WorldWideScience

Sample records for stress relaxation technique

  1. Relaxation techniques for stress

    Science.gov (United States)

    ... raise your heart rate. This is called the stress response. Relaxation techniques can help your body relax and lower your blood pressure ... also many other types of breathing techniques you can learn. In many cases, you do not need much ... including those that cause stress. Meditation has been practiced for thousands of years, ...

  2. 5 Things To Know About Relaxation Techniques for Stress

    Science.gov (United States)

    ... Techniques for Stress Share: When you’re under stress, your body reacts by releasing hormones that produce the “fight- ... relaxation techniques could counteract the negative effects of stress. ... the body's natural relaxation response, characterized by slower breathing, lower ...

  3. Sleep, Stress & Relaxation: Rejuvenate Body & Mind

    Science.gov (United States)

    Sleep, Stress & Relaxation: Rejuvenate Body & Mind; Relieve Stress; best ways to relieve stress; best way to relieve stress; different ways to relieve stress; does smoking relieve stress; does tobacco relieve stress; how can I relieve stress; how can you relieve stress; how do I relieve stress; reduce stress; does smoking reduce stress; how can I reduce stress; how to reduce stress; reduce stress; reduce stress levels; reducing stress; smoking reduce stress; smoking reduces stress; stress reducing techniques; techniques to reduce stress; stress relief; best stress relief; natural stress relief; need stress relief; relief for stress; relief from stress; relief of stress; smoking and stress relief; smoking for stress relief; smoking stress relief; deal with stress; dealing with stress; dealing with anger; dealing with stress; different ways of dealing with stress; help dealing with stress; how to deal with anger; how to deal with stress; how to deal with stress when quitting smoking; stress management; free stress management; how can you manage stress; how do you manage stress; how to manage stress; manage stress; management of stress; management stress; managing stress; strategies for managing stress; coping with stress; cope with stress; copeing with stress; coping and stress; coping skills for stress; coping strategies for stress; coping strategies with stress; coping strategy for stress; coping with stress; coping with stress and anxiety; emotional health; emotional health; emotional health article; emotional health articles; deep relaxation; deep breathing relaxation techniques; deep muscle relaxation; deep relaxation; deep relaxation meditation; deep relaxation technique; deep relaxation techniques; meditation exercises; mindful exercises; mindful meditation exercises; online relaxation exercises; relaxation breathing exercises; relaxation exercise; relaxation exercises; stress relaxation; methods of relaxation for stress; relax stress; relax techniques stress

  4. The Effects of Progressive Relaxation and Music on Attention, Relaxation, and Stress Responses: An Investigation of the Cognitive-Behavioral Model of Relaxation

    National Research Council Canada - National Science Library

    Scheufele, Peter

    1999-01-01

    ...) suggested that stress management techniques have specific effects A compromise position suggests that the specific effects of relaxation techniques are superimposed upon a general relaxation response...

  5. The effects of music relaxation and muscle relaxation techniques on sleep quality and emotional measures among individuals with posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Iris Haimov

    2012-07-01

    Full Text Available Posttraumatic stress disorder (PTSD, an anxiety disorder with lifetime prevalence of 7.8%, is characterized by symptoms that develop following exposure to traumatic life events and that cause an immediate experience of intense fear, helplessness or horror. PTSD is marked by recurrent nightmares typified by the recall of intrusive experiences and by extended disturbance throughout sleep. Individuals with PTSD respond poorly to drug treatments for insomnia. The disadvantages of drug treatment for insomnia underline the importance of non-pharmacological alternatives. Thus, the present study had three aims: first, to compare the efficiency of two relaxation techniques (muscular relaxation and progressive music relaxation in alleviating insomnia among individuals with PTSD using both objective and subjective measures of sleep quality; second, to examine whether these two techniques have different effects on psychological indicators of PTSD, such as depression and anxiety; and finally, to examine how initial PTSD symptom severity and baseline emotional measures are related to the efficiency of these two relaxation methods. Thirteen PTSD patients with no other major psychiatric or neurological disorders participated in the study. The study comprised one seven-day running-in, no-treatment period, followed by two seven-day experimental periods. The treatments constituted either music relaxation or muscle relaxation techniques at desired bedtime. These treatments were randomly assigned. During each of these three experimental periods, subjects’ sleep was continuously monitored with a wrist actigraph (Ambulatory Monitoring, Inc., and subjects were asked to fill out several questionnaires concerned with a wide spectrum of issues, such as sleep, depression, and anxiety. Analyses revealed a significant increase in objective and subjective sleep efficiency and a significant reduction in depression level following music relaxation. Moreover, following music

  6. Mozart versus new age music: relaxation states, stress, and ABC relaxation theory.

    Science.gov (United States)

    Smith, Jonathan C; Joyce, Carol A

    2004-01-01

    Smith's (2001) Attentional Behavioral Cognitive (ABC) relaxation theory proposes that all approaches to relaxation (including music) have the potential for evoking one or more of 15 factor-analytically derived relaxation states, or "R-States" (Sleepiness, Disengagement, Rested / Refreshed, Energized, Physical Relaxation, At Ease/Peace, Joy, Mental Quiet, Childlike Innocence, Thankfulness and Love, Mystery, Awe and Wonder, Prayerfulness, Timeless/Boundless/Infinite, and Aware). The present study investigated R-States and stress symptom-patterns associated with listening to Mozart versus New Age music. Students (N = 63) were divided into three relaxation groups based on previously determined preferences. Fourteen listened to a 28-minute tape recording of Mozart's Eine Kleine Nachtmusik and 14 listened to a 28-minute tape of Steven Halpern's New Age Serenity Suite. Others (n = 35) did not want music and instead chose a set of popular recreational magazines. Participants engaged in their relaxation activity at home for three consecutive days for 28 minutes a session. Before and after each session, each person completed the Smith Relaxation States Inventory (Smith, 2001), a comprehensive questionnaire tapping 15 R-States as well as the stress states of somatic stress, worry, and negative emotion. Results revealed no differences at Session 1. At Session 2, those who listened to Mozart reported higher levels of At Ease/Peace and lower levels of Negative Emotion. Pronounced differences emerged at Session 3. Mozart listeners uniquely reported substantially higher levels of Mental Quiet, Awe and Wonder, and Mystery. Mozart listeners reported higher levels, and New Age listeners slightly elevated levels, of At Ease/Peace and Rested/Refreshed. Both Mozart and New Age listeners reported higher levels of Thankfulness and Love. In summary, those who listened to Mozart's Eine Kleine Nachtmusik reported more psychological relaxation and less stress than either those who listened to

  7. Stress relaxation analysis of single chondrocytes using porohyperelastic model based on AFM experiments

    Directory of Open Access Journals (Sweden)

    Trung Dung Nguyen

    2014-01-01

    Full Text Available Based on atomic force microscopytechnique, we found that the chondrocytes exhibits stress relaxation behavior. We explored the mechanism of this stress relaxation behavior and concluded that the intracellular fluid exuding out from the cells during deformation plays the most important role in the stress relaxation. We applied the inverse finite element analysis technique to determine necessary material parameters for porohyperelastic (PHE model to simulate stress relaxation behavior as this model is proven capable of capturing the non-linear behavior and the fluid-solid interaction during the stress relaxation of the single chondrocytes. It is observed that PHE model can precisely capture the stress relaxation behavior of single chondrocytes and would be a suitable model for cell biomechanics.

  8. Magneto-dependent stress relaxation of magnetorheological gels

    KAUST Repository

    Xu, Yangguang; Liu, Taixiang; Liao, G J; Lubineau, Gilles

    2017-01-01

    The stress relaxation behaviors of magnetorheological (MR) gels under stepwise shear loading are systematically investigated. The particle-enhanced effect, the magneto-induced effect, and the temperature-enhanced effect on the stress relaxation of MR gels are discussed. For further analysis of the magneto-induced stress relaxation mechanism in MR gels, a phenomenological model is established to describe the stress relaxation behavior of the matrix and the magnetic particle chains. All characteristic parameters introduced in the model, i.e. relaxation time, instantaneous modulus, and stable modulus, have well-defined physical meanings and are fitted based on the experimental results. The influence of each parameter on the macroscopic response is discussed and it is found that the relaxation stress induced by the magneto-mechanical coupling effect plays an important role in the stress relaxation process of MR gels.

  9. Magneto-dependent stress relaxation of magnetorheological gels

    KAUST Repository

    Xu, Yangguang

    2017-09-01

    The stress relaxation behaviors of magnetorheological (MR) gels under stepwise shear loading are systematically investigated. The particle-enhanced effect, the magneto-induced effect, and the temperature-enhanced effect on the stress relaxation of MR gels are discussed. For further analysis of the magneto-induced stress relaxation mechanism in MR gels, a phenomenological model is established to describe the stress relaxation behavior of the matrix and the magnetic particle chains. All characteristic parameters introduced in the model, i.e. relaxation time, instantaneous modulus, and stable modulus, have well-defined physical meanings and are fitted based on the experimental results. The influence of each parameter on the macroscopic response is discussed and it is found that the relaxation stress induced by the magneto-mechanical coupling effect plays an important role in the stress relaxation process of MR gels.

  10. The effect of residual stress relaxation by the vibratory stress relief technique on the textures of grains in AA 6061 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jia-Siang; Hsieh, Chih-Chun; Lin, Chi-Ming; Chen, Erh-Chiang; Kuo, Che-Wei; Wu, Weite, E-mail: wwu@dragon.nchu.edu.tw

    2014-05-01

    The textures and crystallographic orientations beneath the treatment area in AA 6061 aluminum alloy after vibratory stress relief (VSR) process were investigated by combining the electron backscatter diffraction analysis of the misoriented low- or high-angle boundaries, the (inverse) pole figures, the line scans and the various grain orientations. The relaxation effect caused by compressive residual stress in the intermediate region is superior to that of tensile residual stress on both sides of the cantilever by means of X-ray diffraction techniques. The residual stress relaxation that occurs due to vibrational stress excitation accompanies the “orientation of banding” disintegration, the decreases in the dislocation density, the strain energy, and the fraction of low-angle boundaries within each type of grain orientation, such as Copper {112} 〈111〉, S {123} 〈634〉, Goss {110} 〈001〉, and Brass {110} 〈112〉, excepting the Cube (or near-Cube) {100} 〈001〉 grain orientation. The maintained invariance in the Cube texture can be attributed to the maximum number of active primary slip systems, resulting in an interaction that results from hindered slip on intersecting families of the planes.

  11. The effect of residual stress relaxation by the vibratory stress relief technique on the textures of grains in AA 6061 aluminum alloy

    International Nuclear Information System (INIS)

    Wang, Jia-Siang; Hsieh, Chih-Chun; Lin, Chi-Ming; Chen, Erh-Chiang; Kuo, Che-Wei; Wu, Weite

    2014-01-01

    The textures and crystallographic orientations beneath the treatment area in AA 6061 aluminum alloy after vibratory stress relief (VSR) process were investigated by combining the electron backscatter diffraction analysis of the misoriented low- or high-angle boundaries, the (inverse) pole figures, the line scans and the various grain orientations. The relaxation effect caused by compressive residual stress in the intermediate region is superior to that of tensile residual stress on both sides of the cantilever by means of X-ray diffraction techniques. The residual stress relaxation that occurs due to vibrational stress excitation accompanies the “orientation of banding” disintegration, the decreases in the dislocation density, the strain energy, and the fraction of low-angle boundaries within each type of grain orientation, such as Copper {112} 〈111〉, S {123} 〈634〉, Goss {110} 〈001〉, and Brass {110} 〈112〉, excepting the Cube (or near-Cube) {100} 〈001〉 grain orientation. The maintained invariance in the Cube texture can be attributed to the maximum number of active primary slip systems, resulting in an interaction that results from hindered slip on intersecting families of the planes

  12. The Relationship of Relaxation Technique, Test Anxiety, Academic Stress, and Nursing Students Intention to Stay in a Baccalaureate Degree Nursing Program

    Science.gov (United States)

    Manansingh, Sherry

    2017-01-01

    The purpose of this study was to examine the effect of relaxation techniques among first semester Baccalaureate Degree nursing students' test anxiety and academic stress. Additionally, this study examined if there was a relationship among demographic characteristics of the respondents and test anxiety and academic stress. The pretest and posttest…

  13. Stress relaxation of bi-disperse polystyrene melts

    DEFF Research Database (Denmark)

    Hengeller, Ludovica; Huang, Qian; Dorokhin, Andriy

    2016-01-01

    We present start-up of uniaxial extension followed by stress relaxation experiments of a bi-disperse 50 % by weight blend of 95k and 545k molecular weight polystyrene. We also show, for comparison, stress relaxation measurements of the polystyrene melts with molecular weight 95k and 545k, which...... are the components of the bi-disperse melt. The measurements show three separated relaxation regimes: a fast regime, a transition regime, and a slow regime. In the fast regime, the orientation of the long chains is frozen and the stress relaxation is due to stretch relaxation of the short chains primarily....... Conversely in the slow regime, the long chains have retracted and undergo relaxation of orientation in fully relaxed short chains....

  14. Improved method for determining the stress relaxation at the crack tip

    Science.gov (United States)

    Grinevich, A. V.; Erasov, V. S.; Avtaev, V. V.

    2017-10-01

    A technique is suggested to determine the stress relaxation at the crack tip during tests of a specimen of a new type at a constant crack opening fixed by a stay bolt. The shape and geometry of the specimen make it possible to set the load and to determine the crack closure force after long-term exposure using the force transducer of a tensile-testing machine. The stress relaxation at the crack tip is determined in a V95pchT2 alloy specimen at elevated temperatures.

  15. Stress relaxation in SSC 50mm dipole coils

    International Nuclear Information System (INIS)

    Rogers, D.; Markley, F.

    1992-04-01

    We are measuring the stress relaxation of SSC 50mm outer coils with the goal of predicting how much of the coil prestress will be lost while the coils are warehoused between manufacture and cooldown. We manufacture 3 inch (76.2mm) long segments of coil with the same materials and techniques that have been used for prototype coils. We are running four simultaneous tests in an attempt to separate the contributions of the different coil materials. Test one is a completely insulated coil section where the insulation is the all polyamide system being tested at Brookhaven; test two is a wire stack insulated only with the normal Kapton overwrap; test three is a stack of bare cable; and test four is a completely insulated normal coil section. All, except for the bare cable, include the ground insulation. The insulated coil sections are carefully dried before loading and testing in order to eliminate stress changes due to varying moisture content. The temperature dependence of the stress relaxation is being studied separately. Three companion papers presented at this conference will be: (1) ''Temperature dependence of the viscoelastic properties of SSC coil insulation'' (2) ''Measurement of the elastic modulus of Kapton perpendicular to the plane of the film at room and cryogenic temperatures'' (3) ''Theoretical methods for creep and stress relaxation studies of SSC coil.''

  16. Electrical response of relaxing dielectrics compressed by arbitrary stress pulses

    International Nuclear Information System (INIS)

    Lysne, P.C.

    1983-01-01

    The theoretical problem of the electric response of biased dielectrics and piezoelectrics subjected to planar stress pulse loading is considered. The materials are taken to exhibit dielectric relaxation in the sense that changes in the polarization induced by electric fields do not occur instantaneously with changes in the fields. While this paper considers arbitrary stress pulse loading of the specimen, examples that are amenable to projectile impact techniques are considered in detail. They are shock reverberation, thin pulse, and ramp loading experiments. It is anticipated that these experiments will play a role in investigations of dielectric relaxation caused by shock induced damage in insulators

  17. Stress relaxation in viscous soft spheres.

    Science.gov (United States)

    Boschan, Julia; Vasudevan, Siddarth A; Boukany, Pouyan E; Somfai, Ellák; Tighe, Brian P

    2017-10-04

    We report the results of molecular dynamics simulations of stress relaxation tests in athermal viscous soft sphere packings close to their unjamming transition. By systematically and simultaneously varying both the amplitude of the applied strain step and the pressure of the initial condition, we access both linear and nonlinear response regimes and control the distance to jamming. Stress relaxation in viscoelastic solids is characterized by a relaxation time τ* that separates short time scales, where viscous loss is substantial, from long time scales, where elastic storage dominates and the response is essentially quasistatic. We identify two distinct plateaus in the strain dependence of the relaxation time, one each in the linear and nonlinear regimes. The height of both plateaus scales as an inverse power law with the distance to jamming. By probing the time evolution of particle velocities during relaxation, we further identify a correlation between mechanical relaxation in the bulk and the degree of non-affinity in the particle velocities on the micro scale.

  18. Application of stress relaxation testing in evaluation of creep strength of a tungsten-alloyed 10% Cr cast steel

    International Nuclear Information System (INIS)

    Raghavender Rao, G.; Gupta, O.P.; Pradhan, B.

    2011-01-01

    Uniaxial isothermal stress relaxation tests (SRT) were performed on a tungsten-alloyed 10% Cr cast steel (G-X12Cr Mo W V Nb N 10 1 1) at temperatures of 580, 600 and 620 o C and initial strain levels of 0.2, 0.5 and 0.8%. Inelastic strain rates for different stresses were estimated from the stress versus time data generated from the tests. Conventional creep tests were also conducted on the same material at 580, 600 and 620 o C and at different stress levels. The strain rate data estimated from SRT were compared with minimum creep rates derived from the creep tests; the strain rates estimated from SRT with 0.8% initial strain level are in better agreement than those estimated from SRT with 0.2 and 0.5% initial strain levels. In order to ascertain the technique, stress relaxation behaviour was estimated from creep test data and compared with the stress relaxation curves obtained from SRT at corresponding temperatures. The stress relaxation curves obtained from SRT with 0.8% initial strain level are in good agreement with the stress relaxation curves estimated from the creep tests. It is concluded that the stress relaxation test with initial strain level of 0.8% could be considered as an appropriate short-term test technique for estimation of creep strength of newly developed materials.

  19. How Do You #relax When You're #stressed? A Content Analysis and Infodemiology Study of Stress-Related Tweets.

    Science.gov (United States)

    Doan, Son; Ritchart, Amanda; Perry, Nicholas; Chaparro, Juan D; Conway, Mike

    2017-06-13

    was rest & vacation, followed by nature and water. When we applied the classifiers to the cities dataset, the proportion of stress tweets in New York and San Diego was substantially higher than that in Los Angeles and San Francisco. In addition, we found that characteristic expressions of stress and relaxation varied for each city based on its geolocation. This content analysis and infodemiology study revealed that Twitter, when used in conjunction with natural language processing techniques, is a useful data source for understanding stress and stress management strategies, and can potentially supplement infrequently collected survey-based stress data. ©Son Doan, Amanda Ritchart, Nicholas Perry, Juan D Chaparro, Mike Conway. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 13.06.2017.

  20. Irradiation-induced stress relaxation of Eurofer97 steel

    International Nuclear Information System (INIS)

    Luzginova, N.V.; Jong, M.; Rensman, J.W.; Hegeman, J.B.J.; Laan, J.G. van der

    2011-01-01

    The irradiation-induced stress relaxation behavior of Eurofer97 at 300 deg. C up to 3.4 dpa and under pre-stress loads typical for the ITER applications is investigated. The bolt specimens are pre-loaded from 30% to 90% of the yield strength. To verify the results obtained with the pre-stressed bolts, bent strips were investigated as well. The strips are bent into a pre-defined radius in order to achieve similar pre-stress levels. The irradiation-induced stress relaxation is found to be independent of the pre-stress level. 10-12% of the stress relaxation in Eurofer97 may be reached after a dose of 0.1 dpa, and after an irradiation dose of 2.7 dpa 42-47% of the original pre-stress is retained.

  1. Time, stress, and temperature-dependent deformation in nanostructured copper: Stress relaxation tests and simulations

    International Nuclear Information System (INIS)

    Yang, Xu-Sheng; Wang, Yun-Jiang; Wang, Guo-Yong; Zhai, Hui-Ru; Dai, L.H.; Zhang, Tong-Yi

    2016-01-01

    In the present work, stress relaxation tests, high-resolution transmission electron microscopy (HRTEM), and molecular dynamics (MD) simulations were conducted on coarse-grained (cg), nanograined (ng), and nanotwinned (nt) copper at temperatures of 22 °C (RT), 30 °C, 40 °C, 50 °C, and 75 °C. The comprehensive investigations provide sufficient information for the building-up of a formula to describe the time, stress, and temperature-dependent deformation and clarify the relationship among the strain rate sensitivity parameter, stress exponent, and activation volume. The typically experimental curves of logarithmic plastic strain rate versus stress exhibited a three staged relaxation process from a linear high stress relaxation region to a subsequent nonlinear stress relaxation region and finally to a linear low stress relaxation region, which only showed-up at the test temperatures higher than 22 °C, 22 °C, and 30 °C, respectively, in the tested cg-, ng-, and nt-Cu specimens. The values of stress exponent, stress-independent activation energy, and activation volume were determined from the experimental data in the two linear regions. The determined activation parameters, HRTEM images, and MD simulations consistently suggest that dislocation-mediated plastic deformation is predominant in all tested cg-, ng-, and nt-Cu specimens in the initial linear high stress relaxation region at the five relaxation temperatures, whereas in the linear low stress relaxation region, the grain boundary (GB) diffusion-associated deformation is dominant in the ng- and cg-Cu specimens, while twin boundary (TB) migration, i.e., twinning and detwinning with parallel partial dislocations, governs the time, stress, and temperature-dependent deformation in the nt-Cu specimens.

  2. Irradiation creep, stress relaxation and a mechanical equation of state

    International Nuclear Information System (INIS)

    Foster, J.P.

    1976-01-01

    Irradiation creep and stress relaxation data are available from the United Kingdom for 20 percent CW M316, 20 percent CW FV 548 and FHT PE16 using pure torsion in the absence of swelling at 300 0 C. Irradiation creep models were used to calculate the relaxation and permanent deflection of the stress relaxation tests. Two relationships between irradiation creep and stress relaxation were assessed by comparing the measured and calculated stress relaxation and permanent deflection. The results show that for M316 and FV548, the stress relaxation and deflection may be calculated using irradiation creep models when the stress rate term arising from the irradiation creep model is set equal to zero. In the case of PE16, the inability to calculate the stress relaxation and permanent deflection from the irradiation creep data was attributed to differences in creep behavior arising from lot-to-lot variations in alloying elements and impurity content. A modification of the FV548 and PE16 irradiation creep coefficients was necessary in order to calculate the stress relaxation and deflection. The modifications in FV548 and PE16 irradiation creep properties reduces the large variation in the transient or incubation parameter predicted by irradiation creep tests for M316, FV548 and PE16

  3. Stress relaxation characteristics of type 304 stainless steel

    International Nuclear Information System (INIS)

    Manjoine, M.J.

    1975-01-01

    The stress relaxation of type 304 stainless steel below 900 0 F (482 0 C) is practically time independent after 100 h and has a maximum of about 18 per cent. The per cent relaxation decreases with increasing degree of cold work and with decreasing stress. Above 900 0 F the per cent relaxation increases with time, temperature, and cold work. The initial stress can also be increased for cold work materials so that the remaining stress can be maintained at a higher value even up to 1200 0 F (649 0 C). Time-temperature parameters are practical to correlate and extrapolate the data in the higher temperature range. (author)

  4. [Mind-body approach in the area of preventive medicine: focusing on relaxation and meditation for stress management].

    Science.gov (United States)

    Kang, Yunesik

    2010-09-01

    Emotional support and a stress management program should be simultaneously provided to clients as effective preventive services for healthy behavioral change. This study was conducted to review various relaxation and meditation intervention methods and their applicability for a preventive service program. The author of this paper tried to find various relaxation and meditation programs through a literature review and program searching and to introduce them. The 'Relaxation Response' and 'Mindfulness Based Stress Reduction (MBSR)' are the most the widely used meditative programs in mainstream medical systems. Abdominal breathing, Progressive Musclular Relaxation (PMR), Relaxative Imagery, Autogenic Training (AT) and Biofeedback are other well-known techniques for relaxation and stress management. I have developed and implemented some programs using these methods. Relaxation and meditation classes for cancer patients and a meditation based stress coping workshop are examples of this program. Relaxation and meditation seem to be good and effective methods for primary, secondary and tertiary preventive service programs. Program development and standardization and further study are needed for more and wider use of the mind-body approach in the preventive service area of medicine.

  5. Ion beam induced stress formation and relaxation in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, T., E-mail: Tobias.Steinbach@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany); Reupert, A.; Schmidt, E.; Wesch, W. [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)

    2013-07-15

    Ion irradiation of crystalline solids leads not only to defect formation and amorphization but also to mechanical stress. In the past, many investigations in various materials were performed focusing on the ion beam induced damage formation but only several experiments were done to investigate the ion beam induced stress evolution. Especially in microelectronic devices, mechanical stress leads to several unwanted effects like cracking and peeling of surface layers as well as changing physical properties and anomalous diffusion of dopants. To study the stress formation and relaxation process in semiconductors, crystalline and amorphous germanium samples were irradiated with 3 MeV iodine ions at different ion fluence rates. The irradiation induced stress evolution was measured in situ with a laser reflection technique as a function of ion fluence, whereas the damage formation was investigated by means of Rutherford backscattering spectrometry. The investigations show that mechanical stress builds up at low ion fluences as a direct consequence of ion beam induced point defect formation. However, further ion irradiation causes a stress relaxation which is attributed to the accumulation of point defects and therefore the creation of amorphous regions. A constant stress state is reached at high ion fluences if a homogeneous amorphous surface layer was formed and no further ion beam induced phase transition took place. Based on the results, we can conclude that the ion beam induced stress evolution seems to be mainly dominated by the creation and accumulation of irradiation induced structural modification.

  6. Relationship between Structural and Stress Relaxation in a Block-Copolymer Melt

    International Nuclear Information System (INIS)

    Patel, Amish J.; Narayanan, Suresh; Sandy, Alec; Mochrie, Simon G. J.; Garetz, Bruce A.; Watanabe, Hiroshi; Balsara, Nitash P.

    2006-01-01

    The relationship between structural relaxation on molecular length scales and macroscopic stress relaxation was explored in a disordered block-copolymer melt. Experiments show that the structural relaxation time, measured by x-ray photon correlation spectroscopy is larger than the terminal stress relaxation time, measured by rheology, by factors as large as 100. We demonstrate that the structural relaxation data are dominated by the diffusion of intact micelles while the stress relaxation data are dominated by contributions due to disordered concentration fluctuations

  7. Stress relaxation behavior and mechanism of AEREX350 and Waspaloy superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuzhou; Dong, Jianxin; Zhang, Maicang; Yao, Zhihao

    2016-12-15

    The relaxation properties of AEREX350 and Waspaloy were studied contrastively at temperatures ranging from 600 °C to 800 °C with the same initial stress 510 MPa. The relationship between the microstructure and relaxation properties was elucidated using scanning and transmission electron microscopy techniques. It was found that the relaxation limit and relaxation stability of the two alloys decreased obviously with the increase of temperature, but the relaxation stability of AEREX350 decreased more slowly compared with Waspaloy. Further investigations show that the relaxation behavior is mainly depended on both precipitate characteristics and its interaction with dislocations. The complex precipitates evolution of AEREX350 alloy leads to a higher relaxation limit at high temperature 800 °C, but more quantity of γ′ in Waspaloy results in a higher relaxation limit at the low temperature of 600 °C. Thus it is suggested that as fastener alloys, Waspaloy is more suitable for low temperature service while AEREX350 is the preferred choice for high temperature service.

  8. Model and prediction of stress relaxation of polyurethane fiber

    Science.gov (United States)

    You, Gexin; Wang, Chunyan; Mei, Shuqin; Yang, Bo; Zhou, Xiuwen

    2018-03-01

    In this study, the effect of small strain (less than 10%) on hydrogen bond (H-bond) and crystallinity of dry-spun polyurethane fiber was investigated with fourier transform infrared spectroscopy and x-ray diffractometer, respectively. The results showed that the H-bond of hard segments hardly broke and its degree of crystallinity scarcely varied below strain of 10%. The fiber stress relaxation behavior at 25 °C under small strain was researched using dynamic mechanical analyzer. The stress relaxation modulus constitutive equation was obtained by transforming the non-linear relationship between stress and time into the linear relationship between stress and strain. The stress relaxation modulus master curve at 25 °C was established in terms of short-term stress relaxation tests at elevated temperatures (35 °C, 45 °C, 65 °C and 75 °C) according to time-temperature superposition principle (TTS) to predict long-term behavior within 353 year.

  9. Microstructural stress relaxation mechanics in functionally different tendons.

    Science.gov (United States)

    Screen, H R C; Toorani, S; Shelton, J C

    2013-01-01

    Tendons experience widely varying loading conditions in vivo. They may be categorised by their function as either positional tendons, which are used for intricate movements and experience lower stress, or as energy storage tendons which act as highly stressed springs during locomotion. Structural and compositional differences between tendons are thought to enable an optimisation of their properties to suit their functional environment. However, little is known about structure-function relationships in tendon. This study adopts porcine flexor and extensor tendon fascicles as examples of high stress and low stress tendons, comparing their mechanical behaviour at the micro-level in order to understand their stress relaxation response. Stress-relaxation was shown to occur predominantly through sliding between collagen fibres. However, in the more highly stressed flexor tendon fascicles, more fibre reorganisation was evident when the tissue was exposed to low strains. By contrast, the low load extensor tendon fascicles appears to have less capacity for fibre reorganisation or shearing than the energy storage tendon, relying more heavily on fibril level relaxation. The extensor fascicles were also unable to sustain loads without rapid and complete stress relaxation. These findings highlight the need to optimise tendon repair solutions for specific tendons, and match tendon properties when using grafts in tendon repairs. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Residual stress relaxation measurements across interfaces at macro-and micro-scales using slitting and DIC

    Energy Technology Data Exchange (ETDEWEB)

    Blair, A; Daynes, N; Hamilton, D; Horne, G; Hodgson, D Z L; Shterenlikht, A [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Heard, P J; Scott, T B, E-mail: mexas@bristol.ac.u [Interface Analysis Centre, University of Bristol, Bristol BS2 8BS (United Kingdom)

    2009-08-01

    In this paper digital image correlation is used to measure relaxation of residual stresses across an interface. On the macro scale the method is applied to a tri-layer bonded aluminium sample, where the middle layer is in tension and the top and the bottom layers are in compression. High contrast speckle pattern was sprayed onto the surface. The relaxation was done with the slitting saw. Three dimensional image correlation was used. On the micro scale the technique was applied to a heat treated large grain brass loaded in tension. Mechanical and electro polishing was used for surface preparation. A focused ion beam was used for slitting across a grain boundary and for imaging. Grain orientation was measured using electron back-scattering diffraction. Two dimensional image correlation was employed. In all macro- and micro-scale experiments the range of measured relaxation was sub-pixel, almost at the limit of the resolution of the image correlation algorithms. In the macro-scale experiments, the limiting factor was low residual stress, due to low shear strength of the Araldite glue used for bonding. Finite element simulation of the relaxation agreed only qualitatively with the experimental results at both size scales. The methodology is intended for use with inverse methods, i.e. the measured relaxation is applied as the boundary conditions to an appropriate FE model which produces stresses equal to the relaxed residual stresses, but with opposite sign. The main conclusion is that the digital image correlation method could be used to measure relaxation caused by slitting in heterogeneous materials and structures at both macro- and micro-scales. However, the repeatability of the techniques needs to be improved before residual stresses can be determined confidently. Acknowledgments The authors gratefully acknowledge Airbus UK for provision of materials. They thank Dr Richard Burguete, Airbus UK, and Prof Peter Flewitt, Department of Physics, University of Bristol, for

  11. Residual stress relaxation measurements across interfaces at macro-and micro-scales using slitting and DIC

    International Nuclear Information System (INIS)

    Blair, A; Daynes, N; Hamilton, D; Horne, G; Hodgson, D Z L; Shterenlikht, A; Heard, P J; Scott, T B

    2009-01-01

    In this paper digital image correlation is used to measure relaxation of residual stresses across an interface. On the macro scale the method is applied to a tri-layer bonded aluminium sample, where the middle layer is in tension and the top and the bottom layers are in compression. High contrast speckle pattern was sprayed onto the surface. The relaxation was done with the slitting saw. Three dimensional image correlation was used. On the micro scale the technique was applied to a heat treated large grain brass loaded in tension. Mechanical and electro polishing was used for surface preparation. A focused ion beam was used for slitting across a grain boundary and for imaging. Grain orientation was measured using electron back-scattering diffraction. Two dimensional image correlation was employed. In all macro- and micro-scale experiments the range of measured relaxation was sub-pixel, almost at the limit of the resolution of the image correlation algorithms. In the macro-scale experiments, the limiting factor was low residual stress, due to low shear strength of the Araldite glue used for bonding. Finite element simulation of the relaxation agreed only qualitatively with the experimental results at both size scales. The methodology is intended for use with inverse methods, i.e. the measured relaxation is applied as the boundary conditions to an appropriate FE model which produces stresses equal to the relaxed residual stresses, but with opposite sign. The main conclusion is that the digital image correlation method could be used to measure relaxation caused by slitting in heterogeneous materials and structures at both macro- and micro-scales. However, the repeatability of the techniques needs to be improved before residual stresses can be determined confidently. Acknowledgments The authors gratefully acknowledge Airbus UK for provision of materials. They thank Dr Richard Burguete, Airbus UK, and Prof Peter Flewitt, Department of Physics, University of Bristol, for

  12. Study on properties of stress relaxation for NiTiNb shape memory alloy

    International Nuclear Information System (INIS)

    Zhou Xuchang; Mo Huaqiang; Zeng Guangting; Shen Baoluo; Huo Yongzhong

    2002-01-01

    Stress relaxation tests at high temperature are performed for NiTiNb shape memory alloy to obtain the properties of stress relaxation. The relaxation curve fitted with the expression, which is deduced based on the relation between the relaxation and the creep. With the aid of experimental data, relaxation characteristic coefficient and remaining stress ratio are obtained, which characterize the relaxation behavior. The results of the study show that stress relaxation would be more evident with the higher temperature and/or greater initial stress. NiTiNb alloy has good relaxation resistance in the temperature range 300-400 degree C and the initial stress range 260-360 MPa. NiTiNb has better properties to resist relaxation than NiTiFe, therefore it is more applicable to work at high temperature

  13. Stress relaxation and hillock growth in thin films

    International Nuclear Information System (INIS)

    Jackson, M.S.; Li, C.Y.

    1978-01-01

    The relaxation of thermal stress in a thin film adhering to a substrate of differing expansion coefficient is discussed. Good agreement is found between literature data on relaxation during isothermal anneals of Pb films at up to 350 0 K and model calculations based on a state variable description of plastic flow. The stress system during relaxation is explored, and the absence of diffusional creep is explained. The plasticity-dominated relaxation process suggested by this analysis is shown to be in good qualitative agreement with data on rapid relaxation over the course of a cycle between room and cryogenic temperatures. The implications of this for long-range material transport in the film are discussed. It is shown that hillock volume should increase over the course of a temperature cycle. Finally, a mechanism for hillock nucleation based on grain boundary sliding is suggested

  14. Effectiveness of relaxation techniques before diagnostic screening of cancer patients

    Directory of Open Access Journals (Sweden)

    Montserrat Aiger

    2016-07-01

    Full Text Available Psychophysiological arousal was observed in cancer patients during the application of relaxation techniques prior to a diagnostic scan (PET-CT. The aim of the study is twofold: firstly, it is sought to establish whether such techniques can minimize patient arousal before diagnostic screening begins, and secondly to measure which of them are most effective. The dependent variable is electrodermal activity, recording the attentional level and emotional response, and the independent variable comprises the relaxation techniques used, namely Jacobson, breathing and visualization. The 39 patients were split into experimental groups to whom the relaxation techniques (Jacobson, breathing exercises, and visualization were applied before they went for the PET-CT. An activity-module procedure was applied to track electrodermal activity during the relaxation sessions, consisting of instructions, timeout; wait, task; relaxation and end of the recording session. The control group received no relaxation techniques before the PET-CT. Session-end results show that patients who perform relaxation techniques achieve greater attentional focus using Jacobson's technique (M = .212 and enhanced emotional containment using visualization (M = .206. It is concluded that relaxation techniques minimize the state of activation during the waiting period before a diagnostic scan.

  15. Development of stress relaxation measurement by a small size C-ring specimen method

    International Nuclear Information System (INIS)

    Shimanuki, Shizuka; Nakata, Kiyotomo; Kasahara, Shigeki; Kuniya, Jiro

    2002-01-01

    A stress relaxation measurement method has been developed by using C-ring specimens, and a specimen size effect has been evaluated taking radiation-induced stress relaxation into consideration. C-ring specimens were stressed by forcing a wedge in the gap. Giving an appropriate eccentric configuration in the half of the ring opposite the gap, the stress gradient along the circumference was eliminated in the section and the stress level could be varied by changing the gap spacing. The validity of the C-ring test method was confirmed by thermally stress relaxation experiments at annealing temperatures from 300 to 600degC for 1 min to 200 h in carbon steel: considerable stress relaxation could be measured for all levels of applied stress even at relatively low annealing temperatures. The relaxation results obtained from the C-ring test were in good agreement with those from a uniaxial tensile stress relaxation test. The smaller C-ring specimen with about 40 mm diameter, which is required for radiation-induced stress relaxation test, also showed adequate accuracy on stress relaxation at 600 to 830degC in stainless steel, compared with the large size C-ring specimen test. (author)

  16. Stress Relaxation in Entangled Polymer Melts

    DEFF Research Database (Denmark)

    Hou, Ji-Xuan; Svaneborg, Carsten; Everaers, Ralf

    2010-01-01

    We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements...... and into the terminal relaxation regime for Z=10. Using the known (Rouse) mobility of unentangled chains and the melt entanglement length determined via the primitive path analysis of the microscopic topological state of our systems, we have performed parameter-free tests of several different tube models. We find...

  17. Hydrogels with tunable stress relaxation regulate stem cell fate and activity

    Science.gov (United States)

    Chaudhuri, Ovijit; Gu, Luo; Klumpers, Darinka; Darnell, Max; Bencherif, Sidi A.; Weaver, James C.; Huebsch, Nathaniel; Lee, Hong-Pyo; Lippens, Evi; Duda, Georg N.; Mooney, David J.

    2016-03-01

    Natural extracellular matrices (ECMs) are viscoelastic and exhibit stress relaxation. However, hydrogels used as synthetic ECMs for three-dimensional (3D) culture are typically elastic. Here, we report a materials approach to tune the rate of stress relaxation of hydrogels for 3D culture, independently of the hydrogel's initial elastic modulus, degradation, and cell-adhesion-ligand density. We find that cell spreading, proliferation, and osteogenic differentiation of mesenchymal stem cells (MSCs) are all enhanced in cells cultured in gels with faster relaxation. Strikingly, MSCs form a mineralized, collagen-1-rich matrix similar to bone in rapidly relaxing hydrogels with an initial elastic modulus of 17 kPa. We also show that the effects of stress relaxation are mediated by adhesion-ligand binding, actomyosin contractility and mechanical clustering of adhesion ligands. Our findings highlight stress relaxation as a key characteristic of cell-ECM interactions and as an important design parameter of biomaterials for cell culture.

  18. Modelling of loading, stress relaxation and stress recovery in a shape memory polymer.

    Science.gov (United States)

    Sweeney, J; Bonner, M; Ward, I M

    2014-09-01

    A multi-element constitutive model for a lactide-based shape memory polymer has been developed that represents loading to large tensile deformations, stress relaxation and stress recovery at 60, 65 and 70°C. The model consists of parallel Maxwell arms each comprising neo-Hookean and Eyring elements. Guiu-Pratt analysis of the stress relaxation curves yields Eyring parameters. When these parameters are used to define the Eyring process in a single Maxwell arm, the resulting model yields at too low a stress, but gives good predictions for longer times. Stress dip tests show a very stiff response on unloading by a small strain decrement. This would create an unrealistically high stress on loading to large strain if it were modelled by an elastic element. Instead it is modelled by an Eyring process operating via a flow rule that introduces strain hardening after yield. When this process is incorporated into a second parallel Maxwell arm, there results a model that fully represents both stress relaxation and stress dip tests at 60°C. At higher temperatures a third arm is required for valid predictions. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  19. Stress relaxation analysis and irradiation creep and swelling in pressure tubes

    International Nuclear Information System (INIS)

    Beeston, J.M.; Burr, T.K.

    1979-01-01

    An analysis is presented of slit width test information on two pressure tubes that had been irradiated in test reactors. The analysis showed that differential swelling stresses and thermal stresses undergo relaxation. The mechanism responsible for the stress relaxation at temperatures less than 700 K was irradiation creep. Irradiation creep in thermal test reactor pressure tubes is evidently greater than it would be at equivalent conditions in fast reactors. The residual stresses observed in the slit width tests varied between 30 and 257 MPa and would act to reduce the operating stresses, thus allowing for increased service life of the tubes as compared with no stress relaxation

  20. Studying the effect of stress relaxation and creep on lattice strain evolution of stainless steel under tension

    International Nuclear Information System (INIS)

    Wang, H.; Clausen, B.; Tomé, C.N.; Wu, P.D.

    2013-01-01

    Due to relatively long associated count times, in situ strain measurements using neutron diffraction requires periodic interruption of the test to collect the diffraction data by holding either the stress or the strain constant. As a consequence, stress relaxation or strain creep induced by the interrupts is inevitable, especially at loads which are close to the flow stress of the material. An in situ neutron diffraction technique, which consists in performing the diffraction measurements using continuous event-mode data collection while conducting the mechanical loading monotonically with a very slow loading rate, is proposed here to avoid the effects associated with interrupts. The lattice strains in stainless steel under uniaxial tension are measured using the three techniques, and the experimental results are compared to study the effect of stress relaxation and strain creep on the lattice strain measurements. The experimental results are simulated using both the elastic viscoplastic self-consistent (EVPSC) model and the elastic plastic self-consistent (EPSC) model. Both the EVPSC and EPSC models give reasonable predictions for all the three tests, with EVPSC having the added advantage over EPSC that it allows us to address the relaxation and creep effects in the interrupted tests

  1. A Microstructural Study of Load Distribution in Cartilage: A Comparison of Stress Relaxation versus Creep Loading

    Directory of Open Access Journals (Sweden)

    Ashvin Thambyah

    2015-01-01

    Full Text Available The compressive response of articular cartilage has been extensively investigated and most studies have focussed largely on the directly loaded matrix. However, especially in relation to the tissue microstructure, less is known about load distribution mechanisms operating outside the directly loaded region. We have addressed this issue by using channel indentation and DIC microscopy techniques that provide visualisation of the matrix microstructural response across the regions of both direct and nondirect loading. We hypothesise that, by comparing the microstructural response following stress relaxation and creep compression, new insights can be revealed concerning the complex mechanisms of load bearing. Our results indicate that, with stress relaxation, the initial mode of stress decay appears to primarily involve relaxation of the surface layer. In the creep loading protocol, the main mode of stress release is a lateral distribution of load via the mid matrix. While these two modes of stress redistribution have a complex relationship with the zonally differentiated tissue microstructure and the depth of strain, four mechanostructural mechanisms are proposed to describe succinctly the load responses observed.

  2. Preference for different relaxation techniques by COPD patients: comparison between six techniques

    Directory of Open Access Journals (Sweden)

    Hyl

    2016-09-01

    Full Text Available Michael E Hyland,1 David MG Halpin,2 Sue Blake,3 Clare Seamark,3 Margaret Pinnuck,3 David Ward,3 Ben Whalley,1 Colin J Greaves,4 Adam L Hawkins,5 Dave Seamark3 1School of Psychology, University of Plymouth, Plymouth, 2Department of Respiratory Medicine, Royal Devon and Exeter Hospital, Exeter, 3Honiton Group Practice, Honiton, 4University of Exeter Medical School, Exeter, 5GSK House, Brentford, UK Background: A review of the effectiveness of relaxation techniques for chronic obstructive pulmonary disease patients has shown inconsistent results, but studies have varied in terms of technique and outcome measures. Aim: To determine patient preference for different relaxation techniques. Methods: Chronic obstructive pulmonary disease patients were presented with six techniques via a DVD and asked to rate the techniques in terms of effectiveness, rank in order of likely use, and comment. Results: Patients differed in the technique preferred and reason for that preference, but the most commonly preferred technique both for effectiveness and ease of use was “thinking of a nice place” followed by progressive relaxation and counting. Familiarity and ease of activity were commonly given reasons for preference. Conclusion: Rather than providing patients with a single technique that they might find difficult to implement, these results suggest that it would be better to give a choice. “Thinking of a nice place” is a popular but under-investigated technique. Keywords: COPD exacerbation, anxiety, relaxation techniques

  3. Low-temperature strain ageing in In-Pb alloys under stress relaxation conditions

    International Nuclear Information System (INIS)

    Fomenko, L.S.

    2000-01-01

    The dynamic strain ageing (DSA) of In-Pb (6 and 8 at. % Pb) substitutional solid solution single crystals is studied at temperatures 77-205 K under stress relaxation conditions. The dependences of the stress increment after relaxation connected with DSA on stress relaxation time, stress relaxation rate at the end of the relaxation, temperature, alloy content, flow stress, and strain are determined. It is shown that the DSA kinetic is described by a Harper-type equation with the exponent equal to 1/3 and a low activation energy value (0.3-0.34 eV). This provides a low temperature of the DSA onset (∼ 0.17 T m , where T m is the melt temperature) and is evidence of pipe-mode diffusion. It is supposed that the obstacles to dislocation motion in the crystals studied consist of the groups of solutes, and the strength of the obstacles increases during the DSA due to the pipe diffusion of the solute atoms along the dislocations

  4. Stress relaxation of thermally bowed fuel pins

    International Nuclear Information System (INIS)

    Crossland, I.G.; Speight, M.V.

    1983-01-01

    The presence of cross-pin temperature gradients in nuclear reactor fuel pins produces differential thermal expansion which, in turn, causes the fuel pin to bow elastically. If the pin is restrained in any way, such thermal bowing causes the pin to be stressed. At high temperatures these stresses can relax by creep and it is shown here that this causes the pin to suffer an additional permanent deflection, so that when the cross-pin temperature difference is removed the pin remains bowed. By representing the cylindrical pin by an equivalent I-beam, the present work examines this effect when it takes place by secondary creep. Two restraint systems are considered, and it is demonstrated that the rate of relaxation depends mainly upon the creep equation, and hence the temperature, and also the magnitude of the initial stresses. (author)

  5. Stress relaxation in quasi-two-dimensional self-assembled nanoparticle monolayers

    Science.gov (United States)

    Boucheron, Leandra S.; Stanley, Jacob T.; Dai, Yeling; You, Siheng Sean; Parzyck, Christopher T.; Narayanan, Suresh; Sandy, Alec R.; Jiang, Zhang; Meron, Mati; Lin, Binhua; Shpyrko, Oleg G.

    2018-05-01

    We experimentally probed the stress relaxation of a monolayer of iron oxide nanoparticles at the water-air interface. Upon drop-casting onto a water surface, the nanoparticles self-assembled into islands of two-dimensional hexagonally close packed crystalline domains surrounded by large voids. When compressed laterally, the voids gradually disappeared as the surface pressure increased. After the compression was stopped, the surface pressure (as measured by a Wilhelmy plate) evolved as a function of the film aging time with three distinct timescales. These aging dynamics were intrinsic to the stressed state built up during the non-equilibrium compression of the film. Utilizing x-ray photon correlation spectroscopy, we measured the characteristic relaxation time (τ ) of in-plane nanoparticle motion as a function of the aging time through both second-order and two-time autocorrelation analysis. Compressed and stretched exponential fitting of the intermediate scattering function yielded exponents (β ) indicating different relaxation mechanisms of the films under different compression stresses. For a monolayer compressed to a lower surface pressure (between 20 mN/m and 30 mN/m), the relaxation time (τ ) decreased continuously as a function of the aging time, as did the fitted exponent, which transitioned from being compressed (>1 ) to stretched (stress release through crystalline domain reorganization. However, for a monolayer compressed to a higher surface pressure (around 40 mN/m), the relaxation time increased continuously and the compressed exponent varied very little from a value of 1.6, suggesting that the system may have been highly stressed and jammed. Despite the interesting stress relaxation signatures seen in these samples, the structural ordering of the monolayer remained the same over the sample lifetime, as revealed by grazing incidence x-ray diffraction.

  6. Yield stress in metallic glasses: The jamming-unjamming transition studied through Monte Carlo simulations based on the activation-relaxation technique

    International Nuclear Information System (INIS)

    Rodney, David; Schuh, Christopher A.

    2009-01-01

    A Monte Carlo approach allowing for stress control is employed to study the yield stress of a two-dimensional metallic glass in the limit of low temperatures and long (infinite) time scales. The elementary thermally activated events are determined using the activation-relaxation technique (ART). By tracking the minimum-energy state of the glass for various applied stresses, we find a well-defined jamming-unjamming transition at a yield stress about 30% lower than the steady-state flow stress obtained in conventional strain-controlled quasistatic simulations. ART is then used to determine the evolution of the distribution of thermally activated events in the glass microstructure both below and above the yield stress. We show that aging below the yield stress increases the stability of the glass, both thermodynamically (the internal potential energy decreases) and dynamically (the aged glass is surrounded by higher-energy barriers than the initial quenched configuration). In contrast, deformation above the yield stress brings the glass into a high internal potential energy state that is only marginally stable, being surrounded by a high density of low-energy barriers. The strong influence of deformation on the glass state is also evidenced by the microstructure polarization, revealed here through an asymmetry of the distribution of thermally activated inelastic strains in glasses after simple shear deformation.

  7. Strengthening and stress relaxation of Opalinus Clay

    International Nuclear Information System (INIS)

    Schulze, Otto

    2010-01-01

    undisturbed far-field for the long lasting periods of geological times. Consequently, demands on concepts for backfilling and closure of a repository in a clay-stone formation as well as model calculations for safety analyses generally do not take into account convergence by viscous deformation, which would result from stress re-distribution at underground openings. Although there is some doubt, whether Opalinus Clay is creeping at all, some very long lasting laboratory tests were performed on this item in the author's laboratory. A nearly linear dependence of the long-term creep rate on the deviatoric stress was found. In recent work, the technique of stress-relaxation was used. For this, strengthening by strain rate controlled deformation was stopped, i.e. the strain was kept constant for a long time, and the relaxation of the stress was measured. In course of this technique, the deformability which may result from artefacts is ruled out as far as possible by compaction and strengthening. Then, the stress relaxation - if any - will be maintained by true long-term deformation processes which should be active and responsible for any convergence in an at least only partly backfilled mine. In this contribution, the results of the laboratory work and their discussion will be presented. (authors)

  8. Stress relaxation in a ferrofluid with clustered nanoparticles

    International Nuclear Information System (INIS)

    Borin, Dmitry Yu; Odenbach, Stefan; Zubarev, Andrey Yu; Chirikov, Dmitry N

    2014-01-01

    The formation of structures in a ferrofluid by an applied magnetic field causes various changes in the rheological behaviour of the ferrofluid. A ferrofluid based on clustered iron nanoparticles was investigated. We experimentally and theoretically consider stress relaxation in the ferrofluid under the influence of a magnetic field, when the flow is suddenly interrupted. It is shown that the residual stress observed in the fluid after the relaxation is correlated with the measured and theoretically predicted magnetic field-induced yield stress. Furthermore, we have shown that the total macroscopic stress in the ferrofluid after the flow is interrupted is defined by the presence of both linear chains and dense, drop-like bulk aggregates. The proposed theoretical approach is consistent with the experimentally observed behaviour, despite a number of simplifications which have been made in the formulation of the model. Thus, the obtained results contribute a lot to the understanding of the complex, magnetic field-induced rheological properties of magnetic colloids near the yield stress point. (paper)

  9. The use of self-Reiki for stress reduction and relaxation.

    Science.gov (United States)

    Bukowski, Elaine L

    2015-09-01

    More than one-third of college students reported the desire for stress reduction techniques and education. The purpose of this study was to determine the effects of a 20-week structured self-Reiki program on stress reduction and relaxation in college students. Students were recruited from Stockton University and sessions were conducted in the privacy of their residence. Twenty students completed the entire study consisting of 20 weeks of self-Reiki done twice weekly. Each participant completed a Reiki Baseline Credibility Scale, a Reiki Expectancy Scale, and a Perceived Stress Scale (PSS) after acceptance into the study. The PSS was completed every four weeks once the interventions were initiated. A global assessment questionnaire was completed at the end of the study. Logs summarizing the outcome of each session were submitted at the end of the study. With the exception of three participants, participants believed that Reiki is a credible technique for reducing stress levels. Except for two participants, participants agreed that Reiki would be effective in reducing stress levels. All participants experienced stress within the month prior to completing the initial PSS. There was a significant reduction in stress levels from pre-study to post-study. There was a correlation between self-rating of improvement and final PSS scores. With one exception, stress levels at 20 weeks did not return to pre-study stress levels. This study supports the hypothesis that the calming effect of Reiki may be achieved through the use of self-Reiki.

  10. Relaxation of stresses during reduction of anode supported SOFCs

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Chatzichristodoulou, Christodoulos; Jørgensen, Peter Stanley

    2016-01-01

    To assess the reliability of solid oxide fuel cell (SOFC) stacks during operation, the stress field in the stack must be known. During operation the stress field will depend on time as creep processes relax stresses. This work reports further details on a newly discovered creep phenomenon......, accelerated creep, taking place during the reduction of a Ni-YSZ anode. This relaxes stresses at a much higher rate (~×104) than creep during operation. Thus, the phenomenon of accelerated creep during reduction has to be considered both in the production of stacks and in the analysis of the stress field...... of reduction should decrease significantly over minutes. In this work these internal stresses are measured in-situ before and after the reduction by use of X-ray diffraction. This is done by determining the elastic micro-strains (correlating to the stresses), which are assessed from the widening of the Bragg...

  11. STUDY TO COMPARE THE EFFECTIVENESS OF STATIC STRETCH AND HOLD RELAX TECHNIQUE OVER HAMSTRING FLEXIBILITY

    Directory of Open Access Journals (Sweden)

    Shanthi C

    2014-10-01

    Full Text Available Background: Numerous studies have documented on flexibility of muscles. Flexibility is defined as the ability of the muscles to lengthen allowing one joint or more than one joint in a series to move through a range of motion .Flexibility allows tissue to accommodate more easily to stress thus minimizing or preventing muscle injury. But this study sought to identify the study to compare the effectiveness of Static stretch and Hold relax technique over the hamstring flexibility. Methods: 30 healthy male adults with Hamstring tightness aged 21 to 35 years selected from general population through simple randomized technique. Samples are divided into two groups, static stretch Group-I(no.15 and Group-II Hold relax (no.=15.The outcome was measured with help of sit & reach test to see the Hamstring flexibility. Results: Comparison of the post test values of the group I and group II shows a significant difference between the outcomes of two groups with a “t” calculated value of 0.738 (unpaired “t” test. Conclusion: Both static stretch and hold relax Technique can cause very highly significant result in Hamstring Flexibility, further comparison shows very high significant difference between two groups and concludes that hold relax is better than static stretch in Hamstring Flexibility.

  12. Fetal response to abbreviated relaxation techniques. A randomized controlled study.

    Science.gov (United States)

    Fink, Nadine S; Urech, Corinne; Isabel, Fornaro; Meyer, Andrea; Hoesli, Irène; Bitzer, Johannes; Alder, Judith

    2011-02-01

    stress during pregnancy can have adverse effects on the course of pregnancy and on fetal development. There are few studies investigating the outcome of stress reduction interventions on maternal well-being and obstetric outcome. this study aims (1) to obtain fetal behavioral states (quiet/active sleep, quiet/active wakefulness), (2) to investigate the effects of maternal relaxation on fetal behavior as well as on uterine activity, and (3) to investigate maternal physiological and endocrine parameters as potential underlying mechanisms for maternal-fetal relaxation-transferral. the behavior of 33 fetuses was analyzed during laboratory relaxation/quiet rest (control group, CG) and controlled for baseline fetal behavior. Potential associations between relaxation/quiet rest and fetal behavior (fetal heart rate (FHR), FHR variation, FHR acceleration, and body movements) and uterine activity were studied, using a computerized cardiotocogram (CTG) system. Maternal heart rate, blood pressure, cortisol, and norepinephrine were measured. intervention (progressive muscle relaxation, PMR, and guided imagery, GI) showed changes in fetal behavior. The intervention groups had higher long-term variation during and after relaxation compared to the CG (p=.039). CG fetuses had more FHR acceleration, especially during and after quiet rest (p=.027). Women in the PMR group had significantly more uterine activity than women in the GI group (p=.011) and than CG women. Maternal heart rate, blood pressure, and stress hormones were not associated with fetal behavior. this study indicates that the fetus might participate in maternal relaxation and suggests that GI is superior to PMR. This could especially be true for women who tend to direct their attention to body sensations such as abdominal activity. 2010 Elsevier Ltd. All rights reserved.

  13. The Effect of Progressive Muscle Relaxation on The Occupational Stress of Nurses in Critical Care Units

    Directory of Open Access Journals (Sweden)

    Pegah Matourypour

    2012-10-01

    Full Text Available Background and objective: In the nursing profession, there are numerous factors which altogether cause occupational stress and as a result occupational exhaustion in nurses and decrease the quality of patient care. Regarding the importance of this issue which influences the health indices of the society, this study investigates the effect of progressive muscle relaxation on the occupational stress of nurses.Materials and Methods: This semi-experimental and before-after study was conducted using progressive muscle relaxation intervention on 33 nurses in special treatment (ICU and CCU and emergency units through simple sampling in Yazd in 2012. To assess occupational stress,Toft-Anderson questionnaire was used. The procedure of applying relaxation in a practical way was given to nurses in pamphlets and questionnaires were filled before and two weeks after the intervention. Analysis was done using SPSS.16 software and T-test.Results: The average total score of stress in nurses before and after the intervention was determined as – 28.12±43.74 and 52.12±04.72 respectively and this difference was not statistically significant (39.0>p. However, in the dimensions of nurses’ workload (/0>p 03 and t=2.27 and patients’ suffering and death, these scores were significantly different (0001.0>p and t=3.94.Conclusion: This study showed that applying progressive muscle relaxation technique as a method of emotion-focused coping cannot be effective in the reduction of occupational stress in nurses.

  14. The therapeutic use of the relaxation response in stress-related diseases.

    Science.gov (United States)

    Esch, Tobias; Fricchione, Gregory L; Stefano, George B

    2003-02-01

    The objective of this work was to investigate a possible (therapeutic) connection between the relaxation response (RR) and stress-related diseases. Further, common underlying molecular mechanisms and autoregulatory pathways were examined. For the question of (patho)physiology and significance of RR techniques in the treatment of stress-related diseases, we analyzed peer-reviewed references only. The RR has been shown to be an appropriate and relevant therapeutic tool to counteract several stress-related disease processes and certain health-restrictions, particularly in certain immunological, cardiovascular, and neurodegenerative diseases/mental disorders. Further, common underlying molecular mechanisms may exist that represent a connection between the stress response, pathophysiological findings in stress-related diseases, and physiological changes/autoregulatory pathways described in the RR. Here, constitutive or low-output nitric oxide (NO) production may be involved in a protective or ameliorating context, whereas inducible, high-output NO release may facilitate detrimental disease processes. In mild or early disease states, a high degree of biological and physiological flexibility may still be possible (dynamic balance). Here, the therapeutic use of RR techniques may be considered particularly relevant, and the observable (beneficial) effects may be exerted via activation of constitutive NO pathways. RR techniques, regularly part of professional stress management or mind/body medical settings, represent an important tool to be added to therapeutic strategies dealing with stress-related diseases. Moreover, as part of 'healthy' life-style modifications, they may serve primary (or secondary) prevention. Further studies are necessary to elucidate the complex physiology underlying the RR and its impact upon stress-related disease states.

  15. Theoretical methods for creep and stress relaxation studies of SSC coil

    International Nuclear Information System (INIS)

    McAdams, J.; Markley, F.

    1992-04-01

    Extrapolation of laboratory measurements of SSC coil properties to the actual construction of SSC magnets requires mathematical models of the experimental data. A variety of models were used to approximate the data collected from creep and stress relaxation experiments performed on Kapton film and SSC coil samples. The coefficients for these mathematical models were found by performing a least-squares fit via the program MINUIT. Once the semiempirical expressions for the creep data were found, they were converted to expressions for stress relaxation using an approximate I pn of the Laplace integral relating the two processes. The data sets from creep experiments were also converted directly to stress relaxation data by numeric integration. Both of these methods allow comparison of data from two different methods of measuring viscoelastic properties. Three companion papers presented at this conference will present: Stress relaxation in SSC 50mm dipole coil. Measurement of the elastic modulus of Kapton perpendicular to the plane of the film at room and cryogenic temperatures. Temperature dependence of the viscoelastic properties of SSC coil insulation (Kapton)

  16. Stress relaxation of shear in metals during shock loading

    International Nuclear Information System (INIS)

    Glazyrin, V.P.; Platova, T.M.

    1988-01-01

    Constructed determining equation, taking into account stress relaxation of shear, was used to calculate the evolution of plane shock waves of primary and secondary compression in metals. Values of shear stress and viscosity coefficient were

  17. Influence of pudendal nerve blockade on stress relaxation in the female urethra

    DEFF Research Database (Denmark)

    Thind, P; Bagi, P; Mieszczak, C

    1996-01-01

    The urethral pressure decay following a sudden and sustained dilatation corresponds to stress relaxation. Urethral stress relaxation can be described by the equation Pt = Pequ + P alpha e-t/tau alpha + P beta e-t/tau beta, where Pt is the pressure at time t, Pequ is the equilibrium pressure after...... dilatation, P alpha and P beta are pressure decay, and tau alpha and tau beta are time constants. The time constants have previously proved independent of the way the dilatation is performed. The urethral stress relaxation obtained in 10 healthy women before and after pudendal nerve blockade was analysed...... by the mathematical model and the pressure parameters and time constants determined. The fast time constant, tau beta, was reduced by the nerve blockade, whereas tau alpha was unaffected, however, both P alpha and P beta were reduced. No single stress relaxation parameter can therefore be related to the muscle...

  18. Holographic grating relaxation technique for soft matter science

    Energy Technology Data Exchange (ETDEWEB)

    Lesnichii, Vasilii, E-mail: vasilii.lesnichii@physchem.uni-freiburg.de [Institute of Physical Chemistry, Albertstraße 21, Institute of Macromolecular Chemistry, Stefan-Meier-Str. 31, Albert-Ludwigs Universität, Freiburg im Breisgau 79104 (Germany); ITMO University, Kronverksky prospekt 49, Saint-Petersburg 197101 (Russian Federation); Kiessling, Andy [Institute of Physical Chemistry, Albertstraße 21, Institute of Macromolecular Chemistry, Stefan-Meier-Str. 31, Albert-Ludwigs Universität, Freiburg im Breisgau 79104 (Germany); Current address: Illinois Institute of Technology, 10 West 33rd Street, Chicago,IL60616 (United States); Bartsch, Eckhard [Institute of Physical Chemistry, Albertstraße 21, Institute of Macromolecular Chemistry, Stefan-Meier-Str. 31, Albert-Ludwigs Universität, Freiburg im Breisgau 79104 (Germany); Veniaminov, Andrey, E-mail: veniaminov@phoi.ifmo.ru [ITMO University, Kronverksky prospekt 49, Saint-Petersburg 197101 (Russian Federation)

    2016-06-17

    The holographic grating relaxation technique also known as forced Rayleigh scattering consists basically in writing a holographic grating in the specimen of interest and monitoring its diffraction efficiency as a function of time, from which valuable information on mass or heat transfer and photoinduced transformations can be extracted. In a more detailed view, the shape of the relaxation curve and the relaxation rate as a function of the grating period were found to be affected by the architecture of diffusing species (molecular probes) that constitute the grating, as well as that of the environment they diffuse in, thus making it possible to access and study spatial heterogeneity of materials and different modes of e.g., polymer motion. Minimum displacements and spatial domains approachable by the technique are in nanometer range, well below spatial periods of holographic gratings. In the present paper, several cases of holographic relaxation in heterogeneous media and complex motions are exemplified. Nano- to micro-structures or inhomogeneities comparable in spatial scale with holographic gratings manifest themselves in relaxation experiments via non-exponential decay (stepwise or stretched), spatial-period-dependent apparent diffusion coefficient, or unusual dependence of diffusion coefficient on molecular volume of diffusing probes.

  19. Dynamics of the α-relaxation in glass-forming polymers. Study by neutron scattering and relaxation techniques

    Science.gov (United States)

    Colmenero, J.

    1993-12-01

    The dynamics of the α-relaxation in three different polymeric systems, poly(vinyl methyl ether) (PVME), poly(vinyl chloride) (PVC) and poly(bisphenol A, 2-hydroxypropylether) (PH) has been studied by means of relaxation techniques and quasielastic neutron scattering (backscattering spectrometers IN10 and IN13 at the ILL-Grenoble). By using these techniques we have covered a wide time scale ranging from mesoscopic to macroscopic times (10 -10 -10 1 s). For analyzing the experimental data we have developed a phenomenological procedure in the frequency domain based on the Havriliak-Negami relaxation function, which in fact implies a Kohlrausch-Williams-Watts relaxation function in the time domain. The results obtained indicate that the dynamics of the α-relaxation in a wide time scale shows a clear non-Debye behaviour. The shape of the relaxation functions is found to be similar for the different techniques used and independent of temperature and momentum transfer ( Q). Moreover, the characteristic relaxation times deduced from the fitting of the experimental data can also be described using only one Vogel-Fulcher functional form. Besides we found that the Q-dependence of the relaxation times obtained by QENS is given by a power law, τ( Q) ∞ Q- n ( n>2), n being dependent on the system, and that the Q-behaviour and the non-Debye behaviour are directly correlated. In the case of PVC, time of flight (TOF) neutron scattering experiments confirm these results in a shorter time scale (2×10 -11 -2× 10 -12 s). Moreover, TOF results also suggest the possibility of interpreting the “fast process” usually detected in glass-forming systems as a Debye-like short regime of the α-relaxation.

  20. Stress relaxation at a gelatin hydrogel-glass interface in direct shear sliding

    Science.gov (United States)

    Gupta, Vinit; Singh, Arun K.

    2018-01-01

    In this paper, we study experimentally the stress relaxation behavior of soft solids such as gelatin hydrogels on a smooth glass surface in direct shear sliding. It is observed experimentally that irrespective of pulling velocity, the sliding block relaxes to the same level of nonzero residual stress. However, residual stress increases with increasing gelatin concentration in the hydrogels. We have also validated a friction model for strong bond formation during steady relaxation in light of the experimental observations. Our theoretical analysis establishes that population of dangling chains at the sliding interface significantly affects the relaxation process. As a result, residual stress increases with increasing gelatin concentration or decreasing mesh size of the three-dimensional structures in the hydrogels. It is also found that the transition time, at which a weak bond converts to strong bond, increases with increasing mesh size of the hydrogels. Moreover, relaxation time constant of a strong bond decreases with increasing mesh size. However, activation length of a strong bond increases with mesh size. Finally, this study signifies the role of residual strength in frictional shear sliding and it is believed that these results should be useful to understand the role of residual stress in stick-slip instability.

  1. Relaxation and guided imagery do not reduce stress, pain and unpleasantness for 11- to 12-year-old girls during vaccinations.

