element continuity requirement. The corresponding finite element model is the assumed stress hybrid model which has stress parameters in the interior of each element and displacements at the individual nodes as unknowns. The formulation includes an important consideration that the states of stress and strain and the beginning of each increment may not satisfy the equilibrium and compatibility equations. These imbalance and mismatch conditions all lead to correction terms for the equivalent nodal forces of the matrix equations. The initial stress method is applied to elastic-plastic analysis of structures. In this case the stress parameters for the individual elements can be eliminated resulting to a system of equations with only nodal displacements as unknowns. Two different complementary energy principles can be formulated, in one of which the equilibrium of the final state of stress is maintained while in the other the equilibrium of the stress increments is maintained. Each of these two different formulations can be combined with different iterative schemes to be used at each incremental steps of the elastic-plastic analysis. It is also indicated clearly that for the initial stress method the state of stress at the beginning of each increments is in general, not in equilibrium and an imbalance correction is needed. Results of a comprehensive evaluation of various solution procedures by the initial stress method using the assumed stress hybrid elements are presented. The example used is the static response of a thick wall cylinder of elastic-perfectly plastic material under internal pressure. Solid of revolution elements with rectangular cross sections are used

  6. STRESS RESPONSE STUDIES USING ANIMAL MODELS

    Science.gov (United States)

    This presentation will provide the evidence that ozone exposure in animal models induce neuroendocrine stress response and this stress response modulates lung injury and inflammation through adrenergic and glucocorticoid receptors.

  7. The finite element response Matrix method

    International Nuclear Information System (INIS)

    Nakata, H.; Martin, W.R.

    1983-01-01

    A new method for global reactor core calculations is described. This method is based on a unique formulation of the response matrix method, implemented with a higher order finite element method. The unique aspects of this approach are twofold. First, there are two levels to the overall calculational scheme: the local or assembly level and the global or core level. Second, the response matrix scheme, which is formulated at both levels, consists of two separate response matrices rather than one response matrix as is generally the case. These separate response matrices are seen to be quite beneficial for the criticality eigenvalue calculation, because they are independent of k /SUB eff/. The response matrices are generated from a Galerkin finite element solution to the weak form of the diffusion equation, subject to an arbitrary incoming current and an arbitrary distributed source. Calculational results are reported for two test problems, the two-dimensional International Atomic Energy Agency benchmark problem and a two-dimensional pressurized water reactor test problem (Biblis reactor), and they compare well with standard coarse mesh methods with respect to accuracy and efficiency. Moreover, the accuracy (and capability) is comparable to fine mesh for a fraction of the computational cost. Extension of the method to treat heterogeneous assemblies and spatial depletion effects is discussed

  8. Stress Response and Artemisinin Resistance in Malaria Parasite

    Science.gov (United States)

    2017-07-01

    AWARD NUMBER: W81XWH-16-1-0241 TITLE: Stress Response and Artemisinin Resistance in Malaria Parasite PRINCIPAL INVESTIGATOR: Juan C. Pizarro...SUBTITLE Stress Response and Artemisinin Resistance in Malaria Parasite 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0241 5c. PROGRAM ELEMENT...13. SUPPLEMENTARY NOTES 14. ABSTRACT In malaria , drug resistance is a major treat to disease control efforts. Unfortunately, there is a significant

  9. Antioxidant response elements: Discovery, classes, regulation and potential applications

    Directory of Open Access Journals (Sweden)

    Azhwar Raghunath

    2018-07-01

    Full Text Available Exposure to antioxidants and xenobiotics triggers the expression of a myriad of genes encoding antioxidant proteins, detoxifying enzymes, and xenobiotic transporters to offer protection against oxidative stress. This articulated universal mechanism is regulated through the cis-acting elements in an array of Nrf2 target genes called antioxidant response elements (AREs, which play a critical role in redox homeostasis. Though the Keap1/Nrf2/ARE system involves many players, AREs hold the key in transcriptional regulation of cytoprotective genes. ARE-mediated reporter constructs have been widely used, including xenobiotics profiling and Nrf2 activator screening. The complexity of AREs is brought by the presence of other regulatory elements within the AREs. The diversity in the ARE sequences not only bring regulatory selectivity of diverse transcription factors, but also confer functional complexity in the Keap1/Nrf2/ARE pathway. The different transcription factors either homodimerize or heterodimerize to bind the AREs. Depending on the nature of partners, they may activate or suppress the transcription. Attention is required for deeper mechanistic understanding of ARE-mediated gene regulation. The computational methods of identification and analysis of AREs are still in their infancy. Investigations are required to know whether epigenetics mechanism plays a role in the regulation of genes mediated through AREs. The polymorphisms in the AREs leading to oxidative stress related diseases are warranted. A thorough understanding of AREs will pave the way for the development of therapeutic agents against cancer, neurodegenerative, cardiovascular, metabolic and other diseases with oxidative stress. Keywords: Antioxidant response elements, Antioxidant genes, ARE-reporter constructs, ARE SNPs, Keap1/Nrf2/ARE pathway, Oxidative stress

  10. Longevity and the stress response in Drosophila

    DEFF Research Database (Denmark)

    Vermeulen, Corneel J.; Loeschcke, Volker

    2007-01-01

    briefly review the state of the art of research on ageing and longevity in the model organism Drosophila, with focus on the role of the general stress response. We will conclude by contemplating some of the implications of the findings in this research and will suggest several directions for future...... research. Keywords: Ageing; Stress response; Hsp; Drosophila; Stress......The concept that lifespan is a function of the capacity to withstand extrinsic stress is very old. In concordance with this, long-lived individuals often have increased resistance against a variety of stresses throughout life. Genes underlying the stress response may therefore have the ability...

  11. Design element alternatives for stress-management intervention websites.

    Science.gov (United States)

    Williams, Reg A; Gatien, Gary; Hagerty, Bonnie

    2011-01-01

    Typical public and military-sponsored websites on stress and depression tend to be prescriptive. Some require users to complete lengthy questionnaires. Others reproduce printed flyers, papers, or educational materials not adapted for online use. Some websites require users to follow a prescribed path through the material. Stress Gym was developed as a first-level, evidence-based, website intervention to help U.S. military members learn how to manage mild to moderate stress and depressive symptoms using a self-help intervention with progress tracking and 24/7 availablility. It was designed using web-based, health-management intervention design elements that have been proven effective and users reported they prefer. These included interactivity, self-pacing, and pleasing aesthetics. Users learned how to manage stress by accessing modules they choose, and by practicing proven stress management strategies interactively immediately after login. Test results of Stress Gym with Navy members demonstrated that it was effective, with significant decreases in reported perceived stress levels from baseline to follow-up assessment. Stress Gym used design elements that may serve as a model for future websites to emulate and improve upon, and as a template against which to compare and contrast the design and functionality of future online, health-intervention websites. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Experimental investigation of system effects in stressed-skin elements

    DEFF Research Database (Denmark)

    Dela Stang, B.; Isaksson, T.; Hansson, M.

    What kind of behaviour can be expected from stressed-skin elements at failure? To answer this question was a primary objective of the experimental investigation presented in this report. Systems of 3 roof units, each made of 5 parallel beams, have been tested for load-carrying capacity and behavi......What kind of behaviour can be expected from stressed-skin elements at failure? To answer this question was a primary objective of the experimental investigation presented in this report. Systems of 3 roof units, each made of 5 parallel beams, have been tested for load-carrying capacity...

  13. Stress analysis of heated concrete using finite elements

    International Nuclear Information System (INIS)

    Majumdar, P.; Gupta, A.; Marchertas, A.

    1994-01-01

    Described is a finite element analysis of concrete, which is subjected to rapid heating. Using thermal mass transport calculation, the moisture content, temperature and pore pressure distribution over space and time is obtained first. From these effects, stress at various points of the concrete are computed using the finite element method. Contribution to the stress formulation comes from three components, namely the thermal expansion, pore pressure, and the shrinkage of concrete due to moisture loss (from dehydration). The material properties of concrete are assumed to be homogeneous, elastic, and cracking is not taken into consideration. (orig.)

  14. ABA signaling in stress-response and seed development.

    Science.gov (United States)

    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2013-07-01

    KEY MESSAGE : We review the recent progress on ABA signaling, especially ABA signaling for ABA-dependent gene expression, including the AREB/ABF regulon, SnRK2 protein kinase, 2C-type protein phosphatases and ABA receptors. Drought negatively impacts plant growth and the productivity of crops. Drought causes osmotic stress to organisms, and the osmotic stress causes dehydration in plant cells. Abscisic acid (ABA) is produced under osmotic stress conditions, and it plays an important role in the stress response and tolerance of plants. ABA regulates many genes under osmotic stress conditions. It also regulates gene expression during seed development and germination. The ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. ABRE-binding protein (AREB)/ABRE-binding factor (ABF) transcription factors (TFs) regulate ABRE-dependent gene expression. Other TFs are also involved in ABA-responsive gene expression. SNF1-related protein kinases 2 are the key regulators of ABA signaling including the AREB/ABF regulon. Recently, ABA receptors and group A 2C-type protein phosphatases were shown to govern the ABA signaling pathway. Moreover, recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress-response and seed development. The control of the expression of ABA signaling factors may improve tolerance to environmental stresses.

  15. Salicylic-Acid-Induced Chilling- and Oxidative-Stress Tolerance in Relation to Gibberellin Homeostasis, C-Repeat/Dehydration-Responsive Element Binding Factor Pathway, and Antioxidant Enzyme Systems in Cold-Stored Tomato Fruit.

    Science.gov (United States)

    Ding, Yang; Zhao, Jinhong; Nie, Ying; Fan, Bei; Wu, Shujuan; Zhang, Yu; Sheng, Jiping; Shen, Lin; Zhao, Ruirui; Tang, Xuanming

    2016-11-02

    Effects of salicylic acid (SA) on gibberellin (GA) homeostasis, C-repeat/dehydration-responsive element binding factor (CBF) pathway, and antioxidant enzyme systems linked to chilling- and oxidative-stress tolerance in tomato fruit were investigated. Mature green tomatoes (Solanum lycopersicum L. cv. Moneymaker) were treated with 0, 0.5, and 1 mM SA solution for 15 min before storage at 4 °C for 28 days. In comparison to 0 or 0.5 mM SA, 1 mM SA significantly decreased the chilling injury (CI) index in tomato fruit. In the SA-treated fruit, the upregulation of GA biosynthetic gene (GA3ox1) expression was followed by gibberellic acid (GA 3 ) surge and DELLA protein degradation. CBF1 participated in the SA-modulated tolerance and stimulated the expression of GA catabolic gene (GA2ox1). Furthermore, 1 mM SA enhanced activities of antioxidant enzymes and, thus, reduced reactive oxygen species accumulation. Our findings suggest that SA might protect tomato fruit from CI and oxidative damage through regulating GA metabolism, CBF1 gene expression, and antioxidant enzyme activities.

  16. Predicting Job Stress Based on Elements of Coping Styles in Nurses

    Directory of Open Access Journals (Sweden)

    Mansoureh Nezari Sedeh

    2016-07-01

    Full Text Available Using coping methods can help to dominate on physical, mental, and social relationships, individual contradiction problems, and can be considered as one of effective factors in general and mental health of nurses. The objective of the present research is predicting job stress based on elements of coping styles in nurses. By correlative methodology for this research, 120 female20-45 years old nurses in Tehran city were selected by simple random sampling method based on Cochran formula. The research instrument includes job stress questionnaire and coping style questionnaire of Lazzarus & Folkman; the Pearson correlation coefficient test, and linear regression were used to test hypotheses and generalize the obtained information from tests. Findings showed that participants’ scores were near normal range and Cronbach’s alpha coefficient was 0.58 which indicated scores internal consistency. The obtained results showed that coping elements in 0.05 significant level with f-value of 12.403 significantly predicted job stress. In addition, regression coefficient among support, responsibility, and managerial solution elements was negative and positive with two other relationships including job stress and escape-avoidance. Therefore, it can be concluded that elements of support, responsibility, escape-avoidance, and managerial solution significantly predict nurses’ job stress among coping elements.

  17. Agreeableness, Extraversion, Stressor and Physiological Stress Response

    OpenAIRE

    Xiaoyuan Chu; Zhentao Ma; Yuan Li; Jing Han

    2015-01-01

    Based on the theoretical analysis, with first-hand data collection and using multiple regression models, this study explored the relationship between agreeableness, extraversion, stressor and stress response and figured out interactive effect of agreeableness, extraversion, and stressor on stress response. We draw on the following conclusions: (1) the interaction term of stressor (work) and agreeableness can negatively predict physiological stress response; (2) the interaction term of stresso...

  18. Lower bound plane stress element for modelling 3D structures

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao

    2017-01-01

    In-plane action is often the primary load-carrying mechanism of reinforced concrete structures. The plate bending action will be secondary, and the behaviour of the structure can be modelled with a reasonable accuracy using a generalised three-dimensional plane stress element. In this paper...

  19. Tonic immobility differentiates stress responses in PTSD

    NARCIS (Netherlands)

    Fragkaki, I; Stins, J.F.; Roelofs, K.; Jongedijk, R.A.; Hagenaars, M.A.

    2016-01-01

    Background: Tonic immobility (TI) is a state of physical immobility associated with extreme stress and the development of posttraumatic stress disorder (PTSD). However, it is unknown whether TI is associated with a distinct actual stress response, i.e., objective immobility measured by a

  20. Critical-like features of stress response in frictional packings

    International Nuclear Information System (INIS)

    Cakir, Abdullah; Silbert, Leonardo E

    2015-01-01

    The mechanical response of static, unconfined, overcompressed face centred cubic, granular arrays is studied using large-scale, discrete element method simulations. Specifically, the stress response due to the application of a localised force perturbation—the Green function technique—is obtained in granular packings generated over several orders of magnitude in both the particle friction coefficient and the applied forcing. We observe crossover behaviour in the mechanical state of the system characterised by the changing nature of the resulting stress response. The transition between anisotropic and isotropic stress response exhibits critical-like features through the identification of a diverging length scale that distinguishes the spatial extent of anisotropic regions from those that display isotropic behaviour. A multidimensional phase diagram is constructed that parameterises the response of the system due to changing friction and force perturbations. (paper)

  1. Implementation of structural response sensitivity calculations in a large-scale finite-element analysis system

    Science.gov (United States)

    Giles, G. L.; Rogers, J. L., Jr.

    1982-01-01

    The implementation includes a generalized method for specifying element cross-sectional dimensions as design variables that can be used in analytically calculating derivatives of output quantities from static stress, vibration, and buckling analyses for both membrane and bending elements. Limited sample results for static displacements and stresses are presented to indicate the advantages of analytically calclating response derivatives compared to finite difference methods. Continuing developments to implement these procedures into an enhanced version of the system are also discussed.

  2. Straightened cervical lordosis causes stress concentration: a finite element model study

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wei; Shi, Shiyuan; Fei, Jun; Wang, Yifan; Chen, Chunyue [Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, (China); Liao, Shenhui [School of Information Science and Engineering, Central South University, Changsha, Hunan (China)

    2013-03-15

    In this study, we propose a finite element analysis of the complete cervical spine with straightened and normal physiological curvature by using a specially designed modelling system. An accurate finite element model is established to recommend plausible approaches to treatment of cervical spondylosis through the finite element analysis results. There are few reports of biomechanics influence of the straightened cervical curve. It is difficult to measure internal responses of cervical spine directly. However, the finite element method has been reported to have the capability to quantify both external and internal responses to mechanical loading, such as the strain and stress distribution of spinal components. We choose a subject with a straightened cervical spine from whom to collect the CT scan data, which formed the basis of the finite element analysis. By using a specially designed modelling system, a high quality finite element model of the complete cervical spine with straightened curvature was generated, which was then mapped to reconstruct a normal physiological curvature model by a volumetric mesh deformation method based on discrete differential properties. Then, the same boundary conditions were applied to do a comparison. The result demonstrated that the active movement range of straightened cervical spine decreased by 24–33 %, but the stress increased by 5–95 %. The stress was concentrated at the facet joint cartilage, uncovertebral joint and the disk. The results suggest that cervical lordosis may have a direct impact on cervical spondylosis treatment. These results may be useful for clinical treatment of cervical spondylosis with straightened curvature.

  3. Straightened cervical lordosis causes stress concentration: a finite element model study

    International Nuclear Information System (INIS)

    Wei, Wei; Shi, Shiyuan; Fei, Jun; Wang, Yifan; Chen, Chunyue; Liao, Shenhui

    2013-01-01

    In this study, we propose a finite element analysis of the complete cervical spine with straightened and normal physiological curvature by using a specially designed modelling system. An accurate finite element model is established to recommend plausible approaches to treatment of cervical spondylosis through the finite element analysis results. There are few reports of biomechanics influence of the straightened cervical curve. It is difficult to measure internal responses of cervical spine directly. However, the finite element method has been reported to have the capability to quantify both external and internal responses to mechanical loading, such as the strain and stress distribution of spinal components. We choose a subject with a straightened cervical spine from whom to collect the CT scan data, which formed the basis of the finite element analysis. By using a specially designed modelling system, a high quality finite element model of the complete cervical spine with straightened curvature was generated, which was then mapped to reconstruct a normal physiological curvature model by a volumetric mesh deformation method based on discrete differential properties. Then, the same boundary conditions were applied to do a comparison. The result demonstrated that the active movement range of straightened cervical spine decreased by 24–33 %, but the stress increased by 5–95 %. The stress was concentrated at the facet joint cartilage, uncovertebral joint and the disk. The results suggest that cervical lordosis may have a direct impact on cervical spondylosis treatment. These results may be useful for clinical treatment of cervical spondylosis with straightened curvature.

  4. Antioxidant response elements: Discovery, classes, regulation and potential applications.

    Science.gov (United States)

    Raghunath, Azhwar; Sundarraj, Kiruthika; Nagarajan, Raju; Arfuso, Frank; Bian, Jinsong; Kumar, Alan P; Sethi, Gautam; Perumal, Ekambaram

    2018-07-01

    Exposure to antioxidants and xenobiotics triggers the expression of a myriad of genes encoding antioxidant proteins, detoxifying enzymes, and xenobiotic transporters to offer protection against oxidative stress. This articulated universal mechanism is regulated through the cis-acting elements in an array of Nrf2 target genes called antioxidant response elements (AREs), which play a critical role in redox homeostasis. Though the Keap1/Nrf2/ARE system involves many players, AREs hold the key in transcriptional regulation of cytoprotective genes. ARE-mediated reporter constructs have been widely used, including xenobiotics profiling and Nrf2 activator screening. The complexity of AREs is brought by the presence of other regulatory elements within the AREs. The diversity in the ARE sequences not only bring regulatory selectivity of diverse transcription factors, but also confer functional complexity in the Keap1/Nrf2/ARE pathway. The different transcription factors either homodimerize or heterodimerize to bind the AREs. Depending on the nature of partners, they may activate or suppress the transcription. Attention is required for deeper mechanistic understanding of ARE-mediated gene regulation. The computational methods of identification and analysis of AREs are still in their infancy. Investigations are required to know whether epigenetics mechanism plays a role in the regulation of genes mediated through AREs. The polymorphisms in the AREs leading to oxidative stress related diseases are warranted. A thorough understanding of AREs will pave the way for the development of therapeutic agents against cancer, neurodegenerative, cardiovascular, metabolic and other diseases with oxidative stress. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Integrating Environmentally Responsive Elements in Buildings

    DEFF Research Database (Denmark)

    Heiselberg, Per

    2006-01-01

    Significant improvement have been achieved on efficiency improvements of specific building elements like the building envelope and building equipment and services and whilst most building elements still offer opportunities for efficiency improvements, the greatest future potential lie with techno......Significant improvement have been achieved on efficiency improvements of specific building elements like the building envelope and building equipment and services and whilst most building elements still offer opportunities for efficiency improvements, the greatest future potential lie...

  6. Alternative Splicing Control of Abiotic Stress Responses.

    Science.gov (United States)

    Laloum, Tom; Martín, Guiomar; Duque, Paula

    2018-02-01

    Alternative splicing, which generates multiple transcripts from the same gene, is an important modulator of gene expression that can increase proteome diversity and regulate mRNA levels. In plants, this post-transcriptional mechanism is markedly induced in response to environmental stress, and recent studies have identified alternative splicing events that allow rapid adjustment of the abundance and function of key stress-response components. In agreement, plant mutants defective in splicing factors are severely impaired in their response to abiotic stress. Notably, mounting evidence indicates that alternative splicing regulates stress responses largely by targeting the abscisic acid (ABA) pathway. We review here current understanding of post-transcriptional control of plant stress tolerance via alternative splicing and discuss research challenges for the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Reinforced flexural elements for TEMP-STRESS Program

    International Nuclear Information System (INIS)

    Marchertas, A.H.; Kennedy, J.M.; Pfeiffer, P.A.

    1987-06-01

    The implementation of reinforced flexural elements into the thermal-mechanical finite element program TEMP-STRESS is described. With explicit temporal integration and dynamic relaxation capabilities in the program, the flexural elements provide an efficient method for the treatment of reinforced structures subjected to transient and static loads. The capability of the computer program is illustrated by the solution of several examples: the simulation of a reinforced concrete beam; simulations of a reinforced concrete containment shell which is subjected to internal pressurization, thermal gradients through the walls, and transient pressure loads. The results of this analysis are relevant in the structural design/safety evaluations of typical reactor containment structures. 22 refs., 13 figs

  8. Prediction of residual stress using explicit finite element method

    Directory of Open Access Journals (Sweden)

    W.A. Siswanto

    2015-12-01

    Full Text Available This paper presents the residual stress behaviour under various values of friction coefficients and scratching displacement amplitudes. The investigation is based on numerical solution using explicit finite element method in quasi-static condition. Two different aeroengine materials, i.e. Super CMV (Cr-Mo-V and Titanium alloys (Ti-6Al-4V, are examined. The usage of FEM analysis in plate under normal contact is validated with Hertzian theoretical solution in terms of contact pressure distributions. The residual stress distributions along with normal and shear stresses on elastic and plastic regimes of the materials are studied for a simple cylinder-on-flat contact configuration model subjected to normal loading, scratching and followed by unloading. The investigated friction coefficients are 0.3, 0.6 and 0.9, while scratching displacement amplitudes are 0.05 mm, 0.10 mm and 0.20 mm respectively. It is found that friction coefficient of 0.6 results in higher residual stress for both materials. Meanwhile, the predicted residual stress is proportional to the scratching displacement amplitude, higher displacement amplitude, resulting in higher residual stress. It is found that less residual stress is predicted on Super CMV material compared to Ti-6Al-4V material because of its high yield stress and ultimate strength. Super CMV material with friction coefficient of 0.3 and scratching displacement amplitude of 0.10 mm is recommended to be used in contact engineering applications due to its minimum possibility of fatigue.

  9. Moving through the Stressed Genome: Emerging Regulatory Roles for Transposons in Plant Stress Response.

    Science.gov (United States)

    Negi, Pooja; Rai, Archana N; Suprasanna, Penna

    2016-01-01

    The recognition of a positive correlation between organism genome size with its transposable element (TE) content, represents a key discovery of the field of genome biology. Considerable evidence accumulated since then suggests the involvement of TEs in genome structure, evolution and function. The global genome reorganization brought about by transposon activity might play an adaptive/regulatory role in the host response to environmental challenges, reminiscent of McClintock's original 'Controlling Element' hypothesis. This regulatory aspect of TEs is also garnering support in light of the recent evidences, which project TEs as "distributed genomic control modules." According to this view, TEs are capable of actively reprogramming host genes circuits and ultimately fine-tuning the host response to specific environmental stimuli. Moreover, the stress-induced changes in epigenetic status of TE activity may allow TEs to propagate their stress responsive elements to host genes; the resulting genome fluidity can permit phenotypic plasticity and adaptation to stress. Given their predominating presence in the plant genomes, nested organization in the genic regions and potential regulatory role in stress response, TEs hold unexplored potential for crop improvement programs. This review intends to present the current information about the roles played by TEs in plant genome organization, evolution, and function and highlight the regulatory mechanisms in plant stress responses. We will also briefly discuss the connection between TE activity, host epigenetic response and phenotypic plasticity as a critical link for traversing the translational bridge from a purely basic study of TEs, to the applied field of stress adaptation and crop improvement.

  10. The endoplasmic reticulum stress response in disease ...

    African Journals Online (AJOL)

    Rafael Vincent M. Manalo

    2017-07-12

    Jul 12, 2017 ... Review. The endoplasmic reticulum stress response in disease pathogenesis and pathophysiology .... This is an open access article under the CC BY-NC-ND license ... chain binding protein (BIP); however, ER stress permits the release, .... drugs designed to alleviate it often cause more harm long-term.

  11. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold and heat

    Directory of Open Access Journals (Sweden)

    Kazuo eNakashima

    2014-05-01

    Full Text Available Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs are master regulators of gene expression. ABRE-binding protein (AREB and ABRE-binding factor (ABF TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein (DREB TFs and NAC TFs are also involved in stress responses including drought, heat and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these transcription factors in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.

  12. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat.

    Science.gov (United States)

    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2014-01-01

    Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA) is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs) are master regulators of gene expression. ABRE-binding protein and ABRE-binding factor TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein TFs and NAC TFs are also involved in stress responses including drought, heat, and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these TFs in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.

  13. Stress proteins and the immune response.

    Science.gov (United States)

    Moseley, P

    2000-07-25

    The heat shock or stress response is one of the most highly conserved adaptive responses in nature. In single cell organisms, the stress response confers tolerance to a variety of stresses including hyperthermia, hyperoxia, hypoxia, and other perturbations, which alter protein synthesis. This tolerance phenomenon is also extremely important in the multicellular organism, resulting in not only thermal tolerance, but also resistance to stresses of the whole organism such as ischemia-reperfusion injury. Moreover, recent data indicates that these stress proteins have the ability to modulate the cellular immune response. Although the terms heat shock proteins (HSPs) and stress proteins are often used interchangeably, the term stress proteins includes the HSPs, the glucose-regulated proteins (GRPs) and ubiquitin. The stress proteins may be grouped by molecular weight ranging from the large 110 kDa HSP110 to ubiquitin at 8 kDa. These proteins serve as cellular chaperones, participating in protein synthesis and transport through the various cellular compartments. Because these proteins have unique cellular localizations, the chaperone function of the stress proteins often involves a transfer of peptides between stress proteins as the peptide is moved between cellular compartments. For example, HSP70 is a cytosolic and nuclear chaperone, which is critical for the transfer of cellular peptides in the mitochondrion through a hand-off that involves mitochondrial HSP60 at the inner mitochondrial membrane. Similarly, cytosolic proteins are transferred from HSP70 to gp96 as they move into the endoplasmic reticulum. The central role of the stress proteins in the transfer of peptides through the cell may be responsible for the recently recognized importance of the stress proteins in the modulation of the immune system [Feder, M.E., Hofmann, G.E., 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61

  14. Representation of stress distributions inprismatic and cylindrical linear elements

    Directory of Open Access Journals (Sweden)

    Fernando Giménez-Palomares

    2017-08-01

    Full Text Available The  loads  applied  on  a  linear  structural  element  generate  internal  forces  in  the  cross  sections  which,  in turn, result in stresses along the element. The nature, extent and shape of stress distributions are required  parameters  to  compute  the  strength  of  structural  elements  or  machinery  components  in  order  to  its analysis or design. In this work, it is presented a virtual laboratory which allows to obtain different stress distributions  in  an  isostatic  beam,  prismatic  or  cylindrical,  subjected  to  axial  forces,  shear  forces  and bending moments. The virtual laboratory permits a great interactivity, allowing the simulation of various real  situations  in  which  the  user  can  modify  the  magnitude  and  direction  of  acting  loads,  and  also  the boundary conditions of the beam. The ultimate goal of this paper is to present a tool aimed to support the learning and teaching of subjects related to Elasticy and Strength of Materials that are found in bachelor university degrees.

  15. Response of Desulfovibrio vulgaris to Alkaline Stress

    Energy Technology Data Exchange (ETDEWEB)

    Stolyar, S.; He, Q.; He, Z.; Yang, Z.; Borglin, S.E.; Joyner, D.; Huang, K.; Alm, E.; Hazen, T.C.; Zhou, J.; Wall, J.D.; Arkin, A.P.; Stahl, D.A.

    2007-11-30

    The response of exponentially growing Desulfovibrio vulgarisHildenborough to pH 10 stress was studied using oligonucleotidemicroarrays and a study set of mutants with genes suggested by microarraydata to be involved in the alkaline stress response deleted. The datashowed that the response of D. vulgaris to increased pH is generallysimilar to that of Escherichia coli but is apparently controlled byunique regulatory circuits since the alternative sigma factors (sigma Sand sigma E) contributing to this stress response in E. coli appear to beabsent in D. vulgaris. Genes previously reported to be up-regulated in E.coli were up-regulated in D. vulgaris; these genes included three ATPasegenes and a tryptophan synthase gene. Transcription of chaperone andprotease genes (encoding ATP-dependent Clp and La proteases and DnaK) wasalso elevated in D. vulgaris. As in E. coli, genes involved in flagellumsynthesis were down-regulated. The transcriptional data also identifiedregulators, distinct from sigma S and sigma E, that are likely part of aD. vulgaris Hildenborough-specific stress response system.Characterization of a study set of mutants with genes implicated inalkaline stress response deleted confirmed that there was protectiveinvolvement of the sodium/proton antiporter NhaC-2, tryptophanase A, andtwo putative regulators/histidine kinases (DVU0331 andDVU2580).

  16. Adaptive Responses to Thermal Stress in Mammals

    Directory of Open Access Journals (Sweden)

    Yasser Lenis Sanin

    2015-12-01

    Full Text Available The environment animals have to cope with is a combination of natural factors such as temperature. Extreme changes in these factors can alter homeostasis, which can lead to thermal stress. This stress can be due to either high temperatures or low temperatures. Energy transference for thermoregulation in homoeothermic animals occurs through several mechanisms: conduction, convection, radiation and evaporation. When animals are subjected to thermal stress, physiological mechanisms are activated which may include endocrine, neuroendocrine and behavioral responses. Activation of the neuroendocrine system affects the secretion of hormones and neurotransmitters which act collectively as response mechanisms that allow them to adapt to stress. Mechanisms which have developed through evolution to allow animals to adapt to high environmental temperatures and to achieve thermo tolerance include physiological and physical changes in order to reduce food intake and metabolic heat production, to increase surface area of skin to dissipate heat, to increase blood flow to take heat from the body core to the skin and extremities to dissipate the heat, to increase numbers and activity of sweat glands, panting, water intake and color adaptation of integument system to reflect heat. Chronic exposure to thermal stress can cause disease, reduce growth, decrease productive and reproductive performance and, in extreme cases, lead to death. This paper aims to briefly explain the physical and physiological responses of mammals to thermal stress, like a tool for biological environment adaptation, emphasizing knowledge gaps and offering some recommendations to stress control for the animal production system.

  17. Moving through the Stressed Genome: Emerging Regulatory Roles for Transposons in Plant Stress Response

    Science.gov (United States)

    Negi, Pooja; Rai, Archana N.; Suprasanna, Penna

    2016-01-01

    The recognition of a positive correlation between organism genome size with its transposable element (TE) content, represents a key discovery of the field of genome biology. Considerable evidence accumulated since then suggests the involvement of TEs in genome structure, evolution and function. The global genome reorganization brought about by transposon activity might play an adaptive/regulatory role in the host response to environmental challenges, reminiscent of McClintock's original ‘Controlling Element’ hypothesis. This regulatory aspect of TEs is also garnering support in light of the recent evidences, which project TEs as “distributed genomic control modules.” According to this view, TEs are capable of actively reprogramming host genes circuits and ultimately fine-tuning the host response to specific environmental stimuli. Moreover, the stress-induced changes in epigenetic status of TE activity may allow TEs to propagate their stress responsive elements to host genes; the resulting genome fluidity can permit phenotypic plasticity and adaptation to stress. Given their predominating presence in the plant genomes, nested organization in the genic regions and potential regulatory role in stress response, TEs hold unexplored potential for crop improvement programs. This review intends to present the current information about the roles played by TEs in plant genome organization, evolution, and function and highlight the regulatory mechanisms in plant stress responses. We will also briefly discuss the connection between TE activity, host epigenetic response and phenotypic plasticity as a critical link for traversing the translational bridge from a purely basic study of TEs, to the applied field of stress adaptation and crop improvement. PMID:27777577

  18. Tonic immobility differentiates stress responses in PTSD.

    Science.gov (United States)

    Fragkaki, Iro; Stins, John; Roelofs, Karin; Jongedijk, Ruud A; Hagenaars, Muriel A

    2016-11-01

    Tonic immobility (TI) is a state of physical immobility associated with extreme stress and the development of posttraumatic stress disorder (PTSD). However, it is unknown whether TI is associated with a distinct actual stress response, i.e., objective immobility measured by a stabilometric platform. This study made a first step in exploring this as well as differences in body sway responses between PTSD patients and healthy controls. We hypothesized that PTSD would be related to increased body sway under stress, whereas TI would be related to decreased body sway under stress. Eye closure was selected as a PTSD-relevant stress induction procedure. Body sway and heart rate (HR) were measured in 12 PTSD patients and 12 healthy controls in four conditions: (1) maintaining a stable stance with eyes open, (2) with eyes closed, (3) during a mental arithmetic task with eyes open, and (4) with eyes closed. As predicted, PTSD patients showed increased body sway from eyes open to eyes closed compared to controls and this effect was eliminated by executing the arithmetic task. Most importantly, retrospective self-reported TI was associated with lower body sway increases in PTSD and higher body sway decreases in controls from eyes-open to eyes-closed conditions. These preliminary findings suggest that eye closure has a different effect on PTSD patients than controls and that high self-reported TI might indicate a distinct stress response pattern, i.e., a proneness for immobility. It may be relevant to take such individual differences in stress-response into account in PTSD treatment.

  19. [Finite element analysis of stress changes of posterior spinal pedicle screw infixation].

    Science.gov (United States)

    Yan, Jia-Zhi; Wu, Zhi-Hong; Xu, Ri-Xin; Wang, Xue-Song; Xing, Ze-Jun; Zhao, Yu; Zhang, Jian-Guo; Shen, Jian-Xiong; Wang, Yi-Peng; Qiu, Gui-Xing

    2009-01-06

    To evaluate the mechanical response of L3-L4 segment after posterior interfixation with a transpedicle screw system. Spiral CT machine was used to conduct continuous parallel scan on the L3-L4 section of a 40-year-old healthy male Chinese. The image data thus obtained were introduced into MIMICS software to reconstruct the 2-D data into volume data and obtain 3-D models of every element.. Pro/3-D model construction software system was used to simulate the 3-D entity of L3-L4 fixed by screw robs through spinal pedicle via posterior approach that was introduced into the finite element software ABAQUS to construct a 3-D finite element model. The stress changes on the vertebrae and screw under the axial pressure of 0.5 mPa was analyzed. Under the evenly distributed pressure the displacement of the L4 model was 0.00125815 mm, with an error of only 0.8167% from the datum displacement. The convergence of the model was good. The stress of the fixed vertebral body, intervertebral disc, and internal fixators changed significantly. The stress concentration zone of the intervertebral disc turned from the posterolateral side to anterolateral side. The stress produced by the fixed vertebral bodies decreased significantly. Obvious stress concentration existed in the upper and lower sides of the base of screw and the fixed screw at the upper vertebral body bore greater stress than the lower vertebral body. Integration of computer aided device and finite element analysis can successfully stimulate the internal fixation of L3-IA visa posterior approach and observe the mechanic changes in the vertebral column more directly.

  20. The War Fighter's Stress Response: Telemetric and Noninvasive Assessment

    National Research Council Canada - National Science Library

    O'Donnell, Amanda

    2003-01-01

    ... and biological responses to stress. Specifically, stress-hardy individuals retain mental focus and clarity of memory under stress, commit fewer errors during stress, experience less burnout, demonstrate better navigational skills...

  1. Coupling characteristics of the spun optical fiber with triple stress elements

    Science.gov (United States)

    Ji, Minning; Shang, Fengtao; Chen, Dandan

    2018-06-01

    An empirical formula related to the stress field distribution in the optical fiber with triple stress elements is proposed and proved. The possible intercoupling between the fundamental modes and the higher order modes is demonstrated. The transmission property of the spun optical fiber with triple stress elements is analyzed. The experimental data from a sample of the spun optical fiber with triple stress elements confirm the theoretical results very well.

  2. Dysfunctional stress responses in chronic pain.

    Science.gov (United States)

    Woda, Alain; Picard, Pascale; Dutheil, Frédéric

    2016-09-01

    Many dysfunctional and chronic pain conditions overlap. This review describes the different modes of chronic deregulation of the adaptive response to stress which may be a common factor for these conditions. Several types of dysfunction can be identified within the hypothalamo-pituitary-adrenal axis: basal hypercortisolism, hyper-reactivity, basal hypocortisolism and hypo-reactivity. Neuroactive steroid synthesis is another component of the adaptive response to stress. Dehydroepiandrosterone (DHEA) and its sulfated form DHEA-S, and progesterone and its derivatives are synthetized in cutaneous, nervous, and adipose cells. They are neuroactive factors that act locally. They may have a role in the localization of the symptoms and their levels can vary both in the central nervous system and in the periphery. Persistent changes in neuroactive steroid levels or precursors can induce localized neurodegeneration. The autonomic nervous system is another component of the stress response. Its dysfunction in chronic stress responses can be expressed by decreased basal parasympathethic activity, increased basal sympathetic activity or sympathetic hyporeactivity to a stressful stimulus. The immune and genetic systems also participate. The helper-T cells Th1 secrete pro-inflammatory cytokines such as IL-1-β, IL-2, IL-6, IL-8, IL-12, IFN-γ, and TNF-α, whereas Th2 secrete anti-inflammatory cytokines: IL-4, IL-10, IGF-10, IL-13. Chronic deregulation of the Th1/Th2 balance can occur in favor of anti- or pro-inflammatory direction, locally or systemically. Individual vulnerability to stress can be due to environmental factors but can also be genetically influenced. Genetic polymorphisms and epigenetics are the main keys to understanding the influence of genetics on the response of individuals to constraints. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Stress response in medically important Mucorales.

    Science.gov (United States)

    Singh, Pankaj; Paul, Saikat; Shivaprakash, M Rudramurthy; Chakrabarti, Arunaloke; Ghosh, Anup K

    2016-10-01

    Mucorales are saprobes, ubiquitously distributed and able to infect a heterogeneous population of human hosts. The fungi require robust stress responses to survive in human host. We tested the growth of Mucorales in the presence of different abiotic stress. Eight pathogenic species of Mucorales, including Rhizopus arrhizus, Rhizopus microsporus, Rhizomucor pusillus, Apophysomyces elegans, Licthemia corymbifera, Cunninghamella bertholletiae, Syncephalastrum racemosum and Mucor racemosus, were exposed to different stress inducers: osmotic (sodium chloride and d-sorbitol), oxidative (hydrogen peroxide and menadione), pH, cell wall and metal ions (Cu, Zn, Fe and Mg). Wide variation in stress responses was noted: R. arrhizus showed maximum resistance to both osmotic and oxidative stresses, whereas R. pusillus and M. indicus were relatively sensitive. Rhizopus arrhizus and R. microsporus showed maximum resistance to alkaline pH, whereas C. bertholletiae, L. corymbifera, M. racemosus and A. elegans were resistant to acidic pH. Maximum tolerance was noted in R. microsporus to Cu, R. microsporus and R. arrhizus to Fe and C. bertholletiae to Zn. In contrast, L. corymbifera, A. elegans and M. indicus were sensitive to Cu, Zn and Fe respectively. In conclusion, R. arrhizus showed high stress tolerance in comparison to other species of Mucorales, and this could be the possible reason for high pathogenic potential of this fungi. © 2016 Blackwell Verlag GmbH.

  4. Sympathoneural and Adrenomedullary Responses to Mental Stress

    Science.gov (United States)

    Carter, Jason R.; Goldstein, David S.

    2017-01-01

    This concept-based review provides historical perspectives and updates about sympathetic noradrenergic and sympathetic adrenergic responses to mental stress. The topic of this review has incited perennial debate, because of disagreements over definitions, controversial inferences, and limited availability of relevant measurement tools. The discussion begins appropriately with Cannon's "homeostasis" and his pioneering work in the area. This is followed by mental stress as a scientific idea and the relatively new notions of allostasis and allostatic load. Experimental models of mental stress in rodents and humans are discussed, with particular attention to ethical constraints in humans. Sections follow on sympathoneural to mental stress, reactivity of catecholamine systems, clinical pathophysiologic states, and the cardiovascular reactivity hypothesis. Future advancement of the field will require integrative approaches and coordinated efforts between physiologists and psychologists on this interdisciplinary topic. PMID:25589266

  5. Anion channels: master switches of stress responses.

    Science.gov (United States)

    Roelfsema, M Rob G; Hedrich, Rainer; Geiger, Dietmar

    2012-04-01

    During stress, plant cells activate anion channels and trigger the release of anions across the plasma membrane. Recently, two new gene families have been identified that encode major groups of anion channels. The SLAC/SLAH channels are characterized by slow voltage-dependent activation (S-type), whereas ALMT genes encode rapid-activating channels (R-type). Both S- and R-type channels are stimulated in guard cells by the stress hormone ABA, which leads to stomatal closure. Besides their role in ABA-dependent stomatal movement, anion channels are also activated by biotic stress factors such as microbe-associated molecular patterns (MAMPs). Given that anion channels occur throughout the plant kingdom, they are likely to serve a general function as master switches of stress responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses.

    Science.gov (United States)

    Ohbayashi, Iwai; Sugiyama, Munetaka

    2017-01-01

    The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized pathway of this stress response involves p53 and MDM2 as key players. p53 is a crucial transcription factor that functions in response to not only nucleolar stress but also other cellular stresses such as DNA damage stress. These cellular stresses release p53 from the inhibition by MDM2, an E3 ubiquitin ligase targeting p53, in various ways, which leads to p53-dependent activation of a set of genes. In plants, genetic impairments of ribosome biogenesis factors or ribosome components have been shown to cause characteristic phenotypes, including a narrow and pointed leaf shape, implying a common signaling pathway connecting ribosomal perturbations and certain aspects of growth and development. Unlike animals, however, plants have neither p53 nor MDM2 family proteins. Then the question arises whether plant cells have a nucleolar stress response pathway. In recent years, it has been reported that several members of the plant-specific transcription factor family NAC play critical roles in the pathways responsive to various cellular stresses. In this mini review, we outline the plant cellular stress response pathways involving NAC transcription factors with reference to the p53-MDM2-dependent pathways of animal cells, and discuss the possible involvement of a plant-unique, NAC-mediated pathway in the nucleolar stress response in plants.

  7. Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses

    Directory of Open Access Journals (Sweden)

    Iwai Ohbayashi

    2018-01-01

    Full Text Available The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized pathway of this stress response involves p53 and MDM2 as key players. p53 is a crucial transcription factor that functions in response to not only nucleolar stress but also other cellular stresses such as DNA damage stress. These cellular stresses release p53 from the inhibition by MDM2, an E3 ubiquitin ligase targeting p53, in various ways, which leads to p53-dependent activation of a set of genes. In plants, genetic impairments of ribosome biogenesis factors or ribosome components have been shown to cause characteristic phenotypes, including a narrow and pointed leaf shape, implying a common signaling pathway connecting ribosomal perturbations and certain aspects of growth and development. Unlike animals, however, plants have neither p53 nor MDM2 family proteins. Then the question arises whether plant cells have a nucleolar stress response pathway. In recent years, it has been reported that several members of the plant-specific transcription factor family NAC play critical roles in the pathways responsive to various cellular stresses. In this mini review, we outline the plant cellular stress response pathways involving NAC transcription factors with reference to the p53-MDM2-dependent pathways of animal cells, and discuss the possible involvement of a plant-unique, NAC-mediated pathway in the nucleolar stress response in plants.

  8. The endoplasmic reticulum stress response in disease ...

    African Journals Online (AJOL)

    These proteins are essential for cell survival, and intuitively the ER must activate stress responses to evade immediate cell dysfunction as the cell processes lag behind. This review will discuss mainly the ER and its role in the pathogenesis and pathophysiology of epidemiologically-relevant diseases, as well as updates on ...

  9. A novel hybrid stress-function finite element method immune to severe mesh distortion

    International Nuclear Information System (INIS)

    Cen Song; Zhou Mingjue; Fu Xiangrong

    2010-01-01

    This paper introduces a hybrid stress-function finite element method proposed recently for developing 2D finite element models immune to element shapes. Deferent from the first version of the hybrid-stress element constructed by Pian, the stress function φ of 2D elastic or fracture problem is regarded as the functional variable of the complementary energy functional. Then, the basic analytical solutions of φ are taken as the trial functions for finite element models, and meanwhile, the corresponding unknown stress-function constants are introduced. By using the principle of minimum complementary energy, these unknown stress-function constants can be expressed in terms of the displacements along element edges. Finally, the complementary energy functional can be rewritten in terms of element nodal displacement vector, and thus, the element stiffness matrix of such hybrid-function element can be obtained. As examples, two (8- and 12-node) quadrilateral plane elements and an arbitrary polygonal crack element are constructed by employing different basic analytical solutions of different stress functions. Numerical results show that, the 8- and 12-node plane models can produce the exact solutions for pure bending and linear bending problems, respectively, even the element shape degenerates into triangle and concave quadrangle; and the crack element can also predict accurate results with very low computational cost in analysis of stress-singularity problems.

  10. Work stress and innate immune response.

    Science.gov (United States)

    Boscolo, P; Di Gioacchino, M; Reale, M; Muraro, R; Di Giampaolo, L

    2011-01-01

    Several reports highlight the relationship between blood NK cytotoxic activity and life style. Easy life style, including physical activity, healthy dietary habits as well as good mental health are characterized by an efficient immune response. Life style is related to the type of occupational activity since work has a central part in life either as source of income or contributing to represent the social identity. Not only occupational stress, but also job loss or insecurity are thus considered serious stressful situations, inducing emotional disorders which may affect both neuroendocrine and immune systems; reduced reactivity to mitogens and/or decreased blood NK cytotoxic activity was reported in unemployed workers or in those with a high perception of job insecurity and/or job stress. Although genetic factors have a key role in the pathogenesis of autoimmune disorders, occupational stress (as in night shifts) was reported associated to an increased incidence of autoimmune disorders. Monitoring blood NK response may thus be included in the health programs as an indirect index of stressful job and/or poor lifestyle.

  11. Statistics of the Von Mises Stress Response For Structures Subjected To Random Excitations

    Directory of Open Access Journals (Sweden)

    Mu-Tsang Chen

    1998-01-01

    Full Text Available Finite element-based random vibration analysis is increasingly used in computer aided engineering software for computing statistics (e.g., root-mean-square value of structural responses such as displacements, stresses and strains. However, these statistics can often be computed only for Cartesian responses. For the design of metal structures, a failure criterion based on an equivalent stress response, commonly known as the von Mises stress, is more appropriate and often used. This paper presents an approach for computing the statistics of the von Mises stress response for structures subjected to random excitations. Random vibration analysis is first performed to compute covariance matrices of Cartesian stress responses. Monte Carlo simulation is then used to perform scatter and failure analyses using the von Mises stress response.

  12. Stress analysis and deformation prediction of sheet metal workpieces based on finite element simulation

    OpenAIRE

    Ren Penghao; Wang Aimin; Wang Xiaolong; Zhang Yanlin

    2017-01-01

    After aluminum alloy sheet metal parts machining, the residual stress release will cause a large deformation. To solve this problem, this paper takes a aluminum alloy sheet aerospace workpiece as an example, establishes the theoretical model of elastic deformation and the finite element model, and places quantitative initial stress in each element of machining area, analyses stress release simulation and deformation. Through different initial stress release simulative analysis of deformation ...

  13. Physiological Responses to Thermal Stress and Exercise

    Science.gov (United States)

    Iyota, Hiroyuki; Ohya, Akira; Yamagata, Junko; Suzuki, Takashi; Miyagawa, Toshiaki; Kawabata, Takashi

    The simple and noninvasive measuring methods of bioinstrumentation in humans is required for optimization of air conditioning and management of thermal environments, taking into consideration the individual specificity of the human body as well as the stress conditions affecting each. Changes in human blood circulation were induced with environmental factors such as heat, cold, exercise, mental stress, and so on. In this study, the physiological responses of human body to heat stress and exercise were investigated in the initial phase of the developmental research. We measured the body core and skin temperatures, skin blood flow, and pulse wave as the indices of the adaptation of the cardiovascular system. A laser Doppler skin blood flowmetry using an optical-sensor with a small portable data logger was employed for the measurement. These results reveal the heat-stress and exercise-induced circulatory responses, which are under the control of the sympathetic nerve system. Furthermore, it was suggested that the activity of the sympathetic nervous system could be evaluated from the signals of the pulse wave included in the signals derived from skin blood flow by means of heart rate variability assessments and detecting peak heights of velocity-plethysmogram.

  14. Everyday stress response targets in the science of behavior change.

    Science.gov (United States)

    Smyth, Joshua M; Sliwinski, Martin J; Zawadzki, Matthew J; Scott, Stacey B; Conroy, David E; Lanza, Stephanie T; Marcusson-Clavertz, David; Kim, Jinhyuk; Stawski, Robert S; Stoney, Catherine M; Buxton, Orfeu M; Sciamanna, Christopher N; Green, Paige M; Almeida, David M

    2018-02-01

    Stress is an established risk factor for negative health outcomes, and responses to everyday stress can interfere with health behaviors such as exercise and sleep. In accordance with the Science of Behavior Change (SOBC) program, we apply an experimental medicine approach to identifying stress response targets, developing stress response assays, intervening upon these targets, and testing intervention effectiveness. We evaluate an ecologically valid, within-person approach to measuring the deleterious effects of everyday stress on physical activity and sleep patterns, examining multiple stress response components (i.e., stress reactivity, stress recovery, and stress pile-up) as indexed by two key response indicators (negative affect and perseverative cognition). Our everyday stress response assay thus measures multiple malleable stress response targets that putatively shape daily health behaviors (physical activity and sleep). We hypothesize that larger reactivity, incomplete recovery, and more frequent stress responses (pile-up) will negatively impact health behavior enactment in daily life. We will identify stress-related reactivity, recovery, and response in the indicators using coordinated analyses across multiple naturalistic studies. These results are the basis for developing a new stress assay and replicating the initial findings in a new sample. This approach will advance our understanding of how specific aspects of everyday stress responses influence health behaviors, and can be used to develop and test an innovative ambulatory intervention for stress reduction in daily life to enhance health behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Transposable elements as stress adaptive capacitors induce genomic instability in fungal pathogen Magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Sonia Chadha

    Full Text Available A fundamental problem in fungal pathogenesis is to elucidate the evolutionary forces responsible for genomic rearrangements leading to races with fitter genotypes. Understanding the adaptive evolutionary mechanisms requires identification of genomic components and environmental factors reshaping the genome of fungal pathogens to adapt. Herein, Magnaporthe oryzae, a model fungal plant pathogen is used to demonstrate the impact of environmental cues on transposable elements (TE based genome dynamics. For heat shock and copper stress exposed samples, eight TEs belonging to class I and II family were employed to obtain DNA profiles. Stress induced mutant bands showed a positive correlation with dose/duration of stress and provided evidences of TEs role in stress adaptiveness. Further, we demonstrate that genome dynamics differ for the type/family of TEs upon stress exposition and previous reports of stress induced MAGGY transposition has underestimated the role of TEs in M. oryzae. Here, we identified Pyret, MAGGY, Pot3, MINE, Mg-SINE, Grasshopper and MGLR3 as contributors of high genomic instability in M. oryzae in respective order. Sequencing of mutated bands led to the identification of LTR-retrotransposon sequences within regulatory regions of psuedogenes. DNA transposon Pot3 was identified in the coding regions of chromatin remodelling protein containing tyrosinase copper-binding and PWWP domains. LTR-retrotransposons Pyret and MAGGY are identified as key components responsible for the high genomic instability and perhaps these TEs are utilized by M. oryzae for its acclimatization to adverse environmental conditions. Our results demonstrate how common field stresses change genome dynamics of pathogen and provide perspective to explore the role of TEs in genome adaptability, signalling network and its impact on the virulence of fungal pathogens.

  16. PARCS - A pre-stressed and reinforced concrete shell element for analysis of containment structures

    International Nuclear Information System (INIS)

    Buragohain, D.N.; Mukherjee, A.

    1993-01-01

    within the element and they need not pass through any nodal line. Therefore, the element frees the user from the rigor of providing a nodal line along every reinforcement and therefore a much smaller model can be generated. The element takes into account the exact location of the reinforcements and no limiting assumption like uniform smearing is necessary. Moreover, the element is based on isoparametric quadratic shape functions. Therefore, it can easily accommodate irregular boundaries. A two step analysis for the pre-stressed concrete structures has been proposed. In the first step only the pre-stressing forces are applied. In this part the cable is excluded from the model. The effect of superimposed load on the pre-stressed structures is found out in the second step. The stiffness of the cable is included in this step. The final solution is obtained by superimposing the two responses. The solved examples show that this method generates a better value of final cable tension than the single step method

  17. Auxin Response Factors (ARFs are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Sarah Bouzroud

    Full Text Available Survival biomass production and crop yield are heavily constrained by a wide range of environmental stresses. Several phytohormones among which abscisic acid (ABA, ethylene and salicylic acid (SA are known to mediate plant responses to these stresses. By contrast, the role of the plant hormone auxin in stress responses remains so far poorly studied. Auxin controls many aspects of plant growth and development, and Auxin Response Factors play a key role in the transcriptional activation or repression of auxin-responsive genes through direct binding to their promoters. As a mean to gain more insight on auxin involvement in a set of biotic and abiotic stress responses in tomato, the present study uncovers the expression pattern of SlARF genes in tomato plants subjected to biotic and abiotic stresses. In silico mining of the RNAseq data available through the public TomExpress web platform, identified several SlARFs as responsive to various pathogen infections induced by bacteria and viruses. Accordingly, sequence analysis revealed that 5' regulatory regions of these SlARFs are enriched in biotic and abiotic stress-responsive cis-elements. Moreover, quantitative qPCR expression analysis revealed that many SlARFs were differentially expressed in tomato leaves and roots under salt, drought and flooding stress conditions. Further pointing to the putative role of SlARFs in stress responses, quantitative qPCR expression studies identified some miRNA precursors as potentially involved in the regulation of their SlARF target genes in roots exposed to salt and drought stresses. These data suggest an active regulation of SlARFs at the post-transcriptional level under stress conditions. Based on the substantial change in the transcript accumulation of several SlARF genes, the data presented in this work strongly support the involvement of auxin in stress responses thus enabling to identify a set of candidate SlARFs as potential mediators of biotic and abiotic

  18. Identifying salt stress-responsive transcripts from Roselle ( Hibiscus ...

    African Journals Online (AJOL)

    Hibiscus sabdariffa L.). Identifying the potentially novel transcripts responsible for salt stress tolerance in roselle will increase knowledge of the molecular mechanism underlying salt stress responses. In this study, differential display reverse ...

  19. Growth and physiological responses to water and nutrient stress in ...

    African Journals Online (AJOL)

    Growth and physiological responses to water and nutrient stress in oil palm. ... changes in growth, physiology and nutrient concentration in response to two watering regimes (well-watered and water-stress conditions) and ... from 32 Countries:.

  20. Evolution and Stress Responses of Gossypium hirsutum SWEET Genes.

    Science.gov (United States)

    Li, Wei; Ren, Zhongying; Wang, Zhenyu; Sun, Kuan; Pei, Xiaoyu; Liu, Yangai; He, Kunlun; Zhang, Fei; Song, Chengxiang; Zhou, Xiaojian; Zhang, Wensheng; Ma, Xiongfeng; Yang, Daigang

    2018-03-08

    The SWEET (sugars will eventually be exported transporters) proteins are sugar efflux transporters containing the MtN3_saliva domain, which affects plant development as well as responses to biotic and abiotic stresses. These proteins have not been functionally characterized in the tetraploid cotton, Gossypium hirsutum , which is a widely cultivated cotton species. In this study, we comprehensively analyzed the cotton SWEET gene family. A total of 55 putative G. hirsutum SWEET genes were identified. The GhSWEET genes were classified into four clades based on a phylogenetic analysis and on the examination of gene structural features. Moreover, chromosomal localization and an analysis of homologous genes in Gossypium arboreum , Gossypium raimondii , and G. hirsutum suggested that a whole-genome duplication, several tandem duplications, and a polyploidy event contributed to the expansion of the cotton SWEET gene family, especially in Clade III and IV. Analyses of cis -acting regulatory elements in the promoter regions, expression profiles, and artificial selection revealed that the GhSWEET genes were likely involved in cotton developmental processes and responses to diverse stresses. These findings may clarify the evolution of G. hirsutum SWEET gene family and may provide a foundation for future functional studies of SWEET proteins regarding cotton development and responses to abiotic stresses.

  1. Stress Concentration Factor of Expanded Aluminum Tubes Using Finite Element Modeling

    Directory of Open Access Journals (Sweden)

    L Mhamdi

    2013-06-01

    Full Text Available This paper discusses the development of semi-empirical relations for the maximum stress concentration factor (SCF around circular holes embedded in aluminum tubes under various expansion ratios and mandrel angles. Finite element models were developed to study the expansion of a typical aluminum tube with embedded holes of various sizes. An elastic perfectly-plastic material behaviour was used to describe the structural response of the tubes under expansion. Various hole-diameter-to-tubewall- thickness ratios, tube expansion ratios, and mandrel angles were considered to determine the stress state around the hole at zero and 90 degree locations from which the maximum SCF was determined. Semi-empirical relations for the maximum SCF using the Lagrange interpolation formulation were developed. The developed relations were found to predict the SCFs accurately.

  2. Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses

    OpenAIRE

    Iwai Ohbayashi; Munetaka Sugiyama

    2018-01-01

    The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized p...

