WorldWideScience

Sample records for stress relaxation time

  1. Time, stress, and temperature-dependent deformation in nanostructured copper: Stress relaxation tests and simulations

    International Nuclear Information System (INIS)

    Yang, Xu-Sheng; Wang, Yun-Jiang; Wang, Guo-Yong; Zhai, Hui-Ru; Dai, L.H.; Zhang, Tong-Yi

    2016-01-01

    In the present work, stress relaxation tests, high-resolution transmission electron microscopy (HRTEM), and molecular dynamics (MD) simulations were conducted on coarse-grained (cg), nanograined (ng), and nanotwinned (nt) copper at temperatures of 22 °C (RT), 30 °C, 40 °C, 50 °C, and 75 °C. The comprehensive investigations provide sufficient information for the building-up of a formula to describe the time, stress, and temperature-dependent deformation and clarify the relationship among the strain rate sensitivity parameter, stress exponent, and activation volume. The typically experimental curves of logarithmic plastic strain rate versus stress exhibited a three staged relaxation process from a linear high stress relaxation region to a subsequent nonlinear stress relaxation region and finally to a linear low stress relaxation region, which only showed-up at the test temperatures higher than 22 °C, 22 °C, and 30 °C, respectively, in the tested cg-, ng-, and nt-Cu specimens. The values of stress exponent, stress-independent activation energy, and activation volume were determined from the experimental data in the two linear regions. The determined activation parameters, HRTEM images, and MD simulations consistently suggest that dislocation-mediated plastic deformation is predominant in all tested cg-, ng-, and nt-Cu specimens in the initial linear high stress relaxation region at the five relaxation temperatures, whereas in the linear low stress relaxation region, the grain boundary (GB) diffusion-associated deformation is dominant in the ng- and cg-Cu specimens, while twin boundary (TB) migration, i.e., twinning and detwinning with parallel partial dislocations, governs the time, stress, and temperature-dependent deformation in the nt-Cu specimens.

  2. Magneto-dependent stress relaxation of magnetorheological gels

    KAUST Repository

    Xu, Yangguang; Liu, Taixiang; Liao, G J; Lubineau, Gilles

    2017-01-01

    The stress relaxation behaviors of magnetorheological (MR) gels under stepwise shear loading are systematically investigated. The particle-enhanced effect, the magneto-induced effect, and the temperature-enhanced effect on the stress relaxation of MR gels are discussed. For further analysis of the magneto-induced stress relaxation mechanism in MR gels, a phenomenological model is established to describe the stress relaxation behavior of the matrix and the magnetic particle chains. All characteristic parameters introduced in the model, i.e. relaxation time, instantaneous modulus, and stable modulus, have well-defined physical meanings and are fitted based on the experimental results. The influence of each parameter on the macroscopic response is discussed and it is found that the relaxation stress induced by the magneto-mechanical coupling effect plays an important role in the stress relaxation process of MR gels.

  3. Magneto-dependent stress relaxation of magnetorheological gels

    KAUST Repository

    Xu, Yangguang

    2017-09-01

    The stress relaxation behaviors of magnetorheological (MR) gels under stepwise shear loading are systematically investigated. The particle-enhanced effect, the magneto-induced effect, and the temperature-enhanced effect on the stress relaxation of MR gels are discussed. For further analysis of the magneto-induced stress relaxation mechanism in MR gels, a phenomenological model is established to describe the stress relaxation behavior of the matrix and the magnetic particle chains. All characteristic parameters introduced in the model, i.e. relaxation time, instantaneous modulus, and stable modulus, have well-defined physical meanings and are fitted based on the experimental results. The influence of each parameter on the macroscopic response is discussed and it is found that the relaxation stress induced by the magneto-mechanical coupling effect plays an important role in the stress relaxation process of MR gels.

  4. Stress relaxation in viscous soft spheres.

    Science.gov (United States)

    Boschan, Julia; Vasudevan, Siddarth A; Boukany, Pouyan E; Somfai, Ellák; Tighe, Brian P

    2017-10-04

    We report the results of molecular dynamics simulations of stress relaxation tests in athermal viscous soft sphere packings close to their unjamming transition. By systematically and simultaneously varying both the amplitude of the applied strain step and the pressure of the initial condition, we access both linear and nonlinear response regimes and control the distance to jamming. Stress relaxation in viscoelastic solids is characterized by a relaxation time τ* that separates short time scales, where viscous loss is substantial, from long time scales, where elastic storage dominates and the response is essentially quasistatic. We identify two distinct plateaus in the strain dependence of the relaxation time, one each in the linear and nonlinear regimes. The height of both plateaus scales as an inverse power law with the distance to jamming. By probing the time evolution of particle velocities during relaxation, we further identify a correlation between mechanical relaxation in the bulk and the degree of non-affinity in the particle velocities on the micro scale.

  5. Sleep, Stress & Relaxation: Rejuvenate Body & Mind

    Science.gov (United States)

    Sleep, Stress & Relaxation: Rejuvenate Body & Mind; Relieve Stress; best ways to relieve stress; best way to relieve stress; different ways to relieve stress; does smoking relieve stress; does tobacco relieve stress; how can I relieve stress; how can you relieve stress; how do I relieve stress; reduce stress; does smoking reduce stress; how can I reduce stress; how to reduce stress; reduce stress; reduce stress levels; reducing stress; smoking reduce stress; smoking reduces stress; stress reducing techniques; techniques to reduce stress; stress relief; best stress relief; natural stress relief; need stress relief; relief for stress; relief from stress; relief of stress; smoking and stress relief; smoking for stress relief; smoking stress relief; deal with stress; dealing with stress; dealing with anger; dealing with stress; different ways of dealing with stress; help dealing with stress; how to deal with anger; how to deal with stress; how to deal with stress when quitting smoking; stress management; free stress management; how can you manage stress; how do you manage stress; how to manage stress; manage stress; management of stress; management stress; managing stress; strategies for managing stress; coping with stress; cope with stress; copeing with stress; coping and stress; coping skills for stress; coping strategies for stress; coping strategies with stress; coping strategy for stress; coping with stress; coping with stress and anxiety; emotional health; emotional health; emotional health article; emotional health articles; deep relaxation; deep breathing relaxation techniques; deep muscle relaxation; deep relaxation; deep relaxation meditation; deep relaxation technique; deep relaxation techniques; meditation exercises; mindful exercises; mindful meditation exercises; online relaxation exercises; relaxation breathing exercises; relaxation exercise; relaxation exercises; stress relaxation; methods of relaxation for stress; relax stress; relax techniques stress

  6. Stress relaxation characteristics of type 304 stainless steel

    International Nuclear Information System (INIS)

    Manjoine, M.J.

    1975-01-01

    The stress relaxation of type 304 stainless steel below 900 0 F (482 0 C) is practically time independent after 100 h and has a maximum of about 18 per cent. The per cent relaxation decreases with increasing degree of cold work and with decreasing stress. Above 900 0 F the per cent relaxation increases with time, temperature, and cold work. The initial stress can also be increased for cold work materials so that the remaining stress can be maintained at a higher value even up to 1200 0 F (649 0 C). Time-temperature parameters are practical to correlate and extrapolate the data in the higher temperature range. (author)

  7. Relationship between Structural and Stress Relaxation in a Block-Copolymer Melt

    International Nuclear Information System (INIS)

    Patel, Amish J.; Narayanan, Suresh; Sandy, Alec; Mochrie, Simon G. J.; Garetz, Bruce A.; Watanabe, Hiroshi; Balsara, Nitash P.

    2006-01-01

    The relationship between structural relaxation on molecular length scales and macroscopic stress relaxation was explored in a disordered block-copolymer melt. Experiments show that the structural relaxation time, measured by x-ray photon correlation spectroscopy is larger than the terminal stress relaxation time, measured by rheology, by factors as large as 100. We demonstrate that the structural relaxation data are dominated by the diffusion of intact micelles while the stress relaxation data are dominated by contributions due to disordered concentration fluctuations

  8. Model and prediction of stress relaxation of polyurethane fiber

    Science.gov (United States)

    You, Gexin; Wang, Chunyan; Mei, Shuqin; Yang, Bo; Zhou, Xiuwen

    2018-03-01

    In this study, the effect of small strain (less than 10%) on hydrogen bond (H-bond) and crystallinity of dry-spun polyurethane fiber was investigated with fourier transform infrared spectroscopy and x-ray diffractometer, respectively. The results showed that the H-bond of hard segments hardly broke and its degree of crystallinity scarcely varied below strain of 10%. The fiber stress relaxation behavior at 25 °C under small strain was researched using dynamic mechanical analyzer. The stress relaxation modulus constitutive equation was obtained by transforming the non-linear relationship between stress and time into the linear relationship between stress and strain. The stress relaxation modulus master curve at 25 °C was established in terms of short-term stress relaxation tests at elevated temperatures (35 °C, 45 °C, 65 °C and 75 °C) according to time-temperature superposition principle (TTS) to predict long-term behavior within 353 year.

  9. Relaxation techniques for stress

    Science.gov (United States)

    ... raise your heart rate. This is called the stress response. Relaxation techniques can help your body relax and lower your blood pressure ... also many other types of breathing techniques you can learn. In many cases, you do not need much ... including those that cause stress. Meditation has been practiced for thousands of years, ...

  10. Stress relaxation in quasi-two-dimensional self-assembled nanoparticle monolayers

    Science.gov (United States)

    Boucheron, Leandra S.; Stanley, Jacob T.; Dai, Yeling; You, Siheng Sean; Parzyck, Christopher T.; Narayanan, Suresh; Sandy, Alec R.; Jiang, Zhang; Meron, Mati; Lin, Binhua; Shpyrko, Oleg G.

    2018-05-01

    We experimentally probed the stress relaxation of a monolayer of iron oxide nanoparticles at the water-air interface. Upon drop-casting onto a water surface, the nanoparticles self-assembled into islands of two-dimensional hexagonally close packed crystalline domains surrounded by large voids. When compressed laterally, the voids gradually disappeared as the surface pressure increased. After the compression was stopped, the surface pressure (as measured by a Wilhelmy plate) evolved as a function of the film aging time with three distinct timescales. These aging dynamics were intrinsic to the stressed state built up during the non-equilibrium compression of the film. Utilizing x-ray photon correlation spectroscopy, we measured the characteristic relaxation time (τ ) of in-plane nanoparticle motion as a function of the aging time through both second-order and two-time autocorrelation analysis. Compressed and stretched exponential fitting of the intermediate scattering function yielded exponents (β ) indicating different relaxation mechanisms of the films under different compression stresses. For a monolayer compressed to a lower surface pressure (between 20 mN/m and 30 mN/m), the relaxation time (τ ) decreased continuously as a function of the aging time, as did the fitted exponent, which transitioned from being compressed (>1 ) to stretched (stress release through crystalline domain reorganization. However, for a monolayer compressed to a higher surface pressure (around 40 mN/m), the relaxation time increased continuously and the compressed exponent varied very little from a value of 1.6, suggesting that the system may have been highly stressed and jammed. Despite the interesting stress relaxation signatures seen in these samples, the structural ordering of the monolayer remained the same over the sample lifetime, as revealed by grazing incidence x-ray diffraction.

  11. Influence of pudendal nerve blockade on stress relaxation in the female urethra

    DEFF Research Database (Denmark)

    Thind, P; Bagi, P; Mieszczak, C

    1996-01-01

    The urethral pressure decay following a sudden and sustained dilatation corresponds to stress relaxation. Urethral stress relaxation can be described by the equation Pt = Pequ + P alpha e-t/tau alpha + P beta e-t/tau beta, where Pt is the pressure at time t, Pequ is the equilibrium pressure after...... dilatation, P alpha and P beta are pressure decay, and tau alpha and tau beta are time constants. The time constants have previously proved independent of the way the dilatation is performed. The urethral stress relaxation obtained in 10 healthy women before and after pudendal nerve blockade was analysed...... by the mathematical model and the pressure parameters and time constants determined. The fast time constant, tau beta, was reduced by the nerve blockade, whereas tau alpha was unaffected, however, both P alpha and P beta were reduced. No single stress relaxation parameter can therefore be related to the muscle...

  12. Stress relaxation of bi-disperse polystyrene melts

    DEFF Research Database (Denmark)

    Hengeller, Ludovica; Huang, Qian; Dorokhin, Andriy

    2016-01-01

    We present start-up of uniaxial extension followed by stress relaxation experiments of a bi-disperse 50 % by weight blend of 95k and 545k molecular weight polystyrene. We also show, for comparison, stress relaxation measurements of the polystyrene melts with molecular weight 95k and 545k, which...... are the components of the bi-disperse melt. The measurements show three separated relaxation regimes: a fast regime, a transition regime, and a slow regime. In the fast regime, the orientation of the long chains is frozen and the stress relaxation is due to stretch relaxation of the short chains primarily....... Conversely in the slow regime, the long chains have retracted and undergo relaxation of orientation in fully relaxed short chains....

  13. Modelling of loading, stress relaxation and stress recovery in a shape memory polymer.

    Science.gov (United States)

    Sweeney, J; Bonner, M; Ward, I M

    2014-09-01

    A multi-element constitutive model for a lactide-based shape memory polymer has been developed that represents loading to large tensile deformations, stress relaxation and stress recovery at 60, 65 and 70°C. The model consists of parallel Maxwell arms each comprising neo-Hookean and Eyring elements. Guiu-Pratt analysis of the stress relaxation curves yields Eyring parameters. When these parameters are used to define the Eyring process in a single Maxwell arm, the resulting model yields at too low a stress, but gives good predictions for longer times. Stress dip tests show a very stiff response on unloading by a small strain decrement. This would create an unrealistically high stress on loading to large strain if it were modelled by an elastic element. Instead it is modelled by an Eyring process operating via a flow rule that introduces strain hardening after yield. When this process is incorporated into a second parallel Maxwell arm, there results a model that fully represents both stress relaxation and stress dip tests at 60°C. At higher temperatures a third arm is required for valid predictions. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  14. Effect of heat treatment on bend stress relaxation of pure tungsten

    International Nuclear Information System (INIS)

    Sasaki, Kenta; Nogami, Shuhei; Fukuda, Makoto; Katakai, Yasuyuki; Hasegawa, Akira

    2013-01-01

    Highlights: • Bend stress relaxation test was performed on the pure tungsten after heat treatment for stress relief. • The BSR ratio of the heat treated specimen was larger than that of the as-received specimen at this temperature region. • Small reduction in the BSR ratio was observed at the temperatures of 500–800 °C. • The BSR ratio of the heat treated specimen decreased significantly at the temperatures of 900–1000 °C. • The BSR ratio decreased significantly in a short time below 0.1 h, and then decreased slowly. -- Abstract: Bend stress relaxation (BSR) tests at temperatures of 500, 600, 800, 900 and 1000 °C for 0.1, 0.5 and 1 h in vacuum were performed on the pure tungsten after heat treatment for stress relief at 900 °C for 1 h. The degree of stress relaxation increased with test temperature. The BSR ratio of the heat treated specimen was larger than that of the as-received specimen at this temperature region. Small reduction in the BSR ratio was observed at the temperatures of 500, 600 and 800 °C. The BSR ratio of the heat treated specimen decreased significantly at the temperatures of 900 and 1000 °C and it was close to that of the as-received specimen. The BSR ratio of the heat treated specimen and the as-received specimen exhibited similar trend of time-evolution. The stress was exponentially relaxed with increasing test time. The BSR ratio decreased significantly in a short time below 0.1 h, and then decreased slowly. Higher activation energy of stress relaxation evaluated by cross-cut method was obtained for the higher temperature

  15. Chemical stress relaxation of ethylene-propylene copolymer rubber by heat and radiation

    International Nuclear Information System (INIS)

    Ito, M.; Okada, S.; Kuriyama, I.

    1980-01-01

    An attempt was made to shorten the evaluation time for the deterioration under various conditions caused by chemical reactions by extending the time-temperature superposition principle for the stress relaxation of rubber. In the case of deterioration by radiation instead of by heat, a time-dose rate reduction is proposed and the master curves obtained for chemical-stress relaxation of rubber. A new method which contains a numerical analysis of stress decay curves is proposed to obtain the rate of crosslinking and scission under irradiation for already crosslinked samples. (author)

  16. Low-temperature strain ageing in In-Pb alloys under stress relaxation conditions

    International Nuclear Information System (INIS)

    Fomenko, L.S.

    2000-01-01

    The dynamic strain ageing (DSA) of In-Pb (6 and 8 at. % Pb) substitutional solid solution single crystals is studied at temperatures 77-205 K under stress relaxation conditions. The dependences of the stress increment after relaxation connected with DSA on stress relaxation time, stress relaxation rate at the end of the relaxation, temperature, alloy content, flow stress, and strain are determined. It is shown that the DSA kinetic is described by a Harper-type equation with the exponent equal to 1/3 and a low activation energy value (0.3-0.34 eV). This provides a low temperature of the DSA onset (∼ 0.17 T m , where T m is the melt temperature) and is evidence of pipe-mode diffusion. It is supposed that the obstacles to dislocation motion in the crystals studied consist of the groups of solutes, and the strength of the obstacles increases during the DSA due to the pipe diffusion of the solute atoms along the dislocations

  17. Stress relaxation at a gelatin hydrogel-glass interface in direct shear sliding

    Science.gov (United States)

    Gupta, Vinit; Singh, Arun K.

    2018-01-01

    In this paper, we study experimentally the stress relaxation behavior of soft solids such as gelatin hydrogels on a smooth glass surface in direct shear sliding. It is observed experimentally that irrespective of pulling velocity, the sliding block relaxes to the same level of nonzero residual stress. However, residual stress increases with increasing gelatin concentration in the hydrogels. We have also validated a friction model for strong bond formation during steady relaxation in light of the experimental observations. Our theoretical analysis establishes that population of dangling chains at the sliding interface significantly affects the relaxation process. As a result, residual stress increases with increasing gelatin concentration or decreasing mesh size of the three-dimensional structures in the hydrogels. It is also found that the transition time, at which a weak bond converts to strong bond, increases with increasing mesh size of the hydrogels. Moreover, relaxation time constant of a strong bond decreases with increasing mesh size. However, activation length of a strong bond increases with mesh size. Finally, this study signifies the role of residual strength in frictional shear sliding and it is believed that these results should be useful to understand the role of residual stress in stick-slip instability.

  18. Mozart versus new age music: relaxation states, stress, and ABC relaxation theory.

    Science.gov (United States)

    Smith, Jonathan C; Joyce, Carol A

    2004-01-01

    Smith's (2001) Attentional Behavioral Cognitive (ABC) relaxation theory proposes that all approaches to relaxation (including music) have the potential for evoking one or more of 15 factor-analytically derived relaxation states, or "R-States" (Sleepiness, Disengagement, Rested / Refreshed, Energized, Physical Relaxation, At Ease/Peace, Joy, Mental Quiet, Childlike Innocence, Thankfulness and Love, Mystery, Awe and Wonder, Prayerfulness, Timeless/Boundless/Infinite, and Aware). The present study investigated R-States and stress symptom-patterns associated with listening to Mozart versus New Age music. Students (N = 63) were divided into three relaxation groups based on previously determined preferences. Fourteen listened to a 28-minute tape recording of Mozart's Eine Kleine Nachtmusik and 14 listened to a 28-minute tape of Steven Halpern's New Age Serenity Suite. Others (n = 35) did not want music and instead chose a set of popular recreational magazines. Participants engaged in their relaxation activity at home for three consecutive days for 28 minutes a session. Before and after each session, each person completed the Smith Relaxation States Inventory (Smith, 2001), a comprehensive questionnaire tapping 15 R-States as well as the stress states of somatic stress, worry, and negative emotion. Results revealed no differences at Session 1. At Session 2, those who listened to Mozart reported higher levels of At Ease/Peace and lower levels of Negative Emotion. Pronounced differences emerged at Session 3. Mozart listeners uniquely reported substantially higher levels of Mental Quiet, Awe and Wonder, and Mystery. Mozart listeners reported higher levels, and New Age listeners slightly elevated levels, of At Ease/Peace and Rested/Refreshed. Both Mozart and New Age listeners reported higher levels of Thankfulness and Love. In summary, those who listened to Mozart's Eine Kleine Nachtmusik reported more psychological relaxation and less stress than either those who listened to

  19. Relaxation of stresses during reduction of anode supported SOFCs

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Chatzichristodoulou, Christodoulos; Jørgensen, Peter Stanley

    2016-01-01

    To assess the reliability of solid oxide fuel cell (SOFC) stacks during operation, the stress field in the stack must be known. During operation the stress field will depend on time as creep processes relax stresses. This work reports further details on a newly discovered creep phenomenon......, accelerated creep, taking place during the reduction of a Ni-YSZ anode. This relaxes stresses at a much higher rate (~×104) than creep during operation. Thus, the phenomenon of accelerated creep during reduction has to be considered both in the production of stacks and in the analysis of the stress field...... of reduction should decrease significantly over minutes. In this work these internal stresses are measured in-situ before and after the reduction by use of X-ray diffraction. This is done by determining the elastic micro-strains (correlating to the stresses), which are assessed from the widening of the Bragg...

  20. Time-Dependent Behaviors of Granite: Loading-Rate Dependence, Creep, and Relaxation

    Science.gov (United States)

    Hashiba, K.; Fukui, K.

    2016-07-01

    To assess the long-term stability of underground structures, it is important to understand the time-dependent behaviors of rocks, such as their loading-rate dependence, creep, and relaxation. However, there have been fewer studies on crystalline rocks than on tuff, mudstone, and rock salt, because the high strength of crystalline rocks makes the detection of their time-dependent behaviors much more difficult. Moreover, studies on the relaxation, temporal change of stress and strain (TCSS) conditions, and relations between various time-dependent behaviors are scarce for not only granites, but also other rocks. In this study, previous reports on the time-dependent behaviors of granites were reviewed and various laboratory tests were conducted using Toki granite. These tests included an alternating-loading-rate test, creep test, relaxation test, and TCSS test. The results showed that the degree of time dependence of Toki granite is similar to other granites, and that the TCSS resembles the stress-relaxation curve and creep-strain curve. A viscoelastic constitutive model, proposed in a previous study, was modified to investigate the relations between the time-dependent behaviors in the pre- and post-peak regions. The modified model reproduced the stress-strain curve, creep, relaxation, and the results of the TCSS test. Based on a comparison of the results of the laboratory tests and numerical simulations, close relations between the time-dependent behaviors were revealed quantitatively.

  1. Irradiation-induced stress relaxation of Eurofer97 steel

    International Nuclear Information System (INIS)

    Luzginova, N.V.; Jong, M.; Rensman, J.W.; Hegeman, J.B.J.; Laan, J.G. van der

    2011-01-01

    The irradiation-induced stress relaxation behavior of Eurofer97 at 300 deg. C up to 3.4 dpa and under pre-stress loads typical for the ITER applications is investigated. The bolt specimens are pre-loaded from 30% to 90% of the yield strength. To verify the results obtained with the pre-stressed bolts, bent strips were investigated as well. The strips are bent into a pre-defined radius in order to achieve similar pre-stress levels. The irradiation-induced stress relaxation is found to be independent of the pre-stress level. 10-12% of the stress relaxation in Eurofer97 may be reached after a dose of 0.1 dpa, and after an irradiation dose of 2.7 dpa 42-47% of the original pre-stress is retained.

  2. Irradiation creep, stress relaxation and a mechanical equation of state

    International Nuclear Information System (INIS)

    Foster, J.P.

    1976-01-01

    Irradiation creep and stress relaxation data are available from the United Kingdom for 20 percent CW M316, 20 percent CW FV 548 and FHT PE16 using pure torsion in the absence of swelling at 300 0 C. Irradiation creep models were used to calculate the relaxation and permanent deflection of the stress relaxation tests. Two relationships between irradiation creep and stress relaxation were assessed by comparing the measured and calculated stress relaxation and permanent deflection. The results show that for M316 and FV548, the stress relaxation and deflection may be calculated using irradiation creep models when the stress rate term arising from the irradiation creep model is set equal to zero. In the case of PE16, the inability to calculate the stress relaxation and permanent deflection from the irradiation creep data was attributed to differences in creep behavior arising from lot-to-lot variations in alloying elements and impurity content. A modification of the FV548 and PE16 irradiation creep coefficients was necessary in order to calculate the stress relaxation and deflection. The modifications in FV548 and PE16 irradiation creep properties reduces the large variation in the transient or incubation parameter predicted by irradiation creep tests for M316, FV548 and PE16

  3. Interstitial relaxations due to hydrostatic stress in niobium--oxygen alloys

    International Nuclear Information System (INIS)

    Tewari, S.N.

    1974-01-01

    Experimental investigations of the anelastic relaxation induced by hydrostatic stress in the range from ambient to 81 ksi were made for niobium--oxygen alloys. The anelastic responses, both for the pressurization and the pressure release experiments, were followed by measuring the relative length change between the oxygenated niobium sample and a pure niobium frame with a precision of about 2 A. The relaxation spectrum observed was shown to be made up of three distinct relaxations with unique relaxation times and strengths. The pressure dependence of the relaxation times gave the apparent activation volume for these relaxations of the order of 4 cm 3 /mole. The relaxations were observed to have relaxation strengths of the order of 10 -4 which were found to be independent of pressure up to 81 ksi. The relaxation times for these relaxations were found to occur in the same general temperature range as those for the Snoek relaxations of oxygen clusters in niobium. The temperature dependence of the relaxation times, however, gave activation energies of about 11 to 15 kcal/mole, as compared with roughly 27 to 29 kcal/mole for the Snoek relaxation of oxygen clusters in niobium. Several possible models for these relaxations were developed, however, none could predict the observed temperature dependence. The best interpretation of the data is that due to some anomalous competing relaxation the actual temperature dependence of these relaxations could not be observed. A completely self-consistent analysis is found which is based upon this assumption. (U.S.)

  4. Dynamic stress relaxation due to cyclic variation of strain at elevated temperature

    International Nuclear Information System (INIS)

    Suzuki, F.

    1975-01-01

    The relaxation of stress which occurs when low amplitude alternating strains are superimposed on constant mean total strains is studied in this paper. Experiments were carried out on a 0.16 per cent carbon steel and an AISI 347 stainless steel at 450 0 C and 650 0 C respectively in which the decrease of axial mean stress was measured as a function of time. When even a low amplitude alternating strain was applied, the rate of stress relaxation was observed to increase. Analytical predictions based on creep and static relaxation data show fairly good agreement with experiments in the period corresponding to transient creep. (author)

  5. 5 Things To Know About Relaxation Techniques for Stress

    Science.gov (United States)

    ... Techniques for Stress Share: When you’re under stress, your body reacts by releasing hormones that produce the “fight- ... relaxation techniques could counteract the negative effects of stress. ... the body's natural relaxation response, characterized by slower breathing, lower ...

  6. Blue lighting accelerates post-stress relaxation: Results of a preliminary study.

    Science.gov (United States)

    Minguillon, Jesus; Lopez-Gordo, Miguel Angel; Renedo-Criado, Diego A; Sanchez-Carrion, Maria Jose; Pelayo, Francisco

    2017-01-01

    Several authors have studied the influence of light on both human physiology and emotions. Blue light has been proved to reduce sleepiness by suppression of melatonin secretion and it is also present in many emotion-related studies. Most of these have a common lack of objective methodology since results and conclusions are based on subjective perception of emotions. The aim of this work was the objective assessment of the effect of blue lighting in post-stress relaxation, in comparison with white lighting, by means of bio-signals and standardized procedures. We conducted a study in which twelve healthy volunteers were stressed and then performed a relaxation session within a chromotherapy room with blue (test group) or white (control group) lighting. We conclude that the blue lighting accelerates the relaxation process after stress in comparison with conventional white lighting. The relaxation time decreased by approximately three-fold (1.1 vs. 3.5 minutes). We also observed a convergence time (3.5-5 minutes) after which the advantage of blue lighting disappeared. This supports the relationship between color of light and stress, and the observations reported in previous works. These findings could be useful in clinical and educational environments, as well as in daily-life context and emerging technologies such as neuromarketing. However, our study must be extended to draw reliable conclusions and solid scientific evidence.

  7. Blue lighting accelerates post-stress relaxation: Results of a preliminary study.

    Directory of Open Access Journals (Sweden)

    Jesus Minguillon

    Full Text Available Several authors have studied the influence of light on both human physiology and emotions. Blue light has been proved to reduce sleepiness by suppression of melatonin secretion and it is also present in many emotion-related studies. Most of these have a common lack of objective methodology since results and conclusions are based on subjective perception of emotions. The aim of this work was the objective assessment of the effect of blue lighting in post-stress relaxation, in comparison with white lighting, by means of bio-signals and standardized procedures. We conducted a study in which twelve healthy volunteers were stressed and then performed a relaxation session within a chromotherapy room with blue (test group or white (control group lighting. We conclude that the blue lighting accelerates the relaxation process after stress in comparison with conventional white lighting. The relaxation time decreased by approximately three-fold (1.1 vs. 3.5 minutes. We also observed a convergence time (3.5-5 minutes after which the advantage of blue lighting disappeared. This supports the relationship between color of light and stress, and the observations reported in previous works. These findings could be useful in clinical and educational environments, as well as in daily-life context and emerging technologies such as neuromarketing. However, our study must be extended to draw reliable conclusions and solid scientific evidence.

  8. Complete relaxation of residual stresses during reduction of solid oxide fuel cells

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Chatzichristodoulou, Christodoulos; Hendriksen, Peter Vang

    2015-01-01

    reduce significantly over minutes. In this work the stresses are measured in-situ before and after the reduction by use of XRD. The phenomenon of accelerated creep has to be considered both in the production of stacks and in the analysis of the stress field in a stack based on anode supported SOFCs.......To asses the reliability of solid oxide fuel cell (SOFC) stacks during operation, the stress field in the stack must be known. During operation the stress field will depend on time as creep processes relax stresses. This work reports further details on a newly discovered creep phenomenon......, accelerated creep, taking place during the reduction of the anode. This relaxes stresses at a much higher rate (~×104) than creep during operation. The phenomenon has previously been studied by simultaneous loading and reduction. With the recorded high creep rates, the stresses at the time of reduction should...

  9. Microstructural stress relaxation mechanics in functionally different tendons.

    Science.gov (United States)

    Screen, H R C; Toorani, S; Shelton, J C

    2013-01-01

    Tendons experience widely varying loading conditions in vivo. They may be categorised by their function as either positional tendons, which are used for intricate movements and experience lower stress, or as energy storage tendons which act as highly stressed springs during locomotion. Structural and compositional differences between tendons are thought to enable an optimisation of their properties to suit their functional environment. However, little is known about structure-function relationships in tendon. This study adopts porcine flexor and extensor tendon fascicles as examples of high stress and low stress tendons, comparing their mechanical behaviour at the micro-level in order to understand their stress relaxation response. Stress-relaxation was shown to occur predominantly through sliding between collagen fibres. However, in the more highly stressed flexor tendon fascicles, more fibre reorganisation was evident when the tissue was exposed to low strains. By contrast, the low load extensor tendon fascicles appears to have less capacity for fibre reorganisation or shearing than the energy storage tendon, relying more heavily on fibril level relaxation. The extensor fascicles were also unable to sustain loads without rapid and complete stress relaxation. These findings highlight the need to optimise tendon repair solutions for specific tendons, and match tendon properties when using grafts in tendon repairs. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Study on properties of stress relaxation for NiTiNb shape memory alloy

    International Nuclear Information System (INIS)

    Zhou Xuchang; Mo Huaqiang; Zeng Guangting; Shen Baoluo; Huo Yongzhong

    2002-01-01

    Stress relaxation tests at high temperature are performed for NiTiNb shape memory alloy to obtain the properties of stress relaxation. The relaxation curve fitted with the expression, which is deduced based on the relation between the relaxation and the creep. With the aid of experimental data, relaxation characteristic coefficient and remaining stress ratio are obtained, which characterize the relaxation behavior. The results of the study show that stress relaxation would be more evident with the higher temperature and/or greater initial stress. NiTiNb alloy has good relaxation resistance in the temperature range 300-400 degree C and the initial stress range 260-360 MPa. NiTiNb has better properties to resist relaxation than NiTiFe, therefore it is more applicable to work at high temperature

  11. Stress relaxation study of water atomized Cu-Cr-Zr powder alloys consolidated by inverse warm extrusion

    International Nuclear Information System (INIS)

    Poblano-Salas, C.A.; Barceinas-Sanchez, J.D.O.

    2009-01-01

    Stress relaxation testing in compression at high temperature was performed on Cu-Cr-Zr alloys produced by consolidation of water atomized powders. Precipitation and recrystallization were monitored during stress relaxation experiments carried out at an ageing temperature of 723 K. Pre-straining imposed to the Cu-Cr-Zr samples prior to stress relaxation testing resulted in reduced hardness compared to that reported for conventionally-aged alloys; it also resulted in shorter times for achieving maximum strengthening on ageing.

  12. Stress relaxation and hillock growth in thin films

    International Nuclear Information System (INIS)

    Jackson, M.S.; Li, C.Y.

    1978-01-01

    The relaxation of thermal stress in a thin film adhering to a substrate of differing expansion coefficient is discussed. Good agreement is found between literature data on relaxation during isothermal anneals of Pb films at up to 350 0 K and model calculations based on a state variable description of plastic flow. The stress system during relaxation is explored, and the absence of diffusional creep is explained. The plasticity-dominated relaxation process suggested by this analysis is shown to be in good qualitative agreement with data on rapid relaxation over the course of a cycle between room and cryogenic temperatures. The implications of this for long-range material transport in the film are discussed. It is shown that hillock volume should increase over the course of a temperature cycle. Finally, a mechanism for hillock nucleation based on grain boundary sliding is suggested

  13. Evaluation of creep damage due to stress relaxation in SA533 grade B class 1 and SA508 class 3 pressure vessel steels

    International Nuclear Information System (INIS)

    Hoffmann, C.L.; Urko, W.

    1993-01-01

    Creep damage can result from stress relaxation of residual stresses in components when exposed to high temperature thermal cycles. Pressure vessels, such as the reactor vessel of the modular high-temperature gas reactor (MHTGR), which normally operate at temperatures well below the creep range can develop relatively high residual stresses in high stress locations. During short term excursions to elevated-temperatures, creep damage can be produced by the loadings on the vessel. In addition, residual stresses will relax out, causing greater creep damage in the pressure vessel material than might otherwise be calculated. The evaluation described in this paper assesses the magnitude of the creep damage due to relaxation of residual stresses resulting from short term exposure of the pressure vessel material to temperatures in the creep range. Creep relaxation curves were generated for SA533 Grade B, Class 1 and SA508 Class 3 pressure vessel steels using finite element analysis of a simple uniaxial truss loaded under constant strain conditions to produce an initial axial stress equal to 1.25 times the material yield strength at temperature. The strain is held constant for 1000 hours at prescribed temperatures from 700 F to 1000 F. The material creep law is used to calculate the relaxed stress for each time increment. The calculated stress relaxation versus time curves are compared with stress relaxation test data. Creep damage fractions are calculated by integrating the stress relaxation versus time curves and performing a linear creep damage summation using the minimum stress to rupture curves at the respective relaxation temperatures. Cumulative creep damage due to stress relaxation as a function of time and temperature is derived from the linear damage summation

  14. Development of stress relaxation measurement by a small size C-ring specimen method

    International Nuclear Information System (INIS)

    Shimanuki, Shizuka; Nakata, Kiyotomo; Kasahara, Shigeki; Kuniya, Jiro

    2002-01-01

    A stress relaxation measurement method has been developed by using C-ring specimens, and a specimen size effect has been evaluated taking radiation-induced stress relaxation into consideration. C-ring specimens were stressed by forcing a wedge in the gap. Giving an appropriate eccentric configuration in the half of the ring opposite the gap, the stress gradient along the circumference was eliminated in the section and the stress level could be varied by changing the gap spacing. The validity of the C-ring test method was confirmed by thermally stress relaxation experiments at annealing temperatures from 300 to 600degC for 1 min to 200 h in carbon steel: considerable stress relaxation could be measured for all levels of applied stress even at relatively low annealing temperatures. The relaxation results obtained from the C-ring test were in good agreement with those from a uniaxial tensile stress relaxation test. The smaller C-ring specimen with about 40 mm diameter, which is required for radiation-induced stress relaxation test, also showed adequate accuracy on stress relaxation at 600 to 830degC in stainless steel, compared with the large size C-ring specimen test. (author)

  15. The contrasting roles of creep and stress relaxation in the time-dependent deformation during in-situ cooling of a nickel-base single crystal superalloy.

    Science.gov (United States)

    Panwisawas, Chinnapat; D'Souza, Neil; Collins, David M; Bhowmik, Ayan

    2017-09-11

    Time dependent plastic deformation in a single crystal nickel-base superalloy during cooling from casting relevant temperatures has been studied using a combination of in-situ neutron diffraction, transmission electron microscopy and modelling. Visco-plastic deformation during cooling was found to be dependent on the stress and constraints imposed to component contraction during cooling, which mechanistically comprises creep and stress relaxation. Creep results in progressive work hardening with dislocations shearing the γ' precipitates, a high dislocation density in the γ channels and near the γ/γ' interface and precipitate shearing. When macroscopic contraction is restricted, relaxation dominates. This leads to work softening from a decreased dislocation density and the presence of long segment stacking faults in γ phase. Changes in lattice strains occur to a similar magnitude in both the γ and γ' phases during stress relaxation, while in creep there is no clear monotonic trend in lattice strain in the γ phase, but only a marginal increase in the γ' precipitates. Using a visco-plastic law derived from in-situ experiments, the experimentally measured and calculated stresses during cooling show a good agreement when creep predominates. However, when stress relaxation dominates accounting for the decrease in dislocation density during cooling is essential.

  16. Plate-wide stress relaxation explains European Palaeocene basin inversions

    DEFF Research Database (Denmark)

    Nielsen, S.B.; Thomsen, Erik; Hansen, D.L.

    2005-01-01

    of the in-plane tectonic stress. The onset of relaxation inversions was plate-wide and simultaneous, and may have been triggered by stress changes caused by elevation of the North Atlantic lithosphere by the Iceland plume or the drop in NS convergence rate between Africa and Europe.......During Late Cretaceous and Cenozoic times many Paleozoic and Mesozoic rifts and basin structures in the interior of the European continent underwent several phases of inversion. The main phases occurred during the Late Cretaceous and Middle Paleocene, and have been explained by pulses...... Paleocene phase was characterized by domal uplift of a wider area with only mild fault movements, and formation of more distal and shallow marginal troughs. A simple flexural model explains how domal, secondary inversion follows inevitably from primary, convergence related inversion upon relaxation...

  17. Stress Relaxation in Entangled Polymer Melts

    DEFF Research Database (Denmark)

    Hou, Ji-Xuan; Svaneborg, Carsten; Everaers, Ralf

    2010-01-01

    We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements...... and into the terminal relaxation regime for Z=10. Using the known (Rouse) mobility of unentangled chains and the melt entanglement length determined via the primitive path analysis of the microscopic topological state of our systems, we have performed parameter-free tests of several different tube models. We find...

  18. Stress relaxation analysis of single chondrocytes using porohyperelastic model based on AFM experiments

    Directory of Open Access Journals (Sweden)

    Trung Dung Nguyen

    2014-01-01

    Full Text Available Based on atomic force microscopytechnique, we found that the chondrocytes exhibits stress relaxation behavior. We explored the mechanism of this stress relaxation behavior and concluded that the intracellular fluid exuding out from the cells during deformation plays the most important role in the stress relaxation. We applied the inverse finite element analysis technique to determine necessary material parameters for porohyperelastic (PHE model to simulate stress relaxation behavior as this model is proven capable of capturing the non-linear behavior and the fluid-solid interaction during the stress relaxation of the single chondrocytes. It is observed that PHE model can precisely capture the stress relaxation behavior of single chondrocytes and would be a suitable model for cell biomechanics.

  19. Effect of deformation history on the stress relaxation behaviour of Colombian Caribbean coastal cheese from goat milk.

    Science.gov (United States)

    Tirado, Diego F; Acevedo, Diofanor; Torres-Gallo, Ramiro

    2018-01-01

    Textural attributes are a manifestation of the rheological properties and physical structure of foods, cheeses among these. In order to describe these physical properties, the objective of this work was to analyse the effect of deformation history on the stress relaxation behaviour of Colombian Caribbean coastal cheese made from goat milk with 3.75% (F1), 4.00% (F2) and 4.25% (F3) fat content, through prediction made by a four-term Prony series based on Chen's model. For this, stress relaxation data and stress relaxation spectra were analysed. Moreover, textural attributes by texture profile analysis were measured. Physicochemical results were similar to those published by other authors, and all samples meet national and international standards. Results from this work showed that Chen's model could be successfully used to describe the effect of deformation history on the stress relaxation behaviour of Colombian Caribbean coastal cheese made from goat milk. F1 had the highest elastic response, with the most significant residual modules ( P 0 ) and relaxation times (τ 1 , τ 2 and τ 3 ). On the other hand, residual modules and relaxation times (τ 1 , τ 2 and τ 3 ) for cheeses F2 and F3 did not present statistically significant differences (p > 0.05). Besides, by interpretation of the stress relaxation spectra, F1 presented the firmest structure (greatest distribution function and relaxation time) which was characterised by the highest elastic behaviour. Finally, according to texture profile analysis test, F1 had the highest hardness, cohesiveness and chewiness, whereas F2 and F3 did not present statistically significant differences (p > 0.05) between them.

  20. Hydrogels with tunable stress relaxation regulate stem cell fate and activity

    Science.gov (United States)

    Chaudhuri, Ovijit; Gu, Luo; Klumpers, Darinka; Darnell, Max; Bencherif, Sidi A.; Weaver, James C.; Huebsch, Nathaniel; Lee, Hong-Pyo; Lippens, Evi; Duda, Georg N.; Mooney, David J.

    2016-03-01

    Natural extracellular matrices (ECMs) are viscoelastic and exhibit stress relaxation. However, hydrogels used as synthetic ECMs for three-dimensional (3D) culture are typically elastic. Here, we report a materials approach to tune the rate of stress relaxation of hydrogels for 3D culture, independently of the hydrogel's initial elastic modulus, degradation, and cell-adhesion-ligand density. We find that cell spreading, proliferation, and osteogenic differentiation of mesenchymal stem cells (MSCs) are all enhanced in cells cultured in gels with faster relaxation. Strikingly, MSCs form a mineralized, collagen-1-rich matrix similar to bone in rapidly relaxing hydrogels with an initial elastic modulus of 17 kPa. We also show that the effects of stress relaxation are mediated by adhesion-ligand binding, actomyosin contractility and mechanical clustering of adhesion ligands. Our findings highlight stress relaxation as a key characteristic of cell-ECM interactions and as an important design parameter of biomaterials for cell culture.

  1. Effect of Temper Condition on Stress Relaxation Behavior of an Aluminum Copper Lithium Alloy

    Science.gov (United States)

    Mishra, Sumeet; Beura, Vikrant Kumar; Singh, Amit; Yadava, Manasij; Nayan, Niraj

    2018-04-01

    Deformation behavior of an Al-Cu-Li alloy in different temper conditions (solutionized and T8) is investigated using stress relaxation tests. Fundamental parameters such as the apparent and physical activation volume, strain rate sensitivity, effective stress, and exhaustion rate of mobile dislocation density are determined from single and multiple relaxation tests. It was found that dislocation-dislocation interaction controls the kinetics of plastic deformation in the solutionized sample, whereas dislocation-precipitate interaction is the overriding factor in the presence of T1 precipitates. The apparent activation volume was found to be significantly lower in the presence of T1 precipitates compared with solutionized samples. Strain rate sensitivity and effective stress were found to be higher in the presence of T1 precipitates. In addition, multiple relaxation tests showed that irrespective of microstructural features (solutes, semi-coherent precipitates), the mobile dislocation density reduces during the relaxation period. Further evidence regarding reduction in mobile dislocation density is obtained from uniaxial tensile tests carried out after stress relaxation tests, where both solutionized and T8 samples show an increase in strength. Additional discussion on relaxation strain is included to provide a complete overview regarding the time-dependent deformation behavior of the Al-Cu-Li alloy in different temper conditions.

  2. Stress relaxation analysis and irradiation creep and swelling in pressure tubes

    International Nuclear Information System (INIS)

    Beeston, J.M.; Burr, T.K.

    1979-01-01

    An analysis is presented of slit width test information on two pressure tubes that had been irradiated in test reactors. The analysis showed that differential swelling stresses and thermal stresses undergo relaxation. The mechanism responsible for the stress relaxation at temperatures less than 700 K was irradiation creep. Irradiation creep in thermal test reactor pressure tubes is evidently greater than it would be at equivalent conditions in fast reactors. The residual stresses observed in the slit width tests varied between 30 and 257 MPa and would act to reduce the operating stresses, thus allowing for increased service life of the tubes as compared with no stress relaxation

  3. The Effects of Progressive Relaxation and Music on Attention, Relaxation, and Stress Responses: An Investigation of the Cognitive-Behavioral Model of Relaxation

    National Research Council Canada - National Science Library

    Scheufele, Peter

    1999-01-01

    ...) suggested that stress management techniques have specific effects A compromise position suggests that the specific effects of relaxation techniques are superimposed upon a general relaxation response...

  4. An investigation of the residual stress characterization and relaxation in peened friction stir welded aluminum-lithium alloy joints

    International Nuclear Information System (INIS)

    Hatamleh, Omar; Rivero, Iris V.; Swain, Shayla E.

    2009-01-01

    In this investigation the residual stresses generated from friction stir welded (FSW) 2195 aluminum-lithium alloy joints were characterized. The results derived from this research revealed significant levels of tensile residual stresses at the surface and throughout the thickness of the FSW samples. Furthermore, residual stress relaxation at the surface and throughout the thickness of the samples was assessed for laser peened friction stir welded aluminum-lithium joints. To do so the samples were cycled several times at a constant amplitude load. The results indicated that most of the relaxation for the surface residual stresses took place during the first cycle of loading. Also, residual stresses relaxation throughout the thickness of the welded region of unpeened samples significantly exceeded the relaxation exhibited by the laser peened samples.

  5. The relaxation time approximation

    International Nuclear Information System (INIS)

    Gairola, R.P.; Indu, B.D.

    1991-01-01

    A plausible approximation has been made to estimate the relaxation time from a knowledge of the transition probability of phonons from one state (r vector, q vector) to other state (r' vector, q' vector), as a result of collision. The relaxation time, thus obtained, shows a strong dependence on temperature and weak dependence on the wave vector. In view of this dependence, relaxation time has been expressed in terms of a temperature Taylor's series in the first Brillouin zone. Consequently, a simple model for estimating the thermal conductivity is suggested. the calculations become much easier than the Callaway model. (author). 14 refs

  6. STRESS RELAXATION CHARACTERISTICS OF SELECTED COMMERCIALLY PRODUCED GLASSES

    Directory of Open Access Journals (Sweden)

    Chocholoušek J.

    2013-06-01

    Full Text Available This paper describes a quantitative method of stress relaxation measurement in prismatic glass samples during two different time-temperature regimes using the Sénarmont compensator. Four types of glass (Barium crystal glass, Eutal, Simax, and Container glass were subjected to observation in an assembled measuring device. Results will be used for parameterization of the Tool-Narayanaswamy-Mazurin model and consequently implemented in a finite element method code.

  7. Stress-relaxation in bending of zircaloy-4 at 673 K, as a function of cold-work

    International Nuclear Information System (INIS)

    Povolo, F.

    1983-01-01

    Stress-relaxation data, in bending, in Zircaloy-4 with different degrees of cold-work are presented. The measurements were performed at 673 K, with six different initial stresses and up to times of the order of 1000 h. The stress-relaxation curves are interpreted in terms of a creep model involving jog-drag and cell formation and some dislocation parameters are calculated from the experimental results. The influence of cold-work on these parameters is discussed. (author)

  8. Stress relaxation of thermally bowed fuel pins

    International Nuclear Information System (INIS)

    Crossland, I.G.; Speight, M.V.

    1983-01-01

    The presence of cross-pin temperature gradients in nuclear reactor fuel pins produces differential thermal expansion which, in turn, causes the fuel pin to bow elastically. If the pin is restrained in any way, such thermal bowing causes the pin to be stressed. At high temperatures these stresses can relax by creep and it is shown here that this causes the pin to suffer an additional permanent deflection, so that when the cross-pin temperature difference is removed the pin remains bowed. By representing the cylindrical pin by an equivalent I-beam, the present work examines this effect when it takes place by secondary creep. Two restraint systems are considered, and it is demonstrated that the rate of relaxation depends mainly upon the creep equation, and hence the temperature, and also the magnitude of the initial stresses. (author)

  9. Application of stress relaxation testing in evaluation of creep strength of a tungsten-alloyed 10% Cr cast steel

    International Nuclear Information System (INIS)

    Raghavender Rao, G.; Gupta, O.P.; Pradhan, B.

    2011-01-01

    Uniaxial isothermal stress relaxation tests (SRT) were performed on a tungsten-alloyed 10% Cr cast steel (G-X12Cr Mo W V Nb N 10 1 1) at temperatures of 580, 600 and 620 o C and initial strain levels of 0.2, 0.5 and 0.8%. Inelastic strain rates for different stresses were estimated from the stress versus time data generated from the tests. Conventional creep tests were also conducted on the same material at 580, 600 and 620 o C and at different stress levels. The strain rate data estimated from SRT were compared with minimum creep rates derived from the creep tests; the strain rates estimated from SRT with 0.8% initial strain level are in better agreement than those estimated from SRT with 0.2 and 0.5% initial strain levels. In order to ascertain the technique, stress relaxation behaviour was estimated from creep test data and compared with the stress relaxation curves obtained from SRT at corresponding temperatures. The stress relaxation curves obtained from SRT with 0.8% initial strain level are in good agreement with the stress relaxation curves estimated from the creep tests. It is concluded that the stress relaxation test with initial strain level of 0.8% could be considered as an appropriate short-term test technique for estimation of creep strength of newly developed materials.

  10. How Do You #relax When You're #stressed? A Content Analysis and Infodemiology Study of Stress-Related Tweets.

    Science.gov (United States)

    Doan, Son; Ritchart, Amanda; Perry, Nicholas; Chaparro, Juan D; Conway, Mike

    2017-06-13

    Stress is a contributing factor to many major health problems in the United States, such as heart disease, depression, and autoimmune diseases. Relaxation is often recommended in mental health treatment as a frontline strategy to reduce stress, thereby improving health conditions. Twitter is a microblog platform that allows users to post their own personal messages (tweets), including their expressions about feelings and actions related to stress and stress management (eg, relaxing). While Twitter is increasingly used as a source of data for understanding mental health from a population perspective, the specific issue of stress-as manifested on Twitter-has not yet been the focus of any systematic study. The objective of our study was to understand how people express their feelings of stress and relaxation through Twitter messages. In addition, we aimed at investigating automated natural language processing methods to (1) classify stress versus nonstress and relaxation versus nonrelaxation tweets, and (2) identify first-hand experience-that is, who is the experiencer-in stress and relaxation tweets. We first performed a qualitative content analysis of 1326 and 781 tweets containing the keywords "stress" and "relax," respectively. We then investigated the use of machine learning algorithms-in particular naive Bayes and support vector machines-to automatically classify tweets as stress versus nonstress and relaxation versus nonrelaxation. Finally, we applied these classifiers to sample datasets drawn from 4 cities in the United States (Los Angeles, New York, San Diego, and San Francisco) obtained from Twitter's streaming application programming interface, with the goal of evaluating the extent of any correlation between our automatic classification of tweets and results from public stress surveys. Content analysis showed that the most frequent topic of stress tweets was education, followed by work and social relationships. The most frequent topic of relaxation tweets

  11. Multiplied effect of heat and radiation in chemical stress relaxation

    International Nuclear Information System (INIS)

    Ito, Masayuki

    1981-01-01

    About the deterioration of rubber due to radiation, useful knowledge can be obtained by the measurement of chemical stress relaxation. As an example, the rubber coating of cables in a reactor containment vessel is estimated to be irradiated by weak radiation at the temperature between 60 and 90 deg C for about 40 years. In such case, it is desirable to establish the method of accelerated test of the deterioration. The author showed previously that the law of time-dose rate conversion holds in the case of radiation. In this study, the chemical stress relaxation to rubber was measured by the simultaneous application of heat and radiation, and it was found that there was the multiplied effect of heat and radiation in the stress relaxation speed. Therefore the factor of multiplication of heat and radiation was proposed to describe quantitatively the degree of the multiplied effect. The chloroprene rubber used was offered by Hitachi Cable Co., Ltd. The experimental method and the results are reported. The multiplication of heat and radiation is not caused by the direct cut of molecular chains by radiation, instead, it is based on the temperature dependence of various reaction rates at which the activated species reached the cut of molecular chains through complex reaction mechanism and the temperature dependence of the diffusion rate of oxygen in rubber. (Kako, I.)

  12. Shear-stress fluctuations and relaxation in polymer glasses

    Science.gov (United States)

    Kriuchevskyi, I.; Wittmer, J. P.; Meyer, H.; Benzerara, O.; Baschnagel, J.

    2018-01-01

    We investigate by means of molecular dynamics simulation a coarse-grained polymer glass model focusing on (quasistatic and dynamical) shear-stress fluctuations as a function of temperature T and sampling time Δ t . The linear response is characterized using (ensemble-averaged) expectation values of the contributions (time averaged for each shear plane) to the stress-fluctuation relation μsf for the shear modulus and the shear-stress relaxation modulus G (t ) . Using 100 independent configurations, we pay attention to the respective standard deviations. While the ensemble-averaged modulus μsf(T ) decreases continuously with increasing T for all Δ t sampled, its standard deviation δ μsf(T ) is nonmonotonic with a striking peak at the glass transition. The question of whether the shear modulus is continuous or has a jump singularity at the glass transition is thus ill posed. Confirming the effective time-translational invariance of our systems, the Δ t dependence of μsf and related quantities can be understood using a weighted integral over G (t ) .

  13. Stress relaxation in a ferrofluid with clustered nanoparticles

    International Nuclear Information System (INIS)

    Borin, Dmitry Yu; Odenbach, Stefan; Zubarev, Andrey Yu; Chirikov, Dmitry N

    2014-01-01

    The formation of structures in a ferrofluid by an applied magnetic field causes various changes in the rheological behaviour of the ferrofluid. A ferrofluid based on clustered iron nanoparticles was investigated. We experimentally and theoretically consider stress relaxation in the ferrofluid under the influence of a magnetic field, when the flow is suddenly interrupted. It is shown that the residual stress observed in the fluid after the relaxation is correlated with the measured and theoretically predicted magnetic field-induced yield stress. Furthermore, we have shown that the total macroscopic stress in the ferrofluid after the flow is interrupted is defined by the presence of both linear chains and dense, drop-like bulk aggregates. The proposed theoretical approach is consistent with the experimentally observed behaviour, despite a number of simplifications which have been made in the formulation of the model. Thus, the obtained results contribute a lot to the understanding of the complex, magnetic field-induced rheological properties of magnetic colloids near the yield stress point. (paper)

  14. Stress relaxation of entangled polystyrene solution after constant-rate, uniaxial elongation

    DEFF Research Database (Denmark)

    Matsumiya, Yumi; Masubuchi, Yuichi; Watanabe, Hiroshi

    For an entangled solution of linear polystyrene (PS 545k; M = 545k) in dibutyl phthalate (DBP), the stress relaxation after constant-rate uniaxial elongation was examined with an extensional viscosity fixture mounted on ARES (TA Instruments). The PS concentration, c = 52 wt%, was chosen in a way...... that the entanglement density M/Me of the solution coincided with that of PS 290k melt (M = 290k). After the elongation at the Rouse-based Weissenberg number Wi(R) ~ 3 up to the Hencky strain of 3, the short time stress relaxation of the solution was accelerated by a factor of ~4, which was less significant compared...... and the lack of monotonic thinning observed for the semidilute solutions. Results for less concentrated solutions will be also presented on site....

  15. Unaxial stress relaxation and creep behaviour in weldments of the pressure vessel steel A533B between 600 and 640 degree C

    International Nuclear Information System (INIS)

    Otterberg, R.

    1979-10-01

    In order to predict the stress reduction during stress relief heat treatment in welded joints of the pressure vessel steel A533B, uniaxial stress relaxation as well as creep tests have been performed. The specimens were isothermally stress relaxed between 600 and 640 degree C from initial stresses corresponding to specimen elongations of 0.25, 0.5 and 0.2 percent. The stress relaxation results are excellently described by a Norton relationship. The magnitude of the initial stress has been found to affect the stress relaxation in the beginning of the tests, but at times longer than one hour the effect is very small. Creep strain data from creep tests in the actual temperature interval was converted to describe stress relaxation behaviour as well. The results will be used in a forthcoming study to predict the multiaxial stress reduction in thick weldments of A533B. (author)

  16. Contribution to viscosity from the structural relaxation via the atomic scale Green-Kubo stress correlation function

    Science.gov (United States)

    Levashov, V. A.

    2017-11-01

    We studied the connection between the structural relaxation and viscosity for a binary model of repulsive particles in the supercooled liquid regime. The used approach is based on the decomposition of the macroscopic Green-Kubo stress correlation function into the correlation functions between the atomic level stresses. Previously we used the approach to study an iron-like single component system of particles. The role of vibrational motion has been addressed through the demonstration of the relationship between viscosity and the shear waves propagating over large distances. In our previous considerations, however, we did not discuss the role of the structural relaxation. Here we suggest that the contribution to viscosity from the structural relaxation can be taken into account through the consideration of the contribution from the atomic stress auto-correlation term only. This conclusion, however, does not mean that only the auto-correlation term represents the contribution to viscosity from the structural relaxation. Previously the role of the structural relaxation for viscosity has been addressed through the considerations of the transitions between inherent structures and within the mode-coupling theory by other authors. In the present work, we study the structural relaxation through the considerations of the parent liquid and the atomic level stress correlations in it. The comparison with the results obtained on the inherent structures also is made. Our current results suggest, as our previous observations, that in the supercooled liquid regime, the vibrational contribution to viscosity extends over the times that are much larger than the Einstein's vibrational period and much larger than the times that it takes for the shear waves to propagate over the model systems. Besides addressing the atomic level shear stress correlations, we also studied correlations between the atomic level pressure elements.

  17. Stress relaxation in SSC 50mm dipole coils

    International Nuclear Information System (INIS)

    Rogers, D.; Markley, F.

    1992-04-01

    We are measuring the stress relaxation of SSC 50mm outer coils with the goal of predicting how much of the coil prestress will be lost while the coils are warehoused between manufacture and cooldown. We manufacture 3 inch (76.2mm) long segments of coil with the same materials and techniques that have been used for prototype coils. We are running four simultaneous tests in an attempt to separate the contributions of the different coil materials. Test one is a completely insulated coil section where the insulation is the all polyamide system being tested at Brookhaven; test two is a wire stack insulated only with the normal Kapton overwrap; test three is a stack of bare cable; and test four is a completely insulated normal coil section. All, except for the bare cable, include the ground insulation. The insulated coil sections are carefully dried before loading and testing in order to eliminate stress changes due to varying moisture content. The temperature dependence of the stress relaxation is being studied separately. Three companion papers presented at this conference will be: (1) ''Temperature dependence of the viscoelastic properties of SSC coil insulation'' (2) ''Measurement of the elastic modulus of Kapton perpendicular to the plane of the film at room and cryogenic temperatures'' (3) ''Theoretical methods for creep and stress relaxation studies of SSC coil.''

  18. Theoretical methods for creep and stress relaxation studies of SSC coil

    International Nuclear Information System (INIS)

    McAdams, J.; Markley, F.

    1992-04-01

    Extrapolation of laboratory measurements of SSC coil properties to the actual construction of SSC magnets requires mathematical models of the experimental data. A variety of models were used to approximate the data collected from creep and stress relaxation experiments performed on Kapton film and SSC coil samples. The coefficients for these mathematical models were found by performing a least-squares fit via the program MINUIT. Once the semiempirical expressions for the creep data were found, they were converted to expressions for stress relaxation using an approximate I pn of the Laplace integral relating the two processes. The data sets from creep experiments were also converted directly to stress relaxation data by numeric integration. Both of these methods allow comparison of data from two different methods of measuring viscoelastic properties. Three companion papers presented at this conference will present: Stress relaxation in SSC 50mm dipole coil. Measurement of the elastic modulus of Kapton perpendicular to the plane of the film at room and cryogenic temperatures. Temperature dependence of the viscoelastic properties of SSC coil insulation (Kapton)

  19. Stress relaxation of shear in metals during shock loading

    International Nuclear Information System (INIS)

    Glazyrin, V.P.; Platova, T.M.

    1988-01-01

    Constructed determining equation, taking into account stress relaxation of shear, was used to calculate the evolution of plane shock waves of primary and secondary compression in metals. Values of shear stress and viscosity coefficient were

  20. Strengthening and stress relaxation of Opalinus Clay

    International Nuclear Information System (INIS)

    Schulze, Otto

    2010-01-01

    undisturbed far-field for the long lasting periods of geological times. Consequently, demands on concepts for backfilling and closure of a repository in a clay-stone formation as well as model calculations for safety analyses generally do not take into account convergence by viscous deformation, which would result from stress re-distribution at underground openings. Although there is some doubt, whether Opalinus Clay is creeping at all, some very long lasting laboratory tests were performed on this item in the author's laboratory. A nearly linear dependence of the long-term creep rate on the deviatoric stress was found. In recent work, the technique of stress-relaxation was used. For this, strengthening by strain rate controlled deformation was stopped, i.e. the strain was kept constant for a long time, and the relaxation of the stress was measured. In course of this technique, the deformability which may result from artefacts is ruled out as far as possible by compaction and strengthening. Then, the stress relaxation - if any - will be maintained by true long-term deformation processes which should be active and responsible for any convergence in an at least only partly backfilled mine. In this contribution, the results of the laboratory work and their discussion will be presented. (authors)

  1. Stress Relaxation Of Superelastic Shape Memory Alloy Under Bending And Torsional Load

    Directory of Open Access Journals (Sweden)

    Sakib Tanvir

    2017-04-01

    Full Text Available Stress Relaxation of Superelastic Shape memory NiTi Alloy under bending and torsion is uncommon in literature. Therefore experimental set up has been devised and test results are obtained for superelastic SMA.Unlike the other common engineering materials superelastic SMA it gives dramatic reduction in stress. In this paper therefore results of stress relaxation of superelastic shape memory alloy under bending and torsion are presented graphically and interpreted in terms of stress induced martensitic transformation.

  2. Stress-relaxation behavior of lignocellulosic high-density polyethlene composites

    Science.gov (United States)

    Babak Mirzaei; Mehdi Tajvidi; Robert H. Falk; Colin Felton

    2011-01-01

    In this study, stress-relaxation performance of HDPE-based injection-molded composites containing four types of natural fibers (i.e., wood flour, rice hulls, newsprint, and kenaf fiber) at 25 and 50 wt% contents, and the effect of prescribed strain levels were investigated. The results indicated that incorporating more filler causes lower relaxation values and rates,...

  3. Effect of extender oils on the stress relaxation behavior of thermoplastic vulcanizates

    Directory of Open Access Journals (Sweden)

    2008-11-01

    Full Text Available The long term mechanical behavior of oil extended thermoplastic vulcanizates (TPV based on polypropylene (PP and acrylonitrile-butadiene rubber (NBR has been characterized by means of stress relaxation experiments. The morphology of TPV and the phase specific oil distribution which depend on the content and type of oil as well as on the mixing regime have been characterized by means of Atomic Force Microscopy (AFM, Dynamic Mechanical Thermal Analysis (DMTA and Differential Scanning Calorimetrie (DSC. The discussion of the stress relaxation behavior was carried out using the two-component model, which allows splitting the initial stress into two components: a thermal activated stress component and an athermal one. A master curve was created by shifting the relaxation curves vertically and horizontally towards the reference curve. The vertical shift factor bT is a function of the temperature dependence of the athermal stress components. It was found that the oil distribution strongly affects the athermal stress component which is related to the contribution of the structural changes, e.g. crystallinity of the PP phase and the average molecular weight between the crosslinks of the NBR phase. From the temperature dependence of the horizontal shift factor aT the main viscoelastic relaxation process was determined as the α-relaxation process of the crystalline PP phase. It is not dependent on the polarity and content of the oil as well as the mixing regime.

  4. Composite Analysis of Concrete - Creep, Relaxation and Eigenstrain/stress

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1996-01-01

    approach.The model is successfully justified comparing predicted results with recent experimental data obtained in tests made at the Danish Technological Institute and at the Technical University of Denmark on creep, relaxation, and shrinkage of very young concretes (hours) - and also with experimental...... results on creep, shrinkage, and internal stresses caused by drying shrinkage reported in the literature on the mechanical behavior of mature concretes.Shrinkage (autogeneous or drying) of mortar and concrete and associated internal stress states are examples of analysis made in this report......A composite-rheological model of concrete is presented by which consistent predictions of creep, relaxation, and internal stresses can be made from known concrete composition, age at loading, and climatic conditions. No other existing "creep prediction method" offers these possibilities in one...

  5. Paramagnetic relaxation effects in perturbed angular correlations for arbitrary electronic relaxation time

    International Nuclear Information System (INIS)

    Chopin, C.; Spanjaard, D.; Hartmann-Boutron, F.

    1975-01-01

    Previous perturbation treatments of paramagnetic relaxation effects in γγ PAC were limited to the case of very short electronic relaxation times. This limitation is circumvented by invoking a new perturbation theory recently elaborated by Hirst and others for handling relaxation effects in Moessbauer spectra. Under the assumption of spherical electronic relaxation the perturbation factors are computed as functions of certain relaxation parameters which are directly related to the microscopic relaxation Hamiltonian. The results are compared to those of the stochastic theory of Scherer and Blume [fr

  6. Transformation-Induced Relaxation and Stress Recovery of TiNi Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Kohei Takeda

    2014-03-01

    Full Text Available The transformation-induced stress relaxation and stress recovery of TiNi shape memory alloy (SMA in stress-controlled subloop loading were investigated based on the local variation in temperature and transformation band on the surface of the tape in the tension test. The results obtained are summarized as follows. (1 In the loading process, temperature increases due to the exothermic martensitic transformation (MT until the holding strain and thereafter temperature decreases while holding the strain constant, resulting in stress relaxation due to the MT; (2 In the unloading process, temperature decreases due to the endothermic reverse transformation until the holding strain and thereafter temperature increases while holding the strain constant, resulting in stress recovery due to the reverse transformation; (3 Stress varies markedly in the initial stage followed by gradual change while holding the strain constant; (4 If the stress rate is high until the holding strain in the loading and unloading processes, both stress relaxation and stress recovery are large; (5 It is important to take into account this behavior in the design of SMA elements, since the force of SMA elements varies even if the atmospheric temperature is kept constant.