    Science.gov (United States)

    Nilsson, Stefan; Forsner, Maria; Finnström, Berit; Mörelius, Evalotte

    2015-07-01

    Relaxation and guided imagery is a distraction technique known to reduce discomfort during paediatric medical procedures. We examined whether its use decreased the stress experienced by 11- to 12-year-old girls receiving the human papilloma virus vaccination, as well as the intensity and unpleasantness of any pain. A randomised crossover trial was conducted with 37 girls. During the first vaccination, each girl was randomised to receive either relaxation and guided imagery or standard care. They then received the other form of care during the second vaccination. Salivary cortisol was measured before each vaccination, and 30 minutes after it was administered. The girls reported pain intensity and pain unpleasantness before and directly after each vaccination and stress after each vaccination. On a group level, relaxation and guided imagery did not decrease cortisol levels, self-reported stress, pain intensity and pain unpleasantness. Salivary cortisol levels decreased significantly in both groups during the second vaccination. Relaxation and guided imagery did not prove beneficial during the vaccination of 11- to 12-year-old girls and is not recommended as a regular nursing intervention. However, further research is needed into effective techniques to help children who experience pain unpleasantness in connection with needle procedures. ©2015 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  2. Effect of heat treatment on bend stress relaxation of pure tungsten

    International Nuclear Information System (INIS)

    Sasaki, Kenta; Nogami, Shuhei; Fukuda, Makoto; Katakai, Yasuyuki; Hasegawa, Akira

    2013-01-01

    Highlights: • Bend stress relaxation test was performed on the pure tungsten after heat treatment for stress relief. • The BSR ratio of the heat treated specimen was larger than that of the as-received specimen at this temperature region. • Small reduction in the BSR ratio was observed at the temperatures of 500–800 °C. • The BSR ratio of the heat treated specimen decreased significantly at the temperatures of 900–1000 °C. • The BSR ratio decreased significantly in a short time below 0.1 h, and then decreased slowly. -- Abstract: Bend stress relaxation (BSR) tests at temperatures of 500, 600, 800, 900 and 1000 °C for 0.1, 0.5 and 1 h in vacuum were performed on the pure tungsten after heat treatment for stress relief at 900 °C for 1 h. The degree of stress relaxation increased with test temperature. The BSR ratio of the heat treated specimen was larger than that of the as-received specimen at this temperature region. Small reduction in the BSR ratio was observed at the temperatures of 500, 600 and 800 °C. The BSR ratio of the heat treated specimen decreased significantly at the temperatures of 900 and 1000 °C and it was close to that of the as-received specimen. The BSR ratio of the heat treated specimen and the as-received specimen exhibited similar trend of time-evolution. The stress was exponentially relaxed with increasing test time. The BSR ratio decreased significantly in a short time below 0.1 h, and then decreased slowly. Higher activation energy of stress relaxation evaluated by cross-cut method was obtained for the higher temperature

  3. Stress Relaxation Of Superelastic Shape Memory Alloy Under Bending And Torsional Load

    Directory of Open Access Journals (Sweden)

    Sakib Tanvir

    2017-04-01

    Full Text Available Stress Relaxation of Superelastic Shape memory NiTi Alloy under bending and torsion is uncommon in literature. Therefore experimental set up has been devised and test results are obtained for superelastic SMA.Unlike the other common engineering materials superelastic SMA it gives dramatic reduction in stress. In this paper therefore results of stress relaxation of superelastic shape memory alloy under bending and torsion are presented graphically and interpreted in terms of stress induced martensitic transformation.

  4. Stress-relaxation behavior of lignocellulosic high-density polyethlene composites

    Science.gov (United States)

    Babak Mirzaei; Mehdi Tajvidi; Robert H. Falk; Colin Felton

    2011-01-01

    In this study, stress-relaxation performance of HDPE-based injection-molded composites containing four types of natural fibers (i.e., wood flour, rice hulls, newsprint, and kenaf fiber) at 25 and 50 wt% contents, and the effect of prescribed strain levels were investigated. The results indicated that incorporating more filler causes lower relaxation values and rates,...

  5. Effect of extender oils on the stress relaxation behavior of thermoplastic vulcanizates

    Directory of Open Access Journals (Sweden)

    2008-11-01

    Full Text Available The long term mechanical behavior of oil extended thermoplastic vulcanizates (TPV based on polypropylene (PP and acrylonitrile-butadiene rubber (NBR has been characterized by means of stress relaxation experiments. The morphology of TPV and the phase specific oil distribution which depend on the content and type of oil as well as on the mixing regime have been characterized by means of Atomic Force Microscopy (AFM, Dynamic Mechanical Thermal Analysis (DMTA and Differential Scanning Calorimetrie (DSC. The discussion of the stress relaxation behavior was carried out using the two-component model, which allows splitting the initial stress into two components: a thermal activated stress component and an athermal one. A master curve was created by shifting the relaxation curves vertically and horizontally towards the reference curve. The vertical shift factor bT is a function of the temperature dependence of the athermal stress components. It was found that the oil distribution strongly affects the athermal stress component which is related to the contribution of the structural changes, e.g. crystallinity of the PP phase and the average molecular weight between the crosslinks of the NBR phase. From the temperature dependence of the horizontal shift factor aT the main viscoelastic relaxation process was determined as the α-relaxation process of the crystalline PP phase. It is not dependent on the polarity and content of the oil as well as the mixing regime.

  6. Dynamic stress relaxation due to cyclic variation of strain at elevated temperature

    International Nuclear Information System (INIS)

    Suzuki, F.

    1975-01-01

    The relaxation of stress which occurs when low amplitude alternating strains are superimposed on constant mean total strains is studied in this paper. Experiments were carried out on a 0.16 per cent carbon steel and an AISI 347 stainless steel at 450 0 C and 650 0 C respectively in which the decrease of axial mean stress was measured as a function of time. When even a low amplitude alternating strain was applied, the rate of stress relaxation was observed to increase. Analytical predictions based on creep and static relaxation data show fairly good agreement with experiments in the period corresponding to transient creep. (author)

  7. Ion irradiation-induced stress relaxation in thin films and multilayers deposited using energetic PVD techniques

    International Nuclear Information System (INIS)

    Abadias, Gregory; Michel, Anny; Debelle, Aurelien; Jaouen, Christiane; Djemia Philippe

    2009-01-01

    The aim of the present work is to understand the stress build-up during energetic PVD film growth and the stress relaxation during subsequent ion irradiation at low dose (typically in the range 0.1-1.0 displacement per atom). Monolithic Mo thin films and Mo/Ni multilayers were grown using Dual Ion Beam Sputtering and Magnetron Sputtering at room temperature. Due to the high energy of incoming species (sputtered atoms, backscattered Ar), growth defects of interstitial-type are created during growth. The defect density can reach up to 1.4 % (far from equilibrium) in these Mo refractory layers. These defects act as misfitting particles, inducing a hydrostatic stress component and an associated in-plane compressive stress component. However, after Ar ion irradiation at low dose (∼0.2 dpa), most of the stress is relieved, showing that the growth induced defects are highly unstable. For Ni layers, the compressive stress is much lower due to the higher bulk atom mobility in this metal, making annihilation of defects more effective. An intermixing occurring mainly at the Mo/Ni interfaces is revealed from a complete strain-stress analysis using X-ray Diffraction. The magnitude of this interfacial alloying is found to increase with the energetics of the PVD process and is at the origin of the huge softening of the C 4 4 elastic constant, as measured using Brillouin light scattering. (authors)

  8. The effects of progressive muscular relaxation as a nursing procedure used for those who suffer from stress due to multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Paolla Gabrielle Nascimento Novais

    Full Text Available ABSTRACT Objective: to evaluate the effect of progressive muscle relaxation as a nursing procedure on the levels of stress for sufferers of multiple sclerosis. Method: random clinical trials conducted at the Neurology outpatients unit at a University Hospital. The sample consisted of 40 patients who were being monitored as outpatients (20 in a control group and 20 in an experimental group. The Progressive Muscle Relaxation technique was used. The control variables were collected through interviews that were recorded on forms and on the Perceived Stress Scale that we used. Five meetings were held every fortnight covering a period of eight weeks. The experimental group was advised to carry out daily progressive muscle relaxation activities. After eight weeks of these activities, they were evaluated again to measure their levels of stress. In order to analyze the data used, the software package Statistics for Social Sciences version 19.0 was used. Results: the application of the t test showed a significant reduction in the Perceived Stress Scale scores in the experimental group (p<0.001, which in turn proved that there was a reduction in the levels of stress after the application of the relaxation practic-es. Conclusion: the progressive muscle relaxation activities contributed to the reduction in stress levels for multiple sclerosis suffers and thus can be used in nursing for patients. Clinical Trials Identifier: NCT 02673827.

  9. The effect of progressive muscle relaxation and guided imagery on stress, anxiety, and depression of pregnant women referred to health centers

    Directory of Open Access Journals (Sweden)

    Saeideh Nasiri

    2018-01-01

    Conclusions: In this study, relaxation could reduce stress, anxiety, and depression in pregnant women during six sessions. Due to the simplicity and low cost of this technique, it can be used to reduce stress and anxiety in pregnant women and improve pregnancy outcomes.

  10. Composite Analysis of Concrete - Creep, Relaxation and Eigenstrain/stress

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1996-01-01

    approach.The model is successfully justified comparing predicted results with recent experimental data obtained in tests made at the Danish Technological Institute and at the Technical University of Denmark on creep, relaxation, and shrinkage of very young concretes (hours) - and also with experimental...... results on creep, shrinkage, and internal stresses caused by drying shrinkage reported in the literature on the mechanical behavior of mature concretes.Shrinkage (autogeneous or drying) of mortar and concrete and associated internal stress states are examples of analysis made in this report......A composite-rheological model of concrete is presented by which consistent predictions of creep, relaxation, and internal stresses can be made from known concrete composition, age at loading, and climatic conditions. No other existing "creep prediction method" offers these possibilities in one...

  11. Transformation-Induced Relaxation and Stress Recovery of TiNi Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Kohei Takeda

    2014-03-01

    Full Text Available The transformation-induced stress relaxation and stress recovery of TiNi shape memory alloy (SMA in stress-controlled subloop loading were investigated based on the local variation in temperature and transformation band on the surface of the tape in the tension test. The results obtained are summarized as follows. (1 In the loading process, temperature increases due to the exothermic martensitic transformation (MT until the holding strain and thereafter temperature decreases while holding the strain constant, resulting in stress relaxation due to the MT; (2 In the unloading process, temperature decreases due to the endothermic reverse transformation until the holding strain and thereafter temperature increases while holding the strain constant, resulting in stress recovery due to the reverse transformation; (3 Stress varies markedly in the initial stage followed by gradual change while holding the strain constant; (4 If the stress rate is high until the holding strain in the loading and unloading processes, both stress relaxation and stress recovery are large; (5 It is important to take into account this behavior in the design of SMA elements, since the force of SMA elements varies even if the atmospheric temperature is kept constant.

  12. Relaxation of Shot-Peened Residual Stresses Under Creep Loading (Preprint)

    Science.gov (United States)

    2008-10-01

    Residual Stresses,” SAE Technical Paper No. 710285, SAE , 1971. [8] Hoffman, J., Scholtes, B., Vöhringer, O., and Macherauch, E., “Thermal relaxation of...relaxation in an AISI 4140 steel due to quasistatic and cyclic loading at higher temperatures,” Material Science and Engineering A248, 1998, pp. 9

  13. Fatigue life estimation of welded components considering welding residual stress relaxation and its mean stress effect

    International Nuclear Information System (INIS)

    Han, Seung Ho; Han, Jeong Woo; Shin, Byung Chun; Kim, Jae Hoon

    2003-01-01

    The fatigue life of welded joints is sensitive to welding residual stress and complexity of their geometric shapes. To predict the fatigue life more reasonably, the effects of welding residual stress and its relaxation on their fatigue strengths should be considered quantitatively, which are often regarded to be equivalent to the effects of mean stresses by external loads. The hot-spot stress concept should be also adopted which can reduce the dependence of fatigue strengths for various welding details. Considering the factors mentioned above, a fatigue life prediction model using the modified Goodman's diagram was proposed. In this model, an equivalent stress was introduced which is composed of the mean stress based on the hot-spot stress concept and the relaxed welding residual stress. From the verification of the proposed model to real welding details, it is proved that this model can be applied to predict reasonably their fatigue lives

  14. Occupational stress, relaxation therapies, exercise and biofeedback.

    Science.gov (United States)

    Stein, Franklin

    2001-01-01

    Occupational stress is a widespread occurrence in the United States. It is a contributing factor to absenteeism, disease, injury and lowered productivity. In general stress management programs in the work place that include relaxation therapies, exercise, and biofeedback have been shown to reduce the physiological symptoms such as hypertension, and increase job satisfaction and job performance. Strategies to implement a successful stress management program include incorporating the coping activities into one's daily schedule, monitoring one's symptoms and stressors, and being realistic in setting up a schedule that is relevant and attainable. A short form of meditation, daily exercise program and the use of heart rate or thermal biofeedback can be helpful to a worker experiencing occupational stress.

  15. Combining walking and relaxation for stress reduction-A randomized cross-over trial in healthy adults.

    Science.gov (United States)

    Matzer, Franziska; Nagele, Eva; Lerch, Nikolaus; Vajda, Christian; Fazekas, Christian

    2018-04-01

    Both physical activity and relaxation have stress-relieving potential. This study investigates their combined impact on the relaxation response while considering participants' initial stress level. In a randomized cross-over trial, 81 healthy adults completed 4 types of short-term interventions for stress reduction, each lasting for 1 hr: (1) physical activity (walking) combined with resting, (2) walking combined with balneotherapy, (3) combined resting and balneotherapy, and (4) resting only. Saliva cortisol, blood pressure, state of mood, and relaxation were measured preintervention and postintervention. Stress levels were determined by validated questionnaires. All interventions were associated with relaxation responses in the variables saliva cortisol, blood pressure, state of mood, and subjective relaxation. No significant differences were found regarding the reduction of salivary cortisol (F = 1.30; p = .281). The systolic blood pressure was reduced best when walking was combined with balneotherapy or resting (F = 7.34; p stress levels (n = 25) felt more alert after interventions including balneotherapy, whereas they reported an increase of tiredness when walking was combined with resting (F = 3.20; p = .044). Results suggest that combining physical activity and relaxation (resting or balneotherapy) is an advantageous short-term strategy for stress reduction as systolic blood pressure is reduced best while similar levels of relaxation can be obtained. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Stress relaxation in 'aged high-purity aluminium at room temperature

    International Nuclear Information System (INIS)

    Butt, M.Z.; Haq, I.U.

    1993-01-01

    Stress relaxation in 99.996% Al polycrystals of average grain diameter 0.30, 0.42 and 0.51 mm, annealed at 500 deg. C and 'aged' for six months at room temperature, have been studied as a function of initial stress level from which relaxation at constant strain was allowed to start. The results obtained were compared with those for 'un-aged' Al specimens of the same purity and grain size. The intrinsic height of the thermally activable energy barrier (1.6 eV) evaluated for 'aged' Al is comparable with that (1.9 eV) for 'un-aged' Al, and is of the order of magnitude for recovery processes. In 'aged' specimens, the relaxation rate at a given stress level is larger and associated activation volume is smaller than that in 'un-aged' specimens. This is probably due to the diffusion of vacancies and/or residual impurity atoms to the cores to edge dislocations in 'aged' specimens; the length of dislocation segment involved in unit activation process therefore gets shortened compared with that in 'un-aged' specimens. (author)

  17. Blue lighting accelerates post-stress relaxation: Results of a preliminary study.

    Science.gov (United States)

    Minguillon, Jesus; Lopez-Gordo, Miguel Angel; Renedo-Criado, Diego A; Sanchez-Carrion, Maria Jose; Pelayo, Francisco

    2017-01-01

    Several authors have studied the influence of light on both human physiology and emotions. Blue light has been proved to reduce sleepiness by suppression of melatonin secretion and it is also present in many emotion-related studies. Most of these have a common lack of objective methodology since results and conclusions are based on subjective perception of emotions. The aim of this work was the objective assessment of the effect of blue lighting in post-stress relaxation, in comparison with white lighting, by means of bio-signals and standardized procedures. We conducted a study in which twelve healthy volunteers were stressed and then performed a relaxation session within a chromotherapy room with blue (test group) or white (control group) lighting. We conclude that the blue lighting accelerates the relaxation process after stress in comparison with conventional white lighting. The relaxation time decreased by approximately three-fold (1.1 vs. 3.5 minutes). We also observed a convergence time (3.5-5 minutes) after which the advantage of blue lighting disappeared. This supports the relationship between color of light and stress, and the observations reported in previous works. These findings could be useful in clinical and educational environments, as well as in daily-life context and emerging technologies such as neuromarketing. However, our study must be extended to draw reliable conclusions and solid scientific evidence.

  18. Blue lighting accelerates post-stress relaxation: Results of a preliminary study.

    Directory of Open Access Journals (Sweden)

    Jesus Minguillon

    Full Text Available Several authors have studied the influence of light on both human physiology and emotions. Blue light has been proved to reduce sleepiness by suppression of melatonin secretion and it is also present in many emotion-related studies. Most of these have a common lack of objective methodology since results and conclusions are based on subjective perception of emotions. The aim of this work was the objective assessment of the effect of blue lighting in post-stress relaxation, in comparison with white lighting, by means of bio-signals and standardized procedures. We conducted a study in which twelve healthy volunteers were stressed and then performed a relaxation session within a chromotherapy room with blue (test group or white (control group lighting. We conclude that the blue lighting accelerates the relaxation process after stress in comparison with conventional white lighting. The relaxation time decreased by approximately three-fold (1.1 vs. 3.5 minutes. We also observed a convergence time (3.5-5 minutes after which the advantage of blue lighting disappeared. This supports the relationship between color of light and stress, and the observations reported in previous works. These findings could be useful in clinical and educational environments, as well as in daily-life context and emerging technologies such as neuromarketing. However, our study must be extended to draw reliable conclusions and solid scientific evidence.

  19. Effects of the aging temperature and stress relaxation conditions on γ′ precipitation in Inconel X-750

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jeong Won [Department of Materials Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Research and Development Center, KOS Limited, Yangsan 626-230 (Korea, Republic of); Seong, Baek Seok [Neutron Science Division, HANARO Center, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Jeong, Hi Won [Advanced Metallic Materials Division, Korea Institute of Materials Science, Changwon 642-831 (Korea, Republic of); Choi, Yoon Suk [Department of Materials Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Kang, Namhyun, E-mail: nhkang@pusan.ac.kr [Department of Materials Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2015-02-15

    Highlights: • Stress relaxation after aging 620 °C increased carbides and maintained γ′ fraction. • Aging temperature increase to 732 °C raised the γ′ increment after stress relaxation. • Small increase of carbides induced the large increase of γ′ after stress relaxation. • Loading for stress relaxation raised γ′ increment due to dislocation multiplication. - Abstract: Inconel X-750 is a Ni-based precipitation-hardened superalloy typically used in springs designed for high-temperature applications such as the hold-down springs in nuclear power plants. γ′ is a major precipitate in X-750 alloys which affects the strength, creep resistance, and stress relaxation properties of the spring. In this study, a solution-treated X-750 wire coiled into a spring was used that was aged at various temperatures and submitted to stress relaxation tests with and without loading. Small angle neutron scattering was employed to quantify the size and volume fraction of γ′ phase in the springs as a function of the aging temperature and the application of a load during stress relaxation. The volume fraction of γ′ precipitates increased in the specimen aged at 732 °C following stress relaxation at 500 °C for 300 h. However, the mean size of the precipitates in the samples was not affected by stress relaxation. The specimen aged at the lower temperature (620 °C) contained a smaller γ′ volume fraction and gained a smaller fraction of γ′ during stress relaxation compared with the sample aged at the higher temperature (732 °C). The smaller increase in the γ′ volume fraction for the sample aged at 620 °C was associated with a larger increase in the M{sub 23}C{sub 6} secondary carbide content during relaxation. The Cr depletion zone around the secondary carbides raises the solubility of γ′ thereby decreasing the volume fraction of γ′ precipitates in Inconel X-750. In terms of stress relaxation, a larger increase in the γ′ volume fraction was

  20. Fatigue life evaluation based on welding residual stress relaxation and notch strain approach for cruciform welded joint

    International Nuclear Information System (INIS)

    Han, Jeong Woo; Han, Seung Ho; Shin, Byung Chun; Kim, Jae Hoon

    2003-01-01

    The fatigue strength of welded joint is influenced by the welding residual stress which is relaxed depending on local stress distributed in vicinity of stress raisers, eg. under cut, overlap and blow hole. To evaluate its fatigue life the geometry of the stress raisers and the welding residual stress should be taken into account. The several methods based on notch strain approach have been proposed in order to consider the two factors above mentioned. These methods, however, have shown considerable differences between analytical and experimental results. It is due to the fact that the amount of the relaxed welding residual stress evaluated by the cyclic stress-strain relationship do not correspond with that occurred in reality. In this paper the residual stress relaxation model based on experimental results was used in order to reduce the discrepancy of the estimated amount of the relaxed welding residual stress. Under an assumption of the superimposition of the relaxed welding residual stress and the local stress, a modified notch strain approach was proposed and verified to the cruciform welded joint

  1. Chemical stress relaxation of ethylene-propylene copolymer rubber by heat and radiation

    International Nuclear Information System (INIS)

    Ito, M.; Okada, S.; Kuriyama, I.

    1980-01-01

    An attempt was made to shorten the evaluation time for the deterioration under various conditions caused by chemical reactions by extending the time-temperature superposition principle for the stress relaxation of rubber. In the case of deterioration by radiation instead of by heat, a time-dose rate reduction is proposed and the master curves obtained for chemical-stress relaxation of rubber. A new method which contains a numerical analysis of stress decay curves is proposed to obtain the rate of crosslinking and scission under irradiation for already crosslinked samples. (author)

  2. Stress relaxation in dilute Al-0.02 at.% Mn alloy under electron irradiation

    International Nuclear Information System (INIS)

    Bystrov, L.N.; Ivanov, L.I.; Pletnev, M.N.; Reznitsky, M.E.

    1984-01-01

    Stress relaxation in cold-worked and annealed (573 K for 2 hours) specimens of the dilute alloy Al-0.02 at.% Mn has been studied experimentally over a range of initial stresses 5 to 80 MPa, both with and without irradiation by 2.1 MeV electrons. Thermoactivation analysis has revealed that relaxation proceeds in two stages with different activation parameters. The deformation rate in the first stage is controlled by diffusion of the impurity (Mn), and in the second stage by the self-diffusion of aluminum. A new method has been proposed for evaluating the internal stresses from experimental data. The effect of radiation-induced diffusion on the kinetics of relaxation is discussed. (author)

  3. Effect of Temper Condition on Stress Relaxation Behavior of an Aluminum Copper Lithium Alloy

    Science.gov (United States)

    Mishra, Sumeet; Beura, Vikrant Kumar; Singh, Amit; Yadava, Manasij; Nayan, Niraj

    2018-04-01

    Deformation behavior of an Al-Cu-Li alloy in different temper conditions (solutionized and T8) is investigated using stress relaxation tests. Fundamental parameters such as the apparent and physical activation volume, strain rate sensitivity, effective stress, and exhaustion rate of mobile dislocation density are determined from single and multiple relaxation tests. It was found that dislocation-dislocation interaction controls the kinetics of plastic deformation in the solutionized sample, whereas dislocation-precipitate interaction is the overriding factor in the presence of T1 precipitates. The apparent activation volume was found to be significantly lower in the presence of T1 precipitates compared with solutionized samples. Strain rate sensitivity and effective stress were found to be higher in the presence of T1 precipitates. In addition, multiple relaxation tests showed that irrespective of microstructural features (solutes, semi-coherent precipitates), the mobile dislocation density reduces during the relaxation period. Further evidence regarding reduction in mobile dislocation density is obtained from uniaxial tensile tests carried out after stress relaxation tests, where both solutionized and T8 samples show an increase in strength. Additional discussion on relaxation strain is included to provide a complete overview regarding the time-dependent deformation behavior of the Al-Cu-Li alloy in different temper conditions.

  4. Relaxation of residual stress in MMC after combined plastic deformation and heat treatment

    International Nuclear Information System (INIS)

    Bruno, G.; Ceretti, M.; Girardin, E.; Giuliani, A.; Manescu, A.

    2004-01-01

    Neutron Diffraction shows that plastic pre-deformation and heat treatments have opposite effects on the residual stress in Al-SiC p composites. The thermal micro residual stress is relaxed or even reversed by pre-strains above 0.2%, but restored by heat treatments. The sense of relaxation changes above 400 deg. C (the mixing temperature)

  5. Creep and inverse stress relaxation behaviors of carbon nanotube yarns.

    Science.gov (United States)

    Misak, H E; Sabelkin, V; Miller, L; Asmatulu, R; Mall, S

    2013-12-01

    Creep, creep recovery and inverse stress relaxation behaviors of carbon nanotube yarns that consisted of 1-, 30-, and 100-yarn(s) were characterized. Primary and secondary creep stages were observed over the duration of 336 h. The primary creep stage lasted for about 4 h at an applied load equal to 75% of the ultimate tensile strength. The total strain in the primary stage was significantly larger in the carbon nanotube multi-yarn than in the carbon nanotube 1-yarn. In the secondary stage, 1-yarn also had a smaller steady state strain rate than the multi-yarn, and it was independent of number of yarns in multi-yarn. Strain response under cyclic creep loading condition was comparable to its counterpart in non-cyclic (i.e., standard) creep test except that strain response during the first cycle was slightly different from the subsequent cycles. Inverse creep (i.e., strain recovery) was observed in the 100-yarn during the cyclic creep tests after the first unloading cycle. Furthermore, inverse stress relaxation of the multi-yarns was characterized. Inverse stress relaxation was larger and for longer duration with the larger number of yarns.

  6. Creep and stress relaxation behavior of two soft denture liners.

    Science.gov (United States)

    Salloum, Alaa'a M

    2014-03-01

    Numerous investigators stated the indications of soft denture lining materials; but no one determined the indications of these materials according to their chemical structure. The purpose of this investigation was to evaluate the viscoelastic properties of acrylic and silicon lining materials. This study investigated and compared viscoelastic properties of two resilient denture lining materials. Tested materials were laboratory processed; one of them was silicone-based liner product (Molloplast-B), and the other was plasticized acrylic resin (Vertex™ Soft). Twenty cylindrical specimens (10-20 mm in length, 11.55 mm in diameter) were fabricated in an aluminum mold from each material for creep and stress relaxation testing (the study of viscoelastic properties). Tests were performed by using the universal testing machine DY-34. Collected data were analyzed with t test statistics for statistically significant differences at the 95 % confidence level. There was a clear difference in creep and stress relaxation behavior between acrylic and silicone liners. Statistical study of Young's moduli illustrated that Vertex™ Soft was softer than Molloplast-B. On the other hand, the results explained that the recovery of silicone material was better than of acrylic one. The creep test revealed that the plasticized acrylic resin lining material exhibited considerable creep, whereas silicone-based liner exhibited elastic behavior. Besides, the stress relaxation test showed that relaxation of the plasticized acrylic resin material was bigger than of the silicone-based liner.

  7. Interstitial relaxations due to hydrostatic stress in niobium--oxygen alloys

    International Nuclear Information System (INIS)

    Tewari, S.N.

    1974-01-01

    Experimental investigations of the anelastic relaxation induced by hydrostatic stress in the range from ambient to 81 ksi were made for niobium--oxygen alloys. The anelastic responses, both for the pressurization and the pressure release experiments, were followed by measuring the relative length change between the oxygenated niobium sample and a pure niobium frame with a precision of about 2 A. The relaxation spectrum observed was shown to be made up of three distinct relaxations with unique relaxation times and strengths. The pressure dependence of the relaxation times gave the apparent activation volume for these relaxations of the order of 4 cm 3 /mole. The relaxations were observed to have relaxation strengths of the order of 10 -4 which were found to be independent of pressure up to 81 ksi. The relaxation times for these relaxations were found to occur in the same general temperature range as those for the Snoek relaxations of oxygen clusters in niobium. The temperature dependence of the relaxation times, however, gave activation energies of about 11 to 15 kcal/mole, as compared with roughly 27 to 29 kcal/mole for the Snoek relaxation of oxygen clusters in niobium. Several possible models for these relaxations were developed, however, none could predict the observed temperature dependence. The best interpretation of the data is that due to some anomalous competing relaxation the actual temperature dependence of these relaxations could not be observed. A completely self-consistent analysis is found which is based upon this assumption. (U.S.)

  8. Comparison between the results of stress relaxation - and creep tests in a stainless steel 316 at 8000C

    International Nuclear Information System (INIS)

    Miranda, P.E.V. de.

    1978-07-01

    A sequence of stress relaxation tests from the same initial stress showed an estabilization of the relaxed fraction of stress of a 316 stainless steel at 800 0 C. This represents the exhaustion of the deformation process of the material at this temperature. Results from the relaxation tests were obtained by utilizing a recently proposed model. The slope in from the log epsilon sup(.) x logσ/E curve obtained by relaxation (n = 6,80) closely matched that determined by creep tests (n = 6,50). This presents a possibility of determined by stress relaxation of the parameters usually calculated by creep. (Author) [pt

  9. Stress relaxation damage in K9 glass plate irradiated by 1.06μm CW laser

    International Nuclear Information System (INIS)

    Luo Fu; Sun Chengwei

    2001-01-01

    Based on the stress relaxation model in 1D planar geometry and the visco-elastic constitutive equation, the temperature and stress histories in the K9 glass samples irradiated by CW laser beams (λ = 1.06 μm) have been calculated. The results indicate that the residual tensile stress due to the stress relaxation effect during cooling after the laser radiation may be greater than the tensile fracture strength of samples, while the maximum compression stress during the laser heating is less than the requirement for compression damage. For a K9 glass window of 3 mm thickness, its damage due to the stress relaxation may be induced by a laser radiation of 0.946 MW/cm 2 for 0.2s . Therefore, the stress relaxation should be regarded as the main mechanism of damage in K9 glass windows while a CW laser beam (λ = 1.06 μm) irradiates it with large spot

  10. Plate-wide stress relaxation explains European Palaeocene basin inversions

    DEFF Research Database (Denmark)

    Nielsen, S.B.; Thomsen, Erik; Hansen, D.L.

    2005-01-01

    of the in-plane tectonic stress. The onset of relaxation inversions was plate-wide and simultaneous, and may have been triggered by stress changes caused by elevation of the North Atlantic lithosphere by the Iceland plume or the drop in NS convergence rate between Africa and Europe.......During Late Cretaceous and Cenozoic times many Paleozoic and Mesozoic rifts and basin structures in the interior of the European continent underwent several phases of inversion. The main phases occurred during the Late Cretaceous and Middle Paleocene, and have been explained by pulses...... Paleocene phase was characterized by domal uplift of a wider area with only mild fault movements, and formation of more distal and shallow marginal troughs. A simple flexural model explains how domal, secondary inversion follows inevitably from primary, convergence related inversion upon relaxation...

  11. Complete relaxation of residual stresses during reduction of solid oxide fuel cells

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Chatzichristodoulou, Christodoulos; Hendriksen, Peter Vang

    2015-01-01

    reduce significantly over minutes. In this work the stresses are measured in-situ before and after the reduction by use of XRD. The phenomenon of accelerated creep has to be considered both in the production of stacks and in the analysis of the stress field in a stack based on anode supported SOFCs.......To asses the reliability of solid oxide fuel cell (SOFC) stacks during operation, the stress field in the stack must be known. During operation the stress field will depend on time as creep processes relax stresses. This work reports further details on a newly discovered creep phenomenon......, accelerated creep, taking place during the reduction of the anode. This relaxes stresses at a much higher rate (~×104) than creep during operation. The phenomenon has previously been studied by simultaneous loading and reduction. With the recorded high creep rates, the stresses at the time of reduction should...

  12. Stress relaxation study of water atomized Cu-Cr-Zr powder alloys consolidated by inverse warm extrusion

    International Nuclear Information System (INIS)

    Poblano-Salas, C.A.; Barceinas-Sanchez, J.D.O.

    2009-01-01

    Stress relaxation testing in compression at high temperature was performed on Cu-Cr-Zr alloys produced by consolidation of water atomized powders. Precipitation and recrystallization were monitored during stress relaxation experiments carried out at an ageing temperature of 723 K. Pre-straining imposed to the Cu-Cr-Zr samples prior to stress relaxation testing resulted in reduced hardness compared to that reported for conventionally-aged alloys; it also resulted in shorter times for achieving maximum strengthening on ageing.

  13. Segmental dynamics in polymer melts by relaxation techniques and quasielastic neutron scattering

    Science.gov (United States)

    Colmenero, J.

    1993-01-01

    The dynamics of the segmental α-relaxation in three different polymeric systems, poly(vinyl methy ether) (PVME), poly(vinyl chloride) (PVC) and poly(bisphenol A, 2-hydroxypropylether) (PH) has been studied by means of relaxation techniques and quasielastic neutron scattering (backscattering spectrometers IN10 and IN13 at the ILL-Grenoble). By using these techniques we have covered a wide timescale ranging from mesoscopic to macroscopic times (10-10-101s). For analyzing the experimental data we have developed a phenomenological procedure in the frequency domain based on the Havriliak-Negami relaxation function which in fact implies a Kohlrausch-Williams-Watts relaxation function in the time domain. The results obtained indicate that the dynamics of the α-relaxation in a wide timescale shows a clear non-Debye behaviour. The shape of the relaxation function is found to be similar for the different techniques used and independent of temperature and momentum transfer (Q). Moreover the characteristic relaxation times deduced from the fitting of the experimental data can also be described using only one Vogel-Fulcher functional form. Besides we found that the Q-dependence of the relaxation times obtained by QENS is given by a power law, τ(Q) propto Q-n (n > 2) n being dependent on the system, and that the Q-behaviour and the non-Debye behaviour are directly correlated. We discuss this correlation taking into account several data of the dynamics of the α-relaxation previously reported in the literature. We also outline a possible scenario for explaining this empirical correlation.

  14. Mechanism of laser-induced stress relaxation in cartilage

    Science.gov (United States)

    Sobol, Emil N.; Sviridov, Alexander P.; Omelchenko, Alexander I.; Bagratashvili, Victor N.; Bagratashvili, Nodar V.; Popov, Vladimir K.

    1997-06-01

    The paper presents theoretical and experimental results allowing to discuss and understand the mechanism of stress relaxation and reshaping of cartilage under laser radiation. A carbon dioxide and a Holmium laser was used for treatment of rabbits and human cartilage. We measured temperature, stress, amplitude of oscillation by free and forced vibration, internal friction, and light scattering in the course of laser irradiation. Using experimental data and theoretical modeling of heat and mass transfer in cartilaginous tissue we estimated the values of transformation heat, diffusion coefficients and energy activation for water movement.

  15. X-ray diffraction study of thermal stress relaxation in ZnO films deposited by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Conchon, F. [Institut P' , Universite de Poitiers-Ensma-UPR CNRS 3346, 86962 Futuroscope (France); Renault, P.O., E-mail: pierre.olivier.renault@univ-poitiers.f [Institut P' , Universite de Poitiers-Ensma-UPR CNRS 3346, 86962 Futuroscope (France); Le Bourhis, E.; Krauss, C.; Goudeau, P. [Institut P' , Universite de Poitiers-Ensma-UPR CNRS 3346, 86962 Futuroscope (France); Barthel, E.; Grachev, S. Yu.; Sondergard, E. [Lab. Surface du Verre et Interfaces (SVI), UMR 125, 93303 Aubervilliers (France); Rondeau, V.; Gy, R. [Lab. Recherche de Saint-Gobain (SGR), 93303 Aubervilliers (France); Lazzari, R.; Jupille, J. [Institut des Nanosciences de Paris (INSP), UMR 7588, 75015 Paris (France); Brun, N. [Lab. Physique des Solides (LPS), UMR 8502, 91405 Orsay (France)

    2010-12-30

    X-ray diffraction stress analyses have been performed on two different thin films deposited onto silicon substrate: ZnO and ZnO encapsulated into Si{sub 3}N{sub 4} layers. We showed that both as-deposited ZnO films are in a high compressive stress state. In situ X-ray diffraction measurements inside a furnace revealed a relaxation of the as-grown stresses at temperatures which vary with the atmosphere in the furnace and change with Si{sub 3}N{sub 4} encapsulation. The observations show that Si{sub 3}N{sub 4} films lying on both sides of the ZnO film play an important role in the mechanisms responsible for the stress relaxation during heat treatment. The different temperatures observed for relaxation in ambient and argon atmospheres suggest that the thermally activated stress relaxation may be attributed to a variation of the stoichiometry of the ZnO films. The present observations pave the way to fine tuning of the residual stresses through thermal treatment parameters.

  16. Characteristics of patients with internal diseases who use relaxation techniques as a coping strategy.

    Science.gov (United States)

    Cramer, Holger; Lauche, Romy; Langhorst, Jost; Dobos, Gustav; Paul, Anna

    2013-10-01

    To assess sociodemographic, clinical, and psychological characteristics of patients with internal diseases who use relaxation techniques as a coping strategy. Cross-sectional analysis among patients with internal diseases. Department of Internal and Integrative Medicine at an academic teaching hospital in Germany. Prior use of relaxation techniques (e.g. meditation, autogenic training), perceived benefit, and perceived harm. Potential predictors of relaxation techniques use (sociodemographic characteristics, health behavior, internal medicine diagnosis, general health status, mental health, satisfaction, and health locus of control) were tested using multiple logistic regression analysis. Of 2486 participants, 1075 (43.2%) reported to have used relaxation techniques, 648 (60.3%) reported benefits, and 11 (1.0%) reported harms. Use of relaxation techniques was independently associated with female gender (Odds ratio [OR]=1.43; 95% confidence interval [CI]=1.08-1.89), higher education (OR=1.32; 95%CI=1.03-1.71), fibromyalgia (OR=1.78; 95%CI=1.22-2.61), and internal health locus of control (OR=1.27; 95%CI=1.01-1.60). Use of relaxation techniques was negatively associated with age below 30 (OR=0.32; 95%CI=0.20-0.52) or above 64 (OR=0.65; 95%CI=0.49-0.88), full-time employment (OR=0.75; 95%CI=0.57-0.98), current smoking (OR=0.72; 95%CI=0.54-0.95), osteoarthritis (OR=0.51; 95%CI=0.34-0.77), rheumatic arthritis (OR=0.59; 95%CI=0.37-0.93), good to excellent health status (OR=0.70; 95%CI=0.52-0.96), and high life satisfaction (OR=0.78; 95%CI=0.62-0.98). In a German sample of patients with internal diseases, relaxation techniques were used as a coping strategy by about 43%. Users were more likely to be middle-aged, female, well-educated, diagnosed with fibromyalgia, not smoking, not full-time employed, and not to have a good health status or high life satisfaction. A high internal health locus of control predicted relaxation techniques use. Considering health locus of control

  17. Thermal stress relaxation in magnesium composites during thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Trojanova, Z.; Lukac, P. (Karlova Univ., Prague (Czech Republic)); Kiehn, J.; Kainer, K.U.; Mordike, B.L. (Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany))

    1998-01-01

    It has been shown that the internal friction of Mg - Saffil metal matrix composites can be influenced by thermal stresses, if MMCc are submitted to thermal cycling between room temperature and an upper temperature of cycling. These stresses can be accommodated by generation and motion of dislocations giving the formation of the microplastic zones. The thermal stress relaxation depends on the upper temperature of cycling, the volume fraction of reinforcement and the matrix composition and can result in plastic deformation and strain hardening of the matrix without applied stress. The internal friction measurements can be used for non destructive investigation of processes which influence the mechanical properties. (orig.)

  18. Multiplied effect of heat and radiation in chemical stress relaxation

    International Nuclear Information System (INIS)

    Ito, Masayuki

    1981-01-01

    About the deterioration of rubber due to radiation, useful knowledge can be obtained by the measurement of chemical stress relaxation. As an example, the rubber coating of cables in a reactor containment vessel is estimated to be irradiated by weak radiation at the temperature between 60 and 90 deg C for about 40 years. In such case, it is desirable to establish the method of accelerated test of the deterioration. The author showed previously that the law of time-dose rate conversion holds in the case of radiation. In this study, the chemical stress relaxation to rubber was measured by the simultaneous application of heat and radiation, and it was found that there was the multiplied effect of heat and radiation in the stress relaxation speed. Therefore the factor of multiplication of heat and radiation was proposed to describe quantitatively the degree of the multiplied effect. The chloroprene rubber used was offered by Hitachi Cable Co., Ltd. The experimental method and the results are reported. The multiplication of heat and radiation is not caused by the direct cut of molecular chains by radiation, instead, it is based on the temperature dependence of various reaction rates at which the activated species reached the cut of molecular chains through complex reaction mechanism and the temperature dependence of the diffusion rate of oxygen in rubber. (Kako, I.)

  19. Cardio-respiratory response of young adult Indian male subjects to stress: Effects of progressive muscle relaxation

    Directory of Open Access Journals (Sweden)

    Arunima Chaudhuri

    2014-01-01

    Full Text Available Background: Stress and anxiety have become an integral part of our lives. Of late, this has resulted in the increase in incidence of hypertension and coronary heart disease. Objectives: To assess the effect of progressive muscle relaxation (PMR on young adult males and its role in the modulation of cardio-respiratory response on exposure to stress. Materials and Methods: This prospective cross-sectional study was conducted in a tertiary care referral hospital. Undergraduate male students under stress were chosen for the study. Fasting blood samples were drawn to analyze sugar and lipid profile, followed by anthropometric measurements and ECG. In the resting condition, blood pressure, pulse rate, and spirometric parameters; forced vital capacities (FVC, and forced expiratory volume in 1 sec (FEV 1 % were measured. Then, they were made to exercise with bicycle ergometer and post exercise, the vital parameters were recorded. All subjects were given a training of Jacobson′s Progressive Muscular Relaxation and asked to practice this technique for 3 months. All parameters were re-evaluated. Results: Significant decreases in resting heart rate, systolic blood pressure and diastolic blood pressure, total cholesterol, triglyceride, and low density lipoprotein (LDL cholesterol levels of subjects were seen after PMR training. Exercise-induced rise in heart rate and blood pressure were also significantly less in subjects following PMR training. Conclusion: Progressive muscle relaxation helps in modulation of heart rate, blood pressure, and lipid profile in healthy normal adult male individuals.

  20. An investigation of the residual stress characterization and relaxation in peened friction stir welded aluminum-lithium alloy joints

    International Nuclear Information System (INIS)

    Hatamleh, Omar; Rivero, Iris V.; Swain, Shayla E.

    2009-01-01

    In this investigation the residual stresses generated from friction stir welded (FSW) 2195 aluminum-lithium alloy joints were characterized. The results derived from this research revealed significant levels of tensile residual stresses at the surface and throughout the thickness of the FSW samples. Furthermore, residual stress relaxation at the surface and throughout the thickness of the samples was assessed for laser peened friction stir welded aluminum-lithium joints. To do so the samples were cycled several times at a constant amplitude load. The results indicated that most of the relaxation for the surface residual stresses took place during the first cycle of loading. Also, residual stresses relaxation throughout the thickness of the welded region of unpeened samples significantly exceeded the relaxation exhibited by the laser peened samples.

  1. Modelling anelastic contribution to nuclear fuel cladding creep and stress relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Tulkki, Ville, E-mail: ville.tulkki@vtt.fi; Ikonen, Timo

    2015-10-15

    In fuel behaviour modelling accurate description of the cladding mechanical response is important for both operational and safety considerations. While accuracy is desired, a certain level of simplicity is needed as both computational resources and detailed information on properties of particular cladding may be limited. Most models currently used in the integral codes divide the mechanical response into elastic and viscoplastic contributions. These have difficulties in describing both creep and stress relaxation, and often separate models for the two phenomena are used. In this paper we implement anelastic contribution to the cladding mechanical model, thus enabling consistent modelling of both creep and stress relaxation. We show that the model based on assumption of viscoelastic behaviour can be used to explain several experimental observations in transient situations and compare the model to published set of creep and stress relaxation experiments performed on similar samples. Based on the analysis presented we argue that the inclusion of anelastic contribution to the cladding mechanical models provides a way to improve the simulation of cladding behaviour during operational transients.

  2. Introduction to electronic relaxation in solids: mechanisms and measuring techniques

    International Nuclear Information System (INIS)

    Bonville, P.

    1983-01-01

    The fluctuations of electronic magnetic moments in solids may be investigated by several techniques, either electronic or nuclear. This paper is an introduction of the most frequently encountered paramagnetic relaxation mechanisms (phonons, conduction electrons, exchange or dipolar interactions) in condensed matter, and to the different techniques used for measuring relaxation frequencies: electronic paramagnetic resonance, nuclear magnetic resonance, Moessbauer spectroscopy, inelastic neutron scattering, measurement of longitudinal ac susceptibility and γ-γ perturbed angular correlations. We mainly focus our attention on individual ionic fluctuation spectra, the majority of the experimental work refered to concerning rare earth systems [fr

  3. Stress reactivity to and recovery from a standardised exercise bout: a study of 31 runners practising relaxation techniques.

    Science.gov (United States)

    Solberg, E E; Ingjer, F; Holen, A; Sundgot-Borgen, J; Nilsson, S; Holme, I

    2000-08-01

    To compare the efficacy in runners of two relaxation techniques with regard to exercise reactivity and recovery after exercise. Thirty one adult male runners were studied prospectively for six months in three groups practising either meditation (n = 11) or autogenic training (n = 11) or serving as controls (n = 10). Before and after the six months relaxation intervention, indicators of reactivity to exercise and metabolism after exercise (blood lactate concentration, heart rate (HR), and oxygen consumption (VO2)), were tested immediately after and 10 minutes after exercise. Resting HR was also assessed weekly at home during the trial. State anxiety was measured before and after the intervention. After the relaxation training, blood lactate concentration after exercise was significantly (pmeditation group compared with the control group. No difference was observed in lactate responses between the autogenic training group and the control group. There were no significant differences among the groups with regard to HR, VO2, or levels of anxiety. Meditation training may reduce the lactate response to a standardised exercise bout.

  4. A Comparison of Meditation with Other Relaxation Techniques.

    Science.gov (United States)

    Fling, Sheila

    This paper critiques a negative 1984 review, "Meditation and Somatic Arousal Reduction" (Holmes), on the absolute effectiveness of meditation in reducing somatic arousal and reviews research on the relative effectiveness of meditation compared to techniques such as biofeedback, hypnosis, progressive muscle relaxation, and autogenics in…

  5. Stress relaxation technique of high magnetic field superconducting magnet for the nuclear fusion

    International Nuclear Information System (INIS)

    Kamimoto, Masayuki; Tateishi, Hiroshi; Agatsuma, Ko; Arai, Kazuaki; Umeda, Masaichi

    1999-01-01

    Here were attempted not only to prove effectiveness of a stress self-supporting type wire material for magnet constituting technique, but also to develop a fiber reinforcing type superconducting wire material used by materials with excellent strain resistance to expand usable range of the stress self-supporting type with material. In 1997 fiscal year, superconductive features of the wire material produced by using composite processing method were evaluated, actual applicability for superconducting wire material was inspected, and investigation on manufacturing parameter of NbN thin films on trial production at present apparatus was conducted. (G.K.)

  6. Ion peening and stress relaxation induced by low-energy atom bombardment of covalent solids

    International Nuclear Information System (INIS)

    Koster, Monika; Urbassek, Herbert M.

    2001-01-01

    Using molecular-dynamics simulation, we study the buildup and relaxation of stress induced by low-energy (≤150 eV) atom bombardment of a target material. The effect is brought out most clearly by using an initially compressed specimen. As target material, we employ Si, based on the Tersoff potential. By varying the bond strength in the potential, we can specifically study its effect on damage production and stress changes. We find that in general, stress is relaxed by the atom bombardment; only for low bombarding energies and strong bonds, atom bombardment increases stress. We rationalize this behavior by considering the role of energized atoms and of recoil-implanted target atoms

  7. Inhomogeneous Relaxation of a Molecular Layer on an Insulator due to Compressive Stress

    Science.gov (United States)

    Bocquet, F.; Nony, L.; Mannsfeld, S. C. B.; Oison, V.; Pawlak, R.; Porte, L.; Loppacher, Ch.

    2012-05-01

    We discuss the inhomogeneous stress relaxation of a monolayer of hexahydroxytriphenylene (HHTP) which adopts the rare line-on-line (LOL) coincidence on KCl(001) and forms moiré patterns. The fact that the hexagonal HHTP layer is uniaxially compressed along the LOL makes this system an ideal candidate to discuss the influence of inhomogeneous stress relaxation. Our work is a combination of noncontact atomic force microscopy experiments, density functional theory and potential energy calculations, and a thorough interpretation by means of the Frenkel-Kontorova model. We show that the assumption of a homogeneous molecular layer is not valid for this organic-inorganic heteroepitaxial system since the best calculated energy configuration correlates with the experimental data only if inhomogeneous relaxations of the layer are taken into account.

  8. Effect of deformation history on the stress relaxation behaviour of Colombian Caribbean coastal cheese from goat milk.

    Science.gov (United States)

    Tirado, Diego F; Acevedo, Diofanor; Torres-Gallo, Ramiro

    2018-01-01

    Textural attributes are a manifestation of the rheological properties and physical structure of foods, cheeses among these. In order to describe these physical properties, the objective of this work was to analyse the effect of deformation history on the stress relaxation behaviour of Colombian Caribbean coastal cheese made from goat milk with 3.75% (F1), 4.00% (F2) and 4.25% (F3) fat content, through prediction made by a four-term Prony series based on Chen's model. For this, stress relaxation data and stress relaxation spectra were analysed. Moreover, textural attributes by texture profile analysis were measured. Physicochemical results were similar to those published by other authors, and all samples meet national and international standards. Results from this work showed that Chen's model could be successfully used to describe the effect of deformation history on the stress relaxation behaviour of Colombian Caribbean coastal cheese made from goat milk. F1 had the highest elastic response, with the most significant residual modules ( P 0 ) and relaxation times (τ 1 , τ 2 and τ 3 ). On the other hand, residual modules and relaxation times (τ 1 , τ 2 and τ 3 ) for cheeses F2 and F3 did not present statistically significant differences (p > 0.05). Besides, by interpretation of the stress relaxation spectra, F1 presented the firmest structure (greatest distribution function and relaxation time) which was characterised by the highest elastic behaviour. Finally, according to texture profile analysis test, F1 had the highest hardness, cohesiveness and chewiness, whereas F2 and F3 did not present statistically significant differences (p > 0.05) between them.

  9. Comparing the effects of relaxation technique and inhalation aromatherapy on fatigue in patients undergoing hemodialysis.

    Science.gov (United States)

    Hassanzadeh, Mohammadali; Kiani, Fatemeh; Bouya, Salehoddin; Zarei, Mohammad

    2018-05-01

    This study aimed to compare the effects of relaxation techniques on fatigue in hemodialysis patients. This clinical trial study was conducted on 105 hemodialysis patients. The subjects were categorized into three groups as: relaxation, aromatherapy and control. In the relaxation group, Benson muscle relaxation techniques were employed; in the aromatherapy group, the inhalation of two drops of 5% lavender essential oil used and the control group only received regular healthcare actions. Data collected by using brief fatigue inventory, before and after the intervention. Results of the current study indicated significant differences in the mean of changes in fatigue scores before and after the intervention between the relaxation and aromatherapy groups, but the difference was insignificant in the control group. Aromatherapy with lavender essential oil can decrease the level of fatigue in the patients undergoing hemodialysis compared to Benson relaxation techniques. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Effects of Stress and Relaxation on Central Pain Modulation in Chronic Whiplash and Fibromyalgia Patients Compared to Healthy Controls.

    Science.gov (United States)

    Coppieters, Iris; Cagnie, Barbara; Nijs, Jo; van Oosterwijck, Jessica; Danneels, Lieven; De Pauw, Robby; Meeus, Mira

    2016-03-01

    Compelling evidence has demonstrated that impaired central pain modulation contributes to persistent pain in patients with chronic whiplash associated disorders (WAD) and fibromyalgia (FM). However, there is limited research concerning the influence of stress and relaxation on central pain modulation in patients with chronic WAD and FM. The present study aims to investigate the effects of acute cognitive stress and relaxation on central pain modulation in chronic WAD and FM patients compared to healthy individuals. A randomized crossover design was employed. The present study took place at the University of Brussels, the University Hospital Brussels, and the University of Antwerp. Fifty-nine participants (16 chronic WAD patients, 21 FM, 22 pain-free controls) were enrolled and subjected to various pain measurements. Temporal summation (TS) of pain and conditioned pain modulation (CPM) were evaluated. Subsequently, participants were randomly allocated to either a group that received progressive relaxation therapy or a group that performed a battery of cognitive tests (= cognitive stressor). Afterwards, all pain measurements were repeated. One week later participant groups were switched. A significant difference was found between the groups in the change in TS in response to relaxation (P = 0.008) and cognitive stress (P = 0.003). TS decreased in response to relaxation and cognitive stress in chronic WAD patients and controls. In contrast, TS increased after both interventions in FM patients. CPM efficacy decreased in all 3 groups in response to relaxation (P = 0.002) and cognitive stress (P = 0.001). The obtained results only apply for a single session of muscle relaxation therapy and cognitive stress, whereby no conclusions can be made for effects on pain perception and modulation of chronic cognitive stress and long-term relaxation therapies. A single relaxation session as well as cognitive stress may have negative acute effects on pain modulation in patients with

  11. Stress-relaxation tests in the work-hardening regime of tungsten single crystals below 300 K

    International Nuclear Information System (INIS)

    Brunner, D.

    2008-01-01

    The influence of work hardening on the results of stress-relaxation tests was studied for highly pure tungsten single crystals isothermally deformed at four temperatures of 274, 241, 131, and 78 K. A method accounting for strong work hardening on the determination of the strain-rate sensitivity from stress-relaxation tests is introduced by establishing special diagrams of SR tests denoted as YX diagrams

  12. Stress-relaxation of zirconium and Zircaloy-4 near to 673 K

    International Nuclear Information System (INIS)

    Rubiolo, G.H.

    1989-01-01

    Stress-relaxation data in polycrystalline -zirconium and Zircaloy-4, between 645 K and 695 K, are reported. The study has been performed at different initial conditions of the material: recrystallized, cold-worked 64% by rolling and stress relieved at 813 K, for 1 h in high vacuum. The results are interpreted in terms of a constitutive equation of plastic deformation based on diffusion controlled motion of jogged screw dislocations and cell-formation. The internal stress field, in the recrystallized material, is assumed to be composed of two terms. A component is generated by the cell walls and is stable during a relaxation run. The other one is generated by the impurities segregated to the mobile dislocations and is strain rate dependent. From fitting of the experimental data to the model, it was possible to estimate: a) the activation energy for self-diffusion; b) the binding energy between the impurity and the dislocation; c) the activation energy for the diffusion of the impurity; d) the concentration of jogs and, e) the concentration of impurities in the crystal. The results obtained seem to indicate that oxygen is responsible for dynamic strain-ageing. It is concluded that, in the temperature region where strain-ageing is active, the mobile dislocations will form cell walls with jogs saturated with oxygen. This can inhibit climb and stop the recovery process in the walls. Furthermore, the strain-rate sensitivity parameter, derived from the proposed model, can explain the changes in curvature found on-the stress-relaxation curves between 298 and 723 K. (Author) [es

  13. On the relation between quasi-static and dynamic stress induced reversible structural relaxation of amorphous alloys

    International Nuclear Information System (INIS)

    Krueger, P.; Stucky, T.; Boewe, M.; Neuhaeuser, H.

    1993-01-01

    Quasi-static stress relaxation and dynamic internal friction measurements of stress induced reversible structural relaxation were performed on the amorphous alloy Fe 40 Ni 40 B 20 . The kinetics can be well described by a stretched exponential Kohlrausch-Williams-Watts quasi-static relaxation. The thermally activated part of the internal friction shows an Arrhenius temperature behaviour for a fixed vibration frequency and an inverse power frequency behaviour for a fixed temperature. The activation energies calculated from the Arrhenius equation and from the frequency shift method are significantly different. In order to explain this discrepancy the relation between the quasi-static and the dynamic descriptions of the reversible relaxation is reexamined. In particular it is shown that these two activation energies are connected by the Kohlrausch exponent of the quasi-static relaxation. (orig.)

  14. Unaxial stress relaxation and creep behaviour in weldments of the pressure vessel steel A533B between 600 and 640 degree C

    International Nuclear Information System (INIS)

    Otterberg, R.

    1979-10-01

    In order to predict the stress reduction during stress relief heat treatment in welded joints of the pressure vessel steel A533B, uniaxial stress relaxation as well as creep tests have been performed. The specimens were isothermally stress relaxed between 600 and 640 degree C from initial stresses corresponding to specimen elongations of 0.25, 0.5 and 0.2 percent. The stress relaxation results are excellently described by a Norton relationship. The magnitude of the initial stress has been found to affect the stress relaxation in the beginning of the tests, but at times longer than one hour the effect is very small. Creep strain data from creep tests in the actual temperature interval was converted to describe stress relaxation behaviour as well. The results will be used in a forthcoming study to predict the multiaxial stress reduction in thick weldments of A533B. (author)

  15. STRESS RELAXATION CHARACTERISTICS OF SELECTED COMMERCIALLY PRODUCED GLASSES

    Directory of Open Access Journals (Sweden)

    Chocholoušek J.

    2013-06-01

    Full Text Available This paper describes a quantitative method of stress relaxation measurement in prismatic glass samples during two different time-temperature regimes using the Sénarmont compensator. Four types of glass (Barium crystal glass, Eutal, Simax, and Container glass were subjected to observation in an assembled measuring device. Results will be used for parameterization of the Tool-Narayanaswamy-Mazurin model and consequently implemented in a finite element method code.

  16. Evaluation of creep damage due to stress relaxation in SA533 grade B class 1 and SA508 class 3 pressure vessel steels

    International Nuclear Information System (INIS)

    Hoffmann, C.L.; Urko, W.

    1993-01-01

    Creep damage can result from stress relaxation of residual stresses in components when exposed to high temperature thermal cycles. Pressure vessels, such as the reactor vessel of the modular high-temperature gas reactor (MHTGR), which normally operate at temperatures well below the creep range can develop relatively high residual stresses in high stress locations. During short term excursions to elevated-temperatures, creep damage can be produced by the loadings on the vessel. In addition, residual stresses will relax out, causing greater creep damage in the pressure vessel material than might otherwise be calculated. The evaluation described in this paper assesses the magnitude of the creep damage due to relaxation of residual stresses resulting from short term exposure of the pressure vessel material to temperatures in the creep range. Creep relaxation curves were generated for SA533 Grade B, Class 1 and SA508 Class 3 pressure vessel steels using finite element analysis of a simple uniaxial truss loaded under constant strain conditions to produce an initial axial stress equal to 1.25 times the material yield strength at temperature. The strain is held constant for 1000 hours at prescribed temperatures from 700 F to 1000 F. The material creep law is used to calculate the relaxed stress for each time increment. The calculated stress relaxation versus time curves are compared with stress relaxation test data. Creep damage fractions are calculated by integrating the stress relaxation versus time curves and performing a linear creep damage summation using the minimum stress to rupture curves at the respective relaxation temperatures. Cumulative creep damage due to stress relaxation as a function of time and temperature is derived from the linear damage summation

  17. Stress relaxation of entangled polystyrene solution after constant-rate, uniaxial elongation

    DEFF Research Database (Denmark)

    Matsumiya, Yumi; Masubuchi, Yuichi; Watanabe, Hiroshi

    For an entangled solution of linear polystyrene (PS 545k; M = 545k) in dibutyl phthalate (DBP), the stress relaxation after constant-rate uniaxial elongation was examined with an extensional viscosity fixture mounted on ARES (TA Instruments). The PS concentration, c = 52 wt%, was chosen in a way...... that the entanglement density M/Me of the solution coincided with that of PS 290k melt (M = 290k). After the elongation at the Rouse-based Weissenberg number Wi(R) ~ 3 up to the Hencky strain of 3, the short time stress relaxation of the solution was accelerated by a factor of ~4, which was less significant compared...... and the lack of monotonic thinning observed for the semidilute solutions. Results for less concentrated solutions will be also presented on site....

  18. Stress-relaxation in bending of zircaloy-4 at 673 K, as a function of cold-work

    International Nuclear Information System (INIS)

    Povolo, F.

    1983-01-01

    Stress-relaxation data, in bending, in Zircaloy-4 with different degrees of cold-work are presented. The measurements were performed at 673 K, with six different initial stresses and up to times of the order of 1000 h. The stress-relaxation curves are interpreted in terms of a creep model involving jog-drag and cell formation and some dislocation parameters are calculated from the experimental results. The influence of cold-work on these parameters is discussed. (author)

  19. Stress growth and relaxation of dendritically branched macromolecules in shear and uniaxial extension

    DEFF Research Database (Denmark)

    Huang, Qian; Costanzo, S.; Das, C.

    2017-01-01

    stress relaxation, suggesting a strong ‘elastic memory’ of the material. These results are 2 described by BoB semi-quantitatively, both in linear and nonlinear shear and extensional regimes. Given the fact that the segments between branch points are less than 3 entanglements long, this is a very...... of stretches of different parts of the polymer appears to be the origin of the slower subsequent relaxation of extensional stress. Concerning the latter effect, for which predictions are not available, it is hoped that the present experimental findings and proposed framework of analysis will motivate further...

  20. The nonlinear Maxwell-type model for viscoelastoplastic materials: simulation of temperature influence on creep, relaxation and strain-stress curves

    Directory of Open Access Journals (Sweden)

    Andrew V. Khokhlov

    2017-04-01

    Full Text Available The nonlinear Maxwell-type constitutive relation with two arbitrary material functions for viscoelastoplastic multi-modulus materials is studied analytically in uniaxial isothermic case to reveal the model abilities and applicability scope and to develop techniques of its identification, tuning and fitting. The constitutive equation is aimed at adequate modeling of the rheological phenomena set which is typical for reonomic materials exhibiting non-linear hereditary properties, strong strain rate sensitivity, secondary creep, yielding at constant stress, tension compression asymmetry and such temperature effects as increase of material compliance, strain rate sensitivity and rates of dissipation, relaxation, creep and plastic strain accumulation with temperature growth. The model is applicable for simulation of mechanical behaviour of various polymers, their solutions and melts, solid propellants, sand-asphalt concretes, composite materials, titanium and aluminum alloys, ceramics at high temperature and so on. To describe the influence of temperature on material mechanical behavior (under isothermic conditions, two scalar material parameters of the model (viscosity coefficient and “modulus of elasticity” are considered as a functions of temperature level. The general restrictions on their properties which are necessary and sufficient for adequate qualitative description of the basic thermomechanical phenomena related to typical temperature influence on creep and relaxation curves, creep recovery curves, creep curves under step-wise loading and quasi-static stress-strain curves of viscoelastoplastic materials are obtained. The restrictions are derived using systematic analytical study of general qualitative features of the theoretic creep and relaxation curves, creep curves under step-wise loading, long-term strength curves and stress-strain curves at constant strain or stress rates generated by the constitutive equation (under minimal

  1. In-reactor stress relaxation of selected metals and alloys at low temperatures

    International Nuclear Information System (INIS)

    Causey, A.R.; Carpenter, G.J.C.; MacEwen, S.R.

    1980-01-01

    Stress relaxation of bent beam specimens under fast neutron irradiation at 340 and 570 K has been studied for a range of materials, as follows: several stainless steels, a maraged steel, AISI-4140, Ni, Inconel X-750, Ti, Zircaloy-2, Zr-2.5% Nb and Zr 3 Al. All specimens were in the annealed or solution-treated condition. Where comparisons were possible, the creep coefficients derived from the stress relaxation tests were found to be consistent with other studies of irradiation-induced creep. The steels showed the lowest rates of stress relaxation; the largest rates were observed with Zr-Nb, Ti and Ni. For most materials, the creep coefficient at 340 K was equal to or greater than that at 570 K. Such weak temperature dependence is not easily reconciled with existing models of irradiation creep based on dislocation climb, such as SIPA or climb-induced glide. Rate theory calculations indicate that because the vacancy mobility becomes very low at the lower temperature, recombination should dominate point defect annealing, resulting in a very low creep rate compared to that at the higher temperature. It is shown that the weak temperature dependence observed experimentally cannot be accounted for by the inclusion of more mobile divacancies in the calculation. (orig.)

  2. In-reactor stress relaxation of selected metals and alloys at low temperatures

    International Nuclear Information System (INIS)

    Causey, A.R.; Carpenter, G.J.C.; MacEwen, S.R.

    1980-01-01

    Stress relaxation of bent beam specimens under fast neutron irradiation at 340 and 570 K has been studied for a range of materials, as follows: several stainless steels, a maraged steel, AISI-4140, Ni, Inconel X-750, Ti, Zircaloy-2, Zr-2.5% Nb and Zr 3 A1. All specimens were in the annealed or solution-treated condition. Where comparisons were possible, the creep coefficients derived from the stress relaxation tests were found to be consistent with other studies of irradiation-induced creep. The steels showed the lowest rates of stress relaxation; the largest rates were observed with Zr-Nb, Ti and Ni. For most materials, the creep coefficient at 340 K was equal to or greater than that at 570 K. Such weak temperature dependence is not easily reconciled with existing models of irradiation creep based on dislocation climb, such as SIPA or climb-induced glide. Rate theory calculations indicate that because the vacancy mobility becomes very low at the lower temperature, recombination should dominate point defect annealing, resulting in a very low creep rate compared to that at the higher temperature. It is shown that the weak temperature dependence observed experimentally cannot be accounted for by the inclusion of more mobile divacancies in the calculation. (author)

  3. Location estimation in wireless sensor networks using spring-relaxation technique.

    Science.gov (United States)

    Zhang, Qing; Foh, Chuan Heng; Seet, Boon-Chong; Fong, A C M

    2010-01-01

    Accurate and low-cost autonomous self-localization is a critical requirement of various applications of a large-scale distributed wireless sensor network (WSN). Due to its massive deployment of sensors, explicit measurements based on specialized localization hardware such as the Global Positioning System (GPS) is not practical. In this paper, we propose a low-cost WSN localization solution. Our design uses received signal strength indicators for ranging, light weight distributed algorithms based on the spring-relaxation technique for location computation, and the cooperative approach to achieve certain location estimation accuracy with a low number of nodes with known locations. We provide analysis to show the suitability of the spring-relaxation technique for WSN localization with cooperative approach, and perform simulation experiments to illustrate its accuracy in localization.

  4. Effect of thermal exposure on the residual stress relaxation in a hardened cylindrical sample under creep conditions

    Science.gov (United States)

    Radchenko, V. P.; Saushkin, M. N.; Tsvetkov, V. V.

    2016-05-01

    This paper describes the effect of thermal exposure (high-temperature exposure) ( T = 675°C) on the residual creep stress relaxation in a surface hardened solid cylindrical sample made of ZhS6UVI alloy. The analysis is carried out with the use of experimental data for residual stresses after micro-shot peening and exposures to temperatures equal to T = 675°C during 50, 150, and 300 h. The paper presents the technique for solving the boundary-value creep problem for the hardened cylindrical sample with the initial stress-strain state under the condition of thermal exposure. The uniaxial experimental creep curves obtained under constant stresses of 500, 530, 570, and 600 MPa are used to construct the models describing the primary and secondary stages of creep. The calculated and experimental data for the longitudinal (axial) tensor components of residual stresses are compared, and their satisfactory agreement is determined.

  5. Relaxation characteristics of hastelloy X

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko

    1980-02-01

    Relaxation diagrams of Hastelloy X (relaxation curves, relaxation design diagrams, etc.) were generated from the creep constitutive equation of Hastelloy X, using inelastic stress analysis code TEPICC-J. These data are in good agreement with experimental relaxation data of ORNL-5479. Three typical inelastic stress analyses were performed for various relaxation behaviors of the high-temperature structures. An attempt was also made to predict these relaxation behaviors by the relaxation curves. (author)

  6. Contribution to viscosity from the structural relaxation via the atomic scale Green-Kubo stress correlation function

    Science.gov (United States)

    Levashov, V. A.

