WorldWideScience

Sample records for stress reduces growth

  1. Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests.

    Science.gov (United States)

    Brzostek, Edward R; Dragoni, Danilo; Schmid, Hans Peter; Rahman, Abdullah F; Sims, Daniel; Wayson, Craig A; Johnson, Daniel J; Phillips, Richard P

    2014-08-01

    Predicted decreases in water availability across the temperate forest biome have the potential to offset gains in carbon (C) uptake from phenology trends, rising atmospheric CO2 , and nitrogen deposition. While it is well established that severe droughts reduce the C sink of forests by inducing tree mortality, the impacts of mild but chronic water stress on forest phenology and physiology are largely unknown. We quantified the C consequences of chronic water stress using a 13-year record of tree growth (n = 200 trees), soil moisture, and ecosystem C balance at the Morgan-Monroe State Forest (MMSF) in Indiana, and a regional 11-year record of tree growth (n > 300 000 trees) and water availability for the 20 most dominant deciduous broadleaf tree species across the eastern and midwestern USA. We show that despite ~26 more days of C assimilation by trees at the MMSF, increasing water stress decreased the number of days of wood production by ~42 days over the same period, reducing the annual accrual of C in woody biomass by 41%. Across the deciduous forest region, water stress induced similar declines in tree growth, particularly for water-demanding 'mesophytic' tree species. Given the current replacement of water-stress adapted 'xerophytic' tree species by mesophytic tree species, we estimate that chronic water stress has the potential to decrease the C sink of deciduous forests by up to 17% (0.04 Pg C yr(-1) ) in the coming decades. This reduction in the C sink due to mesophication and chronic water stress is equivalent to an additional 1-3 days of global C emissions from fossil fuel burning each year. Collectively, our results indicate that regional declines in water availability may offset the growth-enhancing effects of other global changes and reduce the extent to which forests ameliorate climate warming. © 2014 John Wiley & Sons Ltd.

  2. Increased classical endoplasmic reticulum stress is sufficient to reduce chondrocyte proliferation rate in the growth plate and decrease bone growth.

    Directory of Open Access Journals (Sweden)

    Louise H W Kung

    Full Text Available Mutations in genes encoding cartilage oligomeric matrix protein and matrilin-3 cause a spectrum of chondrodysplasias called multiple epiphyseal dysplasia (MED and pseudoachondroplasia (PSACH. The majority of these diseases feature classical endoplasmic reticulum (ER stress and activation of the unfolded protein response (UPR as a result of misfolding of the mutant protein. However, the importance and the pathological contribution of ER stress in the disease pathogenesis are unknown. The aim of this study was to investigate the generic role of ER stress and the UPR in the pathogenesis of these diseases. A transgenic mouse line (ColIITgcog was generated using the collagen II promoter to drive expression of an ER stress-inducing protein (Tgcog in chondrocytes. The skeletal and histological phenotypes of these ColIITgcog mice were characterised. The expression and intracellular retention of Tgcog induced ER stress and activated the UPR as characterised by increased BiP expression, phosphorylation of eIF2α and spliced Xbp1. ColIITgcog mice exhibited decreased long bone growth and decreased chondrocyte proliferation rate. However, there was no disruption of chondrocyte morphology or growth plate architecture and perturbations in apoptosis were not apparent. Our data demonstrate that the targeted induction of ER stress in chondrocytes was sufficient to reduce the rate of bone growth, a key clinical feature associated with MED and PSACH, in the absence of any growth plate dysplasia. This study establishes that classical ER stress is a pathogenic factor that contributes to the disease mechanism of MED and PSACH. However, not all the pathological features of MED and PSACH were recapitulated, suggesting that a combination of intra- and extra-cellular factors are likely to be responsible for the disease pathology as a whole.

  3. Overexpression of an Arabidopsis heterogeneous nuclear ribonucleoprotein gene, AtRNP1, affects plant growth and reduces plant tolerance to drought and salt stresses

    International Nuclear Information System (INIS)

    Wang, Zhenyu; Zhao, Xiuyang; Wang, Bing; Liu, Erlong; Chen, Ni; Zhang, Wei; Liu, Heng

    2016-01-01

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) participate in diverse regulations of plant growth and environmental stress responses. In this work, an Arabidopsis hnRNP of unknown function, AtRNP1, was investigated. We found that AtRNP1 gene is highly expressed in rosette and cauline leaves, and slightly induced under drought, salt, osmotic and ABA stresses. AtRNP1 protein is localized to both the nucleus and cytoplasm. We performed homologous overexpression of AtRNP1 and found that the transgenic plants showed shortened root length and plant height, and accelerated flowering. In addition, the transgenic plants also showed reduced tolerance to drought, salt, osmotic and ABA stresses. Further studies revealed that under both normal and stress conditions, the proline contents in the transgenic plants are markedly decreased, associated with reduced expression levels of a proline synthase gene and several stress-responsive genes. These results suggested that the overexpression of AtRNP1 negatively affects plant growth and abiotic stress tolerance. - Highlights: • AtRNP1 is a widely expressed gene and its expression is slightly induced under abiotic stresses. • AtRNP1 protein is localized to both the nucleus and cytoplasm. • Overexpression of AtRNP1 affects plant growth. • Overexpression of AtRNP1 reduces plant tolerance to drought and salt stresses. • AtRNP1 overexpression plants show decreased proline accumulation and stress-responsive gene expressions.

  4. Overexpression of an Arabidopsis heterogeneous nuclear ribonucleoprotein gene, AtRNP1, affects plant growth and reduces plant tolerance to drought and salt stresses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhenyu, E-mail: wzy72609@163.com [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Zhao, Xiuyang, E-mail: xiuzh@psb.vib-ugent.be [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Wang, Bing, E-mail: wangbing@ibcas.ac.cn [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Liu, Erlong, E-mail: liuel14@lzu.edu.cn [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Chen, Ni, E-mail: 63710156@qq.com [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Zhang, Wei, E-mail: wzhang1216@yahoo.com [Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444 (China); Liu, Heng, E-mail: hengliu@lzu.edu.cn [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China)

    2016-04-01

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) participate in diverse regulations of plant growth and environmental stress responses. In this work, an Arabidopsis hnRNP of unknown function, AtRNP1, was investigated. We found that AtRNP1 gene is highly expressed in rosette and cauline leaves, and slightly induced under drought, salt, osmotic and ABA stresses. AtRNP1 protein is localized to both the nucleus and cytoplasm. We performed homologous overexpression of AtRNP1 and found that the transgenic plants showed shortened root length and plant height, and accelerated flowering. In addition, the transgenic plants also showed reduced tolerance to drought, salt, osmotic and ABA stresses. Further studies revealed that under both normal and stress conditions, the proline contents in the transgenic plants are markedly decreased, associated with reduced expression levels of a proline synthase gene and several stress-responsive genes. These results suggested that the overexpression of AtRNP1 negatively affects plant growth and abiotic stress tolerance. - Highlights: • AtRNP1 is a widely expressed gene and its expression is slightly induced under abiotic stresses. • AtRNP1 protein is localized to both the nucleus and cytoplasm. • Overexpression of AtRNP1 affects plant growth. • Overexpression of AtRNP1 reduces plant tolerance to drought and salt stresses. • AtRNP1 overexpression plants show decreased proline accumulation and stress-responsive gene expressions.