  3. Stress analysis and deformation prediction of sheet metal workpieces based on finite element simulation

    Directory of Open Access Journals (Sweden)

    Ren Penghao

    2017-01-01

    Full Text Available After aluminum alloy sheet metal parts machining, the residual stress release will cause a large deformation. To solve this problem, this paper takes a aluminum alloy sheet aerospace workpiece as an example, establishes the theoretical model of elastic deformation and the finite element model, and places quantitative initial stress in each element of machining area, analyses stress release simulation and deformation. Through different initial stress release simulative analysis of deformation of the workpiece, a linear relationship between initial stress and deformation is found; Through simulative analysis of coupling direction-stress release, the superposing relationship between the deformation caused by coupling direction-stress and the deformation caused by single direction stress is found. The research results provide important theoretical support for the stress threshold setting and deformation controlling of the workpieces in the production practice.

  4. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways

    Science.gov (United States)

    Bergsma, Alexis L.; Senchuk, Megan M.; Van Raamsdonk, Jeremy M.

    2016-01-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage. PMID:27053445

  5. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways.

    Science.gov (United States)

    Dues, Dylan J; Andrews, Emily K; Schaar, Claire E; Bergsma, Alexis L; Senchuk, Megan M; Van Raamsdonk, Jeremy M

    2016-04-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage.

  6. A study on the bonding residual thermal stress analysis of dissimilar materials using boundary element method

    International Nuclear Information System (INIS)

    Yi, Won; Yu, Yeong Chul; Jeong, Eui Seob; Lee, Chang Ho

    1995-01-01

    It is very important to evaluate the bonding residual thermal stress in dissimilar materials such as LSI package. In this study, the bonding residual thermal stress was calculated using the boundary element method, varing with the sub-element, geometry of specimen and adhesive thickness. The present results reveal a stress singularity at the edge of the interface, therefore the bonding strength of metal/resin interface can be estimated by taking into account it.

  7. Theoretical basis for a transient thermal elastic-plastic stress analysis of nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hsu, T.R.; Bertels, A.W.M.; Banerjee, S.; Harrison, W.C.

    1976-07-01

    This report presents the theoretical basis for a transient thermal elastic-plastic stress analysis of a nuclear reactor fuel element subject to severe transient thermo-mechanical loading. A finite element formulation is used for both the non-linear stress analysis and thermal analysis. These two major components are linked together to form an integrated program capable of predicting fuel element transient behaviour in two dimensions. Specific case studies are presented to illustrate capabilities of the analysis. (author)

  8. Exploring the Response of Plants Grown under Uranium Stress

    Energy Technology Data Exchange (ETDEWEB)

    Doustaly, Fany; Berthet, Serge; Bourguignon, Jacques [CEA, iRTSV, Laboratoire de Physiologie Cellulaire Vegetale, UMR 5168 CEA-CNRS-INRA-Univ. Grenoble Alpes (France); Combes, Florence; Vandenbrouck, Yves [CEA, iRTSV, Laboratoire de Biologie a Grande Echelle, EDyP, CEA-Grenoble (France); Carriere, Marie [CEA, INAC, LAN, UMR E3 CEA-Universite Joseph Fourier, Grenoble (France); Vavasseur, Alain [CEA, IBEB, LBDP, Saint Paul lez Durance, CEA Cadarache (France)

    2014-07-01

    Uranium is a natural element which is mainly redistributed in the environment due to human activity, including accidents and spillages. Plants may be useful in cleaning up after incidents, although little is yet known about the relationship between uranium speciation and plant response. We analyzed the impact of different uranium (U) treatments on three plant species namely sunflower, oilseed rape and wheat. Using inductively coupled plasma mass spectrometry elemental analysis, together with a panel of imaging techniques including scanning electron microscopy coupled with energy dispersive spectroscopy, transmission electron microscopy and particle-induced X-ray emission spectroscopy, we have recently shown how chemical speciation greatly influences the accumulation and distribution of U in plants. Uranyl (UO{sub 2}{sup 2+} free ion) is the predominant mobile form in soil surface at low pH in absence of ligands. With the aim to characterize the early plant response to U exposure, complete Arabidopsis transcriptome microarray experiments were conducted on plants exposed to 50 μM uranyl nitrate for 2, 6 and 30 h and highlighted a set of 111 genes with modified expression at these three time points. Quantitative real-time RT-PCR experiments confirmed and completed CATMA micro-arrays results allowing the characterization of biological processes perturbed by U. Functional categorization of deregulated genes emphasizes oxidative stress, cell wall biosynthesis and hormone biosynthesis and signaling. We showed that U stress is perceived by plant cells like a phosphate starvation stress since several phosphate deprivation marker genes were deregulated by U and also highlighted perturbation of iron homeostasis by U. Hypotheses are presented to explain how U perturbs the iron uptake and signaling response. These results give preliminary insights into the pathways affected by uranyl uptake, which will be of interest for engineering plants to help clean areas contaminated with

  9. contact stress analysis of involute spur gear by finite element method

    African Journals Online (AJOL)

    USER

    section using C- programming. Bending stress analysis has been performed using finite element analysis with ANSYS software. Comparison of bending stress analysis has been performed for symmetric and asymmetric spur gear tooth at critical section. Mushin J. Jweeg, et.al. [7] used 2D contact stress FEA model to ...

  10. District element modelling of the rock mass response to glaciation at Finnsjoen, central Sweden

    International Nuclear Information System (INIS)

    Rosengren, L.; Stephansson, O.

    1990-12-01

    Six rock mechanics models of a cross section of the Finnsjoen test site have been simulated by means of distinct element analysis and the computer code UDEC. The rock mass response to glaciation, deglaciation, isostatic movements and water pressure from an ice lake have been simulated. Four of the models use a boundary condition with boundary elements at the bottom and sides of the model. This gives a state of stress inside the model which agrees well with the analytical solution where the horizontal and vertical stresses are almost similar. Roller boundaries were applied to two models. This boundary condition cause zero lateral displacement at the model boundaries and the horizontal stress are always less than the vertical stress. Isostatic movements were simulated in one model. Two different geometries of fracture Zone 2 were simulated. Results from modelling the two different geometries show minor changes in stresses, displacements and failure of fracture zones. Under normal pore pressure conditions in the rock mass the weight of the ice load increases the vertical stresses in the models differ depending on the boundary condition. An ice thickness of 3 km and 1 km and an ice wedge of 1 km thickness covering half the top surface of the model have been simulated. For each loading sequence of the six models a complete set of data about normal stress, stress profiles along selected sections, displacements and failure of fracture zones are presented. Based on the results of this study a protection zone of about 100 m width from the outer boundary of stress discontinuity to the repository location is suggested. This value is based on the result that the stress disturbance diminishes at this distance from the outer boundary of the discontinuity. (25 refs.) (authors)

  11. Genome-wide analysis identifies chickpea (Cicer arietinum) heat stress transcription factors (Hsfs) responsive to heat stress at the pod development stage.

    Science.gov (United States)

    Chidambaranathan, Parameswaran; Jagannadham, Prasanth Tej Kumar; Satheesh, Viswanathan; Kohli, Deshika; Basavarajappa, Santosh Halasabala; Chellapilla, Bharadwaj; Kumar, Jitendra; Jain, Pradeep Kumar; Srinivasan, R

    2018-05-01

    The heat stress transcription factors (Hsfs) play a prominent role in thermotolerance and eliciting the heat stress response in plants. Identification and expression analysis of Hsfs gene family members in chickpea would provide valuable information on heat stress responsive Hsfs. A genome-wide analysis of Hsfs gene family resulted in the identification of 22 Hsf genes in chickpea in both desi and kabuli genome. Phylogenetic analysis distinctly separated 12 A, 9 B, and 1 C class Hsfs, respectively. An analysis of cis-regulatory elements in the upstream region of the genes identified many stress responsive elements such as heat stress elements (HSE), abscisic acid responsive element (ABRE) etc. In silico expression analysis showed nine and three Hsfs were also expressed in drought and salinity stresses, respectively. Q-PCR expression analysis of Hsfs under heat stress at pod development and at 15 days old seedling stage showed that CarHsfA2, A6, and B2 were significantly upregulated in both the stages of crop growth and other four Hsfs (CarHsfA2, A6a, A6c, B2a) showed early transcriptional upregulation for heat stress at seedling stage of chickpea. These subclasses of Hsfs identified in this study can be further evaluated as candidate genes in the characterization of heat stress response in chickpea.

  12. Multilayer Finite-Element Model Application to Define the Bearing Structure Element Stress State of Launch Complexes

    Directory of Open Access Journals (Sweden)

    V. A. Zverev

    2016-01-01

    Full Text Available The article objective is to justify the rationale for selecting the multilayer finite element model parameters of the bearing structure of a general-purpose launch complex unit.A typical design element of the launch complex unit, i.e. a mount of the hydraulic or pneumatic cylinder, block, etc. is under consideration. The mount represents a set of the cantilevered axis and external structural cage. The most loaded element of the cage is disk to which a moment is transferred from the cantilevered axis due to actuator effort acting on it.To calculate the stress-strain state of disk was used a finite element method. Five models of disk mount were created. The only difference in models was the number of layers of the finite elements through the thickness of disk. There were models, which had one, three, five, eight, and fourteen layers of finite elements through the thickness of disk. For each model, we calculated the equivalent stresses arising from the action of the test load. Disk models were formed and calculated using the MSC Nastran complex software.The article presents results in the table to show data of equivalent stresses in each of the multi-layered models and graphically to illustrate the changing equivalent stresses through the thickness of disk.Based on these results we have given advice on selecting the proper number of layers in the model allowing a desirable accuracy of results with the lowest run time. In addition, it is concluded that there is a need to use the multi-layer models in assessing the performance of structural elements in case the stress exceeds the allowable one in their surface layers.

  13. Opposite Effects of Stress on Pain Modulation Depend on the Magnitude of Individual Stress Response.

    Science.gov (United States)

    Geva, Nirit; Defrin, Ruth

    2018-04-01

    The effect of acute stress on pain threshold and intolerance threshold are reported as producing either hypoalgesia or hyperalgesia. Yet, the contribution of individual stress reactivity in this respect has not been established. The aim was to test 2 pain modulation paradigms under acute stress manipulation, to our knowledge, for the first time, to study whether stress differentially affects pain modulation, and whether the effect is related to individual stress response. Participants were 31 healthy subjects. Conditioned pain modulation (CPM) and pain adaptation were measured before and after inducing an acute stress response using the Montreal Imaging Stress Task. Subjects' stress response was evaluated according to salivary cortisol, autonomic function, and perceived stress and anxiety. The Montreal Imaging Stress Task induced a validated stress response. On a group level, stress induced reduction in CPM magnitude and increase in pain adaptation compared with baseline. These responses correlated with stress reactivity. When the group was subdivided according to stress reactivity, only high stress responders exhibited reduced CPM whereas only low stress responders exhibited increased pain adaptation. The results suggest that acute stress may induce opposite effects on pain modulation, depending on individual stress reactivity magnitude, with an advantage to low stress responders. This study evaluated the effect of acute stress on pain modulation. Pain modulation under stress is affected by individual stress responsiveness; decreased CPM occurs in high stress responders whereas increased pain adaptation occurs in low stress responders. Identification of high stress responders may promote better pain management. Copyright © 2017 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  14. Plant responses to environmental stresses-from gene to biotechnology.

    Science.gov (United States)

    Ahanger, Mohammad Abass; Akram, Nudrat Aisha; Ashraf, Muhammad; Alyemeni, Mohammed Nasser; Wijaya, Leonard; Ahmad, Parvaiz

    2017-07-01

    Increasing global population, urbanization and industrialization are increasing the rate of conversion of arable land into wasteland. Supplying food to an ever-increasing population is one of the biggest challenges that agriculturalists and plant scientists are currently confronting. Environmental stresses make this situation even graver. Despite the induction of several tolerance mechanisms, sensitive plants often fail to survive under environmental extremes. New technological approaches are imperative. Conventional breeding methods have a limited potential to improve plant genomes against environmental stress. Recently, genetic engineering has contributed enormously to the development of genetically modified varieties of different crops such as cotton, maize, rice, canola and soybean. The identification of stress-responsive genes and their subsequent introgression or overexpression within sensitive crop species are now being widely carried out by plant scientists. Engineering of important tolerance pathways, like antioxidant enzymes, osmolyte accumulation, membrane-localized transporters for efficient compartmentation of deleterious ions and accumulation of essential elements and resistance against pests or pathogens is also an area that has been intensively researched. In this review, the role of biotechnology and its successes, prospects and challenges in developing stress-tolerant crop cultivars are discussed.

  15. Reinforced concrete membrane elements subjected to reversed cyclic in-plane shear stress

    International Nuclear Information System (INIS)

    Ohmori, N.; Tsubota, H.; Inoue, N.; Watanabe, S.; Kurihara, K.

    1987-01-01

    The response of reinforced concrete elements subjected to reversed cyclic in-plane shear stresses can be predicted by an analytical model, which considers equilibrium, compatibility and stress-strain relationships including hysteresis loop of unloading and reloading stages all expressed in terms of average stresses and average strains. The analytical results show that the dominant hysteretic behaviours in regard to decrease of stiffness during unloading, successive slip phenomena and restoration of compressive stiffness at the reloading stages are well simulated analytically. The results agree quite well with the observed behaviours. As for the envelope curve of the hysteretic response there remain the discrepancies that the stiffness and ultimate strength are a bit larger than the observed results, especially in the case of a panel with a large reinforcement ratio. Such descrepancies are also found in the predicted results of monotonic loading and more precise studies are necessary to evaluate more accurate envelope curves under not only reversed cyclic loading but also monotonic loading. (orig./HP)

  16. Finite Element Based Response Surface Methodology to Optimize Segmental Tunnel Lining

    Directory of Open Access Journals (Sweden)

    A. Rastbood

    2017-04-01

    Full Text Available The main objective of this paper is to optimize the geometrical and engineering characteristics of concrete segments of tunnel lining using Finite Element (FE based Response Surface Methodology (RSM. Input data for RSM statistical analysis were obtained using FEM. In RSM analysis, thickness (t and elasticity modulus of concrete segments (E, tunnel height (H, horizontal to vertical stress ratio (K and position of key segment in tunnel lining ring (θ were considered as input independent variables. Maximum values of Mises and Tresca stresses and tunnel ring displacement (UMAX were set as responses. Analysis of variance (ANOVA was carried out to investigate the influence of each input variable on the responses. Second-order polynomial equations in terms of influencing input variables were obtained for each response. It was found that elasticity modulus and key segment position variables were not included in yield stresses and ring displacement equations, and only tunnel height and stress ratio variables were included in ring displacement equation. Finally optimization analysis of tunnel lining ring was performed. Due to absence of elasticity modulus and key segment position variables in equations, their values were kept to average level and other variables were floated in related ranges. Response parameters were set to minimum. It was concluded that to obtain optimum values for responses, ring thickness and tunnel height must be near to their maximum and minimum values, respectively and ground state must be similar to hydrostatic conditions.

  17. Characteristic and analysis of structural elements of corporate social responsibility

    Directory of Open Access Journals (Sweden)

    J. S. Bilonog

    2015-04-01

    Full Text Available In this article attention is focused on social responsibility of business and on necessity to estimate its condition in Ukraine. Materials regarding elements and the principles of corporate social responsibility are structured. On this basis unification of quantitative elements of business social responsibility is offered according to which it is possible to carry out the analysis of the non­financial reporting. It is proposed to use not only quantitative techniques of data analysis but also refer to the qualitative ones. As a result of this, the analysis of social reports will be more productive and would minimize subjectivity of the researcher or representatives of the company which are responsible for presenting the information to the general public. The basic principles by which the companies can realize the strategy of corporate social responsibility are considered. Due to the empirical analysis of corporate reports expediency to use specified elements is proved. Reports of the companies in producing and non­productive sector are analyzed in more detail; features of displaying information on corporate social responsibility are defined. The attention to need of carrying out monitoring researches in the sphere of the corporate social reporting is updated.

  18. Hexahedral connection element based on hybrid-stress theory for solid structures

    International Nuclear Information System (INIS)

    Wu, D; Sze, K Y; Lo, S H

    2010-01-01

    For building structures, high-performance hybrid-stress hexahedral solid elements are excellent choices for modelling joints, beams/columns walls and thick slabs if the exact geometrical representation is required. While it is straight-forward to model beam-column structures of uniform member size with solid hexahedral elements, joining up beams and columns of various cross-sections at a common point proves to be a challenge for structural modelling using hexahedral elements with specified dimensions. In general, the joint has to be decomposed into 27 smaller solid elements to cater for the necessary connection requirements. This will inevitably increase the computational cost and introduce element distortions when elements of different sizes have to be used at the joint. Hexahedral connection elements with arbitrary specified connection interfaces will be an ideal setup to connect structural members of different sizes without increasing the number of elements or introducing highly distorted elements. In this paper, based on the hybrid-stress element theory, a general way to construct hexahedral connection element with various interfaces is introduced. Following this way, a 24-node connection element is presented and discussed in detail. Performance of the 24-node connection element equipped with different number of stress modes will be assessed with worked examples.

  19. Stress distributions in finite element analysis of concrete gravity dam ...

    African Journals Online (AJOL)

    Gravity dams are solid structures built of mass concrete material; they maintain their stability against the design loads from the geometric shape, the mass, and the strength of the concrete. The model was meshed with an 8-node biquadratic plane strain quadrilateral (CPE8R) elements, using ABAQUS, a finite element ...

  20. Elements of a national emergency response system for nuclear accidents

    International Nuclear Information System (INIS)

    Dickerson, M.H.

    1987-01-01

    The purpose of this paper is to suggest elements for a general emergency response system, employed at a national level, to detect, evaluate and assess the consequences of a radiological atmospheric release occurring within or outside of national boundaries. These elements are focused on the total aspect of emergency response ranging from providing an initial alarm to a total assessment of the environmental and health effects. Elements of the emergency response system are described in such a way that existing resources can be directly applied if appropriate; if not, newly developed or an expansion of existing resources can be employed. The major thrust of this paper is toward a philosophical discussion and general description of resources that would be required to implementation. If the major features of this proposal system are judged desirable for implementation, then the next level of detail can be added. The philosophy underlying this paper is preparedness - preparedness through planning, awareness and the application of technology. More specifically, it is establishment of reasonable guidelines including the definition of reference and protective action levels for public exposure to accidents involving nuclear material; education of the public, government officials and the news media; and the application of models and measurements coupled to computer systems to address a series of questions related to emergency planning, response and assessment. It is the role of a proven national emergency response system to provide reliable, quality-controlled information to decision makers for the management of environmental crises

  1. Personality traits modulate emotional and physiological responses to stress.

    Science.gov (United States)

    Childs, Emma; White, Tara L; de Wit, Harriet

    2014-09-01

    An individual's susceptibility to psychological and physical disorders associated with chronic stress exposure, for example, cardiovascular and infectious disease, may also be predicted by their reactivity to acute stress. One factor associated with both stress resilience and health outcomes is personality. An understanding of how personality influences responses to acute stress may shed light upon individual differences in susceptibility to chronic stress-linked disease. This study examined the relationships between personality and acute responses to stress in 125 healthy adults, using hierarchical linear regression. We assessed personality traits using the Multidimensional Personality Questionnaire (MPQ-BF), and responses to acute stress (cortisol, heart rate, blood pressure, mood) using a standardized laboratory psychosocial stress task, the Trier Social Stress Test. Individuals with high Negative Emotionality exhibited greater emotional distress and lower blood pressure responses to the Trier Social Stress Test. Individuals with high agentic Positive Emotionality exhibited prolonged heart rate responses to stress, whereas those with high communal Positive Emotionality exhibited smaller cortisol and blood pressure responses. Separate personality traits differentially predicted emotional, cardiovascular, and cortisol responses to a psychosocial stressor in healthy volunteers. Future research investigating the association of personality with chronic stress-related disease may provide further clues to the relationship between acute stress reactivity and susceptibility to disease.

  2. A Novel Shape-Free Plane Quadratic Polygonal Hybrid Stress-Function Element

    Directory of Open Access Journals (Sweden)

    Pei-Lei Zhou

    2015-01-01

    Full Text Available A novel plane quadratic shape-free hybrid stress-function (HS-F polygonal element is developed by employing the principle of minimum complementary energy and the fundamental analytical solutions of the Airy stress function. Without construction of displacement interpolation function, the formulations of the new model are much simpler than those of the displacement-based polygonal elements and can be degenerated into triangular or quadrilateral elements directly. In particular, it is quite insensitive to various mesh distortions and even can keep precision when element shape is concave. Furthermore, the element does not show any spurious zero energy modes. Numerical examples show the excellent performance of the new element, denoted by HSF-AP-19β, in both displacement and stress solutions.

  3. Simulation of Stress Concentration Problems in Laminated Plates by Quasi-Trefftz Finite Element Models

    Directory of Open Access Journals (Sweden)

    Flávio Luiz de Silva Bussamra

    Full Text Available Abstract Hybrid quasi-Trefftz finite elements have been applied with success to the analysis of laminated plates. Two independent fields are approximated by linearly independent, hierarchical polynomials: the stress basis in the domain, adapted from Papkovitch-Neuber solution of Navier equations, and the displacement basis, defined on element surface. The stress field that satisfies the Trefftz constraint a priori for isotropic material is adapted for orthotropic materials, which leads to the term "quasi". In this work, the hexahedral hybrid quasi-Trefftz stress element is applied to the modeling of nonsymmetric laminates and laminated composite plates with geometric discontinuities. The hierarchical p-refinement is exploited.

  4. Specificity determinants for the abscisic acid response element ?

    OpenAIRE

    Sarkar, Aditya Kumar; Lahiri, Ansuman

    2013-01-01

    Abscisic acid (ABA) response elements (ABREs) are a group of cis-acting DNA elements that have been identified from promoter analysis of many ABA-regulated genes in plants. We are interested in understanding the mechanism of binding specificity between ABREs and a class of bZIP transcription factors known as ABRE binding factors (ABFs). In this work, we have modeled the homodimeric structure of the bZIP domain of ABRE binding factor 1 from Arabidopsis thaliana (AtABF1) and studied its interac...

  5. Transcriptomic analysis of rice aleurone cells identified a novel abscisic acid response element.

    Science.gov (United States)

    Watanabe, Kenneth A; Homayouni, Arielle; Gu, Lingkun; Huang, Kuan-Ying; Ho, Tuan-Hua David; Shen, Qingxi J

    2017-09-01

    Seeds serve as a great model to study plant responses to drought stress, which is largely mediated by abscisic acid (ABA). The ABA responsive element (ABRE) is a key cis-regulatory element in ABA signalling. However, its consensus sequence (ACGTG(G/T)C) is present in the promoters of only about 40% of ABA-induced genes in rice aleurone cells, suggesting other ABREs may exist. To identify novel ABREs, RNA sequencing was performed on aleurone cells of rice seeds treated with 20 μM ABA. Gibbs sampling was used to identify enriched elements, and particle bombardment-mediated transient expression studies were performed to verify the function. Gene ontology analysis was performed to predict the roles of genes containing the novel ABREs. This study revealed 2443 ABA-inducible genes and a novel ABRE, designated as ABREN, which was experimentally verified to mediate ABA signalling in rice aleurone cells. Many of the ABREN-containing genes are predicted to be involved in stress responses and transcription. Analysis of other species suggests that the ABREN may be monocot specific. This study also revealed interesting expression patterns of genes involved in ABA metabolism and signalling. Collectively, this study advanced our understanding of diverse cis-regulatory sequences and the transcriptomes underlying ABA responses in rice aleurone cells. © 2017 John Wiley & Sons Ltd.

  6. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways

    OpenAIRE

    Dues, Dylan J.; Andrews, Emily K.; Schaar, Claire E.; Bergsma, Alexis L.; Senchuk, Megan M.; Van Raamsdonk, Jeremy M.

    2016-01-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxi...

  7. Stress responses in probiotic Lactobacillus casei.

    Science.gov (United States)

    Hosseini Nezhad, Marzieh; Hussain, Malik Altaf; Britz, Margaret Lorraine

    2015-01-01

    Survival in harsh environments is critical to both the industrial performance of lactic acid bacteria (LAB) and their competitiveness in complex microbial ecologies. Among the LAB, members of the Lactobacillus casei group have industrial applications as acid-producing starter cultures for milk fermentations and as specialty cultures for the intensification and acceleration of flavor development in certain bacterial-ripened cheese varieties. They are amongst the most common organisms in the gastrointestinal (GI) tract of humans and other animals, and have the potential to function as probiotics. Whether used in industrial or probiotic applications, environmental stresses will affect the physiological status and properties of cells, including altering their functionality and biochemistry. Understanding the mechanisms of how LAB cope with different environments is of great biotechnological importance, from both a fundamental and applied perspective: hence, interaction between these strains and their environment has gained increased interest in recent years. This paper presents an overview of the important features of stress responses in Lb. casei, and related proteomic or gene expression patterns that may improve their use as starter cultures and probiotics.

  8. The Role of the Transcriptional Response to DNA Replication Stress.

    Science.gov (United States)

    Herlihy, Anna E; de Bruin, Robertus A M

    2017-03-02

    During DNA replication many factors can result in DNA replication stress. The DNA replication stress checkpoint prevents the accumulation of replication stress-induced DNA damage and the potential ensuing genome instability. A critical role for post-translational modifications, such as phosphorylation, in the replication stress checkpoint response has been well established. However, recent work has revealed an important role for transcription in the cellular response to DNA replication stress. In this review, we will provide an overview of current knowledge of the cellular response to DNA replication stress with a specific focus on the DNA replication stress checkpoint transcriptional response and its role in the prevention of replication stress-induced DNA damage.

  9. The Role of the Transcriptional Response to DNA Replication Stress

    Science.gov (United States)

    Herlihy, Anna E.; de Bruin, Robertus A.M.

    2017-01-01

    During DNA replication many factors can result in DNA replication stress. The DNA replication stress checkpoint prevents the accumulation of replication stress-induced DNA damage and the potential ensuing genome instability. A critical role for post-translational modifications, such as phosphorylation, in the replication stress checkpoint response has been well established. However, recent work has revealed an important role for transcription in the cellular response to DNA replication stress. In this review, we will provide an overview of current knowledge of the cellular response to DNA replication stress with a specific focus on the DNA replication stress checkpoint transcriptional response and its role in the prevention of replication stress-induced DNA damage. PMID:28257104

  10. How age, sex and genotype shape the stress response.

    Science.gov (United States)

    Novais, Ashley; Monteiro, Susana; Roque, Susana; Correia-Neves, Margarida; Sousa, Nuno

    2017-02-01

    Exposure to chronic stress is a leading pre-disposing factor for several neuropsychiatric disorders as it often leads to maladaptive responses. The response to stressful events is heterogeneous, underpinning a wide spectrum of distinct changes amongst stress-exposed individuals'. Several factors can underlie a different perception to stressors and the setting of distinct coping strategies that will lead to individual differences on the susceptibility/resistance to stress. Beyond the factors related to the stressor itself, such as intensity, duration or predictability, there are factors intrinsic to the individuals that are relevant to shape the stress response, such as age, sex and genetics. In this review, we examine the contribution of such intrinsic factors to the modulation of the stress response based on experimental rodent models of response to stress and discuss to what extent that knowledge can be potentially translated to humans.

  11. Fuel element failures caused by iodine stress corrosion

    International Nuclear Information System (INIS)

    Videm, K.; Lunde, L.

    1976-01-01

    Sections of unirradiated cladding tubes were plugged in both ends by mechanical seals and internally pressurized with argon containing iodine. The time to failure and the strain at failure as a function of stress was determined for tubing with different heat treatments. Fully annealed tubes suffer cracking at the lowest stress but exhibit the largest strains at failure. Elementary iodine is not necessary for stress corrosion: small amounts of iodides of zirconium, iron and aluminium can also give cracking. Moisture, however, was found to act as an inhibitor. A deformation threshold exists below which stress corrosion failure does not occur regardless of the exposure time. This deformation limit is lower the harder the tube. The deformation at failure is dependent on the deformation rate and has a minimum at 0.1%/hr. At higher deformation rates the failure deformation increases, but only slightly for hard tubes. Fuel was over-power tested at ramp rates varying between 0.26 to 30 W/cm min. For one series of fuel pins the failure deformations of 0.8% at high ramp rates were in good agreement with predictions based on stress corrosion experiments. For another series of experiments the failure deformation was surprisingly low, about 0.2%. (author)

  12. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework

    International Nuclear Information System (INIS)

    Calabrese, Edward J.; Bachmann, Kenneth A.; Bailer, A. John; Bolger, P. Michael; Borak, Jonathan; Cai, Lu; Cedergreen, Nina; Cherian, M. George; Chiueh, Chuang C.; Clarkson, Thomas W.; Cook, Ralph R.; Diamond, David M.; Doolittle, David J.; Dorato, Michael A.; Duke, Stephen O.; Feinendegen, Ludwig; Gardner, Donald E.; Hart, Ronald W.; Hastings, Kenneth L.; Hayes, A. Wallace; Hoffmann, George R.; Ives, John A.; Jaworowski, Zbigniew; Johnson, Thomas E.; Jonas, Wayne B.; Kaminski, Norbert E.; Keller, John G.; Klaunig, James E.; Knudsen, Thomas B.; Kozumbo, Walter J.; Lettieri, Teresa; Liu, Shu-Zheng; Maisseu, Andre; Maynard, Kenneth I.; Masoro, Edward J.; McClellan, Roger O.; Mehendale, Harihara M.; Mothersill, Carmel; Newlin, David B.; Nigg, Herbert N.; Oehme, Frederick W.; Phalen, Robert F.; Philbert, Martin A.; Rattan, Suresh I.S.; Riviere, Jim E.; Rodricks, Joseph; Sapolsky, Robert M.; Scott, Bobby R.; Seymour, Colin; Sinclair, David A.; Smith-Sonneborn, Joan; Snow, Elizabeth T.; Spear, Linda; Stevenson, Donald E.; Thomas, Yolene; Tubiana, Maurice; Williams, Gary M.; Mattson, Mark P.

    2007-01-01

    Many biological subdisciplines that regularly assess dose-response relationships have identified an evolutionarily conserved process in which a low dose of a stressful stimulus activates an adaptive response that increases the resistance of the cell or organism to a moderate to severe level of stress. Due to a lack of frequent interaction among scientists in these many areas, there has emerged a broad range of terms that describe such dose-response relationships. This situation has become problematic because the different terms describe a family of similar biological responses (e.g., adaptive response, preconditioning, hormesis), adversely affecting interdisciplinary communication, and possibly even obscuring generalizable features and central biological concepts. With support from scientists in a broad range of disciplines, this article offers a set of recommendations we believe can achieve greater conceptual harmony in dose-response terminology, as well as better understanding and communication across the broad spectrum of biological disciplines

  13. Psychophysiological responses to stress after stress management training in patients with rheumatoid arthritis.

    NARCIS (Netherlands)

    Brouwer, S.J.M. de; Kraaimaat, F.W.; Sweep, F.C.; Donders, A.R.T.; Eijsbouts, A.; Koulil, S. van; Riel, P.L.C.M. van; Evers, A.W.M.

    2011-01-01

    BACKGROUND: Stress management interventions may prove useful in preventing the detrimental effects of stress on health. This study assessed the effects of a stress management intervention on the psychophysiological response to stress in patients with rheumatoid arthritis (RA). METHODS: Seventy-four

  14. Extraversion and cardiovascular responses to recurrent social stress: Effect of stress intensity.

    Science.gov (United States)

    Lü, Wei; Xing, Wanying; Hughes, Brian M; Wang, Zhenhong

    2017-10-28

    The present study sought to establish whether the effects of extraversion on cardiovascular responses to recurrent social stress are contingent on stress intensity. A 2×5×1 mixed-factorial experiment was conducted, with social stress intensity as a between-subject variable, study phase as a within-subject variable, extraversion as a continuous independent variable, and cardiovascular parameter (HR, SBP, DBP, or RSA) as a dependent variable. Extraversion (NEO-FFI), subjective stress, and physiological stress were measured in 166 undergraduate students randomly assigned to undergo moderate (n=82) or high-intensity (n=84) social stress (a public speaking task with different levels of social evaluation). All participants underwent continuous physiological monitoring while facing two consecutive stress exposures distributed across five laboratory phases: baseline, stress exposure 1, post-stress 1, stress exposure 2, post-stress 2. Results indicated that under moderate-intensity social stress, participants higher on extraversion exhibited lesser HR reactivity to stress than participants lower on extraversion, while under high-intensity social stress, they exhibited greater HR, SBP, DBP and RSA reactivity. Under both moderate- and high-intensity social stress, participants higher on extraversion exhibited pronounced SBP and DBP response adaptation to repeated stress, and showed either better degree of HR recovery or greater amount of SBP and DBP recovery after stress. These findings suggest that individuals higher on extraversion exhibit physiological flexibility to cope with social challenges and benefit from adaptive cardiovascular responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Generalized Unsafety Theory of Stress: Unsafe Environments and Conditions, and the Default Stress Response

    Directory of Open Access Journals (Sweden)

    Jos F. Brosschot

    2018-03-01

    Full Text Available Prolonged physiological stress responses form an important risk factor for disease. According to neurobiological and evolution-theoretical insights the stress response is a default response that is always “on” but inhibited by the prefrontal cortex when safety is perceived. Based on these insights the Generalized Unsafety Theory of Stress (GUTS states that prolonged stress responses are due to generalized and largely unconsciously perceived unsafety rather than stressors. This novel perspective necessitates a reconstruction of current stress theory, which we address in this paper. We discuss a variety of very common situations without stressors but with prolonged stress responses, that are not, or not likely to be caused by stressors, including loneliness, low social status, adult life after prenatal or early life adversity, lack of a natural environment, and less fit bodily states such as obesity or fatigue. We argue that in these situations the default stress response may be chronically disinhibited due to unconsciously perceived generalized unsafety. Also, in chronic stress situations such as work stress, the prolonged stress response may be mainly caused by perceived unsafety in stressor-free contexts. Thus, GUTS identifies and explains far more stress-related physiological activity that is responsible for disease and mortality than current stress theories.

  16. Generalized Unsafety Theory of Stress: Unsafe Environments and Conditions, and the Default Stress Response.

    Science.gov (United States)

    Brosschot, Jos F; Verkuil, Bart; Thayer, Julian F

    2018-03-07

    Prolonged physiological stress responses form an important risk factor for disease. According to neurobiological and evolution-theoretical insights the stress response is a default response that is always "on" but inhibited by the prefrontal cortex when safety is perceived. Based on these insights the Generalized Unsafety Theory of Stress (GUTS) states that prolonged stress responses are due to generalized and largely unconsciously perceived unsafety rather than stressors. This novel perspective necessitates a reconstruction of current stress theory, which we address in this paper. We discuss a variety of very common situations without stressors but with prolonged stress responses, that are not, or not likely to be caused by stressors, including loneliness, low social status, adult life after prenatal or early life adversity, lack of a natural environment, and less fit bodily states such as obesity or fatigue. We argue that in these situations the default stress response may be chronically disinhibited due to unconsciously perceived generalized unsafety. Also, in chronic stress situations such as work stress, the prolonged stress response may be mainly caused by perceived unsafety in stressor-free contexts. Thus, GUTS identifies and explains far more stress-related physiological activity that is responsible for disease and mortality than current stress theories.

  17. Stress tolerances of nullmutants of function-unknown genes encoding menadione stress-responsive proteins in Aspergillus nidulans.

    Science.gov (United States)

    Leiter, Éva; Bálint, Mihály; Miskei, Márton; Orosz, Erzsébet; Szabó, Zsuzsa; Pócsi, István

    2016-07-01

    A group of menadione stress-responsive function-unkown genes of Aspergillus nidulans (Locus IDs ANID_03987.1, ANID_06058.1, ANID_10219.1, and ANID_10260.1) was deleted and phenotypically characterized. Importantly, comparative and phylogenetic analyses of the tested A. nidulans genes and their orthologs shed light only on the presence of a TANGO2 domain with NRDE protein motif in the translated ANID_06058.1 gene but did not reveal any recognizable protein-encoding domains in other protein sequences. The gene deletion strains were subjected to oxidative, osmotic, and metal ion stress and, surprisingly, only the ΔANID_10219.1 mutant showed an increased sensitivity to 0.12 mmol l(-1) menadione sodium bisulfite. The gene deletions affected the stress sensitivities (tolerances) irregularly, for example, some strains grew more slowly when exposed to various oxidants and/or osmotic stress generating agents, meanwhile the ΔANID_10260.1 mutant possessed a wild-type tolerance to all stressors tested. Our results are in line with earlier studies demonstrating that the deletions of stress-responsive genes do not confer necessarily any stress-sensitivity phenotypes, which can be attributed to compensatory mechanisms based on other elements of the stress response system with overlapping functions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Contact stress analysis of involute spur gear by Finite Element ...

    African Journals Online (AJOL)

    In this paper the contact stress in rolling-sliding contact of involute spur gear and the effect of coefficient of friction was analyzed. To achieve this, first, three dimensional involute spur gear pairs were developed in Solid works 2012 Premium and the 3D model was exported to ANSYS workbench 14.5. Next, the analysis was ...

  19. Finite element study of growth stress formation in wood and related distortion of sawn timber

    DEFF Research Database (Denmark)

    Ormarsson, Sigurdur; Dahlblom, O.; Johansson, M.

    2009-01-01

    -related stresses in wood (drying distortions) and growth-related stresses (distortions appearing when logs are split up to timber boards by sawing). To get more knowledge on how these distortions can be reduced in wooden products, there is a need for improved understanding of this material behaviour through good...... numerical tools developed from empirical data. A three-dimensional finite element board distortion model developed by Ormarsson (1999) has been extended to include the influence of growth stresses by incorporating a one-dimensional finite element growth stress model developed here. The growth stress model...... is formulated as an axisymmetric general plane strain model where material for all new annual rings is progressively added to the tree during the analysis. The simulation results presented include how stresses are progressively generated during the tree growth, distortions related to the redistribution...

  20. Extension to linear dynamics for hybrid stress finite element formulation based on additional displacements

    Science.gov (United States)

    Sumihara, K.

    Based upon legitimate variational principles, one microscopic-macroscopic finite element formulation for linear dynamics is presented by Hybrid Stress Finite Element Method. The microscopic application of Geometric Perturbation introduced by Pian and the introduction of infinitesimal limit core element (Baby Element) have been consistently combined according to the flexible and inherent interpretation of the legitimate variational principles initially originated by Pian and Tong. The conceptual development based upon Hybrid Finite Element Method is extended to linear dynamics with the introduction of physically meaningful higher modes.

  1. The relationship between beginning teachers' stress causes, stress responses, teaching behaviour and attrition

    NARCIS (Netherlands)

    Harmsen, Ruth; Lorenz, Michelle; Maulana, Ridwan; van Veen, Klaas

    2018-01-01

    In this study, the relationships between beginning teachers’ perceived stress causes, stress responses, observed teaching behaviour and attrition is investigated employing structural equation modelling (SEM). A total of 143 BTs were surveyed using the Questionnaire on the Experience and Evaluation

  2. Plane stress analysis of wood members using isoparametric finite elements, a computer program

    Science.gov (United States)

    Gary D. Gerhardt

    1983-01-01

    A finite element program is presented which computes displacements, strains, and stresses in wood members of arbitrary shape which are subjected to plane strain/stressloading conditions. This report extends a program developed by R. L. Taylor in 1977, by adding both the cubic isoparametric finite element and the capability to analyze nonisotropic materials. The...

  3. Temperature and stress distribution in pressure vessel by the boundary element method

    International Nuclear Information System (INIS)

    Alujevic, A.; Apostolovic, D.

    1990-01-01

    The aim of this paper is to demonstrate the applicability of boundary element method for the solution of temperatures and thermal stresses in the body of reactor pressure vessel of the NPP Krsko . In addition to the theory of boundary elements for thermo-elastic continua (2D, 3D) results are given of a numerically evaluated meridional cross-section. (author)

  4. In Silico Analysis of Mobilome Response to Salt Stress in Phaseolus vulgaris L.

    OpenAIRE

    Behcet İNAL

    2018-01-01

    Common bean is an important legume that grown and consumed as animal feed and for human nutrition. It is also an important source of protein in developing countries. Transposable elements (TEs) constitute a large part of the genome in various eukaryotic species. TE was described as garbage DNA by researchers for a long time. Recently, it has been found that TEs can move near stress response genes and they have known effects on plant resistance to diverse stresses. With the acquisi...

  5. In Silico Analysis of Mobilome Response to Salt Stress in Phaseolus vulgaris L.

    OpenAIRE

    İNAL, Behcet

    2018-01-01

    Common bean is an important legume that grownand consumed as animal feed and for human nutrition. It is also an importantsource of protein in developing countries. Transposable elements (TEs)constitute a large part of the genome in various eukaryotic species. TE wasdescribed as garbage DNA by researchers for a long time. Recently, it has beenfound that TEs can move near stress response genes and they have known effectson plant resistance to diverse stresses. With the acquisition of common bea...

  6. Stress

    Science.gov (United States)

    ... can be life-saving. But chronic stress can cause both physical and mental harm. There are at least three different types of stress: Routine stress related to the pressures of work, family, and other daily responsibilities Stress brought about ...

  7. Finite element analysis of residual stress in plasma-sprayed ceramic

    International Nuclear Information System (INIS)

    Mullen, R.L.; Hendricks, R.C.; McDonald, G.

    1985-01-01

    Residual stress in a ZrO 2 -Y 2 O 3 ceramic coating resulting from the plasma spraying operation is calculated. The calculations were done using the finite element method. Both thermal and mechanical analysis were performed. The resulting residual stress field was compared to the measurements obtained by Hendricks and McDonald. Reasonable agreement between the predicted and measured moment occurred. However, the resulting stress field is not in pure bending

  8. Stochastic thermal stress analysis of clad cylindrical fuel elements

    International Nuclear Information System (INIS)

    Barrett, P.R.

    1975-01-01

    After a review of deterministic elastic thermal stress analysis by means of the displacement method for a cylindrical system in which the temperature distribution is not only radially variable but azimuthally and axially variable also, a method is shown for the determination of the statistical moments of the stress components when (a) the outer boundary of the cladding is a stochastic quantity, and (b) the uncertainties in the elastic and thermal constants of the materials and in the magnitude of the heat generation term are taken into account. A typical model is proposed for describing the statistics of the outer radius of the cladding which is a stochastic variable owing to uncertainties produced by the extrusion process. The theory is illustrated by means of a simple example by examining a meaningful reliability index and the relative importance of each of the uncertainties. (Auth.)

  9. Spectral response of multi-element silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ludewigt, B.A.; Rossington, C.S.; Chapman, K. [Univ. of California, Berkeley, CA (United States)

    1997-04-01

    Multi-element silicon strip detectors, in conjunction with integrated circuit pulse-processing electronics, offer an attractive alternative to conventional lithium-drifted silicon Si(Li) and high purity germanium detectors (HPGe) for high count rate, low noise synchrotron x-ray fluorescence applications. One of the major differences between the segmented Si detectors and the commercially available single-element Si(Li) or HPGe detectors is that hundreds of elements can be fabricated on a single Si substrate using standard silicon processing technologies. The segmentation of the detector substrate into many small elements results in very low noise performance at or near, room temperature, and the count rate of the detector is increased many-fold due to the multiplication in the total number of detectors. Traditionally, a single channel of detector with electronics can handle {approximately}100 kHz count rates while maintaining good energy resolution; the segmented detectors can operate at greater than MHz count rates merely due to the multiplication in the number of channels. One of the most critical aspects in the development of the segmented detectors is characterizing the charge sharing and charge loss that occur between the individual detector strips, and determining how these affect the spectral response of the detectors.

  10. Finite element simulation of impact response of wire mesh screens

    Directory of Open Access Journals (Sweden)

    Wang Caizheng

    2015-01-01

    Full Text Available In this paper, the response of wire mesh screens to low velocity impact with blunt objects is investigated using finite element (FE simulation. The woven wire mesh is modelled with homogeneous shell elements with equivalent smeared mechanical properties. The mechanical behaviour of the woven wire mesh was determined experimentally with tensile tests on steel wire mesh coupons to generate the data for the smeared shell material used in the FE. The effects of impacts with a low mass (4 kg and a large mass (40 kg providing the same impact energy are studied. The joint between the wire mesh screen and the aluminium frame surrounding it is modelled using contact elements with friction between the corresponding elements. Damage to the screen of different types compromising its structural integrity, such as mesh separation and pulling out from the surrounding frame is modelled. The FE simulation is validated with results of impact tests conducted on woven steel wire screen meshes.

  11. Prediction of elastic-plastic response of structural elements subjected to cyclic loading

    International Nuclear Information System (INIS)

    El Haddad, M.H.; Samaan, S.

    1985-01-01

    A simplified elastic-plastic analysis is developed to predict stress strain and force deformation response of structural metallic elements subjected to irregular cyclic loadings. In this analysis a simple elastic-plastic method for predicting the skeleton force deformation curve is developed. In this method, elastic and fully plastic solutions are first obtained for unknown quantities, such as deflection or local strains. Elastic and fully plastic contributions are then combined to obtain an elastic-plastic solution. The skeleton curve is doubled to establish the shape of the hysteresis loop. The complete force deformation response can therefore be simulated through reversal by reversal in accordance with hysteresis looping and material memory. Several examples of structural elements with various cross sections made from various materials and subjected to irregular cyclic loadings, are analysed. A close agreement is obtained between experimental results found in the literature and present predictions. (orig.)

  12. The effect of loading time on flexible pavement dynamic response: a finite element analysis

    Science.gov (United States)

    Yin, Hao; Solaimanian, Mansour; Kumar, Tanmay; Stoffels, Shelley

    2007-12-01

    Dynamic response of asphalt concrete (AC) pavements under moving load is a key component for accurate prediction of flexible pavement performance. The time and temperature dependency of AC materials calls for utilizing advanced material characterization and mechanistic theories, such as viscoelasticity and stress/strain analysis. In layered elastic analysis, as implemented in the new Mechanistic-Empirical Pavement Design Guide (MEPDG), the time dependency is accounted for by calculating the loading times at different AC layer depths. In this study, the time effect on pavement response was evaluated by means of the concept of “pseudo temperature.” With the pavement temperature measured from instrumented thermocouples, the time and temperature dependency of AC materials was integrated into one single factor, termed “effective temperature.” Via this effective temperature, pavement responses under a transient load were predicted through finite element analysis. In the finite element model, viscoelastic behavior of AC materials was characterized through relaxation moduli, while the layers with unbound granular material were assumed to be in an elastic mode. The analysis was conducted for two different AC mixtures in a simplified flexible pavement structure at two different seasons. Finite element analysis results reveal that the loading time has a more pronounced impact on pavement response in the summer for both asphalt types. The results indicate that for reasonable prediction of dynamic response in flexible pavements, the effect of the depth-dependent loading time on pavement temperature should be considered.

  13. Long interspersed nuclear element-1 hypomethylation and oxidative stress: correlation and bladder cancer diagnostic potential.

    Directory of Open Access Journals (Sweden)

    Maturada Patchsung

    Full Text Available Although, increased oxidative stress and hypomethylation of long interspersed nuclear element-1 (LINE-1 associate with bladder cancer (BCa development, the relationship between these alterations is unknown. We evaluated the oxidative stress and hypomethylation of the LINE-1 in 61 BCa patients and 45 normal individuals. To measure the methylation levels and to differentiate the LINE-1 loci into hypermethylated, partially methylated and hypomethylated, peripheral blood cells, urinary exfoliated cells and cancerous tissues were evaluated by combined bisulfite restriction analysis PCR. The urinary total antioxidant status (TAS and plasma protein carbonyl content were determined. The LINE-1 methylation levels and patterns, especially hypomethylated loci, in the blood and urine cells of the BCa patients were different from the levels and patterns in the healthy controls. The urinary TAS was decreased, whereas the plasma protein carbonyl content was increased in the BCa patients relative to the controls. A positive correlation between the methylation of LINE-1 in the blood-derived DNA and urinary TAS was found in both the BCa and control groups. The urinary hypomethylated LINE-1 loci and the plasma protein carbonyl content provided the best diagnostic potential for BCa prediction. Based on post-diagnostic samples, the combination test improved the diagnostic power to a sensitivity of 96% and a specificity of 96%. In conclusion, decreased LINE-1 methylation is associated with increased oxidative stress both in healthy and BCa subjects across the various tissue types, implying a dose-response association. Increases in the LINE-1 hypomethylation levels and the number of hypomethylated loci in both the blood- and urine-derived cells and increase in the oxidative stress were found in the BCa patients. The combination test of the urinary hypomethylated LINE-1 loci and the plasma protein carbonyl content may be useful for BCa screening and monitoring of

  14. Propofol Effect on Stress Response and Free Radicals in Patient during Surgery and Sedation Procedure

    Directory of Open Access Journals (Sweden)

    Theresia Monica Rahardjo

    2015-12-01

    Full Text Available BACKGROUND: Propofol is an intravenous anesthetic used worldwide as an anesthesia induction and maintenance agent. Propofol also used as sedation agent in Intensive Care Unit (ICU. Despite it’s usual anesthesia properties, propofol has an unique pharmacologic characteristic, especially as antioxidant and stress response reduction. These advantages suggested propofol has positive effects when used as an anesthesia agent in surgery or sedation in ICU in conditions when high stress and free radical level are released. CONTENT: Stress response and free radical can be elevated in various conditions including surgery or during care in ICU, especially critical ill patient. Cortisol is a major stress hormone that influences metabolism, cardiovascular and central nervous system, either in acute or chronic phase. Oxidative stress was marked by free radical elevation called Radical Oxygen Species (ROS. Combination of both elements (cortisol and ROS can worsen patient condition. Propofol with anti-stress and antioxidant properties could be used to reduce stress response and attenuate free radical level in order to improve patient condition. SUMMARY: The anti-stress and antioxidant properties of Propofol are interesting, because these benefits can be added as adjunctive therapy when propofol was used as an anesthetic agent in surgery and a sedation in ICU. KEYWORDS: propofol, stress response, antioxidant.

  15. Proteomic analysis of cold stress responses in tobacco seedlings ...

    African Journals Online (AJOL)

    Cold stress is one of the major abiotic stresses limiting the productivity and the geographical distribution of many important crops. To gain a better understanding of cold stress responses in tobacco (Nicotiana tabacum), we carried out a comparative proteomic analysis. Five-week-old tobacco seedlings were treated at 4°C ...

  16. gender and school types as factors responsible for job stress

    African Journals Online (AJOL)

    Emeka Egbochuku

    public Universities should be looked into so that all factors responsible for stress might be .... universities in Malaysia, university academic staffs faced more problems .... adjustment with different coping styles. .... in college students: The role of rumination and stress. ... International Journal of Stress Management, 8, 285–29.

  17. Associations between circadian and stress response cortisol in children.

    Science.gov (United States)

    Simons, Sterre S H; Cillessen, Antonius H N; de Weerth, Carolina

    2017-01-01

    Hypothalamic-pituitary-adrenal (HPA) axis functioning is characterized by the baseline production of cortisol following a circadian rhythm, as well as by the superimposed production of cortisol in response to a stressor. However, it is relatively unknown whether the basal cortisol circadian rhythm is associated with the cortisol stress response in children. Since alterations in cortisol stress responses have been associated with mental and physical health, this study investigated whether the cortisol circadian rhythm is associated with cortisol stress responses in 6-year-old children. To this end, 149 normally developing children (M age  = 6.09 years; 70 girls) participated in an innovative social evaluative stress test that effectively provoked increases in cortisol. To determine the cortisol stress response, six cortisol saliva samples were collected and two cortisol stress response indices were calculated: total stress cortisol and cortisol stress reactivity. To determine children's cortisol circadian rhythm eight cortisol circadian samples were collected during two days. Total diurnal cortisol and diurnal cortisol decline scores were calculated as indices of the cortisol circadian rhythm. Hierarchical regression analyses indicated that higher total diurnal cortisol as well as a smaller diurnal cortisol decline, were both uniquely associated with higher total stress cortisol. No associations were found between the cortisol circadian rhythm indices and cortisol stress reactivity. Possible explanations for the patterns found are links with children's self-regulatory capacities and parenting quality.

  18. Approaches to modeling the development of physiological stress responsivity.

    Science.gov (United States)

    Hinnant, J Benjamin; Philbrook, Lauren E; Erath, Stephen A; El-Sheikh, Mona

    2018-05-01

    Influential biopsychosocial theories have proposed that some developmental periods in the lifespan are potential pivot points or opportunities for recalibration of stress response systems. To date, however, there have been few longitudinal studies of physiological stress responsivity and no studies comparing change in physiological stress responsivity across developmental periods. Our goals were to (a) address conceptual and methodological issues in studying the development of physiological stress responsivity within and between individuals, and (b) provide an exemplar for evaluating development of responsivity to stress in the parasympathetic nervous system, comparing respiratory sinus arrhythmia (RSA) responsivity from middle to late childhood with middle to late adolescence. We propose the use of latent growth modeling of stress responsivity that includes time-varying covariates to account for conceptual and methodological issues in the measurement of physiological stress responsivity. Such models allow researchers to address key aspects of developmental sensitivity including within-individual variability, mean level change over time, and between-individual variability over time. In an empirical example, we found significant between-individual variability over time in RSA responsivity to stress during middle to late childhood but not during middle to late adolescence, suggesting that childhood may be a period of greater developmental sensitivity at the between-individual level. © 2017 Society for Psychophysiological Research.

  19. Managerial Stress Management as an Asset in People Management Being a Marketing Strategy Element

    Directory of Open Access Journals (Sweden)

    Branislav Radnović

    2013-07-01

    Full Text Available Any service organization operating under turbulent market conditions must have a successful marketing strategy. A successful marketing strategy implies proper management of all elements within a marketing mix: service package, price, distribution channels, promotion, service process, service ambience and people. People, i.e. primarily the employed within an organization are one of the elements that must be appropriately considered when drawing up and implementing a marketing strategy. Proper personnel management must nowadays include good management of managerial stress. Adequate managerial stress management is preconditioned by successful identification of sources of managerial stress. The aim of this paper is to present the importance of proper and timely identification of sources of managerial stress. The paper demonstrates the carried out scientific research based on a method that is universal for all types of organizations, regardless of their type and activity, in order to precisely identify the sources of managerial stress and define its proper management, as an asset in people management, which is an element of marketing strategy. The research was conducted using a survey, sampling 100 employees in 13 organizations throughout Serbia. Survey results indicated that the most important sources of managerial stress are: participation in decision-making, selection process, earnings, and time and deadlines pressure. Therefore, recommendations are provided for directing identified sources of managerial stress towards successful management of people as an element of marketing strategy.

  20. The stress response system of proteins: Implications for bioreactor scaleup

    Science.gov (United States)

    Goochee, Charles F.

    1988-01-01

    Animal cells face a variety of environmental stresses in large scale bioreactors, including periodic variations in shear stress and dissolved oxygen concentration. Diagnostic techniques were developed for identifying the particular sources of environmental stresses for animal cells in a given bioreactor configuration. The mechanisms by which cells cope with such stresses was examined. The individual concentrations and synthesis rates of hundreds of intracellular proteins are affected by the extracellular environment (medium composition, dissolved oxygen concentration, ph, and level of surface shear stress). Techniques are currently being developed for quantifying the synthesis rates and concentrations of the intracellular proteins which are most sensitive to environmental stress. Previous research has demonstrated that a particular set of stress response proteins are synthesized by mammalian cells in response to temperature fluctuations, dissolved oxygen deprivation, and glucose deprivation. Recently, it was demonstrated that exposure of human kidney cells to high shear stress results in expression of a completely distinct set of intracellular proteins.

  1. Adaptive Responses to Thermal Stress in Mammals

    OpenAIRE

    Yasser Lenis Sanin; Angélica María Zuluaga Cabrera; Ariel Marcel Tarazona Morales

    2015-01-01

    The environment animals have to cope with is a combination of natural factors such as temperature. Extreme changes in these factors can alter homeostasis, which can lead to thermal stress. This stress can be due to either high temperatures or low temperatures. Energy transference for thermoregulation in homoeothermic animals occurs through several mechanisms: conduction, convection, radiation and evaporation. When animals are subjected to thermal stress, physiological mechanisms are activated...

  2. Proteomic studies of drought stress response in Fabaceae

    Directory of Open Access Journals (Sweden)

    Tanja ZADRAŽNIK

    2015-11-01

    Full Text Available Drought stress is a serious threat to crop production that influences plant growth and development and subsequently causes reduced quantity and quality of the yield. Plant stress induces changes in cell metabolism, which includes differential expression of proteins. Proteomics offer a powerful approach to analyse proteins involved in drought stress response of plants. Analyses of changes in protein abundance of legumes under drought stress are very important, as legumes play an important role in human and animal diet and are often exposed to drought. The presented results of proteomic studies of selected legumes enable better understanding of molecular mechanisms of drought stress response. The study of drought stress response of plants with proteomic approach may contribute to the development of potential drought-response markers and to the development of drought-tolerant cultivars of different legume crop species.

  3. Psychophysiological responses to stress after stress management training in patients with rheumatoid arthritis.

    Directory of Open Access Journals (Sweden)

    Sabine J M de Brouwer

    Full Text Available BACKGROUND: Stress management interventions may prove useful in preventing the detrimental effects of stress on health. This study assessed the effects of a stress management intervention on the psychophysiological response to stress in patients with rheumatoid arthritis (RA. METHODS: Seventy-four patients with RA, who were randomly assigned to either a control group or a group that received short-term stress management training, performed a standardized psychosocial stress task (Trier Social Stress Test; TSST 1 week after the stress management training and at a 9-week follow-up. Psychological and physical functioning, and the acute psychophysiological response to the stress test were assessed. RESULTS: Patients in the intervention group showed significantly lower psychological distress levels of anxiety after the training than did the controls. While there were no between-group differences in stress-induced tension levels, and autonomic (α-amylase or endocrine (cortisol responses to the stress test 1 week after the intervention, levels of stress-induced tension and cortisol were significantly lower in the intervention group at the 9-week follow-up. Overall, the response to the intervention was particularly evident in a subgroup of patients with a psychological risk profile. CONCLUSION: A relatively short stress management intervention can improve psychological functioning and influences the psychophysiological response to stress in patients with RA, particularly those psychologically at risk. These findings might help understand how stress can affect health and the role of individual differences in stress responsiveness. TRIAL REGISTRATION: TrialRegister.nl NTR1193.