  7. Residual stresses relaxation in surface-hardened half-space under creep conditions

    Directory of Open Access Journals (Sweden)

    Vladimir P. Radchenko

    2015-09-01

    Full Text Available We developed the method for solving the problem of residual stresses relaxation in surface-hardened layer of half-space under creep conditions. At the first stage we made the reconstruction of stress-strain state in half-space after plastic surface hardening procedure based on partial information about distribution for one residual stress tensor component experimentally detected. At the second stage using a numerical method we solve the problem of relaxation of self-balanced residual stresses under creep conditions. To solve this problem we introduce the following Cartesian system: x0y plane is aligned with hardened surface of half-space and 0z axis is directed to the depth of hardened layer. We also introduce the hypotheses of plane sections parallel to x0z and y0z planes. Detailed analysis of the problem has been done. Comparison of the calculated data with the corresponding test data was made for plane specimens (rectangular parallelepipeds made of EP742 alloy during T=650°C after the ultrasonic hardening with four hardening modes. We use half-space to model these specimens because penetration's depth of residual stresses is less than specimen general size in two digit exponent. There is enough correspondence of experimental and calculated data. It is shown that there is a decay (in modulus of pressing residual stresses under creep in 1.4–1.6 times.

  8. Relaxation of Shot-Peened Residual Stresses Under Creep Loading (Preprint)

    Science.gov (United States)

    2008-10-01

    Residual Stresses,” SAE Technical Paper No. 710285, SAE , 1971. [8] Hoffman, J., Scholtes, B., Vöhringer, O., and Macherauch, E., “Thermal relaxation of...relaxation in an AISI 4140 steel due to quasistatic and cyclic loading at higher temperatures,” Material Science and Engineering A248, 1998, pp. 9

  9. Giant deviation of a relaxation time from generalized Newtonian theory in discontinuous shear thickening suspensions

    Science.gov (United States)

    Maharjan, Rijan; Brown, Eric

    2017-12-01

    We investigated the transient relaxation of a discontinuous shear thickening (DST) suspension of cornstarch in water. We performed two types of relaxation experiments starting from a steady shear in a parallel-plate rheometer, followed either by stopping the top plate rotation and measuring the transient torque relaxation or by removing the torque on the plate and measuring the transient rotation of the tool. We found that at low effective weight fraction ϕeffmodel. The regime where the relaxation was inconsistent with the generalized Newtonian model was the same where we found positive normal stress during relaxation, and in some cases we found an oscillatory response, suggestive of a solidlike structure consisting of a system-spanning contact network of particles. This regime also corresponds to the same packing fraction range where we consistently found discontinuous shear thickening in rate-controlled, steady-state measurements. The relaxation time in this range scales with the inverse of the critical shear rate at the onset of shear thickening, which may correspond to a contact relaxation time for nearby particles in the structure to flow away from each other. In this range, the relaxation time was the same in both stress- and rate-controlled relaxation experiments, indicating the relaxation time is more intrinsic than an effective viscosity in this range and is needed in addition to the steady-state viscosity function to describe transient flows. The discrepancy between the measured relaxation times and the generalized Newtonian prediction was found to be as large as four orders of magnitude, and extrapolations diverge in the limit as ϕeff→ϕc as the generalized Newtonian prediction approaches 0. This quantitative discrepancy indicates the relaxation is not controlled by the dissipative terms in the constitutive relation. At the highest weight fractions, the relaxation time scales were measured to be on the order of ˜1 s. The fact that this time scale is

  10. Fatigue life estimation of welded components considering welding residual stress relaxation and its mean stress effect

    International Nuclear Information System (INIS)

    Han, Seung Ho; Han, Jeong Woo; Shin, Byung Chun; Kim, Jae Hoon

    2003-01-01

    The fatigue life of welded joints is sensitive to welding residual stress and complexity of their geometric shapes. To predict the fatigue life more reasonably, the effects of welding residual stress and its relaxation on their fatigue strengths should be considered quantitatively, which are often regarded to be equivalent to the effects of mean stresses by external loads. The hot-spot stress concept should be also adopted which can reduce the dependence of fatigue strengths for various welding details. Considering the factors mentioned above, a fatigue life prediction model using the modified Goodman's diagram was proposed. In this model, an equivalent stress was introduced which is composed of the mean stress based on the hot-spot stress concept and the relaxed welding residual stress. From the verification of the proposed model to real welding details, it is proved that this model can be applied to predict reasonably their fatigue lives

  11. Occupational stress, relaxation therapies, exercise and biofeedback.

    Science.gov (United States)

    Stein, Franklin

    2001-01-01

    Occupational stress is a widespread occurrence in the United States. It is a contributing factor to absenteeism, disease, injury and lowered productivity. In general stress management programs in the work place that include relaxation therapies, exercise, and biofeedback have been shown to reduce the physiological symptoms such as hypertension, and increase job satisfaction and job performance. Strategies to implement a successful stress management program include incorporating the coping activities into one's daily schedule, monitoring one's symptoms and stressors, and being realistic in setting up a schedule that is relevant and attainable. A short form of meditation, daily exercise program and the use of heart rate or thermal biofeedback can be helpful to a worker experiencing occupational stress.

  12. Stress relaxation and creep of high-temperature gas-cooled reactor core support ceramic materials: a literature search

    International Nuclear Information System (INIS)

    Selle, J.E.; Tennery, V.J.

    1980-05-01

    Creep and stress relaxation in structural ceramics are important properties to the high-temperature design and safety analysis of the core support structure of the HTGR. The ability of the support structure to function for the lifetime of the reactor is directly related to the allowable creep strain and the ability of the structure to withstand thermal transients. The thermal-mechanical response of the core support pads to steady-state stresses and potential thermal transients depends on variables, including the ability of the ceramics to undergo some stress relaxation in relatively short times. Creep and stress relaxation phenomena in structural ceramics of interest were examined. Of the materials considered (fused silica, alumina, silicon nitride, and silicon carbide), alumina has been more extensively investigated in creep. Activation energies reported varied between 482 and 837 kJ/mole, and consequently, variations in the assigned mechanisms were noted. Nabarro-Herring creep is considered as the primary creep mechanism and no definite grain size dependence has been identified. Results for silicon nitride are in better agreement with reported activation energies. No creep data were found for fused silica or silicon carbide and no stress relaxation data were found for any of the candidate materials. While creep and stress relaxation are similar and it is theoretically possible to derive the value of one property when the other is known, no explicit demonstrated relationship exists between the two. For a given structural ceramic material, both properties must be experimentally determined to obtain the information necessary for use in high-temperature design and safety analyses

  13. Combining walking and relaxation for stress reduction-A randomized cross-over trial in healthy adults.

    Science.gov (United States)

    Matzer, Franziska; Nagele, Eva; Lerch, Nikolaus; Vajda, Christian; Fazekas, Christian

    2018-04-01

    Both physical activity and relaxation have stress-relieving potential. This study investigates their combined impact on the relaxation response while considering participants' initial stress level. In a randomized cross-over trial, 81 healthy adults completed 4 types of short-term interventions for stress reduction, each lasting for 1 hr: (1) physical activity (walking) combined with resting, (2) walking combined with balneotherapy, (3) combined resting and balneotherapy, and (4) resting only. Saliva cortisol, blood pressure, state of mood, and relaxation were measured preintervention and postintervention. Stress levels were determined by validated questionnaires. All interventions were associated with relaxation responses in the variables saliva cortisol, blood pressure, state of mood, and subjective relaxation. No significant differences were found regarding the reduction of salivary cortisol (F = 1.30; p = .281). The systolic blood pressure was reduced best when walking was combined with balneotherapy or resting (F = 7.34; p stress levels (n = 25) felt more alert after interventions including balneotherapy, whereas they reported an increase of tiredness when walking was combined with resting (F = 3.20; p = .044). Results suggest that combining physical activity and relaxation (resting or balneotherapy) is an advantageous short-term strategy for stress reduction as systolic blood pressure is reduced best while similar levels of relaxation can be obtained. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Stress relaxation in 'aged high-purity aluminium at room temperature

    International Nuclear Information System (INIS)

    Butt, M.Z.; Haq, I.U.

    1993-01-01

    Stress relaxation in 99.996% Al polycrystals of average grain diameter 0.30, 0.42 and 0.51 mm, annealed at 500 deg. C and 'aged' for six months at room temperature, have been studied as a function of initial stress level from which relaxation at constant strain was allowed to start. The results obtained were compared with those for 'un-aged' Al specimens of the same purity and grain size. The intrinsic height of the thermally activable energy barrier (1.6 eV) evaluated for 'aged' Al is comparable with that (1.9 eV) for 'un-aged' Al, and is of the order of magnitude for recovery processes. In 'aged' specimens, the relaxation rate at a given stress level is larger and associated activation volume is smaller than that in 'un-aged' specimens. This is probably due to the diffusion of vacancies and/or residual impurity atoms to the cores to edge dislocations in 'aged' specimens; the length of dislocation segment involved in unit activation process therefore gets shortened compared with that in 'un-aged' specimens. (author)

  15. Effects of the aging temperature and stress relaxation conditions on γ′ precipitation in Inconel X-750

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jeong Won [Department of Materials Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Research and Development Center, KOS Limited, Yangsan 626-230 (Korea, Republic of); Seong, Baek Seok [Neutron Science Division, HANARO Center, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Jeong, Hi Won [Advanced Metallic Materials Division, Korea Institute of Materials Science, Changwon 642-831 (Korea, Republic of); Choi, Yoon Suk [Department of Materials Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Kang, Namhyun, E-mail: nhkang@pusan.ac.kr [Department of Materials Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2015-02-15

    Highlights: • Stress relaxation after aging 620 °C increased carbides and maintained γ′ fraction. • Aging temperature increase to 732 °C raised the γ′ increment after stress relaxation. • Small increase of carbides induced the large increase of γ′ after stress relaxation. • Loading for stress relaxation raised γ′ increment due to dislocation multiplication. - Abstract: Inconel X-750 is a Ni-based precipitation-hardened superalloy typically used in springs designed for high-temperature applications such as the hold-down springs in nuclear power plants. γ′ is a major precipitate in X-750 alloys which affects the strength, creep resistance, and stress relaxation properties of the spring. In this study, a solution-treated X-750 wire coiled into a spring was used that was aged at various temperatures and submitted to stress relaxation tests with and without loading. Small angle neutron scattering was employed to quantify the size and volume fraction of γ′ phase in the springs as a function of the aging temperature and the application of a load during stress relaxation. The volume fraction of γ′ precipitates increased in the specimen aged at 732 °C following stress relaxation at 500 °C for 300 h. However, the mean size of the precipitates in the samples was not affected by stress relaxation. The specimen aged at the lower temperature (620 °C) contained a smaller γ′ volume fraction and gained a smaller fraction of γ′ during stress relaxation compared with the sample aged at the higher temperature (732 °C). The smaller increase in the γ′ volume fraction for the sample aged at 620 °C was associated with a larger increase in the M{sub 23}C{sub 6} secondary carbide content during relaxation. The Cr depletion zone around the secondary carbides raises the solubility of γ′ thereby decreasing the volume fraction of γ′ precipitates in Inconel X-750. In terms of stress relaxation, a larger increase in the γ′ volume fraction was

  16. Pseudo-variables method to calculate HMA relaxation modulus through low-temperature induced stress and strain

    International Nuclear Information System (INIS)

    Canestrari, Francesco; Stimilli, Arianna; Bahia, Hussain U.; Virgili, Amedeo

    2015-01-01

    Highlights: • Proposal of a new method to analyze low-temperature cracking of bituminous mixtures. • Reliability of the relaxation modulus master curve modeling through Prony series. • Suitability of the pseudo-variables approach for a close form solution. - Abstract: Thermal cracking is a critical failure mode for asphalt pavements. Relaxation modulus is the major viscoelastic property that controls the development of thermally induced tensile stresses. Therefore, accurate determination of the relaxation modulus is fundamental for designing long lasting pavements. This paper proposes a reliable analytical solution for constructing the relaxation modulus master curve by measuring stress and strain thermally induced in asphalt mixtures. The solution, based on Boltzmann’s Superposition Principle and pseudo-variables concepts, accounts for time and temperature dependency of bituminous materials modulus, avoiding complex integral transformations. The applicability of the solution is demonstrated by testing a reference mixture using the Asphalt Thermal Cracking Analyzer (ATCA) device. By applying thermal loadings on restrained and unrestrained asphalt beams, ATCA allows the determination of several parameters, but is still unable to provide reliable estimations of relaxation properties. Without them the measurements from ATCA cannot be used in modeling of pavement behavior. Thus, the proposed solution successfully integrates ATCA experimental data. The same methodology can be applied to all test methods that concurrently measure stress and strain. The statistical parameters used to evaluate the goodness of fit show optimum correlation between theoretical and experimental results, demonstrating the accuracy of this mathematical approach

  17. Fatigue life evaluation based on welding residual stress relaxation and notch strain approach for cruciform welded joint

    International Nuclear Information System (INIS)

    Han, Jeong Woo; Han, Seung Ho; Shin, Byung Chun; Kim, Jae Hoon

    2003-01-01

    The fatigue strength of welded joint is influenced by the welding residual stress which is relaxed depending on local stress distributed in vicinity of stress raisers, eg. under cut, overlap and blow hole. To evaluate its fatigue life the geometry of the stress raisers and the welding residual stress should be taken into account. The several methods based on notch strain approach have been proposed in order to consider the two factors above mentioned. These methods, however, have shown considerable differences between analytical and experimental results. It is due to the fact that the amount of the relaxed welding residual stress evaluated by the cyclic stress-strain relationship do not correspond with that occurred in reality. In this paper the residual stress relaxation model based on experimental results was used in order to reduce the discrepancy of the estimated amount of the relaxed welding residual stress. Under an assumption of the superimposition of the relaxed welding residual stress and the local stress, a modified notch strain approach was proposed and verified to the cruciform welded joint

  18. Universal relaxation times for electron and nucleon gases

    OpenAIRE

    Pelc, M.; Marciak-Kozlowska, J.; Kozlowski, M.

    2007-01-01

    In this paper we calculate the universal relaxation times for electron and nucleon fermionic gases. We argue that the universal relaxation time tau(i) is equal tau(i)=h/m square v(i) where v(i)=alpha(i)c and alpha(1)=0.15 for nucleon gas and alpha(2)=1/137 for electron gas, c=light velocity. With the universal relaxation time we formulate the thermal Proca equation for fermionic gases. Key words: universal relaxation time, thermal universal Proca equation.

  19. High Temperature Performance Evaluation of As-serviced 25Cr35Ni Type Heat-resistant Steel Based on Stress Relaxation Tests

    Directory of Open Access Journals (Sweden)

    XU Jun

    2017-08-01

    Full Text Available Based on an as-serviced 25Cr35Ni type steel, the high temperature property evaluation using stress relaxation test(SRT method and residual life prediction were studied. The results show that creep rupture property decreases because of the formation of network carbides along grain boundaries and coarsening of secondary carbides in the austenitic matrix. Based on the relationship of stress relaxation strain rate curves obtained at different temperatures, and the extrapolation equation of stress relaxation rate-rupture time, it is capable to perform residual life evaluation by combining SRT data and a small amount of creep rupture test(CRT. Good agreement is observed for predicting results performed by current method and traditional method.

  20. Ion beam induced stress formation and relaxation in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, T., E-mail: Tobias.Steinbach@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany); Reupert, A.; Schmidt, E.; Wesch, W. [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)

    2013-07-15

    Ion irradiation of crystalline solids leads not only to defect formation and amorphization but also to mechanical stress. In the past, many investigations in various materials were performed focusing on the ion beam induced damage formation but only several experiments were done to investigate the ion beam induced stress evolution. Especially in microelectronic devices, mechanical stress leads to several unwanted effects like cracking and peeling of surface layers as well as changing physical properties and anomalous diffusion of dopants. To study the stress formation and relaxation process in semiconductors, crystalline and amorphous germanium samples were irradiated with 3 MeV iodine ions at different ion fluence rates. The irradiation induced stress evolution was measured in situ with a laser reflection technique as a function of ion fluence, whereas the damage formation was investigated by means of Rutherford backscattering spectrometry. The investigations show that mechanical stress builds up at low ion fluences as a direct consequence of ion beam induced point defect formation. However, further ion irradiation causes a stress relaxation which is attributed to the accumulation of point defects and therefore the creation of amorphous regions. A constant stress state is reached at high ion fluences if a homogeneous amorphous surface layer was formed and no further ion beam induced phase transition took place. Based on the results, we can conclude that the ion beam induced stress evolution seems to be mainly dominated by the creation and accumulation of irradiation induced structural modification.

  1. Stress relaxation in dilute Al-0.02 at.% Mn alloy under electron irradiation

    International Nuclear Information System (INIS)

    Bystrov, L.N.; Ivanov, L.I.; Pletnev, M.N.; Reznitsky, M.E.

    1984-01-01

    Stress relaxation in cold-worked and annealed (573 K for 2 hours) specimens of the dilute alloy Al-0.02 at.% Mn has been studied experimentally over a range of initial stresses 5 to 80 MPa, both with and without irradiation by 2.1 MeV electrons. Thermoactivation analysis has revealed that relaxation proceeds in two stages with different activation parameters. The deformation rate in the first stage is controlled by diffusion of the impurity (Mn), and in the second stage by the self-diffusion of aluminum. A new method has been proposed for evaluating the internal stresses from experimental data. The effect of radiation-induced diffusion on the kinetics of relaxation is discussed. (author)

  2. Improved method for determining the stress relaxation at the crack tip

    Science.gov (United States)

    Grinevich, A. V.; Erasov, V. S.; Avtaev, V. V.

    2017-10-01

    A technique is suggested to determine the stress relaxation at the crack tip during tests of a specimen of a new type at a constant crack opening fixed by a stay bolt. The shape and geometry of the specimen make it possible to set the load and to determine the crack closure force after long-term exposure using the force transducer of a tensile-testing machine. The stress relaxation at the crack tip is determined in a V95pchT2 alloy specimen at elevated temperatures.

  3. Relaxation of residual stress in MMC after combined plastic deformation and heat treatment

    International Nuclear Information System (INIS)

    Bruno, G.; Ceretti, M.; Girardin, E.; Giuliani, A.; Manescu, A.

    2004-01-01

    Neutron Diffraction shows that plastic pre-deformation and heat treatments have opposite effects on the residual stress in Al-SiC p composites. The thermal micro residual stress is relaxed or even reversed by pre-strains above 0.2%, but restored by heat treatments. The sense of relaxation changes above 400 deg. C (the mixing temperature)

  4. Deformation, Stress Relaxation, and Crystallization of Lithium Silicate Glass Fibers Below the Glass Transition Temperature

    Science.gov (United States)

    Ray, Chandra S.; Brow, Richard K.; Kim, Cheol W.; Reis, Signo T.

    2004-01-01

    The deformation and crystallization of Li(sub 2)O (center dot) 2SiO2 and Li(sub 2)O (center dot) 1.6SiO2 glass fibers subjected to a bending stress were measured as a function of time over the temperature range -50 to -150 C below the glass transition temperature (Tg). The glass fibers can be permanently deformed at temperatures about 100 C below T (sub)g, and they crystallize significantly at temperatures close to, but below T,, about 150 C lower than the onset temperature for crystallization for these glasses in the no-stress condition. The crystallization was found to occur only on the surface of the glass fibers with no detectable difference in the extent of crystallization in tensile and compressive stress regions. The relaxation mechanism for fiber deformation can be best described by a stretched exponential (Kohlrausch-Williams-Watt (KWW) approximation), rather than a single exponential model.The activation energy for stress relaxation, Es, for the glass fibers ranges between 175 and 195 kJ/mol, which is considerably smaller than the activation energy for viscous flow, E, (about 400 kJ/mol) near T, for these glasses at normal, stress-free condition. It is suspected that a viscosity relaxation mechanism could be responsible for permanent deformation and crystallization of the glass fibers below T,

  5. Creep and inverse stress relaxation behaviors of carbon nanotube yarns.

    Science.gov (United States)

    Misak, H E; Sabelkin, V; Miller, L; Asmatulu, R; Mall, S

    2013-12-01

    Creep, creep recovery and inverse stress relaxation behaviors of carbon nanotube yarns that consisted of 1-, 30-, and 100-yarn(s) were characterized. Primary and secondary creep stages were observed over the duration of 336 h. The primary creep stage lasted for about 4 h at an applied load equal to 75% of the ultimate tensile strength. The total strain in the primary stage was significantly larger in the carbon nanotube multi-yarn than in the carbon nanotube 1-yarn. In the secondary stage, 1-yarn also had a smaller steady state strain rate than the multi-yarn, and it was independent of number of yarns in multi-yarn. Strain response under cyclic creep loading condition was comparable to its counterpart in non-cyclic (i.e., standard) creep test except that strain response during the first cycle was slightly different from the subsequent cycles. Inverse creep (i.e., strain recovery) was observed in the 100-yarn during the cyclic creep tests after the first unloading cycle. Furthermore, inverse stress relaxation of the multi-yarns was characterized. Inverse stress relaxation was larger and for longer duration with the larger number of yarns.

  6. Electrical response of relaxing dielectrics compressed by arbitrary stress pulses

    International Nuclear Information System (INIS)

    Lysne, P.C.

    1983-01-01

    The theoretical problem of the electric response of biased dielectrics and piezoelectrics subjected to planar stress pulse loading is considered. The materials are taken to exhibit dielectric relaxation in the sense that changes in the polarization induced by electric fields do not occur instantaneously with changes in the fields. While this paper considers arbitrary stress pulse loading of the specimen, examples that are amenable to projectile impact techniques are considered in detail. They are shock reverberation, thin pulse, and ramp loading experiments. It is anticipated that these experiments will play a role in investigations of dielectric relaxation caused by shock induced damage in insulators

  7. Creep and stress relaxation behavior of two soft denture liners.

    Science.gov (United States)

    Salloum, Alaa'a M

    2014-03-01

    Numerous investigators stated the indications of soft denture lining materials; but no one determined the indications of these materials according to their chemical structure. The purpose of this investigation was to evaluate the viscoelastic properties of acrylic and silicon lining materials. This study investigated and compared viscoelastic properties of two resilient denture lining materials. Tested materials were laboratory processed; one of them was silicone-based liner product (Molloplast-B), and the other was plasticized acrylic resin (Vertex™ Soft). Twenty cylindrical specimens (10-20 mm in length, 11.55 mm in diameter) were fabricated in an aluminum mold from each material for creep and stress relaxation testing (the study of viscoelastic properties). Tests were performed by using the universal testing machine DY-34. Collected data were analyzed with t test statistics for statistically significant differences at the 95 % confidence level. There was a clear difference in creep and stress relaxation behavior between acrylic and silicone liners. Statistical study of Young's moduli illustrated that Vertex™ Soft was softer than Molloplast-B. On the other hand, the results explained that the recovery of silicone material was better than of acrylic one. The creep test revealed that the plasticized acrylic resin lining material exhibited considerable creep, whereas silicone-based liner exhibited elastic behavior. Besides, the stress relaxation test showed that relaxation of the plasticized acrylic resin material was bigger than of the silicone-based liner.

  8. Comparison between the results of stress relaxation - and creep tests in a stainless steel 316 at 8000C

    International Nuclear Information System (INIS)

    Miranda, P.E.V. de.

    1978-07-01

    A sequence of stress relaxation tests from the same initial stress showed an estabilization of the relaxed fraction of stress of a 316 stainless steel at 800 0 C. This represents the exhaustion of the deformation process of the material at this temperature. Results from the relaxation tests were obtained by utilizing a recently proposed model. The slope in from the log epsilon sup(.) x logσ/E curve obtained by relaxation (n = 6,80) closely matched that determined by creep tests (n = 6,50). This presents a possibility of determined by stress relaxation of the parameters usually calculated by creep. (Author) [pt

  9. Stress relaxation damage in K9 glass plate irradiated by 1.06μm CW laser

    International Nuclear Information System (INIS)

    Luo Fu; Sun Chengwei

    2001-01-01

    Based on the stress relaxation model in 1D planar geometry and the visco-elastic constitutive equation, the temperature and stress histories in the K9 glass samples irradiated by CW laser beams (λ = 1.06 μm) have been calculated. The results indicate that the residual tensile stress due to the stress relaxation effect during cooling after the laser radiation may be greater than the tensile fracture strength of samples, while the maximum compression stress during the laser heating is less than the requirement for compression damage. For a K9 glass window of 3 mm thickness, its damage due to the stress relaxation may be induced by a laser radiation of 0.946 MW/cm 2 for 0.2s . Therefore, the stress relaxation should be regarded as the main mechanism of damage in K9 glass windows while a CW laser beam (λ = 1.06 μm) irradiates it with large spot

  10. [Mind-body approach in the area of preventive medicine: focusing on relaxation and meditation for stress management].

    Science.gov (United States)

    Kang, Yunesik

    2010-09-01

    Emotional support and a stress management program should be simultaneously provided to clients as effective preventive services for healthy behavioral change. This study was conducted to review various relaxation and meditation intervention methods and their applicability for a preventive service program. The author of this paper tried to find various relaxation and meditation programs through a literature review and program searching and to introduce them. The 'Relaxation Response' and 'Mindfulness Based Stress Reduction (MBSR)' are the most the widely used meditative programs in mainstream medical systems. Abdominal breathing, Progressive Musclular Relaxation (PMR), Relaxative Imagery, Autogenic Training (AT) and Biofeedback are other well-known techniques for relaxation and stress management. I have developed and implemented some programs using these methods. Relaxation and meditation classes for cancer patients and a meditation based stress coping workshop are examples of this program. Relaxation and meditation seem to be good and effective methods for primary, secondary and tertiary preventive service programs. Program development and standardization and further study are needed for more and wider use of the mind-body approach in the preventive service area of medicine.

  11. Kubo formulas for the shear and bulk viscosity relaxation times and the scalar field theory shear τπ calculation

    Science.gov (United States)

    Czajka, Alina; Jeon, Sangyong

    2017-06-01

    In this paper we provide a quantum field theoretical study on the shear and bulk relaxation times. First, we find Kubo formulas for the shear and the bulk relaxation times, respectively. They are found by examining response functions of the stress-energy tensor. We use general properties of correlation functions and the gravitational Ward identity to parametrize analytical structures of the Green functions describing both sound and diffusion mode. We find that the hydrodynamic limits of the real parts of the respective energy-momentum tensor correlation functions provide us with the method of computing both the shear and bulk viscosity relaxation times. Next, we calculate the shear viscosity relaxation time using the diagrammatic approach in the Keldysh basis for the massless λ ϕ4 theory. We derive a respective integral equation which enables us to compute η τπ and then we extract the shear relaxation time. The relaxation time is shown to be inversely related to the thermal width as it should be.

  12. Strain modulations as a mechanism to reduce stress relaxation in laryngeal tissues.

    Science.gov (United States)

    Hunter, Eric J; Siegmund, Thomas; Chan, Roger W

    2014-01-01

    Vocal fold tissues in animal and human species undergo deformation processes at several types of loading rates: a slow strain involved in vocal fold posturing (on the order of 1 Hz or so), cyclic and faster posturing often found in speech tasks or vocal embellishment (1-10 Hz), and shear strain associated with vocal fold vibration during phonation (100 Hz and higher). Relevant to these deformation patterns are the viscous properties of laryngeal tissues, which exhibit non-linear stress relaxation and recovery. In the current study, a large strain time-dependent constitutive model of human vocal fold tissue is used to investigate effects of phonatory posturing cyclic strain in the range of 1 Hz to 10 Hz. Tissue data for two subjects are considered and used to contrast the potential effects of age. Results suggest that modulation frequency and extent (amplitude), as well as the amount of vocal fold overall strain, all affect the change in stress relaxation with modulation added. Generally, the vocal fold cover reduces the rate of relaxation while the opposite is true for the vocal ligament. Further, higher modulation frequencies appear to reduce the rate of relaxation, primarily affecting the ligament. The potential benefits of cyclic strain, often found in vibrato (around 5 Hz modulation) and intonational inflection, are discussed in terms of vocal effort and vocal pitch maintenance. Additionally, elderly tissue appears to not exhibit these benefits to modulation. The exacerbating effect such modulations may have on certain voice disorders, such as muscle tension dysphonia, are explored.

  13. Strain modulations as a mechanism to reduce stress relaxation in laryngeal tissues.

    Directory of Open Access Journals (Sweden)

    Eric J Hunter

    Full Text Available Vocal fold tissues in animal and human species undergo deformation processes at several types of loading rates: a slow strain involved in vocal fold posturing (on the order of 1 Hz or so, cyclic and faster posturing often found in speech tasks or vocal embellishment (1-10 Hz, and shear strain associated with vocal fold vibration during phonation (100 Hz and higher. Relevant to these deformation patterns are the viscous properties of laryngeal tissues, which exhibit non-linear stress relaxation and recovery. In the current study, a large strain time-dependent constitutive model of human vocal fold tissue is used to investigate effects of phonatory posturing cyclic strain in the range of 1 Hz to 10 Hz. Tissue data for two subjects are considered and used to contrast the potential effects of age. Results suggest that modulation frequency and extent (amplitude, as well as the amount of vocal fold overall strain, all affect the change in stress relaxation with modulation added. Generally, the vocal fold cover reduces the rate of relaxation while the opposite is true for the vocal ligament. Further, higher modulation frequencies appear to reduce the rate of relaxation, primarily affecting the ligament. The potential benefits of cyclic strain, often found in vibrato (around 5 Hz modulation and intonational inflection, are discussed in terms of vocal effort and vocal pitch maintenance. Additionally, elderly tissue appears to not exhibit these benefits to modulation. The exacerbating effect such modulations may have on certain voice disorders, such as muscle tension dysphonia, are explored.

  14. The entire mean stress relaxation effects of 0Cr18Ni10Ti piping steel

    International Nuclear Information System (INIS)

    Yang Bing; Zhao Yongxiang

    2005-01-01

    Experimental study is performed on the mean stress relaxation effects of the Chinese new piping material, 0Cr18Ni10Ti steel. Six sets of specimens are respectively fatigued under a strain-controlled mode with the six straining ratios (R ε ) of -1, -0.52, -0.22, 0.029, 0.18, and 0.48 by an improved test method implied with an maximum likelihood statistical principle. The test results reveal that the material exhibits a Masing behaviour and, surprisingly, involves an entire mean stress relaxation. A challenge is then emerging to the traditional same treat of straining ratio and stressing ratio (R σ ) in fatigue analysis and assessment. There is still no effective method to describe this kind of relaxation. However the R ε effects can represent the relaxation effects appropriately by investigation on the material random cyclic stress-strain (σ-ε) relations and strain-life (ε-N) relations with different R ε . The intrinsic randomness of the responses is taken into account on a probabilistic sense. Significant differences are observed of the material cyclic responses under different R ε . For σ-ε relations, the R ε effects act as a decreasing trend to the stress amplitudes with the increasing survival probability and confidence. The strongest effect appears at R ε of 0.029, and a weaker one acts as R ε is far away from zero. For ε-N relations, R ε greater than zero exhibits a positive effect on the fatigue lives of about 1.3 to 1.6 times under a survival probability of 0.999 and a confidence of 95%, while a negative effect is exhibited in case of R ε less than zero. Present work indicates that systematic researches should be made to give a reasonable fatigue prediction in service on a basis of cyclic strain inspection of structures. (authors)

  15. Studying the effect of stress relaxation and creep on lattice strain evolution of stainless steel under tension

    International Nuclear Information System (INIS)

    Wang, H.; Clausen, B.; Tomé, C.N.; Wu, P.D.

    2013-01-01

    Due to relatively long associated count times, in situ strain measurements using neutron diffraction requires periodic interruption of the test to collect the diffraction data by holding either the stress or the strain constant. As a consequence, stress relaxation or strain creep induced by the interrupts is inevitable, especially at loads which are close to the flow stress of the material. An in situ neutron diffraction technique, which consists in performing the diffraction measurements using continuous event-mode data collection while conducting the mechanical loading monotonically with a very slow loading rate, is proposed here to avoid the effects associated with interrupts. The lattice strains in stainless steel under uniaxial tension are measured using the three techniques, and the experimental results are compared to study the effect of stress relaxation and strain creep on the lattice strain measurements. The experimental results are simulated using both the elastic viscoplastic self-consistent (EVPSC) model and the elastic plastic self-consistent (EPSC) model. Both the EVPSC and EPSC models give reasonable predictions for all the three tests, with EVPSC having the added advantage over EPSC that it allows us to address the relaxation and creep effects in the interrupted tests

  16. Stress relaxation behavior and mechanism of AEREX350 and Waspaloy superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuzhou; Dong, Jianxin; Zhang, Maicang; Yao, Zhihao

    2016-12-15

    The relaxation properties of AEREX350 and Waspaloy were studied contrastively at temperatures ranging from 600 °C to 800 °C with the same initial stress 510 MPa. The relationship between the microstructure and relaxation properties was elucidated using scanning and transmission electron microscopy techniques. It was found that the relaxation limit and relaxation stability of the two alloys decreased obviously with the increase of temperature, but the relaxation stability of AEREX350 decreased more slowly compared with Waspaloy. Further investigations show that the relaxation behavior is mainly depended on both precipitate characteristics and its interaction with dislocations. The complex precipitates evolution of AEREX350 alloy leads to a higher relaxation limit at high temperature 800 °C, but more quantity of γ′ in Waspaloy results in a higher relaxation limit at the low temperature of 600 °C. Thus it is suggested that as fastener alloys, Waspaloy is more suitable for low temperature service while AEREX350 is the preferred choice for high temperature service.

  17. Relaxation Time of High-Density Amorphous Ice

    Science.gov (United States)

    Handle, Philip H.; Seidl, Markus; Loerting, Thomas

    2012-06-01

    Amorphous water plays a fundamental role in astrophysics, cryoelectron microscopy, hydration of matter, and our understanding of anomalous liquid water properties. Yet, the characteristics of the relaxation processes taking place in high-density amorphous ice (HDA) are unknown. We here reveal that the relaxation processes in HDA at 110-135 K at 0.1-0.2 GPa are of collective and global nature, resembling the alpha relaxation in glassy material. Measured relaxation times suggest liquid-like relaxation characteristics in the vicinity of the crystallization temperature at 145 K. By carefully relaxing pressurized HDA for several hours at 135 K, we produce a state that is closer to the ideal glass state than all HDA states discussed so far in literature.

  18. Mechanism of laser-induced stress relaxation in cartilage

    Science.gov (United States)

    Sobol, Emil N.; Sviridov, Alexander P.; Omelchenko, Alexander I.; Bagratashvili, Victor N.; Bagratashvili, Nodar V.; Popov, Vladimir K.

    1997-06-01

    The paper presents theoretical and experimental results allowing to discuss and understand the mechanism of stress relaxation and reshaping of cartilage under laser radiation. A carbon dioxide and a Holmium laser was used for treatment of rabbits and human cartilage. We measured temperature, stress, amplitude of oscillation by free and forced vibration, internal friction, and light scattering in the course of laser irradiation. Using experimental data and theoretical modeling of heat and mass transfer in cartilaginous tissue we estimated the values of transformation heat, diffusion coefficients and energy activation for water movement.

  19. X-ray diffraction study of thermal stress relaxation in ZnO films deposited by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Conchon, F. [Institut P' , Universite de Poitiers-Ensma-UPR CNRS 3346, 86962 Futuroscope (France); Renault, P.O., E-mail: pierre.olivier.renault@univ-poitiers.f [Institut P' , Universite de Poitiers-Ensma-UPR CNRS 3346, 86962 Futuroscope (France); Le Bourhis, E.; Krauss, C.; Goudeau, P. [Institut P' , Universite de Poitiers-Ensma-UPR CNRS 3346, 86962 Futuroscope (France); Barthel, E.; Grachev, S. Yu.; Sondergard, E. [Lab. Surface du Verre et Interfaces (SVI), UMR 125, 93303 Aubervilliers (France); Rondeau, V.; Gy, R. [Lab. Recherche de Saint-Gobain (SGR), 93303 Aubervilliers (France); Lazzari, R.; Jupille, J. [Institut des Nanosciences de Paris (INSP), UMR 7588, 75015 Paris (France); Brun, N. [Lab. Physique des Solides (LPS), UMR 8502, 91405 Orsay (France)

    2010-12-30

    X-ray diffraction stress analyses have been performed on two different thin films deposited onto silicon substrate: ZnO and ZnO encapsulated into Si{sub 3}N{sub 4} layers. We showed that both as-deposited ZnO films are in a high compressive stress state. In situ X-ray diffraction measurements inside a furnace revealed a relaxation of the as-grown stresses at temperatures which vary with the atmosphere in the furnace and change with Si{sub 3}N{sub 4} encapsulation. The observations show that Si{sub 3}N{sub 4} films lying on both sides of the ZnO film play an important role in the mechanisms responsible for the stress relaxation during heat treatment. The different temperatures observed for relaxation in ambient and argon atmospheres suggest that the thermally activated stress relaxation may be attributed to a variation of the stoichiometry of the ZnO films. The present observations pave the way to fine tuning of the residual stresses through thermal treatment parameters.

  20. Thermal stress relaxation in magnesium composites during thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Trojanova, Z.; Lukac, P. (Karlova Univ., Prague (Czech Republic)); Kiehn, J.; Kainer, K.U.; Mordike, B.L. (Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany))

    1998-01-01

    It has been shown that the internal friction of Mg - Saffil metal matrix composites can be influenced by thermal stresses, if MMCc are submitted to thermal cycling between room temperature and an upper temperature of cycling. These stresses can be accommodated by generation and motion of dislocations giving the formation of the microplastic zones. The thermal stress relaxation depends on the upper temperature of cycling, the volume fraction of reinforcement and the matrix composition and can result in plastic deformation and strain hardening of the matrix without applied stress. The internal friction measurements can be used for non destructive investigation of processes which influence the mechanical properties. (orig.)

  1. Using Dielectric Relaxation Spectroscopy to Characterize the Glass Transition Time of Polydextrose.

    Science.gov (United States)

    Buehler, Martin G; Kindle, Michael L; Carter, Brady P

    2015-06-01

    Dielectric relaxation spectroscopy was used to characterize the glass transition time, tg , of polydextrose, where the glass transition temperature, Tg , and water activity, aw (relative humidity), were held constant during polydextrose relaxation. The tg was determined from a shift in the peak frequency of the imaginary capacitance spectrum with time. It was found that when the peak frequency reaches 30 mHz, polydextrose undergoes glass transition. Glass transition time, tg , is the time for polydextrose to undergo glass transition at a specific Tg and aw . Results lead to a modified state diagram, where Tg is depressed with increasing aw . This curve forms a boundary: (a) below the boundary, polydextrose does not undergo glass transition and (b) above the boundary, polydextrose rapidly undergoes glass transition. As the boundary curve is specified by a tg value, it can assist in the selection of storage conditions. An important point on the boundary curve is at aw = 0, where Tg0 = 115 °C. The methodology can also be used to calculate the stress-relaxation viscosity of polydextrose as a function of Tg and aw , which is important when characterizing the flow properties of polydextrose initially in powder form. © 2015 Institute of Food Technologists®

  2. Modelling anelastic contribution to nuclear fuel cladding creep and stress relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Tulkki, Ville, E-mail: ville.tulkki@vtt.fi; Ikonen, Timo

    2015-10-15

    In fuel behaviour modelling accurate description of the cladding mechanical response is important for both operational and safety considerations. While accuracy is desired, a certain level of simplicity is needed as both computational resources and detailed information on properties of particular cladding may be limited. Most models currently used in the integral codes divide the mechanical response into elastic and viscoplastic contributions. These have difficulties in describing both creep and stress relaxation, and often separate models for the two phenomena are used. In this paper we implement anelastic contribution to the cladding mechanical model, thus enabling consistent modelling of both creep and stress relaxation. We show that the model based on assumption of viscoelastic behaviour can be used to explain several experimental observations in transient situations and compare the model to published set of creep and stress relaxation experiments performed on similar samples. Based on the analysis presented we argue that the inclusion of anelastic contribution to the cladding mechanical models provides a way to improve the simulation of cladding behaviour during operational transients.

  3. Ion peening and stress relaxation induced by low-energy atom bombardment of covalent solids

    International Nuclear Information System (INIS)

    Koster, Monika; Urbassek, Herbert M.

    2001-01-01

    Using molecular-dynamics simulation, we study the buildup and relaxation of stress induced by low-energy (≤150 eV) atom bombardment of a target material. The effect is brought out most clearly by using an initially compressed specimen. As target material, we employ Si, based on the Tersoff potential. By varying the bond strength in the potential, we can specifically study its effect on damage production and stress changes. We find that in general, stress is relaxed by the atom bombardment; only for low bombarding energies and strong bonds, atom bombardment increases stress. We rationalize this behavior by considering the role of energized atoms and of recoil-implanted target atoms

  4. Inhomogeneous Relaxation of a Molecular Layer on an Insulator due to Compressive Stress

    Science.gov (United States)

    Bocquet, F.; Nony, L.; Mannsfeld, S. C. B.; Oison, V.; Pawlak, R.; Porte, L.; Loppacher, Ch.

    2012-05-01

    We discuss the inhomogeneous stress relaxation of a monolayer of hexahydroxytriphenylene (HHTP) which adopts the rare line-on-line (LOL) coincidence on KCl(001) and forms moiré patterns. The fact that the hexagonal HHTP layer is uniaxially compressed along the LOL makes this system an ideal candidate to discuss the influence of inhomogeneous stress relaxation. Our work is a combination of noncontact atomic force microscopy experiments, density functional theory and potential energy calculations, and a thorough interpretation by means of the Frenkel-Kontorova model. We show that the assumption of a homogeneous molecular layer is not valid for this organic-inorganic heteroepitaxial system since the best calculated energy configuration correlates with the experimental data only if inhomogeneous relaxations of the layer are taken into account.

  5. Characteristics of Viscoelastic Crustal Deformation Following a Megathrust Earthquake: Discrepancy Between the Apparent and Intrinsic Relaxation Time Constants

    Science.gov (United States)

    Fukahata, Yukitoshi; Matsu'ura, Mitsuhiro

    2018-02-01

    The viscoelastic deformation of an elastic-viscoelastic composite system is significantly different from that of a simple viscoelastic medium. Here, we show that complicated transient deformation due to viscoelastic stress relaxation after a megathrust earthquake can occur even in a very simple situation, in which an elastic surface layer (lithosphere) is underlain by a viscoelastic substratum (asthenosphere) under gravity. Although the overall decay rate of the system is controlled by the intrinsic relaxation time constant of the asthenosphere, the apparent decay time constant at each observation point is significantly different from place to place and generally much longer than the intrinsic relaxation time constant of the asthenosphere. It is also not rare that the sense of displacement rate is reversed during the viscoelastic relaxation. If we do not bear these points in mind, we may draw false conclusions from observed deformation data. Such complicated transient behavior can be explained mathematically from the characteristics of viscoelastic solution: for an elastic-viscoelastic layered half-space, the viscoelastic solution is expressed as superposition of three decaying components with different relaxation time constants that depend on wavelength.

  6. Immersed Boundary-Lattice Boltzmann Method Using Two Relaxation Times

    Directory of Open Access Journals (Sweden)

    Kosuke Hayashi

    2012-06-01

    Full Text Available An immersed boundary-lattice Boltzmann method (IB-LBM using a two-relaxation time model (TRT is proposed. The collision operator in the lattice Boltzmann equation is modeled using two relaxation times. One of them is used to set the fluid viscosity and the other is for numerical stability and accuracy. A direct-forcing method is utilized for treatment of immersed boundary. A multi-direct forcing method is also implemented to precisely satisfy the boundary conditions at the immersed boundary. Circular Couette flows between a stationary cylinder and a rotating cylinder are simulated for validation of the proposed method. The method is also validated through simulations of circular and spherical falling particles. Effects of the functional forms of the direct-forcing term and the smoothed-delta function, which interpolates the fluid velocity to the immersed boundary and distributes the forcing term to fixed Eulerian grid points, are also examined. As a result, the following conclusions are obtained: (1 the proposed method does not cause non-physical velocity distribution in circular Couette flows even at high relaxation times, whereas the single-relaxation time (SRT model causes a large non-physical velocity distortion at a high relaxation time, (2 the multi-direct forcing reduces the errors in the velocity profile of a circular Couette flow at a high relaxation time, (3 the two-point delta function is better than the four-point delta function at low relaxation times, but worse at high relaxation times, (4 the functional form of the direct-forcing term does not affect predictions, and (5 circular and spherical particles falling in liquids are well predicted by using the proposed method both for two-dimensional and three-dimensional cases.

  7. An anisotropic linear thermo-viscoelastic constitutive law - Elastic relaxation and thermal expansion creep in the time domain

    Science.gov (United States)

    Pettermann, Heinz E.; DeSimone, Antonio

    2017-09-01

    A constitutive material law for linear thermo-viscoelasticity in the time domain is presented. The time-dependent relaxation formulation is given for full anisotropy, i.e., both the elastic and the viscous properties are anisotropic. Thereby, each element of the relaxation tensor is described by its own and independent Prony series expansion. Exceeding common viscoelasticity, time-dependent thermal expansion relaxation/creep is treated as inherent material behavior. The pertinent equations are derived and an incremental, implicit time integration scheme is presented. The developments are implemented into an implicit FEM software for orthotropic material symmetry under plane stress assumption. Even if this is a reduced problem, all essential features are present and allow for the entire verification and validation of the approach. Various simulations on isotropic and orthotropic problems are carried out to demonstrate the material behavior under investigation.

  8. Time-dependent strains and stresses in a pumpkin balloon

    Science.gov (United States)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    This paper presents a study of pumpkin-shaped superpressure balloons consisting of gores made from a thin polymeric film attached to high stiffness meridional tendons This type of design is being used for the NASA ULDB balloons The gore film shows considerable time-dependent stress relaxation whereas the behaviour of the tendons is essentially time-independent Upon inflation and pressurization the instantaneous i e linear-elastic strain and stress distributions in the film show significantly higher values in the meridional direction However over time and due to the biaxial visco-elastic stress relaxation of the the gore material the em hoop strains increase and the em meridional stresses decrease whereas the em remaining strain and stress components remain substantially unchanged These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission both in terms of the material performance and the overall stability of the shape of the balloon An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter 48 gore pumpkin balloon is presented The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature The results show good correlation with a numerical study using the ABAQUS finite-element package that includes a widely used model of

  9. Residual stress relaxation measurements across interfaces at macro-and micro-scales using slitting and DIC

    Energy Technology Data Exchange (ETDEWEB)

    Blair, A; Daynes, N; Hamilton, D; Horne, G; Hodgson, D Z L; Shterenlikht, A [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Heard, P J; Scott, T B, E-mail: mexas@bristol.ac.u [Interface Analysis Centre, University of Bristol, Bristol BS2 8BS (United Kingdom)

    2009-08-01

    In this paper digital image correlation is used to measure relaxation of residual stresses across an interface. On the macro scale the method is applied to a tri-layer bonded aluminium sample, where the middle layer is in tension and the top and the bottom layers are in compression. High contrast speckle pattern was sprayed onto the surface. The relaxation was done with the slitting saw. Three dimensional image correlation was used. On the micro scale the technique was applied to a heat treated large grain brass loaded in tension. Mechanical and electro polishing was used for surface preparation. A focused ion beam was used for slitting across a grain boundary and for imaging. Grain orientation was measured using electron back-scattering diffraction. Two dimensional image correlation was employed. In all macro- and micro-scale experiments the range of measured relaxation was sub-pixel, almost at the limit of the resolution of the image correlation algorithms. In the macro-scale experiments, the limiting factor was low residual stress, due to low shear strength of the Araldite glue used for bonding. Finite element simulation of the relaxation agreed only qualitatively with the experimental results at both size scales. The methodology is intended for use with inverse methods, i.e. the measured relaxation is applied as the boundary conditions to an appropriate FE model which produces stresses equal to the relaxed residual stresses, but with opposite sign. The main conclusion is that the digital image correlation method could be used to measure relaxation caused by slitting in heterogeneous materials and structures at both macro- and micro-scales. However, the repeatability of the techniques needs to be improved before residual stresses can be determined confidently. Acknowledgments The authors gratefully acknowledge Airbus UK for provision of materials. They thank Dr Richard Burguete, Airbus UK, and Prof Peter Flewitt, Department of Physics, University of Bristol, for

  10. Residual stress relaxation measurements across interfaces at macro-and micro-scales using slitting and DIC

    International Nuclear Information System (INIS)

    Blair, A; Daynes, N; Hamilton, D; Horne, G; Hodgson, D Z L; Shterenlikht, A; Heard, P J; Scott, T B

    2009-01-01

    In this paper digital image correlation is used to measure relaxation of residual stresses across an interface. On the macro scale the method is applied to a tri-layer bonded aluminium sample, where the middle layer is in tension and the top and the bottom layers are in compression. High contrast speckle pattern was sprayed onto the surface. The relaxation was done with the slitting saw. Three dimensional image correlation was used. On the micro scale the technique was applied to a heat treated large grain brass loaded in tension. Mechanical and electro polishing was used for surface preparation. A focused ion beam was used for slitting across a grain boundary and for imaging. Grain orientation was measured using electron back-scattering diffraction. Two dimensional image correlation was employed. In all macro- and micro-scale experiments the range of measured relaxation was sub-pixel, almost at the limit of the resolution of the image correlation algorithms. In the macro-scale experiments, the limiting factor was low residual stress, due to low shear strength of the Araldite glue used for bonding. Finite element simulation of the relaxation agreed only qualitatively with the experimental results at both size scales. The methodology is intended for use with inverse methods, i.e. the measured relaxation is applied as the boundary conditions to an appropriate FE model which produces stresses equal to the relaxed residual stresses, but with opposite sign. The main conclusion is that the digital image correlation method could be used to measure relaxation caused by slitting in heterogeneous materials and structures at both macro- and micro-scales. However, the repeatability of the techniques needs to be improved before residual stresses can be determined confidently. Acknowledgments The authors gratefully acknowledge Airbus UK for provision of materials. They thank Dr Richard Burguete, Airbus UK, and Prof Peter Flewitt, Department of Physics, University of Bristol, for

  11. Effects of Stress and Relaxation on Central Pain Modulation in Chronic Whiplash and Fibromyalgia Patients Compared to Healthy Controls.

    Science.gov (United States)

    Coppieters, Iris; Cagnie, Barbara; Nijs, Jo; van Oosterwijck, Jessica; Danneels, Lieven; De Pauw, Robby; Meeus, Mira

    2016-03-01

    Compelling evidence has demonstrated that impaired central pain modulation contributes to persistent pain in patients with chronic whiplash associated disorders (WAD) and fibromyalgia (FM). However, there is limited research concerning the influence of stress and relaxation on central pain modulation in patients with chronic WAD and FM. The present study aims to investigate the effects of acute cognitive stress and relaxation on central pain modulation in chronic WAD and FM patients compared to healthy individuals. A randomized crossover design was employed. The present study took place at the University of Brussels, the University Hospital Brussels, and the University of Antwerp. Fifty-nine participants (16 chronic WAD patients, 21 FM, 22 pain-free controls) were enrolled and subjected to various pain measurements. Temporal summation (TS) of pain and conditioned pain modulation (CPM) were evaluated. Subsequently, participants were randomly allocated to either a group that received progressive relaxation therapy or a group that performed a battery of cognitive tests (= cognitive stressor). Afterwards, all pain measurements were repeated. One week later participant groups were switched. A significant difference was found between the groups in the change in TS in response to relaxation (P = 0.008) and cognitive stress (P = 0.003). TS decreased in response to relaxation and cognitive stress in chronic WAD patients and controls. In contrast, TS increased after both interventions in FM patients. CPM efficacy decreased in all 3 groups in response to relaxation (P = 0.002) and cognitive stress (P = 0.001). The obtained results only apply for a single session of muscle relaxation therapy and cognitive stress, whereby no conclusions can be made for effects on pain perception and modulation of chronic cognitive stress and long-term relaxation therapies. A single relaxation session as well as cognitive stress may have negative acute effects on pain modulation in patients with

  12. Stress-relaxation tests in the work-hardening regime of tungsten single crystals below 300 K

    International Nuclear Information System (INIS)

    Brunner, D.

    2008-01-01

    The influence of work hardening on the results of stress-relaxation tests was studied for highly pure tungsten single crystals isothermally deformed at four temperatures of 274, 241, 131, and 78 K. A method accounting for strong work hardening on the determination of the strain-rate sensitivity from stress-relaxation tests is introduced by establishing special diagrams of SR tests denoted as YX diagrams

  13. Kubo formulae for the shear and bulk viscosity relaxation times and the scalar field theory shear $\\tau_\\pi$ calculation

    OpenAIRE

    Czajka, Alina; Jeon, Sangyong

    2017-01-01

    In this paper we provide a quantum field theoretical study on the shear and bulk relaxation times. First, we find Kubo formulas for the shear and the bulk relaxation times, respectively. They are found by examining response functions of the stress-energy tensor. We use general properties of correlation functions and the gravitational Ward identity to parametrize analytical structures of the Green functions describing both sound and diffusion mode. We find that the hydrodynamic limits of the r...

  14. Stress-relaxation of zirconium and Zircaloy-4 near to 673 K

    International Nuclear Information System (INIS)

    Rubiolo, G.H.

    1989-01-01

    Stress-relaxation data in polycrystalline -zirconium and Zircaloy-4, between 645 K and 695 K, are reported. The study has been performed at different initial conditions of the material: recrystallized, cold-worked 64% by rolling and stress relieved at 813 K, for 1 h in high vacuum. The results are interpreted in terms of a constitutive equation of plastic deformation based on diffusion controlled motion of jogged screw dislocations and cell-formation. The internal stress field, in the recrystallized material, is assumed to be composed of two terms. A component is generated by the cell walls and is stable during a relaxation run. The other one is generated by the impurities segregated to the mobile dislocations and is strain rate dependent. From fitting of the experimental data to the model, it was possible to estimate: a) the activation energy for self-diffusion; b) the binding energy between the impurity and the dislocation; c) the activation energy for the diffusion of the impurity; d) the concentration of jogs and, e) the concentration of impurities in the crystal. The results obtained seem to indicate that oxygen is responsible for dynamic strain-ageing. It is concluded that, in the temperature region where strain-ageing is active, the mobile dislocations will form cell walls with jogs saturated with oxygen. This can inhibit climb and stop the recovery process in the walls. Furthermore, the strain-rate sensitivity parameter, derived from the proposed model, can explain the changes in curvature found on-the stress-relaxation curves between 298 and 723 K. (Author) [es

  15. On the relation between quasi-static and dynamic stress induced reversible structural relaxation of amorphous alloys

    International Nuclear Information System (INIS)

    Krueger, P.; Stucky, T.; Boewe, M.; Neuhaeuser, H.

    1993-01-01

    Quasi-static stress relaxation and dynamic internal friction measurements of stress induced reversible structural relaxation were performed on the amorphous alloy Fe 40 Ni 40 B 20 . The kinetics can be well described by a stretched exponential Kohlrausch-Williams-Watts quasi-static relaxation. The thermally activated part of the internal friction shows an Arrhenius temperature behaviour for a fixed vibration frequency and an inverse power frequency behaviour for a fixed temperature. The activation energies calculated from the Arrhenius equation and from the frequency shift method are significantly different. In order to explain this discrepancy the relation between the quasi-static and the dynamic descriptions of the reversible relaxation is reexamined. In particular it is shown that these two activation energies are connected by the Kohlrausch exponent of the quasi-static relaxation. (orig.)

  16. Dependence of Brownian and Néel relaxation times on magnetic field strength

    International Nuclear Information System (INIS)

    Deissler, Robert J.; Wu, Yong; Martens, Michael A.

    2014-01-01

    Purpose: In magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS) the relaxation time of the magnetization in response to externally applied magnetic fields is determined by the Brownian and Néel relaxation mechanisms. Here the authors investigate the dependence of the relaxation times on the magnetic field strength and the implications for MPI and MPS. Methods: The Fokker–Planck equation with Brownian relaxation and the Fokker–Planck equation with Néel relaxation are solved numerically for a time-varying externally applied magnetic field, including a step-function, a sinusoidally varying, and a linearly ramped magnetic field. For magnetic fields that are applied as a step function, an eigenvalue approach is used to directly calculate both the Brownian and Néel relaxation times for a range of magnetic field strengths. For Néel relaxation, the eigenvalue calculations are compared to Brown's high-barrier approximation formula. Results: The relaxation times due to the Brownian or Néel mechanisms depend on the magnitude of the applied magnetic field. In particular, the Néel relaxation time is sensitive to the magnetic field strength, and varies by many orders of magnitude for nanoparticle properties and magnetic field strengths relevant for MPI and MPS. Therefore, the well-known zero-field relaxation times underestimate the actual relaxation times and, in particular, can underestimate the Néel relaxation time by many orders of magnitude. When only Néel relaxation is present—if the particles are embedded in a solid for instance—the authors found that there can be a strong magnetization response to a sinusoidal driving field, even if the period is much less than the zero-field relaxation time. For a ferrofluid in which both Brownian and Néel relaxation are present, only one relaxation mechanism may dominate depending on the magnetic field strength, the driving frequency (or ramp time), and the phase of the magnetization relative to the

  17. Macro-mesoscopic Fracture and Strength Character of Pre-cracked Granite Under Stress Relaxation Condition

    Science.gov (United States)

    Liu, Junfeng; Yang, Haiqing; Xiao, Yang; Zhou, Xiaoping

    2018-05-01

    The fracture characters are important index to study the strength and deformation behavior of rock mass in rock engineering. In order to investigate the influencing mechanism of loading conditions on the strength and macro-mesoscopic fracture character of rock material, pre-cracked granite specimens are prepared to conduct a series of uniaxial compression experiments. For parts of the experiments, stress relaxation tests of different durations are also conducted during the uniaxial loading process. Furthermore, the stereomicroscope is adopted to observe the microstructure of the crack surfaces of the specimens. The experimental results indicate that the crack surfaces show several typical fracture characters in accordance with loading conditions. In detail, some cleavage fracture can be observed under conventional uniaxial compression and the fractured surface is relatively rough, whereas as stress relaxation tests are attached, relative slip trace appears between the crack faces and some shear fracture starts to come into being. Besides, the crack faces tend to become smoother and typical terrace structures can be observed in local areas. Combining the macroscopic failure pattern of the specimens, it can be deduced that the duration time for the stress relaxation test contributes to the improvement of the elastic-plastic strain range as well as the axial peak strength for the studied material. Moreover, the derived conclusion is also consistent with the experimental and analytical solution for the pre-peak stage of the rock material. The present work may provide some primary understanding about the strength character and fracture mechanism of hard rock under different engineering environments.

  18. Stress growth and relaxation of dendritically branched macromolecules in shear and uniaxial extension

    DEFF Research Database (Denmark)

    Huang, Qian; Costanzo, S.; Das, C.

    2017-01-01

    stress relaxation, suggesting a strong ‘elastic memory’ of the material. These results are 2 described by BoB semi-quantitatively, both in linear and nonlinear shear and extensional regimes. Given the fact that the segments between branch points are less than 3 entanglements long, this is a very...... of stretches of different parts of the polymer appears to be the origin of the slower subsequent relaxation of extensional stress. Concerning the latter effect, for which predictions are not available, it is hoped that the present experimental findings and proposed framework of analysis will motivate further...

  19. In-reactor stress relaxation of selected metals and alloys at low temperatures

    International Nuclear Information System (INIS)

    Causey, A.R.; Carpenter, G.J.C.; MacEwen, S.R.

    1980-01-01

    Stress relaxation of bent beam specimens under fast neutron irradiation at 340 and 570 K has been studied for a range of materials, as follows: several stainless steels, a maraged steel, AISI-4140, Ni, Inconel X-750, Ti, Zircaloy-2, Zr-2.5% Nb and Zr 3 Al. All specimens were in the annealed or solution-treated condition. Where comparisons were possible, the creep coefficients derived from the stress relaxation tests were found to be consistent with other studies of irradiation-induced creep. The steels showed the lowest rates of stress relaxation; the largest rates were observed with Zr-Nb, Ti and Ni. For most materials, the creep coefficient at 340 K was equal to or greater than that at 570 K. Such weak temperature dependence is not easily reconciled with existing models of irradiation creep based on dislocation climb, such as SIPA or climb-induced glide. Rate theory calculations indicate that because the vacancy mobility becomes very low at the lower temperature, recombination should dominate point defect annealing, resulting in a very low creep rate compared to that at the higher temperature. It is shown that the weak temperature dependence observed experimentally cannot be accounted for by the inclusion of more mobile divacancies in the calculation. (orig.)

  20. In-reactor stress relaxation of selected metals and alloys at low temperatures

    International Nuclear Information System (INIS)

    Causey, A.R.; Carpenter, G.J.C.; MacEwen, S.R.

    1980-01-01

    Stress relaxation of bent beam specimens under fast neutron irradiation at 340 and 570 K has been studied for a range of materials, as follows: several stainless steels, a maraged steel, AISI-4140, Ni, Inconel X-750, Ti, Zircaloy-2, Zr-2.5% Nb and Zr 3 A1. All specimens were in the annealed or solution-treated condition. Where comparisons were possible, the creep coefficients derived from the stress relaxation tests were found to be consistent with other studies of irradiation-induced creep. The steels showed the lowest rates of stress relaxation; the largest rates were observed with Zr-Nb, Ti and Ni. For most materials, the creep coefficient at 340 K was equal to or greater than that at 570 K. Such weak temperature dependence is not easily reconciled with existing models of irradiation creep based on dislocation climb, such as SIPA or climb-induced glide. Rate theory calculations indicate that because the vacancy mobility becomes very low at the lower temperature, recombination should dominate point defect annealing, resulting in a very low creep rate compared to that at the higher temperature. It is shown that the weak temperature dependence observed experimentally cannot be accounted for by the inclusion of more mobile divacancies in the calculation. (author)

  1. Relaxation characteristics of hastelloy X

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko

    1980-02-01

    Relaxation diagrams of Hastelloy X (relaxation curves, relaxation design diagrams, etc.) were generated from the creep constitutive equation of Hastelloy X, using inelastic stress analysis code TEPICC-J. These data are in good agreement with experimental relaxation data of ORNL-5479. Three typical inelastic stress analyses were performed for various relaxation behaviors of the high-temperature structures. An attempt was also made to predict these relaxation behaviors by the relaxation curves. (author)

  2. Phase-Field Relaxation of Topology Optimization with Local Stress Constraints

    DEFF Research Database (Denmark)

    Stainko, Roman; Burger, Martin

    2006-01-01

    inequality constraints. We discretize the problem by finite elements and solve the arising finite-dimensional programming problems by a primal-dual interior point method. Numerical experiments for problems with local stress constraints based on different criteria indicate the success and robustness......We introduce a new relaxation scheme for structural topology optimization problems with local stress constraints based on a phase-field method. In the basic formulation we have a PDE-constrained optimization problem, where the finite element and design analysis are solved simultaneously...

  3. A moving mesh method with variable relaxation time

    OpenAIRE

    Soheili, Ali Reza; Stockie, John M.

    2006-01-01

    We propose a moving mesh adaptive approach for solving time-dependent partial differential equations. The motion of spatial grid points is governed by a moving mesh PDE (MMPDE) in which a mesh relaxation time \\tau is employed as a regularization parameter. Previously reported results on MMPDEs have invariably employed a constant value of the parameter \\tau. We extend this standard approach by incorporating a variable relaxation time that is calculated adaptively alongside the solution in orde...

  4. Measurement accuracy of a stressed contact lens during its relaxation period

    Science.gov (United States)

    Compertore, David C.; Ignatovich, Filipp V.

    2018-02-01

    We examine the dioptric power and transmitted wavefront of a contact lens as it releases its handling stresses. Handling stresses are introduced as part of the contact lens loading process and are common across all contact lens measurement procedures and systems. The latest advances in vision correction require tighter quality control during the manufacturing of the contact lenses. The optical power of contact lenses is one of the critical characteristics for users. Power measurements are conducted in the hydrated state, where the lens is resting inside a solution-filled glass cuvette. In a typical approach, the contact lens must be subject to long settling times prior to any measurements. Alternatively, multiple measurements must be averaged. Apart from potential operator dependency of such approach, it is extremely time-consuming, and therefore it precludes higher rates of testing. Comprehensive knowledge about the settling process can be obtained by monitoring multiple parameters of the lens simultaneously. We have developed a system that combines co-aligned a Shack-Hartmann transmitted wavefront sensor and a time-domain low coherence interferometer to measure several optical and physical parameters (power, cylinder power, aberrations, center thickness, sagittal depth, and diameter) simultaneously. We monitor these parameters during the stress relaxation period and show correlations that can be used by manufacturers to devise methods for improved quality control procedures.

  5. A Microstructural Study of Load Distribution in Cartilage: A Comparison of Stress Relaxation versus Creep Loading

    Directory of Open Access Journals (Sweden)

    Ashvin Thambyah

    2015-01-01

    Full Text Available The compressive response of articular cartilage has been extensively investigated and most studies have focussed largely on the directly loaded matrix. However, especially in relation to the tissue microstructure, less is known about load distribution mechanisms operating outside the directly loaded region. We have addressed this issue by using channel indentation and DIC microscopy techniques that provide visualisation of the matrix microstructural response across the regions of both direct and nondirect loading. We hypothesise that, by comparing the microstructural response following stress relaxation and creep compression, new insights can be revealed concerning the complex mechanisms of load bearing. Our results indicate that, with stress relaxation, the initial mode of stress decay appears to primarily involve relaxation of the surface layer. In the creep loading protocol, the main mode of stress release is a lateral distribution of load via the mid matrix. While these two modes of stress redistribution have a complex relationship with the zonally differentiated tissue microstructure and the depth of strain, four mechanostructural mechanisms are proposed to describe succinctly the load responses observed.

  6. Separating the Influence of Environment from Stress Relaxation Effects on Dwell Fatigue Crack Growth

    Science.gov (United States)

    Telesman, Jack; Gabb, Tim; Ghosn, Louis J.

    2016-01-01

    Seven different microstructural variations of LSHR were produced by controlling the cooling rate and the subsequent aging and thermal exposure heat treatments. Through cyclic fatigue crack growth testing performed both in air and vacuum, it was established that four out of the seven LSHR heat treatments evaluated, possessed similar intrinsic environmental resistance to cyclic crack growth. For these four heat treatments, it was further shown that the large differences in dwell crack growth behavior which still persisted, were related to their measured stress relaxation behavior. The apparent differences in their dwell crack growth resistance were attributed to the inability of the standard linear elastic fracture mechanics (LEFM) stress intensity parameter to account for visco-plastic behavior. Crack tip stress relaxation controls the magnitude of the remaining local tensile stresses which are directly related to the measured dwell crack growth rates. It was hypothesized that the environmentally weakened grain boundary crack tip regions fail during the dwells when their strength is exceeded by the remaining local crack tip tensile stresses. It was shown that the classical creep crack growth mechanisms such as grain boundary sliding did not contribute to crack growth, but the local visco-plastic behavior still plays a very significant role by determining the crack tip tensile stress field which controls the dwell crack growth behavior. To account for the influence of the visco-plastic behavior on the crack tip stress field, an empirical modification to the LEFM stress intensity parameter, Kmax, was developed by incorporating into the formulation the remaining stress level concept as measured by simple stress relaxation tests. The newly proposed parameter, Ksrf, did an excellent job in correlating the dwell crack growth rates for the four heat treatments which were shown to have similar intrinsic environmental cyclic fatigue crack growth resistance.

  7. Functional Connectivity During Exposure to Favorite-Food, Stress, and Neutral-Relaxing Imagery Differs Between Smokers and Nonsmokers.