  5. A novel transgenic mouse model of growth plate dysplasia reveals that decreased chondrocyte proliferation due to chronic ER stress is a key factor in reduced bone growth

    Directory of Open Access Journals (Sweden)

    Benedetta Gualeni

    2013-11-01

    Disease mechanisms leading to different forms of chondrodysplasia include extracellular matrix (ECM alterations and intracellular stress resulting in abnormal changes to chondrocyte proliferation and survival. Delineating the relative contribution of these two disease mechanisms is a major challenge in understanding disease pathophysiology in genetic skeletal diseases and a prerequisite for developing effective therapies. To determine the influence of intracellular stress and changes in chondrocyte phenotype to the development of chondrodysplasia, we targeted the expression of the G2320R mutant form of thyroglobulin to the endoplasmic reticulum (ER of resting and proliferating chondrocytes. Previous studies on this mutant protein have shown that it induces intracellular aggregates and causes cell stress and death in the thyroid gland. The expression and retention of this exogenous mutant protein in resting and proliferating chondrocytes resulted in a chronic cell stress response, growth plate dysplasia and reduced bone growth, without inducing any alterations to the architecture and organization of the cartilage ECM. More significantly, the decreased bone growth seemed to be the direct result of reduced chondrocyte proliferation in the proliferative zone of growth plates in transgenic mice, without transcriptional activation of a classical unfolded protein response (UPR or apoptosis. Overall, these data show that mutant protein retention in the ER of resting and proliferative zone chondrocytes is sufficient to cause disrupted bone growth. The specific disease pathways triggered by mutant protein retention do not necessarily involve a prototypic UPR, but all pathways impact upon chondrocyte proliferation in the cartilage growth plate.

  6. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize

    Science.gov (United States)

    Cai, Qian; Zhang, Yulong; Sun, Zhanxiang; Zheng, Jiaming; Bai, Wei; Zhang, Yue; Liu, Yang; Feng, Liangshan; Feng, Chen; Zhang, Zhe; Yang, Ning; Evers, Jochem B.; Zhang, Lizhen

    2017-08-01

    A large yield gap exists in rain-fed maize (Zea mays L.) production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU) and water use efficiency (WUE). Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter to achieve conditions of no, mild or severe water stress. Maize yield was not affected by mild water stress over 2 years, while severe stress reduced yield by 56 %. Both water stress levels decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting in no effect on root surface area. Due to the morphological plasticity in root growth and the increase in root / shoot ratio, WU under water stress was decreased, and overall WUE for both above-ground dry matter and grain yield increased. Our results demonstrate that an irrigation system might be not economically and ecologically necessary because the frequently occurring mild water stress did not reduce crop yield much. The study helps us to understand crop responses to water stress during a critical water-sensitive period (middle of the crop-growing season) and to mitigate drought risk in dry-land agriculture.

  7. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize

    Directory of Open Access Journals (Sweden)

    Q. Cai

    2017-08-01

    Full Text Available A large yield gap exists in rain-fed maize (Zea mays L. production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU and water use efficiency (WUE. Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter to achieve conditions of no, mild or severe water stress. Maize yield was not affected by mild water stress over 2 years, while severe stress reduced yield by 56 %. Both water stress levels decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting in no effect on root surface area. Due to the morphological plasticity in root growth and the increase in root ∕ shoot ratio, WU under water stress was decreased, and overall WUE for both above-ground dry matter and grain yield increased. Our results demonstrate that an irrigation system might be not economically and ecologically necessary because the frequently occurring mild water stress did not reduce crop yield much. The study helps us to understand crop responses to water stress during a critical water-sensitive period (middle of the crop-growing season and to mitigate drought risk in dry-land agriculture.

  8. Combination of U.V.-B and ozone reduces pollen tube growth more than either stress alone

    International Nuclear Information System (INIS)

    Feder, W.A.; Shrier, R.

    1990-01-01

    The rate of in vitro Nicotiana tabacum L. “Bel-W3” pollen tube growth was reduced 62 and 44%, respectively, when pollen tubes were exposed to 120 ppb ozone (O 3 ) for 3 hr or 300 μW/cm 2 ultraviolet-B (u.v.-B) radiation for 30 min. Petunia hybrida Vilm. “White Cascade” pollen tube growth was reduced 34 and 59%, respectively, upon exposure to O 3 or u.v.-B at the above doses. The combination of u.v.-B at 300 μW/cm 2 for 30 min, followed by O 3 at 120 ppb for 3 hr, reduced pollen tube growth by 79% for “Bel-W3” and 75% for “White Cascade”. The effect appeared to be additive, implying that different target areas may be affected by the two stressors. In the Northeast, plants are exposed to both u.v.-B and O 3 during the normal growing season. This may result in an unexpectedly higher stress on the reproductive system than had been previously suspected based on these two stressors acting individually. (author)

  9. Reducing surgical nurses' aseptic practice-related stress.

    Science.gov (United States)

    Aholaakko, Teija-Kaisa

    2011-12-01

    This paper aims to explore aseptic practice-related stress in surgery. The objectives are to define stress-related factors and the means to reduce the stress. Occupational stress is related to personal characteristics: job satisfaction and physiological and psychological well-being. The stress symptoms are often classified as part of a negative mood. Nurses have expressed stress when deadening their conscience to external demands with co-workers or internal working role-related demands. Surgery nurses expect fair division of work and compliance with rules. The hospital management, technology and the medical profession, instead of the needs of the patient, are recognised as a danger in the development of surgery nurses' role. A qualitative stimulated recall interview was performed in the surgery of the university hospital. Thirty-one operations were videotaped, and 31 nurses interviewed during videotape stimulation. The 1306 text pages were transcripted and analysed by a qualitative membership categorisation device analysis. The analysis revealed aseptic practice-related stress which constructed a sixteen level category. The membership categorisation identified connections between qualitatively attributed personnel and seven stress factors: working experience; time; equipment; person; patient; working morals and power. Final analysis revealed nurses reducing aseptic practice-related stress by safe, peaceful, competent and relative means. The aseptic practice-related stress varied from positive motivating feelings to exhaustion. The stress was experienced by medical and nursing co-workers and reduced by means which varied according to expertise and co-workers. This study showed needs for both the shared multiprofessional documentation of aseptic practice and better adherence to recommendations. Constructive means are useful when solving conflicts and replacing person-related aseptic practice with evidence-based. They may support nurses' professional growth, reduce

  10. Amending reduced fish-meal feeds with marine lecithin, but not soy lecithin, improves the growth of juvenile cobia and may attenuate heightened responses to stress challenge.

    Science.gov (United States)

    Trushenski, J; Schwarz, M; Pessoa, W V N; Mulligan, B; Crouse, C; Gause, B; Yamamoto, F; Delbos, B

    2013-02-01

    Sparing of marine resources in aquafeeds can be environmentally and economically advantageous; however, fish meal (FM) replacement can affect the production performance and physiological competence. Phospholipids are increasingly understood to be involved in maintaining growth and vigour in fish and may be deficient in reduced FM formulations. Accordingly, we evaluated the growth and stress tolerance of juvenile cobia fed typical (50% FM) or reduced FM feeds (12% FM) with or without phospholipid amendment [1% marine lecithin (12% FM + Marine PL) or soy lecithin (12% FM + Soy PL)] for 6 weeks in triplicate tanks (N = 3) in a recirculation aquaculture system. The 50% FM feed yielded significantly superior growth and growth efficiency in comparison with the 12% FM and 12% FM+ Soy PL feeds, but the 12% FM+ Marine PL feed yielded comparable results to 50% FM feed. A low-water stress challenge induced elevated plasma glucose, cortisol and lactate levels in all treatments. However, a significant interaction (diet × stress) effect suggested a lesser cortisol response among fish fed the 12% FM+ Marine PL and 50% FM diets. These findings demonstrate that growth performance and, perhaps, resilience of cobia raised on reduced FM feeds may be improved by the addition of marine-origin phospholipid to the diet. © 2011 Blackwell Verlag GmbH.