  4. Stress and Deformation Analysis in Base Isolation Elements Using the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Claudiu Iavornic

    2011-01-01

    Full Text Available In Modern tools as Finite Element Method can be used to study the behavior of elastomeric isolation systems. The simulation results obtained in this way provide a large series of data about the behavior of elastomeric isolation bearings under different types of loads and help in taking right decisions regarding geometrical optimizations needed for improve such kind of devices.

  5. Transcriptome Responses to Combinations of Stresses in Arabidopsis

    DEFF Research Database (Denmark)

    Rasmussen, Simon; Barah, Pankaj; Suarez-Rodriguez, Maria Cristina

    2013-01-01

    In Arabidopsis, the response of the majority of the genes cannot be predicted from single stress experiments and only a small fraction of the genes have potential antagonistic responses, indicating that plants have evolved to cope with combinations of stresses and therefore may be bred to endure...

  6. Perceived stress at work is associated with attenuated DHEA-S response during acute psychosocial stress.

    Science.gov (United States)

    Lennartsson, Anna-Karin; Theorell, Töres; Kushnir, Mark M; Bergquist, Jonas; Jonsdottir, Ingibjörg H

    2013-09-01

    Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEA-S) have been suggested to play a protective role during acute psychosocial stress, because they act as antagonists to the effects of the stress hormone cortisol. This study aims to investigate whether prolonged psychosocial stress, measured as perceived stress at work during the past week, is related to the capacity to produce DHEA and DHEA-S during acute psychosocial stress. It also aims to investigate whether prolonged perceived stress affects the balance between production of cortisol and DHEA-S during acute psychosocial stress. Thirty-six healthy subjects (19 men and 17 women, mean age 37 years, SD 5 years), were included. Perceived stress at work during the past week was measured by using the Stress-Energy (SE) Questionnaire. The participants were divided into three groups based on their mean scores; Low stress, Medium stress and High stress. The participants underwent the Trier Social Stress Test (TSST) and blood samples were collected before, directly after the stress test, and after 30 min of recovery. General Linear Models were used to investigate if the Medium stress group and the High stress group differ regarding stress response compared to the Low stress group. Higher perceived stress at work was associated with attenuated DHEA-S response during acute psychosocial stress. Furthermore, the ratio between the cortisol production and the DHEA-S production during the acute stress test were higher in individuals reporting higher perceived stress at work compared to individuals reporting low perceived stress at work. There was no statistical difference in DHEA response between the groups. This study shows that prolonged stress, measured as perceived stress at work during the past week, seems to negatively affect the capacity to produce DHEA-S during acute stress. Given the protective functions of DHEA-S, attenuated DHEA-S production during acute stress may lead to higher risk for adverse

  7. SAFE-3D, Stress Analysis of 3-D Composite Structure by Finite Elements Method

    International Nuclear Information System (INIS)

    Cornell, D.C.; Jadhav, K.; Crowell, J.S.

    1969-01-01

    1 - Description of problem or function: SAFE-3D is a finite-element program for the three-dimensional elastic analysis of heterogeneous composite structures. The program uses the following types of finite elements - (1) tetrahedral elements to represent the continuum, (2) triangular plane stress membrane elements to represent inner liner or outer case, and (3) uniaxial tension-compression elements to represent internal reinforcement. The structure can be of arbitrary geometry and have any distribution of material properties, temperatures, surface loadings, and boundary conditions. 2 - Method of solution: The finite-element variational method is used. Equilibrium equations are solved by the alternating component iterative method. 3 - Restrictions on the complexity of the problem - Maxima of: 5000 nodes; 16000 elements. The program cannot be applied to incompressible solids and is not recommended for Poisson's ratio in the range of nu between 0.495 and 0.5

  8. Dynamic, large-deflection, inelastic and thermal stress analysis by the finite element method

    International Nuclear Information System (INIS)

    Haisler, W.E.; Stricklin, J.A.

    1975-01-01

    A finite element theory and computer program have been developed for predicting the dynamic, large displacement, inelastic and thermal response of stiffened and layered structures. The dependence of material properties on temperature is explicitly accounted for and any arbitrary, transient mechanical or thermal load history is allowed. The shell may have internal or external stiffeners and be constructed with up to three layers. The equations of motion are developed by using the pseudo force approach to represent all nonlinearities and are then solved by using either the Houbolt method or central differences. Moderately large rotations are allowed. The program is based on an incremental theory of plasticity using the Von Mises yield condition and associated flow rule. The post yield or work-hardening behavior is idealized with either the isotropic hardening or mechanical sublayer models. Two models are utilized since it has been found through comparison with experimental results that isotropic hardening is best for simple loading conditions while the mechanical sublayer model is better for reverse and cyclic loading. Strain-rate effects are also accounted for in the program by using a power-law type model based on the strain rate. The dependence of material properties on temperature is taken into account in the pseudo forces. Young's modulus, Poisson's ratio, thermal coefficient of expansion, the yield stress, and the entire stress strain curve are treated as functions of the applied temperature. Containment vessels subjected to transient and shock-type mechanical and thermal loads have been analyzed

  9. The temporal dynamics of the stress response

    NARCIS (Netherlands)

    Koolhaas, J.M.; Meerlo, P; de Boer, S.F.; Strubbe, J.H.; Bohus, B.G J

    1997-01-01

    This paper summarises the available evidence that failure of defense mechanisms in (semi)-natural social groups of animals may lead to serious forms of stress pathology. Hence the study of social stress may provide animal models with a high face validity. However, most of the animal models of human

  10. Parametric study for welding residual stresses in nozzle of nuclear power plants using finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Wan Jae; Lee, Kyoung Soo; Kim, Tae Ryong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Song, Tae Kwang [Korea Univ., Seoul (Korea, Republic of)

    2008-07-01

    Distribution of welding residual stresses are mainly characterized by degrees and frequencies of thermal loads applied to materials. However, other effects as component size and clamping condition can also affect stress distributions to a certain extent thus careful manipulation of these parameters based on clear understanding of how they affect residual stresses distributions and why can be additional measure to mitigate residual stresses. This paper discusses aforementioned issues for the case of safety and relief nozzle in nuclear power plant through finite element analysis.

  11. Different finite element techniques to predict welding residual stresses in aluminum alloy plates

    International Nuclear Information System (INIS)

    Moein, Hadi; Sattari-Far, Iradj

    2014-01-01

    This study is a 3D thermomechanical finite element (FE) analysis of a single-pass and butt-welded work-hardened aluminum (Al) 5456 plates. It aims to validate the use of FE welding simulations to predict residual stress states in assessing the integrity of welded components. The predicted final residual stresses in the plate from the FE simulations are verified through comparison with experimental measurements. Three techniques are used to simulate the welding process. In the first two approaches, welding deposition is applied by using element birth and interaction techniques. In the third approach, the entire weld zone is simultaneously deposited. Results show a value at approximately the yield strength for longitudinal residual stresses of the welded center of the butt-welded Al alloy plates with a thickness of 2 mm. Considering the application of a comprehensive heat source, along with heat loss modeling and the temperature dependent properties of the material, the approach without deposition predicts a reasonable distribution of residual stresses. However, the element birth and interaction techniques, compared with the no-deposit technique, provide more accurate results in calculating residual stresses. Furthermore, the element interaction technique, compared with the element birth technique, exhibits higher efficiency and flexibility in modeling the deposition of welded metals as well as less modeling cost.

  12. Psychological and hormonal stress response patterns during a blood donation.

    Science.gov (United States)

    Hoogerwerf, M D; Veldhuizen, I J T; Merz, E-M; de Kort, W L A M; Frings-Dresen, M H W; Sluiter, J K

    2017-11-01

    Donating blood has been associated with increased stress responses, with scarce evidence indicating that levels of psychological and hormonal stress are higher pre-donation than post-donation. We investigated whether a blood donation induces psychological and/or hormonal stress during the course of a blood donation, and whether responses differed between men and women, first-time and experienced donors and donors with high or low non-acute stress. In 363 donors, psychological (donation-stress and arousal) and hormonal (cortisol) stress were measured by questionnaire and salivary sample at seven key moments during a routine donation. Non-acute stress was assessed by a questionnaire. Repeated measurement analyses were performed, using the last measurement (leaving the donation center) as reference value. Levels of donation-stress, arousal and cortisol were significantly higher during donation than when leaving the donation center. When compared with men, women reported higher levels of donation-stress and cortisol in the first part of the visit. When compared with first-time donors, experienced donors reported lower levels of donation-stress during the first part of the visit, and higher levels of arousal but less reactivity throughout the visit. When compared to donors high on non-acute stress, donors low on non-acute stress reported lower levels of donation-stress during the first part of the visit, and showed less cortisol reactivity throughout the visit. Donating blood influences psychological and hormonal stress response patterns. The response patterns differ between women and men, first-time and experienced donors and between donors high and low on non-acute stress. © 2017 International Society of Blood Transfusion.

  13. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota; Julkowska, Magdalena; Montero Sommerfeld, Hector; Horst, Anneliek ter; Haring, Michel A; Testerink, Christa

    2016-01-01

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  14. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota

    2016-05-20

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  15. Response inhibition and cognitive appraisal in clients with acute stress disorder and posttraumatic stress disorder.

    Science.gov (United States)

    Abolghasemi, Abass; Bakhshian, Fereshteh; Narimani, Mohammad

    2013-08-01

    The purpose of the present study was to compare response inhibition and cognitive appraisal in clients with acute stress disorder, clients with posttraumatic stress disorder, and normal individuals. This was a comparative study. The sample consisted of 40 clients with acute stress disorder, 40 patients with posttraumatic stress disorder, and 40 normal individuals from Mazandaran province selected through convenience sampling method. Data were collected using Composite International Diagnostic Interview, Stroop Color-Word Test, Posttraumatic Cognitions Inventory, and the Impact of Event Scale. Results showed that individuals with acute stress disorder are less able to inhibit inappropriate responses and have more impaired cognitive appraisals compared to those with posttraumatic stress disorder. Moreover, results showed that response inhibition and cognitive appraisal explain 75% of the variance in posttraumatic stress disorder symptoms and 38% of the variance in posttraumatic stress disorder symptoms. The findings suggest that response inhibition and cognitive appraisal are two variables that influence the severity of posttraumatic stress disorder and acute stress disorder symptoms. Also, these results have important implications for pathology, prevention, and treatment of posttraumatic stress disorder and acute stress disorder.

  16. Response Inhibition and Cognitive Appraisal in Clients with Acute Stress Disorder and Posttraumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    Abass Abolghasemi

    2013-09-01

    Full Text Available Objective: The purpose of the present study was to compare response inhibition and cognitive appraisal in clients with acute stress disorder, clients with posttraumatic stress disorder, and normal individuals .Method:This was a comparative study. The sample consisted of 40 clients with acute stress disorder, 40 patients with posttraumatic stress disorder, and 40 normal individuals from Mazandaran province selected through convenience sampling method. Data were collected using Composite International Diagnostic Interview, Stroop Color-Word Test, Posttraumatic Cognitions Inventory, and the Impact of Event Scale. Results:Results showed that individuals with acute stress disorder are less able to inhibit inappropriate responses and have more impaired cognitive appraisals compared to those with posttraumatic stress disorder. Moreover, results showed that response inhibition and cognitive appraisal explain 75% of the variance in posttraumatic stress disorder symptoms and 38% of the variance in posttraumatic stress disorder symptoms .Conclusion:The findings suggest that response inhibition and cognitive appraisal are two variables that influence the severity of posttraumatic stress disorder and acute stress disorder symptoms. Also, these results have important implications for pathology, prevention, and treatment of posttraumatic stress disorder and acute stress disorder

  17. Transcriptional 'memory' of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes.

    Science.gov (United States)

    Avramova, Zoya

    2015-07-01

    Drought, salinity, extreme temperature variations, pathogen and herbivory attacks are recurring environmental stresses experienced by plants throughout their life. To survive repeated stresses, plants provide responses that may be different from their response during the first encounter with the stress. A different response to a similar stress represents the concept of 'stress memory'. A coordinated reaction at the organismal, cellular and gene/genome levels is thought to increase survival chances by improving the plant's tolerance/avoidance abilities. Ultimately, stress memory may provide a mechanism for acclimation and adaptation. At the molecular level, the concept of stress memory indicates that the mechanisms responsible for memory-type transcription during repeated stresses are not based on repetitive activation of the same response pathways activated by the first stress. Some recent advances in the search for transcription 'memory factors' are discussed with an emphasis on super-induced dehydration stress memory response genes in Arabidopsis. © 2015 The Author The Plant Journal © 2015 John Wiley & Sons Ltd.

  18. Stretching the Stress Boundary: Linking Air Pollution Health Effects to a Neurohormonal Stress Response

    Science.gov (United States)

    Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer’s and diabetes. A neurohormonal stress response (referred here as a systemic response produced by activation ...

  19. Response of rocks to large stresses

    International Nuclear Information System (INIS)

    Schock, R.N.

    1976-01-01

    To predict the dimensions and characteristics of impact- and explosion-induced craters, one must know the equation of state of the rocks in which the crater is formed. Recent experimental data shed light upon inelastic processes that influence the stress/strain behavior of rocks. We examine these data with a view to developing models that could be used in predicting cratering phenomena. New data is presented on the volume behavior of two dissimilar rocks subjected to tensile stresses

  20. Boundary element analysis of stress singularity in dissimilar metals by friction welding

    International Nuclear Information System (INIS)

    Chung, N. Y.; Park, C. H.

    2012-01-01

    Friction welded dissimilar metals are widely applied in automobiles, rolling stocks, machine tools, and various engineering fields. Dissimilar metals have several advantages over homogeneous metals, including high strength, material property, fatigue endurance, impact absorption, high reliability, and vibration reduction. Due to the increased use of these metals, understanding their behavior under stress conditions is necessary, especially the analysis of stress singularity on the interface of friction-welded dissimilar metals. To establish a strength evaluation method and a fracture criterion, it is necessary to analyze stress singularity on the interface of dissimilar metals with welded flashes by friction welding under various loads and temperature conditions. In this paper, a method analyzing stress singularity for the specimens with and without flashes set in friction welded dissimilar metals is introduced using the boundary element method. The stress singularity index (λ) and the stress singularity factor (Γ) at the interface edge are computed from the stress analysis results. The shape and flash thickness, interface length, residual stress, and load are considered in the computation. Based on these results, the variations of interface length (c) and the ratio of flash thickness (t2 t1) greatly influence the stress singularity factors at the interface edge of friction welded dissimilar metals. The stress singularity factors will be a useful fracture parameter that considers stress singularity on the interface of dissimilar metals

  1. Interpretation of stress measurements around mining cavities in rock salt - a finite-element study

    International Nuclear Information System (INIS)

    Heusermann, S.

    1986-01-01

    Finite-element studies of stress measurements using the overcoring method and of large drift fields in rock salt show that the measurements are affected by local stress relaxation occurring near the test borehole and by general time-dependent stress redistribution in the marginal zones of adjacent drifts. Analysis of the overcoring method indicates that the following local effects have to be considered in the interpretation of the test results as opposed to measurements in elastic rock: The inelastic deformation behaviour of rock salt causes stress relaxation at the pilot borehole which can lead to an underestimation of the actual stress state in rock. During overcoring considerable inelastic deformations occur in rock salt which demand a modified interpretation of the measurements and as a result of stress relaxation at the borehole various tests conditions, such as overcoring diameter, pilot borehole diameter and time between drilling and overcoring, have an effect on the test results. (orig./PW)

  2. Statistical evaluation of characteristic SDDLV-induced stress resultants to discriminate between undamaged and damaged elements

    DEFF Research Database (Denmark)

    Hansen, Lasse Majgaard; Johansen, Rasmus Johan; Ulriksen, Martin Dalgaard

    2015-01-01

    of modified characteristic stress resultants, which are compared to a pre-defined tolerance value, without any thorough statistical evaluation. In the present paper, it is tested whether three widely-used statistical pattern-recognition-based damage-detection methods can provide an effective statistical...... evaluation of the characteristic stress resultants, hence facilitating general discrimination between damaged and undamaged elements. The three detection methods in question enable outlier analysis on the basis of, respectively, Euclidian distance, Hotelling’s statistics, and Mahalanobis distance. The study...... alternately to an undamaged reference model with known stiffness matrix, hereby, theoretically, yielding characteristic stress resultants approaching zero in the damaged elements. At present, the discrimination between potentially damaged elements and undamaged ones is typically conducted on the basis...

  3. The significance of translation regulation in the stress response

    OpenAIRE

    Picard, Flora; Loubière, Pascal; Girbal, Laurence; Bousquet, Muriel

    2013-01-01

    Background: The stress response in bacteria involves the multistage control of gene expression but is not entirely understood. To identify the translational response of bacteria in stress conditions and assess its contribution to the regulation of gene expression, the translational states of all mRNAs were compared under optimal growth condition and during nutrient (isoleucine) starvation. Results: A genome-scale study of the translational response to nutritional limitation was performed in t...

  4. Associations between circadian and stress response cortisol in children

    OpenAIRE

    Simons, S.S.H.; Cillessen, A.H.N.; Weerth, C. de

    2017-01-01

    Hypothalamic-pituitary-adrenal (HPA) axis functioning is characterized by the baseline production of cortisol following a circadian rhythm, as well as by the superimposed production of cortisol in response to a stressor. However, it is relatively unknown whether the basal cortisol circadian rhythm is associated with the cortisol stress response in children. Since alterations in cortisol stress responses have been associated with mental and physical health, this study investigated whether the ...

  5. Predictors of responses to stress among families coping with poverty-related stress.

    Science.gov (United States)

    Santiago, Catherine DeCarlo; Etter, Erica Moran; Wadsworth, Martha E; Raviv, Tali

    2012-05-01

    This study tested how poverty-related stress (PRS), psychological distress, and responses to stress predicted future effortful coping and involuntary stress responses one year later. In addition, we explored age, sex, ethnicity, and parental influences on responses to stress over time. Hierarchical linear modeling analyses conducted with 98 low-income families (300 family members: 136 adults, 82 school-aged children, 82 adolescents) revealed that primary control coping, secondary control coping, disengagement, involuntary engagement, and involuntary disengagement each significantly predicted future use of that response. Primary and secondary control coping also predicted less maladaptive future responses to stress, while involuntary responses to stress undermined the development of adaptive responding. Age, sex, and interactions among PRS and prior coping were also found to predict certain responses to stress. In addition, child subgroup analyses demonstrate the importance of parental modeling of coping and involuntary stress responses, and warmth/nurturance and monitoring practices. Results are discussed with regard to the implications for preventive interventions with families in poverty.

  6. Effects of rare earth elements and REE-binding proteins on physiological responses in plants.

    Science.gov (United States)

    Liu, Dongwu; Wang, Xue; Chen, Zhiwei

    2012-02-01

    Rare earth elements (REEs), which include 17 elements in the periodic table, share chemical properties related to a similar external electronic configuration. REEs enriched fertilizers have been used in China since the 1980s. REEs could enter the cell and cell organelles, influence plant growth, and mainly be bound with the biological macromolecules. REE-binding proteins have been found in some plants. In addition, the chlorophyll activities and photosynthetic rate can be regulated by REEs. REEs could promote the protective function of cell membrane and enhance the plant resistance capability to stress produced by environmental factors, and affect the plant physiological mechanism by regulating the Ca²⁺ level in the plant cells. The focus of present review is to describe how REEs and REE-binding proteins participate in the physiological responses in plants.

  7. Stress analysis of disconnected structures in contact through finite element gaps

    International Nuclear Information System (INIS)

    Stadter, J.T.; Weiss, R.O.

    1976-07-01

    A numerical procedure is presented for analyzing thermal stress problems of disconnected structures in contact across separations or gaps. The new procedure is called SAASGAPS, an adaptation of the basic SAAS III computer program. The SAAS program uses the finite element method and allows analyses of plane and axisymmetric bodies with temperature dependent material properties, subject to thermal and mechanical loads. A secant modulus approach with a bilinear stress-strain curve is used for elastic-plastic problems. The SAASGAPS version contains all of the features of the original SAAS program. A special gap element is used together with a stress invariance principle to model the contact process. The iterative procedure implemented in SAASGAPS is described. Results are discussed for five problems involving frictionless contact. Two of these problems are associated with the thermal stress analysis of the heat shield for the Multi-Hundred Watt Radioisotope Thermoelectric Generator. Input instructions for the program are described in an appendix

  8. Development of numerical and analytical methodology for stress analysis in guide tubes of fuel elements

    International Nuclear Information System (INIS)

    Carrilho, Leo A.; Dotto, Rosvita M.; Gouvea, Jayme P. de

    2000-01-01

    The stresses in the components of fuel elements in operation have been calculated by Industrias Nucleares do Brasil - INB, using programmes specifically developed for this are. However, worldwide useful software as Excel and ANSYS have resources that make them an alternative with advantages for those computing. In this context, the stress and displacements were calculated in the guide thimbles of a fuel element in normal operation in the reactor under static loads, through analytic and numeric models, which results are comparable to that obtained with the actual INB's methodology. The discussion of the results exposes the peculiarity of a pick of compression stress in a segment of the guide thimble which is accentuated during low power operations. Suggestions for the relief of these high stresses are proposed for future studies. (author)

  9. Finite Element Simulation of Shot Peening: Prediction of Residual Stresses and Surface Roughness

    Science.gov (United States)

    Gariépy, Alexandre; Perron, Claude; Bocher, Philippe; Lévesque, Martin

    Shot peening is a surface treatment that consists of bombarding a ductile surface with numerous small and hard particles. Each impact creates localized plastic strains that permanently stretch the surface. Since the underlying material constrains this stretching, compressive residual stresses are generated near the surface. This process is commonly used in the automotive and aerospace industries to improve fatigue life. Finite element analyses can be used to predict residual stress profiles and surface roughness created by shot peening. This study investigates further the parameters and capabilities of a random impact model by evaluating the representative volume element and the calculated stress distribution. Using an isotropic-kinematic hardening constitutive law to describe the behaviour of AA2024-T351 aluminium alloy, promising results were achieved in terms of residual stresses.

  10. Study of the stress-strain state of compressed concrete elements with composite reinforcement

    Directory of Open Access Journals (Sweden)

    Bondarenko Yurii

    2017-01-01

    Full Text Available The efficiency analysis of the application of glass composite reinforcement in compressed concrete elements as a load-carrying component has been performed. The results of experimental studies of the deformation-strength characteristics of this reinforcement on compression and compressed concrete cylinders reinforced by this reinforcement are presented. The results of tests and mechanisms of sample destruction have been analyzed. The numerical analysis of the stress-strain state has been performed for axial compression of concrete elements with glasscomposite reinforcement. The influence of the reinforcement percentage on the stressed state of a concrete compressed element with the noted reinforcement is estimated. On the basis of the obtained results, it is established that the glass-composite reinforcement has positive effect on the strength of the compressed concrete elements. That is, when calculating the load-bearing capacity of such structures, the function of composite reinforcement on compression should not be neglected.

  11. Contact Stress Analysis for Gears of Different Helix Angle Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Patil Santosh

    2014-07-01

    Full Text Available The gear contact stress problem has been a great point of interest for many years, but still an extensive research is required to understand the various parameters affecting this stress. Among such parameters, helix angle is one which has played a crucial role in variation of contact stress. Numerous studies have been carried out on spur gear for contact stress variation. Hence, the present work is an attempt to study the contact stresses among the helical gear pairs, under static conditions, by using a 3D finite element method. The helical gear pairs on which the analysis is carried are 0, 5, 15, 25 degree helical gear sets. The Lagrange multiplier algorithm has been used between the contacting pairs to determine the stresses. The helical gear contact stress is evaluated using FE model and results have also been found at different coefficient of friction, varying from 0.0 to 0.3. The FE results have been further compared with the analytical calculations. The analytical calculations are based upon Hertz and AGMA equations, which are modified to include helix angle. The commercial finite element software was used in the study and it was shown that this approach can be applied to gear design efficiently. The contact stress results have shown a decreasing trend, with increase in helix angle.

  12. Determination of the contact stresses in double-row tapered roller bearings using the finite element method, experimental analysis and analytical models

    Energy Technology Data Exchange (ETDEWEB)

    Lostado, Ruben [University of La Rioja, Logroño (Spain); Martinez, Roberto Fernandez [University of Basque Country UPV/EHU, Bilbao (Spain); MacDonald, Bryan J. [Dublin City University, Dublin (Ireland)

    2015-11-15

    Double-row Tapered roller bearings (TRBs) are mechanical devices that are designed to support high axial, radial and torque loads. This combination of loads produces high contact stresses on the bearing raceways that are difficult to predict and validate experimentally, and can cause defects like pitting and fatigue spalling. In response, theoretical models have been proposed by many researchers to calculate the approximate distribution of contact stresses over the bearing raceways. More recently, numerical methods that are based on the Finite element method (FEM) have been used to obtain the contact stresses, although this method requires that the mesh size first be adjusted. This paper shows a process for adjusting a double-row TRB Finite element (FE) model. It is based on generating successive nonlinear FE submodels to calculate the distribution of contact stresses. A theoretical model and contact pressure sensors were used to adjust and validate the Finite element (FE) model.

  13. Autologous nerve graft repair of different degrees of sciatic nerve defect:stress and displacement at the anastomosis in a three-dimensional finite element simulation model

    Institute of Scientific and Technical Information of China (English)

    Cheng-dong Piao; Kun Yang; Peng Li; Min Luo

    2015-01-01

    In the repair of peripheral nerve injury using autologous or synthetic nerve grafting, the mag-nitude of tensile forces at the anastomosis affects its response to physiological stress and the ultimate success of the treatment. One-dimensional stretching is commonly used to measure changes in tensile stress and strain; however, the accuracy of this simple method is limited. There-fore, in the present study, we established three-dimensional ifnite element models of sciatic nerve defects repaired by autologous nerve grafts. Using PRO E 5.0 ifnite element simulation software, we calculated the maximum stress and displacement of an anastomosis under a 5 N load in 10-, 20-, 30-, 40-mm long autologous nerve grafts. We found that maximum displacement increased with graft length, consistent with specimen force. These ifndings indicate that three-dimensional ifnite element simulation is a feasible method for analyzing stress and displacement at the anas-tomosis after autologous nerve grafting.

  14. Autologous nerve graft repair of different degrees of sciatic nerve defect: stress and displacement at the anastomosis in a three-dimensional fnite element simulation model

    Directory of Open Access Journals (Sweden)

    Cheng-dong Piao

    2015-01-01

    Full Text Available In the repair of peripheral nerve injury using autologous or synthetic nerve grafting, the magnitude of tensile forces at the anastomosis affects its response to physiological stress and the ultimate success of the treatment. One-dimensional stretching is commonly used to measure changes in tensile stress and strain however, the accuracy of this simple method is limited. Therefore, in the present study, we established three-dimensional finite element models of sciatic nerve defects repaired by autologous nerve grafts. Using PRO E 5.0 finite element simulation software, we calculated the maximum stress and displacement of an anastomosis under a 5 N load in 10-, 20-, 30-, 40-mm long autologous nerve grafts. We found that maximum displacement increased with graft length, consistent with specimen force. These findings indicate that three-dimensional finite element simulation is a feasible method for analyzing stress and displacement at the anastomosis after autologous nerve grafting.

  15. Mechanical stress calculations for toroidal field coils by the finite element method

    International Nuclear Information System (INIS)

    Soell, M.; Jandl, O.; Gorenflo, H.

    1976-09-01

    After discussing fundamental relationships of the finite element method, this report describes the calculation steps worked out for mechanical stress calculations in the case of magnetic forces and forces produced by thermal expansion or compression of toroidal field coils using the SOLID SAP IV computer program. The displacement and stress analysis are based on the 20-node isoparametric solid element. The calculation of the nodal forces produced by magnetic body forces are discussed in detail. The computer programs, which can be used generally for mesh generation and determination of the nodal forces, are published elsewhere. (orig.) [de

  16. Maxillofacial fractures and craniocerebral injuries - stress propagation from face to neurocranium in a finite element analysis.

    Science.gov (United States)

    Huempfner-Hierl, Heike; Schaller, Andreas; Hierl, Thomas

    2015-04-21

    Severe facial trauma is often associated with intracerebral injuries. So it seemed to be of interest to study stress propagation from face to neurocranium after a fistlike impact on the facial skull in a finite element analysis. A finite element model of the human skull without mandible consisting of nearly 740,000 tetrahedrons was built. Fistlike impacts on the infraorbital rim, the nasoorbitoethmoid region, and the supraorbital arch were simulated and stress propagations were depicted in a time-dependent display. Finite element simulation revealed von Mises stresses beyond the yield criterion of facial bone at the site of impacts and propagation of stresses in considerable amount towards skull base in the scenario of the fistlike impact on the infraorbital rim and on the nasoorbitoethmoid region. When impact was given on the supraorbital arch stresses seemed to be absorbed. As patients presenting with facial fractures have a risk for craniocerebral injuries attention should be paid to this and the indication for a CT-scan should be put widely. Efforts have to be made to generate more precise finite element models for a better comprehension of craniofacial and brain injury.

  17. Viscoelastic finite element analysis of residual stresses in porcelain-veneered zirconia dental crowns.

    Science.gov (United States)

    Kim, Jeongho; Dhital, Sukirti; Zhivago, Paul; Kaizer, Marina R; Zhang, Yu

    2018-06-01

    The main problem of porcelain-veneered zirconia (PVZ) dental restorations is chipping and delamination of veneering porcelain owing to the development of deleterious residual stresses during the cooling phase of veneer firing. The aim of this study is to elucidate the effects of cooling rate, thermal contraction coefficient and elastic modulus on residual stresses developed in PVZ dental crowns using viscoelastic finite element methods (VFEM). A three-dimensional VFEM model has been developed to predict residual stresses in PVZ structures using ABAQUS finite element software and user subroutines. First, the newly established model was validated with experimentally measured residual stress profiles using Vickers indentation on flat PVZ specimens. An excellent agreement between the model prediction and experimental data was found. Then, the model was used to predict residual stresses in more complex anatomically-correct crown systems. Two PVZ crown systems with different thermal contraction coefficients and porcelain moduli were studied: VM9/Y-TZP and LAVA/Y-TZP. A sequential dual-step finite element analysis was performed: heat transfer analysis and viscoelastic stress analysis. Controlled and bench convection cooling rates were simulated by applying different convective heat transfer coefficients 1.7E-5 W/mm 2 °C (controlled cooling) and 0.6E-4 W/mm 2 °C (bench cooling) on the crown surfaces exposed to the air. Rigorous viscoelastic finite element analysis revealed that controlled cooling results in lower maximum stresses in both veneer and core layers for the two PVZ systems relative to bench cooling. Better compatibility of thermal contraction coefficients between porcelain and zirconia and a lower porcelain modulus reduce residual stresses in both layers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Hormonal modulation of the heat shock response: insights from fish with divergent cortisol stress responses

    DEFF Research Database (Denmark)

    LeBlanc, Sacha; Höglund, Erik; Gilmour, Kathleen M.

    2012-01-01

    shock response, we capitalized on two lines of rainbow trout specifically bred for their high (HR) and low (LR) cortisol response to stress. We predicted that LR fish, with a low cortisol but high catecholamine response to stress, would induce higher levels of HSPs after acute heat stress than HR trout....... We found that HR fish have significantly higher increases in both catecholamines and cortisol compared with LR fish, and LR fish had no appreciable stress hormone response to heat shock. This unexpected finding prevented further interpretation of the hormonal modulation of the heat shock response...

  19. Plant Core Environmental Stress Response Genes Are Systemically Coordinated during Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Kenneth W. Berendzen

    2013-04-01

    Full Text Available Studying plant stress responses is an important issue in a world threatened by global warming. Unfortunately, comparative analyses are hampered by varying experimental setups. In contrast, the AtGenExpress abiotic stress experiment displays intercomparability. Importantly, six of the nine stresses (wounding, genotoxic, oxidative, UV-B light, osmotic and salt can be examined for their capacity to generate systemic signals between the shoot and root, which might be essential to regain homeostasis in Arabidopsis thaliana. We classified the systemic responses into two groups: genes that are regulated in the non-treated tissue only are defined as type I responsive and, accordingly, genes that react in both tissues are termed type II responsive. Analysis of type I and II systemic responses suggest distinct functionalities, but also significant overlap between different stresses. Comparison with salicylic acid (SA and methyl-jasmonate (MeJA responsive genes implies that MeJA is involved in the systemic stress response. Certain genes are predominantly responding in only one of the categories, e.g., WRKY genes respond mainly non-systemically. Instead, genes of the plant core environmental stress response (PCESR, e.g., ZAT10, ZAT12, ERD9 or MES9, are part of different response types. Moreover, several PCESR genes switch between the categories in a stress-specific manner.

  20. Finite element modelling of creep process - steady state stresses and strains

    Directory of Open Access Journals (Sweden)

    Sedmak Aleksandar S.

    2014-01-01

    Full Text Available Finite element modelling of steady state creep process has been described. Using an analogy of visco-plastic problem with a described procedure, the finite element method has been used to calculate steady state stresses and strains in 2D problems. An example of application of such a procedure have been presented, using real life problem - cylindrical pipe with longitudinal crack at high temperature, under internal pressure, and estimating its residual life, based on the C*integral evaluation.

  1. Influence of parafunctional loading and prosthetic connection on stress distribution: a 3D finite element analysis.

    Science.gov (United States)

    Torcato, Leonardo Bueno; Pellizzer, Eduardo Piza; Verri, Fellippo Ramos; Falcón-Antenucci, Rosse Mary; Santiago Júnior, Joel Ferreira; de Faria Almeida, Daniel Augusto

    2015-11-01

    Clinicians should consider parafunctional occlusal load when planning treatment. Prosthetic connections can reduce the stress distribution on an implant-supported prosthesis. The purpose of this 3-dimensional finite element study was to assess the influence of parafunctional loading and prosthetic connections on stress distribution. Computer-aided design software was used to construct 3 models. Each model was composed of a bone and an implant (external hexagon, internal hexagon, or Morse taper) with a crown. Finite element analysis software was used to generate the finite element mesh and establish the loading and boundary conditions. A normal force (200-N axial load and 100-N oblique load) and parafunctional force (1000-N axial and 500-N oblique load) were applied. Results were visualized as the maximum principal stress. Three-way analysis of variance and Tukey test were performed, and the percentage of contribution of each variable to the stress concentration was calculated from sum-of squares-analysis. Stress was concentrated around the implant at the cortical bone, and models with the external hexagonal implant showed the highest stresses (PProsthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  2. Specificity determinants for the abscisic acid response element.

    Science.gov (United States)

    Sarkar, Aditya Kumar; Lahiri, Ansuman

    2013-01-01

    Abscisic acid (ABA) response elements (ABREs) are a group of cis-acting DNA elements that have been identified from promoter analysis of many ABA-regulated genes in plants. We are interested in understanding the mechanism of binding specificity between ABREs and a class of bZIP transcription factors known as ABRE binding factors (ABFs). In this work, we have modeled the homodimeric structure of the bZIP domain of ABRE binding factor 1 from Arabidopsis thaliana (AtABF1) and studied its interaction with ACGT core motif-containing ABRE sequences. We have also examined the variation in the stability of the protein-DNA complex upon mutating ABRE sequences using the protein design algorithm FoldX. The high throughput free energy calculations successfully predicted the ability of ABF1 to bind to alternative core motifs like GCGT or AAGT and also rationalized the role of the flanking sequences in determining the specificity of the protein-DNA interaction.

  3. Finite element analysis of maxillary bone stress caused by Aramany Class IV obturator prostheses.

    Science.gov (United States)

    Miyashita, Elcio Ricardo; Mattos, Beatriz Silva Câmara; Noritomi, Pedro Yoshito; Navarro, Hamilton

    2012-05-01

    The retention of an Aramany Class IV removable partial dental prosthesis can be compromised by a lack of support. The biomechanics of this obturator prosthesis result in an unusual stress distribution on the residual maxillary bone. This study evaluated the biomechanics of an Aramany Class IV obturator prosthesis with finite element analysis and a digital 3-dimensional (3-D) model developed from a computed tomography scan; bone stress was evaluated according to the load placed on the prosthesis. A 3-D model of an Aramany Class IV maxillary resection and prosthesis was constructed. This model was used to develop a finite element mesh. A 120 N load was applied to the occlusal and incisal platforms corresponding to the prosthetic teeth. Qualitative analysis was based on the scale of maximum principal stress; values obtained through quantitative analysis were expressed in MPa. Under posterior load, tensile and compressive stresses were observed; the tensile stress was greater than the compressive stress, regardless of the bone region, and the greatest compressive stress was observed on the anterior palate near the midline. Under an anterior load, tensile stress was observed in all of the evaluated bone regions; the tensile stress was greater than the compressive stress, regardless of the bone region. The Aramany Class IV obturator prosthesis tended to rotate toward the surgical resection when subjected to posterior or anterior loads. The amount of tensile and compressive stress caused by the Aramany Class IV obturator prosthesis did not exceed the physiological limits of the maxillary bone tissue. (J Prosthet Dent 2012;107:336-342). Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  4. Stress Generation and Adolescent Depression: Contribution of Interpersonal Stress Responses

    Science.gov (United States)

    Flynn, Megan; Rudolph, Karen D.

    2011-01-01

    This research examined the proposal that ineffective responses to common interpersonal problems disrupt youths' relationships, which, in turn, contributes to depression during adolescence. Youth (86 girls, 81 boys; M age = 12.41, SD = 1.19) and their primary female caregivers participated in a three-wave longitudinal study. Youth completed a…

  5. Oxidative stress response after laparoscopic versus conventional sigmoid resection

    DEFF Research Database (Denmark)

    Madsen, Michael Tvilling; Kücükakin, Bülent; Lykkesfeldt, Jens

    2012-01-01

    Surgery is accompanied by a surgical stress response, which results in increased morbidity and mortality. Oxidative stress is a part of the surgical stress response. Minimally invasive laparoscopic surgery may result in reduced oxidative stress compared with open surgery. Nineteen patients...... scheduled for sigmoid resection were randomly allocated to open or laparoscopic sigmoid resection in a double-blind, prospective clinical trial. Three biochemical markers of oxidative stress (malondialdehyde, ascorbic acid, and dehydroascorbic acid) were measured at 6 different time points (preoperatively......, 1 h, 6 h, 24 h, 48 h, and 72 h postoperatively). There were no statistical significant differences between laparoscopic and open surgery for any of the 3 oxidative stress parameters. Malondialdehyde was reduced 1 hour postoperatively (P...

  6. Finite element analysis for prediction of the residual stresses induced by shot peening II

    International Nuclear Information System (INIS)

    Kim, Cheol; Seok, Chang Sung; Yang, Won Ho; Ryu, Myung Hai

    2002-01-01

    Shot peening is a surface impact treatment widely used to improve the performance of metal parts and welded details subjected to fatigue loading, contact fatigue, stress corrosion and other damage mechanisms. The better performance of the peened parts is mainly due to the residual stresses resulting from the plastic deformation of the surface layers of the material caused by the impact of the shot. In this paper the simulation technique is applied to predict the magnitude and distribution of the residual stress and plastic deformation caused by shot peening with the help of finite element analysis

  7. Finite element analysis of interface stress between neutron absorption coating and chop disk

    International Nuclear Information System (INIS)

    Tang Changliang; Zhang Xiaozhang; Jiang Lei; Dai Xingjian

    2012-01-01

    The performance of disk chopper is directly affected by bond strength between neutron absorption coating and chop disk. Based on the finite element analysis software ANSYS, the interface stress distribution under high speed centrifugal load was calculated, which was to investigate the effects of coating's elastic modulus, poisson ratio and coating thickness on the interfacial stress distribution. The results show that soft and tough coating can reduce the peak stress effectively, and coating thickness reducing is helpful to avoid the plastic failure of opening in the disk under high speed centrifugal load. (authors)

  8. Plant transcriptomics and responses to environmental stress

    Indian Academy of Sciences (India)

    Atta-ur-Rehman School of Applied Biosciences, National University of Sciences and Technology, H-12 Campus, Islamabad 25000, Pakistan; Stress Physiology Lab Department of Botany, Jiwaji University, Gwalior 474 011, India; Centre for Environmental Research, Near East University, 33010, Lefkosha, Turkish Republic ...

  9. Finite element type of stress analysis for parts based on S235 JR steel welding

    Directory of Open Access Journals (Sweden)

    C. Babis

    2014-04-01

    Full Text Available The determination of static and/or variable stress, in case of complex shaped welded structures is hard to achieve. One solution, though, is the use of finite element method, implemented by means of various specialized software. Nowadays, this method has become very popular due to its high precision of data obtained through both research and finite element analysis. Hence, the present paper deals with the modelling of the pull-out behaviour of concave and convex welded joints through finite element method.

  10. Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize.

    Science.gov (United States)

    Busk, P K; Jensen, A B; Pagès, M

    1997-06-01

    The rab17 gene from maize is transcribed in late embryonic development and is responsive to abscisic acid and water stress in embryo and vegetative tissues. In vivo footprinting and transient transformation of rab17 were performed in embryos and vegetative tissues to characterize the cis-elements involved in regulation of the gene. By in vivo footprinting, protein binding was observed to nine elements in the promoter, which correspond to five putative ABREs (abscisic acid responsive elements) and four other sequences. The footprints indicated that distinct proteins interact with these elements in the two developmental stages. In transient transformation, six of the elements were important for high level expression of the rab17 promoter in embryos, whereas only three elements were important in leaves. The cis-acting sequences can be divided in embryo-specific, ABA-specific and leaf-specific elements on the basis of protein binding and the ability to confer expression of rab17. We found one positive, new element, called GRA, with the sequence CACTGGCCGCCC. This element was important for transcription in leaves but not in embryos. Two other non-ABRE elements that stimulated transcription from the rab17 promoter resemble previously described abscisic acid and drought-inducible elements. There were differences in protein binding and function of the five ABREs in the rab17 promoter. The possible reasons for these differences are discussed. The in vivo data obtained suggest that an embryo-specific pathway regulates transcription of the rab genes during development, whereas another pathway is responsible for induction in response to ABA and drought in vegetative tissues.

  11. The relationship between personality and the response to acute psychological stress

    NARCIS (Netherlands)

    Xin, Yuanyuan; Wu, Jianhui; Yao, Zhuxi; Guan, Qing; Aleman, Andre; Luo, Yuejia

    2017-01-01

    The present study examined the relationship between personality traits and the response to acute psychological stress induced by a standardized laboratory stress induction procedure (the Trier Social Stress Test, TSST). The stress response was measured with a combination of cardiovascular

  12. Cell Wall Metabolism in Response to Abiotic Stress

    Science.gov (United States)

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  13. The use of magnetic Barkhausen noise analysis for nondestructive determination of stresses in structural elements

    International Nuclear Information System (INIS)

    Silva Junior, Silverio Ferreira da; Mansur, Tanius Rodrigues; Cruz, Julio Ricardo Barreto

    2007-01-01

    The knowledge about the stress state acting in structural elements has significant importance in the structural integrity evaluation of a specific component. The magnetic Barkhausen noise analysis can be used for this purpose. As a nondestructive testing method, it presents the advantage of not promote any changes in the tested component. In this paper, a study about the use of this new nondestructive test method for stress measurements is presented. The test system configuration and the reference standards used for this purpose, as well as the optimum test parameters determination are discussed. The experiments were carried out in ASTM A-36 steel, used for structural components manufacturing. A structure of this material was loaded and the resulting stresses were determined from strain gage measurements and Barkhausen noise analysis. The results obtained have showed a good sensitivity of the magnetic Barkhausen noise to stress changes occurred in the material. The main advantages and limitations of this test method for stress measurements are presented. (author)

  14. Numerical stress analysis of toroidal coil by three-dimensional finite element method

    International Nuclear Information System (INIS)

    Nishimura, Hidetomo; Shimamoto, Susumu

    1977-10-01

    A structure analysis program based on finite element method for toroidal coils, developed in JAERI, and its example application to a medium-size tokamak are described. In this application, the effects of material anisotropy, poloidal field and spring constant value were studied, and also the influence of toroidal coil failure on the peak stress. The following were revealed. The effect of anisotropy on the peak stress in reinforcement must be considered. The effect of poloidal field on the peak stress is small compared with that of toroidal field. The spring constant value between coil and support does not much influence the peak stress value, The peak stress in reinforcement rises with increasing number of failed coils. In the case of 2000 nodes on the structure, CPU time with the program is about 40 min. (auth.)

  15. Finite Element Simulation and Experimental Verification of Internal Stress of Quenched AISI 4140 Cylinders

    Science.gov (United States)

    Liu, Yu; Qin, Shengwei; Hao, Qingguo; Chen, Nailu; Zuo, Xunwei; Rong, Yonghua

    2017-03-01

    The study of internal stress in quenched AISI 4140 medium carbon steel is of importance in engineering. In this work, the finite element simulation (FES) was employed to predict the distribution of internal stress in quenched AISI 4140 cylinders with two sizes of diameter based on exponent-modified (Ex-Modified) normalized function. The results indicate that the FES based on Ex-Modified normalized function proposed is better consistent with X-ray diffraction measurements of the stress distribution than FES based on normalized function proposed by Abrassart, Desalos and Leblond, respectively, which is attributed that Ex-Modified normalized function better describes transformation plasticity. Effect of temperature distribution on the phase formation, the origin of residual stress distribution and effect of transformation plasticity function on the residual stress distribution were further discussed.

  16. Review of Signal Crosstalk in Plant Stress Responses

    Science.gov (United States)

    This book was prepared to summarize the current understanding of the dynamics of plant response to biotic and abiotic stresses. The preface of the book sets the stage for the contents of the different chapters by outlining that plants defend themselves from various environmental stresses through a v...

  17. Cellular stress responses for monitoring and modulating ageing

    DEFF Research Database (Denmark)

    Demirovic, Dino; Schnebert, Sylvianne; Nizard, Carine

    2013-01-01

    biochemical methods, detecting one or more proteins exclusively involved in the specific stress response pathways. The results indicate that the ageing phenotype is a result of an ineffective probability for cells to respond to stress. http://dx.doi.org/10.1016/j.freeradbiomed.2013.08.023...

  18. Personality, Stressful Life Events, and Treatment Response in Major Depression

    Science.gov (United States)

    Bulmash, Eric; Harkness, Kate L.; Stewart, Jeremy G.; Bagby, R. Michael

    2009-01-01

    The current study examined whether the personality traits of self-criticism or dependency moderated the effect of stressful life events on treatment response. Depressed outpatients (N = 113) were randomized to 16 weeks of cognitive-behavioral therapy, interpersonal psychotherapy, or antidepressant medication (ADM). Stressful life events were…

  19. Psychological and hormonal stress response patterns during a blood donation

    NARCIS (Netherlands)

    Hoogerwerf, M. D.; Veldhuizen, I. J. T.; Merz, E.-M.; de Kort, W. L. A. M.; Frings-Dresen, M. H. W.; Sluiter, J. K.

    2017-01-01

    Background and ObjectivesDonating blood has been associated with increased stress responses, with scarce evidence indicating that levels of psychological and hormonal stress are higher pre-donation than post-donation. We investigated whether a blood donation induces psychological and/or hormonal

  20. Differentiating anticipatory from reactive cortisol responses to psychosocial stress

    NARCIS (Netherlands)

    Engert, V.; Efanov, S.I.; Duchesne, A.; Vogel, S.; Corbo, V.; Pruessner, J.C.

    2013-01-01

    Most psychosocial stress studies assess the overall cortisol response without further identifying the temporal dynamics within hormone levels. It has been shown, however, that the amplitude of anticipatory cortisol stress levels has a unique predictive value for psychological health. So far, no

  1. Plant responsiveness to root-root communication of stress cues.

    Science.gov (United States)

    Falik, Omer; Mordoch, Yonat; Ben-Natan, Daniel; Vanunu, Miriam; Goldstein, Oron; Novoplansky, Ariel

    2012-07-01

    Phenotypic plasticity is based on the organism's ability to perceive, integrate and respond to multiple signals and cues informative of environmental opportunities and perils. A growing body of evidence demonstrates that plants are able to adapt to imminent threats by perceiving cues emitted from their damaged neighbours. Here, the hypothesis was tested that unstressed plants are able to perceive and respond to stress cues emitted from their drought- and osmotically stressed neighbours and to induce stress responses in additional unstressed plants. Split-root Pisum sativum, Cynodon dactylon, Digitaria sanguinalis and Stenotaphrum secundatum plants were subjected to osmotic stress or drought while sharing one of their rooting volumes with an unstressed neighbour, which in turn shared its other rooting volume with additional unstressed neighbours. Following the kinetics of stomatal aperture allowed testing for stress responses in both the stressed plants and their unstressed neighbours. In both P. sativum plants and the three wild clonal grasses, infliction of osmotic stress or drought caused stomatal closure in both the stressed plants and in their unstressed neighbours. While both continuous osmotic stress and drought induced prolonged stomatal closure and limited acclimation in stressed plants, their unstressed neighbours habituated to the stress cues and opened their stomata 3-24 h after the beginning of stress induction. The results demonstrate a novel type of plant communication, by which plants might be able to increase their readiness to probable future osmotic and drought stresses. Further work is underway to decipher the identity and mode of operation of the involved communication vectors and to assess the potential ecological costs and benefits of emitting and perceiving drought and osmotic stress cues under various ecological scenarios.

  2. Understanding the Posttranscriptional Regulation of Plant Responses to Abiotic Stress

    KAUST Repository

    Alshareef, Sahar

    2017-01-01

    Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and biotic and abiotic stresses

  3. Psychological distress, cortisol stress response and subclinical coronary calcification

    NARCIS (Netherlands)

    Seldenrijk, A.; Hamer, M.; Lahiri, A.; Penninx, B.W.J.H.; Steptoe, A.

    2012-01-01

    Objectives: Poor mental health has been associated with coronary heart disease (CHD). One hypothesized underlying mechanism is hypothalamus pituitary adrenal axis dysfunction. We examined the associations between psychological distress, cortisol response to laboratory-induced mental stress and

  4. Plant natriuretic peptides are apoplastic and paracrine stress response molecules

    KAUST Repository

    Wang, Yuhua; Gehring, Christoph A; Irving, Helen R.

    2011-01-01

    plant stress responses and that, much like in animals, peptide signaling molecules can create diverse and modular signals essential for growth, development and defense under rapidly changing environmental conditions. © 2011 The Author.

  5. Stress responses during ageing: molecular pathways regulating protein homeostasis.

    Science.gov (United States)

    Kyriakakis, Emmanouil; Princz, Andrea; Tavernarakis, Nektarios

    2015-01-01

    The ageing process is characterized by deterioration of physiological function accompanied by frailty and ageing-associated diseases. The most broadly and well-studied pathways influencing ageing are the insulin/insulin-like growth factor 1 signaling pathway and the dietary restriction pathway. Recent studies in diverse organisms have also delineated emerging pathways, which collectively or independently contribute to ageing. Among them the proteostatic-stress-response networks, inextricably affect normal ageing by maintaining or restoring protein homeostasis to preserve proper cellular and organismal function. In this chapter, we survey the involvement of heat stress and endoplasmic reticulum stress responses in the regulation of longevity, placing emphasis on the cross talk between different response mechanisms and their systemic effects. We further discuss novel insights relevant to the molecular pathways mediating these stress responses that may facilitate the development of innovative interventions targeting age-related pathologies such as diabetes, cancer, cardiovascular and neurodegenerative diseases.

  6. Herboxidiene triggers splicing repression and abiotic stress responses in plants

    KAUST Repository

    Alshareef, Sahar; Ling, Yu; Butt, Haroon; Mariappan, Kiruthiga G.; Benhamed, Moussa; Mahfouz, Magdy M.

    2017-01-01

    Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and stresses. Small

  7. The yeast genome may harbor hypoxia response elements (HRE).

    Science.gov (United States)

    Ferreira, Túlio César; Hertzberg, Libi; Gassmann, Max; Campos, Elida Geralda

    2007-01-01

    The hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor activated when cells are submitted to hypoxia. The heterodimer is composed of two subunits, HIF-1alpha and the constitutively expressed HIF-1beta. During normoxia, HIF-1alpha is degraded by the 26S proteasome, but hypoxia causes HIF-1alpha to be stabilized, enter the nucleus and bind to HIF-1beta, thus forming the active complex. The complex then binds to the regulatory sequences of various genes involved in physiological and pathological processes. The specific regulatory sequence recognized by HIF-1 is the hypoxia response element (HRE) that has the consensus sequence 5'BRCGTGVBBB3'. Although the basic transcriptional regulation machinery is conserved between yeast and mammals, Saccharomyces cerevisiae does not express HIF-1 subunits. However, we hypothesized that baker's yeast has a protein analogous to HIF-1 which participates in the response to changes in oxygen levels by binding to HRE sequences. In this study we screened the yeast genome for HREs using probabilistic motif search tools. We described 24 yeast genes containing motifs with high probability of being HREs (p-value<0.1) and classified them according to biological function. Our results show that S. cerevisiae may harbor HREs and indicate that a transcription factor analogous to HIF-1 may exist in this organism.

  8. Importance of initial stress for abdominal aortic aneurysm wall motion: Dynamic MRI validated finite element analysis

    NARCIS (Netherlands)

    Merkx, M.A.G.; Veer, van 't M.; Speelman, L.; Breeuwer, M.; Buth, J.; Vosse, van de F.N.

    2009-01-01

    Currently the transverse diameter is the primary decision criterion to assess rupture risk in patients with an abdominal aortic aneurysm (AAA). To obtain a measure for more patient-specific risk assessment, aneurysm wall stress, calculated using finite element analysis (FEA), has been evaluated in

  9. Stress Wave Propagation in Soils Modelled by the Boundary Element Method

    DEFF Research Database (Denmark)

    Rasmussen, K. M.

    This thesis deals with different aspects of the boundary element method (BEM) applied to stress wave propagation problems in soils. Among other things BEM formulations for coupled FEM and BEM, moving loads, direct BEM and indirect BEM are presented. For all the formulations both analytical...

  10. Analysis of temperature stresses in concrete breakwater elements : Hollow cubes and Tetrapods

    NARCIS (Netherlands)

    Nooru-Mohamed, M.B.

    1994-01-01

    In this report, the results of a numerical parameter study on temperature stresses caused by hydration of cement in concrete breakwater elements are shown. Two different geometries were analysed namely hollow cubes and tetrapods. The problem encountered in solid cube breakwaters is the undesirable

  11. Stress recovery techniques for natural element method in 2-D solid mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jin Rae [Dept. of Naval Architecture and Ocean Engineering, Hongik University, Sejong (Korea, Republic of)

    2016-11-15

    This paper is concerned with the stress recovery for the natural element method in which the problem domain is discretized with Delaunay triangles and the structural behavior is approximated with Laplace interpolation functions. Basically, the global and local patch recovery techniques based on the L2-projection method are adopted. For the local patch recovery, the local element patches are defined by the supports of each Laplace interpolation function. For the comparison purpose, the local stress recovery is also performed using Lagrange-type basis functions that are used for 3- and 6-node triangular elements. The stresses that are recovered by the present global and local recovery techniques are compared each other and compared with the available analytic solution, in terms of their spatial distributions and the convergence rates. As well, the dependence of the recovered stress field on the type of test basis functions that are used forbnov-Galerkin (BG) and Petrov-Galerkin (PG) natural element methods is also investigated.

  12. A finite element model for the stress and flexibility analysis of curved pipes

    International Nuclear Information System (INIS)

    Guerreiro, J.N.C.

    1987-03-01

    We present a finite element model for the analysis of pipe bends with flanged ends or flanged tangents. Comments are made on the consideration of the internal pressure load. Flexibility and stress instensification factores obtained with the present model are compared with others available. (Author) [pt

  13. Computer finite element analysis of stress derived from particular units of torsionally flexible metal coupling

    Directory of Open Access Journals (Sweden)

    Mariusz KUCZAJ

    2010-01-01

    Full Text Available In this article the results of Finite Element Analysis (FEA results of stresses derived from chosen units of torsionally flexible metal coupling are presented. As model and simulation tool for particular component loads is used the Autodesk Inventor Professional 2009 program.

  14. Plant Responses to Abiotic Stress Regulated by Histone Deacetylases

    Directory of Open Access Journals (Sweden)

    Ming Luo

    2017-12-01

    Full Text Available In eukaryotic cells, histone acetylation and deacetylation play an important role in the regulation of gene expression. Histone acetylation levels are modulated by histone acetyltransferases and histone deacetylases (HDACs. Recent studies indicate that HDACs play essential roles in the regulation of gene expression in plant response to environmental stress. In this review, we discussed the recent advance regarding the plant HDACs and their functions in the regulation of abiotic stress responses. The role of HDACs in autophagy was also discussed.

  15. Stress Response Pathways in Ameloblasts: Implications for Amelogenesis and Dental Fluorosis

    Directory of Open Access Journals (Sweden)

    John D. Bartlett

    2012-08-01

    Full Text Available Human enamel development of the permanent teeth takes place during childhood and stresses encountered during this period can have lasting effects on the appearance and structural integrity of the enamel. One of the most common examples of this is the development of dental fluorosis after childhood exposure to excess fluoride, an elemental agent used to increase enamel hardness and prevent dental caries. Currently the molecular mechanism responsible for dental fluorosis remains unknown; however, recent work suggests dental fluorosis may be the result of activated stress response pathways in ameloblasts during the development of permanent teeth. Using fluorosis as an example, the role of stress response pathways during enamel maturation is discussed.

  16. When does stress help or harm? The effects of stress controllability and subjective stress response on stroop performance.