    2017-11-01

    We studied the connection between the structural relaxation and viscosity for a binary model of repulsive particles in the supercooled liquid regime. The used approach is based on the decomposition of the macroscopic Green-Kubo stress correlation function into the correlation functions between the atomic level stresses. Previously we used the approach to study an iron-like single component system of particles. The role of vibrational motion has been addressed through the demonstration of the relationship between viscosity and the shear waves propagating over large distances. In our previous considerations, however, we did not discuss the role of the structural relaxation. Here we suggest that the contribution to viscosity from the structural relaxation can be taken into account through the consideration of the contribution from the atomic stress auto-correlation term only. This conclusion, however, does not mean that only the auto-correlation term represents the contribution to viscosity from the structural relaxation. Previously the role of the structural relaxation for viscosity has been addressed through the considerations of the transitions between inherent structures and within the mode-coupling theory by other authors. In the present work, we study the structural relaxation through the considerations of the parent liquid and the atomic level stress correlations in it. The comparison with the results obtained on the inherent structures also is made. Our current results suggest, as our previous observations, that in the supercooled liquid regime, the vibrational contribution to viscosity extends over the times that are much larger than the Einstein's vibrational period and much larger than the times that it takes for the shear waves to propagate over the model systems. Besides addressing the atomic level shear stress correlations, we also studied correlations between the atomic level pressure elements.

  7. Phase-Field Relaxation of Topology Optimization with Local Stress Constraints

    DEFF Research Database (Denmark)

    Stainko, Roman; Burger, Martin

    2006-01-01

    inequality constraints. We discretize the problem by finite elements and solve the arising finite-dimensional programming problems by a primal-dual interior point method. Numerical experiments for problems with local stress constraints based on different criteria indicate the success and robustness......We introduce a new relaxation scheme for structural topology optimization problems with local stress constraints based on a phase-field method. In the basic formulation we have a PDE-constrained optimization problem, where the finite element and design analysis are solved simultaneously...

  8. BREATHING EXERCISE RELAXATION INCREASE PHSYCOLOGICAL RESPONSE PRESCHOOL CHILDREN

    Directory of Open Access Journals (Sweden)

    Yuni Sufyanti Arief

    2017-07-01

    Full Text Available Introduction: Being hospitalize will be made the children become stress. Hospitalization response of the child particularly is afraid sense regard to painfull procedure and increase to attack the invasive procedure. The aimed of this study was to describe the influence of breathing exercise relaxation technique regarded to phsycological receiving responses in the preeliminary school chidren while they were receiving invasive procedure. Method: A quasy experimental purposive sampling design was used in this study. There were 20 respondents who met to the inclusion criteria. The independent variable was the breathing exercise relaxation technique and the dependent variable was phsycological receiving responses. Data for phsylogical response were collected by using observation form then analyzed by using Wilcoxon Signed Rank Test and Mann Whitney U Test with significance level α≤0.05. Result :  The result showed that breathing exercise relaxation technique had significance influence to phsycological response (p=0.000. Discussion: It,s can be concluded that breathing exercise relaxation technique has an effect to increase pshycological response in preeliminary school children who received invasive procedure.

  9. Learn to manage stress

    Science.gov (United States)

    Stress - managing; Stress - recognizing; Stress - relaxation techniques ... LEARN TO RECOGNIZE STRESS The first step in managing stress is recognizing it in your life. Everyone feels stress in a different way. ...

  10. Comparison of relaxation with counterpressure massage techniques for reduce pain first stage of labor

    Science.gov (United States)

    Lisa, U. F.; Jalina, M.; Marniati

    2017-09-01

    Based on interviews of so me mother who entered the first stage of labor lack of care from health workers to the effort to reducing the acuteof labor. Health care workers appertain hospital in effective in implement maternity nursing interventions in reducing acute the first stage of labor. The reducing acute have two method are pharmacological and non-pharmacological. In this case, has several techniques there are: relaxation and counterpressure massage techniques that capable to reducing acute first stage of labor. The of non-pharmacological is one of authority which must be implemented by midwives especially breathing relaxation techniquesand massage. The research is Quasi Exsperimen with pretes-posttest design. The statistic test has T test paired and unpairedt test. To indicatea reducing the level of acute before and after given relaxation technique result p-value pain. Therefore, the health of workers, especially for a study to apply relaxation and massage to provide of mother care, mainly to the primigravida who in experienced in process of labor.

  11. Residual stresses relaxation in surface-hardened half-space under creep conditions

    Directory of Open Access Journals (Sweden)

    Vladimir P. Radchenko

    2015-09-01

    Full Text Available We developed the method for solving the problem of residual stresses relaxation in surface-hardened layer of half-space under creep conditions. At the first stage we made the reconstruction of stress-strain state in half-space after plastic surface hardening procedure based on partial information about distribution for one residual stress tensor component experimentally detected. At the second stage using a numerical method we solve the problem of relaxation of self-balanced residual stresses under creep conditions. To solve this problem we introduce the following Cartesian system: x0y plane is aligned with hardened surface of half-space and 0z axis is directed to the depth of hardened layer. We also introduce the hypotheses of plane sections parallel to x0z and y0z planes. Detailed analysis of the problem has been done. Comparison of the calculated data with the corresponding test data was made for plane specimens (rectangular parallelepipeds made of EP742 alloy during T=650°C after the ultrasonic hardening with four hardening modes. We use half-space to model these specimens because penetration's depth of residual stresses is less than specimen general size in two digit exponent. There is enough correspondence of experimental and calculated data. It is shown that there is a decay (in modulus of pressing residual stresses under creep in 1.4–1.6 times.

  12. Location Estimation in Wireless Sensor Networks Using Spring-Relaxation Technique

    Directory of Open Access Journals (Sweden)

    Qing Zhang

    2010-05-01

    Full Text Available Accurate and low-cost autonomous self-localization is a critical requirement of various applications of a large-scale distributed wireless sensor network (WSN. Due to its massive deployment of sensors, explicit measurements based on specialized localization hardware such as the Global Positioning System (GPS is not practical. In this paper, we propose a low-cost WSN localization solution. Our design uses received signal strength indicators for ranging, light weight distributed algorithms based on the spring-relaxation technique for location computation, and the cooperative approach to achieve certain location estimation accuracy with a low number of nodes with known locations. We provide analysis to show the suitability of the spring-relaxation technique for WSN localization with cooperative approach, and perform simulation experiments to illustrate its accuracy in localization.

  13. Stress relaxation and creep of high-temperature gas-cooled reactor core support ceramic materials: a literature search

    International Nuclear Information System (INIS)

    Selle, J.E.; Tennery, V.J.

    1980-05-01

    Creep and stress relaxation in structural ceramics are important properties to the high-temperature design and safety analysis of the core support structure of the HTGR. The ability of the support structure to function for the lifetime of the reactor is directly related to the allowable creep strain and the ability of the structure to withstand thermal transients. The thermal-mechanical response of the core support pads to steady-state stresses and potential thermal transients depends on variables, including the ability of the ceramics to undergo some stress relaxation in relatively short times. Creep and stress relaxation phenomena in structural ceramics of interest were examined. Of the materials considered (fused silica, alumina, silicon nitride, and silicon carbide), alumina has been more extensively investigated in creep. Activation energies reported varied between 482 and 837 kJ/mole, and consequently, variations in the assigned mechanisms were noted. Nabarro-Herring creep is considered as the primary creep mechanism and no definite grain size dependence has been identified. Results for silicon nitride are in better agreement with reported activation energies. No creep data were found for fused silica or silicon carbide and no stress relaxation data were found for any of the candidate materials. While creep and stress relaxation are similar and it is theoretically possible to derive the value of one property when the other is known, no explicit demonstrated relationship exists between the two. For a given structural ceramic material, both properties must be experimentally determined to obtain the information necessary for use in high-temperature design and safety analyses

  14. Separating the Influence of Environment from Stress Relaxation Effects on Dwell Fatigue Crack Growth

    Science.gov (United States)

    Telesman, Jack; Gabb, Tim; Ghosn, Louis J.

    2016-01-01

    Seven different microstructural variations of LSHR were produced by controlling the cooling rate and the subsequent aging and thermal exposure heat treatments. Through cyclic fatigue crack growth testing performed both in air and vacuum, it was established that four out of the seven LSHR heat treatments evaluated, possessed similar intrinsic environmental resistance to cyclic crack growth. For these four heat treatments, it was further shown that the large differences in dwell crack growth behavior which still persisted, were related to their measured stress relaxation behavior. The apparent differences in their dwell crack growth resistance were attributed to the inability of the standard linear elastic fracture mechanics (LEFM) stress intensity parameter to account for visco-plastic behavior. Crack tip stress relaxation controls the magnitude of the remaining local tensile stresses which are directly related to the measured dwell crack growth rates. It was hypothesized that the environmentally weakened grain boundary crack tip regions fail during the dwells when their strength is exceeded by the remaining local crack tip tensile stresses. It was shown that the classical creep crack growth mechanisms such as grain boundary sliding did not contribute to crack growth, but the local visco-plastic behavior still plays a very significant role by determining the crack tip tensile stress field which controls the dwell crack growth behavior. To account for the influence of the visco-plastic behavior on the crack tip stress field, an empirical modification to the LEFM stress intensity parameter, Kmax, was developed by incorporating into the formulation the remaining stress level concept as measured by simple stress relaxation tests. The newly proposed parameter, Ksrf, did an excellent job in correlating the dwell crack growth rates for the four heat treatments which were shown to have similar intrinsic environmental cyclic fatigue crack growth resistance.

  15. Functional Connectivity During Exposure to Favorite-Food, Stress, and Neutral-Relaxing Imagery Differs Between Smokers and Nonsmokers.

    Science.gov (United States)

    Garrison, Kathleen A; Sinha, Rajita; Lacadie, Cheryl M; Scheinost, Dustin; Jastreboff, Ania M; Constable, R Todd; Potenza, Marc N

    2016-09-01

    Tobacco-use disorder is a complex condition involving multiple brain networks and presenting with multiple behavioral correlates including changes in diet and stress. In a previous functional magnetic resonance imaging (fMRI) study of neural responses to favorite-food, stress, and neutral-relaxing imagery, smokers versus nonsmokers demonstrated blunted corticostriatal-limbic responses to favorite-food cues. Based on other recent reports of alterations in functional brain networks in smokers, the current study examined functional connectivity during exposure to favorite-food, stress, and neutral-relaxing imagery in smokers and nonsmokers, using the same dataset. The intrinsic connectivity distribution was measured to identify brain regions that differed in degree of functional connectivity between groups during each imagery condition. Resulting clusters were evaluated for seed-to-voxel connectivity to identify the specific connections that differed between groups during each imagery condition. During exposure to favorite-food imagery, smokers versus nonsmokers showed lower connectivity in the supramarginal gyrus, and differences in connectivity between the supramarginal gyrus and the corticostriatal-limbic system. During exposure to neutral-relaxing imagery, smokers versus nonsmokers showed greater connectivity in the precuneus, and greater connectivity between the precuneus and the posterior insula and rolandic operculum. During exposure to stress imagery, smokers versus nonsmokers showed lower connectivity in the cerebellum. These findings provide data-driven insights into smoking-related alterations in brain functional connectivity patterns related to appetitive, relaxing, and stressful states. This study uses a data-driven approach to demonstrate that smokers and nonsmokers show differential patterns of functional connectivity during guided imagery related to personalized favorite-food, stress, and neutral-relaxing cues, in brain regions implicated in attention

  16. Relaxation of thermal stress by dislocation motion in passivated metal interconnects

    NARCIS (Netherlands)

    Nicola, L; Van der Giessen, E; Needleman, A

    The development and relaxation of stress in metal interconnects strained by their surroundings (substrate and passivation layers) is predicted by a discrete dislocation analysis. The model is based on a two-dimensional plane strain formulation, with deformation fully constrained in the line

  17. X-ray diffraction study of stress relaxation in cubic boron nitride films grown with simultaneous medium-energy ion bombardment

    International Nuclear Information System (INIS)

    Abendroth, B.; Gago, R.; Eichhorn, F.; Moeller, W.

    2004-01-01

    Relaxation of the intrinsic stress of cubic boron nitride (cBN) thin films has been studied by x-ray diffraction (XRD) using synchrotron light. The stress relaxation has been attained by simultaneous medium-energy ion bombardment (2-10 keV) during magnetron sputter deposition, and was confirmed macroscopically by substrate curvature measurements. In order to investigate the stress-release mechanisms, XRD measurements were performed in in-plane and out-of-plane geometry. The analysis shows a pronounced biaxial state of compressive stress in the cBN films grown without medium-energy ion bombardment. This stress is partially released during the medium-energy ion bombardment. It is suggested that the main path for stress relaxation is the elimination of strain within the cBN grains due to annealing of interstitials

  18. Stress Management for Special Educators: The Self-Administered Tool for Awareness and Relaxation (STAR)

    Science.gov (United States)

    Williams, Krista; Poel, Elissa Wolfe

    2006-01-01

    The Self-Administered Tool for Awareness and Relaxation (STAR) is a stress management strategy designed to facilitate awareness of the physical, mental, emotional, and physiological effects of stress through the interconnectedness of the brain, body, and emotions. The purpose of this article is to present a stress-management model for teachers,…

  19. Stress Relaxation Effects in TiNi SMA During Superelastic Deformation: Experiment and Constitutive Model

    Science.gov (United States)

    Pieczyska, Elżbieta A.; Kowalewski, Zbigniew L.; Dunić, Vladimir Lj.

    2017-12-01

    This paper presents an investigation of thermomechanical effects related to the phenomena of stress relaxation occurring in TiNi SMA subjected to modified program of displacement-controlled tension. The deformation data were taken from testing machine, whereas the temperature changes accompanying the exothermic/endothermic martensite forward/reverse transformation were measured by infrared camera. At the advanced stages of the transformations, the strain was kept constant for a few minutes and the SMA load and temperature were recorded continuously. As a consequence, the stress and temperature changed significantly during the loading stops. A large stress drop, caused by the transformation, was observed during the relaxation stage in both courses of the SMA loading and unloading. Moreover, the non-uniform temperature distribution, reflecting macroscopically inhomogeneous transformation, lapsed while the strain was kept constant, yet restarted at the end of the relaxation stop and developed at the reloading stage. Along with the experimental results, the mechanical and thermal responses induced by the transformation were obtained by 3D coupled thermomechanical numerical analysis, realized in partitioned approach. Latent heat production was correlated with an amount of the martensitic volume fraction. The stress and temperature drops recorded during the experiment were satisfactorily reproduced by the model proposed for the SMA thermomechanical coupling.

  20. Stress relaxation in tempered glass caused by heat soak testing

    DEFF Research Database (Denmark)

    Schneider, Jens; Hilcken, Jonas; Aronen, Antti

    2016-01-01

    Heat soak testing of tempered glass is a thermal process required after the tempering process itself to bring glasses of commercial soda-lime-silica-glass to failure that are contaminated with nickel sulphide inclusions, diameter 50 mm to 500 mm typically. Thus, the tests avoid a so-called "spont...... of commercial soda-lime-silica glass, it causes stress relaxation in tempered glass and the fracture pattern of the glass changes accordingly, especially thin glasses are affected. Based on the Tool-Narayanaswamy-Model, this paper comprises the theoretical background of the stress...

  1. Study on the residual stress relaxation in girth-welded steel pipes under bending load using diffraction methods

    International Nuclear Information System (INIS)

    Hempel, Nico; Nitschke-Pagel, Thomas; Dilger, Klaus

    2017-01-01

    This research is dedicated to the experimental investigation of the residual stress relaxation in girth-welded pipes due to quasi-static bending loads. Ferritic-pearlitic steel pipes are welded with two passes, resulting in a characteristic residual stress state with high tensile residual stresses at the weld root. Also, four-point bending is applied to generate axial load stress causing changes in the residual stress state. These are determined both on the outer and inner surfaces of the pipes, as well as in the pipe wall, using X-ray and neutron diffraction. Focusing on the effect of tensile load stress, it is revealed that not only the tensile residual stresses are reduced due to exceeding the yield stress, but also the compressive residual stresses for equilibrium reasons. Furthermore, residual stress relaxation occurs both parallel and perpendicular to the applied load stress.

  2. Pseudo-variables method to calculate HMA relaxation modulus through low-temperature induced stress and strain

    International Nuclear Information System (INIS)

    Canestrari, Francesco; Stimilli, Arianna; Bahia, Hussain U.; Virgili, Amedeo

    2015-01-01

    Highlights: • Proposal of a new method to analyze low-temperature cracking of bituminous mixtures. • Reliability of the relaxation modulus master curve modeling through Prony series. • Suitability of the pseudo-variables approach for a close form solution. - Abstract: Thermal cracking is a critical failure mode for asphalt pavements. Relaxation modulus is the major viscoelastic property that controls the development of thermally induced tensile stresses. Therefore, accurate determination of the relaxation modulus is fundamental for designing long lasting pavements. This paper proposes a reliable analytical solution for constructing the relaxation modulus master curve by measuring stress and strain thermally induced in asphalt mixtures. The solution, based on Boltzmann’s Superposition Principle and pseudo-variables concepts, accounts for time and temperature dependency of bituminous materials modulus, avoiding complex integral transformations. The applicability of the solution is demonstrated by testing a reference mixture using the Asphalt Thermal Cracking Analyzer (ATCA) device. By applying thermal loadings on restrained and unrestrained asphalt beams, ATCA allows the determination of several parameters, but is still unable to provide reliable estimations of relaxation properties. Without them the measurements from ATCA cannot be used in modeling of pavement behavior. Thus, the proposed solution successfully integrates ATCA experimental data. The same methodology can be applied to all test methods that concurrently measure stress and strain. The statistical parameters used to evaluate the goodness of fit show optimum correlation between theoretical and experimental results, demonstrating the accuracy of this mathematical approach

  3. High Temperature Uniaxial Compression and Stress-Relaxation Behavior of India-Specific RAFM Steel

    Science.gov (United States)

    Shah, Naimish S.; Sunil, Saurav; Sarkar, Apu

    2018-05-01

    India-specific reduced activity ferritic martensitic steel (INRAFM), a modified 9Cr-1Mo grade, has been developed by India as its own structural material for fabrication of the Indian Test Blanket Module (TBM) to be installed in the International Thermonuclear Energy Reactor (ITER). The extensive study on mechanical and physical properties of this material has been currently going on for appraisal of this material before being put to use in the ITER. High temperature compression, stress-relaxation, and strain-rate change behavior of the INRAFM steel have been investigated. The optical microscopic and scanning electron microscopic characterizations were carried out to observe the microstructural changes that occur during uniaxial compressive deformation test. Comparable true plastic stress values at 300 °C and 500 °C and a high drop in true plastic stress at 600 °C were observed during the compression test. Stress-relaxation behaviors were investigated at 500 °C, 550 °C, and 600 °C at a strain rate of 10-3 s-1. The creep properties of the steel at different temperatures were predicted from the stress-relaxation test. The Norton's stress exponent (n) was found to decrease with the increasing temperature. Using Bird-Mukherjee-Dorn relationship, the temperature-compensated normalized strain rate vs stress was plotted. The stress exponent (n) value of 10.05 was obtained from the normalized plot. The increasing nature of the strain rate sensitivity (m) with the test temperature was found from strain-rate change test. The low plastic stability with m 0.06 was observed at 600 °C. The activation volume (V *) values were obtained in the range of 100 to 300 b3. By comparing the experimental values with the literature, the rate-controlling mechanisms at the thermally activated region of high temperature were found to be the nonconservative movement of jogged screw dislocations and thermal breaking of attractive junctions.

  4. Wall relaxation and the driving forces for cell expansive growth

    Science.gov (United States)

    Cosgrove, D. J.

    1987-01-01

    When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.

  5. Effects of relaxation on psychobiological wellbeing during pregnancy: a randomized controlled trial.

    Science.gov (United States)

    Urech, Corinne; Fink, Nadine S; Hoesli, Irène; Wilhelm, Frank H; Bitzer, Johannes; Alder, Judith

    2010-10-01

    Prenatal maternal stress is associated with adverse birth outcomes and may be reduced by relaxation exercises. The aim of the present study was to compare the immediate effects of two active and one passive 10-min relaxation technique on perceived and physiological indicators of relaxation. 39 healthy pregnant women recruited at the outpatient department of the University Women's Hospital Basel participated in a randomized controlled trial with an experimental repeated measure design. Participants were assigned to one of two active relaxation techniques, progressive muscle relaxation (PMR) or guided imagery (GI), or a passive relaxation control condition. Self-reported relaxation on a visual analogue scale (VAS) and state anxiety (STAI-S), endocrine parameters indicating hypothalamic-pituitary-adrenal (HPA) axis (cortisol and ACTH) and sympathetic-adrenal-medullary (SAM) system activity (norepinephrine and epinephrine), as well as cardiovascular responses (heart rate, systolic and diastolic blood pressure) were measured at four time points before and after the relaxation exercise. Between group differences showed, that compared to the PMR and control conditions, GI was significantly more effective in enhancing levels of relaxation and together with PMR, GI was associated with a significant decrease in heart rate. Within the groups, passive as well as active relaxation procedures were associated with a decline in endocrine measures except epinephrine. Taken together, these data indicate that different types of relaxation had differential effects on various psychological and biological stress systems. GI was especially effective in inducing self-reported relaxation in pregnant women while at the same time reducing cardiovascular activity. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Effect of saline absorption on the flexural stress relaxation behavior of epoxy/cotton composite materials for orthopedics applications

    Science.gov (United States)

    Kontaxis, L. C.; Pavlou, C.; Portan, D. V.; Papanicolaou, G. C.

    2018-02-01

    In the present study, a composite material consisting of a polymeric epoxy resin matrix, reinforced with forty layers of non-woven cotton fiber fabric was manufactured. The method used to manufacture the composite was the Resin Vacuum Infusion technique. This is a technique widely used for high-performance, defect-free, composite materials. Composites and neat polymers are subjected to stresses during their function, while at the same time being influenced by environmental conditions, such as temperature and humidity. The main goal of this study was the investigation of the degradation of composite's viscoelastic behavior, after saline absorption. At this point, it should be mentioned, that this material could be used in biomedical applications. Therefore, a sealed container full of saline was used for the immer s ion of the specimens manufactured, and was placed in a bath at 37°C (body temperature). The specimens remained there for five different immersion periods (24, 72, 144, 216, 336 hours). The viscoelastic behavior of the composite material was determined through stress relaxation under flexure conditions, and the effect of immersion time and amount of saline absorption was studied. It was observed that after 24 hours of immersion a 42% decrease in stress was observed, which in the sequence remained almost constant. The stress relaxation experimental results were predicted by using the Residua l Property Model (RPM), a model developed by Papanicolaou et al. The same model has been successfully applied in the past, to many different materials previously subjected to various types of damage, in order to predict their residual behavior. For its application, the RPM predictive model needs only two experimental points. It was found that in all cases, predictions were in good agreement with experimental findings. Furthermore, the comparison between experimental values and theoretical predictions formed the basis of useful observations and conclusions.

  7. Idiosyncratic reality claims, relaxation dispositions, and ABC relaxation theory: happiness, literal christianity, miraculous powers, metaphysics, and the paranormal.

    Science.gov (United States)

    Smith, Jonathan C; Karmin, Aaron D

    2002-12-01

    This study examined idiosyncratic reality claims, that is, irrational or paranormal beliefs often claimed to enhance relaxation and happiness and reduce stress. The Smith Idiosyncratic Reality Claims Inventory and the Smith Relaxation Dispositions Inventory (which measures relaxation and stress dispositions, or enduring states of mind frequently associated with relaxation or stress) were given to 310 junior college student volunteers. Principal components factor analysis with varimax rotation identified five idiosyncratic reality claim factors: belief in Literal Christianity; Magic; Space Aliens: After Death experiences; and Miraculous Powers of Meditation, Prayer, and Belief. No factor correlated with increased relaxation dispositions Peace, Energy, or Joy, or reduced dispositional somatic stress, worry, or negative emotion on the Smith Relaxation Dispositions Inventory. It was concluded that idiosyncratic reality claims may not be associated with reported relaxation, happiness, or stress. In contrast, previous research strongly supported self-affirming beliefs with few paranormal assumptions display such an association.

  8. Deformation, Stress Relaxation, and Crystallization of Lithium Silicate Glass Fibers Below the Glass Transition Temperature

    Science.gov (United States)

    Ray, Chandra S.; Brow, Richard K.; Kim, Cheol W.; Reis, Signo T.

    2004-01-01

    The deformation and crystallization of Li(sub 2)O (center dot) 2SiO2 and Li(sub 2)O (center dot) 1.6SiO2 glass fibers subjected to a bending stress were measured as a function of time over the temperature range -50 to -150 C below the glass transition temperature (Tg). The glass fibers can be permanently deformed at temperatures about 100 C below T (sub)g, and they crystallize significantly at temperatures close to, but below T,, about 150 C lower than the onset temperature for crystallization for these glasses in the no-stress condition. The crystallization was found to occur only on the surface of the glass fibers with no detectable difference in the extent of crystallization in tensile and compressive stress regions. The relaxation mechanism for fiber deformation can be best described by a stretched exponential (Kohlrausch-Williams-Watt (KWW) approximation), rather than a single exponential model.The activation energy for stress relaxation, Es, for the glass fibers ranges between 175 and 195 kJ/mol, which is considerably smaller than the activation energy for viscous flow, E, (about 400 kJ/mol) near T, for these glasses at normal, stress-free condition. It is suspected that a viscosity relaxation mechanism could be responsible for permanent deformation and crystallization of the glass fibers below T,

  9. Analysis of shot-peening and residual stress relaxation in the nickel-based superalloy RR1000

    International Nuclear Information System (INIS)

    Foss, B.J.; Gray, S.; Hardy, M.C.; Stekovic, S.; McPhail, D.S.; Shollock, B.A.

    2013-01-01

    This work assesses the residual stress relaxation of the nickel-based alloy RR1000 due to thermal exposure and dwell-fatigue loading. A number of different characterization methods, including X-ray residual stress analysis, electron back-scattered diffraction, microhardness testing and focused ion beam secondary electron imaging, contributed to a detailed study of the shot-peened region. Thermal exposure at 700 °C resulted in a large reduction in the residual stresses and work-hardening effects in the alloy, but the subsurface remained in a beneficial compressive state. Oxidizing environments caused recrystallization in the near surface, but did not affect the residual stress-relaxation behaviour. Dwell-fatigue loading caused the residual stresses to return to approximately zero at nearly all depths. This work forms part of an ongoing investigation to determine the effects of shot-peening in this alloy with the motivation to improve the fatigue and oxidation resistance at 700 °C

  10. Microstructural sensitivity of 316H austenitic stainless steel: Residual stress relaxation and grain boundary fracture

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B., E-mail: b.chen@bristol.ac.uk [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Flewitt, P.E.J. [Interface Analysis Centre, University of Bristol, 121 St Michael' s Hill, Bristol BS2 8BS (United Kingdom); H.H. Wills Physics Laboratory, School of Physics, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Smith, D.J. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom)

    2010-10-25

    Research highlights: {yields} Triaxial residual macro-stresses have been measured by neutron diffraction. {yields} Rates of stress relaxation are shown to be a function of the microstructure. {yields} Quantification of M{sub 23}C{sub 6} precipitation was undertaken by a novel approach. {yields} Intergranular M{sub 23}C{sub 6} precipitation promotes the potential to intergranular fracture. {yields} Phosphorous segregation further enhances the potential to intergranular fracture. - Abstract: The present work considers the role of thermo-mechanical history on the generation and relaxation of residual stresses, typical of those encountered in Type 316H austenitic stainless steel thick section weldments. A series of thermo-mechanical pre-treatments have been developed and applied to simulate the critical microstructures observed within the heat affected zone of the thick section parent material. The through thickness distributions of the residual macro-stresses in cylindrical specimens have been measured by neutron diffraction and then the rates of the relaxation are shown to be a function of microstructure. The susceptibility to intergranular brittle fracture at a temperature of -196 deg. C is shown to be a function of M{sub 23}C{sub 6} carbide precipitates and phosphorous segregation at the grain boundaries. Finally, the link of the present study to the understanding of the reheat cracking is briefly discussed.

  11. Shear-stress fluctuations and relaxation in polymer glasses

    Science.gov (United States)

    Kriuchevskyi, I.; Wittmer, J. P.; Meyer, H.; Benzerara, O.; Baschnagel, J.

    2018-01-01

    We investigate by means of molecular dynamics simulation a coarse-grained polymer glass model focusing on (quasistatic and dynamical) shear-stress fluctuations as a function of temperature T and sampling time Δ t . The linear response is characterized using (ensemble-averaged) expectation values of the contributions (time averaged for each shear plane) to the stress-fluctuation relation μsf for the shear modulus and the shear-stress relaxation modulus G (t ) . Using 100 independent configurations, we pay attention to the respective standard deviations. While the ensemble-averaged modulus μsf(T ) decreases continuously with increasing T for all Δ t sampled, its standard deviation δ μsf(T ) is nonmonotonic with a striking peak at the glass transition. The question of whether the shear modulus is continuous or has a jump singularity at the glass transition is thus ill posed. Confirming the effective time-translational invariance of our systems, the Δ t dependence of μsf and related quantities can be understood using a weighted integral over G (t ) .

  12. The entire mean stress relaxation effects of 0Cr18Ni10Ti piping steel

    International Nuclear Information System (INIS)

    Yang Bing; Zhao Yongxiang

    2005-01-01

    Experimental study is performed on the mean stress relaxation effects of the Chinese new piping material, 0Cr18Ni10Ti steel. Six sets of specimens are respectively fatigued under a strain-controlled mode with the six straining ratios (R ε ) of -1, -0.52, -0.22, 0.029, 0.18, and 0.48 by an improved test method implied with an maximum likelihood statistical principle. The test results reveal that the material exhibits a Masing behaviour and, surprisingly, involves an entire mean stress relaxation. A challenge is then emerging to the traditional same treat of straining ratio and stressing ratio (R σ ) in fatigue analysis and assessment. There is still no effective method to describe this kind of relaxation. However the R ε effects can represent the relaxation effects appropriately by investigation on the material random cyclic stress-strain (σ-ε) relations and strain-life (ε-N) relations with different R ε . The intrinsic randomness of the responses is taken into account on a probabilistic sense. Significant differences are observed of the material cyclic responses under different R ε . For σ-ε relations, the R ε effects act as a decreasing trend to the stress amplitudes with the increasing survival probability and confidence. The strongest effect appears at R ε of 0.029, and a weaker one acts as R ε is far away from zero. For ε-N relations, R ε greater than zero exhibits a positive effect on the fatigue lives of about 1.3 to 1.6 times under a survival probability of 0.999 and a confidence of 95%, while a negative effect is exhibited in case of R ε less than zero. Present work indicates that systematic researches should be made to give a reasonable fatigue prediction in service on a basis of cyclic strain inspection of structures. (authors)

  13. Strain modulations as a mechanism to reduce stress relaxation in laryngeal tissues.

    Science.gov (United States)

    Hunter, Eric J; Siegmund, Thomas; Chan, Roger W

    2014-01-01

    Vocal fold tissues in animal and human species undergo deformation processes at several types of loading rates: a slow strain involved in vocal fold posturing (on the order of 1 Hz or so), cyclic and faster posturing often found in speech tasks or vocal embellishment (1-10 Hz), and shear strain associated with vocal fold vibration during phonation (100 Hz and higher). Relevant to these deformation patterns are the viscous properties of laryngeal tissues, which exhibit non-linear stress relaxation and recovery. In the current study, a large strain time-dependent constitutive model of human vocal fold tissue is used to investigate effects of phonatory posturing cyclic strain in the range of 1 Hz to 10 Hz. Tissue data for two subjects are considered and used to contrast the potential effects of age. Results suggest that modulation frequency and extent (amplitude), as well as the amount of vocal fold overall strain, all affect the change in stress relaxation with modulation added. Generally, the vocal fold cover reduces the rate of relaxation while the opposite is true for the vocal ligament. Further, higher modulation frequencies appear to reduce the rate of relaxation, primarily affecting the ligament. The potential benefits of cyclic strain, often found in vibrato (around 5 Hz modulation) and intonational inflection, are discussed in terms of vocal effort and vocal pitch maintenance. Additionally, elderly tissue appears to not exhibit these benefits to modulation. The exacerbating effect such modulations may have on certain voice disorders, such as muscle tension dysphonia, are explored.

  14. Strain modulations as a mechanism to reduce stress relaxation in laryngeal tissues.

    Directory of Open Access Journals (Sweden)

    Eric J Hunter

    Full Text Available Vocal fold tissues in animal and human species undergo deformation processes at several types of loading rates: a slow strain involved in vocal fold posturing (on the order of 1 Hz or so, cyclic and faster posturing often found in speech tasks or vocal embellishment (1-10 Hz, and shear strain associated with vocal fold vibration during phonation (100 Hz and higher. Relevant to these deformation patterns are the viscous properties of laryngeal tissues, which exhibit non-linear stress relaxation and recovery. In the current study, a large strain time-dependent constitutive model of human vocal fold tissue is used to investigate effects of phonatory posturing cyclic strain in the range of 1 Hz to 10 Hz. Tissue data for two subjects are considered and used to contrast the potential effects of age. Results suggest that modulation frequency and extent (amplitude, as well as the amount of vocal fold overall strain, all affect the change in stress relaxation with modulation added. Generally, the vocal fold cover reduces the rate of relaxation while the opposite is true for the vocal ligament. Further, higher modulation frequencies appear to reduce the rate of relaxation, primarily affecting the ligament. The potential benefits of cyclic strain, often found in vibrato (around 5 Hz modulation and intonational inflection, are discussed in terms of vocal effort and vocal pitch maintenance. Additionally, elderly tissue appears to not exhibit these benefits to modulation. The exacerbating effect such modulations may have on certain voice disorders, such as muscle tension dysphonia, are explored.

  15. Improving Health by Reducing Stress: An Experiential Activity

    Science.gov (United States)

    Largo-Wight, Erin; Moore, Michele J.; Barr, Elissa M.

    2011-01-01

    Stress is a leading health issue among college students. Managing stress involves enhancing resources necessary to cope with life's demands. Relaxation techniques are especially critical coping strategies when stress is chronic and coping resources are overused and fatigued. Methods: This article describes a research-based relaxation technique…

  16. Relaxation Techniques to Manage IBS Symptoms

    Science.gov (United States)

    ... for 15–20 seconds and then begin again. Progressive Muscle Relaxation This method of relaxation focuses on ... helpful, please consider supporting IFFGD with a small tax- deductible donation. Make Donation Adapted from IFFGD Publication # ...

  17. A unified aggregation and relaxation approach for stress-constrained topology optimization

    DEFF Research Database (Denmark)

    Verbart, Alexander; Langelaar, Matthijs; Keulen, Fred van

    2017-01-01

    design-independent set of constraints. The next step is to perform constraint aggregation over the reformulated local constraints using a lower bound aggregation function. We demonstrate that this approach concurrently aggregates the constraints and relaxes the feasible domain, thereby making singular...... optima accessible. The main advantage is that no separate constraint relaxation techniques are necessary, which reduces the parameter dependence of the problem. Furthermore, there is a clear relationship between the original feasible domain and the perturbed feasible domain via this aggregation parameter....

  18. Stress relaxation under cyclic electron irradiation

    International Nuclear Information System (INIS)

    Bystrov, L.N.; Reznitskij, M.E.

    1990-01-01

    The kinetics of deformation process in a relaxating sample under 2 MeV electron cyclic irradiation was studied experimentally. The Al-Mg alloys with controllable and different (in dislocation density precipitate presence and their character) structure were used in experiments. It was established that after the beam was switched on the deformation rate increased sharply and then, during prolonged irradiation, in a gradual manner. After the switching-off the relaxation rate decreases by jumps up to values close to extrapolated rates of pre-radiation relaxation. The exhibition of these effects with radiation switching-off and switchin-on is dependent on the initial rate of thermal relaxation, the test temperature, the preliminary cold deformation and the dominating deformation dislocation mechanism. The preliminary cold deformation and test temperature elevation slightly decrease the effect of instantaneous relaxation acceleration with the irradiation switch-on. 17 refs., 5 figs

  19. SPIRITUAL EMOTIONAL FREEDOM TECHNIQUE DECREASING STRESS ON PATIENTS WITH CERVICAL CANCER

    Directory of Open Access Journals (Sweden)

    Desmaniarti Z,

    2017-01-01

    Full Text Available Introduction: Cervical cancer is known as one of deadly disease. The global incidence of cervical cancer is the second largest in the entire world, including in Indonesia. RSUP Dr. Hasan Sadikin Bandung, cervical cancer ranked fi rst (62.27% compared with other fi ve types of obstetry and gynecology malignancies (suspected malignant ovarian tumors 16.12%, ovarian cancer 11.76%, vulva cancer 8.65% and endometrial cancer 1.19% (Destiana, 2012. Chemotherapy as one of cancer treatment causes various side effects include hair loss, nails blackened, nausea and vomiting, that could makes patient stressful. SEFT ( Spiritual Emotional Freedom Technique is useful to overcome negative emotions through a combination technique that uses psychological energy, spiritual strength, and praying. SEFT is an effective intervention in manage stress, there are some techniques that practiced simply such as praying, NLP (Neuro Linguistic Programming, hypnotherapy, visualisation, meditation, relaxation, imagery and desensitisasi (Zainuddin, 2008. The purpose of this study was to explain reducing stress on patiens with cervical cancer through Spiritual Emotional Freedom Technique (SEFT at RSUP Dr. Hasan Sadikin Bandung. Improvements on patient’s stress will lead to a better result on cervical cancer therapy. Methods: This study was used quasy experiment pre-post test randomize control group design. Patient with cervical cancer at stadium I to III that taking chemotherapy was selected by using purposive sampling and divided into two groups. Each group contains 34 patients. Intervention group was given SEFT in three round. Each round took 30 minutes. Before and after intervention patients was given Questionnaire. The data were analyzed using paired t-test and independent t-test. Result: The result of this research showed that patient’s stress getting lower signifi cantly after intervention. Discussion: SEFT could reduced stress on patients with cervical cancer that

  20. Effects of a relaxation training programme on immediate and prolonged stress responses in women with preterm labour.

    Science.gov (United States)

    Chuang, Li-Lan; Lin, Li-Chan; Cheng, Po-Jen; Chen, Chung-Hey; Wu, Shiao-Chi; Chang, Chuan-Lin

    2012-01-01

    This paper is a report of an experimental study of the effects of relaxation-training programme on immediate and prolonged stress responses in women with preterm labour. Hospitalized pregnant women with preterm labour experience developmental and situational stress. However, few studies have been performed on stress management in such women. An experimental pretest and repeated post-test design was used to compare the outcomes for two groups in northern Taiwan from December 2008, to May 2010. A total of 129 women were randomly assigned to an experimental (n = 68) or control (n = 61) group. The experimental group participants were instructed to listen daily to a 13-minute relaxation programme. Measurements involved the stress visual analogue scale, finger temperatures, State Trait Anxiety Inventory, Perceived Stress Scale and Pregnancy-related Anxiety. Two-way analysis of variance and hierarchical linear modelling were used to analyse the group differences. Compared with those in the control group, participants in the experimental group showed immediate improvements in the stress visual analogue scale scores and finger temperatures. The State Trait Anxiety Inventory-State subscale score for the experimental group was significantly lower than that for the control group (P = 0·03). However, no statistically significant differences for the Perceived Stress Scale and Pregnancy-related Anxiety scores were found between the experimental group and the control group. The relaxation-training programme could improve the stress responses of women with preterm labour. © 2011 The Authors. Journal of Advanced Nursing © 2011 Blackwell Publishing Ltd.

  1. Tension and relaxation in the individual.

    Science.gov (United States)

    Newbury, C R

    1979-06-01

    Increasing materialism in society is resulting in more wide spread nervous tension in all age groups. While some degree of nervous tension is necessary in everyday living, its adverse effects require that we must learn to bring it under control. Total tension is shown to have two components: a controllable element arising from factors in the environment and the inbuilt uncontrollable residue which is basic in the individual temperament. The effects of excessive or uncontrolled stress can be classified as 1) emotional reactions such as neurotic behaviour (anxiety hypochondria, hysteria, phobia, depression obsessions and compulsions) or psychotic behaviour and 2) psychosomatic reactions (nervous asthma, headache, insomnia, heart attack). Nervous energy can be wastefully expended by such factors as loss of temper, wrong attitudes to work, job frustration and marital strains. Relaxation is the only positive way to control undesirable nervous tension and its techniques require to be learned. A number of techniques (progressive relaxation, differential relaxation, hypnosis, the use of biofeedback, Yoga and Transcendental Meditation) are described and their application to dental practice is discussed.

  2. [A study on Korean concepts of relaxation].

    Science.gov (United States)

    Park, J S

    1992-01-01

    Relaxation technique is an independent nursing intervention used in various stressful situations. The concept of relaxation must be explored for the meaning given by the people in their traditional thought and philosophy. Korean relaxation technique, wanting to become culturally acceptable and effective, is learning to recognize and develop Korean concepts, experiences, and musics of relaxation. This study was aimed at discovering Korean concepts, experiences and musics of relaxation and contributing the development of the relaxation technique for Korean people. The subjects were 59 nursing students, 39 hospitalized patients, 61 housewives, 21 rural residents and 16 researchers. Data were collected from September 4th to October 24th, 1991 by interviews or questionnaires. The data analysis was done by qualitative research method, and validity assured by conformation of the concept and category by 2 nursing scientists who had written a Master's thesis on the relaxation technique. The results of the study were summarized as follows; 1. The meaning of the relaxation concept; From 298 statements, 107 concepts were extracted and then 5 categories "Physical domain", "Psychological domain", "Complex domain", "Situation", and "environment" were organized. 'Don't have discomforts, 'don't have muscle tension', 'don't have energy (him in Korean)', 'don't have activities' subcategories were included in "Physical domain". 'Don't have anxiety', 'feel good', 'emotional stability', 'don't have wordly thoughts', 'feel one's brain muddled', 'loss of desire' subcategories were included in "physical domain" 'Comfort body and mind', 'don't have tension of body and mind', 'be sagged' 'liveliness of thoughts' subcategories were included in "Complex domain". 'Rest', 'sleep', 'others' subcategories were included in "Situation domain". And 'quite environment' & 'comfortable environment' subcategories were included in "Environmental domain". 2. The experiences of the relaxation; From 151

  3. Precipitate growth in multi-component systems with stress relaxation by diffusion and creep

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Fischer, F. D.; Riedel, H.; Kozeschnik, E.

    2016-01-01

    Roč. 82, JUL (2016), s. 112-126 ISSN 0749-6419 EU Projects: European Commission(XE) 309916 Institutional support: RVO:68081723 Keywords : Strengthening mechanisms * Phase transformation * Creep * Stress relaxation * Precipitation kinetics Subject RIV: BJ - Thermodynamics Impact factor: 5.702, year: 2016

  4. Body mass index, metabolic factors, and striatal activation during stressful and neutral-relaxing states: an FMRI study.

    Science.gov (United States)

    Jastreboff, Ania M; Potenza, Marc N; Lacadie, Cheryl; Hong, Kwangik A; Sherwin, Robert S; Sinha, Rajita

    2011-02-01

    Stress is associated with alterations in neural motivational-reward pathways in the ventral striatum (VS), hormonal/metabolic changes, and weight increases. The relationship between these different factors is not well understood. We hypothesized that body mass index (BMI) status and hormonal/metabolic factors would be associated with VS activation. We used functional magnetic resonance imaging (fMRI) to compare brain responses of overweight and obese (OW/OB: BMI ≥ 25 kg/m(2): N=27) individuals with normal weight (NW: BMI<18.5-24.9 kg/m(2): N=21) individuals during exposure to personalized stress, alcohol cue, and neutral-relaxing situations using a validated, autobiographical, script-driven, guided-imagery paradigm. Metabolic factors, including fasting plasma glucose (FPG), insulin, and leptin, were examined for their association with VS activation. Consistent with previous studies, stress and alcohol cue exposure each increased activity in cortico-limbic regions. Compared with NW individuals, OW/OB individuals showed greater VS activation in the neutral-relaxing and stress conditions. FPG was correlated with VS activation. Significant associations between VS activation and metabolic factors during stress and relaxation suggest the involvement of metabolic factors in striatal dysfunction in OW/OB individuals. This relationship may contribute to non-homeostatic feeding in obesity.

  5. High Temperature Performance Evaluation of As-serviced 25Cr35Ni Type Heat-resistant Steel Based on Stress Relaxation Tests

    Directory of Open Access Journals (Sweden)

    XU Jun

    2017-08-01

    Full Text Available Based on an as-serviced 25Cr35Ni type steel, the high temperature property evaluation using stress relaxation test(SRT method and residual life prediction were studied. The results show that creep rupture property decreases because of the formation of network carbides along grain boundaries and coarsening of secondary carbides in the austenitic matrix. Based on the relationship of stress relaxation strain rate curves obtained at different temperatures, and the extrapolation equation of stress relaxation rate-rupture time, it is capable to perform residual life evaluation by combining SRT data and a small amount of creep rupture test(CRT. Good agreement is observed for predicting results performed by current method and traditional method.

  6. From plastic to elastic stress relaxation in highly mismatched SiGe/Si heterostructures

    International Nuclear Information System (INIS)

    Isa, Fabio; Salvalaglio, Marco; Dasilva, Yadira Arroyo Rojas; Jung, Arik; Isella, Giovanni; Erni, Rolf; Niedermann, Philippe; Gröning, Pierangelo; Montalenti, Francesco; Känel, Hans von

    2016-01-01

    We present a detailed experimental and theoretical analysis of the epitaxial stress relaxation process in micro-structured compositionally graded alloys. We focus on the pivotal SiGe/Si(001) system employing patterned Si substrates at the micrometre-size scale to address the distribution of threading and misfit dislocations within the heterostructures. SiGe alloys with linearly increasing Ge content were deposited by low energy plasma enhanced chemical vapour deposition resulting in isolated, tens of micrometre tall 3D crystals. We demonstrate that complete elastic relaxation is achieved by appropriate choice of the Ge compositional grading rate and Si pillar width. We investigate the nature and distribution of dislocations along the [001] growth direction in SiGe crystals by transmission electron microscopy, chemical defect etching and etch pit counting. We show that for 3 μm wide Si pillars and a Ge grading rate of 1.5% μm −1 , only misfit dislocations are present while their fraction is reduced for higher Ge grading rates and larger structures due to dislocation interactions. The experimental results are interpreted with the help of theoretical calculations based on linear elasticity theory describing the competition between purely elastic and plastic stress relaxation with increasing crystal width and Ge compositional grading rate.

  7. Relaxation strain measurements in cellular dislocation structures

    International Nuclear Information System (INIS)

    Tsai, C.Y.; Quesnel, D.J.

    1984-01-01

    The conventional picture of what happens during a stress relaxation usually involves imagining the response of a single dislocation to a steadily decreasing stress. The velocity of this dislocation decreases with decreasing stress in such a way that we can measure the stress dependence of the dislocation velocity. Analysis of the data from a different viewpoint enables us to calculate the apparent activation volume for the motion of the dislocation under the assumption of thermally activated glie. Conventional thinking about stress relaxation, however, does not consider the eventual fate of this dislocation. If the stress relaxes to a low enough level, it is clear that the dislocation must stop. This is consistent with the idea that we can determine the stress dependence of the dislocation velocity from relaxation data only for those cases where the dislocation's velocity is allowed to approach zero asymptotically, in short, for those cases where the dislocation never stops. This conflict poses a dilemma for the experimentalist. In real crystals, however, obstacles impede the dislocation's progress so that those dislocations which are stopped at a given stress will probably never resume motion under the influence of the steadily declining stress present during relaxation. Thus one could envision stress relaxation as a process of exhaustion of mobile dislocations, rather than a process of decreasing dislocation velocity. Clearly both points of view have merit and in reality both mechanisms contribute to the phenomena

  8. Ion-induced stress relaxation during the growth of cubic boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Abendroth, B.E.

    2004-08-01

    in this thesis the deposition of cubic boron nitride films by magnetron sputtering is described. The deposition process is analyzed by Langmuir-probe measurement and energy resolved mass spectroscopy. the films are studied by stress measurement, spectroscopic ellipsometry, infrared spectroscopy, elastic recoil detection analysis, Rutherford backscattering spectroscopy, X-ray absorption near edge spectroscopy, X-ray diffraction, and transmission electron microscopy. Discussed are the stress relaxation and the microstructure and bonding characteristics together with the effects of ion bombardement. (HSI)

  9. Relaxation of mechanical stresses in Si-Ge/Si structures implanted by carbon ions. Study with optical methods

    International Nuclear Information System (INIS)

    Klyuj, M.Yi.

    1998-01-01

    Optical properties of Si-Ge/Si structures implanted by carbon ions with the energy of 20 keV and at the doses of 5 centre dot 10 15 - 1- 16 cm -2 are studied by spectro ellipsometry and Raman scattering techniques. From the comparison of experimental data with the results of theoretical calculations, it is shown that, as a result of implantation, a partial relaxation of mechanical stresses in the Si 1-x Ge x film due to introduction of carbon atoms with a small covalent radius into the Si-Ge lattice takes place. An elevated implantation temperature allows one to maintain a high structural perfection of the implanted film

  10. The Effect of Relaxation Interventions on Cortisol Levels in HIV-Sero-Positive Women

    Science.gov (United States)

    Jones, Deborah; Owens, Mary; Kumar, Mahendra; Cook, Ryan; Weiss, Stephen M.

    2016-01-01

    Purpose Activation of the hypothalamic–pituitary–adrenal axis, assessed in terms of cortisol levels, may enhance the ability of HIV to infect lymphocytes and downregulate the immune system, accelerating disease progression. This study sought to determine the effects of relaxation techniques on cortisol levels in HIV-sero-positive women. Methods Women (n = 150) were randomized to a group cognitive–behavioral stress management (CBSM) condition or an individual information condition and underwent 3 types of relaxation training (progressive muscle relaxation, imagery, and autogenic training). Cortisol levels were obtained pre- and postrelaxation. Results Guided imagery was effective in reducing cortisol in the group condition (t = 3.90, P < .001), and muscle relaxation reduced cortisol in the individual condition (t = 3.11, P = .012). Among participants in the group condition attending all sessions, the magnitude of pre- to postsession reduction became greater over time. Conclusions Results suggest that specific relaxation techniques may be partially responsible for cortisol decreases associated with relaxation and CBSM. PMID:23715264

  11. Let Me Relax: Toward Automated Sedentary State Recognition and Ubiquitous Mental Wellness Solutions

    Directory of Open Access Journals (Sweden)

    Vijay Rajanna

    2018-12-01

    Full Text Available Advances in ubiquitous computing technology improve workplace productivity, reduce physical exertion, but ultimately result in a sedentary work style. Sedentary behavior is associated with an increased risk of stress, obesity, and other health complications. Let Me Relax is a fully automated sedentary-state recognition framework using a smartwatch and smartphone, which encourages mental wellness through interventions in the form of simple relaxation techniques. The system was evaluated through a comparative user study of 22 participants split into a test and a control group. An analysis of NASA Task Load Index pre- and post- study survey revealed that test subjects who followed relaxation methods, showed a trend of both increased activity as well as reduced mental stress. Reduced mental stress was found even in those test subjects that had increased inactivity. These results suggest that repeated interventions, driven by an intelligent activity recognition system, is an effective strategy for promoting healthy habits, which reduce stress, anxiety, and other health risks associated with sedentary workplaces.

  12. Effect of temperature on cyclic deformation behavior and residual stress relaxation of deep rolled under-aged aluminium alloy AA6110

    International Nuclear Information System (INIS)

    Juijerm, P.; Altenberger, I.

    2007-01-01

    Mechanical surface treatment (deep rolling) was performed at room temperature on the under-aged aluminium wrought alloy AA6110 (Al-Mg-Si-Cu). Afterwards, specimens were cyclically deformed at room and elevated temperatures up to 250 deg. C. The cyclic deformation behavior and s/n-curves of deep rolled under-aged AA6110 were investigated by stress-controlled fatigue tests and compared to the as-polished condition as a reference. The stability of residual stresses as well as diffraction peak broadening under high-loading and/or elevated-temperature conditions was investigated by X-ray diffraction methods before and after fatigue tests. Depth profiles of near-surface residual stresses as well as full width at half maximum (FWHM) values before and after fatigue tests at elevated temperatures are presented. Thermal residual stress relaxation of deep rolled under-aged AA6110 was investigated and analyzed by applying a Zener-Wert-Avrami function. Thermomechanical residual stress relaxation was analyzed through thermal residual stress relaxation and depth profiles of residual stresses before and after fatigue tests. Finally, an effective border line for the deep rolling treatment due to instability of near-surface work hardening was found and established in a stress amplitude-temperature diagram

  13. Stress relaxation and activation volume at the yield point of cold worked and neutron irradiated copper single crystals

    International Nuclear Information System (INIS)

    Brunner, D.; Diehl, J.

    1979-01-01

    The effective activation volume of slip is studied after neutron irradiation in as-grown crystals as well as in predeformed ones by means of stress relaxation tests between 20 K and 200 K. The activation volume corresponding to the initial strain rate is found to be always higher in predeformed crystals than in as-grown ones. During stress relaxation the flow stress tau decreases linearly with ln(-dtau/dt) (indicating a constant activation volume) only in rare cases. Depending on predeformation and temperature several types of deviations from straight lines are observed: monotoneously bent curves, strong scattering of data points not fitting smooth curves or systematic deviations from straight lines at the beginning of relaxation. Accordingly the effective activation volumes and their dependences on stress seem to behave in a strange manner. By the aid of a previously proposed model for the deformation within the yield point elongation the results can be interpreted qualitatively by taking into account the inhomogeneity of slip and work hardening, allowing a more reliable judgement on the real activation volumes, on which a better understanding of the superposition of the two hardening mechanisms involved here can be based. (author)

  14. Macro-mesoscopic Fracture and Strength Character of Pre-cracked Granite Under Stress Relaxation Condition

    Science.gov (United States)

    Liu, Junfeng; Yang, Haiqing; Xiao, Yang; Zhou, Xiaoping

    2018-05-01

    The fracture characters are important index to study the strength and deformation behavior of rock mass in rock engineering. In order to investigate the influencing mechanism of loading conditions on the strength and macro-mesoscopic fracture character of rock material, pre-cracked granite specimens are prepared to conduct a series of uniaxial compression experiments. For parts of the experiments, stress relaxation tests of different durations are also conducted during the uniaxial loading process. Furthermore, the stereomicroscope is adopted to observe the microstructure of the crack surfaces of the specimens. The experimental results indicate that the crack surfaces show several typical fracture characters in accordance with loading conditions. In detail, some cleavage fracture can be observed under conventional uniaxial compression and the fractured surface is relatively rough, whereas as stress relaxation tests are attached, relative slip trace appears between the crack faces and some shear fracture starts to come into being. Besides, the crack faces tend to become smoother and typical terrace structures can be observed in local areas. Combining the macroscopic failure pattern of the specimens, it can be deduced that the duration time for the stress relaxation test contributes to the improvement of the elastic-plastic strain range as well as the axial peak strength for the studied material. Moreover, the derived conclusion is also consistent with the experimental and analytical solution for the pre-peak stage of the rock material. The present work may provide some primary understanding about the strength character and fracture mechanism of hard rock under different engineering environments.

  15. Exposure of natural rubber to personal lubricants--swelling and stress relaxation as potential indicators of reduced seal integrity of non-lubricated male condoms.

    Science.gov (United States)

    Sarkar Das, Srilekha; Coburn, James C; Tack, Charles; Schwerin, Matthew R; Richardson, D Coleman

    2014-07-01

    Male condoms act as mechanical barriers to prevent passage of body fluids. For effective use of condoms the mechanical seal is also expected to remain intact under reasonable use conditions, including with personal lubricants. Absorption of low molecular weight lubricant components into the material of male condoms may initiate material changes leading to swelling and stress relaxation of the polymer network chains that could affect performance of the sealing function of the device. Swelling indicates both a rubber-solvent interaction and stress relaxation, the latter of which may indicate and/or result in a reduced seal pressure in the current context. Swelling and stress relaxation of natural rubber latex condoms were assessed in a laboratory model in the presence of silicone-, glycol-, and water-based lubricants. Within 15 minutes, significant swelling (≥6 %) and stress reduction (≥12 %) of condoms were observed with 2 out of 4 silicone-based lubricants tested, but neither was observed with glycol- or water-based lubricants tested. Under a given strain, reduction in stress was prominent during the swelling processes, but not after the process was complete. Lubricant induced swelling and stress relaxation may loosen the circumferential stress responsible for the mechanical seal. Swelling and stress relaxation behavior of latex condoms in the presence of personal lubricants may be useful tests to identify lubricant-rooted changes in condom-materials. For non-lubricated latex condoms, material characteristics--which are relevant to failure--may change in the presence of a few silicone-based personal lubricants. These changes may in turn induce a loss of condom seal during use, specifically at low strain conditions. Published by Elsevier Inc.

  16. β-distribution for Reynolds stress and turbulent heat flux in relaxation turbulent boundary layer of compression ramp

    Science.gov (United States)

    Hu, YanChao; Bi, WeiTao; Li, ShiYao; She, ZhenSu

    2017-12-01

    A challenge in the study of turbulent boundary layers (TBLs) is to understand the non-equilibrium relaxation process after sep-aration and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a turbulence model.

  17. Multidimensional Test Assembly Based on Lagrangian Relaxation Techniques. Research Report 98-08.

    Science.gov (United States)

    Veldkamp, Bernard P.

    In this paper, a mathematical programming approach is presented for the assembly of ability tests measuring multiple traits. The values of the variance functions of the estimators of the traits are minimized, while test specifications are met. The approach is based on Lagrangian relaxation techniques and provides good results for the two…

  18. Separating the Influence of Environment from Stress Relaxation Effects on Dwell Fatigue Crack Growth in a Nickel-Base Disk Alloy

    Science.gov (United States)

    Telesman, J.; Gabb, T. P.; Ghosn, L. J.

    2016-01-01

    Both environmental embrittlement and crack tip visco-plastic stress relaxation play a significant role in determining the dwell fatigue crack growth (DFCG) resistance of nickel-based disk superalloys. In the current study performed on the Low Solvus High Refractory (LSHR) disk alloy, the influence of these two mechanisms were separated so that the effects of each could be quantified and modeled. Seven different microstructural variations of LSHR were produced by controlling the cooling rate and the subsequent aging and thermal exposure heat treatments. Through cyclic fatigue crack growth testing performed both in air and vacuum, it was established that four out of the seven LSHR heat treatments evaluated, possessed similar intrinsic environmental resistance to cyclic crack growth. For these four heat treatments, it was further shown that the large differences in dwell crack growth behavior which still persisted, were related to their measured stress relaxation behavior. The apparent differences in their dwell crack growth resistance were attributed to the inability of the standard linear elastic fracture mechanics (LEFM) stress intensity parameter to account for visco-plastic behavior. Crack tip stress relaxation controls the magnitude of the remaining local tensile stresses which are directly related to the measured dwell crack growth rates. It was hypothesized that the environmentally weakened grain boundary crack tip regions fail during the dwells when their strength is exceeded by the remaining local crack tip tensile stresses. It was shown that the classical creep crack growth mechanisms such as grain boundary sliding did not contribute to crack growth, but the local visco-plastic behavior still plays a very significant role by determining the crack tip tensile stress field which controls the dwell crack growth behavior. To account for the influence of the visco-plastic behavior on the crack tip stress field, an empirical modification to the LEFM stress

  19. Work-related stress, inability to relax after work and risk of adult asthma: a population-based cohort study.

    Science.gov (United States)

    Loerbroks, A; Gadinger, M C; Bosch, J A; Stürmer, T; Amelang, M

    2010-10-01

    There is an extensive literature linking stressful work conditions to adverse health outcomes. Notwithstanding, the relationship with asthma has not been examined, although various other measures of psychological stress have been associated with asthma. Therefore, we aimed to investigate the relation between work stress and asthma prevalence and incidence. We used data from a population-based cohort study (n = 5114 at baseline in 1992-1995 and n = 4010 at follow-up in 2002/2003). Asthma was measured by self-reports. Two scales that assessed psychologically adverse work conditions were extracted from a list of work-condition items by factor analysis (these scales were termed 'work stress' and 'inability to relax after work'). For each scale, the derived score was employed both as continuous z-score and as categorized variable in analyses. Associations with asthma were estimated by prevalence ratios (PRs) and risk ratios (RRs) using Poisson regression with a log-link function adjusting for demographics, health-related lifestyles, body mass index and family history of asthma. Analyses were restricted to those in employment (n = 3341). Work stress and inability to relax z-scores were positively associated with asthma prevalence (PR = 1.15, 95%CI = 0.97, 1.36 and PR = 1.43, 95%CI = 1.12, 1.83, respectively). Prospective analyses using z-scores showed that for each 1 standard deviation increase in work stress and inability to relax, the risk of asthma increased by approximately 40% (RR for work stress = 1.46, 95%CI = 1.06, 2.00; RR for inability to relax = 1.39, 95%CI = 1.01, 1.91). Similar patterns of associations were observed in analyses of categorized exposures. This is the first study to show a cross-sectional and longitudinal association of work stress with asthma.

  20. Modified relaxation technique for treating hypertension in Thai postmenopausal women

    Directory of Open Access Journals (Sweden)

    Saensak S

    2013-10-01

    Full Text Available Suprawita Saensak,1,2 Teraporn Vutyavanich,3 Woraluk Somboonporn,4 Manit Srisurapanont5 1Academic Department, Faculty of Medicine, Mahasarakham University, Maha Sarakham, Thailand; 2Department of Community Medicine, Faculty of Medicine, Chiang Mai University,Thailand; 3Department of Obstetrics and Gynecology, Chiang Mai University, Chiang Mai, Thailand; 4Department of Obstetrics and Gynecology, Khon Kaen University, Khon Kaen, Thailand; 5Department of Psychiatry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand Aim: To examine the effectiveness of a modified relaxation (MR technique in reducing blood pressure levels in Thai postmenopausal women with mild hypertension, compared with a control group who received health education. Methods: This is a 16-week, randomized, parallel, open-label, controlled trial in a menopausal clinic in a tertiary health care center in Northeastern Thailand. The intervention group received a 60-minute session of MR training and were encouraged to practice 15–20 minutes a day, at least 5 days a week. The control group received lifestyle education, including diet and exercise. The primary and secondary outcomes were systolic and diastolic blood pressure (SBP and DBP. Results: Of 432 participants, 215 and 217 were randomly allocated to the MR and control groups, respectively. Of those, 167 participants in the MR group and 175 participants in the control group completed the study. The SBP was significantly more reduced in the MR group, with a mean of 2.1 mmHg (P < 0.001. There was no significant difference between groups on the changed DBP. Conclusion: The MR technique may be effective in lowering SBP in Thai postmenopausal women visiting a menopause clinic. Its efficacy may be observed as soon as 4 weeks after start of treatment. Long-term and combined relaxation therapy and antihypertensive agents are warranted in a large cohort of this population. This trial is registered in clinicaltrials.gov (number

  1. A COMPARATIVE STUDY ON EFFECTIVENESS OF STATIC STRETCH AND HOLD RELAX TECHNIQUES OVER HAMSTRING FLEXIBILITY

    Directory of Open Access Journals (Sweden)

    N. Vamsidhar

    2014-12-01

    Full Text Available Background: Flexibility is important in prevention of injury, muscular and postural imbalance more over the Hamstring flexibility has a lion share in sports performances and preventing DOMS. Stretching procedures increases the ROM by embarking on biomechanics and Neurologic and molecular mechanics. Hamstrings, the two joint muscle plays a crucial role in two joints integrity and also spine as they are in closed kinematic chain. The hamstring muscles represent the primary flexors of Knee. Hamstrings tightness results in Limits Knee extension when hip is flexed, Posterior Pelvic tilt, and flatten the lumbar spine. Methods: The subjects selected randomly and divided into two groups (Experimental group and control group.30 samples in One group applied with Static Stretch once a day for 3 repetitions 5 days a week for six weeks and 30 samples in other group applied with Hold relax technique once a day for 4 repetitions 5 days a week for six weeks. The knee joint range of motion was measured at the end of every week with Universal goniometer. Results: By comparing the means of Group – I, given Static Stretch and Group – II, given Hold relax Technique for six weeks implied that there is improvement of flexibility in Group – II and the ‘P’ value < 0.01 shows the difference is highly significant. Conclusion: This study concludes that the hold relax Technique method has proved to be better technique then the static stretch for improving hamstring flexibility.

  2. Numerical and experimental evaluation of the residual stress relaxation and the influence zone due to application of the crack compliance method

    International Nuclear Information System (INIS)

    Sandoval-Pineda, J M; Garcia-Lira, J; Urriolagoitia-Sosa, G; Urriolagoitia-Calderon, G; Hernandez-Gomez, L H; Beltran-Fernandez, J A; RodrIguez-Martinez, R

    2009-01-01

    This paper presents the results concerning an evaluation of the crack compliance method. The research was focused on the relaxation caused by a cut induced to obtain the data required to calculate the residual stress field. The main objective in this research is to establish the optimum place to cut in a specimen that has suffered a failure and how extended is the zone of relaxed stresses. It has been recognized that a crack vanishes the beneficial or detrimental effects of the residual stress fields. This research has been performed in a numerical and experimental way, so results can be compared and FEM on this topic can be assessed.

  3. Numerical and experimental evaluation of the residual stress relaxation and the influence zone due to application of the crack compliance method

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval-Pineda, J M; Garcia-Lira, J [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de IngenierIa Mecanica y Electrica (ESIME), Unidad profesional, Azcapotzalco, Av. de las Granjas No. 682, Col. Sta. Catarina Azcapotzalco, C.P. 02550, Mexico D.F. Mexico (Mexico); Urriolagoitia-Sosa, G; Urriolagoitia-Calderon, G; Hernandez-Gomez, L H; Beltran-Fernandez, J A; RodrIguez-Martinez, R, E-mail: jsandovalp@ipn.m, E-mail: guiurri@hotmail.co [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de IngenierIa Mecanica y Electrica (ESIME). Edificio 5. 2do Piso, Unidad Profesional Adolfo Lopez Mateos ' Zacatenco' Col. Lindavista, C.P. 07738, Mexico, D.F. Mexico (Mexico)

    2009-08-01

    This paper presents the results concerning an evaluation of the crack compliance method. The research was focused on the relaxation caused by a cut induced to obtain the data required to calculate the residual stress field. The main objective in this research is to establish the optimum place to cut in a specimen that has suffered a failure and how extended is the zone of relaxed stresses. It has been recognized that a crack vanishes the beneficial or detrimental effects of the residual stress fields. This research has been performed in a numerical and experimental way, so results can be compared and FEM on this topic can be assessed.

  4. Relaxation of Anisotropic Glasses

    DEFF Research Database (Denmark)

    Deubener, Joachim; Martin, Birgit; Wondraczek, Lothar

    2004-01-01

    . When the load was removed at room temperature a permanent optical anisotropy (birefringence) was observed only perpendicular to cylinder axis and the pressure direction indicating complete elimination of thermal stresses. Relaxation of structural anisotropy was studied from reheating experiments using...... the energy release, thermo-mechanical and optical relaxation behaviour are drawn....

  5. A Qualitative Analysis of Stress and Relaxation Themes Contributing to Burnout in First-Year Psychiatry and Medicine Residents.