    Science.gov (United States)

    Garrison, Kathleen A; Sinha, Rajita; Lacadie, Cheryl M; Scheinost, Dustin; Jastreboff, Ania M; Constable, R Todd; Potenza, Marc N

    2016-09-01

    Tobacco-use disorder is a complex condition involving multiple brain networks and presenting with multiple behavioral correlates including changes in diet and stress. In a previous functional magnetic resonance imaging (fMRI) study of neural responses to favorite-food, stress, and neutral-relaxing imagery, smokers versus nonsmokers demonstrated blunted corticostriatal-limbic responses to favorite-food cues. Based on other recent reports of alterations in functional brain networks in smokers, the current study examined functional connectivity during exposure to favorite-food, stress, and neutral-relaxing imagery in smokers and nonsmokers, using the same dataset. The intrinsic connectivity distribution was measured to identify brain regions that differed in degree of functional connectivity between groups during each imagery condition. Resulting clusters were evaluated for seed-to-voxel connectivity to identify the specific connections that differed between groups during each imagery condition. During exposure to favorite-food imagery, smokers versus nonsmokers showed lower connectivity in the supramarginal gyrus, and differences in connectivity between the supramarginal gyrus and the corticostriatal-limbic system. During exposure to neutral-relaxing imagery, smokers versus nonsmokers showed greater connectivity in the precuneus, and greater connectivity between the precuneus and the posterior insula and rolandic operculum. During exposure to stress imagery, smokers versus nonsmokers showed lower connectivity in the cerebellum. These findings provide data-driven insights into smoking-related alterations in brain functional connectivity patterns related to appetitive, relaxing, and stressful states. This study uses a data-driven approach to demonstrate that smokers and nonsmokers show differential patterns of functional connectivity during guided imagery related to personalized favorite-food, stress, and neutral-relaxing cues, in brain regions implicated in attention

  8. Relaxation of thermal stress by dislocation motion in passivated metal interconnects

    NARCIS (Netherlands)

    Nicola, L; Van der Giessen, E; Needleman, A

    The development and relaxation of stress in metal interconnects strained by their surroundings (substrate and passivation layers) is predicted by a discrete dislocation analysis. The model is based on a two-dimensional plane strain formulation, with deformation fully constrained in the line

  9. X-ray diffraction study of stress relaxation in cubic boron nitride films grown with simultaneous medium-energy ion bombardment

    International Nuclear Information System (INIS)

    Abendroth, B.; Gago, R.; Eichhorn, F.; Moeller, W.

    2004-01-01

    Relaxation of the intrinsic stress of cubic boron nitride (cBN) thin films has been studied by x-ray diffraction (XRD) using synchrotron light. The stress relaxation has been attained by simultaneous medium-energy ion bombardment (2-10 keV) during magnetron sputter deposition, and was confirmed macroscopically by substrate curvature measurements. In order to investigate the stress-release mechanisms, XRD measurements were performed in in-plane and out-of-plane geometry. The analysis shows a pronounced biaxial state of compressive stress in the cBN films grown without medium-energy ion bombardment. This stress is partially released during the medium-energy ion bombardment. It is suggested that the main path for stress relaxation is the elimination of strain within the cBN grains due to annealing of interstitials

  10. The shear and bulk relaxation times from the general correlation functions

    Science.gov (United States)

    Czajka, Alina; Jeon, Sangyong

    2017-11-01

    In this paper we present two quantum field theoretical analyses on the shear and bulk relaxation times. First, we discuss how to find Kubo formulas for the shear and the bulk relaxation times. Next, we provide results on the shear viscosity relaxation time obtained within the diagrammatic approach for the massless λϕ4 theory.

  11. Stress Management for Special Educators: The Self-Administered Tool for Awareness and Relaxation (STAR)

    Science.gov (United States)

    Williams, Krista; Poel, Elissa Wolfe

    2006-01-01

    The Self-Administered Tool for Awareness and Relaxation (STAR) is a stress management strategy designed to facilitate awareness of the physical, mental, emotional, and physiological effects of stress through the interconnectedness of the brain, body, and emotions. The purpose of this article is to present a stress-management model for teachers,…

  12. The effect of progressive muscle relaxation and guided imagery on stress, anxiety, and depression of pregnant women referred to health centers.

    Science.gov (United States)

    Nasiri, Saeideh; Akbari, Hossein; Tagharrobi, Leila; Tabatabaee, Akram Sadat

    2018-01-01

    If anxiety and depression do not detect in pregnant women, they may cause complications for the mother, child, and family, including postpartum depression. With regard to the administrative capability of relaxation in health centers, this study was conducted to determine the effect of progressive muscle relaxation and guided imagery on stress, anxiety, and depression in pregnant women. This randomized clinical trial was conducted on pregnant women in the city of Kashan at 28-36 weeks. At the onset of the study, demographic questionnaire, Edinburgh Depression Scale, and Depression, Anxiety, and Stress Scale-21 (DASS-21) were completed. Providing obtaining score of mild-to-moderate in the stress, anxiety, and depression scale and score of 10 or higher in Edinburgh Depression Scale, individuals were divided randomized to the intervention group ( n = 33) and control group ( n = 33). DASS-21 was again completed in the 4 th -7 th weeks of beginning of the study by all women. Analysis of variance with repeated measures indicated significant differences in mean of scores of stress, anxiety, and depression at three different times in relaxation group ( P pregnancy outcomes.

  13. Adsorption of phospholipids at oil/water interfaces during emulsification is controlled by stress relaxation and diffusion.

    Science.gov (United States)

    Hildebrandt, Ellen; Nirschl, Hermann; Kok, Robbert Jan; Leneweit, Gero

    2018-05-16

    Adsorption of phosphatidylcholines at oil/water interfaces strongly deviates from spread monolayers at air/water surfaces. Understanding its nature and consequences could vastly improve applications in medical nanoemulsions and biotechnologies. Adsorption kinetics at interfaces of water with different oil phases were measured by profile analysis tensiometry. Adsorption kinetics for 2 different phospholipids, DPPC and POPC, as well as 2 organic phases, squalene and squalane, show that formation of interfacial monolayers is initially dominated by stress-relaxation in the first minutes. Diffusion only gradually contributes to a decrease in interfacial tension at later stages of time and higher film pressures. The results can be applied for the optimization of emulsification protocols using mechanical treatments. Emulsions using phospholipids with unsaturated fatty acids are dominated much more strongly by stress-relaxation and cover interfaces very fast compared to those with saturated fatty acids. In contrast, phospholipid layers consisting of saturated fatty acids converge faster towards the equilibrium than those with unsaturated fatty acids.

  14. Stress Relaxation Effects in TiNi SMA During Superelastic Deformation: Experiment and Constitutive Model

    Science.gov (United States)

    Pieczyska, Elżbieta A.; Kowalewski, Zbigniew L.; Dunić, Vladimir Lj.

    2017-12-01

    This paper presents an investigation of thermomechanical effects related to the phenomena of stress relaxation occurring in TiNi SMA subjected to modified program of displacement-controlled tension. The deformation data were taken from testing machine, whereas the temperature changes accompanying the exothermic/endothermic martensite forward/reverse transformation were measured by infrared camera. At the advanced stages of the transformations, the strain was kept constant for a few minutes and the SMA load and temperature were recorded continuously. As a consequence, the stress and temperature changed significantly during the loading stops. A large stress drop, caused by the transformation, was observed during the relaxation stage in both courses of the SMA loading and unloading. Moreover, the non-uniform temperature distribution, reflecting macroscopically inhomogeneous transformation, lapsed while the strain was kept constant, yet restarted at the end of the relaxation stop and developed at the reloading stage. Along with the experimental results, the mechanical and thermal responses induced by the transformation were obtained by 3D coupled thermomechanical numerical analysis, realized in partitioned approach. Latent heat production was correlated with an amount of the martensitic volume fraction. The stress and temperature drops recorded during the experiment were satisfactorily reproduced by the model proposed for the SMA thermomechanical coupling.

  15. Stress relaxation in tempered glass caused by heat soak testing

    DEFF Research Database (Denmark)

    Schneider, Jens; Hilcken, Jonas; Aronen, Antti

    2016-01-01

    Heat soak testing of tempered glass is a thermal process required after the tempering process itself to bring glasses of commercial soda-lime-silica-glass to failure that are contaminated with nickel sulphide inclusions, diameter 50 mm to 500 mm typically. Thus, the tests avoid a so-called "spont...... of commercial soda-lime-silica glass, it causes stress relaxation in tempered glass and the fracture pattern of the glass changes accordingly, especially thin glasses are affected. Based on the Tool-Narayanaswamy-Model, this paper comprises the theoretical background of the stress...

  16. Study on the residual stress relaxation in girth-welded steel pipes under bending load using diffraction methods

    International Nuclear Information System (INIS)

    Hempel, Nico; Nitschke-Pagel, Thomas; Dilger, Klaus

    2017-01-01

    This research is dedicated to the experimental investigation of the residual stress relaxation in girth-welded pipes due to quasi-static bending loads. Ferritic-pearlitic steel pipes are welded with two passes, resulting in a characteristic residual stress state with high tensile residual stresses at the weld root. Also, four-point bending is applied to generate axial load stress causing changes in the residual stress state. These are determined both on the outer and inner surfaces of the pipes, as well as in the pipe wall, using X-ray and neutron diffraction. Focusing on the effect of tensile load stress, it is revealed that not only the tensile residual stresses are reduced due to exceeding the yield stress, but also the compressive residual stresses for equilibrium reasons. Furthermore, residual stress relaxation occurs both parallel and perpendicular to the applied load stress.

  17. A Qualitative Analysis of Stress and Relaxation Themes Contributing to Burnout in First-Year Psychiatry and Medicine Residents.

    Science.gov (United States)

    Benson, Nicole M; Chaukos, Deanna; Vestal, Heather; Chad-Friedman, Emma F; Denninger, John W; Borba, Christina P C

    2018-05-14

    Qualitative research on trainee well-being can add nuance to the understanding of propagators of burnout, and the role for interventions aimed at supporting well-being. This qualitative study was conducted to identify (i) situations and environments that cause stress for trainees, (ii) stress-reducing activities that trainees utilize, and (iii) whether trainees who report distress (high burnout and depression scores) describe different stressors and relaxation factors than those who do not. The study was conducted with a convenience sample of first-year medicine and psychiatry residents at a large urban teaching hospital. Participants were asked to complete electronic stress and relaxation diaries daily for 1 week. Diary entries were coded for recurrent themes. Participants were screened for burnout and depression. Codes were compared by subgroup based on baseline burnout and depression status to elucidate if specific themes emerged in these subgroups. Study sample included 51 interns. Sixteen (16/50, 32%) screened positive for burnout and three (3/50, 14%) had a positive depression screen. The most common stressors related to aspects of the learning environment, compounded by feeling under-equipped, overwhelmed, or out of time. The majority of relaxation activities involved social connection, food, other comforts, and occurred outside of the hospital environment. This study reveals that interns (regardless of burnout or depression screen) identify stressors that derive primarily from organizational, interpersonal, and cultural experiences of the learning environment; whereas relaxation themes are diversely represented across realms (home, leisure, social, health), though emphasize activities that occur outside of the work place.

  18. The Effect of Progressive Muscle Relaxation on The Occupational Stress of Nurses in Critical Care Units

    Directory of Open Access Journals (Sweden)

    Pegah Matourypour

    2012-10-01

    Full Text Available Background and objective: In the nursing profession, there are numerous factors which altogether cause occupational stress and as a result occupational exhaustion in nurses and decrease the quality of patient care. Regarding the importance of this issue which influences the health indices of the society, this study investigates the effect of progressive muscle relaxation on the occupational stress of nurses.Materials and Methods: This semi-experimental and before-after study was conducted using progressive muscle relaxation intervention on 33 nurses in special treatment (ICU and CCU and emergency units through simple sampling in Yazd in 2012. To assess occupational stress,Toft-Anderson questionnaire was used. The procedure of applying relaxation in a practical way was given to nurses in pamphlets and questionnaires were filled before and two weeks after the intervention. Analysis was done using SPSS.16 software and T-test.Results: The average total score of stress in nurses before and after the intervention was determined as – 28.12±43.74 and 52.12±04.72 respectively and this difference was not statistically significant (39.0>p. However, in the dimensions of nurses’ workload (/0>p 03 and t=2.27 and patients’ suffering and death, these scores were significantly different (0001.0>p and t=3.94.Conclusion: This study showed that applying progressive muscle relaxation technique as a method of emotion-focused coping cannot be effective in the reduction of occupational stress in nurses.

  19. Spin-relaxation time in the impurity band of wurtzite semiconductors

    Science.gov (United States)

    Tamborenea, Pablo I.; Wellens, Thomas; Weinmann, Dietmar; Jalabert, Rodolfo A.

    2017-09-01

    The spin-relaxation time for electrons in the impurity band of semiconductors with wurtzite crystal structure is determined. The effective Dresselhaus spin-orbit interaction Hamiltonian is taken as the source of the spin relaxation at low temperature and for doping densities corresponding to the metallic side of the metal-insulator transition. The spin-flip hopping matrix elements between impurity states are calculated and used to set up a tight-binding Hamiltonian that incorporates the symmetries of wurtzite semiconductors. The spin-relaxation time is obtained from a semiclassical model of spin diffusion, as well as from a microscopic self-consistent diagrammatic theory of spin and charge diffusion in doped semiconductors. Estimates are provided for particularly important materials. The theoretical spin-relaxation times compare favorably with the corresponding low-temperature measurements in GaN and ZnO. For InN and AlN we predict that tuning of the spin-orbit coupling constant induced by an external potential leads to a potentially dramatic increase of the spin-relaxation time related to the mechanism under study.

  20. Hardening and stress relaxation during repeated heating of 15Kh2MFA and 15Kh2NMFA steels welded joints

    International Nuclear Information System (INIS)

    Zubchenko, A.S.; Suslova, E.A.

    1986-01-01

    Results of investigation of temperature-time conditions of hardening of welded joints of 15Kh2MFA and 15Kh2NMFA steels and their relaxation resistance, effect of metal structure of imitated heat affected zone (HAZ) on intensity of precipitation hardening at repeated heating are presented as well as the results of the process of relaxation of residual stresses at welded joints samples heating carried out by automatic welding under the flux with the use of adding materials and technology of manufacturing of vessels of WWER-440 and WWER-1000 reactors. Peculiarities of the hardening at repeated heating of the HAZ metal imitated at these steels. Precipitation hardening of overheated 15Kh2MFA steel is connected with precipitations at repeated heating of carbides of the M 7 C 3 , M 3 C and VC type. Stress relaxation in welded joints runs more intensively at the initial stage of repeated heating, i.e. during the same period of the process of dispersed carbide precipitations

  1. Strain Relaxation and Vacancy Creation in Thin Platinum Films

    International Nuclear Information System (INIS)

    Gruber, W.; Chakravarty, S.; Schmidt, H.; Baehtz, C.; Leitenberger, W.; Bruns, M.; Kobler, A.; Kuebel, C.

    2011-01-01

    Synchrotron based combined in situ x-ray diffractometry and reflectometry is used to investigate the role of vacancies for the relaxation of residual stress in thin metallic Pt films. From the experimentally determined relative changes of the lattice parameter a and of the film thickness L the modification of vacancy concentration and residual strain was derived as a function of annealing time at 130 deg. C. The results indicate that relaxation of strain resulting from compressive stress is accompanied by the creation of vacancies at the free film surface. This proves experimentally the postulated dominant role of vacancies for stress relaxation in thin metal films close to room temperature.

  2. High Temperature Uniaxial Compression and Stress-Relaxation Behavior of India-Specific RAFM Steel

    Science.gov (United States)

    Shah, Naimish S.; Sunil, Saurav; Sarkar, Apu

    2018-05-01

    India-specific reduced activity ferritic martensitic steel (INRAFM), a modified 9Cr-1Mo grade, has been developed by India as its own structural material for fabrication of the Indian Test Blanket Module (TBM) to be installed in the International Thermonuclear Energy Reactor (ITER). The extensive study on mechanical and physical properties of this material has been currently going on for appraisal of this material before being put to use in the ITER. High temperature compression, stress-relaxation, and strain-rate change behavior of the INRAFM steel have been investigated. The optical microscopic and scanning electron microscopic characterizations were carried out to observe the microstructural changes that occur during uniaxial compressive deformation test. Comparable true plastic stress values at 300 °C and 500 °C and a high drop in true plastic stress at 600 °C were observed during the compression test. Stress-relaxation behaviors were investigated at 500 °C, 550 °C, and 600 °C at a strain rate of 10-3 s-1. The creep properties of the steel at different temperatures were predicted from the stress-relaxation test. The Norton's stress exponent (n) was found to decrease with the increasing temperature. Using Bird-Mukherjee-Dorn relationship, the temperature-compensated normalized strain rate vs stress was plotted. The stress exponent (n) value of 10.05 was obtained from the normalized plot. The increasing nature of the strain rate sensitivity (m) with the test temperature was found from strain-rate change test. The low plastic stability with m 0.06 was observed at 600 °C. The activation volume (V *) values were obtained in the range of 100 to 300 b3. By comparing the experimental values with the literature, the rate-controlling mechanisms at the thermally activated region of high temperature were found to be the nonconservative movement of jogged screw dislocations and thermal breaking of attractive junctions.

  3. NMR relaxation times of natural rubber latex

    International Nuclear Information System (INIS)

    Harun, S.; Aziz, H.; Basir, Z.

    1994-01-01

    NMR relaxation times T sub 1 and T sub 2 of natural rubber latex have been measured at 25 degree C on a pulsed NMR spectrometer. The work focuses on the variation of the relaxation times with the amount of water content from 0% to 50%. The water content was adjusted by centrifuging and removing a certain amount of water from the sample. The data were analysed using a biexponential fitting procedure which yields simultaneously either T sub 1a and T sub 1b or T sub 2a and T sub 2b. The amount of solid was compared with the known amount of dry rubber content

  4. Kinetics of the stress induced phase transition in quartz by real-time neutron scattering

    International Nuclear Information System (INIS)

    Gibhardt, H.; Eckold, G.; Guethoff, F.

    1999-01-01

    Complete text of publication follows. The stability regime of the incommensurate phase of quartz is influenced by uniaxial stress. Hence, the phase transition can be induced under isothermal conditions by the application of external mechanical forces. Using real-time neutron scattering the time evolution of structural changes is investigated id detail during stress variations. The time dependent behaviour of the satellite reflection is compared with that one of the fundamental Bragg reflection which - via primary extinction - gives information about the perfection of the crystal. On increasing stress the perfection of the lattice is destroyed immediately while the modulated structure is built up with a delay of about 1 s. Decreasing the stress leads to a reverse behaviour. Moreover, there is evidence that under periodical load residual non-relaxed strain fields survive leading to a different temperature dependence as compared to static conditions. This finding is compatible with pronounced hysteresis effects observed under cycling stress. It is argued that these residual strains are associated with non-relaxed topological 4-line defects, that drive the structural changes in quartz (1). (author)

  5. Thermodynamic scaling of α-relaxation time and viscosity stems from the Johari-Goldstein β-relaxation or the primitive relaxation of the coupling model.

    Science.gov (United States)

    Ngai, K L; Habasaki, J; Prevosto, D; Capaccioli, S; Paluch, Marian

    2012-07-21

    By now it is well established that the structural α-relaxation time, τ(α), of non-associated small molecular and polymeric glass-formers obey thermodynamic scaling. In other words, τ(α) is a function Φ of the product variable, ρ(γ)/T, where ρ is the density and T the temperature. The constant γ as well as the function, τ(α) = Φ(ρ(γ)/T), is material dependent. Actually this dependence of τ(α) on ρ(γ)/T originates from the dependence on the same product variable of the Johari-Goldstein β-relaxation time, τ(β), or the primitive relaxation time, τ(0), of the coupling model. To support this assertion, we give evidences from various sources itemized as follows. (1) The invariance of the relation between τ(α) and τ(β) or τ(0) to widely different combinations of pressure and temperature. (2) Experimental dielectric and viscosity data of glass-forming van der Waals liquids and polymer. (3) Molecular dynamics simulations of binary Lennard-Jones (LJ) models, the Lewis-Wahnström model of ortho-terphenyl, 1,4 polybutadiene, a room temperature ionic liquid, 1-ethyl-3-methylimidazolium nitrate, and a molten salt 2Ca(NO(3))(2)·3KNO(3) (CKN). (4) Both diffusivity and structural relaxation time, as well as the breakdown of Stokes-Einstein relation in CKN obey thermodynamic scaling by ρ(γ)/T with the same γ. (5) In polymers, the chain normal mode relaxation time, τ(N), is another function of ρ(γ)/T with the same γ as segmental relaxation time τ(α). (6) While the data of τ(α) from simulations for the full LJ binary mixture obey very well the thermodynamic scaling, it is strongly violated when the LJ interaction potential is truncated beyond typical inter-particle distance, although in both cases the repulsive pair potentials coincide for some distances.

  6. Stress relaxation experiments on a lamellar polystyrene-polyisoprene diblock copolymer melt

    DEFF Research Database (Denmark)

    Holmqvist, P.; Castelletto, V.; Hamley, I.W.

    2001-01-01

    The non-linear rheology of the lamellar phase of a polystyrene-polyisoprene diblock copolymer is studied by oscillatory shear experiments. The relaxation of the shear modulus, G(t, gamma) is studied as a function of strain amplitude, gamma, up to large amplitude strains, gamma = 100%. The decay...... of G(t, gamma) is analysed using the model-independent CONTIN inverse Laplace transform algorithm to obtain a series of relaxation times, which reveals multiple relaxation processes. The timescale for the fastest relaxation processes is compared to those previously observed for diblock copolymer melts...... via dynamic light scattering experiments. The slowest relaxation process may be related to the shear-induced orientation of the lamellae. It is shown that time-strain separability G(t, gamma)= G(t)h(gamma) can be applied, and the damping function h(gamma) is consistent with a strongly strain...

  7. Idiosyncratic reality claims, relaxation dispositions, and ABC relaxation theory: happiness, literal christianity, miraculous powers, metaphysics, and the paranormal.

    Science.gov (United States)

    Smith, Jonathan C; Karmin, Aaron D

    2002-12-01

    This study examined idiosyncratic reality claims, that is, irrational or paranormal beliefs often claimed to enhance relaxation and happiness and reduce stress. The Smith Idiosyncratic Reality Claims Inventory and the Smith Relaxation Dispositions Inventory (which measures relaxation and stress dispositions, or enduring states of mind frequently associated with relaxation or stress) were given to 310 junior college student volunteers. Principal components factor analysis with varimax rotation identified five idiosyncratic reality claim factors: belief in Literal Christianity; Magic; Space Aliens: After Death experiences; and Miraculous Powers of Meditation, Prayer, and Belief. No factor correlated with increased relaxation dispositions Peace, Energy, or Joy, or reduced dispositional somatic stress, worry, or negative emotion on the Smith Relaxation Dispositions Inventory. It was concluded that idiosyncratic reality claims may not be associated with reported relaxation, happiness, or stress. In contrast, previous research strongly supported self-affirming beliefs with few paranormal assumptions display such an association.

  8. Parameterization of NMR relaxation curves in terms of logarithmic moments of the relaxation time distribution.

    Science.gov (United States)

    Petrov, Oleg V; Stapf, Siegfried

    2017-06-01

    This work addresses the problem of a compact and easily comparable representation of multi-exponential relaxation data. It is often convenient to describe such data in a few parameters, all being of physical significance and easy to interpret, and in such a way that enables a model-free comparison between different groups of samples. Logarithmic moments (LMs) of the relaxation time constitute a set of parameters which are related to the characteristic relaxation time on the log-scale, the width and the asymmetry of an underlying distribution of exponentials. On the other hand, the calculation of LMs does not require knowing the actual distribution function and is reduced to a numerical integration of original data. The performance of this method has been tested on both synthetic and experimental NMR relaxation data which differ in a signal-to-noise ratio, the sampling range and the sampling rate. The calculation of two lower-order LMs, the log-mean time and the log-variance, has proved robust against deficiencies of the experiment such as scattered data point and incomplete sampling. One may consider using them as such to monitor formation of a heterogeneous structure, e.g., in phase separation, vitrification, polymerization, hydration, aging, contrast agent propagation processes. It may also assist in interpreting frequency and temperature dependences of relaxation, revealing a crossover from slow to fast exchange between populations. The third LM was found to be a less reliable quantity due to its susceptibility to the noise and must be used with caution. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Parameterization of NMR relaxation curves in terms of logarithmic moments of the relaxation time distribution

    Science.gov (United States)

    Petrov, Oleg V.; Stapf, Siegfried

    2017-06-01

    This work addresses the problem of a compact and easily comparable representation of multi-exponential relaxation data. It is often convenient to describe such data in a few parameters, all being of physical significance and easy to interpret, and in such a way that enables a model-free comparison between different groups of samples. Logarithmic moments (LMs) of the relaxation time constitute a set of parameters which are related to the characteristic relaxation time on the log-scale, the width and the asymmetry of an underlying distribution of exponentials. On the other hand, the calculation of LMs does not require knowing the actual distribution function and is reduced to a numerical integration of original data. The performance of this method has been tested on both synthetic and experimental NMR relaxation data which differ in a signal-to-noise ratio, the sampling range and the sampling rate. The calculation of two lower-order LMs, the log-mean time and the log-variance, has proved robust against deficiencies of the experiment such as scattered data point and incomplete sampling. One may consider using them as such to monitor formation of a heterogeneous structure, e.g., in phase separation, vitrification, polymerization, hydration, aging, contrast agent propagation processes. It may also assist in interpreting frequency and temperature dependences of relaxation, revealing a crossover from slow to fast exchange between populations. The third LM was found to be a less reliable quantity due to its susceptibility to the noise and must be used with caution.

  10. Analysis of shot-peening and residual stress relaxation in the nickel-based superalloy RR1000

    International Nuclear Information System (INIS)

    Foss, B.J.; Gray, S.; Hardy, M.C.; Stekovic, S.; McPhail, D.S.; Shollock, B.A.

    2013-01-01

    This work assesses the residual stress relaxation of the nickel-based alloy RR1000 due to thermal exposure and dwell-fatigue loading. A number of different characterization methods, including X-ray residual stress analysis, electron back-scattered diffraction, microhardness testing and focused ion beam secondary electron imaging, contributed to a detailed study of the shot-peened region. Thermal exposure at 700 °C resulted in a large reduction in the residual stresses and work-hardening effects in the alloy, but the subsurface remained in a beneficial compressive state. Oxidizing environments caused recrystallization in the near surface, but did not affect the residual stress-relaxation behaviour. Dwell-fatigue loading caused the residual stresses to return to approximately zero at nearly all depths. This work forms part of an ongoing investigation to determine the effects of shot-peening in this alloy with the motivation to improve the fatigue and oxidation resistance at 700 °C

  11. Hyperpolarized nanodiamond with long spin-relaxation times

    Science.gov (United States)

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E. J.; Reilly, David J.

    2015-10-01

    The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance.

  12. Microstructural sensitivity of 316H austenitic stainless steel: Residual stress relaxation and grain boundary fracture

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B., E-mail: b.chen@bristol.ac.uk [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Flewitt, P.E.J. [Interface Analysis Centre, University of Bristol, 121 St Michael' s Hill, Bristol BS2 8BS (United Kingdom); H.H. Wills Physics Laboratory, School of Physics, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Smith, D.J. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom)

    2010-10-25

    Research highlights: {yields} Triaxial residual macro-stresses have been measured by neutron diffraction. {yields} Rates of stress relaxation are shown to be a function of the microstructure. {yields} Quantification of M{sub 23}C{sub 6} precipitation was undertaken by a novel approach. {yields} Intergranular M{sub 23}C{sub 6} precipitation promotes the potential to intergranular fracture. {yields} Phosphorous segregation further enhances the potential to intergranular fracture. - Abstract: The present work considers the role of thermo-mechanical history on the generation and relaxation of residual stresses, typical of those encountered in Type 316H austenitic stainless steel thick section weldments. A series of thermo-mechanical pre-treatments have been developed and applied to simulate the critical microstructures observed within the heat affected zone of the thick section parent material. The through thickness distributions of the residual macro-stresses in cylindrical specimens have been measured by neutron diffraction and then the rates of the relaxation are shown to be a function of microstructure. The susceptibility to intergranular brittle fracture at a temperature of -196 deg. C is shown to be a function of M{sub 23}C{sub 6} carbide precipitates and phosphorous segregation at the grain boundaries. Finally, the link of the present study to the understanding of the reheat cracking is briefly discussed.

  13. The nonlinear Maxwell-type model for viscoelastoplastic materials: simulation of temperature influence on creep, relaxation and strain-stress curves

    Directory of Open Access Journals (Sweden)

    Andrew V. Khokhlov

    2017-04-01

    restrictions on material functions and their comparison to typical test curves of stable viscoelastoplastic materials. It is proved that the viscosity coefficient and the “modulus of elasticity” of the model and their ratio (i.e. relaxation time of the associated linear Maxwell model should be decreasing functions of temperature. This requirements are proved to provide an adequate qualitative simulation of a dozen basic phenomena expressing an increase of material compliance (a decrease of tangent modulus and yield stress, in particular, strengthening of strain rate sensitivity and acceleration of dissipation, relaxation, creep and plastic strain accumulation with temperature growth.

  14. State of health assessment for lithium batteries based on voltage–time relaxation measure

    International Nuclear Information System (INIS)

    Baghdadi, Issam; Briat, Olivier; Gyan, Philippe; Vinassa, Jean Michel

    2016-01-01

    Highlights: • Calendar aging under different storage conditions for three different battery technologies studied. • Two scenarios of aging under power cycling at two different temperatures investigated for one battery technology. • Relaxation profile of battery voltage just after full charge is highly correlated to aging. • Linear dependence between just after charge open circuit voltage and remaining capacity demonstrated. • No computational method and direct prediction of battery state of health or remaining capacity. - Abstract: The performance of lithium batteries degrades over time. The degradation rate strongly depends on stress conditions during use and even at rest. Thus, accurate and rapid diagnosis of battery state of health (SOH) is necessary for electric vehicle manufacturers to manage their vehicle fleets and warranties. This paper demonstrates a simple method for assessing SOH related to battery energy capability (SOH E ). The presented method is based on the monitoring of U relax over aging. U relax is the open-circuit voltage of the battery measured after full charging and 30 min of rest. A linear dependence between U relax and remaining capacity is noted. This correlation is demonstrated for three different commercial battery technologies (different chemistries) aged under different calendar and power cycling aging conditions. It was determined that the difference between two U relax voltages measured at two different aging states is proportional to SOH E decay. The mean error of the linear model is less than 2% for certain cases. This method could also be a highly useful and rapid tool for a complete battery pack diagnosis.

  15. T2 relaxation time mapping of the cartilage cap of osteochondromas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Kyung; Horn, Paul; Laor, Tal [Cincinnati Children' s Hospital Medical Center, Cincinnati (United States); Daedzinski, Bernard J. [Dept. of Radiology, Children' s Hospital of Philadelphia, University of Pennsylvania, Philadelphia (United States); Kim, Dong Hoon [Dept. of Radiology, Pharmacology, Korea University College of Medicine, Seoul (Korea, Republic of)

    2016-02-15

    Our aim was to evaluate the cartilage cap of osteochondromas using T2 maps and to compare these values to those of normal patellar cartilage, from age and gender matched controls. This study was approved by the Institutional Review Board and request for informed consent was waived. Eleven children (ages 5-17 years) with osteochondromas underwent MR imaging, which included T2-weighted fat suppressed and T2 relaxation time mapping (echo time = 9-99/repetition time = 1500 msec) sequences. Lesion origins were femur (n = 5), tibia (n = 3), fibula (n = 2), and scapula (n = 1). Signal intensity of the cartilage cap, thickness, mean T2 relaxation times, and T2 spatial variation (mean T2 relaxation times as a function of distance) were evaluated. Findings were compared to those of patellar cartilage from a group of age and gender matched subjects. The cartilage caps showed a fluid-like high T2 signal, with mean thickness of 4.8 mm. The mean value of mean T2 relaxation times of the osteochondromas was 264.0 ± 80.4 msec (range, 151.0-366.0 msec). Mean T2 relaxation times were significantly longer than the values from patellar cartilage (39.0 msec) (p < 0.0001). These findings were observed with T2 spatial variation plots across the entire distance of the cartilage cap, with the most pronounced difference in the middle section of the cartilage. Longer T2 relaxation times of the cartilage caps of osteochondromas should be considered as normal, and likely to reflect an increased water content, different microstructure and component.

  16. T2 relaxation time mapping of the cartilage cap of osteochondromas

    International Nuclear Information System (INIS)

    Kim, Hee Kyung; Horn, Paul; Laor, Tal; Daedzinski, Bernard J.; Kim, Dong Hoon

    2016-01-01

    Our aim was to evaluate the cartilage cap of osteochondromas using T2 maps and to compare these values to those of normal patellar cartilage, from age and gender matched controls. This study was approved by the Institutional Review Board and request for informed consent was waived. Eleven children (ages 5-17 years) with osteochondromas underwent MR imaging, which included T2-weighted fat suppressed and T2 relaxation time mapping (echo time = 9-99/repetition time = 1500 msec) sequences. Lesion origins were femur (n = 5), tibia (n = 3), fibula (n = 2), and scapula (n = 1). Signal intensity of the cartilage cap, thickness, mean T2 relaxation times, and T2 spatial variation (mean T2 relaxation times as a function of distance) were evaluated. Findings were compared to those of patellar cartilage from a group of age and gender matched subjects. The cartilage caps showed a fluid-like high T2 signal, with mean thickness of 4.8 mm. The mean value of mean T2 relaxation times of the osteochondromas was 264.0 ± 80.4 msec (range, 151.0-366.0 msec). Mean T2 relaxation times were significantly longer than the values from patellar cartilage (39.0 msec) (p < 0.0001). These findings were observed with T2 spatial variation plots across the entire distance of the cartilage cap, with the most pronounced difference in the middle section of the cartilage. Longer T2 relaxation times of the cartilage caps of osteochondromas should be considered as normal, and likely to reflect an increased water content, different microstructure and component

  17. Stress relaxation under cyclic electron irradiation

    International Nuclear Information System (INIS)

    Bystrov, L.N.; Reznitskij, M.E.

    1990-01-01

    The kinetics of deformation process in a relaxating sample under 2 MeV electron cyclic irradiation was studied experimentally. The Al-Mg alloys with controllable and different (in dislocation density precipitate presence and their character) structure were used in experiments. It was established that after the beam was switched on the deformation rate increased sharply and then, during prolonged irradiation, in a gradual manner. After the switching-off the relaxation rate decreases by jumps up to values close to extrapolated rates of pre-radiation relaxation. The exhibition of these effects with radiation switching-off and switchin-on is dependent on the initial rate of thermal relaxation, the test temperature, the preliminary cold deformation and the dominating deformation dislocation mechanism. The preliminary cold deformation and test temperature elevation slightly decrease the effect of instantaneous relaxation acceleration with the irradiation switch-on. 17 refs., 5 figs

  18. Fractional calculus model of articular cartilage based on experimental stress-relaxation

    Science.gov (United States)

    Smyth, P. A.; Green, I.

    2015-05-01

    Articular cartilage is a unique substance that protects joints from damage and wear. Many decades of research have led to detailed biphasic and triphasic models for the intricate structure and behavior of cartilage. However, the models contain many assumptions on boundary conditions, permeability, viscosity, model size, loading, etc., that complicate the description of cartilage. For impact studies or biomimetic applications, cartilage can be studied phenomenologically to reduce modeling complexity. This work reports experimental results on the stress-relaxation of equine articular cartilage in unconfined loading. The response is described by a fractional calculus viscoelastic model, which gives storage and loss moduli as functions of frequency, rendering multiple advantages: (1) the fractional calculus model is robust, meaning that fewer constants are needed to accurately capture a wide spectrum of viscoelastic behavior compared to other viscoelastic models (e.g., Prony series), (2) in the special case where the fractional derivative is 1/2, it is shown that there is a straightforward time-domain representation, (3) the eigenvalue problem is simplified in subsequent dynamic studies, and (4) cartilage stress-relaxation can be described with as few as three constants, giving an advantage for large-scale dynamic studies that account for joint motion or impact. Moreover, the resulting storage and loss moduli can quantify healthy, damaged, or cultured cartilage, as well as artificial joints. The proposed characterization is suited for high-level analysis of multiphase materials, where the separate contribution of each phase is not desired. Potential uses of this analysis include biomimetic dampers and bearings, or artificial joints where the effective stiffness and damping are fundamental parameters.

  19. Effects of a relaxation training programme on immediate and prolonged stress responses in women with preterm labour.

    Science.gov (United States)

    Chuang, Li-Lan; Lin, Li-Chan; Cheng, Po-Jen; Chen, Chung-Hey; Wu, Shiao-Chi; Chang, Chuan-Lin

    2012-01-01

    This paper is a report of an experimental study of the effects of relaxation-training programme on immediate and prolonged stress responses in women with preterm labour. Hospitalized pregnant women with preterm labour experience developmental and situational stress. However, few studies have been performed on stress management in such women. An experimental pretest and repeated post-test design was used to compare the outcomes for two groups in northern Taiwan from December 2008, to May 2010. A total of 129 women were randomly assigned to an experimental (n = 68) or control (n = 61) group. The experimental group participants were instructed to listen daily to a 13-minute relaxation programme. Measurements involved the stress visual analogue scale, finger temperatures, State Trait Anxiety Inventory, Perceived Stress Scale and Pregnancy-related Anxiety. Two-way analysis of variance and hierarchical linear modelling were used to analyse the group differences. Compared with those in the control group, participants in the experimental group showed immediate improvements in the stress visual analogue scale scores and finger temperatures. The State Trait Anxiety Inventory-State subscale score for the experimental group was significantly lower than that for the control group (P = 0·03). However, no statistically significant differences for the Perceived Stress Scale and Pregnancy-related Anxiety scores were found between the experimental group and the control group. The relaxation-training programme could improve the stress responses of women with preterm labour. © 2011 The Authors. Journal of Advanced Nursing © 2011 Blackwell Publishing Ltd.

  20. Correlation of carrier localization with relaxation time distribution and electrical conductivity relaxation in silver-nanoparticle-embedded moderately doped polypyrrole nanostructures

    Science.gov (United States)

    Biswas, Swarup; Dutta, Bula; Bhattacharya, Subhratanu

    2014-02-01

    The electrical conductivity relaxation in moderately doped polypyrrole and its nanocomposites reinforced with different proportion of silver nanoparticles was investigated in both frequency and time domain. An analytical distribution function of relaxation times is constructed from the results obtained in the frequency domain formalism and is used to evaluate the Kohlrausch-Williams-Watts (KWW) type decay function in the time domain. The thermal evolution of different relaxation parameters was analyzed. The temperature-dependent dc electrical conductivity, estimated from the average conductivity relaxation time is observed to depend strongly on the nanoparticle loading and follows Mott three-dimensional variable range hopping (VRH) conduction mechanism. The extent of charge carrier localization calculated from the VRH mechanism is well correlated to the evidences obtained from the structural characterizations of different nanostructured samples.

  1. The effects of progressive muscular relaxation as a nursing procedure used for those who suffer from stress due to multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Paolla Gabrielle Nascimento Novais

    Full Text Available ABSTRACT Objective: to evaluate the effect of progressive muscle relaxation as a nursing procedure on the levels of stress for sufferers of multiple sclerosis. Method: random clinical trials conducted at the Neurology outpatients unit at a University Hospital. The sample consisted of 40 patients who were being monitored as outpatients (20 in a control group and 20 in an experimental group. The Progressive Muscle Relaxation technique was used. The control variables were collected through interviews that were recorded on forms and on the Perceived Stress Scale that we used. Five meetings were held every fortnight covering a period of eight weeks. The experimental group was advised to carry out daily progressive muscle relaxation activities. After eight weeks of these activities, they were evaluated again to measure their levels of stress. In order to analyze the data used, the software package Statistics for Social Sciences version 19.0 was used. Results: the application of the t test showed a significant reduction in the Perceived Stress Scale scores in the experimental group (p<0.001, which in turn proved that there was a reduction in the levels of stress after the application of the relaxation practic-es. Conclusion: the progressive muscle relaxation activities contributed to the reduction in stress levels for multiple sclerosis suffers and thus can be used in nursing for patients. Clinical Trials Identifier: NCT 02673827.

  2. Modelling of Creep and Stress Relaxation Test of a Polypropylene Microfibre by Using Fraction-Exponential Kernel

    Directory of Open Access Journals (Sweden)

    Andrea Sorzia

    2016-01-01

    Full Text Available A tensile test until breakage and a creep and relaxation test on a polypropylene fibre are carried out and the resulting creep and stress relaxation curves are fit by a model adopting a fraction-exponential kernel in the viscoelastic operator. The models using fraction-exponential functions are simpler than the complex ones obtained from combination of dashpots and springs and, furthermore, are suitable for fitting experimental data with good approximation allowing, at the same time, obtaining inverse Laplace transform in closed form. Therefore, the viscoelastic response of polypropylene fibres can be modelled straightforwardly through analytical methods. Addition of polypropylene fibres greatly improves the tensile strength of composite materials with concrete matrix. The proposed analytical model can be employed for simulating the mechanical behaviour of composite materials with embedded viscoelastic fibres.

  3. Precipitate growth in multi-component systems with stress relaxation by diffusion and creep

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Fischer, F. D.; Riedel, H.; Kozeschnik, E.

    2016-01-01

    Roč. 82, JUL (2016), s. 112-126 ISSN 0749-6419 EU Projects: European Commission(XE) 309916 Institutional support: RVO:68081723 Keywords : Strengthening mechanisms * Phase transformation * Creep * Stress relaxation * Precipitation kinetics Subject RIV: BJ - Thermodynamics Impact factor: 5.702, year: 2016

  4. Body mass index, metabolic factors, and striatal activation during stressful and neutral-relaxing states: an FMRI study.

    Science.gov (United States)

    Jastreboff, Ania M; Potenza, Marc N; Lacadie, Cheryl; Hong, Kwangik A; Sherwin, Robert S; Sinha, Rajita

    2011-02-01

    Stress is associated with alterations in neural motivational-reward pathways in the ventral striatum (VS), hormonal/metabolic changes, and weight increases. The relationship between these different factors is not well understood. We hypothesized that body mass index (BMI) status and hormonal/metabolic factors would be associated with VS activation. We used functional magnetic resonance imaging (fMRI) to compare brain responses of overweight and obese (OW/OB: BMI ≥ 25 kg/m(2): N=27) individuals with normal weight (NW: BMI<18.5-24.9 kg/m(2): N=21) individuals during exposure to personalized stress, alcohol cue, and neutral-relaxing situations using a validated, autobiographical, script-driven, guided-imagery paradigm. Metabolic factors, including fasting plasma glucose (FPG), insulin, and leptin, were examined for their association with VS activation. Consistent with previous studies, stress and alcohol cue exposure each increased activity in cortico-limbic regions. Compared with NW individuals, OW/OB individuals showed greater VS activation in the neutral-relaxing and stress conditions. FPG was correlated with VS activation. Significant associations between VS activation and metabolic factors during stress and relaxation suggest the involvement of metabolic factors in striatal dysfunction in OW/OB individuals. This relationship may contribute to non-homeostatic feeding in obesity.

  5. 4D stress evolution models of the San Andreas Fault System: Investigating time- and depth-dependent stress thresholds over multiple earthquake cycles

    Science.gov (United States)

    Burkhard, L. M.; Smith-Konter, B. R.

    2017-12-01

    4D simulations of stress evolution provide a rare insight into earthquake cycle crustal stress variations at seismogenic depths where earthquake ruptures nucleate. Paleoseismic estimates of earthquake offset and chronology, spanning multiple earthquakes cycles, are available for many well-studied segments of the San Andreas Fault System (SAFS). Here we construct new 4D earthquake cycle time-series simulations to further study the temporally and spatially varying stress threshold conditions of the SAFS throughout the paleoseismic record. Interseismic strain accumulation, co-seismic stress drop, and postseismic viscoelastic relaxation processes are evaluated as a function of variable slip and locking depths along 42 major fault segments. Paleoseismic earthquake rupture histories provide a slip chronology dating back over 1000 years. Using GAGE Facility GPS and new Sentinel-1A InSAR data, we tune model locking depths and slip rates to compute the 4D stress accumulation within the seismogenic crust. Revised estimates of stress accumulation rate are most significant along the Imperial (2.8 MPa/100yr) and Coachella (1.2 MPa/100yr) faults, with a maximum change in stress rate along some segments of 11-17% in comparison with our previous estimates. Revised estimates of earthquake cycle stress accumulation are most significant along the Imperial (2.25 MPa), Coachella (2.9 MPa), and Carrizo (3.2 MPa) segments, with a 15-29% decrease in stress due to locking depth and slip rate updates, and also postseismic relaxation from the El Mayor-Cucapah earthquake. Because stress drops of major strike-slip earthquakes rarely exceed 10 MPa, these models may provide a lower bound on estimates of stress evolution throughout the historical era, and perhaps an upper bound on the expected recurrence interval of a particular fault segment. Furthermore, time-series stress models reveal temporally varying stress concentrations at 5-10 km depths, due to the interaction of neighboring fault

  6. Creep and stress-relaxation in bending, at 673 K, of cold-worked Zircaloy-4

    International Nuclear Information System (INIS)

    Povolo, F.; Marzocca, A.J.

    1981-01-01

    Data of creep and stress-relaxation in bending at 673 K and up to times of the order of 1000 h, in cold-worked Zry-4, are discussed. It is shown that the results, previously interpreted in terms of Hart's phenomenological equation of state for high homologous temperatures, can be described also by an equation of the type E = B(αsigma), which has more precise physical meaning in terms of thermally activated motion of dislocations. Finally, it is shown that the hyperbolic sine representation satisfies the conditions for an equation of state and some dislocation parameters are calculated. (orig.)

  7. From plastic to elastic stress relaxation in highly mismatched SiGe/Si heterostructures

    International Nuclear Information System (INIS)

    Isa, Fabio; Salvalaglio, Marco; Dasilva, Yadira Arroyo Rojas; Jung, Arik; Isella, Giovanni; Erni, Rolf; Niedermann, Philippe; Gröning, Pierangelo; Montalenti, Francesco; Känel, Hans von

    2016-01-01

    We present a detailed experimental and theoretical analysis of the epitaxial stress relaxation process in micro-structured compositionally graded alloys. We focus on the pivotal SiGe/Si(001) system employing patterned Si substrates at the micrometre-size scale to address the distribution of threading and misfit dislocations within the heterostructures. SiGe alloys with linearly increasing Ge content were deposited by low energy plasma enhanced chemical vapour deposition resulting in isolated, tens of micrometre tall 3D crystals. We demonstrate that complete elastic relaxation is achieved by appropriate choice of the Ge compositional grading rate and Si pillar width. We investigate the nature and distribution of dislocations along the [001] growth direction in SiGe crystals by transmission electron microscopy, chemical defect etching and etch pit counting. We show that for 3 μm wide Si pillars and a Ge grading rate of 1.5% μm −1 , only misfit dislocations are present while their fraction is reduced for higher Ge grading rates and larger structures due to dislocation interactions. The experimental results are interpreted with the help of theoretical calculations based on linear elasticity theory describing the competition between purely elastic and plastic stress relaxation with increasing crystal width and Ge compositional grading rate.

  8. Real-time relaxation and kinetics in hot scalar QED: Landau damping

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Vega, H.J. de; Holman, R.; Kumar, S.P.; Pisarski, R.D.

    1998-01-01

    The real time evolution of non-equilibrium expectation values with soft length scales ∼k -1 >(eT) -1 is solved in hot scalar electrodynamics, with a view towards understanding relaxational phenomena in the QGP and the electroweak plasma. We find that the gauge invariant non-equilibrium expectation values relax via power laws to asymptotic amplitudes that are determined by the quasiparticle poles. The long time relaxational dynamics and relevant time scales are determined by the behavior of the retarded self-energy not at the small frequencies, but at the Landau damping thresholds. This explains the presence of power laws and not of exponential decay. In the process we rederive the HTL effective action using non-equilibrium field theory. Furthermore we obtain the influence functional, the Langevin equation and the fluctuation-dissipation theorem for the soft modes, identifying the correlators that emerge in the classical limit. We show that a Markovian approximation fails to describe the dynamics both at short and long times. We find that the distribution function for soft quasiparticles relaxes with a power law through Landau damping. We also introduce a novel kinetic approach that goes beyond the standard Boltzmann equation by incorporating off-shell processes and find that the distribution function for soft quasiparticles relaxes with a power law through Landau damping. We find an unusual dressing dynamics of bare particles and anomalous (logarithmic) relaxation of hard quasiparticles. copyright 1998 The American Physical Society

  9. Relaxation strain measurements in cellular dislocation structures

    International Nuclear Information System (INIS)

    Tsai, C.Y.; Quesnel, D.J.

    1984-01-01

    The conventional picture of what happens during a stress relaxation usually involves imagining the response of a single dislocation to a steadily decreasing stress. The velocity of this dislocation decreases with decreasing stress in such a way that we can measure the stress dependence of the dislocation velocity. Analysis of the data from a different viewpoint enables us to calculate the apparent activation volume for the motion of the dislocation under the assumption of thermally activated glie. Conventional thinking about stress relaxation, however, does not consider the eventual fate of this dislocation. If the stress relaxes to a low enough level, it is clear that the dislocation must stop. This is consistent with the idea that we can determine the stress dependence of the dislocation velocity from relaxation data only for those cases where the dislocation's velocity is allowed to approach zero asymptotically, in short, for those cases where the dislocation never stops. This conflict poses a dilemma for the experimentalist. In real crystals, however, obstacles impede the dislocation's progress so that those dislocations which are stopped at a given stress will probably never resume motion under the influence of the steadily declining stress present during relaxation. Thus one could envision stress relaxation as a process of exhaustion of mobile dislocations, rather than a process of decreasing dislocation velocity. Clearly both points of view have merit and in reality both mechanisms contribute to the phenomena

  10. The effects of music relaxation and muscle relaxation techniques on sleep quality and emotional measures among individuals with posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Iris Haimov

    2012-07-01

    Full Text Available Posttraumatic stress disorder (PTSD, an anxiety disorder with lifetime prevalence of 7.8%, is characterized by symptoms that develop following exposure to traumatic life events and that cause an immediate experience of intense fear, helplessness or horror. PTSD is marked by recurrent nightmares typified by the recall of intrusive experiences and by extended disturbance throughout sleep. Individuals with PTSD respond poorly to drug treatments for insomnia. The disadvantages of drug treatment for insomnia underline the importance of non-pharmacological alternatives. Thus, the present study had three aims: first, to compare the efficiency of two relaxation techniques (muscular relaxation and progressive music relaxation in alleviating insomnia among individuals with PTSD using both objective and subjective measures of sleep quality; second, to examine whether these two techniques have different effects on psychological indicators of PTSD, such as depression and anxiety; and finally, to examine how initial PTSD symptom severity and baseline emotional measures are related to the efficiency of these two relaxation methods. Thirteen PTSD patients with no other major psychiatric or neurological disorders participated in the study. The study comprised one seven-day running-in, no-treatment period, followed by two seven-day experimental periods. The treatments constituted either music relaxation or muscle relaxation techniques at desired bedtime. These treatments were randomly assigned. During each of these three experimental periods, subjects’ sleep was continuously monitored with a wrist actigraph (Ambulatory Monitoring, Inc., and subjects were asked to fill out several questionnaires concerned with a wide spectrum of issues, such as sleep, depression, and anxiety. Analyses revealed a significant increase in objective and subjective sleep efficiency and a significant reduction in depression level following music relaxation. Moreover, following music

  11. Ion-induced stress relaxation during the growth of cubic boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Abendroth, B.E.

    2004-08-01

    in this thesis the deposition of cubic boron nitride films by magnetron sputtering is described. The deposition process is analyzed by Langmuir-probe measurement and energy resolved mass spectroscopy. the films are studied by stress measurement, spectroscopic ellipsometry, infrared spectroscopy, elastic recoil detection analysis, Rutherford backscattering spectroscopy, X-ray absorption near edge spectroscopy, X-ray diffraction, and transmission electron microscopy. Discussed are the stress relaxation and the microstructure and bonding characteristics together with the effects of ion bombardement. (HSI)

  12. Longitudinal relaxation of initially straight flexible and stiff polymers

    Science.gov (United States)

    Dimitrakopoulos, Panagiotis; Dissanayake, Inuka

    2004-11-01

    The present talk considers the relaxation of a single flexible or stiff polymer chain from an initial straight configuration in a viscous solvent. This problem commonly arises when strong flows are turned off in both industrial and biological applications. The problem is also motivated by recent experiments with single biopolymer molecules relaxing after being fully extended by applied forces as well as by the recent development of micro-devices involving stretched tethered biopolymers. Our results are applicable to a wide array of synthetic polymers such as polyacrylamides, Kevlar and polyesters as well as biopolymers such as DNA, actin filaments, microtubules and MTV. In this talk we discuss the mechanism of the polymer relaxation as was revealed through Brownian Dynamics simulations covering a broad range of time scales and chain stiffness. After the short-time free diffusion, the chain's longitudinal reduction at early intermediate times is shown to constitute a universal behavior for any chain stiffness caused by a quasi-steady relaxation of tensions associated with the deforming action of the Brownian forces. Stiff chains are shown to exhibit a late intermediate-time longitudinal reduction associated with a relaxation of tensions affected by the deforming Brownian and the restoring bending forces. The longitudinal and transverse relaxations are shown to obey different laws, i.e. the chain relaxation is anisotropic at all times. In the talk, we show how from the knowledge of the relaxation mechanism, we can predict and explain the polymer properties including the polymer stress and the solution birefringence. In addition, a generalized stress-optic law is derived valid for any time and chain stiffness. All polymer properties which depend on the polymer length are shown to exhibit two intermediate-time behaviors with the early one to constitute a universal behavior for any chain stiffness. This work was supported in part by the Minta Martin Research Fund. The

  13. Stress and Mood

    Science.gov (United States)

    ... Relaxation Emotions & Relationships HealthyYouTXT Tools Home » Stress & Mood Stress & Mood Many people who go back to smoking ... story: Time Out Times 10 >> share What Causes Stress? Read full story: What Causes Stress? >> share The ...

  14. T2 relaxation times of irradiated vertebral bone marrow in patients with seminoma.

    Science.gov (United States)

    Argiris, A; Maris, T; Vlahos, L

    1997-01-01

    Our purpose was to demonstrate the effects of localized radiotherapy on lumbar vertebral bone marrow with the use of quantitative MRI with measurements of T2 relaxation times. Ten patients with early stage testicular seminoma with a history of radiation therapy to a "dog-leg" field including the lumbar vertebrae underwent MR imaging of their lumbar spine using a 0.5 Tesla magnet. Five healthy subjects and two nonirradiated patients were imaged as well. The intervals from the beginning of radiotherapy to MRI examination varied from 1.5 to 52 months, and the radiation dose ranged from 3000-4200 cGy. The T2 relaxation times of the lumbar vertebral bone marrow and subcutaneous fat were calculated for each subject. Postirradiation bone marrow in irradiated seminoma patients exhibited significantly longer T2 relaxation times than nonirradiated bone marrow in controls (71.1 vs. 63.6 ms, p = 0.047, t-test). The differences between the T2 relaxation times of bone marrow and subcutaneous fat for each subject allowed for even better differentiation between irradiated patients and controls (10.4 vs. 0.4 ms, p = 0.0004, t-test). Postirradiation bone marrow had significantly longer T2 relaxation times than subcutaneous fat in irradiated patients (N = 10, 71.1 vs. 60.7 ms, p = 0.00009, t-test), while nonirradiated bone marrow had T2 relaxation times not statistically different from subcutaneous fat in nonirradiated subjects (N = 7, 63.6 vs. 63.2 ms). Measurements of T2 relaxation times of bone marrow enabled us to differentiate between irradiated seminoma patients and controls. Postirradiation bone marrow undergoes late radiation effects resulting in longer T2 relaxation times than nonirradiated bone marrow and subcutaneous fat.

  15. The use of self-Reiki for stress reduction and relaxation.

    Science.gov (United States)

    Bukowski, Elaine L

    2015-09-01

    More than one-third of college students reported the desire for stress reduction techniques and education. The purpose of this study was to determine the effects of a 20-week structured self-Reiki program on stress reduction and relaxation in college students. Students were recruited from Stockton University and sessions were conducted in the privacy of their residence. Twenty students completed the entire study consisting of 20 weeks of self-Reiki done twice weekly. Each participant completed a Reiki Baseline Credibility Scale, a Reiki Expectancy Scale, and a Perceived Stress Scale (PSS) after acceptance into the study. The PSS was completed every four weeks once the interventions were initiated. A global assessment questionnaire was completed at the end of the study. Logs summarizing the outcome of each session were submitted at the end of the study. With the exception of three participants, participants believed that Reiki is a credible technique for reducing stress levels. Except for two participants, participants agreed that Reiki would be effective in reducing stress levels. All participants experienced stress within the month prior to completing the initial PSS. There was a significant reduction in stress levels from pre-study to post-study. There was a correlation between self-rating of improvement and final PSS scores. With one exception, stress levels at 20 weeks did not return to pre-study stress levels. This study supports the hypothesis that the calming effect of Reiki may be achieved through the use of self-Reiki.

  16. Effect of temperature on cyclic deformation behavior and residual stress relaxation of deep rolled under-aged aluminium alloy AA6110

    International Nuclear Information System (INIS)

    Juijerm, P.; Altenberger, I.

    2007-01-01

    Mechanical surface treatment (deep rolling) was performed at room temperature on the under-aged aluminium wrought alloy AA6110 (Al-Mg-Si-Cu). Afterwards, specimens were cyclically deformed at room and elevated temperatures up to 250 deg. C. The cyclic deformation behavior and s/n-curves of deep rolled under-aged AA6110 were investigated by stress-controlled fatigue tests and compared to the as-polished condition as a reference. The stability of residual stresses as well as diffraction peak broadening under high-loading and/or elevated-temperature conditions was investigated by X-ray diffraction methods before and after fatigue tests. Depth profiles of near-surface residual stresses as well as full width at half maximum (FWHM) values before and after fatigue tests at elevated temperatures are presented. Thermal residual stress relaxation of deep rolled under-aged AA6110 was investigated and analyzed by applying a Zener-Wert-Avrami function. Thermomechanical residual stress relaxation was analyzed through thermal residual stress relaxation and depth profiles of residual stresses before and after fatigue tests. Finally, an effective border line for the deep rolling treatment due to instability of near-surface work hardening was found and established in a stress amplitude-temperature diagram

  17. The effect of residual stress relaxation by the vibratory stress relief technique on the textures of grains in AA 6061 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jia-Siang; Hsieh, Chih-Chun; Lin, Chi-Ming; Chen, Erh-Chiang; Kuo, Che-Wei; Wu, Weite, E-mail: wwu@dragon.nchu.edu.tw

    2014-05-01

    The textures and crystallographic orientations beneath the treatment area in AA 6061 aluminum alloy after vibratory stress relief (VSR) process were investigated by combining the electron backscatter diffraction analysis of the misoriented low- or high-angle boundaries, the (inverse) pole figures, the line scans and the various grain orientations. The relaxation effect caused by compressive residual stress in the intermediate region is superior to that of tensile residual stress on both sides of the cantilever by means of X-ray diffraction techniques. The residual stress relaxation that occurs due to vibrational stress excitation accompanies the “orientation of banding” disintegration, the decreases in the dislocation density, the strain energy, and the fraction of low-angle boundaries within each type of grain orientation, such as Copper {112} 〈111〉, S {123} 〈634〉, Goss {110} 〈001〉, and Brass {110} 〈112〉, excepting the Cube (or near-Cube) {100} 〈001〉 grain orientation. The maintained invariance in the Cube texture can be attributed to the maximum number of active primary slip systems, resulting in an interaction that results from hindered slip on intersecting families of the planes.

  18. The effect of residual stress relaxation by the vibratory stress relief technique on the textures of grains in AA 6061 aluminum alloy

    International Nuclear Information System (INIS)

    Wang, Jia-Siang; Hsieh, Chih-Chun; Lin, Chi-Ming; Chen, Erh-Chiang; Kuo, Che-Wei; Wu, Weite

    2014-01-01

    The textures and crystallographic orientations beneath the treatment area in AA 6061 aluminum alloy after vibratory stress relief (VSR) process were investigated by combining the electron backscatter diffraction analysis of the misoriented low- or high-angle boundaries, the (inverse) pole figures, the line scans and the various grain orientations. The relaxation effect caused by compressive residual stress in the intermediate region is superior to that of tensile residual stress on both sides of the cantilever by means of X-ray diffraction techniques. The residual stress relaxation that occurs due to vibrational stress excitation accompanies the “orientation of banding” disintegration, the decreases in the dislocation density, the strain energy, and the fraction of low-angle boundaries within each type of grain orientation, such as Copper {112} 〈111〉, S {123} 〈634〉, Goss {110} 〈001〉, and Brass {110} 〈112〉, excepting the Cube (or near-Cube) {100} 〈001〉 grain orientation. The maintained invariance in the Cube texture can be attributed to the maximum number of active primary slip systems, resulting in an interaction that results from hindered slip on intersecting families of the planes

  19. Stress relaxation and activation volume at the yield point of cold worked and neutron irradiated copper single crystals

    International Nuclear Information System (INIS)

    Brunner, D.; Diehl, J.

    1979-01-01

    The effective activation volume of slip is studied after neutron irradiation in as-grown crystals as well as in predeformed ones by means of stress relaxation tests between 20 K and 200 K. The activation volume corresponding to the initial strain rate is found to be always higher in predeformed crystals than in as-grown ones. During stress relaxation the flow stress tau decreases linearly with ln(-dtau/dt) (indicating a constant activation volume) only in rare cases. Depending on predeformation and temperature several types of deviations from straight lines are observed: monotoneously bent curves, strong scattering of data points not fitting smooth curves or systematic deviations from straight lines at the beginning of relaxation. Accordingly the effective activation volumes and their dependences on stress seem to behave in a strange manner. By the aid of a previously proposed model for the deformation within the yield point elongation the results can be interpreted qualitatively by taking into account the inhomogeneity of slip and work hardening, allowing a more reliable judgement on the real activation volumes, on which a better understanding of the superposition of the two hardening mechanisms involved here can be based. (author)

  20. Real-time observation of cascaded electronic relaxation processes in p-Fluorotoluene

    Science.gov (United States)

    Hao, Qiaoli; Deng, Xulan; Long, Jinyou; Wang, Yanmei; Abulimiti, Bumaliya; Zhang, Bing

    2017-08-01

    Ultrafast electronic relaxation processes following two photoexcitation of 400 nm in p-Fluorotoluene (pFT) have been investigated utilizing time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Cascaded electronic relaxation processes started from the electronically excited S2 state are directly imaged in real time and well characterized by two distinct time constants of 85 ± 10 fs and 2.4 ± 0.3 ps. The rapid component corresponds to the lifetime of the initially excited S2 state, including the structure relaxation from the Franck-Condon region to the conical intersection of S2/S1 and the subsequent internal conversion to the highly excited S1 state. While, the slower relaxation constant is attributed to the further internal conversion to the high levels of S0 from the secondarily populated S1 locating in the channel three region. Moreover, dynamical differences with benzene and toluene of analogous structures, including, specifically, the slightly slower relaxation rate of S2 and the evidently faster decay of S1, are also presented and tentatively interpreted as the substituent effects. In addition, photoelectron kinetic energy and angular distributions reveal the feature of accidental resonances with low-lying Rydberg states (the 3p, 4s and 4p states) during the multi-photon ionization process, providing totally unexpected but very interesting information for pFT.

  1. Distribution of relaxation times in (KBr)/sub 0.5/(KCN)/sub 0.5/

    International Nuclear Information System (INIS)

    Birge, N.O.; Jeong, Y.H.; Nagel, S.R.; Bhattacharya, S.; Susman, S.

    1984-01-01

    Measurements of the dielectric response of (KBr)/sub 0.5/(KCN)/sub 0.5/ covering nine decades of frequency are reported. We have shown how the relaxation times proliferate as the temperature is lowered. The anomalously wide distribution of relaxation times can be generated from a Gaussian distribution of energy barriers. As temperature is decreased not only does the spread of relaxation times increase, but more importantly the width of the distribution of activation energies itself increases

  2. Spin-lattice relaxation times and knight shift in InSb and InAs

    International Nuclear Information System (INIS)

    Braun, P.; Grande, S.

    1976-01-01

    For a dominant contact interaction between nuclei and conduction electrons the relaxation rate is deduced. The extreme cases of degenerate and non-degenerate semiconductors are separately discussed. At strong degeneracy the product of the Knight shift and relaxation time gives the Korringa relation for metals. Measurements of the NMR spin-lattice relaxation times of 115 InSb and 115 InAs were made between 4.2 and 300 K for strongly degenerated samples. The different relaxation mechanisms are discussed and the experimental and theoretical results are compared. (author)

  3. Effects of thermal relaxation on an amorphous superconducting Zr--Rh alloy

    International Nuclear Information System (INIS)

    Drehman, A.J.; Johnson, W.L.

    1978-05-01

    The electronic and superconducting properties of an amorphous transition metal alloy are used to evaluate the effects of low temperature annealing. It is observed that the superconducting transition temperature and the electrical resistivity relax exponentially in time from their initial value to a final relaxed value. From this an activation energy for the relaxation process is derived and an explanation is suggested which involves internal stress

  4. The effects of bone on proton NMR relaxation times of surrounding liquids

    Science.gov (United States)

    Davis, C. A.; Genant, H. K.; Dunham, J. S.

    1986-01-01

    Preliminary attempts by our group at UCSF to assess fat content of vertebral marrow in the lumbar spine using relaxation time information demonstrated that the presence of trabecular bone affects relaxation times. The objective of this work was a thorough study of the effects of bone on NMR relaxation characteristics of surrounding liquids. Trabecular bone from autopsy specimens was ground up and sifted into a series of powders with graded densities ranging from 0.3 gm/cc to 0.8 gm/cc. Each powder was placed first in n-saline and then in cottonseed oil. With spectroscopy, spin-lattice relaxation times (T1) and effective spin-spin relaxation times (T2*) were measured for each liquid in each bone powder. As bone density and surface to volume ratio increased, T1 decreased faster for saline than for oil. T2* decreased significantly for both water and oil as the surface to volume ratio increased. It was concluded that effects of water on T1 could be explained by a surface interaction at the bone/liquid interface, which restricted rotational and translational motion of nearby molecules. The T1s of oil were not affected since oil molecules are nonpolar, do not participate in significant intermolecular hydrogen bonding, and therefore would not be expected to interact strongly with the bone surface. Effects on T2* could be explained by local magnetic field inhomogeneities created by discontinuous magnetic susceptibility near the bone surface. These preliminary results suggest that water in contact with trabecular bone in vivo will exhibit shortened relaxation times.

  5. Stress relaxation and creep on living cells with the atomic force microscope: a means to calculate elastic moduli and viscosities of cell components

    International Nuclear Information System (INIS)

    Moreno-Flores, Susana; Toca-Herrera, Jose Luis; Benitez, Rafael; Vivanco, Maria dM

    2010-01-01

    In this work we present a unified method to study the mechanical properties of cells using the atomic force microscope. Stress relaxation and creep compliance measurements permitted us to determine, the relaxation times, the Young moduli and the viscosity of breast cancer cells (MCF-7). The results show that the mechanical behaviour of MCF-7 cells responds to a two-layered model of similar elasticity but differing viscosity. Treatment of MCF-7 cells with an actin-depolymerising agent results in an overall decrease in both cell elasticity and viscosity, however to a different extent for each layer. The layer that undergoes the smaller decrease (36-38%) is assigned to the cell membrane/cortex while the layer that experiences the larger decrease (70-80%) is attributed to the cell cytoplasm. The combination of the method presented in this work, together with the approach based on stress relaxation microscopy (Moreno-Flores et al 2010 J. Biomech. 43 349-54), constitutes a unique AFM-based experimental framework to study cell mechanics. This methodology can also be extended to study the mechanical properties of biomaterials in general.