    Science.gov (United States)

    Henderson, Roselinde K; Snyder, Hannah R; Gupta, Tina; Banich, Marie T

    2012-01-01

    The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, research suggests that the impact of stress on cognitive functioning depends on an individual's response to stressors: moderate responses to stress can lead to improved performance while extreme (high or low) responses can lead to impaired performance. The present studies tested the hypothesis that (1) learning to behaviorally control stressors leads to improved performance on a test of general executive functioning, the color-word Stroop, and that (2) this improvement emerges specifically for people who report moderate (subjective) responses to stress. Experiment 1: Stroop performance, measured before and after a stress manipulation, was compared across groups of undergraduate participants (n = 109). People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest reduction in Stroop interference. In contrast, in the group exposed to uncontrollable events, self-reported stress failed to predict performance. Experiment 2: In a second sample (n = 90), we specifically investigated the role of controllability by keeping the rate of failure feedback constant across groups. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest Stroop

  17. Context and strain-dependent behavioral response to stress

    Directory of Open Access Journals (Sweden)

    Baum Amber E

    2008-06-01

    Full Text Available Abstract Background This study posed the question whether strain differences in stress-reactivity lead to differential behavioral responses in two different tests of anxiety. Strain differences in anxiety-measures are known, but strain differences in the behavioral responses to acute prior stress are not well characterized. Methods We studied male Fisher 344 (F344 and Wistar Kyoto (WKY rats basally and immediately after one hour restraint stress. To distinguish between the effects of novelty and prior stress, we also investigated behavior after repeated exposure to the test chamber. Two behavioral tests were explored; the elevated plus maze (EPM and the open field (OFT, both of which are thought to measure activity, exploration and anxiety-like behaviors. Additionally, rearing, a voluntary behavior, and grooming, a relatively automatic, stress-responsive stereotyped behavior were measured in both tests. Results Prior exposure to the test environment increased anxiety-related measures regardless of prior stress, reflecting context-dependent learning process in both tests and strains. Activity decreased in response to repeated testing in both tests and both strains, but prior stress decreased activity only in the OFT which was reversed by repeated testing. Prior stress decreased anxiety-related measures in the EPM, only in F344s, while in the OFT, stress led to increased freezing mainly in WKYs. Conclusion Data suggest that differences in stressfulness of these tests predict the behavior of the two strains of animals according to their stress-reactivity and coping style, but that repeated testing can overcome some of these differences.

  18. Responses to Fiscal Stress: A Comparative Analysis

    Science.gov (United States)

    2013-12-01

    of “a significant decline in market share by the middle of the 20th century as travelers and shippers turned increasingly to airlines, trucks, and...1995). Intercity passenger rail: Financial and operating conditions threaten Amtrak’s long-term viability (GAO-95-71). Washington, DC: U.S...I. (1980). Retrenchment and flexibility in public organizations. Fiscal Stress and Public Policy, 159–178. Scheinberg, P. F. (1998). Intercity

  19. Finite Element Modelling for Static and Free Vibration Response of Functionally Graded Beam

    Directory of Open Access Journals (Sweden)

    Ateeb Ahmad Khan

    Full Text Available Abstract A 1D Finite Element model for static response and free vibration analysis of functionally graded material (FGM beam is presented in this work. The FE model is based on efficient zig-zag theory (ZIGT with two noded beam element having four degrees of freedom at each node. Linear interpolation is used for the axial displacement and cubic hermite interpolation is used for the deflection. Out of a large variety of FGM systems available, Al/SiC and Ni/Al2O3 metal/ceramic FGM system has been chosen. Modified rule of mixture (MROM is used to calculate the young's modulus and rule of mixture (ROM is used to calculate density and poisson's ratio of FGM beam at any point. The MATLAB code based on 1D FE zigzag theory for FGM elastic beams is developed. A 2D FE model for the same elastic FGM beam has been developed using ABAQUS software. An 8-node biquadratic plane stress quadrilateral type element is used for modeling in ABAQUS. Three different end conditions namely simply-supported, cantilever and clamped- clamped are considered. The deflection, normal stress and shear stress has been reported for various models used. Eigen Value problem using subspace iteration method is solved to obtain un-damped natural frequencies and the corresponding mode shapes. The results predicted by the 1D FE model have been compared with the 2D FE results and the results present in open literature. This proves the correctness of the model. Finally, mode shapes have also been plotted for various FGM systems.

  20. Stress and Bronchodilator Response in Children with Asthma.

    Science.gov (United States)

    Brehm, John M; Ramratnam, Sima K; Tse, Sze Man; Croteau-Chonka, Damien C; Pino-Yanes, Maria; Rosas-Salazar, Christian; Litonjua, Augusto A; Raby, Benjamin A; Boutaoui, Nadia; Han, Yueh-Ying; Chen, Wei; Forno, Erick; Marsland, Anna L; Nugent, Nicole R; Eng, Celeste; Colón-Semidey, Angel; Alvarez, María; Acosta-Pérez, Edna; Spear, Melissa L; Martinez, Fernando D; Avila, Lydiana; Weiss, Scott T; Soto-Quiros, Manuel; Ober, Carole; Nicolae, Dan L; Barnes, Kathleen C; Lemanske, Robert F; Strunk, Robert C; Liu, Andrew; London, Stephanie J; Gilliland, Frank; Sleiman, Patrick; March, Michael; Hakonarson, Hakon; Duan, Qing Ling; Kolls, Jay K; Fritz, Gregory K; Hu, Donglei; Fani, Negar; Stevens, Jennifer S; Almli, Lynn M; Burchard, Esteban G; Shin, Jaemin; McQuaid, Elizabeth L; Ressler, Kerry; Canino, Glorisa; Celedón, Juan C

    2015-07-01

    Stress is associated with asthma morbidity in Puerto Ricans (PRs), who have reduced bronchodilator response (BDR). To examine whether stress and/or a gene regulating anxiety (ADCYAP1R1) is associated with BDR in PR and non-PR children with asthma. This was a cross-sectional study of stress and BDR (percent change in FEV1 after BD) in 234 PRs ages 9-14 years with asthma. We assessed child stress using the Checklist of Children's Distress Symptoms, and maternal stress using the Perceived Stress Scale. Replication analyses were conducted in two cohorts. Polymorphisms in ADCYAP1R1 were genotyped in our study and six replication studies. Multivariable models of stress and BDR were adjusted for age, sex, income, environmental tobacco smoke, and use of inhaled corticosteroids. High child stress was associated with reduced BDR in three cohorts. PR children who were highly stressed (upper quartile, Checklist of Children's Distress Symptoms) and whose mothers had high stress (upper quartile, Perceived Stress Scale) had a BDR that was 10.2% (95% confidence interval, 6.1-14.2%) lower than children who had neither high stress nor a highly stressed mother. A polymorphism in ADCYAP1R1 (rs34548976) was associated with reduced BDR. This single-nucleotide polymorphism is associated with reduced expression of the gene for the β2-adrenergic receptor (ADRB2) in CD4(+) lymphocytes of subjects with asthma, and it affects brain connectivity of the amygdala and the insula (a biomarker of anxiety). High child stress and an ADCYAP1R1 single-nucleotide polymorphism are associated with reduced BDR in children with asthma. This is likely caused by down-regulation of ADRB2 in highly stressed children.

  1. Global SUMO proteome responses guide gene regulation, mRNA biogenesis, and plant stress responses

    Directory of Open Access Journals (Sweden)

    Magdalena eMazur

    2012-09-01

    Full Text Available Small-ubiquitin-like MOdifier (SUMO is a key regulator of abiotic stress, disease resistance and development in plants. The identification of >350 plant SUMO targets has revealed many processes modulated by SUMO and potential consequences of SUMO on its targets. Importantly, highly related proteins are SUMO-modified in plants, yeast, and metazoans. Overlapping SUMO targets include heat-shock proteins, transcription regulators, histones, histone-modifying enzymes, proteins involved in DNA damage repair, but also proteins involved in mRNA biogenesis and nucleo-cytoplasmic transport. Proteomics studies indicate key roles for SUMO in gene repression by controlling histone (deacetylation activity at genomic loci. The responsible heavily sumoylated transcriptional repressor complexes are recruited by EAR (Ethylene-responsive element binding factor [ERF]-associated Amphiphilic Repression-motif containing transcription factors in plants. These transcription factors are not necessarily themselves a SUMO target. Conversely, SUMO acetylation prevents binding of downstream partners by preventing binding of SIMs (SUMO-interaction peptide motifs presents in these partners, while SUMO acetylation has emerged as mechanism to recruit specifically bromodomains; bromodomain are generally linked with gene activation. These findings strengthen the idea of a bidirectional sumo-/acetylation switch in gene regulation. Quantitative proteomics has highlighted that global sumoylation provides a dynamic response to protein damage involving SUMO chain-mediated protein degradation, but also SUMO E3 ligase-dependent transcription of HSP (Heat-shock protein genes. With these insights in SUMO function and novel technical advancements, we can now study SUMO dynamics in responses to (abiotic stress in plants.

  2. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Cláudia Regina Batista de Souza

    2012-07-01

    Full Text Available Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops.

  3. SAFE-PLANE, Stress Analysis of Planar Structure by Finite Elements Method

    International Nuclear Information System (INIS)

    Cornell, D.C.; Reich, Morris

    1967-01-01

    1 - Description of problem or function: SAFE-PLANE is applied to two- dimensional structures of arbitrary geometry under in-plane loads. Either plane stress or plane strain conditions may be imposed. Mechanical and thermal loads are permitted. 2 - Method of solution: The finite-element method is used to construct a mathematical model by assembling discrete elements. The total potential energy of the structure is determined and subsequently minimized by iteration on components of the displacement field until static equilibrium of the structure is attained. Strains and stresses are computed from the resulting displacements. 3 - Restrictions on the complexity of the problem: Multi-material structures with varying rigidities converge very slowly. Not valid for incompressible materials. Maximum number of nodal points = 675. Maximum number of elements = 1350

  4. The effect of acid rain stress on chlorophyll, peroxidase of the conservation of rare earth elements

    International Nuclear Information System (INIS)

    Chongling, Y.; Yetang, H.; Xianke, Y.; Shunzhen, F.; Shanql, W.

    1998-01-01

    Full text: Based on pot experiment, the effect of acid rain stress on chlorophyll, peroxidase of wheat, the relationship of them and the conservation of rare earth elements has been studied. The result showed: stress of acid rain resulted in decrease of chlorophyll content and a/b values, chlorophyll a/b value and chlorophyll content is positive correlation with pH value of acid rain: peroxidase activity was gradually rise with pH value decrease, which indirectly increased decomposition intensity of chlorophyll. Decreased content and a/b value of chlorophyll further speeded blade decay affected the transport and transformation of light energy and metabolism of carbohydrates. After being treated by rare earth elements content and pH value of chlorophyll and peroxidase activity could be relatively stable. Therefore, under lower acidity condition, rare earth elements can influence the effect of acid rain on chlorophyll and peroxidase activity of wheat

  5. Stress categorization in nozzle to pressure vessel connections finite elements models

    International Nuclear Information System (INIS)

    Albuquerque, Levi Barcelos de

    1999-01-01

    The ASME Boiler and Pressure Vessel Code, Section III , is the most important code for nuclear pressure vessels design. Its design criteria were developed to preclude the various pressure vessel failure modes throughout the so-called 'Design by Analysis', some of them by imposing stress limits. Thus, failure modes such as plastic collapse, excessive plastic deformation and incremental plastic deformation under cyclic loading (ratchetting) may be avoided by limiting the so-called primary and secondary stresses. At the time 'Design by Analysis' was developed (early 60's) the main tool for pressure vessel design was the shell discontinuity analysis, in which the results were given in membrane and bending stress distributions along shell sections. From that time, the Finite Element Method (FEM) has had a growing use in pressure vessels design. In this case, the stress results are neither normally separated in membrane and bending stress nor classified in primary and secondary stresses. This process of stress separation and classification in Finite Element (FE) results is what is called stress categorization. In order to perform the stress categorization to check results from FE models against the ASME Code stress limits, mainly from 3D solid FE models, several research works have been conducted. This work is included in this effort. First, a description of the ASME Code design criteria is presented. After that, a brief description of how the FEM can be used in pressure vessel design is showed. Several studies found in the literature on stress categorization for pressure vessel FE models are reviewed and commented. Then, the analyses done in this work are presented in which some typical nozzle to pressure vessel connections subjected to internal pressure and concentrated loads were modeled with solid finite elements. The results from linear elastic and limit load analyses are compared to each other and also with the results obtained by formulae for simple shell

  6. Assessment of stress-strain data suitable for finite-element elastic--plastic analysis of shipping containers

    International Nuclear Information System (INIS)

    Rack, H.J.; Knorovsky, G.A.

    1978-09-01

    Stress-strain data which describes the influence of strain rate and temperature on the mechanical response of materials presently being used for light water reactor fuel shipping containers have been assembled. Selection of data has been limited to that which is suitable for use in finite-element elastic--plastic analysis of shipping containers (e.g., they must include complete material history profiles). Based on this information, recommendations have been made for further work which is required to complete the necessary data base

  7. Heart rate variability response to mental arithmetic stress in patients with schizophrenia Autonomic response to stress in schizophrenia

    NARCIS (Netherlands)

    Castro, Mariana N.; Vigo, Daniel E.; Weidema, Hylke; Fahrer, Rodolfo D.; Chu, Elvina M.; De Achaval, Delfina; Nogues, Martin; Leiguarda, Ramon C.; Cardinali, Daniel P.; Guinjoan, Salvador N.

    Background: The vulnerability-stress hypothesis is an established model of schizophrenia symptom formation. We sought to characterise the pattern of the cardiac autonomic response to mental arithmetic stress in patients with stable schizophrenia. Methods: We performed heart rate variability (HRV)

  8. Comfort food is comforting to those most stressed: evidence of the chronic stress response network in high stress women.

    Science.gov (United States)

    Tomiyama, A Janet; Dallman, Mary F; Epel, Elissa S

    2011-11-01

    Chronically stressed rodents who are allowed to eat calorie-dense "comfort" food develop greater mesenteric fat, which in turn dampens hypothalamic-pituitary-adrenocortical (HPA) axis activity. We tested whether similar relations exist in humans, at least cross-sectionally. Fifty-nine healthy premenopausal women were exposed to a standard laboratory stressor to examine HPA response to acute stress and underwent diurnal saliva sampling for basal cortisol and response to dexamethasone administration. Based on perceived stress scores, women were divided into extreme quartiles of low versus high stress categories. We found as hypothesized that the high stress group had significantly greater BMI and sagittal diameter, and reported greater emotional eating. In response to acute lab stressor, the high stress group showed a blunted cortisol response, lower diurnal cortisol levels, and greater suppression in response to dexamethasone. These cross-sectional findings support the animal model, which suggests that long-term adaptation to chronic stress in the face of dense calories result in greater visceral fat accumulation (via ingestion of calorie-dense food), which in turn modulates HPA axis response, resulting in lower cortisol levels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Modulation of immune responses in stress by Yoga

    Directory of Open Access Journals (Sweden)

    Arora Sarika

    2008-01-01

    Full Text Available Stress is a constant factor in today′s fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary system. Various neurotransmitters, neuropeptides, hormones, and cytokines mediate these complex bidirectional interactions between the central nervous system (CNS and the immune system. The effects of stress on the immune responses result in alterations in the number of immune cells and cytokine dysregulation. Various stress management strategies such as meditation, yoga, hypnosis, and muscle relaxation have been shown to reduce the psychological and physiological effects of stress in cancers and HIV infection. This review aims to discuss the effect of stress on the immune system and examine how relaxation techniques such as Yoga and meditation could regulate the cytokine levels and hence, the immune responses during stress.

  10. Sex differences in the stress response in SD rats.

    Science.gov (United States)

    Lu, Jing; Wu, Xue-Yan; Zhu, Qiong-Bin; Li, Jia; Shi, Li-Gen; Wu, Juan-Li; Zhang, Qi-Jun; Huang, Man-Li; Bao, Ai-Min

    2015-05-01

    Sex differences play an important role in depression, the basis of which is an excessive stress response. We aimed at revealing the neurobiological sex differences in the same study in acute- and chronically-stressed rats. Female Sprague-Dawley (SD) rats were randomly divided into 6 groups: chronic unpredictable mild stress (CUMS), acute foot shock (FS) and controls, animals in all 3 groups were sacrificed in proestrus or diestrus. Male SD rats were randomly divided into 3 groups: CUMS, FS and controls. Comparisons were made of behavioral changes in CUMS and control rats, plasma levels of corticosterone (CORT), testosterone (T) and estradiol (E2), and of the hypothalamic mRNA-expression of stress-related molecules, i.e. estrogen receptor α and β, androgen receptor, aromatase, mineralocorticoid receptor, glucocorticoid receptor, corticotropin-releasing hormone, arginine vasopressin and oxytocin. CUMS resulted in disordered estrus cycles, more behavioral and hypothalamic stress-related molecules changes and a stronger CORT response in female rats compared with male rats. Female rats also showed decreased E2 and T levels after FS and CUMS, while male FS rats showed increased E2 and male CUMS rats showed decreased T levels. Stress affects the behavioral, endocrine and the molecular response of the stress systems in the hypothalamus of SD rats in a clear sexual dimorphic way, which has parallels in human data on stress and depression. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Meta-analysis of the effect of overexpression of CBF/DREB family genes on drought stress response

    Science.gov (United States)

    Transcription factors C-repeat/dehydration-responsive element binding proteins (CBF/DREB) play an important role in plant response to abiotic stresses. Over-expression of various CBF/DREB genes in diverse plants have been reported, but inconsistency of gene donor, recipient genus, parameters used i...

  12. Physiological stress response patterns during a blood donation.

    Science.gov (United States)

    Hoogerwerf, M D; Veldhuizen, I J T; Tarvainen, M P; Merz, E-M; Huis In 't Veld, E M J; de Kort, W L A M; Sluiter, J K; Frings-Dresen, M H W

    2018-03-24

    Donating blood is associated with increased psychological stress. This study investigates whether a blood donation induces physiological stress and if response patterns differ by gender, donation experience and non-acute stress. In 372 donors, physiological stress [blood pressure, pulse rate, pulse rate variability (PRV)] was measured at seven moments during routine donation. PRV was assessed using time domain [root mean square of successive differences (RMSSD)] and frequency domain [high frequency (HF) and low frequency (LF) power] parameters. Non-acute stress was assessed by questionnaire. Shape and significance of time course patterns were assessed by fitting multilevel models for each stress measure and comparing men and women, first-time and experienced donors, and donors with high and low levels of non-acute stress. Significant response patterns were found for all stress measures, where levels of systolic blood pressure (F(1,1315) = 24·2, P blood pressure (F(1,1326) = 50·9, P blood pressure/pulse rate in women; higher pulse rate in first-time donors; higher RMSSD at arrival and from screening until leaving in first-time donors; and higher LF and HF in first-time donors. This study shows an increase in physiological stress related to needle insertion, followed by a decrease when leaving the donation centre. Some group effects were also found. © 2018 International Society of Blood Transfusion.

  13. When does stress help or harm? The effects of stress controllability and subjective stress response on Stroop performance.

    Directory of Open Access Journals (Sweden)

    Roselinde Kaiser Henderson

    2012-06-01

    Full Text Available The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing to clinical therapy. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, research suggests that the impact of stress on cognitive functioning depends on an individual’s response to stressors: moderate responses to stress can lead to improved performance while extreme (high or low responses can lead to impaired performance. The present studies tested the hypothesis that 1 learning to behaviorally control stressors leads to improved performance on a test of general executive functioning, the color-word Stroop, and that 2 this improvement emerges specifically for people who report moderate (subjective responses to stress. Experiment 1: Stroop performance, measured before and after a stress manipulation, was compared across groups of undergraduate participants (n=109. People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest reduction in Stroop interference. In contrast, in the group exposed to uncontrollable events, self-reported stress failed to predict performance. Experiment 2: In a second sample (n=90, we specifically investigated the role of controllability by keeping the rate of failure feedback constant across groups. In the group who learned behavioral control, those who reported moderate levels of stress

  14. A Structural Finite Element Model for Lamellar Unit of Aortic Media Indicates Heterogeneous Stress Field After Collagen Recruitment

    Science.gov (United States)

    Thunes, James R.; Pal, Siladitya; Fortunato, Ronald N.; Phillippi, Julie A.; Gleason, Thomas G.; Vorp, David A.; Maiti, Spandan

    2016-01-01

    Incorporation of collagen structural information into the study of biomechanical behavior of ascending thoracic aortic (ATA) wall tissue should provide better insight into the pathophysiology of ATA. Structurally motivated constitutive models that include fiber dispersion and recruitment can successfully capture overall mechanical response of the arterial wall tissue. However, these models cannot examine local microarchitectural features of the collagen network, such as the effect of fiber disruptions and interaction between fibrous and non-fibrous components, which may influence emergent biomechanical properties of the tissue. Motivated by this need, we developed a finite element based three-dimensional structural model of the lamellar units of the ATA media that directly incorporates the collagen fiber microarchitecture. The fiber architecture was computer generated utilizing network features, namely fiber orientation distribution, intersection density and areal concentration, obtained from image analysis of multiphoton microscopy images taken from human aneurysmal ascending thoracic aortic media specimens with bicuspid aortic valve (BAV) phenotype. Our model reproduces the typical J-shaped constitutive response of the aortic wall tissue. We found that the stress state in the non-fibrous matrix was homogeneous until the collagen fibers were recruited, but became highly heterogeneous after that event. The degree of heterogeneity was dependent upon local network architecture with high stresses observed near disrupted fibers. The magnitude of non-fibrous matrix stress at higher stretch levels was negatively correlated with local fiber density. The localized stress concentrations, elucidated by this model, may be a factor in the degenerative changes in aneurysmal ATA tissue. PMID:27113538

  15. Elastic-plastic stress distributions near the endcap of a fuel element

    International Nuclear Information System (INIS)

    Tayal, M.; Hallgrimson, K.D.; Sejnoha, R.; Singh, P.N.

    1993-06-01

    This paper discusses the stress patterns in and near the endcap of a CANDU fuel element from the perspective of stress corrosion cracking. Simulations of out-reactor burst tests suggest that local plastic strains stay comparatively low for internal pressures below 26-30 MPa. Photoelastic measurements as well as analytical assessments show that the reentrant corner at the sheath/endcap junction results in high concentration of stresses and strains. Analytical assessments show that the in-reactor stresses and strains at the reentrant corner are highly multiaxial, and well into the plastic range. The maximum principal stress correlates well with the location and the direction of circumferential endcap cracks observed in fuel that failed in the Bruce reactor. Thus the maximum principal stress appears promising in ranking various geometries of the sheath/endcap junction with respect to their relative susceptibility to stress corrosion cracking. Design studies suggest that the most effective practical ways of lowering the stresses near the weld, in order of decreasing importance, are to provide a larger interference-free length between the ridge and the endcaps; to increase the pellet/sheath radial gap; to increase the pellet/endcap axial gap; and to keep the gas pressure low. (author). 16 refs., 16 figs

  16. Lipolysis Response to Endoplasmic Reticulum Stress in Adipose Cells*

    Science.gov (United States)

    Deng, Jingna; Liu, Shangxin; Zou, Liangqiang; Xu, Chong; Geng, Bin; Xu, Guoheng

    2012-01-01

    In obesity and diabetes, adipocytes show significant endoplasmic reticulum (ER) stress, which triggers a series of responses. This study aimed to investigate the lipolysis response to ER stress in rat adipocytes. Thapsigargin, tunicamycin, and brefeldin A, which induce ER stress through different pathways, efficiently activated a time-dependent lipolytic reaction. The lipolytic effect of ER stress occurred with elevated cAMP production and protein kinase A (PKA) activity. Inhibition of PKA reduced PKA phosphosubstrates and attenuated the lipolysis. Although both ERK1/2 and JNK are activated during ER stress, lipolysis is partially suppressed by inhibiting ERK1/2 but not JNK and p38 MAPK and PKC. Thus, ER stress induces lipolysis by activating cAMP/PKA and ERK1/2. In the downstream lipolytic cascade, phosphorylation of lipid droplet-associated protein perilipin was significantly promoted during ER stress but attenuated on PKA inhibition. Furthermore, ER stress stimuli did not alter the levels of hormone-sensitive lipase and adipose triglyceride lipase but caused Ser-563 and Ser-660 phosphorylation of hormone-sensitive lipase and moderately elevated its translocation from the cytosol to lipid droplets. Accompanying these changes, total activity of cellular lipases was promoted to confer the lipolysis. These findings suggest a novel pathway of the lipolysis response to ER stress in adipocytes. This lipolytic activation may be an adaptive response that regulates energy homeostasis but with sustained ER stress challenge could contribute to lipotoxicity, dyslipidemia, and insulin resistance because of persistently accelerated free fatty acid efflux from adipocytes to the bloodstream and other tissues. PMID:22223650

  17. Hypothalamic oxytocin mediates social buffering of the stress response.

    Science.gov (United States)

    Smith, Adam S; Wang, Zuoxin

    2014-08-15

    While stressful life events can enhance the risk of mental disorders, positive social interactions can propagate good mental health and normal behavioral routines. Still, the neural systems that promote these benefits are undetermined. Oxytocin is a hormone involved in social behavior and stress; thus, we focus on the impact that social buffering has on the stress response and the governing effects of oxytocin. Female prairie voles (Microtus ochrogaster) were exposed to 1 hour immobilization stress and then recovered alone or with their male partner to characterize the effect of social contact on the behavioral, physiological, and neuroendocrine stress response. In addition, we treated immobilized female voles recovering alone with oxytocin or vehicle and female voles recovering with their male partner with a selective oxytocin receptor antagonist or vehicle. Group sizes varied from 6 to 8 voles (N = 98 total). We found that 1 hour immobilization increased anxiety-like behaviors and circulating levels of corticosterone, a stress hormone, in female prairie voles recovering alone but not the female prairie voles recovering with their male partner. This social buffering by the male partner on biobehavioral responses to stress was accompanied by increased oxytocin release in the paraventricular nucleus of the hypothalamus. Intra-paraventricular nucleus oxytocin injections reduced behavioral and corticosterone responses to immobilization, whereas injections of an oxytocin receptor antagonist blocked the effects of the social buffering. Together, our data demonstrate that paraventricular nucleus oxytocin mediates the social buffering effects on the stress response and thus may be a target for treatment of stress-related disorders. Published by Society of Biological Psychiatry on behalf of Society of Biological Psychiatry.

  18. The surgical stress response: should it be prevented?

    DEFF Research Database (Denmark)

    Kehlet, H

    1991-01-01

    clinical trials have demonstrated a reduction in various aspects of postoperative morbidity by such a nociceptive blockade. Although a causal relationship has still to be demonstrated, these findings strongly argue the concept of "stress-free anesthesia and surgery" as an important instrument in improving......Postoperative complications such as myocardial infarction, pulmonary infection, thromboembolism and fatigue are probably related to increased demands, hypermetabolism, catabolism and other physiologic changes included in the global "surgical stress response." Strategies have been developed...... to suppress the detrimental components of the stress response so as to improve postoperative outcome. Of the various techniques to reduce the surgical stress response, afferent neural blockade with regional anesthesia to relieve pain is the most effective, although not optimal. Data from numerous controlled...

  19. Mini-review: Biofilm responses to oxidative stress.

    Science.gov (United States)

    Gambino, Michela; Cappitelli, Francesca

    2016-01-01

    Biofilms constitute the predominant microbial style of life in natural and engineered ecosystems. Facing harsh environmental conditions, microorganisms accumulate reactive oxygen species (ROS), potentially encountering a dangerous condition called oxidative stress. While high levels of oxidative stress are toxic, low levels act as a cue, triggering bacteria to activate effective scavenging mechanisms or to shift metabolic pathways. Although a complex and fragmentary picture results from current knowledge of the pathways activated in response to oxidative stress, three main responses are shown to be central: the existence of common regulators, the production of extracellular polymeric substances, and biofilm heterogeneity. An investigation into the mechanisms activated by biofilms in response to different oxidative stress levels could have important consequences from ecological and economic points of view, and could be exploited to propose alternative strategies to control microbial virulence and deterioration.

  20. The Yeast Environmental Stress Response Regulates Mutagenesis Induced by Proteotoxic Stress

    Science.gov (United States)

    Shor, Erika; Fox, Catherine A.; Broach, James R.

    2013-01-01

    Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR) in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors. PMID:23935537

  1. Energetic stress: The reciprocal relationship between energy availability and the stress response.

    Science.gov (United States)

    Harrell, C S; Gillespie, C F; Neigh, G N

    2016-11-01

    The worldwide epidemic of metabolic syndromes and the recognized burden of mental health disorders have driven increased research into the relationship between the two. A maladaptive stress response is implicated in both mental health disorders and metabolic disorders, implicating the hypothalamic-pituitary-adrenal (HPA) axis as a key mediator of this relationship. This review explores how an altered energetic state, such as hyper- or hypoglycemia, as may be manifested in obesity or diabetes, affects the stress response and the HPA axis in particular. We propose that changes in energetic state or energetic demands can result in "energetic stress" that can, if prolonged, lead to a dysfunctional stress response. In this review, we summarize the role of the hypothalamus in modulating energy homeostasis and then briefly discuss the relationship between metabolism and stress-induced activation of the HPA axis. Next, we examine seven mechanisms whereby energetic stress interacts with neuroendocrine stress response systems, including by glucocorticoid signaling both within and beyond the HPA axis; by nutrient-induced changes in glucocorticoid signaling; by impacting the sympathetic nervous system; through changes in other neuroendocrine factors; by inducing inflammatory changes; and by altering the gut-brain axis. Recognizing these effects of energetic stress can drive novel therapies and prevention strategies for mental health disorders, including dietary intervention, probiotics, and even fecal transplant. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Chronic stress affects immunologic but not cardiovascular responsiveness to acute psychological stress in humans

    NARCIS (Netherlands)

    Benschop, R. J.; Brosschot, J. F.; Godaert, G. L.; de Smet, M. B.; Geenen, R.; Olff, M.; Heijnen, C. J.; Ballieux, R. E.

    1994-01-01

    This study deals with the effect of chronic stress on physiological responsiveness to an acute psychological stressor in male high school teachers. Chronic stress was operationalized as the self-reported number of everyday problems. Twenty-seven subjects reporting extremely low or high numbers of

  3. Finite element analysis of structural response of superconducting magnet for a fusion reactor

    International Nuclear Information System (INIS)

    Reich, M.; Powell, J.; Bezler, P.; Chang, T.Y.; Prachuktam, S.

    1975-01-01

    In the proposal Tokamak fusion reactor, the superconducting unit consists of an assembly of D-shaped magnets standing vertically and arranged in a toroidal configuration. Each magnet is a composite structure comprised of Nb-22%Ti and Nb-48%Ti, and stabilizing metals such as copper and aluminum or stainless steel held together by reinforced epoxies which also serve as insulators and spacers. The magnets are quite large, typically 15-20 meters in diameter with rectangular cross sections around 0.93x2m. Under static loading condition, the magnet is subjected to dead weight and large magnetic field forces, which may induce high stresses in the structure. Furthermore, additional stresses due to earthquake must also be considered for the design of the component. Both static and dynamic analyses of a typical field magnet have been performed by use of the finite element method. The magnet was assumed to be linearly elastic with equivalent homogeneous material properties. Various finite element models have been considered in order to better represent the structure for a particular loading case. For earthquake analysis, the magnet was assumed to be subjected to 50% of the El Centro 1940 earthquake and the dynamic response was obtained by the displacement spectrum analysis procedure. In the paper, numerical results are presented and the structure behavior of the magnet under static and dynamic loading conditions is discussed

  4. Lichen Parmelia sulcata time response model to environmental elemental availability

    International Nuclear Information System (INIS)

    Reis, M.A.; Alves, L.C.; Freitas, M.C.; Os, B. van; Wolterbeek, H.Th.

    2000-01-01

    Transplants of lichen Parmelia sulcata collected in an area previously identified as non polluted, were placed at six stations, five of which were near Power Plants and the other in an area expected to be a remote station. Together with the lichen transplants, two total deposition collection buckets and an aerosol sampler were installed. Lichens were recollected two every month from each station. At the same time the water collection buckets were replaced by new ones. The aerosol sampler filter was replaced every week, collection being effective only for 10 minutes out of every two hours; in the remote station aerosol filters were replaced only once a month, the collection rate being kept. Each station was run for a period of one year. Both lichens and aerosol filters were analysed by PIXE and INAA at ITN. Total deposition samples were dried under an infrared lamp, and afterwards acid digested and analysed by ICP-MS at the National Geological Survey of The Netherlands. Data for the three types of samples were then produced for a total of 16 elements. In this work we used the data set thus obtained to test a model for the time response of lichen Parmelia sulcata to a new environment. (author)

  5. Influence of PEEK Coating on Hip Implant Stress Shielding: A Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Jesica Anguiano-Sanchez

    2016-01-01

    Full Text Available Stress shielding is a well-known failure factor in hip implants. This work proposes a design concept for hip implants, using a combination of metallic stem with a polymer coating (polyether ether ketone (PEEK. The proposed design concept is simulated using titanium alloy stems and PEEK coatings with thicknesses varying from 100 to 400 μm. The Finite Element analysis of the cancellous bone surrounding the implant shows promising results. The effective von Mises stress increases between 81 and 92% for the complete volume of cancellous bone. When focusing on the proximal zone of the implant, the increased stress transmission to the cancellous bone reaches between 47 and 60%. This increment in load transferred to the bone can influence mineral bone loss due to stress shielding, minimizing such effect, and thus prolonging implant lifespan.

  6. In Silico Analysis of Mobilome Response to Salt Stress in Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    Behcet İNAL

    2018-02-01

    Full Text Available Common bean is an important legume that grown and consumed as animal feed and for human nutrition. It is also an important source of protein in developing countries. Transposable elements (TEs constitute a large part of the genome in various eukaryotic species. TE was described as garbage DNA by researchers for a long time. Recently, it has been found that TEs can move near stress response genes and they have known effects on plant resistance to diverse stresses. With the acquisition of common bean genome sequence, one of the next step is to annotate the genome and define the functional DNA elements. TEs are the most abundant genetic elements of plant genomes and have an important impact on genome stress evolution and genetic variation. So, it is important to determine TEs in the common bean genome. In the current study, genome-wide transposon annotation and definition were achieved in root and leaf tissues of common bean under salt stress. Homology and sequence structure-based methods were used. Tont2-I-Copia and Copia-39 Copia retrotransposons were found to be more in salt-treated roots and leaves respectively. As a result of the analysis, we found TEs number ranging from 46 to 50 belonging to about twenty different plants. Gene ontology analysis of transposon sequences brought the light on diverse important pathways related to abiotic stress conditions.

  7. Stress response and virulence in Vibrio anguillarum

    OpenAIRE

    Weber, Barbara

    2010-01-01

    Bacteria use quorum sensing, a cell to cell signaling mechanism mediated by small molecules that are produced by specific signal molecule synthases, to regulate gene expression in response to population density. In Vibrio anguillarum, the quorum-sensing phosphorelay channels information from three hybrid sensor kinases VanN, VanQ, CqsS that sense signal molecules produced by the synthases VanM, VanS and CqsA, onto the phosphotransferase VanU, to regulate activity of the response regulator Van...

  8. Finite element modelling of stress development during deposition of ion assisted coatings

    International Nuclear Information System (INIS)

    Ward, D.J.; Arnell, R.D.

    2002-01-01

    Ion assisted physical vapour deposited (IAPVD) films typically have a high state of residual stress. This residual stress comprises two components: a thermal stress, which forms as the system cools to room temperature; and an intrinsic stress which is caused by the processes of deposition. Much work has been published on the tribology and mechanical behaviour of surface coatings without consideration of the residual stress. It was therefore considered desirable to develop a finite element (FE) simulation to be used either as a precursor to any realistic mechanical study of the behaviour of such surface coatings, or to be used as a tool to study the effects of varying the deposition parameters. Previous experimental work has shown that the residual stress is related to deposition parameters, such as incident ion and atom fluxes and energies, and recent molecular dynamics studies have indicated that trapped inert gas species may play a major role in the mechanism for creation of the intrinsic stress. The FE simulation assumes that the processes of ion bombardment and material deposition are consecutive, but as the analysis time step tends to zero this assumption approximates the simultaneity of the processes. Suitable mathematical descriptions are employed in the bombarded region of the growing coating to simulate the macroscopic effects of the microscopic atomic collision phenomena and diffusion processes. Two finite element simulations are presented. The first is based on an analytical model, which has gained popular acceptance and this was presented in a previous year at this conference. The second builds on this to simulate wider aspects of known behaviour and is presented in this follow-up paper. The predicted trends of mean stress and its distribution are similar to those observed in published experimental work

  9. WRKY transcription factors in plant responses to stresses.

    Science.gov (United States)

    Jiang, Jingjing; Ma, Shenghui; Ye, Nenghui; Jiang, Ming; Cao, Jiashu; Zhang, Jianhua

    2017-02-01

    The WRKY gene family is among the largest families of transcription factors (TFs) in higher plants. By regulating the plant hormone signal transduction pathway, these TFs play critical roles in some plant processes in response to biotic and abiotic stress. Various bodies of research have demonstrated the important biological functions of WRKY TFs in plant response to different kinds of biotic and abiotic stresses and working mechanisms. However, very little summarization has been done to review their research progress. Not just important TFs function in plant response to biotic and abiotic stresses, WRKY also participates in carbohydrate synthesis, senescence, development, and secondary metabolites synthesis. WRKY proteins can bind to W-box (TGACC (A/T)) in the promoter of its target genes and activate or repress the expression of downstream genes to regulate their stress response. Moreover, WRKY proteins can interact with other TFs to regulate plant defensive responses. In the present review, we focus on the structural characteristics of WRKY TFs and the research progress on their functions in plant responses to a variety of stresses. © 2016 Institute of Botany, Chinese Academy of Sciences.

  10. Inherently variable responses to glucocorticoid stress among endogenous retroviruses isolated from 23 mouse strains.

    Science.gov (United States)

    Hsu, Karen; Lee, Young-Kwan; Chew, Alex; Chiu, Sophia; Lim, Debora; Greenhalgh, David G; Cho, Kiho

    2017-10-01

    Active participation of endogenous retroviruses (ERVs) in disease processes has been exemplified by the finding that the HERV (human ERV)-W envelope protein is involved in the pathogenesis of multiple sclerosis, an autoimmune disease. We also demonstrated that injury-elicited stressors alter the expression of murine ERVs (MuERVs), both murine leukemia virus-type and mouse mammary tumor virus (MMTV)-type (MMTV-MuERV). In this study, to evaluate MMTV-MuERVs' responses to stress (e.g., injury, infection)-elicited systemic glucocorticoid (GC) levels, we examined the GC-stress response of 64 MMTV-MuERV promoters isolated from the genomes of 23 mouse strains. All 64 promoters responded to treatment with a synthetic GC, dexamethasone (DEX), at a wide range from a 0.6- to 85.7-fold increase in reporter activity compared to no treatment. An analysis of the 10 lowest and 10 highest DEX responders revealed specific promoter elements exclusively present in either the three lowest or the two highest responders. Each promoter had a unique profile of transcription regulatory elements and the glucocorticoid response element (GRE) was identified in all promoters with the number of GREs ranging from 2 to 7. The three lowest DEX responders were the only promoters with two GREs. The findings from this study suggest that certain MMTV-MuERVs are more responsive to stress-elicited systemic GC elevation compared to the others. The mouse strain-specific genomic MMTV-MuERV profiles and individual MMTV-MuERVs' differential responses to GC-stress might explain, at least in part, the variable inflammatory responses to injury and/or infection, often observed among different mouse strains. This article is part of a Special Issue entitled: Immune and Metabolic Alterations in Trauma and Sepsis edited by Dr. Raghavan Raju. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Responses of neurons to extreme osmomechanical stress.

    Science.gov (United States)

    Wan, X; Harris, J A; Morris, C E

    1995-05-01

    Neurons are often regarded as fragile cells, easily destroyed by mechanical and osmotic insult. The results presented here demonstrate that this perception needs revision. Using extreme osmotic swelling, we show that molluscan neurons are astonishingly robust. In distilled water, a heterogeneous population of Lymnaea stagnalis CNS neurons swelled to several times their initial volume, yet had a ST50 (survival time for 50% of cells) > 60 min. Cells that were initially bigger survived longer. On return to normal medium, survivors were able, over the next 24 hr, to rearborize. Reversible membrane capacitance changes corresponding to about 0.7 muF/cm2 of apparent surface area accompanied neuronal swelling and shrinking in hypo- and hyperosmotic solutions; reversible changes in cell surface area evidently contributed to the neurons' ability to accommodate hydrostatic pressures then recover. The reversible membrane area/capacitance changes were not dependent on extracellular Ca2+. Neurons were monitored for potassium currents during direct mechanical inflation and during osmotically driven inflation. The latter but not the former stimulus routinely elicited small potassium currents, suggesting that tension increases activate the currents only if additional disruption of the cortex has occurred. Under stress in distilled water, a third of the neurons displayed a quite unexpected behavior: prolonged writhing of peripheral regions of the soma. This suggested that a plasma membrane-linked contractile machinery (presumably actomyosin) might contribute to the neurons' mechano-osmotic robustness by restricting water influx. Consistent with this possibility, 1 mM N-ethyl-maleimide, which inhibits myosin ATPase, decreased the ST50 to 18 min, rendered the survival time independent of initial size, and abolished writhing activity. For neurons, active mechanical resistance of the submembranous cortex, along with the mechanical compliance supplied by insertion or eversion of membrane

  12. Systems responses to progressive water stress in durum wheat.

    Directory of Open Access Journals (Sweden)

    Dimah Z Habash

    Full Text Available Durum wheat is susceptible to terminal drought which can greatly decrease grain yield. Breeding to improve crop yield is hampered by inadequate knowledge of how the physiological and metabolic changes caused by drought are related to gene expression. To gain better insight into mechanisms defining resistance to water stress we studied the physiological and transcriptome responses of three durum breeding lines varying for yield stability under drought. Parents of a mapping population (Lahn x Cham1 and a recombinant inbred line (RIL2219 showed lowered flag leaf relative water content, water potential and photosynthesis when subjected to controlled water stress time transient experiments over a six-day period. RIL2219 lost less water and showed constitutively higher stomatal conductance, photosynthesis, transpiration, abscisic acid content and enhanced osmotic adjustment at equivalent leaf water compared to parents, thus defining a physiological strategy for high yield stability under water stress. Parallel analysis of the flag leaf transcriptome under stress uncovered global trends of early changes in regulatory pathways, reconfiguration of primary and secondary metabolism and lowered expression of transcripts in photosynthesis in all three lines. Differences in the number of genes, magnitude and profile of their expression response were also established amongst the lines with a high number belonging to regulatory pathways. In addition, we documented a large number of genes showing constitutive differences in leaf transcript expression between the genotypes at control non-stress conditions. Principal Coordinates Analysis uncovered a high level of structure in the transcriptome response to water stress in each wheat line suggesting genome-wide co-ordination of transcription. Utilising a systems-based approach of analysing the integrated wheat's response to water stress, in terms of biological robustness theory, the findings suggest that each durum

  13. The Effect of Music on the Human Stress Response

    Science.gov (United States)

    Thoma, Myriam V.; La Marca, Roberto; Brönnimann, Rebecca; Finkel, Linda; Ehlert, Ulrike; Nater, Urs M.

    2013-01-01

    Background Music listening has been suggested to beneficially impact health via stress-reducing effects. However, the existing literature presents itself with a limited number of investigations and with discrepancies in reported findings that may result from methodological shortcomings (e.g. small sample size, no valid stressor). It was the aim of the current study to address this gap in knowledge and overcome previous shortcomings by thoroughly examining music effects across endocrine, autonomic, cognitive, and emotional domains of the human stress response. Methods Sixty healthy female volunteers (mean age = 25 years) were exposed to a standardized psychosocial stress test after having been randomly assigned to one of three different conditions prior to the stress test: 1) relaxing music (‘Miserere’, Allegri) (RM), 2) sound of rippling water (SW), and 3) rest without acoustic stimulation (R). Salivary cortisol and salivary alpha-amylase (sAA), heart rate (HR), respiratory sinus arrhythmia (RSA), subjective stress perception and anxiety were repeatedly assessed in all subjects. We hypothesized that listening to RM prior to the stress test, compared to SW or R would result in a decreased stress response across all measured parameters. Results The three conditions significantly differed regarding cortisol response (p = 0.025) to the stressor, with highest concentrations in the RM and lowest in the SW condition. After the stressor, sAA (p=0.026) baseline values were reached considerably faster in the RM group than in the R group. HR and psychological measures did not significantly differ between groups. Conclusion Our findings indicate that music listening impacted the psychobiological stress system. Listening to music prior to a standardized stressor predominantly affected the autonomic nervous system (in terms of a faster recovery), and to a lesser degree the endocrine and psychological stress response. These findings may help better understanding the

  14. Stress-related cortisol responsivity modulates prospective memory.

    Science.gov (United States)

    Glienke, K; Piefke, M

    2017-12-01

    It is known that there is inter-individual variation in behavioural and physiological stress reactions to the same stressor. The present study aimed to examine the impact of cortisol responsivity on performance in a complex real life-like prospective memory (PM) paradigm by a re-analysis of data published previously, with a focus on the taxonomy of cognitive dimensions of PM. Twenty-one male subjects were stressed with the Socially Evaluated Cold Pressor Test (SECPT) before the planning of intentions. Another group of 20 males underwent a control procedure. Salivary cortisol was measured to assess the intensity of the biological stress response. Additionally, participants rated the subjective experience of stress on a 5-point rating scale. Stressed participants were post-hoc differentiated in high (n = 11) and low cortisol responders (n = 10). Cortisol niveau differed significantly between the two groups, whereas subjective stress ratings did not. PM performance of low cortisol responders was stable across time and the PM performance of controls declined. High cortisol responders showed a nominally weaker PM retrieval across the early trails and significantly improved only on the last trial. The data demonstrate for the first time that participants with a low cortisol responsivity may benefit from stress exposure before the planning phase of PM. PM performance of high cortisol responders shows a more inconsistent pattern, which may be interpreted in the sense of a recency effect in PM retrieval. Alternatively, high cortisol responses may have a deteriorating effect on PM retrieval, which disappeared on the last trials of the task as a result of the decrease of cortisol levels across time. Importantly, the data also demonstrate that the intensity of cortisol responses does not necessarily correspond to the intensity of the mental experience of stress. © 2017 British Society for Neuroendocrinology.

  15. Finite element modelling for fatigue stress analysis of large suspension bridges

    Science.gov (United States)

    Chan, Tommy H. T.; Guo, L.; Li, Z. X.

    2003-03-01

    Fatigue is an important failure mode for large suspension bridges under traffic loadings. However, large suspension bridges have so many attributes that it is difficult to analyze their fatigue damage using experimental measurement methods. Numerical simulation is a feasible method of studying such fatigue damage. In British standards, the finite element method is recommended as a rigorous method for steel bridge fatigue analysis. This paper aims at developing a finite element (FE) model of a large suspension steel bridge for fatigue stress analysis. As a case study, a FE model of the Tsing Ma Bridge is presented. The verification of the model is carried out with the help of the measured bridge modal characteristics and the online data measured by the structural health monitoring system installed on the bridge. The results show that the constructed FE model is efficient for bridge dynamic analysis. Global structural analyses using the developed FE model are presented to determine the components of the nominal stress generated by railway loadings and some typical highway loadings. The critical locations in the bridge main span are also identified with the numerical results of the global FE stress analysis. Local stress analysis of a typical weld connection is carried out to obtain the hot-spot stresses in the region. These results provide a basis for evaluating fatigue damage and predicting the remaining life of the bridge.

  16. Nucleolus-derived mediators in oncogenic stress response and activation of p53-dependent pathways.

    Science.gov (United States)

    Stępiński, Dariusz

    2016-08-01

    Rapid growth and division of cells, including tumor ones, is correlated with intensive protein biosynthesis. The output of nucleoli, organelles where translational machineries are formed, depends on a rate of particular stages of ribosome production and on accessibility of elements crucial for their effective functioning, including substrates, enzymes as well as energy resources. Different factors that induce cellular stress also often lead to nucleolar dysfunction which results in ribosome biogenesis impairment. Such nucleolar disorders, called nucleolar or ribosomal stress, usually affect cellular functioning which in fact is a result of p53-dependent pathway activation, elicited as a response to stress. These pathways direct cells to new destinations such as cell cycle arrest, damage repair, differentiation, autophagy, programmed cell death or aging. In the case of impaired nucleolar functioning, nucleolar and ribosomal proteins mediate activation of the p53 pathways. They are also triggered as a response to oncogenic factor overexpression to protect tissues and organs against extensive proliferation of abnormal cells. Intentional impairment of any step of ribosome biosynthesis which would direct the cells to these destinations could be a strategy used in anticancer therapy. This review presents current knowledge on a nucleolus, mainly in relation to cancer biology, which is an important and extremely sensitive element of the mechanism participating in cellular stress reaction mediating activation of the p53 pathways in order to counteract stress effects, especially cancer development.

  17. Comparative transcriptional analysis of clinically relevant heat stress response in Clostridium difficile strain 630.

    Directory of Open Access Journals (Sweden)

    Nigel G Ternan

    Full Text Available Clostridium difficile is considered to be one of the most important causes of health care-associated infections worldwide. In order to understand more fully the adaptive response of the organism to stressful conditions, we examined transcriptional changes resulting from a clinically relevant heat stress (41 °C versus 37 °C in C. difficile strain 630 and identified 341 differentially expressed genes encompassing multiple cellular functional categories. While the transcriptome was relatively resilient to the applied heat stress, we noted upregulation of classical heat shock genes including the groEL and dnaK operons in addition to other stress-responsive genes. Interestingly, the flagellin gene (fliC was downregulated, yet genes encoding the cell-wall associated flagellar components were upregulated suggesting that while motility may be reduced, adherence--to mucus or epithelial cells--could be enhanced during infection. We also observed that a number of phage associated genes were downregulated, as were genes associated with the conjugative transposon Tn5397 including a group II intron, thus highlighting a potential decrease in retromobility during heat stress. These data suggest that maintenance of lysogeny and genome wide stabilisation of mobile elements could be a global response to heat stress in this pathogen.

  18. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    Directory of Open Access Journals (Sweden)

    Alexandra Avloniti

    2017-01-01

    Full Text Available Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty.

  19. Large-Scale Parallel Finite Element Analysis of the Stress Singular Problems

    International Nuclear Information System (INIS)

    Noriyuki Kushida; Hiroshi Okuda; Genki Yagawa

    2002-01-01

    In this paper, the convergence behavior of large-scale parallel finite element method for the stress singular problems was investigated. The convergence behavior of iterative solvers depends on the efficiency of the pre-conditioners. However, efficiency of pre-conditioners may be influenced by the domain decomposition that is necessary for parallel FEM. In this study the following results were obtained: Conjugate gradient method without preconditioning and the diagonal scaling preconditioned conjugate gradient method were not influenced by the domain decomposition as expected. symmetric successive over relaxation method preconditioned conjugate gradient method converged 6% faster as maximum if the stress singular area was contained in one sub-domain. (authors)

  20. Oxidative stress impairs the heat stress response and delays unfolded protein recovery.

    Directory of Open Access Journals (Sweden)

    Masaaki Adachi

    2009-11-01

    Full Text Available Environmental changes, air pollution and ozone depletion are increasing oxidative stress, and global warming threatens health by heat stress. We now face a high risk of simultaneous exposure to heat and oxidative stress. However, there have been few studies investigating their combined adverse effects on cell viability.Pretreatment of hydrogen peroxide (H(2O(2 specifically and highly sensitized cells to heat stress, and enhanced loss of mitochondrial membrane potential. H(2O(2 exposure impaired the HSP40/HSP70 induction as heat shock response (HSR and the unfolded protein recovery, and enhanced eIF2alpha phosphorylation and/or XBP1 splicing, land marks of ER stress. These H(2O(2-mediated effects mimicked enhanced heat sensitivity in HSF1 knockdown or knockout cells. Importantly, thermal preconditioning blocked H(2O(2-mediated inhibitory effects on refolding activity and rescued HSF1 +/+ MEFs, but neither blocked the effects nor rescued HSF1 -/- MEFs. These data strongly suggest that inhibition of HSR and refolding activity is crucial for H(2O(2-mediated enhanced heat sensitivity.H(2O(2 blocks HSR and refolding activity under heat stress, thereby leading to insufficient quality control and enhancing ER stress. These uncontrolled stress responses may enhance cell death. Our data thus highlight oxidative stress as a crucial factor affecting heat tolerance.

  1. ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent.

    Science.gov (United States)

    Hobo, T; Asada, M; Kowyama, Y; Hattori, T

    1999-09-01

    ACGT-containing ABA response elements (ABREs) have been functionally identified in the promoters of various genes. In addition, single copies of ABRE have been found to require a cis-acting, coupling element to achieve ABA induction. A coupling element 3 (CE3) sequence, originally identified as such in the barley HVA1 promoter, is found approximately 30 bp downstream of motif A (ACGT-containing ABRE) in the promoter of the Osem gene. The relationship between these two elements was further defined by linker-scan analyses of a 55 bp fragment of the Osem promoter, which is sufficient for ABA-responsiveness and VP1 activation. The analyses revealed that both motif A and CE3 sequence were required not only for ABA-responsiveness but also for VP1 activation. Since the sequences of motif A and CE3 were found to be similar, motif-exchange experiments were carried out. The experiments demonstrated that motif A and CE3 were interchangeable by each other with respect to both ABA and VP1 regulation. In addition, both sequences were shown to be recognized by a VP1-interacting, ABA-responsive bZIP factor TRAB1. These results indicate that ACGT-containing ABREs and CE3 are functionally equivalent cis-acting elements. Furthermore, TRAB1 was shown to bind two other non-ACGT ABREs. Based on these results, all these ABREs including CE3 are proposed to be categorized into a single class of cis-acting elements.

  2. Biomechanical Analysis of Human Abdominal Impact Responses and Injuries through Finite Element Simulations of a Full Human Body Model.

    Science.gov (United States)

    Ruan, Jesse S; El-Jawahri, Raed; Barbat, Saeed; Prasad, Priya

    2005-11-01

    Human abdominal response and injury in blunt impacts was investigated through finite element simulations of cadaver tests using a full human body model of an average-sized adult male. The model was validated at various impact speeds by comparing model responses with available experimental cadaver test data in pendulum side impacts and frontal rigid bar impacts from various sources. Results of various abdominal impact simulations are presented in this paper. Model-predicted abdominal dynamic responses such as force-time and force-deflection characteristics, and injury severities, measured by organ pressures, for the simulated impact conditions are presented. Quantitative results such as impact forces, abdominal deflections, internal organ stresses have shown that the abdomen responded differently to left and right side impacts, especially in low speed impact. Results also indicated that the model exhibited speed sensitive response characteristics and the compressibility of the abdomen significantly influenced the overall impact response in the simulated impact conditions. This study demonstrates that the development of a validated finite element human body model can be useful for abdominal injury assessment. Internal organ injuries, which are difficult to detect in experimental studies with human cadavers due to the difficulty of instrumentation, may be more easily identified with a validated finite element model through stress-strain analysis.

  3. Stress analysis on the valve of the rotating shield, coupled with fuel element loading-unloading machine in a PWR pressure vessel

    International Nuclear Information System (INIS)

    Albuquerque, L.B. de; Jesus Miranda, C.A. de.

    1992-01-01

    A finite element static analysis was performed with the valve of the Rotating Shield (RS) which is coupled with the Fuel. Element Loading-Unloading Machine under OBE earthquake. The applied leads were obtained from a previous seismic analysis with the response spectrum method of the MTC under OBE load. A 3-D model with shell elements was developed for the valve body and for a part of the RS. The ANSYS program, version 4.4 A, was used. The two main scopes of this work were to verify the valve stresses and the functionality of its moving parts during the earthquake. (author)

  4. Reproduction elevates the corticosterone stress response in common fruit bats.

    Science.gov (United States)

    Klose, Stefan M; Smith, Carolynn L; Denzel, Andrea J; Kalko, Elisabeth K V

    2006-04-01

    Changes in reproductive state or the environment may affect the sensitivity of the hypothalamic-pituitary-andrenal (HPA) axis. However, little is known about the dynamics of the resulting corticosteroid stress response, in particular in tropical mammals. In this study, we address the modulation of corticosterone release in response to different reproductive conditions and seasonality in 326 free-living common fruit-eating bats (Artibeus jamaicensis) on Barro Colorado Island in Panama during dry and wet seasons. We present strong evidence that stress sensitivity is primarily modulated by reproductive condition. In reproductively active females, corticosterone increases were more rapid and reached higher levels, but also decreased significantly faster than in inactive females. The corticosterone response was weaker in reproducing males than in females and delayed compared to non-reproductive males. Testes volume in reproductively active males was negatively correlated with corticosterone concentrations. Our findings suggest differentiated dynamics in the corticosterone stress response between sexes, potentially reflecting conflicting ecological demands. In females, a strong acute corticosterone response may represent high stress- and risk-sensitivity that facilitates escape and thus helps to protect reproduction. In males, suppression during reproductive activity could reflect lowered stress sensitivity to avoid chronically elevated corticosterone levels in times of frequent aggressive and therefore costly inter-male encounters.

  5. Global and Local Mechanical Responses for Necking of Rectangular Bars Using Updated and Total Lagrangian Finite Element Formulations

    Directory of Open Access Journals (Sweden)

    Claudio A. Careglio

    2016-01-01

    Full Text Available In simulations of forged and stamping processes using the finite element method, load displacement paths and three-dimensional stress and strains states should be well and reliably represented. The simple tension test is a suitable and economical tool to calibrate constitutive equations with finite strains and plasticity for those simulations. A complex three-dimensional stress and strain states are developed when this test is done on rectangular bars and the necking phenomenon appears. In this work, global and local numerical results of the mechanical response of rectangular bars subjected to simple tension test obtained from two different finite element formulations are compared and discussed. To this end, Updated and Total Lagrangian formulations are used in order to get the three-dimensional stress and strain states. Geometric changes together with strain and stress distributions at the cross section where necking occurs are assessed. In particular, a detailed analysis of the effective plastic strain, stress components in axial and transverse directions and pressure, and deviatoric stress components is presented. Specific numerical results are also validated with experimental measurements comparing, in turn, the performance of the two numerical approaches used in this study.