    Science.gov (United States)

    Benson, Nicole M; Chaukos, Deanna; Vestal, Heather; Chad-Friedman, Emma F; Denninger, John W; Borba, Christina P C

    2018-05-14

    Qualitative research on trainee well-being can add nuance to the understanding of propagators of burnout, and the role for interventions aimed at supporting well-being. This qualitative study was conducted to identify (i) situations and environments that cause stress for trainees, (ii) stress-reducing activities that trainees utilize, and (iii) whether trainees who report distress (high burnout and depression scores) describe different stressors and relaxation factors than those who do not. The study was conducted with a convenience sample of first-year medicine and psychiatry residents at a large urban teaching hospital. Participants were asked to complete electronic stress and relaxation diaries daily for 1 week. Diary entries were coded for recurrent themes. Participants were screened for burnout and depression. Codes were compared by subgroup based on baseline burnout and depression status to elucidate if specific themes emerged in these subgroups. Study sample included 51 interns. Sixteen (16/50, 32%) screened positive for burnout and three (3/50, 14%) had a positive depression screen. The most common stressors related to aspects of the learning environment, compounded by feeling under-equipped, overwhelmed, or out of time. The majority of relaxation activities involved social connection, food, other comforts, and occurred outside of the hospital environment. This study reveals that interns (regardless of burnout or depression screen) identify stressors that derive primarily from organizational, interpersonal, and cultural experiences of the learning environment; whereas relaxation themes are diversely represented across realms (home, leisure, social, health), though emphasize activities that occur outside of the work place.

  6. The contrasting roles of creep and stress relaxation in the time-dependent deformation during in-situ cooling of a nickel-base single crystal superalloy.

    Science.gov (United States)

    Panwisawas, Chinnapat; D'Souza, Neil; Collins, David M; Bhowmik, Ayan

    2017-09-11

    Time dependent plastic deformation in a single crystal nickel-base superalloy during cooling from casting relevant temperatures has been studied using a combination of in-situ neutron diffraction, transmission electron microscopy and modelling. Visco-plastic deformation during cooling was found to be dependent on the stress and constraints imposed to component contraction during cooling, which mechanistically comprises creep and stress relaxation. Creep results in progressive work hardening with dislocations shearing the γ' precipitates, a high dislocation density in the γ channels and near the γ/γ' interface and precipitate shearing. When macroscopic contraction is restricted, relaxation dominates. This leads to work softening from a decreased dislocation density and the presence of long segment stacking faults in γ phase. Changes in lattice strains occur to a similar magnitude in both the γ and γ' phases during stress relaxation, while in creep there is no clear monotonic trend in lattice strain in the γ phase, but only a marginal increase in the γ' precipitates. Using a visco-plastic law derived from in-situ experiments, the experimentally measured and calculated stresses during cooling show a good agreement when creep predominates. However, when stress relaxation dominates accounting for the decrease in dislocation density during cooling is essential.

  7. A coupled creep plasticity model for residual stress relaxation of a shot-peened nickel-based superalloy

    Science.gov (United States)

    Buchanan, Dennis J.; John, Reji; Brockman, Robert A.; Rosenberger, Andrew H.

    2010-01-01

    Shot peening is a commonly used surface treatment process that imparts compressive residual stresses into the surface of metal components. Compressive residual stresses retard initiation and growth of fatigue cracks. During component loading history, shot-peened residual stresses may change due to thermal exposure, creep, and cyclic loading. In these instances, taking full credit for compressive residual stresses would result in a nonconservative life prediction. This article describes a methodical approach for characterizing and modeling residual stress relaxation under elevated temperature loading, near and above the monotonic yield strength of INI 00. The model incorporates the dominant creep deformation mechanism, coupling between the creep and plasticity models, and effects of prior plastic strain to simulate surface treatment deformation.

  8. The effect of progressive muscle relaxation and guided imagery on stress, anxiety, and depression of pregnant women referred to health centers.

    Science.gov (United States)

    Nasiri, Saeideh; Akbari, Hossein; Tagharrobi, Leila; Tabatabaee, Akram Sadat

    2018-01-01

    If anxiety and depression do not detect in pregnant women, they may cause complications for the mother, child, and family, including postpartum depression. With regard to the administrative capability of relaxation in health centers, this study was conducted to determine the effect of progressive muscle relaxation and guided imagery on stress, anxiety, and depression in pregnant women. This randomized clinical trial was conducted on pregnant women in the city of Kashan at 28-36 weeks. At the onset of the study, demographic questionnaire, Edinburgh Depression Scale, and Depression, Anxiety, and Stress Scale-21 (DASS-21) were completed. Providing obtaining score of mild-to-moderate in the stress, anxiety, and depression scale and score of 10 or higher in Edinburgh Depression Scale, individuals were divided randomized to the intervention group ( n = 33) and control group ( n = 33). DASS-21 was again completed in the 4 th -7 th weeks of beginning of the study by all women. Analysis of variance with repeated measures indicated significant differences in mean of scores of stress, anxiety, and depression at three different times in relaxation group ( P pregnancy outcomes.

  9. Internal stress relaxation and load redistribution during the twinning-detwinning-dominated cyclic deformation of a wrought magnesium alloy, ZK60A

    International Nuclear Information System (INIS)

    Wu, L.; Agnew, S.R.; Brown, D.W.; Stoica, G.M.; Clausen, B.; Jain, A.; Fielden, D.E.; Liaw, P.K.

    2008-01-01

    A study of the internal strain (stress) evolution during cyclic deformation dominated by {101-bar2} twinning and detwinning mechanisms within a magnesium alloy, ZK60A, was conducted using in situ neutron diffraction. It is shown that once the matrix grains twin, the (00.2) matrix and twin grains are relaxed relative to the neighbors. This load redistribution between the soft- and hard-grain orientations is a result of plastic anisotropy. The twins which formed during the initial compression sustain a tensile stress along the c-axis, when the applied compressive stress is less than ∼80 MPa upon unloading. This local (intergranular) tensile stress is hypothesized to be effective for driving the detwinning event under a macroscopic compressive field along the c-axis. The activation stresses, 15 and 6 MPa, respectively, for the {101-bar2} extension twinning and detwinning, are approximated, based on the relaxation of the internal stresses in the matrix and twin grains

  10. The effects of progressive muscle relaxation and autogenic relaxation on young soccer players' mood states.

    Science.gov (United States)

    Hashim, Hairul Anuar; Hanafi Ahmad Yusof, Hazwani

    2011-06-01

    This study was designed to compare the effects of two different relaxation techniques, namely progressive muscle relaxation (PMR) and autogenic relaxation (AGR) on moods of young soccer players. sixteen adolescent athletes (mean age: 14.1 ± 1.3) received either PMR or AGR training. Using Profile of Mood States- Adolescents, their mood states were measured one week before relaxation training, before the first relaxation session, and after the twelfth relaxation session. Mixed ANOVA revealed no significant interaction effects and no significant main effects in any of the subscales. However, significant main effects for testing sessions were found for confusion, depression, fatigue, and tension subscales. Post hoc tests revealed post-intervention reductions in the confusion, depression, fatigue, and tension subscale scores. These two relaxation techniques induce equivalent mood responses and may be used to regulate young soccer players' mood states.

  11. Effect of yoga relaxation techniques on performance of digit-letter substitution task by teenagers

    Directory of Open Access Journals (Sweden)

    Pradhan Balaram

    2009-01-01

    Full Text Available Background/Aims : Memory and selective attention are important skills for academic and professional performance. Techniques to improve these skills are not taught either in education or company training courses. Any system which can systematically improve these skills will be of value in schools, universities, and workplaces. Aims:To investigate possible improvements in memory and selective attention, as measured by the Digit-Letter Substitution Task (DLST, due to practice of Cyclic Meditation (CM, a yoga relaxation technique, as compared to Supine Rest (SR. Materials and Methods : Subjects consisted of 253 school students, 156 boys, 97 girls, in the age range 13-16 years, who were attending a 10-day yoga training course during summer vacation. The selected subjects had English as their medium of instruction in school and they acted as their own controls. They were allocated to two groups, and tested on the DLST, immediately before and after 22.5 minutes practice of CM on one day, and immediately before and after an equal period of SR on the other day. The first group performed CM on day 9 and SR on day 10. For the second group, the order was reversed. Results : Within each group pre-post test differences were significant for both the relaxation techniques. The magnitude of net score improvement was greater after SR (7.85% compared to CM (3.95%. Significance levels were P < 0.4 x 10 -9 for SR and P < 0.1 x 10 -3 for CM. The number of wrong attempts also increased significantly on both interventions, even after removing two outlier data points on day 1 in the SR group. Conclusions: Both CM and SR lead to improvement in performance on the DLST. However, these relaxation techniques lead to more wrong cancellation errors.

  12. Stress: The Special Educator's Perspective.

    Science.gov (United States)

    Raschke, Donna; And Others

    1988-01-01

    The article describes approaches special education teachers can take to reduce stress including diet and exercise, relaxation techniques, use of social support systems, goal setting, time management, and networking. A survey of special education teachers found the use of humor the most common strategy for coping with stress. (DB)

  13. Growth stress buildup in ion beam sputtered Mo thin films and comparative study of stress relaxation upon thermal annealing or ion irradiation

    International Nuclear Information System (INIS)

    Debelle, A.; Abadias, G.; Michel, A.; Jaouen, C.; Pelosin, V.

    2007-01-01

    In an effort to address the understanding of the origin of growth stress in thin films deposited under very energetic conditions, the authors investigated the stress state and microstructure of Mo thin films grown by ion beam sputtering (IBS) as well as the stress relaxation processes taking place during subsequent thermal annealing or ion irradiation. Different sets of samples were grown by varying the IBS deposition parameters, namely, the energy E 0 and the flux j of the primary ion beam, the target-to-sputtering gas mass ratio M 1 /M 2 as well as film thickness. The strain-stress state was determined by x-ray diffraction using the sin 2 ψ method and data analyzed using an original stress model which enabled them to correlate information at macroscopic (in terms of stress) and microscopic (in terms of defect concentration) levels. Results indicate that these refractory metallic thin films are characterized by a high compressive growth stress (-2.6 to -3.8 GPa), resulting from the creation of a large concentration (up to ∼1.4%) of point or cluster defects, due to the atomic peening mechanism. The M 1 /M 2 mass ratio enables tuning efficiently the mean deposited energy of the condensing atoms; thus, it appears to be the more relevant deposition parameter that allows modifying both the microstructure and the stress level in a significant way. The growth stress comes out to be highly unstable. It can be easily relaxed either by postgrowth thermal annealing or ion irradiation in the hundred keV range at very low dose [<0.1 dpa (displacement per atom)]. It is shown that thermal annealing induces deleterious effects such as oxidation of the film surface, decrease of the film density, and in some cases adhesion loss at the film/substrate interface, while ion irradiation allows controlling the stress level without generating any macroscopic damage

  14. The Effects of Progressive Muscle Relaxation and Autogenic Relaxation on Young Soccer Players’ Mood States

    Science.gov (United States)

    Hashim, Hairul Anuar; Hanafi@Ahmad Yusof, Hazwani

    2011-01-01

    Purpose This study was designed to compare the effects of two different relaxation techniques, namely progressive muscle relaxation (PMR) and autogenic relaxation (AGR) on moods of young soccer players. Methods Sixteen adolescent athletes (mean age: 14.1 ± 1.3) received either PMR or AGR training. Using Profile of Mood States- Adolescents, their mood states were measured one week before relaxation training, before the first relaxation session, and after the twelfth relaxation session. Results Mixed ANOVA revealed no significant interaction effects and no significant main effects in any of the subscales. However, significant main effects for testing sessions were found for confusion, depression, fatigue, and tension subscales. Post hoc tests revealed post-intervention reductions in the confusion, depression, fatigue, and tension subscale scores. Conclusion These two relaxation techniques induce equivalent mood responses and may be used to regulate young soccer players’ mood states. PMID:22375225

  15. Adsorption of phospholipids at oil/water interfaces during emulsification is controlled by stress relaxation and diffusion.

    Science.gov (United States)

    Hildebrandt, Ellen; Nirschl, Hermann; Kok, Robbert Jan; Leneweit, Gero

    2018-05-16

    Adsorption of phosphatidylcholines at oil/water interfaces strongly deviates from spread monolayers at air/water surfaces. Understanding its nature and consequences could vastly improve applications in medical nanoemulsions and biotechnologies. Adsorption kinetics at interfaces of water with different oil phases were measured by profile analysis tensiometry. Adsorption kinetics for 2 different phospholipids, DPPC and POPC, as well as 2 organic phases, squalene and squalane, show that formation of interfacial monolayers is initially dominated by stress-relaxation in the first minutes. Diffusion only gradually contributes to a decrease in interfacial tension at later stages of time and higher film pressures. The results can be applied for the optimization of emulsification protocols using mechanical treatments. Emulsions using phospholipids with unsaturated fatty acids are dominated much more strongly by stress-relaxation and cover interfaces very fast compared to those with saturated fatty acids. In contrast, phospholipid layers consisting of saturated fatty acids converge faster towards the equilibrium than those with unsaturated fatty acids.

  16. Tocotrienol rich tocomin attenuates oxidative stress and improves endothelium-dependent relaxation in aortae from rats fed a high-fat western diet

    Directory of Open Access Journals (Sweden)

    Saher F Ali

    2016-10-01

    Full Text Available We have previously reported that tocomin, a mixture high in tocotrienol content and also containing tocopherol, acutely preserves endothelial function in the presence of oxidative stress. In this study we investigated whether tocomin treatment would preserve endothelial function in aortae isolated from rats fed a high fat diet known to cause oxidative stress. Wistar hooded rats were fed a western diet (WD, 21% fat or control rat chow (SD, 6% fat for 12 weeks. Tocomin (40 mg/kg/day sc or its vehicle (peanut oil was administered for the last 4 weeks of the feeding regime. Aortae from WD rats showed an impairment of endothelium-dependent relaxation that was associated with an increased expression of the NADPH oxidase Nox2 subunit and an increase in the vascular generation of superoxide measured using L-012 chemiluminescence. The increase in vascular oxidative stress was accompanied by a decrease in basal NO release and impairment of the contribution of NO to ACh-induced relaxation. The impaired relaxation is likely contributed to by a decreased expression of eNOS, calmodulin and phosphorylated Akt and an increase in caveolin-Tocotrienol rich tocomin, which prevented the diet-induced changes in vascular function, reduced vascular superoxide production and abolished the diet-induced changes in eNOS and other protein expression. Using selective inhibitors of nitric oxide synthase (NOS, soluble guanylate cyclase (sGC and calcium activated potassium (KCa channels we demonstrated that tocomin increased NO mediated relaxation, without affecting the contribution of endothelium-dependent hyperpolarization type relaxation to the endothelium-dependent relaxation. The beneficial actions of tocomin in this diet-induced model of obesity suggests that it may have potential to be used as a therapeutic agent to prevent vascular disease in obesity.

  17. Residual stress relaxation due to fretting fatigue in shot peened surfaces of Ti-6Al-4V

    International Nuclear Information System (INIS)

    Martinez, S.A.; Blodgett, M.P.; Mall, S.; Sathish, S.; Namjoshi, S.

    2003-01-01

    Fretting fatigue occurs at locations where the materials are sliding against each other under load. In order to enhance the fatigue life under fretting conditions the surface of the component is shot peened. In general, the shot peening process produces a compressive stress on the surface of the material, thereby increasing the resistance of the material to crack initiation. This paper presents the relaxation of residual stress caused during fretting fatigue. X-ray diffraction has been utilized as the method to measure residual stress in fretting fatigued samples of Ti-6Al-4V

  18. Creep and relaxation behavior of Inconel-617

    International Nuclear Information System (INIS)

    Osthoff, W.; Ennis, P.J.; Nickel, H.; Schuster, H.

    1984-01-01

    The static and dynamic creep behavior of Inconel alloy 617 has been determined in constant load creep tests, relaxation tests, and stress reduction tests in the temperature range 1023 to 1273 K. The results have been interpreted using the internal stress concept: The dependence of the internal stress on the applied stress and test temperature was determined. In a few experiments, the influence of cold deformation prior to the creep test on the magnitude of the internal stress was also investigated. It was found that the experimentally observed relaxation behavior could be more satisfactorily described using the Norton creep equation modified by incorporation of the internal stress than by the conventional Norton creep equation

  19. Hole Drilling Technique – on site stress measurement

    OpenAIRE

    Schueremans, Luc

    2009-01-01

    2. Hole Drilling Technique for onsite stress measurement has been used to validate the stress level at 2 pillars of the Sint-Jacobschurch (Leuven, B). The technique allows estimating the stress in a stone from measuring deformation when a small hole is made. It is a low intrusive technique. The application of it is limited to local stress measurements and is a complement to stress estimate from calculations of from the use of –for example- flat jacks. In addition to the flat-jack technique...

  20. Tensile, creep and relaxation characteristics of zircaloy cladding at 3850C

    International Nuclear Information System (INIS)

    Murty, K.L.; McDonald, S.G.

    1981-01-01

    Axial creep tests were carried out at stresses ranging form 30 ksi to 50 ksi. Steady-state creep rates were evaluated from stress change tests to minimize the number of samples. The secondary creep rate was related to the applied stress through a Sinh function. The functional dependence of the strain rate on the stress was also evaluated from load relaxation tests. It is demonstrated that the strain rates derived from load relaxation tests are identical to the creep data when the relaxation testing was carried out at the point of maximum load in a tensile test. In addition, the creep and relaxation results are identical to the true ultimate tensile stress versus applied strain-rate data derived from tensile tests. (orig./HP)

  1. A randomized controlled pilot study feasibility of a tablet-based guided audio-visual relaxation intervention for reducing stress and pain in adults with sickle cell disease.

    Science.gov (United States)

    Ezenwa, Miriam O; Yao, Yingwei; Engeland, Christopher G; Molokie, Robert E; Wang, Zaijie Jim; Suarez, Marie L; Wilkie, Diana J

    2016-06-01

    To test feasibility of a guided audio-visual relaxation intervention protocol for reducing stress and pain in adults with sickle cell disease. Sickle cell pain is inadequately controlled using opioids, necessitating further intervention such as guided relaxation to reduce stress and pain. Attention-control, randomized clinical feasibility pilot study with repeated measures. Randomized to guided relaxation or control groups, all patients recruited between 2013-2014 during clinical visits, completed stress and pain measures via a Galaxy Internet-enabled Android tablet at the Baseline visit (pre/post intervention), 2-week posttest visit and also daily at home between the two visits. Experimental group patients were asked to use a guided relaxation intervention at the Baseline visit and at least once daily for 2 weeks. Control group patients engaged in a recorded sickle cell discussion at the Baseline visit. Data were analysed using linear regression with bootstrapping. At baseline, 27/28 of consented patients completed the study protocol. Group comparison showed that guided relaxation significantly reduced current stress and pain. At the 2-week posttest, 24/27 of patients completed the study, all of whom reported liking the study. Patients completed tablet-based measures on 71% of study days (69% in control group, 72% in experiment group). At the 2-week posttest, the experimental group had significantly lower composite pain index scores, but the two groups did not differ significantly on stress intensity. This study protocol appears feasible. The tablet-based guided relaxation intervention shows promise for reducing sickle cell pain and warrants a larger efficacy trial. The ClinicalTrials.gov Identifier is: NCT02501447. © 2016 John Wiley & Sons Ltd.

  2. Fractional calculus model of articular cartilage based on experimental stress-relaxation

    Science.gov (United States)

    Smyth, P. A.; Green, I.

    2015-05-01

    Articular cartilage is a unique substance that protects joints from damage and wear. Many decades of research have led to detailed biphasic and triphasic models for the intricate structure and behavior of cartilage. However, the models contain many assumptions on boundary conditions, permeability, viscosity, model size, loading, etc., that complicate the description of cartilage. For impact studies or biomimetic applications, cartilage can be studied phenomenologically to reduce modeling complexity. This work reports experimental results on the stress-relaxation of equine articular cartilage in unconfined loading. The response is described by a fractional calculus viscoelastic model, which gives storage and loss moduli as functions of frequency, rendering multiple advantages: (1) the fractional calculus model is robust, meaning that fewer constants are needed to accurately capture a wide spectrum of viscoelastic behavior compared to other viscoelastic models (e.g., Prony series), (2) in the special case where the fractional derivative is 1/2, it is shown that there is a straightforward time-domain representation, (3) the eigenvalue problem is simplified in subsequent dynamic studies, and (4) cartilage stress-relaxation can be described with as few as three constants, giving an advantage for large-scale dynamic studies that account for joint motion or impact. Moreover, the resulting storage and loss moduli can quantify healthy, damaged, or cultured cartilage, as well as artificial joints. The proposed characterization is suited for high-level analysis of multiphase materials, where the separate contribution of each phase is not desired. Potential uses of this analysis include biomimetic dampers and bearings, or artificial joints where the effective stiffness and damping are fundamental parameters.

  3. Hardening and stress relaxation during repeated heating of 15Kh2MFA and 15Kh2NMFA steels welded joints

    International Nuclear Information System (INIS)

    Zubchenko, A.S.; Suslova, E.A.

    1986-01-01

    Results of investigation of temperature-time conditions of hardening of welded joints of 15Kh2MFA and 15Kh2NMFA steels and their relaxation resistance, effect of metal structure of imitated heat affected zone (HAZ) on intensity of precipitation hardening at repeated heating are presented as well as the results of the process of relaxation of residual stresses at welded joints samples heating carried out by automatic welding under the flux with the use of adding materials and technology of manufacturing of vessels of WWER-440 and WWER-1000 reactors. Peculiarities of the hardening at repeated heating of the HAZ metal imitated at these steels. Precipitation hardening of overheated 15Kh2MFA steel is connected with precipitations at repeated heating of carbides of the M 7 C 3 , M 3 C and VC type. Stress relaxation in welded joints runs more intensively at the initial stage of repeated heating, i.e. during the same period of the process of dispersed carbide precipitations

  4. Relaxation techniques for pain management in labour.

    Science.gov (United States)

    Smith, Caroline A; Levett, Kate M; Collins, Carmel T; Armour, Mike; Dahlen, Hannah G; Suganuma, Machiko

    2018-03-28

    Many women would like to avoid pharmacological or invasive methods of pain management in labour and this may contribute to the popularity of complementary methods of pain management. This review examined currently available evidence on the use of relaxation therapies for pain management in labour. This is an update of a review first published in 2011. To examine the effects of mind-body relaxation techniques for pain management in labour on maternal and neonatal well-being during and after labour. We searched Cochrane Pregnancy and Childbirth's Trials Register (9 May 2017), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, Issue 5 2017), MEDLINE (1966 to 24 May 2017), CINAHL (1980 to 24 May 2017), the Australian New Zealand Clinical Trials Registry (18 May 2017), ClinicalTrials.gov (18 May 2017), the ISRCTN Register (18 May 2017), the WHO International Clinical Trials Registry Platform (ICTRP) (18 May 2017), and reference lists of retrieved studies. Randomised controlled trials (including quasi randomised and cluster trials) comparing relaxation methods with standard care, no treatment, other non-pharmacological forms of pain management in labour or placebo. Two review authors independently assessed trials for inclusion and risk of bias, extracted data and checked them for accuracy. We attempted to contact study authors for additional information. We assessed evidence quality with GRADE methodology. This review update includes 19 studies (2519 women), 15 of which (1731 women) contribute data. Interventions examined included relaxation, yoga, music and mindfulness. Approximately half of the studies had a low risk of bias for random sequence generation and attrition bias. The majority of studies had a high risk of bias for performance and detection bias, and unclear risk of bias for, allocation concealment, reporting bias and other bias. We assessed the evidence from these studies as ranging from low to very low quality, and

  5. Microwave Amplitude Modulation Technique to Measure Spin-Lattice (T 1) and Spin-Spin (T 2) Relaxation Times

    Science.gov (United States)

    Misra, Sushil K.

    The measurement of very short spin-lattice, or longitudinal, relaxation (SLR) times (i.e., 10-10 Misra, 1998), and polymer resins doped with rare-earth ions (Pescia et al., 1999a; Pescia et al. 1999b). The ability to measure such fast SLR data on amorphous Si and copper-chromium-tin spinel led to an understanding of the role of exchange interaction in affecting spin-lattice relaxation, while the data on polymer resins doped with rare-earth ions provided evidence of spin-fracton relaxation (Pescia et al., 1999a, b). But such fast SLR times are not measurable by the most commonly used techniques of saturation- and inversion-recovery (Poole, 1982; Alger, 1968), which only measure spin-lattice relaxation times longer than 10-6 s. A summary of relevant experimental data is presented in Table 1.

  6. Predictors of Adherence to Relaxation Guided Imagery During Pregnancy in Women with Preterm Labor.

    Science.gov (United States)

    Chuang, Li-Lan; Liu, Shu-Chen; Chen, Yi-Heng; Lin, Li-Chan

    2015-09-01

    To examine adherence to relaxation guided imagery in women experiencing preterm labor as well as predictors influencing adherence. This study used a longitudinal follow-up approach. Each of the 57 participating women received a mini-MP3 player containing a 13-minute relaxation guided imagery audio program that they were instructed to follow daily until giving birth. Follow-up interviews were conducted weekly. A generalized estimating equation was used to predict adherence. The total adherence rate was 58%. Higher adherence was predicted by the presence of at least a college degree (p=0.006), greater perceived stress (p=0.006), a higher risk of preterm delivery (pguided imagery. For women with a lower adherence to relaxation guided imagery, health care professionals may consider individual preferences regarding relaxation techniques.

  7. The change in body stressed to relaxed body through breathing, visualization and a protective environment together

    Directory of Open Access Journals (Sweden)

    Evelyn I. Rodríguez Morrill

    2009-11-01

    Full Text Available This work shows several ways to meet and relax the body through personal knowledge and techniques encounter with nature. Modern life and fast, the constant pressure from childhood to adulthood, in the modes of interaction between individuals and groups, they lead to construction of bodies that reflect emotional anatomy visible loss of balance, contractures, inflammation, multiple imbalances by lack of knowledge and awareness especially being in the world fully, the person has moved away from its ecological relationship with itself and the environment. Methods are shown to positively change a condition of constant stress and chronic discomfort, a learned condition of physical and psychological wellbeing, with a series of movements, recovering the body through exercise, to tend to personal balance, obtaining a positive relationship with the environment and the people attended. The proposal starts promoting new habits that can be saved in consciousness. Partly, mainly of breath, alignment with the music and the environment and personal and group work

  8. New concept of damage evaluation method for core internal materials considering radiation induced stress relaxation (1). Experiments and modeling of radiation effects

    International Nuclear Information System (INIS)

    Miwa, Yukio; Kondo, Keietsu; Okubo, Nariaki; Kaji, Yoshiyuki; Tsukada, Takashi

    2009-01-01

    In order to build the new concept of material damage evaluation method, synergistic effect of radiation and residual stress on material degradation was estimated experimentally, and the effect of radiation induced stress relaxation on retardation of material degradation was observed. (author)

  9. Advances in dynamic relaxation techniques for nonlinear finite element analysis

    International Nuclear Information System (INIS)

    Sauve, R.G.; Metzger, D.R.

    1995-01-01

    Traditionally, the finite element technique has been applied to static and steady-state problems using implicit methods. When nonlinearities exist, equilibrium iterations must be performed using Newton-Raphson or quasi-Newton techniques at each load level. In the presence of complex geometry, nonlinear material behavior, and large relative sliding of material interfaces, solutions using implicit methods often become intractable. A dynamic relaxation algorithm is developed for inclusion in finite element codes. The explicit nature of the method avoids large computer memory requirements and makes possible the solution of large-scale problems. The method described approaches the steady-state solution with no overshoot, a problem which has plagued researchers in the past. The method is included in a general nonlinear finite element code. A description of the method along with a number of new applications involving geometric and material nonlinearities are presented. They include: (1) nonlinear geometric cantilever plate; (2) moment-loaded nonlinear beam; and (3) creep of nuclear fuel channel assemblies

  10. Creep and stress relaxation induced by interface diffusion in metal matrix composites

    Science.gov (United States)

    Li, Yinfeng; Li, Zhonghua

    2013-03-01

    An analytical solution is developed to predict the creep rate induced by interface diffusion in unidirectional fiber-reinforced and particle reinforced composites. The driving force for the interface diffusion is the normal stress acting on the interface, which is obtained from rigorous Eshelby inclusion theory. The closed-form solution is an explicit function of the applied stress, volume fraction and radius of the fiber, as well as the modulus ratio between the fiber and the matrix. It is interesting that the solution is formally similar to that of Coble creep in polycrystalline materials. For the application of the present solution in the realistic composites, the scale effect is taken into account by finite element analysis based on a unit cell. Based on the solution, a closed-form solution is also given as a description of stress relaxation induced by interfacial diffusion under constant strain. In addition, the analytical solution for the interface stress presented in this study gives some insight into the relationship between the interface diffusion and interface slip. This work was supported by the financial support from the Nature Science Foundation of China (No. 10932007), the National Basic Research Program of China (No. 2010CB631003/5), and the Doctoral Program of Higher Education of China (No. 20100073110006).

  11. A multi-domain boundary-relaxation technique for the calculation of the electromagnetic field in ferrite-core inductive plasmas

    NARCIS (Netherlands)

    Dijk, van J.; Velden, van der M.H.L.; Mullen, van der J.J.A.M.

    2002-01-01

    A technique is discussed for calculating the electromagnetic field in two-dimensional inductive plasmas with an arbitrary number of magnetic materials and load coils. The method is a generalization of the boundary-relaxation technique for systems with an arbitrary number of conducting regions, and

  12. Strain Relaxation and Vacancy Creation in Thin Platinum Films

    International Nuclear Information System (INIS)

    Gruber, W.; Chakravarty, S.; Schmidt, H.; Baehtz, C.; Leitenberger, W.; Bruns, M.; Kobler, A.; Kuebel, C.

    2011-01-01

    Synchrotron based combined in situ x-ray diffractometry and reflectometry is used to investigate the role of vacancies for the relaxation of residual stress in thin metallic Pt films. From the experimentally determined relative changes of the lattice parameter a and of the film thickness L the modification of vacancy concentration and residual strain was derived as a function of annealing time at 130 deg. C. The results indicate that relaxation of strain resulting from compressive stress is accompanied by the creation of vacancies at the free film surface. This proves experimentally the postulated dominant role of vacancies for stress relaxation in thin metal films close to room temperature.

  13. Effectiveness of passive stretching versus hold relax technique in flexibility of hamstring muscle

    Directory of Open Access Journals (Sweden)

    Gauri Shankar

    2010-10-01

    Full Text Available Aim: To compare the effectiveness of passive stretching and hold relax technique in the flexibility of hamstring muscle. Methods: A total of 80 normal healthy female subjects between age group 20-30 years referred to the department of physiotherapy, Sumandeep Vidyapeeth University, sampling method being convenient sampling. The subjects were randomly divided in two groups i.e. passive stretching group (n=40 and PNF group (n=40 and given passive stretching and proprioceptive neuromuscular facilitation technique respectively. Active knee extension range was measured before and after the intervention by goniometer. Results: t test showed a highly significant (p=0.000 increase in range of motion in PNF group. Conclusion: Proprioceptive neuromuscular facilitation technique is more effective in increasing hamstring flexibility than the passive stretching.

  14. Helping Individuals with Sleep Disturbances: Some Behavior Therapy Techniques.

    Science.gov (United States)

    Alley, Patricia M.

    1983-01-01

    Describes a range of behavior therapy techniques for treating sleep disturbances, including physical activity, relaxation training, biofeedback, autogenic training, and cognitive techniques. The importance of understanding the client's background is emphasized. Restoring the client's self-control and positive psychological growth are stressed.…

  15. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture.

    Science.gov (United States)

    Lou, Junzhe; Stowers, Ryan; Nam, Sungmin; Xia, Yan; Chaudhuri, Ovijit

    2018-02-01

    The physical and architectural cues of the extracellular matrix (ECM) play a critical role in regulating important cellular functions such as spreading, migration, proliferation, and differentiation. Natural ECM is a complex viscoelastic scaffold composed of various distinct components that are often organized into a fibrillar microstructure. Hydrogels are frequently used as synthetic ECMs for 3D cell culture, but are typically elastic, due to covalent crosslinking, and non-fibrillar. Recent work has revealed the importance of stress relaxation in viscoelastic hydrogels in regulating biological processes such as spreading and differentiation, but these studies all utilize synthetic ECM hydrogels that are non-fibrillar. Key mechanotransduction events, such as focal adhesion formation, have only been observed in fibrillar networks in 3D culture to date. Here we present an interpenetrating network (IPN) hydrogel system based on HA crosslinked with dynamic covalent bonds and collagen I that captures the viscoelasticity and fibrillarity of ECM in tissues. The IPN hydrogels exhibit two distinct processes in stress relaxation, one from collagen and the other from HA crosslinking dynamics. Stress relaxation in the IPN hydrogels can be tuned by modulating HA crosslinker affinity, molecular weight of the HA, or HA concentration. Faster relaxation in the IPN hydrogels promotes cell spreading, fiber remodeling, and focal adhesion (FA) formation - behaviors often inhibited in other hydrogel-based materials in 3D culture. This study presents a new, broadly adaptable materials platform for mimicking key ECM features of viscoelasticity and fibrillarity in hydrogels for 3D cell culture and sheds light on how these mechanical and structural cues regulate cell behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Critique: Can Children with AD/HD Learn Relaxation and Breathing Techniques through Biofeedback Video Games?

    Science.gov (United States)

    Wright, Craig; Conlon, Elizabeth

    2009-01-01

    This article presents a critique on K. Amon and A. Campbell's "Can children with AD/HD learn relaxation and breathing techniques through biofeedback video games?". Amon and Campbell reported a successful trial of a commercially available biofeedback program, "The Wild Divine", in reducing symptoms of Attention-Deficit/Hyperactivity Disorder (ADHD)…

  17. Strategies against burnout and anxiety in medical education--implementation and evaluation of a new course on relaxation techniques (Relacs) for medical students.

    Science.gov (United States)

    Wild, Katharina; Scholz, Michael; Ropohl, Axel; Bräuer, Lars; Paulsen, Friedrich; Burger, Pascal H M

    2014-01-01

    Burnout and stress-related mental disorders (depression, anxiety) occur in medical students and physicians with a significantly higher prevalence than in the general population. At the same time, the learning of coping mechanisms against stress is still not an integral part of medical education. In this pilot study we developed an elective course for learning relaxation techniques and examined the condition of the students before and after the course. 42 students participated in the semester courses in 2012 and 2013 as well as in a survey at the start and end of each course. The students were instructed in autogenic training (AT) and progressive muscle relaxation according to Jacobsen (PMR) with the goal of independent and regular exercising. At the beginning and the end of the semester/course the students were interviewed using standardized, validated questionnaires on burnout (BOSS-II) and anxiety (STAI-G), depression (BDI), quality of life (SF-12) and sense of coherence (SOC-L9). We compared the results of our students participating in Relacs with results from eight semester medical students (n = 88), assessed with the same questionnaires at similar points of time within their semester. Participating students showed a significant decline in cognitive and emotional burnout stress and in trait anxiety. Furthermore, they showed a reduction in state anxiety and a conspicuous decrease in mean depression. The sense of coherence increased at the same time. A comparative cohort of medical students of 8th semester students, showed lower values for the specified measurement parameters at the beginning, but showed no progressive changes. Our course introducing AT and PMR led to a significant reduction of burnout and anxiety within the participating group of medical students. Even the course attendance for just one semester resulted in significant improvements in the evaluated parameters in contrast to those students who did not attend the course.

  18. Strategies against burnout and anxiety in medical education--implementation and evaluation of a new course on relaxation techniques (Relacs for medical students.

    Directory of Open Access Journals (Sweden)

    Katharina Wild

    Full Text Available Burnout and stress-related mental disorders (depression, anxiety occur in medical students and physicians with a significantly higher prevalence than in the general population. At the same time, the learning of coping mechanisms against stress is still not an integral part of medical education. In this pilot study we developed an elective course for learning relaxation techniques and examined the condition of the students before and after the course. 42 students participated in the semester courses in 2012 and 2013 as well as in a survey at the start and end of each course. The students were instructed in autogenic training (AT and progressive muscle relaxation according to Jacobsen (PMR with the goal of independent and regular exercising. At the beginning and the end of the semester/course the students were interviewed using standardized, validated questionnaires on burnout (BOSS-II and anxiety (STAI-G, depression (BDI, quality of life (SF-12 and sense of coherence (SOC-L9. We compared the results of our students participating in Relacs with results from eight semester medical students (n = 88, assessed with the same questionnaires at similar points of time within their semester. Participating students showed a significant decline in cognitive and emotional burnout stress and in trait anxiety. Furthermore, they showed a reduction in state anxiety and a conspicuous decrease in mean depression. The sense of coherence increased at the same time. A comparative cohort of medical students of 8th semester students, showed lower values for the specified measurement parameters at the beginning, but showed no progressive changes. Our course introducing AT and PMR led to a significant reduction of burnout and anxiety within the participating group of medical students. Even the course attendance for just one semester resulted in significant improvements in the evaluated parameters in contrast to those students who did not attend the course.

  19. Genomic counter-stress changes induced by the relaxation response.

    Directory of Open Access Journals (Sweden)

    Jeffery A Dusek

    2008-07-01

    Full Text Available Mind-body practices that elicit the relaxation response (RR have been used worldwide for millennia to prevent and treat disease. The RR is characterized by decreased oxygen consumption, increased exhaled nitric oxide, and reduced psychological distress. It is believed to be the counterpart of the stress response that exhibits a distinct pattern of physiology and transcriptional profile. We hypothesized that RR elicitation results in characteristic gene expression changes that can be used to measure physiological responses elicited by the RR in an unbiased fashion.We assessed whole blood transcriptional profiles in 19 healthy, long-term practitioners of daily RR practice (group M, 19 healthy controls (group N(1, and 20 N(1 individuals who completed 8 weeks of RR training (group N(2. 2209 genes were differentially expressed in group M relative to group N(1 (p<0.05 and 1561 genes in group N(2 compared to group N(1 (p<0.05. Importantly, 433 (p<10(-10 of 2209 and 1561 differentially expressed genes were shared among long-term (M and short-term practitioners (N(2. Gene ontology and gene set enrichment analyses revealed significant alterations in cellular metabolism, oxidative phosphorylation, generation of reactive oxygen species and response to oxidative stress in long-term and short-term practitioners of daily RR practice that may counteract cellular damage related to chronic psychological stress. A significant number of genes and pathways were confirmed in an independent validation set containing 5 N(1 controls, 5 N(2 short-term and 6 M long-term practitioners.This study provides the first compelling evidence that the RR elicits specific gene expression changes in short-term and long-term practitioners. Our results suggest consistent and constitutive changes in gene expression resulting from RR may relate to long term physiological effects. Our study may stimulate new investigations into applying transcriptional profiling for accurately measuring

  20. Measurement accuracy of a stressed contact lens during its relaxation period

    Science.gov (United States)

    Compertore, David C.; Ignatovich, Filipp V.

    2018-02-01

    We examine the dioptric power and transmitted wavefront of a contact lens as it releases its handling stresses. Handling stresses are introduced as part of the contact lens loading process and are common across all contact lens measurement procedures and systems. The latest advances in vision correction require tighter quality control during the manufacturing of the contact lenses. The optical power of contact lenses is one of the critical characteristics for users. Power measurements are conducted in the hydrated state, where the lens is resting inside a solution-filled glass cuvette. In a typical approach, the contact lens must be subject to long settling times prior to any measurements. Alternatively, multiple measurements must be averaged. Apart from potential operator dependency of such approach, it is extremely time-consuming, and therefore it precludes higher rates of testing. Comprehensive knowledge about the settling process can be obtained by monitoring multiple parameters of the lens simultaneously. We have developed a system that combines co-aligned a Shack-Hartmann transmitted wavefront sensor and a time-domain low coherence interferometer to measure several optical and physical parameters (power, cylinder power, aberrations, center thickness, sagittal depth, and diameter) simultaneously. We monitor these parameters during the stress relaxation period and show correlations that can be used by manufacturers to devise methods for improved quality control procedures.

  1. ASSESSMENT OF CRACKING RESISTANCE OF CELLULAR CONCRETE PRODUCTS UNDER MOISTURE AND CARBONISATION DEFORMATIONS WITH STRESS RELAXATION

    Directory of Open Access Journals (Sweden)

    Sh. I. Apkarov

    2017-01-01

    Full Text Available Objectives. On the basis of the experimental, theoretical and field studies, an engineering calculation method was developed for assessing the cracking resistance of external enclosing constructions made of cellular concrete, with the maximum gradient development of moisture and carbonisation forced deformations along their thickness, taking into account the relaxation of the shrinkage stresses. In this regard, the aim of the work is to provide technological measures at the manufacturing stage in order to increase the operational cracking resistance of the construction's outer surface layers by reducing the moisture and carbonation shrinkage of cellular concrete by introducing a large or fine porous aggregate in calculated amounts.Methods. A number of analytical equations were applied to establish the dependence of the shrinkage of heavy concrete of conventional hardness on the amount of aggregate introduced and its elasticity modulus, water-cement ratio and cement consumption, as well as the concrete's moisture content.Results. Knowing the volumes of the structural aggregate and the cellular concrete mass, as well as their modulus of elasticity, the shrinkage reduction factor of the cellular concrete was calculated with the addition of a lightweight porous aggregate. Subsequently, the shrinkage deformations of concrete in the surface layer of the outer enclosing construction, maximising crack resistance due to moisture exchange and carbonation influences under operating conditions, were defined, taking into account the relaxation of tensile stresses due to creep of concrete.Conclusion. Theoretical calculations, based on the recommended method of assessing the cracking resistance of cellular concrete enclosing constructions under moisture exchange and carbonisation processes, taking into account the relaxation of shrinkage stresses, showed that in order to exclude the appearance of cracks in wall panels 280 mm thick made of 700 kg/m3 gas ash

  2. Modelling of Creep and Stress Relaxation Test of a Polypropylene Microfibre by Using Fraction-Exponential Kernel

    Directory of Open Access Journals (Sweden)

    Andrea Sorzia

    2016-01-01

    Full Text Available A tensile test until breakage and a creep and relaxation test on a polypropylene fibre are carried out and the resulting creep and stress relaxation curves are fit by a model adopting a fraction-exponential kernel in the viscoelastic operator. The models using fraction-exponential functions are simpler than the complex ones obtained from combination of dashpots and springs and, furthermore, are suitable for fitting experimental data with good approximation allowing, at the same time, obtaining inverse Laplace transform in closed form. Therefore, the viscoelastic response of polypropylene fibres can be modelled straightforwardly through analytical methods. Addition of polypropylene fibres greatly improves the tensile strength of composite materials with concrete matrix. The proposed analytical model can be employed for simulating the mechanical behaviour of composite materials with embedded viscoelastic fibres.

  3. A comparison the effects of reflexology and relaxation on the psychological symptoms in women with multiple sclerosis.

    Science.gov (United States)

    Soheili, Mozhgan; Nazari, Fatemeh; Shaygannejad, Vahid; Valiani, Mahboobeh

    2017-01-01

    Multiple sclerosis (MS) occurs with a variety of physical and psychological symptoms, yet there is not a conclusive cure for this disease. Complementary medicine is a current treatment which seems is effective in relieving symptoms of patients with MS. Therefore, this study is aimed to determine and compare the effects of reflexology and relaxation on anxiety, stress, and depression in women with MS. This study is a randomized clinical trial that is done on 75 women with MS referred to MS Clinic of Kashani Hospital. After simple non random sampling, participants were randomly assigned by minimization method to three groups: reflexology, relaxation and control (25 patients in each group). In the experimental groups were performed reflexology and relaxation interventions within 4 weeks, twice a week for 40 min and the control group were received only routine treatment as directed by a doctor. Data were collected through depression anxiety and stress scale questionnaire, before, immediately after and 2 months after interventions in all three groups. Chi-square, Kruskal-Wallis, repeated measures analysis of variance and one-way analysis of variance and least significant difference post hoc test via SPSS version 18 were used to analyze the data ( P < 0.05) was considered as significant level. The results showed a significant reduction in the severity of anxiety, stress and depression during the different times in the reflexology and relaxation groups as compared with the control group ( P < 0.05). The results showed that reflexology and relaxation in relieving anxiety, stress and depression are effective in women with MS. Hence, these two methods, as effective techniques, can be recommended.

  4. Strategies against Burnout and Anxiety in Medical Education – Implementation and Evaluation of a New Course on Relaxation Techniques (Relacs) for Medical Students

    Science.gov (United States)

    Ropohl, Axel; Bräuer, Lars; Paulsen, Friedrich; Burger, Pascal H. M.

    2014-01-01

    Burnout and stress-related mental disorders (depression, anxiety) occur in medical students and physicians with a significantly higher prevalence than in the general population. At the same time, the learning of coping mechanisms against stress is still not an integral part of medical education. In this pilot study we developed an elective course for learning relaxation techniques and examined the condition of the students before and after the course. 42 students participated in the semester courses in 2012 and 2013 as well as in a survey at the start and end of each course. The students were instructed in autogenic training (AT) and progressive muscle relaxation according to Jacobsen (PMR) with the goal of independent and regular exercising. At the beginning and the end of the semester/course the students were interviewed using standardized, validated questionnaires on burnout (BOSS-II) and anxiety (STAI-G), depression (BDI), quality of life (SF-12) and sense of coherence (SOC-L9). We compared the results of our students participating in Relacs with results from eight semester medical students (n = 88), assessed with the same questionnaires at similar points of time within their semester. Participating students showed a significant decline in cognitive and emotional burnout stress and in trait anxiety. Furthermore, they showed a reduction in state anxiety and a conspicuous decrease in mean depression. The sense of coherence increased at the same time. A comparative cohort of medical students of 8th semester students, showed lower values for the specified measurement parameters at the beginning, but showed no progressive changes. Our course introducing AT and PMR led to a significant reduction of burnout and anxiety within the participating group of medical students. Even the course attendance for just one semester resulted in significant improvements in the evaluated parameters in contrast to those students who did not attend the course. PMID:25517399

  5. Iodine-induced stress corrosion cracking of fixed deflection stressed slotted rings of Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Sejnoha, R.; Wood, J.C.

    1978-01-01

    Stress corrosion cracking of Zircaloy fuel cladding by fission products is thought to be an important mechanism influencing power ramping defects of water-reactor fuels. We have used the fixed-deflection stressed slotted-ring technique to demonstrate cracking. The results show both the sensitivity and limitations of the stressed slotted-ring method in determining the responses of tubing to stress corrosion cracking. They are interpreted in terms of stress relaxation behavior, both on a microscopic scale for hydrogen-induced stress-relief and on a macroscopic scale for stress-time characteristics. Analysis also takes account of nonuniform plastic deformation during loading and residual stress buildup on unloading. 27 refs

  6. X-ray diffraction analysis of thermally-induced stress relaxation in ZnO films deposited by magnetron sputtering on (100) Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Conchon, F., E-mail: florineconchon@gmail.co [Laboratoire de Physique des Materiaux (PHYMAT) UMR 6630, Universite de Poitiers, 86962 Futuroscope-Chasseneuil (France); Renault, P.O.; Goudeau, P.; Le Bourhis, E. [Laboratoire de Physique des Materiaux (PHYMAT) UMR 6630, Universite de Poitiers, 86962 Futuroscope-Chasseneuil (France); Sondergard, E.; Barthel, E.; Grachev, S. [Laboratoire de Surface du Verre et Interfaces (SVI), UMR 125, 93303 Aubervilliers (France); Gouardes, E.; Rondeau, V.; Gy, R. [Laboratoire de Recherche de Saint-Gobain (SGR), 93303 Aubervilliers (France); Lazzari, R.; Jupille, J. [Institut des Nanosciences de Paris (INSP), UMR 7588, 75015 Paris (France); Brun, N. [Laboratoire de Physique des Solides (LPS), UMR 8502, 91405 Orsay (France)

    2010-07-01

    Residual stresses in sputtered ZnO films on Si are determined and discussed. By means of X-ray diffraction, we show that as-deposited ZnO films are highly compressively stressed. Moreover, a transition of stress is observed as a function of the post-deposition annealing temperature. After an 800 {sup o}C annealing, ZnO films are tensily stressed while ZnO films encapsulated by Si{sub 3}N{sub 4} are stress-free. With the aid of in-situ X-ray diffraction under ambient and argon atmosphere, we argue that this thermally activated stress relaxation may be attributed to a variation of the stoichiometry of the ZnO films.

  7. Experiments in paramagnetic relaxation

    International Nuclear Information System (INIS)

    Lijphart, E.E.

    1976-01-01

    This thesis presents two attempts to improve the resolving power of the relaxation measurement technique. The first attempt reconsiders the old technique of steady state saturation. When used in conjunction with the pulse technique, it offers the possibility of obtaining additional information about the system in which all-time derivatives are zero; in addition, non-linear effects may be distinguished from each other. The second attempt involved a systematic study of only one system: Cu in the Tutton salts (K and Rb). The systematic approach, the high accuracy of the measurement and the sheer amount of experimental data for varying temperature, magnetic field and concentration made it possible in this case to separate the prevailing relaxation mechanisms reliably

  8. Relaxation of stresses in polystyrene–carbon microcomposite resistive layers

    International Nuclear Information System (INIS)

    Łukasik, Andrzej; Sibiński, Maciej; Walczak, Sylwia

    2012-01-01

    This paper presents the investigation results on thermoresistive elements made with a styrene–butadiene–styrene (SBS) modified polystyrene binder and carbon filler. Resistive layers were deposited by screen-printing method onto a polyethylene terephthalate (PET) foil. The temperature–resistance dependence of the examined layers was observed. The carbon filler content was precisely selected to obtain high values of TCR, such as 70,000 ppm/°C, for resistive layers with a SBS-modified polystyrene binder in the temperature range from 24 to 100 °C. Because of high TCR the influence of mechanical stresses, which is unfavorable feature of the examined layers, may be omitted. The highest TCR value and stability of electrical parameters during operation were observed for layers containing 42.9% of carbon filler by mass content. The measurements were carried out with the aid of an infrared camera and an oscilloscope because of very fast changes of resistive elements parameters. The analysis of the obtained results allows to draw conclusions about the carbon layer properties and to determine the stress–relaxation rate of the polymer structures.

  9. Endothelial relaxation mechanisms and nitrative stress are partly restored by Vitamin D3 therapy in a rat model of polycystic ovary syndrome.

    Science.gov (United States)

    Masszi, Gabriella; Benko, Rita; Csibi, Noemi; Horvath, Eszter M; Tokes, Anna-Maria; Novak, Agnes; Beres, Nora Judit; Tarszabo, Robert; Buday, Anna; Repas, Csaba; Bekesi, Gabor; Patocs, Attila; Nadasy, Gyorgy L; Hamar, Peter; Benyo, Zoltan; Varbiro, Szabolcs

    2013-08-06

    In polycystic ovary syndrome (PCOS), metabolic and cardiovascular dysfunction is related to hyperandrogenic status and insulin resistance, however, Vitamin D3 has a beneficial effect partly due to its anti-oxidant capacity. Nitrative stress is a major factor in the development of cardiovascular dysfunction and insulin resistance in various diseases. Our aim was to determine the effects of vitamin D3 in a rat model of PCOS, particularly the pathogenic role of nitrative stress. Female Wistar rats weighing 100-140g were administered vehicle (C), dihydrotestosterone (DHT) or dihydrotestosterone plus vitamin D3 (DHT+D) (n=10 per group). On the 10th week, acetylcholine (Ach) induced relaxation ability of the isolated thoracic aorta rings was determined. In order to examine the possible role of endothelial nitric oxide synthase (eNOS) and cyclooxygenase-2 (COX-2) pathways in the impaired endothelial function, immunohistochemical labeling of aortas with anti-eNOS and anti-COX-2 antibodies was performed. Leukocyte smears, aorta and ovary tissue sections were also immunostained with anti-nitrotyrosine antibody to determine nitrative stress. Relaxation ability of aorta was reduced in group DHT, and vitamin D3 partly restored Ach induced relaxation. eNOS labeling was significantly lower in DHT rats compared to the other two groups, however COX-2 staining showed an increment. Nitrative stress showed a significant increase in response to dihydrotestosterone, while vitamin D3 treatment, in case of the ovaries, was able to reverse this effect. Nitrative stress may play a role in the pathogenesis of PCOS and in the development of the therapeutic effect of vitamin D3. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Two-photon excitation laser scanning microscopy of porcine nasal septal cartilage following Nd:YAG laser-mediated stress relaxation

    Science.gov (United States)

    Kim, Charlton C.; Wallace, Vincent P.; Rasouli, Alexandre; Coleno, Mariah L.; Dao, Xavier; Tromberg, Bruce J.; Wong, Brian J.

    2000-05-01

    Laser irradiation of hyaline cartilage result in stable shape changes due to temperature dependent stress relaxation. In this study, we determined the structural changes in chondrocytes within porcine nasal septal cartilage tissue over a 4-day period using a two-photon laser scanning microscope (TPM) following Nd:YAG laser irradiation (lambda equals 1.32 micrometer) using parameters that result in mechanical stress relaxation (6.0 W, 5.4 mm spot diameter). TPM excitation (780 nm) result in induction of fluorescence from endogenous agents such as NADH, NADPH, and flavoproteins in the 400 - 500 nm spectral region. During laser irradiation diffuse reflectance (from a probe HeNe laser, (lambda) equals 632.8 nm), surface temperature, and stress relaxation were measured dynamically. Each specimen received one, two, or three sequential laser exposures (average irradiation times of 5, 6, and 8 seconds). The cartilage reached a peak surface temperature of about 70 degrees Celsius during irradiation. Cartilage denatured in 50% EtOH (20 minutes) was used as a positive control. TPM was performed using a mode-locked 780 nm Titanium:Sapphire (Ti:Al203) beam with a, 63X, 1.2 N.A. water immersion objective (working distance of 200 mm) to detect the fluorescence emission from the chondrocytes. Images of chondrocytes were obtained at depths up to 150 microns (lateral resolution equals 35 micrometer X 35 micrometer). Images were obtained immediately following laser exposure, and also after 4 days in culture. In both cases, the irradiated and non-irradiated specimens do not show any discernible difference in general shape or auto fluorescence. In contrast, positive controls (immersed in 50% ethanol), show markedly increased fluorescence relative to both the native and irradiated specimens, in the cytoplasmic region.

  11. Treatment of anxiety: a comparison of the usefulness of self-hypnosis and a meditational relaxation technique. An overview.

    Science.gov (United States)

    Benson, H; Frankel, F H; Apfel, R; Daniels, M D; Schniewind, H E; Nemiah, J C; Sifneos, P E; Crassweller, K D; Greenwood, M M; Kotch, J B; Arns, P A; Rosner, B

    1978-01-01

    We have investigated prospectively the efficacy of two nonpharmacologic relaxation techniques in the therapy of anxiety. A simple, meditational relaxation technique (MT) that elicits the changes of decreased sympathetic nervous system activity was compared to a self-hypnosis technique (HT) in which relaxation, with or without altered perceptions, was suggested. 32 patients with anxiety neurosis were divided into 2 groups on the basis of their responsivity to hypnosis: moderate-high and low responsivity. The MT or HT was then randomly assigned separately to each member of the two responsivity groups. Thus, 4 treatment groups were studied: moderate-high responsivity MT; low responsivity MT; moderate-high responsivity HT; and low responsivity HT. The low responsivity HT group, by definition largely incapable of achieving the altered perceptions essential to hypnosis, was designed as the control group. Patients were instructed to practice the assigned technique daily for 8 weeks. Change in anxiety was determined by three types of evaluation: psychiatric assessment; physiologic testing; and self-assessment. There was essentially no difference between the two techniques in therapeutic efficacy according to these evaluations. Psychiatric assessment revealed overall improvement in 34% of the patients and the self-rating assessment indicated improvement in 63% of the population. Patients who had moderate-high hypnotic responsivity, independent of the technique used, significantly improved on psychiatric assessment (p = 0.05) and decreased average systolic blood pressure from 126.1 to 122.5 mm Hg over the 8-week period (p = 0.048). The responsivity scores at the higher end of the hypnotic responsivity spectrum were proportionately correlated to greater decreases in systolic blood pressure (p = 0.075) and to improvement by psychiatric assessment (p = 0.003). There was, however, no consistent relation between hypnotic responsivity and the other assessments made, such as

  12. Temperature Scanning Stress Relaxation of an Autonomous Self-Healing Elastomer Containing Non-Covalent Reversible Network Junctions

    Directory of Open Access Journals (Sweden)

    Amit Das

    2018-01-01

    Full Text Available In this work, we report about the mechanical relaxation characteristics of an intrinsically self-healable imidazole modified commercial rubber. This kind of self-healing rubber was prepared by melt mixing of 1-butyl imidazole with bromo-butyl rubber (bromine modified isoprene-isobutylene copolymer, BIIR. By this melt mixing process, the reactive allylic bromine of bromo-butyl rubber was converted into imidazole bromide salt. The resulting development of an ionic character to the polymer backbone leads to an ionic association of the groups which ultimately results to the formation of a network structure of the rubber chains. The modified BIIR thus behaves like a robust crosslinked rubber and shows unusual self-healing properties. The non-covalent reversible network has been studied in detail with respect to stress relaxation experiments, scanning electron microscopic and X-ray scattering.

  13. Stress relaxation insensitive designs for metal compliant mechanism threshold accelerometers

    Directory of Open Access Journals (Sweden)

    Carlos Vilorio

    2015-12-01

    Full Text Available We present two designs for metal compliant mechanisms for use as threshold accelerometers which require zero external power. Both designs rely on long, thin flexures positioned orthogonally to a flat body. The first design involves cutting or stamping a thin spring-steel sheet and then bending elements to form the necessary thin flexors. The second design uses precut spring-steel flexure elements mounted into a mold which is then filled with molten tin to form a bimetallic device. Accelerations necessary to switch the devices between bistable states were measured using a centrifuge. Both designs showed very little variation in threshold acceleration due to stress relaxation over a period of several weeks. Relatively large variations in threshold acceleration were observed for devices of the same design, most likely due to variations in the angle of the flexor elements relative to the main body of the devices. Keywords: Structural health monitoring, Sensor, Accelerometer, Zero power, Shock, Threshold

  14. Stress relaxation experiments on a lamellar polystyrene-polyisoprene diblock copolymer melt

    DEFF Research Database (Denmark)

    Holmqvist, P.; Castelletto, V.; Hamley, I.W.

    2001-01-01

    The non-linear rheology of the lamellar phase of a polystyrene-polyisoprene diblock copolymer is studied by oscillatory shear experiments. The relaxation of the shear modulus, G(t, gamma) is studied as a function of strain amplitude, gamma, up to large amplitude strains, gamma = 100%. The decay...... of G(t, gamma) is analysed using the model-independent CONTIN inverse Laplace transform algorithm to obtain a series of relaxation times, which reveals multiple relaxation processes. The timescale for the fastest relaxation processes is compared to those previously observed for diblock copolymer melts...... via dynamic light scattering experiments. The slowest relaxation process may be related to the shear-induced orientation of the lamellae. It is shown that time-strain separability G(t, gamma)= G(t)h(gamma) can be applied, and the damping function h(gamma) is consistent with a strongly strain...

  15. Relaxation training methods for nurse managers in Hong Kong: a controlled study.

    Science.gov (United States)

    Yung, Paul M B; Fung, Man Yi; Chan, Tony M F; Lau, Bernard W K

    2004-12-01

    Nurse managers are under increased stress because of excessive workloads and hospitals' restructuring which is affecting their work tasks. High levels of stress could affect their mental health. Yet, few stress management training programmes are provided for this population. The purpose of this study was to apply stretch-release relaxation and cognitive relaxation training to enhance the mental health for nurse managers. A total of 65 nurse managers in Hong Kong were randomly assigned to stretch-release relaxation (n = 17), cognitive relaxation (n = 18), and a test control group (n = 35). Mental health status was assessed using the Chinese version of State-Trait Anxiety Inventory and the Chinese version of the General Health Questionnaire. Participants were assessed at the pretreatment session, the fourth posttreatment session, and at the 1-month follow-up session. The results revealed both the stretch-release and cognitive relaxation training enhanced mental health in nurse managers in Hong Kong. The application of relaxation training in enhancing mental health status for nurses and health professionals is discussed.

  16. On the Effects of Thermal History on the Development and Relaxation of Thermo-Mechanical Stress in Cryopreservation.

    Science.gov (United States)

    Eisenberg, David P; Steif, Paul S; Rabin, Yoed

    2014-01-01

    This study investigates the effects of the thermal protocol on the development and relaxation of thermo-mechanical stress in cryopreservation by means of glass formation, also known as vitrification. The cryopreserved medium is modeled as a homogeneous viscoelastic domain, constrained within either a stiff cylindrical container or a highly compliant bag. Annealing effects during the cooling phase of the cryopreservation protocol are analyzed. Results demonstrate that an intermediate temperature-hold period can significantly reduce the maximum tensile stress, thereby decreasing the potential for structural damage. It is also demonstrated that annealing at temperatures close to glass transition significantly weakens the dependency of thermo-mechanical stress on the cooling rate. Furthermore, a slower initial rewarming rate after cryogenic storage may drastically reduce the maximum tensile stress in the material, which supports previous experimental observations on the likelihood of fracture at this stage. This study discusses the dependency of the various stress components on the storage temperature. Finally, it is demonstrated that the stiffness of the container wall can affect the location of maximum stress, with implications on the development of cryopreservation protocols.

  17. ``Living polymers'' in organic solvents : stress relaxation in bicopper tetracarboxylate/tert-butyl cyclohexane solutions

    Science.gov (United States)

    Terech, P.; Maldivi, P.; Dammer, C.

    1994-10-01

    Viscoelastic solutions of a bicopper tetracarboxylate complex in tert-butylcyclohexane have been studied by dynamic rheology in a wide range of concentrations (0.5-1.5 % volume fraction). The zero shear viscosity, the elastic modulus, the terminal stress relaxation time and the height of the high-frequency dip, in a Cole-Cole representation of the complex elastic modulus, follow scaling laws. The related exponents are discussed in the context of the physics of “living polymers” : a term used to describe worm-like species undergoing scission/recombination reactions competing mainly with the reptation motions of the chains. The current system, made up of molecular threads (17.5 Å diameter) of Cu2(O2C-CH(C2H5)C4H9)4 in the apolar solvent, is representative of a “living polymer” where, instead of mechanisms involving transient star polymeric crosslinks, a reversible scission mechanism prevails. The dynamics in the high-frequency range evolves from a regime where reptation is the dominant relaxation mechanism to a cross-over regime where “breathing” fluctuations and Rouse motions become important. Large modifications of the stress relaxation function occur for more concentrated systems. The binary system is the first example of a “living polymer” in an organic solvent and exhibits elastic moduli (G ≈ ca. 120 Pa à φ = 1 %) which are at least 20 times larger than those found for the aqueous “living polymer” systems. Les solutions viscoélastiques d'un tétracarboxylate binucléaire de cuivre dans le tert-butylcyclohexane sont étudiées par rhéologie en mode dynamique dans une gamme étendue de concentrations (0,5 %-15,5 %). La viscosité à gradient nul, le module élastique, le temps terminal de relaxation et la hauteur du puits à haute fréquence, dans une représentation Cole-Cole du module élastique complexe, suivent des lois d'échelles. Les exposants correspondants sont discutés dans le contexte de la physique des “polymères vivants

  18. Creep and stress-relaxation in bending, at 673 K, of cold-worked Zircaloy-4

    International Nuclear Information System (INIS)

    Povolo, F.; Marzocca, A.J.

    1981-01-01

    Data of creep and stress-relaxation in bending at 673 K and up to times of the order of 1000 h, in cold-worked Zry-4, are discussed. It is shown that the results, previously interpreted in terms of Hart's phenomenological equation of state for high homologous temperatures, can be described also by an equation of the type E = B(αsigma), which has more precise physical meaning in terms of thermally activated motion of dislocations. Finally, it is shown that the hyperbolic sine representation satisfies the conditions for an equation of state and some dislocation parameters are calculated. (orig.)

  19. Stress induced conditioning and thermal relaxation in the simulation of quasi-static compression experiments

    International Nuclear Information System (INIS)

    Scalerandi, M; Delsanto, P P; Johnson, P A

    2003-01-01

    Local interaction simulation approach simulations of the ultrasonic wave propagation in multi-grained materials have succeeded in reproducing most of the recently observed nonclassical nonlinear effects, such as stress-strain hysteresis and discrete memory in quasi-static experiments and a downwards shift of the resonance frequency and the generation of odd harmonics at specific amplitude rates in dynamics experiments. By including a simple mechanism of thermally activated random transitions, we can predict the occurrence of experimentally observed effects, such as the conditioning and relaxation of the specimen. Experiments are also suggested for a quantitative assessment of the validity of the model

  20. Stress induced conditioning and thermal relaxation in the simulation of quasi-static compression experiments

    CERN Document Server

    Scalerandi, M; Johnson, P A

    2003-01-01

    Local interaction simulation approach simulations of the ultrasonic wave propagation in multi-grained materials have succeeded in reproducing most of the recently observed nonclassical nonlinear effects, such as stress-strain hysteresis and discrete memory in quasi-static experiments and a downwards shift of the resonance frequency and the generation of odd harmonics at specific amplitude rates in dynamics experiments. By including a simple mechanism of thermally activated random transitions, we can predict the occurrence of experimentally observed effects, such as the conditioning and relaxation of the specimen. Experiments are also suggested for a quantitative assessment of the validity of the model.

  1. Stress relaxation and creep on living cells with the atomic force microscope: a means to calculate elastic moduli and viscosities of cell components

    International Nuclear Information System (INIS)

    Moreno-Flores, Susana; Toca-Herrera, Jose Luis; Benitez, Rafael; Vivanco, Maria dM

    2010-01-01

    In this work we present a unified method to study the mechanical properties of cells using the atomic force microscope. Stress relaxation and creep compliance measurements permitted us to determine, the relaxation times, the Young moduli and the viscosity of breast cancer cells (MCF-7). The results show that the mechanical behaviour of MCF-7 cells responds to a two-layered model of similar elasticity but differing viscosity. Treatment of MCF-7 cells with an actin-depolymerising agent results in an overall decrease in both cell elasticity and viscosity, however to a different extent for each layer. The layer that undergoes the smaller decrease (36-38%) is assigned to the cell membrane/cortex while the layer that experiences the larger decrease (70-80%) is attributed to the cell cytoplasm. The combination of the method presented in this work, together with the approach based on stress relaxation microscopy (Moreno-Flores et al 2010 J. Biomech. 43 349-54), constitutes a unique AFM-based experimental framework to study cell mechanics. This methodology can also be extended to study the mechanical properties of biomaterials in general.

  2. The interaction of fatigue cracks with a residual stress field using thermoelastic stress analysis and synchrotron X-ray diffraction experiments

    Science.gov (United States)

    Amjad, Khurram; Asquith, David; Sebastian, Christopher M.; Wang, Wei-Chung

    2017-01-01

    This article presents an experimental study on the fatigue behaviour of cracks emanating from cold-expanded holes utilizing thermoelastic stress analysis (TSA) and synchrotron X-ray diffraction (SXRD) techniques with the aim of resolving the long-standing ambiguity in the literature regarding potential relaxation, or modification, of beneficial compressive residual stresses as a result of fatigue crack propagation. The crack growth rates are found to be substantially lower as the crack tip moved through the residual stress zone induced by cold expansion. The TSA results demonstrated that the crack tip plastic zones were reduced in size by the presence of the residual compressive stresses induced by cold expansion. The crack tip plastic zones were found to be insignificant in size in comparison to the residual stress zone resulting from cold expansion, which implied that they were unlikely to have had a notable impact on the surrounding residual stresses induced by cold expansion. The residual stress distributions measured along the direction of crack growth, using SXRD, showed no signs of any significant stress relaxation or redistribution, which validates the conclusions drawn from the TSA data. Fractographic analysis qualitatively confirmed the influence on crack initiation of the residual stresses induced by the cold expansion. It was found that the application of single compressive overload caused a relaxation, or reduction in the residual stresses, which has wider implications for improving the fatigue life. PMID:29291095

  3. Models for multiple relaxation processes in collagen fiber

    Indian Academy of Sciences (India)

    ... originate from stress strain induced changes in hydrogen bond network whereas the other seems to be more strongly coupled to salt like bridges and electrostatic interactions. Urea alters the activation energy for one relaxation step while pH and solvent dielectric constant alter the relaxation behavior one set of processes.