  6. Universal binding energy relation for cleaved and structurally relaxed surfaces.

    Science.gov (United States)

    Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V

    2014-02-05

    The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress-displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements.

  7. Pair plasma relaxation time scales.

    Science.gov (United States)

    Aksenov, A G; Ruffini, R; Vereshchagin, G V

    2010-04-01

    By numerically solving the relativistic Boltzmann equations, we compute the time scale for relaxation to thermal equilibrium for an optically thick electron-positron plasma with baryon loading. We focus on the time scales of electromagnetic interactions. The collisional integrals are obtained directly from the corresponding QED matrix elements. Thermalization time scales are computed for a wide range of values of both the total-energy density (over 10 orders of magnitude) and of the baryonic loading parameter (over 6 orders of magnitude). This also allows us to study such interesting limiting cases as the almost purely electron-positron plasma or electron-proton plasma as well as intermediate cases. These results appear to be important both for laboratory experiments aimed at generating optically thick pair plasmas as well as for astrophysical models in which electron-positron pair plasmas play a relevant role.

  8. Exposure of natural rubber to personal lubricants--swelling and stress relaxation as potential indicators of reduced seal integrity of non-lubricated male condoms.

    Science.gov (United States)

    Sarkar Das, Srilekha; Coburn, James C; Tack, Charles; Schwerin, Matthew R; Richardson, D Coleman

    2014-07-01

    Male condoms act as mechanical barriers to prevent passage of body fluids. For effective use of condoms the mechanical seal is also expected to remain intact under reasonable use conditions, including with personal lubricants. Absorption of low molecular weight lubricant components into the material of male condoms may initiate material changes leading to swelling and stress relaxation of the polymer network chains that could affect performance of the sealing function of the device. Swelling indicates both a rubber-solvent interaction and stress relaxation, the latter of which may indicate and/or result in a reduced seal pressure in the current context. Swelling and stress relaxation of natural rubber latex condoms were assessed in a laboratory model in the presence of silicone-, glycol-, and water-based lubricants. Within 15 minutes, significant swelling (≥6 %) and stress reduction (≥12 %) of condoms were observed with 2 out of 4 silicone-based lubricants tested, but neither was observed with glycol- or water-based lubricants tested. Under a given strain, reduction in stress was prominent during the swelling processes, but not after the process was complete. Lubricant induced swelling and stress relaxation may loosen the circumferential stress responsible for the mechanical seal. Swelling and stress relaxation behavior of latex condoms in the presence of personal lubricants may be useful tests to identify lubricant-rooted changes in condom-materials. For non-lubricated latex condoms, material characteristics--which are relevant to failure--may change in the presence of a few silicone-based personal lubricants. These changes may in turn induce a loss of condom seal during use, specifically at low strain conditions. Published by Elsevier Inc.

  9. Relaxation response of A533B steel from 25 to 600/degree/C

    International Nuclear Information System (INIS)

    Swindeman, R.W.; Bolling, E.

    1989-01-01

    Relaxation tests were performed on A533B steel over the range 25 to 600/degree/C in order to examine the general features of time- dependent deformation. It was found that the relaxation strength increased with the flow stress at low temperatures and was relatively independent of history at high temperatures. In the temperature range 400 to 600/degree/C the inelastic strain rates calculated from the relaxation rates followed stress dependencies that were consistent with expectations based on a model proposed by Hart and coworkers for matrix deformation. 21 refs., 10 figs

  10. Effect of saline absorption on the flexural stress relaxation behavior of epoxy/cotton composite materials for orthopedics applications

    Science.gov (United States)

    Kontaxis, L. C.; Pavlou, C.; Portan, D. V.; Papanicolaou, G. C.

    2018-02-01

    In the present study, a composite material consisting of a polymeric epoxy resin matrix, reinforced with forty layers of non-woven cotton fiber fabric was manufactured. The method used to manufacture the composite was the Resin Vacuum Infusion technique. This is a technique widely used for high-performance, defect-free, composite materials. Composites and neat polymers are subjected to stresses during their function, while at the same time being influenced by environmental conditions, such as temperature and humidity. The main goal of this study was the investigation of the degradation of composite's viscoelastic behavior, after saline absorption. At this point, it should be mentioned, that this material could be used in biomedical applications. Therefore, a sealed container full of saline was used for the immer s ion of the specimens manufactured, and was placed in a bath at 37°C (body temperature). The specimens remained there for five different immersion periods (24, 72, 144, 216, 336 hours). The viscoelastic behavior of the composite material was determined through stress relaxation under flexure conditions, and the effect of immersion time and amount of saline absorption was studied. It was observed that after 24 hours of immersion a 42% decrease in stress was observed, which in the sequence remained almost constant. The stress relaxation experimental results were predicted by using the Residua l Property Model (RPM), a model developed by Papanicolaou et al. The same model has been successfully applied in the past, to many different materials previously subjected to various types of damage, in order to predict their residual behavior. For its application, the RPM predictive model needs only two experimental points. It was found that in all cases, predictions were in good agreement with experimental findings. Furthermore, the comparison between experimental values and theoretical predictions formed the basis of useful observations and conclusions.

  11. Measurements of spin-lattice relaxation time in mixed alkali halide crystals

    International Nuclear Information System (INIS)

    Tannus, A.

    1983-01-01

    Using magneto-optic techniques the ground state spin-lattice relaxation times (T1) of 'F' centers in mixed Alkali Halide cristals (KCl-KBr), was studied. A computer assisted system to optically measure short relaxation times (approx. = 1mS), was described. The technique is based on the measurement of the Magnetic Circular Dicroism (MCD) presented by F centers. The T1 magnetic field dependency at 2 K (up to 65 KGauss), was obtained as well as the MCD spectra for different relative concentration at the mixed matrices. The theory developed by Panepucci and Mollenauer for F centers spin-lattice relaxation in pure matrices was modified to explain the behaviour of T1 in mixed cristals. The Direct Process results (T approx. = 2.0 K) compared against that theory shows that the main relaxation mecanism, up to 25 KGauss, continues to be phonon modulation of the hiperfine iteraction between F electrons and surrounding nuclei. (Author) [pt

  12. NMR water-proton spin-lattice relaxation time of human red blood cells and red blood cell suspensions

    International Nuclear Information System (INIS)

    Sullivan, S.G.; Rosenthal, J.S.; Winston, A.; Stern, A.

    1988-01-01

    NMR water-proton spin-lattice relaxation times were studied as probes of water structure in human red blood cells and red blood cell suspensions. Normal saline had a relaxation time of about 3000 ms while packed red blood cells had a relaxation time of about 500 ms. The relaxation time of a red blood cell suspension at 50% hematocrit was about 750 ms showing that surface charges and polar groups of the red cell membrane effectively structure extracellular water. Incubation of red cells in hypotonic saline increases relaxation time whereas hypertonic saline decreases relaxation time. Relaxation times varied independently of mean corpuscular volume and mean corpuscular hemoglobin concentration in a sample population. Studies with lysates and resealed membrane ghosts show that hemoglobin is very effective in lowering water-proton relaxation time whereas resealed membrane ghosts in the absence of hemoglobin are less effective than intact red cells. 9 refs.; 3 figs.; 1 table

  13. Two-photon excitation laser scanning microscopy of porcine nasal septal cartilage following Nd:YAG laser-mediated stress relaxation

    Science.gov (United States)

    Kim, Charlton C.; Wallace, Vincent P.; Rasouli, Alexandre; Coleno, Mariah L.; Dao, Xavier; Tromberg, Bruce J.; Wong, Brian J.

    2000-05-01

    Laser irradiation of hyaline cartilage result in stable shape changes due to temperature dependent stress relaxation. In this study, we determined the structural changes in chondrocytes within porcine nasal septal cartilage tissue over a 4-day period using a two-photon laser scanning microscope (TPM) following Nd:YAG laser irradiation (lambda equals 1.32 micrometer) using parameters that result in mechanical stress relaxation (6.0 W, 5.4 mm spot diameter). TPM excitation (780 nm) result in induction of fluorescence from endogenous agents such as NADH, NADPH, and flavoproteins in the 400 - 500 nm spectral region. During laser irradiation diffuse reflectance (from a probe HeNe laser, (lambda) equals 632.8 nm), surface temperature, and stress relaxation were measured dynamically. Each specimen received one, two, or three sequential laser exposures (average irradiation times of 5, 6, and 8 seconds). The cartilage reached a peak surface temperature of about 70 degrees Celsius during irradiation. Cartilage denatured in 50% EtOH (20 minutes) was used as a positive control. TPM was performed using a mode-locked 780 nm Titanium:Sapphire (Ti:Al203) beam with a, 63X, 1.2 N.A. water immersion objective (working distance of 200 mm) to detect the fluorescence emission from the chondrocytes. Images of chondrocytes were obtained at depths up to 150 microns (lateral resolution equals 35 micrometer X 35 micrometer). Images were obtained immediately following laser exposure, and also after 4 days in culture. In both cases, the irradiated and non-irradiated specimens do not show any discernible difference in general shape or auto fluorescence. In contrast, positive controls (immersed in 50% ethanol), show markedly increased fluorescence relative to both the native and irradiated specimens, in the cytoplasmic region.

  14. Effects of relaxation on psychobiological wellbeing during pregnancy: a randomized controlled trial.

    Science.gov (United States)

    Urech, Corinne; Fink, Nadine S; Hoesli, Irène; Wilhelm, Frank H; Bitzer, Johannes; Alder, Judith

    2010-10-01

    Prenatal maternal stress is associated with adverse birth outcomes and may be reduced by relaxation exercises. The aim of the present study was to compare the immediate effects of two active and one passive 10-min relaxation technique on perceived and physiological indicators of relaxation. 39 healthy pregnant women recruited at the outpatient department of the University Women's Hospital Basel participated in a randomized controlled trial with an experimental repeated measure design. Participants were assigned to one of two active relaxation techniques, progressive muscle relaxation (PMR) or guided imagery (GI), or a passive relaxation control condition. Self-reported relaxation on a visual analogue scale (VAS) and state anxiety (STAI-S), endocrine parameters indicating hypothalamic-pituitary-adrenal (HPA) axis (cortisol and ACTH) and sympathetic-adrenal-medullary (SAM) system activity (norepinephrine and epinephrine), as well as cardiovascular responses (heart rate, systolic and diastolic blood pressure) were measured at four time points before and after the relaxation exercise. Between group differences showed, that compared to the PMR and control conditions, GI was significantly more effective in enhancing levels of relaxation and together with PMR, GI was associated with a significant decrease in heart rate. Within the groups, passive as well as active relaxation procedures were associated with a decline in endocrine measures except epinephrine. Taken together, these data indicate that different types of relaxation had differential effects on various psychological and biological stress systems. GI was especially effective in inducing self-reported relaxation in pregnant women while at the same time reducing cardiovascular activity. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Thermal relaxation time of a mixture of relativistic electrons and neutrinos

    International Nuclear Information System (INIS)

    Herrera, M.A.; Hacyan, S.

    1987-01-01

    The interaction between the components of a relativistic binary mixture is studied by means of a fully covariant formalism. Assuming both components to differ slightly in temperature, an application of the relativistic Boltzmann equation yields general expressions for the energy transfer rate and for the relaxation time of the system. The resulting relation is then applied to a mixture of relativistic electrons and neutrinos to obtain numerical values of its relaxation time. (author)

  16. Large lateral photovoltaic effect with ultrafast relaxation time in SnSe/Si junction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianjie; Zhao, Xiaofeng; Hu, Chang; Zhang, Yang; Song, Bingqian; Zhang, Lingli; Liu, Weilong; Lv, Zhe; Zhang, Yu; Sui, Yu, E-mail: suiyu@hit.edu.cn [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Tang, Jinke [Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071 (United States); Song, Bo, E-mail: songbo@hit.edu.cn [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150001 (China)

    2016-07-11

    In this paper, we report a large lateral photovoltaic effect (LPE) with ultrafast relaxation time in SnSe/p-Si junctions. The LPE shows a linear dependence on the position of the laser spot, and the position sensitivity is as high as 250 mV mm{sup −1}. The optical response time and the relaxation time of the LPE are about 100 ns and 2 μs, respectively. The current-voltage curve on the surface of the SnSe film indicates the formation of an inversion layer at the SnSe/p-Si interface. Our results clearly suggest that most of the excited-electrons diffuse laterally in the inversion layer at the SnSe/p-Si interface, which results in a large LPE with ultrafast relaxation time. The high positional sensitivity and ultrafast relaxation time of the LPE make the SnSe/p-Si junction a promising candidate for a wide range of optoelectronic applications.

  17. β-distribution for Reynolds stress and turbulent heat flux in relaxation turbulent boundary layer of compression ramp

    Science.gov (United States)

    Hu, YanChao; Bi, WeiTao; Li, ShiYao; She, ZhenSu

    2017-12-01

    A challenge in the study of turbulent boundary layers (TBLs) is to understand the non-equilibrium relaxation process after sep-aration and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a turbulence model.

  18. ``Living polymers'' in organic solvents : stress relaxation in bicopper tetracarboxylate/tert-butyl cyclohexane solutions

    Science.gov (United States)

    Terech, P.; Maldivi, P.; Dammer, C.

    1994-10-01

    Viscoelastic solutions of a bicopper tetracarboxylate complex in tert-butylcyclohexane have been studied by dynamic rheology in a wide range of concentrations (0.5-1.5 % volume fraction). The zero shear viscosity, the elastic modulus, the terminal stress relaxation time and the height of the high-frequency dip, in a Cole-Cole representation of the complex elastic modulus, follow scaling laws. The related exponents are discussed in the context of the physics of “living polymers” : a term used to describe worm-like species undergoing scission/recombination reactions competing mainly with the reptation motions of the chains. The current system, made up of molecular threads (17.5 Å diameter) of Cu2(O2C-CH(C2H5)C4H9)4 in the apolar solvent, is representative of a “living polymer” where, instead of mechanisms involving transient star polymeric crosslinks, a reversible scission mechanism prevails. The dynamics in the high-frequency range evolves from a regime where reptation is the dominant relaxation mechanism to a cross-over regime where “breathing” fluctuations and Rouse motions become important. Large modifications of the stress relaxation function occur for more concentrated systems. The binary system is the first example of a “living polymer” in an organic solvent and exhibits elastic moduli (G ≈ ca. 120 Pa à φ = 1 %) which are at least 20 times larger than those found for the aqueous “living polymer” systems. Les solutions viscoélastiques d'un tétracarboxylate binucléaire de cuivre dans le tert-butylcyclohexane sont étudiées par rhéologie en mode dynamique dans une gamme étendue de concentrations (0,5 %-15,5 %). La viscosité à gradient nul, le module élastique, le temps terminal de relaxation et la hauteur du puits à haute fréquence, dans une représentation Cole-Cole du module élastique complexe, suivent des lois d'échelles. Les exposants correspondants sont discutés dans le contexte de la physique des “polymères vivants

  19. Quantifying NMR relaxation correlation and exchange in articular cartilage with time domain analysis

    Science.gov (United States)

    Mailhiot, Sarah E.; Zong, Fangrong; Maneval, James E.; June, Ronald K.; Galvosas, Petrik; Seymour, Joseph D.

    2018-02-01

    Measured nuclear magnetic resonance (NMR) transverse relaxation data in articular cartilage has been shown to be multi-exponential and correlated to the health of the tissue. The observed relaxation rates are dependent on experimental parameters such as solvent, data acquisition methods, data analysis methods, and alignment to the magnetic field. In this study, we show that diffusive exchange occurs in porcine articular cartilage and impacts the observed relaxation rates in T1-T2 correlation experiments. By using time domain analysis of T2-T2 exchange spectroscopy, the diffusive exchange time can be quantified by measurements that use a single mixing time. Measured characteristic times for exchange are commensurate with T1 in this material and so impacts the observed T1 behavior. The approach used here allows for reliable quantification of NMR relaxation behavior in cartilage in the presence of diffusive fluid exchange between two environments.

  20. Chemical exchange effects during refocusing pulses in constant-time CPMG relaxation dispersion experiments

    International Nuclear Information System (INIS)

    Myint, Wazo; Ishima, Rieko

    2009-01-01

    In the analysis of the constant-time Carr-Purcell-Meiboom-Gill (CT-CPMG) relaxation dispersion experiment, chemical exchange parameters, such as rate of exchange and population of the exchanging species, are typically optimized using equations that predict experimental relaxation rates recorded as a function of effective field strength. In this process, the effect of chemical exchange during the CPMG pulses is typically assumed to be the same as during the free-precession. This approximation may introduce systematic errors into the analysis of data because the number of CPMG pulses is incremented during the constant-time relaxation period, and the total pulse duration therefore varies as a function of the effective field strength. In order to estimate the size of such errors, we simulate the time-dependence of magnetization during the entire constant time period, explicitly taking into account the effect of the CPMG pulses on the spin relaxation rate. We show that in general the difference in the relaxation dispersion profile calculated using a practical pulse width from that calculated using an extremely short pulse width is small, but under certain circumstances can exceed 1 s -1 . The difference increases significantly when CPMG pulses are miscalibrated

  1. Separating the Influence of Environment from Stress Relaxation Effects on Dwell Fatigue Crack Growth in a Nickel-Base Disk Alloy

    Science.gov (United States)

    Telesman, J.; Gabb, T. P.; Ghosn, L. J.

    2016-01-01

    Both environmental embrittlement and crack tip visco-plastic stress relaxation play a significant role in determining the dwell fatigue crack growth (DFCG) resistance of nickel-based disk superalloys. In the current study performed on the Low Solvus High Refractory (LSHR) disk alloy, the influence of these two mechanisms were separated so that the effects of each could be quantified and modeled. Seven different microstructural variations of LSHR were produced by controlling the cooling rate and the subsequent aging and thermal exposure heat treatments. Through cyclic fatigue crack growth testing performed both in air and vacuum, it was established that four out of the seven LSHR heat treatments evaluated, possessed similar intrinsic environmental resistance to cyclic crack growth. For these four heat treatments, it was further shown that the large differences in dwell crack growth behavior which still persisted, were related to their measured stress relaxation behavior. The apparent differences in their dwell crack growth resistance were attributed to the inability of the standard linear elastic fracture mechanics (LEFM) stress intensity parameter to account for visco-plastic behavior. Crack tip stress relaxation controls the magnitude of the remaining local tensile stresses which are directly related to the measured dwell crack growth rates. It was hypothesized that the environmentally weakened grain boundary crack tip regions fail during the dwells when their strength is exceeded by the remaining local crack tip tensile stresses. It was shown that the classical creep crack growth mechanisms such as grain boundary sliding did not contribute to crack growth, but the local visco-plastic behavior still plays a very significant role by determining the crack tip tensile stress field which controls the dwell crack growth behavior. To account for the influence of the visco-plastic behavior on the crack tip stress field, an empirical modification to the LEFM stress

  2. Relaxation Processes and Time Scale Transformation.

    Science.gov (United States)

    1982-03-01

    the response function may be immediately recognized as being 14 of the Kubo - Green type in the classical regime. Given this general framework, it is now...b as a function of temperature is 24 equivalent to the Vogel-Beuche-Fulcher empirical law for viscosity or the Williams-Landel-Ferry empirical law...relaxation times. With the weighted sum in the form of an integral , one can write exp(-(t/T)b ] = f dT’g(r’) exp[-(t/T’)], O

  3. The influence of measurement and relaxation time on flux jumps in high temperature superconductors

    International Nuclear Information System (INIS)

    Yang Xiaobin; Zhou Youhe; Tu Shandong

    2010-01-01

    The influence of the magnetization and relaxation time on flux jumps in high temperature superconductors (HTSC) under varying magnetic field is studied using the fundamental electromagnetic field equations and the thermal diffusion equation; temperature variety corresponding to flux jump is also discussed. We find that for a low sweep rate of the applied magnetic field, the measurement and relaxation times can reduce flux jump and to constrain the number of flux jumps, even stabilizing the HTSC, since much heat produced by the motion of magnetic flux can transfer into coolant during the measurement and relaxation times. As high temperature superconductors are subjected to a high sweep rate or a strong pulsed magnetic field, magnetization undergoes from stability or oscillation to jump for different pause times. And the period of temperature oscillation is equal to the measurement and relaxation time.

  4. Relaxation and guided imagery do not reduce stress, pain and unpleasantness for 11- to 12-year-old girls during vaccinations.

    Science.gov (United States)

    Nilsson, Stefan; Forsner, Maria; Finnström, Berit; Mörelius, Evalotte

    2015-07-01

    Relaxation and guided imagery is a distraction technique known to reduce discomfort during paediatric medical procedures. We examined whether its use decreased the stress experienced by 11- to 12-year-old girls receiving the human papilloma virus vaccination, as well as the intensity and unpleasantness of any pain. A randomised crossover trial was conducted with 37 girls. During the first vaccination, each girl was randomised to receive either relaxation and guided imagery or standard care. They then received the other form of care during the second vaccination. Salivary cortisol was measured before each vaccination, and 30 minutes after it was administered. The girls reported pain intensity and pain unpleasantness before and directly after each vaccination and stress after each vaccination. On a group level, relaxation and guided imagery did not decrease cortisol levels, self-reported stress, pain intensity and pain unpleasantness. Salivary cortisol levels decreased significantly in both groups during the second vaccination. Relaxation and guided imagery did not prove beneficial during the vaccination of 11- to 12-year-old girls and is not recommended as a regular nursing intervention. However, further research is needed into effective techniques to help children who experience pain unpleasantness in connection with needle procedures. ©2015 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  5. Work-related stress, inability to relax after work and risk of adult asthma: a population-based cohort study.

    Science.gov (United States)

    Loerbroks, A; Gadinger, M C; Bosch, J A; Stürmer, T; Amelang, M

    2010-10-01

    There is an extensive literature linking stressful work conditions to adverse health outcomes. Notwithstanding, the relationship with asthma has not been examined, although various other measures of psychological stress have been associated with asthma. Therefore, we aimed to investigate the relation between work stress and asthma prevalence and incidence. We used data from a population-based cohort study (n = 5114 at baseline in 1992-1995 and n = 4010 at follow-up in 2002/2003). Asthma was measured by self-reports. Two scales that assessed psychologically adverse work conditions were extracted from a list of work-condition items by factor analysis (these scales were termed 'work stress' and 'inability to relax after work'). For each scale, the derived score was employed both as continuous z-score and as categorized variable in analyses. Associations with asthma were estimated by prevalence ratios (PRs) and risk ratios (RRs) using Poisson regression with a log-link function adjusting for demographics, health-related lifestyles, body mass index and family history of asthma. Analyses were restricted to those in employment (n = 3341). Work stress and inability to relax z-scores were positively associated with asthma prevalence (PR = 1.15, 95%CI = 0.97, 1.36 and PR = 1.43, 95%CI = 1.12, 1.83, respectively). Prospective analyses using z-scores showed that for each 1 standard deviation increase in work stress and inability to relax, the risk of asthma increased by approximately 40% (RR for work stress = 1.46, 95%CI = 1.06, 2.00; RR for inability to relax = 1.39, 95%CI = 1.01, 1.91). Similar patterns of associations were observed in analyses of categorized exposures. This is the first study to show a cross-sectional and longitudinal association of work stress with asthma.

  6. Cardio-respiratory response of young adult Indian male subjects to stress: Effects of progressive muscle relaxation

    Directory of Open Access Journals (Sweden)

    Arunima Chaudhuri

    2014-01-01

    Full Text Available Background: Stress and anxiety have become an integral part of our lives. Of late, this has resulted in the increase in incidence of hypertension and coronary heart disease. Objectives: To assess the effect of progressive muscle relaxation (PMR on young adult males and its role in the modulation of cardio-respiratory response on exposure to stress. Materials and Methods: This prospective cross-sectional study was conducted in a tertiary care referral hospital. Undergraduate male students under stress were chosen for the study. Fasting blood samples were drawn to analyze sugar and lipid profile, followed by anthropometric measurements and ECG. In the resting condition, blood pressure, pulse rate, and spirometric parameters; forced vital capacities (FVC, and forced expiratory volume in 1 sec (FEV 1 % were measured. Then, they were made to exercise with bicycle ergometer and post exercise, the vital parameters were recorded. All subjects were given a training of Jacobson′s Progressive Muscular Relaxation and asked to practice this technique for 3 months. All parameters were re-evaluated. Results: Significant decreases in resting heart rate, systolic blood pressure and diastolic blood pressure, total cholesterol, triglyceride, and low density lipoprotein (LDL cholesterol levels of subjects were seen after PMR training. Exercise-induced rise in heart rate and blood pressure were also significantly less in subjects following PMR training. Conclusion: Progressive muscle relaxation helps in modulation of heart rate, blood pressure, and lipid profile in healthy normal adult male individuals.

  7. Relaxation Behavior by Time-Salt and Time-Temperature Superpositions of Polyelectrolyte Complexes from Coacervate to Precipitate

    Directory of Open Access Journals (Sweden)

    Samim Ali

    2018-01-01

    Full Text Available Complexation between anionic and cationic polyelectrolytes results in solid-like precipitates or liquid-like coacervate depending on the added salt in the aqueous medium. However, the boundary between these polymer-rich phases is quite broad and the associated changes in the polymer relaxation in the complexes across the transition regime are poorly understood. In this work, the relaxation dynamics of complexes across this transition is probed over a wide timescale by measuring viscoelastic spectra and zero-shear viscosities at varying temperatures and salt concentrations for two different salt types. We find that the complexes exhibit time-temperature superposition (TTS at all salt concentrations, while the range of overlapped-frequencies for time-temperature-salt superposition (TTSS strongly depends on the salt concentration (Cs and gradually shifts to higher frequencies as Cs is decreased. The sticky-Rouse model describes the relaxation behavior at all Cs. However, collective relaxation of polyelectrolyte complexes gradually approaches a rubbery regime and eventually exhibits a gel-like response as Cs is decreased and limits the validity of TTSS.

  8. Numerical and experimental evaluation of the residual stress relaxation and the influence zone due to application of the crack compliance method

    International Nuclear Information System (INIS)

    Sandoval-Pineda, J M; Garcia-Lira, J; Urriolagoitia-Sosa, G; Urriolagoitia-Calderon, G; Hernandez-Gomez, L H; Beltran-Fernandez, J A; RodrIguez-Martinez, R

    2009-01-01

    This paper presents the results concerning an evaluation of the crack compliance method. The research was focused on the relaxation caused by a cut induced to obtain the data required to calculate the residual stress field. The main objective in this research is to establish the optimum place to cut in a specimen that has suffered a failure and how extended is the zone of relaxed stresses. It has been recognized that a crack vanishes the beneficial or detrimental effects of the residual stress fields. This research has been performed in a numerical and experimental way, so results can be compared and FEM on this topic can be assessed.

  9. Numerical and experimental evaluation of the residual stress relaxation and the influence zone due to application of the crack compliance method

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval-Pineda, J M; Garcia-Lira, J [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de IngenierIa Mecanica y Electrica (ESIME), Unidad profesional, Azcapotzalco, Av. de las Granjas No. 682, Col. Sta. Catarina Azcapotzalco, C.P. 02550, Mexico D.F. Mexico (Mexico); Urriolagoitia-Sosa, G; Urriolagoitia-Calderon, G; Hernandez-Gomez, L H; Beltran-Fernandez, J A; RodrIguez-Martinez, R, E-mail: jsandovalp@ipn.m, E-mail: guiurri@hotmail.co [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de IngenierIa Mecanica y Electrica (ESIME). Edificio 5. 2do Piso, Unidad Profesional Adolfo Lopez Mateos ' Zacatenco' Col. Lindavista, C.P. 07738, Mexico, D.F. Mexico (Mexico)

    2009-08-01

    This paper presents the results concerning an evaluation of the crack compliance method. The research was focused on the relaxation caused by a cut induced to obtain the data required to calculate the residual stress field. The main objective in this research is to establish the optimum place to cut in a specimen that has suffered a failure and how extended is the zone of relaxed stresses. It has been recognized that a crack vanishes the beneficial or detrimental effects of the residual stress fields. This research has been performed in a numerical and experimental way, so results can be compared and FEM on this topic can be assessed.

  10. Relaxation of Anisotropic Glasses

    DEFF Research Database (Denmark)

    Deubener, Joachim; Martin, Birgit; Wondraczek, Lothar

    2004-01-01

    . When the load was removed at room temperature a permanent optical anisotropy (birefringence) was observed only perpendicular to cylinder axis and the pressure direction indicating complete elimination of thermal stresses. Relaxation of structural anisotropy was studied from reheating experiments using...... the energy release, thermo-mechanical and optical relaxation behaviour are drawn....

  11. Deconvolution analysis to determine relaxation time spectra of internal friction peaks

    International Nuclear Information System (INIS)

    Cost, J.R.

    1985-01-01

    A new method for analysis of an internal friction vs temperature peak to obtain an approximation of the spectrum of relaxation time responsible for the peak is described. This method, referred to as direct spectrum analysis (DSA), is shown to provide an accurate estimate of the distribution of relaxation times. The method is validated for various spectra, and it is shown that: (1) It provides approximations to known input spectra which replicate the position, amplitude, width and shape with good accuracy (typically 10%). (2) It does not yield approximations which have false spectral peaks

  12. Nernst effect beyond the relaxation-time approximation

    OpenAIRE

    Pikulin, D. I.; Hou, Chang-Yu; Beenakker, C. W. J.

    2011-01-01

    Motivated by recent interest in the Nernst effect in cuprate superconductors, we calculate this magneto-thermo-electric effect for an arbitrary (anisotropic) quasiparticle dispersion relation and elastic scattering rate. The exact solution of the linearized Boltzmann equation is compared with the commonly used relaxation-time approximation. We find qualitative deficiencies of this approximation, to the extent that it can get the sign wrong of the Nernst coefficient. Ziman's improvement of the...

  13. The therapeutic use of the relaxation response in stress-related diseases.

    Science.gov (United States)

    Esch, Tobias; Fricchione, Gregory L; Stefano, George B

    2003-02-01

    The objective of this work was to investigate a possible (therapeutic) connection between the relaxation response (RR) and stress-related diseases. Further, common underlying molecular mechanisms and autoregulatory pathways were examined. For the question of (patho)physiology and significance of RR techniques in the treatment of stress-related diseases, we analyzed peer-reviewed references only. The RR has been shown to be an appropriate and relevant therapeutic tool to counteract several stress-related disease processes and certain health-restrictions, particularly in certain immunological, cardiovascular, and neurodegenerative diseases/mental disorders. Further, common underlying molecular mechanisms may exist that represent a connection between the stress response, pathophysiological findings in stress-related diseases, and physiological changes/autoregulatory pathways described in the RR. Here, constitutive or low-output nitric oxide (NO) production may be involved in a protective or ameliorating context, whereas inducible, high-output NO release may facilitate detrimental disease processes. In mild or early disease states, a high degree of biological and physiological flexibility may still be possible (dynamic balance). Here, the therapeutic use of RR techniques may be considered particularly relevant, and the observable (beneficial) effects may be exerted via activation of constitutive NO pathways. RR techniques, regularly part of professional stress management or mind/body medical settings, represent an important tool to be added to therapeutic strategies dealing with stress-related diseases. Moreover, as part of 'healthy' life-style modifications, they may serve primary (or secondary) prevention. Further studies are necessary to elucidate the complex physiology underlying the RR and its impact upon stress-related disease states.

  14. Continuous relaxation time spectrum of α-process in glass-like B2O3

    International Nuclear Information System (INIS)

    Bartenev, G.M.; Lomovskij, V.A.

    1991-01-01

    α-process of relaxation of glass-like B 2 O 3 was investigated in a wide temperature range. Continuous spectrum of relaxation times H(τ) for this process was constructed, using data of dynamic methods of investigation. It is shown that increase of temperature of α-process investigation leads to change of glass-like BaO 3 structure in such a way, that H(τ) spectrum tends to the maxwell one with a unit relaxation time

  15. A coupled creep plasticity model for residual stress relaxation of a shot-peened nickel-based superalloy

    Science.gov (United States)

    Buchanan, Dennis J.; John, Reji; Brockman, Robert A.; Rosenberger, Andrew H.

    2010-01-01

    Shot peening is a commonly used surface treatment process that imparts compressive residual stresses into the surface of metal components. Compressive residual stresses retard initiation and growth of fatigue cracks. During component loading history, shot-peened residual stresses may change due to thermal exposure, creep, and cyclic loading. In these instances, taking full credit for compressive residual stresses would result in a nonconservative life prediction. This article describes a methodical approach for characterizing and modeling residual stress relaxation under elevated temperature loading, near and above the monotonic yield strength of INI 00. The model incorporates the dominant creep deformation mechanism, coupling between the creep and plasticity models, and effects of prior plastic strain to simulate surface treatment deformation.

  16. Bulk viscosity of strongly interacting matter in the relaxation time approximation

    Science.gov (United States)

    Czajka, Alina; Hauksson, Sigtryggur; Shen, Chun; Jeon, Sangyong; Gale, Charles

    2018-04-01

    We show how thermal mean field effects can be incorporated consistently in the hydrodynamical modeling of heavy-ion collisions. The nonequilibrium correction to the distribution function resulting from a temperature-dependent mass is obtained in a procedure which automatically satisfies the Landau matching condition and is thermodynamically consistent. The physics of the bulk viscosity is studied here for Boltzmann and Bose-Einstein gases within the Chapman-Enskog and 14-moment approaches in the relaxation time approximation. Constant and temperature-dependent masses are considered in turn. It is shown that, in the small mass limit, both methods lead to the same value of the ratio of the bulk viscosity to its relaxation time. The inclusion of a temperature-dependent mass leads to the emergence of the βλ function in that ratio, and it is of the expected parametric form for the Boltzmann gas, while for the Bose-Einstein case it is affected by the infrared cutoff. This suggests that the relaxation time approximation may be too crude to obtain a reliable form of ζ /τR for gases obeying Bose-Einstein statistics.

  17. Internal stress relaxation and load redistribution during the twinning-detwinning-dominated cyclic deformation of a wrought magnesium alloy, ZK60A

    International Nuclear Information System (INIS)

    Wu, L.; Agnew, S.R.; Brown, D.W.; Stoica, G.M.; Clausen, B.; Jain, A.; Fielden, D.E.; Liaw, P.K.

    2008-01-01

    A study of the internal strain (stress) evolution during cyclic deformation dominated by {101-bar2} twinning and detwinning mechanisms within a magnesium alloy, ZK60A, was conducted using in situ neutron diffraction. It is shown that once the matrix grains twin, the (00.2) matrix and twin grains are relaxed relative to the neighbors. This load redistribution between the soft- and hard-grain orientations is a result of plastic anisotropy. The twins which formed during the initial compression sustain a tensile stress along the c-axis, when the applied compressive stress is less than ∼80 MPa upon unloading. This local (intergranular) tensile stress is hypothesized to be effective for driving the detwinning event under a macroscopic compressive field along the c-axis. The activation stresses, 15 and 6 MPa, respectively, for the {101-bar2} extension twinning and detwinning, are approximated, based on the relaxation of the internal stresses in the matrix and twin grains

  18. Menstrual variation of breast volume and T2 relaxation times in cyclical mastalgia

    International Nuclear Information System (INIS)

    Hussain, Zainab; Brooks, Jonathan; Percy, Dave

    2008-01-01

    Purpose: Hormonal activity causes breast volume to change during the menstrual cycle. One possible cause of this volume change is thought to be due to water retention or oedema within the tissues. We used magnetic resonance imaging (MRI) to study the variation in breast volume and 1 H Magnetic Resonance Spectroscopy (MRS) to measure T 2 relaxation times which are known to increase with increasing tissue water content. We hypothesised that an increase in breast volume will elevate T 2 relaxation due to the presence of an increased water content within the breast. T 2 Relaxation time and volume were studied in fifteen control subjects and in a cohort of eight patients with cyclical mastalgia in order to determine whether changes in breast volume and T 2 relaxation times differed in controls and patients during menses, ovulation and premenses. Method: Breast volume was determined by the Cavalieri method in combination with point counting techniques on MR images and T 2 relaxation times of the water and fat in a voxel of breast tissue were obtained using 1 H Magnetic Resonance Spectroscopy (MRS). Results: Statistical analysis (ANOVA) demonstrated highly significant differences in breast volume between the three stages of the cycle (p 2 of fat or water did not depend on stage of cycle. T-tests demonstrated no significant differences in T 2 of water or fat between patient and control groups. The average T 2 relaxation time of water was lowest in the patient and control groups during ovulation and highest in the patient group during premenses. Conclusion: We have performed the first combined volumetric and spectroscopic study of women with cyclical mastalgia and demonstrated that the global changes in volumes and T 2 were not significantly different from normal menstrual variations

  19. The time-dependence of exchange-induced relaxation during modulated radio frequency pulses.

    Science.gov (United States)

    Sorce, Dennis J; Michaeli, Shalom; Garwood, Michael

    2006-03-01

    The problem of the relaxation of identical spins 1/2 induced by chemical exchange between spins with different chemical shifts in the presence of time-dependent RF irradiation (in the first rotating frame) is considered for the fast exchange regime. The solution for the time evolution under the chemical exchange Hamiltonian in the tilted doubly rotating frame (TDRF) is presented. Detailed derivation is specified to the case of a two-site chemical exchange system with complete randomization between jumps of the exchanging spins. The derived theory can be applied to describe the modulation of the chemical exchange relaxation rate constants when using a train of adiabatic pulses, such as the hyperbolic secant pulse. Theory presented is valid for quantification of the exchange-induced time-dependent rotating frame longitudinal T1rho,ex and transverse T2rho,ex relaxations in the fast chemical exchange regime.

  20. Photoacoustic Determination of Non-radiative Relaxation Time of Absorbing Centers in Maize Seeds

    Science.gov (United States)

    Domínguez-Pacheco, A.; Hernández-Aguilar, C.; Cruz-Orea, A.

    2017-07-01

    Using non-destructive photothermal techniques, it is possible to characterize non-homogenous materials to obtain its optical and thermal properties through photoacoustic spectroscopy (PAS). In photoacoustic (PA) phenomena, there are transient states of thermal excitation, when samples absorb the incident light; these states manifest an excitation process that generates the PA signal, being in direct relation with the non-radiative relaxation times with the sample absorbent centers. The objective of this study was to determine the non-radiative relaxation times associated with different absorbent centers of corn seeds ( Zea mays L.), by using PAS. A frequency scan was done at different wavelengths (350 nm, 470 nm and 650 nm) in order to obtain the non-radiative relaxation times with different types of maize seeds.

  1. Observation of relaxation on time scale of core hole decay by coincidence photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2007-01-01

    It is shown by a many-body theory that when the relaxation time of a metastable core hole state(s) to the most stable one is comparable to or shorter than core hole decay time of the former state(s), a comparison between the singles (noncoincidence) photoelectron spectroscopy (PES) spectrum and the coincidence one provides a direct evidence of the relaxation. In principle the variation with photoelectron kinetic energy of relaxation (or charge transfer (CT)) time can be determined. By singles measurement the correlation of a photoelectron generated by creation of the metastable states not only with an Auger electron generated by annihilation of the same core hole state but also with an Auger electron generated by annihilation of the stable state via relaxation of the metastable state, is completely lost, unless only the metastable state is observed by PES, whereas the correlation often manifests directly in the coincidence spectra. Thus, compared to the coincidence spectroscopy the singles one is often much less capable of elucidating the competition between relaxation and core hole decay of a metastable state. Such examples are discussed

  2. Growth stress buildup in ion beam sputtered Mo thin films and comparative study of stress relaxation upon thermal annealing or ion irradiation

    International Nuclear Information System (INIS)

    Debelle, A.; Abadias, G.; Michel, A.; Jaouen, C.; Pelosin, V.

    2007-01-01

    In an effort to address the understanding of the origin of growth stress in thin films deposited under very energetic conditions, the authors investigated the stress state and microstructure of Mo thin films grown by ion beam sputtering (IBS) as well as the stress relaxation processes taking place during subsequent thermal annealing or ion irradiation. Different sets of samples were grown by varying the IBS deposition parameters, namely, the energy E 0 and the flux j of the primary ion beam, the target-to-sputtering gas mass ratio M 1 /M 2 as well as film thickness. The strain-stress state was determined by x-ray diffraction using the sin 2 ψ method and data analyzed using an original stress model which enabled them to correlate information at macroscopic (in terms of stress) and microscopic (in terms of defect concentration) levels. Results indicate that these refractory metallic thin films are characterized by a high compressive growth stress (-2.6 to -3.8 GPa), resulting from the creation of a large concentration (up to ∼1.4%) of point or cluster defects, due to the atomic peening mechanism. The M 1 /M 2 mass ratio enables tuning efficiently the mean deposited energy of the condensing atoms; thus, it appears to be the more relevant deposition parameter that allows modifying both the microstructure and the stress level in a significant way. The growth stress comes out to be highly unstable. It can be easily relaxed either by postgrowth thermal annealing or ion irradiation in the hundred keV range at very low dose [<0.1 dpa (displacement per atom)]. It is shown that thermal annealing induces deleterious effects such as oxidation of the film surface, decrease of the film density, and in some cases adhesion loss at the film/substrate interface, while ion irradiation allows controlling the stress level without generating any macroscopic damage

  3. The modified relaxation time function: A novel analysis technique for relaxation processes. Application to high-temperature molybdenum internal friction peaks

    International Nuclear Information System (INIS)

    Matteo, C.L.; Lambri, O.A.; Zelada-Lambri, G.I.; Sorichetti, P.A.; Garcia, J.A.

    2008-01-01

    The modified relaxation time (MRT) function, which is based on a general linear viscoelastic formalism, has several important mathematical properties that greatly simplify the analysis of relaxation processes. In this work, the MRT is applied to the study of the relaxation damping peaks in deformed molybdenum at high temperatures. The dependence of experimental data from these relaxation processes with temperature are adequately described by a Havriliak-Negami (HN) function, and the MRT makes it possible to find a relation between the parameters of the HN function and the activation energy of the process. The analysis reveals that for the relaxation peak appearing at temperatures below 900 K, the physical mechanism is related to a vacancy-diffusion-controlled movement of dislocations. In contrast, when the peak appears at temperatures higher than 900 K, the damping is controlled by a mechanism of diffusion in the low-temperature tail of the peak, and in the high-temperature tail of the peak the creation plus diffusion of vacancies at the dislocation line occurs

  4. Current relaxation time scales in toroidal plasmas

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.

    1987-02-01

    An approximate normal mode analysis of plasma current diffusion in tokamaks is presented. The work is based on numerical solutions of the current diffusion equation in cylindrical geometry. Eigenvalues and eigenfunctions are shown for a broad range of plasma conductivity profile shapes. Three classes of solutions are considered which correspond to three types of tokamak operation. Convenient approximations to the three lowest eigenvalues in each class are presented and simple formulae for the current relaxation time scales are given

  5. Tocotrienol rich tocomin attenuates oxidative stress and improves endothelium-dependent relaxation in aortae from rats fed a high-fat western diet

    Directory of Open Access Journals (Sweden)

    Saher F Ali

    2016-10-01

    Full Text Available We have previously reported that tocomin, a mixture high in tocotrienol content and also containing tocopherol, acutely preserves endothelial function in the presence of oxidative stress. In this study we investigated whether tocomin treatment would preserve endothelial function in aortae isolated from rats fed a high fat diet known to cause oxidative stress. Wistar hooded rats were fed a western diet (WD, 21% fat or control rat chow (SD, 6% fat for 12 weeks. Tocomin (40 mg/kg/day sc or its vehicle (peanut oil was administered for the last 4 weeks of the feeding regime. Aortae from WD rats showed an impairment of endothelium-dependent relaxation that was associated with an increased expression of the NADPH oxidase Nox2 subunit and an increase in the vascular generation of superoxide measured using L-012 chemiluminescence. The increase in vascular oxidative stress was accompanied by a decrease in basal NO release and impairment of the contribution of NO to ACh-induced relaxation. The impaired relaxation is likely contributed to by a decreased expression of eNOS, calmodulin and phosphorylated Akt and an increase in caveolin-Tocotrienol rich tocomin, which prevented the diet-induced changes in vascular function, reduced vascular superoxide production and abolished the diet-induced changes in eNOS and other protein expression. Using selective inhibitors of nitric oxide synthase (NOS, soluble guanylate cyclase (sGC and calcium activated potassium (KCa channels we demonstrated that tocomin increased NO mediated relaxation, without affecting the contribution of endothelium-dependent hyperpolarization type relaxation to the endothelium-dependent relaxation. The beneficial actions of tocomin in this diet-induced model of obesity suggests that it may have potential to be used as a therapeutic agent to prevent vascular disease in obesity.

  6. Measurement of short transverse relaxation times by pseudo-echo nutation experiments

    Science.gov (United States)

    Ferrari, Maude; Moyne, Christian; Canet, Daniel

    2018-07-01

    Very short NMR transverse relaxation times may be difficult to measure by conventional methods. Nutation experiments constitute an alternative approach. Nutation is, in the rotating frame, the equivalent of precession in the laboratory frame. It consists in monitoring the rotation of magnetization around the radio-frequency (rf) field when on-resonance conditions are fulfilled. Depending on the amplitude of the rf field, nutation may be sensitive to the two relaxation rates R1 and R2. A full theoretical development has been worked out for demonstrating how these two relaxation rates could be deduced from a simple nutation experiment, noticing however that inhomogeneity of the rf field may lead to erroneous results. This has led us to devise new experiments which are the equivalent of echo techniques in the rotating frame (pseudo spin-echo nutation experiment and pseudo gradient-echo experiment). Full equations of motion have been derived. Although complicated, they indicate that the sum of the two relaxation rates can be obtained very accurately and not altered by rf field inhomogeneity. This implies however an appropriate data processing accounting for the oscillations which are superposed to the echo decays and, anyway, theoretically predicted. A series of experiments has been carried out for different values of the rf field amplitude on samples of water doped with a paramagnetic compound at different concentrations. Pragmatically, as R1 can be easily measured by conventional methods, its value is entered in the data processing algorithm which then returns exclusively the value of the transverse relaxation time. Very consistent results are obtained that way.

  7. The Role of Relaxation Training to Pregnant Mothers on Health Index of Infants

    Directory of Open Access Journals (Sweden)

    SA Mosaviasl

    2009-07-01

    Full Text Available ABSTRACT: Introduction & Objective: Investigations have shown that the emotional stress during the pregnancy period could have sustainable effects on the embryo. Different factors such as family members, spouse, supporting friends could relive these effects, but coping skills especially relaxation could be more effective on stress. This study was conducted to investigate the effect of relaxation training to pregnant mothers on health index such as Apgar index, weight, height, and cowlick grade in infants. Materials & Methods: This is a clinical trail in which 100 pregnant women who referred to health center of Yasuj (2006-2008 were selected using simple sampling method and assigned randomly to case and control groups. The relaxation was taught to the case group whereas nothing was taught to control groups. At the time of delivery the above mentioned indices were assessed. The gathered data was analyzed using SPSS software. Results: The results showed a significant difference between two groups in weight, height, cephalic index, and colic grade (with better situation in case group. There was no significant difference between two groups in Apgar scores. Conclusion: Considering the results of this study, it seems that teaching of relaxation to pregnant women could be effective in health index of children especially in the time of delivery. Therefore attention should be paid to different methods for reducing the stress in this group of mothers. Keywords: relaxation, pregnant women, infants, Apgar scores

  8. Residual stress relaxation due to fretting fatigue in shot peened surfaces of Ti-6Al-4V

    International Nuclear Information System (INIS)

    Martinez, S.A.; Blodgett, M.P.; Mall, S.; Sathish, S.; Namjoshi, S.

    2003-01-01

    Fretting fatigue occurs at locations where the materials are sliding against each other under load. In order to enhance the fatigue life under fretting conditions the surface of the component is shot peened. In general, the shot peening process produces a compressive stress on the surface of the material, thereby increasing the resistance of the material to crack initiation. This paper presents the relaxation of residual stress caused during fretting fatigue. X-ray diffraction has been utilized as the method to measure residual stress in fretting fatigued samples of Ti-6Al-4V

  9. Shrinkage stress compensation in composite-restored teeth: relaxation or hygroscopic expansion?

    Science.gov (United States)

    Meriwether, Laurel A; Blen, Bernard J; Benson, Jarred H; Hatch, Robert H; Tantbirojn, Daranee; Versluis, Antheunis

    2013-05-01

    Polymerization of composite restorations causes shrinkage, which deforms and thus stresses restored teeth. This shrinkage deformation, however, has been shown to decrease over time. The objective was to investigate whether this reduction was caused by hygroscopic expansion or stress relaxation of the composite/tooth complex. Extracted molars were mounted in rigid stainless steel rings with four spherical reference areas. Twelve molars were prepared with large mesioocclusodistal slots, etched, bonded, and restored with a composite material (Filtek Supreme, 3M ESPE) in two horizontal layers. Ten intact molars were the controls. The teeth were stored either in deionized water or silicone oil. They were scanned after preparation (baseline), restoration (0-week), and after 1, 2, and 4 weeks storage. Scanned tooth surfaces were aligned with the baseline using the unchanged reference areas. Cuspal flexure was calculated from lingual and buccal surface deformation. To verify that the restorations had remained bonded, dye penetration at the interfaces was assessed using basic fuchsin dye. Statistical assessment was done by ANOVA followed by Student-Newman-Keuls post hoc test (p=0.05). Substantial cuspal contraction was found for restored teeth after the composite was cured (13-14 μm cuspal flexure). After 4 weeks cuspal contraction decreased significantly for restored teeth stored in water (7.3 ± 3.2) but not for those stored in silicone oil (11.4 ± 5.0). Dye penetration of the occlusal interface was minimal in both groups (106 ± 87 and 21 ± 28 μm in water and silicone oil, respectively). The results suggest that hygroscopic expansion was the main mechanism for shrinkage stress compensation. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Creep and relaxation behavior of Inconel-617

    International Nuclear Information System (INIS)

    Osthoff, W.; Ennis, P.J.; Nickel, H.; Schuster, H.

    1984-01-01

    The static and dynamic creep behavior of Inconel alloy 617 has been determined in constant load creep tests, relaxation tests, and stress reduction tests in the temperature range 1023 to 1273 K. The results have been interpreted using the internal stress concept: The dependence of the internal stress on the applied stress and test temperature was determined. In a few experiments, the influence of cold deformation prior to the creep test on the magnitude of the internal stress was also investigated. It was found that the experimentally observed relaxation behavior could be more satisfactorily described using the Norton creep equation modified by incorporation of the internal stress than by the conventional Norton creep equation

  11. Tensile, creep and relaxation characteristics of zircaloy cladding at 3850C

    International Nuclear Information System (INIS)

    Murty, K.L.; McDonald, S.G.

    1981-01-01

    Axial creep tests were carried out at stresses ranging form 30 ksi to 50 ksi. Steady-state creep rates were evaluated from stress change tests to minimize the number of samples. The secondary creep rate was related to the applied stress through a Sinh function. The functional dependence of the strain rate on the stress was also evaluated from load relaxation tests. It is demonstrated that the strain rates derived from load relaxation tests are identical to the creep data when the relaxation testing was carried out at the point of maximum load in a tensile test. In addition, the creep and relaxation results are identical to the true ultimate tensile stress versus applied strain-rate data derived from tensile tests. (orig./HP)

  12. Isotope effect on hydrated electron relaxation dynamics studied with time-resolved liquid jet photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Elkins, Madeline H.; Williams, Holly L. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Neumark, Daniel M., E-mail: dneumark@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-05-14

    The excited state relaxation dynamics of the solvated electron in H{sub 2}O and D{sub 2}O are investigated using time-resolved photoelectron spectroscopy in a liquid microjet. The data show that the initial excited state decays on a time scale of 75 ± 12 fs in H{sub 2}O and 102 ± 8 fs in D{sub 2}O, followed by slower relaxation on time scales of 400 ± 70 fs and 390 ± 70 fs that are isotopically invariant within the precision of our measurements. Based on the time evolution of the transient signals, the faster and slower time constants are assigned to p → s internal conversion (IC) of the hydrated electron and relaxation on the ground electronic state, respectively. This assignment is consistent with the non-adiabatic mechanism for relaxation of the hydrated electron and yields an isotope effect of 1.4 ± 0.2 for IC of the hydrated electron.

  13. Isotope effect on hydrated electron relaxation dynamics studied with time-resolved liquid jet photoelectron spectroscopy

    Science.gov (United States)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2016-05-01

    The excited state relaxation dynamics of the solvated electron in H2O and D2O are investigated using time-resolved photoelectron spectroscopy in a liquid microjet. The data show that the initial excited state decays on a time scale of 75 ± 12 fs in H2O and 102 ± 8 fs in D2O, followed by slower relaxation on time scales of 400 ± 70 fs and 390 ± 70 fs that are isotopically invariant within the precision of our measurements. Based on the time evolution of the transient signals, the faster and slower time constants are assigned to p → s internal conversion (IC) of the hydrated electron and relaxation on the ground electronic state, respectively. This assignment is consistent with the non-adiabatic mechanism for relaxation of the hydrated electron and yields an isotope effect of 1.4 ± 0.2 for IC of the hydrated electron.

  14. A randomized controlled pilot study feasibility of a tablet-based guided audio-visual relaxation intervention for reducing stress and pain in adults with sickle cell disease.

    Science.gov (United States)

    Ezenwa, Miriam O; Yao, Yingwei; Engeland, Christopher G; Molokie, Robert E; Wang, Zaijie Jim; Suarez, Marie L; Wilkie, Diana J

    2016-06-01

    To test feasibility of a guided audio-visual relaxation intervention protocol for reducing stress and pain in adults with sickle cell disease. Sickle cell pain is inadequately controlled using opioids, necessitating further intervention such as guided relaxation to reduce stress and pain. Attention-control, randomized clinical feasibility pilot study with repeated measures. Randomized to guided relaxation or control groups, all patients recruited between 2013-2014 during clinical visits, completed stress and pain measures via a Galaxy Internet-enabled Android tablet at the Baseline visit (pre/post intervention), 2-week posttest visit and also daily at home between the two visits. Experimental group patients were asked to use a guided relaxation intervention at the Baseline visit and at least once daily for 2 weeks. Control group patients engaged in a recorded sickle cell discussion at the Baseline visit. Data were analysed using linear regression with bootstrapping. At baseline, 27/28 of consented patients completed the study protocol. Group comparison showed that guided relaxation significantly reduced current stress and pain. At the 2-week posttest, 24/27 of patients completed the study, all of whom reported liking the study. Patients completed tablet-based measures on 71% of study days (69% in control group, 72% in experiment group). At the 2-week posttest, the experimental group had significantly lower composite pain index scores, but the two groups did not differ significantly on stress intensity. This study protocol appears feasible. The tablet-based guided relaxation intervention shows promise for reducing sickle cell pain and warrants a larger efficacy trial. The ClinicalTrials.gov Identifier is: NCT02501447. © 2016 John Wiley & Sons Ltd.

  15. T2 relaxation time analysis in patients with multiple sclerosis: correlation with magnetization transfer ratio

    International Nuclear Information System (INIS)

    Papanikolaou, Nickolas; Papadaki, Eufrosini; Karampekios, Spyros; Maris, Thomas; Prassopoulos, Panos; Gourtsoyiannis, Nicholas; Spilioti, Martha

    2004-01-01

    The aim of the current study was to perform T2 relaxation time measurements in multiple sclerosis (MS) patients and correlate them with magnetization transfer ratio (MTR) measurements, in order to investigate in more detail the various histopathological changes that occur in lesions and normal-appearing white matter (NAWM). A total number of 291 measurements of MTR and T2 relaxation times were performed in 13 MS patients and 10 age-matched healthy volunteers. Measurements concerned MS plaques (105), NAWM (80), and ''dirty'' white matter (DWM; 30), evenly divided between the MS patients, and normal white matter (NWM; 76) in the healthy volunteers. Biexponential T2 relaxation-time analysis was performed, and also possible linearity between MTR and mean T2 relaxation times was evaluated using linear regression analysis in all subgroups. Biexponential relaxation was more pronounced in ''black-hole'' lesions (16.6%) and homogeneous enhancing plaques (10%), whereas DWM, NAWM, and mildly hypointense lesions presented biexponential behavior with a lower frequency(6.6, 5, and 3.1%, respectively). Non-enhancing isointense lesions and normal white matter did not reveal any biexponentional behavior. Linear regression analysis between monoexponential T2 relaxation time and MTR measurements demonstrated excellent correlation for DWM(r=-0.78, p<0.0001), very good correlation for black-hole lesions(r=-0.71, p=0.002), good correlation for isointense lesions(r=-0.60, p=0.005), moderate correlation for mildly hypointense lesions(r=-0.34, p=0.007), and non-significant correlation for homogeneous enhancing plaques, NAWM, and NWM. Biexponential T2 relaxation-time behavior is seen in only very few lesions (mainly on plaques with high degree of demyelination and axonal loss). A strong correlation between MTR and monoexponential T2 values was found in regions where either inflammation or demyelination predominates; however, when both pathological conditions coexist, this linear

  16. The effect of progressive muscle relaxation and guided imagery on stress, anxiety, and depression of pregnant women referred to health centers

    Directory of Open Access Journals (Sweden)

    Saeideh Nasiri

    2018-01-01

    Conclusions: In this study, relaxation could reduce stress, anxiety, and depression in pregnant women during six sessions. Due to the simplicity and low cost of this technique, it can be used to reduce stress and anxiety in pregnant women and improve pregnancy outcomes.

  17. Analysis of the Residual Stresses in Helical Cylindrical Springs at High Temperature

    Directory of Open Access Journals (Sweden)

    H. Sun

    2015-01-01

    Full Text Available Creep is one of the basic properties of materials, its speed significantly depends on the temperature. Helical cylindrical springs are widely used in the elements of heating systems. This results in necessity of taking into account the effect of temperature on the stress-strain state of the spring. The object of research is a helical cylindrical spring used at high temperatures. Under this condition the spring state stability should be ensured.The paper studies relaxation of stress state and generation of residual stresses. Calculations are carried out in ABAQUS environment. The purpose of this work is to discuss the law of relaxation and residual stress in the spring.This paper describes the basic creep theories of helical cylindrical spring material. The calculation formulas of shear stress relaxation for a fixed compression ratio are obtained. Distribution and character of stress contour lines in the cross section of spring are presented. The stress relaxationtime relationships are discussed. The approximate formula for calculating relaxation shear stresses in the cross section of helical springs is obtained.The paper investigates creep ratio and law of residual stress variation in the cross-section of spring at 650℃. Computer simulation in ABAQUS environment was used. Research presents a finite element model of the spring creep in the cross-section.The paper conducts analysis of the stress changes for the creep under constant load. Under constant load stresses are quickly decreased in the around area of cross-section and are increased in the centre, i.e. the maximum and minimum stresses come close with time. Research work shows the possibility for using the approximate formula to calculate the relaxation shear stress in the cross section of spring and can provide a theoretical basis for predicting the service life of spring at high temperatures.In research relaxation processes of stress state are studied. Finite element model is cre

  18. The effects of some parameters on the calculated 1H NMR relaxation times of cell water

    International Nuclear Information System (INIS)

    Koivula, A.; Suominen, K.; Kiviniitty, K.

    1976-01-01

    The effect of some parameters on the longitudinal and transverse relaxation times is calculated and a comparison between the calculated relaxation times with the results of different measurements is made. (M.S.)

  19. Space and time dynamical heterogeneity in glassy relaxation. The role of democratic clusters

    International Nuclear Information System (INIS)

    Appignanesi, G A; Rodriguez Fris, J A

    2009-01-01

    In this work we review recent computational advances in the understanding of the relaxation dynamics of supercooled glass-forming liquids. In such a supercooled regime these systems experience a striking dynamical slowing down which can be rationalized in terms of the picture of dynamical heterogeneities, wherein the dynamics can vary by orders of magnitude from one region of the sample to another and where the sizes and timescales of such slowly relaxing regions are expected to increase considerably as the temperature is decreased. We shall focus on the relaxation events at a microscopic level and describe the finding of the collective motions of particles responsible for the dynamical heterogeneities. In so doing, we shall demonstrate that the dynamics in different regions of the system is not only heterogeneous in space but also in time. In particular, we shall be interested in the events relevant to the long-time structural relaxation or α relaxation. In this regard, we shall focus on the discovery of cooperatively relaxing units involving the collective motion of relatively compact clusters of particles, called 'democratic clusters' or d-clusters. These events have been shown to trigger transitions between metabasins of the potential energy landscape (collections of similar configurations or structures) and to consist of the main steps in the α relaxation. Such events emerge in systems quite different in nature such as simple model glass formers and supercooled amorphous water. Additionally, another relevant issue in this context consists in the determination of a link between structure and dynamics. In this context, we describe the relationship between the d-cluster events and the constraints that the local structure poses on the relaxation dynamics, thus revealing their role in reformulating structural constraints. (topical review)

  20. Temperature dependence of relaxation times in proton components of fatty acids

    International Nuclear Information System (INIS)

    Kuroda, Kagayaki; Iwabuchi, Taku; Saito, Kensuke; Obara, Makoto; Honda, Masatoshi; Imai, Yutaka

    2011-01-01

    We examined the temperature dependence of relaxation times in proton components of fatty acids in various samples in vitro at 11 tesla as a standard calibration data for quantitative temperature imaging of fat. The spin-lattice relaxation time, T 1 , of both the methylene (CH 2 ) chain and terminal methyl (CH 3 ) was linearly related to temperature (r>0.98, P 2 signal for calibration and observed the signal with 18% of CH 3 to estimate temperature. These findings suggested that separating the fatty acid components would significantly improve accuracy in quantitative thermometry for fat. Use of the T 1 of CH 2 seems promising in terms of reliability and reproducibility in measuring temperature of fat. (author)

  1. Relaxation time measurements of white and grey matter in multiple sclerosis patients

    International Nuclear Information System (INIS)

    Rinck, P.A.; Appel, B.; Moens, E.; Academisch Ziekenhuis Middelheim, Antwerp

    1987-01-01

    In a patient population of some 450 with definite, probable, and possible multiple sclerosis referred to us for MRI, some 40 suffering from definite MS were chosen randomly for relaxation time measurements of plaque-free grey and white matter. T 1 values could not be used for diagnostic purposes owing to their broad standard deviation. Overall white matter T 2 was slightly higher in MS patients than in a non-MS population (94 ms versus 89 ms). Because these changes are not visible in MR images, relaxation time measurements may prove valuable for differential diagnosis. (orig.) [de

  2. New concept of damage evaluation method for core internal materials considering radiation induced stress relaxation (1). Experiments and modeling of radiation effects

    International Nuclear Information System (INIS)

    Miwa, Yukio; Kondo, Keietsu; Okubo, Nariaki; Kaji, Yoshiyuki; Tsukada, Takashi

    2009-01-01

    In order to build the new concept of material damage evaluation method, synergistic effect of radiation and residual stress on material degradation was estimated experimentally, and the effect of radiation induced stress relaxation on retardation of material degradation was observed. (author)

  3. [Effects of Monochord Music on Heart Rate Variability and Self-Reports of Relaxation in Healthy Adults].

    Science.gov (United States)

    Gäbel, Christine; Garrido, Natalia; Koenig, Julian; Hillecke, Thomas Karl; Warth, Marco

    Music-based interventions are considered an effective and low-cost treatment option for stress-related symptoms. The present study aimed to examine the trajectories of the psychophysiological response in apparently healthy participants during a music-based relaxation intervention compared to a verbal relaxation exercise. 70 participants were assigned to either receptive live music (experimental group) or a prerecorded verbal relaxation exercise (control group). Self-ratings of relaxation were assessed before and after each intervention on visual analogue scales and the Relaxation Inventory (RI). The heart rate variability (HRV) was continuously recorded throughout the sessions. Statistical analysis focused on HRV parameters indicative of parasympathetic cardiovascular outflow. We found significant quadratic main effects for time on the mean R-R interval (heart rate), the high-frequency power of HRV (indicative of parasympathetic activity), and the self-ratings of relaxation in both groups. A significant group × time interaction was observed for the cognitive tension subscale of the RI. Participants in both groups showed psychophysiological changes indicative of greater relaxation over the course of the interventions. However, differences between groups were only marginal. Music might be effective in relieving stress and promoting relaxation by altering the autonomic nervous system function. Future studies need to explore the long-term outcomes of such interventions. © 2017 S. Karger GmbH, Freiburg.

  4. Insufficient time for leisure and perceived health and stress in working parents with small children.

    Science.gov (United States)

    Håkansson, Carita; Axmon, Anna; Eek, Frida

    2016-10-17

    More knowledge about how recovery may promote health among parents with small children is needed. To explore whether insufficient time for leisure was associated with poorer perceived health and higher stress in working parents. A further aim was to explore potential gender differences in the association between insufficient time for leisure and poor perceived health. A postal survey including the perceived stress scale and three measures of subjective health - self-rated health (SF-36), work-related fatigue (Swedish occupational fatigue questionnaire), and Lund subjective health complaints - as well as questions about time for leisure was completed by 965 women and 597 men. Risk ratios for poor perceived health and stress were estimated using Poisson regression, in which also gender interaction was analysed. The results showed higher risk for perceived stress among parents reporting insufficient time for relaxation, and more subjective health complaints among those reporting insufficient time to spend with their children. Overall, effects were larger among women than among men. A good balance between work and leisure seems to be of importance for working parents' perceived health and stress.

  5. Multiple-relaxation-time lattice Boltzmann model for compressible fluids

    International Nuclear Information System (INIS)

    Chen Feng; Xu Aiguo; Zhang Guangcai; Li Yingjun

    2011-01-01

    We present an energy-conserving multiple-relaxation-time finite difference lattice Boltzmann model for compressible flows. The collision step is first calculated in the moment space and then mapped back to the velocity space. The moment space and corresponding transformation matrix are constructed according to the group representation theory. Equilibria of the nonconserved moments are chosen according to the need of recovering compressible Navier-Stokes equations through the Chapman-Enskog expansion. Numerical experiments showed that compressible flows with strong shocks can be well simulated by the present model. The new model works for both low and high speeds compressible flows. It contains more physical information and has better numerical stability and accuracy than its single-relaxation-time version. - Highlights: → We present an energy-conserving MRT finite-difference LB model. → The moment space is constructed according to the group representation theory. → The new model works for both low and high speeds compressible flows. → It has better numerical stability and wider applicable range than its SRT version.

  6. Creep and stress relaxation induced by interface diffusion in metal matrix composites

    Science.gov (United States)

    Li, Yinfeng; Li, Zhonghua

    2013-03-01

    An analytical solution is developed to predict the creep rate induced by interface diffusion in unidirectional fiber-reinforced and particle reinforced composites. The driving force for the interface diffusion is the normal stress acting on the interface, which is obtained from rigorous Eshelby inclusion theory. The closed-form solution is an explicit function of the applied stress, volume fraction and radius of the fiber, as well as the modulus ratio between the fiber and the matrix. It is interesting that the solution is formally similar to that of Coble creep in polycrystalline materials. For the application of the present solution in the realistic composites, the scale effect is taken into account by finite element analysis based on a unit cell. Based on the solution, a closed-form solution is also given as a description of stress relaxation induced by interfacial diffusion under constant strain. In addition, the analytical solution for the interface stress presented in this study gives some insight into the relationship between the interface diffusion and interface slip. This work was supported by the financial support from the Nature Science Foundation of China (No. 10932007), the National Basic Research Program of China (No. 2010CB631003/5), and the Doctoral Program of Higher Education of China (No. 20100073110006).