  6. How a retrotransposon exploits the plant's heat stress response for its activation.

    Directory of Open Access Journals (Sweden)

    Vladimir V Cavrak

    2014-01-01

    Full Text Available Retrotransposons are major components of plant and animal genomes. They amplify by reverse transcription and reintegration into the host genome but their activity is usually epigenetically silenced. In plants, genomic copies of retrotransposons are typically associated with repressive chromatin modifications installed and maintained by RNA-directed DNA methylation. To escape this tight control, retrotransposons employ various strategies to avoid epigenetic silencing. Here we describe the mechanism developed by ONSEN, an LTR-copia type retrotransposon in Arabidopsis thaliana. ONSEN has acquired a heat-responsive element recognized by plant-derived heat stress defense factors, resulting in transcription and production of full length extrachromosomal DNA under elevated temperatures. Further, the ONSEN promoter is free of CG and CHG sites, and the reduction of DNA methylation at the CHH sites is not sufficient to activate the element. Since dividing cells have a more pronounced heat response, the extrachromosomal ONSEN DNA, capable of reintegrating into the genome, accumulates preferentially in the meristematic tissue of the shoot. The recruitment of a major plant heat shock transcription factor in periods of heat stress exploits the plant's heat stress response to achieve the transposon's activation, making it impossible for the host to respond appropriately to stress without losing control over the invader.

  7. A role for SR proteins in plant stress responses.

    Science.gov (United States)

    Duque, Paula

    2011-01-01

    Members of the SR (serine/arginine-rich) protein gene family are key players in the regulation of alternative splicing, an important means of generating proteome diversity and regulating gene expression. In plants, marked changes in alternative splicing are induced by a wide variety of abiotic stresses, suggesting a role for this highly versatile gene regulation mechanism in the response to environmental cues. In support of this notion, the expression of plant SR proteins is stress-regulated at multiple levels, with environmental signals controlling their own alternative splicing patterns, phosphorylation status and subcellular distribution. Most importantly, functional links between these RNA-binding proteins and plant stress tolerance are beginning to emerge, including a role in the regulation of abscisic acid (ABA) signaling. Future identification of the physiological mRNA targets of plant SR proteins holds much promise for the elucidation of the molecular mechanisms underlying their role in the response to abiotic stress.

  8. Proteomics analysis of alfalfa response to heat stress.

    Directory of Open Access Journals (Sweden)

    Weimin Li

    Full Text Available The proteome responses to heat stress have not been well understood. In this study, alfalfa (Medicago sativa L. cv. Huaiyin seedlings were exposed to 25 °C (control and 40 °C (heat stress in growth chambers, and leaves were collected at 24, 48 and 72 h after treatment, respectively. The morphological, physiological and proteomic processes were negatively affected under heat stress. Proteins were extracted and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE, and differentially expressed protein spots were identified by mass spectrometry (MS. Totally, 81 differentially expressed proteins were identified successfully by MALDI-TOF/TOF. These proteins were categorized into nine classes: including metabolism, energy, protein synthesis, protein destination/storage, transporters, intracellular traffic, cell structure, signal transduction and disease/defence. Five proteins were further analyzed for mRNA levels. The results of the proteomics analyses provide a better understanding of the molecular basis of heat-stress responses in alfalfa.

  9. Regulation of cellulose synthesis in response to stress.

    Science.gov (United States)

    Kesten, Christopher; Menna, Alexandra; Sánchez-Rodríguez, Clara

    2017-12-01

    The cell wall is a complex polysaccharide network that provides stability and protection to the plant and is one of the first layers of biotic and abiotic stimuli perception. A controlled remodeling of the primary cell wall is essential for the plant to adapt its growth to environmental stresses. Cellulose, the main component of plant cell walls is synthesized by plasma membrane-localized cellulose synthases moving along cortical microtubule tracks. Recent advancements demonstrate a tight regulation of cellulose synthesis at the primary cell wall by phytohormone networks. Stress-induced perturbations at the cell wall that modify cellulose synthesis and microtubule arrangement activate similar phytohormone-based stress response pathways. The integration of stress perception at the primary cell wall and downstream responses are likely to be tightly regulated by phytohormone signaling pathways in the context of cellulose synthesis and microtubule arrangement. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Stress and fear responses in the teleost pallium

    DEFF Research Database (Denmark)

    Silva, Patricia Isabel da Mota E.; Martins, C.I.M.; Khan, Uniza Wahid

    2015-01-01

    Evolution has resulted in behavioural responses to threat which show extensive similarities between different animal species. The reaction to predator cues is one example of such prevailing responses, and functional homologies to mammalian limbic regions involved in threat-sensitive behaviour hav...... to chemical alarm cues, but this effect did not reach the level of statistical significance. Hence, limbic responses to stress and fear, akin to those seen in extant mammals, are also present in the teleost lineage...

  11. A 3D finite element model to investigate prosthetic interface stresses of different posterior tibial slope.

    Science.gov (United States)

    Shen, Yi; Li, Xiaomiao; Fu, Xiaodong; Wang, Weili

    2015-11-01

    Posterior tibial slope that is created during proximal tibial resection in total knee arthroplasty has emerged as an important factor in the mechanics of the knee joint and the surgical outcome. But the ideal degree of posterior tibial slope for recovery of the knee joint function and preventions of complications remains controversial and should vary in different racial groups. The objective of this paper is to investigate the effects of posterior tibial slope on contact stresses in the tibial polyethylene component of total knee prostheses. Three-dimensional finite element analysis was used to calculate contact stresses in tibial polyethylene component of total knee prostheses subjected to a compressive load. The 3D finite element model of total knee prosthesis was constructed from the images produced by 3D scanning technology. Stresses in tibial polyethylene component were calculated with four different posterior tibial slopes (0°, 3°, 6° and 9°). The 3D finite element model of total knee prosthesis we presented was well validated. We found that the stress distribution in the polythene as evaluated by the distributions of the von Mises stress, the maximum principle stress, the minimum principle stress and the Cpress were more uniform with 3° and 6° posterior tibial slopes than with 0° and 9° posterior tibial slopes. Moreover, the peaks of the above stresses and trends of changes with increasing degree of knee flexion were more ideal with 3° and 6° posterior slopes. The results suggested that the tibial component inclination might be favourable to 7°-10° so far as the stress distribution is concerned. The range of the tibial component inclination also can decrease the wear of polyethylene. Chinese posterior tibial slope is bigger than in the West, and the current domestic use of prostheses is imported from the West, so their demands to tilt back bone cutting can lead to shorten the service life of prostheses; this experiment result is of important

  12. Hormonal contraception use alters stress responses and emotional memory

    OpenAIRE

    Nielsen, Shawn E.; Segal, Sabrina K.; Worden, Ian V.; Yim, Ilona S.; Cahill, Larry

    2012-01-01

    Emotionally arousing material is typically better remembered than neutral material. Since norepinephrine and cortisol interact to modulate emotional memory, sex-related influences on stress responses may be related to sex differences in emotional memory. Two groups of healthy women – one naturally cycling (NC women, N = 42) and one using hormonal contraceptives (HC women, N = 36) – viewed emotionally arousing and neutral images. Immediately after, they were assigned to Cold Pressor Stress (CP...

  13. Finite element modelling to assess the effect of surface mounted piezoelectric patch size on vibration response of a hybrid beam

    Science.gov (United States)

    Rahman, N.; Alam, M. N.

    2018-02-01

    Vibration response analysis of a hybrid beam with surface mounted patch piezoelectric layer is presented in this work. A one dimensional finite element (1D-FE) model based on efficient layerwise (zigzag) theory is used for the analysis. The beam element has eight mechanical and a variable number of electrical degrees of freedom. The beams are also modelled in 2D-FE (ABAQUS) using a plane stress piezoelectric quadrilateral element for piezo layers and a plane stress quadrilateral element for the elastic layers of hybrid beams. Results are presented to assess the effect of size of piezoelectric patch layer on the free and forced vibration responses of thin and moderately thick beams under clamped-free and clamped-clamped configurations. The beams are subjected to unit step loading and harmonic loading to obtain the forced vibration responses. The vibration control using in phase actuation potential on piezoelectric patches is also studied. The 1D-FE results are compared with the 2D-FE results.

  14. Finite Element Analysis of Absorbable Sheath to Prevent Stress Shielding of Tibial Interlocking Intramedullary Nail

    Science.gov (United States)

    Dong, Yansheng; Wang, Yongqing; Dong, Limin; Jia, Peng; Lu, Fengcheng

    2017-07-01

    The nail with absorbable sheath (AS nail) is designed to reduce the stress shielding effect of internal fixation with interlocking intramedullary nail. In order to verify its feasibility, two types of the finite element models of internal fixation of tibia with the AS nail and the common metal nail (CM nail) are established using the Softwares of Mimics, Geomagic, SolidWorks and ANSYS according to the CT scanning data of tibia. The result of the finite element analysis shows that the AS nail has great advantages compared with the CM nail in reducing the stress shielding effect in different periods of fracture healing. The conclusion is that the AS nail can realize the static fixation to the dynamic fixation from the early to the later automatically to shorten the time of fracture healing, which also provides a new technique to the interlocking intramedullary nail.

  15. FEAST: a two-dimensional non-linear finite element code for calculating stresses

    International Nuclear Information System (INIS)

    Tayal, M.

    1986-06-01

    The computer code FEAST calculates stresses, strains, and displacements. The code is two-dimensional. That is, either plane or axisymmetric calculations can be done. The code models elastic, plastic, creep, and thermal strains and stresses. Cracking can also be simulated. The finite element method is used to solve equations describing the following fundamental laws of mechanics: equilibrium; compatibility; constitutive relations; yield criterion; and flow rule. FEAST combines several unique features that permit large time-steps in even severely non-linear situations. The features include a special formulation for permitting many finite elements to simultaneously cross the boundary from elastic to plastic behaviour; accomodation of large drops in yield-strength due to changes in local temperature and a three-step predictor-corrector method for plastic analyses. These features reduce computing costs. Comparisons against twenty analytical solutions and against experimental measurements show that predictions of FEAST are generally accurate to ± 5%

  16. Finite element modelling of Plantar Fascia response during running on different surface types

    Science.gov (United States)

    Razak, A. H. A.; Basaruddin, K. S.; Salleh, A. F.; Rusli, W. M. R.; Hashim, M. S. M.; Daud, R.

    2017-10-01

    Plantar fascia is a ligament found in human foot structure located beneath the skin of human foot that functioning to stabilize longitudinal arch of human foot during standing and normal gait. To perform direct experiment on plantar fascia seems very difficult since the structure located underneath the soft tissue. The aim of this study is to develop a finite element (FE) model of foot with plantar fascia and investigate the effect of the surface hardness on biomechanical response of plantar fascia during running. The plantar fascia model was developed using Solidworks 2015 according to the bone structure of foot model that was obtained from Turbosquid database. Boundary conditions were set out based on the data obtained from experiment of ground reaction force response during running on different surface hardness. The finite element analysis was performed using Ansys 14. The results found that the peak of stress and strain distribution were occur on the insertion of plantar fascia to bone especially on calcaneal area. Plantar fascia became stiffer with increment of Young’s modulus value and was able to resist more loads. Strain of plantar fascia was decreased when Young’s modulus increased with the same amount of loading.

  17. 33 CFR Appendix C to Part 155 - Training Elements for Oil Spill Response Plans

    Science.gov (United States)

    2010-07-01

    .... 155, App. C Appendix C to Part 155—Training Elements for Oil Spill Response Plans 1. General 1.1The portion of the plan dealing with training is one of the key elements of a response plan. This concept is... included training as one of the sections required in a vessel or facility response plan. In reviewing...

  18. Sex differences in chronic stress responses and Alzheimer's disease.

    Science.gov (United States)

    Yan, Yan; Dominguez, Sky; Fisher, Daniel W; Dong, Hongxin

    2018-02-01

    Clinical studies indicate that Alzheimer's disease (AD) disproportionately affects women in both disease prevalence and severity, but the mechanisms underlying this sex divergence are unknown. Though some have suggested this difference in risk is a reflection of known differences in longevity between men and women, mounting clinical and preclinical evidence supports women also having intrinsic susceptibilities towards the disease. While a number of potential risk factors have been hypothesized to affect these differences in risks, none have been definitively verified. In this review, we discuss a novel hypothesis whereby women's susceptibility to chronic stress also mediates increased risk for AD. As stress is a risk factor for AD, and women are twice as likely to develop mood disorders where stress is a major etiology, it is possible that sex dimorphisms in stress responses contribute to the increase in women with AD. In line with this, sex divergence in biochemical responses to stress have been noted along the hypothalamic-pituitary-adrenal (HPA) axis and among known molecular effectors of AD, with crosstalk between these processes also being likely. In addition, activation of the cortical corticotrophin-releasing factor receptor 1 (CRF1) signaling pathway leads to distinct female-biased increases in molecules associated with AD pathogenesis. Therefore, the different biochemical responses to stress between women and men may represent an intrinsic, sex-dependent risk factor for AD.

  19. Hormonal contraception use alters stress responses and emotional memory.

    Science.gov (United States)

    Nielsen, Shawn E; Segal, Sabrina K; Worden, Ian V; Yim, Ilona S; Cahill, Larry

    2013-02-01

    Emotionally arousing material is typically better remembered than neutral material. Since norepinephrine and cortisol interact to modulate emotional memory, sex-related influences on stress responses may be related to sex differences in emotional memory. Two groups of healthy women - one naturally cycling (NC women, n=42) and one using hormonal contraceptives (HC women, n=36) - viewed emotionally arousing and neutral images. Immediately after, they were assigned to Cold Pressor Stress (CPS) or a control procedure. One week later, participants received a surprise free recall test. Saliva samples were collected and later assayed for salivary alpha-amylase (biomarker for norepinephrine) and cortisol. Compared to NC women, HC women exhibited significantly blunted stress hormone responses to the images and CPS. Recall of emotional images differed between HC and NC women depending on noradrenergic and cortisol responses. These findings may have important implications for understanding the neurobiology of emotional memory disorders, especially those that disproportionately affect women. Published by Elsevier B.V.

  20. Coping as a mediator of the relationship between stress mindset and psychological stress response: a pilot study.

    Science.gov (United States)

    Horiuchi, Satoshi; Tsuda, Akira; Aoki, Shuntaro; Yoneda, Kenichiro; Sawaguchi, Yusuke

    2018-01-01

    Coping, the cognitive and behavioral effort required to manage the effects of stressors, is important in determining psychological stress responses (ie, the emotional, behavioral, and cognitive responses to stressors). Coping was classified into categories of emotional expression (eg, negative feelings and thoughts), emotional support seeking (eg, approaching loved ones to request encouragement), cognitive reinterpretation (eg, reframing a problem positively), and problem solving (eg, working to solve the problem). Stress mindset refers to the belief that stress has enhancing (stress-is-enhancing mindset) or debilitating consequences (stress-is-debilitating mindset). This study examined whether coping mediated the relationship between stress mindset and psychological stress responses. Psychological stress responses were conceptualized as depression-anxiety, irritability-anger, and helplessness. The following two hypotheses were tested: 1) a stronger stress-is-enhancing mindset is associated with less frequent use of emotional expression, emotional support seeking, and problem solving, which in turn is associated with lower levels of depression-anxiety, irritability-anger, and helplessness; 2) a stronger stress-is-debilitating mindset is associated with more frequent use of these coping strategies, which in turn is associated with higher levels of these psychological stress responses. The participants were 30 male and 94 female undergraduate and graduate students (mean age =20.4 years). Stress mindset, coping, and psychological stress responses were measured using self-report questionnaires. Six mediation analyses were performed with stress-is-enhancing mindset or stress-is-debilitating mindset as the independent variable, one of the psychological stress responses as the dependent variable, and the four coping strategies as mediators. Emotional expression partially mediated the relationship between a strong stress-is-debilitating mindset and higher irritability

  1. Transcriptional responses of Arabidopsis thaliana plants to As (V stress

    Directory of Open Access Journals (Sweden)

    Yuan Joshua S

    2008-08-01

    Full Text Available Abstract Background Arsenic is toxic to plants and a common environmental pollutant. There is a strong chemical similarity between arsenate [As (V] and phosphate (Pi. Whole genome oligonucleotide microarrays were employed to investigate the transcriptional responses of Arabidopsis thaliana plants to As (V stress. Results Antioxidant-related genes (i.e. coding for superoxide dismutases and peroxidases play prominent roles in response to arsenate. The microarray experiment revealed induction of chloroplast Cu/Zn superoxide dismutase (SOD (at2g28190, Cu/Zn SOD (at1g08830, as well as an SOD copper chaperone (at1g12520. On the other hand, Fe SODs were strongly repressed in response to As (V stress. Non-parametric rank product statistics were used to detect differentially expressed genes. Arsenate stress resulted in the repression of numerous genes known to be induced by phosphate starvation. These observations were confirmed with qRT-PCR and SOD activity assays. Conclusion Microarray data suggest that As (V induces genes involved in response to oxidative stress and represses transcription of genes induced by phosphate starvation. This study implicates As (V as a phosphate mimic in the cell by repressing genes normally induced when available phosphate is scarce. Most importantly, these data reveal that arsenate stress affects the expression of several genes with little or unknown biological functions, thereby providing new putative gene targets for future research.

  2. Immune and stress responses in oysters with insights on adaptation.

    Science.gov (United States)

    Guo, Ximing; He, Yan; Zhang, Linlin; Lelong, Christophe; Jouaux, Aude

    2015-09-01

    Oysters are representative bivalve molluscs that are widely distributed in world oceans. As successful colonizers of estuaries and intertidal zones, oysters are remarkably resilient against harsh environmental conditions including wide fluctuations in temperature and salinity as well as prolonged air exposure. Oysters have no adaptive immunity but can thrive in microbe-rich estuaries as filter-feeders. These unique adaptations make oysters interesting models to study the evolution of host-defense systems. Recent advances in genomic studies including sequencing of the oyster genome have provided insights into oyster's immune and stress responses underlying their amazing resilience. Studies show that the oyster genomes are highly polymorphic and complex, which may be key to their resilience. The oyster genome has a large gene repertoire that is enriched for immune and stress response genes. Thousands of genes are involved in oyster's immune and stress responses, through complex interactions, with many gene families expanded showing high sequence, structural and functional diversity. The high diversity of immune receptors and effectors may provide oysters with enhanced specificity in immune recognition and response to cope with diverse pathogens in the absence of adaptive immunity. Some members of expanded immune gene families have diverged to function at different temperatures and salinities or assumed new roles in abiotic stress response. Most canonical innate immunity pathways are conserved in oysters and supported by a large number of diverse and often novel genes. The great diversity in immune and stress response genes exhibited by expanded gene families as well as high sequence and structural polymorphisms may be central to oyster's adaptation to highly stressful and widely changing environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effect of childhood physical abuse on cortisol stress response.

    Science.gov (United States)

    Carpenter, Linda L; Shattuck, Thaddeus T; Tyrka, Audrey R; Geracioti, Thomas D; Price, Lawrence H

    2011-03-01

    Abuse and neglect are highly prevalent in children and have enduring neurobiological effects. Stressful early life environments perturb the hypothalamic-pituitary-adrenal (HPA) axis, which in turn may predispose to psychiatric disorders in adulthood. However, studies of childhood maltreatment and adult HPA function have not yet rigorously investigated the differential effects of maltreatment subtypes, including physical abuse. In this study, we sought to replicate our previous finding that childhood maltreatment was associated with attenuated cortisol responses to stress and determine whether the type of maltreatment was a determinant of the stress response. Salivary cortisol response to the Trier Social Stress Test (TSST) was examined in a non-clinical sample of women (n = 110). Subjects had no acute medical problems and were not seeking psychiatric treatment. Effects of five maltreatment types, as measured by the Childhood Trauma Questionnaire, on cortisol response to the TSST were investigated. To further examine the significant (p < 0.005) effect of one maltreatment type, women with childhood physical abuse (PA) (n = 20) were compared to those without past PA (n = 90). Women reporting childhood PA displayed a significantly blunted cortisol response to the TSST compared with subjects without PA, after controlling for estrogen use, age, other forms of maltreatment, and other potential confounds. There were no differences between PA and control groups with regard to physiological arousal during the stress challenge. In a non-clinical sample of women with minimal or no current psychopathology, physical abuse is associated with a blunted cortisol response to a psychosocial stress task.

  4. Review Cyclic AMP response element binding protein and brain ...

    Indian Academy of Sciences (India)

    Madhu

    Several types of adult-onset stressors, including physical and psychosocial stressors ... stress-induced atrophy with antidepressant therapy in animal models (Watanabe et ..... (Strauss et al 2005) and geriatric depression (Hwang et al. 2005).

  5. Finite element formulation for thermal stress analysis of thin reactor structures

    International Nuclear Information System (INIS)

    Kulak, R.F.; Kennedy, J.M.; Belytschko, T.B.

    1978-01-01

    This paper describes the formulation of a finite-element procedure for the thermal stress analysis of thin wall reactor components. A general temperature-dependent constituent relationship is derived from a Gibbs potential function and a temperature-dependent yield surface. This form of constitutive relationship is applicable to problems of small strain. A similar form of a hypoelastic-plastic type is also developed for large strains. The variation of the yield surface with temperature is based upon a temperature-dependent, work-hardening model. The model uses a temperature-equivalent stress-plastic strain diagram which is generated from isothermal unaxial stress-strain data. The above constitutive relationships are incorporated into two computer codes and a previously developed numerical algorithm is used with minor modifications. A set of problems is presented validating the thermal analysis capability of the computer codes to a variety of problem types. (Auth.)

  6. The finite element analysis for prediction of residual stresses induced by shot peening

    International Nuclear Information System (INIS)

    Kim, Cheol; Yang, Won Ho; Sung, Ki Deug; Cho, Myoung Rae; Ko, Myung Hoon

    2000-01-01

    The shot peening is largely used for a surface treatment in which small spherical parts called shots are blasted on a surface of a metallic components with velocities up to 100m/s. This treatment leads to an improvement of fatigue behavior due to the developed compressive residual stresses, and so it has gained widespread acceptance in the automobile and aerospace industries. The residual stress profile on surface layer depends on the parameters of shot peening, which are, shot velocity, shot diameter, coverage, impact angle, material properties etc. and the method to confirm this profile is only measurement by X-ray diffractometer. Despite its importance to automobile and aerospace industries, little attention has been devoted to the accurate modeling of the process. In this paper, the simulation technique is applied to predict the magnitude and distribution of the residual stress and plastic deformation caused by shot peening with the help of the finite element analysis

  7. Simulating Stresses Associated with the Bending of Wood Using a Finite Element Method

    Directory of Open Access Journals (Sweden)

    Milan Gaff

    2015-02-01

    Full Text Available This article examines the stress-strain curves of various thicknesses of soft and hard wood when bent during three-point loading. The finite element method was used to simulate the course of stresses that occurred during the bending of these materials. Reference curves obtained by bending real specimens offered a basis for simulation. The results showed that with increasing material thickness, deflection values decreased and the proportionality limit increased; eventually, the bendability coefficient value decreased and the loading force necessary for bending increased. Moreover, it was apparent when bending hard materials that higher loading forces were necessary for different materials of the same thickness. It is possible to determine the stress-strain curves without having to perform experiments (except for indispensable reference ones under real conditions.

  8. A fully coupled finite element model for stress distribution in buried gas pipeline

    International Nuclear Information System (INIS)

    Yahya Sukirman; Zainal Zakaria; Woong Soon Yue

    2001-01-01

    The study of stress-strain relationship is very important in many designs of buried structures over the years. The behavior and mechanism between the interaction of soil and buried structures such as a natural pipeline will mostly contributes to the integrity of the pipeline. This paper presents a fully coupled finite element of consolidation analysis model to study the stress-strain distribution along a buried pipeline before it excess its maximum deformation limit. The behavior of the soil-pipeline system can be modelled by a non-linear elasto-plastic based on Mohr-Coulomb and critical state yield surfaces. The deformation and deflection of the pipeline due to drained and external loading condition will be considered here. Finally the stress-strain distribution of the buried pipeline will be utilised to obtain the maximum deformation limit and the deflection of the buried pipeline. (Author)

  9. Social stress response in adolescents with bipolar disorder.

    Science.gov (United States)

    Casement, Melynda D; Goldstein, Tina R; Gratzmiller, Sarah M; Franzen, Peter L

    2018-05-01

    Theoretical models posit that stressors contribute to the onset and maintenance of bipolar disorder in adolescence through disruptions in stress physiology, but physiological response to stressors has not been evaluated in adolescents with bipolar illness. The present study tests the hypothesis that adolescents with bipolar disorder will have greater reactivity to a laboratory social stress task than healthy adolescents. Adolescents with bipolar illness (n = 27) and healthy adolescents (n = 28) completed a modified version of the Trier Social Stress Task. Stress response was assessed using high frequency heart rate variability (HF-HRV), heart rate (HR), mean arterial blood pressure (MAP), salivary cortisol, and subjective stress. Multilevel models were used to test for group differences in resting-state physiology, and stress reactivity and recovery. Adolescents with bipolar disorder had greater reactivity in HF-HRV (z = 3.32), but blunted reactivity in MAP (z = -3.08) and cortisol (z = -2.60), during the stressor compared to healthy adolescents. They also had lower resting HF-HRV (z = -3.49) and cortisol (z = -2.86), and higher resting HR (z = 3.56), than healthy adolescents. These results indicate that bipolar disorder is associated with disruptions in autonomic and endocrine response to stress during adolescence, including greater HF-HRV reactivity. Further research should evaluate whether these individual differences in stress physiology precede and predict the onset of mood episodes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Transcriptomic Response of Purple Willow (Salix purpurea to Arsenic Stress

    Directory of Open Access Journals (Sweden)

    Aymeric Yanitch

    2017-06-01

    Full Text Available Arsenic (As is a toxic element for plants and one of the most common anthropogenic pollutants found at contaminated sites. Despite its severe effects on plant metabolism, several species can accumulate substantial amounts of arsenic and endure the associated stress. However, the genetic mechanisms involved in arsenic tolerance remains obscure in many model plant species used for land decontamination (phytoremediation, including willows. The present study assesses the potential of Salix purpurea cv. ‘Fish Creek’ for arsenic phytoextraction and reveals the genetic responses behind arsenic tolerance, phytoextraction and metabolism. Four weeks of hydroponic exposure to 0, 5, 30 and 100 mg/L revealed that plants were able to tolerate up to 5 mg/L arsenic. Concentrations of 0 and 5 mg/L of arsenic treatment were then used to compare alterations in gene expression of roots, stems and leaves using RNA sequencing. Differential gene expression revealed transcripts encoding proteins putatively involved in entry of arsenic into the roots, storage in vacuoles and potential transport through the plant as well as primary and secondary (indirect toxicity tolerance mechanisms. A major role for tannin as a compound used to relieve cellular toxicity is implicated as well as unexpected expression of the cadmium transporter CAX2, providing a potential means for internal arsenic mobility. These insights into the underpinning genetics of a successful phytoremediating species present novel opportunities for selection of dedicated arsenic tolerant crops as well as the potential to integrate such tolerances into a wider Salix ideotype alongside traits including biomass yield, biomass quality, low agricultural inputs and phytochemical production.

  11. Transcriptomic Response of Purple Willow (Salix purpurea) to Arsenic Stress

    Science.gov (United States)

    Yanitch, Aymeric; Brereton, Nicholas J. B.; Gonzalez, Emmanuel; Labrecque, Michel; Joly, Simon; Pitre, Frederic E.

    2017-01-01

    Arsenic (As) is a toxic element for plants and one of the most common anthropogenic pollutants found at contaminated sites. Despite its severe effects on plant metabolism, several species can accumulate substantial amounts of arsenic and endure the associated stress. However, the genetic mechanisms involved in arsenic tolerance remains obscure in many model plant species used for land decontamination (phytoremediation), including willows. The present study assesses the potential of Salix purpurea cv. ‘Fish Creek’ for arsenic phytoextraction and reveals the genetic responses behind arsenic tolerance, phytoextraction and metabolism. Four weeks of hydroponic exposure to 0, 5, 30 and 100 mg/L revealed that plants were able to tolerate up to 5 mg/L arsenic. Concentrations of 0 and 5 mg/L of arsenic treatment were then used to compare alterations in gene expression of roots, stems and leaves using RNA sequencing. Differential gene expression revealed transcripts encoding proteins putatively involved in entry of arsenic into the roots, storage in vacuoles and potential transport through the plant as well as primary and secondary (indirect) toxicity tolerance mechanisms. A major role for tannin as a compound used to relieve cellular toxicity is implicated as well as unexpected expression of the cadmium transporter CAX2, providing a potential means for internal arsenic mobility. These insights into the underpinning genetics of a successful phytoremediating species present novel opportunities for selection of dedicated arsenic tolerant crops as well as the potential to integrate such tolerances into a wider Salix ideotype alongside traits including biomass yield, biomass quality, low agricultural inputs and phytochemical production. PMID:28702037

  12. Stressed and strained state for cermetic-rod-type fuel element

    International Nuclear Information System (INIS)

    Kulikov, I.S.

    1987-01-01

    Calculation technique for designing the stress-strained state of a cermetic rod-type fuel element has been proposed. The technique is based on the time-dependent step-by-step method and the solution of the deformation equilibrium equation for continuous and thick-wall long cylinders at every temporal step by the finite difference method. Additional strains, caused by thermal expansion and radiation swelling, have been taken into account. The transion from the non-contact model to the stiff-contact model has been provided in the case of cladding-fuel gap dissappearing in one or a number of cross-sections along the fuel element height. The method is supplemented by the formula for fuel cans stability estimation in the case of high coolant external pressure. The example of estimation of the cermetic-rod-type fuel elements are considered as an example

  13. Eccentric-exercise induced inflammation attenuates the vascular responses to mental stress

    NARCIS (Netherlands)

    Paine, N.J.; Ring, C.; Aldred, S.; Bosch, J.A.; Wadley, A.J.; Veldhuijzen van Zanten, J.J.C.S.

    2013-01-01

    Mental stress has been identified as a trigger of myocardial infarction (MI), with inflammation and vascular responses to mental stress independently implicated as contributing factors. This study examined whether inflammation moderates the vascular responses to mental stress. Eighteen healthy male

  14. Respiratory Effects and Systemic Stress Response Following ...

    Science.gov (United States)

    Previous studies have demonstrated that exposure to the pulmonary irritant ozone causes myriad systemic metabolic and pulmonary effects attributed to sympathetic and hypothalamus-pituitary-adrenal (HPA) axis activation, which are exacerbated in metabolically impaired models. We examined respiratory and systemic effects following exposure to a sensory irritant acrolein to elucidate the systemic and pulmonary consequences in healthy and diabetic rat models. Male Wistar and Goto Kakizaki (GK) rats, a nonobese type II diabetic Wistar-derived model, were exposed by inhalation to 0, 2, or 4 ppm acrolein, 4 h/d for 1 or 2 days. Exposure at 4 ppm significantly increased pulmonary and nasal inflammation in both strains with vascular protein leakage occurring only in the nose. Acrolein exposure (4 ppm) also caused metabolic impairment by inducing hyperglycemia and glucose intolerance (GK > Wistar). Serum total cholesterol (GKs only), low-density lipoprotein (LDL) cholesterol (both strains), and free fatty acids (GK > Wistar) levels increased; however, no acrolein-induced changes were noted in branched-chain amino acid or insulin levels. These responses corresponded with a significant increase in corticosterone and modest but insignificant increases in adrenaline in both strains, suggesting activation of the HPA axis. Collectively, these data demonstrate that acrolein exposure has a profound effect on nasal and pulmonary inflammation, as well as glucose and lipid metabolis

  15. Response of Saccharomyces cerevisiae to cadmium stress

    International Nuclear Information System (INIS)

    Moreira, Luciana Mara Costa; Ribeiro, Frederico Haddad; Neves, Maria Jose; Porto, Barbara Abranches Araujo; Amaral, Angela M.; Menezes, Maria Angela B.C.; Rosa, Carlos Augusto

    2009-01-01

    The intensification of industrial activity has been greatly contributing with the increase of heavy metals in the environment. Among these heavy metals, cadmium becomes a serious pervasive environmental pollutant. The cadmium is a heavy metal with no biological function, very toxic and carcinogenic at low concentrations. The toxicity of cadmium and several other metals can be mainly attributed to the multiplicity of coordination complexes and clusters that they can form. Some aspects of the cellular response to cadmium were extensively investigated in the yeast Saccharomyces cerevisiae. The primary site of interaction between many toxic metals and microbial cells is the plasma membrane. Plasma-membrane permeabilisation has been reported in a variety of microorganisms following cadmium exposure, and is considered one mechanism of cadmium toxicity in the yeast. In this work, using the yeast strain S. cerevisiae W303-WT, we have investigated the relationships between Cd uptake and release of cellular metal ions (K + and Na + ) using neutron activation technique. The neutron activation was an easy, rapid and suitable technique for doing these metal determinations on yeast cells; was observed the change in morphology of the strains during the process of Cd accumulation, these alterations were observed by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) during incorporation of cadmium. (author)

  16. Response of Saccharomyces cerevisiae to cadmium stress

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Luciana Mara Costa; Ribeiro, Frederico Haddad; Neves, Maria Jose [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia], e-mail: luamatu@uol.com.br; Porto, Barbara Abranches Araujo; Amaral, Angela M.; Menezes, Maria Angela B.C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Lab. de Ativacao Neutronica], e-mail: menezes@cdtn.br; Rosa, Carlos Augusto [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail: carlrosa@icb.ufmg

    2009-07-01

    The intensification of industrial activity has been greatly contributing with the increase of heavy metals in the environment. Among these heavy metals, cadmium becomes a serious pervasive environmental pollutant. The cadmium is a heavy metal with no biological function, very toxic and carcinogenic at low concentrations. The toxicity of cadmium and several other metals can be mainly attributed to the multiplicity of coordination complexes and clusters that they can form. Some aspects of the cellular response to cadmium were extensively investigated in the yeast Saccharomyces cerevisiae. The primary site of interaction between many toxic metals and microbial cells is the plasma membrane. Plasma-membrane permeabilisation has been reported in a variety of microorganisms following cadmium exposure, and is considered one mechanism of cadmium toxicity in the yeast. In this work, using the yeast strain S. cerevisiae W303-WT, we have investigated the relationships between Cd uptake and release of cellular metal ions (K{sup +} and Na{sup +}) using neutron activation technique. The neutron activation was an easy, rapid and suitable technique for doing these metal determinations on yeast cells; was observed the change in morphology of the strains during the process of Cd accumulation, these alterations were observed by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) during incorporation of cadmium. (author)

  17. Psychological stress during exercise: immunoendocrine and oxidative responses.

    Science.gov (United States)

    Huang, Chun-Jung; Webb, Heather E; Evans, Ronald K; McCleod, Kelly A; Tangsilsat, Supatchara E; Kamimori, Gary H; Acevedo, Edmund O

    2010-12-01

    The purpose of this study was to examine the changes in catecholamines (epinephrine [EPI] and norepinephrine [NE]), interleukin-2 (IL-2) and a biomarker of oxidative stress (8-isoprostane) in healthy individuals who were exposed to a dual challenge (physical and psychological stress). Furthermore, this study also examined the possible relationships between catecholamines (NE and EPI) and 8-isoprostane and between IL-2 and 8-isoprostane following a combined physical and psychological challenge. Seven healthy male subjects completed two experimental conditions. The exercise-alone condition (EAC) consisted of cycling at 60% VO(2max) for 37 min, while the dual-stress condition (DSC) included 20 min of a mental challenge while cycling. DSC showed greater EPI and 8-isoprostane levels (significant condition by time interaction). NE and IL-2 revealed significant change across time in both conditions. In addition, following dual stress, EPI area-under-the-curve (AUC) demonstrated a positive correlation with NE AUC and IL-2 AUC. NE AUC was positively correlated with IL-2 AUC and peak 8-isoprostane, and peak IL-2 was positively correlated with peak 8-isoprostane in response to a dual stress. The potential explanation for elevated oxidative stress during dual stress may be through the effects of the release of catecholamines and IL-2. These findings may further provide the potential explanation that dual stress alters physiological homeostasis in many occupations including firefighting, military operations and law enforcement. A greater understanding of these responses to stress can assist in finding strategies (e.g. exercise training) to overcome the inherent psychobiological challenges associated with physically and mentally demanding professions.

  18. Stretching the stress boundary: Linking air pollution health effects to a neurohormonal stress response.

    Science.gov (United States)

    Kodavanti, Urmila P

    2016-12-01

    Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer's and diabetes. A neurohormonal stress response (referred to here as a systemic response produced by activation of the sympathetic nervous system and hypothalamus-pituitary-adrenal (HPA)-axis) has been implicated in a variety of psychological and physical stresses, which involves immune and metabolic homeostatic mechanisms affecting all organs in the body. In this review, we provide new evidence for the involvement of this well-characterized neurohormonal stress response in mediating systemic and pulmonary effects of a prototypic air pollutant - ozone. A plethora of systemic metabolic and immune effects are induced in animals exposed to inhaled pollutants, which could result from increased circulating stress hormones. The release of adrenal-derived stress hormones in response to ozone exposure not only mediates systemic immune and metabolic responses, but by doing so, also modulates pulmonary injury and inflammation. With recurring pollutant exposures, these effects can contribute to multi-organ chronic conditions associated with air pollution. This review will cover, 1) the potential mechanisms by which air pollutants can initiate the relay of signals from respiratory tract to brain through trigeminal and vagus nerves, and activate stress responsive regions including hypothalamus; and 2) the contribution of sympathetic and HPA-axis activation in mediating systemic homeostatic metabolic and immune effects of ozone in various organs. The potential contribution of chronic environmental stress in cardiovascular, neurological, reproductive and metabolic diseases, and the knowledge gaps are also discussed. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu. Published by Elsevier B.V.

  19. Response to stress in Drosophila is mediated by gender, age and stress paradigm.

    Science.gov (United States)

    Neckameyer, Wendi S; Nieto-Romero, Andres R

    2015-01-01

    All living organisms must maintain equilibrium in response to internal and external challenges within their environment. Changes in neural plasticity (alterations in neuronal populations, dendritic remodeling, and synaptic turnover) are critical components of the homeostatic response to stress, which has been strongly implicated in the onset of affective disorders. However, stress is differentially perceived depending on the type of stress and its context, as well as genetic background, age and sex; therefore, an individual's maintenance of neuronal homeostasis must differ depending upon these variables. We established Drosophila as a model to analyze homeostatic responses to stress. Sexually immature and mature females and males from an isogenic wild-type strain raised under controlled environmental conditions were exposed to four reproducible and high-throughput translatable stressors to facilitate the analysis of a large number of animals for direct comparisons. These animals were assessed in an open-field arena, in a light-dark box, and in a forced swim test, as well as for sensitivity to the sedative effects of ethanol. These studies establish that immature and mature females and males represent behaviorally distinct populations under control conditions as well as after exposure to different stressors. Therefore, the neural substrates mediating the stress response must be differentially expressed depending upon the hormonal status of the brain. In addition, an adaptive response to a given stressor in one paradigm was not predictive for outcomes in other paradigms.

  20. Stress effects on mood, HPA axis, and autonomic response: comparison of three psychosocial stress paradigms.

    Directory of Open Access Journals (Sweden)

    Grace E Giles

    Full Text Available Extensive experimental psychology research has attempted to parse the complex relationship between psychosocial stress, mood, cognitive performance, and physiological changes. To do so, it is necessary to have effective, validated methods to experimentally induce psychosocial stress. The Trier Social Stress Test (TSST is the most commonly used method of experimentally inducing psychosocial stress, but it is resource intensive. Less resource intense psychosocial stress tasks include the Socially Evaluative Cold Pressor Task (SECPT and a computerized mental arithmetic task (MAT. These tasks effectively produce a physiological and psychological stress response and have the benefits of requiring fewer experimenters and affording data collection from multiple participants simultaneously. The objective of this study was to compare the magnitude and duration of these three experimental psychosocial stress induction paradigms. On each of four separate days, participants completed either a control non-stressful task or one of the three experimental stressors: the TSST, SECPT, or MAT. We measured mood, working memory performance, salivary cortisol and alpha-amylase (AA, and heart rate. The TSST and SECPT exerted the most robust effects on mood and physiological measures. TSST effects were generally evident immediately post-stress as well as 10- and 20-minutes after stress cessation, whereas SECPT effects were generally limited to the duration of the stressor. The stress duration is a key determinant when planning a study that utilizes an experimental stressor, as researchers may be interested in collecting dependent measures prior to stress cessation. In this way, the TSST would allow the investigator a longer window to administer tasks of interest.

  1. Physiological responses of genotypes soybean to simulated drought stress

    Directory of Open Access Journals (Sweden)

    Eleonóra Krivosudská

    2016-12-01

    Full Text Available The objective of this research was to investigate possible genetic variation in the sensitivity of soybean cultivars for nitrogen fixation rates in response to soil drying. The work confirmed that the selected physiological characteristics (RWC, osmotic potential, stress index and created nodules on roots are good evaluating parameters for the determination of water stress in plant. In the floricultural year 2014 an experiment with four genetic resources of soybean was launched. Sowing of Maverick (USA, Drina (HRV, Nigra (SVK and Polanka (CZK genotypes was carried out in the containers of 15 l capacity. This stress had a negative impact on the physiological parameters. By comparing the RWC values, the decrease was more significant at the end of dehydration, which was monitored in Maverick and Drina genotypes using the Nitrazon inoculants and water stress effect. Inoculated stressed Nigra and Polanka genotypes have kept higher water content till the end of dehydration period. Also the proline accumulation was monitored during the water stress, whilst higher content of free proline reached of Maverick. More remarkable decrease of osmotic potential was again registered in a foreign Drina and Maverick genotypes in the inoculated variations. Nigra and Polanka genotypes responses not so significant in the given conditions.

  2. Drought Stress Responses of Sunflower Germplasm Developed after Wide Hybridization

    Directory of Open Access Journals (Sweden)

    Roumiana Dimova Vassilevska-Ivanova

    2016-10-01

    Full Text Available Response of sunflower germplasms viz. cultivated sunflower H. annuus and two breeding lines H. annuus x T. rotundifolia and H. annuus x V. encelioides developed after wide hybridization were used for identification of drought tolerant sunflower genotypes at the seedling growth stage. Three water stress levels of zero (control, -0.4, and -0.8 MPa were developed using polyethyleneglycol-6000 (PEG-6000. Physiological and biochemical stress determining parameters such as root and shoots length, fresh weight, antioxidant enzyme activities (superoxide dismutase (SOD, catalase (CAT, guaiacol peroxidase (GPO, ascorbate peroxidase (APX and antioxidant metabolite content (total antioxidant capacity, total phenols and total flavonoids content were compared between seedlings of all three genotypes. Results revealed that sunflower genotypes have similar responses at two osmotic potentials for shoot and root length and fresh weight. The data also showed that drought stresss could induce oxidative stress, as indicated by the increase level of ascorbate peroxidase and guaiacol peroxidase at -04 MPa in H. annuus cv 1114. Although the activity of ascorbate peroxidase and guaiacol peroxidase was differentially influenced by drought, the changes of antioxidant enzyme activities such as catalase, superoxide dismutase, guaiacol peroxidase, and ascorbate peroxidase subjected to drought stress follow a similar pattern in both breeding lines, indicating that similar defense systems might be involved in the oxidative stress injury in sunflowers. Increase in content of phenols and flavonoids were detected for all three genotypes under stress, which showed that these were major antioxidant metabolites in scavenging cellular H2O2.

  3. The bZIP protein from Tamarix hispida, ThbZIP1, is ACGT elements binding factor that enhances abiotic stress signaling in transgenic Arabidopsis.

    Science.gov (United States)

    Ji, Xiaoyu; Liu, Guifeng; Liu, Yujia; Zheng, Lei; Nie, Xianguang; Wang, Yucheng

    2013-10-04

    Tamarix spp. are woody halophyte, which are very tolerant to abiotic stresses such as salinity and drought, but little is known about their specific stress response systems. Basic leucine zipper proteins (bZIPs) play important roles in the ability of plants to withstand adverse environmental conditions. However, their exact roles in abiotic stress tolerance are still not fully known. In the current study, we functionally characterized a bZIP gene (ThbZIP1) from Tamarix hispida in response to abiotic stresses. We addressed the regulatory network of ThbZIP1 in three levels, i.e. its upstream regulators, the cis-acting elements recognized by ThbZIP1, and its downstream target genes. Two MYCs were found to bind to E-box, in the promoter of ThbZIP1 to activate its expression. Expression of ThbZIP1 is induced by ABA, salt, drought, methyl viologen and cold. ThbZIP1 can specifically bind to ACGT elements, with the highest binding affinity to the C-box, followed by the G-box and lastly the A-box. Compared with wild-type (Col-0) Arabidopsis, transgenic plants expressing ThbZIP1 had an increased tolerance to drought and salt, but had an increased sensitivity to ABA during seed germination and root growth; meanwhile, ROS level, cell death and water loss rate in transgenic plants were significantly reduced. Microarray analyses showed that many ROS scavenging genes were up-regulated by ThbZIP1 under salt stress conditions. Based on these data, we suggest that ThbZIP1 confers abiotic stress tolerance through activating stress tolerance genes to modulate ROS scavenging ability and other physiological changes involved in stress tolerance, and plays an important role in the ABA-mediated stress response of T. hispida.

  4. Cortisol stress response in post-traumatic stress disorder, panic disorder, and major depressive disorder patients.

    Science.gov (United States)

    Wichmann, Susann; Kirschbaum, Clemens; Böhme, Carsten; Petrowski, Katja

    2017-09-01

    Previous research has focussed extensively on the distinction of HPA-axis functioning between patient groups and healthy volunteers, with relatively little emphasis on a direct comparison of patient groups. The current study's aim was to analyse differences in the cortisol stress response as a function of primary diagnosis of panic disorder (PD), post-traumatic stress disorder (PTSD), and major depressive disorder (MDD). A total of n=30 PD (mean age±SD: 36.07±12.56), n=23 PTSD (41.22±10.17), n=18 MDD patients (39.00±14.93) and n=47 healthy control (HC) individuals (35.51±13.15) participated in this study. All the study participants were female. The Trier Social Stress Test (TSST) was used for reliable laboratory stress induction. Blood sampling accompanied the TSST for cortisol and ACTH assessment. Panic-related, PTSD-specific questionnaires and the Beck Depression Inventory II were handed out for the characterisation of the study groups. Repeated measure ANCOVAs were conducted to test for main effects of time or group and for interaction effects. Regression analyses were conducted to take comorbid depression into account. 26.7% of the PD patients, 43.5% of the PTSD patients, 72.2% of the MDD patients and 80.6% of the HC participants showed a cortisol stress response upon the TSST. ANCOVA revealed a cortisol hypo-responsiveness both in PD and PTSD patients, while no significant group differences were seen in the ACTH concentrations. Additional analyses showed no impact of comorbid depressiveness on the cortisol stress response. MDD patients did not differ in the hormonal stress response neither compared to the HC participants nor to the PD and PTSD patients. Our main findings provide evidence of a dissociation between the cortisol and ACTH concentrations in response to the TSST in PTSD and in PD patients, independent of comorbid depression. Our results further support overall research findings of a cortisol hypo-responsiveness in PD patients. A hypo-response

  5. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Christen, Verena [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Capelle, Martinus [Crucell, P.O. Box 2048, NL-2301 Leiden (Netherlands); Fent, Karl, E-mail: karl.fent@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology Zürich, Department of Environmental Systems Science, CH-8092 Zürich (Switzerland)

    2013-10-15

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes.

  6. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    International Nuclear Information System (INIS)

    Christen, Verena; Capelle, Martinus; Fent, Karl

    2013-01-01

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes

  7. Erythropoietin Action in Stress Response, Tissue Maintenance and Metabolism

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhang

    2014-06-01

    Full Text Available Erythropoietin (EPO regulation of red blood cell production and its induction at reduced oxygen tension provides for the important erythropoietic response to ischemic stress. The cloning and production of recombinant human EPO has led to its clinical use in patients with anemia for two and half decades and has facilitated studies of EPO action. Reports of animal and cell models of ischemic stress in vitro and injury suggest potential EPO benefit beyond red blood cell production including vascular endothelial response to increase nitric oxide production, which facilitates oxygen delivery to brain, heart and other non-hematopoietic tissues. This review discusses these and other reports of EPO action beyond red blood cell production, including EPO response affecting metabolism and obesity in animal models. Observations of EPO activity in cell and animal model systems, including mice with tissue specific deletion of EPO receptor (EpoR, suggest the potential for EPO response in metabolism and disease.

  8. Physiological and psychological responses to expressions of emotion and empathy in post-stress communication.

    Science.gov (United States)

    Ono, Makiko; Fujita, Mizuho; Yamada, Shigeyuki

    2009-01-01

    The effects of communicating during and after expressing emotions and receiving empathy after exposure to stress were investigated for 18 female students (9 pairs). After mental and physical tasks, a subject spoke to a listener about the stress task. In Experiment 1, responses to speaking about negative emotions aroused by the task (the "with emotion" condition) were compared to speaking about only objective facts about the task (the control). In Experiment 2, responses to empathetic reactions from the listener (the "with empathy" condition) were compared to no reaction (the control). Electroencephalograms were recorded, and heart rate variability (HRV) was calculated from electrocardiogram data. Subjective stress was estimated by a visual analog scale. Experiment 1 demonstrated that expressing emotions activated the left temporal region (T3) in the "with emotion" condition. In Experiment 2, physiological responses depended on cognition of different elements of empathy. During communication, feeling that the listener had the same emotion decreased the subject's T3 activity and sympathetic activity balance indicated by HRV. After communication, feeling that the listener understood her emotions decreased bilateral frontal and temporal activity. On the other hand, subjective stress did not differ between conditions in both experiments. These findings indicate that the comfort of having shared a message reduced physiological activity, especially in the "with empathy" condition. Conversely, even in the "with empathy" condition, not sharing a message can result in more discomfort or stress than the control. Sharing might be associated with cognition of the degree of success of communication, which reflected in the physiological responses. In communication, therefore, expressing emotions and receiving empathy did not in themselves reduce stress, and the level of cognition of having shared a message is a key factor in reducing stress.

  9. Patterns of Sympathetic Responses Induced by Different Stress Tasks

    Science.gov (United States)

    Fechir, M; Schlereth, T; Purat, T; Kritzmann, S; Geber, C; Eberle, T; Gamer, M; Birklein, F

    2008-01-01

    Stress tasks are used to induce sympathetic nervous system (SNS) arousal. However, the efficacy and the patterns of SNS activation have not been systematically compared between different tasks. Therefore, we analyzed SNS activation during the following stress tasks: Presentation of negative, positive, and – as a control – neutral affective pictures, Color-Word interference test (CWT), mental arithmetic under time limit, singing a song aloud, and giving a spontaneous talk. We examined 11 healthy subjects and recorded the following SNS parameters: Activation of emotional sweating by quantitative sudometry, skin vasoconstriction by laser-Doppler flowmetry, heart rate by ECG, blood pressure by determination of pulse wave transit time (PWTT), and electromyographic (EMG) activity of the trapezius muscle. Moreover, subjective stress ratings were acquired for each task using a visual analog scale. All tasks were felt significantly stressful when compared to viewing neutral pictures. However, SNS activation was not reliable: Affective pictures did not induce a significant SNS response; singing, giving a talk and mental arithmetic selectively increased heart rate and emotional sweating. Only the CWT globally activated the SNS. Regarding all tasks, induction of emotional sweating, increase of heart rate and blood pressure significantly correlated with subjective stress ratings, in contrast to EMG and skin vasoconstriction. Our results show that the activation of the SNS widely varies depending on the stress task. Different stress tasks differently activate the SNS, which is an important finding when considering sympathetic reactions - in clinical situations and in research. PMID:19018304

  10. Oxidative stress protection and glutathione metabolism in response to hydrogen peroxide and menadione in riboflavinogenic fungus Ashbya gossypii.

    Science.gov (United States)

    Kavitha, S; Chandra, T S

    2014-11-01

    Ashbya gossypii is a plant pathogen and a natural overproducer of riboflavin and is used for industrial riboflavin production. A few literature reports depict a link between riboflavin overproduction and stress in this fungus. However, the stress protection mechanisms and glutathione metabolism are not much explored in A. gossypii. In the present study, an increase in the activity of catalase and superoxide dismutase was observed in response to hydrogen peroxide and menadione. The lipid peroxide and membrane lipid peroxide levels were increased by H2O2 and menadione, indicating oxidative damage. The glutathione metabolism was altered with a significant increase in oxidized glutathione (GSSG), glutathione peroxidase (GPX), glutathione S transferase (GST), and glutathione reductase (GR) and a decrease in reduced glutathione (GSH) levels in the presence of H2O2 and menadione. Expression of the genes involved in stress mechanism was analyzed in response to the stressors by semiquantitative RT-PCR. The messenger RNA (mRNA) levels of CTT1, SOD1, GSH1, YAP1, and RIB3 were increased by H2O2 and menadione, indicating the effect of stress at the transcriptional level. A preliminary bioinformatics study for the presence of stress response elements (STRE)/Yap response elements (YRE) depicted that the glutathione metabolic genes, stress genes, and the RIB genes hosted either STRE/YRE, which may enable induction of these genes during stress.

  11. 3-dimensional earthquake response analysis of embedded reactor building using hybrid model of boundary elements and finite elements

    International Nuclear Information System (INIS)

    Muto, K.; Motosaka, M.; Kamata, M.; Masuda, K.; Urao, K.; Mameda, T.

    1985-01-01

    In order to investigate the 3-dimensional earthquake response characteristics of an embedded structure with consideration for soil-structure interaction, the authors have developed an analytical method using 3-dimensional hybrid model of boundary elements (BEM) and finite elements (FEM) and have conducted a dynamic analysis of an actual nuclear reactor building. This paper describes a comparative study between two different embedment depths in soil as elastic half-space. As the results, it was found that the earthquake response intensity decreases with the increase of the embedment depth and that this method was confirmed to be effective for investigating the 3-D response characteristics of embedded structures such as deflection pattern of each floor level, floor response spectra in high frequency range. (orig.)

  12. Approach to Operational Experimental Estimation of Static Stresses of Elements of Mechanical Structures

    Science.gov (United States)

    Sedov, A. V.; Kalinchuk, V. V.; Bocharova, O. V.

    2018-01-01

    The evaluation of static stresses and strength of units and components is a crucial task for increasing reliability in the operation of vehicles and equipment, to prevent emergencies, especially in structures made of metal and composite materials. At the stage of creation and commissioning of structures to control the quality of manufacturing of individual elements and components, diagnostic control methods are widely used. They are acoustic, ultrasonic, X-ray, radiation methods and others. The using of these methods to control the residual life and the degree of static stresses of units and parts during operation is fraught with great difficulties both in methodology and in instrumentation. In this paper, the authors propose an effective approach of operative control of the degree of static stresses of units and parts of mechanical structures which are in working condition, based on recording the changing in the surface wave properties of a system consisting of a sensor and a controlled environment (unit, part). The proposed approach of low-frequency diagnostics of static stresses presupposes a new adaptive-spectral analysis of a surface wave created by external action (impact). It is possible to estimate implicit stresses of structures in the experiment due to this approach.

  13. Enterovirus Control of Translation and RNA Granule Stress Responses.

    Science.gov (United States)

    Lloyd, Richard E

    2016-03-30

    Enteroviruses such as poliovirus (PV) and coxsackievirus B3 (CVB3) have evolved several parallel strategies to regulate cellular gene expression and stress responses to ensure efficient expression of the viral genome. Enteroviruses utilize their encoded proteinases to take over the cellular translation apparatus and direct ribosomes to viral mRNAs. In addition, viral proteinases are used to control and repress the two main types of cytoplasmic RNA granules, stress granules (SGs) and processing bodies (P-bodies, PBs), which are stress-responsive dynamic structures involved in repression of gene expression. This review discusses these processes and the current understanding of the underlying mechanisms with respect to enterovirus infections. In addition, the review discusses accumulating data suggesting linkage exists between RNA granule formation and innate immune sensing and activation.

  14. Eye surface temperature detects stress response in budgerigars (Melopsittacus undulatus).

    Science.gov (United States)

    Ikkatai, Yuko; Watanabe, Shigeru

    2015-08-05

    Previous studies have suggested that stressors not only increase body core temperature but also body surface temperature in many animals. However, it remains unclear whether surface temperature could be used as an alternative to directly measure body core temperature, particularly in birds. We investigated whether surface temperature is perceived as a stress response in budgerigars. Budgerigars have been used as popular animal models to investigate various neural mechanisms such as visual perception, vocal learning, and imitation. Developing a new technique to understand the basic physiological mechanism would help neuroscience researchers. First, we found that cloacal temperature correlated with eye surface temperature. Second, eye surface temperature increased after handling stress. Our findings suggest that eye surface temperature is closely related to cloacal temperature and that the stress response can be measured by eye surface temperature in budgerigars.

  15. [Regulation of heat shock gene expression in response to stress].