  11. Increased intracellular proteolysis reduces disease severity in an ER stress-associated dwarfism.

    Science.gov (United States)

    Mullan, Lorna A; Mularczyk, Ewa J; Kung, Louise H; Forouhan, Mitra; Wragg, Jordan Ma; Goodacre, Royston; Bateman, John F; Swanton, Eileithyia; Briggs, Michael D; Boot-Handford, Raymond P

    2017-10-02

    The short-limbed dwarfism metaphyseal chondrodysplasia type Schmid (MCDS) is linked to mutations in type X collagen, which increase ER stress by inducing misfolding of the mutant protein and subsequently disrupting hypertrophic chondrocyte differentiation. Here, we show that carbamazepine (CBZ), an autophagy-stimulating drug that is clinically approved for the treatment of seizures and bipolar disease, reduced the ER stress induced by 4 different MCDS-causing mutant forms of collagen X in human cell culture. Depending on the nature of the mutation, CBZ application stimulated proteolysis of misfolded collagen X by either autophagy or proteasomal degradation, thereby reducing intracellular accumulation of mutant collagen. In MCDS mice expressing the Col10a1.pN617K mutation, CBZ reduced the MCDS-associated expansion of the growth plate hypertrophic zone, attenuated enhanced expression of ER stress markers such as Bip and Atf4, increased bone growth, and reduced skeletal dysplasia. CBZ produced these beneficial effects by reducing the MCDS-associated abnormalities in hypertrophic chondrocyte differentiation. Stimulation of intracellular proteolysis using CBZ treatment may therefore be a clinically viable way of treating the ER stress-associated dwarfism MCDS.

  12. Chronic psychosocial stress disturbs long-bone growth in adolescent mice

    Directory of Open Access Journals (Sweden)

    Sandra Foertsch

    2017-12-01

    Full Text Available Although a strong association between psychiatric and somatic disorders is generally accepted, little is known regarding the interrelationship between mental and skeletal health. Although depressive disorders have been shown to be strongly associated with osteoporosis and increased fracture risk, evidence from post-traumatic stress disorder (PTSD patients is less consistent. Therefore, the present study investigated the influence of chronic psychosocial stress on bone using a well-established murine model for PTSD. C57BL/6N mice (7 weeks old were subjected to chronic subordinate colony housing (CSC for 19 days, whereas control mice were singly housed. Anxiety-related behavior was assessed in the open-field/novel-object test, after which the mice were euthanized to assess endocrine and bone parameters. CSC mice exhibited increased anxiety-related behavior in the open-field/novel-object test, increased adrenal and decreased thymus weights, and unaffected plasma morning corticosterone. Microcomputed tomography and histomorphometrical analyses revealed significantly reduced tibia and femur lengths, increased growth-plate thickness and reduced mineral deposition at the growth plate, suggesting disturbed endochondral ossification during long-bone growth. This was associated with reduced Runx2 expression in hypertrophic chondrocytes in the growth plate. Trabecular thicknesses and bone mineral density were significantly increased in CSC compared to singly housed mice. Tyrosine hydroxylase expression was increased in bone marrow cells located at the growth plates of CSC mice, implying that local adrenergic signaling might be involved in the effects of CSC on the skeletal phenotype. In conclusion, chronic psychosocial stress negatively impacts endochondral ossification in the growth plate, affecting both longitudinal and appositional bone growth in adolescent mice.

  13. MutY-Homolog (MYH) inhibition reduces pancreatic cancer cell growth and increases chemosensitivity.

    Science.gov (United States)

    Sharbeen, George; Youkhana, Janet; Mawson, Amanda; McCarroll, Joshua; Nunez, Andrea; Biankin, Andrew; Johns, Amber; Goldstein, David; Phillips, Phoebe

    2017-02-07

    Patients with pancreatic ductal adenocarcinoma (PC) have a poor prognosis due to metastases and chemoresistance. PC is characterized by extensive fibrosis, which creates a hypoxic microenvironment, and leads to increased chemoresistance and intracellular oxidative stress. Thus, proteins that protect against oxidative stress are potential therapeutic targets for PC. A key protein that maintains genomic integrity against oxidative damage is MutY-Homolog (MYH). No prior studies have investigated the function of MYH in PC cells. Using siRNA, we showed that knockdown of MYH in PC cells 1) reduced PC cell proliferation and increased apoptosis; 2) further decreased PC cell growth in the presence of oxidative stress and chemotherapy agents (gemcitabine, paclitaxel and vincristine); 3) reduced PC cell metastatic potential; and 4) decreased PC tumor growth in a subcutaneous mouse model in vivo. The results from this study suggest MYH may be a novel therapeutic target for PC that could potentially improve patient outcome by reducing PC cell survival, increasing the efficacy of existing drugs and reducing metastatic spread.

  14. Finite element study of growth stress formation in wood and related distortion of sawn timber

    DEFF Research Database (Denmark)

    Ormarsson, Sigurdur; Dahlblom, O.; Johansson, M.

    2009-01-01

    -related stresses in wood (drying distortions) and growth-related stresses (distortions appearing when logs are split up to timber boards by sawing). To get more knowledge on how these distortions can be reduced in wooden products, there is a need for improved understanding of this material behaviour through good...... numerical tools developed from empirical data. A three-dimensional finite element board distortion model developed by Ormarsson (1999) has been extended to include the influence of growth stresses by incorporating a one-dimensional finite element growth stress model developed here. The growth stress model...... is formulated as an axisymmetric general plane strain model where material for all new annual rings is progressively added to the tree during the analysis. The simulation results presented include how stresses are progressively generated during the tree growth, distortions related to the redistribution...

  15. Effect of drought stress on growth, yield and seed quality of tomato (lycopersicon esculentum L.)

    International Nuclear Information System (INIS)

    Pervez, M.A.; Ayub, C.M.

    2009-01-01

    Plant growth is seriously affected by abiotic stresses such as drought, salinity or temperature. Drought is one of the most important limiting factors for agricultural crops and vegetable production in particular all around the world. Drought stress during vegetative or early reproductive growth usually reduces yield by reducing the number of seeds, seed size and seed quality. To assess the effect of drought stress on seed yield, seed quality and growth of tomato, the experiment was conducted in green house in plastic pots at Pen-y-Fridd field station, University of Wales, Bangor, U.K. during 2003-2004. Tomato cv. Moneymaker was used as a test crop. There were four treatments i.e. early stress (when first truss has set the fruits), middle stress (when fruits in first truss were fully matured and started changing their colour), late stress (when fruits on first truss were ripened fully), whereas in control no stress was imposed. Analysis of data regarding various attributes (fruit weight and shoot dry weight per plant, number of seeds per fruit, total number of seeds and seed weight per plant and vigour of seed) showed that drought stress had non-significant effect on vigour, quality and yield of tomato seed. Plant height, number of leaves and number of fruits per plant showed significant results toward drought stress signifying drought effects on growth of tomato. (author)

  16. Water stress drastically reduces root growth and inulin yield in Cichorium intybus (var. sativum) independently of photosynthesis

    Science.gov (United States)

    Vandoorne, B.; Mathieu, A.-S.; Van den Ende, W.; Vergauwen, R.; Périlleux, C.; Javaux, M.; Lutts, S.

    2012-01-01

    Root chicory (Cichorium intybus var. sativum) is a cash crop cultivated for inulin production in Western Europe. This plant can be exposed to severe water stress during the last 3 months of its 6-month growing period. The aim of this study was to quantify the effect of a progressive decline in water availability on plant growth, photosynthesis, and sugar metabolism and to determine its impact on inulin production. Water stress drastically decreased fresh and dry root weight, leaf number, total leaf area, and stomatal conductance. Stressed plants, however, increased their water-use efficiency and leaf soluble sugar concentration, decreased the shoot-to-root ratio and lowered their osmotic potential. Despite a decrease in photosynthetic pigments, the photosynthesis light phase remained unaffected under water stress. Water stress increased sucrose phosphate synthase activity in the leaves but not in the roots. Water stress inhibited sucrose:sucrose 1-fructosyltransferase and fructan:fructan 1 fructosyltransferase after 19 weeks of culture and slightly increased fructan 1-exohydrolase activity. The root inulin concentration, expressed on a dry-weight basis, and the mean degree of polymerization of the inulin chain remained unaffected by water stress. Root chicory displayed resistance to water stress, but that resistance was obtained at the expense of growth, which in turn led to a significant decrease in inulin production. PMID:22577185

  17. Salt and alkali stresses reduction in wheat by plant growth promoting haloalkaliphilic bacteria

    OpenAIRE

    Torbaghan, Mehrnoush Eskandari; Lakzian, Amir; Astaraei, Ali Reza; Fotovat, Amir; Besharati, Hossein

    2017-01-01

    Haloalkaliphilic bacteria have plant growth promoting characteristics that can be used to deal with different environmental stresses. To study the effect of haloalkaliphilic bacteria to reduce salinity and alkalinity stress in wheat, 48 isolates were isolated and grouped into halophiles, alkaliphiles and haloalkaliphiles based on growth characteristics. The ammonia, 3-indole acetic acid and ACC (1-aminocyclopropane-1-carboxylate) deaminase production were studied. Wheat yield was evaluated in...