  7. Influence of relaxation times on the Bloch-Siegert shift

    International Nuclear Information System (INIS)

    Cao Long Van

    1981-01-01

    A new method for calculations of Bloch-Siegert shifts in resonances between excited states with the inclusion of relaxation times is given. It will be shown that in this case the definition of the resonance given by I. Bialynicka-Birula is in agreement with the criterion defining the resonance used by D.A. Andrews and G. Newton. (author)

  8. The relaxation time of processes in a FitzHugh-Nagumo neural system with time delay

    International Nuclear Information System (INIS)

    Gong Ailing; Zeng Chunhua; Wang Hua

    2011-01-01

    In this paper, we study the relaxation time (RT) of the steady-state correlation function in a FitzHugh-Nagumo neural system under the presence of multiplicative and additive white noises and time delay. The noise correlation parameter λ can produce a critical behavior in the RT as functions of the multiplicative noise intensity D, the additive noise intensity Q and the time delay τ. That is, the RT decreases as the noise intensities D and Q increase, and increases as the time delay τ increases below the critical value of λ. However, above the critical value, the RT first increases, reaches a maximum, and then decreases as D, Q and τ increase, i.e. a noise intensity D or Q and a time delay τ exist, at which the time scales of the relaxation process are at their largest. In addition, the additive noise intensity Q can also produce a critical behavior in the RT as a function of λ. The noise correlation parameter λ first increases the RT of processes, then decreases it below the critical value of Q. Above the critical value, λ increases it.

  9. Real-Time Observation of Ultrafast Intraband Relaxation and Exciton Multiplication in PbS Quantum Dots

    KAUST Repository

    El-Ballouli, Ala’a O.

    2014-03-19

    We examine ultrafast intraconduction band relaxation and multiple-exciton generation (MEG) in PbS quantum dots (QDs) using transient absorption spectroscopy with 120 fs temporal resolution. The intraconduction band relaxation can be directly and excellently resolved spectrally and temporally by applying broadband pump-probe spectroscopy to excite and detect the wavelengths around the exciton absorption peak, which is located in the near-infrared region. The time-resolved data unambiguously demonstrate that the intraband relaxation time progressively increases as the pump-photon energy increases. Moreover, the relaxation time becomes much shorter as the size of the QDs decreases, indicating the crucial role of spatial confinement in the intraband relaxation process. Additionally, our results reveal the systematic scaling of the intraband relaxation time with both excess energy above the effective energy band gap and QD size. We also assess MEG in different sizes of the QDs. Under the condition of high-energy photon excitation, which is well above the MEG energy threshold, ultrafast bleach recovery due to the nonradiative Auger recombination of the multiple electron-hole pairs provides conclusive experimental evidence for the presence of MEG. For instance, we achieved quantum efficiencies of 159, 129 and 106% per single-absorbed photon at pump photoexcition of three times the band gap for QDs with band gaps of 880 nm (1.41 eV), 1000 nm (1.24 eV) and 1210 nm (1.0 eV), respectively. These findings demonstrate clearly that the efficiency of transferring excess photon energy to carrier multiplication is significantly increased in smaller QDs compared with larger ones. Finally, we discuss the Auger recombination dynamics of the multiple electron-hole pairs as a function of QD size.

  10. Deducting the temperature dependence of the structural relaxation time in equilibrium far below the nominal Tg by aging the decoupled conductivity relaxation to equilibrium.

    Science.gov (United States)

    Wojnarowska, Z; Ngai, K L; Paluch, M

    2014-05-07

    Using broadband dielectric spectroscopy we investigate the changes in the conductivity relaxation times τσ observed during the physical aging of the protic ionic conductor carvedilol dihydrogen phosphate (CP). Due to the large decoupling of ion diffusion from host molecule reorientation, the ion conductivity relaxation time τσ(Tage,tage) can be directly measured at temperatures Tage below Tg for exceedingly long aging times tage till τσ(Tage,tage) has reached the equilibrium value τσ(eq)(Tage). The dependence of τσ(Tage,tage) on tage is well described by the stretched exponential function, τσ(Tage, tage) = Aexp[-((tage)/(τage(Tage)))(β)] + τσ(eq)(Tage), where β is a constant and τage(Tage) can be taken as the structural α-relaxation time of the equilibrium liquid at T = Tage. The value of τσ(eq)(Tage) obtained after 63 days long annealing of CP, deviates from the Vogel-Fulcher-Tammann-Hesse (VFTHσ) dependence of τσ(T) determined from data taken above Tg and extrapolated down to Tage. Concurrently, τage(Tage) also deviates from the Vogel-Fulcher-Tammann-Hesse (VFTHα) dependence. The results help to answer the longstanding question of whether the VFTH dependence of τσ(T) as well as the structural α-relaxation time τα(T) holds or not in the equilibrium liquid state far below Tg.

  11. The Relationship of Relaxation Technique, Test Anxiety, Academic Stress, and Nursing Students Intention to Stay in a Baccalaureate Degree Nursing Program

    Science.gov (United States)

    Manansingh, Sherry

    2017-01-01

    The purpose of this study was to examine the effect of relaxation techniques among first semester Baccalaureate Degree nursing students' test anxiety and academic stress. Additionally, this study examined if there was a relationship among demographic characteristics of the respondents and test anxiety and academic stress. The pretest and posttest…

  12. Musculoskeletal MRI at 3.0 T and 7.0 T: a comparison of relaxation times and image contrast.

    Science.gov (United States)

    Jordan, Caroline D; Saranathan, Manojkumar; Bangerter, Neal K; Hargreaves, Brian A; Gold, Garry E

    2013-05-01

    The purpose of this study was to measure and compare the relaxation times of musculoskeletal tissues at 3.0 T and 7.0 T, and to use these measurements to select appropriate parameters for musculoskeletal protocols at 7.0 T. We measured the T₁ and T₂ relaxation times of cartilage, muscle, synovial fluid, bone marrow and subcutaneous fat at both 3.0 T and 7.0 T in the knees of five healthy volunteers. The T₁ relaxation times were measured using a spin-echo inversion recovery sequence with six inversion times. The T₂ relaxation times were measured using a spin-echo sequence with seven echo times. The accuracy of both the T₁ and T₂ measurement techniques was verified in phantoms at both magnetic field strengths. We used the measured relaxation times to help design 7.0 T musculoskeletal protocols that preserve the favorable contrast characteristics of our 3.0 T protocols, while achieving significantly higher resolution at higher SNR efficiency. The T₁ relaxation times in all tissues at 7.0 T were consistently higher than those measured at 3.0 T, while the T₂ relaxation times at 7.0 T were consistently lower than those measured at 3.0 T. The measured relaxation times were used to help develop high resolution 7.0 T protocols that had similar fluid-to-cartilage contrast to that of the standard clinical 3.0 T protocols for the following sequences: proton-density-weighted fast spin-echo (FSE), T₂-weighted FSE, and 3D-FSE-Cube. The T₁ and T₂ changes were within the expected ranges. Parameters for musculoskeletal protocols at 7.0 T can be optimized based on these values, yielding improved resolution in musculoskeletal imaging with similar contrast to that of standard 3.0 T clinical protocols. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Musculoskeletal MRI at 3.0 T and 7.0 T: A comparison of relaxation times and image contrast

    International Nuclear Information System (INIS)

    Jordan, Caroline D.; Saranathan, Manojkumar; Bangerter, Neal K.; Hargreaves, Brian A.; Gold, Garry E.

    2013-01-01

    Objective: The purpose of this study was to measure and compare the relaxation times of musculoskeletal tissues at 3.0 T and 7.0 T, and to use these measurements to select appropriate parameters for musculoskeletal protocols at 7.0 T. Materials and methods: We measured the T 1 and T 2 relaxation times of cartilage, muscle, synovial fluid, bone marrow and subcutaneous fat at both 3.0 T and 7.0 T in the knees of five healthy volunteers. The T 1 relaxation times were measured using a spin-echo inversion recovery sequence with six inversion times. The T 2 relaxation times were measured using a spin-echo sequence with seven echo times. The accuracy of both the T 1 and T 2 measurement techniques was verified in phantoms at both magnetic field strengths. We used the measured relaxation times to help design 7.0 T musculoskeletal protocols that preserve the favorable contrast characteristics of our 3.0 T protocols, while achieving significantly higher resolution at higher SNR efficiency. Results: The T 1 relaxation times in all tissues at 7.0 T were consistently higher than those measured at 3.0 T, while the T 2 relaxation times at 7.0 T were consistently lower than those measured at 3.0 T. The measured relaxation times were used to help develop high resolution 7.0 T protocols that had similar fluid-to-cartilage contrast to that of the standard clinical 3.0 T protocols for the following sequences: proton-density-weighted fast spin-echo (FSE), T 2 -weighted FSE, and 3D-FSE-Cube. Conclusion: The T 1 and T 2 changes were within the expected ranges. Parameters for musculoskeletal protocols at 7.0 T can be optimized based on these values, yielding improved resolution in musculoskeletal imaging with similar contrast to that of standard 3.0 T clinical protocols

  14. Simulation of Cavity Flow by the Lattice Boltzmann Method using Multiple-Relaxation-Time scheme

    International Nuclear Information System (INIS)

    Ryu, Seung Yeob; Kang, Ha Nok; Seo, Jae Kwang; Yun, Ju Hyeon; Zee, Sung Quun

    2006-01-01

    Recently, the lattice Boltzmann method(LBM) has gained much attention for its ability to simulate fluid flows, and for its potential advantages over conventional CFD method. The key advantages of LBM are, (1) suitability for parallel computations, (2) absence of the need to solve the time-consuming Poisson equation for pressure, and (3) ease with multiphase flows, complex geometries and interfacial dynamics may be treated. The LBM using relaxation technique was introduced by Higuerea and Jimenez to overcome some drawbacks of lattice gas automata(LGA) such as large statistical noise, limited range of physical parameters, non- Galilean invariance, and implementation difficulty in three-dimensional problem. The simplest LBM is the lattice Bhatnager-Gross-Krook(LBGK) equation, which based on a single-relaxation-time(SRT) approximation. Due to its extreme simplicity, the lattice BGK(LBGK) equation has become the most popular lattice Boltzmann model in spite of its well-known deficiencies, for example, in simulating high-Reynolds numbers flow. The Multiple-Relaxation-Time(MRT) LBM was originally developed by D'Humieres. Lallemand and Luo suggests that the use of a Multiple-Relaxation-Time(MRT) models are much more stable than LBGK, because the different relaxation times can be individually tuned to achieve 'optimal' stability. A lid-driven cavity flow is selected as the test problem because it has geometrically singular points in the flow, but geometrically simple. Results are compared with those using SRT, MRT model in the LBGK method and previous simulation data using Navier-Stokes equations for the same flow conditions. In summary, LBM using MRT model introduces much less spatial oscillations near geometrical singular points, which is important for the successful simulation of higher Reynolds number flows

  15. 13C NMR relaxation times of hepatic glycogen in vitro and in vivo

    International Nuclear Information System (INIS)

    Zang, Lihsin; Laughlin, M.R.; Rothman, D.L.; Shulman, R.G.

    1990-01-01

    The field dependence of relaxation times of the C-1 carbon of glycogen was studied in vitro by natural-abundance 13 C NMR. T 1 is strongly field dependent, while T 2 does not change significantly with magnetic field. T 1 and T 2 were also measured for rat hepatic glycogen enriched with [1- 13 C]glucose in vivo at 4.7 T, and similar relaxation times were observed as those obtained in vitro at the same field. The in vitro values of T 1 were 65 ± 5 ms at 2.1 T, 142 ± 10 ms at 4.7 T, and 300 ± 10 ms at 8.4 T, while T 2 values were 6.7 ± 1 ms at 2.1 T, 9.4 ± 1 ms at 4.7 T, and 9.5 ± 1 ms at 8.4 T. Calculations based on the rigid-rotor nearest-neighbor model give qualitatively good agreement with the T 1 field dependence with a best-fit correlation time of 6.4 x 10 -9 s, which is significantly smaller than τ M , the estimated overall correlation time for the glycogen molecule (ca. 10 -5 s). A more accurate fit of T 1 data using a modified Lipari and Szabo approach indicates that internal fast motions dominate the T 1 relaxation in glycogen. On the other hand, the T 2 relaxation is dominated by the overall correlation time τ M while the internal motions are almost but not completely unrestricted

  16. Optimal Configuration for Relaxation Times Estimation in Complex Spin Echo Imaging

    Directory of Open Access Journals (Sweden)

    Fabio Baselice

    2014-01-01

    Full Text Available Many pathologies can be identified by evaluating differences raised in the physical parameters of involved tissues. In a Magnetic Resonance Imaging (MRI framework, spin-lattice T1 and spin-spin T2 relaxation time parameters play a major role in such an identification. In this manuscript, a theoretical study related to the evaluation of the achievable performances in the estimation of relaxation times in MRI is proposed. After a discussion about the considered acquisition model, an analysis on the ideal imaging acquisition parameters in the case of spin echo sequences, i.e., echo and repetition times, is conducted. In particular, the aim of the manuscript consists in providing an empirical rule for optimal imaging parameter identification with respect to the tissues under investigation. Theoretical results are validated on different datasets in order to show the effectiveness of the presented study and of the proposed methodology.

  17. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture.

    Science.gov (United States)

    Lou, Junzhe; Stowers, Ryan; Nam, Sungmin; Xia, Yan; Chaudhuri, Ovijit

    2018-02-01

    The physical and architectural cues of the extracellular matrix (ECM) play a critical role in regulating important cellular functions such as spreading, migration, proliferation, and differentiation. Natural ECM is a complex viscoelastic scaffold composed of various distinct components that are often organized into a fibrillar microstructure. Hydrogels are frequently used as synthetic ECMs for 3D cell culture, but are typically elastic, due to covalent crosslinking, and non-fibrillar. Recent work has revealed the importance of stress relaxation in viscoelastic hydrogels in regulating biological processes such as spreading and differentiation, but these studies all utilize synthetic ECM hydrogels that are non-fibrillar. Key mechanotransduction events, such as focal adhesion formation, have only been observed in fibrillar networks in 3D culture to date. Here we present an interpenetrating network (IPN) hydrogel system based on HA crosslinked with dynamic covalent bonds and collagen I that captures the viscoelasticity and fibrillarity of ECM in tissues. The IPN hydrogels exhibit two distinct processes in stress relaxation, one from collagen and the other from HA crosslinking dynamics. Stress relaxation in the IPN hydrogels can be tuned by modulating HA crosslinker affinity, molecular weight of the HA, or HA concentration. Faster relaxation in the IPN hydrogels promotes cell spreading, fiber remodeling, and focal adhesion (FA) formation - behaviors often inhibited in other hydrogel-based materials in 3D culture. This study presents a new, broadly adaptable materials platform for mimicking key ECM features of viscoelasticity and fibrillarity in hydrogels for 3D cell culture and sheds light on how these mechanical and structural cues regulate cell behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Menstrual variation of breast volume and T{sub 2} relaxation times in cyclical mastalgia

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Zainab [Department of Medical Imaging, University of Liverpool, Johnstone Building, Brownlow Hill, P.O. Box 147, Liverpool, Merseyside L69 3GB (United Kingdom); Magnetic Resonance and Image Analysis Research Centre, University of Liverpool, Johnstone Building, Brownlow Hill, P.O. Box 147, Liverpool, Merseyside L69 3GB (United Kingdom)], E-mail: zay@liverpool.ac.uk; Brooks, Jonathan [Magnetic Resonance and Image Analysis Research Centre, University of Liverpool, Johnstone Building, Brownlow Hill, P.O. Box 147, Liverpool, Merseyside L69 3GB (United Kingdom); Department of Human Anatomy and Genetics, University of Oxford, Oxford (United Kingdom); Percy, Dave [Centre for Operational Research and Applied Statistics, University of Salford, Salford, Greater Manchester M5 4WT (United Kingdom)

    2008-02-15

    Purpose: Hormonal activity causes breast volume to change during the menstrual cycle. One possible cause of this volume change is thought to be due to water retention or oedema within the tissues. We used magnetic resonance imaging (MRI) to study the variation in breast volume and {sup 1}H Magnetic Resonance Spectroscopy (MRS) to measure T{sub 2} relaxation times which are known to increase with increasing tissue water content. We hypothesised that an increase in breast volume will elevate T{sub 2} relaxation due to the presence of an increased water content within the breast. T{sub 2} Relaxation time and volume were studied in fifteen control subjects and in a cohort of eight patients with cyclical mastalgia in order to determine whether changes in breast volume and T{sub 2} relaxation times differed in controls and patients during menses, ovulation and premenses. Method: Breast volume was determined by the Cavalieri method in combination with point counting techniques on MR images and T{sub 2} relaxation times of the water and fat in a voxel of breast tissue were obtained using {sup 1}H Magnetic Resonance Spectroscopy (MRS). Results: Statistical analysis (ANOVA) demonstrated highly significant differences in breast volume between the three stages of the cycle (p < 0.0005) with breast volume being greatest premenstrually. Patients did not exhibit an increase in volume premenstrually, significantly above controls. T{sub 2} of fat or water did not depend on stage of cycle. T-tests demonstrated no significant differences in T{sub 2} of water or fat between patient and control groups. The average T{sub 2} relaxation time of water was lowest in the patient and control groups during ovulation and highest in the patient group during premenses. Conclusion: We have performed the first combined volumetric and spectroscopic study of women with cyclical mastalgia and demonstrated that the global changes in volumes and T{sub 2} were not significantly different from normal

  19. Corroborative evidences of TV γ -scaling of the α-relaxation originating from the primitive relaxation/JG β relaxation

    Science.gov (United States)

    Ngai, K. L.; Paluch, M.

    2017-12-01

    Successful thermodynamic scaling of the structural alpha-relaxation time or transport coefficients of glass-forming liquids determined at various temperatures T and pressures P means the data conform to a single function of the product variable TVgamma, where V is the specific volume and gamma is a material specific constant. In the past two decades we have witnessed successful TVgamma-scaling in many molecular, polymeric, and even metallic glass-formers, and gamma is related to the slope of the repulsive part of the intermolecular potential. The advances made indicate TVgamma-scaling is an important aspect of the dynamic and thermodynamic properties of glass-formers. In this paper we show the origin of TVgamma-scaling is not from the structural alpha-relaxation time. Instead it comes from its precursor, the Johari-Goldstein beta-relaxation or the primitive relaxation of the Coupling Model and their relaxation times or tau_0 respectively. It is remarkable that all relaxation times are functions of TVgamma with the same gama, as well as the fractional exponent of the Kohlrausch correlation function of the structural alpha-relaxation. We arrive at this conclusion convincingly based on corroborative evidences from a number of experiments and molecular dynamics simulations performed on a wide variety of glass-formers and in conjunction with consistency with the predictions of the Coupling Model.

  20. More is less: Learning but not relaxing buffers deviance under job stressors.

    Science.gov (United States)

    Zhang, Chen; Mayer, David M; Hwang, Eunbit

    2018-02-01

    Workplace deviance harms the well-being of an organization and its members. Unfortunately, theory and prior research suggest that deviance is associated with job stressors, which are endemic to work organizations and often cannot be easily eliminated. To address this conundrum, we explore actions individuals can take at work that serve as buffering conditions for the positive relationship between job stressors and deviant behavior. Drawing upon conservation of resources theory, we examine a resource-building activity (i.e., learning something new at work) and a demand-shielding activity (i.e., taking time for relaxation at work) as potential boundary conditions. In 2 studies with employee samples using complementary designs, we find support for the buffering role of learning but not for relaxation. When employees learn new things at work, the relationship between hindrance stressors and deviance is weaker; as is the indirect relationship mediated by negative emotions. Taking time for relaxation at work did not show a moderating role in either study. Therefore, although relaxation is a response that individuals might be inclined to turn to for counteracting work stress, our findings suggest that, when it comes to addressing negative emotions and deviance in stressful work environments, building positive resources by learning something new at work could be more useful. In that way, doing more (i.e., learning, and not relaxing) is associated with less (deviance) in the face of job stressors. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. Genomic counter-stress changes induced by the relaxation response.

    Directory of Open Access Journals (Sweden)

    Jeffery A Dusek

    2008-07-01

    Full Text Available Mind-body practices that elicit the relaxation response (RR have been used worldwide for millennia to prevent and treat disease. The RR is characterized by decreased oxygen consumption, increased exhaled nitric oxide, and reduced psychological distress. It is believed to be the counterpart of the stress response that exhibits a distinct pattern of physiology and transcriptional profile. We hypothesized that RR elicitation results in characteristic gene expression changes that can be used to measure physiological responses elicited by the RR in an unbiased fashion.We assessed whole blood transcriptional profiles in 19 healthy, long-term practitioners of daily RR practice (group M, 19 healthy controls (group N(1, and 20 N(1 individuals who completed 8 weeks of RR training (group N(2. 2209 genes were differentially expressed in group M relative to group N(1 (p<0.05 and 1561 genes in group N(2 compared to group N(1 (p<0.05. Importantly, 433 (p<10(-10 of 2209 and 1561 differentially expressed genes were shared among long-term (M and short-term practitioners (N(2. Gene ontology and gene set enrichment analyses revealed significant alterations in cellular metabolism, oxidative phosphorylation, generation of reactive oxygen species and response to oxidative stress in long-term and short-term practitioners of daily RR practice that may counteract cellular damage related to chronic psychological stress. A significant number of genes and pathways were confirmed in an independent validation set containing 5 N(1 controls, 5 N(2 short-term and 6 M long-term practitioners.This study provides the first compelling evidence that the RR elicits specific gene expression changes in short-term and long-term practitioners. Our results suggest consistent and constitutive changes in gene expression resulting from RR may relate to long term physiological effects. Our study may stimulate new investigations into applying transcriptional profiling for accurately measuring

  2. Fourier transform distribution function of relaxation times; application and limitations

    NARCIS (Netherlands)

    Boukamp, Bernard A.

    2015-01-01

    A simple Fourier transform (FT) method is presented for obtaining a Distribution Function of Relaxation Times (DFRT) for electrochemical impedance spectroscopy (EIS) data. By using a special data extension procedure the FT is performed over the range from -∞ ≤ lnω ≤ + ∞. The integration procedure is

  3. Relaxation dynamics and thermophysical properties of vegetable oils using time-domain reflectometry.

    Science.gov (United States)

    Sonkamble, Anil A; Sonsale, Rahul P; Kanshette, Mahesh S; Kabara, Komal B; Wananje, Kunal H; Kumbharkhane, Ashok C; Sarode, Arvind V

    2017-04-01

    Dielectric relaxation studies of vegetable oils are important for insights into their hydrogen bonding and intermolecular dynamics. The dielectric relaxation and thermo physical properties of triglycerides present in some vegetable oils have been measured over the frequency range of 10 MHz to 7 GHz in the temperature region 25 to 10 °C using a time-domain reflectometry approach. The frequency and temperature dependence of dielectric constants and dielectric loss factors were determined for coconut, peanut, soya bean, sunflower, palm, and olive oils. The dielectric permittivity spectra for each of the studied vegetable oils are explained using the Debye model with their complex dielectric permittivity analyzed using the Havriliak-Negami equation. The dielectric parameters static permittivity (ε 0 ), high-frequency limiting static permittivity (ε ∞ ), average relaxation time (τ 0 ), and thermodynamic parameters such as free energy (∆F τ ), enthalpy (∆H τ ), and entropy of activation (∆S τ ) were also measured. Calculation and analysis of these thermodynamic parameters agrees with the determined dielectric parameters, giving insights into the temperature dependence of the molecular dynamics of these systems.

  4. Yield stress in metallic glasses: The jamming-unjamming transition studied through Monte Carlo simulations based on the activation-relaxation technique

    International Nuclear Information System (INIS)

    Rodney, David; Schuh, Christopher A.

    2009-01-01

    A Monte Carlo approach allowing for stress control is employed to study the yield stress of a two-dimensional metallic glass in the limit of low temperatures and long (infinite) time scales. The elementary thermally activated events are determined using the activation-relaxation technique (ART). By tracking the minimum-energy state of the glass for various applied stresses, we find a well-defined jamming-unjamming transition at a yield stress about 30% lower than the steady-state flow stress obtained in conventional strain-controlled quasistatic simulations. ART is then used to determine the evolution of the distribution of thermally activated events in the glass microstructure both below and above the yield stress. We show that aging below the yield stress increases the stability of the glass, both thermodynamically (the internal potential energy decreases) and dynamically (the aged glass is surrounded by higher-energy barriers than the initial quenched configuration). In contrast, deformation above the yield stress brings the glass into a high internal potential energy state that is only marginally stable, being surrounded by a high density of low-energy barriers. The strong influence of deformation on the glass state is also evidenced by the microstructure polarization, revealed here through an asymmetry of the distribution of thermally activated inelastic strains in glasses after simple shear deformation.

  5. On the Volterra integral equation relating creep and relaxation

    International Nuclear Information System (INIS)

    Anderssen, R S; De Hoog, F R; Davies, A R

    2008-01-01

    The evolving stress–strain response of a material to an applied deformation is causal. If the current response depends on the earlier history of the stress–strain dynamics of the material (i.e. the material has memory), then Volterra integral equations become the natural framework within which to model the response. For viscoelastic materials, when the response is linear, the dual linear Boltzmann causal integral equations are the appropriate model. The choice of one rather than the other depends on whether the applied deformation is a stress or a strain, and the associated response is, respectively, a creep or a relaxation. The duality between creep and relaxation is known explicitly and is referred to as the 'interconversion equation'. Rheologically, its importance relates to the fact that it allows the creep to be determined from knowledge of the relaxation and vice versa. Computationally, it has been known for some time that the recovery of the relaxation from the creep is more problematic than the creep from the relaxation. Recent research, using discrete models for the creep and relaxation, has confirmed that this is an essential feature of interconversion. In this paper, the corresponding result is generalized for continuous models of the creep and relaxation

  6. TOMROP: a sequence for determining the longitudinal relaxation time T1 in NMR

    International Nuclear Information System (INIS)

    Graumann, R.; Barfuss, H.; Fischer, H.; Hentschel, D.; Oppelt, A.

    1987-01-01

    We developed the pulse sequence TOMROP (T One by Multiple Read Out Pulses) for determining precisely the spatial distribution of the longitudinal relaxation time T 1 in nuclear magnetic resonance (NMR): a series of small-angle selection pulses is used to read out longitudinal magnetization from its initial state till thermal equilibrium. Hence, one measurement will produce several images with different T 1 weightings whose pixel brilliance depends exponentially from read-out time. T 1 can be determined from these independent of initial magnetization and selection pulse angle. The measuring time corresponds to the time needed in multi-echo imaging for the determination of the transversal relaxation time T 2 . We demonstrate this new method using head images of volunteers produced with a 0.23 T test facility. (orig./HP) [de

  7. In vivo measurements of T1 relaxation times of 31P-metabolites in human skeletal muscle

    DEFF Research Database (Denmark)

    Thomsen, C; Jensen, K E; Henriksen, O

    1989-01-01

    The T1 relaxation times were estimated for 31P-metabolites in human skeletal muscle. Five healthy volunteers were examined in a 1.5 Tesla wholebody imaging system using an inversion recovery pulse sequence. The calculated T1 relaxation times ranged from 5.517 sec for phosphocreatine to 3.603 sec...

  8. Hastelloy X fuel element creep relaxation and residual effects

    International Nuclear Information System (INIS)

    Castle, R.A.

    1971-01-01

    A worst case, seven element, asymmetric fuel, thermal environment was assumed and a creep relaxation analysis generated. The fuel element clad is .020 inch Hastelloy X. The contact load decreased from 11.6 pounds to 5.87 pounds in 100,000 hours. The residual stresses were then computed for various shutdown times. (U.S.)

  9. Investigation of the proteins relaxation time in human blood serum; Badania relaksacyjne bialek surowicy krwi II

    Energy Technology Data Exchange (ETDEWEB)

    Blicharska, B.; Klauza, M. [Inst. Fizyki, Uniwersytet Jagiellonski, Cracow (Poland); Kuliszkiewicz-Janus, M. [Akademia Medyczna, Wroclaw (Poland)

    1994-12-31

    In this paper the results of human blood serum proteins relaxation time measurements by means of NMR method are presented. The measurements have been done for three samples of human blood: i/laudably ii/leukemia iii/granulomas. The dependences of the relaxation time on the temperature are also presented. 3 refs, 4 figs.

  10. ASSESSMENT OF CRACKING RESISTANCE OF CELLULAR CONCRETE PRODUCTS UNDER MOISTURE AND CARBONISATION DEFORMATIONS WITH STRESS RELAXATION

    Directory of Open Access Journals (Sweden)

    Sh. I. Apkarov

    2017-01-01

    Full Text Available Objectives. On the basis of the experimental, theoretical and field studies, an engineering calculation method was developed for assessing the cracking resistance of external enclosing constructions made of cellular concrete, with the maximum gradient development of moisture and carbonisation forced deformations along their thickness, taking into account the relaxation of the shrinkage stresses. In this regard, the aim of the work is to provide technological measures at the manufacturing stage in order to increase the operational cracking resistance of the construction's outer surface layers by reducing the moisture and carbonation shrinkage of cellular concrete by introducing a large or fine porous aggregate in calculated amounts.Methods. A number of analytical equations were applied to establish the dependence of the shrinkage of heavy concrete of conventional hardness on the amount of aggregate introduced and its elasticity modulus, water-cement ratio and cement consumption, as well as the concrete's moisture content.Results. Knowing the volumes of the structural aggregate and the cellular concrete mass, as well as their modulus of elasticity, the shrinkage reduction factor of the cellular concrete was calculated with the addition of a lightweight porous aggregate. Subsequently, the shrinkage deformations of concrete in the surface layer of the outer enclosing construction, maximising crack resistance due to moisture exchange and carbonation influences under operating conditions, were defined, taking into account the relaxation of tensile stresses due to creep of concrete.Conclusion. Theoretical calculations, based on the recommended method of assessing the cracking resistance of cellular concrete enclosing constructions under moisture exchange and carbonisation processes, taking into account the relaxation of shrinkage stresses, showed that in order to exclude the appearance of cracks in wall panels 280 mm thick made of 700 kg/m3 gas ash

  11. Investigation of dielectric relaxation in systems with hierarchical organization: From time to frequency domain and back again

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, Koki [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI (United States); Raicu, Valerică, E-mail: vraicu@uwm.edu [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI (United States); Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI (United States)

    2017-06-28

    Relaxation in fractal structures was investigated theoretically starting from a simple model of a Cantorian tree and kinetic equations linking the change in the number of particles (e.g., electrical charges) populating each branch of the tree and their transfer to other branches or to the ground state. We numerically solved the system of differential equations obtained and determined the so-called cumulative distribution function of particles, which, in dielectric or mechanical relaxation parlance, is the same as the relaxation function of the system. As a physical application, we studied the relationship between the dielectric relaxation in time-domain and the dielectric dispersion in the frequency-domain. Upon choosing appropriate rate constants, our model described accurately well-known non-exponential and non-Debye time- and frequency-domain functions, such as stretched exponentials, Havrilliak–Negami, and frequency power law. Our approach opens the door to applying kinetic models to describe a wide array of relaxation processes, which traditionally have posed great challenges to theoretical modeling based on first principles. - Highlights: • Relaxation was investigated for a system of particles flowing through a Cantorian tree. • A set of kinetic equations was formulated and used to compute the relaxation function of the system. • The dispersion function of the system was computed from the relaxation function. • An analytical method was used to recover the original relaxation function from the dispersion function. • This formalism was used to study dielectric relaxation and dispersion in fractal structures.

  12. On-chip Brownian relaxation measurements of magnetic nanobeads in the time domain

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Rizzi, Giovanni; Hansen, Mikkel Fougt

    2013-01-01

    the time and frequency domain methods on Brownian relaxation detection of clustering of streptavidin coated magnetic beads in the presence of different concentrations of biotin-conjugated bovine serum albumin and obtain comparable results. In the time domain, a measurement is carried out in less than 30 s...

  13. Life time calculations for LCF loading combined with tensional hold periods

    International Nuclear Information System (INIS)

    Bocek, M.; Armas, A.; Piel, D.

    1983-01-01

    The life time in high amplitude strain cycling with tensional hold periods is analysed presuming that creep failure damage is life determining. The life fraction rule (LFR) is used to calculate the life time consumpted during the dwell period in strain controlled tests as well as during tensional hold time stress cycles. It follows from the present investigation that stress relaxation occurring during the strain hold periods plays the dominant influence upon the relationship between life and dwell time. For strong stress relaxation (e.g. high temperature) less damage is accumulated as compared to suppressed relaxation (low temperature). The damage in stress relaxation is calculated by means of the LFR and the results are compared to experiments conducted on Zircaloy-4 and the austenitic stainless stell Type AISI 304. From the very good agreement between both it is concluded that under the loading conditions considered, creep failure damage is the main life determining damage contribution. (orig.)

  14. Effect of thermal exposure on the residual stress relaxation in a hardened cylindrical sample under creep conditions

    Science.gov (United States)

    Radchenko, V. P.; Saushkin, M. N.; Tsvetkov, V. V.

    2016-05-01

    This paper describes the effect of thermal exposure (high-temperature exposure) ( T = 675°C) on the residual creep stress relaxation in a surface hardened solid cylindrical sample made of ZhS6UVI alloy. The analysis is carried out with the use of experimental data for residual stresses after micro-shot peening and exposures to temperatures equal to T = 675°C during 50, 150, and 300 h. The paper presents the technique for solving the boundary-value creep problem for the hardened cylindrical sample with the initial stress-strain state under the condition of thermal exposure. The uniaxial experimental creep curves obtained under constant stresses of 500, 530, 570, and 600 MPa are used to construct the models describing the primary and secondary stages of creep. The calculated and experimental data for the longitudinal (axial) tensor components of residual stresses are compared, and their satisfactory agreement is determined.

  15. Magnetic resonance studies on the brain edema by the administration of the osmotic agents; Special references to the relaxation times

    Energy Technology Data Exchange (ETDEWEB)

    Niino, Masaki; Asakura, Tetsuhiko; Nakamura, Katsumi; Yatsushiro, Kazutaka; Kadota, Koki (Kagoshima Univ. (Japan). Faculty of Medicine); Sasahira, Masahiro; Fujimoto, Toshiro; Shimooki, Susumu

    1990-03-01

    Changes of proton relaxation times (T{sub 1} and T{sub 2}) and MR imaging of the brain edema by the administration of the osmotic agents (mannitol or glycerol) were studied. Subjects were 11 patients who were composed of 4 gliomas, 2 metastatic brain tumors, 2 meningiomas, 2 hypertensive intracerebral hematomas, and a C-P angle tumor. 20% mannitol or 10% glycerol 550 ml was rapidly injected intravenously. Scanning was done before injection, just after injection, and post injection until 2 hours with passing times. We regarded the peritumoral or perihemorrahgical low density area on the CT scan as the edema, and then, relaxation times of the edema was obtained from the ROI of the calculated images corresponding to the surrounding low density area on the CT scan. The results were as follows. (1) In general, relaxation times of the edema showed a tendency to decrease after injection of the osmotic agents. Normal white matter, in the same way, showed the decreasing tendency, but the degree of the decreasing was more clearly in the edematous areas than in the white matter. (2) The changes of relaxation times did not show a uniform pattern. In most cases, relaxation times decreased just after injection. But in a few cases, relaxation times increased just after injection, transiently. In some cases, decreased relaxation times continued more than 2 hours, in the other cases, relaxation times increased at 2 hours. (3) The changes of relaxation times thought to be varied by some factors, that is --kinds of the lesions causing edema, degree of malignancy of the lesions, or phase of edema (acute or chronic) etc. (4) Osmotic agents were supposed to dehydrate the edematous lesions. In the current MR systems, there are considerably large standard deviations and inequality in the magnetic field, therefore, further investigations should be done moreover. (author).

  16. Effect of organo-clay on the dielectric relaxation response of silicone rubber

    International Nuclear Information System (INIS)

    Gharavi, N; Razzaghi-Kashani, M; Golshan-Ebrahimi, N

    2010-01-01

    Dielectric elastomers are light weight, low-cost, highly deformable and fast response smart materials capable of converting electrical energy into mechanical work or vice versa. Silicone rubber is a well-known dielectric elastomer which is used as actuator, and in order to enhance the efficiency of this smart material, compounding of silicone rubber with various fillers can be carried out. The effect of organically modified montmorillonite (OMMT) nano-clay on improvement of dielectric properties, actuation stress and its relaxation response was considered in this study. OMMT was dispersed in room temperature vulcanized (RTV) silicone rubber, and a composite film was cast. Using an in-house actuation set-up, it was shown that the actuation stress for a given electric field intensity is higher for composites than that for pristine silicone rubber. Also, the time-dependent actuation response of the samples was evaluated, and it was shown that the characteristic relaxation time of the actuation stress for composites is less than for the pristine rubber as a result of OMMT addition

  17. X-ray diffraction analysis of thermally-induced stress relaxation in ZnO films deposited by magnetron sputtering on (100) Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Conchon, F., E-mail: florineconchon@gmail.co [Laboratoire de Physique des Materiaux (PHYMAT) UMR 6630, Universite de Poitiers, 86962 Futuroscope-Chasseneuil (France); Renault, P.O.; Goudeau, P.; Le Bourhis, E. [Laboratoire de Physique des Materiaux (PHYMAT) UMR 6630, Universite de Poitiers, 86962 Futuroscope-Chasseneuil (France); Sondergard, E.; Barthel, E.; Grachev, S. [Laboratoire de Surface du Verre et Interfaces (SVI), UMR 125, 93303 Aubervilliers (France); Gouardes, E.; Rondeau, V.; Gy, R. [Laboratoire de Recherche de Saint-Gobain (SGR), 93303 Aubervilliers (France); Lazzari, R.; Jupille, J. [Institut des Nanosciences de Paris (INSP), UMR 7588, 75015 Paris (France); Brun, N. [Laboratoire de Physique des Solides (LPS), UMR 8502, 91405 Orsay (France)

    2010-07-01

    Residual stresses in sputtered ZnO films on Si are determined and discussed. By means of X-ray diffraction, we show that as-deposited ZnO films are highly compressively stressed. Moreover, a transition of stress is observed as a function of the post-deposition annealing temperature. After an 800 {sup o}C annealing, ZnO films are tensily stressed while ZnO films encapsulated by Si{sub 3}N{sub 4} are stress-free. With the aid of in-situ X-ray diffraction under ambient and argon atmosphere, we argue that this thermally activated stress relaxation may be attributed to a variation of the stoichiometry of the ZnO films.

  18. Microwave Amplitude Modulation Technique to Measure Spin-Lattice (T 1) and Spin-Spin (T 2) Relaxation Times

    Science.gov (United States)

    Misra, Sushil K.

    The measurement of very short spin-lattice, or longitudinal, relaxation (SLR) times (i.e., 10-10 Misra, 1998), and polymer resins doped with rare-earth ions (Pescia et al., 1999a; Pescia et al. 1999b). The ability to measure such fast SLR data on amorphous Si and copper-chromium-tin spinel led to an understanding of the role of exchange interaction in affecting spin-lattice relaxation, while the data on polymer resins doped with rare-earth ions provided evidence of spin-fracton relaxation (Pescia et al., 1999a, b). But such fast SLR times are not measurable by the most commonly used techniques of saturation- and inversion-recovery (Poole, 1982; Alger, 1968), which only measure spin-lattice relaxation times longer than 10-6 s. A summary of relevant experimental data is presented in Table 1.

  19. Relaxation of stresses in polystyrene–carbon microcomposite resistive layers

    International Nuclear Information System (INIS)

    Łukasik, Andrzej; Sibiński, Maciej; Walczak, Sylwia

    2012-01-01

    This paper presents the investigation results on thermoresistive elements made with a styrene–butadiene–styrene (SBS) modified polystyrene binder and carbon filler. Resistive layers were deposited by screen-printing method onto a polyethylene terephthalate (PET) foil. The temperature–resistance dependence of the examined layers was observed. The carbon filler content was precisely selected to obtain high values of TCR, such as 70,000 ppm/°C, for resistive layers with a SBS-modified polystyrene binder in the temperature range from 24 to 100 °C. Because of high TCR the influence of mechanical stresses, which is unfavorable feature of the examined layers, may be omitted. The highest TCR value and stability of electrical parameters during operation were observed for layers containing 42.9% of carbon filler by mass content. The measurements were carried out with the aid of an infrared camera and an oscilloscope because of very fast changes of resistive elements parameters. The analysis of the obtained results allows to draw conclusions about the carbon layer properties and to determine the stress–relaxation rate of the polymer structures.

  20. [Neurophysiologic and respiratory changes during the practice of relaxation technics].

    Science.gov (United States)

    Gallois, P

    1984-01-01

    A polygraphic study, of 40 minutes duration, among 10 subjects who practiced autogenic training (TA) and 10 subjects who practiced transcendental meditation (MT), compared to 10 control subjects, gave the following results: rarity of the number of sleeping episodes during relaxation, cardiac rhythm, significantly decreased in the TM group, increased stability of the E.D.G. during and after relaxation, respiratory rate decreased to a value of 33% of the initial rate, respiratory suspensions were frequent in the TM group, reaching a maximal duration of 50 seconds. The absence of compensatory hypercapnia and hyperpnea is an argument in favor of their central origin, lastly, the simple reaction time after relaxation is slightly decreased, whereas it is increased in the controls, this aerobic hypometabolic state, the stability of the autonomic nervous system and the maintenance of the vigilance, induced by deep relaxation, seems to be the opposite of the state which is induced by stress; therefore deep relaxation may play a role in a psycho-somatic approach to treating a variety of disease states.

  1. Universal binding energy relation for cleaved and structurally relaxed surfaces

    International Nuclear Information System (INIS)

    Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V

    2014-01-01

    The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress–displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements. (paper)

  2. MR pulse sequences for selective relaxation time measurements: a phantom study

    DEFF Research Database (Denmark)

    Thomsen, C; Jensen, K E; Jensen, M

    1990-01-01

    a Siemens Magnetom wholebody magnetic resonance scanner operating at 1.5 Tesla was used. For comparison six imaging pulse sequences for relaxation time measurements were tested on the same phantom. The spectroscopic pulse sequences all had an accuracy better than 10% of the reference values....

  3. Dielectric relaxation and hydrogen bonding interaction in xylitol-water mixtures using time domain reflectometry

    Science.gov (United States)

    Rander, D. N.; Joshi, Y. S.; Kanse, K. S.; Kumbharkhane, A. C.

    2016-01-01

    The measurements of complex dielectric permittivity of xylitol-water mixtures have been carried out in the frequency range of 10 MHz-30 GHz using a time domain reflectometry technique. Measurements have been done at six temperatures from 0 to 25 °C and at different weight fractions of xylitol (0 xylitol-water can be well described by Cole-Davidson model having an asymmetric distribution of relaxation times. The dielectric parameters such as static dielectric constant and relaxation time for the mixtures have been evaluated. The molecular interaction between xylitol and water molecules is discussed using the Kirkwood correlation factor ( g eff ) and thermodynamic parameter.

  4. NMR relaxation times in human brain tumors (preliminary results)

    International Nuclear Information System (INIS)

    Benoist, L.; Certaines, J. de; Chatel, M.; Menault, F.

    1981-01-01

    Since the early work of Damadian in 1971, proton NMR studies of tumors has been well documented. Present study concerns the spin-lattice T 1 and spin-spin T 2 relaxation times of normal dog brain according to the histological differentiation and of 35 human benignant or malignant tumors. The results principally show T 2 important variations between white and gray substance in normal brain but no discrimination between malignant and benignant tumors [fr

  5. Endothelial relaxation mechanisms and nitrative stress are partly restored by Vitamin D3 therapy in a rat model of polycystic ovary syndrome.

    Science.gov (United States)

    Masszi, Gabriella; Benko, Rita; Csibi, Noemi; Horvath, Eszter M; Tokes, Anna-Maria; Novak, Agnes; Beres, Nora Judit; Tarszabo, Robert; Buday, Anna; Repas, Csaba; Bekesi, Gabor; Patocs, Attila; Nadasy, Gyorgy L; Hamar, Peter; Benyo, Zoltan; Varbiro, Szabolcs

    2013-08-06

    In polycystic ovary syndrome (PCOS), metabolic and cardiovascular dysfunction is related to hyperandrogenic status and insulin resistance, however, Vitamin D3 has a beneficial effect partly due to its anti-oxidant capacity. Nitrative stress is a major factor in the development of cardiovascular dysfunction and insulin resistance in various diseases. Our aim was to determine the effects of vitamin D3 in a rat model of PCOS, particularly the pathogenic role of nitrative stress. Female Wistar rats weighing 100-140g were administered vehicle (C), dihydrotestosterone (DHT) or dihydrotestosterone plus vitamin D3 (DHT+D) (n=10 per group). On the 10th week, acetylcholine (Ach) induced relaxation ability of the isolated thoracic aorta rings was determined. In order to examine the possible role of endothelial nitric oxide synthase (eNOS) and cyclooxygenase-2 (COX-2) pathways in the impaired endothelial function, immunohistochemical labeling of aortas with anti-eNOS and anti-COX-2 antibodies was performed. Leukocyte smears, aorta and ovary tissue sections were also immunostained with anti-nitrotyrosine antibody to determine nitrative stress. Relaxation ability of aorta was reduced in group DHT, and vitamin D3 partly restored Ach induced relaxation. eNOS labeling was significantly lower in DHT rats compared to the other two groups, however COX-2 staining showed an increment. Nitrative stress showed a significant increase in response to dihydrotestosterone, while vitamin D3 treatment, in case of the ovaries, was able to reverse this effect. Nitrative stress may play a role in the pathogenesis of PCOS and in the development of the therapeutic effect of vitamin D3. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Temperature Scanning Stress Relaxation of an Autonomous Self-Healing Elastomer Containing Non-Covalent Reversible Network Junctions

    Directory of Open Access Journals (Sweden)

    Amit Das

    2018-01-01

    Full Text Available In this work, we report about the mechanical relaxation characteristics of an intrinsically self-healable imidazole modified commercial rubber. This kind of self-healing rubber was prepared by melt mixing of 1-butyl imidazole with bromo-butyl rubber (bromine modified isoprene-isobutylene copolymer, BIIR. By this melt mixing process, the reactive allylic bromine of bromo-butyl rubber was converted into imidazole bromide salt. The resulting development of an ionic character to the polymer backbone leads to an ionic association of the groups which ultimately results to the formation of a network structure of the rubber chains. The modified BIIR thus behaves like a robust crosslinked rubber and shows unusual self-healing properties. The non-covalent reversible network has been studied in detail with respect to stress relaxation experiments, scanning electron microscopic and X-ray scattering.

  7. Non-linear calculation of PCRV using dynamic relaxation

    International Nuclear Information System (INIS)

    Schnellenbach, G.

    1979-01-01

    A brief review is presented of a numerical method called the dynamic relaxation method for stress analysis of the concrete in prestressed concrete pressure vessels. By this method the three-dimensional elliptic differential equations of the continuum are changed into the four-dimensional hyperbolic differential equations known as wave equations. The boundary value problem of the static system is changed into an initial and boundary value problem for which a solution exists if the physical system is defined at time t=0. The effect of non-linear stress-strain behaviour of the material as well as creep and cracking are considered

  8. Determining the structural relaxation times deep in the glassy state of the pharmaceutical Telmisartan

    Energy Technology Data Exchange (ETDEWEB)

    Adrjanowicz, K; Paluch, M [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Ngai, K L [Naval Research Laboratory, Washington, DC 20375-5320 (United States)

    2010-03-31

    By using the dielectric relaxation method proposed recently by Casalini and Roland (2009 Phys. Rev. Lett. 102 035701), we were able to determine the structural alpha-relaxation times deep in the glassy state of the pharmaceutical, Telmisartan. Normally, deep in the glassy state tau{sub a}lpha is so long that it cannot be measured but tau{sub b}eta, which is usually much shorter, can be directly determined. The method basically takes advantage of the connection between the alpha-relaxation and the secondary beta-relaxation of the Johari-Goldstein kind, including a relation between their relaxation times tau{sub a}lpha and tau{sub b}eta, respectively. Thus, tau{sub a}lpha of Telmisartan were determined by monitoring the change of the dielectric beta-loss, epsilon'', with physical aging time at temperatures well below the vitrification temperature. The values of tau{sub a}lpha were compared with those expected by the coupling model (CM). Unequivocal comparison cannot be made in the case of Telmisartan because its beta-loss peak is extremely broad, and the CM predicts only an order of magnitude agreement between the primitive relaxation frequency and the beta-peak frequency. We also made an attempt to analyze all isothermal and aging susceptibility data after transformation into the electric modulus representation. The tau{sub a}lpha found in the glass state by using the method of Casalini and Roland in the modulus representation are similar to those obtained in the susceptibility representation. However, it is remarkable that the stretching parameter beta{sub KWWM} = 0.51 in the electric modulus representation gives more precise fits to the aging data than in the susceptibility representation with beta{sub KWW} = 0.61. Our results suggest that the electric modulus representation may be useful as an alternative to analyze aging data, especially in the case of highly polar glassformers having a large ratio of low frequency and high frequency dielectric

  9. Two-relaxation-time lattice Boltzmann method and its application to advective-diffusive-reactive transport

    Science.gov (United States)

    Yan, Zhifeng; Yang, Xiaofan; Li, Siliang; Hilpert, Markus

    2017-11-01

    The lattice Boltzmann method (LBM) based on single-relaxation-time (SRT) or multiple-relaxation-time (MRT) collision operators is widely used in simulating flow and transport phenomena. The LBM based on two-relaxation-time (TRT) collision operators possesses strengths from the SRT and MRT LBMs, such as its simple implementation and good numerical stability, although tedious mathematical derivations and presentations of the TRT LBM hinder its application to a broad range of flow and transport phenomena. This paper describes the TRT LBM clearly and provides a pseudocode for easy implementation. Various transport phenomena were simulated using the TRT LBM to illustrate its applications in subsurface environments. These phenomena include advection-diffusion in uniform flow, Taylor dispersion in a pipe, solute transport in a packed column, reactive transport in uniform flow, and bacterial chemotaxis in porous media. The TRT LBM demonstrated good numerical performance in terms of accuracy and stability in predicting these transport phenomena. Therefore, the TRT LBM is a powerful tool to simulate various geophysical and biogeochemical processes in subsurface environments.

  10. Stress relaxation insensitive designs for metal compliant mechanism threshold accelerometers

    Directory of Open Access Journals (Sweden)

    Carlos Vilorio

    2015-12-01

    Full Text Available We present two designs for metal compliant mechanisms for use as threshold accelerometers which require zero external power. Both designs rely on long, thin flexures positioned orthogonally to a flat body. The first design involves cutting or stamping a thin spring-steel sheet and then bending elements to form the necessary thin flexors. The second design uses precut spring-steel flexure elements mounted into a mold which is then filled with molten tin to form a bimetallic device. Accelerations necessary to switch the devices between bistable states were measured using a centrifuge. Both designs showed very little variation in threshold acceleration due to stress relaxation over a period of several weeks. Relatively large variations in threshold acceleration were observed for devices of the same design, most likely due to variations in the angle of the flexor elements relative to the main body of the devices. Keywords: Structural health monitoring, Sensor, Accelerometer, Zero power, Shock, Threshold

  11. DEVICE FOR MEASURMENT OF RELAXATION TIME OF THE BLEACHED STATE OF OPTICAL MATERIALS BY THE «PUMP-PROBE» METHOD IN SUB-ΜS TIME DOMAIN

    Directory of Open Access Journals (Sweden)

    I. V. Glazunov

    2016-01-01

    Full Text Available The use of passive shutters to control the duration of the light pulses is an important aspect in the miniature and microchip lasers. One of the key spectroscopic characteristics which determine the properties of the material, which can be used as a passive shutter is relaxation time of its bleached state.We describe a device for determination of relaxation time of the bleached state in optical materials by the «pump-probe» method in the sub-μs time domain. This device allows one to determine relaxation times for materials which absorb at the light wavelength of 1.5 μm, e.g., materials doped with cobalt ions Co2+. The results of test examinations of the device are described, and the relaxation time of the bleached state of Co2+ ions is measured for a novel material – transparent glass-ceramics with Co2+:Ga2 O3 nanophase – amounting to 190 ± 6 ns. 

  12. The Effect of Relaxation Interventions on Cortisol Levels in HIV-Sero-Positive Women

    Science.gov (United States)

    Jones, Deborah; Owens, Mary; Kumar, Mahendra; Cook, Ryan; Weiss, Stephen M.

    2016-01-01

    Purpose Activation of the hypothalamic–pituitary–adrenal axis, assessed in terms of cortisol levels, may enhance the ability of HIV to infect lymphocytes and downregulate the immune system, accelerating disease progression. This study sought to determine the effects of relaxation techniques on cortisol levels in HIV-sero-positive women. Methods Women (n = 150) were randomized to a group cognitive–behavioral stress management (CBSM) condition or an individual information condition and underwent 3 types of relaxation training (progressive muscle relaxation, imagery, and autogenic training). Cortisol levels were obtained pre- and postrelaxation. Results Guided imagery was effective in reducing cortisol in the group condition (t = 3.90, P < .001), and muscle relaxation reduced cortisol in the individual condition (t = 3.11, P = .012). Among participants in the group condition attending all sessions, the magnitude of pre- to postsession reduction became greater over time. Conclusions Results suggest that specific relaxation techniques may be partially responsible for cortisol decreases associated with relaxation and CBSM. PMID:23715264

  13. Ion irradiation-induced stress relaxation in thin films and multilayers deposited using energetic PVD techniques

    International Nuclear Information System (INIS)

    Abadias, Gregory; Michel, Anny; Debelle, Aurelien; Jaouen, Christiane; Djemia Philippe

    2009-01-01

    The aim of the present work is to understand the stress build-up during energetic PVD film growth and the stress relaxation during subsequent ion irradiation at low dose (typically in the range 0.1-1.0 displacement per atom). Monolithic Mo thin films and Mo/Ni multilayers were grown using Dual Ion Beam Sputtering and Magnetron Sputtering at room temperature. Due to the high energy of incoming species (sputtered atoms, backscattered Ar), growth defects of interstitial-type are created during growth. The defect density can reach up to 1.4 % (far from equilibrium) in these Mo refractory layers. These defects act as misfitting particles, inducing a hydrostatic stress component and an associated in-plane compressive stress component. However, after Ar ion irradiation at low dose (∼0.2 dpa), most of the stress is relieved, showing that the growth induced defects are highly unstable. For Ni layers, the compressive stress is much lower due to the higher bulk atom mobility in this metal, making annihilation of defects more effective. An intermixing occurring mainly at the Mo/Ni interfaces is revealed from a complete strain-stress analysis using X-ray Diffraction. The magnitude of this interfacial alloying is found to increase with the energetics of the PVD process and is at the origin of the huge softening of the C 4 4 elastic constant, as measured using Brillouin light scattering. (authors)

  14. Transverse magnetic field effects on the relaxation time of the magnetization in Mn12 measured by 55Mn-NMR

    International Nuclear Information System (INIS)

    Furukawa, Y.; Watanabe, K.; Kumagai, K.; Borsa, F.; Gatteschi, D.

    2003-01-01

    The longitudinal (H Z ) and transverse (H T ) magnetic field dependence of the relaxation time of the magnetization in Mn12 in its S=10 ground state was measured by NMR. The minima in the relaxation time at the fields for level crossing are due to the quantum tunneling of the magnetization. The shortening of the relaxation time under the application of H T is shown to be due mainly to the reduction of the energy barrier

  15. Relaxation training methods for nurse managers in Hong Kong: a controlled study.

    Science.gov (United States)

    Yung, Paul M B; Fung, Man Yi; Chan, Tony M F; Lau, Bernard W K

    2004-12-01

    Nurse managers are under increased stress because of excessive workloads and hospitals' restructuring which is affecting their work tasks. High levels of stress could affect their mental health. Yet, few stress management training programmes are provided for this population. The purpose of this study was to apply stretch-release relaxation and cognitive relaxation training to enhance the mental health for nurse managers. A total of 65 nurse managers in Hong Kong were randomly assigned to stretch-release relaxation (n = 17), cognitive relaxation (n = 18), and a test control group (n = 35). Mental health status was assessed using the Chinese version of State-Trait Anxiety Inventory and the Chinese version of the General Health Questionnaire. Participants were assessed at the pretreatment session, the fourth posttreatment session, and at the 1-month follow-up session. The results revealed both the stretch-release and cognitive relaxation training enhanced mental health in nurse managers in Hong Kong. The application of relaxation training in enhancing mental health status for nurses and health professionals is discussed.

  16. Source of non-arrhenius average relaxation time in glass-forming liquids

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    1998-01-01

    then discuss a recently proposed model according to which the activation energy of the average relaxation time is determined by the work done in shoving aside the surrounding liquid to create space needed for a "flow event". In this model, which is based on the fact that intermolecular interactions...

  17. The application of T1 and T2 relaxation time and magnetization transfer ratios to the early diagnosis of patellar cartilage osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Weiwu; Qu, Nan; Lu, Zhihua; Yang, Shixun [Shanghai Jiaotong University, Department of Radiology, Shanghai (China)

    2009-11-15

    We compare the T1 and T2 relaxation times and magnetization transfer ratios (MTRs) of normal subjects and patients with osteoarthritis (OA) to evaluate the ability of these techniques to aid in the early diagnosis and treatment of OA. The knee joints in 11 normal volunteers and 40 patients with OA were prospectively evaluated using T1 relaxation times as measured using delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), T2 relaxation times (multiple spin-echo sequence, T2 mapping), and MTRs. The OA patients were further categorized into mild, moderate, and severe OA. The mean T1 relaxation times of the four groups (normal, mild OA, moderate OA, and severe OA) were: 487.3{+-}27.7, 458.0{+-}55.9, 405.9{+-}57.3, and 357.9{+-}36.7 respectively (p<0.001). The mean T2 relaxation times of the four groups were: 37.8{+-}3.3, 44.0{+-}8.5, 50.9{+-}9.5, and 57.4{+-}4.8 respectively (p<0.001). T1 relaxation time decreased and T2 relaxation time increased with worsening degeneration of patellar cartilage. The result of the covariance analysis showed that the covariate age had a significant influence on T2 relaxation time (p<0.001). No significant differences between the normal and OA groups using MTR were noted. T1 and T2 relaxation times are relatively sensitive to early degenerative changes in the patellar cartilage, whereas the MTR may have some limitations with regard to early detection of OA. In addition, The T1 and T2 relaxation times negatively correlate with each other, which is a novel finding. (orig.)

  18. On the Effects of Thermal History on the Development and Relaxation of Thermo-Mechanical Stress in Cryopreservation.

    Science.gov (United States)

    Eisenberg, David P; Steif, Paul S; Rabin, Yoed

    2014-01-01

    This study investigates the effects of the thermal protocol on the development and relaxation of thermo-mechanical stress in cryopreservation by means of glass formation, also known as vitrification. The cryopreserved medium is modeled as a homogeneous viscoelastic domain, constrained within either a stiff cylindrical container or a highly compliant bag. Annealing effects during the cooling phase of the cryopreservation protocol are analyzed. Results demonstrate that an intermediate temperature-hold period can significantly reduce the maximum tensile stress, thereby decreasing the potential for structural damage. It is also demonstrated that annealing at temperatures close to glass transition significantly weakens the dependency of thermo-mechanical stress on the cooling rate. Furthermore, a slower initial rewarming rate after cryogenic storage may drastically reduce the maximum tensile stress in the material, which supports previous experimental observations on the likelihood of fracture at this stage. This study discusses the dependency of the various stress components on the storage temperature. Finally, it is demonstrated that the stiffness of the container wall can affect the location of maximum stress, with implications on the development of cryopreservation protocols.

  19. Viscoelasticity, nonlinear shear start-up, and relaxation of entangled star polymers

    KAUST Repository

    Snijkers, Frank

    2013-07-23

    We report on a detailed rheological investigation of well-defined symmetric entangled polymer stars of low functionality with varying number of arms, molar mass of the arms, and solvent content. Emphasis is placed on the response of the stars in simple shear, during start-up, and for relaxation upon flow cessation. To reduce experimental artifacts associated with edge fracture (primarily) and wall slip, we employ a homemade cone-partitioned plate fixture which was successfully implemented in recent studies. Reliable data for these highly entangled stars could be obtained for Weissenberg numbers below 300. The appearance of a stress overshoot during start-up with a corresponding strain approaching a value of 2 suggests that in the investigated shear regime the stars orient but do not stretch. This is corroborated by the fact that the empirical Cox-Merx rule appears to be validated, within experimental error. On the other hand, the (shear) rate dependent steady shear viscosity data exhibit a slope smaller than the convective constraint release slope of -1 (for linear polymers) for the investigated range of rates. The broadness of the stress overshoot reflects the broad linear relaxation spectrum of the stars. The initial stress relaxation rate, reflecting the initial loss of entanglements due to the action of convective constraint release in steady shear flow, increases with Weissenberg number. More importantly, when compared against the relevant rates for comb polymers with relatively short arms, the latter are slower at larger Weissenberg numbers. At long times, the relaxation data are consistent with the linear viscoelastic data on these systems. © 2013 American Chemical Society.

  20. Intraindividual comparison of T1 relaxation times after gadobutrol and Gd-DTPA administration for cardiac late enhancement imaging

    Energy Technology Data Exchange (ETDEWEB)

    Doeblin, Patrick, E-mail: Patrick.doeblin@charite.de [Department of Cardiology, Charité – Universitätsmedizin Berlin, Charité Campus Benjamin Franklin, Berlin (Germany); Schilling, Rene, E-mail: rene.schilling@charite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Wagner, Moritz, E-mail: moritz.wagner@charite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Luhur, Reny, E-mail: renyluhur@yahoo.com [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Huppertz, Alexander, E-mail: alexander.huppertz@charite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Imaging Science Institute, Charité, Berlin (Germany); Hamm, Bernd, E-mail: bernd.hamm@charite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Taupitz, Matthias, E-mail: matthias.taupitz@harite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); and others

    2014-04-15

    Purpose: To evaluate T1-relaxation times of chronic myocardial infarction (CMI) using gadobutrol and gadopentetate dimeglumine (Gd-DTPA) over time and to determine the optimal imaging window for late enhancement imaging with both contrast agents. Material and methods: Twelve patients with CMI were prospectively included and examined on a 1.5 T magnetic resonance (MR) system using relaxivity-adjusted doses of gadobutrol (0.15 mmol/kg) and Gd-DTPA (0.2 mmol/kg) in random order. T1-relaxation times of remote myocardium (RM), infarcted myocardium (IM), and left ventricular cavity (LVC) were assessed from short-axis TI scout imaging using the Look–Locker approach and compared intraindividually using a Wilcoxon paired signed-rank test (α < 0.05). Results: Within 3 min of contrast agent administration (CA), IM showed significantly lower T1-relaxation times than RM with both contrast agents, indicating beginning cardiac late enhancement. Differences between gadobutrol and Gd-DTPA in T1-relaxation times of IM and RM were statistically not significant through all time points. However, gadobutrol led to significantly higher T1-relaxation times of LVC than Gd-DTPA from 6 to 9 min (220 ± 15 ms vs. 195 ± 30 ms p < 0.01) onwards, resulting in a significantly greater ΔT1 of IM to LVC at 9–12 min (−20 ± 35 ms vs. 0 ± 35 ms, p < 0.05) and 12–15 min (−25 ± 45 ms vs. −10 ± 60 ms, p < 0.05). Using Gd-DTPA, comparable ΔT1 values were reached only after 25–35 min. Conclusion: This study indicates good delineation of IM to RM with both contrast agents as early as 3 min after administration. However, we found significant differences in T1 relaxation times with greater ΔT1 IM–LVC using 0.15 mmol/kg gadobutrol compared to 0.20 mmol/kg Gd-DTPA after 9–15 min post-CA suggesting earlier differentiability of IM and LVC using gadobutrol.

  1. Stress induced conditioning and thermal relaxation in the simulation of quasi-static compression experiments

    International Nuclear Information System (INIS)

    Scalerandi, M; Delsanto, P P; Johnson, P A

    2003-01-01

    Local interaction simulation approach simulations of the ultrasonic wave propagation in multi-grained materials have succeeded in reproducing most of the recently observed nonclassical nonlinear effects, such as stress-strain hysteresis and discrete memory in quasi-static experiments and a downwards shift of the resonance frequency and the generation of odd harmonics at specific amplitude rates in dynamics experiments. By including a simple mechanism of thermally activated random transitions, we can predict the occurrence of experimentally observed effects, such as the conditioning and relaxation of the specimen. Experiments are also suggested for a quantitative assessment of the validity of the model

  2. Stress induced conditioning and thermal relaxation in the simulation of quasi-static compression experiments

    CERN Document Server

    Scalerandi, M; Johnson, P A

    2003-01-01

    Local interaction simulation approach simulations of the ultrasonic wave propagation in multi-grained materials have succeeded in reproducing most of the recently observed nonclassical nonlinear effects, such as stress-strain hysteresis and discrete memory in quasi-static experiments and a downwards shift of the resonance frequency and the generation of odd harmonics at specific amplitude rates in dynamics experiments. By including a simple mechanism of thermally activated random transitions, we can predict the occurrence of experimentally observed effects, such as the conditioning and relaxation of the specimen. Experiments are also suggested for a quantitative assessment of the validity of the model.

  3. Estimation of T2 relaxation time of breast cancer: Correlation with clinical, imaging and pathological features

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Mirinae; Sohn, Yu Mee [Dept. of Radiology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul (Korea, Republic of); Ryu, Jung Kyu; Jahng, Geon Ho; Rhee, Sun Jung; Oh, Jang Hoon; Won, Kyu Yeoun [Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul (Korea, Republic of)

    2017-01-15

    The purpose of this study was to estimate the T2* relaxation time in breast cancer, and to evaluate the association between the T2* value with clinical-imaging-pathological features of breast cancer. Between January 2011 and July 2013, 107 consecutive women with 107 breast cancers underwent multi-echo T2*-weighted imaging on a 3T clinical magnetic resonance imaging system. The Student's t test and one-way analysis of variance were used to compare the T2* values of cancer for different groups, based on the clinical-imaging-pathological features. In addition, multiple linear regression analysis was performed to find independent predictive factors associated with the T2* values. Of the 107 breast cancers, 92 were invasive and 15 were ductal carcinoma in situ (DCIS). The mean T2* value of invasive cancers was significantly longer than that of DCIS (p = 0.029). Signal intensity on T2-weighted imaging (T2WI) and histologic grade of invasive breast cancers showed significant correlation with T2* relaxation time in univariate and multivariate analysis. Breast cancer groups with higher signal intensity on T2WI showed longer T2* relaxation time (p = 0.005). Cancer groups with higher histologic grade showed longer T2* relaxation time (p = 0.017). The T2* value is significantly longer in invasive cancer than in DCIS. In invasive cancers, T2* relaxation time is significantly longer in higher histologic grades and high signal intensity on T2WI. Based on these preliminary data, quantitative T2* mapping has the potential to be useful in the characterization of breast cancer.