  4. Effect of two yoga-based relaxation techniques on memory scores and state anxiety

    Directory of Open Access Journals (Sweden)

    Telles Shirley

    2009-08-01

    Full Text Available Abstract Background A yoga practice involving cycles of yoga postures and supine rest (called cyclic meditation was previously shown to improve performance in attention tasks more than relaxation in the corpse posture (shavasana. This was ascribed to reduced anxiety, though this was not assessed. Methods In fifty-seven male volunteers (group average age ± S.D., 26.6 ± 4.5 years the immediate effect of two yoga relaxation techniques was studied on memory and state anxiety. All participants were assessed before and after (i Cyclic meditation (CM practiced for 22:30 minutes on one day and (ii an equal duration of Supine rest (SR or the corpse posture (shavasana, on another day. Sections of the Wechsler memory scale (WMS were used to assess; (i attention and concentration (digit span forward and backward, and (ii associate learning. State anxiety was assessed using Spielberger's State-Trait Anxiety Inventory (STAI. Results There was a significant improvement in the scores of all sections of the WMS studied after both CM and SR, but, the magnitude of change was more after CM compared to after SR. The state anxiety scores decreased after both CM and SR, with a greater magnitude of decrease after CM. There was no correlation between percentage change in memory scores and state anxiety for either session. Conclusion A cyclical combination of yoga postures and supine rest in CM improved memory scores immediately after the practice and decreased state anxiety more than rest in a classical yoga relaxation posture (shavasana.

  5. First measurements of H2O2 and organic peroxide surface fluces by the Relaxed Eddy Accumulation technique

    NARCIS (Netherlands)

    Valverde-Canossa, J.; Ganzeveld, L.N.; Rappenglück, B.; Steinbrecher, R.; Klemm, O.; Schuster, G.; Moortgat, G.K.

    2006-01-01

    The relaxed eddy-accumulation (REA) technique was specially adapted to a high-performance liquid chromatographer (enzymatic method) and scrubbing coils to measure concentrations and fluxes of hydrogen peroxide (H2O2) and organic peroxides with a carbon chain C4, of which only methylhydroperoxide

  6. Universal binding energy relation for cleaved and structurally relaxed surfaces.

    Science.gov (United States)

    Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V

    2014-02-05

    The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress-displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements.

  7. [Essential hypertension and stress. When do yoga, psychotherapy and autogenic training help?].

    Science.gov (United States)

    Herrmann, J M

    2002-05-09

    Psychosocial factors play an important role in the development and course of essential hypertension, although "stress" can account for only 10% of blood pressure variance. A variety of psychotherapeutic interventions, such as relaxation techniques (autogenic training or progressive muscular relaxation), behavioral therapy or biofeedback techniques, can lower elevated blood pressure by an average of 10 mmHg (systolic) and 5 mmHg (diastolic). As a "secondary effect", such measures may also prompt the hypertensive to adopt a more health-conscious lifestyle.

  8. The modified relaxation time function: A novel analysis technique for relaxation processes. Application to high-temperature molybdenum internal friction peaks

    International Nuclear Information System (INIS)

    Matteo, C.L.; Lambri, O.A.; Zelada-Lambri, G.I.; Sorichetti, P.A.; Garcia, J.A.

    2008-01-01

    The modified relaxation time (MRT) function, which is based on a general linear viscoelastic formalism, has several important mathematical properties that greatly simplify the analysis of relaxation processes. In this work, the MRT is applied to the study of the relaxation damping peaks in deformed molybdenum at high temperatures. The dependence of experimental data from these relaxation processes with temperature are adequately described by a Havriliak-Negami (HN) function, and the MRT makes it possible to find a relation between the parameters of the HN function and the activation energy of the process. The analysis reveals that for the relaxation peak appearing at temperatures below 900 K, the physical mechanism is related to a vacancy-diffusion-controlled movement of dislocations. In contrast, when the peak appears at temperatures higher than 900 K, the damping is controlled by a mechanism of diffusion in the low-temperature tail of the peak, and in the high-temperature tail of the peak the creation plus diffusion of vacancies at the dislocation line occurs

  9. Short-term impact of a stress management and health promotion program on perceived stress, parental stress, health locus of control, and cortisol levels in parents of children and adolescents with diabetes type 1: a pilot randomized controlled trial.

    Science.gov (United States)

    Tsiouli, Eleni; Pavlopoulos, Vassilis; Alexopoulos, Evangelos C; Chrousos, George; Darviri, Christina

    2014-01-01

    Parents of children and adolescents with diabetes type 1 (DT1) usually experience high stress levels, as they have to cope with multiple demands in their everyday life. Different complex interventions have been implemented, which sometimes have led to opposite results. The purpose of this study was to assess stress levels in parents of children and adolescents with DT1 and to evaluate the effectiveness of a stress management program (progressive muscle relaxation combined with diaphragmatic breathing) in reducing perceived and parenting stress, increasing internal locus of control, promoting healthy lifestyle, and normalizing cortisol levels. Randomized controlled trial. A total of 44 parents were randomly assigned to the intervention group (performing relaxation for eight weeks, n = 19) and control group (n = 25). Pre-post measurements included cortisol levels, lifestyle characteristics, perceived stress, perception of health, and parenting stress. A statistically significant decrease in perceived stress (from 27.21 to 19.00, P = .001), as well as in parenting stress (from 85.79 to 73.68, P = .003), was observed in the intervention group. A statistically significant difference was found in perceived stress between the two groups after the intervention (Dmean = 6.64, P = .010). No significant difference was revealed between or within the groups in cortisol levels. Significant improvement was reported by the subjects of the intervention group in various lifestyle parameters. Relaxation techniques seem to have a positive impact on stress and on various lifestyle factors in parents of children and adolescents with DT1. Future research on long-term benefits of an intervention program comprising of various relaxation schemes is warranted. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Impact of biofeedback on self-efficacy and stress reduction in obesity: a randomized controlled pilot study.

    Science.gov (United States)

    Teufel, Martin; Stephan, Kerstin; Kowalski, Axel; Käsberger, Saskia; Enck, Paul; Zipfel, Stephan; Giel, Katrin E

    2013-09-01

    Biofeedback application is an evidence-based technique to induce relaxation. A primary mechanism of action is the improvement of self-efficacy, which is needed to facilitate the translation of health behavioral intentions into action. Obesity is often associated with low self-efficacy and dysfunctional eating patterns, including comfort eating as an inexpedient relaxation technique. This is the first study investigating the effects of biofeedback on self-efficacy and relaxation in obesity. In the present experiment, 31 women, mean body mass index 35.5 kg/m², were randomized to a food-specific biofeedback paradigm, a non-specific relaxation biofeedback paradigm, or a waiting list control. Eight sessions of biofeedback of the electrodermal activity were performed while presenting either a challenging food stimulus or a non-specific landscape stimulus. Self-efficacy, stress, ability to relax, eating behavior, and electrodermal activity were assessed before, directly after, and 3 months after the intervention. The food-specific biofeedback predominantly showed effects on food-related self-efficacy and perceived stress. The non-specific relaxation biofeedback showed effects on the ability to relax. Self-reported improvements were confirmed by corresponding decrease in the electrodermal reaction to food stimuli. Biofeedback treatment is effective in improving self-efficacy in individuals with obesity and might therefore be a valuable additional intervention in obesity treatment.

  11. Effect of reorientation of anisotropic point defects on relaxation of crystal elastic coefficients of high order

    International Nuclear Information System (INIS)

    Topchyan, I.I.; Dokhner, R.D.

    1977-01-01

    The effect of reorientation of anisotropic point defects in uniform fields of elastic stresses on the relaxation of the elastic coefficients of a crystal was investigated in the nonlinear elasticity theory approximation. In calculating the interaction of point defects with elastic-stress fields was taken into consideration. The expression for the relaxations of the elasticity coefficients are obtained in an analytical form. The relaxation of the second-order elasticity coefficients is due to the dimentional interaction of a point defect with an applied-stress field, whereas the relaxation of the higher-order elasticity coefficients is determined both by dimentional and module effects

  12. Investigations of some rock stress measuring techniques and the stress field in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Hanssen, Tor Harald

    1998-12-31

    Rock stresses are important to the safe construction and operation of all man-made structures in rock, whether In mining, civil or petroleum engineering. The crucial issue is their relative magnitude and orientation. This thesis develops equipment and methods for further rock stress assessment and reevaluates existing overcoring rock stress measurements, and relates this information to the present geological setting. Both laboratory work and field work are involved. In the field, rock stresses are measured by the overcoring and the hydraulic fracturing technique. An observation technique for assessing likely high stresses is developed. The field data refer to several hydropower projects and to some offshore hydrocarbon fields. The principal sections are: (1) Tectonic setting in the western Fennoscandia, (2) Triaxial rock stress measurements by overcoring using the NTH cell (a strain gauge cell developed at the Norwegian technical university in Trondheim and based on the CSIR cell of the South African Council for Scientific and Industrial Research), (3) Laboratory testing of the NTH cell, (4) Quality ranking of stresses measured by the NTH cell, (4) Recalculated rock stresses and implications to the regional stress field, (5) Hydraulic fracturing stress measurements. 113 refs., 98 figs., 62 tabs.

  13. Investigations of some rock stress measuring techniques and the stress field in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Hanssen, Tor Harald

    1997-12-31

    Rock stresses are important to the safe construction and operation of all man-made structures in rock, whether In mining, civil or petroleum engineering. The crucial issue is their relative magnitude and orientation. This thesis develops equipment and methods for further rock stress assessment and reevaluates existing overcoring rock stress measurements, and relates this information to the present geological setting. Both laboratory work and field work are involved. In the field, rock stresses are measured by the overcoring and the hydraulic fracturing technique. An observation technique for assessing likely high stresses is developed. The field data refer to several hydropower projects and to some offshore hydrocarbon fields. The principal sections are: (1) Tectonic setting in the western Fennoscandia, (2) Triaxial rock stress measurements by overcoring using the NTH cell (a strain gauge cell developed at the Norwegian technical university in Trondheim and based on the CSIR cell of the South African Council for Scientific and Industrial Research), (3) Laboratory testing of the NTH cell, (4) Quality ranking of stresses measured by the NTH cell, (4) Recalculated rock stresses and implications to the regional stress field, (5) Hydraulic fracturing stress measurements. 113 refs., 98 figs., 62 tabs.

  14. Mechanisms of stress generation and relaxation during pulsed laser deposition of epitaxial Fe-Pd magnetic shape memory alloy films on MgO

    International Nuclear Information System (INIS)

    Edler, Tobias; Mayr, S G; Buschbeck, Joerg; Mickel, Christine; Faehler, Sebastian

    2008-01-01

    Mechanical stress generation during epitaxial growth of Fe-Pd thin films on MgO from pulsed laser deposition is a key parameter for the suitability in shape memory applications. By employing in situ substrate curvature measurements, we determine the stress states as a function of film thickness and composition. Depending on composition, different stress states are observed during initial film growth, which can be attributed to different misfits. Compressive stress generation by atomic peening is observed in the later stages of growth. Comparison with ex situ x-ray based strain measurements allows integral and local stress to be distinguished and yields heterogeneities of the stress state between coherent and incoherent regions. In combination with cross-sectional TEM measurements the relevant stress relaxation mechanism is identified to be stress-induced martensite formation with (111) twinning

  15. Study on mitigation of stress corrosion cracking by peening

    International Nuclear Information System (INIS)

    Maeguchi, Takaharu; Tsutsumi, Kazuya; Toyoda, Masahiko; Ohta, Takahiro; Okabe, Taketoshi; Sato, Tomonobu

    2010-01-01

    In order to verify stability of residual stress improvement effect of peeing for mitigation of stress corrosion cracking in components of PWR plant, relaxation behavior of residual stress induced by water jet peening (WJP) and ultrasonic shot peening (USP) on surface of alloy 600 and its weld metal was investigated under various thermal aging and stress condition considered for actual plant operation. In the case of thermal aging at 320-380degC, surface residual stress relaxation was observed at the early stage of thermal aging, but no significant stress relaxation was observed after that. Applied stress below yield stress does not significantly affect stress relaxation behavior of surface residual stress. Furthermore, it was confirmed that cyclic stress does not accelerate stress relaxation. (author)

  16. Effect of applied stress on the compressive residual stress introduced by laser peening

    International Nuclear Information System (INIS)

    Sumiya, Rie; Tazawa, Toshiyuki; Narazaki, Chihiro; Saito, Toshiyuki; Kishimoto, Kikuo

    2016-01-01

    Peening is the process which is able to be generated compressive residual stress and is known to be effective for preventing SCC initiation and improvement of fatigue strength. Laser peening is used for the nuclear power plant components in order to prevent SCC initiation. Although it is reported that the compressive residual stress decreases due to applied stresses under general operating condition, the change of residual stress might be large under excessive loading such as an earthquake. The objectives of this study are to evaluate the relaxation behavior of the compressive residual stress due to laser peening and to confirm the surface residual stress after loading. Therefore laser peened round bar test specimens of SUS316L which is used for the reactor internals of nuclear power plant were loaded at room temperature and elevated temperature and then surface residual stresses were measured by X-ray diffraction method. In the results of this test, it was confirmed that the compressive residual stress remained after applying uniform stress larger than 0.2% proof stress, and the effect of cyclic loading on the residual stress was small. The effect of applying compressive stress on the residual stress relaxation was confirmed to be less than that of applying tensile stress. Plastic deformation through a whole cross section causes the change in the residual stress distribution. As a result, the surface compressive residual stress is released. It was shown that the effect of specimen size on residual stress relaxation and the residual stress relaxation behavior in the stress concentration region can be explained by assumed stress relaxation mechanism. (author)

  17. Experimental validation of waveform relaxation technique for power ...

    Indian Academy of Sciences (India)

    damping controller drawn our attention to a potential convergence problem which ... method was originally proposed as a method of parallelizing the numerical integration of very. Figure 2 ..... to it the features of an industrial real-time operating system. ..... Odeh F and Ruehli A 1985 Waveform relaxation: Theory and practice.

  18. A review of residual stress analysis using thermoelastic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, A F; Dulieu-Barton, J M; Quinn, S [University of Southampton, School of Engineering Sciences, Highfield, Southampton, SO17 1BJ (United Kingdom); Burguete, R L [Airbus UK Ltd., New Filton House, Filton, Bristol, BS99 7AR (United Kingdom)

    2009-08-01

    Thermoelastic Stress Analysis (TSA) is a full-field technique for experimental stress analysis that is based on infra-red thermography. The technique has proved to be extremely effective for studying elastic stress fields and is now well established. It is based on the measurement of the temperature change that occurs as a result of a stress change. As residual stress is essentially a mean stress it is accepted that the linear form of the TSA relationship cannot be used to evaluate residual stresses. However, there are situations where this linear relationship is not valid or departures in material properties due to manufacturing procedures have enabled evaluations of residual stresses. The purpose of this paper is to review the current status of using a TSA based approach for the evaluation of residual stresses and to provide some examples of where promising results have been obtained.

  19. A review of residual stress analysis using thermoelastic techniques

    International Nuclear Information System (INIS)

    Robinson, A F; Dulieu-Barton, J M; Quinn, S; Burguete, R L

    2009-01-01

    Thermoelastic Stress Analysis (TSA) is a full-field technique for experimental stress analysis that is based on infra-red thermography. The technique has proved to be extremely effective for studying elastic stress fields and is now well established. It is based on the measurement of the temperature change that occurs as a result of a stress change. As residual stress is essentially a mean stress it is accepted that the linear form of the TSA relationship cannot be used to evaluate residual stresses. However, there are situations where this linear relationship is not valid or departures in material properties due to manufacturing procedures have enabled evaluations of residual stresses. The purpose of this paper is to review the current status of using a TSA based approach for the evaluation of residual stresses and to provide some examples of where promising results have been obtained.

  20. Two-photon excitation laser scanning microscopy of rabbit nasal septal cartilage following Nd:YAG-laser-mediated stress relaxation

    Science.gov (United States)

    Kim, Charlton C.; Wallace, Vincent P.; Coleno, Mariah L.; Dao, Xavier; Tromberg, Bruce J.; Wong, Brian J.

    2000-04-01

    Laser irradiation of hyaline cartilage result in stable shape changes due to temperature dependent stress relaxation. In this study, we determined the structural changes in chondrocytes within rabbit nasal septal cartilage tissue over a 12-day period using a two-photon laser scanning microscope (TPM) following Nd:YAG laser irradiation. During laser irradiation surface temperature, stress relaxation, and diffuse reflectance, were measured dynamically. Each specimen received one or two sequential laser exposures. The cartilage reached a peak surface temperature of about 61 degrees C during irradiation. Cartilage denatured in 50 percent EtOH was used as a positive control. TPM was performed to detect the fluorescence emission from the chondrocytes. Images of chondrocytes were obtained at depths up to 150 microns, immediately following laser exposure, and also following 12 days in culture. Few differences in the pattern or intensity of fluorescence was observed between controls and irradiated specimens imaged immediately following exposure, regardless of the number of laser pulses. However, following twelve days in tissue culture, the irradiated specimens increase, whereas the native tissue diminishes, in intensity and distribution of fluorescence in the cytoplasm. In contrast, the positive control shows only extracellular matrices and empty lacuna, feature consistent with cell membrane lysis.

  1. The benefit of heart rate variability biofeedback and relaxation training in reducing trait anxiety†

    Science.gov (United States)

    Lee, Jieun; Kim, Jung K; Wachholtz, Amy

    2016-01-01

    Previous research studies have indicated that biofeedback treatment and relaxation techniques are effective in reducing psychological and physical symptoms (Hammond, 2005; Manzoni, G. M., Pagnini, F., Castelnuovo, G., & Molinari, E., 2008). However, dearth of studies has compared heart rate variability (HRV) biofeedback treatment and relaxation training to reduce trait anxiety. The objective of this study was to determine the effect of HRV biofeedback treatment and relaxation training in reducing trait anxiety compared to control group without any treatment using students in a science and engineering university of South Korea. For the present study, a total of 15 graduate students with moderate level of trait anxiety were recruited for 4 individual sessions every two weeks. They were randomly assigned into three groups: biofeedback treatment (n = 5), relaxation training (n = 5), and no treatment control group (n = 5). Our results revealed significant difference in change score of trait anxiety between the HRV biofeedback treatment and the no treatment control group. However, no significant difference was found between the relaxation training group and the no treatment control group. In addition, there was no significant difference between the HRV biofeedback treatment and the relaxation training. Results of the present study indicate that there is potential benefit in utilizing HRV biofeedback treatment for stress management programs and/or anxiety reduction treatment PMID:27099546

  2. Residual Stress Relaxation Induced by Mass Transport Through Interface of the Pd/SrTiO3

    Directory of Open Access Journals (Sweden)

    Nazarpour S

    2010-01-01

    Full Text Available Abstract Metal interconnections having a small cross-section and short length can be subjected to very large mass transport due to the passing of high current densities. As a result, nonlinear diffusion and electromigration effects which may result in device failure and electrical instabilities may be manifested. Various thicknesses of Pd were deposited over SrTiO3 substrate. Residual stress of the deposited film was evaluated by measuring the variation of d-spacing versus sin2ψ through conventional X-ray diffraction method. It has been found that the lattice misfit within film and substrate might be relaxed because of mass transport. Besides, the relation between residual intrinsic stress and oxygen diffusion through deposited film has been expressed. Consequently, appearance of oxide intermediate layer may adjust interfacial characteristics and suppress electrical conductivity by increasing electron scattering through metallic films.

  3. Shrinkage stress compensation in composite-restored teeth: relaxation or hygroscopic expansion?

    Science.gov (United States)

    Meriwether, Laurel A; Blen, Bernard J; Benson, Jarred H; Hatch, Robert H; Tantbirojn, Daranee; Versluis, Antheunis

    2013-05-01

    Polymerization of composite restorations causes shrinkage, which deforms and thus stresses restored teeth. This shrinkage deformation, however, has been shown to decrease over time. The objective was to investigate whether this reduction was caused by hygroscopic expansion or stress relaxation of the composite/tooth complex. Extracted molars were mounted in rigid stainless steel rings with four spherical reference areas. Twelve molars were prepared with large mesioocclusodistal slots, etched, bonded, and restored with a composite material (Filtek Supreme, 3M ESPE) in two horizontal layers. Ten intact molars were the controls. The teeth were stored either in deionized water or silicone oil. They were scanned after preparation (baseline), restoration (0-week), and after 1, 2, and 4 weeks storage. Scanned tooth surfaces were aligned with the baseline using the unchanged reference areas. Cuspal flexure was calculated from lingual and buccal surface deformation. To verify that the restorations had remained bonded, dye penetration at the interfaces was assessed using basic fuchsin dye. Statistical assessment was done by ANOVA followed by Student-Newman-Keuls post hoc test (p=0.05). Substantial cuspal contraction was found for restored teeth after the composite was cured (13-14 μm cuspal flexure). After 4 weeks cuspal contraction decreased significantly for restored teeth stored in water (7.3 ± 3.2) but not for those stored in silicone oil (11.4 ± 5.0). Dye penetration of the occlusal interface was minimal in both groups (106 ± 87 and 21 ± 28 μm in water and silicone oil, respectively). The results suggest that hygroscopic expansion was the main mechanism for shrinkage stress compensation. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Modulation of immune responses in stress by Yoga

    Directory of Open Access Journals (Sweden)

    Arora Sarika

    2008-01-01

    Full Text Available Stress is a constant factor in today′s fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary system. Various neurotransmitters, neuropeptides, hormones, and cytokines mediate these complex bidirectional interactions between the central nervous system (CNS and the immune system. The effects of stress on the immune responses result in alterations in the number of immune cells and cytokine dysregulation. Various stress management strategies such as meditation, yoga, hypnosis, and muscle relaxation have been shown to reduce the psychological and physiological effects of stress in cancers and HIV infection. This review aims to discuss the effect of stress on the immune system and examine how relaxation techniques such as Yoga and meditation could regulate the cytokine levels and hence, the immune responses during stress.

  5. Residual stress characterization of welds using x-ray diffraction techniques

    International Nuclear Information System (INIS)

    Pineault, J.A.; Brauss, M.E.

    1996-01-01

    Neglect of residual stresses created during processes lead to stress corrosion cracking, distortion, fatigue cracking, premature failures in components, and instances of over design. Automated residual stress mapping and truly portable equipment have now made the characterization of residual stresses using x-ray diffraction (XRI) practical. The nondestructive nature of the x-ray diffraction technique has made the tile residual stress characterization of welds a useful tool for process optimization and failure analysis, particularly since components can be measured before and after welding and post welding processes. This paper illustrates the importance of residual stress characterization in welds and presents examples where x-ray diffraction techniques were applied in the characterization of various kinds of welds. arc welds, TIG welds, resistance welds, laser welds and electron beam welds. Numerous techniques are available to help manage potentially harmfull residual stresses created during the welding process thus, the effects of a few example post weld processes such as grinding, heat treating and shot peening are also addressed

  6. Relaxation response of A533B steel from 25 to 600/degree/C

    International Nuclear Information System (INIS)

    Swindeman, R.W.; Bolling, E.

    1989-01-01

    Relaxation tests were performed on A533B steel over the range 25 to 600/degree/C in order to examine the general features of time- dependent deformation. It was found that the relaxation strength increased with the flow stress at low temperatures and was relatively independent of history at high temperatures. In the temperature range 400 to 600/degree/C the inelastic strain rates calculated from the relaxation rates followed stress dependencies that were consistent with expectations based on a model proposed by Hart and coworkers for matrix deformation. 21 refs., 10 figs

  7. [Self-relaxation techniques for glaucoma patients. Significance of autogenic training, hypnosis and music therapy].

    Science.gov (United States)

    Bertelmann, T; Strempel, I

    2016-02-01

    Glaucoma is currently the second most common cause of severe visual impairment and blindness worldwide. Standard pharmaceutical and surgical interventions often fail to prevent progression of glaucomatous optic neuropathy. To evaluate whether adjuvantly applied self-relaxation techniques can significantly impact intraocular pressure, ocular perfusion and the overall mental state of affected patients. A search of the literature was carried out and a comprehensive overview of currently available data is presented. Autogenic training, hypnosis and music therapy can significantly impact intraocular pressure, ocular perfusion and overall mental state of patients suffering from glaucoma. As all of these adjuvant therapeutic options are cost-effective, available almost everywhere and at anytime as well as without any known side effects, they can be useful additional techniques in the overall concept for treating glaucoma patients. Regular ocular examinations by an ophthalmologist are, however, mandatory.

  8. Integrating a relaxation response-based curriculum into a public high school in Massachusetts.

    Science.gov (United States)

    Foret, Megan M; Scult, Matthew; Wilcher, Marilyn; Chudnofsky, Rana; Malloy, Laura; Hasheminejad, Nicole; Park, Elyse R

    2012-04-01

    Academic and societal pressures result in U.S. high school students feeling stressed. Stress management and relaxation interventions may help students increase resiliency to stress and overall well-being. The objectives of this study were to examine the feasibility (enrollment, participation and acceptability) and potential effectiveness (changes in perceived stress, anxiety, self-esteem, health-promoting behaviors, and locus of control) of a relaxation response (RR)-based curriculum integrated into the school day for high school students. The curriculum included didactic instruction, relaxation exercises, positive psychology, and cognitive restructuring. The intervention group showed significantly greater improvements in levels of perceived stress, state anxiety, and health-promoting behaviors when compared to the wait list control group. The intervention appeared most useful for girls in the intervention group. The results suggest that several modifications may increase the feasibility of using this potentially effective intervention in high schools. Copyright © 2011 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  9. The impact of muscle relaxation techniques on the quality of life of cancer patients, as measured by the FACT-G questionnaire.

    Science.gov (United States)

    Parás-Bravo, Paula; Salvadores-Fuentes, Paloma; Alonso-Blanco, Cristina; Paz-Zulueta, María; Santibañez-Margüello, Miguel; Palacios-Ceña, Domingo; Boixadera-Planas, Ester; Fernández-de-Las-Peñas, César

    2017-01-01

    Patients with cancer frequently suffer from emotional distress, characterized by psychological symptoms such as anxiety or depression. The presence of psychological symptoms combined with the complex nature of oncology processes can negatively impact patients' quality of life. We aimed to determine the impact of a relaxation protocol on improving quality of life in a sample of oncological patients treated in the Spanish National Public Health System. We conducted a multicenter interventional study without a control group. In total, 272 patients with different oncologic pathologies and showing symptoms of anxiety were recruited from 10 Spanish public hospitals. The intervention comprised abbreviated progressive muscle relaxation training, according to Bernstein and Borkovec. This was followed by weekly telephone calls to each patient over a 1-month period. We collected sociodemographic variables related to the disease process, including information about mental health and the intervention. Patients' quality of life was assessed using the Functional Assessment of Cancer Therapy-General (FACT-G) questionnaire. Bivariate and univariate analyses were performed, along with an analysis of multiple correspondences to identify subgroups of patients with similar variations on the FACT-G. Patients showed statistically significant improvements on the FACT-G overall score (W = 16806; pPatients with cancer who learned and practiced abbreviated progressive muscle relaxation experienced improvement in their perceived quality of life as measured by the FACT-G. Our findings support a previous assumption that complementary techniques (including relaxation techniques) are effective in improving the quality of life of patients with cancer.

  10. Strain relaxation of CdTe on Ge studied by medium energy ion scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pillet, J.C., E-mail: jean-christophe.pillet@cea.fr [Univ. Grenoble Alpes, CEA, LETI, MINATEC campus, F38000 Grenoble (France); CEA, LETI, Département Optique et Photonique, F38054 Grenoble (France); Pierre, F. [Univ. Grenoble Alpes, CEA, LETI, MINATEC campus, F38000 Grenoble (France); CEA, LETI, Service de Caractérisation des Matériaux et Composants, F38054 Grenoble (France); Jalabert, D. [Univ. Grenoble Alpes, CEA, LETI, MINATEC campus, F38000 Grenoble (France); CEA-INAC/UJF-Grenoble 1 UMR-E, SP2M, LEMMA, Minatec Grenoble F-38054 (France)

    2016-10-01

    We have used the medium energy ion scattering (MEIS) technique to assess the strain relaxation in molecular-beam epitaxial (MBE) grown CdTe (2 1 1)/Ge (2 1 1) system. A previous X-ray diffraction study, on 10 samples of the same heterostructure having thicknesses ranging from 25 nm to 10 μm has allowed the measurement of the strain relaxation on a large scale. However, the X-ray diffraction measurements cannot achieve a stress measurement in close proximity to the CdTe/Ge interface at the nanometer scale. Due to the huge lattice misfit between the CdTe and Ge, a high degree of disorder is expected at the interface. The MEIS in channeling mode is a good alternative in order to profile defects with a high depth resolution. For a 21 nm thick CdTe layer, we observed, at the interface, a high density of Cd and/or Te atoms moved from their expected crystallographic positions followed by a rapid recombination of defects. Strain relaxation mechanisms in the vicinity of the interface are discussed.

  11. [Effects of aerobic exercise program and relaxation techniques on anxiety, quality of sleep, depression, and quality of life in patients with fibromyalgia: a randomized controlled trial].

    Science.gov (United States)

    Arcos-Carmona, Isabel María; Castro-Sánchez, Adelaida María; Matarán-Peñarrocha, Guillermo Adolfo; Gutiérrez-Rubio, Ana Belén; Ramos-González, Elena; Moreno-Lorenzo, Carmen

    2011-10-08

    Fibromyalgia is considered as a combination of physical, psychological and social disabilities. The purpose of the present study was to determine the benefits of aerobic exercise program and progressive relaxation techniques on anxiety, quality of sleep, depression and quality of life in patients with fibromyalgia. An experimental study was performed with a placebo control group. Fifty-six fibromyalgia patients were randomly assigned to intervention (aerobic exercises+progressive relaxation techniques) and placebo (sham treatment with disconnected magnet therapy device) groups. Outcome measures were anxiety (STAI- State Trait Anxiety Inventory), quality of sleep (Pittsburgh sleep quality index), depression (Beck depression inventory) and quality of life (questionnaire SF-36). Measures were performed at baseline and after 10-weeks treatment. After 10 weeks of treatment, the intervention group showed significant reduction (pquality of life. The combination of aerobic exercise program and progressive relaxation techniques contribute to improve night rest, trait anxiety and quality of life in patients with fibromyalgia. Copyright © 2010 Elsevier España, S.L. All rights reserved.

  12. Effects of thermal relaxation on an amorphous superconducting Zr--Rh alloy

    International Nuclear Information System (INIS)

    Drehman, A.J.; Johnson, W.L.

    1978-05-01

    The electronic and superconducting properties of an amorphous transition metal alloy are used to evaluate the effects of low temperature annealing. It is observed that the superconducting transition temperature and the electrical resistivity relax exponentially in time from their initial value to a final relaxed value. From this an activation energy for the relaxation process is derived and an explanation is suggested which involves internal stress

  13. Time-Dependent Behaviors of Granite: Loading-Rate Dependence, Creep, and Relaxation

    Science.gov (United States)

    Hashiba, K.; Fukui, K.

    2016-07-01

    To assess the long-term stability of underground structures, it is important to understand the time-dependent behaviors of rocks, such as their loading-rate dependence, creep, and relaxation. However, there have been fewer studies on crystalline rocks than on tuff, mudstone, and rock salt, because the high strength of crystalline rocks makes the detection of their time-dependent behaviors much more difficult. Moreover, studies on the relaxation, temporal change of stress and strain (TCSS) conditions, and relations between various time-dependent behaviors are scarce for not only granites, but also other rocks. In this study, previous reports on the time-dependent behaviors of granites were reviewed and various laboratory tests were conducted using Toki granite. These tests included an alternating-loading-rate test, creep test, relaxation test, and TCSS test. The results showed that the degree of time dependence of Toki granite is similar to other granites, and that the TCSS resembles the stress-relaxation curve and creep-strain curve. A viscoelastic constitutive model, proposed in a previous study, was modified to investigate the relations between the time-dependent behaviors in the pre- and post-peak regions. The modified model reproduced the stress-strain curve, creep, relaxation, and the results of the TCSS test. Based on a comparison of the results of the laboratory tests and numerical simulations, close relations between the time-dependent behaviors were revealed quantitatively.

  14. Mental training, relaxation techniques and pedagogical instructions to reduce Music Performance Anxiety (MPA) in flute students

    OpenAIRE

    Carmen Viejo Llaneza; Ana Laucirica Larrinaga

    2016-01-01

    Music Performance Anxiety (MPA) is, frequently, one of the problems faced by a musical performer in his or her career. This study observes way in which stage fright affects in musicians, which is a possible factor that may later lead to anxiety in public performances and, furthermore, how we can intervene to mitigate or reduce its effects. An initial interview was conducted with four upper division students of transverse flute. This was followed by some training techniques - relaxation techni...

  15. Picosecond absorption relaxation measured with nanosecond laser photoacoustics

    OpenAIRE

    Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin; Wang, Lihong V.

    2010-01-01

    Picosecond absorption relaxation—central to many disciplines—is typically measured by ultrafast (femtosecond or picosecond) pump-probe techniques, which however are restricted to optically thin and weakly scattering materials or require artificial sample preparation. Here, we developed a reflection-mode relaxation photoacoustic microscope based on a nanosecond laser and measured picosecond absorption relaxation times. The relaxation times of oxygenated and deoxygenated hemoglobin molecules, b...

  16. [Options for stress management in obesity treatment].

    Science.gov (United States)

    Czeglédi, Edit

    2016-02-14

    Overeating and physical inactivity are of great importance in the etiology of obesity. Psychological factors are often found in the background of life style. Chronic stress can contribute to physical inactivity and behaviors that hinder the keeping of a diet (e.g., irregular eating pattern, emotional eating). Results of randomized controlled trials show that relaxation can reduce emotional eating, improve cognitive restraint, and thereby reduce weight. However, stress management is more than relaxation. It consists of adaptive emotion-focused and problem-focused coping strategies and skills to improve relationships. Deflection skills may help in replacing emotional eating with other behaviors. Cognitive restructuring, saying no, and problem solving help to prevent or manage conflicts and difficulties otherwise would result in overeating due to distress. Developing stress management skills may result in greater compliance with the treatment. The techniques presented in the study can be easily applied by general practitioners or specialists, and provide tools for optimizing obesity treatment.

  17. Effects of flotation-restricted environmental stimulation technique on stress-related muscle pain: what makes the difference in therapy--attention-placebo or the relaxation response?

    Science.gov (United States)

    Bood, Sven A; Sundequist, Ulf; Kjellgren, Anette; Nordstrom, Gun; Norlander, Torsten

    2005-01-01

    The purpose of the present study was to examine the potential effects of attention-placebo on flotation tank therapy. Flotation-restricted environmental stimulation technique is a method whereby an individual lies in a floating tank and all stimuli are reduced to a minimum. Thirty-two patients were diagnosed as having stress-related muscular pain. In addition, 16 of the participants had received the diagnosis of burnout depression. The patients were treated with flotation-restricted environmental stimulation technique for six weeks. One-half of the patients were also given special attention for 12 weeks (high attention), while the remainder received attention for only six weeks (normal attention). The participants exhibited lowered blood pressure, reduced pain, anxiety, depression, stress and negative affectivity, as well as increased optimism, energy and positive affectivity. The results were largely unaffected by the degree of attention-placebo or diagnosis. It was concluded that flotation therapy is an effective, noninvasive method for treating stress-related pain, and that the method is not more affected by placebo than by other methods currently used in pain treatment. The treatment of both burnout depression and pain related to muscle tension constitutes a major challenge for the patient as well as the care provider, an area in which great gains can be made if the treatment is effective. Flotation therapy may constitute an integral part of such treatment.

  18. The effects of progressive muscular relaxation as a nursing procedure used for those who suffer from stress due to multiple sclerosis.

    Science.gov (United States)

    Novais, Paolla Gabrielle Nascimento; Batista, Karla de Melo; Grazziano, Eliane da Silva; Amorim, Maria Helena Costa

    2016-09-01

    to evaluate the effect of progressive muscle relaxation as a nursing procedure on the levels of stress for sufferers of multiple sclerosis. random clinical trials conducted at the Neurology outpatients unit at a University Hospital. The sample consisted of 40 patients who were being monitored as outpatients (20 in a control group and 20 in an experimental group). The Progressive Muscle Relaxation technique was used. The control variables were collected through interviews that were recorded on forms and on the Perceived Stress Scale that we used. Five meetings were held every fortnight covering a period of eight weeks. The experimental group was advised to carry out daily progressive muscle relaxation activities. After eight weeks of these activities, they were evaluated again to measure their levels of stress. In order to analyze the data used, the software package Statistics for Social Sciences version 19.0 was used. the application of the t test showed a significant reduction in the Perceived Stress Scale scores in the experimental group (pencontros quinzenais em um período de oito semanas. O grupo experimental foi orientado a realizar diariamente o Relaxamento Muscular Progressivo. Após oito semanas de intervenção avaliou-se novamente os níveis de estresse. Para análise dos dados foi utilizado o pacote Estatístico para Ciências Sociais-versão 19.0. a aplicação do Teste t demonstrou uma diminuição significante dos escores da Escala de Stress Percebido no grupo experimental (p<0,001), evidenciando diminuição nos níveis de estresse após a prática do relaxamento. a intervenção Relaxamento Muscular Progressivo contribui para redução dos níveis de estresse em pessoas com Esclerose Múltipla, podendo ser incluída como prática na assistência de enfermagem prestada a esses pacientes. NCT 02673827. evaluar el efecto del Relajamiento Muscular Progresivo, como intervención de Enfermería en los niveles de estrés en personas con Esclerosis

  19. Structural Relaxation in Fe78Nb2B20 Amorphous Alloy Studied by Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    Kansy, J.; Hanc, A.; Rasek, J.; Haneczok, G.; Pajak, L.; Stoklosa, Z.; Kwapulinski, P.

    2011-01-01

    It was shown that soft magnetic properties of Fe 78 Nb 2 B 20 amorphous alloy can be significantly improved by applying 1-h annealing at temperature 623 K (permeability increases even about 8 times). The Moessbauer Spectroscopy technique indicated that the optimized microstructure (corresponding to the maximum magnetic permeability) is free of iron nanograins and should be attributed to annealing out of free volume and a reduction of internal stresses i.e. to the relaxed amorphous phase. (authors)

  20. Dielectric Relaxation of Water: Theory and Experiment

    International Nuclear Information System (INIS)

    Adhikari, Narayan Prasad; Paudyal, Harihar; Johri, Manoj

    2010-06-01

    We have studied the hydrogen bond dynamics and methods for evaluation of probability and relaxation time for hydrogen bond network. Further, dielectric relaxation time has been calculated by using a diagonalization procedure by obtaining eigen values (inverse of relaxation time) of a master equation framed on the basis of Fokker-Planck equations. Microwave cavity spectrometer has been described to make measurements of relaxation time. Slater's perturbation equations are given for the analysis of the data. A comparison of theoretical and experimental data shows that there is a need for improvements in the theoretical model and experimental techniques to provide exact information about structural properties of water. (author)

  1. Hyperfine relaxation of an optically pumped cesium vapor

    International Nuclear Information System (INIS)

    Tornos, J.; Amare, J.C.

    1986-01-01

    The relaxation of hyperfine orientation indirectly induced by optical pumping with a σ-polarized D 1 -light in a cesium vapor in the presence of Ar is experimentally studied. The detection technique ensures the absence of quadrupole relaxation contributions in the relaxation signals. The results from the dependences of the hyperfine relaxation rate on the temperature and argon pressure are: diffusion coefficient of Cs in Ar, D 0 = 0.101 +- 0.010 cm 2 s -1 at 0 0 C and 760 Torr; relaxation cross section by Cs-Ar collisions, σ/sub c/ = (104 +- 5) x 10 -23 cm 2 ; relaxation cross section by Cs-Cs (spin exchange) collisions, σ/sub e//sub x/ = (1.63 +- 0.13) x 10 -14 cm 2

  2. Comparison of Some Mechanical and Physical Methods for Measurement of Residual Stresses in Brush-Plated Nickel Hardened Gold and Silver Coatings

    Directory of Open Access Journals (Sweden)

    Harri LILLE

    2016-05-01

    Full Text Available Hard gold and silver are applied in coating owing to their high hardness, good wear and corrosion resistance for engineering application (e.g. on generators slip rings, sliding contacts and small machine parts and are typically plated on copper (mostly, brass and bronze. The studied nickel-hardened gold and silver coatings were brush plated on open thin-walled copper ring substrates. Residual stresses in the coatings were calculated from the curvature changes of the substrates. Biaxial intrinsic residual stresses were also determined by nanoindentation testing and by the X-ray technique. The values of the residual stresses represented tensile stresses and when determined by the techniques used they were comparable within a maximum limit of measurement uncertainty. These stresses relax; the dependence of relaxation time was approximated by a linear-fractional function.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7439

  3. Structural-relaxation phenomena in As–S glasses as probed by combined PAL/DBAR technique

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O., E-mail: shpotyuk@novas.lviv.ua [Institute of Materials of Scientific Research Company “Carat”, 202 Stryjska Str., Lviv, 79031 (Ukraine); Institute of Physics of Jan Dlugosz University, 13/15 al. Armii Krajowej, Czestochowa, 42200 (Poland); Ingram, A. [Faculty of Physics of Opole Technical University, 75 Ozimska Str., Opole, 45370 (Poland); Szatanik, R. [Institute of Physics of Opole University, 48 Oleska Str., Opole, 45052 (Poland); Shpotyuk, M. [Institute of Materials of Scientific Research Company “Carat”, 202 Stryjska Str., Lviv, 79031 (Ukraine); Lviv Polytechnic National University, 12 Bandery Str., Lviv, 79013 (Ukraine); Golovchak, R. [Physics and Astronomy Department, Austin Peay State University, 601 College Str., Clarksville, TN, 37044 (United States)

    2015-04-01

    Experimental techniques exploring phenomena of positron–electron interaction, namely the positron annihilation lifetime spectroscopy and Doppler broadening of annihilation radiation, are shown to be very informative tools to study radiation- and thermally-induced phenomena in chalcogenide glasses of binary As–S system. Time-dependent processes of free-volume voids agglomeration (expansion), fragmentation (refining) and disappearing (contraction) are identified as main stages of physical aging in S-rich glasses, while a competitive channel of coordination topological defects formation associated with void charging becomes significant in a vicinity of near-stoichiometric glass compositions under γ-irradiation. The data of combined positron lifetime and Doppler broadening of annihilation radiation measurements are correlated with radiation-induced shift of fundamental optical absorption edge of the studied glasses. The meaningful model for γ-induced and relaxation-driven evolution in free-volume void structure of As–S glasses giving a unified insight on their structural-chemical nature is proposed. - Highlights: • Combined optical, PAL and DBAR probes to study structural relaxation in As–S glasses. • Void agglomeration, fragmentation and disappearing are main stages of physical aging. • Radiation-induced coordination defects are important in near-stoichiometric As–S. • Proposed model describes free-volume evolution in the void structure of As–S glasses.

  4. Structural-relaxation phenomena in As–S glasses as probed by combined PAL/DBAR technique

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Ingram, A.; Szatanik, R.; Shpotyuk, M.; Golovchak, R.

    2015-01-01

    Experimental techniques exploring phenomena of positron–electron interaction, namely the positron annihilation lifetime spectroscopy and Doppler broadening of annihilation radiation, are shown to be very informative tools to study radiation- and thermally-induced phenomena in chalcogenide glasses of binary As–S system. Time-dependent processes of free-volume voids agglomeration (expansion), fragmentation (refining) and disappearing (contraction) are identified as main stages of physical aging in S-rich glasses, while a competitive channel of coordination topological defects formation associated with void charging becomes significant in a vicinity of near-stoichiometric glass compositions under γ-irradiation. The data of combined positron lifetime and Doppler broadening of annihilation radiation measurements are correlated with radiation-induced shift of fundamental optical absorption edge of the studied glasses. The meaningful model for γ-induced and relaxation-driven evolution in free-volume void structure of As–S glasses giving a unified insight on their structural-chemical nature is proposed. - Highlights: • Combined optical, PAL and DBAR probes to study structural relaxation in As–S glasses. • Void agglomeration, fragmentation and disappearing are main stages of physical aging. • Radiation-induced coordination defects are important in near-stoichiometric As–S. • Proposed model describes free-volume evolution in the void structure of As–S glasses

  5. About the activation volume for cross-slip in Cu at high stresses

    Czech Academy of Sciences Publication Activity Database

    Couteau, O.; Kruml, Tomáš; Martin, J. L.

    2011-01-01

    Roč. 59, 10 (2011), s. 4207-4215 ISSN 1359-6454 Institutional research plan: CEZ:AV0Z20410507 Keywords : Cross-slip * Thermally activated processes * Stress relaxation technique Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.755, year: 2011

  6. Effects of fretting fatigue on the residual stress of shot peened Ti-6Al-4V samples

    International Nuclear Information System (INIS)

    Martinez, S.A.; Sathish, S.; Blodgett, M.P.; Mall, S.; Namjoshi, S.

    2005-01-01

    X-ray diffraction residual stress measurement has been utilized as nondestructive tool for the characterization of fretting fatigue damage in shot peened samples of Ti-6Al-4V. Prior to fretting fatigue damage, compressive residual stresses were found to be uniform over the entire face of the sample and independent of the measurement direction. After fretting fatigue, inside and in the vicinity of the fretting damage zone large relaxation of compressive residual stress was observed. An anisotropic residual stress distribution has been observed in the fretting fatigue damaged region. Residual stress measurements in interrupted fretting fatigue experiments showed that the relaxation of residual stress increases as the number of fretting fatigue cycles increase. The results are discussed in the light of their importance in establishing X-ray diffraction residual stress measurement technique as a nondestructive tool to characterize fretting fatigue damage

  7. Picosecond absorption relaxation measured with nanosecond laser photoacoustics.

    Science.gov (United States)

    Danielli, Amos; Favazza, Christopher P; Maslov, Konstantin; Wang, Lihong V

    2010-10-18

    Picosecond absorption relaxation-central to many disciplines-is typically measured by ultrafast (femtosecond or picosecond) pump-probe techniques, which however are restricted to optically thin and weakly scattering materials or require artificial sample preparation. Here, we developed a reflection-mode relaxation photoacoustic microscope based on a nanosecond laser and measured picosecond absorption relaxation times. The relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, were measured at 576 nm. The added advantages in dispersion susceptibility, laser-wavelength availability, reflection sensing, and expense foster the study of natural-including strongly scattering and nonfluorescent-materials.

  8. Advanced Techniques of Stress Analysis

    Directory of Open Access Journals (Sweden)

    Simion TATARU

    2013-12-01

    Full Text Available This article aims to check the stress analysis technique based on 3D models also making a comparison with the traditional technique which utilizes a model built directly into the stress analysis program. This comparison of the two methods will be made with reference to the rear fuselage of IAR-99 aircraft, structure with a high degree of complexity which allows a meaningful evaluation of both approaches. Three updated databases are envisaged: the database having the idealized model obtained using ANSYS and working directly on documentation, without automatic generation of nodes and elements (with few exceptions, the rear fuselage database (performed at this stage obtained with Pro/ ENGINEER and the one obtained by using ANSYS with the second database. Then, each of the three databases will be used according to arising necessities.The main objective is to develop the parameterized model of the rear fuselage using the computer aided design software Pro/ ENGINEER. A review of research regarding the use of virtual reality with the interactive analysis performed by the finite element method is made to show the state- of- the-art achieved in this field.

  9. Stress Coping Techniques For Female Doctors Encountering Sexual ...

    African Journals Online (AJOL)

    ... Muslim and Christian female doctors encounter with sexual harassment. It was also found that sexual harassment cut across all age groups. The findings of these study indicated that stress coping techniques is an effective method in the reduction of stress posed by sexual harassment on female doctors from their patients.

  10. Delayed plastic relaxation limit in SiGe islands grown by Ge diffusion from a local source

    Energy Technology Data Exchange (ETDEWEB)

    Vanacore, G. M.; Zani, M.; Tagliaferri, A., E-mail: alberto.tagliaferri@polimi.it [CNISM-Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Nicotra, G. [IMM-CNR, Stradale Primosole 50, I-95121 Catania (Italy); Bollani, M. [CNR-IFN, LNESS, Via Anzani 42, I-22100 Como (Italy); Bonera, E.; Montalenti, F.; Picco, A.; Boioli, F. [Dipartimento di Scienza dei Materiali and L-NESS, Università Milano-Bicocca, via Cozzi 53, I-20125 Milano (Italy); Capellini, G. [Department of Sciences at the Università Roma Tre, Via Vasca Navale 79, 00146 Roma (Italy); Isella, G. [CNISM, LNESS, Dipartimento di Fisica, Politecnico di Milano (Polo di Como), Via Anzani 42, I-22100 Como (Italy); Osmond, J. [ICFO–The Institute of Photonic Sciences, Av. Carl Friedrich Gauss, 3, E-08860 Castelldefels (Barcelona) (Spain)

    2015-03-14

    The hetero-epitaxial strain relaxation in nano-scale systems plays a fundamental role in shaping their properties. Here, the elastic and plastic relaxation of self-assembled SiGe islands grown by surface-thermal-diffusion from a local Ge solid source on Si(100) are studied by atomic force and transmission electron microscopies, enabling the simultaneous investigation of the strain relaxation in different dynamical regimes. Islands grown by this technique remain dislocation-free and preserve a structural coherence with the substrate for a base width as large as 350 nm. The results indicate that a delay of the plastic relaxation is promoted by an enhanced Si-Ge intermixing, induced by the surface-thermal-diffusion, which takes place already in the SiGe overlayer before the formation of a critical nucleus. The local entropy of mixing dominates, leading the system toward a thermodynamic equilibrium, where non-dislocated, shallow islands with a low residual stress are energetically stable. These findings elucidate the role of the interface dynamics in modulating the lattice distortion at the nano-scale, and highlight the potential use of our growth strategy to create composition and strain-controlled nano-structures for new-generation devices.

  11. Relaxed Binaural LCMV Beamforming

    NARCIS (Netherlands)

    Koutrouvelis, A.; Hendriks, R.C.; Heusdens, R.; Jensen, Jesper Rindom

    2017-01-01

    In this paper, we propose a new binaural beamforming technique, which can be seen as a relaxation of the linearly constrained minimum variance (LCMV) framework. The proposed method can achieve simultaneous noise reduction and exact binaural cue preservation of the target source, similar to the

  12. Stress corrosion cracking mitigation by ultrasound induced cavitation technique

    Energy Technology Data Exchange (ETDEWEB)

    Fong, C.; Lee, Y.C. [Industrial Technology Research Inst., Taiwan (China); Yeh, T.K. [National Tsing Hua Univ., Taiwan (China)

    2014-07-01

    Cavitation is usually considered as a damaging mechanism under erosion corrosion condition. However, if used appropriately, cavitation can be applied as a peening technique for surface stress modification process. The aim of surface stress modification is to alter the stress state of processed surface through direct or indirect thermo-mechanical treatments to reduce cracking problems initiated from surface. Ultrasonic devices are used to generate cavitation bubbles which when collapse will produce high intensity shock waves and high velocity micro-jet streams. The cavitation impact when properly controlled will create plastically deformed compressive layers in nearby surfaces and minimize cracking susceptibility in corrosive environments. This study is to investigate the effectiveness of Ultrasound Induced Cavitation (UIC) technique in surface stress improvement. Ultrasonic cavitation treatment of SS304 stainless steel under pure water is carried out with different controlling parameters. The cavitation impact on SS304 surface is measured in terms of surface roughness, surface strain, hardness, and microstructural characteristics. The in-depth residual stress distribution and crack mitigation effect are also evaluated. Test result indicates ultrasound induced cavitation treatment only has minor effect on surface physical characteristics. The extent of compressive stress produced on top surface exceeds the yield strength and can reach a depth above 150 μm. The maximum surface strain measured is generally below 20%, which is not considered detrimental to accelerate crack initiation. Stress corrosion verification tests show UIC treatment is capable in preventing environmental assisted cracking of stainless steels in severely corrosive conditions. In view of the test results, UIC technique has demonstrated to be a low cost, low contaminating, and effective surface stress improvement technology. (author)

  13. Stress corrosion cracking mitigation by ultrasound induced cavitation technique

    International Nuclear Information System (INIS)

    Fong, C.; Lee, Y.C.; Yeh, T.K.

    2014-01-01

    Cavitation is usually considered as a damaging mechanism under erosion corrosion condition. However, if used appropriately, cavitation can be applied as a peening technique for surface stress modification process. The aim of surface stress modification is to alter the stress state of processed surface through direct or indirect thermo-mechanical treatments to reduce cracking problems initiated from surface. Ultrasonic devices are used to generate cavitation bubbles which when collapse will produce high intensity shock waves and high velocity micro-jet streams. The cavitation impact when properly controlled will create plastically deformed compressive layers in nearby surfaces and minimize cracking susceptibility in corrosive environments. This study is to investigate the effectiveness of Ultrasound Induced Cavitation (UIC) technique in surface stress improvement. Ultrasonic cavitation treatment of SS304 stainless steel under pure water is carried out with different controlling parameters. The cavitation impact on SS304 surface is measured in terms of surface roughness, surface strain, hardness, and microstructural characteristics. The in-depth residual stress distribution and crack mitigation effect are also evaluated. Test result indicates ultrasound induced cavitation treatment only has minor effect on surface physical characteristics. The extent of compressive stress produced on top surface exceeds the yield strength and can reach a depth above 150 μm. The maximum surface strain measured is generally below 20%, which is not considered detrimental to accelerate crack initiation. Stress corrosion verification tests show UIC treatment is capable in preventing environmental assisted cracking of stainless steels in severely corrosive conditions. In view of the test results, UIC technique has demonstrated to be a low cost, low contaminating, and effective surface stress improvement technology. (author)

  14. The effects of progressive muscular relaxation and breathing control technique on blood pressure during pregnancy

    Directory of Open Access Journals (Sweden)

    Mahboobeh Aalami

    2016-01-01

    Full Text Available Background: Hypertensive disorders in pregnancy are the main cause of maternal and fetal mortality; however, they have no definite effective treatment. The researchers aimed to study the effects of progressive muscular relaxation and breathing control technique on blood pressure (BP during pregnancy. Materials and Methods: This three-group clinical trial was conducted in Mashhad health centers and governmental hospitals. Sixty pregnant (after 20 weeks of gestational age women with systolic BP ≥ 135 mmHg or diastolic BP ≥ 85 mmHg were assigned to three groups. Progressive muscular relaxation and breathing control exercises were administered to the two experimental groups once a week in person and in the rest of the days by instructions given on a CD for 4 weeks. BP was checked before and after the interventions. BP was measured before and after 15 min subjects' waiting without any especial intervention in the control group. Results: After 4 weeks of intervention, the systolic (by a mean of 131.3 to 117.2, P = 0.001 and by a mean of 131.05 to 120.5, P = 0.004, respectively and diastolic (by a mean of 79.2 to 72.3, P = 0.001 and by a mean of 80.1 to 76.5, P = 0.047, respectively BPs were significantly decreased in progressive muscular relaxation and breathing control groups, but they were not statistically significant in the control group. Conclusions: The interventions were effective on decreasing systolic and diastolic BP to normal range after 4 weeks in both the groups. The effects of both the interventions were more obvious on systolic BP compared to diastolic BP.

  15. Residual stress determination of rail tread using a laser ultrasonic technique

    International Nuclear Information System (INIS)

    Wang, Jing; Feng, Qibo

    2015-01-01

    A non-destructive method for measuring the residual stress on rail tread that uses a laser-generated ultrasonic technique is proposed. The residual stress distribution of different parts on both the new rail and used rail were examined. The surface acoustic waves (SAWs) are excited by a scanning line laser and detected by a laser ultrasonic detection system. A digital correlation method was used for calculating the changes in velocity of SAWs, which reflects the stress distribution. A wavelet de-noising technique and a least square fit were used for signal processing to improve the measurement accuracy. The effects of ultrasonic propagation distance and surface roughness on the determination of residual stress were analyzed and simulated. Results from the study demonstrate that the stress distribution results are accordant with the practical situation, and the laser-generated SAWs technique is a promising tool for the determination of residual stress in the railway inspection and other industrial testing fields. (paper)

  16. Thermal simulation of drift emplacement (TSS): In-situ instrumentation and numerical modeling of stress measurement methods

    International Nuclear Information System (INIS)

    Heusermann, S.

    1988-01-01

    In the course of the planned demonstration test Thermal Simulation of Drift Emplacement (TSS) BGR is carrying out in-situ-measurements of rock stresses, rock deformability and permeability of salt rock and backfill material. The following techniques developed and proved by BGR during the last years are planned to be used in the TSS project: overcoring technique, dilatometer technique, hard inclusion technique, slot-cutting techniques, large-flatjack technique, compensation tests in laboratory, vacuum tests, injection tests, and tracer tests. The purpose of measurements is to determine: the initial stress state; stress gradients around test drifts; stress change caused by mining activities, by creep and stress relaxation and by temperature; the in-situ load-deformation behavior of rock salt; the permeability of rock salt around test drifts; the compaction behavior of backfill material; and the load-deformation behavior of rock salt and borehole grout in laboratory tests

  17. Test plan for suitability assessment of five overcoring stress measurement techniques

    International Nuclear Information System (INIS)

    Gregory, E.C.; Rundle, T.A.; McCabe, W.M.; Kim, K.

    1982-08-01

    Tests are to be conducted at the Near-Surface Test Facility (NSTF) to assess the suitability of five overcoring techniques for in situ stress determination in a jointed basalt. The overcoring methods to be investigated use the following instrumentation to measure strain relief by overcoring a pilot borehole: USBM borehole deformation gage, CSIRO hollow inclusion stress cell, cast epoxy inclusion, the Lulea triaxial strain cell and the ''doorstopper'' biaxial strain cell. The tests are to provide data regarding the state of stress below the NSTF. This information is to be used in the evaluation of each method of overcoring. During the course of field testing, an attempt is to be made to adapt conventional overcoring techniques and analytical methods to the basalt medium. If overcoring stress determination in basalt is shown suitable, then additional studies will be identified to further adapt a technique for use at depth. In addition to the five overcoring techniques to be tested at the NSTF, stress measurements by Hydrofracturing are to be conducted to provide data for direct comparison with overcoring results. 16 refs., 18 figs

  18. Longitudinal relaxation of initially straight flexible and stiff polymers

    Science.gov (United States)

    Dimitrakopoulos, Panagiotis; Dissanayake, Inuka

    2004-11-01

    The present talk considers the relaxation of a single flexible or stiff polymer chain from an initial straight configuration in a viscous solvent. This problem commonly arises when strong flows are turned off in both industrial and biological applications. The problem is also motivated by recent experiments with single biopolymer molecules relaxing after being fully extended by applied forces as well as by the recent development of micro-devices involving stretched tethered biopolymers. Our results are applicable to a wide array of synthetic polymers such as polyacrylamides, Kevlar and polyesters as well as biopolymers such as DNA, actin filaments, microtubules and MTV. In this talk we discuss the mechanism of the polymer relaxation as was revealed through Brownian Dynamics simulations covering a broad range of time scales and chain stiffness. After the short-time free diffusion, the chain's longitudinal reduction at early intermediate times is shown to constitute a universal behavior for any chain stiffness caused by a quasi-steady relaxation of tensions associated with the deforming action of the Brownian forces. Stiff chains are shown to exhibit a late intermediate-time longitudinal reduction associated with a relaxation of tensions affected by the deforming Brownian and the restoring bending forces. The longitudinal and transverse relaxations are shown to obey different laws, i.e. the chain relaxation is anisotropic at all times. In the talk, we show how from the knowledge of the relaxation mechanism, we can predict and explain the polymer properties including the polymer stress and the solution birefringence. In addition, a generalized stress-optic law is derived valid for any time and chain stiffness. All polymer properties which depend on the polymer length are shown to exhibit two intermediate-time behaviors with the early one to constitute a universal behavior for any chain stiffness. This work was supported in part by the Minta Martin Research Fund. The

  19. Tensions relaxation in Zircaloy-4

    International Nuclear Information System (INIS)

    Cuniberti, A.M.; Picasso, A.C.

    1990-01-01

    Traction and stress relaxation studies were performed on polycrystalline Zry-4 at room temperature. The effect of loading velocity on the plastic behaviour of the material is discussed, analysing log σ vs. log dε/dt at different deformation levels. The contribution introduced by the testing machine was taken into account in data evaluation. (Author). 7 refs., 3 figs., 3 tabs

  20. Lagrangian relaxation technique in power systems operation planning: Multipliers updating problem

    Energy Technology Data Exchange (ETDEWEB)

    Ruzic, S. [Electric Power Utility of Serbia, Belgrade (Yugoslavia)

    1995-11-01

    All Lagrangian relaxation based approaches to the power systems operation planning have an important common part: the Lagrangian multipliers correction procedure. It is the subject of this paper. Different approaches presented in the literature are discussed and an original method for the Lagrangian multipliers updating is proposed. The basic idea of this new method is to update Lagrangian multipliers trying to satisfy Khun-Tucker optimality conditions. Instead of the dual function maximization the `distance of optimality function` is defined and minimized. If Khun-Tucker optimality conditions are satisfied the value of this function is in range (-1,0); otherwise the function has a big positive value. This method called `the distance of optimality method` takes into account future changes in planning generations due to the Lagrangian multipliers updating. The influence of changes in a multiplier associated to one system constraint to the satisfaction of some other system requirements is also considered. The numerical efficiency of the proposed method is analyzed and compared with results obtained using the sub-gradient technique. 20 refs, 2 tabs

  1. Stress and coping in Singaporean nurses: a literature review.

    Science.gov (United States)

    Lim, Joanne; Bogossian, Fiona; Ahern, Kathy

    2010-06-01

    Stress is ubiquitous in the nursing profession and is also prevalent in Asian countries, particularly the "four tigers of Asia": Singapore, Hong Kong, Taiwan, and South Korea. Based on the theoretical framework of Lazarus and Folkman (1984), the present review of the nursing literature aims to identify sources and effects of stress in Singaporean nurses and the coping strategies they use. Nurses reported major stressors including shortage of staff, high work demands and conflict at work. Common coping strategies included problem orientation, social support and relaxation techniques. Several studies reported nurses' intent to leave the profession. Recommendations to minimize the impact of stress include in-service programs to facilitate a problem-solving approach to resolving work-related issues such as conflict. Relaxation therapy and debriefing sessions may also help in reducing negative effects of work stressors. Finally, nurses' emotional coping can be enhanced by strengthening sources of social support, particularly from family.

  2. Relaxation cracking in the process industry, an underestimated problem

    Energy Technology Data Exchange (ETDEWEB)

    Wortel, J.C. van [TNO Institute of Industrial Technology, Apeldoorn (Netherlands)

    1999-12-31

    Austenitic components, operating between 500 and 750 deg C, can fail within 1 year service while the ordinary mechanical properties after failure are still within the code requirements. The intergranular brittle failures are situated in the welded or cold deformed areas. This type of cracking has many names, showing the uncertainty concerning the mechanism for the (catastrophical) failures. A just finished investigation showed that it is a relaxation crack problem, introduced by manufacturing processes, especially welding and cold rolling. Cracking/failures can be expected after only 0.1- 0.2 % relaxation strain. These low strain values can already be generated during relaxation of the welding stresses. Especially coarse grained `age hardening` materials are susceptible. Stabilising and Postweld Heat Treatments are very effective to avoid relaxation crack problems during operation. After these heat treatments the components can withstand more than 2 % relaxation strain. At temperatures between 500 and 750 deg C relaxation cracking is the predominant factor for the safety and lifetime of welded austenitic components. (orig.) 12 refs.

  3. Relaxation cracking in the process industry, an underestimated problem

    Energy Technology Data Exchange (ETDEWEB)

    Wortel, J.C. van [TNO Institute of Industrial Technology, Apeldoorn (Netherlands)

    1998-12-31

    Austenitic components, operating between 500 and 750 deg C, can fail within 1 year service while the ordinary mechanical properties after failure are still within the code requirements. The intergranular brittle failures are situated in the welded or cold deformed areas. This type of cracking has many names, showing the uncertainty concerning the mechanism for the (catastrophical) failures. A just finished investigation showed that it is a relaxation crack problem, introduced by manufacturing processes, especially welding and cold rolling. Cracking/failures can be expected after only 0.1- 0.2 % relaxation strain. These low strain values can already be generated during relaxation of the welding stresses. Especially coarse grained `age hardening` materials are susceptible. Stabilising and Postweld Heat Treatments are very effective to avoid relaxation crack problems during operation. After these heat treatments the components can withstand more than 2 % relaxation strain. At temperatures between 500 and 750 deg C relaxation cracking is the predominant factor for the safety and lifetime of welded austenitic components. (orig.) 12 refs.

  4. Evaluation of combined intracoronary two-dimensional and doppler ultransound techniques in the relaxation function of coronary microcirculation

    International Nuclear Information System (INIS)

    Qi Chunmei; Li Dongye; Pan Defeng; Zhu Hong

    2005-01-01

    Objective: To observe the value of detecting the relaxation function of coronary microcirculation by using combined intracoronary two-dimensional (IVUS) and Doppler interventional ultransound (ICD) techniques with mean arteries pressure. Methods: Fourteen healthy male swines were divided into two groups randomly: eight swines fed with 1% cholesterol-rich diet for 12 weeks as a model of early atherosclerosis were classified as the experimental group; six swines fed with standard diet were classified as control group. All the swines were undergone cardiovascular catheterization examination after 12 weeks. Combined IVUS and ICD techniques were taken to calculate the change of coronary blood flow (CBF) after the administration of acetylcholine and nitroglycerin. The pressure of the root of aorta and then the relaxation function of coronary microcirculation can be accessed with coronary resistance index (RI). At last, all of the examed coronary arteries and related coronary microcirculation were undergone pathological examinations. Results: The pathological examinations demonstrated that the average intima thickness in experimental group was increased more evidently than that of control group (74.80 μm ± 17.60 μm vs 7.60 μm ± 4.27 μm P<0.001). The intima thickness increase can not be seen in the coronary microcirculation. Acetylcholine induced increase in RI in experimental group compared with control group (-0.18 ± 0.09 vs 0.29 ± 0.18, P<0.05). Nitroglycerin induced a decrease in RI for both groups (-0.40 ± 0.13 vs -0.34 ± 0.20). Conclusions: Using IVUS and ICD techniques combined mean arterial pressure can identify the endothelium-mediated dysfunction on coronary microcirculation in the early stage of AS. (authors)

  5. Structural steady states and relaxation oscillations in a two-phase fluid under shear flow: Experiments and phenomenological model

    Science.gov (United States)

    Courbin, L.; Benayad, A.; Panizza, P.

    2006-01-01

    By means of several rheophysics techniques, we report on an extensive study of the couplings between flow and microstructures in a two-phase fluid made of lamellar (Lα) and sponge (L3) phases. Depending on the nature of the imposed dynamical parameter (stress or shear rate) and on the experimental conditions (brine salinity or temperature), we observe several different structural steady states consisting of either multilamellar droplets (with or without a long range order) or elongated (L3) phase domains. Two different astonishing phenomena, shear-induced phase inversion and relaxation oscillations, are observed. We show that (i) phase inversion is related to a shear-induced topological change between monodisperse multilamellar droplets and elongated structures and (ii) droplet size relaxation oscillations result from a shear-induced change of the surface tension between both coexisting (Lα) and (L3) phases. To explain these relaxation oscillations, we present a phenomenological model and compare its numerical predictions to our experimental results.