  18. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin.

    Science.gov (United States)

    Rowe, James H; Topping, Jennifer F; Liu, Junli; Lindsey, Keith

    2016-07-01

    Understanding the mechanisms regulating root development under drought conditions is an important question for plant biology and world agriculture. We examine the effect of osmotic stress on abscisic acid (ABA), cytokinin and ethylene responses and how they mediate auxin transport, distribution and root growth through effects on PIN proteins. We integrate experimental data to construct hormonal crosstalk networks to formulate a systems view of root growth regulation by multiple hormones. Experimental analysis shows: that ABA-dependent and ABA-independent stress responses increase under osmotic stress, but cytokinin responses are only slightly reduced; inhibition of root growth under osmotic stress does not require ethylene signalling, but auxin can rescue root growth and meristem size; osmotic stress modulates auxin transporter levels and localization, reducing root auxin concentrations; PIN1 levels are reduced under stress in an ABA-dependent manner, overriding ethylene effects; and the interplay among ABA, ethylene, cytokinin and auxin is tissue-specific, as evidenced by differential responses of PIN1 and PIN2 to osmotic stress. Combining experimental analysis with network construction reveals that ABA regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. Impact of plant growth promoting bacillus subtilis on growth and physiological parameters of bassia indica (indian bassia) grown udder salt stress

    International Nuclear Information System (INIS)

    Abeer, H.; Asma, A. H.; Allah, A.; Qarawi, A.; Shalawi, A.; Dilfuza, E.

    2015-01-01

    In this study, the role of a salt-tolerant plant growth-promoting bacterium (PGPR), Bacillus subtilis, in the alleviation of salinity stress during the growth of Indian bassia (Bassia indica (Wight) A.J. Scott), was studied under ccontrolled growth chamber conditions following seed inoculation. Physiological parameters such as neutral and phospholipids, fatty acid composition as well as photosynthetic pigments, were investigated. Salinity inhibited shoot and root length by 16 and 42 percentage, dry weight by 37 and 23 percentage respectively and negatively affected physiological parameters. Inoculation of unstressed and salt-stressed Indian bassia with B. subtilis significantly improved root and shoot growth, total lipid content, the phospholipid fraction, photosynthetic pigments (chlorophyll a and b and carotenoid contents) and also increased oleic (C 18:1 ), linoleic (C 18:2 ) and linolenic (C 18:3 ) acids in plant leaves compared to uninoculated plants. The salt-tolerant PGPR, B. subtilis could act synergistically to promote the growth and fitness of Indian bassia plants under salt stress by providing an additional supply of an auxin (IAA) and induce salt stress resistance by reducing stress ethylene levels. (author)

  20. Aging and oxidative stress reduce the response of human articular chondrocytes to insulin-like growth factor 1 and osteogenic protein 1.

    Science.gov (United States)

    Loeser, Richard F; Gandhi, Uma; Long, David L; Yin, Weihong; Chubinskaya, Susan

    2014-08-01

    To determine the effects of aging and oxidative stress on the response of human articular chondrocytes to insulin-like growth factor 1 (IGF-1) and osteogenic protein 1 (OP-1). Chondrocytes isolated from normal articular cartilage obtained from tissue donors were cultured in alginate beads or monolayer. Cells were stimulated with 50-100 ng/ml of IGF-1, OP-1, or both. Oxidative stress was induced using tert-butyl hydroperoxide. Sulfate incorporation was used to measure proteoglycan synthesis, and immunoblotting of cell lysates was performed to analyze cell signaling. Confocal microscopy was performed to measure nuclear translocation of Smad4. Chondrocytes isolated from the articular cartilage of tissue donors ranging in age from 24 years to 81 years demonstrated an age-related decline in proteoglycan synthesis stimulated by IGF-1 and IGF-1 plus OP-1. Induction of oxidative stress inhibited both IGF-1- and OP-1-stimulated proteoglycan synthesis. Signaling studies showed that oxidative stress inhibited IGF-1-stimulated Akt phosphorylation while increasing phosphorylation of ERK, and that these effects were greater in cells from older donors. Oxidative stress also increased p38 phosphorylation, which resulted in phosphorylation of Smad1 at the Ser(206) inhibitory site and reduced nuclear accumulation of Smad1. Oxidative stress also modestly reduced OP-1-stimulated nuclear translocation of Smad4. These results demonstrate an age-related reduction in the response of human chondrocytes to IGF-1 and OP-1, which are 2 important anabolic factors in cartilage, and suggest that oxidative stress may be a contributing factor by altering IGF-1 and OP-1 signaling. Copyright © 2014 by the American College of Rheumatology.

  1. Effect of applied environmental stress on growth, photosynthesis, carbon allocation, and hydrocarbon production in Euphorbia lathyris

    International Nuclear Information System (INIS)

    Taylor, S.E.; Calvin, M.

    1988-01-01

    Photosynthetic activity was reduced by salinity stress, but is was found to be less sensitive than growth. Salinity stress also caused changes in the concentrations of specific cations. Moderate water stress had little effect on growth, but large changes in hydrocarbon production were still observed. Carbon allocation experiments with radiolabeled carbon indicated that carbon for latex production was supplied by nearby leaves, with some translocation down the stem also occurring

  2. On the influence of abiotic stress conditions on growth of barley and bean and their predisposition for pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Oerke, E.C.; Schoenbeck, F.

    1986-01-01

    Shorttime changes of environmental conditions stressed barley and bean and affected plant growth and their predisposition for various pathogens. Moderate stress intensities as low or high temperatures, water or light deficits, increased the susceptibility to Erysiphe graminis var. hordei or Uromyces phaseoli and reduced disease level of spot blotch caused by Cochliobolus sativus, respectively. There was only little effect on plant growth in that case. Intensive stress as a result of combinations of unfavorable environmental conditions or longtime continuance of moderate stress reduced the plant growth and turned the predisposing effect to the opposite: after the treatment, plants were more resistent to diseases caused by biotrophic fungi, whereas there was increased susceptibility to the perthotrophic fungus. High intensities of fertilization acted as an additional stress and intensified the plant reaction to environmental alterations. The variation of the predisposition is discussed in relation to stress intensity.

  3. Effects of mechanical stress or abscisic acid on growth, water status and leaf abscisic acid content of eggplant seedlings

    Science.gov (United States)

    Latimer, J. G.; Mitchell, C. A.

    1988-01-01

    Container-grown eggplant (Solanum melongena L. var esculentum Nees. 'Burpee's Black Beauty') seedlings were conditioned with brief, periodic mechanical stress or abscisic acid (ABA) in a greenhouse prior to outdoor exposure. Mechanical stress consisted of seismic (shaking) or thigmic (stem flexing) treatment. Exogenous ABA (10(-3) or 10(-4)M) was applied as a soil drench 3 days prior to outdoor transfer. During conditioning, only thigmic stress reduced stem elongation and only 10(-3) M ABA reduced relative growth rate (RGR). Both conditioning treatments increased leaf specific chlorophyll content, but mechanical stress did not affect leaf ABA content. Outdoor exposure of unconditioned eggplant seedlings decreased RGR and leaf-specific chlorophyll content, but tended to increase leaf ABA content relative to that of plants maintained in the greenhouse. Conditioning did not affect RGR of plants subsequently transferred outdoors, but did reduce stem growth. Seismic stress applied in the greenhouse reduced dry weight gain by plants subsequently transferred outdoors. Mechanical stress treatments increased leaf water potential by 18-25% relative to that of untreated plants.