  4. MR spectroscopy of liver in overweight children and adolescents: Investigation of 1H T2 relaxation times at 3 T

    International Nuclear Information System (INIS)

    Chabanova, Elizaveta; Bille, Dorthe S.; Thisted, Ebbe; Holm, Jens-Christian; Thomsen, Henrik S.

    2012-01-01

    Objective: The objective was to investigate T 2 relaxation values and to optimize hepatic fat quantification using proton MR spectroscopy ( 1 H MRS) at 3 T in overweight and obese children and adolescents. Subjects: The study included 123 consecutive children and adolescents with a body mass index above the 97th percentile according to age and sex. 1 H MR spectroscopy was performed at 3.0 T using point resolved spectroscopy sequence with series TE. T 2 relaxation values and hepatic fat content corrected for the T 2 relaxation effects were calculated. Results: T 2 values for water ranged from 22 ms to 42 ms (mean value 28 ms) and T 2 values for fat ranged from 36 ms to 99 ms (mean value 64 ms). Poor correlation was observed: (1) between T 2 relaxation times of fat and T 2 relaxation times of water (correlation coefficient r = 0.038, P = 0.79); (2) between T 2 relaxation times of fat and fat content (r = 0.057, P = 0.69); (3) between T 2 relaxation times of water and fat content (r = 0.160, P = 0.26). Correlation between fat peak content and the T 2 corrected fat content decreased with increasing echo time TE: r = 0.97 for TE = 45, r = 0.93 for TE = 75, r = 0.89 for TE = 105, P 1 H MRS at 3 T is an effective technique for measuring hepatic fat content in overweight and obese children and adolescents. It is necessary to measure T 2 relaxation values and to correct the spectra for the T 2 relaxation effects in order to obtain an accurate estimate of the hepatic fat content.

  5. The study of NMR relaxation time spectra multi-exponential inversion based on Lloyd–Max optimal quantization

    International Nuclear Information System (INIS)

    Li, Xuewei; Kong, Li; Cheng, Jingjing; Wu, Lei

    2015-01-01

    The multi-exponential inversion of a NMR relaxation signal plays a key role in core analysis and logging interpretation in the formation of porous media. To find an efficient metod of inverting high-resolution relaxation time spectra rapidly, this paper studies the effect of inversion which is based on the discretization of the original echo in a time domain by using a simulation model. This paper analyzes the ill-condition of discrete equations on the basis of the NMR inversion model and method, determines the appropriate number of discrete echoes and acquires the optimal distribution of discrete echo points by the Lloyd–Max optimal quantization method, in considering the inverse precision and computational complexity comprehensively. The result shows that this method can effectively improve the efficiency of the relaxation time spectra inversion while guaranteeing inversed accuracy. (paper)

  6. 31-P Relaxation times of metabolic compounds in tumors grafted in nude mice

    International Nuclear Information System (INIS)

    Remy, C.; Benabid, A.L.; Jacrot, M.; Riondel, J.; Albrand, J.P.; Decorps, M.

    1985-08-01

    The observation that water proton relaxation rates were longer in tumors than in normal tissues provided a basis for the detection of human tumors by the NMR imaging technique. To evaluate the potentiality of 31-P NMR spectroscopy as a diagnostic tool of the pathological state of tissues, T1 and T2 relaxation times have been measured for the phosphates of ATP, inorganic phosphate (Pi), phosphomonoesters (PME) and phosphocreatine (PCr) in the 31-P NMR spectra obtained in vivo for normal rat brain and rat brain tumors implanted in nude mice

  7. Models for multiple relaxation processes in collagen fiber

    Indian Academy of Sciences (India)

    ... originate from stress strain induced changes in hydrogen bond network whereas the other seems to be more strongly coupled to salt like bridges and electrostatic interactions. Urea alters the activation energy for one relaxation step while pH and solvent dielectric constant alter the relaxation behavior one set of processes.

  8. Wall relaxation and the driving forces for cell expansive growth

    Science.gov (United States)

    Cosgrove, D. J.

    1987-01-01

    When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.

  9. Nuclear magnetic resonance relaxation times for human lung cancer and lung tissues

    International Nuclear Information System (INIS)

    Matsuura, Yoshifumi; Shioya, Sumie; Kurita, Daisaku; Ohta, Takashi; Haida, Munetaka; Ohta, Yasuyo; Suda, Syuichi; Fukuzaki, Minoru.

    1994-01-01

    We investigated the nuclear magnetic resonance (NMR) relaxation times, T 1 and T 2 , for lung cancer tissue, and other samples of lung tissue obtained from surgical specimens. The samples were nine squamous cell carcinomas, five necrotic squamous cell carcinomas, 15 adenocarcinomas, two benign mesotheliomas, and 13 fibrotic lungs. The relaxation times were measured with a 90 MHz NMR spectrometer and the results were correlated with histological changes. The values of T 1 and T 2 for squamous cell carcinoma and mesothelioma were significantly longer than those of adenocarcinoma and fibrotic lung tissue. There were no significant differences in values of T 1 and T 2 between adenocarcinoma and lung tissue. The values of T 1 and T 2 for benign mesothelioma were similar to those of squamous cell carcinoma, which suggested that increases in T 1 and T 2 are not specific to malignant tissues. (author)

  10. Spin current relaxation time in thermally evaporated pentacene films

    OpenAIRE

    Tani, Yasuo; Kondo, Takuya; Teki, Yoshio; Shikoh, Eiji

    2017-01-01

    The spin current relaxation time [tau] in thermally evaporated pentacene films was evaluated with the spin-pump-induced spin transport properties and the charge current transport properties in pentacene films. Under an assumption of a diffusive transport of the spin current in pentacene films, the zero-field mobility and the diffusion constant of holes in pentacene films were experimentally obtained to be ~8.0x10^-7 m^2/Vs and ~2.0x10^-8 m^2/s, respectively. Using those values and the previou...

  11. Quasiparticle energy distribution and relaxation times in a tunnel-injected superconductor

    International Nuclear Information System (INIS)

    Kirtley, J.R.; Kent, D.S.; Langenberg, D.N.; Kaplan, S.B.; Chang, J.; Yang, C.

    1980-01-01

    Experiments are reported in which a nonequilibrium quasiparticle distribution was created in a dirty Al film by tunnel injection and probed using a second tunnel junction. The distribution was found to have the form of a quasithermal distribution characterized by an effective temperature greater than the ambient bath temperature and dependent on injection level, plus small sharp structures which originate in structures in the injected quasiparticle distribution due to gap-edge peaks in the quasiparticle density of states. A systematic theoretical analysis of these structures correctly predicts their shapes and relative amplitudes. The amplitudes show directly the presence of branch imbalance in the nonequilibrium quasiparticle distribution. Using the theoretical model, inelastic quasiparticle relaxation and elastic branch mixing times, as functions of energy and temperature, are extracted from the experimental data without need for phonon-trapping corrections. The qualitative and quantitative behavior of these times is in reasonable accord with theoretical expectations and the results of other experiments. Experiments of the type reported here are shown to provide a kind of spectroscopy of tunnel-injection and quasiparticle-relaxation processes in superconductors

  12. Long Spin-Relaxation Times in a Transition-Metal Atom in Direct Contact to a Metal Substrate.

    Science.gov (United States)

    Hermenau, Jan; Ternes, Markus; Steinbrecher, Manuel; Wiesendanger, Roland; Wiebe, Jens

    2018-03-14

    Long spin-relaxation times are a prerequisite for the use of spins in data storage or nanospintronics technologies. An atomic-scale solid-state realization of such a system is the spin of a transition-metal atom adsorbed on a suitable substrate. For the case of a metallic substrate, which enables the direct addressing of the spin by conduction electrons, the experimentally measured lifetimes reported to date are on the order of only hundreds of femtoseconds. Here, we show that the spin states of iron atoms adsorbed directly on a conductive platinum substrate have a surprisingly long spin-relaxation time in the nanosecond regime, which is comparable to that of a transition metal atom decoupled from the substrate electrons by a thin decoupling layer. The combination of long spin-relaxation times and strong coupling to conduction electrons implies the possibility to use flexible coupling schemes to process the spin information.

  13. Dynamics of the α-relaxation in glass-forming polymers. Study by neutron scattering and relaxation techniques

    Science.gov (United States)

    Colmenero, J.

    1993-12-01

    The dynamics of the α-relaxation in three different polymeric systems, poly(vinyl methyl ether) (PVME), poly(vinyl chloride) (PVC) and poly(bisphenol A, 2-hydroxypropylether) (PH) has been studied by means of relaxation techniques and quasielastic neutron scattering (backscattering spectrometers IN10 and IN13 at the ILL-Grenoble). By using these techniques we have covered a wide time scale ranging from mesoscopic to macroscopic times (10 -10 -10 1 s). For analyzing the experimental data we have developed a phenomenological procedure in the frequency domain based on the Havriliak-Negami relaxation function, which in fact implies a Kohlrausch-Williams-Watts relaxation function in the time domain. The results obtained indicate that the dynamics of the α-relaxation in a wide time scale shows a clear non-Debye behaviour. The shape of the relaxation functions is found to be similar for the different techniques used and independent of temperature and momentum transfer ( Q). Moreover, the characteristic relaxation times deduced from the fitting of the experimental data can also be described using only one Vogel-Fulcher functional form. Besides we found that the Q-dependence of the relaxation times obtained by QENS is given by a power law, τ( Q) ∞ Q- n ( n>2), n being dependent on the system, and that the Q-behaviour and the non-Debye behaviour are directly correlated. In the case of PVC, time of flight (TOF) neutron scattering experiments confirm these results in a shorter time scale (2×10 -11 -2× 10 -12 s). Moreover, TOF results also suggest the possibility of interpreting the “fast process” usually detected in glass-forming systems as a Debye-like short regime of the α-relaxation.

  14. Evaluation of PHB/Clay nanocomposite by spin-lattice relaxation time

    Directory of Open Access Journals (Sweden)

    Mariana Bruno

    2008-12-01

    Full Text Available Poly(3-hydroxybutyrate (PHB based on nanocomposites containing different amounts of a commercial organically modified clay (viscogel B7 were prepared employing solution intercalation method. Three solvents, such as: CHCl3, dimethylchloride (DMC and tetrahydrofuran (THF were used. The relationship among the processing conditions; molecular structure and intermolecular interaction, between both nanocomposite components, were investigated using a nuclear magnetic resonance (NMR, as a part of characterization methodology, which has been used by Tavares et al. It involves the hydrogen spin-lattice relaxation time, T1H, by solid state nuclear magnetic resonance, employing low field NMR. X ray diffraction was also employed because it is a conventional technique, generally used to obtain the first information on nanocomposite formation. Changes in PHB crystallinity were observed after the organophilic nanoclay had been incorporated in the polymer matrix. These changes, in the microstructure, were detected by the variation of hydrogen nuclear relaxation time values and by X ray, which showed an increase in the clay interlamelar space due to the intercalation of the polymer in the clay between lamellae. It was also observed, for both techniques, that the solvents affect directly the organization of the crystalline region, promoting a better intercalation, considering that they behave like a plasticizer.

  15. Stress: The Special Educator's Perspective.

    Science.gov (United States)

    Raschke, Donna; And Others

    1988-01-01

    The article describes approaches special education teachers can take to reduce stress including diet and exercise, relaxation techniques, use of social support systems, goal setting, time management, and networking. A survey of special education teachers found the use of humor the most common strategy for coping with stress. (DB)

  16. Sandpile model for relaxation in complex systems

    International Nuclear Information System (INIS)

    Vazquez, A.; Sotolongo-Costa, O.; Brouers, F.

    1997-10-01

    The relaxation in complex systems is, in general, nonexponential. After an initial rapid decay the system relaxes slowly following a long time tail. In the present paper a sandpile moderation of the relaxation in complex systems is analysed. Complexity is introduced by a process of avalanches in the Bethe lattice and a feedback mechanism which leads to slower decay with increasing time. In this way, some features of relaxation in complex systems: long time tails relaxation, aging, and fractal distribution of characteristic times, are obtained by simple computer simulations. (author)

  17. Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales

    International Nuclear Information System (INIS)

    Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2014-01-01

    The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents for a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible

  18. Relaxation of the vibrational distribution function in N2 time varying discharges

    International Nuclear Information System (INIS)

    Capitelli, M.; Gorse, C.; Ricard, A.

    1981-01-01

    Relaxation of the electron and vibrational distribution functions have been calculated in function of residence time in nitrogen electrical discharges and post-discharges. In the discharge the vibrational temperature get bigger with the residence time for t -2 s. In the post-discharge the vibrational distribution is evolving in such a manner that the high levels are overpopulated as the low vibrational level population is dropping

  19. The Influence of the Relaxation Time on the Dynamic Hysteresis in Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Palici Alexandra

    2018-01-01

    Full Text Available We investigate the dynamic behavior of perovskite solar cells by focusing on the relaxation time τ, which corresponds to the slow de-polarization process from an initial bias pre-poled state. The dynamic electrical model (DEM is employed for simulating the J-V characteristics for different bias scan rates and pre-poling conditions. Depending on the sign of the initial polarization normal or inverted hysteresis may be induced. For fixed pre-poling conditions, the relaxation time, in relation to the bias scan rate, governs the magnitude of the dynamic hysteresis. In the limit of large τ the hysteretic effects are vanishing for the typical range of bias scan rates considered, while for very small τ the hysteresis is significant only when it is comparable with the measurement time interval.

  20. Transverse magnetic field effects on the relaxation time of the magnetization in Mn12 measured by {sup 55}Mn-NMR

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Y.; Watanabe, K.; Kumagai, K.; Borsa, F.; Gatteschi, D

    2003-05-01

    The longitudinal (H{sub Z}) and transverse (H{sub T}) magnetic field dependence of the relaxation time of the magnetization in Mn12 in its S=10 ground state was measured by NMR. The minima in the relaxation time at the fields for level crossing are due to the quantum tunneling of the magnetization. The shortening of the relaxation time under the application of H{sub T} is shown to be due mainly to the reduction of the energy barrier.

  1. Characterization of relaxation processes in interacting vortex matter through a time-dependent correlation length

    International Nuclear Information System (INIS)

    Pleimling, Michel; Täuber, Uwe C

    2015-01-01

    Vortex lines in type-II superconductors display complicated relaxation processes due to the intricate competition between their mutual repulsive interactions and pinning to attractive point or extended defects. We perform extensive Monte Carlo simulations for an interacting elastic line model with either point-like or columnar pinning centers. From measurements of the space- and time-dependent height-height correlation function for lateral flux line fluctuations, we extract a characteristic correlation length that we use to investigate different non-equilibrium relaxation regimes. The specific time dependence of this correlation length for different disorder configurations displays characteristic features that provide a novel diagnostic tool to distinguish between point-like pinning centers and extended columnar defects. (paper)

  2. Evaluation of relaxation time measurements by magnetic resonance imaging. A phantom study

    DEFF Research Database (Denmark)

    Kjaer, L; Thomsen, C; Henriksen, O

    1987-01-01

    Several circumstances may explain the great variation in reported proton T1 and T2 relaxation times usually seen. This study was designed to evaluate the accuracy of relaxation time measurements by magnetic resonance imaging (MRI) operating at 1.5 tesla. Using a phantom of nine boxes with different...... concentrations of CuSO4 and correlating the calculated T1 and T2 values with reference values obtained by two spectrometers (corrected to MRI-proton frequency = 64 MHz) we found a maximum deviation of about 10 per cent. Measurements performed on a large water phantom in order to evaluate the homogeneity...... in the imaging plane showed a variation of less than 10 per cent within 10 cm from the centre of the magnet in all three imaging planes. Changing the gradient field strength apparently had no influence on the T2 values recorded. Consequently diffusion processes seem without significance. It is concluded...

  3. T2 Relaxation Time Mapping of the Cartilage Cap of Osteochondromas

    OpenAIRE

    Kim, Hee Kyung; Horn, Paul; Dardzinski, Bernard J.; Kim, Dong Hoon; Laor, Tal

    2016-01-01

    Objective Our aim was to evaluate the cartilage cap of osteochondromas using T2 maps and to compare these values to those of normal patellar cartilage, from age and gender matched controls. Materials and Methods This study was approved by the Institutional Review Board and request for informed consent was waived. Eleven children (ages 5-17 years) with osteochondromas underwent MR imaging, which included T2-weighted fat suppressed and T2 relaxation time mapping (echo time = 9-99/repetition tim...

  4. Effect of reorientation of anisotropic point defects on relaxation of crystal elastic coefficients of high order

    International Nuclear Information System (INIS)

    Topchyan, I.I.; Dokhner, R.D.

    1977-01-01

    The effect of reorientation of anisotropic point defects in uniform fields of elastic stresses on the relaxation of the elastic coefficients of a crystal was investigated in the nonlinear elasticity theory approximation. In calculating the interaction of point defects with elastic-stress fields was taken into consideration. The expression for the relaxations of the elasticity coefficients are obtained in an analytical form. The relaxation of the second-order elasticity coefficients is due to the dimentional interaction of a point defect with an applied-stress field, whereas the relaxation of the higher-order elasticity coefficients is determined both by dimentional and module effects

  5. Mechanisms of stress generation and relaxation during pulsed laser deposition of epitaxial Fe-Pd magnetic shape memory alloy films on MgO

    International Nuclear Information System (INIS)

    Edler, Tobias; Mayr, S G; Buschbeck, Joerg; Mickel, Christine; Faehler, Sebastian

    2008-01-01

    Mechanical stress generation during epitaxial growth of Fe-Pd thin films on MgO from pulsed laser deposition is a key parameter for the suitability in shape memory applications. By employing in situ substrate curvature measurements, we determine the stress states as a function of film thickness and composition. Depending on composition, different stress states are observed during initial film growth, which can be attributed to different misfits. Compressive stress generation by atomic peening is observed in the later stages of growth. Comparison with ex situ x-ray based strain measurements allows integral and local stress to be distinguished and yields heterogeneities of the stress state between coherent and incoherent regions. In combination with cross-sectional TEM measurements the relevant stress relaxation mechanism is identified to be stress-induced martensite formation with (111) twinning

  6. [A study on Korean concepts of relaxation].

    Science.gov (United States)

    Park, J S

    1992-01-01

    Relaxation technique is an independent nursing intervention used in various stressful situations. The concept of relaxation must be explored for the meaning given by the people in their traditional thought and philosophy. Korean relaxation technique, wanting to become culturally acceptable and effective, is learning to recognize and develop Korean concepts, experiences, and musics of relaxation. This study was aimed at discovering Korean concepts, experiences and musics of relaxation and contributing the development of the relaxation technique for Korean people. The subjects were 59 nursing students, 39 hospitalized patients, 61 housewives, 21 rural residents and 16 researchers. Data were collected from September 4th to October 24th, 1991 by interviews or questionnaires. The data analysis was done by qualitative research method, and validity assured by conformation of the concept and category by 2 nursing scientists who had written a Master's thesis on the relaxation technique. The results of the study were summarized as follows; 1. The meaning of the relaxation concept; From 298 statements, 107 concepts were extracted and then 5 categories "Physical domain", "Psychological domain", "Complex domain", "Situation", and "environment" were organized. 'Don't have discomforts, 'don't have muscle tension', 'don't have energy (him in Korean)', 'don't have activities' subcategories were included in "Physical domain". 'Don't have anxiety', 'feel good', 'emotional stability', 'don't have wordly thoughts', 'feel one's brain muddled', 'loss of desire' subcategories were included in "physical domain" 'Comfort body and mind', 'don't have tension of body and mind', 'be sagged' 'liveliness of thoughts' subcategories were included in "Complex domain". 'Rest', 'sleep', 'others' subcategories were included in "Situation domain". And 'quite environment' & 'comfortable environment' subcategories were included in "Environmental domain". 2. The experiences of the relaxation; From 151

  7. Fetal response to abbreviated relaxation techniques. A randomized controlled study.

    Science.gov (United States)

    Fink, Nadine S; Urech, Corinne; Isabel, Fornaro; Meyer, Andrea; Hoesli, Irène; Bitzer, Johannes; Alder, Judith

    2011-02-01

    stress during pregnancy can have adverse effects on the course of pregnancy and on fetal development. There are few studies investigating the outcome of stress reduction interventions on maternal well-being and obstetric outcome. this study aims (1) to obtain fetal behavioral states (quiet/active sleep, quiet/active wakefulness), (2) to investigate the effects of maternal relaxation on fetal behavior as well as on uterine activity, and (3) to investigate maternal physiological and endocrine parameters as potential underlying mechanisms for maternal-fetal relaxation-transferral. the behavior of 33 fetuses was analyzed during laboratory relaxation/quiet rest (control group, CG) and controlled for baseline fetal behavior. Potential associations between relaxation/quiet rest and fetal behavior (fetal heart rate (FHR), FHR variation, FHR acceleration, and body movements) and uterine activity were studied, using a computerized cardiotocogram (CTG) system. Maternal heart rate, blood pressure, cortisol, and norepinephrine were measured. intervention (progressive muscle relaxation, PMR, and guided imagery, GI) showed changes in fetal behavior. The intervention groups had higher long-term variation during and after relaxation compared to the CG (p=.039). CG fetuses had more FHR acceleration, especially during and after quiet rest (p=.027). Women in the PMR group had significantly more uterine activity than women in the GI group (p=.011) and than CG women. Maternal heart rate, blood pressure, and stress hormones were not associated with fetal behavior. this study indicates that the fetus might participate in maternal relaxation and suggests that GI is superior to PMR. This could especially be true for women who tend to direct their attention to body sensations such as abdominal activity. 2010 Elsevier Ltd. All rights reserved.

  8. Study on mitigation of stress corrosion cracking by peening

    International Nuclear Information System (INIS)

    Maeguchi, Takaharu; Tsutsumi, Kazuya; Toyoda, Masahiko; Ohta, Takahiro; Okabe, Taketoshi; Sato, Tomonobu

    2010-01-01

    In order to verify stability of residual stress improvement effect of peeing for mitigation of stress corrosion cracking in components of PWR plant, relaxation behavior of residual stress induced by water jet peening (WJP) and ultrasonic shot peening (USP) on surface of alloy 600 and its weld metal was investigated under various thermal aging and stress condition considered for actual plant operation. In the case of thermal aging at 320-380degC, surface residual stress relaxation was observed at the early stage of thermal aging, but no significant stress relaxation was observed after that. Applied stress below yield stress does not significantly affect stress relaxation behavior of surface residual stress. Furthermore, it was confirmed that cyclic stress does not accelerate stress relaxation. (author)

  9. Effect of applied stress on the compressive residual stress introduced by laser peening

    International Nuclear Information System (INIS)

    Sumiya, Rie; Tazawa, Toshiyuki; Narazaki, Chihiro; Saito, Toshiyuki; Kishimoto, Kikuo

    2016-01-01

    Peening is the process which is able to be generated compressive residual stress and is known to be effective for preventing SCC initiation and improvement of fatigue strength. Laser peening is used for the nuclear power plant components in order to prevent SCC initiation. Although it is reported that the compressive residual stress decreases due to applied stresses under general operating condition, the change of residual stress might be large under excessive loading such as an earthquake. The objectives of this study are to evaluate the relaxation behavior of the compressive residual stress due to laser peening and to confirm the surface residual stress after loading. Therefore laser peened round bar test specimens of SUS316L which is used for the reactor internals of nuclear power plant were loaded at room temperature and elevated temperature and then surface residual stresses were measured by X-ray diffraction method. In the results of this test, it was confirmed that the compressive residual stress remained after applying uniform stress larger than 0.2% proof stress, and the effect of cyclic loading on the residual stress was small. The effect of applying compressive stress on the residual stress relaxation was confirmed to be less than that of applying tensile stress. Plastic deformation through a whole cross section causes the change in the residual stress distribution. As a result, the surface compressive residual stress is released. It was shown that the effect of specimen size on residual stress relaxation and the residual stress relaxation behavior in the stress concentration region can be explained by assumed stress relaxation mechanism. (author)

  10. Magnetic resonance imaging (MRI) and relaxation time mapping of concrete

    Science.gov (United States)

    Beyea, Steven Donald

    2001-07-01

    The use of Magnetic Resonance Imaging (MRI) of water in concrete is presented. This thesis will approach the problem of MR imaging of concrete by attempting to design new methods, suited to concrete materials, rather than attempting to force the material to suit the method. A number of techniques were developed, which allow the spatial observation of water in concrete in up to three dimensions, and permits the determination of space resolved moisture content, as well as local NMR relaxation times. These methods are all based on the Single-Point Imaging (SPI) method. The development of these new methods will be described, and the techniques validated using phantom studies. The study of one-dimensional moisture transport in drying concrete was performed using SPI. This work examined the effect of initial mixture proportions and hydration time on the drying behaviour of concrete, over a period of three months. Studies of drying concrete were also performed using spatial mapping of the spin-lattice (T1) and effective spin-spin (T2*) relaxation times, thereby permitting the observation of changes in the water occupied pore surface-to-volume ratio (S/V) as a function of drying. Results of this work demonstrated changes in the S/V due to drying, hydration and drying induced microcracking. Three-dimensional MRI of concrete was performed using SPRITE (Single-Point Ramped Imaging with T1 Enhancement) and turboSPI (turbo Single Point Imaging). While SPRITE allows for weighting of MR images using T 1 and T2*, turboSPI allows T2 weighting of the resulting images. Using relaxation weighting it was shown to be possible to discriminate between water contained within a hydrated cement matrix, and water in highly porous aggregates, used to produce low-density concrete. Three dimensional experiments performed using SPRITE and turboSPI examined the role of self-dessication, drying, initial aggregate saturation and initial mixture conditions on the transport of moisture between porous

  11. Three-dimensional simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model

    OpenAIRE

    Song-Gui Chen; Chuan-Hu Zhang; Yun-Tian Feng; Qi-Cheng Sun; Feng Jin

    2016-01-01

    This paper presents a three-dimensional (3D) parallel multiple-relaxation-time lattice Boltzmann model (MRT-LBM) for Bingham plastics which overcomes numerical instabilities in the simulation of non-Newtonian fluids for the Bhatnagar–Gross–Krook (BGK) model. The MRT-LBM and several related mathematical models are briefly described. Papanastasiou’s modified model is incorporated for better numerical stability. The impact of the relaxation parameters of the model is studied in detail. The MRT-L...

  12. Rapid simultaneous high-resolution mapping of myelin water fraction and relaxation times in human brain using BMC-mcDESPOT.

    Science.gov (United States)

    Bouhrara, Mustapha; Spencer, Richard G

    2017-02-15

    A number of central nervous system (CNS) diseases exhibit changes in myelin content and magnetic resonance longitudinal, T 1 , and transverse, T 2 , relaxation times, which therefore represent important biomarkers of CNS pathology. Among the methods applied for measurement of myelin water fraction (MWF) and relaxation times, the multicomponent driven equilibrium single pulse observation of T 1 and T 2 (mcDESPOT) approach is of particular interest. mcDESPOT permits whole brain mapping of multicomponent T 1 and T 2 , with data acquisition accomplished within a clinically realistic acquisition time. Unfortunately, previous studies have indicated the limited performance of mcDESPOT in the setting of the modest signal-to-noise range of high-resolution mapping, required for the depiction of small structures and to reduce partial volume effects. Recently, we showed that a new Bayesian Monte Carlo (BMC) analysis substantially improved determination of MWF from mcDESPOT imaging data. However, our previous study was limited in that it did not discuss determination of relaxation times. Here, we extend the BMC analysis to the simultaneous determination of whole-brain MWF and relaxation times using the two-component mcDESPOT signal model. Simulation analyses and in-vivo human brain studies indicate the overall greater performance of this approach compared to the stochastic region contraction (SRC) algorithm, conventionally used to derive parameter estimates from mcDESPOT data. SRC estimates of the transverse relaxation time of the long T 2 fraction, T 2,l , and the longitudinal relaxation time of the short T 1 fraction, T 1,s , clustered towards the lower and upper parameter search space limits, respectively, indicating failure of the fitting procedure. We demonstrate that this effect is absent in the BMC analysis. Our results also showed improved parameter estimation for BMC as compared to SRC for high-resolution mapping. Overall we find that the combination of BMC analysis

  13. Relaxation dynamics of the conductive processes for PbNb2O6 ferroelectric ceramics in the frequency and time domain

    International Nuclear Information System (INIS)

    Gonzalez, R L; Leyet, Y; Guerrero, F; Guerra, J de Los S; Venet, M; Eiras, J A

    2007-01-01

    The relaxation dynamics of the conductive process present in PbNb 2 O 6 piezoelectric ceramics was investigated. A relaxation function in the time domain, Φ(t), was found from the frequency dependence of the dielectric modulus (imaginary component, M'') by using a relaxation function in the frequency domain, F*(ω). The best relaxation function, F*(ω), was found to be a Cole-Cole distribution function, in which relaxation characteristic parameters, such as α and τ CC , are involved. On the other hand, the relaxation function, Φ(t), obtained by the time domain method, was found to be a Kohlrausch-Williams-Watts (KWW) function type. The thermal evolution of the characteristics parameters of the KWW function (β and τ*) was analysed. The values of the activation energy (E a ), obtained in the whole investigated temperature interval, suggest the existence of a relaxation mechanism (a conductive process), which may be interpreted by an ion hopping between neighbouring sites within the crystalline lattice. The results are corroborated with the formalism of the AC conductivity

  14. Interpretation of stress measurements around mining cavities in rock salt - a finite-element study

    International Nuclear Information System (INIS)

    Heusermann, S.

    1986-01-01

    Finite-element studies of stress measurements using the overcoring method and of large drift fields in rock salt show that the measurements are affected by local stress relaxation occurring near the test borehole and by general time-dependent stress redistribution in the marginal zones of adjacent drifts. Analysis of the overcoring method indicates that the following local effects have to be considered in the interpretation of the test results as opposed to measurements in elastic rock: The inelastic deformation behaviour of rock salt causes stress relaxation at the pilot borehole which can lead to an underestimation of the actual stress state in rock. During overcoring considerable inelastic deformations occur in rock salt which demand a modified interpretation of the measurements and as a result of stress relaxation at the borehole various tests conditions, such as overcoring diameter, pilot borehole diameter and time between drilling and overcoring, have an effect on the test results. (orig./PW)

  15. Capturing molecular multimode relaxation processes in excitable gases based on decomposition of acoustic relaxation spectra

    Science.gov (United States)

    Zhu, Ming; Liu, Tingting; Wang, Shu; Zhang, Kesheng

    2017-08-01

    Existing two-frequency reconstructive methods can only capture primary (single) molecular relaxation processes in excitable gases. In this paper, we present a reconstructive method based on the novel decomposition of frequency-dependent acoustic relaxation spectra to capture the entire molecular multimode relaxation process. This decomposition of acoustic relaxation spectra is developed from the frequency-dependent effective specific heat, indicating that a multi-relaxation process is the sum of the interior single-relaxation processes. Based on this decomposition, we can reconstruct the entire multi-relaxation process by capturing the relaxation times and relaxation strengths of N interior single-relaxation processes, using the measurements of acoustic absorption and sound speed at 2N frequencies. Experimental data for the gas mixtures CO2-N2 and CO2-O2 validate our decomposition and reconstruction approach.

  16. Properties of the relaxation time distribution underlying the Kohlrausch-Williams-Watts photoionization of the DX centers in Cd1-xMnxTe mixed crystals

    International Nuclear Information System (INIS)

    Trzmiel, J; Weron, K; Placzek-Popko, E; Janczura, J

    2009-01-01

    In this paper we clarify the relationship between the relaxation rate and relaxation time distributions underlying the Kohlrausch-Williams-Watts (KWW) photoconductivity build-ups in indium- and gallium-doped Cd 1-x Mn x Te mixed crystals. We discuss the role of asymptotic properties of the corresponding probability density functions. We show that the relaxation rate distribution, as a completely asymmetric α-stable distribution, leads to an infinite mean value of the effective relaxation rate. In contrast, the relaxation time distribution related to it leads to a finite mean value of the effective relaxation time. It follows from the experimental data analysis that for all the investigated samples the KWW exponent α decreases linearly with increasing photon flux in the range of (0.6-0.99) and its values are more spread in the case of gallium-doped material. We also observe a linear dependence of the mean relaxation time on the characteristic material time constant, which is consistent with the theoretical model.

  17. Pseudopotential multi-relaxation-time lattice Boltzmann model for cavitation bubble collapse with high density ratio

    International Nuclear Information System (INIS)

    Shan Ming-Lei; Zhu Chang-Ping; Yao Cheng; Yin Cheng; Jiang Xiao-Yan

    2016-01-01

    The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time lattice Boltzmann model developed by Li Q et al. [Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301] is adopted to develop a cavitation bubble collapse model. In the respects of coexistence curves and Laplace law verification, the improved pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. It is found that the thermodynamic consistency and surface tension are independent of kinematic viscosity. By homogeneous and heterogeneous cavitation simulation, the ability of the present model to describe the cavitation bubble development as well as the cavitation inception is verified. The bubble collapse between two parallel walls is simulated. The dynamic process of a collapsing bubble is consistent with the results from experiments and simulations by other numerical methods. It is demonstrated that the present pseudopotential multi-relaxation-time lattice Boltzmann model is applicable and efficient, and the lattice Boltzmann method is an alternative tool for collapsing bubble modeling. (paper)

  18. Two-photon excitation laser scanning microscopy of rabbit nasal septal cartilage following Nd:YAG-laser-mediated stress relaxation

    Science.gov (United States)

    Kim, Charlton C.; Wallace, Vincent P.; Coleno, Mariah L.; Dao, Xavier; Tromberg, Bruce J.; Wong, Brian J.

    2000-04-01

    Laser irradiation of hyaline cartilage result in stable shape changes due to temperature dependent stress relaxation. In this study, we determined the structural changes in chondrocytes within rabbit nasal septal cartilage tissue over a 12-day period using a two-photon laser scanning microscope (TPM) following Nd:YAG laser irradiation. During laser irradiation surface temperature, stress relaxation, and diffuse reflectance, were measured dynamically. Each specimen received one or two sequential laser exposures. The cartilage reached a peak surface temperature of about 61 degrees C during irradiation. Cartilage denatured in 50 percent EtOH was used as a positive control. TPM was performed to detect the fluorescence emission from the chondrocytes. Images of chondrocytes were obtained at depths up to 150 microns, immediately following laser exposure, and also following 12 days in culture. Few differences in the pattern or intensity of fluorescence was observed between controls and irradiated specimens imaged immediately following exposure, regardless of the number of laser pulses. However, following twelve days in tissue culture, the irradiated specimens increase, whereas the native tissue diminishes, in intensity and distribution of fluorescence in the cytoplasm. In contrast, the positive control shows only extracellular matrices and empty lacuna, feature consistent with cell membrane lysis.

  19. SU-F-I-63: Relaxation Times of Lipid Resonances in NAFLD Animal Model Using Enhanced Curve Fitting

    Energy Technology Data Exchange (ETDEWEB)

    Song, K-H; Yoo, C-H; Lim, S-I; Choe, B-Y [Department of Biomedical Engineering, and Research Institute of Biomedical Engineering, The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: The objective of this study is to evaluate the relaxation time of methylene resonance in comparison with other lipid resonances. Methods: The examinations were performed on a 3.0T MRI scanner using a four-channel animal coil. Eight more Sprague-Dawley rats in the same baseline weight range were housed with ad libitum access to water and a high-fat (HF) diet (60% fat, 20% protein, and 20% carbohydrate). In order to avoid large blood vessels, a voxel (0.8×0.8×0.8 cm{sup 3}) was placed in a homogeneous area of the liver parenchyma during free breathing. Lipid relaxations in NC and HF diet rats were estimated at a fixed repetition time (TR) of 6000 msec, and multi echo time (TEs) of 40–220 msec. All spectra for data measurement were processed using the Advanced Method for Accurate, Robust, and Efficient Spectral (AMARES) fitting algorithm of the Java-based Magnetic Resonance User Interface (jMRUI) package. Results: The mean T2 relaxation time of the methylene resonance in normal-chow diet was 37.1 msec (M{sub 0}, 2.9±0.5), with a standard deviation of 4.3 msec. The mean T2 relaxation time of the methylene resonance was 31.4 msec (M{sub 0}, 3.7±0.3), with a standard deviation of 1.8 msec. The T2 relaxation times of methylene protons were higher in normal-chow diet rats than in HF rats (p<0.05), and the extrapolated M{sub 0} values were higher in HF rats than in NC rats (p<0.005). The excellent linear fit with R{sup 2}>0.9971 and R{sup 2}>0.9987 indicates T2 relaxation decay curves with mono-exponential function. Conclusion: In in vivo, a sufficient spectral resolution and a sufficiently high signal-to-noise ratio (SNR) can be achieved, so that the data measured over short TE values can be extrapolated back to TE = 0 to produce better estimates of the relative weights of the spectral components. In the short term, treating the effective decay rate as exponential is an adequate approximation.

  20. A wrinkling-based method for investigating glassy polymer film relaxation as a function of film thickness and temperature.

    Science.gov (United States)

    Chung, Jun Young; Douglas, Jack F; Stafford, Christopher M

    2017-10-21

    We investigate the relaxation dynamics of thin polymer films at temperatures below the bulk glass transition T g by first compressing polystyrene films supported on a polydimethylsiloxane substrate to create wrinkling patterns and then observing the slow relaxation of the wrinkled films back to their final equilibrium flat state by small angle light scattering. As with recent relaxation measurements on thin glassy films reported by Fakhraai and co-workers, we find the relaxation time of our wrinkled films to be strongly dependent on film thickness below an onset thickness on the order of 100 nm. By varying the temperature between room temperature and T g (≈100 °C), we find that the relaxation time follows an Arrhenius-type temperature dependence to a good approximation at all film thicknesses investigated, where both the activation energy and the relaxation time pre-factor depend appreciably on film thickness. The wrinkling relaxation curves tend to cross at a common temperature somewhat below T g , indicating an entropy-enthalpy compensation relation between the activation free energy parameters. This compensation effect has also been observed recently in simulated supported polymer films in the high temperature Arrhenius relaxation regime rather than the glassy state. In addition, we find that the film stress relaxation function, as well as the height of the wrinkle ridges, follows a stretched exponential time dependence and the short-time effective Young's modulus derived from our modeling decreases sigmoidally with increasing temperature-both characteristic features of glassy materials. The relatively facile nature of the wrinkling-based measurements in comparison to other film relaxation measurements makes our method attractive for practical materials development, as well as fundamental studies of glass formation.

  1. Reliability of Single Crystal Silver Nanowire-Based Systems: Stress Assisted Instabilities.

    Science.gov (United States)

    Ramachandramoorthy, Rajaprakash; Wang, Yanming; Aghaei, Amin; Richter, Gunther; Cai, Wei; Espinosa, Horacio D

    2017-05-23

    Time-dependent mechanical characterization of nanowires is critical to understand their long-term reliability in applications, such as flexible-electronics and touch screens. It is also of great importance to develop a theoretical framework for experimentation and analysis on the mechanics of nanowires under time-dependent loading conditions, such as stress-relaxation and fatigue. Here, we combine in situ scanning electron microscope (SEM)/transmission electron microscope (TEM) tests with atomistic and phase-field simulations to understand the deformation mechanisms of single crystal silver nanowires held under constant strain. We observe that the nanowires initially undergo stress-relaxation, where the stress reduces with time and saturates after some time period. The stress-relaxation process occurs due to the formation of few dislocations and stacking faults. Remarkably, after a few hours the nanowires rupture suddenly. The reason for this abrupt failure of the nanowire was identified as stress-assisted diffusion, using phase-field simulations. Under a large applied strain, diffusion leads to the amplification of nanowire surface perturbation at long wavelengths and the nanowire fails at the stress-concentrated thin cross-sectional regions. An analytical analysis on the competition between the elastic energy and the surface energy predicts a longer time to failure for thicker nanowires than thinner ones, consistent with our experimental observations. The measured time to failure of nanowires under cyclic loading conditions can also be explained in terms of this mechanism.

  2. Residual Stress Relaxation Induced by Mass Transport Through Interface of the Pd/SrTiO3

    Directory of Open Access Journals (Sweden)

    Nazarpour S

    2010-01-01

    Full Text Available Abstract Metal interconnections having a small cross-section and short length can be subjected to very large mass transport due to the passing of high current densities. As a result, nonlinear diffusion and electromigration effects which may result in device failure and electrical instabilities may be manifested. Various thicknesses of Pd were deposited over SrTiO3 substrate. Residual stress of the deposited film was evaluated by measuring the variation of d-spacing versus sin2ψ through conventional X-ray diffraction method. It has been found that the lattice misfit within film and substrate might be relaxed because of mass transport. Besides, the relation between residual intrinsic stress and oxygen diffusion through deposited film has been expressed. Consequently, appearance of oxide intermediate layer may adjust interfacial characteristics and suppress electrical conductivity by increasing electron scattering through metallic films.

  3. A comparison the effects of reflexology and relaxation on the psychological symptoms in women with multiple sclerosis.

    Science.gov (United States)

    Soheili, Mozhgan; Nazari, Fatemeh; Shaygannejad, Vahid; Valiani, Mahboobeh

    2017-01-01

    Multiple sclerosis (MS) occurs with a variety of physical and psychological symptoms, yet there is not a conclusive cure for this disease. Complementary medicine is a current treatment which seems is effective in relieving symptoms of patients with MS. Therefore, this study is aimed to determine and compare the effects of reflexology and relaxation on anxiety, stress, and depression in women with MS. This study is a randomized clinical trial that is done on 75 women with MS referred to MS Clinic of Kashani Hospital. After simple non random sampling, participants were randomly assigned by minimization method to three groups: reflexology, relaxation and control (25 patients in each group). In the experimental groups were performed reflexology and relaxation interventions within 4 weeks, twice a week for 40 min and the control group were received only routine treatment as directed by a doctor. Data were collected through depression anxiety and stress scale questionnaire, before, immediately after and 2 months after interventions in all three groups. Chi-square, Kruskal-Wallis, repeated measures analysis of variance and one-way analysis of variance and least significant difference post hoc test via SPSS version 18 were used to analyze the data ( P < 0.05) was considered as significant level. The results showed a significant reduction in the severity of anxiety, stress and depression during the different times in the reflexology and relaxation groups as compared with the control group ( P < 0.05). The results showed that reflexology and relaxation in relieving anxiety, stress and depression are effective in women with MS. Hence, these two methods, as effective techniques, can be recommended.

  4. Relaxation time in confined disordered systems

    International Nuclear Information System (INIS)

    Chamati, H.; Korutcheva, E.

    2006-05-01

    The dynamic critical behavior of a quenched hypercubic sample of linear size L is considered within the 'random T c ' field theoretical model with purely relaxation dynamic (Model A). The dynamic finite size scaling behavior is established and analyzed when the system is quenched from a homogeneous phase towards its critical temperature. The obtained results are compared to those reported in the literature. (author)

  5. Towards quantitative measurements of relaxation times and other parameters in the brain

    International Nuclear Information System (INIS)

    Tofts, P.S.; Du Boulay, E.P.G.H.

    1990-01-01

    The nature and physical significance of the relaxation times T1 and T2 and of proton density are described. Methods of measuring T1 and T2 are discussed with emphasis on the establishment of precision and the maintenance of accuracy. Reported standards of success are briefly reviewed. We expect sensitivities of the order of 1% to be achievable in serial studies. Although early hopes of disease diagnosis by tissue characterisation were not realised, strict scientific method and careful calibration have made it pracitcable to apply relaxation time measurement to research into disease process. Serial measurements in patients and correlation with similar studies in animal models, biopsy results and autopsy material taken together have provided new knowledge about cerebral oedema, water compartmentation, alcoholism and the natural history of multiple sclerosis. There are prospects of using measurement to monitor treatment in other diseases with diffuse brain abnormalities invisible on the usual images. Secondarily derived parameters and notably the quantification of blood-brain barrier defect after injection of Gadolinium-DTPA also offer prospects of valuable data. (orig.)

  6. T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Mamisch, Tallal Charles [University Bern, Department of Orthopedic Surgery, Inselspital, Bern (Switzerland); University Bern, Magnetic Resonance Spectroscopy and Methodology, Department of Clinical Research, Bern (Switzerland); Hughes, Timothy [Siemens Medical Solutions, Erlangen (Germany); Mosher, Timothy J. [Penn State University College of Medicine, Musculoskeletal Imaging and MRI, Department of Radiology, Hershey, PA (United States); Mueller, Christoph [University of Erlangen, Department of Trauma Surgery, Erlangen (Germany); Trattnig, Siegfried [Medical University of Vienna, MR Center - High Field MR, Department of Radiology, Vienna (Austria); Boesch, Chris [University Bern, Magnetic Resonance Spectroscopy and Methodology, Department of Clinical Research, Bern (Switzerland); Welsch, Goetz Hannes [University of Erlangen, Department of Trauma Surgery, Erlangen (Germany); Medical University of Vienna, MR Center - High Field MR, Department of Radiology, Vienna (Austria)

    2012-03-15

    T2 mapping techniques use the relaxation constant as an indirect marker of cartilage structure, and the relaxation constant has also been shown to be a sensitive parameter for cartilage evaluation. As a possible additional robust biomarker, T2* relaxation time is a potential, clinically feasible parameter for the biochemical evaluation of articular cartilage. The knees of 15 healthy volunteers and 15 patients after microfracture therapy (MFX) were evaluated with a multi-echo spin-echo T2 mapping technique and a multi-echo gradient-echo T2* mapping sequence at 3.0 Tesla MRI. Inline maps, using a log-linear least squares fitting method, were assessed with respect to the zonal dependency of T2 and T2* relaxation for the deep and superficial regions of healthy articular cartilage and cartilage repair tissue. There was a statistically significant correlation between T2 and T2* values. Both parameters demonstrated similar spatial dependency, with longer values measured toward the articular surface for healthy articular cartilage. No spatial variation was observed for cartilage repair tissue after MFX. Within this feasibility study, both T2 and T2* relaxation parameters demonstrated a similar response in the assessment of articular cartilage and cartilage repair tissue. The potential advantages of T2*-mapping of cartilage include faster imaging times and the opportunity for 3D acquisitions, thereby providing greater spatial resolution and complete coverage of the articular surface. (orig.)

  7. Integrating a relaxation response-based curriculum into a public high school in Massachusetts.

    Science.gov (United States)

    Foret, Megan M; Scult, Matthew; Wilcher, Marilyn; Chudnofsky, Rana; Malloy, Laura; Hasheminejad, Nicole; Park, Elyse R

    2012-04-01

    Academic and societal pressures result in U.S. high school students feeling stressed. Stress management and relaxation interventions may help students increase resiliency to stress and overall well-being. The objectives of this study were to examine the feasibility (enrollment, participation and acceptability) and potential effectiveness (changes in perceived stress, anxiety, self-esteem, health-promoting behaviors, and locus of control) of a relaxation response (RR)-based curriculum integrated into the school day for high school students. The curriculum included didactic instruction, relaxation exercises, positive psychology, and cognitive restructuring. The intervention group showed significantly greater improvements in levels of perceived stress, state anxiety, and health-promoting behaviors when compared to the wait list control group. The intervention appeared most useful for girls in the intervention group. The results suggest that several modifications may increase the feasibility of using this potentially effective intervention in high schools. Copyright © 2011 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  8. Sympathetic stimulation alters left ventricular relaxation and chamber size.

    Science.gov (United States)

    Burwash, I G; Morgan, D E; Koilpillai, C J; Blackmore, G L; Johnstone, D E; Armour, J A

    1993-01-01

    Alterations in left ventricular (LV) contractility, relaxation, and chamber dimensions induced by efferent sympathetic nerve stimulation were investigated in nine anesthetized open-chest dogs in sinus rhythm. Supramaximal stimulation of acutely decentralized left stellate ganglia augmented heart rate, LV systolic pressure, and rate of LV pressure rise (maximum +dP/dt, 1,809 +/- 191 to 6,304 +/- 725 mmHg/s) and fall (maximum -dP/dt, -2,392 +/- 230 to -4,458 +/- 482 mmHg/s). It also reduced the time constant of isovolumic relaxation, tau (36.5 +/- 4.8 to 14.9 +/- 1.1 ms). Simultaneous two-dimensional echocardiography recorded reductions in end-diastolic and end-systolic LV cross-sectional chamber areas (23 and 31%, respectively), an increase in area ejection fraction (32%), and increases in end-diastolic and end-systolic wall thicknesses (14 and 13%, respectively). End-systolic and end-diastolic wall stresses were unchanged by stellate ganglion stimulation (98 +/- 12 to 95 +/- 9 dyn x 10(3)/cm2; 6.4 +/- 2.4 to 2.4 +/- 0.3 dyn x 10(3)/cm2, respectively). Atrial pacing to similar heart rates did not alter monitored indexes of contractility. Dobutamine and isoproterenol induced changes similar to those resulting from sympathetic neuronal stimulation. These data indicate that when the efferent sympathetic nervous system increases left ventricular contractility and relaxation, concomitant reductions in systolic and diastolic dimensions of that chamber occur that are associated with increasing wall thickness such that LV wall stress changes are minimized.

  9. Effects of residual stress on irradiation hardening in stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, N.; Kondo, K.; Kaji, Y. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Miwa, Y. [Nuclear Energy and Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Ibaraki-ken (Japan)

    2007-07-01

    Full text of publication follows: Structural materials in fusion reactor with water cooling system will undergo corrosion in aqueous environment and heavier irradiation than that in LWR. Irradiation assisted stress corrosion (IASCC) may be induced in stainless steels exposed in these environment for a long term of reactor operation. The IASCC is considered to be caused in a welding zone. It is difficult to predict and estimate the IASCC, because several irradiation effects (irradiation hardening, swelling, irradiation induced stress relaxation, etc) work intricately. Firstly, effects of residual stress on irradiation hardening were investigated in stainless steels. Specimens used in this study were SUS316 and SUS316L. By bending deformation, the specimens with several % plastic strain, which corresponds to weld residual stress, were prepared. Ion irradiations of 12 MeV Ni{sup 3+} were performed at 330, 400 and 550 deg. C to 45 dpa in TIARA facility at JAEA. No bent specimen was simultaneously irradiated with the bent specimen. The residual stress was estimated by X-ray residual stress measurements before and after the irradiation. The micro-hardness was measured by using nano-indenter. The irradiation hardening and the stress relaxation were changed by irradiation under bending deformation. The residual stress did not relax even for the case of the higher temperature aging at 500 deg. C for the same time of irradiation. The residual stress after ion irradiation, however, relaxed at these experimental temperatures in SUS316L. The hardness was obviously suppressed in bent SUS316L irradiated at 300 deg. C to 6 or 12 dpa. It was evident that irradiation induced stress relaxation occasionally suppressed the irradiation hardening in SUS316L. (authors)

  10. SU-E-I-64: Transverse Relaxation Time in Methylene Protons of Non-Alcoholic Fatty Liver Disease Rats

    Energy Technology Data Exchange (ETDEWEB)

    Song, K-H; Lee, D-W; Choe, B-Y [Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Seoul (Korea, Republic of)

    2015-06-15

    Purpose: The aim of this study was to evaluate transverse relaxation time of methylene resonance compared to other lipid resonances. Methods: The examinations were performed using a 3.0 T scanner with a point — resolved spectroscopy (PRESS) sequence. Lipid relaxation time in a lipid phantom filled with canola oil was estimated considering repetition time (TR) as 6000 msec and echo time (TE) as 40 — 550 msec. For in vivo proton magnetic resonance spectroscopy ({sup 1}H — MRS), eight male Sprague — Dawley rats were given free access to a normal - chow (NC) and eight other male Sprague-Dawley rats were given free access to a high — fat (HF) diet. Both groups drank water ad libitum. T{sub 2} measurements in the rats’ livers were conducted at a fixed TR of 6000 msec and TE of 40 – 220 msec. Exponential curve fitting quality was calculated through the coefficients of determination (R{sup 2}). Results: A chemical analysis of phantom and liver was not performed but a T{sub 2} decay curve was acquired. The T{sub 2} relaxation time of methylene resonance was estimated as follows: NC rats, 37.07 ± 4.32 msec; HF rats, 31.43 ± 1.81 msec (p < 0.05). The extrapolated M0 values were higher in HF rats than in NC rats (p < 0.005). Conclusion: This study of {sup 1}H-MRS led to sufficient spectral resolution and signal — to — noise ratio differences to characterize all observable resonances for yielding T{sub 2} relaxation times of methylene resonance. {sup 1}H — MRS relaxation times may be useful for quantitative characterization of various liver diseases, including fatty liver disease. This study was supported by grant (2012-007883 and 2014R1A2A1A10050270) from the Mid-career Researcher Program through the NRF funded by Ministry of Science. In addition, this study was supported by the Industrial R&D of MOTIE/KEIT (10048997, Development of the core technology for integrated therapy devices based on real-time MRI-guided tumor tracking)

  11. The water proton spin-lattice relaxation times in virus-infected cells

    International Nuclear Information System (INIS)

    Valensin, G.; Gaggelli, E.; Tiezzi, E.; Valensin, P.E.; Bianchi Bandinelli, M.L.

    1979-01-01

    The water proton spin-lattice relaxation times in HEp-2 cell cultures were determined immediately after 1 h of polio-virus adsorption. The shortening of the water T 1 was closely related to the multiplicity of infection, allowing direct inspections of the virus-cell interaction since the first steps of the infectious cycle. Virus-induced structural and conformational changes of cell constituents were suggested to be detectable by NMR investigation of cell water. (Auth.)

  12. Experimental investigations of relaxation times of gel electrolytes during polymerization by MR methods

    Czech Academy of Sciences Publication Activity Database

    Kořínek, Radim; Vondrák, J.; Bartušek, Karel; Sedlaříková, M.

    2013-01-01

    Roč. 17, č. 8 (2013), s. 2109-2114 ISSN 1432-8488 R&D Projects: GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Gel electrolyte * Relaxation times * Polarization * Nuclear magnetic resonance Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.234, year: 2013

  13. An open-source software tool for the generation of relaxation time maps in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Messroghli, Daniel R; Rudolph, Andre; Abdel-Aty, Hassan; Wassmuth, Ralf; Kühne, Titus; Dietz, Rainer; Schulz-Menger, Jeanette

    2010-01-01

    In magnetic resonance (MR) imaging, T1, T2 and T2* relaxation times represent characteristic tissue properties that can be quantified with the help of specific imaging strategies. While there are basic software tools for specific pulse sequences, until now there is no universal software program available to automate pixel-wise mapping of relaxation times from various types of images or MR systems. Such a software program would allow researchers to test and compare new imaging strategies and thus would significantly facilitate research in the area of quantitative tissue characterization. After defining requirements for a universal MR mapping tool, a software program named MRmap was created using a high-level graphics language. Additional features include a manual registration tool for source images with motion artifacts and a tabular DICOM viewer to examine pulse sequence parameters. MRmap was successfully tested on three different computer platforms with image data from three different MR system manufacturers and five different sorts of pulse sequences: multi-image inversion recovery T1; Look-Locker/TOMROP T1; modified Look-Locker (MOLLI) T1; single-echo T2/T2*; and multi-echo T2/T2*. Computing times varied between 2 and 113 seconds. Estimates of relaxation times compared favorably to those obtained from non-automated curve fitting. Completed maps were exported in DICOM format and could be read in standard software packages used for analysis of clinical and research MR data. MRmap is a flexible cross-platform research tool that enables accurate mapping of relaxation times from various pulse sequences. The software allows researchers to optimize quantitative MR strategies in a manufacturer-independent fashion. The program and its source code were made available as open-source software on the internet

  14. An open-source software tool for the generation of relaxation time maps in magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Kühne Titus

    2010-07-01

    Full Text Available Abstract Background In magnetic resonance (MR imaging, T1, T2 and T2* relaxation times represent characteristic tissue properties that can be quantified with the help of specific imaging strategies. While there are basic software tools for specific pulse sequences, until now there is no universal software program available to automate pixel-wise mapping of relaxation times from various types of images or MR systems. Such a software program would allow researchers to test and compare new imaging strategies and thus would significantly facilitate research in the area of quantitative tissue characterization. Results After defining requirements for a universal MR mapping tool, a software program named MRmap was created using a high-level graphics language. Additional features include a manual registration tool for source images with motion artifacts and a tabular DICOM viewer to examine pulse sequence parameters. MRmap was successfully tested on three different computer platforms with image data from three different MR system manufacturers and five different sorts of pulse sequences: multi-image inversion recovery T1; Look-Locker/TOMROP T1; modified Look-Locker (MOLLI T1; single-echo T2/T2*; and multi-echo T2/T2*. Computing times varied between 2 and 113 seconds. Estimates of relaxation times compared favorably to those obtained from non-automated curve fitting. Completed maps were exported in DICOM format and could be read in standard software packages used for analysis of clinical and research MR data. Conclusions MRmap is a flexible cross-platform research tool that enables accurate mapping of relaxation times from various pulse sequences. The software allows researchers to optimize quantitative MR strategies in a manufacturer-independent fashion. The program and its source code were made available as open-source software on the internet.

  15. Escape time, relaxation, and sticky states of a softened Henon-Heiles model: Low-frequency vibrational mode effects and glass relaxation

    Science.gov (United States)

    Toledo-Marín, J. Quetzalcóatl; Naumis, Gerardo G.

    2018-04-01

    Here we study the relaxation of a chain consisting of three masses joined by nonlinear springs and periodic conditions when the stiffness is weakened. This system, when expressed in their normal coordinates, yields a softened Henon-Heiles system. By reducing the stiffness of one low-frequency vibrational mode, a faster relaxation is enabled. This is due to a reduction of the energy barrier heights along the softened normal mode as well as for a widening of the opening channels of the energy landscape in configurational space. The relaxation is for the most part exponential, and can be explained by a simple flux equation. Yet, for some initial conditions the relaxation follows as a power law, and in many cases there is a regime change from exponential to power-law decay. We pinpoint the initial conditions for the power-law decay, finding two regions of sticky states. For such states, quasiperiodic orbits are found since almost for all components of the initial momentum orientation, the system is trapped inside two pockets of configurational space. The softened Henon-Heiles model presented here is intended as the simplest model in order to understand the interplay of rigidity, nonlinear interactions and relaxation for nonequilibrium systems such as glass-forming melts or soft matter. Our softened system can be applied to model β relaxation in glasses and suggest that local reorientational jumps can have an exponential and a nonexponential contribution for relaxation, the latter due to asymmetric molecules sticking in cages for certain orientations.

  16. Mechanical relaxation in glasses

    International Nuclear Information System (INIS)

    Hiki, Y.

    2004-01-01

    The basic properties of glasses and the characteristics of mechanical relaxation in glasses were briefly reviewed, and then our studies concerned were presented. Experimental methods adopted were viscosity, internal friction, ultrasonic attenuation, and Brillouin scattering measurements. The specimens used were several kinds of inorganic, organic, and metallic glasses. The measurements were mainly carried out from the room temperature up to the glass transition temperature, and the relaxation time was determined as a function of temperature. The 'double relaxation' composed of two Arrhenius-type relaxations was observed in many materials. In both relaxations, the 'compensation effect' showing a correlation of the pre-exponential factor and the activation energy was observed. These results were explained by considering the 'complex relaxation' due to cooperative motions of atoms or group of atoms. Values of activation energy near the glass transition determined by the various experimental methods were compared with each other

  17. The calculation of the viscosity from the autocorrelation function using molecular and atomic stress tensors

    Science.gov (United States)

    Cui, S. T.

    The stress-stress correlation function and the viscosity of a united-atom model of liquid decane are studied by equilibrium molecular dynamics simulation using two different formalisms for the stress tensor: the atomic and the molecular formalisms. The atomic and molecular correlation functions show dramatic difference in short-time behaviour. The integrals of the two correlation functions, however, become identical after a short transient period whichis significantly shorter than the rotational relaxation time of the molecule. Both reach the same plateau value in a time period corresponding to this relaxation time. These results provide a convenient guide for the choice of the upper integral time limit in calculating the viscosity by the Green-Kubo formula.

  18. Ferromagnetism versus slow paramagnetic relaxation in Fe-doped Li3N

    Science.gov (United States)

    Fix, M.; Jesche, A.; Jantz, S. G.; Bräuninger, S. A.; Klauss, H.-H.; Manna, R. S.; Pietsch, I. M.; Höppe, H. A.; Canfield, P. C.

    2018-02-01

    We report on isothermal magnetization, Mössbauer spectroscopy, and magnetostriction as well as temperature-dependent alternating-current (ac) susceptibility, specific heat, and thermal expansion of single crystalline and polycrystalline Li2(Li1 -xFex) N with x =0 and x ≈0.30 . Magnetic hysteresis emerges at temperatures below T ≈50 K with coercivity fields of up to μ0H =11.6 T at T =2 K and magnetic anisotropy energies of 310 K (27 meV). The ac susceptibility is strongly frequency-dependent (f =10 -10 000 Hz) and reveals an effective energy barrier for spin reversal of Δ E ≈1100 K (90 meV). The relaxation times follow Arrhenius behavior for T >25 K . For T <10 K , however, the relaxation times of τ ≈1010 s are only weakly temperature-dependent, indicating the relevance of a quantum tunneling process instead of thermal excitations. The magnetic entropy amounts to more than 25 J molFe-1 K-1, which significantly exceeds R ln 2 , the value expected for the entropy of a ground-state doublet. Thermal expansion and magnetostriction indicate a weak magnetoelastic coupling in accordance with slow relaxation of the magnetization. The classification of Li2(Li1 -xFex) N as ferromagnet is stressed and contrasted with highly anisotropic and slowly relaxing paramagnetic behavior.

  19. In-vivo measurement of proton relaxation time (T1 and T2) in paediatric brain by MRI

    International Nuclear Information System (INIS)

    Masumura, Michio

    1986-01-01

    The clinical application of MRI led to the detailed imaging of the three-dimentional structure of the brain. Thus, significant information has been obtained with respect to the diagnosis of various diseases, rating severity, evaluation of curative effects, etc. On the other hand, the proportion of the comparative length of the relaxation time to the signal intensity of the images (especially the Spin-Echo image) was not necessarily linear. Consquently, the evaluation of severity was not easy to make. However, if we can obtain T 1 and T 2 precisely as the parameters costituting the images, it will be possible to overcome the above-mentioned difficulties. Further, the usefulness of MRI in activities such as determining the water metabolism of the brain is expected to increase even more. By means of VISTA-MR (0.15 Tesla, resistive magnet ; Picker International Co.) we measured the proton relaxation time (spin-lattice relaxation time (T 1 ) and spin-spin relaxation time (T 2 )) of various intracerebral lesions in paediatric cases. As the control group, 43 children, 4 adolescents and 6 adults were used. The T 1 and T 2 in the normal infantile cases prolonged significantly as compared with adult case. Thereafter, they become shortened by aging. In the age of two or three years, they reach the normal level of adult case. In the cases of degenerative disease, brain tumor, and cerebral contusion, the remarkable prolongation of both T 1 and T 2 , compared with normal value of the same age was observed. In the cases of brain atrophy and epilepsy, T 1 and T 2 were slightly short or within normal value of the same age. In the cases of intracerebral hemorrhage, T 1 was shortened. The in-vivo proton relaxation time obtained by MRI have various limits, but they can be a noninvasive and useful index in evaluation of severity or curative effects in various cerebral diseases. (author)

  20. Dielectric Relaxation of Water: Theory and Experiment

    International Nuclear Information System (INIS)

    Adhikari, Narayan Prasad; Paudyal, Harihar; Johri, Manoj

    2010-06-01

    We have studied the hydrogen bond dynamics and methods for evaluation of probability and relaxation time for hydrogen bond network. Further, dielectric relaxation time has been calculated by using a diagonalization procedure by obtaining eigen values (inverse of relaxation time) of a master equation framed on the basis of Fokker-Planck equations. Microwave cavity spectrometer has been described to make measurements of relaxation time. Slater's perturbation equations are given for the analysis of the data. A comparison of theoretical and experimental data shows that there is a need for improvements in the theoretical model and experimental techniques to provide exact information about structural properties of water. (author)

  1. Elastic models for the non-Arrhenius relaxation time of glass-forming liquids

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short-time...... elastic properties are all determined by just one effective, temperature-dependent force constant). We finally discuss the connection between the elastic models and two well-established research fields of condensed-matter physics: point defects in crystals and solid-state diffusion....

  2. Elastic models for the Non-Arrhenius Relaxation Time of Glass-Forming Liquids

    DEFF Research Database (Denmark)

    Dyre, J. C.

    2006-01-01

    We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short-time...... elastic properties are all determined by just one effective, temperature-dependent force constant). We finally discuss the connection between the elastic models and two well-established research fields of condensed-matter physics: point defects in crystals and solid-state diffusion....

  3. Numerical modeling of bubble dynamics in viscoelastic media with relaxation

    Science.gov (United States)

    Warnez, M. T.; Johnsen, E.

    2015-06-01

    Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.

  4. Time course of action and endotracheal intubating conditions of Org 9487, a new short-acting steroidal muscle relaxant; a comparison with succinylcholine

    NARCIS (Netherlands)

    Wierda, JMKH; van den Broek, L; Proost, JH; Verbaan, BW; Hennis, PJ

    In a randomized study, we evaluated lag time (time from the end of injection of muscle relaxant until the first depression of the train-of-four response [TOF]), onset time (time from the end of injection of muscle relaxant until the maximum depression of the first twitch of the TOF [T1]),

  5. Stress and Time Management Settings in University of Maroua, Cameroon

    Directory of Open Access Journals (Sweden)

    Joseph BESONG BESONG

    2015-06-01

    Full Text Available The aim of this paper is to examine stress and time in educational management in Maroua University. These two phenomena are profound in educational issues in Cameroon due to the complex administration or management. Education comprised of diversity of activities ranging from administration, discipline, teaching, evaluation and learning. Each of these activities requires time schedule to avoid stress in the face of pressure. Administration requires planning, organizing, controlling, commanding, coordinating, reporting and budgeting. Each of these managing variables requires time, just as discipline, teaching, evaluation and learning should need. The situation may be affected by higher authority interference and cause a rush thus affecting every schedule in the system on this note, it is necessary that every administrator on management cadre should develop a list of activities such as admissions, examinations, sports, vacations and other ceremonies which requires his attention on daily, weekly, or monthly bases and there after allocate in a tentative fashion the most appropriate times for dealing with such activities. Some profile recommendations are: strict adhering to schedules to avoid overlapping or prolongation to other programs; the schedules should be pasted or placed at a convenient point in the office for reference to avoid forgetfulness: as an administrator, time should be allocated for meeting or consulting with visitors and subordinates; he should delegate functions to his accredited subordinates to crave chance or time for essential duty; he should review the school or organization programs on daily, weekly or monthly bases the degree to which his administration goals have been attained and he (i.e. administrator should crave time for rest i.e. holidays, relaxation and various forms of physical exercises to revitalizes the body for subsequent activities. The paper recommends planning which is vital in management to avoid time waste

  6. Let Me Relax: Toward Automated Sedentary State Recognition and Ubiquitous Mental Wellness Solutions

    Directory of Open Access Journals (Sweden)

    Vijay Rajanna

    2018-12-01

    Full Text Available Advances in ubiquitous computing technology improve workplace productivity, reduce physical exertion, but ultimately result in a sedentary work style. Sedentary behavior is associated with an increased risk of stress, obesity, and other health complications. Let Me Relax is a fully automated sedentary-state recognition framework using a smartwatch and smartphone, which encourages mental wellness through interventions in the form of simple relaxation techniques. The system was evaluated through a comparative user study of 22 participants split into a test and a control group. An analysis of NASA Task Load Index pre- and post- study survey revealed that test subjects who followed relaxation methods, showed a trend of both increased activity as well as reduced mental stress. Reduced mental stress was found even in those test subjects that had increased inactivity. These results suggest that repeated interventions, driven by an intelligent activity recognition system, is an effective strategy for promoting healthy habits, which reduce stress, anxiety, and other health risks associated with sedentary workplaces.