  6. Noninteracting control of nonlinear systems based on relaxed control

    NARCIS (Netherlands)

    Jayawardhana, B.

    2010-01-01

    In this paper, we propose methodology to solve noninteracting control problem for general nonlinear systems based on the relaxed control technique proposed by Artstein. For a class of nonlinear systems which cannot be stabilized by smooth feedback, a state-feedback relaxed control can be designed to

  7. Stress and Mood

    Science.gov (United States)

    ... Relaxation Emotions & Relationships HealthyYouTXT Tools Home » Stress & Mood Stress & Mood Many people who go back to smoking ... story: Time Out Times 10 >> share What Causes Stress? Read full story: What Causes Stress? >> share The ...

  8. Impact of self-administered relaxation and guided imagery techniques during final trimester and birth.

    Science.gov (United States)

    Gedde-Dahl, Merete; Fors, Egil A

    2012-02-01

    The objective of this study was to test if and how self-administered practice of relaxation techniques, positive affirmation and guided imagery, in the final part of pregnancy had an impact on giving birth. Further to see if the use of a simple method, a CD with a booklet, with no previous training or specific support of the participants (neither required nor delivered), affected the birth experience. Outcome measures were monitored both during and after delivery: During delivery, pain and anxiety were measured at different stages of birth. Post-delivery Wellbeing (Edmonton Scale 0-10, where 10 is the worst possible feeling of Wellbeing), pain, anxiety, Apgar score, duration of birth, complications and anesthesia/analgesic were recorded. Those in the CD-intervention group also reported how many times they had practiced the techniques. The study employed a randomized controlled trial. Results show that the CD-intervention group had a significantly better score on total Wellbeing, as measured by the ESAS (0-10) Edmonton Scale. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Local yield stress statistics in model amorphous solids

    Science.gov (United States)

    Barbot, Armand; Lerbinger, Matthias; Hernandez-Garcia, Anier; García-García, Reinaldo; Falk, Michael L.; Vandembroucq, Damien; Patinet, Sylvain

    2018-03-01

    We develop and extend a method presented by Patinet, Vandembroucq, and Falk [Phys. Rev. Lett. 117, 045501 (2016), 10.1103/PhysRevLett.117.045501] to compute the local yield stresses at the atomic scale in model two-dimensional Lennard-Jones glasses produced via differing quench protocols. This technique allows us to sample the plastic rearrangements in a nonperturbative manner for different loading directions on a well-controlled length scale. Plastic activity upon shearing correlates strongly with the locations of low yield stresses in the quenched states. This correlation is higher in more structurally relaxed systems. The distribution of local yield stresses is also shown to strongly depend on the quench protocol: the more relaxed the glass, the higher the local plastic thresholds. Analysis of the magnitude of local plastic relaxations reveals that stress drops follow exponential distributions, justifying the hypothesis of an average characteristic amplitude often conjectured in mesoscopic or continuum models. The amplitude of the local plastic rearrangements increases on average with the yield stress, regardless of the system preparation. The local yield stress varies with the shear orientation tested and strongly correlates with the plastic rearrangement locations when the system is sheared correspondingly. It is thus argued that plastic rearrangements are the consequence of shear transformation zones encoded in the glass structure that possess weak slip planes along different orientations. Finally, we justify the length scale employed in this work and extract the yield threshold statistics as a function of the size of the probing zones. This method makes it possible to derive physically grounded models of plasticity for amorphous materials by directly revealing the relevant details of the shear transformation zones that mediate this process.

  10. The effects of music relaxation and muscle relaxation techniques on sleep quality and emotional measures among individuals with posttraumatic stress disorder

    OpenAIRE

    Iris Haimov; Ilana Kremer; Monica Blanaru; Boaz Bloch; Limor Vadas; Naomi Ziv; Zahi Arnon

    2012-01-01

    Posttraumatic stress disorder (PTSD), an anxiety disorder with lifetime prevalence of 7.8%, is characterized by symptoms that develop following exposure to traumatic life events and that cause an immediate experience of intense fear, helplessness or horror. PTSD is marked by recurrent nightmares typified by the recall of intrusive experiences and by extended disturbance throughout sleep. Individuals with PTSD respond poorly to drug treatments for insomnia. The disadvantages of drug treatment ...

  11. NMR relaxation dispersion of Miglyol molecules confined inside polymeric micro-capsules.

    Science.gov (United States)

    Nechifor, Ruben; Ardelean, Ioan; Mattea, Carlos; Stapf, Siegfried; Bogdan, Mircea

    2011-11-01

    Frequency dependent NMR relaxation studies have been carried out on Miglyol molecules confined inside core shell polymeric capsules to obtain a correlation between capsule dimension and the measurable parameters. The polymeric capsules were prepared using an interfacial polymerization technique for three different concentrations of Miglyol. It was shown that the variation of Miglyol concentration influences the capsule dimension. Their average size was estimated using the pulsed field gradient diffusometry technique. The relaxation dispersion curves were obtained at room temperature by a combined use of a fast field cycling instrument and a high-field instrument. The frequency dependence of relaxation rate shows a transition from a diffusion-limited to a surface-limited relaxation regime. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Anelastic relaxation peaks in single crystals of zirconium-oxygen alloys

    International Nuclear Information System (INIS)

    Ritchie, I.G.; Sprungmann, K.W.; Atrens, A.; Rosinger, H.E.; CEA Centre d'Etudes Nucleaires de Grenoble, 38

    1977-01-01

    Relaxations of the compliances S 11 -S 12 and S 44 have been observed in single crystals of zirconium-oxygen alloys tested in flexure and in torsion respectively. The relaxations are attributed to the stress-induced reorientation of substitutional impurity atoms (s) paired with interstitial oxygen atoms (i). The results demonstrate that the jump of the interstitial parallel to the basal plane dominates in the reorientation of the s-i pair

  13. A wafer mapping technique for residual stress in surface micromachined films

    International Nuclear Information System (INIS)

    Schiavone, G; Murray, J; Smith, S; Walton, A J; Desmulliez, M P Y; Mount, A R

    2016-01-01

    The design of MEMS devices employing movable structures is crucially dependant on the mechanical behaviour of the deposited materials. It is therefore important to be able to fully characterize the micromachined films and predict with confidence the mechanical properties of patterned structures. This paper presents a characterization technique that enables the residual stress in MEMS films to be mapped at the wafer level by using microstructures released by surface micromachining. These dedicated MEMS test structures and the associated measurement techniques are used to extract localized information on the strain and Young’s modulus of the film under investigation. The residual stress is then determined by numerically coupling this data with a finite element analysis of the structure. This paper illustrates the measurement routine and demonstrates it with a case study using electrochemically deposited alloys of nickel and iron, particularly prone to develop high levels of residual stress. The results show that the technique enables wafer mapping of film non-uniformities and identifies wafer-to-wafer differences. A comparison between the results obtained from the mapping technique and conventional wafer bow measurements highlights the benefits of using a procedure tailored to films that are non-uniform, patterned and surface-micromachined, as opposed to simple standard stress extraction methods. The presented technique reveals detailed information that is generally unexplored when using conventional stress extraction methods such as wafer bow measurements. (paper)

  14. Is it more effective group relaxation than individual to reduce anxiety in specific phobias?

    Directory of Open Access Journals (Sweden)

    Julián Carretero Román

    2009-05-01

    Full Text Available Relaxation is a standard technique used by nurses to reduce the level of anxiety. It seems that their implementation on a group can bring certain benefits compared with individual relaxation. This outline is intended to raise this hypothesis in caring for individuals diagnosed with specific phobia, by approaching the problem from the cognitive behavioural therapy perspective. In addition, it seeks to evaluate the usefulness of the nurse intervention relaxation to reduce the level of anxiety, in turn comparing the results obtained using an indicator of the scale of results NOC and the Hamilton Anxiety Scale. The phobia is a specific entity underdiagnosed, whose prevalence is about 10%. Those affected can live a really limited and debilitating, deteriorating quality of life. The community mental health nurses are in a unique position to participate in the cognitive behavioural therapy through relaxation, which will allow them to reduce the level of anxiety when people establish contact with the phobic stimulus. Methodology: quasi-experimental study in specific phobia diagnosed, 20 to 40 years old adults attending for the first time to the mental health facility derived from primary care. Both the control group as the pilot will be treated by conducted cognitive-behavioural psychotherapy individualized according to the therapeutic protocol MSC, except in terms of relaxation, which in the experimental group will be conducted at the group level. The effectiveness of treatment will be assessed with the Hamilton anxiety scale and the likert type scale of outcome indicators NOC "stress level" with 3 measurements, before starting, immediately after completing the sessions of relaxation and three months later, checking the decline in the average level of anxiety.

  15. Mechanical spectroscopy of thermal stress relaxation in aluminium alloys reinforced with short alumina fibres

    Energy Technology Data Exchange (ETDEWEB)

    Carreno-Morelli, E.; Schaller, R. [Ecole Polytechnique Federale, Lausanne (Switzerland). Inst. de Genie Atomique; Urreta, S.E.

    1998-05-01

    The mechanical behaviour under low temperature thermal cycling of aluminium-based composites reinforced with short Al{sub 2}O{sub 3} SAFFIL fibres has been investigated by mechanical spectroscopy (mechanical loss and elastic shear modulus measurements). A mechanical loss maximum has been observed during cooling which originates in the relaxation of thermal stresses at the interfaces due to the differential thermal expansion between matrix and reinforcement. The maximum height increases with the volumetric fibre content. In addition, if the matrix strength is increased by the appropriated choice of alloy and thermal treatment, the maximum diminishes and shifts to lower temperatures. No damage accumulation at the interfaces has been detected during long period thermal cycling in the range 100 to 500 K. A description of the damping behaviour is made in terms of the development of microplastic zones which surround the fibres. (orig.) 9 refs.

  16. Evaluated Plan Stress Of Weld In Pressure Tube Using X Ray Diffraction Technique

    International Nuclear Information System (INIS)

    Phan Trong Phuc; Nguyen Duc Thanh; Luu Anh Tuyen

    2011-01-01

    X ray diffraction is a fundamental technique measuring stress, this technique has determined crystal strain in materials, from that determined stress in materials. This paper presents study of evaluating plane stress of weld in pressure tube, using modern XRD apparatus: X Pert Pro. (author)

  17. On the Volterra integral equation relating creep and relaxation

    International Nuclear Information System (INIS)

    Anderssen, R S; De Hoog, F R; Davies, A R

    2008-01-01

    The evolving stress–strain response of a material to an applied deformation is causal. If the current response depends on the earlier history of the stress–strain dynamics of the material (i.e. the material has memory), then Volterra integral equations become the natural framework within which to model the response. For viscoelastic materials, when the response is linear, the dual linear Boltzmann causal integral equations are the appropriate model. The choice of one rather than the other depends on whether the applied deformation is a stress or a strain, and the associated response is, respectively, a creep or a relaxation. The duality between creep and relaxation is known explicitly and is referred to as the 'interconversion equation'. Rheologically, its importance relates to the fact that it allows the creep to be determined from knowledge of the relaxation and vice versa. Computationally, it has been known for some time that the recovery of the relaxation from the creep is more problematic than the creep from the relaxation. Recent research, using discrete models for the creep and relaxation, has confirmed that this is an essential feature of interconversion. In this paper, the corresponding result is generalized for continuous models of the creep and relaxation

  18. Relaxation behaviour of gasketed joints during assembly using finite ...

    Indian Academy of Sciences (India)

    Faculty of Mechanical Engineering, Ghulam Ishaq Khan (GIK) Institute of ... Bolt scatter, bolt bending, joint relaxation and gasket stress variation are concluded the main .... In the present work, following two ..... American Society of Mech.

  19. STRUCTURAL STRESS RELAXATION IN STAINLESS INSTABILITY STEEL

    Directory of Open Access Journals (Sweden)

    S. Lyabuk

    2017-06-01

    Full Text Available The approach to the description of conditions of martensitic transformation in austenitic steel is advanced. Transformation induced hardening is the result of Le Chatelier principle in instability alloys. The phase transformation in austenitic instability stainless steel is the cause of reduction of grain refining and increase of strength. It was experimentally shown that physical-mechanical characteristics of the prepared materials were defined by the structure and inhomogeneous distribution of the hardening phase within a grain. The reasons for high thermal stability of inverse austenitic were established. The factors determining the inverse austenitic relaxation resistibility and resources for its increasing were revealed.

  20. The Role of Relaxation Training to Pregnant Mothers on Health Index of Infants

    Directory of Open Access Journals (Sweden)

    SA Mosaviasl

    2009-07-01

    Full Text Available ABSTRACT: Introduction & Objective: Investigations have shown that the emotional stress during the pregnancy period could have sustainable effects on the embryo. Different factors such as family members, spouse, supporting friends could relive these effects, but coping skills especially relaxation could be more effective on stress. This study was conducted to investigate the effect of relaxation training to pregnant mothers on health index such as Apgar index, weight, height, and cowlick grade in infants. Materials & Methods: This is a clinical trail in which 100 pregnant women who referred to health center of Yasuj (2006-2008 were selected using simple sampling method and assigned randomly to case and control groups. The relaxation was taught to the case group whereas nothing was taught to control groups. At the time of delivery the above mentioned indices were assessed. The gathered data was analyzed using SPSS software. Results: The results showed a significant difference between two groups in weight, height, cephalic index, and colic grade (with better situation in case group. There was no significant difference between two groups in Apgar scores. Conclusion: Considering the results of this study, it seems that teaching of relaxation to pregnant women could be effective in health index of children especially in the time of delivery. Therefore attention should be paid to different methods for reducing the stress in this group of mothers. Keywords: relaxation, pregnant women, infants, Apgar scores

  1. Ultrasonic measurements on residual stress in autofrettged thick walled petroleum pipes

    International Nuclear Information System (INIS)

    Woias, G.; Mizera, J.

    2008-01-01

    The residual stresses in a component or structure are caused by incompatible permanent deformation and related gradient of plastic/elastic strains. They may be generated or modified at every stage in the components life cycle, from original material production to final disposal. Residual stresses can be measured by non-destructive techniques, including X-ray and neutron diffraction, magnetic and ultrasonic methods. The selection of the optimum measurement technique should take account volumetric resolution, material, geometry and access to the component. For large metallic components neutron diffraction is of prime importance as it provides quantitative information on stresses in relatively large volume of methods disregarding its shape complexity. Residual stresses can play a significant role in explaining or preventing failure of components of industrial installations. One example of residual stresses preventing failure are the ones generated by shot peening, inducing surface compressive stresses that improve the fatigue life. Petroleum refinery piping is generally characterized by large-diameters, operated at elevated temperature and under high pressure. Pipelines of a polyethylene plant working in one of the Polish refineries are subjected to pressures exceeding 300 MPa at temperatures above 200 o C. The pipes considered here were pressurized with pressure of 600 MPa. The wall thickness of the pipes is 27 mm and pipe dimensions are 46 x 100 mm. The material is steel with Re=580 MPa. Due to pressurizing, the components retain compressive stresses at the internal surface. These stresses increase resistance to cracking of the pipes. Over the period of exploitation these stresses diminish due to temperature activated relaxation or creep. The purpose of the project is to verify kinetics of such a relaxation process and calibrate alternative methods of their measurements. To avoid stress relaxation, numerical analysis from Finite Element Modelling (FEM)gave an

  2. Slowing hot-carrier relaxation in graphene using a magnetic field

    Science.gov (United States)

    Plochocka, P.; Kossacki, P.; Golnik, A.; Kazimierczuk, T.; Berger, C.; de Heer, W. A.; Potemski, M.

    2009-12-01

    A degenerate pump-probe technique is used to investigate the nonequilibrium carrier dynamics in multilayer graphene. Two distinctly different dynamics of the carrier relaxation are observed. A fast relaxation (˜50fs) of the carriers after the initial effect of phase-space filling followed by a slower relaxation (˜4ps) due to thermalization. Both relaxation processes are less efficient when a magnetic field is applied at low temperatures which is attributed to the suppression of the electron-electron Auger scattering due to the nonequidistant Landau-level spacing of the Dirac fermions in graphene.

  3. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction

    International Nuclear Information System (INIS)

    Keller, Thomas; Margadant, Nikolaus; Pirling, Thilo; Riegert-Escribano, Maria J.; Wagner, Werner

    2004-01-01

    Neutron diffraction was used to obtain spatially resolved strain and stress profiles in thermally sprayed metallic 'NiCrAlY' deposits (chemical composition 67 wt.% Ni, 22 wt.% Cr, 10 wt.% Al, 1 wt.% Y) and the underlying steel substrates. Samples of four different spray techniques were analyzed: atmospheric and water stabilized plasma spraying (APS and WSP), flame spraying (FS) and wire arc spraying (WAS). The results are quantitatively compared with the average in-plane residual stress determined by complementary bending tests and the hole drilling technique. While the stress profiles from the surface to the interface in the deposits are similar for all investigated spray techniques, their absolute values and gradients vary strongly. This is attributed to different quenching stresses from the impinging particles, different thermal histories the deposit/substrate systems undergo during the spraying and subsequent cooling, and also to different coating properties. In the water stabilized plasma sprayed and the wire arc sprayed deposits, a gradient in the stress-free lattice parameter was observed. Crack formation is found to be a dominant mechanism for stress relaxation in the surface plane

  4. Interrelation of creep and relaxation: a modeling approach for ligaments.

    Science.gov (United States)

    Lakes, R S; Vanderby, R

    1999-12-01

    Experimental data (Thornton et al., 1997) show that relaxation proceeds more rapidly (a greater slope on a log-log scale) than creep in ligament, a fact not explained by linear viscoelasticity. An interrelation between creep and relaxation is therefore developed for ligaments based on a single-integral nonlinear superposition model. This interrelation differs from the convolution relation obtained by Laplace transforms for linear materials. We demonstrate via continuum concepts of nonlinear viscoelasticity that such a difference in rate between creep and relaxation phenomenologically occurs when the nonlinearity is of a strain-stiffening type, i.e., the stress-strain curve is concave up as observed in ligament. We also show that it is inconsistent to assume a Fung-type constitutive law (Fung, 1972) for both creep and relaxation. Using the published data of Thornton et al. (1997), the nonlinear interrelation developed herein predicts creep behavior from relaxation data well (R > or = 0.998). Although data are limited and the causal mechanisms associated with viscoelastic tissue behavior are complex, continuum concepts demonstrated here appear capable of interrelating creep and relaxation with fidelity.

  5. Stability of (Fe-Tm-B) amorphous alloys: relaxation and crystallization phenomena

    International Nuclear Information System (INIS)

    Zemcik, T.

    1994-01-01

    Fe-Tm-B base (TM = transition metal) amorphous alloys (metallic glasses) are thermodynamically metastable. This limits their use as otherwise favourable materials, e.g. magnetically soft, corrosion resistant and mechanically firm. By analogy of the mechanical strain-stress dependence, at a certain degree of thermal activation the amorphous structure reaches its limiting state where it changes its character and physical properties. Relaxation and early crystallization processes in amorphous alloys, starting already around 100 C, are reviewed involving subsequently stress relief, free volume shrinking, topological and chemical ordering, pre-crystallization phenomena up to partial (primary) crystallization. Two diametrically different examples are demonstrated from among the soft magnetic materials: relaxation and early crystallization processes in the Fe-Co-B metallic glasses and controlled crystallization of amorphous ribbons yielding rather modern nanocrystalline ''Finemet'' alloys where late relaxation and pre-crystallization phenomena overlap when forming extremely dispersive and fine-grained nanocrystals-in-amorphous-sauce structure. Moessbauer spectroscopy seems to be unique for magnetic and phase analysis of such complicated systems. (orig.)

  6. Possible applications of the ion beams technique for investigations in the field of equation of state

    International Nuclear Information System (INIS)

    Kanel, G.I.; Fortov, V.E.; Baumung, K.; Bluhm, H.

    1998-01-01

    The shock wave generation through the interaction of a high-power ion beam with condensed targets is considered with a goal to reveal possible ways to study the equations of state of matter using ion beams. The equation of state is thought about in an extended interpretation including the relaxation processes, such as phase transitions, chemical reactions, and stress relaxation. Advantages of the beam-driven generation of the high-energy states and possible areas of competition with more conventional technique are discussed. (orig.)

  7. Characterization of strain rate sensitivity and activation volume using the indentation relaxation test

    International Nuclear Information System (INIS)

    Xu Baoxing; Chen Xi; Yue Zhufeng

    2010-01-01

    We present the possibility of extracting the strain rate sensitivity, activation volume and Helmholtz free energy (for dislocation activation) using just one indentation stress relaxation test, and the approach is demonstrated with polycrystalline copper. The Helmholtz free energy measured from indentation relaxation agrees well with that from the conventional compression relaxation test, which validates the proposed approach. From the indentation relaxation test, the measured indentation strain rate sensitivity exponent is found to be slightly larger, and the indentation activation volume much smaller, than their counterparts from the compression test. The results indicate the involvement of multiple dislocation mechanisms in the indentation test.

  8. Effect of Applied Stress and Temperature on Residual Stresses Induced by Peening Surface Treatments in Alloy 600

    Science.gov (United States)

    Telang, A.; Gnäupel-Herold, T.; Gill, A.; Vasudevan, V. K.

    2018-04-01

    In this study, the effects of applied tensile stress and temperature on laser shock peening (LSP) and cavitation shotless peening (CSP)-induced compressive residual stresses were investigated using neutron and x-ray diffraction. Residual stresses on the surface, measured in situ, were lower than the applied stress in LSP- and CSP-treated Alloy 600 samples (2 mm thick). The residual stress averaged over the volume was similar to the applied stress. Compressive residual stresses on the surface and balancing tensile stresses in the interior relax differently due to hardening induced by LSP. Ex situ residual stress measurements, using XRD, show that residual stresses relaxed as the applied stress exceeded the yield strength of the LSP- and CSP-treated Alloy 600. Compressive residual stresses induced by CSP and LSP decreased by 15-25% in magnitude, respectively, on exposure to 250-450 °C for more than 500 h with 10-11% of relaxation occurring in the first few hours. Further, 80% of the compressive residual stresses induced by LSP and CSP treatments in Alloy 600 were retained even after long-term aging at 350 °C for 2400 h.

  9. Relaxation training after stroke: potential to reduce anxiety.

    Science.gov (United States)

    Kneebone, Ian; Walker-Samuel, Natalie; Swanston, Jennifer; Otto, Elisabeth

    2014-01-01

    To consider the feasibility of setting up a relaxation group to treat symptoms of post stroke anxiety in an in-patient post-acute setting; and to explore the effectiveness of relaxation training in reducing self-reported tension. A relaxation group protocol was developed in consultation with a multidisciplinary team and a user group. Over a period of 24 months, 55 stroke patients attended group autogenic relaxation training on a rehabilitation ward. Attendance ranged between one and eleven sessions. Self-reported tension was assessed pre and post relaxation training using the Tension Rating Circles (TRCs). The TRCs identified a significant reduction in self-reported tension from pre to post training, irrespective of the number of sessions attended; z = -3.656, p training. The TRCs proved acceptable to group members, but should be validated against standard anxiety measures. Further exploration of the application of relaxation techniques in clinical practice is desirable. Implications for Rehabilitation Anxiety is prevalent after stroke and likely affects rehabilitation outcomes. Relaxation training is a well proven treatment for anxiety in the non-stroke population. A significant within session reduction in tension, a hallmark symptom of anxiety, was evidenced via group relaxation training delivered in a post-acute, in-patient stroke unit setting. Relaxation training a shows promise as a treatment for anxiety after stroke.

  10. Design for relaxation during milk expression using biofeedback

    NARCIS (Netherlands)

    Feijs, L.M.G.; Kierkels, J.G.T.; Marcus, A.

    2013-01-01

    Many women experience difficulty expressing milk using a breast pump. A negative influence upon their success is stress, hampering the milk ejection reflex. We explore biofeedback to enhance relaxation during milk expression. We discuss context, the principles of biofeedback and the design of an

  11. The effect of relaxation techniques on edema, anxiety and depression in post-mastectomy lymphedema patients undergoing comprehensive decongestive therapy: A clinical trial.

    Science.gov (United States)

    Abbasi, Bahareh; Mirzakhany, Navid; Angooti Oshnari, Leila; Irani, Ashkan; Hosseinzadeh, Samaneh; Tabatabaei, Seyed Mehdi; Haghighat, Shahpar

    2018-01-01

    Lymphedema is sometimes accompanied by high degrees of anxiety and depression. This study aimed to assess the effects of relaxation techniques on the level of edema, anxiety and depression in women undergoing Comprehensive Decongestive Therapy (CDT). This clinical trial compared two treatment methods in 31 women with post-mastectomy lymphedema, including 15 cases who received CDT and 16 who received RCDT (Relaxation plus CDT). The edema volume, anxiety and depression scores were compared at the first and last sessions of the first phase of the treatment and six weeks afterwards. The edema, anxiety and depression scores were 63.6%, 54.1% and 65.5% in the RCDT group and 60.7%, 31.4% and 35.2% in the CDT group. There were significant differences between the two groups in terms of the reduction in depression (p = 0.024) and anxiety (p = 0.011) scores throughout the study. This significant relationship was due to the differences in the depression score in the 3rd and 9th weeks of the study between the two groups. Similarly, anxiety levels differed significantly between the two groups at the 9th week of the study (P = 0.013). Relaxation techniques reduced the anxiety and depression scores and the volume of edema in the patients with lymphedema. The addition of this intervention to the therapeutic package for lymphedema patients requires further studies in terms of cost-effectiveness.

  12. Snack and Relax®: A Strategy to Address Nurses' Professional Quality of Life.

    Science.gov (United States)

    Markwell, Perpetua; Polivka, Barbara J; Morris, Katrina; Ryan, Carol; Taylor, Annetra

    2016-03-01

    Snack and Relax® (S&R), a program providing healthy snacks and holistic relaxation modalities to hospital employees, was evaluated for immediate impact. A cross-sectional survey was then conducted to assess the professional quality of life (ProQOL) in registered nurses (RNs); compare S&R participants/nonparticipants on compassion satisfaction (CS), burnout, and secondary traumatic stress (STS); and identify situations in which RNs experienced compassion fatigue or burnout and the strategies used to address these situations. Pre- and post vital signs and self-reported stress were obtained from S&R attendees (N = 210). RNs completed the ProQOL Scale measuring CS, burnout, and STS (N = 158). Significant decreases in self-reported stress, respirations, and heart rate were found immediately after S&R. Low CS was noted in 28.5% of participants, 25.3% had high burnout, and 23.4% had high STS. S&R participants and nonparticipants did not differ on any of the ProQOL scales. Situations in which participants experienced compassion fatigue/burnout were categorized as patient-related, work-related, and personal/family-related. Strategies to address these situations were holistic and stress reducing. Providing holistic interventions such as S&R for nurses in the workplace may alleviate immediate feelings of stress and provide a moment of relaxation in the workday. © The Author(s) 2015.

  13. The impact of muscle relaxation techniques on the quality of life of cancer patients, as measured by the FACT-G questionnaire.

    Directory of Open Access Journals (Sweden)

    Paula Parás-Bravo

    Full Text Available Patients with cancer frequently suffer from emotional distress, characterized by psychological symptoms such as anxiety or depression. The presence of psychological symptoms combined with the complex nature of oncology processes can negatively impact patients' quality of life. We aimed to determine the impact of a relaxation protocol on improving quality of life in a sample of oncological patients treated in the Spanish National Public Health System.We conducted a multicenter interventional study without a control group. In total, 272 patients with different oncologic pathologies and showing symptoms of anxiety were recruited from 10 Spanish public hospitals. The intervention comprised abbreviated progressive muscle relaxation training, according to Bernstein and Borkovec. This was followed by weekly telephone calls to each patient over a 1-month period. We collected sociodemographic variables related to the disease process, including information about mental health and the intervention. Patients' quality of life was assessed using the Functional Assessment of Cancer Therapy-General (FACT-G questionnaire. Bivariate and univariate analyses were performed, along with an analysis of multiple correspondences to identify subgroups of patients with similar variations on the FACT-G.Patients showed statistically significant improvements on the FACT-G overall score (W = 16806; p<0.001, with an initial mean score of 55.33±10.42 and a final mean score of 64.49±7.70. We also found significant improvements for all subscales: emotional wellbeing (W = 13118; p<0.001, functional wellbeing (W = 16155.5; p<0.001, physical wellbeing (W = 8885.5; p<0.001, and social and family context (W = -1840; p = 0.037.Patients with cancer who learned and practiced abbreviated progressive muscle relaxation experienced improvement in their perceived quality of life as measured by the FACT-G. Our findings support a previous assumption that complementary techniques (including

  14. Photoelastic stress analysis in mitred bend under internal pressure

    International Nuclear Information System (INIS)

    Sawa, Yoshiaki

    1987-01-01

    The stress analysis and stress relaxation in mitred bend subjected to internal pressure have been studied by means of the photoelastic stress freezing method. The experimental results show that stress concentration occurs in the wedge tip of the intersectional plane and it is considerably influenced by the bent angle. Then, the stress relaxation was obtained by planing the wedge tip. (author)

  15. Is cognitive-behavioural therapy more effective than relaxation therapy in the treatment of anxiety disorders? A meta-analysis.

    Science.gov (United States)

    Montero-Marin, Jesus; Garcia-Campayo, Javier; López-Montoyo, Alba; Zabaleta-Del-Olmo, Edurne; Cuijpers, Pim

    2018-07-01

    It is not clear whether relaxation therapies are more or less effective than cognitive and behavioural therapies in the treatment of anxiety. The aims of the present study were to examine the effects of relaxation techniques compared to cognitive and behavioural therapies in reducing anxiety symptoms, and whether they have comparable efficacy across disorders. We conducted a meta-analysis of 50 studies (2801 patients) comparing relaxation training with cognitive and behavioural treatments of anxiety. The overall effect size (ES) across all anxiety outcomes, with only one combined ES in each study, was g = -0.27 [95% confidence interval (CI) = -0.41 to -0.13], favouring cognitive and behavioural therapies (number needed to treat = 6.61). However, no significant difference between relaxation and cognitive and behavioural therapies was found for generalized anxiety disorder, panic disorder, social anxiety disorder and specific phobias (considering social anxiety and specific phobias separately). Heterogeneity was moderate (I2 = 52; 95% CI = 33-65). The ES was significantly associated with age (p cognitive and/or behavioural therapy (p = 0.015), quality of intervention (p = 0.007), relaxation treatment format (p cognitive and behavioural therapies in the treatment of post-traumatic stress disorder, and obsessive-compulsive disorder and it might also be less effective at 1-year follow-up for panic, but there is no evidence that it is less effective for other anxiety disorders.

  16. Stability of dislocation structures in copper towards stress relaxation investigated by high angular resolution 3D X-ray diffraction

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Poulsen, Henning Friis; Lienert, Ulrich

    2009-01-01

    A 300 µm thick tensile specimen of OFHC copper is subjected to a tensile loading sequence and deformed to a maximal strain of 3.11%. Using the novel three-dimensional X-ray diffraction method High angular resolution 3DXRD', the evolution of the microstructure within a deeply embedded grain....... In contrast to the deformation stages, during each stress relaxation stage, number, size and orientation of subgrains are found to be constant, while a minor amount of clean-up of the microstructure is observed as narrowing of the radial X-ray diffraction line profile. The associated decrease in the width...

  17. Viscoelasticity, nonlinear shear start-up, and relaxation of entangled star polymers

    KAUST Repository

    Snijkers, Frank

    2013-07-23

    We report on a detailed rheological investigation of well-defined symmetric entangled polymer stars of low functionality with varying number of arms, molar mass of the arms, and solvent content. Emphasis is placed on the response of the stars in simple shear, during start-up, and for relaxation upon flow cessation. To reduce experimental artifacts associated with edge fracture (primarily) and wall slip, we employ a homemade cone-partitioned plate fixture which was successfully implemented in recent studies. Reliable data for these highly entangled stars could be obtained for Weissenberg numbers below 300. The appearance of a stress overshoot during start-up with a corresponding strain approaching a value of 2 suggests that in the investigated shear regime the stars orient but do not stretch. This is corroborated by the fact that the empirical Cox-Merx rule appears to be validated, within experimental error. On the other hand, the (shear) rate dependent steady shear viscosity data exhibit a slope smaller than the convective constraint release slope of -1 (for linear polymers) for the investigated range of rates. The broadness of the stress overshoot reflects the broad linear relaxation spectrum of the stars. The initial stress relaxation rate, reflecting the initial loss of entanglements due to the action of convective constraint release in steady shear flow, increases with Weissenberg number. More importantly, when compared against the relevant rates for comb polymers with relatively short arms, the latter are slower at larger Weissenberg numbers. At long times, the relaxation data are consistent with the linear viscoelastic data on these systems. © 2013 American Chemical Society.

  18. Epitaxial strain relaxation by provoking edge dislocation dipoles

    Science.gov (United States)

    Soufi, A.; El-Hami, K.

    2018-02-01

    Thin solid films have been used in various devices and engineering systems such as rapid development of highly integrated electronic circuits, the use of surface coatings to protect structural materials in high temperature environments, and thin films are integral parts of many micro-electro-mechanical systems designed to serve as sensors, actuators. Among techniques of ultra-thin films deposition, the heteroepitaxial method becomes the most useful at nanoscale level to obtain performed materials in various applications areas. On the other hand, stresses that appeared during the elaboration of thin films could rise deformations and fractures in materials. The key solution to solve this problem at the nanoscale level is the nucleation of interface dislocations from free surfaces. By provoking edge dislocation dipoles we obtained a strain relaxation in thin films. Moreover, the dynamic of nucleation in edge dislocations from free lateral surfaces was also studied.

  19. Studies about strength recovery and generalized relaxation behavior of rock (4)

    International Nuclear Information System (INIS)

    Sanada, Masanori; Kishi, Hirokazu; Hayashi, Katsuhiko; Takebe, Atsuji; Okubo, Seisuke

    2011-11-01

    Surrounding rock failure occurs due to the increasing stress with tunnel excavation and extent of the failure depends on rock strength and rock stress. The NATM (New Austrian Tunneling Method) assumes that supporting effects by shotcrete and rock bolt prevent rock failure maximizing the potential capability of rock mass. Recently, it was found that failed rock just behind tunnel support recovers its strength. This phenomenon should take into account in evaluation of tunnel stability and long-term mechanical behavior of rock mass after closure of a repository for high-level radioactive waste (HLW). Visco-elastic behavior of rock is frequently studied by creep testing, but creep occasionally occurs together with relaxation in-situ due to the effect of various supports and rock heterogeneity. Therefore generalized stress relaxation in which both load and displacement are controlled is proper to study such behavior under the complicated conditions. It is also important to understand rock behavior in tensile stress field which may be developed in the surrounding rock of deposition hole or tunnel by swelling of bentonite or volume expansion of overpack with corrosion after the repository closure. Cores sampled at 'Horonobe Underground Research Laboratory' has been tested to reveal the above-mentioned behavior. Quantitative evaluation and modeling of the rock behavior, however, have not been established mainly because of large scatter of data. As a factor of the large scatter of data, it was expected that the evaporation of moisture from the surface of the test piece influences the test outcome because it tested in the nature. In this study, strength recovery, generalized stress relaxation and two tensile strength tests were carried out using shale sampled in the Wakkanai-formation. As the results, recovery of failed rocks in strength and hydraulic conductivity were observed under a certain condition. We believe this result is very important for the stability evaluation

  20. Different finite element techniques to predict welding residual stresses in aluminum alloy plates

    International Nuclear Information System (INIS)

    Moein, Hadi; Sattari-Far, Iradj

    2014-01-01

    This study is a 3D thermomechanical finite element (FE) analysis of a single-pass and butt-welded work-hardened aluminum (Al) 5456 plates. It aims to validate the use of FE welding simulations to predict residual stress states in assessing the integrity of welded components. The predicted final residual stresses in the plate from the FE simulations are verified through comparison with experimental measurements. Three techniques are used to simulate the welding process. In the first two approaches, welding deposition is applied by using element birth and interaction techniques. In the third approach, the entire weld zone is simultaneously deposited. Results show a value at approximately the yield strength for longitudinal residual stresses of the welded center of the butt-welded Al alloy plates with a thickness of 2 mm. Considering the application of a comprehensive heat source, along with heat loss modeling and the temperature dependent properties of the material, the approach without deposition predicts a reasonable distribution of residual stresses. However, the element birth and interaction techniques, compared with the no-deposit technique, provide more accurate results in calculating residual stresses. Furthermore, the element interaction technique, compared with the element birth technique, exhibits higher efficiency and flexibility in modeling the deposition of welded metals as well as less modeling cost.

  1. Analysis of the Residual Stresses in Helical Cylindrical Springs at High Temperature

    Directory of Open Access Journals (Sweden)

    H. Sun

    2015-01-01

    Full Text Available Creep is one of the basic properties of materials, its speed significantly depends on the temperature. Helical cylindrical springs are widely used in the elements of heating systems. This results in necessity of taking into account the effect of temperature on the stress-strain state of the spring. The object of research is a helical cylindrical spring used at high temperatures. Under this condition the spring state stability should be ensured.The paper studies relaxation of stress state and generation of residual stresses. Calculations are carried out in ABAQUS environment. The purpose of this work is to discuss the law of relaxation and residual stress in the spring.This paper describes the basic creep theories of helical cylindrical spring material. The calculation formulas of shear stress relaxation for a fixed compression ratio are obtained. Distribution and character of stress contour lines in the cross section of spring are presented. The stress relaxation – time relationships are discussed. The approximate formula for calculating relaxation shear stresses in the cross section of helical springs is obtained.The paper investigates creep ratio and law of residual stress variation in the cross-section of spring at 650℃. Computer simulation in ABAQUS environment was used. Research presents a finite element model of the spring creep in the cross-section.The paper conducts analysis of the stress changes for the creep under constant load. Under constant load stresses are quickly decreased in the around area of cross-section and are increased in the centre, i.e. the maximum and minimum stresses come close with time. Research work shows the possibility for using the approximate formula to calculate the relaxation shear stress in the cross section of spring and can provide a theoretical basis for predicting the service life of spring at high temperatures.In research relaxation processes of stress state are studied. Finite element model is cre

  2. Collection Development: Relaxation & Meditation, September 1, 2010

    Science.gov (United States)

    Lettus, Dodi

    2010-01-01

    One of the first books to document the relationship between stress and physical and emotional health was "The Relaxation Response" by Herbert Benson, M.D., with Miriam Z. Klipper. Originally published in 1975, the book grew out of Benson's observations as a cardiologist and his research as a fellow at Harvard Medical School. Benson's study of…

  3. [Effects of Monochord Music on Heart Rate Variability and Self-Reports of Relaxation in Healthy Adults].

    Science.gov (United States)

    Gäbel, Christine; Garrido, Natalia; Koenig, Julian; Hillecke, Thomas Karl; Warth, Marco

    Music-based interventions are considered an effective and low-cost treatment option for stress-related symptoms. The present study aimed to examine the trajectories of the psychophysiological response in apparently healthy participants during a music-based relaxation intervention compared to a verbal relaxation exercise. 70 participants were assigned to either receptive live music (experimental group) or a prerecorded verbal relaxation exercise (control group). Self-ratings of relaxation were assessed before and after each intervention on visual analogue scales and the Relaxation Inventory (RI). The heart rate variability (HRV) was continuously recorded throughout the sessions. Statistical analysis focused on HRV parameters indicative of parasympathetic cardiovascular outflow. We found significant quadratic main effects for time on the mean R-R interval (heart rate), the high-frequency power of HRV (indicative of parasympathetic activity), and the self-ratings of relaxation in both groups. A significant group × time interaction was observed for the cognitive tension subscale of the RI. Participants in both groups showed psychophysiological changes indicative of greater relaxation over the course of the interventions. However, differences between groups were only marginal. Music might be effective in relieving stress and promoting relaxation by altering the autonomic nervous system function. Future studies need to explore the long-term outcomes of such interventions. © 2017 S. Karger GmbH, Freiburg.

  4. The Effect of Creep on the Residual Stresses Generated During Silicon Sheet Growth

    Science.gov (United States)

    Hutchinson, J. W.; Lambropoulos, J. C.

    1984-01-01

    The modeling of stresses generated during the growth of thin silicon sheets at high speeds is an important part of the EFG technique since the experimental measurement of the stresses is difficult and prohibitive. The residual stresses which arise in such a growth process lead to serious problems which make thin Si ribbons unsuitable for fabrication. The constitutive behavior is unrealistic because at high temperature (close to the melting point) Si exhibits considerable creep which significantly relaxes the residual stresses. The effect of creep on the residual stresses generated during the growth of Si sheets at high speeds was addressed and the basic qualitative effect of creep are reported.

  5. Experimental model of human corpus cavernosum smooth muscle relaxation

    Directory of Open Access Journals (Sweden)

    Rommel P. Regadas

    2010-08-01

    Full Text Available PURPOSE: To describe a technique for en bloc harvesting of the corpus cavernosum, cavernous artery and urethra from transplant organ donors and contraction-relaxation experiments with corpus cavernosum smooth muscle. MATERIALS AND METHODS: The corpus cavernosum was dissected to the point of attachment with the crus penis. A 3 cm segment (corpus cavernosum and urethra was isolated and placed in ice-cold sterile transportation buffer. Under magnification, the cavernous artery was dissected. Thus, 2 cm fragments of cavernous artery and corpus cavernosum were obtained. Strips measuring 3 x 3 x 8 mm3 were then mounted vertically in an isolated organ bath device. Contractions were measured isometrically with a Narco-Biosystems force displacement transducer (model F-60, Narco-Biosystems, Houston, TX, USA and recorded on a 4-channel Narco-Biosystems desk model polygraph. RESULTS: Phenylephrine (1µM was used to induce tonic contractions in the corpus cavernosum (3 - 5 g tension and cavernous artery (0.5 - 1g tension until reaching a plateau. After precontraction, smooth muscle relaxants were used to produce relaxation-response curves (10-12M to 10-4 M. Sodium nitroprusside was used as a relaxation control. CONCLUSION: The harvesting technique and the smooth muscle contraction-relaxation model described in this study were shown to be useful instruments in the search for new drugs for the treatment of human erectile dysfunction.

  6. [Neurophysiologic and respiratory changes during the practice of relaxation technics].

    Science.gov (United States)

    Gallois, P

    1984-01-01

    A polygraphic study, of 40 minutes duration, among 10 subjects who practiced autogenic training (TA) and 10 subjects who practiced transcendental meditation (MT), compared to 10 control subjects, gave the following results: rarity of the number of sleeping episodes during relaxation, cardiac rhythm, significantly decreased in the TM group, increased stability of the E.D.G. during and after relaxation, respiratory rate decreased to a value of 33% of the initial rate, respiratory suspensions were frequent in the TM group, reaching a maximal duration of 50 seconds. The absence of compensatory hypercapnia and hyperpnea is an argument in favor of their central origin, lastly, the simple reaction time after relaxation is slightly decreased, whereas it is increased in the controls, this aerobic hypometabolic state, the stability of the autonomic nervous system and the maintenance of the vigilance, induced by deep relaxation, seems to be the opposite of the state which is induced by stress; therefore deep relaxation may play a role in a psycho-somatic approach to treating a variety of disease states.

  7. Universal binding energy relation for cleaved and structurally relaxed surfaces

    International Nuclear Information System (INIS)

    Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V

    2014-01-01

    The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress–displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements. (paper)

  8. New technique using [125I]labeled rose bengal for the quantification in blood samples of pipecuronium bromide, a muscle relaxant drug

    International Nuclear Information System (INIS)

    Schopfer, C.; Benakis, A.; Pittet, J.-F.; Tassonyi, E.

    1991-01-01

    A new technique involving the use of [ 125 I]labeled rose bengal for the quantification of pipecuronium bromide (a muscle relaxant drug) is presented. This technique, which is based on the ability of rose bengal to react with pipecuronium and then form a complex which can be extracted into an organic solvent, involves two steps: the purification and labeling of rose bengal with 125 I, and the quantification of pipecuronium. The specific activity of the compound (106 μCi/mg) allows for the quantification of pipecuronium in biological samples at concentrations as low as 5 ng/ml. (author)

  9. Stress Management Apps With Regard to Emotion-Focused Coping and Behavior Change Techniques: A Content Analysis.

    Science.gov (United States)

    Christmann, Corinna Anna; Hoffmann, Alexandra; Bleser, Gabriele

    2017-02-23

    Chronic stress has been shown to be associated with disease. This link is not only direct but also indirect through harmful health behavior such as smoking or changing eating habits. The recent mHealth trend offers a new and promising approach to support the adoption and maintenance of appropriate stress management techniques. However, only few studies have dealt with the inclusion of evidence-based content within stress management apps for mobile phones. The aim of this study was to evaluate stress management apps on the basis of a new taxonomy of effective emotion-focused stress management techniques and an established taxonomy of behavior change techniques. Two trained and independent raters evaluated 62 free apps found in Google Play with regard to 26 behavior change and 15 emotion-focused stress management techniques in October 2015. The apps included an average of 4.3 behavior change techniques (SD 4.2) and 2.8 emotion-focused stress management techniques (SD 2.6). The behavior change technique score and stress management technique score were highly correlated (r=.82, P=.01). The broad variation of different stress management strategies found in this sample of apps goes in line with those found in conventional stress management interventions and self-help literature. Moreover, this study provided a first step toward more detailed and standardized taxonomies, which can be used to investigate evidence-based content in stress management interventions and enable greater comparability between different intervention types. ©Corinna Anna Christmann, Alexandra Hoffmann, Gabriele Bleser. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 23.02.2017.

  10. Variational formulation of relaxed and multi-region relaxed magnetohydrodynamics

    Science.gov (United States)

    Dewar, R. L.; Yoshida, Z.; Bhattacharjee, A.; Hudson, S. R.

    2015-12-01

    > Ideal magnetohydrodynamics (IMHD) is strongly constrained by an infinite number of microscopic constraints expressing mass, entropy and magnetic flux conservation in each infinitesimal fluid element, the latter preventing magnetic reconnection. By contrast, in the Taylor relaxation model for formation of macroscopically self-organized plasma equilibrium states, all these constraints are relaxed save for the global magnetic fluxes and helicity. A Lagrangian variational principle is presented that leads to a new, fully dynamical, relaxed magnetohydrodynamics (RxMHD), such that all static solutions are Taylor states but also allows state with flow. By postulating that some long-lived macroscopic current sheets can act as barriers to relaxation, separating the plasma into multiple relaxation regions, a further generalization, multi-region relaxed magnetohydrodynamics (MRxMHD) is developed.

  11. Mapping residual stresses in PbWO4 crystals using photo-elastic analysis

    International Nuclear Information System (INIS)

    Lebeau, M.; Gobbi, L.; Majni, G.; Paone, N.; Pietroni, P.; Rinaldi, D.

    2005-01-01

    Large scintillating crystals are affected by internal stresses induced by the crystal growth temperature gradient remanence. Cutting boules (ingots) into finished crystal shapes allows for a partial tension relaxation but residual stresses remain the main cause of breaking. Quality control of residual stresses is essential in the application of Scintillating Crystals to high-energy physics calorimeters (e.g. CMS ECAL at CERN LHC). In this context the industrial process optimisation towards stress reduction is mandatory. We propose a fast technique for testing samples during the production process in order to evaluate the residual stress distribution after the first phases of mechanical processing. We mapped the stress distribution in PbWO 4 slabs cut from the same production boule. The analysis technique is based on the stress intensity determination using the photo-elastic properties of the samples. The stress distribution is mapped in each sample. The analysis shows that there are regions of high residual tension close to the seed position and at the boule periphery. These results should allow for adapting the industrial process to producing crystals with lower residual stresses

  12. Fatigue life estimation considering welding residual stress and hot-spot stress of welded components

    International Nuclear Information System (INIS)

    Han, S. H.; Lee, T. K.; Shin, B. C.

    2002-01-01

    The fatigue life of welded joints is sensitive to welding residual stress and complexity of their geometric shapes. To predict the fatigue life more reasonably, the effects of welding residual stress and its relaxation have to be considered quantitatively which are equivalent to mean stress by external loads. The hot-spot stress concept should be also adopted which can be reduce the dependence of fatigue strengths for various welding details. Considering the factors mentioned above, a fatigue life prediction model using the modified Goodman's diagram was proposed. In this model, an equivalent stress was introduced which are composed of the mean stress based on the hot-spot stress concept and the relaxed welding residual stress. From the verification of the proposed model to real welding details, it is confirmed that this model can be applied to predict reasonably their fatigue lives

  13. Optimization of the Kinetic Activation-Relaxation Technique, an off-lattice and self-learning kinetic Monte-Carlo method

    International Nuclear Information System (INIS)

    Joly, Jean-François; Béland, Laurent Karim; Brommer, Peter; Mousseau, Normand; El-Mellouhi, Fedwa

    2012-01-01

    We present two major optimizations for the kinetic Activation-Relaxation Technique (k-ART), an off-lattice self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search THAT has been successfully applied to study a number of semiconducting and metallic systems. K-ART is parallelized in a non-trivial way: A master process uses several worker processes to perform independent event searches for possible events, while all bookkeeping and the actual simulation is performed by the master process. Depending on the complexity of the system studied, the parallelization scales well for tens to more than one hundred processes. For dealing with large systems, we present a near order 1 implementation. Techniques such as Verlet lists, cell decomposition and partial force calculations are implemented, and the CPU time per time step scales sublinearly with the number of particles, providing an efficient use of computational resources.

  14. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Thomas; Margadant, Nikolaus; Pirling, Thilo; Riegert-Escribano, Maria J.; Wagner, Werner

    2004-05-25

    Neutron diffraction was used to obtain spatially resolved strain and stress profiles in thermally sprayed metallic 'NiCrAlY' deposits (chemical composition 67 wt.% Ni, 22 wt.% Cr, 10 wt.% Al, 1 wt.% Y) and the underlying steel substrates. Samples of four different spray techniques were analyzed: atmospheric and water stabilized plasma spraying (APS and WSP), flame spraying (FS) and wire arc spraying (WAS). The results are quantitatively compared with the average in-plane residual stress determined by complementary bending tests and the hole drilling technique. While the stress profiles from the surface to the interface in the deposits are similar for all investigated spray techniques, their absolute values and gradients vary strongly. This is attributed to different quenching stresses from the impinging particles, different thermal histories the deposit/substrate systems undergo during the spraying and subsequent cooling, and also to different coating properties. In the water stabilized plasma sprayed and the wire arc sprayed deposits, a gradient in the stress-free lattice parameter was observed. Crack formation is found to be a dominant mechanism for stress relaxation in the surface plane.

  15. Local mechanical stress relaxation of Gunn diodes irradiated by protons

    International Nuclear Information System (INIS)

    Gradoboev, A V; Tesleva, E P

    2017-01-01

    The aim of the work is studying the impact of Gunn diodes thermocompression bonding conditions upon their resistance to being radiated with protons of various energies. It was established that the tough conditions of Gunn diodes thermocompression bonding results in local mechanic stresses introduced into the active layer of the device, reduction of electron mobility because of the faults introduction and, subsequently, to reduction of operating current, power of UHF generation, percentage of qualitative units production and general reduction of production efficiency of the devices with required characteristics. Irradiation of Gunn diodes produced under the tough conditions of thermocompression bonding with protons which energy is (40–60) MeV with an absorbed dose of (1–6)·10 2 Gy does not practically reduce the radiation resistance of Gunn diodes produced with application of the given technique. This technique can be recommended for all semiconductor devices on the base of GaAs, which parameters depend significantly upon the mobility of the electrons, to increase the efficiency of production. (paper)

  16. A Linearized Relaxing Algorithm for the Specific Nonlinear Optimization Problem

    Directory of Open Access Journals (Sweden)

    Mio Horai

    2016-01-01

    Full Text Available We propose a new method for the specific nonlinear and nonconvex global optimization problem by using a linear relaxation technique. To simplify the specific nonlinear and nonconvex optimization problem, we transform the problem to the lower linear relaxation form, and we solve the linear relaxation optimization problem by the Branch and Bound Algorithm. Under some reasonable assumptions, the global convergence of the algorithm is certified for the problem. Numerical results show that this method is more efficient than the previous methods.

  17. Measurements of spin-lattice relaxation time in mixed alkali halide crystals

    International Nuclear Information System (INIS)

    Tannus, A.

    1983-01-01

    Using magneto-optic techniques the ground state spin-lattice relaxation times (T1) of 'F' centers in mixed Alkali Halide cristals (KCl-KBr), was studied. A computer assisted system to optically measure short relaxation times (approx. = 1mS), was described. The technique is based on the measurement of the Magnetic Circular Dicroism (MCD) presented by F centers. The T1 magnetic field dependency at 2 K (up to 65 KGauss), was obtained as well as the MCD spectra for different relative concentration at the mixed matrices. The theory developed by Panepucci and Mollenauer for F centers spin-lattice relaxation in pure matrices was modified to explain the behaviour of T1 in mixed cristals. The Direct Process results (T approx. = 2.0 K) compared against that theory shows that the main relaxation mecanism, up to 25 KGauss, continues to be phonon modulation of the hiperfine iteraction between F electrons and surrounding nuclei. (Author) [pt

  18. Theoretical calculations of oxygen relaxation in YBa2Cu3O6+x ceramics

    Science.gov (United States)

    Mi, Y.; Schaller, R.; Sathish, S.; Benoit, W.

    1991-12-01

    A two-dimensional theoretical model of stress-induced point-defect relaxation in a layered structure is presented, with a detailed discussion of the special case of YBa2Cu3O6+x. The experimental results of oxygen relaxation in YBa2Cu3O6+x can be explained qualitatively by this model.

  19. Modeling relaxation length and density of acacia mangium wood using gamma - ray attenuation technique

    International Nuclear Information System (INIS)

    Tamer A Tabet; Fauziah Abdul Aziz

    2009-01-01

    Wood density measurement is related to the several factors that influence wood quality. In this paper, density, relaxation length and half-thickness value of eight ages, 3, 5, 7, 10, 11, 13 and 15 year-old of Acacia mangium wood were determined using gamma radiation from 137 Cs source. Results show that Acacia mangium tree of age 3 year has the highest relaxation length of 83.33 cm and least density of 0.43 gcm -3 , while the tree of age 15 year has the least Relaxation length of 28.56 cm and highest density of 0.76 gcm -3 . Results also show that the 3 year-old Acacia mangium wood has the highest half thickness value of 57.75 cm and 15 year-old tree has the least half thickness value of 19.85 cm. Two mathematical models have been developed for the prediction of density, variation with relaxation length and half-thickness value of different age of tree. A good agreement (greater than 85% in most cases) was observed between the measured values and predicted ones. Very good linear correlation was found between measured density and the age of tree (R2 = 0.824), and between estimated density and Acacia mangium tree age (R2 = 0.952). (Author)

  20. Can We Efficiently Check Concurrent Programs Under Relaxed Memory Models in Maude?

    DEFF Research Database (Denmark)

    Arrahman, Yehia Abd; Andric, Marina; Beggiato, Alessandro

    2014-01-01

    to the state space explosion. Several techniques have been proposed to mitigate those problems so to make verification under relaxed memory models feasible. We discuss how to adopt some of those techniques in a Maude-based approach to language prototyping, and suggest the use of other techniques that have been......Relaxed memory models offer suitable abstractions of the actual optimizations offered by multi-core architectures and by compilers of concurrent programming languages. Using such abstractions for verification purposes is challenging in part due to their inherent non-determinism which contributes...

  1. Influence of the storage conditions on prestressing steel relaxation losses

    Directory of Open Access Journals (Sweden)

    Suárez, F.

    2012-12-01

    Full Text Available Stress relaxation losses on active reinforcement have significant impact on prestressed concrete structures. This is why relaxation tests are carried out on prestressing steel wires and strands after being manufactured. Then, these materials are coiled and stored for a long-term period, sometimes in excess of one year. The influence of these operations, carried out after manufacturing, is usually neglected. Nevertheless, some manufacturers and contractors have noticed that, sometimes, when relaxation tests are carried out after a long-term storage, the relaxation losses found are higher than those measured immediately after manufacturing. In this work, lab tests are performed to check the influence of the coiling radius and the period of storage on the relaxation test. In addition to this, an analytical model is presented to predict the results of a relaxation test carried out on a wire coiled and stored for a long-term period. This model explains the evolution on the cross-sectional stress profile along the coiling-storing-uncoiling process, as well as the influence of the residual stresses on it.

    La pérdida de tensión por relajación en las armaduras activas afecta de forma importante a las estructuras de hormigón pretensado. Por ello se realizan ensayos de relajación de los alambres y cordones de pretensado tras su fabricación. Después, el material es enrollado y almacenado durante periodos que en ocasiones pueden superar el año de duración. Generalmente se desprecia la influencia que estas operaciones posteriores a la fabricación pueden tener sobre el material. Sin embargo, diversos fabricantes y suministradores han constatado experimentalmente que, en ocasiones, el material almacenado durante un periodo prolongado presenta pérdidas de relajación mayores que inmediatamente tras su fabricación. En este trabajo se realizan ensayos de laboratorio para comprobar la influencia que el radio de enrollamiento y el periodo de

  2. In situ and postradiation analysis of mechanical stress in Al2O3:Cr induced by swift heavy-ion irradiation

    International Nuclear Information System (INIS)

    Skuratov, V.A.; Bujnarowski, G.; Kovalev, Yu.S.; O'Connell, J.; Havanscak, K.

    2010-01-01

    Optical spectroscopy and TEM techniques have been applied to study the radiation damage and correlated mechanical stresses in Al 2 O 3 and Al 2 O 3 :Cr single crystals induced by (1-3) MeV/amu Kr, Xe and Bi ion irradiation. Mechanical stresses were evaluated in situ using a piezospectroscopic effect through the shift of the respective lines in ionoluminescence spectra. It was found that dose dependence of the stress level for Xe and Bi ions, when ionization energy loss exceeds the threshold of damage formation via electronic excitations, exhibits several alternate stages showing the build-up and relaxation of stresses. The beginning of relaxation stages is observed at fluences associated with beginning of individual ion track regions overlapping. The residual stress profiles through the ion irradiated layers were deduced from depth-resolved photostimulated spectra using laser confocal scanning microscopy set-up. It was determined that stresses are compressive in basal plane and tensile in perpendicular direction in all samples irradiated with high energy ions.

  3. Modelling Creep (Relaxation of the Urinary Bladder

    Directory of Open Access Journals (Sweden)

    Zdravkovic Nebojsa

    2017-12-01

    Full Text Available We first present the results of an experiment in which the passive properties of the urinary bladder were investigated using strips of rabbit bladder. Under the assumption that the urinary bladder had orthopaedic characteristics, the strips were taken in the longitudinal and in the circumferential directions. The material was subjected to uniaxial tension, and stress-stretch curves were generated for various rates of deformation. We found that the rates did not have a significantly effect on the passive response of the material. Additionally, the stress-stretch dependence during relaxation of the material when exposed to isometric conditions was determined experimentally.

  4. Rotation and scale change invariant point pattern relaxation matching by the Hopfield neural network

    Science.gov (United States)

    Sang, Nong; Zhang, Tianxu

    1997-12-01

    Relaxation matching is one of the most relevant methods for image matching. The original relaxation matching technique using point patterns is sensitive to rotations and scale changes. We improve the original point pattern relaxation matching technique to be invariant to rotations and scale changes. A method that makes the Hopfield neural network perform this matching process is discussed. An advantage of this is that the relaxation matching process can be performed in real time with the neural network's massively parallel capability to process information. Experimental results with large simulated images demonstrate the effectiveness and feasibility of the method to perform point patten relaxation matching invariant to rotations and scale changes and the method to perform this matching by the Hopfield neural network. In addition, we show that the method presented can be tolerant to small random error.

  5. Relaxation creep model of impending earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Morgounov, V. A. [Russian Academy of Sciences, Institute of Physics of the Earth, Moscow (Russian Federation)

    2001-04-01

    The alternative view of the current status and perspective of seismic prediction studies is discussed. In the problem of the ascertainment of the uncertainty relation Cognoscibility-Unpredictability of Earthquakes, priorities of works on short-term earthquake prediction are defined due to the advantage that the final stage of nucleation of earthquake is characterized by a substantial activation of the process while its strain rate increases by the orders of magnitude and considerably increased signal-to-noise ratio. Based on the creep phenomenon under stress relaxation conditions, a model is proposed to explain different images of precursors of impending tectonic earthquakes. The onset of tertiary creep appears to correspond to the onset of instability and inevitably fails unless it unloaded. At this stage, the process acquires the self-regulating character to the greatest extent the property of irreversibility, one of the important components of prediction reliability. Data in situ suggest a principal possibility to diagnose the process of preparation by ground measurements of acoustic and electromagnetic emission in the rocks under constant strain in the condition of self-relaxed stress until the moment of fracture are discussed in context. It was obtained that electromagnetic emission precedes but does not accompany the phase of macrocrak development.

  6. Strain relaxation of germanium-tin (GeSn) fins

    Science.gov (United States)

    Kang, Yuye; Huang, Yi-Chiau; Lee, Kwang Hong; Bao, Shuyu; Wang, Wei; Lei, Dian; Masudy-Panah, Saeid; Dong, Yuan; Wu, Ying; Xu, Shengqiang; Tan, Chuan Seng; Gong, Xiao; Yeo, Yee-Chia

    2018-02-01

    Strain relaxation of biaxially strained Ge1-xSnx layer when it is patterned into Ge1-xSnx fin structures is studied. Ge1-xSnx-on-insulator (GeSnOI) substrate was realized using a direct wafer bonding (DWB) technique and Ge1-xSnx fin structures were formed by electron beam lithography (EBL) patterning and dry etching. The strain in the Ge1-xSnx fins having fin widths (WFin) ranging from 1 μm down to 80 nm was characterized using micro-Raman spectroscopy. Raman measurements show that the strain relaxation increases with decreasing WFin. Finite element (FE) simulation shows that the strain component in the transverse direction relaxes with decreasing WFin, while the strain component along the fin direction remains unchanged. For various Ge1-xSnx fin widths, transverse strain relaxation was further extracted using micro-Raman spectroscopy, which is consistent with the simulation results.

  7. More is less: Learning but not relaxing buffers deviance under job stressors.

    Science.gov (United States)

    Zhang, Chen; Mayer, David M; Hwang, Eunbit

    2018-02-01

    Workplace deviance harms the well-being of an organization and its members. Unfortunately, theory and prior research suggest that deviance is associated with job stressors, which are endemic to work organizations and often cannot be easily eliminated. To address this conundrum, we explore actions individuals can take at work that serve as buffering conditions for the positive relationship between job stressors and deviant behavior. Drawing upon conservation of resources theory, we examine a resource-building activity (i.e., learning something new at work) and a demand-shielding activity (i.e., taking time for relaxation at work) as potential boundary conditions. In 2 studies with employee samples using complementary designs, we find support for the buffering role of learning but not for relaxation. When employees learn new things at work, the relationship between hindrance stressors and deviance is weaker; as is the indirect relationship mediated by negative emotions. Taking time for relaxation at work did not show a moderating role in either study. Therefore, although relaxation is a response that individuals might be inclined to turn to for counteracting work stress, our findings suggest that, when it comes to addressing negative emotions and deviance in stressful work environments, building positive resources by learning something new at work could be more useful. In that way, doing more (i.e., learning, and not relaxing) is associated with less (deviance) in the face of job stressors. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  8. Radiographic evaluation of coxofemoral joint laxity in dogs part I: New stress-radiographic positioning techniques

    International Nuclear Information System (INIS)

    Phiwipha Kamonrat; Duangdaun Kaenkangploo

    2002-01-01

    Two new stress-radiographic positioning techniques, namely 60 deg and 90 deg stress techniques, were introduced for quantifying hip joint laxity in dogs. The comparative characteristics and efficiency of these new techniques with angled hindlimbs were evaluated relative to the standard hip-extended radiographic technique. Forty, healthy, mongrel dogs with normal hip joint conformation were anesthetized and placed in dorsal recumbency before 3 radiograhps of the standard, 60 deg , and 90 deg stress techniques were taken. For the 60 deg stress technique, hindlimbs were extended in parallel to each other at 60 deg angled to the table top and stifles were slightly rotated inward, femoral heads were manually pushed in a craniodorsal direction during exposure. For the 90 deg stress technique, femurs were positioned perpendicular to the table top, stifles were 90 deg flexed and adducted and femoral heads were manually pushed in a craniodorsal direction during exposure. The subluxation index (SI) and dorsolateral subluxation score (DLS score) were calculated from 3 radiographic views for both hip joints to quantitate the relative degree of joint laxity. Results of the study indicated that the 60 deg (SI = 0.20+-0.045, DLS score = 62.5+-7.96 percent) and 90 deg (SI = 0.23+-0.044, DLS score = 61.2+-9.47 percent) stress-radiographs yielded significantly (p0.001) higher degree of hip joint laxity than the standard technique (SI)

  9. Non-linear effects in the Snoek relaxation of Nb-O

    International Nuclear Information System (INIS)

    Hermida, E.B.; Povolo, F.

    1996-01-01

    Internal friction peaks measured as a function of temperature or frequency have been associated to non-linear processes only after studying how the amplitude of the applied stress affects the relaxation process. Here it is demonstrated that the partial derivative of the internal friction with respect to the frequency at constant temperature is a useful tool to determine that non-linear effects are involved. This analysis applied to actual data of the Snoek relaxation in Nb-O, reveals that at high interstitial contents non-linear effects appear. (orig.)

  10. Use of pressurized eccentric tubes to study the effect of hydrostatic stress on swelling

    International Nuclear Information System (INIS)

    Wolfer, W.G.; Reiley, T.C.

    1977-05-01

    A technique for measuring the effect of hydrostatic stress on radiation-induced swelling is presented. This technique is based on the nonuniform hydrostatic stress that arises when an eccentric tube (a tube with inner and outer surfaces having dissimilar centers of revolution) is internally pressurized. The elastic analyses of the thin- and thick-walled eccentric tube are given. The elastic stress state is allowed to relax plastically, based on a constitutive law for deformation during neutron irradiation. In this case, the constitutive law contains a linearly stress-dependent deviatoric strain rate and a dilatation rate that is linearly dependent on hydrostatic stress. Emphasis is placed on the specimen design and experimental procedure for in-reactor experiments in which the coefficient relating hydrostatic stress and swelling is sought. It is shown that, for the 316L stainless steel specimens placed in EBR-II, we may expect that any appreciable effect of hydrostatic stress on swelling will be observable through changes in specimen curvature

  11. Magnetic Resonance Fingerprinting with short relaxation intervals.

    Science.gov (United States)

    Amthor, Thomas; Doneva, Mariya; Koken, Peter; Sommer, Karsten; Meineke, Jakob; Börnert, Peter

    2017-09-01

    The aim of this study was to investigate a technique for improving the performance of Magnetic Resonance Fingerprinting (MRF) in repetitive sampling schemes, in particular for 3D MRF acquisition, by shortening relaxation intervals between MRF pulse train repetitions. A calculation method for MRF dictionaries adapted to short relaxation intervals and non-relaxed initial spin states is presented, based on the concept of stationary fingerprints. The method is applicable to many different k-space sampling schemes in 2D and 3D. For accuracy analysis, T 1 and T 2 values of a phantom are determined by single-slice Cartesian MRF for different relaxation intervals and are compared with quantitative reference measurements. The relevance of slice profile effects is also investigated in this case. To further illustrate the capabilities of the method, an application to in-vivo spiral 3D MRF measurements is demonstrated. The proposed computation method enables accurate parameter estimation even for the shortest relaxation intervals, as investigated for different sampling patterns in 2D and 3D. In 2D Cartesian measurements, we achieved a scan acceleration of more than a factor of two, while maintaining acceptable accuracy: The largest T 1 values of a sample set deviated from their reference values by 0.3% (longest relaxation interval) and 2.4% (shortest relaxation interval). The largest T 2 values showed systematic deviations of up to 10% for all relaxation intervals, which is discussed. The influence of slice profile effects for multislice acquisition is shown to become increasingly relevant for short relaxation intervals. In 3D spiral measurements, a scan time reduction of 36% was achieved, maintaining the quality of in-vivo T1 and T2 maps. Reducing the relaxation interval between MRF sequence repetitions using stationary fingerprint dictionaries is a feasible method to improve the scan efficiency of MRF sequences. The method enables fast implementations of 3D spatially

  12. A comparative study of ultraviolet photoconductivity relaxation in zinc oxide (ZnO) thin films deposited by different techniques

    International Nuclear Information System (INIS)

    Yadav, Harish Kumar; Gupta, Vinay

    2012-01-01

    Photoresponse characteristics of ZnO thin films deposited by three different techniques namely rf diode sputtering, rf magnetron sputtering, and electrophoretic deposition has been investigated in the metal-semiconductor-metal (MSM) configuration. A significant variation in the crystallinity, surface morphology, and photoresponse characteristics of ZnO thin film with change in growth kinetics suggest that the presence of defect centers and their density govern the photodetector relaxation properties. A relatively low density of traps compared to the true quantum yield is found very crucial for the realization of practical ZnO thin film based ultraviolet (UV) photodetector.