  4. Effects of drought stress on growth, solute accumulation and membrane stability of leafy vegetable, huckleberry (Solanum scabrum Mill.).

    Science.gov (United States)

    Assaha, Dekoum Vincent Marius; Liu, Liyun; Ueda, Akihiro; Nagaoka, Toshinori; Saneoka, Hirofumi

    2016-01-01

    The present study sought to investigate the factors implicated in growth impairment of huckleberry (a leafy vegetable) under water stress conditions. To achieve this, seedlings of plant were subjected to control, mild stress and severe stress conditions for 30 days. Plant growth, plant water relation, gas exchange, oxidative stress damage, electrolyte leakage rate, mineral content and osmolyte accumulation were measured. Water deficit markedly decreased leaf, stem and root growth. Leaf photosynthetic rate was tremendously reduced by decrease in stomatal conductance under stress conditions. Malondialdehyde (MDA) content markedly increased under mild (82%) and severe (131%) stress conditions, while electrolyte leakage rate (ELR) increased by 59% under mild stress and 3-fold under severe stress. Mineral content in leafwas high in stressed plants, while proline content markedly increased under mild stress (12-fold) and severe stress (15-fold), with corresponding decrease in osmotic potential at full turgor and an increase in osmotic adjustment. These results suggest that maintenance of high mineral content and osmotic adjustment constitute important adaptations in huckleberry under water deficit conditions and that growth depression under drought stress would be mainly caused by increased electrolyte leakage resulting from membrane damage induced by oxidative stress.

  5. Interventions: Employees’ Perceptions of What Reduces Stress

    Directory of Open Access Journals (Sweden)

    Silvia Pignata

    2017-01-01

    Full Text Available Objective. To build upon research evaluating stress interventions, this qualitative study tests the framework of the extended Job Demands-Resources model to investigate employees’ perceptions of the stress-reduction measures implemented at 13 Australian universities. Methods. In a cross-sectional survey design, tenured and contract staff indicated whether their overall level of stress had changed during the previous three-four years, and, if so, they described the major causes. A total of 462 staff reported that their level of stress had decreased; the study examines commentary from 115 academic and 304 nonacademic staff who provided details of what they perceived to be effective in reducing stress. Results. Thematic analyses show that the key perceived causes were changes in job or work role, new heads of departments or supervisors, and the use of organizational strategies to reduce or manage stress. A higher percentage of academic staff reported reduced stress due to using protective coping strategies or their increased recognition and/or success, whereas a higher percentage of nonacademic staff reported reduced stress due to increases in staffing resources and/or systems. Conclusion. These results identify the importance of implementing multilevel strategies to enhance employees’ well-being. Nonacademic staff, in particular, specified a variety of organizational stress-reduction interventions.

  6. Endoplasmic reticulum stress disrupts placental morphogenesis: implications for human intrauterine growth restriction.

    Science.gov (United States)

    Yung, Hong Wa; Hemberger, Myriam; Watson, Erica D; Senner, Claire E; Jones, Carolyn P; Kaufman, Randal J; Charnock-Jones, D Stephen; Burton, Graham J

    2012-12-01

    We recently reported the first evidence of placental endoplasmic reticulum (ER) stress in the pathophysiology of human intrauterine growth restriction. Here, we used a mouse model to investigate potential underlying mechanisms. Eif2s1(tm1RjK) mice, in which Ser51 of eukaryotic initiation factor 2 subunit alpha (eIF2α) is mutated, display a 30% increase in basal translation. In Eif2s1(tm1RjK) placentas, we observed increased ER stress and anomalous accumulation of glycoproteins in the endocrine junctional zone (Jz), but not in the labyrinthine zone where physiological exchange occurs. Placental and fetal weights were reduced by 15% (97 mg to 82 mg, p growth factor for placental development; indeed, activity in the Pdk1-Akt-mTOR pathways was decreased in Eif2s1(tm1RjK) placentas, indicating loss of Igf2 signalling. Furthermore, we observed premature differentiation of trophoblast progenitors at E9.5 in mutant placentas, consistent with the in vitro results and with the disproportionate development of the labyrinth and Jz seen in placentas at E18.5. Similar disproportion has been reported in the Igf2-null mouse. These results demonstrate that ER stress adversely affects placental development, and that modulation of post-translational processing, and hence bioactivity, of secreted growth factors contributes to this effect. Placental dysmorphogenesis potentially affects fetal growth through reduced exchange capacity. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  7. Fatigue crack growth behavior under cyclic thermal transient stress

    International Nuclear Information System (INIS)

    Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.

    1986-01-01

    Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)

  8. Fatigue crack growth behavior under cyclic transient thermal stress

    International Nuclear Information System (INIS)

    Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.

    1987-01-01

    Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)

  9. The Effects of Oxidation Layer, Temperature, and Stress on Tin Whisker Growth: A Short Review

    Science.gov (United States)

    Mahim, Z.; Salleh, M. A. A.; Khor, C. Y.

    2018-03-01

    In order to reduce the Tin (Sn) whisker growth phenomenon in solder alloys, the researcher all the world has studied the factor of this behaviour. However, this phenomenon still hunted the electronic devices and industries. The whiskers growth were able to cause the electrical short, which would lead to the catastrophic such as plane crush, the failure of heart pacemaker, and the lost satellite connection. This article focuses on the three factors that influence the whiskers growth in solder alloys which is stress, oxidation layer and temperature. This findings were allowed the researchers to develop various method on how to reduce the growth of the Sn whiskers.

  10. Brief quiet ego contemplation reduces oxidative stress and mind-wandering

    Directory of Open Access Journals (Sweden)

    Heidi A. Wayment

    2015-09-01

    Full Text Available Excessive self-concern increases perceptions of threat and defensiveness. In contrast, fostering a more inclusive and expanded sense of self can reduce stress and improve well-being. We developed and tested a novel brief intervention designed to strengthen a student’s compassionate self-identity, an identity that values balance and growth by reminding them of four quiet ego characteristics: detached awareness, inclusive identity, perspective taking, and growth. Students (N = 32 in their first semester of college who reported greater self-protective (e.g., defensive goals in the first two weeks of the semester were invited to participate in the study. Volunteers were randomly assigned to one of three conditions: quiet ego contemplation (QEC, QEC with virtual reality headset (QEC-VR, and control. Participants came to the lab three times to engage in a 15-minute exercise in a 30-day period. The 15-minute Quiet Ego Contemplation (QEC briefly described each quiet ego characteristic followed by a few minutes time to reflect on what that characteristic meant to them. Those in the QEC condition reported improved quiet ego characteristics and pluralistic thinking, decreases in a urinary marker of oxidative stress, and reduced mind-wandering on a cognitive task. Contrary to expectation, participants who wore the VR headsets while listening to the QEC demonstrated the least improvement. Results suggest that a brief intervention that reduces self-focus and strengthens a more compassionate self-view may offer an additional resource that individuals can use in their everyday lives.

  11. The Impact of Early Life Stress on Growth and Cardiovascular Risk: A Possible Example for Autonomic Imprinting?

    Science.gov (United States)

    Buchhorn, Reiner; Meint, Sebastian; Willaschek, Christian

    2016-01-01

    Early life stress is imprinting regulatory properties with life-long consequences. We investigated heart rate variability in a group of small children with height below the third percentile, who experienced an episode of early life stress due to heart failure or intra uterine growth retardation. These children appear to develop autonomic dysfunction in later life. Compared to the healthy control group heart rate variability (HRV) is reduced on average in a group of 101 children with short stature. Low HRV correlates to groups of children born small for gestational age (SGA), children with cardiac growth failure and children with congenital syndromes, but not to those with constitutional growth delay (CGD), who had normal HRV. Reduced HRV indicated by lower RMSSD and High Frequency (HF)-Power is indicating reduced vagal activity as a sign of autonomic imbalance. It is not short stature itself, but rather the underlying diseases that are the cause for reduced HRV in children with height below the third percentile. These high risk children-allocated in the groups with an adverse autonomic imprinting in utero or infancy (SGA, congenital heart disease and congenital syndromes)-have the highest risk for 'stress diseases' such as cardiovascular disease in later life. The incidence of attention deficit disorder is remarkably high in our group of short children.