    Science.gov (United States)

    Garbuz, D G

    2017-01-01

    Heat shock (HS) genes, or stress genes, code for a number of proteins that collectively form the most ancient and universal stress defense system. The system determines the cell capability of adaptation to various adverse factors and performs a variety of auxiliary functions in normal physiological conditions. Common stress factors, such as higher temperatures, hypoxia, heavy metals, and others, suppress transcription and translation for the majority of genes, while HS genes are upregulated. Transcription of HS genes is controlled by transcription factors of the HS factor (HSF) family. Certain HSFs are activated on exposure to higher temperatures or other adverse factors to ensure stress-induced HS gene expression, while other HSFs are specifically activated at particular developmental stages. The regulation of the main mammalian stress-inducible factor HSF1 and Drosophila melanogaster HSF includes many components, such as a variety of early warning signals indicative of abnormal cell activity (e.g., increases in intracellular ceramide, cytosolic calcium ions, or partly denatured proteins); protein kinases, which phosphorylate HSFs at various Ser residues; acetyltransferases; and regulatory proteins, such as SUMO and HSBP1. Transcription factors other than HSFs are also involved in activating HS gene transcription; the set includes D. melanogaster GAF, mammalian Sp1 and NF-Y, and other factors. Transcription of several stress genes coding for molecular chaperones of the glucose-regulated protein (GRP) family is predominantly regulated by another stress-detecting system, which is known as the unfolded protein response (UPR) system and is activated in response to massive protein misfolding in the endoplasmic reticulum and mitochondrial matrix. A translational fine tuning of HS protein expression occurs via changing the phosphorylation status of several proteins involved in translation initiation. In addition, specific signal sequences in the 5'-UTRs of some HS

  16. CENTRAL AMYGDALOID INVOLVEMENT IN NEUROENDOCRINE CORRELATES OF CONDITIONED STRESS RESPONSES

    NARCIS (Netherlands)

    ROOZENDAAL, B; KOOLHAAS, JM; BOHUS, B

    The purpose of this study was to examine the effects of bilateral electrolytic lesions of the central nucleus of the amygdala (CEA) in comparison with sham lesions on neuroendocrine responses during conditioned emotional stress in male Wistar rats. Lesions in the CEA, made either before or after the

  17. Physiological response of heat stressed broiler chickens to ...

    African Journals Online (AJOL)

    Effect of supplementing the drinking water of broilers reared under natural heat stress with ammonium chloride (NH4Cl), sodium bicarbonate (NaHCO3), calcium chloride (CaCl2) and ascorbic acid (AA) on physiological response was investigated. A 200, one-day Arbor acre chicks were randomly allotted to five treatments in ...

  18. Oxidative stress response pathways: Fission yeast as archetype

    DEFF Research Database (Denmark)

    Papadakis, Manos A.; Workman, Christopher

    2015-01-01

    Schizosaccharomyces pombe is a popular model eukaryotic organism to study diverse aspects of mammalian biology, including responses to cellular stress triggered by redox imbalances within its compartments. The review considers the current knowledge on the signaling pathways that govern the transc...

  19. Physiological responses of food animals to road transportation stress

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-29

    Dec 29, 2009 ... transportation are numerous and the responses of the animal to them are complex, non-specific and ..... at 3 h after a 6 h journey in male Japanese goats. During ..... animals are subjected to concomitant action of transport- tation and heat stress .... those measured in moving vehicles (Warriss et al., 1993).

  20. Variability salt stress response analysis of Tunisian natural ...

    African Journals Online (AJOL)

    We evaluated the responses to salt stress of 106 Medicago truncatula lines from 11 Tunisian natural populations collected from areas that varied in soil composition, salinity and water availability. Five references lines were also included in this study. Plants were cultivated in two treatments (0 and 50 mM of NaCl) during a ...

  1. Long-term salt stress responsive growth, carbohydrate metabolism ...

    African Journals Online (AJOL)

    We investigated the long-term responses of tobacco tissues to salt stress, with a particular interest for growth parameters, proline (Pro) accumulation, and carbohydrate metabolism. Exposure of 17-day-old tobacco plants to 0.2 M NaCl was followed by a higher decrease in dry matter in roots than shoots with a decrease of ...

  2. Differential response to water deficit stress in alfalfa ( Medicago ...

    African Journals Online (AJOL)

    The present study was fixed as objective to compare the response to water deficit (33% of field capacity, FC) stress of eight cultivars of Medicago sativa, originating from the Mediterranean basin. Comparison was performed on some key parameters such as growth, relative water content, leaf water potential, MDA tissue ...

  3. Modulation of the immune response by emotional stress

    NARCIS (Netherlands)

    Croiset, G; Heijnen, C J; Veldhuis, H D; de Wied, D; Ballieux, R E

    1987-01-01

    The influence of mild, emotional stress was investigated for its effect on the immune system by subjecting rats to the one-trial-learning passive avoidance test. The reactivity of the immune system was tested by determining the proliferative response after mitogenic stimulation in vitro as well as

  4. Association between neuroticism and amygdala responsivity emerges under stressful conditions

    NARCIS (Netherlands)

    Everaerd, Daphne; Klumpers, Floris; van Wingen, Guido; Tendolkar, Indira; Fernández, Guillén

    2015-01-01

    Increased amygdala reactivity in response to salient stimuli is seen in patients with affective disorders, in healthy subjects at risk for these disorders, and in stressed individuals, making it a prime target for mechanistic studies into the pathophysiology of affective disorders. However, whereas

  5. Carica Papaya Seed Extract Enhances Cellular Response to Stress ...

    African Journals Online (AJOL)

    Therefore, the present study was carried out to investigate the role of Carica papaya seed (CPS) extract that contains, Benzyl Isothiocyanates, one of the inducers of phase II enzymes in the regulation of cellular stress. The cellular responses were observed in U937 cells (human monocyte/macrophage cell line) at the ...

  6. Physiological and biochemical responses to low temperature stress ...

    African Journals Online (AJOL)

    Cuttings of three hybrid clones of P. ussuriensis × P. deltoides were exposed to different low temperatures (cold and freezing) for 24 h, or consecutive low temperatures (5°C, 0 to 120 h), to determine physiological and biochemical responses to cold stress in these woody plants. Soluble sugar and protein contents increased ...

  7. Cyclooxygenase inhibitors and the exercise-induced stress response

    African Journals Online (AJOL)

    steroidal anti-inflammatory drug (NSAID) naproxen, and of the coxib, rofecoxib, on the exercise-induced stress response. Design. Eight subjects (age 20.9 ± 1.1 years, weight 70.4 ± 3.9 kg, height 170.9 ± 6.7 cm, body surface area 1.82 ± 0.09 m2, ...

  8. Insights into resistome and stress responses genes in Bubalus bubalis rumen through metagenomic analysis.

    Science.gov (United States)

    Reddy, Bhaskar; Singh, Krishna M; Patel, Amrutlal K; Antony, Ancy; Panchasara, Harshad J; Joshi, Chaitanya G

    2014-10-01

    Buffalo rumen microbiota experience variety of diets and represents a huge reservoir of mobilome, resistome and stress responses. However, knowledge of metagenomic responses to such conditions is still rudimentary. We analyzed the metagenomes of buffalo rumen in the liquid and solid phase of the rumen biomaterial from river buffalo adapted to varying proportion of concentrate to green or dry roughages, using high-throughput sequencing to know the occurrence of antibiotics resistance genes, genetic exchange between bacterial population and environmental reservoirs. A total of 3914.94 MB data were generated from all three treatments group. The data were analysed with Metagenome rapid annotation system tools. At phyla level, Bacteroidetes were dominant in all the treatments followed by Firmicutes. Genes coding for functional responses to stress (oxidative stress and heat shock proteins) and resistome genes (resistance to antibiotics and toxic compounds, phages, transposable elements and pathogenicity islands) were prevalent in similar proportion in liquid and solid fraction of rumen metagenomes. The fluoroquinolone resistance, MDR efflux pumps and Methicillin resistance genes were broadly distributed across 11, 9, and 14 bacterial classes, respectively. Bacteria responsible for phages replication and prophages and phage packaging and rlt-like streptococcal phage genes were mostly assigned to phyla Bacteroides, Firmicutes and proteaobacteria. Also, more reads matching the sigma B genes were identified in the buffalo rumen. This study underscores the presence of diverse mechanisms of adaptation to different diet, antibiotics and other stresses in buffalo rumen, reflecting the proportional representation of major bacterial groups.

  9. Three-Dimensional Finite Element Analysis on Stress Distribution of Internal Implant-Abutment Engagement Features.

    Science.gov (United States)

    Cho, Sung-Yong; Huh, Yun-Hyuk; Park, Chan-Jin; Cho, Lee-Ra

    To investigate the stress distribution in an implant-abutment complex with a preloaded abutment screw by comparing implant-abutment engagement features using three-dimensional finite element analysis (FEA). For FEA modeling, two implants-one with a single (S) engagement system and the other with a double (D) engagement system-were placed in the human mandibular molar region. Two types of abutments (hexagonal, conical) were connected to the implants. Different implant models (a single implant, two parallel implants, and mesial and tilted distal implants with 1-mm bone loss) were assumed. A static axial force and a 45-degree oblique force of 200 N were applied as the sum of vectors to the top of the prosthetic occlusal surface with a preload of 30 Ncm in the abutment screw. The von Mises stresses at the implant-abutment and abutment-screw interfaces were measured. In the single implant model, the S-conical abutment type exhibited broader stress distribution than the S-hexagonal abutment. In the double engagement system, the stress concentration was high in the lower contact area of the implant-abutment engagement. In the tilted implant model, the stress concentration point was different from that in the parallel implant model because of the difference in the bone level. The double engagement system demonstrated a high stress concentration at the lower contact area of the implant-abutment interface. To decrease the stress concentration, the type of engagement features of the implant-abutment connection should be carefully considered.

  10. Flow stress asymmetry and cyclic stress--strain response in a BCC Ti--V alloy

    International Nuclear Information System (INIS)

    Koss, D.A.; Wojcik, C.C.

    1976-01-01

    The cyclic stress-strain response of relatively stable bcc β-phase Ti--40 percent V alloy single crystals was studied. Flow stress asymmetry found in the alloy is attributed to the fact that screw dislocations, when gliding on a (211) plane, are more mobile in the twinning direction than in the antitwinning direction. Thus the flow stress of the crystal is greater when it is sheared in the antitwinning direction than in the twinning direction (the latter case results when crystals of the 100 orientation are stressed in tension and those of the 110 orientation are stressed in compression). Such behavior can be a result of the core of a screw dislocation being asymmetric under stress which causes the flow stress asymmetry observed. It should be noted that screw dislocations dominate the low temperature deformation structure of Ti-40V, which strongly suggests deformation is controlled by screw dislocation motion. The observation in Mo that the microyield stress is independent of crystal orientation could be a result of edge dislocation motion controlling microyield in that instance and this observation would not be inconsistent with screw dislocation motion controlling the macroscopic (epsilon/sub p/ greater than 0.05 percent) deformation measured here

  11. Lichens (Parmelia sulcata) time response model to environmental elemental availability

    NARCIS (Netherlands)

    Reis, M.A.; Alves, L.C.; Freitas, M.C.; Os, B. van; Wolterbeek, H.T.

    1999-01-01

    Parmelia sulcata transplants, collected in a non-polluted area, were exposed to new atmospheric conditions at six stations, of which five were located near power plants and one at an unpolluted area. Data were collected for a 1-year period, on rainfall, airborne particulates, elemental deposition

  12. Associations Between Paternal Responsiveness and Stress Responsiveness in the Biparental California Mouse, Peromyscus californicus

    OpenAIRE

    Chauke, Miyetani

    2012-01-01

    The mechanistic basis of paternal behavior in mammals is poorly understood. Assuming there are parallels between the factors mediating maternal and paternal behavior, it can be expected that the onset of paternal behavior is facilitated by reductions in stress responsiveness, as occurs in females of several mammalian species. This dissertation describes studies investigating the role of stress responsiveness in the expression of paternal behavior in biparental, monogamous California mice (Per...

  13. Early life adversity influences stress response association with smoking relapse.

    Science.gov (United States)

    al'Absi, Mustafa; Lemieux, Andrine; Westra, Ruth; Allen, Sharon

    2017-11-01

    We examined the hypothesis that stress-related blunting of cortisol in smokers is particularly pronounced in those with a history of severe life adversity. The two aims of this study were first to examine hormonal, craving, and withdrawal symptoms during ad libitum smoking and after the first 24 h of abstinence in smokers who experienced high or low levels of adversity. Second, we sought to examine the relationship between adversity and hypothalamic-pituitary-adrenal (HPA) hormones to predict relapse during the first month of a smoking cessation attempt. Hormonal and self-report measures were collected from 103 smokers (49 women) during ad libitum smoking and after the first 24 h of abstinence. HPA hormones were measured during baseline rest and in response to acute stress in both conditions. All smokers were interested in smoking cessation, and we prospectively used stress response measures to predict relapse during the first 4 weeks of the smoking cessation attempt. The results showed that high adversity was associated with higher distress and smoking withdrawal symptoms. High level of early life adversity was associated with elevated HPA activity, which was found in both salivary and plasma cortisol. Enhanced adrenocorticotropic hormone (ACTH) stress response was evident in high-adversity but not in low-adversity relapsers. This study demonstrated that early life adversity is associated with stress-related HPA responses. The study also demonstrated that, among smokers who experienced a high level of life adversity, heightened ACTH and cortisol responses were linked with increased risk for smoking relapse.

  14. Stress, Roles and Responsibilities of Single Mothers in Malaysia

    Directory of Open Access Journals (Sweden)

    Mohd Hashim Intan Hashimah

    2015-01-01

    Full Text Available Life as a single mother is often associated with great demands and many challenges. This study examines how a group of single mothers in Malaysia views sources of stress and challenges in their lives. It also investigates perceived roles and responsibilities of single mothers. Three hundred single mothers from all over Malaysia were interviewed in this study. Single mothers reported relatively low level of stress that was mostly related to financial (insufficient pay and day-to-day living. They had fairly low stress on issues related to romantic partner and romantic relationships. They however reported extensive roles and responsibilities. Single mothers reported feeling responsible across various domains of life including for their own health and well-being and also for the health and wellbeing of their family and friends. They reported high level of coping and particularly oriented towards solving the problems. They also reported general satisfaction over life. Correlation analysis indicated significant positive relationships between roles and responsibilities and life satisfaction and coping in which coping was associated with higher level of roles and responsibilities and life satisfaction. There was also a negative correlation between stress and life satisfaction in which more stress was associated with lower life satisfaction. Findings indicated a substantial nurturing role of single mothers and provided important policy and practice implications that highlights the important to study and continuously improve quality of life for these women. Finally, this study highlights the important to continuously study and support, important but marginalized groups in society such as single mothers.

  15. Effect of restoration volume on stresses in a mandibular molar: a finite element study.

    Science.gov (United States)

    Wayne, Jennifer S; Chande, Ruchi; Porter, H Christian; Janus, Charles

    2014-10-01

    There can be significant disagreement among dentists when planning treatment for a tooth with a failing medium-to-large--sized restoration. The clinician must determine whether the restoration should be replaced or treated with a crown, which covers and protects the remaining weakened tooth structure during function. The purpose of this study was to evaluate the stresses generated in different sized amalgam restorations via a computational modeling approach and reveal whether a predictable pattern emerges. A computer tomography scan was performed of an extracted mandibular first molar, and the resulting images were imported into a medical imaging software package for tissue segmentation. The software was used to separate the enamel, dentin, and pulp cavity through density thresholding and surface rendering. These tissue structures then were imported into 3-dimensional computer-aided design software in which material properties appropriate to the tissues in the model were assigned. A static finite element analysis was conducted to investigate the stresses that result from normal occlusal forces. Five models were analyzed, 1 with no restoration and 4 with increasingly larger restoration volume proportions: a normal-sized tooth, a small-sized restoration, 2 medium-sized restorations, and 1 large restoration as determined from bitewing radiographs and occlusal surface digital photographs. The resulting von Mises stresses for dentin-enamel of the loaded portion of the tooth grew progressively greater as the size of the restoration increased. The average stress in the normal, unrestored tooth was 4.13 MPa, whereas the smallest restoration size increased this stress to 5.52 MPa. The largest restoration had a dentin-enamel stress of 6.47 MPa. A linear correlation existed between restoration size and dentin-enamel stress, with an R(2) of 0.97. A larger restoration volume proportion resulted in higher dentin-enamel stresses under static loading. A comparison of the von Mises

  16. 33 CFR Appendix D to Part 154 - Training Elements for Oil Spill Response Plans

    Science.gov (United States)

    2010-07-01

    ... Appendix D to Part 154—Training Elements for Oil Spill Response Plans 1. General 1.1The portion of the plan dealing with training is one of the key elements of a response plan. This concept is clearly expressed by... that the plans often do not provide sufficient information in the training section of the plan for...

  17. Common and distinct organ and stress responsive transcriptomic patterns in Oryza sativa and Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Castleden Ian

    2010-11-01

    Full Text Available Abstract Background Arabidopsis thaliana is clearly established as the model plant species. Given the ever-growing demand for food, there is a need to translate the knowledge learned in Arabidopsis to agronomically important species, such as rice (Oryza sativa. To gain a comparative insight into the similarities and differences into how organs are built and how plants respond to stress, the transcriptomes of Arabidopsis and rice were compared at the level of gene orthology and functional categorisation. Results Organ specific transcripts in rice and Arabidopsis display less overlap in terms of gene orthology compared to the orthology observed between both genomes. Although greater overlap in terms of functional classification was observed between root specific transcripts in rice and Arabidopsis, this did not extend to flower, leaf or seed specific transcripts. In contrast, the overall abiotic stress response transcriptome displayed a significantly greater overlap in terms of gene orthology compared to the orthology observed between both genomes. However, ~50% or less of these orthologues responded in a similar manner in both species. In fact, under cold and heat treatments as many or more orthologous genes responded in an opposite manner or were unchanged in one species compared to the other. Examples of transcripts that responded oppositely include several genes encoding proteins involved in stress and redox responses and non-symbiotic hemoglobins that play central roles in stress signalling pathways. The differences observed in the abiotic transcriptomes were mirrored in the presence of cis-acting regulatory elements in the promoter regions of stress responsive genes and the transcription factors that potentially bind these regulatory elements. Thus, both the abiotic transcriptome and its regulation differ between rice and Arabidopsis. Conclusions These results reveal significant divergence between Arabidopsis and rice, in terms of the

  18. Yeast signaling pathways in the oxidative stress response

    Energy Technology Data Exchange (ETDEWEB)

    Ikner, Aminah [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States); Shiozaki, Kazuhiro [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States)]. E-mail: kshiozaki@ucdavis.edu

    2005-01-06

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed.

  19. Yeast signaling pathways in the oxidative stress response

    International Nuclear Information System (INIS)

    Ikner, Aminah; Shiozaki, Kazuhiro

    2005-01-01

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed

  20. Understanding the Posttranscriptional Regulation of Plant Responses to Abiotic Stress

    KAUST Repository

    AlShareef, Sahar A.

    2017-06-01

    Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and biotic and abiotic stresses. Recent work showed that AS is pervasive across plant species, with more than 60% of intron-containing genes producing different isoforms. Mammalian cell-based assays have discovered various AS small-molecule inhibitors that perturb splicing and thereby provide invaluable tools for use as chemical probes to uncover the molecular underpinnings of splicing regulation and as potential anticancer compounds. Here, I show that the macrolide Pladienolide B (PB) and herboxidiene (GEX1A) inhibits both constitutive and alternative splicing, mimics an abiotic stress signal, and activates the abscisic acid (ABA) pathway in plants. Moreover, PB and GEX1A activate genome-wide transcriptional patterns involved in abiotic stress responses in plants. PB and GEX1A treatment triggered the ABA signaling pathway, activated ABA-inducible promoters, and led to stomatal closure. Interestingly, PB and GEX1A elicited similar cellular changes, including alterations in the patterns of transcription and splicing, suggesting that these compounds might target the same spliceosome complex in plant cells. This work establishes PB and GEX1A as potent splicing inhibitors in plants that can be used to probe the assembly, dynamics, and molecular functions of the spliceosome and to study the interplay between splicing stress and abiotic stresses, as well as having potential biotechnological applications.

  1. Transactional Associations between Youths' Responses to Peer Stress and Depression: The Moderating Roles of Sex and Stress Exposure

    Science.gov (United States)

    Agoston, Anna M.; Rudolph, Karen D.

    2011-01-01

    This study examined transactional associations between responses to peer stress and depression in youth. Specifically, it tested the hypotheses that (a) depression would predict fewer effortful responses and more involuntary, dysregulated responses to peer stress over time; and (b) fewer adaptive and more maladaptive responses would predict…

  2. Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain.

    Science.gov (United States)

    Liang, Chanjuan; Wang, Weimin

    2013-11-01

    Excess of rare earth elements in soil can be a serious environmental stress on plants, in particular when acid rain coexists. To understand how such a stress affects plants, we studied antioxidant response of soybean leaves and roots exposed to lanthanum (0.06, 0.18, and 0.85 mmol L(-1)) under acid rain conditions (pH 4.5 and 3.0). We found that low concentration of La3+ (0.06 mmol L(-1)) did not affect the activity of antioxidant enzymes (catalase and peroxidase) whereas high concentration of La3+ (≥0.18 mmol L(-1)) did. Compared to treatment with acid rain (pH 4.5 and pH 3.0) or La3+ alone, joint stress of La3+ and acid rain affected more severely the activity of catalase and peroxidase, and induced more H2O2 accumulation and lipid peroxidation. When treated with high level of La3+ (0.85 mmol L(-1)) alone or with acid rain (pH 4.5 and 3.0), roots were more affected than leaves regarding the inhibition of antioxidant enzymes, physiological function, and growth. The severity of oxidative damage and inhibition of growth caused by the joint stress associated positively with La3+ concentration and soil acidity. These results will help us understand plant response to joint stress, recognize the adverse environmental impact of rare earth elements in acidic soil, and develop measures to eliminate damage caused by such joint stress.

  3. Aging augments renal vasoconstrictor response to orthostatic stress in humans.

    Science.gov (United States)

    Clark, Christine M; Monahan, Kevin D; Drew, Rachel C

    2015-12-15

    The ability of the human body to maintain arterial blood pressure (BP) during orthostatic stress is determined by several reflex neural mechanisms. Renal vasoconstriction progressively increases during graded elevations in lower body negative pressure (LBNP). This sympathetically mediated response redistributes blood flow to the systemic circulation to maintain BP. However, how healthy aging affects the renal vasoconstrictor response to LBNP is unknown. Therefore, 10 young (25 ± 1 yr; means ± SE) and 10 older (66 ± 2 yr) subjects underwent graded LBNP (-15 and -30 mmHg) while beat-to-beat renal blood flow velocity (RBFV; Doppler ultrasound), arterial BP (Finometer), and heart rate (HR; electrocardiogram) were recorded. Renal vascular resistance (RVR), an index of renal vasoconstriction, was calculated as mean BP/RBFV. All baseline cardiovascular variables were similar between groups, except diastolic BP was higher in older subjects (P aging augments the renal vasoconstrictor response to orthostatic stress in humans. Copyright © 2015 the American Physiological Society.

  4. Transgenerational stress memory is not a general response in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ales Pecinka

    Full Text Available Adverse conditions can trigger DNA damage as well as DNA repair responses in plants. A variety of stress factors are known to stimulate homologous recombination, the most accurate repair pathway, by increasing the concentration of necessary enzymatic components and the frequency of events. This effect has been reported to last into subsequent generations not exposed to the stress. To establish a basis for a genetic analysis of this transgenerational stress memory, a broad range of treatments was tested for quantitative effects on homologous recombination in the progeny. Several Arabidopsis lines, transgenic for well-established recombination traps, were exposed to 10 different physical and chemical stress treatments, and scored for the number of somatic homologous recombination (SHR events in the treated generation as well as in the two subsequent generations that were not treated. These numbers were related to the expression level of genes involved in homologous recombination and repair. SHR was enhanced after the majority of treatments, confirming previous data and adding new effective stress types, especially interference with chromatin. Compounds that directly modify DNA stimulated SHR to values exceeding previously described induction rates, concomitant with an induction of genes involved in SHR. In spite of the significant stimulation in the stressed generations, the two subsequent non-treated generations only showed a low and stochastic increase in SHR that did not correlate with the degree of stimulation in the parental plants. Transcripts coding for SHR enzymes generally returned to pre-treatment levels in the progeny. Thus, transgenerational effects on SHR frequency are not a general response to abiotic stress in Arabidopsis and may require special conditions.

  5. Time dependent voiding mechanisms in polyamide 6 submitted to high stress triaxiality: experimental characterisation and finite element modelling

    Science.gov (United States)

    Selles, Nathan; King, Andrew; Proudhon, Henry; Saintier, Nicolas; Laiarinandrasana, Lucien

    2017-08-01

    Double notched round bars made of semi-crystalline polymer polyamide 6 (PA6) were submitted to monotonic tensile and creep tests. The two notches had a root radius of 0.45 mm, which imposes a multiaxial stress state and a state of high triaxiality in the net (minimal) section of the specimens. Tests were carried out until the failure occurred from one of the notches. The other one, unbroken but deformed under steady strain rate or steady load, was inspected using the Synchrotron Radiation Computed Tomography (SRCT) technique. These 3D through thickness inspections allowed the study of microstructural evolution at the peak stress for the monotonic tensile test and at the beginning of the tertiary creep for the creep tests. Cavitation features were assessed with a micrometre resolution within the notched region. Spatial distributions of void volume fraction ( Vf) and void morphology were studied. Voiding mechanisms were similar under steady strain rates and steady loads. The maximum values of Vf were located between the axis of revolution of the specimens and the notch surface and voids were considered as flat cylinders with a circular basis perpendicular to the loading direction. A model, based on porous plasticity, was used to simulate the mechanical response of this PA6 material under high stress triaxiality. Both macroscopic behaviour (loading curves) and voiding micro-mechanisms (radial distributions of void volume fraction) were accurately predicted using finite element simulations.

  6. The relationship between personality and the response to acute psychological stress.

    Science.gov (United States)

    Xin, Yuanyuan; Wu, Jianhui; Yao, Zhuxi; Guan, Qing; Aleman, André; Luo, Yuejia

    2017-12-04

    The present study examined the relationship between personality traits and the response to acute psychological stress induced by a standardized laboratory stress induction procedure (the Trier Social Stress Test, TSST). The stress response was measured with a combination of cardiovascular reactivity, hypothalamic-pituitary-adrenal axis reactivity, and subjective affect (including positive affect, negative affect and subjective controllability) in healthy individuals. The Generalized Estimating Equations (GEE) approach was applied to account for the relationship between personality traits and stress responses. Results suggested that higher neuroticism predicted lower heart rate stress reactivity, lower cortisol stress response, more decline of positive affect and lower subjective controllability. Individuals higher in extraversion showed smaller cortisol activation to stress and less increase of negative affect. In addition, higher openness score was associated with lower cortisol stress response. These findings elucidate that neuroticism, extraversion and openness are important variables associated with the stress response and different dimensions of personality trait are associated with different aspects of the stress response.

  7. Dynamic Response of Vertebral Elements Related to USAF Injury

    Science.gov (United States)

    1978-02-01

    eventual loss of mucopolysaccharide matrix from both the hyaline cartilage end plates and fibro- cartilage annulUS« resulting in increased cell...In other studies conducted during this contract period, seven adult Rhesus monkeys have been subjected to implantations of calibrated stress...fibroblasts; 2. Loss of cells from and compression of the circular regions lying between the cartilage end plates and nucleus; 3. Altered staining and

  8. The Transcriptomic Responses of Pinus massoniana to Drought Stress

    Directory of Open Access Journals (Sweden)

    Mingfeng Du

    2018-06-01

    Full Text Available Masson pine (Pinus massoniana is a major fast-growing timber species planted in southern China, a region of seasonal drought. Using a drought-tolerance genotype of Masson pine, we conducted large-scale transcriptome sequencing using Illumina technology. This work aimed to evaluate the transcriptomic responses of Masson pine to different levels of drought stress. First, 3397, 1695 and 1550 unigenes with differential expression were identified by comparing plants subjected to light, moderate or severe drought with control plants. Second, several gene ontology (GO categories (oxidation-reduction and metabolism and Kyoto Encyclopedia of Genes and Genomes (KEGG pathways (plant hormone signal transduction and metabolic pathways were enriched, indicating that the expression levels of some genes in these enriched GO terms and pathways were altered under drought stress. Third, several transcription factors (TFs associated with circadian rhythms (HY5 and LHY, signal transduction (ERF, and defense responses (WRKY were identified, and these TFs may play key roles in adapting to drought stress. Drought also caused significant changes in the expression of certain functional genes linked to osmotic adjustment (P5CS, abscisic acid (ABA responses (NCED, PYL, PP2C and SnRK, and reactive oxygen species (ROS scavenging (GPX, GST and GSR. These transcriptomic results provide insight into the molecular mechanisms of drought stress adaptation in Masson pine.

  9. Cytokinin Cross-talking During Biotic and Abiotic Stress Responses

    Directory of Open Access Journals (Sweden)

    Jose Antonio O'Brien

    2013-11-01

    Full Text Available As sessile organisms, plants have to be able to adapt to a continuously changing environment. Plants that perceive some of these changes as stress signals activate signaling pathways to modulate their development and to enable them to survive. The complex responses to environmental cues are to a large extent mediated by plant hormones that together orchestrate the final plant response. The phytohormone cytokinin is involved in many plant developmental processes. Recently, it has been established that cytokinin plays an important role in stress responses, but does not act alone. Indeed, the hormonal control of plant development and stress adaptation is the outcome of a complex network of multiple synergistic and antagonistic interactions between various hormones. Here, we review the recent findings on the cytokinin function as part of this hormonal network. We focus on the importance of the crosstalk between cytokinin and other hormones, such as abscisic acid, jasmonate, salicylic acid, ethylene, and auxin in the modulation of plant development and stress adaptation. Finally, the impact of the current research in the biotechnological industry will be discussed.

  10. Psychological stress during exercise: cardiorespiratory and hormonal responses.

    Science.gov (United States)

    Webb, Heather E; Weldy, Michael L; Fabianke-Kadue, Emily C; Orndorff, G R; Kamimori, Gary H; Acevedo, Edmund O

    2008-12-01

    The purpose of this study was to examine the cardiorespiratory (CR) and stress hormone responses to a combined physical and mental stress. Eight participants (VO2(max) = 41.24 +/- 6.20 ml kg(-1) min(-1)) completed two experimental conditions, a treatment condition including a 37 min ride at 60% of VO2(max) with participants responding to a computerized mental challenge dual stress condition (DSC) and a control condition of the same duration and intensity without the mental challenge exercise alone condition (EAC). Significant interactions across time were found for CR responses, with heart rate, ventilation, and respiration rate demonstrating higher increases in the DSC. Additionally, norepinephrine was significantly greater in the DSC at the end of the combined challenge. Furthermore, cortisol area-under-the-curve (AUC) was also significantly elevated during the DSC. These results demonstrate that a mental challenge during exercise can exacerbate the stress response, including the release of hormones that have been linked to negative health consequences (cardiovascular, metabolic, autoimmune illnesses).

  11. Global Analysis of WRKY Genes and Their Response to Dehydration and Salt Stress in Soybean.

    Science.gov (United States)

    Song, Hui; Wang, Pengfei; Hou, Lei; Zhao, Shuzhen; Zhao, Chuanzhi; Xia, Han; Li, Pengcheng; Zhang, Ye; Bian, Xiaotong; Wang, Xingjun

    2016-01-01

    WRKY proteins are plant specific transcription factors involved in various developmental and physiological processes, especially in biotic and abiotic stress resistance. Although previous studies suggested that WRKY proteins in soybean (Glycine max var. Williams 82) involved in both abiotic and biotic stress responses, the global information of WRKY proteins in the latest version of soybean genome (Wm82.a2v1) and their response to dehydration and salt stress have not been reported. In this study, we identified 176 GmWRKY proteins from soybean Wm82.a2v1 genome. These proteins could be classified into three groups, namely group I (32 proteins), group II (120 proteins), and group III (24 proteins). Our results showed that most GmWRKY genes were located on Chromosome 6, while chromosome 11, 12, and 20 contained the least number of this gene family. More GmWRKY genes were distributed on the ends of chromosomes to compare with other regions. The cis-acting elements analysis suggested that GmWRKY genes were transcriptionally regulated upon dehydration and salt stress. RNA-seq data analysis indicated that three GmWRKY genes responded negatively to dehydration, and 12 genes positively responded to salt stress at 1, 6, and 12 h, respectively. We confirmed by qRT-PCR that the expression of GmWRKY47 and GmWRKY 58 genes was decreased upon dehydration, and the expression of GmWRKY92, 144 and 165 genes was increased under salt treatment.

  12. Molecular Responses of Groundnut (Arachis hypogea L. to Zinc Stress

    Directory of Open Access Journals (Sweden)

    A. John De Britto

    2013-08-01

    Full Text Available Heavy metals are important environmental pollutants and their toxicity is a problem of increasing significance for ecological, evolutionary and environmental reasons. The interference of germination related proteins by heavy metals has not been well documented at the proteomic and genomic level. In the current study, molecular responses of germinating groundnut seeds were investigated under Zinc stress. The SDS-PAGE showed the preliminary changes in the polypeptides patterns under Zinc stress. Restriction digestion banding pattern of EcoRI and Hind III enzymes showed distinct banding pattern in the treated plants.

  13. Electrical response of relaxing dielectrics compressed by arbitrary stress pulses

    International Nuclear Information System (INIS)

    Lysne, P.C.

    1983-01-01

    The theoretical problem of the electric response of biased dielectrics and piezoelectrics subjected to planar stress pulse loading is considered. The materials are taken to exhibit dielectric relaxation in the sense that changes in the polarization induced by electric fields do not occur instantaneously with changes in the fields. While this paper considers arbitrary stress pulse loading of the specimen, examples that are amenable to projectile impact techniques are considered in detail. They are shock reverberation, thin pulse, and ramp loading experiments. It is anticipated that these experiments will play a role in investigations of dielectric relaxation caused by shock induced damage in insulators

  14. Surgical stress response: does endoscopic surgery confer an advantage?

    DEFF Research Database (Denmark)

    Kehlet, H

    1999-01-01

    of postoperative pulmonary function and less hypoxemia with endoscopic operation. The slight modification of surgical stress responses by endoscopic surgery is in contrast to the common, though not universal, demonstration of less pain, shorter hospital stay, and less morbidity after endoscopic surgery...... operations where differences are more likely to be found. The clinical consequences of these findings in relation to all over surgical outcome remain to be defined, but effective pain treatment, stress reduction by other techniques, and provision of an active rehabilitation program with early mobilization...

  15. The effect of additional equilibrium stress functions on the three-node hybrid-mixed curved beam element

    International Nuclear Information System (INIS)

    Kim, Jin Gon; Park, Yong Kuk

    2008-01-01

    To develop an effective hybrid-mixed element, it is extremely critical as to how to assume the stress field. This research article demonstrates the effect of additional equilibrium stress functions to enhance the numerical performance of the locking-free three-node hybrid-mixed curved beam element, proposed in Saleeb and Chang's previous work. It is exceedingly complicated or even infeasible to determine the stress functions to satisfy fully both the equilibrium conditions and suppression of kinematic deformation modes in the three-node hybrid-mixed formulation. Accordingly, the additional stress functions to satisfy partially or fully equilibrium conditions are incorporated in this study. Several numerical examples for static and dynamic problems confirm that the newly proposed element with these additional stress functions is highly effective regardless of the slenderness ratio and curvature of arches in static and dynamic analyses

  16. Fabrication of simulated plate fuel elements: Defining role of out-of-plane residual shear stress

    Energy Technology Data Exchange (ETDEWEB)

    Rakesh, R., E-mail: rakesh.rad87@gmail.com [DAE Graduate Fellows, IIT Bombay, Powai, Mumbai 400076 (India); Metallic Fuels Division, BARC, Trombay, Mumbai 400085 (India); Kohli, D. [DAE Graduate Fellows, IIT Bombay, Powai, Mumbai 400076 (India); Metallic Fuels Division, BARC, Trombay, Mumbai 400085 (India); Sinha, V.P.; Prasad, G.J. [Metallic Fuels Division, BARC, Trombay, Mumbai 400085 (India); Samajdar, I. [Department of Metallurgical Engineering and Materials Science, IIT Bombay, Powai, Mumbai 400076 (India)

    2014-02-01

    Bond strength and microstructural developments were investigated during fabrication of simulated plate fuel elements. The study involved roll bonding of aluminum–aluminum (case A) and aluminum–aluminum + yttria (Y{sub 2}O{sub 3}) dispersion (case B). Case B approximated aluminum–uranium silicide (U{sub 3}Si{sub 2}) ‘fuel-meat’ in an actual plate fuel. Samples after different stages of fabrication, hot and cold rolling, were investigated through peel and pull tests, micro-hardness, residual stresses, electron and micro-focus X-ray diffraction. Measurements revealed a clear drop in bond strength during cold rolling: an observation unique to case B. This was related to significant increase in ‘out-of-plane’ residual shear stresses near the clad/dispersion interface, and not from visible signatures of microstructural heterogeneities.

  17. Finite element simulations of internal stresses generated during the ferroelastic deformation of NiTi bodies

    International Nuclear Information System (INIS)

    Manach, P.Y.; Favier, D.; Rio, G.

    1996-01-01

    The aim of this paper is to analyse the generation of internal stresses during the predeformation of NiTi shape memory alloys in the martensitic state. This allows to determine the initial stress state in which the material will transform during the shape memory effect due to heating consecutively to this prestrain. In that way a three-dimensional finite element model of the deformation of shape memory alloys has been developed, the constitutive law being defined using an elastohysteresis tensor model. The influence of behavioural and geometrical factors are illustrated considering the numerical simulation of different cases of practical importance for industrial applications : the study of the bending behaviour of a NiTi cantilever beam as well as the study of the swelling of a pipe connection under both uniform and non uniform internal displacement fields. (orig.)

  18. Transcriptomic analysis of salt stress responsive genes in Rhazya stricta.

    Directory of Open Access Journals (Sweden)

    Nahid H Hajrah

    Full Text Available Rhazya stricta is an evergreen shrub that is widely distributed across Western and South Asia, and like many other members of the Apocynaceae produces monoterpene indole alkaloids that have anti-cancer properties. This species is adapted to very harsh desert conditions making it an excellent system for studying tolerance to high temperatures and salinity. RNA-Seq analysis was performed on R. stricta exposed to severe salt stress (500 mM NaCl across four time intervals (0, 2, 12 and 24 h to examine mechanisms of salt tolerance. A large number of transcripts including genes encoding tetrapyrroles and pentatricopeptide repeat (PPR proteins were regulated only after 12 h of stress of seedlings grown in controlled greenhouse conditions. Mechanisms of salt tolerance in R. stricta may involve the upregulation of genes encoding chaperone protein Dnaj6, UDP-glucosyl transferase 85a2, protein transparent testa 12 and respiratory burst oxidase homolog protein b. Many of the highly-expressed genes act on protecting protein folding during salt stress and the production of flavonoids, key secondary metabolites in stress tolerance. Other regulated genes encode enzymes in the porphyrin and chlorophyll metabolic pathway with important roles during plant growth, photosynthesis, hormone signaling and abiotic responses. Heme biosynthesis in R. stricta leaves might add to the level of salt stress tolerance by maintaining appropriate levels of photosynthesis and normal plant growth as well as by the participation in reactive oxygen species (ROS production under stress. We speculate that the high expression levels of PPR genes may be dependent on expression levels of their targeted editing genes. Although the results of PPR gene family indicated regulation of a large number of transcripts under salt stress, PPR actions were independent of the salt stress because their RNA editing patterns were unchanged.

  19. Genome-wide Escherichia coli stress response and improved tolerance towards industrially relevant chemicals

    DEFF Research Database (Denmark)

    Rau, Martin Holm; Calero Valdayo, Patricia; Lennen, Rebecca

    2016-01-01

    Economically viable biobased production of bulk chemicals and biofuels typically requires high product titers. During microbial bioconversion this often leads to product toxicity, and tolerance is therefore a critical element in the engineering of production strains. Here, a systems biology...... approach was employed to understand the chemical stress response of Escherichia coli, including a genome-wide screen for mutants with increased fitness during chemical stress. Twelve chemicals with significant production potential were selected, consisting of organic solvent-like chemicals (butanol......, hydroxy-γ-butyrolactone, 1,4-butanediol, furfural), organic acids (acetate, itaconic acid, levulinic acid, succinic acid), amino acids (serine, threonine) and membrane-intercalating chemicals (decanoic acid, geraniol). The transcriptional response towards these chemicals revealed large overlaps...

  20. Identification and Expression Profiling of the Auxin Response Factors in Dendrobium officinale under Abiotic Stresses.

    Science.gov (United States)

    Chen, Zhehao; Yuan, Ye; Fu, Di; Shen, Chenjia; Yang, Yanjun

    2017-05-04

    Auxin response factor (ARF) proteins play roles in plant responses to diverse environmental stresses by binding specifically to the auxin response element in the promoters of target genes. Using our latest public Dendrobium transcriptomes, a comprehensive characterization and analysis of 14 DnARF genes were performed. Three selected DnARFs , including DnARF1 , DnARF4 , and DnARF6 , were confirmed to be nuclear proteins according to their transient expression in epidermal cells of Nicotiana benthamiana leaves. Furthermore, the transcription activation abilities of DnARF1 , DnARF4 , and DnARF6 were tested in a yeast system. Our data showed that DnARF6 is a transcriptional activator in Dendrobium officinale . To uncover the basic information of DnARF gene responses to abiotic stresses, we analyzed their expression patterns under various hormones and abiotic treatments. Based on our data, several hormones and significant stress responsive DnARF genes have been identified. Since auxin and ARF genes have been identified in many plant species, our data is imperative to reveal the function of ARF mediated auxin signaling in the adaptation to the challenging Dendrobium environment.

  1. Finite element modeling of stress corrosion cracking for electromagnetic nondestructive evaluations

    International Nuclear Information System (INIS)

    Wang, J.; Yusa, N.; Hashizume, H.

    2012-01-01

    This paper discusses appropriate numerical model for a stress corrosion crack (SCC) from the viewpoint of anisotropy of their conductivity. Two SCCs, which are introduced into a plate of type 316 stainless steel, are considered. Finite element simulations are carried out to evaluate the conductivity. In the simulations, the cracks are modeled as a region with a constant width on the basis of the destructive tests. The results show the conductivity on direction of width has large effect to the accuracy of numerical modeling of SCC, whereas the conductivities on direction of length and depth almost do not have remarkable effects. The results obtained by this study indicate that distribution of conductivity along the surface of a crack would be more important than the anisotropy in modeling SCCs in finite element simulations

  2. Stress analysis of the O-element pipe during the process of flue gases purification

    Directory of Open Access Journals (Sweden)

    Nekvasil R.

    2008-11-01

    Full Text Available Equipment for flue gases purification from undesired substances is used throughout power and other types of industry. This paper deals with damaging of the O-element pipe designed to remove sulphur from the flue gases, i.e. damaging of the pipe during flue gases purification. This purification is conducted by spraying the water into the O-shaped pipe where the flue gases flow. Thus the sulphur binds itself onto the water and gets removed from the flue gas. Injection of cold water into hot flue gases, however, causes high stress on the inside of the pipe, which can gradually damage the O-element pipe. In this paper initial injection of water into hot pipe all the way to stabilization of temperature fields will be analyzed and the most dangerous places which shall be considered for fatigue will be determined.

  3. Comparison of finite-element stress analysis with experimental copper sphere impacts

    International Nuclear Information System (INIS)

    Frantz, C.E.; Hecker, S.S.; Stout, M.G.; Browning, R.V.

    1980-07-01

    Three copper spheres were impacted on targets of varying surface finishes at 100 m/s. Impact face friction was varied for each test and the impact was photographed with a high-speed camera. Postimpact strains and deformation were measured. A finite-element computer code, NONSAP, was used to model the impact. The best agreement between computer prediction and experiment was obtained using isoparametric elements, a graded mesh, and actual high-strain-rate copper stress-strain data. Frictional conditions at the impact face were also modeled by altering the standard NONSAP code. The most critical test of NONSAP was accurate prediction of experimental impact strains. The best agreement we could obtain had a maximum point-to-point error of 20%, although in general, the comparison was much better. Results of this research indicate that we must know more about material and impact interface friction in order to obtain reliable numerical predictions

  4. Stress analysis of composite wind turbine blade by finite element method

    Science.gov (United States)

    Yeh, Meng-Kao; Wang, Chen-Hsu

    2017-10-01

    In this study, the finite element analysis software ANSYS was used to analyze the composite wind turbine blade. The wind turbine blade model used is adopted from the 5 MW model of US National Renewable Energy Laboratory (NREL). The wind turbine blade is a sandwich structure, comprising outermost carbon fiber cloth/epoxy composites, the inner glass fiber/vinylester layers, and PVC foam core, together with stiffeners. The wind pressure is converted into the load on the blade structure. The stress distribution and deformation of wind turbine blade were obtained by considering different pitch angles and at different angular positions. The Tsai-Hill criterion was used to determine the failure of wind turbine blade. The results show that at the 0° pitch angle, the wind turbine blade is subjected to the largest combined load and therefore the stress is the largest; with the increasing pitch angle, the load gradually decreases and the stress is also smaller. The stress and displacement are the greatest when the wind blade is located at 120° angular position from its highest vertex.

  5. Construction of finite element model and stress analysis of anterior cruciate ligament tibial insertion.

    Science.gov (United States)

    Dai, Can; Yang, Liu; Guo, Lin; Wang, Fuyou; Gou, Jingyue; Deng, Zhilong

    2015-01-01

    The aim of the present study was to develop a more realistic finite element (FE) model of the human anterior cruciate ligament (ACL) tibial insertion and to analyze the stress distribution in the ACL internal fibers under load. The ACL tibial insertions were processed histologically. With Photoshop software, digital images taken from the histological slides were collaged, contour lines were drawn, and different gray values were filled based on the structure. The data were exported to Amira software and saved as ".hmascii" file. This document was imported into HyperMesh software. The solid mesh model generated using HyperMesh software was imported into Abaqus software. The material properties were introduced, boundary conditions were set, and load was added to carry out the FE analysis. The stress distribution of the ACL internal fibers was uneven. The lowest stress could be observed in the ACL lateral fibers under tensile and shear load. The establishment of ACL tibial insertion FE model and mechanical analysis could reveal the stress distribution in the ACL internal fibers under load. There was greater load carrying capacity in the ACL lateral fibers which could sustain greater tensile and shear forces.

  6. Finite-element stress and deflection analysis of CDF yike and end plug

    International Nuclear Information System (INIS)

    Wands, R.; Grimson, J.; Kephart, R.; Theriot, D.

    1982-01-01

    A large detector is being designed to study anti pp collisions at center-of-mass energies of up to 2000 GeV as part of the Fermilab Collider Detector Facility (CDF). The central detector of this facility consists of a solenoid, calorimeter yoke, and a variety of particle measurement devices. The yoke will be a large steel structure that will provide the magnetic flux return path as well as support structure for calorimetry and other instrumentation. It must resist both electromagnetic and gravitational loads while exhibiting only small elastic deformations. The instrumented endplugs of the yoke are subjected to large electromagnetic loads. Moreover, due to the presence of wire chambers within these plugs, they must also be particularly stiff. The purpose of this paper is to present the results of a finite element stress and deflection analysis of these structures under various anticipated load conditions. The PATRAN-G finite element modeling program, installed on a CDF-VAX 11/780 and operating from a Ramtek 6212 colorgraphics terminal, was used to generate the analysis models. The actual finite element analysis was performed by the ANSYS general purpose finite element program, installed on the Fermilab Cyber 175's

  7. Coping as a mediator of the relationship between stress mindset and psychological stress response: a pilot study

    Directory of Open Access Journals (Sweden)

    Horiuchi S

    2018-03-01

    Full Text Available Satoshi Horiuchi,1 Akira Tsuda,2 Shuntaro Aoki,3,4 Kenichiro Yoneda,5 Yusuke Sawaguchi6 1Faculty of Social Welfare, Iwate Prefectural University, Iwate, 2Department of Psychology, Kurume University, Fukuoka, 3Research Fellow of Japan Society for the Promotion of Science, Tokyo, 4Graduate School of Psychological Science, Health Sciences University of Hokkaido, Hokkaido, 5Graduate School of Psychology, Kurume University, Fukuoka, 6Graduate School of Social Welfare, Iwate Prefectural University, Iwate, Japan Background: Coping, the cognitive and behavioral effort required to manage the effects of stressors, is important in determining psychological stress responses (ie, the emotional, behavioral, and cognitive responses to stressors. Coping was classified into categories of emotional expression (eg, negative feelings and thoughts, emotional support seeking (eg, approaching loved ones to request encouragement, cognitive reinterpretation (eg, reframing a problem positively, and problem solving (eg, working to solve the problem. Stress mindset refers to the belief that stress has enhancing (stress-is-enhancing mindset or debilitating consequences (stress-is-debilitating mindset. This study examined whether coping mediated the relationship between stress mindset and psychological stress responses. Psychological stress responses were conceptualized as depression-anxiety, irritability-anger, and helplessness. The following two hypotheses were tested: 1 a stronger stress-is-enhancing mindset is associated with less frequent use of emotional expression, emotional support seeking, and problem solving, which in turn is associated with lower levels of depression-anxiety, irritability-anger, and helplessness; 2 a stronger stress-is-debilitating mindset is associated with more frequent use of these coping strategies, which in turn is associated with higher levels of these psychological stress responses. Materials and methods: The participants were 30 male and

  8. The influence of pulse duration on the stress levels in ablation of ceramics: A finite element study

    International Nuclear Information System (INIS)

    Verde, A. Vila; Ramos, Marta M.D.

    2006-01-01

    We present a finite element model to investigate the dynamic thermal and mechanical response of ceramic materials to pulsed infrared radiation. The model was applied to the specific problem of determining the influence of the pulse duration on the stress levels reached in human dental enamel irradiated by a CO 2 laser at 10.6 μm with pulse durations between 0.1 and 100 μs and sub-ablative fluence. Our results indicate that short pulses with durations much larger than the characteristic acoustic relaxation time of the material can still cause high stress transients at the irradiated site, and indicate that pulse durations of the order of 10 μs may be more adequate both for enamel surface modification and for ablation than pulse durations up to 1 μs. The model presented here can easily be modified to investigate the dynamic response of ceramic materials to mid-infrared radiation and help determine optimal pulse durations for specific procedures

  9. Transcriptome Analysis of Spartina pectinata in Response to Freezing Stress.

    Directory of Open Access Journals (Sweden)

    Gyoungju Nah

    Full Text Available Prairie cordgrass (Spartina pectinata, a perennial C4 grass native to the North American prairie, has several distinctive characteristics that potentially make it a model crop for production in stressful environments. However, little is known about the transcriptome dynamics of prairie cordgrass despite its unique freezing stress tolerance. Therefore, the purpose of this work was to explore the transcriptome dynamics of prairie cordgrass in response to freezing stress at -5°C for 5 min and 30 min. We used a RNA-sequencing method to assemble the S. pectinata leaf transcriptome and performed gene-expression profiling of the transcripts under freezing treatment. Six differentially expressed gene (DEG groups were categorized from the profiling. In addition, two major consecutive orders of gene expression were observed in response to freezing; the first being the acute up-regulation of genes involved in plasma membrane modification, calcium-mediated signaling, proteasome-related proteins, and transcription regulators (e.g., MYB and WRKY. The follow-up and second response was of genes involved in encoding the putative anti-freezing protein and the previously known DNA and cell-damage-repair proteins. Moreover, we identified the genes involved in epigenetic regulation and circadian-clock expression. Our results indicate that freezing response in S. pectinata reflects dynamic changes in rapid-time duration, as well as in metabolic, transcriptional, post-translational, and epigenetic regulation.

  10. Allelopathic Responses of Rice Seedlings under Some Different Stresses

    Directory of Open Access Journals (Sweden)

    Tran Dang Khanh

    2018-05-01

    Full Text Available The objective of this study was to evaluate the allelopathic responses of rice seedlings under submergence stress at different temperatures (10, 25, 32, and 37 °C. The results showed that a wide range of allelopathic responses of rice seedlings depended on varieties and stress conditions, with temperature was being a key factor. It showed that the extracts of rice seedlings induced significant suppression on lettuce and radish seedling germination, but had negligible allelopathic effects on growth of barnyardgrass, whilst the emergence and growth of natural weeds was stimulated. In contrast, the root exudates of Koshihikari rice seedlings (K32 at 32 °C reduced the number of total weeds by ≈60.0% and the total dry weight of weeds by 93.0%; i.e., to a greater extent than other root exudates. Among the 13 identified phenolic acids, p-hydroxybenzoic, vanillic, syringic, sinapic and benzoic acids—at concentrations of 0.360, 0.045, 3.052, 1.309 and 5.543 μg/mL might be involved in allelopathic responses of K32, inhibiting the growth of barnyardgrass and natural weeds. Findings of the present study may provide useful information on allelopathic responses of rice under environmental stresses and thus further understand of the competitive relationships between rice and weeds under natural conditions.

  11. Deciphering hepatocellular responses to metabolic and oncogenic stress

    Directory of Open Access Journals (Sweden)

    Kathrina L. Marcelo

    2015-08-01

    Full Text Available Each cell type responds uniquely to stress and fractionally contributes to global and tissue-specific stress responses. Hepatocytes, liver macrophages (MΦ, and sinusoidal endothelial cells (SEC play functionally important and interdependent roles in adaptive processes such as obesity and tumor growth. Although these cell types demonstrate significant phenotypic and functional heterogeneity, their distinctions enabling disease-specific responses remain understudied. We developed a strategy for the simultaneous isolation and quantification of these liver cell types based on antigenic cell surface marker expression. To demonstrate the utility and applicability of this technique, we quantified liver cell-specific responses to high-fat diet (HFD or diethylnitrosamine (DEN, a liver-specific carcinogen, and found that while there was only a marginal increase in hepatocyte number, MΦ and SEC populations were quantitatively increased. Global gene expression profiling of hepatocytes, MΦ and SEC identified characteristic gene signatures that define each cell type in their distinct physiological or pathological states. Integration of hepatic gene signatures with available human obesity and liver cancer microarray data provides further insight into the cell-specific responses to metabolic or oncogenic stress. Our data reveal unique gene expression patterns that serve as molecular “fingerprints” for the cell-centric responses to pathologic stimuli in the distinct microenvironment of the liver. The technical advance highlighted in this study provides an essential resource for assessing hepatic cell-specific contributions to metabolic and oncogenic stress, information that could unveil previously unappreciated molecular mechanisms for the cellular crosstalk that underlies the continuum from metabolic disruption to obesity and ultimately hepatic cancer.

  12. Evasion of Apoptosis as a Cellular Stress Response in Cancer

    Directory of Open Access Journals (Sweden)

    Simone Fulda

    2010-01-01

    Full Text Available One of the hallmarks of human cancers is the intrinsic or acquired resistance to apoptosis. Evasion of apoptosis can be part of a cellular stress response to ensure the cell's survival upon exposure to stressful stimuli. Apoptosis resistance may contribute to carcinogenesis, tumor progression, and also treatment resistance, since most current anticancer therapies including chemotherapy as well as radio- and immunotherapies primarily act by activating cell death pathways including apoptosis in cancer cells. Hence, a better understanding of the molecular mechanisms regarding how cellular stress stimuli trigger antiapoptotic mechanisms and how this contributes to tumor resistance to apoptotic cell death is expected to provide the basis for a rational approach to overcome apoptosis resistance mechanisms in cancers.

  13. Stress response in female veterans: an allostatic perspective.

    Science.gov (United States)

    Groër, Maureen Wimberly; Burns, Candace

    2009-01-01

    Women serving in the military face many sources of stress, such as separation from home and family, sexual harassment and assault, and deployment to traumatic war zones. Some women are vulnerable to the effects of these stressors, resulting in deleterious mental and physical health outcomes. Understanding these risks through the theoretical model of allostasis can help identify those who will be most vulnerable and help healthcare providers prevent some negative outcomes and improve rehabilitation for some women when they return stateside. Women may be more likely than men to present with mental health problems such as posttraumatic stress disorder and depression after military service. They also may be at increased risk, based on their war-zone stress response, for disparate illness such as medically unexplained illness, cancer, and heart disease. The need for care for these women is expected to increase as more women are deployed to conflicts.

  14. Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes

    International Nuclear Information System (INIS)

    Chen, Yanyan; Xue, Peng; Hou, Yongyong; Zhang, Hao; Zheng, Hongzhi; Zhou, Tong; Qu, Weidong; Teng, Weiping; Zhang, Qiang; Andersen, Melvin E.; Pi, Jingbo

    2013-01-01

    Transcriptional signaling through the antioxidant response element (ARE), orchestrated by the Nuclear factor E2-related factor 2 (Nrf2), is a major cellular defense mechanism against oxidative or electrophilic stress. Here, we reported that isoniazid (INH), a widely used antitubercular drug, displays a substantial inhibitory property against ARE activities in diverse mouse and human cells. In 3T3-L1 preadipocytes, INH concentration-dependently suppressed the ARE-luciferase reporter activity and mRNA expression of various ARE-dependent antioxidant genes under basal and oxidative stressed conditions. In keeping with our previous findings that Nrf2-ARE plays a critical role in adipogenesis by regulating expression of CCAAT/enhancer-binding protein β (C/EBPβ) and peroxisome proliferator-activated receptor γ (PPARγ), suppression of ARE signaling by INH hampered adipogenic differentiation of 3T3-L1 cells and human adipose-derived stem cells (ADSCs). Following adipogenesis induced by hormonal cocktails, INH-treated 3T3-L1 cells and ADSCs displayed significantly reduced levels of lipid accumulation and attenuated expression of C/EBPα and PPARγ. Time-course studies in 3T3-L1 cells revealed that inhibition of adipogenesis by INH occurred in the early stage of terminal adipogenic differentiation, where reduced expression of C/EBPβ and C/EBPδ was observed. To our knowledge, the present study is the first to demonstrate that INH suppresses ARE signaling and interrupts with the transcriptional network of adipogenesis, leading to impaired adipogenic differentiation. The inhibition of ARE signaling may be a potential underlying mechanism by which INH attenuates cellular antioxidant response contributing to various complications. - Highlights: • Isoniazid suppresses ARE-mediated transcriptional activity. • Isoniazid inhibits adipogenesis in preadipocytes. • Isoniazid suppresses adipogenic gene expression during adipogenesis

  15. Design Process for Integrated Concepts with Responsive Building Elements

    DEFF Research Database (Denmark)

    Aa, Van der A.; Heiselberg, Per

    2008-01-01

    An integrated building concept is a prerequisite to come to an energy efficient building with a good and healthy IAQ indoor comfort. A design process that defines the targets and boundary conditions in the very first stage of the design and guarantees them until the building is finished and used...... is needed. The hard question is however: how to make the right choice of the combination of individual measures from building components and building services elements. Within the framework of IEA-ECBCS Annex 44 research has been conducted about the design process for integrated building concepts...