  13. A comparative study of ultraviolet photoconductivity relaxation in zinc oxide (ZnO) thin films deposited by different techniques

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Harish Kumar; Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India)

    2012-05-15

    Photoresponse characteristics of ZnO thin films deposited by three different techniques namely rf diode sputtering, rf magnetron sputtering, and electrophoretic deposition has been investigated in the metal-semiconductor-metal (MSM) configuration. A significant variation in the crystallinity, surface morphology, and photoresponse characteristics of ZnO thin film with change in growth kinetics suggest that the presence of defect centers and their density govern the photodetector relaxation properties. A relatively low density of traps compared to the true quantum yield is found very crucial for the realization of practical ZnO thin film based ultraviolet (UV) photodetector.

  14. Temperature-dependent structural relaxation in As{sub 40}Se{sub 60} glass

    Energy Technology Data Exchange (ETDEWEB)

    Golovchak, R., E-mail: roman_ya@yahoo.com [Lviv Sci. and Res. Institute of Materials of SRC ' Carat' , 202 Stryjska str., 79031 Lviv (Ukraine); Kozdras, A. [Opole University of Technology, 75, Ozimska str., Opole, PL-45370 (Poland); Academy of Management and Administration, 18 Niedzialkowski str., Opole, PL-45085 (Poland); Shpotyuk, O. [Jan Dlugosz University, 13/15, al. Armii Krajowej, 42201, Czestochowa (Poland); Gorecki, Cz. [Opole University of Technology, 75, Ozimska str., Opole, PL-45370 (Poland); Kovalskiy, A.; Jain, H. [Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States)

    2011-08-01

    The origin of structural relaxation in As{sub 40}Se{sub 60} glass at different annealing temperatures is studied by differential scanning calorimetry (DSC) and in situ extended X-ray absorption fine structure (EXAFS) methods. Strong physical aging effect, expressed through the increase of endothermic peak area in the vicinity of T{sub g}, is recorded by DSC technique at the annealing temperatures T{sub a}>90{sup o}C. EXAFS data show that the observed structural relaxation is not associated with significant changes in the short-range order of this glass. An explanation is proposed for this relaxation behavior assuming temperature-dependent constraints. -- Highlights: → In this study we report experimental evidence for temperature-dependent constraints theory. → Structural relaxation of As{sub 2}Se{sub 3} glass at higher annealing temperatures is studied by DSC technique. → Accompanied changes in the structure are monitored by in situ EXAFS measurements.

  15. Stress Management by Biofeedback

    Science.gov (United States)

    1997-01-01

    In the 1980's, Dr. Patrick Doyle served on a project to train U.S. astronauts at Johnson Space Center in biofeedback techniques to control anxiety and hypertension. Traditional biofeedback concepts were found to be too mundane, repetitive and boring, so Doyle developed Bio-Games with more interesting and involved formats. The first product, Bio-Ball, is an interactive, multimedia baseball video game that is played by relaxing in order to hit the ball. Gradually the player is able to relax at will, and with practice is able to apply the skills to real-life situations. Doyle has since gone on to create a number of biofeedback games marketed by Creative MultiMedia Inc. including Bio-Golf, Clutch City, and Pachyderm. Stress-busting screen savers are also being marketed under the Buddies series. In addition to being used in the corporate world, Bio-Games have been recognized by the Starbright Foundation which focuses on improving the total hospital environments of critically injured and chronically-ill children.

  16. The Effects of Progressive Muscle Relaxation and Guided Imagery on gestational hypertension

    OpenAIRE

    Ranjkesh F

    2017-01-01

    Introduction: Hypertension is a common disorder in pregnancy. Although this disorder is accompanied by many difficulties in pregnancy, no effective therapy has still been found to treat it. One of the main methods in the treatment of hypertension is stress reducing programs such as relaxation and Guided Imagery. This study is aimed to evaluate the effects of progressive muscle relaxation and guided imagery on the gestational hypertension. Methods: The present study is a randomized clinical...

  17. Mesures de contraintes in-situ. Méthode de relaxation des carottes Measuring in-Situ Stresses. Relaxation Method with Core Samples

    Directory of Open Access Journals (Sweden)

    Perreau P.

    2006-11-01

    Full Text Available Dans cet article, on se propose de présenter les premiers résultats de l'étude de la méthode d'évaluation des contraintes par mesure de déformations différées d'une carotte après son extraction. Le travail correspondant a été réalisé dans le cadre du projet ARTEP Fracturation hydraulique . Les principes de cette méthode et les quelques éléments d'interprétation récemment publiés dans la littérature sont exposés dans un premier temps. Les résultats de deux campagnes de mesures sur deux puits de la SNEA-P (Soudron, novembre 1985 et Lanot, juillet 1986 sont ensuite présentés. Ces essais ont mis en évidence que les déformations différées d'une carotte dues au relachement des contraintes sont effectivement mesurables. Cependant, une interprétation quantitative de ces mesures nécessite une amélioration des conditions expérimentales (stabilisation thermique, stabilisation de l'état de saturation. This article describes the first results of research on a method of evaluating stresses by measuring the differred deformations of a core sample after it has been extracted. The corresponding research was done within the framework of an ARTEP project on Hydraulic Fracturing . The principles of this method and several interpretation aspects published recently in the literature are described in the first part. Then the results of two measurement campaigns using two SNEA-P wells (Soudron in November 1985 and Lanot in July 1986 are described. These tests revealed that the differed deformations of a core sample due to the relaxing of stresses can effectively be measured. However, a quantitative interpretation of these measurements requires an improvement to be made in the experimental conditions (thermal stabilization, stabilization of the state of saturation.

  18. Development of technique to apply induction heating stress improvement to recirculation inlet nozzle

    International Nuclear Information System (INIS)

    Chiba, Kunihiko; Nihei, Kenichi; Ootaka, Minoru

    2009-01-01

    Stress corrosion cracking (SCC) have been found in the primary loop recirculation (PLR) systems of boiling water reactors (BWR). Residual stress in welding heat-affected zone is one of the factors of SCC, and the residual stress improvement is one of the most effective methods to prevent SCC. Induction heating stress improvement (IHSI) is one of the techniques to improve reduce residual stress. However, it is difficult to apply IHSI to the place such as the recirculation inlet nozzle where the flow stagnates. In this present study, the technique to apply IHSI to the recirculation inlet nozzle was developed using water jet which blowed into the crevice between the nozzle safe end and the thermal sleeve. (author)

  19. Influence of the clay in the stress cracking resistance of PET; Influencia de silicatos em camadas na resistencia ao 'stress cracking' do PET

    Energy Technology Data Exchange (ETDEWEB)

    Teofilo, Edvania T. [Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais, Universidade Federal de Campina Grande, PB (Brazil); Silva, Emanuela S.; Silva, Suedina M.L.; Rabello, Marcelo S., E-mail: marcelo@dema.ufcg.edu.b [Unidade Academica de Engenharia de Materiais, Universidade Federal de Campina Grande, PB (Brazil)

    2011-07-01

    The environmental stress cracking resistance in PET and hybrid PET/clay were conducted under stress relaxation test. X-ray diffraction analysis show that was obtained immiscible system. In the absence of aggressive fluids the hybrid exhibited higher relaxation rates than the PET. Already in contact with aggressive fluids showed a similar or lower relaxation rate than the PET, being more resistant. Suggesting that the clay, though not interlayer, interferes with the distribution of the stress cracking agent. Thus, the barrier effect caused by the clay was more significant than the stress concentration caused by it. (author)

  20. The influence of gamma radiation on the ESC behaviour of a toughened PMMA through stress relaxation

    International Nuclear Information System (INIS)

    Sousa, Alexandre R.; Araujo, Elmo S.; Rabello, Marcelo S.

    2009-01-01

    On this work we studied the ESC degradation behaviour of a toughened PMMA irradiated with different gamma radiation doses. Tensile samples were obtained by injection moulding, and then irradiated using a 60 Co source. The samples irradiated on several doses were submitted to relaxation tests under air, ethanol and ethylene glycol. The results showed that the ESC action was intensified with the rising radiation doses when the relaxation tests were done under ethanol. On the tests under ethylene glycol the ESC effect was observed only to the irradiated polymer through the higher dose and under the higher relaxation load. The fracture surface analysis of tested relaxation samples, under ethanol, showed a dendritic pattern formed on fracture surfaces. (author)

  1. Preventing occupational stress in healthcare workers.

    Science.gov (United States)

    Ruotsalainen, Jani H; Verbeek, Jos H; Mariné, Albert; Serra, Consol

    2015-04-07

    Healthcare workers can suffer from occupational stress as a result of lack of skills, organisational factors, and low social support at work. This may lead to distress, burnout and psychosomatic problems, and deterioration in quality of life and service provision. To evaluate the effectiveness of work- and person-directed interventions compared to no intervention or alternative interventions in preventing stress at work in healthcare workers. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, PsycINFO, CINAHL, NIOSHTIC-2 and Web of Science up to November 2013. Randomised controlled trials (RCTs) of interventions aimed at preventing psychological stress in healthcare workers. For organisational interventions, interrupted time-series and controlled before-and-after (CBA) studies were also eligible. Two review authors independently extracted data and assessed trial quality. We used Standardised Mean Differences (SMDs) where authors of trials used different scales to measure stress or burnout. We combined studies that were similar in meta-analyses. We used the GRADE system to rate the quality of the evidence. In this update, we added 39 studies, making a total of 58 studies (54 RCTs and four CBA studies), with 7188 participants. We categorised interventions as cognitive-behavioural training (CBT) (n = 14), mental and physical relaxation (n = 21), combined CBT and relaxation (n = 6) and organisational interventions (n = 20). Follow-up was less than one month in 24 studies, one to six in 22 studies and more than six months in 12 studies. We categorised outcomes as stress, anxiety or general health.There was low-quality evidence that CBT with or without relaxation was no more effective in reducing stress symptoms than no intervention at one month follow-up in six studies (SMD -0.27 (95% Confidence Interval (CI) -0.66 to 0.13; 332 participants). But at one to six months follow-up in seven studies (SMD -0.38, 95% CI -0.59 to -0

  2. Thermal stresses in long prisms by relaxation methods

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1959-07-01

    A general method is presented for calculating the elastic thermal stresses in long prisms which are producing heat and are not solvable by simple analytical methods. The problem of an inverted lattice i.e. an hexagonal coolant passage surrounded by hexagonal fuel elements is considered and the temperature and principal thermal stress distributions evaluated for the particular case of 20% coolant. The maximum thermal stress for this type of fuel element is about the same as the maximum thermal stress in a cylindrical fuel element surrounded by a sea of coolant assuming the existence of the same maximum temperature drop and material properties. (author)

  3. Thermal stresses in long prisms by relaxation methods

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, J D [Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1959-07-15

    A general method is presented for calculating the elastic thermal stresses in long prisms which are producing heat and are not solvable by simple analytical methods. The problem of an inverted lattice i.e. an hexagonal coolant passage surrounded by hexagonal fuel elements is considered and the temperature and principal thermal stress distributions evaluated for the particular case of 20% coolant. The maximum thermal stress for this type of fuel element is about the same as the maximum thermal stress in a cylindrical fuel element surrounded by a sea of coolant assuming the existence of the same maximum temperature drop and material properties. (author)

  4. Strain Rate Dependence of Compressive Yield and Relaxation in DGEBA Epoxies

    Science.gov (United States)

    Arechederra, Gabriel K.; Reprogle, Riley C.; Clarkson, Caitlyn M.; McCoy, John D.; Kropka, Jamie M.; Long, Kevin N.; Chambers, Robert S.

    2015-03-01

    The mechanical response in uniaxial compression of two diglycidyl ether of bisphenol-A epoxies were studied. These were 828DEA (Epon 828 cured with diethanolamine (DEA)) and 828T403 (Epon 828 cured with Jeffamine T-403). Two types of uniaxial compression tests were performed: A) constant strain rate compression and B) constant strain rate compression followed by a constant strain relaxation. The peak (yield) stress was analyzed as a function of strain rate from Eyring theory for activation volume. Runs at different temperatures permitted the construction of a mastercurve, and the resulting shift factors resulted in an activation energy. Strain and hold tests were performed for a low strain rate where a peak stress was lacking and for a higher strain rate where the peak stress was apparent. Relaxation from strains at different places along the stress-strain curve was tracked and compared. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Stress Concentration and Its Mitigation Techniques in Flat Plate with Singularities - A Critical Review

    Directory of Open Access Journals (Sweden)

    Shubhashish Sanyal

    2012-01-01

    Full Text Available A number of analytical, numerical & experimental techniques are available for the reduction of stress concentration factor around discontinuities. Using various techniques the SCF around different discontinuities in a rectangular plate made up of different materials under different loading conditions have been reported in literature. Mitigation of stress concentration around different types of discontinuity is also reported in literature. This paper is to present an analysis and overview of emerging techniques developed for analysis as well as mitigation of stress concentration. The proposed methods in literature are compared.

  6. State resolved vibrational relaxation modeling for strongly nonequilibrium flows

    Science.gov (United States)

    Boyd, Iain D.; Josyula, Eswar

    2011-05-01

    Vibrational relaxation is an important physical process in hypersonic flows. Activation of the vibrational mode affects the fundamental thermodynamic properties and finite rate relaxation can reduce the degree of dissociation of a gas. Low fidelity models of vibrational activation employ a relaxation time to capture the process at a macroscopic level. High fidelity, state-resolved models have been developed for use in continuum gas dynamics simulations based on computational fluid dynamics (CFD). By comparison, such models are not as common for use with the direct simulation Monte Carlo (DSMC) method. In this study, a high fidelity, state-resolved vibrational relaxation model is developed for the DSMC technique. The model is based on the forced harmonic oscillator approach in which multi-quantum transitions may become dominant at high temperature. Results obtained for integrated rate coefficients from the DSMC model are consistent with the corresponding CFD model. Comparison of relaxation results obtained with the high-fidelity DSMC model shows significantly less excitation of upper vibrational levels in comparison to the standard, lower fidelity DSMC vibrational relaxation model. Application of the new DSMC model to a Mach 7 normal shock wave in carbon monoxide provides better agreement with experimental measurements than the standard DSMC relaxation model.

  7. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: longitudinal relaxation dispersion for a dipole-coupled spin-1/2 pair.

    Science.gov (United States)

    Chang, Zhiwei; Halle, Bertil

    2013-10-14

    In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water (1)H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft

  8. Deconvolution of astronomical images using SOR with adaptive relaxation.

    Science.gov (United States)

    Vorontsov, S V; Strakhov, V N; Jefferies, S M; Borelli, K J

    2011-07-04

    We address the potential performance of the successive overrelaxation technique (SOR) in image deconvolution, focusing our attention on the restoration of astronomical images distorted by atmospheric turbulence. SOR is the classical Gauss-Seidel iteration, supplemented with relaxation. As indicated by earlier work, the convergence properties of SOR, and its ultimate performance in the deconvolution of blurred and noisy images, can be made competitive to other iterative techniques, including conjugate gradients, by a proper choice of the relaxation parameter. The question of how to choose the relaxation parameter, however, remained open, and in the practical work one had to rely on experimentation. In this paper, using constructive (rather than exact) arguments, we suggest a simple strategy for choosing the relaxation parameter and for updating its value in consecutive iterations to optimize the performance of the SOR algorithm (and its positivity-constrained version, +SOR) at finite iteration counts. We suggest an extension of the algorithm to the notoriously difficult problem of "blind" deconvolution, where both the true object and the point-spread function have to be recovered from the blurred image. We report the results of numerical inversions with artificial and real data, where the algorithm is compared with techniques based on conjugate gradients. In all of our experiments +SOR provides the highest quality results. In addition +SOR is found to be able to detect moderately small changes in the true object between separate data frames: an important quality for multi-frame blind deconvolution where stationarity of the object is a necesessity.

  9. Residual stress in ceramics and ceramic composites

    International Nuclear Information System (INIS)

    Oden, M.

    1992-01-01

    Residual stresses in Si 3 N 4 and SiC have been measured with X-ray diffraction after grinding and thermal shock. The produced surface stresses are compressive after both treatments. The stresses show a strong dependence on the quenching temperature up to a certain temperature when cracks relax the stresses. The influence of the amount of reinforcing phase on the residual stress state in a Al 2 O 3 /SiC whisker composite was investigated and correlated to a modified Eshelby model. The agreement is excellent. The composite was quenched in liquid He (4K) and the stress state measured after show no relaxation of stresses, indicating elastic behaviour. An in situ strain measurement as a function of temperature conducted on a Al 2 O 3 /SiC whisker composite and a SiC/TiB 2 particle composite show very good agreement with the Eshelby model for the Al 2 O 3 /SiC system but not agreement for the SiC/TiB 2 system. The reason is believed to be stress relaxation during sample preparation. (au) (53 refs., 24 figs., 14 tabs.)

  10. Influence of the clay in the stress cracking resistance of PET

    International Nuclear Information System (INIS)

    Teofilo, Edvania T.; Silva, Emanuela S.; Silva, Suedina M.L.; Rabello, Marcelo S.

    2011-01-01

    The environmental stress cracking resistance in PET and hybrid PET/clay were conducted under stress relaxation test. X-ray diffraction analysis show that was obtained immiscible system. In the absence of aggressive fluids the hybrid exhibited higher relaxation rates than the PET. Already in contact with aggressive fluids showed a similar or lower relaxation rate than the PET, being more resistant. Suggesting that the clay, though not interlayer, interferes with the distribution of the stress cracking agent. Thus, the barrier effect caused by the clay was more significant than the stress concentration caused by it. (author)

  11. Vibronic relaxation in molecular mixed crystals : Pentacene in naphthalene and p-terphenyl

    NARCIS (Netherlands)

    Hesselink, Wim H.; Wiersma, Douwe A.

    1981-01-01

    Picosecond photon echo techniques are used to measure directly vibronic relaxation times in the first excited singlet state of pentacene in naphthalene and p-terphenyl. In regions of low (< 300 cm–1) and high (> 1000 cm–1) vibrational energy, relaxation is fast (τ <2 ps) due to direct phonon

  12. Topology Synthesis of Structures Using Parameter Relaxation and Geometric Refinement

    Science.gov (United States)

    Hull, P. V.; Tinker, M. L.

    2007-01-01

    Typically, structural topology optimization problems undergo relaxation of certain design parameters to allow the existence of intermediate variable optimum topologies. Relaxation permits the use of a variety of gradient-based search techniques and has been shown to guarantee the existence of optimal solutions and eliminate mesh dependencies. This Technical Publication (TP) will demonstrate the application of relaxation to a control point discretization of the design workspace for the structural topology optimization process. The control point parameterization with subdivision has been offered as an alternative to the traditional method of discretized finite element design domain. The principle of relaxation demonstrates the increased utility of the control point parameterization. One of the significant results of the relaxation process offered in this TP is that direct manufacturability of the optimized design will be maintained without the need for designer intervention or translation. In addition, it will be shown that relaxation of certain parameters may extend the range of problems that can be addressed; e.g., in permitting limited out-of-plane motion to be included in a path generation problem.

  13. Measurement of in-situ stress in salt and rock using NQR techniques

    International Nuclear Information System (INIS)

    Schempp, E.; Hirschfeld, T.; Klainer, S.

    1980-01-01

    A discussion of how stress and strain affect the quantities which can be measured in an NQR experiment shows that, for stresses of the magnitude to be expected at depths up to about 10,000 feet, quadrupole coupling constants will fall in the range of 1 to 10 kHz for both the sodium and chloride ions in NaCl. The most promising system involves pulsed nuclear double resonance detection; and alterative is to observe the quadrupolar splitting of the NMR signal. Choices to be made in the measurement and mapping techniques are discussed. The well-known perturbation of the homogenous stress field in the neighborhood of a borehole is shown to be advantageous from the point of view of obtaining directional information on the stress. Construction and operation of a borehole stress sensor are considered. The NQR technique seems feasible for measuring the magnitude and direction of underground stress with a resolution of about 25 psi, or 2.5% at 1000 psi. Downhole instrumentation suitable for in-situ determinations of stress appears within the state of the art. Additional tasks required on the project are identified

  14. Effectiveness of Indonesian Essential Oil Mixture of Lemongrass, Cananga, and Patchouli in Relaxation through Inhalation: A Clinical Test on Healthy Woman with High Potential for Stress

    Directory of Open Access Journals (Sweden)

    Richard Siahaan

    2014-12-01

    Full Text Available Relaxation is one of many mechanisms for coping with stress. One of the most widely used methods for relaxation is aromatherapy with the application of essential oils. Known for their therapeutic benefits, essential oils can be extracted from various Indonesian native herbs such as lemongrass (sereh wangi or Cymbopogon winterianus, cananga or ylang-ylang (kenanga or Canarium odoratum, and patchouli (nilam or Pogostemon cabin. This study aims to examine the effectiveness of a mixture of Indonesian essential oil made of lemongrass, cananga, and patchouli extracts. Experiment was conducted by asking a number of subjects to inhale the oil mixture and assessing its effectiveness in terms of psychological relaxation by using Visual Analog Scale or VAS and of physical relaxation by examining the subjects’ blood pressure (MAP, pulse frequency, and breathing frequency. The result was then compared with that of lavender oil and with the control group. The study was conducted on 60 healthy women through single-blind clinical trials (before and after using the “intent to treat” approach, followed by a startle test. Participants were divided into three groups: (1 20 participants who were treated with Indonesian essential oil mixture, (2 20 participants who were treated with lavender oil, and (3 20 participants who served as the control group. Psychological relaxation measurement showed that Indonesian essential oil mixture produced the same degree of effectiveness as lavender oil and the control groups did, although both treatments tended to produce better results than the control group did. However, physical relaxation measurement showed that Indonesian essential oil mixture produced a higher degree of effectiveness than lavender oil and tended to produce a better result than the control group did, especially in terms of blood pressure based on MAP scores.

  15. Application of laser interferometry for assessment of surface residual stress by determination of stress-free state

    International Nuclear Information System (INIS)

    Kim, Dong Won; Kwon, Dong Il; Lee, Nak Kyu; Choi, Tae Hoon; Na, Kyoung Hoan

    2003-01-01

    The total relaxed stress in annealing and the thermal strain/stress were obtained from the identification of the residual stress-free state using Electronic Speckle Pattern Interferometry (ESPI). The residual stress fields in case of both single and film/substrate systems were modeled using the thermo-elastic theory and the relationship between relaxed stresses and displacements. We mapped the surface residual stress fields on the indented bulk Cu and the 0.5 μm Au film by ESPI. In indented Cu, the normal and shear residual stress are distributed over -1.7 GPa to 700 MPa and -800 GPa to 600 MPa respectively around the indented point and in deposited Au film on Si wafer, the tensile residual stress is uniformly distributed on the Au film from 500 MPa to 800 MPa. Also we measured the residual stress by the X-Ray Diffractometer (XRD) for the verification of above residual stress results by ESPI

  16. Metastability and relaxation in tensile SiGe on Ge(001) virtual substrates

    International Nuclear Information System (INIS)

    Frigerio, Jacopo; Lodari, Mario; Chrastina, Daniel; Mondiali, Valeria; Isella, Giovanni; Bollani, Monica

    2014-01-01

    We systematically study the heteroepitaxy of SiGe alloys on Ge virtual substrates in order to understand strain relaxation processes and maximize the tensile strain in the SiGe layer. The degree of relaxation is measured by high-resolution x-ray diffraction, and surface morphology is characterized by atomic force microscopy. The results are analyzed in terms of a numerical model, which considers dislocation nucleation, multiplication, thermally activated glide, and strain-dependent blocking. Relaxation is found to be sensitive to growth rate and substrate temperature as well as epilayer misfit and thickness, and growth parameters are found which allow a SiGe film with over 4 GPa of tensile stress to be obtained.

  17. The Effect of Phonon Relaxation Process on Absorption Spectra ...

    African Journals Online (AJOL)

    In this work we study the effect of phonon relaxation process on the absorption spectra using the Green's function technique. The Green's function technique which is widely used in many particle problems is used to solve the Kubo formula which describes the optical absorption process. Finally the configurational diagram is ...

  18. Multi-Phonon Relaxation of H^- Local Modes in CaF_2

    Science.gov (United States)

    Davison, C. P.; Happek, U.; Campbell, J. A.; Engholm, J. R.; Schwettman, H. A.

    1998-03-01

    Local modes play an important role in the relaxation of vibrational modes of small molecules in solids (J.R. Engholm, C.W. Rella, H.A. Schwettman, and U. Happek; Phys. Rev. Lett. 77), 1302 (1996)., but only few attempts have been reported to study the relaxation of these local modes. Here we report on experiments to investigate the non-radiative relaxation of H^- local modes in CaF_2. Using a pump-probe technique, saturation experiments on the H^- local modes, both interstitial and substitutional, were performed at the Stanford Free Electron Laser Center. At low temperature we find a relaxation time T1 of 45 psec for the substitutional H^- local mode, and a more rapid relaxation for the interstitial H^- local modes next to La^3+ and Lu^3+ impurities. Information on the decay channels of the local modes are obtained from the characteristic temperature dependence of the relaxation rates. This work is supported in part by the ONR, Grant No. N00014-94-1024.

  19. Non-linear calculation of PCRV using dynamic relaxation

    International Nuclear Information System (INIS)

    Schnellenbach, G.

    1979-01-01

    A brief review is presented of a numerical method called the dynamic relaxation method for stress analysis of the concrete in prestressed concrete pressure vessels. By this method the three-dimensional elliptic differential equations of the continuum are changed into the four-dimensional hyperbolic differential equations known as wave equations. The boundary value problem of the static system is changed into an initial and boundary value problem for which a solution exists if the physical system is defined at time t=0. The effect of non-linear stress-strain behaviour of the material as well as creep and cracking are considered

  20. Paramagnetic relaxation effects in perturbed angular correlations for arbitrary electronic relaxation time

    International Nuclear Information System (INIS)

    Chopin, C.; Spanjaard, D.; Hartmann-Boutron, F.

    1975-01-01

    Previous perturbation treatments of paramagnetic relaxation effects in γγ PAC were limited to the case of very short electronic relaxation times. This limitation is circumvented by invoking a new perturbation theory recently elaborated by Hirst and others for handling relaxation effects in Moessbauer spectra. Under the assumption of spherical electronic relaxation the perturbation factors are computed as functions of certain relaxation parameters which are directly related to the microscopic relaxation Hamiltonian. The results are compared to those of the stochastic theory of Scherer and Blume [fr

  1. Atomistic simulation of processes in Ni-base alloys with account for local relaxations

    International Nuclear Information System (INIS)

    Bursik, Jiri

    2007-01-01

    Ordering in Ni-base superalloys is the crucial process controlling the development of the characteristic two-phase microstructure and subsequently the mechanical properties. Systems containing up to six alloying elements typical of advanced Ni-based superalloys are modelled in this work using a Monte Carlo approach with phenomenological Lennard-Jones pair potentials and interactions up to the third coordination sphere. Three-dimensional crystal block is used with over 10 5 atoms. Molecular dynamics approach is used to relax local atomic positions in course of ordering processes under applied stress. The importance of taking into account both relaxation of modelled block dimensions and relaxation of local atomic positions is discussed

  2. Stress in hard metal films

    NARCIS (Netherlands)

    Janssen, G.C.A.M.; Kamminga, J.D.

    2004-01-01

    In the absence of thermal stress, tensile stress in hard metal films is caused by grain boundary shrinkage and compressive stress is caused by ion peening. It is shown that the two contributions are additive. Moreover tensile stress generated at the grain boundaries does not relax by ion

  3. Evaluation of Residual Stress Distribution and Relaxation on In Situ TiB2/7050 Al Composites

    Directory of Open Access Journals (Sweden)

    Kunyang Lin

    2018-04-01

    Full Text Available Interior residual stresses induced by quenching may cause distortion during subsequent machining processes. Hence, various strategies have been employed to relieve the interior residual stress, such as stretching, post treatment, and other techniques. In this study, the stress distribution inside TiB2/7050 Al composite extrusions was investigated and the effects of different methods on relieving the quenching-induced stress were compared. Firstly, three TiB2/7050 Al composite extrusions were treated by stretching, stretching and heat treatment, and stretching and cold treatment processes, respectively. Then, the multiple-cut contour method was employed to assess the residual stresses in the three workpieces. Experimental results indicate that the interior stress of TiB2/7050 Al composite extrusions after stretching ranges from −89 MPa to +55 MPa, which is larger than that in 7050 aluminum alloy, which ranges from −25 Pa to +25 MPa. The heat treatment performs better than the cold treatment to reduce the post-stretching residual stress, with a reduction of 23.2–46.4% compared to 11.3–40.8%, respectively. From the stress map, it is found that the stress distribution after the heat treatment is more uniform compared with that after the cold treatment.

  4. Effects of residual stress on irradiation hardening in stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, N.; Kondo, K.; Kaji, Y. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Miwa, Y. [Nuclear Energy and Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Ibaraki-ken (Japan)

    2007-07-01

    Full text of publication follows: Structural materials in fusion reactor with water cooling system will undergo corrosion in aqueous environment and heavier irradiation than that in LWR. Irradiation assisted stress corrosion (IASCC) may be induced in stainless steels exposed in these environment for a long term of reactor operation. The IASCC is considered to be caused in a welding zone. It is difficult to predict and estimate the IASCC, because several irradiation effects (irradiation hardening, swelling, irradiation induced stress relaxation, etc) work intricately. Firstly, effects of residual stress on irradiation hardening were investigated in stainless steels. Specimens used in this study were SUS316 and SUS316L. By bending deformation, the specimens with several % plastic strain, which corresponds to weld residual stress, were prepared. Ion irradiations of 12 MeV Ni{sup 3+} were performed at 330, 400 and 550 deg. C to 45 dpa in TIARA facility at JAEA. No bent specimen was simultaneously irradiated with the bent specimen. The residual stress was estimated by X-ray residual stress measurements before and after the irradiation. The micro-hardness was measured by using nano-indenter. The irradiation hardening and the stress relaxation were changed by irradiation under bending deformation. The residual stress did not relax even for the case of the higher temperature aging at 500 deg. C for the same time of irradiation. The residual stress after ion irradiation, however, relaxed at these experimental temperatures in SUS316L. The hardness was obviously suppressed in bent SUS316L irradiated at 300 deg. C to 6 or 12 dpa. It was evident that irradiation induced stress relaxation occasionally suppressed the irradiation hardening in SUS316L. (authors)

  5. Hastelloy X fuel element creep relaxation and residual effects

    International Nuclear Information System (INIS)

    Castle, R.A.

    1971-01-01

    A worst case, seven element, asymmetric fuel, thermal environment was assumed and a creep relaxation analysis generated. The fuel element clad is .020 inch Hastelloy X. The contact load decreased from 11.6 pounds to 5.87 pounds in 100,000 hours. The residual stresses were then computed for various shutdown times. (U.S.)

  6. Active nematic gels as active relaxing solids

    Science.gov (United States)

    Turzi, Stefano S.

    2017-11-01

    I propose a continuum theory for active nematic gels, defined as fluids or suspensions of orientable rodlike objects endowed with active dynamics, that is based on symmetry arguments and compatibility with thermodynamics. The starting point is our recent theory that models (passive) nematic liquid crystals as relaxing nematic elastomers. The interplay between viscoelastic response and active dynamics of the microscopic constituents is naturally taken into account. By contrast with standard theories, activity is not introduced as an additional term of the stress tensor, but it is added as an external remodeling force that competes with the passive relaxation dynamics and drags the system out of equilibrium. In a simple one-dimensional channel geometry, we show that the interaction between nonuniform nematic order and activity results in either a spontaneous flow of particles or a self-organization into subchannels flowing in opposite directions.

  7. Solid state dewetting and stress relaxation in a thin single crystalline Ni film on sapphire

    International Nuclear Information System (INIS)

    Rabkin, E.; Amram, D.; Alster, E.

    2014-01-01

    In this study, we deposited a 80 nm thick single crystalline Ni film on a sapphire substrate. Heat treatment of this film at 1000 °C followed by slow cooling resulted in the formation of faceted holes, star-like channel instabilities and faceted microwires. The ridges at the rims of faceted holes and channels exhibited a twinning orientation relationship with the rest of the film. A sub-nanometer-high hexagonal topography pattern on the surface of the unperturbed film was observed by atomic force microscopy. No such pattern was observed on the top facets of isolated Ni particles and hole ridges. We discuss the observed dewetting patterns in terms of the effects of Ni surface anisotropy and faceting on solid state dewetting. The hexagonal pattern on the surface of the unperturbed film was attributed to thermal stress relaxation in the film via dislocations glide. This work demonstrates that solid state dewetting of single crystalline metal films can be utilized for film patterning and for producing hierarchical surface topographies

  8. Effect of dislocations of forest on relaxation of mechanical stresses in irradiated zinc crystals

    International Nuclear Information System (INIS)

    Troitskij, O.A.; Kalymbetov, P.U.; Kusainov, S.G.; Shambulov, N.B.

    1988-01-01

    Effect of forest dislocations on the value of electron-plastic effect (EPE) in zinc crystals during their irradiation by accelerated electron packets is investigated. The following mechanical parameters are determined experimentally: total relaxation of voltages Δσ for 180s; change in reforming voltage Δσpl in single pulses of irradiation on the slope and bottom of relaxation curves. The results obtained testify to the effectiveness of forest dislocations as surmountable obstacles for the dislocations shiding in the basis plane

  9. Effect of water-methanol mixed solvents on the ultrasonic relaxation of cadmium acetate

    International Nuclear Information System (INIS)

    Sree Rama Murthy, J.; Ramachandra Rao, B.

    1976-01-01

    Measurements of ultrasonic absorption have been made by pulse technique in 1 M solutions of cadmium acetate with water-methanol mixed solvents. Results are analysed by assuming a single relaxation mechanism. The characteristic frequency of relaxation is found to decrease with increasing composition of methanol in the solvent. It is proposed that the mechanism of relaxation may be perturbation of chemical equilibrium between complex CdAc + ions and Cd ++ , Ac - species by soundwaves. (author)

  10. Sympathetic stimulation alters left ventricular relaxation and chamber size.

    Science.gov (United States)

    Burwash, I G; Morgan, D E; Koilpillai, C J; Blackmore, G L; Johnstone, D E; Armour, J A

    1993-01-01

    Alterations in left ventricular (LV) contractility, relaxation, and chamber dimensions induced by efferent sympathetic nerve stimulation were investigated in nine anesthetized open-chest dogs in sinus rhythm. Supramaximal stimulation of acutely decentralized left stellate ganglia augmented heart rate, LV systolic pressure, and rate of LV pressure rise (maximum +dP/dt, 1,809 +/- 191 to 6,304 +/- 725 mmHg/s) and fall (maximum -dP/dt, -2,392 +/- 230 to -4,458 +/- 482 mmHg/s). It also reduced the time constant of isovolumic relaxation, tau (36.5 +/- 4.8 to 14.9 +/- 1.1 ms). Simultaneous two-dimensional echocardiography recorded reductions in end-diastolic and end-systolic LV cross-sectional chamber areas (23 and 31%, respectively), an increase in area ejection fraction (32%), and increases in end-diastolic and end-systolic wall thicknesses (14 and 13%, respectively). End-systolic and end-diastolic wall stresses were unchanged by stellate ganglion stimulation (98 +/- 12 to 95 +/- 9 dyn x 10(3)/cm2; 6.4 +/- 2.4 to 2.4 +/- 0.3 dyn x 10(3)/cm2, respectively). Atrial pacing to similar heart rates did not alter monitored indexes of contractility. Dobutamine and isoproterenol induced changes similar to those resulting from sympathetic neuronal stimulation. These data indicate that when the efferent sympathetic nervous system increases left ventricular contractility and relaxation, concomitant reductions in systolic and diastolic dimensions of that chamber occur that are associated with increasing wall thickness such that LV wall stress changes are minimized.

  11. Game-based peripheral biofeedback for stress assessment in children.

    Science.gov (United States)

    Pop-Jordanova, Nada; Gucev, Zoran

    2010-06-01

    Peripheral biofeedback is considered to be an efficient method for assessment and stress mitigation in children. The aim of the present study was to assess the levels of stress and stress mitigation in healthy school children (HSC), in children with cystic fibrosis (CF), general anxiety (GA) and attention-deficit-hyperactivity disorder (ADHD). Each investigated group (HSC, CF, GA, ADHD) consisted of 30 school-aged children from both sexes. Psychological characteristics were evaluated on Eysenck Personality Questionnaire (EPQ). The lie scale was used to determine participant honesty. Four biofeedback games using a pulls detector were applied for assessment of the stress levels as well as to evaluate ability to relax. EPQ found more psychopathological traits (P Magic blocks score was significantly different in relaxation levels between control and CF children (P game Canal was significantly different in relaxation levels between healthy controls and all other groups, but no changes in pulls, as a relaxation measure, were found during the game. The CF group had much more commissions stemming from impulsivity (t= 5.71, P < 0.01), while the GA and ADHD children had more inattention omissions (P < 0.05). Strong negative correlation between age and pulls (r= 0.49, P= 0.003) and strong negative correlation between age and omissions (r=-0.86, P= 0.029) were found among all groups analyzed. The ability to learn stress mediation is correlated with age. All three groups of children had significantly lower relaxation levels when compared to healthy controls. Relaxation was more difficult for children with GA or ADHD, and easier for children with CF.

  12. Evaluation of stress-strain for characterization of the rheological behavior of alginate and carrageenan gels

    Directory of Open Access Journals (Sweden)

    E.J. Mammarella

    2002-12-01

    Full Text Available The stress-strain of samples deformed until failure and the relaxation response after 50% deformation of the initial height under constant stress were obtained. Uniaxial compression and stress-relaxation tests enabled satisfactory differentiation of the mechanical resistance of gels with different alginate and carrageenan concentrations. Higher values for initial force at the beginning of the relaxation test were associated with higher calcium uptake by the gels. An increment of failure stress during the uniaxial compression tests for higher concentration of calcium in the gel structure was also observed. The maximum amount of cation uptake was higher than the theoretical value for saturation of all the carboxylic groups available in alginate molecules due to structural rearrangements. Stress-relaxation tests indicated that the residual stress of the gel increased with kappa-carrageenan concentration.

  13. Relaxed impact craters on Ganymede: Regional variation and high heat flows

    Science.gov (United States)

    Singer, Kelsi N.; Bland, Michael T.; Schenk, Paul M.; McKinnon, William B.

    2018-05-01

    Viscously relaxed craters provide a window into the thermal history of Ganymede, a satellite with copious geologic signs of past high heat flows. Here we present measurements of relaxed craters in four regions for which suitable imaging exists: near Anshar Sulcus, Tiamat Sulcus, northern Marius Regio, and Ganymede's south pole. We describe a technique to measure apparent depth, or depth of the crater with respect to the surrounding terrain elevation. Measured relaxation states are compared with results from finite element modeling to constrain heat flow scenarios [see companion paper: Bland et al. (2017)]. The presence of numerous, substantially relaxed craters indicates high heat flows-in excess of 30-40 mW m-2 over 2 Gyr, with many small (heat flows. Crater relaxation states are bimodal for some equatorial regions but not in the region studied near the south pole, which suggests regional variations in Ganymede's thermal history.

  14. Surface mechanical property and residual stress of peened nickel-aluminum bronze determined by in-situ X-ray diffraction

    Science.gov (United States)

    Wang, Chengxi; Jiang, Chuanhai; Zhao, Yuantao; Chen, Ming; Ji, Vincent

    2017-10-01

    As one of the most important surface strengthening method, shot peening is widely used to improve the fatigue and stress corrosion crack resistance of components by introducing the refined microstructure and compressive residual stress in the surface layer. However, the mechanical properties of this thin layer are different from the base metal and are difficult to be characterized by conventional techniques. In this work, a micro uniaxial tensile tester equipped with in-situ X-ray stress analyzer was employed to make it achievable on a nickel-aluminum bronze with shot peening treatment. According to the equivalent stress-strain relationship based on Von Mises stress criterion, the Young's modulus and yield strength of the peened layer were calculated. The results showed that the Young's modulus was the same as the bulk material, and the yield strength corresponding to the permanent plastic strain of 0.2% was increased by 21% after SP. But the fractographic analysis showed that the fracture feature of the surface layer was likely to transform from the dimple to the cleavage, indicating the improved strength might be attained at the expense of ductility. The monotonic and cyclic loading were also performed via the same combined set-up. In addition, the specific relaxation behavior of compressive residual stress was quantified by linear logarithm relationship between residual stress and cycle numbers. It was found that the compressive residual stress mainly relaxed in the first few cycles, and then reached steady state with further cycles. The relaxation rate and the stable value were chiefly depended on the stress amplitude and number of cycles. The retained residual stress kept in compressive under all given applied stress levels, suggesting that the shot peening could introduce a more stable surface layer of compressive residual stress other than the elevated strength of nickel-aluminum bronze alloy.

  15. Measurement techniques for in situ stresses around underground constructions in a deep clay formation

    Directory of Open Access Journals (Sweden)

    Li X.L.

    2010-06-01

    Full Text Available Disposal in deep underground geological formations is internationally recognized as the most viable option for the long-term management of high-level radioactive waste. In Belgium, the Boom clay formation is extensively studied in this context, in particular at the 225 m deep HADES Underground Research Facility in Mol. A cost-effective design of deep underground structures requires an accurate assessment of the in situ stresses; a good estimation of these stresses is also essential when interpreting in situ experiments regarding the hydro-mechanical behaviour of the host formation. Different measurement techniques are available to provide data on the stress evolution and other mechanical properties of the geological formation. The measurement can be direct (measurement of total pressure, or it can be an indirect technique, deriving the stress from related quantities such as strain (changes in structural members. Most total stress measurements are performed through permanently installed sensors; also once-only measurements are performed through specific methods (e.g. pressuremeter. Direct measurement of the stress state is challenging due to the complex mechanical behaviour of the clay, and the fact that the sensor installation inevitably disturbs the original stress field. This paper describes ways to deal with these problems and presents the results obtained using different techniques at HADES.

  16. Can relaxation interventions reduce anxiety in patients receiving radiotherapy? outcomes and study validity

    International Nuclear Information System (INIS)

    Elith, C.A.; Perkins, B.A.; Johnson, L.S.; Skelly, M.H.; Dempsey, S.

    2001-01-01

    This study piloted the use of three relaxation interventions in an attempt to reduce levels of anxiety in patients who are immobilised for radiotherapy treatment of head and neck cancers, as well as trying to validate the study methodology. In addition to receiving normal radiation therapy treatment, 14 patients were assigned to either a control group not receiving the relaxation intervention or one of three validated relaxation intervention techniques; music therapy, aromatherapy or guided imagery. Patients in the intervention groups underwent the relaxation technique daily for the first seven days of treatment. On days 1, 3, 5 and 7 of treatment patients were required to complete the State Anxiety Inventory survey. While caution should be taken in accepting the results due to the small numbers of patients involved in the study and the non-randomised assignment of patients within the study, the results of the study demonstrate a clinically significant reduction in anxiety levels in each of the three relaxation interventions compared to the control group. The study demonstrated good study validity due to the ease of implementation, the unambiguous results generated, and the use of already validated anxiety intersections and measurement tools. Copyright (2001) Australian Institute of Radiography

  17. Correlated and uncorrelated heart rate fluctuations during relaxing visualization

    Science.gov (United States)

    Papasimakis, N.; Pallikari, F.

    2010-05-01

    The heart rate variability (HRV) of healthy subjects practicing relaxing visualization is studied by use of three multiscale analysis techniques: the detrended fluctuation analysis (DFA), the entropy in natural time (ENT) and the average wavelet (AWC) coefficient. The scaling exponent of normal interbeat interval increments exhibits characteristics of the presence of long-range correlations. During relaxing visualization the HRV dynamics change in the sense that two new features emerge independent of each other: a respiration-induced periodicity that often dominates the HRV at short scales (sleep.

  18. Effect of organo-clay on the dielectric relaxation response of silicone rubber

    International Nuclear Information System (INIS)

    Gharavi, N; Razzaghi-Kashani, M; Golshan-Ebrahimi, N

    2010-01-01

    Dielectric elastomers are light weight, low-cost, highly deformable and fast response smart materials capable of converting electrical energy into mechanical work or vice versa. Silicone rubber is a well-known dielectric elastomer which is used as actuator, and in order to enhance the efficiency of this smart material, compounding of silicone rubber with various fillers can be carried out. The effect of organically modified montmorillonite (OMMT) nano-clay on improvement of dielectric properties, actuation stress and its relaxation response was considered in this study. OMMT was dispersed in room temperature vulcanized (RTV) silicone rubber, and a composite film was cast. Using an in-house actuation set-up, it was shown that the actuation stress for a given electric field intensity is higher for composites than that for pristine silicone rubber. Also, the time-dependent actuation response of the samples was evaluated, and it was shown that the characteristic relaxation time of the actuation stress for composites is less than for the pristine rubber as a result of OMMT addition

  19. Constrained nudged elastic band calculation of the Peierls barrier with atomic relaxations

    International Nuclear Information System (INIS)

    Gröger, R; Vitek, V

    2012-01-01

    We demonstrate that the straightforward application of the nudged elastic band (NEB) method does not determine the correct Peierls barrier of 1/2〈1 1 1〉 screw dislocations in bcc metals. Although this method guarantees that the states (images) of the system are distributed uniformly along the minimum energy path, it does not imply that the dislocation positions are distributed uniformly along this path. In fact, clustering of dislocation positions near potential minima occurs which leads to an overestimate of both the slope of the Peierls barrier and the Peierls stress. We propose a modification in which the NEB method is applied only to a small number of degrees of freedom that determine the position of the dislocation, while all other coordinates of atoms are relaxed by molecular statics as in any atomistic study. This modified NEB method with relaxations gives the Peierls barrier that increases smoothly with the dislocation position and the corresponding Peierls stress agrees well with that evaluated by the direct application of stress in the atomistic modeling of the dislocation glide. (paper)

  20. Trauma Tapping Technique: Practical First Aid for Stress and Trauma

    African Journals Online (AJOL)

    Epidemiological studies on posttraumatic stress disorder (PTSD) show a lifetime ... include re-experiencing the traumatic event, avoidant behavior for the memories of ... Methods. Trauma tapping technique (TTT) is a procedure that uses touch ...

  1. Novel techniques in stress echocardiography: a focus on the advantages and disadvantages.

    Science.gov (United States)

    Vamvakidou, Anastasia; Gurunathan, Sothinathan; Senior, Roxy

    2016-01-01

    Stress echocardiography (SE) is an established tool not only for the assessment of coronary artery disease (CAD), but also for the evaluation of valvular disease and cardiomyopathy. New techniques, namely contrast echocardiography for function and perfusion including assessment of coronary flow reserve, strain imaging, 3-dimensional echocardiography, Doppler-derived coronary flow reserve and multimodality echocardiography, have been incorporated into stress protocols for improving assessment of cardiac disease. In this review, the advantages and disadvantages of these novel SE techniques are examined in terms of feasibility, accuracy, reproducibility and applications.

  2. Stress recovery techniques for natural element method in 2-D solid mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jin Rae [Dept. of Naval Architecture and Ocean Engineering, Hongik University, Sejong (Korea, Republic of)

    2016-11-15

    This paper is concerned with the stress recovery for the natural element method in which the problem domain is discretized with Delaunay triangles and the structural behavior is approximated with Laplace interpolation functions. Basically, the global and local patch recovery techniques based on the L2-projection method are adopted. For the local patch recovery, the local element patches are defined by the supports of each Laplace interpolation function. For the comparison purpose, the local stress recovery is also performed using Lagrange-type basis functions that are used for 3- and 6-node triangular elements. The stresses that are recovered by the present global and local recovery techniques are compared each other and compared with the available analytic solution, in terms of their spatial distributions and the convergence rates. As well, the dependence of the recovered stress field on the type of test basis functions that are used forbnov-Galerkin (BG) and Petrov-Galerkin (PG) natural element methods is also investigated.

  3. Semi-convergence and relaxation parameters for a class of SIRT algorithms

    DEFF Research Database (Denmark)

    Elfving, Tommy; Nikazad, Touraj; Hansen, Per Christian

    2010-01-01

    This paper is concerned with the Simultaneous Iterative Reconstruction Technique (SIRT) class of iterative methods for solving inverse problems. Based on a careful analysis of the semi-convergence behavior of these methods, we propose two new techniques to specify the relaxation parameters...

  4. Stress relaxation by power-law creep during growth of a misfitting precipitate

    Czech Academy of Sciences Publication Activity Database

    Fischer, F. D.; Svoboda, Jiří; Antretter, T.; Kozeschnik, E.

    2016-01-01

    Roč. 96, OCT (2016), s. 74-80 ISSN 0020-7683 R&D Projects: GA ČR(CZ) GA14-24252S Institutional support: RVO:68081723 Keywords : Creep * Kinetics * Precipitates * Relaxation * Spherical solids Subject RIV: BJ - Thermodynamics Impact factor: 2.760, year: 2016

  5. Effectiveness of Cognitive Behavioral Therapy Techniques on Anxiety and Depression in Cancer Patients

    Directory of Open Access Journals (Sweden)

    Cem Soylu

    2015-04-01

    Full Text Available Depression and anxiety are generally considered to be the most important psychopathological comorbidities of cancer patients and experienced by approximately one-third of cancer patients. In the literature, studies have reported that patient characteristics such as gender, age, education level and disease characteristics such as recurrence, stage of cancer and metestazis are associated with anxiety and depression among cancer patients. Cognitive Behavioral Therapy (CBT and techniques are one of the most frequently used approach in studying the effects of psychological intervention on anxiety and depression in cancer patients and its value has been demonstrated in reducing distress with diverse cancer populations. The aim of cognitive-behavioral interventions is to change particular thoughts and behaviors and teach specific coping skills, such as cognitive restructuring, behavior modification, relaxation training and activity plan by using specific techniques. Cognitive restructing, stress management and desensitization, relaxation and activity scheduling with use of diary sheet are most used among CBT techniques. This review summarizes the diagnosis, prevalence, risk factors and treatment of depression and anxiety in patients with cancer and CBT techniques applied to these symptoms and study findings related to treatment. [JCBPR 2015; 4(1.000: 54-63

  6. [Psychological approaches in hypertension management].

    Science.gov (United States)

    Abgrall-Barbry, Gaëlle; Consoli, Silla M

    2006-06-01

    Stress factors, especially high levels of occupational stress, are associated with hypertension. Several so-called psychological techniques have been applied to hypertension: biofeedback, relaxation techniques (Schultz' autogenic training, Jacobson's progressive relaxation), transcendental meditation, and cognitive behavioral techniques for stress management. Randomized studies show that the best results come from cognitive behavioral methods, whether or not they include relaxation techniques. Other forms of psychotherapy (such as psychoanalysis) may be useful, although their benefits for blood pressure have not been tested in controlled trials. Patients should be informed about the personal benefits they may obtain from psychological treatment. Indications are hyperreactivity to stress, high levels of occupational stress, and difficulty in tolerating or complying with antihypertensive drugs.

  7. In situ and postradiation analysis of mechanical stress in Al{sub 2}O{sub 3}:Cr induced by swift heavy-ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Skuratov, V.A., E-mail: skuratov@jinr.r [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Bujnarowski, G. [Institute of Physics, Opole University, 45-052 Opole (Poland); Kovalev, Yu.S. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); O' Connell, J. [Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Havanscak, K. [Eoetvoes University, Pazmany P. setany 1/A, H-1117 Budapest (Hungary)

    2010-10-01

    Optical spectroscopy and TEM techniques have been applied to study the radiation damage and correlated mechanical stresses in Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}:Cr single crystals induced by (1-3) MeV/amu Kr, Xe and Bi ion irradiation. Mechanical stresses were evaluated in situ using a piezospectroscopic effect through the shift of the respective lines in ionoluminescence spectra. It was found that dose dependence of the stress level for Xe and Bi ions, when ionization energy loss exceeds the threshold of damage formation via electronic excitations, exhibits several alternate stages showing the build-up and relaxation of stresses. The beginning of relaxation stages is observed at fluences associated with beginning of individual ion track regions overlapping. The residual stress profiles through the ion irradiated layers were deduced from depth-resolved photostimulated spectra using laser confocal scanning microscopy set-up. It was determined that stresses are compressive in basal plane and tensile in perpendicular direction in all samples irradiated with high energy ions.

  8. Hyperpolarized nanodiamond with long spin-relaxation times

    Science.gov (United States)

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E. J.; Reilly, David J.

    2015-10-01

    The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance.

  9. Relaxed impact craters on Ganymede: Regional variation and high heat flows

    Science.gov (United States)

    Singer, Kelsi N.; Bland, Michael T.; Schenk, Paul M.; McKinnon, William B.

    2018-01-01

    Viscously relaxed craters provide a window into the thermal history of Ganymede, a satellite with copious geologic signs of past high heat flows. Here we present measurements of relaxed craters in four regions for which suitable imaging exists: near Anshar Sulcus, Tiamat Sulcus, northern Marius Regio, and Ganymede's south pole. We describe a technique to measure apparent depth, or depth of the crater with respect to the surrounding terrain elevation. Measured relaxation states are compared with results from finite element modeling to constrain heat flow scenarios [see companion paper: Bland et al. (2017)]. The presence of numerous, substantially relaxed craters indicates high heat flows—in excess of 30–40 mW m−2 over 2 Gyr, with many small (heat flows. Crater relaxation states are bimodal for some equatorial regions but not in the region studied near the south pole, which suggests regional variations in Ganymede's thermal history.

  10. Effects of Stress Inoculation Training on Anxiety, Stress, and Academic Performance among Adolescents.

    Science.gov (United States)

    Kiselica, Mark S.; And Others

    1994-01-01

    Examined effectiveness of preventive stress inoculation program for adolescents (n=48) that consisted of progressive muscle relaxation, cognitive restructuring, and assertiveness training. Compared with control subjects, trainees showed significantly greater improvements on self-report measures of trait anxiety and stress-related symptoms at…

  11. Utility Of Stress-Texture Characteristics Of Structural Materials By X-Ray Technique

    Directory of Open Access Journals (Sweden)

    Bonarski J.T.

    2015-09-01

    Full Text Available The article presents the results of residual stress analysis in selected metal-metal joints manufactured by conventional welding and explosive merging. The X-ray diffraction technique applied for advanced stress-texture measurements and data processing revealed directions and values of the principal stresses and their configuration on the surface of the examined structural elements. The obtained stress topography of the joint intersections indicates a possible path of potential cracking formed during the exploitation process and thus it becomes a very useful tool in the diagnostics of structural elements.

  12. Nondestructive evaluation of green wood using stress wave and transverse vibration techniques

    Science.gov (United States)

    Udaya B. Halabe; Gangadhar M. Bidigalu; Hota V.S. GangaRao; Robert J. Ross

    1997-01-01

    Longitudinal stress wave and transverse vibration nondestructive testing (NDT) techniques have proven to be accurate means of evaluating the quality of wood based products. Researchers have found strong relationships between stress wave and transverse vibration parameters (e.g., wave velocity and modulus of elasticity predicted using NDT measurements) with the actual...

  13. Image Relaxation Matching Based on Feature Points for DSM Generation

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shunyi; ZHANG Zuxun; ZHANG Jianqing

    2004-01-01

    In photogrammetry and remote sensing, image matching is a basic and crucial process for automatic DEM generation. In this paper we presented a image relaxation matching method based on feature points. This method can be considered as an extention of regular grid point based matching. It avoids the shortcome of grid point based matching. For example, with this method, we can avoid low or even no texture area where errors frequently appear in cross correlaton matching. In the mean while, it makes full use of some mature techniques such as probability relaxation, image pyramid and the like which have already been successfully used in grid point matching process. Application of the technique to DEM generaton in different regions proved that it is more reasonable and reliable.

  14. Residual stress measurements by X-ray and neutron diffractions in heat-treated SiCw/A2014 composites

    International Nuclear Information System (INIS)

    Ohnuki, Takahisa; Fujita, Motoo; Tomota, Yo; Ono, Masayoshi

    1998-01-01

    Residual stresses due to various heat treatments in a 22 volume percent SiC whisker/A2014 metal matrix composite (MMC) were measured by using X-ray and neutron diffractions. Micro residual stresses generated from the differences in thermal expansion coefficients of the constituents and macro residual stresses associated with different cooling rates in the outer and inner regions of an MMC specimen must be distinguished in X-ray stress measurements. The conventional sin 2 ψ method under an assumption of plane stress condition has been found not to be applicable to the present MMC, because interactions among whiskers in the X-ray penetrating area yields σ 33 where the x 3 -axis is normal with respect to specimen's surface. An average value of σ 33 can be measured by X-ray diffraction technique, but does not seem enough to evaluate micro residual stresses. It is found that neutron diffraction is the most powerful method to measure micro residual stresses in the constituents. Elastic residual strains obtained by neutron diffraction in solution treated or T6 heat treated samples show good agreements with predictions calculated by using Eshelby inclusion theory coupled with the Mori-Tanaka mean field concept, indicating that the influence of stress relaxation is negligible. In addition, internal stresses relaxations during holding at room temperature, slow cooling from solution treatment temperature, or subzero cooling are discussed. (author)

  15. Corroborative evidences of TV γ -scaling of the α-relaxation originating from the primitive relaxation/JG β relaxation

    Science.gov (United States)

    Ngai, K. L.; Paluch, M.

    2017-12-01

    Successful thermodynamic scaling of the structural alpha-relaxation time or transport coefficients of glass-forming liquids determined at various temperatures T and pressures P means the data conform to a single function of the product variable TVgamma, where V is the specific volume and gamma is a material specific constant. In the past two decades we have witnessed successful TVgamma-scaling in many molecular, polymeric, and even metallic glass-formers, and gamma is related to the slope of the repulsive part of the intermolecular potential. The advances made indicate TVgamma-scaling is an important aspect of the dynamic and thermodynamic properties of glass-formers. In this paper we show the origin of TVgamma-scaling is not from the structural alpha-relaxation time. Instead it comes from its precursor, the Johari-Goldstein beta-relaxation or the primitive relaxation of the Coupling Model and their relaxation times or tau_0 respectively. It is remarkable that all relaxation times are functions of TVgamma with the same gama, as well as the fractional exponent of the Kohlrausch correlation function of the structural alpha-relaxation. We arrive at this conclusion convincingly based on corroborative evidences from a number of experiments and molecular dynamics simulations performed on a wide variety of glass-formers and in conjunction with consistency with the predictions of the Coupling Model.

  16. Dashed line relaxing retinotomy in the management of retinal detachment with anterior proliferative vitreoretinopathy

    Directory of Open Access Journals (Sweden)

    Tsen CL

    2015-04-01

    Full Text Available Chui-Lien Tsen,1 Yu-Harn Horng,1 Shwu-Jiuan Sheu1,2 1Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; 2School of Medicine, National Yang-Ming University, Taipei, Taiwan Background: We describe the anatomical and functional outcomes of eyes that underwent a modified technique of relaxing retinotomy, dashed line relaxing retinotomy, in the management of retinal detachment with anterior proliferative vitreoretinopathy.Methods: We retrospectively reviewed 54 consecutive eyes in 52 patients who received pars plana vitrectomy with relaxing retinotomy during retinal detachment repair. Perfluorocarbon liquid (PFCL was used as a standard procedure to stabilize the retina during retinotomy to prevent slippage or inversion of the posterior flap. If PFCL was not available due to economic reasons, dashed line relaxing retinotomy was performed instead. Best-corrected visual acuity, slit-lamp biomicroscopy, intraocular pressure measurement, lens status, and fundus examination were analyzed. We excluded patients who were followed up <4 months.Results: Regarding anatomical success rates and visual outcomes, we found no significant differences between patients treated with intraoperative PFCL and those treated with dashed line relaxing retinotomy without PFCL.Conclusion: Compared to the simple and efficient PFCL-assisted relaxing retinotomy, dashed relaxing retinotomy is not the first choice when PFCL is available. Based on our results, this modified technique may offer an alternative in patients with anterior proliferative vitreoretinopathy for whom PFCL is not available. Keywords: perfluorocarbon liquid, PFCL 

  17. Relaxed metrics and indistinguishability operators: the relationship

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.

    2017-07-01

    In 1982, the notion of indistinguishability operator was introduced by E. Trillas in order to fuzzify the crisp notion of equivalence relation (/cite{Trillas}). In the study of such a class of operators, an outstanding property must be pointed out. Concretely, there exists a duality relationship between indistinguishability operators and metrics. The aforesaid relationship was deeply studied by several authors that introduced a few techniques to generate metrics from indistinguishability operators and vice-versa (see, for instance, /cite{BaetsMesiar,BaetsMesiar2}). In the last years a new generalization of the metric notion has been introduced in the literature with the purpose of developing mathematical tools for quantitative models in Computer Science and Artificial Intelligence (/cite{BKMatthews,Ma}). The aforementioned generalized metrics are known as relaxed metrics. The main target of this talk is to present a study of the duality relationship between indistinguishability operators and relaxed metrics in such a way that the aforementioned classical techniques to generate both concepts, one from the other, can be extended to the new framework. (Author)

  18. Capturing molecular multimode relaxation processes in excitable gases based on decomposition of acoustic relaxation spectra

    Science.gov (United States)

    Zhu, Ming; Liu, Tingting; Wang, Shu; Zhang, Kesheng

    2017-08-01

    Existing two-frequency reconstructive methods can only capture primary (single) molecular relaxation processes in excitable gases. In this paper, we present a reconstructive method based on the novel decomposition of frequency-dependent acoustic relaxation spectra to capture the entire molecular multimode relaxation process. This decomposition of acoustic relaxation spectra is developed from the frequency-dependent effective specific heat, indicating that a multi-relaxation process is the sum of the interior single-relaxation processes. Based on this decomposition, we can reconstruct the entire multi-relaxation process by capturing the relaxation times and relaxation strengths of N interior single-relaxation processes, using the measurements of acoustic absorption and sound speed at 2N frequencies. Experimental data for the gas mixtures CO2-N2 and CO2-O2 validate our decomposition and reconstruction approach.

  19. Giant deviation of a relaxation time from generalized Newtonian theory in discontinuous shear thickening suspensions

    Science.gov (United States)

    Maharjan, Rijan; Brown, Eric

    2017-12-01

    We investigated the transient relaxation of a discontinuous shear thickening (DST) suspension of cornstarch in water. We performed two types of relaxation experiments starting from a steady shear in a parallel-plate rheometer, followed either by stopping the top plate rotation and measuring the transient torque relaxation or by removing the torque on the plate and measuring the transient rotation of the tool. We found that at low effective weight fraction ϕeffmodel. The regime where the relaxation was inconsistent with the generalized Newtonian model was the same where we found positive normal stress during relaxation, and in some cases we found an oscillatory response, suggestive of a solidlike structure consisting of a system-spanning contact network of particles. This regime also corresponds to the same packing fraction range where we consistently found discontinuous shear thickening in rate-controlled, steady-state measurements. The relaxation time in this range scales with the inverse of the critical shear rate at the onset of shear thickening, which may correspond to a contact relaxation time for nearby particles in the structure to flow away from each other. In this range, the relaxation time was the same in both stress- and rate-controlled relaxation experiments, indicating the relaxation time is more intrinsic than an effective viscosity in this range and is needed in addition to the steady-state viscosity function to describe transient flows. The discrepancy between the measured relaxation times and the generalized Newtonian prediction was found to be as large as four orders of magnitude, and extrapolations diverge in the limit as ϕeff→ϕc as the generalized Newtonian prediction approaches 0. This quantitative discrepancy indicates the relaxation is not controlled by the dissipative terms in the constitutive relation. At the highest weight fractions, the relaxation time scales were measured to be on the order of ˜1 s. The fact that this time scale is

  20. Dynamics and relaxation in confined medium. Application to 129Xe magnetic relaxation in Vycor

    International Nuclear Information System (INIS)

    Pasquier, Virginie

    1995-01-01

    Porous media morphology and topology drive the exploration of pore space by fluid. So, analysis of transport process, associated with relaxation mechanism, allows indirect study of pore geometry. The purpose of this work is to understand better the relation between geometry and transport. This study involves two parts: a modelization and prediction step is followed by an experimental application of magnetic relaxation. Numerical simulations and analytical models allow to quantify the influence on the solid interface of the dynamical behavior of confined gas in disordered porous media (granular structure and porous network) or in common geometry (cylindrical and lamellar interfaces). The formalism of diffusion propagator is a powerful tool to quantify the influence of the pore geometry on the diffusion of confined gas. The propagator holds all dynamical information on the system; it also predicts the temporal evolution of the autocorrelation functions of the Hamiltonian describing local coupling. In an intermediate time scale, magnetic relaxation shows complex diffusional regime: the autocorrelation functions decrease in a power law with a exponent smaller than d/2 (where d is the Euclidian dimension of the system). This behavior is analogous to dynamic in low-dimensional space, but here arises from surface correlations of the porous media. The long-time behavior of the autocorrelation functions retrieves the asymptotic decrease t -d/2 . Moreover, atypical behavior is observed for the Knudsen diffusion between infinite planes. It turns out that 129 Xe NMR is a appropriate technique to characterize organization and diffusion of gas confined in Vycor. Systematic studies of temperature and pressure effect on the 129 Xe chemical shift allow to specify the Xe/solid interaction. The analysis of the relaxation measurements, thanks to the numerical development, confirms conclusions arising from the study of diffusion propagator. (author) [fr

  1. Stres, A ve B Tipi Kişilik Yapısı ve Bunlar Arasındaki İlişki Üzerine Bir Araştırma(Stress, Type A And Type B Personalıty Charasterıstıcs And A Research On The Relatıonshıp Between Stress And The Two Types

    Directory of Open Access Journals (Sweden)

    Ufuk DURNA

    2004-01-01

    Full Text Available People are exposed to the stress due to various reasons. We can classify these reasons into two groups: organizational reasons and extraorganizational reasons. Today many techniques which aim to cope with stress have been developed. Stress could be managed and controlled by physiological, psychological, behavioral, environmental techniques.Type A individuals are extremely competitive, highly work oriented, impatient and sensitive to time. Type B individuals are with less conflict with both other people and time and have a more balanced and relaxed life style.Our research attempts to explore relationship between the individual stress level and Type A and Type B personality. It has been found that, individuals who have a high stress level show mostly Type A personality characteristics.

  2. Study of residual stresses and plastic strains in expanded thin tubes

    International Nuclear Information System (INIS)

    Hassine, T.; Inglebert, G.; Point, N.