  12. water stress mediated changes in growth, physiology and secondary metabolites of desi ajwain (trachyspermum ammi l.)

    International Nuclear Information System (INIS)

    Azhar, N.; Hussain, B.; Abbasi, K.Y.

    2011-01-01

    Biotic and abiotic stresses exert a considerable influence on the production of several secondary metabolites in plants; water stress is one of the most important abiotic stress factors. This study was carried out to elucidate the effect of drought stress on growth, physiology and secondary metabolite production in desi ajwain (Trachyspermum ammi L.). Plants were grown in pots and three drought levels (100%, 80% and 60%) of field capacity were created. The experiment was laid out in complete randomized design (CRD) with three replicates. Data on growth, physiological and biochemical parameters were recorded and analyzed statistically. Physiological parameters like transpiration rate and stomatal conductance decreased concentration increased. The photosynthetic rate showed significantly with increasing water stress levels, but internal CO/sub 2/ non-significant reduction from 100% field capacity to 80% field capacity but increased at 60% field capacity. Growth parameters including plant height, herb fresh and dry weights were reduced significantly with increasing stress levels, while total phenolic contents and chlorophyll contents increased under water stress conditions. These results suggest that cultivation of medicinal plants like desi ajwain under drought stress could enhance the production of secondary metabolites. (author)

  13. Stress corrosion crack growth in unirradiated zircaloy

    International Nuclear Information System (INIS)

    Pettersson, K.

    1978-10-01

    Experimental techniques suitable for the determination of stress corrosion crack growth rates in irradiated Zircaloy tube have been developed. The techniques have been tested on unirradiated. Zircaloy and it was found that the results were in good agreement with the results of other investigations. Some of the results were obtained at very low stress intensities and the crack growth rates observed, gave no indication of the existance of a K sub(ISCC) for iodine induced stress corrosion cracking in Zircaloy. This is of importance both for fuel rod behavior after a power ramp and for long term storage of spent Zircaloy-clad fuel. (author)

  14. Growth and Physiological Responses of Phaseolus Species to Salinity Stress

    Directory of Open Access Journals (Sweden)

    J. S. Bayuelo-Jiménez

    2012-01-01

    Full Text Available This paper reports the changes on growth, photosynthesis, water relations, soluble carbohydrate, and ion accumulation, for two salt-tolerant and two salt-sensitive Phaseolus species grown under increasing salinity (0, 60 and 90 mM NaCl. After 20 days exposure to salt, biomass was reduced in all species to a similar extent (about 56%, with the effect of salinity on relative growth rate (RGR confined largely to the first week. RGR of salt-tolerant species was reduced by salinity due to leaf area ratio (LAR reduction rather than a decline in photosynthetic capacity, whereas unit leaf rate and LAR were the key factors in determining RGR on salt-sensitive species. Photosynthetic rate and stomatal conductance decreased gradually with salinity, showing significant reductions only in salt-sensitive species at the highest salt level. There was little difference between species in the effect of salinity on water relations, as indicated by their positive turgor. Osmotic adjustment occurred in all species and depended on higher K+, Na+, and Cl− accumulation. Despite some changes in soluble carbohydrate accumulation induced by salt stress, no consistent contributions in osmotic adjustment could be found in this study. Therefore, we suggest that tolerance to salt stress is largely unrelated to carbohydrate accumulation in Phaseolus species.

  15. Universal stress proteins are important for oxidative and acid stress resistance and growth of Listeria monocytogenes EGD-e in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Christa Seifart Gomes

    Full Text Available BACKGROUND: Pathogenic bacteria maintain a multifaceted apparatus to resist damage caused by external stimuli. As part of this, the universal stress protein A (UspA and its homologues, initially discovered in Escherichia coli K-12 were shown to possess an important role in stress resistance and growth in several bacterial species. METHODS AND FINDINGS: We conducted a study to assess the role of three homologous proteins containing the UspA domain in the facultative intracellular human pathogen Listeria monocytogenes under different stress conditions. The growth properties of three UspA deletion mutants (Δlmo0515, Δlmo1580 and Δlmo2673 were examined either following challenge with a sublethal concentration of hydrogen peroxide or under acidic conditions. We also examined their ability for intracellular survival within murine macrophages. Virulence and growth of usp mutants were further characterized in invertebrate and vertebrate infection models. Tolerance to acidic stress was clearly reduced in Δlmo1580 and Δlmo0515, while oxidative stress dramatically diminished growth in all mutants. Survival within macrophages was significantly decreased in Δlmo1580 and Δlmo2673 as compared to the wild-type strain. Viability of infected Galleria mellonella larvae was markedly higher when injected with Δlmo1580 or Δlmo2673 as compared to wild-type strain inoculation, indicating impaired virulence of bacteria lacking these usp genes. Finally, we observed severely restricted growth of all chromosomal deletion mutants in mice livers and spleens as compared to the load of wild-type bacteria following infection. CONCLUSION: This work provides distinct evidence that universal stress proteins are strongly involved in listerial stress response and survival under both in vitro and in vivo growth conditions.

  16. Growth and physiological responses to water and nutrient stress in ...

    African Journals Online (AJOL)

    Growth and physiological responses to water and nutrient stress in oil palm. ... changes in growth, physiology and nutrient concentration in response to two watering regimes (well-watered and water-stress conditions) and ... from 32 Countries:.

  17. Hepatocyte Growth Factor Reduces Free Cholesterol-Mediated Lipotoxicity in Primary Hepatocytes by Countering Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Mayra Domínguez-Pérez

    2016-01-01

    Full Text Available Cholesterol overload in the liver has shown toxic effects by inducing the aggravation of nonalcoholic fatty liver disease to steatohepatitis and sensitizing to damage. Although the mechanism of damage is complex, it has been demonstrated that oxidative stress plays a prominent role in the process. In addition, we have proved that hepatocyte growth factor induces an antioxidant response in hepatic cells; in the present work we aimed to figure out the protective effect of this growth factor in hepatocytes overloaded with free cholesterol. Hepatocytes from mice fed with a high-cholesterol diet were treated or not with HGF, reactive oxygen species present in cholesterol overloaded hepatocytes significantly decreased, and this effect was particularly associated with the increase in glutathione and related enzymes, such as γ-gamma glutamyl cysteine synthetase, GSH peroxidase, and GSH-S-transferase. Our data clearly indicate that HGF displays an antioxidant response by inducing the glutathione-related protection system.

  18. Effect of Drought Stress at Different Growth Stages on Yield and Yield Components of Six Rice (Oryza sativa L. Genotypes

    Directory of Open Access Journals (Sweden)

    Sharifunnessa Moonmoon

    2017-12-01

    Full Text Available Drought stress affects plant growth and development and ultimately, reduced grain yield of rice. But stress at different growth stages may respond differently which is still unclear. Therefore, a pot experiment was carried out with six rice genotypes to determine the critical growth stage where drought stress effect on yield reduction and to find stress tolerance mechanism in rice genotypes. Drought stress (control i.e. no stress and 40% field capacity, FC was imposed on Binadhan-13, Kalizira, BRRI dhan34, Ukunimodhu, RM-100-16 and NERICA mutant rice genotypes at maximum tillering, panicle initiation and grain filling stages and discontinued when the specific stage was over. The experiment was laid out in a complete randomized design with three replications. Drought stress affected number of effective tiller hill-1, number of spikelets panicle-1, filled grains hill-1, 1000-grain weight and grain yield. Binadhan-13 produced the highest grain yield and the lowest sterility under drought stress at grain filling stage. Percentage of spikelet sterility increased under drought stress (40% FC especially at the panicle initiation stage resulting low grain yield. Among the tested genotypes Binadhan-13 performed well by reducing spikelet sterility under drought stress condition. For 1000-grain weight and grain yield, grain filling stage was found more crucial. From the current research, drought tolerance mechanism was found in genotypes Binadhan-13 and NERICA mutant. [Fundam Appl Agric 2017; 2(3.000: 285-289

  19. Effect of salt-stresses on the hormonal regulation of growth, photosynthesis and distribution of 14C - assimilates in bean plants

    International Nuclear Information System (INIS)

    Starck, Z.; Karwowska, R.