  16. The role of stress mindset in shaping cognitive, emotional, and physiological responses to challenging and threatening stress.

    Science.gov (United States)

    Crum, Alia J; Akinola, Modupe; Martin, Ashley; Fath, Sean

    2017-07-01

    Prior research suggests that altering situation-specific evaluations of stress as challenging versus threatening can improve responses to stress. The aim of the current study was to explore whether cognitive, physiological and affective stress responses can be altered independent of situation-specific evaluations by changing individuals' mindsets about the nature of stress in general. Using a 2 × 2 design, we experimentally manipulated stress mindset using multi-media film clips orienting participants (N = 113) to either the enhancing or debilitating nature of stress. We also manipulated challenge and threat evaluations by providing positive or negative feedback to participants during a social stress test. Results revealed that under both threat and challenge stress evaluations, a stress-is-enhancing mindset produced sharper increases in anabolic ("growth") hormones relative to a stress-is-debilitating mindset. Furthermore, when the stress was evaluated as a challenge, a stress-is-enhancing mindset produced sharper increases in positive affect, heightened attentional bias towards positive stimuli, and greater cognitive flexibility, whereas a stress-is-debilitating mindset produced worse cognitive and affective outcomes. These findings advance stress management theory and practice by demonstrating that a short manipulation designed to generate a stress-is-enhancing mindset can improve responses to both challenging and threatening stress.

  17. In response to community violence: coping strategies and involuntary stress responses among Latino adolescents.

    Science.gov (United States)

    Epstein-Ngo, Quyen; Maurizi, Laura K; Bregman, Allyson; Ceballo, Rosario

    2013-01-01

    Among poor, urban adolescents, high rates of community violence are a pressing public health concern. This study relies on a contextual framework of stress and coping to investigate how coping strategies and involuntary stress responses may both mediate and moderate the relation between exposure to community violence and psychological well-being. Our sample consists of 223 ninth grade Latino adolescents from poor, urban families. In response to community violence, these adolescents reported using an array of coping strategies as well as experiencing a number of involuntary stress responses; the most frequent coping responses were turning to religion and seeking social support. Hierarchical regression analyses demonstrated that involuntary stress responses mediated the relations between both witnessing or being victimized by violence and poorer psychological functioning, while coping strategies moderated these relations. These findings suggest that the negative psychological effects of exposure to community violence may, in part, be explained by involuntary stress responses, while religious-based coping may serve as a protective factor.

  18. Children's biological responsivity to acute stress predicts concurrent cognitive performance.

    Science.gov (United States)

    Roos, Leslie E; Beauchamp, Kathryn G; Giuliano, Ryan; Zalewski, Maureen; Kim, Hyoun K; Fisher, Philip A

    2018-04-10

    Although prior research has characterized stress system reactivity (i.e. hypothalamic-pituitary-adrenal axis, HPAA; autonomic nervous system, ANS) in children, it has yet to examine the extent to which biological reactivity predicts concurrent goal-directed behavior. Here, we employed a stressor paradigm that allowed concurrent assessment of both stress system reactivity and performance on a speeded-response task to investigate the links between biological reactivity and cognitive function under stress. We further investigated gender as a moderator given previous research suggesting that the ANS may be particularly predictive of behavior in males due to gender differences in socialization. In a sociodemographically diverse sample of young children (N = 58, M age = 5.38 yrs; 44% male), individual differences in sociodemographic covariates (age, household income), HPAA (i.e. cortisol), and ANS (i.e. respiratory sinus arrhythmia, RSA, indexing the parasympathetic branch; pre-ejection period, PEP, indexing the sympathetic branch) function were assessed as predictors of cognitive performance under stress. We hypothesized that higher income, older age, and greater cortisol reactivity would be associated with better performance overall, and flexible ANS responsivity (i.e. RSA withdrawal, PEP shortening) would be predictive of performance for males. Overall, females performed better than males. Two-group SEM analyses suggest that, for males, greater RSA withdrawal to the stressor was associated with better performance, while for females, older age, higher income, and greater cortisol reactivity were associated with better performance. Results highlight the relevance of stress system reactivity to cognitive performance under stress. Future research is needed to further elucidate for whom and in what situations biological reactivity predicts goal-directed behavior.

  19. The Use of Instrumental Hardness Measurements in Determining Stresses in the Elastic Elements of a Manipulator for Servicing Water and Sewage Networks

    Directory of Open Access Journals (Sweden)

    Kaczyński R.

    2016-12-01

    Full Text Available The paper presents the design of a manipulator for servicing the elements of water and sewage infrastructure, in particular for installation and dismantling of pressure transducers without the need for earthmoving. To build this device the resilient elements, cold shaped, responsible for centering the manipulator in the technical tube were used. In their construction a method was applied of estimating the value of residual stresses in the cold shaped material, based on measurements of instrumental hardness. The experimental verification of numerical simulation of instrumental hardness measurements of flat springs made of 1.1274 steel is described.

  20. Short-term spatial memory responses in aged Japanese quail selected for divergent adrenocortical stress responsiveness.

    Science.gov (United States)

    Suhr, C L; Schmidt, J B; Treese, S T; Satterlee, D G

    2010-04-01

    Stress-induced glucocorticoids can dampen learning and spatial memory via neuronal damage to the hippocampus. Cognition losses can be transient (associated with acute stress episodes) or permanent as in aged individuals who show chronic glucocorticoid-induced accelerated brain aging and neurodegeneration (dementia). Thus, chronic versus acute stress effects on spatial memory responses of quail selected for reduced (low stress, LS) or exaggerated (high stress, HS) plasma corticosterone (B) response to brief restraint were assessed. Aged food-motivated male LS and HS quail were tested for 10 min in a feed-baited 8-arm radial arm maze (RAM) 1) at 255 d of age (quail who had experienced lifelong management stressors but who were otherwise never intentionally stressed; that is, chronically stressed birds), 2) on the next day post-acute stressor treatment (5 min of restraint), and 3) on the next day without treatment (acute stress recovery). The RAM tests used the win-shift procedure in which visited arms were not rebaited. Radial arm maze performance was measured by determination of the total number of arm choices made, the number of correct entries made into baited arms out of the first 8 choices, the time required to make a choice, and the number of pellets eaten. Line effects (P LS), and number of pellets eaten (HS RAM testing nor its interaction with line further influenced these variables. Thus, although selection for divergent plasma B responsiveness to an acute stressor was found to be associated with severe impairment of spatial memory in aged male HS compared with LS quail, the observed spatial memory impairments (HS > LS) could not be further altered by acute stressor treatment. Line differences in cognition may reflect lifelong management-induced stress episodes that periodically produce higher plasma B responses in HS than LS quail, which underlie HS quail memory deficits, or other etiologies, or both.

  1. Microstructural analysis of alumina chromium composites by X-ray tomography and 3-D finite element simulation of thermal stresses

    International Nuclear Information System (INIS)

    Geandier, G.; Hazotte, A.; Denis, S.; Mocellin, A.; Maire, E.

    2003-01-01

    X-ray microtomography is used to measure volume fraction and connectivity of the metallic phase in an alumina-chromium composite. Reconstructed images are used as input data for a finite element calculation of the residual thermal stresses. Results confirm the main trends shown by similar calculations previously performed on less-realistic finite element models

  2. Microstructural analysis of alumina chromium composites by X-ray tomography and 3-D finite element simulation of thermal stresses

    Energy Technology Data Exchange (ETDEWEB)

    Geandier, G.; Hazotte, A.; Denis, S.; Mocellin, A.; Maire, E

    2003-04-14

    X-ray microtomography is used to measure volume fraction and connectivity of the metallic phase in an alumina-chromium composite. Reconstructed images are used as input data for a finite element calculation of the residual thermal stresses. Results confirm the main trends shown by similar calculations previously performed on less-realistic finite element models.

  3. A third order accurate Lagrangian finite element scheme for the computation of generalized molecular stress function fluids

    DEFF Research Database (Denmark)

    Fasano, Andrea; Rasmussen, Henrik K.

    2017-01-01

    A third order accurate, in time and space, finite element scheme for the numerical simulation of three- dimensional time-dependent flow of the molecular stress function type of fluids in a generalized formu- lation is presented. The scheme is an extension of the K-BKZ Lagrangian finite element me...

  4. Chronic psychological stress seems associated with elements of the metabolic syndrome in patients with ischaemic heart disease

    DEFF Research Database (Denmark)

    Bergmann, Natasha; Ballegaard, Søren; Krogh, Jesper

    2017-01-01

    at the sternum known to be associated to elements of the chronic stress syndrome. Elements of MS were evaluated by dual-energy X-ray absorptiometry, body weight, HOMA-IR and blood lipids. Results: Depressive symptoms were associated with a high percentage of body fat (β = 0.179, p =.001), and high level...

  5. Gene Expression Dynamics Accompanying the Sponge Thermal Stress Response.

    Science.gov (United States)

    Guzman, Christine; Conaco, Cecilia

    2016-01-01

    Marine sponges are important members of coral reef ecosystems. Thus, their responses to changes in ocean chemistry and environmental conditions, particularly to higher seawater temperatures, will have potential impacts on the future of these reefs. To better understand the sponge thermal stress response, we investigated gene expression dynamics in the shallow water sponge, Haliclona tubifera (order Haplosclerida, class Demospongiae), subjected to elevated temperature. Using high-throughput transcriptome sequencing, we show that these conditions result in the activation of various processes that interact to maintain cellular homeostasis. Short-term thermal stress resulted in the induction of heat shock proteins, antioxidants, and genes involved in signal transduction and innate immunity pathways. Prolonged exposure to thermal stress affected the expression of genes involved in cellular damage repair, apoptosis, signaling and transcription. Interestingly, exposure to sublethal temperatures may improve the ability of the sponge to mitigate cellular damage under more extreme stress conditions. These insights into the potential mechanisms of adaptation and resilience of sponges contribute to a better understanding of sponge conservation status and the prediction of ecosystem trajectories under future climate conditions.

  6. Herboxidiene triggers splicing repression and abiotic stress responses in plants

    KAUST Repository

    Alshareef, Sahar

    2017-03-27

    Background Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and stresses. Small-molecule inhibitors that perturb splicing provide invaluable tools for use as chemical probes to uncover the molecular underpinnings of splicing regulation and as potential anticancer compounds. Results Here, we show that herboxidiene (GEX1A) inhibits both constitutive and alternative splicing. Moreover, GEX1A activates genome-wide transcriptional patterns involved in abiotic stress responses in plants. GEX1A treatment -activated ABA-inducible promoters, and led to stomatal closure. Interestingly, GEX1A and pladienolide B (PB) elicited similar cellular changes, including alterations in the patterns of transcription and splicing, suggesting that these compounds might target the same spliceosome complex in plant cells. Conclusions Our study establishes GEX1A as a potent splicing inhibitor in plants that can be used to probe the assembly, dynamics, and molecular functions of the spliceosome and to study the interplay between splicing stress and abiotic stresses, as well as having potential biotechnological applications.

  7. Oxidative Stress Responses in the Human Fungal Pathogen, Candida albicans

    Science.gov (United States)

    da Silva Dantas, Alessandra; Day, Alison; Ikeh, Mélanie; Kos, Iaroslava; Achan, Beatrice; Quinn, Janet

    2015-01-01

    Candida albicans is a major fungal pathogen of humans, causing approximately 400,000 life-threatening systemic infections world-wide each year in severely immunocompromised patients. An important fungicidal mechanism employed by innate immune cells involves the generation of toxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Consequently, there is much interest in the strategies employed by C. albicans to evade the oxidative killing by macrophages and neutrophils. Our understanding of how C. albicans senses and responds to ROS has significantly increased in recent years. Key findings include the observations that hydrogen peroxide triggers the filamentation of this polymorphic fungus and that a superoxide dismutase enzyme with a novel mode of action is expressed at the cell surface of C. albicans. Furthermore, recent studies have indicated that combinations of the chemical stresses generated by phagocytes can actively prevent C. albicans oxidative stress responses through a mechanism termed the stress pathway interference. In this review, we present an up-date of our current understanding of the role and regulation of oxidative stress responses in this important human fungal pathogen. PMID:25723552

  8. Osmotic stress response in the wine yeast Dekkera bruxellensis.

    Science.gov (United States)

    Galafassi, Silvia; Toscano, Marco; Vigentini, Ileana; Piškur, Jure; Compagno, Concetta

    2013-12-01

    Dekkera bruxellensis is mainly associated with lambic beer fermentation and wine production and may contribute in a positive or negative manner to the flavor development. This yeast is able to produce phenolic compounds, such as 4-ethylguaiacol and 4-ethylphenol which could spoil the wine, depending on their concentration. In this work we have investigated how this yeast responds when exposed to conditions causing osmotic stress, as high sorbitol or salt concentrations. We observed that osmotic stress determined the production and accumulation of intracellular glycerol, and the expression of NADH-dependent glycerol-3-phosphate dehydrogenase (GPD) activity was elevated. The involvement of the HOG MAPK pathway in response to this stress condition was also investigated. We show that in D. bruxellensis Hog1 protein is activated by phosphorylation under hyperosmotic conditions, highlighting the conserved role of HOG MAP kinase signaling pathway in the osmotic stress response. Gene Accession numbers in GenBank: DbHOG1: JX65361, DbSTL1: JX965362. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Hypothalamic and pituitary clusterin modulates neurohormonal responses to stress.

    Science.gov (United States)

    Shin, Mi-Seon; Chang, Hyukki; Namkoong, Churl; Kang, Gil Myoung; Kim, Hyun-Kyong; Gil, So Young; Yu, Ji Hee; Park, Kyeong Han; Kim, Min-Seon

    2013-01-01

    Clusterin is a sulfated glycoprotein abundantly expressed in the pituitary gland and hypothalamus of mammals. However, its physiological role in neuroendocrine function is largely unknown. In the present study, we investigated the effects of intracerebroventricular (ICV) administration of clusterin on plasma pituitary hormone levels in normal rats. Single ICV injection of clusterin provoked neurohormonal changes seen under acute stress condition: increased plasma adrenocorticotropic hormone (ACTH), corticosterone, GH and prolactin levels and decreased LH and FSH levels. Consistently, hypothalamic and pituitary clusterin expression levels were upregulated following a restraint stress, suggesting an involvement of endogenous clusterin in stress-induced neurohormonal changes. In the pituitary intermediate lobe, clusterin was coexpressed with proopiomelanocortin (POMC), a precursor of ACTH. Treatment of clusterin in POMC expressing AtT-20 pituitary cells increased basal and corticotropin-releasing hormone (CRH)-stimulated POMC promoter activities and intracellular cAMP levels. Furthermore, clusterin treatment triggered ACTH secretion from AtT-20 cells in a CRH-dependent manner, indicating that increased clusterin under stressful conditions may augment CRH-stimulated ACTH production and release. In summary, hypothalamic and pituitary clusterin may function as a modulator of neurohormonal responses under stressful conditions. © 2013 S. Karger AG, Basel.

  10. CRANIOFACIAL STRESS PATTERNS AND DISPLACEMENTS AFTER ACTIVATION OF HYRAX DEVICE: FINITE ELEMENT MODELLING

    Directory of Open Access Journals (Sweden)

    Sergei Bosiakov

    2017-12-01

    Full Text Available Rapid maxillary expansion is employed for the treatment of cross-bite and deficiency of transversal dimension of the maxilla in patients with and without cleft of palate and lip. For this procedure, generally, different orthodontic appliances and devices generating significant transversal forces are used. The aim of this study is the finite-element analysis of stresses and displacements of the skull without palate cleft and the skull with unilateral and bilateral cleft after activation of the Hyrax orthodontic device. Two different constructions of the orthodontic device Hyrax with different positions of the screw relative palate are considered. In the first case, the screw is in the occlusal horizontal plane, and in the other, the screw is located near the palate. Activation of the orthodontic device corresponds to the rotation of the screw on one-quarter turn. It is established that the screw position significantly affects the distributions of stresses in skull and displacements of the cranium without palate cleft and with unilateral or bilateral palate cleft. Stresses in the bone structures of the craniums without cleft and with cleft are transferred from the maxilla to the pterygoid plate and pharyngeal tubercle if the screw displaces from the occlusal plane to the palate. Depending on the construction of the orthodontic appliance, the maxilla halves in the transversal plane are unfolded or the whole skull is entirely rotated in the sagittal plane. The stresses patterns and displacements of the skull with bilateral palate cleft are almost unchanged after activation of the orthodontic devices with different positions of the screw, only magnitudes of stresses and displacements are changed. The obtained results can be used for design of orthodontic appliances with the Hyrax screw, as well as for planning of osteotomies during the surgical assistance of the rapid maxillary expansion.

  11. Behaviour and stress responses in horses with gastric ulceration

    DEFF Research Database (Denmark)

    Malmkvist, Jens; Poulsen, Janne Møller; Luthersson, Nanna

    2012-01-01

    Only little is known about behaviour and stress responses in horses with gastric ulceration, despite the high prevalence of this condition. Our objectives in the present study was to (i) describe the severity of gastric ulceration in horses, housed under relatively standardised conditions, and (ii......) to investigate whether horses with severe glandular gastric ulceration have increased baseline and response concentration of stress hormones and behave differently than control horses. We investigated stomachs of 96 horses at one stud, and compared an ulcer group (n = 30; with severe lesions in the glandular...... conclude that the prevalence of gastric ulcers was high, and our results suggest different factors affecting ulceration in the glandular versus the nonglandular region of the horse stomach. Obvious external signs (e.g. poor body condition) identifying ulcer horses were absent. Horses with severe glandular...

  12. Compensatory responses induced by oxidative stress in Alzheimer disease

    Directory of Open Access Journals (Sweden)

    PAULA I MOREIRA

    2006-01-01

    Full Text Available Oxidative stress occurs early in the progression of Alzheimer disease, significantly before the development of the pathologic hallmarks, neurofibrillary tangles and senile plaques. In the first stage of development of the disease, amyloid-β deposition and hyperphosphorylated tau function as compensatory responses and downstream adaptations to ensure that neuronal cells do not succumb to oxidative damage. These findings suggest that Alzheimer disease is associated with a novel balance in oxidant homeostasis.

  13. A Unique ISR Program Determines Cellular Responses to Chronic Stress

    Czech Academy of Sciences Publication Activity Database

    Guan, B.J.; van Hoef, V.; Jobava, R.; Elroy-Stein, O.; Valášek, Leoš Shivaya; Cargnello, M.; Gao, X.H.; Krokowski, D.; Merrick, W.C.; Kimball, S.R.; Komar, A.A.; Koromilas, A.E.; Wynshaw-Boris, A.; Topisirovic, I.; Larsson, O.; Hatzoglou, M.

    2017-01-01

    Roč. 68, č. 5 (2017), s. 885-900 ISSN 1097-2765 R&D Projects: GA ČR(CZ) GA17-06238S EU Projects: Wellcome Trust(GB) 090812/B/09/A Institutional support: RVO:61388971 Keywords : UNFOLDED PROTEIN RESPONSE * EUKARYOTIC TRANSLATION INITIATION * ENDOPLASMIC-RETICULUM STRESS Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 14.714, year: 2016

  14. Role of SPECT imaging in symptomatic posterior element lumbar stress injuries

    Directory of Open Access Journals (Sweden)

    Debnath U

    2005-01-01

    Full Text Available Background : Diagnosis of stress injuries of spine is very difficult with conventional radiography. Methods : In a observational study, 132 subjects were recruited (between 8 and 38 years of age, who had lumbar spondylolysis or posterior element stress injuries. All these patients underwent clinical examination followed by plain X-rays, planar bone scintigraphy and SPECT (single photon emission computerised tomography. SPECT scans can identify the posterior element lumbar stress injuries earlier than other imaging modalities. As the lesions evolve and the completed spondylolysis becomes chronic, the SPECT scans tend to revert to normal even though healing of the defect has not occurred. The aim of the study was to determine the time lag after which SPECT imaging tends to be negative. We divided the patients into two groups, one SPECT positive group and the other SPECT negative group. Pre treatment background variables such as age, gender, back pain in extension or flexion, sporting activities, time of onset of symptoms, Oswestry Disability Index (ODI were used in a univariate logistic regression model to find the strong predictors of positive SPECT imaging results. Determinants of positivity versus negativity of SPECT were identified by discriminant analysis using multivariate logistic regression. Results : Seventy nine patients had positive SPECT scans whereas 53 patients had negative SPECT scans. Bilateral increased uptake was more common than unilateral uptake. Increased uptake at the L5 lumbar spine was more common (70% in SPECT positive group. Low back pain in extension was significantly more common in SPECT positive subjects. Active sporting individuals had higher probability of having a positive SPECT scan. The mean time lag from the onset of low back pain to SPECT imaging was 7 months in SPECT positive group and 25 months in the SPECT negative group. Multivariate analysis predicted that there is a significant difference in positivity of

  15. Epidermal stem cells response to radiative genotoxic stress

    International Nuclear Information System (INIS)

    Marie, Melanie

    2013-01-01

    Human skin is the first organ exposed to various environmental stresses, which requires the development by skin stem cells of specific mechanisms to protect themselves and to ensure tissue homeostasis. As stem cells are responsible for the maintenance of epidermis during individual lifetime, the preservation of genomic integrity in these cells is essential. My PhD aimed at exploring the mechanisms set up by epidermal stem cells in order to protect themselves from two genotoxic stresses, ionizing radiation (Gamma Rays) and ultraviolet radiation (UVB). To begin my PhD, I have taken part of the demonstration of protective mechanisms used by keratinocyte stem cells after ionizing radiation. It has been shown that these cells are able to rapidly repair most types of radiation-induced DNA damage. Furthermore, we demonstrated that this repair is activated by the fibroblast growth factor 2 (FGF2). In order to know if this protective mechanism is also operating in cutaneous carcinoma stem cells, we investigated the response to gamma Rays of carcinoma stem cells isolated from a human carcinoma cell line. As in normal keratinocyte stem cells, we demonstrated that cancer stem cells could rapidly repair radio-induced DNA damage. Furthermore, fibroblast growth factor 2 also mediates this repair, notably thanks to its nuclear isoforms. The second project of my PhD was to study human epidermal stem cells and progenitors responses to UVB radiation. Once cytometry and irradiation conditions were set up, the toxicity of UVB radiation has been evaluate in the primary cell model. We then characterized UVB photons effects on cell viability, proliferation and repair of DNA damage. This study allowed us to bring out that responses of stem cells and their progeny to UVB are different, notably at the level of part of their repair activity of DNA damage. Moreover, progenitors and stem cells transcriptomic responses after UVB irradiation have been study in order to analyze the global

  16. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses

    Directory of Open Access Journals (Sweden)

    Su Zhen

    2011-07-01

    Full Text Available Abstract Background Salt stress hinders the growth of plants and reduces crop production worldwide. However, different plant species might possess different adaptive mechanisms to mitigate salt stress. We conducted a detailed pathway analysis of transcriptional dynamics in the roots of Medicago truncatula seedlings under salt stress and selected a transcription factor gene, MtCBF4, for experimental validation. Results A microarray experiment was conducted using root samples collected 6, 24, and 48 h after application of 180 mM NaCl. Analysis of 11 statistically significant expression profiles revealed different behaviors between primary and secondary metabolism pathways in response to external stress. Secondary metabolism that helps to maintain osmotic balance was induced. One of the highly induced transcription factor genes was successfully cloned, and was named MtCBF4. Phylogenetic analysis revealed that MtCBF4, which belongs to the AP2-EREBP transcription factor family, is a novel member of the CBF transcription factor in M. truncatula. MtCBF4 is shown to be a nuclear-localized protein. Expression of MtCBF4 in M. truncatula was induced by most of the abiotic stresses, including salt, drought, cold, and abscisic acid, suggesting crosstalk between these abiotic stresses. Transgenic Arabidopsis over-expressing MtCBF4 enhanced tolerance to drought and salt stress, and activated expression of downstream genes that contain DRE elements. Over-expression of MtCBF4 in M. truncatula also enhanced salt tolerance and induced expression level of corresponding downstream genes. Conclusion Comprehensive transcriptomic analysis revealed complex mechanisms exist in plants in response to salt stress. The novel transcription factor gene MtCBF4 identified here played an important role in response to abiotic stresses, indicating that it might be a good candidate gene for genetic improvement to produce stress-tolerant plants.

  17. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses

    Science.gov (United States)

    2011-01-01

    Background Salt stress hinders the growth of plants and reduces crop production worldwide. However, different plant species might possess different adaptive mechanisms to mitigate salt stress. We conducted a detailed pathway analysis of transcriptional dynamics in the roots of Medicago truncatula seedlings under salt stress and selected a transcription factor gene, MtCBF4, for experimental validation. Results A microarray experiment was conducted using root samples collected 6, 24, and 48 h after application of 180 mM NaCl. Analysis of 11 statistically significant expression profiles revealed different behaviors between primary and secondary metabolism pathways in response to external stress. Secondary metabolism that helps to maintain osmotic balance was induced. One of the highly induced transcription factor genes was successfully cloned, and was named MtCBF4. Phylogenetic analysis revealed that MtCBF4, which belongs to the AP2-EREBP transcription factor family, is a novel member of the CBF transcription factor in M. truncatula. MtCBF4 is shown to be a nuclear-localized protein. Expression of MtCBF4 in M. truncatula was induced by most of the abiotic stresses, including salt, drought, cold, and abscisic acid, suggesting crosstalk between these abiotic stresses. Transgenic Arabidopsis over-expressing MtCBF4 enhanced tolerance to drought and salt stress, and activated expression of downstream genes that contain DRE elements. Over-expression of MtCBF4 in M. truncatula also enhanced salt tolerance and induced expression level of corresponding downstream genes. Conclusion Comprehensive transcriptomic analysis revealed complex mechanisms exist in plants in response to salt stress. The novel transcription factor gene MtCBF4 identified here played an important role in response to abiotic stresses, indicating that it might be a good candidate gene for genetic improvement to produce stress-tolerant plants. PMID:21718548

  18. Leptin regulates dopamine responses to sustained stress in humans.

    Science.gov (United States)

    Burghardt, Paul R; Love, Tiffany M; Stohler, Christian S; Hodgkinson, Colin; Shen, Pei-Hong; Enoch, Mary-Anne; Goldman, David; Zubieta, Jon-Kar

    2012-10-31

    Neural systems that identify and respond to salient stimuli are critical for survival in a complex and changing environment. In addition, interindividual differences, including genetic variation and hormonal and metabolic status likely influence the behavioral strategies and neuronal responses to environmental challenges. Here, we examined the relationship between leptin allelic variation and plasma leptin levels with DAD2/3R availability in vivo as measured with [(11)C]raclopride PET at baseline and during a standardized pain stress challenge. Allelic variation in the leptin gene was associated with varying levels of dopamine release in response to the pain stressor, but not with baseline D2/3 receptor availability. Circulating leptin was also positively associated with stress-induced dopamine release. These results show that leptin serves as a regulator of neuronal function in humans and provides an etiological mechanism for differences in dopamine neurotransmission in response to salient stimuli as related to metabolic function. The capacity for leptin to influence stress-induced dopaminergic function is of importance for pathological states where dopamine is thought to play an integral role, such as mood, substance-use disorders, eating disorders, and obesity.

  19. Stress Transmission in Granular Packings: Localization and Cooperative Response

    Science.gov (United States)

    Ramola, Kabir

    We develop a framework for stress transmission in two dimensional granular media that respects vector force balance at the microscopic level. For a packing of grains interacting via pairwise contact forces, we introduce local gauge degrees of freedom that determine the response of the system to external perturbations. This allows us to construct unique force-balanced solutions that determine the change in contact forces as a response to external stress. By mapping this response to diffusion in the underlying contact network, we show that this naturally leads to spatial localization of forces. We present numerical evidence for stress localization using exact diagonalization studies of network Laplacians associated with soft disk packings. We use this formalism to characterize the deviation from elastic behaviour as the amount of disorder in the underlying network is varied. We discuss generalizations to systems with large friction between grains and other networks that display topological disorder. This work has been supported by NSF-DMR 1409093 and the W. M. Keck Foundation.

  20. Sex and stress: Men and women show different cortisol responses to psychological stress induced by the Trier social stress test and the Iowa singing social stress test.

    Science.gov (United States)

    Reschke-Hernández, Alaine E; Okerstrom, Katrina L; Bowles Edwards, Angela; Tranel, Daniel

    2017-01-02

    Acute psychological stress affects each of us in our daily lives and is increasingly a topic of discussion for its role in mental illness, aging, cognition, and overall health. A better understanding of how such stress affects the body and mind could contribute to the development of more effective clinical interventions and prevention practices. Over the past 3 decades, the Trier Social Stress Test (TSST) has been widely used to induce acute stress in a laboratory setting based on the principles of social evaluative threat, namely, a judged speech-making task. A comparable alternative task may expand options for examining acute stress in a controlled laboratory setting. This study uses a within-subjects design to examine healthy adult participants' (n = 20 men, n = 20 women) subjective stress and salivary cortisol responses to the standard TSST (involving public speaking and math) and the newly created Iowa Singing Social Stress Test (I-SSST). The I-SSST is similar to the TSST but with a new twist: public singing. Results indicated that men and women reported similarly high levels of subjective stress in response to both tasks. However, men and women demonstrated different cortisol responses; men showed a robust response to both tasks, and women displayed a lesser response. These findings are in line with previous literature and further underscore the importance of examining possible sex differences throughout various phases of research, including design, analysis, and interpretation of results. Furthermore, this nascent examination of the I-SSST suggests a possible alternative for inducing stress in the laboratory. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Cortisol responses to naturalistic and laboratory stress in student teachers: comparison with a non-stress control day.

    Science.gov (United States)

    Wolfram, Maren; Bellingrath, Silja; Feuerhahn, Nicolas; Kudielka, Brigitte M

    2013-04-01

    Ambulatory assessments of hypothalamus-pituitary-adrenal axis responses to acute natural stressors yield evidence on stress regulation with high ecological validity. Sampling of salivary cortisol is a standard technique in this field. In 21 healthy student teachers, we assessed cortisol responses to a demonstration lesson. On a control day, sampling was repeated at analogous times. Additionally, the cortisol awakening response (CAR) was assessed on both days. Participants were also exposed to a laboratory stressor, the Trier Social Stress Test, and rated their individual levels of chronic work stress. In pre-to-post-stress assessment, cortisol levels declined after the lesson. However, post-stress cortisol levels were significantly higher compared with those on the control day. Also, the Trier Social Stress Test yielded higher cortisol responses when using the control day as reference baseline. Associations between the CAR and chronic stress measures were observed solely on the control day. There were no significant associations between cortisol responses to the natural and laboratory stressors. Our results indicate that a control day might be an important complement in laboratory but especially in ambulatory stress research. Furthermore, associations between chronic stress measures and the CAR might be obscured by acute stress exposure. Finally, responses to the laboratory stressor do not seem to mirror natural stress responses. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Stress.

    Science.gov (United States)

    Chambers, David W

    2008-01-01

    We all experience stress as a regular, and sometimes damaging and sometimes useful, part of our daily lives. In our normal ups and downs, we have our share of exhaustion, despondency, and outrage--matched with their corresponding positive moods. But burnout and workaholism are different. They are chronic, dysfunctional, self-reinforcing, life-shortening habits. Dentists, nurses, teachers, ministers, social workers, and entertainers are especially susceptible to burnout; not because they are hard-working professionals (they tend to be), but because they are caring perfectionists who share control for the success of what they do with others and perform under the scrutiny of their colleagues (they tend to). Workaholics are also trapped in self-sealing cycles, but the elements are ever-receding visions of control and using constant activity as a barrier against facing reality. This essay explores the symptoms, mechanisms, causes, and successful coping strategies for burnout and workaholism. It also takes a look at the general stress response on the physiological level and at some of the damage American society inflicts on itself.

  3. Stresses in faulted tunnel models by photoelasticity and adaptive finite element

    International Nuclear Information System (INIS)

    Ladkany, S.G.; Huang, Y.

    1995-01-01

    Research efforts in this area continue to investigate the development of a proper technique to analyze the stresses in the Ghost Dance fault and the effect of the fault on the stability of drifts in the proposed repository. Results from two parallel techniques are being compared to each other - Photoelastic models and Finite Element (FE) models. The Photoelastic plexiglass model (88.89 mm thick ampersand 256.1 mm long and wide) has two adjacent spare openings (57.95 mm long and wide) and a central round opening (57.95 mm diameter) placed at a clear distance approximately equal to its diameter from the square openings. The vertical loading on top of the model is 2269 N (500 lb.). Saw cuts (0.5388 mm wide), representing a fault, are being propagated from the tunnels outward with stress measurements taken at predefined locations, as the saw cuts increase in length. The FE model duplicates exactly the Photoelastic models. The adaptive mesh generation method is used to refine the FE grid at every step of the analysis. This nonlinear interactive computational techniques uses various uses various percent tolerance errors in the convergence of stress values as a measure in ending the iterative process

  4. Lifelong Aerobic Exercise Reduces the Stress Response in Rats.

    Science.gov (United States)

    Pietrelli, A; Di Nardo, M; Masucci, A; Brusco, A; Basso, N; Matkovic, L

    2018-04-15

    The aim of this study was to analyze the effects of lifelong aerobic exercise (AE) on the adaptive response of the stress system in rats. It is well known that hypothalamic-pituitary-adrenal axis (HPA) activity differs when triggered by voluntary or forced exercise models. Male Wistar rats belonging to exercise (E) or control (C) groups were subjected to chronic AE, and two cutoff points were established at 8 (middle age) and 18 months (old age). Behavioral, biochemical and histopathological studies were performed on the main components/targets of the stress system. AE increased adrenal sensitivity (AS), brain corticosterone (CORT) and corticotropin-releasing factor (CRF), but had no effect on the thymus, adrenal glands (AGs) weight or plasma CORT. In addition, AE exerted no effect on the sympathetic tone, but significantly reduced anxiety-related behavior and emotionality. Aging decreased AS and deregulated neuroendocrine feedback, leading to an anxiogenic state which was mitigated by AE. Histopathological and morphometric analysis of AGs showed no alterations in middle-aged rats but adrenal vacuolization in approximately 20% old rats. In conclusion, lifelong AE did not produce adverse effects related to a chronic stress state. On the contrary, while AE upregulated some components of the HPA axis, it generated an adaptive response to cumulative changes, possibly through different compensatory and/or super compensatory mechanisms, modulated by age. The long-term practice of AE had a strong positive impact on stress resilience so that it could be recommended as a complementary therapy in stress and depression disease. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Design of responsive materials using topologically interlocked elements

    International Nuclear Information System (INIS)

    Molotnikov, A; Gerbrand, R; Qi, Y; Simon, G P; Estrin, Y

    2015-01-01

    In this work we present a novel approach to designing responsive structures by segmentation of monolithic plates into an assembly of topologically interlocked building blocks. The particular example considered is an assembly of interlocking osteomorphic blocks. The results of this study demonstrate that the constraining force, which is required to hold the blocks together, can be viewed as a design parameter that governs the bending stiffness and the load bearing capacity of the segmented structure. In the case where the constraining forces are provided laterally using an external frame, the maximum load the assembly can sustain and its stiffness increase linearly with the magnitude of the lateral load applied. Furthermore, we show that the segmented plate with integrated shape memory wires employed as tensioning cables can act as a smart structure that changes its flexural stiffness and load bearing capacity in response to external stimuli, such as heat generated by the switching on and off an electric current. (paper)

  6. A cellular stress response (CSR) that interacts with NADPH-P450 reductase (NPR) is a new regulator of hypoxic response.

    Science.gov (United States)

    Oguro, Ami; Koyama, Chika; Xu, Jing; Imaoka, Susumu

    2014-02-28

    NADPH-P450 reductase (NPR) was previously found to contribute to the hypoxic response of cells, but the mechanism was not clarified. In this study, we identified a cellular stress response (CSR) as a new factor interacting with NPR by a yeast two-hybrid system. Overexpression of CSR enhanced the induction of erythropoietin and hypoxia response element (HRE) activity under hypoxia in human hepatocarcinoma cell lines (Hep3B), while knockdown of CSR suppressed them. This new finding regarding the interaction of NPR with CSR provides insight into the function of NPR in hypoxic response. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Dose response relationship in anti-stress gene regulatory networks.

    Science.gov (United States)

    Zhang, Qiang; Andersen, Melvin E

    2007-03-02

    To maintain a stable intracellular environment, cells utilize complex and specialized defense systems against a variety of external perturbations, such as electrophilic stress, heat shock, and hypoxia, etc. Irrespective of the type of stress, many adaptive mechanisms contributing to cellular homeostasis appear to operate through gene regulatory networks that are organized into negative feedback loops. In general, the degree of deviation of the controlled variables, such as electrophiles, misfolded proteins, and O2, is first detected by specialized sensor molecules, then the signal is transduced to specific transcription factors. Transcription factors can regulate the expression of a suite of anti-stress genes, many of which encode enzymes functioning to counteract the perturbed variables. The objective of this study was to explore, using control theory and computational approaches, the theoretical basis that underlies the steady-state dose response relationship between cellular stressors and intracellular biochemical species (controlled variables, transcription factors, and gene products) in these gene regulatory networks. Our work indicated that the shape of dose response curves (linear, superlinear, or sublinear) depends on changes in the specific values of local response coefficients (gains) distributed in the feedback loop. Multimerization of anti-stress enzymes and transcription factors into homodimers, homotrimers, or even higher-order multimers, play a significant role in maintaining robust homeostasis. Moreover, our simulation noted that dose response curves for the controlled variables can transition sequentially through four distinct phases as stressor level increases: initial superlinear with lesser control, superlinear more highly controlled, linear uncontrolled, and sublinear catastrophic. Each phase relies on specific gain-changing events that come into play as stressor level increases. The low-dose region is intrinsically nonlinear, and depending on

  8. Dose response relationship in anti-stress gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2007-03-01

    Full Text Available To maintain a stable intracellular environment, cells utilize complex and specialized defense systems against a variety of external perturbations, such as electrophilic stress, heat shock, and hypoxia, etc. Irrespective of the type of stress, many adaptive mechanisms contributing to cellular homeostasis appear to operate through gene regulatory networks that are organized into negative feedback loops. In general, the degree of deviation of the controlled variables, such as electrophiles, misfolded proteins, and O2, is first detected by specialized sensor molecules, then the signal is transduced to specific transcription factors. Transcription factors can regulate the expression of a suite of anti-stress genes, many of which encode enzymes functioning to counteract the perturbed variables. The objective of this study was to explore, using control theory and computational approaches, the theoretical basis that underlies the steady-state dose response relationship between cellular stressors and intracellular biochemical species (controlled variables, transcription factors, and gene products in these gene regulatory networks. Our work indicated that the shape of dose response curves (linear, superlinear, or sublinear depends on changes in the specific values of local response coefficients (gains distributed in the feedback loop. Multimerization of anti-stress enzymes and transcription factors into homodimers, homotrimers, or even higher-order multimers, play a significant role in maintaining robust homeostasis. Moreover, our simulation noted that dose response curves for the controlled variables can transition sequentially through four distinct phases as stressor level increases: initial superlinear with lesser control, superlinear more highly controlled, linear uncontrolled, and sublinear catastrophic. Each phase relies on specific gain-changing events that come into play as stressor level increases. The low-dose region is intrinsically nonlinear

  9. Responses to reductive stress in the cardiovascular system.

    Science.gov (United States)

    Handy, Diane E; Loscalzo, Joseph

    2017-08-01

    There is a growing appreciation that reductive stress represents a disturbance in the redox state that is harmful to biological systems. On a cellular level, the presence of increased reducing equivalents and the lack of beneficial fluxes of reactive oxygen species can prevent growth factor-mediated signaling, promote mitochondrial dysfunction, increase apoptosis, and decrease cell survival. In this review, we highlight the importance of redox balance in maintaining cardiovascular homeostasis and consider the tenuous balance between oxidative and reductive stress. We explain the role of reductive stress in models of protein aggregation-induced cardiomyopathies, such as those caused by mutations in αB-crystallin. In addition, we discuss the role of NADPH oxidases in models of heart failure and ischemia-reperfusion to illustrate how oxidants may mediate the adaptive responses to injury. NADPH oxidase 4, a hydrogen peroxide generator, also has a major role in promoting vascular homeostasis through its regulation of vascular tone, angiogenic responses, and effects on atherogenesis. In contrast, the lack of antioxidant enzymes that reduce hydrogen peroxide, such as glutathione peroxidase 1, promotes vascular remodeling and is deleterious to endothelial function. Thus, we consider the role of oxidants as necessary signals to promote adaptive responses, such as the activation of Nrf2 and eNOS, and the stabilization of Hif1. In addition, we discuss the adaptive metabolic reprogramming in hypoxia that lead to a reductive state, and the subsequent cellular redistribution of reducing equivalents from NADH to other metabolites. Finally, we discuss the paradoxical ability of excess reducing equivalents to stimulate oxidative stress and promote injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Deformation and Stress Response of Carbon Nanotubes/UHMWPE Composites under Extensional-Shear Coupling Flow

    Science.gov (United States)

    Wang, Junxia; Cao, Changlin; Yu, Dingshan; Chen, Xudong

    2018-02-01

    In this paper, the effect of varying extensional-shear couple loading on deformation and stress response of Carbon Nanotubes/ ultra-high molecular weight polyethylene (CNTs/UHMWPE) composites was investigated using finite element numerical simulation, with expect to improve the manufacturing process of UHMWPE-based composites with reduced stress and lower distortion. When applying pure extensional loading and pure X-Y shear loading, it was found that the risk of a structural breakage greatly rises. For identifying the coupling between extensional and shear loading, distinct generations of force loading were defined by adjusting the magnitude of extensional loading and X-Y shear loading. It was shown that with the decrement of X-Y shear loading the deformation decreases obviously where the maximal Mises stress in Z-direction at 0.45 m distance is in the range from 24 to 10 MPa and the maximal shear stress at 0.61 m distance is within the range from 0.9 to 0.3 MPa. In addition, all the stresses determined were clearly below the yield strength of CNTs/UHMWPE composites under extensional-shear couple loading.

  11. Distribution of stress on TMJ disc induced by use of chincup therapy: assessment by the finite element method

    Science.gov (United States)

    Calçada, Flávio Siqueira; Guimarães, Antônio Sérgio; Teixeira, Marcelo Lucchesi; Takamatsu, Flávio Atsushi

    2017-01-01

    ABSTRACT Objective: To assess the distribution of stress produced on TMJ disc by chincup therapy, by means of the finite element method. Methods: a simplified three-dimensional TMJ disc model was developed by using Rhinoceros 3D software, and exported to ANSYS software. A 4.9N load was applied on the inferior surface of the model at inclinations of 30, 40, and 50 degrees to the mandibular plane (GoMe). ANSYS was used to analyze stress distribution on the TMJ disc for the different angulations, by means of finite element method. Results: The results showed that the tensile and compressive stresses concentrations were higher on the inferior surface of the model. More presence of tensile stress was found in the middle-anterior region of the model and its location was not altered in the three directions of load application. There was more presence of compressive stress in the middle and mid-posterior regions, but when a 50o inclined load was applied, concentration in the middle region was prevalent. Tensile and compressive stresses intensities progressively diminished as the load was more vertically applied. Conclusions: stress induced by the chincup therapy is mainly located on the inferior surface of the model. Loads at greater angles to the mandibular plane produced distribution of stresses with lower intensity and a concentration of compressive stresses in the middle region. The simplified three-dimensional model proved useful for assessing the distribution of stresses on the TMJ disc induced by the chincup therapy. PMID:29160348

  12. Variety of immune responses to chronic stress in rats male

    Directory of Open Access Journals (Sweden)

    Іlona S Polovynko

    2016-12-01

    Full Text Available Background. Previously we have been carry out integrated quantitative estimation of neuroendocrine and immune responses to chronic restraint stress in male rats. Revealed that the value of canonical discriminant roots rats subjected to chronic stress different not only on the values of intact animals (by definition, but also among themselves. So we set a goal retrospectively divided stressed rats into three homogeneous groups. Material and methods. The experiment is at 50 white male rats. Of these 10 animals not subjected to any influences and 40 within 7 days subjected to moderate stress by daily 30-minute immobilization. The day after the completion of stressing in portion of the blood immunological parameters were determined by tests I and II levels of WHO. The spleen and thymus did smears for counting spleno- and thymocytograms. Results. The method of cluster analysis (k-means clustering formed three groups-clusters. For further analysis selected 18 parameters that members of each cluster differing minimum and maximum are different from members of other clusters (η2=0,73÷0,15; F=49,0÷3,26; p=10-6÷0,05. We stated that in 16 rats from cluster III the deviation 16 parameters in either side of the average norm almost identical and are in an acceptable range of ±0,5σ. Thus, the immune status of 40% of the rats subjected to moderate chronic stress was resistant to its factors. For the immune status of the 15 (37,5% rats cluster II typical moderate inhibition microphage, killer and T-cellular links in combination with a strong activation macrophage link. Poststressory changes in immunity in 9 rats (22,5% from cluster I differ from those in cluster II both qualitatively and quantitatively. In particular, the rats in this cluster were found no deviations from the norm or reaction blast transformation T-cells nor NK-lymphocytes levels. However, other parameters of T-link and microhage link suppressed more and settings macrophage link appeared

  13. 3-D finite element stress analysis for fatigue design and evaluation: a parametric study of MOV(Motor Operated Valve)

    International Nuclear Information System (INIS)

    Kim, Hyeong Keun; Lee, Sang Min; Chang, Yoon Suk; Choi, Jae Boong; Kim, Young Jin; Kim, Yun Jae

    2004-01-01

    In this paper, a new procedure is proposed to accomplish the primary plus secondary stress(P+Q) at the 'structural element' instead of 'transition element'. For the P+Q evaluation, the calculated stresses by FEA are linearized along a stress classification line to extract the stress category, then the stress intensity is calculated to compare with the 3Sm limit. Also, in this paper, the 'design by analysis' criteria, adopted fundamental concepts and a new approach to calculate Ke factors are explained. The new procedure combined with 3-D FEA has been applied to motor operated valve in order to the over conservatism and the rack of margin. The evaluation results show a good applicability and can be utilized for fatigue life evaluation by using P+Q

  14. Numerical Simulation of the Ground Response to the Tire Load Using Finite Element Method

    Science.gov (United States)

    Valaskova, Veronika; Vlcek, Jozef

    2017-10-01

    Response of the pavement to the excitation caused by the moving vehicle is one of the actual problems of the civil engineering practice. The load from the vehicle is transferred to the pavement structure through contact area of the tires. Experimental studies show nonuniform distribution of the pressure in the area. This non-uniformity is caused by the flexible nature and the shape of the tire and is influenced by the tire inflation. Several tire load patterns, including uniform distribution and point load, were involved in the numerical modelling using finite element method. Applied tire loads were based on the tire contact forces of the lorry Tatra 815. There were selected two procedures for the calculations. The first one was based on the simplification of the vehicle to the half-part model. The characteristics of the vehicle model were verified by the experiment and by the numerical model in the software ADINA, when vehicle behaviour during the ride was investigated. Second step involved application of the calculated contact forces for the front axle as the load on the multi-layered half space representing the pavement structure. This procedure was realized in the software Plaxis and considered various stress patterns for the load. The response of the ground to the vehicle load was then analyzed. Axisymmetric model was established for this procedure. The paper presents the results of the investigation of the contact pressure distribution and corresponding reaction of the pavement to various load distribution patterns. The results show differences in some calculated quantities for different load patterns, which need to be verified by the experimental way when also ground response should be observed.

  15. Transcriptome response mediated by cold stress in Lotus japonicus

    Directory of Open Access Journals (Sweden)

    Pablo Ignacio Calzadilla

    2016-03-01

    Full Text Available Members of the Lotus genus are important as agricultural forage sources under marginal environmental conditions given their high nutritional value and tolerance of various abiotic stresses. However, their dry matter production is drastically reduced in cooler seasons, while their response to such conditions is not well studied. This paper analyzes cold acclimation of the genus by studying Lotus japonicus over a stress period of 24 h. High-throughput RNA sequencing was used to identify and classify 1077 differentially expressed genes, of which 713 were up-regulated and 364 were down-regulated. Up-regulated genes were principally related to lipid, cell wall, phenylpropanoid, sugar, and proline regulation, while down-regulated genes affected the photosynthetic process and chloroplast development. Together, a total of 41 cold-inducible transcription factors were identified, including members of the AP2/ERF, NAC, MYB, and WRKY families; two of them were described as putative novel transcription factors. Finally, DREB1/CBFs were described with respect to their cold stress expression profiles. This is the first transcriptome profiling of the model legume L. japonicus under cold stress. Data obtained may be useful in identifying candidate genes for breeding modified species of forage legumes that more readily acclimate to low temperatures

  16. Endoplasmic Reticulum Stress, Unfolded Protein Response, and Cancer Cell Fate

    Directory of Open Access Journals (Sweden)

    Marco Corazzari

    2017-04-01

    Full Text Available Perturbation of endoplasmic reticulum (ER homeostasis results in a stress condition termed “ER stress” determining the activation of a finely regulated program defined as unfolded protein response (UPR and whose primary aim is to restore this organelle’s physiological activity. Several physiological and pathological stimuli deregulate normal ER activity causing UPR activation, such as hypoxia, glucose shortage, genome instability, and cytotoxic compounds administration. Some of these stimuli are frequently observed during uncontrolled proliferation of transformed cells, resulting in tumor core formation and stage progression. Therefore, it is not surprising that ER stress is usually induced during solid tumor development and stage progression, becoming an hallmark of such malignancies. Several UPR components are in fact deregulated in different tumor types, and accumulating data indicate their active involvement in tumor development/progression. However, although the UPR program is primarily a pro-survival process, sustained and/or prolonged stress may result in cell death induction. Therefore, understanding the mechanism(s regulating the cell survival/death decision under ER stress condition may be crucial in order to specifically target tumor cells and possibly circumvent or overcome tumor resistance to therapies. In this review, we discuss the role played by the UPR program in tumor initiation, progression and resistance to therapy, highlighting the recent advances that have improved our understanding of the molecular mechanisms that regulate the survival/death switch.

  17. Computation of stress intensity factors for nozzle corner cracks by various finite element procedures

    International Nuclear Information System (INIS)

    Broekhoven, M.J.G.

    1975-01-01

    The present study aims at deriving accurate K-factors for a series of 5 elliptical nozzle corner cracks of increasing size by various finite element procedures, using a three-level recursive substructuring scheme to perform the computations in an economic way on an intermediate size computer (IBM 360/65 system). A nozzle on a flat plate has been selected for subsequent experimental verification, this configuration being considered an adequate simulation of a nozzle on a shallow shell. The computations have been performed with the ASKA finite element system using mainly HEXEC-27 (incomplete quartic) elements. The geometry has been subdivided into 5 subnets with a total of 3515 nodal points and 6250 unknowns, two main nets and one hyper net. Each crack front is described by 11 nodal points and all crack front nodes are inserted in the hyper net, which allows for the realization of the successive crack geometries by changing only a relatively small hyper net (615 to 725 unknowns). Output data have been interpreted in terms of K-factors by the global energy method, the displacement method and the stress method. Besides, a stiffness derivative procedure, recently developed at Brown University, which takes full advantage of the finite element formulation to calculate local K-factors, has been applied. Finally it has been investigated whether sufficiently accurate results can be obtained by analyzing a considerably smaller part than one half of the geometry (as strictly required by symmetry considerations), using fixed boundary conditions derived from a far cheaper analysis of the uncracked structure

  18. Reconstructing a Network of Stress-Response Regulators via Dynamic System Modeling of Gene Regulation

    Directory of Open Access Journals (Sweden)

    Wei-Sheng Wu

    2008-01-01

    Full Text Available Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene’s expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specifi c stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably suffi cient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  19. Pairing of heterochromatin in response to cellular stress

    International Nuclear Information System (INIS)

    Abdel-Halim, H.I.; Mullenders, L.H.F.; Boei, J.J.W.A.

    2006-01-01

    We previously reported that exposure of human cells to DNA-damaging agents (X-rays and mitomycin C (MMC)) induces pairing of the homologous paracentromeric heterochromatin of chromosome 9 (9q12-13). Here, we show that UV irradiation and also heat shock treatment of human cells lead to similar effects. Since the various agents induce very different types and frequencies of damage to cellular constituents, the data suggest a general stress response as the underlying mechanism. Moreover, local UV irradiation experiments revealed that pairing of heterochromatin is an event that can be triggered without induction of DNA damage in the heterochromatic sequences. The repair deficient xeroderma pigmentosum cells (group F) previously shown to fail pairing after MMC displayed elevated pairing after heat shock treatment but not after UV exposure. Taken together, the present results indicate that pairing of heterochromatin following exposure to DNA-damaging agents is initiated by a general stress response and that the sensing of stress or the maintenance of the paired status of the heterochromatin might be dependent on DNA repair

  20. Mcm2 phosphorylation and the response to replicative stress

    Directory of Open Access Journals (Sweden)

    Stead Brent E

    2012-05-01

    Full Text Available Abstract Background The replicative helicase in eukaryotic cells is comprised of minichromosome maintenance (Mcm proteins 2 through 7 (Mcm2-7 and is a key target for regulation of cell proliferation. In addition, it is regulated in response to replicative stress. One of the protein kinases that targets Mcm2-7 is the Dbf4-dependent kinase Cdc7 (DDK. In a previous study, we showed that alanine mutations of the DDK phosphorylation sites at S164 and S170 in Saccharomyces cerevisiae Mcm2 result in sensitivity to caffeine and methyl methanesulfonate (MMS leading us to suggest that DDK phosphorylation of Mcm2 is required in response to replicative stress. Results We show here that a strain with the mcm2 allele lacking DDK phosphorylation sites (mcm2AA is also sensitive to the ribonucleotide reductase inhibitor, hydroxyurea (HU and to the base analogue 5-fluorouracil (5-FU but not the radiomimetic drug, phleomycin. We screened the budding yeast non-essential deletion collection for synthetic lethal interactions with mcm2AA and isolated deletions that include genes involved in the control of genome integrity and oxidative stress. In addition, the spontaneous mutation rate, as measured by mutations in CAN1, was increased in the mcm2AA strain compared to wild type, whereas with a phosphomimetic allele (mcm2EE the mutation rate was decreased. These results led to the idea that the mcm2AA strain is unable to respond properly to DNA damage. We examined this by screening the deletion collection for suppressors of the caffeine sensitivity of mcm2AA. Deletions that decrease spontaneous DNA damage, increase homologous recombination or slow replication forks were isolated. Many of the suppressors of caffeine sensitivity suppressed other phenotypes of mcm2AA including sensitivity to genotoxic drugs, the increased frequency of cells with RPA foci and the increased mutation rate. Conclusions Together these observations point to a role for DDK-mediated phosphorylation

  1. Use of the RoboFlag synthetic task environment to investigate workload and stress responses in UAV operation.

    Science.gov (United States)

    Guznov, Svyatoslav; Matthews, Gerald; Funke, Gregory; Dukes, Allen

    2011-09-01

    Use of unmanned aerial vehicles (UAVs) is an increasingly important element of military missions. However, controlling UAVs may impose high stress and workload on the operator. This study evaluated the use of the RoboFlag simulated environment as a means for profiling multiple dimensions of stress and workload response to a task requiring control of multiple vehicles (robots). It tested the effects of two workload manipulations, environmental uncertainty (i.e., UAV's visual view area) and maneuverability, in 64 participants. The findings confirmed that the task produced substantial workload and elevated distress. Dissociations between the stress and performance effects of the manipulations confirmed the utility of a multivariate approach to assessment. Contrary to expectations, distress and some aspects of workload were highest in the low-uncertainty condition, suggesting that overload of information may be an issue for UAV interface designers. The strengths and limitations of RoboFlag as a methodology for investigating stress and workload responses are discussed.

  2. Effect of reinforcement element folds on stresses in NPP containment shell in the zone of technological tunnels

    International Nuclear Information System (INIS)

    Ul'yanov, A.N.; Medvedev, V.N.; Kiselev, A.S.

    1993-01-01

    Basing on the results of experimental and calculational studies of stressed state in the zone of a technological tunnel with one-side thicker part the approximated problem solution taking into account the effect of reinforcement element folds on opening zone stressed state is obtained. The great effect of reinforcement ropes on shell stressed state in the zone of technological tunnels, which causes the necessity of its accounting during this zone design, is revealed. Special attention shoul be paid to the sections, where the stretching stresses arising as a result of bundle bending are not compensated (sections of bundle fold origin from normal trajectory)

  3. Plant natriuretic peptides are apoplastic and paracrine stress response molecules

    KAUST Repository

    Wang, Yuhua

    2011-04-07

    Higher plants contain biologically active proteins that are recognized by antibodies against human atrial natriuretic peptide (ANP). We identified and isolated two Arabidopsis thaliana immunoreactive plant natriuretic peptide (PNP)-encoding genes, AtPNP-A and AtPNP-B, which are distantly related members of the expansin superfamily and have a role in the regulation of homeostasis in abiotic and biotic stresses, and have shown that AtPNP-A modulates the effects of ABA on stomata. Arabidopsis PNP (PNP-A) is mainly expressed in leaf mesophyll cells, and in protoplast assays we demonstrate that it is secreted using AtPNP-A:green fluorescent protein (GFP) reporter constructs and flow cytometry. Transient reporter assays provide evidence that AtPNP-A expression is enhanced by heat, osmotica and salt, and that AtPNP-A itself can enhance its own expression, thereby generating a response signature diagnostic for paracrine action and potentially also autocrine effects. Expression of native AtPNP-A is enhanced by osmotica and transiently by salt. Although AtPNP-A expression is induced by salt and osmotica, ABA does not significantly modulate AtPNP-A levels nor does recombinant AtPNP-A affect reporter expression of the ABA-responsive RD29A gene. Together, these results provide experimental evidence that AtPNP-A is stress responsive, secreted into the apoplastic space and can enhance its own expression. Furthermore, our findings support the idea that AtPNP-A, together with ABA, is an important component in complex plant stress responses and that, much like in animals, peptide signaling molecules can create diverse and modular signals essential for growth, development and defense under rapidly changing environmental conditions. © 2011 The Author.