    1993-01-01

    The measurement of residual stresses with X-rays or with extending gauges, on expanded tubes, implies a longitudinal cutting up. The cutting-up provokes an elastic relaxing of the stresses and this is particularly important for thin tubes. The initial stresses and the geometry influence the variation of the stresses along the tube. The determination of the relaxed stresses is possible in certain cases with extending gauges measurements, but this determination is difficult and expensive. In order to analytically correct these stresses, some assumptions are used and verified with a finite element model. (author). 3 refs., 5 figs

  3. Relaxation effect of abacavir on rat basilar arteries.

    Directory of Open Access Journals (Sweden)

    Rachel Wai Sum Li

    Full Text Available The use of abacavir has been linked with increased cardiovascular risk in patients with human immunodeficiency virus infection; however, the mechanism involved remains unclear. We hypothesize that abacavir may impair endothelial function. In addition, based on the structural similarity between abacavir and adenosine, we propose that abacavir may affect vascular contractility through endogenous adenosine release or adenosine receptors in blood vessels.The relaxation effect of abacavir on rat basilar arteries was studied using the myograph technique. Cyclic GMP and AMP levels were measured by immunoassay. The effects of abacavir on nucleoside transporters were studied using radiolabeled nucleoside uptake experiments. Ecto-5' nucleotidase activity was determined by measuring the generation of inorganic phosphate using adenosine monophosphate as the substrate.Abacavir induced the relaxation of rat basilar arteries in a concentration-dependent manner. This relaxation was abolished when endothelium was removed. In addition, the relaxation was diminished by the nitric oxide synthase inhibitor, L-NAME, the guanylyl cyclase inhibitor, ODQ, and the protein kinase G inhibitor, KT5820. Abacavir also increased the cGMP level in rat basilar arteries. Abacavir-induced relaxation was also abolished by adenosine A2 receptor blockers. However, abacavir had no effect on ecto-5' nucleotidase and nucleoside transporters. Short-term and long-term treatment of abacavir did not affect acetylcholine-induced relaxation in rat basilar arteries.Abacavir induces acute endothelium-dependent relaxation of rat basilar arteries, probably through the activation of adenosine A2 receptors in endothelial cells, which subsequently leads to the release of nitric oxide, resulting in activation of the cyclic guanosine monophosphate/protein kinase G-dependent pathway in vascular smooth muscle cells. It is speculated that abacavir-induced cardiovascular risk may not be related to

  4. Study on the crystallization of the metal glass with the ferromagnetic resonance and transmission electron microscopy techniques

    International Nuclear Information System (INIS)

    Biasi, R.S. de; Rodrigues, R.W.D.; Pascual, R.; Pessoa, C.S.

    1983-01-01

    The crystallization of the metal glass METGLAS 2826A has been studied with the ferromagnetic resonance and electron transmission microscopy techniques. The first-derivative linewidth of the absorption curve was measured for several times of isothermal treatments at 375 0 C. After an initial decrease, attributed to stress relaxation, the linewidth increases linearly with the transformed fraction of the first crystallization phase. Comparison with the electron microscopy results shows that the ferromagnetic resonance technique is particularly useful for short and medium aging times. (Author) [pt

  5. Using optical remote sensing techniques to track the development of ozone-induced stress

    Energy Technology Data Exchange (ETDEWEB)

    Meroni, Michele, E-mail: michele.meroni@unimib.i [Remote Sensing of Environmental Dynamics Laboratory, DISAT, University of Milan-Bicocca, Piazza della Scienza, 1, 20126 Milan (Italy); Panigada, Cinzia; Rossini, Micol [Remote Sensing of Environmental Dynamics Laboratory, DISAT, University of Milan-Bicocca, Piazza della Scienza, 1, 20126 Milan (Italy); Picchi, Valentina [CNR, Plant Virology Institute, Milan Unit, Milan (Italy); Department of Tree Science, Entomology and Plant Pathology ' G. Scaramuzzi' , University of Pisa, Pisa (Italy); Cogliati, Sergio; Colombo, Roberto [Remote Sensing of Environmental Dynamics Laboratory, DISAT, University of Milan-Bicocca, Piazza della Scienza, 1, 20126 Milan (Italy)

    2009-05-15

    In this paper, a literature review about optical remote sensing (RS) of O{sub 3} stress is presented. Studies on O{sub 3}-induced effects on vegetation reflectance have been conducted since late '70s based on the analysis of optical RS data. Literature review reveals that traditional RS techniques were able to detect changes in leaf and canopy reflectance related to O{sub 3}-induced stress when visible symptoms already occurred. Only recently, advanced RS techniques using hyperspectral sensors, demonstrated the feasibility of detecting the stress in its early phase by monitoring excess energy dissipation pathways such as chlorophyll fluorescence and non-photochemical quenching (NPQ). Steady-state fluorescence (Fs), measured by exploiting the Fraunhofer line depth principle and NPQ related xanthophyll-cycle, estimated through the photochemical reflectance index (PRI) responded to O{sub 3} fumigation before visible symptoms occurred. This opens up new possibilities for the early detection of vegetation O{sub 3} stress by means of hyperspectral RS. - Possibilities for the early detection of vegetation O{sub 3} stress by means of optical remote sensing are discussed.

  6. Using optical remote sensing techniques to track the development of ozone-induced stress

    International Nuclear Information System (INIS)

    Meroni, Michele; Panigada, Cinzia; Rossini, Micol; Picchi, Valentina; Cogliati, Sergio; Colombo, Roberto

    2009-01-01

    In this paper, a literature review about optical remote sensing (RS) of O 3 stress is presented. Studies on O 3 -induced effects on vegetation reflectance have been conducted since late '70s based on the analysis of optical RS data. Literature review reveals that traditional RS techniques were able to detect changes in leaf and canopy reflectance related to O 3 -induced stress when visible symptoms already occurred. Only recently, advanced RS techniques using hyperspectral sensors, demonstrated the feasibility of detecting the stress in its early phase by monitoring excess energy dissipation pathways such as chlorophyll fluorescence and non-photochemical quenching (NPQ). Steady-state fluorescence (Fs), measured by exploiting the Fraunhofer line depth principle and NPQ related xanthophyll-cycle, estimated through the photochemical reflectance index (PRI) responded to O 3 fumigation before visible symptoms occurred. This opens up new possibilities for the early detection of vegetation O 3 stress by means of hyperspectral RS. - Possibilities for the early detection of vegetation O 3 stress by means of optical remote sensing are discussed.

  7. Stress-based topology optimization of concrete structures with prestressing reinforcements

    Science.gov (United States)

    Luo, Yangjun; Wang, Michael Yu; Deng, Zichen

    2013-11-01

    Following the extended two-material density penalization scheme, a stress-based topology optimization method for the layout design of prestressed concrete structures is proposed. The Drucker-Prager yield criterion is used to predict the asymmetrical strength failure of concrete. The prestress is considered by making a reasonable assumption on the prestressing orientation in each element and adding an additional load vector to the structural equilibrium function. The proposed optimization model is thus formulated as to minimize the reinforcement material volume under Drucker-Prager yield constraints on elemental concrete local stresses. In order to give a reasonable definition of concrete local stress and prevent the stress singularity phenomenon, the local stress interpolation function and the ɛ -relaxation technique are adopted. The topology optimization problem is solved using the method of moving asymptotes combined with an active set strategy. Numerical examples are given to show the efficiency of the proposed optimization method in the layout design of prestressed concrete structures.

  8. Techniques for Achieving Zero Stress in Thin Films of Iridium, Chromium, and Nickel

    Science.gov (United States)

    Broadway, David M.; O'Dell, Stephen L.; Ramsey, Brian D.; Weimer, Jeffrey

    2015-01-01

    We examine techniques for achieving zero intrinsic stress in thin films of iridium, chromium, and nickel deposited by magnetron sputter deposition. The intrinsic stress is further correlated to the microstructural features and physical properties such as surface roughness and optical density at a scale appropriate to soft X-ray wavelengths. The examination of the stress in these materials is motivated by efforts to advance the optical performance of light-weight X-ray space telescopes into the regime of sub-arcsecond resolution through various deposition techniques that rely on control of the film stress to values within 10-100 MPa. A characteristic feature of the intrinsic stress behavior in chromium and nickel is their sensitivity to the magnitude and sign of the intrinsic stress with argon gas pressure and deposition rate, including the existence of a critical argon process pressure that results in zero film stress which scales linearly with the atomic mass of the sputtered species. While the effect of stress reversal with argon pressure has been previously reported by Hoffman and others for nickel and chromium, we report this effect for iridium. In addition to stress reversal, we identify zero stress in the optical functioning iridium layer shortly after island coalescence for low process pressures at a film thickness of approximately 35nm. The measurement of the low values of stress during deposition was achieved with the aid of a sensitive in-situ instrument capable of a minimum detectable level of stress, assuming a 35nm thick film, in the range of 0.40-6.0 MPa for oriented crystalline silicon substrate thicknesses of 70-280 microns, respectively.

  9. Effects of surface relaxation and reconstruction on the vibration characteristics of nanobeams

    International Nuclear Information System (INIS)

    Zhang, Wen-Ming; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang; Yang, Bin

    2016-01-01

    Surface effects on the free vibration characteristics of nanobeams are investigated by a modified continuum model. In this paper, the relationship between the parameters of the modified continuum model of surface effects including surface elasticity, surface density, and residual surface stresses, and the parameters of the atomistic lattice model such as surface relaxation and reconstruction in nanobeams is characterized by an atomistic lattice model. The surface effects are incorporated into nanobeams to develop a modified continuum model depicting the free vibrational behavior of nanobeams. The model is validated with the experimental data of an effective size-dependent Young’s modulus and the previous theoretical results. The results demonstrate that both surface elasticity and surface density vary exponentially with surface layer thickness. Therefore, surface elasticity and density can be affected by surface relaxation and residual surface stresses can be induced by surface reconstruction. The natural frequencies of doubly clamped nanobeams can be affected by the dimensions of the nanobeams, surface layer thickness, and residual surface stress. This work may be helpful for understanding surface effects and their influence on the vibrational behavior of nanobeams. (paper)

  10. Cognitive–Behavioral Therapy and Hypnotic Relaxation to Treat Sleep Problems in an Adolescent With Diabetes

    Science.gov (United States)

    Perfect, Michelle M.; Elkins, Gary R.

    2014-01-01

    Inadequate sleep among adolescents frequently contributes to obesity and reduced academic performance, along with symptoms of anxiety, depression, fatigue, and attention deficits. The etiological bases of sleep quality has been associated with both stress and sleep habits. These problems tend to be especially important for adolescents with diabetes as the effects of poor sleep complicate health outcomes. This case example concerns a 14-year-old adolescent girl with a history of type I diabetes and stress-related sleep difficulties. Treatment included cognitive–behavioral methods and hypnotic relaxation therapy. Results of this case example and other controlled research suggest that hypnotic relaxation therapy is well accepted, results in good compliance, and serves as a useful adjunctive to cognitive–behavioral intervention for sleep problems. PMID:20865769

  11. Creep relaxation of fuel pin bending and ovalling stresses

    International Nuclear Information System (INIS)

    Chan, D.P.; Jackson, R.J.

    1979-06-01

    Analytical methods for calculating fuel pin cladding bending and ovalling stresses due to pin bundle-duct mechanical interaction taking into account nonlinear creep are presented. Calculated results are in close agreement with finite element results by MARC-CDC program. The methods are used to investigate the effect of creep on the FTR fuel cladding bending and ovalling stresses. It is concluded that the cladding of 316 SS 20% CW and reference design has high creep rates in the FTR core region to keep the bending and ovalling stresses to low levels

  12. Semidefinite Relaxation-Based Optimization of Multiple-Input Wireless Power Transfer Systems

    Science.gov (United States)

    Lang, Hans-Dieter; Sarris, Costas D.

    2017-11-01

    An optimization procedure for multi-transmitter (MISO) wireless power transfer (WPT) systems based on tight semidefinite relaxation (SDR) is presented. This method ensures physical realizability of MISO WPT systems designed via convex optimization -- a robust, semi-analytical and intuitive route to optimizing such systems. To that end, the nonconvex constraints requiring that power is fed into rather than drawn from the system via all transmitter ports are incorporated in a convex semidefinite relaxation, which is efficiently and reliably solvable by dedicated algorithms. A test of the solution then confirms that this modified problem is equivalent (tight relaxation) to the original (nonconvex) one and that the true global optimum has been found. This is a clear advantage over global optimization methods (e.g. genetic algorithms), where convergence to the true global optimum cannot be ensured or tested. Discussions of numerical results yielded by both the closed-form expressions and the refined technique illustrate the importance and practicability of the new method. It, is shown that this technique offers a rigorous optimization framework for a broad range of current and emerging WPT applications.

  13. Atmospheric Wind Relaxations and the Oceanic Response in the California Current Large Marine Ecosystem

    Science.gov (United States)

    Fewings, M. R.; Dorman, C. E.; Washburn, L.; Liu, W.

    2010-12-01

    On the West Coast of North America in summer, episodic relaxation of the upwelling-favorable winds causes warm water to propagate northward from southern to central California, against the prevailing currents [Harms and Winant 1998, Winant et al. 2003, Melton et al. 2009]. Similar wind relaxations are an important characteristic of coastal upwelling ecosystems worldwide. Although these wind relaxations have an important influence on coastal ocean dynamics, no description exists of the regional atmospheric patterns that lead to wind relaxations in southern California, or of the regional ocean response. We use QuikSCAT wind stress, North American Regional Reanalysis atmospheric pressure products, water temperature and velocity from coastal ocean moorings, surface ocean currents from high-frequency radars, and MODIS satellite sea-surface temperature and ocean color images to analyze wind relaxation events and the ocean response. We identify the events based on an empirical index calculated from NDBC buoy winds [Melton et al. 2009]. We describe the regional evolution of the atmosphere from the Gulf of Alaska to Baja California over the few days leading up to wind relaxations, and the coastal ocean temperature, color, and current response off southern and central California. We analyze ~100 wind relaxation events in June-September during the QuikSCAT mission, 1999-2009. Our results indicate south-central California wind relaxations in summer are tied to mid-level atmospheric low-pressure systems that form in the Gulf of Alaska and propagate southeastward over 3-5 days. As the low-pressure systems reach southern California, the atmospheric pressure gradient along the coast weakens, causing the surface wind stress to relax to near zero. The weak wind signal appears first at San Diego and propagates northward. QuikSCAT data indicate the relaxed winds extend over the entire Southern California Bight and up to 200 km offshore of central California. Atmospheric dynamics in

  14. Treating children traumatized by war and Tsunami: A comparison between exposure therapy and meditation-relaxation in North-East Sri Lanka

    Directory of Open Access Journals (Sweden)

    Ruf Martina

    2009-05-01

    Full Text Available Abstract Background The North-Eastern part of Sri Lanka had already been affected by civil war when the 2004 Tsunami wave hit the region, leading to high rates of posttraumatic stress disorder (PTSD in children. In the acute aftermath of the Tsunami we tested the efficacy of two pragmatic short-term interventions when applied by trained local counselors. Methods A randomized treatment comparison was implemented in a refugee camp in a severely affected community. 31 children who presented with a preliminary diagnosis of PTSD were randomly assigned either to six sessions Narrative Exposure Therapy for children (KIDNET or six sessions of meditation-relaxation (MED-RELAX. Outcome measures included severity of PTSD symptoms, level of functioning and physical health. Results In both treatment conditions, PTSD symptoms and impairment in functioning were significantly reduced at one month post-test and remained stable over time. At 6 months follow-up, recovery rates were 81% for the children in the KIDNET group and 71% for those in the MED-RELAX group. There was no significant difference between the two therapy groups in any outcome measure. Conclusion As recovery rates in the treatment groups exceeded the expected rates of natural recovery, the study provides preliminary evidence for the effectiveness of NET as well as meditation-relaxation techniques when carried out by trained local counselors for the treatment of PTSD in children in the direct aftermath of mass disasters. Trial registration ClinicalTrials.gov Identifier:NCT00820391

  15. An approach to the magnetic relaxation processes in lithium ferrites

    International Nuclear Information System (INIS)

    Torres, C.; Gonzalez Arias, A.; Hernandez-Gomez, P.; Francisco, C. de; Alejos, O.; Munoz, J.M.; Zazo, M.

    2007-01-01

    The relaxation of the initial magnetic permeability has been measured in polycrystalline Li x Fe 3- x O 4 samples, with x ranging from 0 to 0.5, by means of the magnetic disaccommodation (DA) technique. We have found that there is no abrupt transition for a given composition, but there is a progressive modification of the characteristic relaxation processes of magnetite. These results have been interpreted on the basis of the increasing amount of Li ions in the spinel lattice and hence, the resulting modifications on their proximities

  16. Adaptive algebraic reconstruction technique

    International Nuclear Information System (INIS)

    Lu Wenkai; Yin Fangfang

    2004-01-01

    Algebraic reconstruction techniques (ART) are iterative procedures for reconstructing objects from their projections. It is proven that ART can be computationally efficient by carefully arranging the order in which the collected data are accessed during the reconstruction procedure and adaptively adjusting the relaxation parameters. In this paper, an adaptive algebraic reconstruction technique (AART), which adopts the same projection access scheme in multilevel scheme algebraic reconstruction technique (MLS-ART), is proposed. By introducing adaptive adjustment of the relaxation parameters during the reconstruction procedure, one-iteration AART can produce reconstructions with better quality, in comparison with one-iteration MLS-ART. Furthermore, AART outperforms MLS-ART with improved computational efficiency

  17. Nonpolar ZnO film growth and mechanism for anisotropic in-plane strain relaxation

    International Nuclear Information System (INIS)

    Pant, P.; Budai, J.D.; Narayan, J.

    2010-01-01

    Using high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction, we investigated the strain relaxation mechanisms for nonpolar (1 1 -2 0) a-plane ZnO epitaxy on (1 -1 0 2) r-plane sapphire, where the in-plane misfit ranges from -1.5% for the [0 0 0 1]ZnO-parallel [1 -1 0 -1]sapphire to -18.3% for the [-1 1 0 0]ZnO-parallel [-1 -1 2 0]sapphire direction. For the large misfit [-1 1 0 0]ZnO direction the misfit strains are fully relaxed at the growth temperature, and only thermal misfit and defect strains, which cannot be relaxed fully by slip dislocations, remain on cooling. For the small misfit direction, lattice misfit is not fully relaxed at the growth temperature. As a result, additive unrelaxed lattice and thermal misfit and defect strains contribute to the measured strain. Our X-ray diffraction measurements of lattice parameters show that the anisotropic in-plane biaxial strain leads to a distortion of the hexagonal symmetry of the ZnO basal plane. Based on the anisotropic strain relaxation observed along the orthogonal in-plane [-1 1 0 0] and [0 0 0 1]ZnO stress directions and our HRTEM investigations of the interface, we show that the plastic relaxation occurring in the small misfit direction [0 0 0 1]ZnO by dislocation nucleation is incomplete. These results are consistent with the domain-matching paradigm of a complete strain relaxation for large misfits and a difficulty in relaxing the film strain for small misfits.

  18. Analysis of Helical Stainless Steel 08X18H10 Spring Relaxation at High Temperature

    Directory of Open Access Journals (Sweden)

    H. Sun

    2015-01-01

    Full Text Available The object of this paper is to study a cylindrical helical spring to be applied at high temperatures. The aim of this work is to study the regularity of relaxation stresses in spring and evaluate its long-term stresses.The work allowed us to establish relaxation dependencies of springs under high temperatures. According to the results of creep tests at 600°, the theoretical equation of steel creep was defined concretely. It was then used for the analysis at 350°.The paper presents a created finite element model of spring relaxation. It is the stainless steel 08Х18Н10 spring to be used at the temperature of 350°.In this paper describes the basic theory of creep, considers the relationship between the creep speed and parameters. The changing compression force of springs is analyzed under fixed compression amount.The paper also analyzes the changing length of springs in the free state after various stages of high-temperature relaxation test. It determines the results of compression forces and free length under different amount of compression.The analysis to compare the theoretical calculation of the compression forces with the experimental results is conducted. Computer modeling is created in Abaqus for calculation. Spring relaxation experiments are carried out under fixed compression amount and at the temperature of 350°. It is shown that the simulation results, which are carried out in Abaqus coincide with experimental results. The study shows that it is possible to use the creep equation parameters, based on the experimental results at high temperatures, to predict creep and relaxation properties of springs, which work at less high temperatures. The work results can be used as a basis in designing the springs working at high temperatures.

  19. The interpretation of stress reductions in creep-fatigue cycles of 316 stainless steel

    International Nuclear Information System (INIS)

    Hales, R.

    1986-11-01

    A statistical analysis of stress-drop results obtained on a number of different casts of 316 stainless steel in the temperature range 550 0 C to 700 0 C is presented. In all cases the results were obtained from strain controlled fatigue tests. The equations used to describe stress relaxation here are derived from forward creep equations which describe the dependence of creep rate on time, stress and temperature. Although there is no clear correspondence between creep and stress relaxation, creep equations offer an attractive starting point. Not all the models considered exhibited the expected response to changes in temperature. A revised analysis was carried out on the assumption that stress relaxation is thermally activated according to the Arrhenius equation. Two models were found to fit the data equally well and it was not possible to choose which of these relationships is the more appropriate to describe stress relaxation of cyclically conditioned material. On the basis of the evidence both are acceptable and may be used to calculate the creep damage according to the various high temperature design codes. Whichever gives the more conservative assessment should be used until a more mechanistically based judgement can be reached. (author)

  20. Mechanical relaxation in glasses

    International Nuclear Information System (INIS)

    Hiki, Y.

    2004-01-01

    The basic properties of glasses and the characteristics of mechanical relaxation in glasses were briefly reviewed, and then our studies concerned were presented. Experimental methods adopted were viscosity, internal friction, ultrasonic attenuation, and Brillouin scattering measurements. The specimens used were several kinds of inorganic, organic, and metallic glasses. The measurements were mainly carried out from the room temperature up to the glass transition temperature, and the relaxation time was determined as a function of temperature. The 'double relaxation' composed of two Arrhenius-type relaxations was observed in many materials. In both relaxations, the 'compensation effect' showing a correlation of the pre-exponential factor and the activation energy was observed. These results were explained by considering the 'complex relaxation' due to cooperative motions of atoms or group of atoms. Values of activation energy near the glass transition determined by the various experimental methods were compared with each other

  1. Residual stress analysis in linear friction welded in-service Inconel 718 superalloy via neutron diffraction and contour method approaches

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M. [University of British Columbia – Okanagan, School of Engineering, 3333 University Way, Kelowna, Canada V1V 1V7 (Canada); Levesque, J.-B. [Institut de recherche d' Hydro-Québec (IREQ), 1800 Lionel-Boulet Blvd., Varennes, Canada J3X 1S1 (Canada); Bichler, L., E-mail: lukas.bichler@ubc.ca [University of British Columbia – Okanagan, School of Engineering, 3333 University Way, Kelowna, Canada V1V 1V7 (Canada); Sediako, D. [Canadian Nuclear Laboratories, Building 459, Station 18, Chalk River, Canada K0J 1J0 (Canada); Gholipour, J.; Wanjara, P. [National Research Council of Canada, Aerospace 5145 Decelles Ave., Montreal, Canada H3T 2B2 (Canada)

    2017-04-13

    In this study, an analysis of elastic residual stress in Inconel{sup ®} 718 (IN 718) linear friction welds (LFWs) was carried out. In particular, the suitability of LFW for manufacturing and repair of aero engine components was emulated by joining virgin and in-service (extracted from a turbine disk) materials. The evolution in the residual strains and stresses in the heat-affected zone (HAZ), thermomechanically affected zone (TMAZ) and dynamically recrystallized zone (DRX) of the weld was characterized using the neutron diffraction and contour methods. The results provided insight into diverse challenges in quantitative analysis of residual stresses in welded IN 718 using diffraction techniques. Specifically, judicious selection of the beam width, height and stress-free lattice spacing were seen to be crucial to minimize measurement error and increase accuracy. Further, the contour method – a destructive technique relying on capturing the stress relaxation after electrical discharge machining – was used to characterize the residual stress distribution on two-dimensional plane sections of the welds. Both techniques suggested an increasing magnitude of residual stress originating from the base metal that reached a peak at the weld interface. Both methods indicated that the peak magnitude of residual stresses were below the yield stress of IN 718.

  2. Stress-relieving effects of short-term balneotherapy - a randomized controlled pilot study in healthy adults.

    Science.gov (United States)

    Matzer, Franziska; Nagele, Eva; Bahadori, Babak; Dam, Karl; Fazekas, Christian

    2014-01-01

    Stress-relieving effects of balneotherapy compared to progressive muscle relaxation (PMR) and to resting were investigated by measuring subjective relaxation and salivary cortisol. It was also examined whether participants with a high versus low stress level would have a different relaxation response. A sample of healthy volunteers was randomized to balneotherapy, PMR, or a resting control group, each intervention lasting for 25 min. Pre- and post-intervention salivary cortisol samples were collected, and participants rated their status of relaxation on a quantitative scale. In addition, 3 questionnaires were applied to detect participants' stress level and bodily complaints. 49 healthy participants were recruited (65.3% female). In a pre-post comparison, salivary cortisol decreased (F = 23.53, p balneotherapy group rated themselves as more relaxed after the intervention as compared to the other groups (F = 5.22, p balneotherapy seems to be more beneficial with regard to subjective relaxation effects and similarly beneficial with regard to a decrease in salivary cortisol. © 2014 S. Karger GmbH, Freiburg.

  3. A Proposal for Stress Management Using Serious Games Associated to Virtual and Augmented Reality

    Directory of Open Access Journals (Sweden)

    Renato de Aquino Lopes

    2014-06-01

    Full Text Available Occupational stress is a serious problem that affects a large number of workers. Regardless financial or social status, age and profession, a person exposed to stress may develop health problems that can interfere with work and his quality of life. Thus, due to absenteeism and reduced productivity, companies lose money when its employees are stressed. In this scenario, it is important that employees use strategies to deal with such drawback. Coping with occupational stress can be basically achieved, in two ways: problem-focused or emotion-focused. Literature shows that strategies which take the needs of individual workers into account have a greater chance of success. On the other hand, computer games, mainly those based upon Virtual and Augmented Reality (VR/AR techniques, offer players some experiences like: relaxation, sense of control, challenges, learning opportunities and immersion. These characteristics can contribute to the control process of occupational stress. The objective of this paper is to propose a new methodology for occupational stress, focused on emotion. In so doing, we use Serious Games and VR/AR techniques, considering particular needs of the employee.

  4. Stress and its Implications in Periodontics : A Review

    Directory of Open Access Journals (Sweden)

    Rizwan M Sanadi

    2005-01-01

    Full Text Available The possible role of mental and psychosocial entities in oral diseases has become the subject of several studies. A study suggested that different bacterial levels were found under stress and relaxation conditions, which supports the concept that stress may contribute to dent caries and relaxation may have an anticaries effect. The relationship between increased work stress and poor oral health status was also reported. In many cases, no causative factor can be found to explain sudden episodes of tissue breakdown. Stressful life events are often presumed to be associated with disease progression, although it has been difficult to prove any causative relationship. Hence it is important to recognize patients who are in stress and to be able to advise patients about the possible effects of stress on general as well as oral health of the patient.

  5. Use of structured personality survey techniques to indicate operator response to stressful situations

    International Nuclear Information System (INIS)

    Waller, M.A.

    1990-01-01

    Under given circumstances, a person will tend to operate in one of four dominant orientations: (1) to perform tasks; (2) to achieve consensus; (3) to achieve understanding, or (4) to maintain structure. Historically, personality survey techniques, such as the Myers-Briggs type indicator, have been used to determine these tendencies. While these techniques can accurately reflect a person's orientation under normal social situations, under different sets of conditions, the same person may exhibit other tendencies, displaying a similar or entirely different orientation. While most do not exhibit extreme tendencies or changes of orientation, the shift in personality from normal to stressful conditions can be rather dramatic, depending on the individual. Structured personality survey techniques have been used to indicate operator response to stressful situations. These techniques have been extended to indicate the balance between orientations that the control room team has through the various levels of cognizance

  6. Nuclear magnetic relaxation by the dipolar EMOR mechanism: Multi-spin systems

    Science.gov (United States)

    Chang, Zhiwei; Halle, Bertil

    2017-08-01

    In aqueous systems with immobilized macromolecules, including biological tissues, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation, we have previously developed a rigorous EMOR relaxation theory for dipole-coupled two-spin and three-spin systems. Here, we extend the stochastic Liouville theory to four-spin systems and use these exact results as a guide for constructing an approximate multi-spin theory, valid for spin systems of arbitrary size. This so-called generalized stochastic Redfield equation (GSRE) theory includes the effects of longitudinal-transverse cross-mode relaxation, which gives rise to an inverted step in the relaxation dispersion profile, and coherent spin mode transfer among solid-like spins, which may be regarded as generalized spin diffusion. The GSRE theory is compared to an existing theory, based on the extended Solomon equations, which does not incorporate these phenomena. Relaxation dispersion profiles are computed from the GSRE theory for systems of up to 16 protons, taken from protein crystal structures. These profiles span the range from the motional narrowing limit, where the coherent mode transfer plays a major role, to the ultra-slow motion limit, where the zero-field rate is closely related to the strong-collision limit of the dipolar relaxation rate. Although a quantitative analysis of experimental data is beyond the scope of this work, it is clear from the magnitude of the predicted relaxation rate and the shape of the relaxation dispersion profile that the dipolar EMOR mechanism is the principal cause of water-1H low-field longitudinal relaxation in aqueous systems of immobilized macromolecules, including soft biological tissues. The relaxation theory developed here therefore provides a basis for molecular-level interpretation of endogenous soft

  7. Thermal residual stresses in amorphous thermoplastic polymers

    Science.gov (United States)

    Grassia, Luigi; D'Amore, Alberto

    2010-06-01

    An attempt to calculate the internal stresses in a cylindrically shaped polycarbonate (LEXAN-GE) component, subjected to an arbitrary cooling rate, will be described. The differential volume relaxation arising as a result of the different thermal history suffered by each body point was considered as the primary source of stresses build up [1-3]. A numerical routine was developed accounting for the simultaneous stress and structural relaxation processes and implemented within an Ansys® environment. The volume relaxation kinetics was modeled by coupling the KAHR (Kovacs, Aklonis, Hutchinson, Ramos) phenomenological theory [4] with the linear viscoelastic theory [5-7]. The numerical algorithm translates the specific volume theoretical predictions at each body point as applied non-mechanical loads acting on the component. The viscoelastic functions were obtained from two simple experimental data, namely the linear viscoelastic response in shear and the PVT (pressure volume temperature) behavior. The dimensionless bulk compliance was extracted from PVT data since it coincides with the memory function appearing in the KAHR phenomenological theory [7]. It is showed that the residual stress scales linearly with the logarithm of the Biot's number.

  8. Classification of stresses in pressure components using the GLOSS diagram

    International Nuclear Information System (INIS)

    Seshadri, R.

    1990-01-01

    Discontinuity stresses in pressure components are classified as secondary stresses at temperatures below the creep range. The stresses are considered to be deformation-controlled in that shakedown occurs after several load cycles. There are situations, however, where the discontinuity stresses may not be deformation-controlled, and follow-up action might occur. A conservative approach would be to classify the resulting mixed-mode response as a load-controlled situation. The subsequent design could then be unduly wasteful. A simple method for evaluating the mixed-mode response is a technique known as the generalized local stress-strain (GLOSS) analysis. The underlying theory relates the follow-up process to the deformation-controlled uniaxial relaxation. The slope of the mixed-mode response trajectory on the GLOSS diagram determines the relative proportions of deformation and load-controlled actions. In this paper, use is made of the GLOSS diagram to classify stresses or damage due to follow-up in pressure components for temperature below the creep range and elevated temperatures. Some ASME code related perspectives are also discussed in the paper

  9. Resveratrol Protects and Restores Endothelium-Dependent Relaxation in Hypercholesterolemic Rabbit Corpus Cavernosum.

    Science.gov (United States)

    Murat, Nergiz; Korhan, Peyda; Kizer, Onur; Evcim, Sinem; Kefi, Aykut; Demir, Ömer; Gidener, Sedef; Atabey, Neşe; Esen, Ahmet Adil

    2016-01-01

    Oxidative stress dependent-decrease in nitric oxide (NO) bioavailability plays an integral role in hypercholesterolemia-induced erectile dysfunction (ED). Resveratrol has been demonstrated to exert beneficial effects against oxidative stress and improve NO bioavailability. The protective and restorative potentials of resveratrol on endothelium-dependent relaxations were evaluated in hypercholesterolemic rabbit corpus cavernosum (CC). Hypercholesterolemia was induced by administering 2% cholesterol diet (CD) (w/w) to the rabbits for 6 weeks. Two different protocols were applied to test the effects of resveratrol on hypercholesterolemia-induced ED. In Protocol-1 (P1), resveratrol was administrated to the rabbits simultaneously with CD in order to evaluate the protective effect, and for Protocol-2 (P2), resveratrol was administrated for 6 weeks after termination of CD in order to evaluate the restorative effect. Endothelium-dependent relaxations of CC were evaluated by using organ bath studies. In order to elucidate the possible molecular mechanisms, we measured endothelial NO synthase (eNOS) and phosphovasodilator-stimulated phosphoprotein (VASP) expressions and activations, NADPH oxidase, superoxide dismutase (SOD), and catalase (CAT) and glutathione peroxidase (GPx) activity in cavernosal tissues obtained at the end of the study. Resveratrol showed an improvement in the endothelium-dependent relaxation responses in vitro. We demonstrated significantly increased activatory-phosphorylation (p[S1177]-eNOS) and activated phosphovasodilator-stimulated phosphoprotein (phospho-VASP) levels, but reduced phosphorylation (p[T495]-eNOS) of eNOS and NADPH oxidase activity in the resveratrol-administered HC animals compared with hypercholesterolemic control rabbits in the P1. In the P2, resveratrol exhibited an improvement in endothelium-dependent relaxation responses and more pronounced effects on eNOS activation. Resveratrol administration, either simultaneously with HC diet

  10. Resonant tunneling measurements of size-induced strain relaxation

    Science.gov (United States)

    Akyuz, Can Deniz

    Lattice mismatch strain available in such semiconductor heterostructures as Si/SiGe or GaAs/AlGaAs can be employed to alter the electronic and optoelectronic properties of semiconductor structures and devices. When deep submicron structures are fabricated from strained material, strained layers relax by sidewall expansion giving rise to size- and geometry-dependent strain gradients throughout the structure. This thesis describes a novel experimental technique to probe the size-induced strain relaxation by studying the tunneling current characteristics of strained p-type Si/SiGe resonant tunneling diodes. Our current-voltage measurements on submicron strained p-Si/SiGe double- and triple-barrier resonant tunneling structures as a function of device diameter, D, provide experimental access to both the average strain relaxation (which leads to relative shifts in the tunneling current peak positions) and strain gradients (which give rise to a fine structure in the current peaks due to inhomogeneous strain-induced lateral quantization). We find that strain relaxation is significant, with a large fraction of the strain energy relaxed on average in D ≤ 0.25 m m devices. Further, the in-plane potentials that arise from inhomogeneous strain gradients are large. In the D ˜ 0.2 m m devices, the corresponding lateral potentials are approximately parabolic exceeding ˜ 25 meV near the perimeter. These potentials create discrete hole states in double-barrier structures (single well), and coupled hole states in triple-barrier structures (two wells). Our results are in excellent agreement with finite-element strain calculations in which the strained layers are permitted to relax to a state of minimum energy by sidewall expansion. Size-induced strain relaxation will undoubtedly become a serious technological issue once strained devices are scaled down to the deep submicron regime. Interestingly, our calculations predict and our measurements are consistent with the appearance of

  11. Breathing and Relaxation

    Science.gov (United States)

    ... Find a Doctor Relaxation is the absence of tension in muscle groups and a minimum or absence ... Drill Meditation Progressive Muscle Relaxation Minimizing Shortness of Breath Visualization This information has been approved by Shelby ...

  12. Neutron depolarization study of internal stresses in amorphous Fe40Ni40B20

    International Nuclear Information System (INIS)

    de Jong, M.; Sietsma, J.; Rekveldt, M.T.; van den Beukel, A.

    1997-01-01

    The magnetic domain structure of amorphous ferromagnets with nonzero magnetostriction is mainly determined by the internal stress state because of the magneto-elastic coupling. The stress and field dependence of the domain structure contains important information on the internal stresses in the material. The three-dimensional neutron depolarization technique has been used to study the stress- and field-dependence of the bulk domain structures in both as-quenched and annealed ribbons of the metallic glass Fe 40 Ni 40 B 20 . A three-layer domain structure model corresponding to compressive and tensile internal stresses is presented to explain the measured data. The influence of surface roughness on the interpretation of neutron depolarization measurements in amorphous ribbons is discussed. Finally, the internal stress relaxation due to the annealing is explained in terms of the viscous behaviour of the glass. copyright 1997 American Institute of Physics

  13. Hydrodynamic relaxations in dissipative particle dynamics

    Science.gov (United States)

    Hansen, J. S.; Greenfield, Michael L.; Dyre, Jeppe C.

    2018-01-01

    This paper studies the dynamics of relaxation phenomena in the standard dissipative particle dynamics (DPD) model [R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423 (1997)]. Using fluctuating hydrodynamics as the framework of the investigation, we focus on the collective transverse and longitudinal dynamics. It is shown that classical hydrodynamic theory predicts the transverse dynamics at relatively low temperatures very well when compared to simulation data; however, the theory predictions are, on the same length scale, less accurate for higher temperatures. The agreement with hydrodynamics depends on the definition of the viscosity, and here we find that the transverse dynamics are independent of the dissipative and random shear force contributions to the stress. For high temperatures, the spectrum for the longitudinal dynamics is dominated by the Brillouin peak for large length scales and the relaxation is therefore governed by sound wave propagation and is athermal. This contrasts the results at lower temperatures and small length scale, where the thermal process is clearly present in the spectra. The DPD model, at least qualitatively, re-captures the underlying hydrodynamical mechanisms, and quantitative agreement is excellent at intermediate temperatures for the transverse dynamics.

  14. Numerical analysis of drilling hole work-hardening effects in hole-drilling residual stress measurement

    Science.gov (United States)

    Li, H.; Liu, Y. H.

    2008-11-01

    The hole-drilling strain gage method is an effective semi-destructive technique for determining residual stresses in the component. As a mechanical technique, a work-hardening layer will be formed on the surface of the hole after drilling, and affect the strain relaxation. By increasing Young's modulus of the material near the hole, the work-hardening layer is simplified as a heterogeneous annulus. As an example, two finite rectangular plates submitted to different initial stresses are treated, and the relieved strains are measured by finite element simulation. The accuracy of the measurement is estimated by comparing the simulated residual stresses with the given initial ones. The results are shown for various hardness of work-hardening layer. The influence of the relative position of the gages compared with the thickness of the work-hardening layer, and the effect of the ratio of hole diameter to work-hardening layer thickness are analyzed as well.

  15. Application of indirect stress measurement techniques (non strain gauge based technology) to quantify stress environments in mines

    CSIR Research Space (South Africa)

    Stacey, TR

    2002-03-01

    Full Text Available Reliable values of in situ stress are essential for the valid modelling of mine layouts. Available non-strain gauge methods are reviewed as potential practical techniques for South African mines. From this review it is concluded that the most...

  16. Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures [Thermo-mechanical modeling of laser-induced structural relaxation and deformation of SiO2 glass

    Energy Technology Data Exchange (ETDEWEB)

    Vignes, Ryan M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Soules, Thomas F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Stolken, James S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Settgast, Randolph R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Elhadj, Selim [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Matthews, Manyalibo J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Mauro, J.

    2012-12-17

    In a fully coupled thermomechanical model of the nanoscale deformation in amorphous SiO2 due to laser heating is presented. Direct measurement of the transient, nonuniform temperature profiles was used to first validate a nonlinear thermal transport model. Densification due to structural relaxation above the glass transition point was modeled using the Tool-Narayanaswamy (TN) formulation for the evolution of structural relaxation times and fictive temperature. TN relaxation parameters were derived from spatially resolved confocal Raman scattering measurements of Si–O–Si stretching mode frequencies. These thermal and microstructural data were used to simulate fictive temperatures which are shown to scale nearly linearly with density, consistent with previous measurements from Shelby et al. Volumetric relaxation coupled with thermal expansion occurring in the liquid-like and solid-like glassy states lead to residual stresses and permanent deformation which could be quantified. But, experimental surface deformation profiles between 1700 and 2000 K could only be reconciled with our simulation by assuming a roughly 2 × larger liquid thermal expansion for a-SiO2 with a temperature of maximum density ~150 K higher than previously estimated by Bruckner et al. Calculated stress fields agreed well with recent laser-induced critical fracture measurements, demonstrating accurate material response prediction under processing conditions of practical interest.

  17. Size dependence of 13C nuclear spin-lattice relaxation in micro- and nanodiamonds

    Science.gov (United States)

    Panich, A. M.; Sergeev, N. A.; Shames, A. I.; Osipov, V. Yu; Boudou, J.-P.; Goren, S. D.

    2015-02-01

    Size dependence of physical properties of nanodiamond particles is of crucial importance for various applications in which defect density and location as well as relaxation processes play a significant role. In this work, the impact of defects induced by milling of micron-sized synthetic diamonds was studied by magnetic resonance techniques as a function of the particle size. EPR and 13C NMR studies of highly purified commercial synthetic micro- and nanodiamonds were done for various fractions separated by sizes. Noticeable acceleration of 13C nuclear spin-lattice relaxation with decreasing particle size was found. We showed that this effect is caused by the contribution to relaxation coming from the surface paramagnetic centers induced by sample milling. The developed theory of the spin-lattice relaxation for such a case shows good compliance with the experiment.

  18. Nuclear Spin relaxation mediated by Fermi-edge electrons in n-type GaAs

    Science.gov (United States)

    Kotur, M.; Dzhioev, R. I.; Kavokin, K. V.; Korenev, V. L.; Namozov, B. R.; Pak, P. E.; Kusrayev, Yu. G.

    2014-03-01

    A method based on the optical orientation technique was developed to measure the nuclear-spin lattice relaxation time T 1 in semiconductors. It was applied to bulk n-type GaAs, where T 1 was measured after switching off the optical excitation in magnetic fields from 400 to 1200 G at low (< 30 K) temperatures. The spin-lattice relaxation of nuclei in the studied sample with n D = 9 × 1016 cm-3 was found to be determined by hyperfine scattering of itinerant electrons (Korringa mechanism) which predicts invariability of T 1 with the change in magnetic field and linear dependence of the relaxation rate on temperature. This result extends the experimentally verified applicability of the Korringa relaxation law in degenerate semiconductors, previously studied in strong magnetic fields (several Tesla), to the moderate field range.

  19. THE EFFECT OF PROGRESSIVE MUSCULAR RELAXATION AND PSYCHOLOGICAL COUNSELING ON PHYSIOLOGICAL PARAMETERS DURING SURGICAL STRESS

    Directory of Open Access Journals (Sweden)

    Avnish

    2015-10-01

    Full Text Available Present study was carried out to study the effect of muscular relaxation technique and counseling on physiological parameters on subjects undergoing surgery. The study was conducted in 32 individuals between ages of 20 – 70 at Civil hospital, GMERS, Valsad and was compared with a control group (N=32 of the same age. The parameters recorded were arterial pulse, arterial blood pressure. The results show the significant differences in the recorded parameters in control ( n=34 and study group (n=33. Pulse rat e ( 75.54 to 80.17 , systolic ( 121.49 to 126.29 and diastolic blood pressure ( 80.4 to 84.23 values increased in preoperative period than on admission in the control group while study group showed decrease in the preoperative value compared to that on admi ssion Pulse rate ( 77.94 to 74.80, systolic ( 124.50 to 122.19 and diastolic blood pressure ( 82.88 to 81. The results obtained were analyzed for statistical significance. The results obtained were statistically significant

  20. Remarks on residual stress measurement by hole-drilling and electronic speckle pattern interferometry.

    Science.gov (United States)

    Barile, Claudia; Casavola, Caterina; Pappalettera, Giovanni; Pappalettere, Carmine

    2014-01-01

    Hole drilling is the most widespread method for measuring residual stress. It is based on the principle that drilling a hole in the material causes a local stress relaxation; the initial residual stress can be calculated by measuring strain in correspondence with each drill depth. Recently optical techniques were introduced to measure strain; in this case, the accuracy of the final results depends, among other factors, on the proper choice of the area of analysis. Deformations are in fact analyzed within an annulus determined by two parameters: the internal and the external radius. In this paper, the influence of the choice of the area of analysis was analysed. A known stress field was introduced on a Ti grade 5 sample and then the stress was measured in correspondence with different values of the internal and the external radius of analysis; results were finally compared with the expected theoretical value.

  1. The Effects of Relaxation and Cognitive Expectancy on Attraction in a Social Interaction.

    Science.gov (United States)

    Wilson, Midge

    One approach to searching for determinants of interpersonal attraction involves the altering and studying of physiological arousal, psychological stress, and moods. On the basis of the reinforcement-affect model of attraction, it was hypothesized that the positive feelings obtained from undergoing relaxation exercises could serve to enhance…

  2. Reliable cost effective technique for in situ ground stress measurements in deep gold mines.

    CSIR Research Space (South Africa)

    Stacey, TR

    1995-07-01

    Full Text Available on these requirements, an in situ stress measurement technique which will be practically applicable in the deep gold mines, has been developed conceptually. Referring to the figure on the following page, this method involves: • a borehole-based system, using... level mines have not been developed. 2 This is some of the background to the present SIMRAC research project, the title ofwhich is “Reliable cost effective technique for in-situ ground stress measurements in deep gold mines”. A copy of the research...

  3. THE BENEFICIENCE OF RELIGIOUS RELAXATION: DZIKIR TO INCREASE PHSYCOLOGICAL WELLNESS OF ELDER

    Directory of Open Access Journals (Sweden)

    Ah. Yusuf

    2017-07-01

    Full Text Available Introduction: Psychological well-being is one of an important part on the positive aging process for elderly. Many older people face stressful situation such as death of family, deterioration of health, decrease of physical ability and psychological problem like loneliness, low self esteem, useless, isolation or difficulty in relationship. Religious relaxation: dzikir is one of the group therapy to fill up psychological necessary by filled up spiritual necessary so they could say thanks to God for everything what they have had now. The aimed of this study was to analyze the effect of religious relaxation: dzikir to increase the level of psychological well being of the elderly. Method: This study was used a quasy experimental pre post test design. There were 20 respondents which taken by using purposive sampling. The independent variable was religious relaxation: dzikir and the dependent variable was elderly psychological well being. Data were analyzed by using Wilcoxon Signed Rank Test and Mann Whitney U-Test with significance level a≤0.05. Result: The result showed that religious relaxation: dzikir has an effect on increasing the level of psychological well being of the elderly with Wilcoxon Signed Rank Test p=0.004 in treatment group, p=1.000 in control group and the result of Mann Whitney U-Test revealed p=0.000. Discussion: It can be concluded that religious relaxation: dzikir can increase psychological well-being. Religious relaxation: dzikir help the elderly to develop self acceptance, autonomy, positive relation with others, environmental mastery, purposive in life and personal growth. Researcher suggests the institutional to practice relaxation religious: dzikir to help elderly people to raise psychological well-being.

  4. The effect of progressive muscle relaxation techniques on anxiety in Patients with myocardial infarction

    Directory of Open Access Journals (Sweden)

    Mozhgan Jariani

    2011-12-01

    Conclusion: progressive muscle relaxation can reduce the amount of anxiety, and systolic and diastolic blood pressure of the patients with myocardial infarction hospitalized in CCU ward, therefore it can play an effective role as a supplement non-medicinal, simple and cheap treatment for these patients

  5. Dielectric relaxation of 2-ethyl-1-hexanol around the glass transition by thermally stimulated depolarization currents.

    Science.gov (United States)

    Arrese-Igor, S; Alegría, A; Colmenero, J

    2015-06-07

    We explore new routes for characterizing the Debye-like and α relaxation in 2-ethyl-1-hexanol (2E1H) monoalcohol by using low frequency dielectric techniques including thermally stimulated depolarization current (TSDC) techniques and isothermal depolarization current methods. In this way, we have improved the resolution of the overlapped processes making it possible the analysis of the data in terms of a mode composition as expected for a chain-like response. Furthermore the explored ultralow frequencies enabled to study dynamics at relatively low temperatures close to the glass transition (Tg). Results show, on the one hand, that Debye-like and α relaxation timescales dramatically approach to each other upon decreasing temperature to Tg. On the other hand, the analysis of partial polarization TSDC data confirms the single exponential character of the Debye-like relaxation in 2E1H and rules out the presence of Rouse type modes in the scenario of a chain-like response. Finally, on crossing the glass transition, the Debye-like relaxation shows non-equilibrium effects which are further emphasized by aging treatment and would presumably emerge as a result of the arrest of the structural relaxation below Tg.

  6. Addition of rectus sheath relaxation incisions to emergency midline laparotomy for peritonitis to prevent fascial dehiscence.

    Science.gov (United States)

    Marwah, Sanjay; Marwah, Nisha; Singh, Mandeep; Kapoor, Ajay; Karwasra, Rajender Kumar

    2005-02-01

    The incidence of fascial dehiscence and incisional hernia after two methods for abdominal wound closure (rectus sheath relaxation incisions and conventional mass closure) was studied in a randomized prospective clinical trial in a consecutive series of 100 patients undergoing midline laparotomy for peritonitis. The two groups were well matched for etiologies of peritonitis, the surgical procedures performed, and the presence of known risk factors for fascial dehiscence. Fifty patients each were randomized either to the conventional continuous mass closure procedure or the rectus sheath relaxation incision technique (designed to increase wound elasticity and decrease tension in the suture line) using identical polypropylene sutures. The incidence of postoperative complications such as duration of ileus, chest infection, and wound infection were not statistically different between the two groups. The intensity of postoperative pain in the rectus sheath relaxation incision group was significantly less. The incidence of wound hematoma was significantly increased in the rectus sheath relaxation incision group. The incidences of fascial dehiscence (16% vs,28%; p cases of peritonitis using the rectus sheath relaxation technique is safe and less painful, provides increased wound elasticity and decreased tension on the suture line, and significantly decreases the incidence of wound dehiscence.

  7. Studies of MRI relaxivities of gadolinium-labeled dendrons

    Science.gov (United States)

    Pan, Hongmu; Daniel, Marie-Christine

    2011-05-01

    In cancer detection, imaging techniques have a great importance in early diagnosis. The more sensitive the imaging technique and the earlier the tumor can be detected. Contrast agents have the capability to increase the sensitivity in imaging techniques such as magnetic resonance imaging (MRI). Until now, gadolinium-based contrast agents are mainly used for MRI, and show good enhancement. But improvement is needed for detection of smaller tumors at the earliest stage possible. The dendrons complexed with Gd(DOTA) were synthesized and evaluated as a new MRI contrast agent. The longitudinal and transverse relaxation effects were tested and compared with commercial drug Magnevist, Gd(DTPA).

  8. The effect of stress management training on stress and depression in women with depression disorders: Using cognitive-behavioral techniques

    OpenAIRE

    Abbasian, Farahzad; Najimi, Arash; Meftagh, Sayyed Davood; Ghasemi, Gholamreza; Afshar, Hamid

    2014-01-01

    Background: The present study aimed to investigate the effect of stress management training through cognitive-behavioral techniques on stress, social adaptability and depression in women with depression disorders. Materials and Methods: In this study, 40 patients diagnosed with depression who had referred to psychiatry and consultation clinics of Isfahan were randomly selected and assigned to intervention and control groups (20 patients in each group). The intervention group received eight 90...

  9. Reconstruction of the residual stresses in a hyperelastic body using ultrasound techniques

    KAUST Repository

    Joshi, Sunnie

    2013-09-01

    This paper focuses on a novel approach for characterizing the residual stress field in soft tissue using ultrasound interrogation. A nonlinear inverse spectral technique is developed that makes fundamental use of the finite strain nonlinear response of the material to a quasi-static loading. The soft tissue is modeled as a nonlinear, prestressed and residually stressed, isotropic, slightly compressible elastic body with a rectangular geometry. A boundary value problem is formulated for the residually stressed and prestressed soft tissue, the boundary of which is subjected to a quasi-static pressure, and then an idealized model for the ultrasound interrogation is constructed by superimposing small amplitude time harmonic infinitesimal vibrations on static finite deformation via an asymptotic construction. The model is studied, through a semi-inverse approach, for a specific class of deformations that leads to a system of second order differential equations with homogeneous boundary conditions of Sturm-Liouville type. By making use of the classical theory of inverse Sturm-Liouville problems, and root finding and optimization techniques, several inverse spectral algorithms are developed to approximate the residual stress distribution in the body, given the first few eigenfrequencies of several induced static pressures. © 2013 Elsevier Ltd. All rights reserved.

  10. The residual stress distribution in welded pipe inner surface of stainless steel from the nuclear power plant in Ringhals

    International Nuclear Information System (INIS)

    Larsson, L.E.

    1984-06-01

    The axial residual stress distribution on the inner surface of welded pipes of stainless steel SS 2333 (AISI 304) have been measured using the X-ray diffraction technique. Four halves of two pipes with the outer diameter of 114 mm and wall thickness of 10 mm were investigated. The result on the pipe inner surface shows compressive stresses in the weld metal and tensile stresses within a region between 8-23 mm with a maximum of 180MPa at a distance of 17 mm from the weld centerline. The maximum axial and circumferential residual stresses on the pipe outer surface are of the magnitude of 100 MPa. By cutting the pipes into two halves these stresses are relaxed by about 35 MPa. (author)

  11. Application of a 2-D approximation technique for solving stress analyses problem in FEM

    Directory of Open Access Journals (Sweden)

    H Khawaja

    2016-10-01

    Full Text Available With the advent of computational techniques and methods like finite element method, complex engineering problems are no longer difficult to solve. These methods have helped engineers and designers to simulate and solve engineering problems in much more details than possible with experimental techniques. However, applying these techniques is not a simple task and require lots of acumen, understanding, and experience in obtaining a solution that is as close to an exact solution as possible with minimum computer resources. In this work using the finite element (FE method, stress analyzes of the low-pressure turbine of a small turbofan engine is carried out by employing two different techniques. Initially, a complete solid model of the turbine is prepared which is then finite element modelled with the eight-node brick element. Stresses are calculated using this model. Subsequently, the same turbine is modelled with four-node shell element for calculation of stresses. Material properties, applied loads (inertial, aerodynamic, and thermal, and constraints were same for both the cases. Authors have developed a “2-D approximation technique” to approximate a 3-D problem into a 2-D problem to study the saving invaluable computational time and resources. In this statistics technique, the 3-D domain of variable thickness is divided into many small areas of constant thickness. It is ensured that the value of the thickness for each sub-area is the correct representative thickness of that sub area, and it is within three sigma limit. The results revealed that technique developed is accurate, less time consuming and computational effort saving; the stresses obtained by 2-D technique are within five percent of 3-D results. The solution is obtained in CPU time which is six times less than the 3-D model. Similarly, the number of nodes and elements are more than ten times less than that of the 3-D model. ANSYS ® was used in this work.

  12. Vibrational relaxation and energy transfer of matrix isolated HCl and DCl

    Energy Technology Data Exchange (ETDEWEB)

    Wiesenfeld, J.M.

    1977-12-01

    Vibrational kinetic and spectroscopic studies have been performed on matrix-isolated HCl and DCl between 9 and 20 K. Vibrational relaxation rates for v = 2 and v = 1 were measured by a tunable infrared laser-induced, time-resolved fluorescence technique. In an Ar matrix, vibrational decay times are faster than radiative and it is found that HCl relaxes about 35 times more rapidly than CCl, in spite of the fact that HCl must transfer more energy to the lattice than DCl. This result is explained by postulating that the rate-determining step for vibrational relaxation produces a highly rotationally excited guest in a V yield R step; rotational relaxation into lattice phonons follows rapidly. HCl v = 1, but not v = 2, excitation rapidly diffuses through the sample by a resonant dipole-dipole vibrational energy transfer process. Molecular complexes, and in particular the HCl dimer, relax too rapidly for direct observation, less than or approximately 1 ..mu..s, and act as energy sinks in the energy diffusion process. The temperature dependence for all these processes is weak--less than a factor of two between 9 and 20 K. Vibrational relaxation of HCl in N/sub 2/ and O/sub 2/ matrices is unobservable, presumably due to rapid V yield V transfer to the host. A V yield R binary collision model for relaxation in solids is successful in explaining the HCl(DCl)/Ar results as well as results of other experimenters. The model considers relaxation to be the result of ''collisions'' due to molecular motion in quantized lattice normal modes--gas phase potential parameters can fit the matrix kinetic data.

  13. Vibrational relaxation and energy transfer of matrix isolated HCl and DCl

    International Nuclear Information System (INIS)

    Wiesenfeld, J.M.

    1977-12-01

    Vibrational kinetic and spectroscopic studies have been performed on matrix-isolated HCl and DCl between 9 and 20 K. Vibrational relaxation rates for v = 2 and v = 1 were measured by a tunable infrared laser-induced, time-resolved fluorescence technique. In an Ar matrix, vibrational decay times are faster than radiative and it is found that HCl relaxes about 35 times more rapidly than CCl, in spite of the fact that HCl must transfer more energy to the lattice than DCl. This result is explained by postulating that the rate-determining step for vibrational relaxation produces a highly rotationally excited guest in a V yield R step; rotational relaxation into lattice phonons follows rapidly. HCl v = 1, but not v = 2, excitation rapidly diffuses through the sample by a resonant dipole-dipole vibrational energy transfer process. Molecular complexes, and in particular the HCl dimer, relax too rapidly for direct observation, less than or approximately 1 μs, and act as energy sinks in the energy diffusion process. The temperature dependence for all these processes is weak--less than a factor of two between 9 and 20 K. Vibrational relaxation of HCl in N 2 and O 2 matrices is unobservable, presumably due to rapid V yield V transfer to the host. A V yield R binary collision model for relaxation in solids is successful in explaining the HCl(DCl)/Ar results as well as results of other experimenters. The model considers relaxation to be the result of ''collisions'' due to molecular motion in quantized lattice normal modes--gas phase potential parameters can fit the matrix kinetic data

  14. Measuring multiple residual-stress components using the contour method and multiple cuts

    Energy Technology Data Exchange (ETDEWEB)

    Prime, Michael B [Los Alamos National Laboratory; Swenson, Hunter [Los Alamos National Laboratory; Pagliaro, Pierluigi [U. PALERMO; Zuccarello, Bernardo [U. PALERMO

    2009-01-01

    The conventional contour method determines one component of stress over the cross section of a part. The part is cut into two, the contour of the exposed surface is measured, and Bueckner's superposition principle is analytically applied to calculate stresses. In this paper, the contour method is extended to the measurement of multiple stress components by making multiple cuts with subsequent applications of superposition. The theory and limitations are described. The theory is experimentally tested on a 316L stainless steel disk with residual stresses induced by plastically indenting the central portion of the disk. The stress results are validated against independent measurements using neutron diffraction. The theory has implications beyond just multiple cuts. The contour method measurements and calculations for the first cut reveal how the residual stresses have changed throughout the part. Subsequent measurements of partially relaxed stresses by other techniques, such as laboratory x-rays, hole drilling, or neutron or synchrotron diffraction, can be superimposed back to the original state of the body.

  15. The advantage of high relaxivity contrast agents in brain perfusion

    International Nuclear Information System (INIS)

    Cotton, F.; Hermier, M.

    2006-01-01

    Accurate MRI characterization of brain lesions is critical for planning therapeutic strategy, assessing prognosis and monitoring response to therapy. Conventional MRI with gadolinium-based contrast agents is useful for the evaluation of brain lesions, but this approach primarily depicts areas of disruption of the blood-brain barrier (BBB) rather than tissue perfusion. Advanced MR imaging techniques such as dynamic contrast agent-enhanced perfusion MRI provide physiological information that complements the anatomic data available from conventional MRI. We evaluated brain perfusion imaging with gadobenate dimeglumine (Gd-BOPTA, MultiHance; Bracco Imaging, Milan, Italy). The contrast-enhanced perfusion technique was performed on a Philips Intera 1.5-T MR system. The technique used to obtain perfusion images was dynamic susceptibility contrast-enhanced MRI, which is highly sensitive to T2* changes. Combined with PRESTO perfusion imaging, SENSE is applied to double the temporal resolution, thereby improving the signal intensity curve fit and, accordingly, the accuracy of the derived parametric images. MultiHance is the first gadolinium MR contrast agent with significantly higher T1 and T2 relaxivities than conventional MR contrast agents. The higher T1 relaxivity, and therefore better contrast-enhanced T1-weighted imaging, leads to significantly improved detection of BBB breakdown and hence improved brain tumor conspicuity and delineation. The higher T2 relaxivity allows high-quality T2*-weighted perfusion MRI and the derivation of good quality relative cerebral blood volume (rCBV) maps. We determined the value of MultiHance for enhanced T2*-weighted perfusion imaging of histologically proven (by surgery or stereotaxic biopsy) intraaxial brain tumors (n=80), multiple sclerosis lesions (n=10), abscesses (n=4), neurolupus (n=15) and stroke (n=16). All the procedures carried out were safe and no adverse events occurred. The acquired perfusion images were of good quality in

  16. Kubo formulas for the shear and bulk viscosity relaxation times and the scalar field theory shear τπ calculation

    Science.gov (United States)

    Czajka, Alina; Jeon, Sangyong

    2017-06-01

    In this paper we provide a quantum field theoretical study on the shear and bulk relaxation times. First, we find Kubo formulas for the shear and the bulk relaxation times, respectively. They are found by examining response functions of the stress-energy tensor. We use general properties of correlation functions and the gravitational Ward identity to parametrize analytical structures of the Green functions describing both sound and diffusion mode. We find that the hydrodynamic limits of the real parts of the respective energy-momentum tensor correlation functions provide us with the method of computing both the shear and bulk viscosity relaxation times. Next, we calculate the shear viscosity relaxation time using the diagrammatic approach in the Keldysh basis for the massless λ ϕ4 theory. We derive a respective integral equation which enables us to compute η τπ and then we extract the shear relaxation time. The relaxation time is shown to be inversely related to the thermal width as it should be.

  17. Radiographic evaluation of coxofemoral joint laxity in dogs part II: Comparison of stress-radiographic positioning techniques in dogs with hip dysplasia

    International Nuclear Information System (INIS)

    Duangdaun Kaenkangploo; Phiwipha Kamonrat; Marissak Kalpravidh

    2002-01-01

    Two stress-radiographic positioning techniques for evaluation of coxofemoral joint laxity in dogs with hip dysplasia were compared with the standard technique. Forty, healthy, large breed dogs were divided into two groups of 20 dogs. Group 1 had normal hips. Group 2 were dogs with mild to moderated grade of hip dysplasia according to the Orthopedic Foundation for Animals (OFA) standard. Dogs were anesthetized and placed in dorsal recumbency before 3 radiographic techniques, standard hip-extended, 60 deg and 90 deg stress techniques, were taken. For the 60 deg stress technique, hind legs were extended in parallel to each other at 60 deg to the table top and femoral heads were manually pushed craniodorsally during exposure. For the 90 deg stress technique, femurs were positioned perpendicular to the table top, stifles were 90 deg flexed and adducted and femoral heads were manually pushed in a craniodorsal direction during exposure. Subluxation index (SI) and dorsolateral subluxation score (DLS score) of coxofemoral joints were assessed from radiographs. The SI of normal dogs from standard, 60 deg and 90 deg stress techniques were 0.15, 0.20 and 0.23 and of dysplastic dogs were 0.34, 0.40 and 0.41 respectively. The degress of subluxation assessed from the two stress technique radiographs were significantly greater (p0.05) than those shown on the standard technique radiographs in both groups of dogs. DLS scores of normal dogs from standard, 60 deg and 90 deg stress techniques were 65.1, 64.3 and 61.0 percent and of dysplastic dogs were 55.4, 53.6 and 47.6 percent respectively. Mean of DLS scores assessed from the 90 deg radiographs was significantly lower (p0.05) than those assessed from radiographs of other two teachniques in both groups of dogs. The findings suggested that the 90 deg stress technique is more efficient than the standard and 60 deg stress techniques for radiographic evaluation of coxofemoral joint laxity in dogs with mild hip dysplasia and early

  18. DO FOOT REFLEXOLOGY AND RELAXATION TRAINING DECREASE PREMENSTRUAL SYMPTOMS IN ADOLESCENT FEMALES

    Directory of Open Access Journals (Sweden)

    Marwa A. Mohamed

    2016-10-01

    Full Text Available Background: Premenstrual syndrome is a current condition characterized by troublesome symptoms as tension, irritability, depression, headache, anxiety and loss of self-control, so the aim of this study was to investigate the effect of foot reflexology augmented with relaxation training on premenstrual syndrome in adolescent females. Methods: A sample of 50 volunteers, virgin females diagnosed as premenstrual syndrome was selected from the students of Faculty of Physical Therapy, Cairo University. Their age was ranged between 19 to 23 years with mean value of (21.53±2.27 yrs and BMI was ≤28 Kg/m² with mean value of (24.04±2.41 Kg/m².A detailed medical history was obtained to screen other pathological conditions that may affect the results. Females were randomly assigned into two equal groups. Group (A consisted of 25 subjects who received foot reflexology in addition to relaxation training techniques twice a week for 8 weeks. Group (B consisted of 25 patients, who received relaxation training techniques only twice a week for 8 weeks. Assessment of all subjects in both groups was carried out before and after the treatment program through heart rate, respiratory rate in addition to plasma cortisol level and daily symptoms report chart. Results: Showed a statistical highly significant decrease (p<0.001 in heart rate, respiratory rate, plasma cortisol level as well as daily symptoms report score in group (A while there was a statistical significant decrease (p<0.05 in all variables in group (B. Conclusions: Adding foot reflexology to relaxation training had a great positive effect on premenstrual syndrome in adolescent females than relaxation training only.

  19. Interpretation of stress measurements around mining cavities in rock salt - a finite-element study

    International Nuclear Information System (INIS)

    Heusermann, S.

    1986-01-01

    Finite-element studies of stress measurements using the overcoring method and of large drift fields in rock salt show that the measurements are affected by local stress relaxation occurring near the test borehole and by general time-dependent stress redistribution in the marginal zones of adjacent drifts. Analysis of the overcoring method indicates that the following local effects have to be considered in the interpretation of the test results as opposed to measurements in elastic rock: The inelastic deformation behaviour of rock salt causes stress relaxation at the pilot borehole which can lead to an underestimation of the actual stress state in rock. During overcoring considerable inelastic deformations occur in rock salt which demand a modified interpretation of the measurements and as a result of stress relaxation at the borehole various tests conditions, such as overcoring diameter, pilot borehole diameter and time between drilling and overcoring, have an effect on the test results. (orig./PW)

  20. Anchoring device enabling relaxation of a multi-strand prestressing cable

    International Nuclear Information System (INIS)

    1979-01-01

    Anchoring device, in a concrete structure, for a multi-strand prestressing cable, enabling the cable to be stressed or relaxed, comprising: (a) an axisymmetrical block, fitted with channels to enable the cable strands to be stressed and anchored through this block, (b) a duct with its opening splayed to a diameter greater than that of the block over a length corresponding to the stretching of the cable when being stressed, (c) a round bearing plate on the concrete around the expanded hole of the duct and (d) at least one intermediate removable bearing piece coming between the edge of the block and the internal edge of the plate. The removable parts are crown sectors of which the opposite bearing faces of each are slanted with respect to the centre line of the block and orientated in the same direction so as to transmit the cable stress at an angle from the block to the edge of the bearing plate [fr