    1978-01-01

    The experiments were carried out to study the effect of salt-stresses and ABA on the growth photosynthesis and translocation of assimilates in bean plants. It was planned to reduce the content of GA 3 and cytokinins and increase ABA content in salinized plants. The results show that salt-stress (NaCl and concentrated nutrient solution), reduces all the investigated processes in a different degree. NaCl-stress retarded most seriously growth of apical part and blades in contrast to 7-times concentrated nutrient solution decreasing mainly the rate of root and blade growth. Photosynthesis and 14 C-translocation of 14 C-assimilates were retarded more seriously by NaCl than by 7-times concentrated nutrient solution. In the case of seriously stressed plants GA 3 and cytokinins (more effectively) reversed the negative effect of stress conditions both on the photosynthesis and on the 14 C-translocation. On the basis of the obtained results, it seems that changes in the rate of investigated processes in salinized plants are due to hormonal disturbances which cause directly or indirectly retardation of photosynthesis and translocation of assimilates. (author)

  20. Effect of salt-stresses on the hormonal regulation of growth, photosynthesis and distribution of 14C-assimilates in bean plants

    Directory of Open Access Journals (Sweden)

    Z. Starck

    2015-01-01

    Full Text Available The experiments were carried out to study the effect of salt-stresses and ABA on the growth, photosynthesis and translocation of assimilates in bean plants. It was planed to reduce the content of GA3 and cytokinins and increase ABA content in salinized plants. The results show that salt-stress (NaCl and concentrated nutrient solution, reduce all the investigated processes in a different degree. NaCl-stress retarded most seriously growth of apical part and blades in contrast to 7-times concentrated nutrient solution decreasing mainly the rate of root and blade growth. Photosynthesis and 14C-translocation of 14C-assimilates were retarded more seriously by NaCl than by 7-times concentrated nutrient. solution. In the case of seriously stressed plants GA3 and cytokinins (more effectively reversed the ,negative effect of stress conditions both on the photosynthesis and on the 14C-tramslocation. On the basis of the obtained results, it seemes that changes in the rate of investigated processes in salinized plants are due to hormonal disturbances which cause directly or indirectly retardation of photosynthesis and trans-location of assimilates.

  1. Plant Growth Promoting Rhizobacteria in Amelioration of Salinity Stress: A Systems Biology Perspective

    Directory of Open Access Journals (Sweden)

    Gayathri Ilangumaran

    2017-10-01

    Full Text Available Salinity affects plant growth and is a major abiotic stress that limits crop productivity. It is well-understood that environmental adaptations and genetic traits regulate salinity tolerance in plants, but imparting the knowledge gained towards crop improvement remain arduous. Harnessing the potential of beneficial microorganisms present in the rhizosphere is an alternative strategy for improving plant stress tolerance. This review intends to elucidate the understanding of salinity tolerance mechanisms attributed by plant growth promoting rhizobacteria (PGPR. Recent advances in molecular studies have yielded insights into the signaling networks of plant–microbe interactions that contribute to salt tolerance. The beneficial effects of PGPR involve boosting key physiological processes, including water and nutrient uptake, photosynthesis, and source-sink relationships that promote growth and development. The regulation of osmotic balance and ion homeostasis by PGPR are conducted through modulation of phytohormone status, gene expression, protein function, and metabolite synthesis in plants. As a result, improved antioxidant activity, osmolyte accumulation, proton transport machinery, salt compartmentalization, and nutrient status reduce osmotic stress and ion toxicity. Furthermore, in addition to indole-3-acetic acid and 1-aminocyclopropane-1-carboxylic acid deaminase biosynthesis, other extracellular secretions of the rhizobacteria function as signaling molecules and elicit stress responsive pathways. Application of PGPR inoculants is a promising measure to combat salinity in agricultural fields, thereby increasing global food production.

  2. Growth reponses of eggplant and soybean seedlings to mechanical stress in greenhouse and outdoor environments

    Science.gov (United States)

    Latimer, J. G.; Pappas, T.; Mitchell, C. A.

    1986-01-01

    Eggplant (Solanum melongena L. var. esculentum 'Burpee's Black Beauty') and soybean [Glycine max (L.) Merr. 'Wells II'] seedlings were assigned to a greenhouse or a windless or windy outdoor environment. Plants within each environment received either periodic seismic (shaking) or thigmic (flexing or rubbing) treatment, or were left undisturbed. Productivity (dry weight) and dimensional (leaf area and stem length) growth parameters generally were reduced more by mechanical stress in the greenhouse (soybean) or outdoor-windless environment (eggplant) than in the outdoor windy environment. Outdoor exposure enhanced both stem and leaf specific weights, whereas mechanical stress enhanced only leaf specific weight. Although both forms of controlled mechanical stress tended to reduce node and internode diameters of soybean, outdoor exposure increased stem diameter.

  3. Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars.

    Science.gov (United States)

    Anjum, Shakeel Ahmad; Tanveer, Mohsin; Ashraf, Umair; Hussain, Saddam; Shahzad, Babar; Khan, Imran; Wang, Longchang

    2016-09-01

    Drought stress is one of the major environmental factors responsible for reduction in crop productivity. In the present study, responses of two maize cultivars (Rung Nong 35 and Dong Dan 80) were examined to explicate the growth, yield, leaf gas exchange, leaf water contents, osmolyte accumulation, membrane lipid peroxidation, and antioxidant activity under progressive drought stress. Maize cultivars were subjected to varying field capacities (FC) viz., well-watered (80 % FC) and drought-stressed (35 % FC) at 45 days after sowing. The effects of drought stress were analyzed at 5, 10, 15, 20, ad 25 days after drought stress (DAS) imposition. Under prolonged drought stress, Rung Nong 35 exhibited higher reduction in growth and yield as compared to Dong Dan 80. Maize cultivar Dong Dan 80 showed higher leaf relative water content (RWC), free proline, and total carbohydrate accumulation than Run Nong 35. Malondialdehyde (MDA) and superoxide anion were increased with prolongation of drought stress, with higher rates in cultivar Run Nong 35 than cultivar Dong Dan 80. Higher production of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) and glutathione reductase (GR) resulted in improved growth and yield in Dong Dan 80. Overall, the cultivar Dong Dan 80 was better able to resist the detrimental effects of progressive drought stress as indicated by better growth and yield due to higher antioxidant enzymes, reduced lipid peroxidation, better accumulation of osmolytes, and maintenance of tissue water contents.

  4. Effects of salt stress on tillering nodes to the growth of winter wheat (Triticum aestivum L.)

    International Nuclear Information System (INIS)

    Qiong, Y.; Yuan, G.; Zhixia, X.; Xiaojing, L.

    2016-01-01

    In monsoon climate regions, the tillering nodes of winter wheat can be stressed by high salt accumulation on the soil surface in spring, thereby leading to salt-induced damage. To understand whether tillering nodes could be stressed by salinity and to estimate its effects on the growth of winter wheat under salt stress, the tillering nodes of two wheat cultivars, H-4589 (salt-sensitive) and J-32 (salt-tolerant), were treated with salinity to investigate the physiological and biochemical changes in seedling growth. The results indicated that salt stress on tillering nodes significantly reduced plant height and shoot dry weight; increased Na+ accumulation, soluble sugar and proline in both H-4589 and J-32; which demonstrated remarkable effects on the growth of winter wheat when the tillering nodes were under salt stress. Furthermore, equivalent Na+ accumulations were discovered in two cultivars when tillering nodes were under salt stress, while remarkably different Na+ accumulations were discovered in two cultivars when roots were under salt stress. Based on the results from anatomic analyses, we speculated that no anatomic differences in tillering nodes between two cultivars could give reason to the equivalent Na+ accumulations in two cultivars when tillering nodes were under salt stress; and more lignified endodermis in primary roots as well as larger reduction of lateral root number in salt-tolerant cultivars which contributed to preventing Na+ influx could explain the remarkably lower Na+ accumulation in salt-tolerant cultivar when roots were under salt stress. All of these results indicated that the tillering nodes could mediate Na+ influx from the environment leading to salt-induced damage to the growth of winter wheat. (author)

  5. Friction stress effects on mode I crack growth predictions

    NARCIS (Netherlands)

    Chen, Q.; Deshpande, V.S.; Giessen, E. van der; Needleman, A.