  7. Promise and problems in using stress triggering models for time-dependent earthquake hazard assessment

    Science.gov (United States)

    Cocco, M.

    2001-12-01

    Earthquake stress changes can promote failures on favorably oriented faults and modify the seismicity pattern over broad regions around the causative faults. Because the induced stress perturbations modify the rate of production of earthquakes, they alter the probability of seismic events in a specified time window. Comparing the Coulomb stress changes with the seismicity rate changes and aftershock patterns can statistically test the role of stress transfer in earthquake occurrence. The interaction probability may represent a further tool to test the stress trigger or shadow model. The probability model, which incorporate stress transfer, has the main advantage to include the contributions of the induced stress perturbation (a static step in its present formulation), the loading rate and the fault constitutive properties. Because the mechanical conditions of the secondary faults at the time of application of the induced load are largely unkown, stress triggering can only be tested on fault populations and not on single earthquake pairs with a specified time delay. The interaction probability can represent the most suitable tool to test the interaction between large magnitude earthquakes. Despite these important implications and the stimulating perspectives, there exist problems in understanding earthquake interaction that should motivate future research but at the same time limit its immediate social applications. One major limitation is that we are unable to predict how and if the induced stress perturbations modify the ratio between small versus large magnitude earthquakes. In other words, we cannot distinguish between a change in this ratio in favor of small events or of large magnitude earthquakes, because the interaction probability is independent of magnitude. Another problem concerns the reconstruction of the stressing history. The interaction probability model is based on the response to a static step; however, we know that other processes contribute to

  8. Relaxation of stress and density, strength (fatigue)

    CERN Document Server

    Gräfe, Wolfgang

    2015-01-01

    This treatment of ""Time-Dependent Mechanical Properties of Solids"" beginswith a phenomenological description of the transport of some unspecifiedentity. It is assumed that the transport is caused by mechanical stresses ortemperature fields. Using these assumptions, it is possible to deduceformulae for a theoretically based description of several phenomena withoutreferring to any specific process or entity. These theoretical results thenprovide the tools for performing methodologically better scientific work andfor a better analysis of data in the practical application of materials. Bypublish

  9. Time stepping free numerical solution of linear differential equations: Krylov subspace versus waveform relaxation

    NARCIS (Netherlands)

    Bochev, Mikhail A.; Oseledets, I.V.; Tyrtyshnikov, E.E.

    2013-01-01

    The aim of this paper is two-fold. First, we propose an efficient implementation of the continuous time waveform relaxation method based on block Krylov subspaces. Second, we compare this new implementation against Krylov subspace methods combined with the shift and invert technique.

  10. Coupled kinetic equations for fermions and bosons in the relaxation-time approximation

    Science.gov (United States)

    Florkowski, Wojciech; Maksymiuk, Ewa; Ryblewski, Radoslaw

    2018-02-01

    Kinetic equations for fermions and bosons are solved numerically in the relaxation-time approximation for the case of one-dimensional boost-invariant geometry. Fermions are massive and carry baryon number, while bosons are massless. The conservation laws for the baryon number, energy, and momentum lead to two Landau matching conditions, which specify the coupling between the fermionic and bosonic sectors and determine the proper-time dependence of the effective temperature and baryon chemical potential of the system. The numerical results illustrate how a nonequilibrium mixture of fermions and bosons approaches hydrodynamic regime described by the Navier-Stokes equations with appropriate forms of the kinetic coefficients. The shear viscosity of a mixture is the sum of the shear viscosities of fermion and boson components, while the bulk viscosity is given by the formula known for a gas of fermions, however, with the thermodynamic variables characterising the mixture. Thus, we find that massless bosons contribute in a nontrivial way to the bulk viscosity of a mixture, provided fermions are massive. We further observe the hydrodynamization effect, which takes place earlier in the shear sector than in the bulk one. The numerical studies of the ratio of the longitudinal and transverse pressures show, to a good approximation, that it depends on the ratio of the relaxation and proper times only. This behavior is connected with the existence of an attractor solution for conformal systems.

  11. Characterization of anomalous relaxation using the time-fractional Bloch equation and multiple echo T2 *-weighted magnetic resonance imaging at 7 T.

    Science.gov (United States)

    Qin, Shanlin; Liu, Fawang; Turner, Ian W; Yu, Qiang; Yang, Qianqian; Vegh, Viktor

    2017-04-01

    To study the utility of fractional calculus in modeling gradient-recalled echo MRI signal decay in the normal human brain. We solved analytically the extended time-fractional Bloch equations resulting in five model parameters, namely, the amplitude, relaxation rate, order of the time-fractional derivative, frequency shift, and constant offset. Voxel-level temporal fitting of the MRI signal was performed using the classical monoexponential model, a previously developed anomalous relaxation model, and using our extended time-fractional relaxation model. Nine brain regions segmented from multiple echo gradient-recalled echo 7 Tesla MRI data acquired from five participants were then used to investigate the characteristics of the extended time-fractional model parameters. We found that the extended time-fractional model is able to fit the experimental data with smaller mean squared error than the classical monoexponential relaxation model and the anomalous relaxation model, which do not account for frequency shift. We were able to fit multiple echo time MRI data with high accuracy using the developed model. Parameters of the model likely capture information on microstructural and susceptibility-induced changes in the human brain. Magn Reson Med 77:1485-1494, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Relaxation of synchronization on complex networks.

    Science.gov (United States)

    Son, Seung-Woo; Jeong, Hawoong; Hong, Hyunsuk

    2008-07-01

    We study collective synchronization in a large number of coupled oscillators on various complex networks. In particular, we focus on the relaxation dynamics of the synchronization, which is important from the viewpoint of information transfer or the dynamics of system recovery from a perturbation. We measure the relaxation time tau that is required to establish global synchronization by varying the structural properties of the networks. It is found that the relaxation time in a strong-coupling regime (K>Kc) logarithmically increases with network size N , which is attributed to the initial random phase fluctuation given by O(N-1/2) . After elimination of the initial-phase fluctuation, the relaxation time is found to be independent of the system size; this implies that the local interaction that depends on the structural connectivity is irrelevant in the relaxation dynamics of the synchronization in the strong-coupling regime. The relaxation dynamics is analytically derived in a form independent of the system size, and it exhibits good consistency with numerical simulations. As an application, we also explore the recovery dynamics of the oscillators when perturbations enter the system.

  13. The interpretation of stress reductions in creep-fatigue cycles of 316 stainless steel

    International Nuclear Information System (INIS)

    Hales, R.

    1986-11-01

    A statistical analysis of stress-drop results obtained on a number of different casts of 316 stainless steel in the temperature range 550 0 C to 700 0 C is presented. In all cases the results were obtained from strain controlled fatigue tests. The equations used to describe stress relaxation here are derived from forward creep equations which describe the dependence of creep rate on time, stress and temperature. Although there is no clear correspondence between creep and stress relaxation, creep equations offer an attractive starting point. Not all the models considered exhibited the expected response to changes in temperature. A revised analysis was carried out on the assumption that stress relaxation is thermally activated according to the Arrhenius equation. Two models were found to fit the data equally well and it was not possible to choose which of these relationships is the more appropriate to describe stress relaxation of cyclically conditioned material. On the basis of the evidence both are acceptable and may be used to calculate the creep damage according to the various high temperature design codes. Whichever gives the more conservative assessment should be used until a more mechanistically based judgement can be reached. (author)

  14. Iodine-induced stress corrosion cracking of fixed deflection stressed slotted rings of Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Sejnoha, R.; Wood, J.C.

    1978-01-01

    Stress corrosion cracking of Zircaloy fuel cladding by fission products is thought to be an important mechanism influencing power ramping defects of water-reactor fuels. We have used the fixed-deflection stressed slotted-ring technique to demonstrate cracking. The results show both the sensitivity and limitations of the stressed slotted-ring method in determining the responses of tubing to stress corrosion cracking. They are interpreted in terms of stress relaxation behavior, both on a microscopic scale for hydrogen-induced stress-relief and on a macroscopic scale for stress-time characteristics. Analysis also takes account of nonuniform plastic deformation during loading and residual stress buildup on unloading. 27 refs

  15. A study on magnetic relaxation times of various organs and body fluids using superconducting magnetic resonance imaging system part I: measurement of relative signal intensity and T2 relaxation time in various portions of brain and cerebrospinal fluid

    International Nuclear Information System (INIS)

    Chang, Kee Hyun; Lee, Ghi Jai; Han, Moon Hee; Kim, Jae Ho; Han, Man Chang; Kim, Chu Wan

    1988-01-01

    This study was undertake to determine if routine clinical magnetic resonance imaging sequences using only two different repetition times (TRs) and with only two sequential echo times (TEs) can be used to measure reproducible relative signal intensity and T2 relaxation time for normal brain tissues and cerebrospinal fluid using a 2.0T superconducting system. In 47 patients 6 different anatomic sites were measured. For each anatomic location, the mean and standard deviation of these values were determined. On T1-weighted (SE 500msec/30msec) images, in globus pallidus and thalamus, of the CSF, cortical gray matter and retrobulbar fat tissue varied more, with a standard deviation of 11-14% on T1-weighted images. On T2-weighted (SE 3000msec/30msec and 3000msec/80msec) images, the relative signal intensity of all anatomic regions varied more than on T1-weighted images. The standard deviation of T2 relaxation times also varied from 10% (fat tissue) to 18% (CSF). These variations might be due to partial volume averaging, signal alteration of CSF secondary to CSF pulsatile motion, etc. Knowing that relative signal intensity and T2 relaxation times calculated from routine imaging sequences are reproducible in only limited area, these normal ranges can be used to investigate changes occurring in disease states of the limited regions.

  16. In vivo relaxation time measurements on a murine tumor model--prolongation of T1 after photodynamic therapy.

    Science.gov (United States)

    Liu, Y H; Hawk, R M; Ramaprasad, S

    1995-01-01

    RIF tumors implanted on mice feet were investigated for changes in relaxation times (T1 and T2) after photodynamic therapy (PDT). Photodynamic therapy was performed using Photofrin II as the photosensitizer and laser light at 630 nm. A home-built proton solenoid coil in the balanced configuration was used to accommodate the tumors, and the relaxation times were measured before, immediately after, and up to several hours after therapy. Several control experiments were performed untreated tumors, tumors treated with Photofrin II alone, or tumors treated with laser light alone. Significant increases in T1s of water protons were observed after PDT treatment. In all experiments, 31P spectra were recorded before and after the therapy to study the tumor status and to confirm the onset of PDT. These studies show significant prolongation of T1s after the PDT treatment. The spin-spin relaxation measurements, on the other hand, did not show such prolongation in T2 values after PDT treatment.

  17. Long time relaxation of resistance in La0.8Sr0.2MnO3 ceramics and La0.65Ca0.35 MnO3 films on ferroelectric substrates

    International Nuclear Information System (INIS)

    Medvedev, Yu.V.; Mezin, N.I.; Nikolaenko, Yu.M.; Pigur, A.E.; Shishkova, N.V.; Ishchuk, V.M.; Chukanova, I.N.

    2004-01-01

    Galvanomagnetic properties of La 0.65 Ca 0.35 MnO 3 films with a thickness of 0.2 μm on Pb 2.9 Ba 0.05 Sr 0.05 (Zr 0.4 Ti 0.6 )O 3 ferroelectric ceramics substrates have been investigated. We have discovered the monotonic irreversible increase of the film resistance by 3-5 time of value during several hours after multiple inversion of substrate polarization. The long-time relaxation (LTR) of film resistance is explained by dielecrtrization of film intercrystallite boundaries as a result of oxygen redistribution under action of inhomogeneous mechanical stress. In addition, the LTR of resistance of La 0.8 Sr 0.2 MnO 3 and La 0.6 Sr 0.2 Mn 1.2 O 3 ceramic samples has been investigated under action of different kind of mechanical stress: stretch, compression and hydrostatic press. Time dependence of resistance is described by R 0 +ΔRexp(-t/τ). The magnitude of LTR is 5-10 time greater then fast variation of resistance under action of stress. The sign of ΔR is dependent on the kind of stress. The time constant (τ) has the value of 3-9 hours. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Relationship between thermodynamic parameter and thermodynamic scaling parameter for orientational relaxation time for flip-flop motion of nematic liquid crystals.

    Science.gov (United States)

    Satoh, Katsuhiko

    2013-03-07

    Thermodynamic parameter Γ and thermodynamic scaling parameter γ for low-frequency relaxation time, which characterize flip-flop motion in a nematic phase, were verified by molecular dynamics simulation with a simple potential based on the Maier-Saupe theory. The parameter Γ, which is the slope of the logarithm for temperature and volume, was evaluated under various conditions at a wide range of temperatures, pressures, and volumes. To simulate thermodynamic scaling so that experimental data at isobaric, isothermal, and isochoric conditions can be rescaled onto a master curve with the parameters for some liquid crystal (LC) compounds, the relaxation time was evaluated from the first-rank orientational correlation function in the simulations, and thermodynamic scaling was verified with the simple potential representing small clusters. A possibility of an equivalence relationship between Γ and γ determined from the relaxation time in the simulation was assessed with available data from the experiments and simulations. In addition, an argument was proposed for the discrepancy between Γ and γ for some LCs in experiments: the discrepancy arises from disagreement of the value of the order parameter P2 rather than the constancy of relaxation time τ1(*) on pressure.

  19. Development of a time-dependent energy model to calculate the mining-induced stress over gates and pillars

    Directory of Open Access Journals (Sweden)

    Mohammad Rezaei

    2015-06-01

    Full Text Available Generally, longwall mining-induced stress results from the stress relaxation due to destressed zone that occurs above the mined panel. Knowledge of induced stress is very important for accurate design of adjacent gateroads and intervening pillars which helps to raise the safety and productivity of longwall mining operations. This study presents a novel time-dependent analytical model for determination of the longwall mining-induced stress and investigates the coefficient of stress concentration over adjacent gates and pillars. The model is developed based on the strain energy balance in longwall mining incorporated to a rheological constitutive model of caved materials with time-varying parameters. The study site is the Tabas coal mine of Iran. In the proposed model, height of destressed zone above the mined panel, total longwall mining-induced stress, abutment angle, induced vertical stress, and coefficient of stress concentration over neighboring gates and intervening pillars are calculated. To evaluate the effect of proposed model parameters on the coefficient of stress concentration due to longwall mining, sensitivity analysis is performed based on the field data and experimental constants. Also, the results of the proposed model are compared with those of existing models. The comparative results confirm a good agreement between the proposed model and the in situ measurements. According to the obtained results, it is concluded that the proposed model can be successfully used to calculate the longwall mining-induced stress. Therefore, the optimum design of gate supports and pillar dimensions would be attainable which helps to increase the mining efficiency.

  20. Binding and relaxation behavior of Coumarin-153 in lecithin-taurocholate mixed micelles: A time resolved fluorescence spectroscopic study

    Science.gov (United States)

    Chakrabarty, Debdeep; Chakraborty, Anjan; Seth, Debabrata; Hazra, Partha; Sarkar, Nilmoni

    2005-09-01

    The microenvironment of the bile salt-lecithin mixed aggregates has been investigated using steady state and picosecond time resolved fluorescence spectroscopy. The steady state spectra show that the polarity of the bile salt is higher compared to lecithin vesicles or the mixed aggregates. We have observed slow solvent relaxation in bile salt micelles and lecithin vesicles. The solvation time is gradually slowed down due to gradual addition of the bile salt in lecithin vesicles. Addition of bile salt leads to the tighter head group packing in lecithin. Thus, mobility of the water molecules becomes slower and consequently the solvation time is also retarded. We have observed bimodal slow rotational relaxation time in all these systems.

  1. Properties of the relaxation time distribution underlying the Kohlrausch-Williams-Watts photoionization of the DX centers in Cd{sub 1-x}Mn{sub x}Te mixed crystals

    Energy Technology Data Exchange (ETDEWEB)

    Trzmiel, J; Weron, K; Placzek-Popko, E [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Janczura, J [Hugo Steinhaus Center for Stochastic Methods and Institute of Mathematics and Computer Science, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2009-08-26

    In this paper we clarify the relationship between the relaxation rate and relaxation time distributions underlying the Kohlrausch-Williams-Watts (KWW) photoconductivity build-ups in indium- and gallium-doped Cd{sub 1-x}Mn{sub x}Te mixed crystals. We discuss the role of asymptotic properties of the corresponding probability density functions. We show that the relaxation rate distribution, as a completely asymmetric alpha-stable distribution, leads to an infinite mean value of the effective relaxation rate. In contrast, the relaxation time distribution related to it leads to a finite mean value of the effective relaxation time. It follows from the experimental data analysis that for all the investigated samples the KWW exponent alpha decreases linearly with increasing photon flux in the range of (0.6-0.99) and its values are more spread in the case of gallium-doped material. We also observe a linear dependence of the mean relaxation time on the characteristic material time constant, which is consistent with the theoretical model.

  2. Superparamagnetic relaxation of weakly interacting particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Tronc, Elisabeth

    1994-01-01

    The influence of particle interactions on the superparamagnetic relaxation time has been studied by Mossbauer spectroscopy in samples of maghemite (gamma-Fe2O3) particles with different particle sizes and particle separations. It is found that the relaxation time decreases with decreasing particl...

  3. Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale

    International Nuclear Information System (INIS)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.

    2016-01-01

    In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.

  4. Learn to manage stress

    Science.gov (United States)

    Stress - managing; Stress - recognizing; Stress - relaxation techniques ... LEARN TO RECOGNIZE STRESS The first step in managing stress is recognizing it in your life. Everyone feels stress in a different way. ...

  5. A unified aggregation and relaxation approach for stress-constrained topology optimization

    DEFF Research Database (Denmark)

    Verbart, Alexander; Langelaar, Matthijs; Keulen, Fred van

    2017-01-01

    design-independent set of constraints. The next step is to perform constraint aggregation over the reformulated local constraints using a lower bound aggregation function. We demonstrate that this approach concurrently aggregates the constraints and relaxes the feasible domain, thereby making singular...... optima accessible. The main advantage is that no separate constraint relaxation techniques are necessary, which reduces the parameter dependence of the problem. Furthermore, there is a clear relationship between the original feasible domain and the perturbed feasible domain via this aggregation parameter....

  6. Superparamagnetic relaxation in alpha-Fe particles

    DEFF Research Database (Denmark)

    Bødker, Franz; Mørup, Steen; Pedersen, Michael Stanley

    1998-01-01

    The superparamagnetic relaxation time of carbon-supported alpha-Fe particles with an average size of 3.0 Mm has been studied over a large temperature range by the use of Mossbauer spectroscopy combined with AC and DC magnetization measurements. It is found that the relaxation time varies...

  7. Preventing occupational stress in healthcare workers.

    Science.gov (United States)

    Ruotsalainen, Jani H; Verbeek, Jos H; Mariné, Albert; Serra, Consol

    2015-04-07

    Healthcare workers can suffer from occupational stress as a result of lack of skills, organisational factors, and low social support at work. This may lead to distress, burnout and psychosomatic problems, and deterioration in quality of life and service provision. To evaluate the effectiveness of work- and person-directed interventions compared to no intervention or alternative interventions in preventing stress at work in healthcare workers. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, PsycINFO, CINAHL, NIOSHTIC-2 and Web of Science up to November 2013. Randomised controlled trials (RCTs) of interventions aimed at preventing psychological stress in healthcare workers. For organisational interventions, interrupted time-series and controlled before-and-after (CBA) studies were also eligible. Two review authors independently extracted data and assessed trial quality. We used Standardised Mean Differences (SMDs) where authors of trials used different scales to measure stress or burnout. We combined studies that were similar in meta-analyses. We used the GRADE system to rate the quality of the evidence. In this update, we added 39 studies, making a total of 58 studies (54 RCTs and four CBA studies), with 7188 participants. We categorised interventions as cognitive-behavioural training (CBT) (n = 14), mental and physical relaxation (n = 21), combined CBT and relaxation (n = 6) and organisational interventions (n = 20). Follow-up was less than one month in 24 studies, one to six in 22 studies and more than six months in 12 studies. We categorised outcomes as stress, anxiety or general health.There was low-quality evidence that CBT with or without relaxation was no more effective in reducing stress symptoms than no intervention at one month follow-up in six studies (SMD -0.27 (95% Confidence Interval (CI) -0.66 to 0.13; 332 participants). But at one to six months follow-up in seven studies (SMD -0.38, 95% CI -0.59 to -0

  8. Relaxation time of normal breast tissues. Changes with age and variations during the menstrual cycle

    International Nuclear Information System (INIS)

    Dean, K.I.; Majurin, M.L.; Komu, M.

    1994-01-01

    The influence of age on the relaxation times of normal breast parenchyma and its surrounding fatty tissue were evaluated, and the variations during a normal menstrual cycle were analyzed using an ultra low field 0.02 T imager. Thirty-nine healthy volunteers aged 21 to 59 years were examined to determine T1 and T2 relaxation times, and 8 of these volunteers were studied once weekly during one menstrual cycle. The only significant trend was an increase in the T2 of breast parenchyma with increasing age. During the menstrual cycle there was a slight but insignificant (p=0.10) increase in T1 of the breast parenchyma values during the latter half of the menstrual cycle, and a corresponding increase in T2 values between the 2nd and 3rd weeks of the menstrual cycle, which was significant. (orig.)

  9. Relaxation time of normal breast tissues. Changes with age and variations during the menstrual cycle

    Energy Technology Data Exchange (ETDEWEB)

    Dean, K.I. (University Central Hospital, Turku (Finland). Dept. of Diagnostic Radiology); Majurin, M.L. (University Central Hospital, Turku (Finland). Dept. of Diagnostic Radiology); Komu, M. (University Central Hospital, Turku (Finland). Dept. of Diagnostic Radiology)

    1994-05-01

    The influence of age on the relaxation times of normal breast parenchyma and its surrounding fatty tissue were evaluated, and the variations during a normal menstrual cycle were analyzed using an ultra low field 0.02 T imager. Thirty-nine healthy volunteers aged 21 to 59 years were examined to determine T1 and T2 relaxation times, and 8 of these volunteers were studied once weekly during one menstrual cycle. The only significant trend was an increase in the T2 of breast parenchyma with increasing age. During the menstrual cycle there was a slight but insignificant (p=0.10) increase in T1 of the breast parenchyma values during the latter half of the menstrual cycle, and a corresponding increase in T2 values between the 2nd and 3rd weeks of the menstrual cycle, which was significant. (orig.).

  10. Quantum process tomography with informational incomplete data of two J-coupled heterogeneous spins relaxation in a time window much greater than T1

    Science.gov (United States)

    Maciel, Thiago O.; Vianna, Reinaldo O.; Sarthour, Roberto S.; Oliveira, Ivan S.

    2015-11-01

    We reconstruct the time dependent quantum map corresponding to the relaxation process of a two-spin system in liquid-state NMR at room temperature. By means of quantum tomography techniques that handle informational incomplete data, we show how to properly post-process and normalize the measurements data for the simulation of quantum information processing, overcoming the unknown number of molecules prepared in a non-equilibrium magnetization state (Nj) by an initial sequence of radiofrequency pulses. From the reconstructed quantum map, we infer both longitudinal (T1) and transversal (T2) relaxation times, and introduce the J-coupling relaxation times ({T}1J,{T}2J), which are relevant for quantum information processing simulations. We show that the map associated to the relaxation process cannot be assumed approximated unital and trace-preserving for times greater than {T}2J.

  11. Cross-relaxation in multiple pulse NQR spin-locking

    Energy Technology Data Exchange (ETDEWEB)

    Beltjukov, P. A.; Kibrik, G. E. [Perm State University, Physics Department (Russian Federation); Furman, G. B., E-mail: gregoryf@bgu.ac.il; Goren, S. D. [Ben Gurion University, Physics Department (Israel)

    2008-01-15

    The experimental and theoretical NQR multiple-pulse spin locking study of cross-relaxation process in solids containing nuclei of two different sorts I > 1/2 and S = 1/2 coupled by the dipole-dipole interactions and influenced by an external magnetic field. Two coupled equations for the inverse spin temperatures of the both spin systems describing the mutual spin lattice relaxation and the cross-relaxation were obtained using the method of the nonequilibrium state operator. It is shown that the relaxation process is realized with non-exponential time dependence describing by a sum of two exponents. The cross relaxation time is calculated as a function of the multiple-pulse field parameters which agree with the experimental data. The calculated magnetization cross relaxation time vs the strength of the applied magnetic field agrees well with the obtained experimental data.

  12. Tensions relaxation in Zircaloy-4

    International Nuclear Information System (INIS)

    Cuniberti, A.M.; Picasso, A.C.

    1990-01-01

    Traction and stress relaxation studies were performed on polycrystalline Zry-4 at room temperature. The effect of loading velocity on the plastic behaviour of the material is discussed, analysing log σ vs. log dε/dt at different deformation levels. The contribution introduced by the testing machine was taken into account in data evaluation. (Author). 7 refs., 3 figs., 3 tabs

  13. Plasmon-mediated energy relaxation in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, D. K. [School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287-5706 (United States); Somphonsane, R. [Department of Physics, King Mongkut' s Institute of Technology, Ladkrabang, Bangkok 10520 (Thailand); Ramamoorthy, H.; Bird, J. P. [Department of Electrical Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260-1500 (United States)

    2015-12-28

    Energy relaxation of hot carriers in graphene is studied at low temperatures, where the loss rate may differ significantly from that predicted for electron-phonon interactions. We show here that plasmons, important in the relaxation of energetic carriers in bulk semiconductors, can also provide a pathway for energy relaxation in transport experiments in graphene. We obtain a total loss rate to plasmons that results in energy relaxation times whose dependence on temperature and density closely matches that found experimentally.

  14. Anisotropy of the nuclear magnetic relaxation times induced in solid 3He by modulation of the dipolar interactions

    International Nuclear Information System (INIS)

    Deville, G.

    1976-01-01

    Anisotropic nuclear relaxation times have been measured in solid 3 He samples grown at constant pressure, in the Larmor frequency range 1.5MHz-5MHz where the main relaxation mechanism is the modulation of the dipolar interaction by exchange or by motion of the vacancies. The second order calculation made by Harris for the exchange induced relaxation regime is extended to the regime where vacancy motion dominates. The theory is further refined by considering the fourth moment anisotropy effect on the spectral densities. This latter calculation yields a frequency dependent anisotropic contribution to T 1 which agrees qualitatively with the data, unlike the simpler results by Harris [fr

  15. Relaxation cracking in the process industry, an underestimated problem

    Energy Technology Data Exchange (ETDEWEB)

    Wortel, J.C. van [TNO Institute of Industrial Technology, Apeldoorn (Netherlands)

    1999-12-31

    Austenitic components, operating between 500 and 750 deg C, can fail within 1 year service while the ordinary mechanical properties after failure are still within the code requirements. The intergranular brittle failures are situated in the welded or cold deformed areas. This type of cracking has many names, showing the uncertainty concerning the mechanism for the (catastrophical) failures. A just finished investigation showed that it is a relaxation crack problem, introduced by manufacturing processes, especially welding and cold rolling. Cracking/failures can be expected after only 0.1- 0.2 % relaxation strain. These low strain values can already be generated during relaxation of the welding stresses. Especially coarse grained `age hardening` materials are susceptible. Stabilising and Postweld Heat Treatments are very effective to avoid relaxation crack problems during operation. After these heat treatments the components can withstand more than 2 % relaxation strain. At temperatures between 500 and 750 deg C relaxation cracking is the predominant factor for the safety and lifetime of welded austenitic components. (orig.) 12 refs.

  16. Relaxation cracking in the process industry, an underestimated problem

    Energy Technology Data Exchange (ETDEWEB)

    Wortel, J.C. van [TNO Institute of Industrial Technology, Apeldoorn (Netherlands)

    1998-12-31

    Austenitic components, operating between 500 and 750 deg C, can fail within 1 year service while the ordinary mechanical properties after failure are still within the code requirements. The intergranular brittle failures are situated in the welded or cold deformed areas. This type of cracking has many names, showing the uncertainty concerning the mechanism for the (catastrophical) failures. A just finished investigation showed that it is a relaxation crack problem, introduced by manufacturing processes, especially welding and cold rolling. Cracking/failures can be expected after only 0.1- 0.2 % relaxation strain. These low strain values can already be generated during relaxation of the welding stresses. Especially coarse grained `age hardening` materials are susceptible. Stabilising and Postweld Heat Treatments are very effective to avoid relaxation crack problems during operation. After these heat treatments the components can withstand more than 2 % relaxation strain. At temperatures between 500 and 750 deg C relaxation cracking is the predominant factor for the safety and lifetime of welded austenitic components. (orig.) 12 refs.

  17. Calorimetric features of release of plastic deformation induced internal stresses, and approach to equilibrium state on annealing of crystals and glasses

    Energy Technology Data Exchange (ETDEWEB)

    Johari, G.P., E-mail: joharig@mcmaster.ca

    2014-04-01

    Highlights: • Stress release in a glass occurs at a faster rate than structural relaxation. • Plastically-deformed glass would show two exothermic minima, and no glass transition. • Enthalpy matching procedure would yield an inaccurate fictive temperature. • Complex heat capacity may distinguish plastically-deformed from quench-formed glass. - Abstract: Plastic deformation of crystals and glasses produces internal strains (stresses), which change their energy and other thermodynamic properties. On annealing, these stresses decrease at a rate faster than the structure relaxes toward the equilibrium state. Mechanism of such relaxations in crystals differs from that in glasses and it also differs for glasses of different types. In all cases, the energy related properties decrease with time isothermally and on heating, resembling the structure relaxation of a stress-free glass. We consider these features and argue that kinetics of enthalpy loss with time yields the rate constants of the stress release and of the structure change, and not the viscosity determining α-relaxation time. Since thermal cycling does not recover the enthalpy from internal stresses, a glass with stresses has neither a glass-softening temperature, T{sub g}, nor a fictive temperature, T{sub f}. Plastic deformation would not rejuvenate a physically aged glass to the properties of its un-aged state. The Prigogine–Defay ratio can be extended to all T{sub f}s, and used to investigate the effect of distribution of relaxation times on its value, but it can not be defined for an internally stressed glass. After discussing the effects of annealing on the heat capacity and DSC scans, we conclude that on slow heating, glass with deformation-induced stresses would show two exothermic minima, and normal glass would show only one such minimum. Temperature-modulated scanning calorimetry would also distinguish an internally stressed glass from an equally high-enthalpy, stress-free glass. Enthalpy

  18. Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures [Thermo-mechanical modeling of laser-induced structural relaxation and deformation of SiO2 glass

    Energy Technology Data Exchange (ETDEWEB)

    Vignes, Ryan M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Soules, Thomas F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Stolken, James S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Settgast, Randolph R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Elhadj, Selim [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Matthews, Manyalibo J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Mauro, J.

    2012-12-17

    In a fully coupled thermomechanical model of the nanoscale deformation in amorphous SiO2 due to laser heating is presented. Direct measurement of the transient, nonuniform temperature profiles was used to first validate a nonlinear thermal transport model. Densification due to structural relaxation above the glass transition point was modeled using the Tool-Narayanaswamy (TN) formulation for the evolution of structural relaxation times and fictive temperature. TN relaxation parameters were derived from spatially resolved confocal Raman scattering measurements of Si–O–Si stretching mode frequencies. These thermal and microstructural data were used to simulate fictive temperatures which are shown to scale nearly linearly with density, consistent with previous measurements from Shelby et al. Volumetric relaxation coupled with thermal expansion occurring in the liquid-like and solid-like glassy states lead to residual stresses and permanent deformation which could be quantified. But, experimental surface deformation profiles between 1700 and 2000 K could only be reconciled with our simulation by assuming a roughly 2 × larger liquid thermal expansion for a-SiO2 with a temperature of maximum density ~150 K higher than previously estimated by Bruckner et al. Calculated stress fields agreed well with recent laser-induced critical fracture measurements, demonstrating accurate material response prediction under processing conditions of practical interest.

  19. Deformation aspects of time dependent fracture

    International Nuclear Information System (INIS)

    Li, C.Y.; Turner, A.P.L.; Diercks, D.R.; Laird, C.; Langdon, T.G.; Nix, W.D.; Swindeman, R.; Wolfer, W.G.; Woodford, D.A.

    1979-01-01

    For all metallic materials, particularly at elevated temperatures, deformation plays an important role in fracture. On the macro-continuum level, the inelastic deformation behavior of the material determines how stress is distributed in the body and thus determines the driving force for fracture. At the micro-continuum level, inelastic deformation alters the elastic stress singularity at the crack tip and so determines the local environment in which crack advance takes place. At the microscopic and mechanistic level, there are many possibilities for the mechanisms of deformation to be related to those for crack initiation and growth. At elevated temperatures, inelastic deformation in metallic systems is time dependent so that the distribution of stress in a body will vary with time, affecting conditions for crack initiation and propagation. Creep deformation can reduce the tendency for fracture by relaxing the stresses at geometric stress concentrations. It can also, under suitable constraints, cause a concentration of stresses at specific loading points as a result of relaxation elsewhere in the body. A combination of deformation and unequal heating, as in welding, can generate large residual stress which cannot be predicted from the external loads on the body. Acceleration of deformation by raising the temperature can be an effective way to relieve such residual stresses

  20. Pain in Times of Stress

    OpenAIRE

    AHMAD, Asma Hayati; ZAKARIA, Rahimah

    2015-01-01

    Stress modulates pain perception, resulting in either stress-induced analgesia or stress-induced hyperalgesia, as reported in both animal and human studies. The responses to stress include neural, endocrine, and behavioural changes, and built-in coping strategies are in place to address stressors. Peculiar to humans are additional factors that modulate pain that are experienced in times of stress, notably psychological factors that potentially influence the directionality of pain perception.

  1. Lineshape theory of pigment-protein complexes: How the finite relaxation time of nuclei influences the exciton relaxation-induced lifetime broadening

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Thanh-Chung; Renger, Thomas, E-mail: thomas.renger@jku.at [Institut für Theoretische Physik, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz (Austria)

    2016-07-21

    In pigment-protein complexes, often the excited states are partially delocalized and the exciton-vibrational coupling in the basis of delocalized states contains large diagonal and small off-diagonal elements. This inequality may be used to introduce potential energy surfaces (PESs) of exciton states and to treat the inter-PES coupling in Markov and secular approximations. The resulting lineshape function consists of a Lorentzian peak that is broadened by the finite lifetime of the exciton states caused by the inter-PES coupling and a vibrational sideband that results from the mutual displacement of the excitonic PESs with respect to that of the ground state. So far analytical expressions have been derived that relate the exciton relaxation-induced lifetime broadening to the Redfield [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)] or modified Redfield [M. Schröder, U. Kleinekathöfer, and M. Schreiber, J. Chem. Phys. 124, 084903 (2006)] rate constants of exciton relaxation, assuming that intra-PES nuclear relaxation is fast compared to inter-PES transfer. Here, we go beyond this approximation and provide an analytical expression, termed Non-equilibrium Modified Redfield (NeMoR) theory, for the lifetime broadening that takes into account the finite nuclear relaxation time. In an application of the theory to molecular dimers, we find that, for a widely used experimental spectral density of the exciton-vibrational coupling of pigment-protein complexes, the NeMoR spectrum at low-temperatures (T < 150 K) is better approximated by Redfield than by modified Redfield theory. At room temperature, the lifetime broadening obtained with Redfield theory underestimates the NeMoR broadening, whereas modified Redfield theory overestimates it by a similar amount. A fortuitous error compensation in Redfield theory is found to explain the good performance of this theory at low temperatures. Since steady state spectra of PPCs are often measured at low temperatures

  2. Relaxation of mechanical stresses in Si-Ge/Si structures implanted by carbon ions. Study with optical methods

    International Nuclear Information System (INIS)

    Klyuj, M.Yi.

    1998-01-01

    Optical properties of Si-Ge/Si structures implanted by carbon ions with the energy of 20 keV and at the doses of 5 centre dot 10 15 - 1- 16 cm -2 are studied by spectro ellipsometry and Raman scattering techniques. From the comparison of experimental data with the results of theoretical calculations, it is shown that, as a result of implantation, a partial relaxation of mechanical stresses in the Si 1-x Ge x film due to introduction of carbon atoms with a small covalent radius into the Si-Ge lattice takes place. An elevated implantation temperature allows one to maintain a high structural perfection of the implanted film

  3. Surface-NMR measurements of the longitudinal relaxation time T1 in a homogeneous sandy aquifer in Skive, Denmark

    Science.gov (United States)

    Walbrecker, J.; Behroozmand, A.

    2011-12-01

    Efficient groundwater management requires reliable means of characterizing shallow groundwater aquifers. One key parameter in this respect is hydraulic conductivity. Surface nuclear magnetic resonance (NMR) is a geophysical exploration technique that can potentially provide this type of information in a noninvasive, cost-effective way. The technique is based on measuring the precession of nuclear spins of protons in groundwater molecules. It involves large loop antennas deployed on Earth's surface to generate electromagnetic pulses tuned to specifically excite and detect groundwater proton spins. Naturally, the excited state of spins is transitory - once excited, spins relax back to their equilibrium state. This relaxation process is strongly influenced by the spin environment, which, in the case of groundwater, is defined by the aquifer. By employing empirical relations, changes in relaxation behavior can be used to identify changes in aquifer hydraulic conductivity, making the NMR relaxation signal a very important piece of information. Particularly, efforts are made to record the longitudinal relaxation parameter T1, because it is known from laboratory studies that it often reliably correlates with hydraulic conductivity, even in the presence of magnetic species. In surface NMR, T1 data are collected by recording the NMR signal amplitude following two sequential excitation pulses as a function of the delay time τ between the two pulses. In conventional acquisition, the two pulses have a mutual phase shift of π. Based on theoretical arguments it was recently shown that T1 times acquired according to this conventional surface-NMR scheme are systematically biased. It was proposed that the bias can be minimized by cycling the phase of the two pulses between π and zero in subsequent double-pulse experiments, and subtracting the resulting signal amplitudes (phase-cycled pseudosaturation recovery scheme, pcPSR). We present the first surface-NMR T1 data set recorded

  4. Comparative study of the sensitivity of ADC value and T2 relaxation time for early detection of Wallerian degeneration

    International Nuclear Information System (INIS)

    Zhang Fan; Lu Guangming; Zee Chishing

    2011-01-01

    Background and purpose: Wallerian degeneration (WD), the secondary degeneration of axons from cortical and subcortical injuries, is associated with poor neurological outcome. There is some quantitative MR imaging techniques used to estimate the biologic changes secondary to delayed neuronal and axonal losses. Our purpose is to assess the sensitivity of ADC value and T 2 relaxation time for early detection of WD. Methods: Ten male Sprague-Dawley rats were used to establish in vivo Wallerian degeneration model of CNS by ipsilateral motor-sensory cortex ablation. 5 days after cortex ablation, multiecho-T 2 relaxometry and multi-b value DWI were acquired by using a 7 T MR imaging scanner. ADC-map and T 2 -map were reconstructed by post-processing. ROIs are selected according to pathway of corticospinal tract from cortex, internal capsule, cerebral peduncle, pons, medulla oblongata to upper cervical spinal cord to measure ADC value and T 2 relaxation time of healthy side and affected side. The results were compared between the side with cortical ablation and the side without ablation. Results: Excluding ablated cortex, ADC values of the corticospinal tract were significantly increased (P 2 relaxation time was observed between the affected and healthy sides. Imaging findings were correlated with histological examinations. Conclusion: As shown in this animal experiment, ADC values could non-invasively demonstrate the secondary degeneration involving descending white matter tracts. ADC values are more sensitive indicators for detection of early WD than T 2 relaxation time.

  5. Ovarian chocolate cysts. Staging with relaxation time in MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sugimura, Kazuro; Ishida, Tetsuya; Takemori, Masayuki; Kitagaki, Hajime; Tanaka, Yutaka; Yamasaki, Katsuhito; Shimizu, Tadafumi; Kono, Michio

    1988-10-01

    Accurate preoperative staging of ovarian chocolate cysts is very important because recent hormonal therapy has been effective in low stage patients. However, it has been difficult to assess the preoperative stage of ovarian chocolate cysts. We evaluated the diagnostic potential of MRI in preoperative staging of 15 overian chocolate cysts. It was well known that the older the ovarian chocolate cyst was the more iron content it had. We examined the iron contents effect on T1 and T2 relaxation times in surgically confirmed chocolate cysts (stage II: 3 cases, stage III: 3 cases and stage IV: 9 cases by AFS classification, 1985) employing the 0.15-T MR system and 200 MHz spectrometer. There was a positive linear relation between T1 of the lesion using the MR system (T1) and T1 of the resected contents using the spectrometer (sp-T1); r = 0.93. The same relation was revealed between T2 and sp-T2; r = 0.87. It was indicated that T1 and T2 using the MR system was accurate. There was a negative linear relation between T1 and the iron contents ( r = -0.81) but no relation between T2 and the iron contents. T1 was 412 +- 91 msec for stage II, 356 +- 126 msec for stage III and 208 +- 30 msec for stage IV. T1 for stage IV was shorter than that for stage II and III, statistically significant differences were noted (p < 0.05). Thus, T1 was useful in differentiating a fresh from an old ovarian chocolate cyst. We concluded that T1 relaxation time using the MR system was useful for the staging of an ovarian chocolate cyst without surgery.

  6. Relaxation dynamics following transition of solvated electrons

    International Nuclear Information System (INIS)

    Barnett, R.B.; Landman, U.; Nitzan, A.

    1989-01-01

    Relaxation dynamics following an electronic transition of an excess solvated electron in clusters and in bulk water is studied using an adiabatic simulation method. In this method the solvent evolves classically and the electron is constrained to a specified state. The coupling between the solvent and the excess electron is evaluated via the quantum expectation value of the electron--water molecule interaction potential. The relaxation following excitation (or deexcitation) is characterized by two time scales: (i) a very fast (/similar to/20--30 fs) one associated with molecular rotations in the first solvation shell about the electron, and (ii) a slower stage (/similar to/200 fs), which is of the order of the longitudinal dielectric relaxation time. The fast relaxation stage exhibits an isotope effect. The spectroscopical consequences of the relaxation dynamics are discussed

  7. Anelastic relaxation peaks in single crystals of zirconium-oxygen alloys

    International Nuclear Information System (INIS)

    Ritchie, I.G.; Sprungmann, K.W.; Atrens, A.; Rosinger, H.E.; CEA Centre d'Etudes Nucleaires de Grenoble, 38

    1977-01-01

    Relaxations of the compliances S 11 -S 12 and S 44 have been observed in single crystals of zirconium-oxygen alloys tested in flexure and in torsion respectively. The relaxations are attributed to the stress-induced reorientation of substitutional impurity atoms (s) paired with interstitial oxygen atoms (i). The results demonstrate that the jump of the interstitial parallel to the basal plane dominates in the reorientation of the s-i pair

  8. Tensorial analysis of Eshelby stresses in 3D supercooled liquids

    Science.gov (United States)

    Lemaître, Anaël

    2015-10-01

    It was recently proposed that the local rearrangements governing relaxation in supercooled liquids impress on the liquid medium long-ranged (Eshelby) stress fluctuations that accumulate over time. From this viewpoint, events must be characterized by elastic dipoles, which are second order tensors, and Eshelby fields are expected to show up in stress and stress increment correlations, which are fourth order tensor fields. We construct here an analytical framework that permits analyzing such tensorial correlations in isotropic media in view of accessing Eshelby fields. Two spherical bases are introduced, which correspond to Cartesian and spherical coordinates for tensors. We show how they can be used to decompose stress correlations and thus test such properties as isotropy and power-law scalings. Eshelby fields and the predicted stress correlations in an infinite medium are shown to belong to an algebra that can conveniently be described using the spherical tensor bases. Using this formalism, we demonstrate that the inherent stress field of 3D supercooled liquids is power law correlated and carries the signature of Eshelby fields, thus supporting the idea that relaxation events give rise to Eshelby stresses that accumulate over time.

  9. Contact problem for a solid indenter and a viscoelastic half-space described by the spectrum of relaxation and retardation times

    Science.gov (United States)

    Stepanov, F. I.

    2018-04-01

    The mechanical properties of a material which is modeled by an exponential creep kernel characterized by a spectrum of relaxation and retardation times are studied. The research is carried out considering a contact problem for a solid indenter sliding over a viscoelastic half-space. The contact pressure, indentation depth of the indenter, and the deformation component of the friction coefficient are analyzed with respect to the case of half-space material modeled by single relaxation and retardation times.

  10. Managing Teacher Stress and Burnout.

    Science.gov (United States)

    Sparks, Dennis; Hammond, Janice

    This monograph offers a practical guide for identifying and managing those stressors that are in the specific domain of the individual--exercise, diet, sleep, interpersonal relations, time and conflict management, and relaxation. The first section covers stress theory; methods to identify and clarify stressors; restoration of a balanced…

  11. Adolescents' sleep in low-stress and high-stress (exam) times: a prospective quasi-experiment.

    Science.gov (United States)

    Dewald, Julia F; Meijer, Anne Marie; Oort, Frans J; Kerkhof, Gerard A; Bögels, Susan M

    2014-01-01

    This prospective quasi-experiment (N = 175; mean age = 15.14 years) investigates changes in adolescents' sleep from low-stress (regular school week) to high-stress times (exam week), and examines the (moderating) role of chronic sleep reduction, baseline stress, and gender. Sleep was monitored over three consecutive weeks using actigraphy. Adolescents' sleep was more fragmented during the high-stress time than during the low-stress time, meaning that individuals slept more restless during stressful times. However, sleep efficiency, total sleep time, and sleep onset latency remained stable throughout the three consecutive weeks. High chronic sleep reduction was related to later bedtimes, later sleep start times, later sleep end times, later getting up times, and more time spent in bed. Furthermore, low chronic sleep reduction and high baseline stress levels were related to more fragmented sleep during stressful times. This study shows that stressful times can have negative effects on adolescents' sleep fragmentation, especially for adolescents with low chronic sleep reduction or high baseline stress levels.

  12. Mechanical spectroscopy of thermal stress relaxation in aluminium alloys reinforced with short alumina fibres

    Energy Technology Data Exchange (ETDEWEB)

    Carreno-Morelli, E.; Schaller, R. [Ecole Polytechnique Federale, Lausanne (Switzerland). Inst. de Genie Atomique; Urreta, S.E.

    1998-05-01

    The mechanical behaviour under low temperature thermal cycling of aluminium-based composites reinforced with short Al{sub 2}O{sub 3} SAFFIL fibres has been investigated by mechanical spectroscopy (mechanical loss and elastic shear modulus measurements). A mechanical loss maximum has been observed during cooling which originates in the relaxation of thermal stresses at the interfaces due to the differential thermal expansion between matrix and reinforcement. The maximum height increases with the volumetric fibre content. In addition, if the matrix strength is increased by the appropriated choice of alloy and thermal treatment, the maximum diminishes and shifts to lower temperatures. No damage accumulation at the interfaces has been detected during long period thermal cycling in the range 100 to 500 K. A description of the damping behaviour is made in terms of the development of microplastic zones which surround the fibres. (orig.) 9 refs.

  13. The study on stress-strain state of the spring at high temperature using ABAQUS

    Directory of Open Access Journals (Sweden)

    H Sun

    2014-01-01

    Full Text Available Cylindrical helical springs are widely used in the elements of thermal energy devices. It is necessary to guarantee the stability of the stress state of spring in high temperature. Relaxation phenomenon of stress is studied in this paper. Calculations are carried out in the environment of ABAQUS. The verification is taken out using analytical calculations.This paper describes the distribution and character of stress contour lines on the cross section of spring under the condition of instantaneous load, explicates the relaxation law with time. Research object is cylindrical helical spring, that working at high temperature. The purpose of this work is to get the stress relaxation law of spring, and to guarantee the long-term strength.This article presents the basic theory of helical spring. Establishes spring mathematical model of creep under the loads of compression and torsion. The stress formulas of each component in the cross section of spring are given. The calculation process of relaxation is analyzed in the program ABAQUS.In this paper compare the analytical formulas of spring stress with the simulation results, which are created by program ABAQUS.Finite element model for stress creep analysis in the cross section is created, material of spring – stainless steel 10X18N9T, springs are used at the temperature 650℃.At the beginning, stress-stain of spring is in the elastic state. Analyzes the change law of creep stress under the condition of constant load and a fixed compression.When analyzing under the condition of a fixed compression, the stresses are quickly decreased in most area in the cross section of spring, and the point of minimum shear stress gradually moves to the direction of outer diameter, because of this, stresses in a small area near the center increase slowly at first then decrease gradually with time. When analyzing under the condition of constant load, the stresses are quickly decreased in the around area and in creased

  14. Dielectric Relaxation Studies of 2-Butoxyethanol with Aniline and Substituted Anilines Using Time Domain Reflectometry

    Directory of Open Access Journals (Sweden)

    P. Jeevanandham

    2014-01-01

    Full Text Available The complex dielectric spectra of 2-butoxyethanol with aniline and substituted anilines like aniline, o-chloroaniline, m-chloroaniline, o-anisidine and m-anisidine binary mixtures in the composition of different volumes of percent (0%, 25%, 50%, 75%, and 100% have been measured as a function of frequency between 10 MHz and 30 GHz at 298.15 K. The dielectric parameters like static dielectric constant ε0 and relaxation time τ have been obtained by using least square fit method. By using these parameters ε0,τ, effective Kirkwood correlation factor geff, corrective Kirkwood correlation factor gf, Bruggeman factor fB, excess dielectric constant εE, and excess inverse relaxation time 1/τE values are calculated and discussed to yield information on the dipolar alignment and molecular rotation of the binary liquid mixtures. From all the derived dielectric parameters, molecular interactions are interpreted through hydrogen bonding.

  15. Relaxation behaviour of gasketed joints during assembly using finite ...

    Indian Academy of Sciences (India)

    Faculty of Mechanical Engineering, Ghulam Ishaq Khan (GIK) Institute of ... Bolt scatter, bolt bending, joint relaxation and gasket stress variation are concluded the main .... In the present work, following two ..... American Society of Mech.

  16. Sexual dimorphism of extensor carpi radialis muscle size, isometric force, relaxation rate and stamina during the breeding season of the frog Rana temporaria Linnaeus 1758.

    Science.gov (United States)

    Navas, Carlos A; James, Rob S

    2007-02-01

    Mating success of individual male frogs within explosive breeding species can depend on their ability to compete for a mate and to hold onto that mate during amplexus. Such importance of amplexus has resulted in the evolution of sexual dimorphism in the morphology and contractile characteristics of the anuran forelimb muscles used during amplexus. The aims of our study were to use an explosive breeding frog (Rana temporaria) during the breeding season to compare extensor carpi radialis (ECR) muscle length, mass, isometric activation times, relaxation times, absolute force, relative force (stress) and fatigue between male and female frogs. We found that ECR muscle mass and length were greater (tenfold and 1.4-fold, respectively), absolute tetanic muscle force and relative tetanic force (stress) were greater (16-fold and 2.2-fold, respectively) and relaxation times were slower in males than in females. Male ECR muscles incompletely relaxed during fatigue tests and showed less fatigue than female muscles. These sex differences are likely to be beneficial to the male frogs in allowing them to produce relatively high absolute muscle forces for prolonged periods of time to hold onto their mate during amplexus.

  17. STRUCTURAL STRESS RELAXATION IN STAINLESS INSTABILITY STEEL

    Directory of Open Access Journals (Sweden)

    S. Lyabuk

    2017-06-01

    Full Text Available The approach to the description of conditions of martensitic transformation in austenitic steel is advanced. Transformation induced hardening is the result of Le Chatelier principle in instability alloys. The phase transformation in austenitic instability stainless steel is the cause of reduction of grain refining and increase of strength. It was experimentally shown that physical-mechanical characteristics of the prepared materials were defined by the structure and inhomogeneous distribution of the hardening phase within a grain. The reasons for high thermal stability of inverse austenitic were established. The factors determining the inverse austenitic relaxation resistibility and resources for its increasing were revealed.

  18. Vibrational and Rotational Energy Relaxation in Liquids

    DEFF Research Database (Denmark)

    Petersen, Jakob

    Vibrational and rotational energy relaxation in liquids are studied by means of computer simulations. As a precursor for studying vibrational energy relaxation of a solute molecule subsequent to the formation of a chemical bond, the validity of the classical Bersohn-Zewail model for describing......, the vibrational energy relaxation of I2 subsequent to photodissociation and recombination in CCl4 is studied using classical Molecular Dynamics simulations. The vibrational relaxation times and the time-dependent I-I pair distribution function are compared to new experimental results, and a qualitative agreement...... is found in both cases. Furthermore, the rotational energy relaxation of H2O in liquid water is studied via simulations and a power-and-work analysis. The mechanism of the energy transfer from the rotationally excited H2O molecule to its water neighbors is elucidated, i.e. the energy-accepting degrees...

  19. Frequency and Wavevector Dependence of the Atomic Level Stress-Stress Correlation Function in a Model Supercooled Liquid

    Science.gov (United States)

    Levashov, Valentin A.; Morris, James R.; Egami, Takeshi

    2012-02-01

    Temporal and spatial correlations among the local atomic level shear stresses were studied for a model liquid iron by molecular dynamics simulation [PRL 106,115703]. Integration over time and space of the shear stress correlation function F(r,t) yields viscosity via Green-Kubo relation. The stress correlation function in time and space F(r,t) was Fourier transformed to study the dependence on frequency, E, and wave vector, Q. The results, F(Q,E), showed damped shear stress waves propagating in the liquid for small Q at high and low temperatures. We also observed additional diffuse feature that appears as temperature is reduced below crossover temperature of potential energy landscape at relatively low frequencies at small Q. We suggest that this additional feature might be related to dynamic heterogeneity and boson peaks. We also discuss a relation between the time-scale of the stress-stress correlation function and the alpha-relaxation time of the intermediate self-scattering function S(Q,E).

  20. Stress relief cracking by relaxation in austenitic stainless steels welded junctions; Fissuration differee par relaxation des jonctions soudes en aciers inoxydables austenitiques

    Energy Technology Data Exchange (ETDEWEB)

    Allais, L.; Auzoux, Q.; Chabaud-Reytier, M

    2003-07-01

    During service at high temperature (450 to 650 C), austenitic stainless steels are well known to present a risk of cracking near the welded junctions for times under the service life. This intergranular cracking in affected zones has been identified on titanium stabilized steels and is known as relief cracking by relaxation or reheat cracking. In order to control this cracking of welded junctions on titanium stabilized stainless steel AISI 321, a simulation of the affected zone has been realized. The results have been extended to non stabilized steels. (A.L.B.)

  1. Picosecond absorption relaxation measured with nanosecond laser photoacoustics

    OpenAIRE

    Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin; Wang, Lihong V.

    2010-01-01

    Picosecond absorption relaxation—central to many disciplines—is typically measured by ultrafast (femtosecond or picosecond) pump-probe techniques, which however are restricted to optically thin and weakly scattering materials or require artificial sample preparation. Here, we developed a reflection-mode relaxation photoacoustic microscope based on a nanosecond laser and measured picosecond absorption relaxation times. The relaxation times of oxygenated and deoxygenated hemoglobin molecules, b...

  2. Analysis of residual stress relief mechanisms in post-weld heat treatment

    International Nuclear Information System (INIS)

    Dong, Pingsha; Song, Shaopin; Zhang, Jinmiao

    2014-01-01

    This paper presents a recent study on weld residual stress relief mechanisms associated with furnace-based uniform post-weld heat treatment (PWHT). Both finite element and analytical methods are used to quantitatively examine how plastic deformation and creep relaxation contribute to residual stress relief process at different stages of PWHT process. The key contribution of this work to an improved understanding of furnace based uniform PWHT can be summarized as follows: (1)Plastic deformation induced stress relief during PWHT can be analytically expressed by the change in material elastic deformation capacity (or elastic deformation limit) measured in terms of material yield strength to Young's modulus ratio, which has a rather limited role in overall residual stress relief during furnace based uniform PWHT. (2)The most dominant stress relief mechanism is creep strain induced stress relaxation, as expected. However, a rapid creep strain development accompanied by a rapid residual stress reduction during heating stage before reaching PWHT temperature is shown to contribute to most of the stress relief seen in overall PWHT process, suggesting PWHT hold time can be significantly reduced as far as residual stress relief is concerned. (3)A simple engineering scheme for estimating residual stress reduction is proposed based on this study by relating material type, PWHT temperature, and component wall thickness. - Highlights: • The paper clarified effects of plastic deformation and creep relaxation on weld residual stress relief during uniform PWHT. • Creep strain development is far more important than plastic strain, mostly completed even before hold time starts. • Plastic strain development is insignificant and be analytically described by a material elastic deformation capacity parameter. • An engineering estimation scheme is proposed for determining residual stress reduction resulted from furnace based PWHT

  3. Structural relaxation dynamics and annealing effects of sodium silicate glass.

    Science.gov (United States)

    Naji, Mohamed; Piazza, Francesco; Guimbretière, Guillaume; Canizarès, Aurélien; Vaills, Yann

    2013-05-09

    Here we report high-precision measurements of structural relaxation dynamics in the glass transition range at the intermediate and short length scale for a strong sodium silicate glass during long annealing times. We evidence for the first time the heterogeneous dynamics at the intermediate range order by probing the acoustic longitudinal frequency in the GHz region by Brillouin light scattering spectroscopy. Or, from in-situ Raman measurements, we show that relaxation is indeed homogeneous at the interatomic length scale. Our results show that the dynamics at the intermediate range order contains two distinct relaxation time scales, a fast and a slow component, differing by about a 10-fold factor below Tg and approaching to one another past the glass transition. The slow relaxation time agrees with the shear relaxation time, proving that Si-O bond breaking constitutes the primary control of structural relaxation at the intermediate range order.

  4. Interrelation of creep and relaxation: a modeling approach for ligaments.

    Science.gov (United States)

    Lakes, R S; Vanderby, R

    1999-12-01

    Experimental data (Thornton et al., 1997) show that relaxation proceeds more rapidly (a greater slope on a log-log scale) than creep in ligament, a fact not explained by linear viscoelasticity. An interrelation between creep and relaxation is therefore developed for ligaments based on a single-integral nonlinear superposition model. This interrelation differs from the convolution relation obtained by Laplace transforms for linear materials. We demonstrate via continuum concepts of nonlinear viscoelasticity that such a difference in rate between creep and relaxation phenomenologically occurs when the nonlinearity is of a strain-stiffening type, i.e., the stress-strain curve is concave up as observed in ligament. We also show that it is inconsistent to assume a Fung-type constitutive law (Fung, 1972) for both creep and relaxation. Using the published data of Thornton et al. (1997), the nonlinear interrelation developed herein predicts creep behavior from relaxation data well (R > or = 0.998). Although data are limited and the causal mechanisms associated with viscoelastic tissue behavior are complex, continuum concepts demonstrated here appear capable of interrelating creep and relaxation with fidelity.

  5. Lifshitz quasinormal modes and relaxation from holography

    NARCIS (Netherlands)

    Sybesma, Watse|info:eu-repo/dai/nl/369283074; Vandoren, Stefan|info:eu-repo/dai/nl/304830739

    2015-01-01

    We obtain relaxation times for field theories with Lifshitz scaling and with holographic duals Einstein-Maxwell-Dilaton gravity theories. This is done by computing quasinormal modes of a bulk scalar field in the presence of Lifshitz black branes. We determine the relation between relaxation time and

  6. Stability of (Fe-Tm-B) amorphous alloys: relaxation and crystallization phenomena

    International Nuclear Information System (INIS)

    Zemcik, T.

    1994-01-01

    Fe-Tm-B base (TM = transition metal) amorphous alloys (metallic glasses) are thermodynamically metastable. This limits their use as otherwise favourable materials, e.g. magnetically soft, corrosion resistant and mechanically firm. By analogy of the mechanical strain-stress dependence, at a certain degree of thermal activation the amorphous structure reaches its limiting state where it changes its character and physical properties. Relaxation and early crystallization processes in amorphous alloys, starting already around 100 C, are reviewed involving subsequently stress relief, free volume shrinking, topological and chemical ordering, pre-crystallization phenomena up to partial (primary) crystallization. Two diametrically different examples are demonstrated from among the soft magnetic materials: relaxation and early crystallization processes in the Fe-Co-B metallic glasses and controlled crystallization of amorphous ribbons yielding rather modern nanocrystalline ''Finemet'' alloys where late relaxation and pre-crystallization phenomena overlap when forming extremely dispersive and fine-grained nanocrystals-in-amorphous-sauce structure. Moessbauer spectroscopy seems to be unique for magnetic and phase analysis of such complicated systems. (orig.)

  7. Improving Health by Reducing Stress: An Experiential Activity

    Science.gov (United States)

    Largo-Wight, Erin; Moore, Michele J.; Barr, Elissa M.

    2011-01-01

    Stress is a leading health issue among college students. Managing stress involves enhancing resources necessary to cope with life's demands. Relaxation techniques are especially critical coping strategies when stress is chronic and coping resources are overused and fatigued. Methods: This article describes a research-based relaxation technique…

  8. 31P spin-lattice relaxation time measurements in biological systems

    International Nuclear Information System (INIS)

    Suzuki, Eiji; Maeda, Munehiro; Kuki, Satoru; Tsukamoto, Kenji; Kawakami, Tsuyoshi; Seo, Yoshiteru; Murakami, Masataka; Watari, Hiroshi

    1989-01-01

    Spin-lattice relaxation time (T 1 ) of phosphorus compounds in the perfused heart, liver, kidney and erythrocytes of rats were measured by the DESPOT (Driven-equilibrium single-pulse observation of T 1 ) method at 8.45 T. This method is a rapid and accurate technique for the measurement of T 1 values. T 1 values of phosphomonoesters (PME), 2, 3-diphosphoglycerate (DPG), inorganic phosphate (Pi), phosphodiesters (PDE), phosphocreatine (PCr) and three phosphates of ATP were ranged from 0.15±0.02 sec (β-ATP in the liver) to 8.5±1.6 sec (PDE in the kidney). T 1 value of β-ATP in the liver was 1/4-1/5 of those in the mandibular gland, heart, erythrocytes and kidney. T 1 values obtained from biological materials are useful for selecting the optimal pulse repetition times and pulse angles to maximize the signal-to-noise ratio of 13 P spectra, and for correcting distortions of signal intensities in the spectra. (author)

  9. Nuclear magnetic resonance relaxation in multiple sclerosis

    DEFF Research Database (Denmark)

    Larsson, H B; Barker, G J; MacKay, A

    1998-01-01

    OBJECTIVES: The theory of relaxation processes and their measurements are described. An overview is presented of the literature on relaxation time measurements in the normal and the developing brain, in experimental diseases in animals, and in patients with multiple sclerosis. RESULTS...... AND CONCLUSION: Relaxation time measurements provide insight into development of multiple sclerosis plaques, especially the occurrence of oedema, demyelination, and gliosis. There is also evidence that normal appearing white matter in patients with multiple sclerosis is affected. What is now needed are fast...

  10. Nuclear spin-lattice relaxation in nitroxide spin-label EPR

    DEFF Research Database (Denmark)

    Marsh, Derek

    2016-01-01

    that the definition of nitrogen nuclear relaxation rate Wn commonly used in the CW-EPR literature for 14N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14N spin-lattice relaxation rate, b = Wn/(2We), preserves...... of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for 14N-relaxation: T1 n = 1/Wn. Results are compared and contrasted...

  11. Characterization of strain rate sensitivity and activation volume using the indentation relaxation test

    International Nuclear Information System (INIS)

    Xu Baoxing; Chen Xi; Yue Zhufeng

    2010-01-01

    We present the possibility of extracting the strain rate sensitivity, activation volume and Helmholtz free energy (for dislocation activation) using just one indentation stress relaxation test, and the approach is demonstrated with polycrystalline copper. The Helmholtz free energy measured from indentation relaxation agrees well with that from the conventional compression relaxation test, which validates the proposed approach. From the indentation relaxation test, the measured indentation strain rate sensitivity exponent is found to be slightly larger, and the indentation activation volume much smaller, than their counterparts from the compression test. The results indicate the involvement of multiple dislocation mechanisms in the indentation test.

  12. The Stress’ Management and Time Budget

    Directory of Open Access Journals (Sweden)

    Maria Constantinescu

    2007-05-01

    Full Text Available The present study has as central objective the introduction of a succession of concrete findings, more precisely the spotlight of the relation between the time budget, stress and behavior (A or B in a military organization. The study's premise lays on the assertion that military environment, a petitioner environment takes to the growth of stress because of the negative disparity between the weight of time destined discharging job tasks and the weight of time earmarked relaxation and other needs.

  13. Significance of focal relaxation times in head injury

    Energy Technology Data Exchange (ETDEWEB)

    Inao, Suguru; Furuse, Masahiro; Saso, Katsuyoshi; Yoshida, Kazuo; Motegi, Yoshimasa; Kaneoke, Yoshiki; Izawa, Akira

    1987-11-01

    Serial examinations by nuclear magnetic resonance-computed tomography were carried out in 35 head-injured patients aged 7 to 77 years. The injuries were classified as cerebral contusion (nine cases), acute epidural hematoma (eight cases), acute cerebral swelling (two cases), and chronic subdural hematoma (16 cases). The results of 92 measurements were divided into two groups: acute stage (within 3 days of injury) and chronic stage (2 weeks or longer after injury). The spin-lattice relaxation times (T/sub 1/) of brain tissue adjacent to chronic subdural hematoma were evaluated pre- and postoperatively. A Fonar QED 80-alpha system was used for magnetic resonance imaging and measurement of focal T/sub 1/. The T/sub 1/ values at the region of interest were measured 3 to 5 times by the field focusing technique (468 gauss in the focused spot), and the mean value was used for evaluation. The standard T/sub 1/ values obtained from healthy subjects were 290 +- 41 msec in the cerebral cortex and 230 +- 34 msec in the white matter. Prolongation of T/sub 1/ in perifocal brain gradually shortened over time and normalized in the chronic stage. The degree of contusional edema may have been reflected in alterations in T/sub 1/. In contrast, parenchymal injury resulted in a progressive T/sub 1/ elevation, which far exceeded 500 msec in the chronic stage. Such time courses of T/sub 1/ may indicate irreversible tissue damage. There were no noticeable changes in tissue T/sub 1/ over time in patients with acute diffuse cerebral swelling or those who underwent evacuation of acute epidural or chronic subdural hematomas. The underlying pathophysiology in such situations seems to be not brain edema but cerebral hyperemia. In the presence of ischemia, the T/sub 1/ value was prolonged in the early stage, reflecting progression of is chemic edema. (Abstract Truncated)

  14. Effect of Applied Stress and Temperature on Residual Stresses Induced by Peening Surface Treatments in Alloy 600

    Science.gov (United States)

    Telang, A.; Gnäupel-Herold, T.; Gill, A.; Vasudevan, V. K.