  4. Sulforaphane Inhibits Lipopolysaccharide-Induced Inflammation, Cytotoxicity, Oxidative Stress, and miR-155 Expression and Switches to Mox Phenotype through Activating Extracellular Signal-Regulated Kinase 1/2-Nuclear Factor Erythroid 2-Related Factor 2/Antioxidant Response Element Pathway in Murine Microglial Cells.

    Science.gov (United States)

    Eren, Erden; Tufekci, Kemal Ugur; Isci, Kamer Burak; Tastan, Bora; Genc, Kursad; Genc, Sermin

    2018-01-01

    Sulforaphane (SFN) is a natural product with cytoprotective, anti-inflammatory, and antioxidant effects. In this study, we evaluated the mechanisms of its effects on lipopolysaccharide (LPS)-induced cell death, inflammation, oxidative stress, and polarization in murine microglia. We found that SFN protects N9 microglial cells upon LPS-induced cell death and suppresses LPS-induced levels of secreted pro-inflammatory cytokines, tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6. SFN is also a potent inducer of redox sensitive transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), which is responsible for the transcription of antioxidant, cytoprotective, and anti-inflammatory genes. SFN induced translocation of Nrf2 to the nucleus via extracellular signal-regulated kinase 1/2 (ERK1/2) pathway activation. siRNA-mediated knockdown study showed that the effects of SFN on LPS-induced reactive oxygen species, reactive nitrogen species, and pro-inflammatory cytokine production and cell death are partly Nrf2 dependent. Mox phenotype is a novel microglial phenotype that has roles in oxidative stress responses. Our results suggested that SFN induced the Mox phenotype in murine microglia through Nrf2 pathway. SFN also alleviated LPS-induced expression of inflammatory microRNA, miR-155. Finally, SFN inhibits microglia-mediated neurotoxicity as demonstrated by conditioned medium and co-culture experiments. In conclusion, SFN exerts protective effects on microglia and modulates the microglial activation state.

  5. Does spending time outdoors reduce stress? A review of real-time stress response to outdoor environments

    Science.gov (United States)

    Michelle C. Kondo; Sara F. Jacoby; Eugenia C. South

    2018-01-01

    Everyday environmental conditions impact human health. One mechanism underlying this relationship is the experience of stress. Through systematic review of published literature, we explore how stress has been measured in real-time non-laboratory studies of stress responses to deliberate exposure to outdoor environments. The types of exposures evaluated in this review...

  6. Measuring general and specific stress causes and stress responses among beginning secondary school teachers in the Netherlands

    NARCIS (Netherlands)

    Harmsen, R; Helms-Lorenz, M.; Maulana, R; van Veen, K; van Veldhoven, M.J.P.M.

    2018-01-01

    The main aim of this study was to adjust the Questionnaire on the Experience and Evaluation of Work (QEEW) in order to measure stress causes and stress responses of beginning secondary school teachers in the Netherlands. First, the suitability of the original QEEW stress scales for use in the

  7. Adrenal cortical response to stress at Three Mile Island.

    Science.gov (United States)

    Schaeffer, M A; Baum, A

    1984-01-01

    The present study examined the relationship between biochemical, psychologic, and behavioral components of chronic stress associated with living near the damaged nuclear power plant at Three Mile Island (TMI). Relative to control subjects, TMI subjects had higher levels of urinary cortisol, which correlated significantly with urinary catecholamines, self-report of physical and mental symptoms, and decrements in task performance. Further, it was found that males had higher urinary cortisol levels than females at TMI, while at the control sites, levels of cortisol were comparable between males and females. Finally, no significant relationship between coping style and urinary cortisol was detected. Levels of stress response among TMI are residents, though significantly greater than control subjects, were within normal ranges and thus should be considered subclinical in intensity. Their persistence over 17 months, however, suggests some cause for concern.

  8. Microtubules self-repair in response to mechanical stress

    Science.gov (United States)

    Schaedel, Laura; John, Karin; Gaillard, Jérémie; Nachury, Maxence V.; Blanchoin, Laurent; Théry, Manuel

    2015-11-01

    Microtubules--which define the shape of axons, cilia and flagella, and provide tracks for intracellular transport--can be highly bent by intracellular forces, and microtubule structure and stiffness are thought to be affected by physical constraints. Yet how microtubules tolerate the vast forces exerted on them remains unknown. Here, by using a microfluidic device, we show that microtubule stiffness decreases incrementally with each cycle of bending and release. Similar to other cases of material fatigue, the concentration of mechanical stresses on pre-existing defects in the microtubule lattice is responsible for the generation of more extensive damage, which further decreases microtubule stiffness. Strikingly, damaged microtubules were able to incorporate new tubulin dimers into their lattice and recover their initial stiffness. Our findings demonstrate that microtubules are ductile materials with self-healing properties, that their dynamics does not exclusively occur at their ends, and that their lattice plasticity enables the microtubules' adaptation to mechanical stresses.

  9. Adrenal cortical response to stress at Three Mile Island

    International Nuclear Information System (INIS)

    Schaeffer, M.A.; Baum, A.

    1984-01-01

    The present study examined the relationship between biochemical, psychologic, and behavioral components of chronic stress associated with living near the damaged nuclear power plant at Three Mile Island (TMI). Relative to control subjects, TMI subjects had higher levels of urinary cortisol, which correlated significantly with urinary catecholamines, self-report of physical and mental symptoms, and decrements in task performance. Further, it was found that males had higher urinary cortisol levels than females at TMI, while at the control sites, levels of cortisol were comparable between males and females. Finally, no significant relationship between coping style and urinary cortisol was detected. Levels of stress response among TMI are residents, though significantly greater than control subjects, were within normal ranges and thus should be considered subclinical in intensity. Their persistence over 17 months, however, suggests some cause for concern

  10. Haemoglobin-mediated response to hyper-thermal stress in the keystone species Daphnia magna.

    Science.gov (United States)

    Cuenca Cambronero, Maria; Zeis, Bettina; Orsini, Luisa

    2018-01-01

    Anthropogenic global warming has become a major geological and environmental force driving drastic changes in natural ecosystems. Due to the high thermal conductivity of water and the effects of temperature on metabolic processes, freshwater ecosystems are among the most impacted by these changes. The ability to tolerate changes in temperature may determine species long-term survival and fitness. Therefore, it is critical to identify coping mechanisms to thermal and hyper-thermal stress in aquatic organisms. A central regulatory element compensating for changes in oxygen supply and ambient temperature is the respiratory protein haemoglobin (Hb). Here, we quantify Hb plastic and evolutionary response in Daphnia magna subpopulations resurrected from the sedimentary archive of a lake with known history of increase in average temperature and recurrence of heat waves. By measuring constitutive changes in crude Hb protein content among subpopulations, we assessed evolution of the Hb gene family in response to temperature increase. To quantify the contribution of plasticity in the response of this gene family to hyper-thermal stress, we quantified changes in Hb content in all subpopulations under hyper-thermal stress as compared to nonstressful temperature. Further, we tested competitive abilities of genotypes as a function of their Hb content, constitutive and induced. We found that Hb-rich genotypes have superior competitive abilities as compared to Hb-poor genotypes under hyper-thermal stress after a period of acclimation. These findings suggest that whereas long-term adjustment to higher occurrence of heat waves may require a combination of plasticity and genetic adaptation, plasticity is most likely the coping mechanism to hyper-thermal stress in the short term. Our study suggests that with higher occurrence of heat waves, Hb-rich genotypes may be favoured with potential long-term impact on population genetic diversity.

  11. Genomic counter-stress changes induced by the relaxation response.

    Directory of Open Access Journals (Sweden)

    Jeffery A Dusek

    2008-07-01

    Full Text Available Mind-body practices that elicit the relaxation response (RR have been used worldwide for millennia to prevent and treat disease. The RR is characterized by decreased oxygen consumption, increased exhaled nitric oxide, and reduced psychological distress. It is believed to be the counterpart of the stress response that exhibits a distinct pattern of physiology and transcriptional profile. We hypothesized that RR elicitation results in characteristic gene expression changes that can be used to measure physiological responses elicited by the RR in an unbiased fashion.We assessed whole blood transcriptional profiles in 19 healthy, long-term practitioners of daily RR practice (group M, 19 healthy controls (group N(1, and 20 N(1 individuals who completed 8 weeks of RR training (group N(2. 2209 genes were differentially expressed in group M relative to group N(1 (p<0.05 and 1561 genes in group N(2 compared to group N(1 (p<0.05. Importantly, 433 (p<10(-10 of 2209 and 1561 differentially expressed genes were shared among long-term (M and short-term practitioners (N(2. Gene ontology and gene set enrichment analyses revealed significant alterations in cellular metabolism, oxidative phosphorylation, generation of reactive oxygen species and response to oxidative stress in long-term and short-term practitioners of daily RR practice that may counteract cellular damage related to chronic psychological stress. A significant number of genes and pathways were confirmed in an independent validation set containing 5 N(1 controls, 5 N(2 short-term and 6 M long-term practitioners.This study provides the first compelling evidence that the RR elicits specific gene expression changes in short-term and long-term practitioners. Our results suggest consistent and constitutive changes in gene expression resulting from RR may relate to long term physiological effects. Our study may stimulate new investigations into applying transcriptional profiling for accurately measuring

  12. The significance of translation regulation in the stress response

    Science.gov (United States)

    2013-01-01

    Background The stress response in bacteria involves the multistage control of gene expression but is not entirely understood. To identify the translational response of bacteria in stress conditions and assess its contribution to the regulation of gene expression, the translational states of all mRNAs were compared under optimal growth condition and during nutrient (isoleucine) starvation. Results A genome-scale study of the translational response to nutritional limitation was performed in the model bacterium Lactococcus lactis. Two measures were used to assess the translational status of each individual mRNA: the fraction engaged in translation (ribosome occupancy) and ribosome density (number of ribosomes per 100 nucleotides). Under isoleucine starvation, half of the mRNAs considered were translationally down-regulated mainly due to decreased ribosome density. This pattern concerned genes involved in growth-related functions such as translation, transcription, and the metabolism of fatty acids, phospholipids and bases, contributing to the slowdown of growth. Only 4% of the mRNAs were translationally up-regulated, mostly related to prophagic expression in response to stress. The remaining genes exhibited antagonistic regulations of the two markers of translation. Ribosome occupancy increased significantly for all the genes involved in the biosynthesis of isoleucine, although their ribosome density had decreased. The results revealed complex translational regulation of this pathway, essential to cope with isoleucine starvation. To elucidate the regulation of global gene expression more generally, translational regulation was compared to transcriptional regulation under isoleucine starvation and to other post-transcriptional regulations related to mRNA degradation and mRNA dilution by growth. Translational regulation appeared to accentuate the effects of transcriptional changes for down-regulated growth-related functions under isoleucine starvation although m

  13. Boundary element analysis of active mountain building and stress heterogeneity proximal to the 2015 Nepal earthquake

    Science.gov (United States)

    Thompson, T. B.; Meade, B. J.

    2015-12-01

    The Himalayas are the tallest mountains on Earth with ten peaks exceeding 8000 meters, including Mt. Everest. The geometrically complex fault system at the Himalayan Range Front produces both great relief and great earthquakes, like the recent Mw=7.8 Nepal rupture. Here, we develop geometrically accurate elastic boundary element models of the fault system at the Himalayan Range Front including the Main Central Thrust, South Tibetan Detachment, Main Frontal Thrust, Main Boundary Thrust, the basal detachment, and surface topography. Using these models, we constrain the tectonic driving forces and frictional fault strength required to explain Quaternary fault slip rate estimates. These models provide a characterization of the heterogeneity of internal stress in the region surrounding the 2015 Nepal earthquake.

  14. Mitochondria, Energetics, Epigenetics, and Cellular Responses to Stress

    Science.gov (United States)

    McAllister, Kimberly; Worth, Leroy; Haugen, Astrid C.; Meyer, Joel N.; Domann, Frederick E.; Van Houten, Bennett; Mostoslavsky, Raul; Bultman, Scott J.; Baccarelli, Andrea A.; Begley, Thomas J.; Sobol, Robert W.; Hirschey, Matthew D.; Ideker, Trey; Santos, Janine H.; Copeland, William C.; Tice, Raymond R.; Balshaw, David M.; Tyson, Frederick L.

    2014-01-01

    Background: Cells respond to environmental stressors through several key pathways, including response to reactive oxygen species (ROS), nutrient and ATP sensing, DNA damage response (DDR), and epigenetic alterations. Mitochondria play a central role in these pathways not only through energetics and ATP production but also through metabolites generated in the tricarboxylic acid cycle, as well as mitochondria–nuclear signaling related to mitochondria morphology, biogenesis, fission/fusion, mitophagy, apoptosis, and epigenetic regulation. Objectives: We investigated the concept of bidirectional interactions between mitochondria and cellular pathways in response to environmental stress with a focus on epigenetic regulation, and we examined DNA repair and DDR pathways as examples of biological processes that respond to exogenous insults through changes in homeostasis and altered mitochondrial function. Methods: The National Institute of Environmental Health Sciences sponsored the Workshop on Mitochondria, Energetics, Epigenetics, Environment, and DNA Damage Response on 25–26 March 2013. Here, we summarize key points and ideas emerging from this meeting. Discussion: A more comprehensive understanding of signaling mechanisms (cross-talk) between the mitochondria and nucleus is central to elucidating the integration of mitochondrial functions with other cellular response pathways in modulating the effects of environmental agents. Recent studies have highlighted the importance of mitochondrial functions in epigenetic regulation and DDR with environmental stress. Development and application of novel technologies, enhanced experimental models, and a systems-type research approach will help to discern how environmentally induced mitochondrial dysfunction affects key mechanistic pathways. Conclusions: Understanding mitochondria–cell signaling will provide insight into individual responses to environmental hazards, improving prediction of hazard and susceptibility to

  15. Effect of Oval Posts on Stress Distribution in Endodontically Treated Teeth: A Three-Dimensional Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Mojtaba Mahmoodi

    2017-09-01

    Full Text Available Introduction: In post-core crown restorations, the use of prefabricated composite posts concentrate stress at the cervical region and the use of metal posts (prefabricated and customized posts concentrates stress at the interfaces. Fiber reinforced composite posts (FRCs with oval cross-section (oval posts were proposed for post-core crown restorations to reduce the stress levels at the cervical region. The aim of the present study was to investigate the impact of oval cross-section composite posts on stress distribution of premolar with oval-shaped canal by using three-dimensional (3D finite element analysis. Materials and Methods: An extracted premolar tooth was mounted, sectioned, and photographed to create a 3D model. The surrounding tissues of the tooth, periodontal ligament, as well as cortical and trabecular bones were modeled. Seven taper posts with two different cross-section geometries (circular and oval shapes were modeled, as well. Then, the effect of post geometry, post material (carbon fiber and fiberglass, and cement material were investigated by 3D finite element analysis and the stress distribution results were compared. Results: In all the models, the highest stress levels of the dentin were accumulated at the coronal third of the root, and the highest stress levels at the bonding layers were accumulated at the cervical margin. Narrow circular posts induced the highest stress levels, whereas the stress levels were reduced by using thick oval posts. Application of elastic cement reduces the stress at the bonding layers but increases stress at the dentin. Conclusion: Finite element analysis showed that prefabricated oval posts are superior to traditional circular ones. The use of cement with low elastic modulus reduces the risk of debonding but raises the risk of root fracture.

  16. State-of-the-art Review : Vol. 2A. Responsive Building Elements

    DEFF Research Database (Denmark)

    Blümel, Ernst; Haghighat, Fariborz; Li, Yuguo

    This report resumes and presents the activity done in Subtask A of IEA-ECBCS Annex 44 “Integrating Environmentally Responsive Elements in Buildings” concerning the state of the art review of Responsive Building Elements. It is based on the contributions from the participating countries...... at researchers in the field and gives an overview of how these elements work together with available performance data. It is hoped, that this report will be helpful for researchers in their search for new solutions to the problem of designing and constructing sustainable buildings....

  17. Exercise-induced stress responses of amenorrheic and eumenorrheic runners.

    Science.gov (United States)

    Loucks, A B; Horvath, S M

    1984-12-01

    The role of stress in exercise-associated amenorrhea was investigated. Sex hormones [FSH, LH, androstenedione (A), testosterone, estrone, and 17 beta-estradiol (E2)], stress hormones [dehydroepiandrosterone, cortisol (F), PRL, norepinephrine, and epinephrine] and psychological status (Profile of Mood States and State-Trait Anxiety Inventory) were measured at rest and in response to a 40-min 80% of maximal aerobic power (VO2max) run in highly trained eumenorrheic (n = 8) and amenorrheic (n = 7) women runners matched for fatness [eumenorrheic, 16.5 +/- 2.3% (+/- SD); amenorrheic, 14.9 +/- 4.8] and maximal aerobic power (eumenorrheic, 58.9 +/- 5.7 ml/kg X min; amenorrheic, 59.8 +/- 4.6). Eumenorrheic runners were tested between days 3 and 8 of the follicular phase. At rest, decreased plasma FSH, LH, and E2 concentrations were found in amenorrheic women [eumenorrheic FSH, 10.5 +/- 4.1 mIU/ml; amenorrheic FSH, 4.9 +/- 1.6 (P less than 0.01); eumenorrheic LH, 14.1 +/- 6.1 mIU/ml; amenorrheic LH, 5.1 +/- 1.7 (P less than 0.01); eumenorrheic E2, 20 +/- 9 pg/ml; amenorrheic E2, 7 +/- 6 (P less than 0.05)]. Other sex and stress hormones and psychological measurements were similar in the two groups and were within the normal range. Ventilatory, cardiovascular, thermoregulatory, and psychological responses to the submaximal run were identical. Among eumenorrheic women, all stress hormones and A increased after exercise, but PRL, F, and A were unchanged among amenorrheic women. Estrone, E2, and testosterone did not change in either group. These observations are inconsistent with a general stress hypothesis of exercise-associated amenorrhea as well as with more specific hyperprolactinemic and hyperandrogenic hypotheses. In amenorrheic women, failure of PRL to increase in response to exercise may be due to their lack of E2, while failure of F and A to increase may indicate reduced adrenal 3 beta-hydroxysteroid dehydrogenase/isomerase activity.

  18. Neonatal stress tempers vulnerability of acute stress response in adult socially isolated rats

    Directory of Open Access Journals (Sweden)

    Mariangela Serra

    2014-06-01

    Full Text Available Adverse experiences occurred in early life and especially during childhood and adolescence can have negative impact on behavior later in life and the quality of maternal care is considered a critical moment that can considerably influence the development and the stress responsiveness in offspring. This review will assess how the association between neonatal and adolescence stressful experiences such as maternal separation and social isolation, at weaning, may influence the stress responsiveness and brain plasticity in adult rats. Three hours of separation from the pups (3-14 postnatal days significantly increased frequencies of maternal arched-back nursing and licking-grooming by dams across the first 14 days postpartum and induced a long-lasting increase in their blood levels of corticosterone. Maternal separation, which per sedid not modified brain and plasma allopregnanolone and corticosterone levels in adult rats, significantly reduced social isolation-induced decrease of the levels of these hormones. Moreover, the enhancement of corticosterone and allopregnanolone levels induced by foot shock stress in socially isolated animals that were exposed to maternal separation was markedly reduced respect to that observed in socially isolated animals. Our results suggest that in rats a daily brief separation from the mother during the first weeks of life, which per se did not substantially alter adult function and reactivity of hypothalamic-pituitary-adrenal (HPA axis, elicited a significant protection versus the subsequent long-term stressful experience such that induced by social isolation from weaning. Proceedings of the 10th International Workshop on Neonatology · Cagliari (Italy · October 22nd-25th, 2014 · The last ten years, the next ten years in NeonatologyGuest Editors: Vassilios Fanos, Michele Mussap, Gavino Faa, Apostolos Papageorgiou

  19. Oxidative and nitrosative stress in trichloroethene-mediated autoimmune response

    International Nuclear Information System (INIS)

    Wang Gangduo; Cai Ping; Ansari, G.A.S.; Khan, M. Firoze

    2007-01-01

    Reactive oxygen and nitrogen species (RONS) are implicated in the pathogenesis of several autoimmune diseases. Also, increased lipid peroxidation and protein nitration are reported in systemic autoimmune diseases. Lipid peroxidation-derived aldehydes (LPDAs) such as malondialdehyde (MDA) and 4-hydroxynonenal (HNE) are highly reactive and bind proteins covalently, but their potential to elicit an autoimmune response and contribution to disease pathogenesis remain unclear. Similarly, nitration of protein could also contribute to disease pathogenesis. To assess the status of lipid peroxidation and/or RONS, autoimmune-prone female MRL+/+ mice (5-week old) were treated with trichloroethene (TCE), an environmental contaminant known to induce autoimmune response, for 48 weeks (0.5 mg/ml via drinking water), and formation of antibodies to LPDA-protein adducts was followed in the sera of control and TCE-treated mice. TCE treatment led to greater formation of both anti-MDA- and -HNE-protein adduct antibodies and higher serum iNOS and nitrotyrosine levels. The increase in TCE-induced oxidative stress was associated with increases in anti-nuclear-, anti-ssDNA- and anti-dsDNA-antibodies. These findings suggest that TCE exposure not only leads to oxidative/nitrosative stress, but is also associated with induction/exacerbation of autoimmune response in MRL+/+ mice. Further interventional studies are needed to establish a causal role of RONS in TCE-mediated autoimmunity

  20. Hormone response element binding proteins: novel regulators of vitamin D and estrogen signaling.

    Science.gov (United States)

    Lisse, Thomas S; Hewison, Martin; Adams, John S

    2011-03-01

    Insights from vitamin D-resistant New World primates and their human homologues as models of natural and pathological insensitivity to sterol/steroid action have uncovered a family of novel intracellular vitamin D and estrogen regulatory proteins involved in hormone action. The proteins, known as "vitamin D or estrogen response element-binding proteins", behave as potent cis-acting, transdominant regulators to inhibit steroid receptor binding to DNA response elements and is responsible for vitamin D and estrogen resistances. This set of interactors belongs to the heterogeneous nuclear ribonucleoprotein (hnRNP) family of previously known pre-mRNA-interacting proteins. This review provides new insights into the mechanism by which these novel regulators of signaling and metabolism can act to regulate responses to vitamin D and estrogen. In addition the review also describes other molecules that are known to influence nuclear receptor signaling through interaction with hormone response elements. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Prediction of transcriptional regulatory elements for plant hormone responses based on microarray data

    Directory of Open Access Journals (Sweden)

    Yamaguchi-Shinozaki Kazuko

    2011-02-01

    Full Text Available Abstract Background Phytohormones organize plant development and environmental adaptation through cell-to-cell signal transduction, and their action involves transcriptional activation. Recent international efforts to establish and maintain public databases of Arabidopsis microarray data have enabled the utilization of this data in the analysis of various phytohormone responses, providing genome-wide identification of promoters targeted by phytohormones. Results We utilized such microarray data for prediction of cis-regulatory elements with an octamer-based approach. Our test prediction of a drought-responsive RD29A promoter with the aid of microarray data for response to drought, ABA and overexpression of DREB1A, a key regulator of cold and drought response, provided reasonable results that fit with the experimentally identified regulatory elements. With this succession, we expanded the prediction to various phytohormone responses, including those for abscisic acid, auxin, cytokinin, ethylene, brassinosteroid, jasmonic acid, and salicylic acid, as well as for hydrogen peroxide, drought and DREB1A overexpression. Totally 622 promoters that are activated by phytohormones were subjected to the prediction. In addition, we have assigned putative functions to 53 octamers of the Regulatory Element Group (REG that have been extracted as position-dependent cis-regulatory elements with the aid of their feature of preferential appearance in the promoter region. Conclusions Our prediction of Arabidopsis cis-regulatory elements for phytohormone responses provides guidance for experimental analysis of promoters to reveal the basis of the transcriptional network of phytohormone responses.

  2. Dynamic Response in Transient Stress-Field Behavior Induced by Hydraulic Fracturing

    Science.gov (United States)

    Jenkins, Andrew

    Hydraulic fracturing is a technique which is used to exploit geologic features and subsurface properties in an effort to increase production in low-permeability formations. The process of hydraulic fracturing provides a greater surface contact area between the producing formation and the wellbore and thus increases the amount of recoverable hydrocarbons from within the reservoir. The use of this stimulation technique has brought on massive applause from the industry due to its widespread success and effectiveness, however the dynamic processes that take part in the development of hydraulic fractures is a relatively new area of research with respect to the massive scale operations that are seen today. The process of hydraulic fracturing relies upon understanding and exploiting the in-situ stress distribution throughout the area of study. These in-situ stress conditions are responsible for directing fracture orientation and propagation paths throughout the period of injection. The relative magnitude of these principle stresses is key in developing a successful stimulation plan. In horizontal well plan development the interpretation of stress within the reservoir is required for determining the azimuth of the horizontal well path. These horizontal laterals are typically oriented in a manner such that the well path lies parallel to the minimum horizontal stress. This allows for vertical fractures to develop transversely to the wellbore, or normal to the least principle stress without the theoretical possibility of fractures overlapping, creating the most efficient use of the fluid energy during injection. The orientation and magnitude of these in-situ stress fields however can be dynamic, controlled by the subsequent fracture propagation and redistribution of the surrounding stresses. That is, that as the fracture propagates throughout the reservoir, the relative stress fields surrounding the fractures may see a shift and deviate from their original direction or

  3. On the stress assessment and verification of 3D finite element models

    International Nuclear Information System (INIS)

    Neto, M.M.; Miranda, C.A.J.; Cruz, J.R.B.; Bezerra, L.M.

    1995-01-01

    The evaluation of components using three dimensional (3D) finite element analysis (FEA) does not generally fall into the shell type verification. Consequently, the demonstration that the modes of failure are avoided sometimes is not straightforward. Elastic rules, developed by limit load theory, require the computation of the shell type through wall membrane and bending stresses. How to calculate these stresses from 3D FEA is not necessarily self-evident. One approach to be considered is to develop recommendations in a case-by-case basis for the most common pressure vessel geometries and loads based on comparison between the results of elastic and also plastic FEA. In this paper the case of a complex geometry -- lugs attached to a cylindrical pressure vessel wall -- is examined and discussed. This case is typically a three-dimensional (3D) configuration where it is not a simple task to check the requirements of the ASME code. From the comparison of the results of 3D elastic and elastic-plastic FEA some conclusions are addressed

  4. Bending stress modeling of dismountable furniture joints applied with a use of finite element method

    Directory of Open Access Journals (Sweden)

    Milan Šimek

    2009-01-01

    Full Text Available Presented work focuses on bending moment stress modeling of dismountable furniture joints with a use of Finite Element Method. The joints are created from Minifix and Rondorfix cams combined with non-glued wooden dowels. Laminated particleboard 18 mm of thickness is used as a connected material. The connectors were chosen such as the most applied kind in furniture industry for the case furniture. All gained results were reciprocally compared to each other and also in comparison to experimental testing by the mean of stiffness. The non-linear numerical model of chosen joints was successfully created using the software Ansys Workbench. The detailed analysis of stress distribution in the joint was achieved with non-linear numerical simulation. A relationship between numerical si­mu­la­tion and experimental testing was showed by comparison stiffness tangents. A numerical simulation of RTA joint loads also demonstrated the important role of non-glued dowels in the tested joints. The low strength of particleboard in the tension parallel to surface (internal bond is the most likely the cause of the joint failure. Results are applicable for strength designing of furniture with the aid of Computer Aided Engineering.

  5. Finite Element Method Study on Stress State in Soil Induced by Agricultural Traffic

    Directory of Open Access Journals (Sweden)

    Adrian Molnar-Irimie

    2016-11-01

    Full Text Available In general, when a tyre is running on a deformable soil, the soil compaction will occur not only on surface layers, but also on soil profile, in deeper layers. This leads to a series of negative effects not only on physical and mechanical properties of soil, but also influences the crops growth and the crop yield. For these reasons, currently are needed solutions to reduce soil compaction, caused mainly by agricultural implements passing on the soil surface in order to aply the specific crop production technologies. From our simulation we can draw the following conclusions: the soil stresses decreased with depth; the soil displacements magnitude increased with soil water content due to lower friction forces between soil particles (water acts like a lubricant between soil particles; decreasing rate for soil displacement is influenced by load magnitude and tyre inflation pressure; the soil particles moved in vertical plain from the top to the bottom, but also in horizontal direction, from the center to the edge in cross section and in longitudinal direction; the dimensions of the geometric shape of the mentioned soil volume is influenced by load and tyre inflation pressure. In this paper the agricultural traffic and its influence on stress state in soil, it was used a software application based on Finite Element Method, that has been proved to be a useful tool for soil compaction assessment in order to find the right decisions for a proper field traffic management.

  6. Regulation of abiotic and biotic stress responses by plant hormones

    DEFF Research Database (Denmark)

    Grosskinsky, Dominik Kilian; van der Graaff, Eric; Roitsch, Thomas Georg

    2016-01-01

    Plant hormones (phytohormones) are signal molecules produced within the plant, and occur in very low concentrations. In the present chapter, the current knowledge on the regulation of biotic and biotic stress responses by plant hormones is summarized with special focus on the novel insights...... into the complex hormonal crosstalk of classical growth stimulating plant hormones within the naturally occurring biotic and abiotic multistress environment of higher plants. The MAPK- and phytohormone-cascades which comprise a multitude of single molecules on different signalling levels, as well as interactions...

  7. Fabrication and characterization of THUNDER actuators—pre-stress-induced nonlinearity in the actuation response

    International Nuclear Information System (INIS)

    Kim, Younghoon; Jiang, Qing; Cai, Ling; Usher, Timothy

    2009-01-01

    This paper documents an experimental and theoretical investigation into characterizing the mechanical configurations and performances of THUNDER actuators, a type of piezoelectric actuator known for their large actuation displacements, through fabrication, measurements and finite element analysis. Five groups of such actuators with different dimensions were fabricated using identical fabrication parameters. The as-fabricated arched configurations, resulting from the thermo-mechanical mismatch among the constituent layers, and their actuation performances were characterized using an experimental set-up based on a laser displacement sensor and through numerical simulations with ANSYS, a widely used commercial software program for finite element analysis. This investigation shows that the presence of large residual stresses within the piezoelectric ceramic layer, built up during the fabrication process, leads to significant nonlinear electromechanical coupling in the actuator response to the driving electric voltage, and it is this nonlinear coupling that is responsible for the large actuation displacements. Furthermore, the severity of the residual stresses, and thus the nonlinearity, increases with increasing substrate/piezoelectric thickness ratio and, to a lesser extent, with decreasing in-plane dimensions of the piezoelectric layer

  8. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings.

    Science.gov (United States)

    Guo, Rui; Shi, LianXuan; Yan, Changrong; Zhong, Xiuli; Gu, FengXue; Liu, Qi; Xia, Xu; Li, Haoru

    2017-02-10

    Soil salinity and alkalinity present a serious threat to global agriculture. However, most of the studies have focused on neutral salt stress, and the information on the metabolic responses of plants to alkaline salt stress is limited. This investigation aimed at determining the influence of neutral salt and alkaline salt stresses on the content of metal elements and metabolites in maize plant tissues, by using mixtures of various proportions of NaCl, NaHCO 3 , Na 2 SO 4 , and Na 2 CO 3 . We found that alkaline salt stress suppressed more pronouncedly the photosynthesis and growth of maize plants than salinity stress. Under alkaline salt stress conditions, metal ions formed massive precipitates, which ultimately reduced plant nutrient availability. On the other hand, high neutral salt stress induced metabolic changes in the direction of gluconeogenesis leading to the enhanced formation of sugars as a reaction contributing to the mitigation of osmotic stress. Thus, the active synthesis of sugars in shoots was essential to the development of salt tolerance. However, the alkaline salt stress conditions characterized by elevated pH values suppressed substantially the levels of photosynthesis, N metabolism, glycolysis, and the production of sugars and amino acids. These results indicate the presence of different defensive mechanisms responsible for the plant responses to neutral salt and alkaline salt stresses. In addition, the increased concentration of organic acids and enhanced metabolic energy might be potential major factors that can contribute to the maintenance intracellular ion balance in maize plants and counteract the negative effects of high pH under alkaline salt stress.

  9. Effect of Large Negative Phase of Blast Loading on Structural Response of RC Elements

    Directory of Open Access Journals (Sweden)

    Syed Zubair Iman

    2016-01-01

    Full Text Available Structural response of reinforced concrete (RC elements for analysis and design are often obtained using the positive phase of the blast pressure curve disregarding the negative phase assuming insignificant contribution from the negative phase of the loading. Although, some insight on the effect of negative phase of blast pressure based on elastic single-degree-of-freedom (SDOF analysis was presented before, the influence of negative phase on different types of resistance functions of SDOF models and on realistic finite element analysis has not been explored. In this study, the effects of inclusion of pulse negative phase on structural response of RC elements from SDOF analysis and from more detailed finite element analysis have been investigated. Investigation of SDOF part has been conducted using MATLAB code that utilizes non-linear resistance functions of SDOF model. Detailed numerical investigation using finite element code DIANA was conducted on the significance of the negative phase on structural response. In the FE model, different support stiffness was used to explore the effect of support stiffness on the structural response due to blast negative phase. Results from SDOF and FE analyses present specific situations where the effect of large negative phase was found to be significant on the structural response of RC elements.

  10. Predicting the response of high damping rubber bearings using simplified models and finite element analysis

    International Nuclear Information System (INIS)

    Fuller, K.N.G.; Gough, J.; Ahmadi, H.R.

    1993-01-01

    The International Atomic Energy Agency has initiated a co-ordinated research programme on implementation of base-isolation for nuclear structures. This paper discusses two areas relevant to modelling elastomeric base-isolators. These are the use of simplified models to predict the response of isolated structures to earthquake inputs and finite element analysis for calculating the stress distributions within the isolators. In the former, a curvilinear hysteretic model of the high damping natural rubber able to accommodate the stiffening of the rubber at large shear deflections is presented. Its predictions of structural accelerations and bearing displacement produced by design earthquakes and those above the design level are compared with those using a linear spring and dashpot model. A comparison has been made between two finite element analyses using MARC and ABAQUS of the force-deformation behaviour of a single disc of rubber bonded on both sides. The disc was loaded both in compression and shear. Two forms of strain energy functions were used namely Mooney-RivIin and Ogden. The agreement between MARC and ABAQUS for the Mooney-Rivlin model for the material was very good. This was not however the case for the Ogden model and a difference of 25% in the maximum vertical deflection of the disc under 200kN load was observed. The need for a 'benchmark' problem is identified. This could be used to establish the accuracy of the finite element solvers. A problem based on the work of Rivlin on the force-deformation behaviour of cylinder of rubber under torsion is nominated. An appraisal of strain energy functions based on Mooney-RivIin formulations is carried out. It is shown that even for a five term series the strain energy function is incapable of catering for the rapid change of modulus at small strains both for simple and pure shear modes of deformation. This function models tension/compression data much better. The work identifies the need for evaluating other forms

  11. Trace elements and oxidative stress in children with type 1 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Alghobashy AA

    2018-03-01

    Full Text Available Ashgan Abdalla Alghobashy,1 Usama M Alkholy,1 Mohamed A Talat,1 Nermin Abdalmonem,1 Ahmed Zaki,2 Ihab A Ahmed,1 Randa H Mohamed3 1Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt; 2Department of Pediatrics, Faculty of Medicine, Mansura University, Mansura, Egypt; 3Department of Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt Background: The early imbalances of trace elements in type 1 diabetes (T1D may cause disturbance of glucose metabolism and more oxidative stress that may enhance the development of insulin resistance and diabetic complications. We aim to evaluate the serum level of selenium (Se, zinc (Zn, magnesium (Mg, and copper (Cu, the degree of oxidative stress and evaluate their relations to glycemic control in children with T1D. Methods: A case–control study which included 100 diabetic children and 40 healthy children age, sex, and ethnicity-matched as a control group. The diabetic children were divided into poor and good controlled patients according to glycosylated hemoglobin (A1c %. Studied children underwent history taking, clinical examination and laboratory measurement of serum Se, Zn, Mg, and Cu levels, erythrocyte reduced glutathione (GSH and peroxidase enzyme activity (GPx. Results: Serum Se, Zn, Mg, Cu, erythrocyte GSH, and GPx were significantly lower in the diabetic group in comparison to the control group (P<0.05 and their levels were lower in poorly controlled patients compared to good controlled patients (P<0.05. The serum Se, Zn, Mg, erythrocyte GSH, and GPx showed a negative correlation with A1c %. The serum Se showed a positive correlation with erythrocyte GSH and GPx ([r=0.56, P<0.001], [r=0.78, P<0.001], respectively. Conclusion: Children with T1D, especially poorly controlled cases, had low serum Se, Zn, Mg, Cu, GSH, and GPx. Low serum Se in diabetic children may affect the erythrocyte GSH-GPx system. Keywords: oxidative stress; type 1 diabetes; trace

  12. Experimental and finite element analysis of tibial stress fractures using a rabbit model.

    Science.gov (United States)

    Franklyn, Melanie; Field, Bruce

    2013-01-01

    To determine if rabbit models can be used to quantify the mechanical behaviour involved in tibial stress fracture (TSF) development. Fresh rabbit tibiae were loaded under compression using a specifically-designed test apparatus. Weights were incrementally added up to a load of 30 kg and the mechanical behaviour of the tibia was analysed using tests for buckling, bone strain and hysteresis. Structural mechanics equations were subsequently employed to verify that the results were within the range of values predicted by theory. A finite element (FE) model was developed using cross-sectional computer tomography (CT) images scanned from one of the rabbit bones, and a static load of 6 kg (1.5 times the rabbit's body weight) was applied to represent running. The model was validated using the experimental strain gauge data, then geometric and elemental convergence tests were performed in order to find the minimum number of cross-sectional scans and elements respectively required for convergence. The analysis was then performed using both the model and the experimental results to investigate the mechanical behaviour of the rabbit tibia under compressive load and to examine crack initiation. The experimental tests showed that under a compressive load of up to 12 kg, the rabbit tibia demonstrates linear behaviour with little hysteresis. Up to 30 kg, the bone does not fail by elastic buckling; however, there are low levels of tensile stress which predominately occur at and adjacent to the anterior border of the tibial midshaft: this suggests that fatigue failure occurs in these regions, since bone under cyclic loading initially fails in tension. The FE model predictions were consistent with both mechanics theory and the strain gauge results. The model was highly sensitive to small changes in the position of the applied load due to the high slenderness ratio of the rabbit's tibia. The modelling technique used in the current study could have applications in the development of

  13. Response of tropical trees to sulphur dioxide stress and recovery

    Energy Technology Data Exchange (ETDEWEB)

    Vartshney, C.K.; Mitra, I. [Jawaharlal Nehru University, New Delhi (India). School of Environmental Sciences

    1995-12-31

    Ethylene emission, ascorbic acid content, peroxidase and superoxide dismutase activity were measured in four tropical tree species. Six month old saplings of Morus alba Linn., Azadirachta indica A.Juss., Melia-azadirach Linn. and Syzgium jambolina Lamk, were exposed to 0.5 ppm SO{sub 2} for four hours for six consecutive days. Recovery from SO{sub 2} stress was followed for twelve days after termination of the fumigation. SO{sub 2} induced foliar ethylene emission increased during fumigation but declined following termination of fumigation. SO{sub 2} fumigation enhanced the activities of superoxide dismutase and peroxidase in all four species. Their activities, however, declined on withdrawal of SO{sub 2} stress. Ascorbic acid content decreased due to SO{sub 2} stress but exhibited recovery on termination of fumigation. The response of the four plant species was widely different both during the fumigation period and during post-fumigation recovery regime. 26 refs., 3 figs., 2 tabs.

  14. Quorum sensing regulates the osmotic stress response in Vibrio harveyi.

    Science.gov (United States)

    van Kessel, Julia C; Rutherford, Steven T; Cong, Jian-Ping; Quinodoz, Sofia; Healy, James; Bassler, Bonnie L

    2015-01-01

    Bacteria use a chemical communication process called quorum sensing to monitor cell density and to alter behavior in response to fluctuations in population numbers. Previous studies with Vibrio harveyi have shown that LuxR, the master quorum-sensing regulator, activates and represses >600 genes. These include six genes that encode homologs of the Escherichia coli Bet and ProU systems for synthesis and transport, respectively, of glycine betaine, an osmoprotectant used during osmotic stress. Here we show that LuxR activates expression of the glycine betaine operon betIBA-proXWV, which enhances growth recovery under osmotic stress conditions. BetI, an autorepressor of the V. harveyi betIBA-proXWV operon, activates the expression of genes encoding regulatory small RNAs that control quorum-sensing transitions. Connecting quorum-sensing and glycine betaine pathways presumably enables V. harveyi to tune its execution of collective behaviors to its tolerance to stress. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Molecular and physiological responses of trees to waterlogging stress.

    Science.gov (United States)

    Kreuzwieser, Jürgen; Rennenberg, Heinz

    2014-10-01

    One major effect of global climate change will be altered precipitation patterns in many regions of the world. This will cause a higher probability of long-term waterlogging in winter/spring and flash floods in summer because of extreme rainfall events. Particularly, trees not adapted at their natural site to such waterlogging stress can be impaired. Despite the enormous economic, ecological and social importance of forest ecosystems, the effect of waterlogging on trees is far less understood than the effect on many crops or the model plant Arabidopsis. There is only a handful of studies available investigating the transcriptome and metabolome of waterlogged trees. Main physiological responses of trees to waterlogging include the stimulation of fermentative pathways and an accelerated glycolytic flux. Many energy-consuming, anabolic processes are slowed down to overcome the energy crisis mediated by waterlogging. A crucial feature of waterlogging tolerance is the steady supply of glycolysis with carbohydrates, particularly in the roots; stress-sensitive trees fail to maintain sufficient carbohydrate availability resulting in the dieback of the stressed tissues. The present review summarizes physiological and molecular features of waterlogging tolerance of trees; the focus is on carbon metabolism in both, leaves and roots of trees. © 2014 John Wiley & Sons Ltd.

  16. Plasticity of the MAPK signaling network in response to mechanical stress.

    Directory of Open Access Journals (Sweden)

    Andrea M Pereira

    Full Text Available Cells display versatile responses to mechanical inputs and recent studies have identified the mitogen-activated protein kinase (MAPK cascades mediating the biological effects observed upon mechanical stimulation. Although, MAPK pathways can act insulated from each other, several mechanisms facilitate the crosstalk between the components of these cascades. Yet, the combinatorial complexity of potential molecular interactions between these elements have prevented the understanding of their concerted functions. To analyze the plasticity of the MAPK signaling network in response to mechanical stress we performed a non-saturating epistatic screen in resting and stretched conditions employing as readout a JNK responsive dJun-FRET biosensor. By knocking down MAPKs, and JNK pathway regulators, singly or in pairs in Drosophila S2R+ cells, we have uncovered unexpected regulatory links between JNK cascade kinases, Rho GTPases, MAPKs and the JNK phosphatase Puc. These relationships have been integrated in a system network model at equilibrium accounting for all experimentally validated interactions. This model allows predicting the global reaction of the network to its modulation in response to mechanical stress. It also highlights its context-dependent sensitivity.

  17. The effect of acid rain stress on membrane protective system of spinach and the conservation of rare earth elements

    International Nuclear Information System (INIS)

    Chongling, Y; Yetang, H.

    1998-01-01

    Full text: Based on pot experiments, the effect of acid rain stress on membrane protective system of spinach and the effect of rare earth elements has been studied. The results showed, stress of acid rain resulted in decrease of over all level of superoxide dismutase activity, catalase activity and increase of peroxidase (POD) activity. After being treated by rare earth elements, the overall level of superoxide dismutase activity and catalase activity were increased and the peak value of activity variation curve moved toward to the direction of higher acidity. POD activity increased slightly, comparing with the plants that hadn't been treated by rare earth elements under same acid rain condition; the three important enzymes of membrane protective system could be kept on a relatively stable level. It was clear that in relative lower acidity condition, rare earth elements can reduce the impact of acid rain on the membrane protective system

  18. Stress analysis of different prosthesis materials in implant-supported fixed dental prosthesis using 3D finite element method

    Directory of Open Access Journals (Sweden)

    Pedram Iranmanesh

    2014-01-01

    Full Text Available Introduction: In the present study, the finite element method (FEM was used to investigate the effects of prosthesis material types on stress distribution of the bone surrounding implants and to evaluate stress distribution in three-unit implant-supported fixed dental prosthesis (FDP. Materials and Methods: A three-dimensional (3D finite element FDP model of the maxillary second premolar to the second molar was designed. Three load conditions were statically applied on the functional cusps in horizontal (57.0 N, vertical (200.0 N, and oblique (400.0 N, θ = 120° directions. Four standard framework materials were evaluated: Polymethyl methacrylate (PMMA, base-metal, porcelain fused to metal, andporcelain. Results: The maximum of von Mises stress in the oblique direction was higher than the vertical and horizontal directions in all conditions. In the bone-crestal section, the maximum von Mises stress (53.78 MPa was observed in PMMA within oblique load. In FDPs, the maximum stress was generated at the connector region in all conditions. Conclusion: A noticeable difference was not observed in the bone stress distribution pattern with different prosthetic materials. Although, higher stress value could be seen in polymethyl methacrylate, all types of prosthesis yielded the same stress distribution pattern in FDP. More clinical studies are needed to evaluate the survival rate of these materials.

  19. Finite element analysis of stresses in fixed prosthesis and cement layer using a three-dimensional model

    Directory of Open Access Journals (Sweden)

    Arunachalam Sangeetha

    2012-01-01

    Full Text Available Context: To understand the effect of masticatory and parafunctional forces on the integrity of the prosthesis and the underlying cement layer. Aims: The purpose of this study was to evaluate the stress pattern in the cement layer and the fixed prosthesis, on subjecting a three-dimensional finite element model to simulated occlusal loading. Materials and Methods: Three-dimensional finite element model was simulated to replace missing mandibular first molar with second premolar and second molar as abutments. The model was subjected to a range of occlusal loads (20, 30, 40 MPa in two different directions - vertical and 30° to the vertical. The cements (zinc phosphate, polycarboxylate, glass ionomer, and composite were modeled with two cement thicknesses - 25 and 100 μm. Stresses were determined in certain reference points in fixed prosthesis and the cement layer. Statistical Analysis Used: The stress values are mathematic calculations without variance; hence, statistical analysis is not routinely required. Results: Stress levels were calculated according to Von Mises criteria for each node. Maximum stresses were recorded at the occlusal surface, axio-gingival corners, followed by axial wall. The stresses were greater with lateral load and with 100-μm cement thickness. Results revealed higher stresses for zinc phosphate cement, followed by composites. Conclusions: The thinner cement interfaces favor the success of the prosthesis. The stresses in the prosthesis suggest rounding of axio-gingival corners and a well-established finish line as important factors in maintaining the integrity of the prosthesis.

  20. Hybrid determination of mixed-mode stress intensity factors on discontinuous finite-width plate by finite element and photoelasticity

    International Nuclear Information System (INIS)

    Baek, Tae Hyun; Chen, Lei; Hong, Dong Pyo

    2011-01-01

    For isotropic material structure, the stress in the vicinity of crack tip is generally much higher than the stress far away from it. This phenomenon usually leads to stress concentration and fracture of structure. Previous researches and studies show that the stress intensity factor is one of most important parameter for crack growth and propagation. This paper provides a convenient numerical method, which is called hybrid photoelasticity method, to accurately determine the stress field distribution in the vicinity of crack tip and mixed-mode stress intensity factors. The model was simulated by finite element method and isochromatic data along straight lines far away from the crack tip were calculated. By using the isochromatic data obtained from finite element method and a conformal mapping procedure, stress components and photoelastic fringes in the hybrid region were calculated. To easily compare calculated photoelastic fringes with experiment results, the fringe patterns were reconstructed, doubled and sharpened. Good agreement shows that the method presented in this paper is reliable and convenient. This method can then directly be applied to obtain mixed mode stress intensity factors from the experimentally measured isochromatic data along the straight lines

  1. Stress-strain response of plastic waste mixed soil.

    Science.gov (United States)

    Babu, G L Sivakumar; Chouksey, Sandeep Kumar

    2011-03-01

    Recycling plastic waste from water bottles has become one of the major challenges worldwide. The present study provides an approach for the use plastic waste as reinforcement material in soil. The experimental results in the form of stress-strain-pore water pressure response are presented. Based on experimental test results, it is observed that the strength of soil is improved and compressibility reduced significantly with addition of a small percentage of plastic waste to the soil. The use of the improvement in strength and compressibility response due to inclusion of plastic waste can be advantageously used in bearing capacity improvement and settlement reduction in the design of shallow foundations. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Stress, and pathogen response gene expression in modeled microgravity

    Science.gov (United States)

    Sundaresan, Alamelu; Pellis, Neal R.

    2006-01-01

    Purpose: Immune suppression in microgravity has been well documented. With the advent of human exploration and long-term space travel, the immune system of the astronaut must be optimally maintained. It is important to investigate the expression patterns of cytokine genes, because they are directly related to immune response. Heat shock proteins (HSPs), also called stress proteins, are a group of proteins that are present in the cells of every life form. These proteins are induced when a cell responds to stressors such as heat, cold and oxygen deprivation. Microgravity is another stressor that may regulate HSPs. Heat shock proteins trigger immune response through activities that occur both inside the cell (intracellular) and outside the cell (extracellular). Knowledge about these two gene groups could lead to establishment of a blueprint of the immune response and adaptation-related genes in the microgravity environment. Methods: Human peripheral blood cells were cultured in 1g (T flask) and modeled microgravity (MMG, rotating-wall vessel) for 24 and 72 hours. Cell samples were collected and subjected to gene array analysis using the Affymetrix HG_U95 array. Data was collected and subjected to a two-way analysis of variance. The genes related to immune and stress responses were analyzed. Results and Conclusions: HSP70 was up-regulated by more than two fold in microgravity culture, while HSP90 was significantly down-regulated. HSP70 is not typically expressed in all kinds of cells, but it is expressed at high levels in stress conditions. HSP70 participates in translation, protein translocation, proteolysis and protein folding, suppressing aggregation and reactivating denatured proteins. Increased serum HSP70 levels correlate with a better outcome for heat-stroke or severe trauma patients. At the same time, elevated serum levels of HSP70 have been detected in patients with peripheral or renal vascular disease. HSP90 has been identified in the cytosol, nucleus and

  3. The Calcium Sensor CBL-CIPK Is Involved in Plant’s Response to Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    S. M. Nuruzzaman Manik

    2015-01-01

    Full Text Available Abiotic stress halts the physiological and developmental process of plant. During stress condition, CBL-CIPK complex is identified as a primary element of calcium sensor to perceive environmental signals. Recent studies established that this complex regulates downstream targets like ion channels and transporters in adverse stages conditions. Crosstalks between the CBL-CIPK complex and different abiotic stresses can extend our research area, which can improve and increase the production of genetically modified crops in response to abiotic stresses. How this complex links with environmental signals and creates adjustable circumstances under unfavorable conditions is now one of the burning issues. Diverse studies are already underway to delineate this signalling mechanism underlying different interactions. Therefore, up to date experimental results should be concisely published, thus paving the way for further research. The present review will concisely recapitulate the recent and ongoing research progress of positive ions (Mg2+, Na+, and K+, negative ions (NO3-, PO4-, and hormonal signalling, which are evolving from accumulating results of analyses of CBL and CIPK loss- or gain-of-function experiments in different species along with some progress and perspectives of our works. In a word, this review will give one step forward direction for more functional studies in this area.

  4. Transcriptomic Response of Chinese Yew (Taxus chinensis to Cold Stress

    Directory of Open Access Journals (Sweden)

    Xianghua Yu

    2017-04-01

    Full Text Available Taxus chinensis is a rare and endangered shrub, highly sensitive to temperature changes and widely known for its potential in cancer treatment. How gene expression of T. chinensis responds to low temperature is still unknown. To investigate cold response of the genus Taxus, we obtained the transcriptome profiles of T. chinensis grown under normal and low temperature (cold stress, 0°C conditions using Illumina Miseq sequencing. A transcriptome including 83,963 transcripts and 62,654 genes were assembled from 4.16 Gb of reads data. Comparative transcriptomic analysis identified 2,025 differently expressed (DE isoforms at p < 0.05, of which 1,437 were up-regulated by cold stress and 588 were down-regulated. Annotation of DE isoforms indicated that transcription factors (TFs in the MAPK signaling pathway and TF families of NAC, WRKY, bZIP, MYB, and ERF were transcriptionally activated. This might have been caused by the accumulation of secondary messengers, such as reactive oxygen species (ROS and Ca2+. While accumulation of ROS will have caused damages to cells, our results indicated that to adapt to low temperatures T. chinensis employed a series of mechanisms to minimize these damages. The mechanisms included: (i cold-enhanced expression of ROS deoxidant systems, such as peroxidase and phospholipid hydroperoxide glutathione peroxidase, to remove ROS. This was further confirmed by analyses showing increased activity of POD, SOD, and CAT under cold stress. (ii Activation of starch and sucrose metabolism, thiamine metabolism, and purine metabolism by cold-stress to produce metabolites which either protect cell organelles or lower the ROS content in cells. These processes are regulated by ROS signaling, as the “feedback” toward ROS accumulation.

  5. Differential response of hippocampal subregions to stress and learning.

    Directory of Open Access Journals (Sweden)

    Darby F Hawley

    Full Text Available The hippocampus has two functionally distinct subregions-the dorsal portion, primarily associated with spatial navigation, and the ventral portion, primarily associated with anxiety. In a prior study of chronic unpredictable stress (CUS in rodents, we found that it selectively enhanced cellular plasticity in the dorsal hippocampal subregion while negatively impacting it in the ventral. In the present study, we determined whether this adaptive plasticity in the dorsal subregion would confer CUS rats an advantage in a spatial task-the radial arm water maze (RAWM. RAWM exposure is both stressful and requires spatial navigation, and therefore places demands simultaneously upon both hippocampal subregions. Therefore, we used Western blotting to investigate differential expression of plasticity-associated proteins (brain derived neurotrophic factor [BDNF], proBDNF and postsynaptic density-95 [PSD-95] in the dorsal and ventral subregions following RAWM exposure. Lastly, we used unbiased stereology to compare the effects of CUS on proliferation, survival and neuronal differentiation of cells in the dorsal and ventral hippocampal subregions. We found that CUS and exposure to the RAWM both increased corticosterone, indicating that both are stressful; nevertheless, CUS animals had significantly better long-term spatial memory. We also observed a subregion-specific pattern of protein expression following RAWM, with proBDNF increased in the dorsal and decreased in the ventral subregion, while PSD-95 was selectively upregulated in the ventral. Finally, consistent with our previous study, we found that CUS most negatively affected neurogenesis in the ventral (compared to the dorsal subregion. Taken together, our data support a dual role for the hippocampus in stressful experiences, with the more resilient dorsal portion undergoing adaptive plasticity (perhaps to facilitate escape from or neutralization of the stressor, and the ventral portion involved in

  6. Endoplasmic reticulum stress-responsive transcription factor ATF6α directs recruitment of the Mediator of RNA polymerase II transcription and multiple histone acetyltransferase complexes.

    Science.gov (United States)

    Sela, Dotan; Chen, Lu; Martin-Brown, Skylar; Washburn, Michael P; Florens, Laurence; Conaway, Joan Weliky; Conaway, Ronald C

    2012-06-29

    The basic leucine zipper transcription factor ATF6α functions as a master regulator of endoplasmic reticulum (ER) stress response genes. Previous studies have established that, in response to ER stress, ATF6α translocates to the nucleus and activates transcription of ER stress response genes upon binding sequence specifically to ER stress response enhancer elements in their promoters. In this study, we investigate the biochemical mechanism by which ATF6α activates transcription. By exploiting a combination of biochemical and multidimensional protein identification technology-based mass spectrometry approaches, we have obtained evidence that ATF6α functions at least in part by recruiting to the ER stress response enhancer elements of ER stress response genes a collection of RNA polymerase II coregulatory complexes, including the Mediator and multiple histone acetyltransferase complexes, among which are the Spt-Ada-Gcn5 acetyltransferase (SAGA) and Ada-Two-A-containing (ATAC) complexes. Our findings shed new light on the mechanism of action of ATF6α, and they outline a straightforward strategy for applying multidimensional protein identification technology mass spectrometry to determine which RNA polymerase II transcription factors and coregulators are recruited to promoters and other regulatory elements to control transcription.

  7. Correlation of EPO resistance with oxidative stress response and inflammatory response in patients with maintenance hemodialysis

    Directory of Open Access Journals (Sweden)

    Xiao-Hui Yan

    2017-08-01

    Full Text Available Objective: To study the correlation of erythropoietin (EPO resistance with oxidative stress response and inflammatory response in patients with maintenance hemodialysis. Methods: A total of 184 patients with end-stage renal disease who received maintenance hemodialysis in Shaanxi Provincial People’s Hospital between March 2015 and October 2016 were selected as dialysis group, 102 volunteers who received physical examination in Shaanxi Provincial People’s Hospital during the same period were selected as control group, the EPO resistance index was assessed, the median was calculated, and serum oxidative stress and inflammatory response indexes were detected. Results: Serum T-AOC, SOD and CAT levels in dialysis group were significantly lower than those in control group while MDA, AOPP, IFN-γ, HMGB-1, ICAM-1, IL-4 and IL-10 levels were significantly higher than those in control group; serum T-AOC, SOD and CAT levels in patients with high ERI were significantly lower than those in patients with low ERI while MDA, AOPP, IFN-γ, HMGB-1, ICAM-1, IL-4 and IL-10 levels were significantly higher than those in patients with low ERI. Conclusion: The degree of EPO resistance in patients with maintenance hemodialysis is closely related to the activation of oxidative stress response and inflammatory response.

  8. Integrated Stress