    2018-04-01

    In this study, the effects of applied tensile stress and temperature on laser shock peening (LSP) and cavitation shotless peening (CSP)-induced compressive residual stresses were investigated using neutron and x-ray diffraction. Residual stresses on the surface, measured in situ, were lower than the applied stress in LSP- and CSP-treated Alloy 600 samples (2 mm thick). The residual stress averaged over the volume was similar to the applied stress. Compressive residual stresses on the surface and balancing tensile stresses in the interior relax differently due to hardening induced by LSP. Ex situ residual stress measurements, using XRD, show that residual stresses relaxed as the applied stress exceeded the yield strength of the LSP- and CSP-treated Alloy 600. Compressive residual stresses induced by CSP and LSP decreased by 15-25% in magnitude, respectively, on exposure to 250-450 °C for more than 500 h with 10-11% of relaxation occurring in the first few hours. Further, 80% of the compressive residual stresses induced by LSP and CSP treatments in Alloy 600 were retained even after long-term aging at 350 °C for 2400 h.

  15. Picosecond absorption relaxation measured with nanosecond laser photoacoustics.

    Science.gov (United States)

    Danielli, Amos; Favazza, Christopher P; Maslov, Konstantin; Wang, Lihong V

    2010-10-18

    Picosecond absorption relaxation-central to many disciplines-is typically measured by ultrafast (femtosecond or picosecond) pump-probe techniques, which however are restricted to optically thin and weakly scattering materials or require artificial sample preparation. Here, we developed a reflection-mode relaxation photoacoustic microscope based on a nanosecond laser and measured picosecond absorption relaxation times. The relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, were measured at 576 nm. The added advantages in dispersion susceptibility, laser-wavelength availability, reflection sensing, and expense foster the study of natural-including strongly scattering and nonfluorescent-materials.

  16. Learning During Stressful Times

    Science.gov (United States)

    Shors, Tracey J.

    2012-01-01

    Stressful life events can have profound effects on our cognitive and motor abilities, from those that could be construed as adaptive to those not so. In this review, I discuss the general notion that acute stressful experience necessarily impairs our abilities to learn and remember. The effects of stress on operant conditioning, that is, learned helplessness, as well as those on classical conditioning procedures are discussed in the context of performance and adaptation. Studies indicating sex differences in learning during stressful times are discussed, as are those attributing different responses to the existence of multiple memory systems and nonlinear relationships. The intent of this review is to highlight the apparent plasticity of the stress response, how it might have evolved to affect both performance and learning processes, and the potential problems with interpreting stress effects on learning as either good or bad. An appreciation for its plasticity may provide new avenues for investigating its underlying neuronal mechanisms. PMID:15054128

  17. Design for relaxation during milk expression using biofeedback

    NARCIS (Netherlands)

    Feijs, L.M.G.; Kierkels, J.G.T.; Marcus, A.

    2013-01-01

    Many women experience difficulty expressing milk using a breast pump. A negative influence upon their success is stress, hampering the milk ejection reflex. We explore biofeedback to enhance relaxation during milk expression. We discuss context, the principles of biofeedback and the design of an

  18. Nonlinear Stress Relaxation of ``Quasi-monodisperse'' Miscible Blends of cis-Polyisoprene and Poly(ptert-butylstyrene)

    Science.gov (United States)

    Watanabe, Hiroshi; Matsumiya, Yumi

    Viscoelastic relaxation was examined for entangled miscible blends of cis-polyisoprene (PI) and poly(ptert-butylstyrene) (PtBS). The terminal relaxation times of PI and PtBS therein, τPI and τPtBS, changed with the composition wPI and the molecular weights MPI and MPtBS. This ratio became unity when the wPI, MPI, and MPtBS values were chosen adequately. For example, in a blend with wPI = 0.75, MPI = 321k, and MPtBS = 91k at T = 40ûC, τPI/τPtBS = 1 and M/Me = 55 and 8.3 for PI and PtBS. Under small strains, this blend exhibited sharp, single-step terminal relaxation as similar to monodisperse homopolymers, thereby behaving as a ``quasi-monodisperse'' material. Under large step strains, the blend exhibited moderate nonlinear damping known as the type-A damping for entangled monodisperse homopolymers. Nevertheless, PI had M/Me = 55 in that blend, and homopolymers having such a large M/Me ratio exhibit very strong type-C damping. Thus, as compared to homopolymers, the nonlinearity was suppressed in the PI/PtBS blend having the large M/Me ratio. This suppression is discussed in relation to the slow Rouse retraction of the coexisting PtBS chains (having M/Me = 8.3 in the blend).

  19. Tension and relaxation in the individual.

    Science.gov (United States)

    Newbury, C R

    1979-06-01

    Increasing materialism in society is resulting in more wide spread nervous tension in all age groups. While some degree of nervous tension is necessary in everyday living, its adverse effects require that we must learn to bring it under control. Total tension is shown to have two components: a controllable element arising from factors in the environment and the inbuilt uncontrollable residue which is basic in the individual temperament. The effects of excessive or uncontrolled stress can be classified as 1) emotional reactions such as neurotic behaviour (anxiety hypochondria, hysteria, phobia, depression obsessions and compulsions) or psychotic behaviour and 2) psychosomatic reactions (nervous asthma, headache, insomnia, heart attack). Nervous energy can be wastefully expended by such factors as loss of temper, wrong attitudes to work, job frustration and marital strains. Relaxation is the only positive way to control undesirable nervous tension and its techniques require to be learned. A number of techniques (progressive relaxation, differential relaxation, hypnosis, the use of biofeedback, Yoga and Transcendental Meditation) are described and their application to dental practice is discussed.

  20. Accuracy and Numerical Stabilty Analysis of Lattice Boltzmann Method with Multiple Relaxation Time for Incompressible Flows

    Science.gov (United States)

    Pradipto; Purqon, Acep

    2017-07-01

    Lattice Boltzmann Method (LBM) is the novel method for simulating fluid dynamics. Nowadays, the application of LBM ranges from the incompressible flow, flow in the porous medium, until microflows. The common collision model of LBM is the BGK with a constant single relaxation time τ. However, BGK suffers from numerical instabilities. These instabilities could be eliminated by implementing LBM with multiple relaxation time. Both of those scheme have implemented for incompressible 2 dimensions lid-driven cavity. The stability analysis has done by finding the maximum Reynolds number and velocity for converged simulations. The accuracy analysis is done by comparing the velocity profile with the benchmark results from Ghia, et al and calculating the net velocity flux. The tests concluded that LBM with MRT are more stable than BGK, and have a similar accuracy. The maximum Reynolds number that converges for BGK is 3200 and 7500 for MRT respectively.

  1. Detection of early gamma-postirradiation effects in murine spleen by proton NMR relaxation times.

    Science.gov (United States)

    Zebrowska, G; Lewa, C J; Ramee, M P; Husson, F; De Certaines, J D

    2001-01-01

    It was our aim to evaluate the potential of proton relaxation times for the early detection of radiation-induced spleen changes. Female Swiss mice were irradiated with doses ranging from 0.05 Gy to 4 Gy. The body weight, the spleen weight and the spleen water content of single animals were determined. Measurements of longitudinal (T1) and transversal (T2) proton relaxation times of the spleen samples were performed in a 0.47 T spectrometer. Histological examinations of the control and irradiated organs were performed. NMR measurements during the first five days after irradiation showed that total body gamma-irradiation with doses from 1.5 Gy to 4 Gy results in decreasing T1 of the murine spleen. Significant shortening in T2 was observed for the spleen of animals irradiated with a dose of 4 Gy. Histological examinations demonstrated subnormal architecture in slices derived from animals irradiated with 2 Gy and 4 Gy. The fluctuations of the spleen T1 and T2 of irradiated mice are correlated with relative spleen weight and can be used to estimate radiation induced changes in this organ.

  2. One-Dimensional Problem of a Conducting Viscous Fluid with One Relaxation Time

    Directory of Open Access Journals (Sweden)

    Angail A. Samaan

    2011-01-01

    Full Text Available We introduce a magnetohydrodynamic model of boundary-layer equations for conducting viscous fluids. This model is applied to study the effects of free convection currents with thermal relaxation time on the flow of a viscous conducting fluid. The method of the matrix exponential formulation for these equations is introduced. The resulting formulation together with the Laplace transform technique is applied to a variety problems. The effects of a plane distribution of heat sources on the whole and semispace are studied. Numerical results are given and illustrated graphically for the problem.

  3. Predicting how nanoconfinement changes the relaxation time of a supercooled liquid.

    Science.gov (United States)

    Ingebrigtsen, Trond S; Errington, Jeffrey R; Truskett, Thomas M; Dyre, Jeppe C

    2013-12-06

    The properties of nanoconfined fluids can be strikingly different from those of bulk liquids. A basic unanswered question is whether the equilibrium and dynamic consequences of confinement are related to each other in a simple way. We study this question by simulation of a liquid comprising asymmetric dumbbell-shaped molecules, which can be deeply supercooled without crystallizing. We find that the dimensionless structural relaxation times-spanning six decades as a function of temperature, density, and degree of confinement-collapse when plotted versus excess entropy. The data also collapse when plotted versus excess isochoric heat capacity, a behavior consistent with the existence of isomorphs in the bulk and confined states.

  4. Biexciton relaxation associated with dissociation into a surface polariton pair in semiconductor films

    Science.gov (United States)

    Mitsumori, Yasuyoshi; Matsuura, Shimpei; Uchiyama, Shoichi; Saito, Kentarao; Edamatsu, Keiichi; Nakayama, Masaaki; Ajiki, Hiroshi

    2018-04-01

    We study the biexciton relaxation process in CuCl films ranging from 6 to 200 nm. The relaxation time is measured as the dephasing time and the lifetime. We observe a unique thickness dependence of the biexciton relaxation time and also obtain an ultrafast relaxation time with a timescale as short as 100 fs, while the exciton lifetime monotonically decreases with increasing thickness. By analyzing the exciton-photon coupling energy for a surface polariton, we theoretically calculate the biexciton relaxation time as a function of the thickness. The calculated dependence qualitatively reproduces the observed relaxation time, indicating that the biexciton dissociation into a surface polariton pair is one of the major biexciton relaxation processes.

  5. Characterization of dynamics in complex lyophilized formulations: I. Comparison of relaxation times measured by isothermal calorimetry with data estimated from the width of the glass transition temperature region.

    Science.gov (United States)

    Chieng, Norman; Mizuno, Masayasu; Pikal, Michael

    2013-10-01

    The purposes of this study are to characterize the relaxation dynamics in complex freeze dried formulations and to investigate the quantitative relationship between the structural relaxation time as measured by thermal activity monitor (TAM) and that estimated from the width of the glass transition temperature (ΔT(g)). The latter method has advantages over TAM because it is simple and quick. As part of this objective, we evaluate the accuracy in estimating relaxation time data at higher temperatures (50 °C and 60 °C) from TAM data at lower temperature (40 °C) and glass transition region width (ΔT(g)) data obtained by differential scanning calorimetry. Formulations studied here were hydroxyethyl starch (HES)-disaccharide, HES-polyol, and HES-disaccharide-polyol at various ratios. We also re-examine, using TAM derived relaxation times, the correlation between protein stability (human growth hormone, hGH) and relaxation times explored in a previous report, which employed relaxation time data obtained from ΔT(g). Results show that most of the freeze dried formulations exist in single amorphous phase, and structural relaxation times were successfully measured for these systems. We find a reasonably good correlation between TAM measured relaxation times and corresponding data obtained from estimates based on ΔT(g), but the agreement is only qualitative. The comparison plot showed that TAM data are directly proportional to the 1/3 power of ΔT(g) data, after correcting for an offset. Nevertheless, the correlation between hGH stability and relaxation time remained qualitatively the same as found with using ΔT(g) derived relaxation data, and it was found that the modest extrapolation of TAM data to higher temperatures using ΔT(g) method and TAM data at 40 °C resulted in quantitative agreement with TAM measurements made at 50 °C and 60 °C, provided the TAM experiment temperature, is well below the Tg of the sample. Copyright © 2013 Elsevier B.V. All rights

  6. Snack and Relax®: A Strategy to Address Nurses' Professional Quality of Life.

    Science.gov (United States)

    Markwell, Perpetua; Polivka, Barbara J; Morris, Katrina; Ryan, Carol; Taylor, Annetra

    2016-03-01

    Snack and Relax® (S&R), a program providing healthy snacks and holistic relaxation modalities to hospital employees, was evaluated for immediate impact. A cross-sectional survey was then conducted to assess the professional quality of life (ProQOL) in registered nurses (RNs); compare S&R participants/nonparticipants on compassion satisfaction (CS), burnout, and secondary traumatic stress (STS); and identify situations in which RNs experienced compassion fatigue or burnout and the strategies used to address these situations. Pre- and post vital signs and self-reported stress were obtained from S&R attendees (N = 210). RNs completed the ProQOL Scale measuring CS, burnout, and STS (N = 158). Significant decreases in self-reported stress, respirations, and heart rate were found immediately after S&R. Low CS was noted in 28.5% of participants, 25.3% had high burnout, and 23.4% had high STS. S&R participants and nonparticipants did not differ on any of the ProQOL scales. Situations in which participants experienced compassion fatigue/burnout were categorized as patient-related, work-related, and personal/family-related. Strategies to address these situations were holistic and stress reducing. Providing holistic interventions such as S&R for nurses in the workplace may alleviate immediate feelings of stress and provide a moment of relaxation in the workday. © The Author(s) 2015.

  7. BREATHING EXERCISE RELAXATION INCREASE PHSYCOLOGICAL RESPONSE PRESCHOOL CHILDREN

    Directory of Open Access Journals (Sweden)

    Yuni Sufyanti Arief

    2017-07-01

    Full Text Available Introduction: Being hospitalize will be made the children become stress. Hospitalization response of the child particularly is afraid sense regard to painfull procedure and increase to attack the invasive procedure. The aimed of this study was to describe the influence of breathing exercise relaxation technique regarded to phsycological receiving responses in the preeliminary school chidren while they were receiving invasive procedure. Method: A quasy experimental purposive sampling design was used in this study. There were 20 respondents who met to the inclusion criteria. The independent variable was the breathing exercise relaxation technique and the dependent variable was phsycological receiving responses. Data for phsylogical response were collected by using observation form then analyzed by using Wilcoxon Signed Rank Test and Mann Whitney U Test with significance level α≤0.05. Result :  The result showed that breathing exercise relaxation technique had significance influence to phsycological response (p=0.000. Discussion: It,s can be concluded that breathing exercise relaxation technique has an effect to increase pshycological response in preeliminary school children who received invasive procedure.

  8. Occupational Stress and Mental Health Symptoms: Examining the Moderating Effect of Work Recovery Strategies in Firefighters.

    Science.gov (United States)

    Sawhney, Gargi; Jennings, Kristen S; Britt, Thomas W; Sliter, Michael T

    2017-06-12

    The goal of this research was to examine the moderating effect of work recovery strategies on the relationship between occupational stress experienced by firefighters and mental health symptoms. Work recovery strategies were identified through semistructured interviews with 20 firefighters and a literature search on recovery strategies. A total of 7 work recovery strategies emerged using the 2 methods: work-related talks, stress-related talks, time with coworkers/supervisor, exercise, recreational activities, relaxation, and mastery experiences. Using a prospective study design with a 1-month time interval in a sample of 268 firefighters, experienced occupational stress at Time 1 was positively related to mental health symptoms at Time 2. In addition, with the exception of spending time with coworkers/supervisor, exercise and mastery experiences, recovery strategies at Time 1 were negatively related to mental health symptoms at Time 2. Lastly, all work recovery strategies, except stress-related talks and relaxation, moderated the relationship between experienced occupational stress at Time 1 and mental health symptoms at Time 2. Specifically, the positive relationship between experienced occupational stress and mental health symptoms was stronger when firefighters engaged in low, rather than high, work recovery strategies. Implications for research and practice are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. On a two-relaxation-time D2Q9 lattice Boltzmann model for the Navier-Stokes equations

    Science.gov (United States)

    Zhao, Weifeng; Wang, Liang; Yong, Wen-An

    2018-02-01

    In this paper, we are concerned with the stability of some lattice kinetic schemes. First, we show that a recently proposed lattice kinetic scheme is a two-relaxation-time model different from those in the literature. Second, we analyze the stability of the model by verifying the Onsager-like relation. In addition, a necessary stability criterion for hyperbolic relaxation systems is adapted to the lattice Boltzmann method. As an application of this criterion, we find some necessary stability conditions for a previously proposed lattice kinetic scheme. Numerical experiments are conducted to validate the necessary stability conditions.

  10. Atmospheric Wind Relaxations and the Oceanic Response in the California Current Large Marine Ecosystem

    Science.gov (United States)

    Fewings, M. R.; Dorman, C. E.; Washburn, L.; Liu, W.

    2010-12-01

    On the West Coast of North America in summer, episodic relaxation of the upwelling-favorable winds causes warm water to propagate northward from southern to central California, against the prevailing currents [Harms and Winant 1998, Winant et al. 2003, Melton et al. 2009]. Similar wind relaxations are an important characteristic of coastal upwelling ecosystems worldwide. Although these wind relaxations have an important influence on coastal ocean dynamics, no description exists of the regional atmospheric patterns that lead to wind relaxations in southern California, or of the regional ocean response. We use QuikSCAT wind stress, North American Regional Reanalysis atmospheric pressure products, water temperature and velocity from coastal ocean moorings, surface ocean currents from high-frequency radars, and MODIS satellite sea-surface temperature and ocean color images to analyze wind relaxation events and the ocean response. We identify the events based on an empirical index calculated from NDBC buoy winds [Melton et al. 2009]. We describe the regional evolution of the atmosphere from the Gulf of Alaska to Baja California over the few days leading up to wind relaxations, and the coastal ocean temperature, color, and current response off southern and central California. We analyze ~100 wind relaxation events in June-September during the QuikSCAT mission, 1999-2009. Our results indicate south-central California wind relaxations in summer are tied to mid-level atmospheric low-pressure systems that form in the Gulf of Alaska and propagate southeastward over 3-5 days. As the low-pressure systems reach southern California, the atmospheric pressure gradient along the coast weakens, causing the surface wind stress to relax to near zero. The weak wind signal appears first at San Diego and propagates northward. QuikSCAT data indicate the relaxed winds extend over the entire Southern California Bight and up to 200 km offshore of central California. Atmospheric dynamics in

  11. Photoelastic stress analysis in mitred bend under internal pressure

    International Nuclear Information System (INIS)

    Sawa, Yoshiaki

    1987-01-01

    The stress analysis and stress relaxation in mitred bend subjected to internal pressure have been studied by means of the photoelastic stress freezing method. The experimental results show that stress concentration occurs in the wedge tip of the intersectional plane and it is considerably influenced by the bent angle. Then, the stress relaxation was obtained by planing the wedge tip. (author)

  12. Relationship between aging and T1 relaxation time in deep gray matter: A voxel-based analysis.

    Science.gov (United States)

    Okubo, Gosuke; Okada, Tomohisa; Yamamoto, Akira; Fushimi, Yasutaka; Okada, Tsutomu; Murata, Katsutoshi; Togashi, Kaori

    2017-09-01

    To investigate age-related changes in T 1 relaxation time in deep gray matter structures in healthy volunteers using magnetization-prepared 2 rapid acquisition gradient echoes (MP2RAGE). In all, 70 healthy volunteers (aged 20-76, mean age 42.6 years) were scanned at 3T magnetic resonance imaging (MRI). A MP2RAGE sequence was employed to quantify T 1 relaxation times. After the spatial normalization of T 1 maps with the diffeomorphic anatomical registration using the exponentiated Lie algebra algorithm, voxel-based regression analysis was conducted. In addition, linear and quadratic regression analyses of regions of interest (ROIs) were also performed. With aging, voxel-based analysis (VBA) revealed significant T 1 value decreases in the ventral-inferior putamen, nucleus accumbens, and amygdala, whereas T 1 values significantly increased in the thalamus and white matter as well (P time vary by location in deep gray matter. 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:724-731. © 2017 International Society for Magnetic Resonance in Medicine.

  13. Stability of dislocation structures in copper towards stress relaxation investigated by high angular resolution 3D X-ray diffraction

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Poulsen, Henning Friis; Lienert, Ulrich

    2009-01-01

    A 300 µm thick tensile specimen of OFHC copper is subjected to a tensile loading sequence and deformed to a maximal strain of 3.11%. Using the novel three-dimensional X-ray diffraction method High angular resolution 3DXRD', the evolution of the microstructure within a deeply embedded grain....... In contrast to the deformation stages, during each stress relaxation stage, number, size and orientation of subgrains are found to be constant, while a minor amount of clean-up of the microstructure is observed as narrowing of the radial X-ray diffraction line profile. The associated decrease in the width...

  14. Nuclear spin-lattice relaxation in nitroxide spin-label EPR.

    Science.gov (United States)

    Marsh, Derek

    2016-11-01

    Nuclear relaxation is a sensitive monitor of rotational dynamics in spin-label EPR. It also contributes competing saturation transfer pathways in T 1 -exchange spectroscopy, and the determination of paramagnetic relaxation enhancement in site-directed spin labelling. A survey shows that the definition of nitrogen nuclear relaxation rate W n commonly used in the CW-EPR literature for 14 N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14 N spin-lattice relaxation rate, b=W n /(2W e ), preserves the expressions used for CW-EPR, whilst rendering them consistent with expressions for saturation recovery rates in pulsed EPR. Furthermore, values routinely quoted for nuclear relaxation times that are deduced from EPR spectral diffusion rates in 14 N-nitroxyl spin labels do not accord with conventional analysis of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for 14 N-relaxation: T 1 n =1/W n . Results are compared and contrasted with those for the two-level 15 N-nitroxide system. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Studies about strength recovery and generalized relaxation behavior of rock (4)

    International Nuclear Information System (INIS)

    Sanada, Masanori; Kishi, Hirokazu; Hayashi, Katsuhiko; Takebe, Atsuji; Okubo, Seisuke

    2011-11-01

    Surrounding rock failure occurs due to the increasing stress with tunnel excavation and extent of the failure depends on rock strength and rock stress. The NATM (New Austrian Tunneling Method) assumes that supporting effects by shotcrete and rock bolt prevent rock failure maximizing the potential capability of rock mass. Recently, it was found that failed rock just behind tunnel support recovers its strength. This phenomenon should take into account in evaluation of tunnel stability and long-term mechanical behavior of rock mass after closure of a repository for high-level radioactive waste (HLW). Visco-elastic behavior of rock is frequently studied by creep testing, but creep occasionally occurs together with relaxation in-situ due to the effect of various supports and rock heterogeneity. Therefore generalized stress relaxation in which both load and displacement are controlled is proper to study such behavior under the complicated conditions. It is also important to understand rock behavior in tensile stress field which may be developed in the surrounding rock of deposition hole or tunnel by swelling of bentonite or volume expansion of overpack with corrosion after the repository closure. Cores sampled at 'Horonobe Underground Research Laboratory' has been tested to reveal the above-mentioned behavior. Quantitative evaluation and modeling of the rock behavior, however, have not been established mainly because of large scatter of data. As a factor of the large scatter of data, it was expected that the evaporation of moisture from the surface of the test piece influences the test outcome because it tested in the nature. In this study, strength recovery, generalized stress relaxation and two tensile strength tests were carried out using shale sampled in the Wakkanai-formation. As the results, recovery of failed rocks in strength and hydraulic conductivity were observed under a certain condition. We believe this result is very important for the stability evaluation

  16. Extracting energy and structure properties of glass-forming liquids from structural relaxation time.

    Science.gov (United States)

    Wang, Lianwen

    2012-04-18

    A comprehensive examination of the kinetic liquid model (Wang et al 2010 J. Phys.: Condens. Matter 22 455104) is carried out by fitting the structural relaxation time of 26 different glass-forming liquids in a wide temperature range, including most of the well-studied materials. Careful analysis of the compiled reported data reveals that experimental inaccuracies should not be overlooked in any 'benchmark test' of relating theories or models (e.g. in Lunkenheimer et al 2010 Phys. Rev. E 81 051504). The procedure, accuracy, ability, and efficiency of the kinetic liquid model are discussed in detail and in comparison with other available fitting methods. In general, the kinetic liquid model could be verified by 17 of the 26 compiled data sets and can serve as a meaningful approximative method for analyzing these liquids. Nonetheless, further experimental examinations in a wide temperature range are needed and are called for. Through fitting, the microscopic details of these liquids are extracted, namely, the enthalpy, entropy, and cooperativity in structural relaxation, which may facilitate further quantitative analysis to both the liquidus and glassy states of these materials.

  17. In stressful company – Changes in stress and work ties over time

    DEFF Research Database (Denmark)

    Waldstrøm, Christian; Parker, Andrew; Shah, Neha P.

    Recent research on stress and burnout has highlighted the collective aspects of stress symptoms, perceived stress, and coping mechanisms. Much of this work, however, is focused on group and team dynamics rather than how network factors shape individuals’ feelings of stress and burnout. We use...... a stress questionnaire and social network analysis at three time points in a Scandinavian biotechnology company to examine the interactions between stress and relationship development and maintenance over time. We show that individuals tend to form and maintain ties to people who are less stressed than...... they are, indicating that while misery might love company, stress does not. Given the longitudinal nature of the study, we’re able to disentangle the causal effects....

  18. Instrumentation problems in the measurement of relaxation time T1 in MRI

    International Nuclear Information System (INIS)

    Leroy-Willig, A.; Roucayrol, J.C.; Bittoun, J.; Courtieu, J.

    1986-01-01

    Longitudinal relaxation (T 1 ) of protons is a sensitive though non specific tool of tissue characterization. T 1 measurement from magnetic resonance images is unprecise, due to several phenomena that we review: time intervals shorter than in spectroscopic sequences; flip angle inhomogeneity; slice selection and spin echoes. In vivo the molecular inhomogeneity can prevent to measure a true T 1 ; motion and blood flow are important causes of errors. The relative effects of these factors are examined from in vitro and in vivo images acquired at 1.5 T. From a mono-echo single-slice saturation sequence reliable values of T 1 are obtained in vitro, the measurement time being compatible with clinical imaging. In vivo, problems due to various causes of motions are still unresolved [fr

  19. Collection Development: Relaxation & Meditation, September 1, 2010

    Science.gov (United States)

    Lettus, Dodi

    2010-01-01

    One of the first books to document the relationship between stress and physical and emotional health was "The Relaxation Response" by Herbert Benson, M.D., with Miriam Z. Klipper. Originally published in 1975, the book grew out of Benson's observations as a cardiologist and his research as a fellow at Harvard Medical School. Benson's study of…

  20. Thermal behaviour of the ESR Relaxation time in slightly dirty superconductors

    International Nuclear Information System (INIS)

    Schwachheim, G.; Machado, S.F.; Tsallis, C.

    1978-07-01

    The thermal behaviour of the ESR relaxation rate in slightly dirty superconductors is discussed for both exchange and spin-orbit interactions between the conduction electrons and the impurities. The sensibility to the electronic density of states is exhibited by using, in a modified BCS framework, an heuristic analytic form which avoids two of three defects of a previous similar treatment. The sudden increase (decrease) of the relaxation rate immediately below the critical temperature for the exchange (spin-orbit) case is confirmed. Reasonable agreement with experimental data in LaRu 2 ; Gd is obtained [pt

  1. Entropic multiple-relaxation-time multirange pseudopotential lattice Boltzmann model for two-phase flow

    Science.gov (United States)

    Qin, Feifei; Mazloomi Moqaddam, Ali; Kang, Qinjun; Derome, Dominique; Carmeliet, Jan

    2018-03-01

    An entropic multiple-relaxation-time lattice Boltzmann approach is coupled to a multirange Shan-Chen pseudopotential model to study the two-phase flow. Compared with previous multiple-relaxation-time multiphase models, this model is stable and accurate for the simulation of a two-phase flow in a much wider range of viscosity and surface tension at a high liquid-vapor density ratio. A stationary droplet surrounded by equilibrium vapor is first simulated to validate this model using the coexistence curve and Laplace's law. Then, two series of droplet impact behavior, on a liquid film and a flat surface, are simulated in comparison with theoretical or experimental results. Droplet impact on a liquid film is simulated for different Reynolds numbers at high Weber numbers. With the increase of the Sommerfeld parameter, onset of splashing is observed and multiple secondary droplets occur. The droplet spreading ratio agrees well with the square root of time law and is found to be independent of Reynolds number. Moreover, shapes of simulated droplets impacting hydrophilic and superhydrophobic flat surfaces show good agreement with experimental observations through the entire dynamic process. The maximum spreading ratio of a droplet impacting the superhydrophobic flat surface is studied for a large range of Weber numbers. Results show that the rescaled maximum spreading ratios are in good agreement with a universal scaling law. This series of simulations demonstrates that the proposed model accurately captures the complex fluid-fluid and fluid-solid interfacial physical processes for a wide range of Reynolds and Weber numbers at high density ratios.

  2. Comparative study of the sensitivity of ADC value and T{sub 2} relaxation time for early detection of Wallerian degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fan [Department of Radiology, Nanjing Jinling Hospital, Clinical School of Medical College of Nanjing University, Nanjing 210002 (China); Lu Guangming, E-mail: cjr.luguangming@vip.163.com [Department of Radiology, Nanjing Jinling Hospital, Clinical School of Medical College of Nanjing University, Nanjing 210002 (China); Zee Chishing, E-mail: chishing@usc.edu [Department of Radiology, USC Keck School of Medicine (United States)

    2011-07-15

    Background and purpose: Wallerian degeneration (WD), the secondary degeneration of axons from cortical and subcortical injuries, is associated with poor neurological outcome. There is some quantitative MR imaging techniques used to estimate the biologic changes secondary to delayed neuronal and axonal losses. Our purpose is to assess the sensitivity of ADC value and T{sub 2} relaxation time for early detection of WD. Methods: Ten male Sprague-Dawley rats were used to establish in vivo Wallerian degeneration model of CNS by ipsilateral motor-sensory cortex ablation. 5 days after cortex ablation, multiecho-T{sub 2} relaxometry and multi-b value DWI were acquired by using a 7 T MR imaging scanner. ADC-map and T{sub 2}-map were reconstructed by post-processing. ROIs are selected according to pathway of corticospinal tract from cortex, internal capsule, cerebral peduncle, pons, medulla oblongata to upper cervical spinal cord to measure ADC value and T{sub 2} relaxation time of healthy side and affected side. The results were compared between the side with cortical ablation and the side without ablation. Results: Excluding ablated cortex, ADC values of the corticospinal tract were significantly increased (P < 0.05) in affected side compared to the unaffected, healthy side; no difference in T{sub 2} relaxation time was observed between the affected and healthy sides. Imaging findings were correlated with histological examinations. Conclusion: As shown in this animal experiment, ADC values could non-invasively demonstrate the secondary degeneration involving descending white matter tracts. ADC values are more sensitive indicators for detection of early WD than T{sub 2} relaxation time.

  3. Lower crustal relaxation beneath the Tibetan Plateau and Qaidam Basin following the 2001 Kokoxili earthquake

    Science.gov (United States)

    Ryder, I.; Burgmann, R.; Pollitz, F.

    2011-01-01

    In 2001 November a magnitude 7.8 earthquake ruptured a 400 km long portion of the Kunlun fault, northeastern Tibet. In this study, we analyse over five years of post-seismic geodetic data and interpret the observed surface deformation in terms of stress relaxation in the thick Tibetan lower crust. We model GPS time-series (first year) and InSAR line of sight measurements (years two to five) and infer that the most likely mechanism of post-seismic stress relaxation is time-dependent distributed creep of viscoelastic material in the lower crust. Since a single relaxation time is not sufficient to model the observed deformation, viscous flow is modelled by a lower crustal Burgers rheology, which has two material relaxation times. The optimum model has a transient viscosity 9 ?? 1017 Pa s, steady-state viscosity 1 ?? 1019 Pa s and a ratio of long term to Maxwell shear modulus of 2:3. This model gives a good fit to GPS stations south of the Kunlun Fault, while displacements at stations north of the fault are over-predicted. We attribute this asymmetry in the GPS residual to lateral heterogeneity in rheological structure across the southern margin of the Qaidam Basin, with thinner crust/higher viscosities beneath the basin than beneath the Tibetan Plateau. Deep afterslip localized in a shear zone beneath the fault rupture gives a reasonable match to the observed InSAR data, but the slip model does not fit the earlier GPS data well. We conclude that while some localized afterslip likely occurred during the early post-seismic phase, the bulk of the observed deformation signal is due to viscous flow in the lower crust. To investigate regional variability in rheological structure, we also analyse post-seismic displacements following the 1997 Manyi earthquake that occurred 250 km west of the Kokoxili rupture. We find that viscoelastic properties are the same as for the Kokoxili area except for the transient viscosity, which is 5 ?? 1017 Pa s. The viscosities estimated for the

  4. Does spending time outdoors reduce stress? A review of real-time stress response to outdoor environments

    Science.gov (United States)

    Michelle C. Kondo; Sara F. Jacoby; Eugenia C. South

    2018-01-01

    Everyday environmental conditions impact human health. One mechanism underlying this relationship is the experience of stress. Through systematic review of published literature, we explore how stress has been measured in real-time non-laboratory studies of stress responses to deliberate exposure to outdoor environments. The types of exposures evaluated in this review...

  5. Dielectric relaxation studies of dilute solutions of amides

    Energy Technology Data Exchange (ETDEWEB)

    Malathi, M.; Sabesan, R.; Krishnan, S

    2003-11-15

    The dielectric constants and dielectric losses of formamide, acetamide, N-methyl acetamide, acetanilide and N,N-dimethyl acetamide in dilute solutions of 1,4-dioxan/benzene have been measured at 308 K using 9.37 GHz, dielectric relaxation set up. The relaxation time for the over all rotation {tau}{sub (1)} and that for the group rotation {tau}{sub (2)} of (the molecules were determined using Higasi's method. The activation energies for the processes of dielectric relaxation and viscous flow were determined by using Eyring's rate theory. From relaxation time behaviour of amides in non-polar solvent, solute-solvent and solute-solute type of molecular association is proposed.

  6. Temperature dependence of 1H NMR relaxation time, T2, for intact and neoplastic plant tissues

    Science.gov (United States)

    Lewa, Czesław J.; Lewa, Maria

    Temperature dependences of the spin-spin proton relaxation time, T2, have been shown for normal and tumorous tissues collected from kalus culture Nicotiana tabacum and from the plant Kalanchoe daigremontiana. For neoplastic plant tissues, time T2 was increased compared to that for intact plants, a finding similar to that for animal and human tissues. The temperature dependences obtained were compared to analogous relations observed with animal tissues.

  7. Variational formulation of relaxed and multi-region relaxed magnetohydrodynamics

    Science.gov (United States)

    Dewar, R. L.; Yoshida, Z.; Bhattacharjee, A.; Hudson, S. R.

    2015-12-01

    > Ideal magnetohydrodynamics (IMHD) is strongly constrained by an infinite number of microscopic constraints expressing mass, entropy and magnetic flux conservation in each infinitesimal fluid element, the latter preventing magnetic reconnection. By contrast, in the Taylor relaxation model for formation of macroscopically self-organized plasma equilibrium states, all these constraints are relaxed save for the global magnetic fluxes and helicity. A Lagrangian variational principle is presented that leads to a new, fully dynamical, relaxed magnetohydrodynamics (RxMHD), such that all static solutions are Taylor states but also allows state with flow. By postulating that some long-lived macroscopic current sheets can act as barriers to relaxation, separating the plasma into multiple relaxation regions, a further generalization, multi-region relaxed magnetohydrodynamics (MRxMHD) is developed.

  8. Vibrational relaxation in OCS mixtures

    International Nuclear Information System (INIS)

    Simpson, C.J.S.M.; Gait, P.D.; Simmie, J.M.

    1976-01-01

    Experimental measurements are reported of vibrational relaxation times which may be used to show whether there is near resonant vibration-rotation energy transfer between OCS and H 2 , D 2 or HD. Vibrational relaxation times have been measured in OCS and OCS mixtures over the temperature range 360 to 1000 K using a shock tube and a laser schlieren system. The effectiveness of the additives in reducing the relaxation time of OCS is in the order 4 He 3 He 2 2 and HD. Along this series the effect of an increase in temperature changes from the case of speeding up the rate with 4 He to retarding it with D 2 , HD and H 2 . There is no measurable difference in the effectiveness of n-D 2 and o-D 2 and little, or no, difference between n-H 2 and p-H 2 . Thus the experimental results do not give clear evidence for rotational-vibration energy transfer between hydrogen and OCS. This contrasts with the situation for CO 2 + H 2 mixtures. (author)

  9. Fatigue life estimation considering welding residual stress and hot-spot stress of welded components

    International Nuclear Information System (INIS)

    Han, S. H.; Lee, T. K.; Shin, B. C.

    2002-01-01

    The fatigue life of welded joints is sensitive to welding residual stress and complexity of their geometric shapes. To predict the fatigue life more reasonably, the effects of welding residual stress and its relaxation have to be considered quantitatively which are equivalent to mean stress by external loads. The hot-spot stress concept should be also adopted which can be reduce the dependence of fatigue strengths for various welding details. Considering the factors mentioned above, a fatigue life prediction model using the modified Goodman's diagram was proposed. In this model, an equivalent stress was introduced which are composed of the mean stress based on the hot-spot stress concept and the relaxed welding residual stress. From the verification of the proposed model to real welding details, it is confirmed that this model can be applied to predict reasonably their fatigue lives

  10. Abrupt relaxation in high-spin molecules

    International Nuclear Information System (INIS)

    Chang, C.-R.; Cheng, T.C.

    2000-01-01

    Mean-field model suggests that the rate of resonant quantum tunneling in high-spin molecules is not only field-dependent but also time-dependent. The relaxation-assisted resonant tunneling in high-spin molecules produces an abrupt magnetization change during relaxation. When the applied field is very close to the resonant field, a time-dependent interaction field gradually shifts the energies of different collective spin states, and magnetization tunneling is observed as two energies of the spin states coincide

  11. Dielectric Relaxation Studies of Alkyl Methacrylate–Phenol Mixtures ...

    African Journals Online (AJOL)

    The Kirkwood correlation factor and the excess inverse relaxation time were determined and they yield information on the molecular interactions occurring in the systems. The values of the static permittivity and the relaxation time increase with an increase in the percentage of phenol in the mixtures. KEYWORDS: Dielectric ...

  12. Theoretical calculations of oxygen relaxation in YBa2Cu3O6+x ceramics

    Science.gov (United States)

    Mi, Y.; Schaller, R.; Sathish, S.; Benoit, W.

    1991-12-01

    A two-dimensional theoretical model of stress-induced point-defect relaxation in a layered structure is presented, with a detailed discussion of the special case of YBa2Cu3O6+x. The experimental results of oxygen relaxation in YBa2Cu3O6+x can be explained qualitatively by this model.

  13. Effect of Microstructure on Time Dependent Fatigue Crack Growth Behavior In a P/M Turbine Disk Alloy

    Science.gov (United States)

    Telesman, Ignacy J.; Gabb, T. P.; Bonacuse, P.; Gayda, J.

    2008-01-01

    A study was conducted to determine the processes which govern hold time crack growth behavior in the LSHR disk P/M superalloy. Nineteen different heat treatments of this alloy were evaluated by systematically controlling the cooling rate from the supersolvus solutioning step and applying various single and double step aging treatments. The resulting hold time crack growth rates varied by more than two orders of magnitude. It was shown that the associated stress relaxation behavior for these heat treatments was closely correlated with the crack growth behavior. As stress relaxation increased, the hold time crack growth resistance was also increased. The size of the tertiary gamma' in the general microstructure was found to be the key microstructural variable controlling both the hold time crack growth behavior and stress relaxation. No relationship between the presence of grain boundary M23C6 carbides and hold time crack growth was identified which further brings into question the importance of the grain boundary phases in determining hold time crack growth behavior. The linear elastic fracture mechanics parameter, Kmax, is unable to account for visco-plastic redistribution of the crack tip stress field during hold times and thus is inadequate for correlating time dependent crack growth data. A novel methodology was developed which captures the intrinsic crack driving force and was able to collapse hold time crack growth data onto a single curve.

  14. Nuclear magnetic resonance studies on brain edema. Time course of /sup 1/H-NMR relaxation times

    Energy Technology Data Exchange (ETDEWEB)

    Naruse, S; Horikawa, Y; Tanaka, C; Hirakawa, K; Nishikawa, H [Kyoto Prefectural Univ. of Medicine (Japan)

    1981-06-01

    1. The state of water in normal and edematous brain tissue was studied by measurement of proton longitudinal (T/sub 1/) and transverse (T/sub 2/) relaxation times using pulsed nuclear magnetic resonance (NMR) technique. 2. In control rats, T/sub 1/ and T/sub 2/ of water showed one component, which was more fast in white matter. Those values displayed 1.07 - 1.18 sec. of T/sub 1/ and 75 - 76 msec. of T/sub 2/. 3. When rat brain was injured by cold, T/sub 1/ was observed to become longer (1.18 - 1.27 sec.), and T/sub 2/ was observed be separated into two components, the faster T/sub 2/ (45 - 50 msec.) and slower T/sub 2/ (100 - 105 msec.), in both gray and white matter of the injured side. 4. In triethyltin (TET) induced brain edema, elongation of T/sub 1/ (1.2 sec.) and remarkable separation of T/sub 2/, faster T/sub 2/ (75 msec.) and slower T/sub 2/ (400 - 450 msec.), were observed in white matter. 5. In both cold and TET induced edema, slower T/sub 2/ fraction is suggested to be the extracellular space and faster T/sub 2/ fraction, intracellular. 6. T/sub 2/ changes precede the water content changes in cold injury, and parallel in TET induced edema. Those changes of relaxation times are reversible. 7. T/sub 2/ changes of water is more sensitive than the T/sub 1/ for the detection of production and disappearance of brain edema. 8. These results disclose the dynamic movements of water during the course of brain edema and offered significant information of the clinical application of NMR-CT.

  15. The effect of timing of intravenous muscle relaxant on the quality of double-contrast barium enema

    International Nuclear Information System (INIS)

    Elson, E.M.; Elson, E.M.; Campbell, D.M.; Halligan, S.; Shaikh, I.; Davitt, S.; Bartram, C.I.

    2000-01-01

    AIM: To determine whether the timing of buscopan administration during double-contrast barium enema examination (DCBE) affects diagnostic quality. MATERIALS AND METHODS: In a prospective setting, 100 consecutive adult out-patients referred for DCBE received 20 mg buscopan (hyoscine-N-butylbromide) intravenously, either before infusion of barium suspension (Group A) or after barium infusion and gas insufflation (Group B). A subjective assessment of ease of contrast medium infusion was made at the time of examination and the films subsequently analysed by two radiologists unaware of the mode of relaxant administration, who noted the quality of mucosal coating and made subjective and objective measurements of segmental distension. RESULTS: There was no significant difference in screening times, infusion difficulty or colonic contrast medium coating between the two groups. Subjective assessment of distension of the caecum, ascending colon, transverse colon and rectum were not significantly different. Patients receiving intravenous relaxant after barium and gas infusion had less subjective descending (P = 0.05) and sigmoid (P = 0.04) colon distension, but there was no significant difference with respect to maximal bowel diameter in any of the segments measured. CONCLUSION: The timing of intravenous administration during DCBE is likely to have no significant effect on the diagnostic quality of the study. Elson, E.M. (2000)

  16. The influence of temperature, viscosity and pH on the relaxation time T1 in flowing liquids

    International Nuclear Information System (INIS)

    Toczylowska, B.

    1995-01-01

    The designed and constructed at the Institute of Biocybernetics and Biomedical Engineering facility for the relaxation time (T 1 ) measurements of liquids flow has been presented. The influence of temperature, viscosity and pH has been determined for several liquids, especially physiological fluids

  17. Influence of the storage conditions on prestressing steel relaxation losses

    Directory of Open Access Journals (Sweden)

    Suárez, F.

    2012-12-01

    Full Text Available Stress relaxation losses on active reinforcement have significant impact on prestressed concrete structures. This is why relaxation tests are carried out on prestressing steel wires and strands after being manufactured. Then, these materials are coiled and stored for a long-term period, sometimes in excess of one year. The influence of these operations, carried out after manufacturing, is usually neglected. Nevertheless, some manufacturers and contractors have noticed that, sometimes, when relaxation tests are carried out after a long-term storage, the relaxation losses found are higher than those measured immediately after manufacturing. In this work, lab tests are performed to check the influence of the coiling radius and the period of storage on the relaxation test. In addition to this, an analytical model is presented to predict the results of a relaxation test carried out on a wire coiled and stored for a long-term period. This model explains the evolution on the cross-sectional stress profile along the coiling-storing-uncoiling process, as well as the influence of the residual stresses on it.

    La pérdida de tensión por relajación en las armaduras activas afecta de forma importante a las estructuras de hormigón pretensado. Por ello se realizan ensayos de relajación de los alambres y cordones de pretensado tras su fabricación. Después, el material es enrollado y almacenado durante periodos que en ocasiones pueden superar el año de duración. Generalmente se desprecia la influencia que estas operaciones posteriores a la fabricación pueden tener sobre el material. Sin embargo, diversos fabricantes y suministradores han constatado experimentalmente que, en ocasiones, el material almacenado durante un periodo prolongado presenta pérdidas de relajación mayores que inmediatamente tras su fabricación. En este trabajo se realizan ensayos de laboratorio para comprobar la influencia que el radio de enrollamiento y el periodo de

  18. Collisional relaxation of electron tail distribution

    International Nuclear Information System (INIS)

    Yamagiwa, Mitsuru; Okamoto, Masao.

    1985-05-01

    Relaxation due to the Coulomb collisions of the electron velocity distribution function with a high energy tail is investigated in detail. In the course of the relaxation, a 'saddle' point can be created in velocity space owing to upsilon -3 dependence of the deflection rate and a positive slope or a 'dip' appears in the tail direction. The time evolution of the electron tail is studied analytically. A comparison is made with numerical results by using a Fokker-Planck code. Also discussed is the kinetic instability concerned with the positive slope during the relaxation. (author)

  19. Negative magnetic relaxation in superconductors

    Directory of Open Access Journals (Sweden)

    Krasnoperov E.P.

    2013-01-01

    Full Text Available It was observed that the trapped magnetic moment of HTS tablets or annuli increases in time (negative relaxation if they are not completely magnetized by a pulsed magnetic field. It is shown, in the framework of the Bean critical-state model, that the radial temperature gradient appearing in tablets or annuli during a pulsed field magnetization can explain the negative magnetic relaxation in the superconductor.

  20. A computational study of inviscid hypersonic flows using energy relaxation method

    International Nuclear Information System (INIS)

    Nagdewe, Suryakant; Kim, H. D.; Shevare, G. R.

    2008-01-01

    Reasonable analysis of hypersonic flows requires a thermodynamic non-equilibrium model to properly simulate strong shock waves or high pressure and temperature states in the flow field. The energy relaxation method (ERM) has been used to model such a non-equilibrium effect which is generally expressed as a hyperbolic system of equations with a stiff relaxation source term. Relaxation time that is multiplied with source terms is responsible for nonequilibrium in the system. In the present study, a numerical analysis has been carried out with varying values of relaxation time for several hypersonic flows with AUSM (advection upstream splitting method) as a numerical scheme. Vibration modes of thermodynamic nonequilibrium effects are considered. The results obtained showed that, as the relaxation time reduces to zero, the solution marches toward equilibrium, while it shows non-equilibrium effects, as the relaxation time increases. The present computations predicted the experiment results of hypersonic flows with good accuracy. The work carried out suggests that the present energy relaxation method can be robust for analysis of hypersonic flows

  1. A model problem for estimation of moving-film time relaxation at sudden change of boundary conditions

    Science.gov (United States)

    Smirnovsky, Alexander A.; Eliseeva, Viktoria O.

    2018-05-01

    The study of the film flow occurred under the influence of a gas slug flow is of definite interest in heat and mass transfer during the motion of a coolant in the second circuit of a nuclear water-water reactor. Thermohydraulic codes are usually used for analysis of the such problems in which the motion of the liquid film and the vapor is modeled on the basis of a one-dimensional balance equations. Due to a greater inertia of the liquid film motion, film flow parameters changes with a relaxation compared with gas flow. We consider a model problem of film flow under the influence of friction from gas slug flow neglecting such effects as wave formation, droplet breakage and deposition on the film surface, evaporation and condensation. Such a problem is analogous to the well-known problems of Couette and Stokes flows. An analytical solution has been obtained for laminar flow. Numerical RANS-based simulation of turbulent flow was performed using OpenFOAM. It is established that the relaxation process is almost self-similar. This fact opens a possibility of obtaining valuable correlations for the relaxation time.

  2. Modelling Creep (Relaxation of the Urinary Bladder

    Directory of Open Access Journals (Sweden)

    Zdravkovic Nebojsa

    2017-12-01

    Full Text Available We first present the results of an experiment in which the passive properties of the urinary bladder were investigated using strips of rabbit bladder. Under the assumption that the urinary bladder had orthopaedic characteristics, the strips were taken in the longitudinal and in the circumferential directions. The material was subjected to uniaxial tension, and stress-stretch curves were generated for various rates of deformation. We found that the rates did not have a significantly effect on the passive response of the material. Additionally, the stress-stretch dependence during relaxation of the material when exposed to isometric conditions was determined experimentally.

  3. COMPARATIVE ASSESSMENT OF NUCLEAR MAGNETIC RELAXATION CHARACTERISTICS OF SUNFLOWER AND RAPESEED LECITHIN

    OpenAIRE

    Lisovaya E. V.; Victorova E. P.; Agafonov O. S.; Kornen N. N.; Shahray T. A.

    2015-01-01

    The article presents a comparative assessment and peculiarities of nuclear magnetic relaxation characteristics of rapeseed and sunflower lecithin. It was established, that lecithin’s nuclear magnetic relaxation characteristics, namely, protons’ spin-spin relaxation time and amplitudes of nuclear magnetic relaxation signals of lecithin components, depend on content of oil’s fat acids and phospholipids, contained in the lecithin. Comparative assessment of protons’ spin-spin relaxation time of r...

  4. Relaxation creep model of impending earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Morgounov, V. A. [Russian Academy of Sciences, Institute of Physics of the Earth, Moscow (Russian Federation)

    2001-04-01

    The alternative view of the current status and perspective of seismic prediction studies is discussed. In the problem of the ascertainment of the uncertainty relation Cognoscibility-Unpredictability of Earthquakes, priorities of works on short-term earthquake prediction are defined due to the advantage that the final stage of nucleation of earthquake is characterized by a substantial activation of the process while its strain rate increases by the orders of magnitude and considerably increased signal-to-noise ratio. Based on the creep phenomenon under stress relaxation conditions, a model is proposed to explain different images of precursors of impending tectonic earthquakes. The onset of tertiary creep appears to correspond to the onset of instability and inevitably fails unless it unloaded. At this stage, the process acquires the self-regulating character to the greatest extent the property of irreversibility, one of the important components of prediction reliability. Data in situ suggest a principal possibility to diagnose the process of preparation by ground measurements of acoustic and electromagnetic emission in the rocks under constant strain in the condition of self-relaxed stress until the moment of fracture are discussed in context. It was obtained that electromagnetic emission precedes but does not accompany the phase of macrocrak development.

  5. Thermally induced magnetic relaxation in square artificial spin ice

    Science.gov (United States)

    Andersson, M. S.; Pappas, S. D.; Stopfel, H.; Östman, E.; Stein, A.; Nordblad, P.; Mathieu, R.; Hjörvarsson, B.; Kapaklis, V.

    2016-11-01

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice - we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.

  6. Spin relaxation of iron in mixed state hemoproteins

    International Nuclear Information System (INIS)

    Wajnberg, E.; Kalinowski, H.J.; Bemski, G.; Helman, J.S.

    1984-01-01

    In pure states hemoproteins the relaxation of iron depends on its spin state. It is found that in both mixed state met-hemoglobin and met-myoglobin, the low and high spin states relax through an Orbach-like process. Also, very short (approx. 1 ns) and temperature independent transverse relaxation times T 2 were estimated. This peculiar behaviour of the relaxation may result from the unusual electronic structure of mixed state hemoproteins that allows thermal equilibrium and interconversion of the spin states. (Author) [pt

  7. A Randomized, Controlled Trial of Meditation for Work Stress, Anxiety and Depressed Mood in Full-Time Workers

    Directory of Open Access Journals (Sweden)

    R. Manocha

    2011-01-01

    Results. There was a significant improvement for the meditation group compared to both the relaxation control and the wait-list groups the PSQ (P=.026, and DD (P=.019. Conclusions. Mental silence-orientated meditation, in this case Sahaja Yoga meditation, is a safe and effective strategy for dealing with work stress and depressive feelings. The findings suggest that “thought reduction” or “mental silence” may have specific effects relevant to work stress and hence occupational health.

  8. Effect of stress management interventions on job stress among nurses working in critical care units.

    Science.gov (United States)

    Light Irin, C; Bincy, R

    2012-01-01

    Stress in nurses affects their health and increases absenteeism, attrition rate, injury claims, infection rates and errors in treating patients. This in turn significantly increases the cost of employment in healthcare units. Proper management of stress ensures greater efficiency at work place and improved wellbeing of the employee. Therefore, a pre-experimental study was conducted among 30 Critical Care Unit nurses working inMedical College Hospital, Thiruvananthapuram, (Kerala) to assess the effect of stress management interventions such as Job Stress Awareness, Assertiveness Training, Time Management, andProgressive Muscle Relaxation on job stress. The results showed that caring for patients, general job requirements and workload were the major sources of stress for the nurses. The level of severe stress was reduced from 60 percent to 20 percent during post-test. The Stress Management Interventions were statistically effective in reducing the stress of nurses at p<0.001 level.

  9. Associated relaxation time and the correlation function for a tumor cell growth system subjected to color noises

    Science.gov (United States)

    Wang, Can-Jun; Wei, Qun; Mei, Dong-Cheng

    2008-03-01

    The associated relaxation time T and the normalized correlation function C(s) for a tumor cell growth system subjected to color noises are investigated. Using the Novikov theorem and Fox approach, the steady probability distribution is obtained. Based on them, the expressions of T and C(s) are derived by means of projection operator method, in which the effects of the memory kernels of the correlation function are taken into account. Performing the numerical computations, it is found: (1) With the cross-correlation intensity |λ|, the additive noise intensity α and the multiplicative noise self-correlation time τ increasing, the tumor cell numbers can be restrained; And the cross-correlation time τ, the multiplicative noise intensity D can induce the tumor cell numbers increasing; However, the additive noise self-correlation time τ cannot affect the tumor cell numbers; The relaxation time T is a stochastic resonant phenomenon, and the distribution curves exhibit a single-maximum structure with D increasing. (2) The cross-correlation strength λ weakens the related activity between two states of the tumor cell numbers at different time, and enhances the stability of the tumor cell growth system in the steady state; On the contrast, τ and τ enhance the related activity between two states at different time; However, τ has no effect on the related activity between two states at different time.

  10. Algebraic relaxation of a time correlation function

    International Nuclear Information System (INIS)

    Srivastava, S.; Kumar, C.N.; Tankeshwar, K.

    2004-06-01

    A second order non-linear differential equation obtained from Mori's integro- differential equation is shown to transform to another form which provides algebraic decay to a time correlation function. Involved parameters in algebraic formula are related to exact properties of the corresponding correlation function. The model has been used to study a sol-gel system which is known, experimentally, to exhibit a power law decay to stress auto-correlation function. The expression obtained for the viscosity shows a logarithmic divergence at some critical value of the parameter. Some features of the model have also been tested using available information about Lennard-Jones fluids. (author)

  11. Analysis of domain wall dynamics based on skewness of magnetic Barkhausen noise for applied stress determination

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Song [College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, Jiangsu 211816 (China); School of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Tian, GuiYun, E-mail: tian280@hotmail.com [School of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); School of Electrical and Electronic Engineering, Merz Court, University of Newcastle upon Tyne, Newcastle NE1 7RU (United Kingdom); Dobmann, Gerd; Wang, Ping [School of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China)

    2017-01-01

    Skewness of Magnetic Barkhausen Noise (MBN) signal is used as a new feature for applied stress determination. After experimental studies, skewness presents its ability for measuring applied tensile stress compared with conventional feature, meanwhile, a non-linear behavior of this new feature and an independence of the excitation conditions under compressive stress are found and discussed. Effective damping during domain wall motion influencing the asymmetric shape of the MBN statistical distribution function is discussed under compressive and tensile stress variation. Domain wall (DW) energy and distance between pinning edges of the DW are considered altering the characteristic relaxation time, which is the reason for the non-linear phenomenon of skewness. - Highlights: • The skewness of magnetic Barkhausen noise profile is proposed as a new feature for applied stress determination. • The skewness is sensitive to applied stress and independent to excitation frequency. • Domain wall energy and pinning distance influence the relaxation time of domain wall, which leads to a non-linear behavior of skewness under compressive stress.

  12. Non-linear effects in the Snoek relaxation of Nb-O

    International Nuclear Information System (INIS)

    Hermida, E.B.; Povolo, F.

    1996-01-01

    Internal friction peaks measured as a function of temperature or frequency have been associated to non-linear processes only after studying how the amplitude of the applied stress affects the relaxation process. Here it is demonstrated that the partial derivative of the internal friction with respect to the frequency at constant temperature is a useful tool to determine that non-linear effects are involved. This analysis applied to actual data of the Snoek relaxation in Nb-O, reveals that at high interstitial contents non-linear effects appear. (orig.)

  13. Nuclear magnetic relaxation of methyl group in liquids

    International Nuclear Information System (INIS)

    Blicharska, B.

    1986-01-01

    The theoretical description of the relaxation process of methyl group in liquids and some results of the measurements of relaxation function and relaxation times for cryoprotective solutions are presented. Starting from the application of the operator formalism the general equation for spin operators e.g. components of the nuclear spin and magnetization is founded. Next, the spin Hamiltonian is presented as contraction of the symmetry adapted spherical tensors as well as the correlation functions and spectral densities. On the basis of extended and modified Woessner model of motion the correlation functions and spectral densities are calculated for methyl group in liquids. Using these functions the relaxation matrix elements, the spin-spin and spin-lattice relaxation times can be expressed. The prediction of the theory agrees with author's previous experiments on cryoprotective solutions. The observed dependence on temperature, frequency and isotopic dilution in methanol-water, methanol-dimethyl sulfoxide (DMSO) and DMSO-water solutions is in a satisfactory agreement with theoretical equations. 34 refs. (author)

  14. Gd-EOB-DTPA-Enhanced MR Imaging of the Liver: The Effect on T2 Relaxation Times and Apparent Diffusion Coefficient (ADC)

    International Nuclear Information System (INIS)

    Cieszanowski, Andrzej; Podgórska, Joanna; Rosiak, Grzegorz; Maj, Edyta; Grudziński, Ireneusz P.; Kaczyński, Bartosz; Szeszkowski, Wojciech; Milczarek, Krzysztof; Rowiński, Olgierd

    2016-01-01

    To investigate the effect of gadoxetic acid disodium (Gd-EOB-DTPA) on T2 relaxation times and apparent diffusion coefficient (ADC) values of the liver and focal liver lesions on a 1.5-T system. Magnetic resonance (MR) studies of 50 patients with 35 liver lesions were retrospectively analyzed. All examinations were performed at 1.5T and included T2-weighted turbo spin-echo (TSE) and diffusion-weighted (DW) images acquired before and after intravenous administration of Gd-EOB-DTPA. To assess the effect of this hepatobiliary contrast agent on T2-weighted TSE images and DW images T2 relaxation times and ADC values of the liver and FLLs were calculated and compared pre- and post-injection. The mean T2 relaxation times of the liver and focal hepatic lesions were lower on enhanced than on unenhanced T2-weighted TSE images (decrease of 2.7% and 3.6% respectively), although these differences were not statistically significant. The mean ADC values of the liver showed statistically significant decrease (of 4.6%) on contrast-enhanced DW images, compared to unenhanced images (P>0.05). The mean ADC value of liver lesions was lower on enhanced than on unenhanced DW images, but this difference (of 2.9%) did not reach statistical significance. The mean T2 relaxation times of the liver and focal liver lesions as well as the mean ADC values of liver lesions were not significantly different before and after administration of Gd-EOB-DTPA. Therefore, acquisition of T2-weighted and DW images between the dynamic contrast-enhanced examination and hepatobiliary phase is feasible and time-saving

  15. The Effects of Progressive Muscle Relaxation and Guided Imagery on gestational hypertension

    OpenAIRE

    Ranjkesh F

    2017-01-01

    Introduction: Hypertension is a common disorder in pregnancy. Although this disorder is accompanied by many difficulties in pregnancy, no effective therapy has still been found to treat it. One of the main methods in the treatment of hypertension is stress reducing programs such as relaxation and Guided Imagery. This study is aimed to evaluate the effects of progressive muscle relaxation and guided imagery on the gestational hypertension. Methods: The present study is a randomized clinical...

  16. Ab initio relaxation times and time-dependent Hamiltonians within the steepest-entropy-ascent quantum thermodynamic framework

    Science.gov (United States)

    Kim, Ilki; von Spakovsky, Michael R.

    2017-08-01

    Quantum systems driven by time-dependent Hamiltonians are considered here within the framework of steepest-entropy-ascent quantum thermodynamics (SEAQT) and used to study the thermodynamic characteristics of such systems. In doing so, a generalization of the SEAQT framework valid for all such systems is provided, leading to the development of an ab initio physically relevant expression for the intrarelaxation time, an important element of this framework and one that had as of yet not been uniquely determined as an integral part of the theory. The resulting expression for the relaxation time is valid as well for time-independent Hamiltonians as a special case and makes the description provided by the SEAQT framework more robust at the fundamental level. In addition, the SEAQT framework is used to help resolve a fundamental issue of thermodynamics in the quantum domain, namely, that concerning the unique definition of process-dependent work and heat functions. The developments presented lead to the conclusion that this framework is not just an alternative approach to thermodynamics in the quantum domain but instead one that uniquely sheds new light on various fundamental but as of yet not completely resolved questions of thermodynamics.

  17. Mesures de contraintes in-situ. Méthode de relaxation des carottes Measuring in-Situ Stresses. Relaxation Method with Core Samples

    Directory of Open Access Journals (Sweden)

    Perreau P.

    2006-11-01

    Full Text Available Dans cet article, on se propose de présenter les premiers résultats de l'étude de la méthode d'évaluation des contraintes par mesure de déformations différées d'une carotte après son extraction. Le travail correspondant a été réalisé dans le cadre du projet ARTEP Fracturation hydraulique . Les principes de cette méthode et les quelques éléments d'interprétation récemment publiés dans la littérature sont exposés dans un premier temps. Les résultats de deux campagnes de mesures sur deux puits de la SNEA-P (Soudron, novembre 1985 et Lanot, juillet 1986 sont ensuite présentés. Ces essais ont mis en évidence que les déformations différées d'une carotte dues au relachement des contraintes sont effectivement mesurables. Cependant, une interprétation quantitative de ces mesures nécessite une amélioration des conditions expérimentales (stabilisation thermique, stabilisation de l'état de saturation. This article describes the first results of research on a method of evaluating stresses by measuring the differred deformations of a core sample after it has been extracted. The corresponding research was done within the framework of an ARTEP project on Hydraulic Fracturing . The principles of this method and several interpretation aspects published recently in the literature are described in the first part. Then the results of two measurement campaigns using two SNEA-P wells (Soudron in November 1985 and Lanot in July 1986 are described. These tests revealed that the differed deformations of a core sample due to the relaxing of stresses can effectively be measured. However, a quantitative interpretation of these measurements requires an improvement to be made in the experimental conditions (thermal stabilization, stabilization of the state of saturation.

  18. Influence of the clay in the stress cracking resistance of PET; Influencia de silicatos em camadas na resistencia ao 'stress cracking' do PET

    Energy Technology Data Exchange (ETDEWEB)

    Teofilo, Edvania T. [Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais, Universidade Federal de Campina Grande, PB (Brazil); Silva, Emanuela S.; Silva, Suedina M.L.; Rabello, Marcelo S., E-mail: marcelo@dema.ufcg.edu.b [Unidade Academica de Engenharia de Materiais, Universidade Federal de Campina Grande, PB (Brazil)

    2011-07-01

    The environmental stress cracking resistance in PET and hybrid PET/clay were conducted under stress relaxation test. X-ray diffraction analysis show that was obtained immiscible system. In the absence of aggressive fluids the hybrid exhibited higher relaxation rates than the PET. Already in contact with aggressive fluids showed a similar or lower relaxation rate than the PET, being more resistant. Suggesting that the clay, though not interlayer, interferes with the distribution of the stress cracking agent. Thus, the barrier effect caused by the clay was more significant than the stress concentration caused by it. (author)

  19. The influence of gamma radiation on the ESC behaviour of a toughened PMMA through stress relaxation

    International Nuclear Information System (INIS)

    Sousa, Alexandre R.; Araujo, Elmo S.; Rabello, Marcelo S.

    2009-01-01

    On this work we studied the ESC degradation behaviour of a toughened PMMA irradiated with different gamma radiation doses. Tensile samples were obtained by injection moulding, and then irradiated using a 60 Co source. The samples irradiated on several doses were submitted to relaxation tests under air, ethanol and ethylene glycol. The results showed that the ESC action was intensified with the rising radiation doses when the relaxation tests were done under ethanol. On the tests under ethylene glycol the ESC effect was observed only to the irradiated polymer through the higher dose and under the higher relaxation load. The fracture surface analysis of tested relaxation samples, under ethanol, showed a dendritic pattern formed on fracture surfaces. (author)

  20. CdZnTe quantum dots study: energy and phase relaxation process

    International Nuclear Information System (INIS)

    Viale, Yannick

    2004-01-01

    We present a study of the electron-hole pair energy and phase relaxation processes in a CdTe/ZnTe heterostructure, in which quantum dots are embedded. CdZnTe quantum wells with a high Zinc concentration, separated by ZnTe barriers, contain islands with a high cadmium concentration. In photoluminescence excitation spectroscopy experiments, we evidence two types of electron hole pair relaxation processes. After being excited in the CdZnTe quantum well, the pairs relax their energy by emitting a cascade of longitudinal optical phonons until they are trapped in the quantum dots. Before their radiative recombination follows an intra-dot relaxation, which is attributed to a lattice polarization mechanism of the quantum dots. It is related to the coupling between the electronic and the vibrational states. Both relaxation mechanisms are reinforced by the strong polar character of the chemical bond in II-VI compounds. Time resolved measurements of transmission variations in a pump-probe configuration allowed us to investigate the population dynamics of the electron-hole pairs during the relaxation process. We observe a relaxation time of about 2 ps for the longitudinal phonon emission cascade in the quantum well before a saturation of the quantum dot transition. We also measured an intra-box relaxation time of 25 ps. The comparison of various cascades allows us to estimate the emission time of a longitudinal optical phonon in the quantum well to be about 100 fs. In four waves mixing experiments, we observe oscillations that we attribute to quantum beats between excitonic and bi-excitonic transitions. The dephasing times that we measure as function of the density of photons shows that excitons are strongly localized in the quantum dots. The excitonic dephasing time is much shorter than the radiative lifetime and is thus controlled by the intra-dot relaxation time. (author) [fr