    2003-01-01

    The effect of a lattice friction stress on the monotonic growth of a plane strain mode I crack under small-scale yielding conditions is analyzed using discrete dislocation plasticity. When the friction stress is increased from zero to half the dislocation nucleation stress, the crack tip stress

  6. Longitudinal cross-lagged relationships between mindfulness, posttraumatic stress symptoms, and posttraumatic growth in adolescents following the Yancheng tornado in China.

    Science.gov (United States)

    An, Yuanyuan; Yuan, Guangzhe; Zhang, Na; Xu, Wei; Liu, Zhen; Zhou, Feng

    2018-08-01

    Treatment of posttraumatic stress symptoms and facilitation of posttraumatic growth are two encouraging areas of research, yet little is understood about the relationships between trait mindfulness, posttraumatic stress symptoms, and posttraumatic growth. Previous work suggests the linkages among these variables, but most studies have been conducted in adult samples. The aim of this study was to examine longitudinal cross-lagged relationships between mindfulness, posttraumatic stress symptoms, and posttraumatic growth among adolescent survivors of the 2016 Jiangsu tornado in China. Data was collected at two secondary schools located in Yancheng city, where the severe catastrophic damage occurred during the tornado. The sample included 247 adolescent survivors (59.5% girls) aged 12-14 years who were directly affected by the tornado. Participants self-reported their trait mindfulness, posttraumatic stress symptoms, and posttraumatic growth at two time points: 6-month (T1) and 9-month post-tornado (T2; attrition rate 17.4%). Cross-lagged structural equation modelling analyses were conducted. Results showed that posttraumatic stress symptoms at T1 significantly predicted reduced trait mindfulness at T2 but not posttraumatic growth; trait mindfulness at T1 did not significantly predict posttraumatic stress symptoms nor posttraumatic growth at T2; and posttraumatic growth at T1 did not predict trait mindfulness nor posttraumatic stress symptoms at T2. These findings suggested that posttraumatic stress symptoms may negatively influence the development of trait mindfulness in disaster-affected adolescents in China, and that posttraumatic growth may have unique implications for this young population which was not associated with posttraumatic stress symptoms or trait mindfulness. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Morpho-Physiological Responses of Maize to Drought Stress at Different Growth Stages in Northern Semi-Arid Region of Fars

    Directory of Open Access Journals (Sweden)

    R. Hemati

    2014-04-01

    Full Text Available In order to evaluate morpho-physiological responses of hybrid corn KSC750 to water stress at various stages of growth, a field experiment was conducted at the Pasargad region (northwest Fars in 2010. The experiment carried out as a randomized complete block design, with 3 replications. In this study, corn growth period was divided into three phases: the establishment of plant to tasseling (phase I, tasseling to dough development (phase II and dough development to ripening (phase III. Treatments were consisted of control, irrigation cut off after dough development, water stress of 75 percent of FC during vegetative phase and after dough development, water stress of 75 percent of FC during whole growth phase, water stress of 50 percent of FC during vegetative stage and after dough development and water stress of 50 percent of FC during whole growth phase. Results showed that mild drought stress (75% FC at vegetative phase was not significantly effected growth and yield of corn. However, application of drought stress during the whole growth period significantly reduced morphological parameters as well as yield and yield components. Based on these results, flowering and grain filling stages were identified as more sensitive stages to drought stress in corn. Moreover, irrigation cut off after dough development terminated to a satisfactory yield. The results indicated that, overall, under Pasargad region and similar agro climatic conditions, it would be possible to save water to 75 percentage of corn water requirement through application of deficit irrigation after dough development stage.

  8. Redox Signaling and CBF-Responsive Pathway Are Involved in Salicylic Acid-Improved Photosynthesis and Growth under Chilling Stress in Watermelon

    Science.gov (United States)

    Cheng, Fei; Lu, Junyang; Gao, Min; Shi, Kai; Kong, Qiusheng; Huang, Yuan; Bie, Zhilong

    2016-01-01

    Salicylic acid (SA) plays an important role in plant response to abiotic stresses. This study investigated the potential role of SA in alleviating the adverse effects of chilling stress on photosynthesis and growth in watermelon (Citrullus lanatus). Chilling stress induced the simultaneous accumulation of free and conjugated SA in watermelon plants, and the chilling-induced SA production was attributed to the phenylalanine ammonia-lyase pathway. Applying SA at moderate concentrations induced chilling tolerance, whereas inhibition of SA biosynthesis by L-α-aminooxy-β-phenylpropionic acid (AOPP) increased the photooxidation of PS II under chilling stress in watermelon, resulting in reduced photosynthesis and growth. Chilling induced a transient increase in the ratios of reduced to oxidized glutathione and reduced ascorbate to dehydroascorbate. Then, the expression of antioxidant genes was upregulated, and the activities of antioxidant enzymes were enhanced. Furthermore, SA-induced chilling tolerance was associated with cellular glutathione and ascorbate homeostasis, which served as redox signals to regulate antioxidant metabolism under chilling stress. AOPP treatment stimulated the chilling-induced expression of cold-responsive genes, particularly via C-repeat binding factors CBF3 and CBF4. These results confirm the synergistic role of SA signaling and the CBF-dependent responsive pathway during chilling stress in watermelon. PMID:27777580

  9. Redox Signaling and CBF-Responsive Pathway are Involved in Salicylic Acid-Improved Photosynthesis and Growth under Chilling Stress in Watermelon

    Directory of Open Access Journals (Sweden)

    Fei Cheng

    2016-10-01

    Full Text Available Salicylic acid (SA plays an important role in plant response to abiotic stresses. This study investigated the potential role of SA in alleviating the adverse effects of chilling stress on photosynthesis and growth in watermelon (Citrullus lanatus. Chilling stress induced the simultaneous accumulation of free and conjugated SA in watermelon plants, and the chilling-induced SA production was attributed to the phenylalanine ammonia-lyase pathway. Applying SA at moderate concentrations induced chilling tolerance, whereas inhibition of SA biosynthesis by L-ɑ-aminooxy-β-phenylpropionic acid (AOPP increased the photooxidation of PS II under chilling stress in watermelon, resulting in reduced photosynthesis and growth. Chilling induced a transient increase in the ratios of reduced to oxidized glutathione and reduced ascorbate to dehydroascorbate. Then, the expression of antioxidant genes was upregulated, and the activities of antioxidant enzymes were enhanced. Furthermore, SA-induced chilling tolerance was associated with cellular glutathione and ascorbate homeostasis, which served as redox signals to regulate antioxidant metabolism under chilling stress. AOPP treatment stimulated the chilling-induced expression of cold-responsive genes, particularly via C-repeat binding factors CBF3 and CBF4. These results confirm the synergistic role of SA signaling and the CBF-dependent responsive pathway during chilling stress in watermelon.

  10. Rock outcrops reduce temperature-induced stress for tropical conifer by decoupling regional climate in the semiarid environment.

    Science.gov (United States)

    Locosselli, Giuliano Maselli; Cardim, Ricardo Henrique; Ceccantini, Gregório

    2016-05-01

    We aimed to understand the effect of rock outcrops on the growth of Podocarpus lambertii within a microrefuge. Our hypothesis holds that the growth and survival of this species depend on the regional climate decoupling provided by rock outcrops. To test this hypothesis, we characterized the microclimate of (1) surrounding vegetation, (2) rock outcrop corridors, and (3) adjacencies. We assessed population structure by collecting data of specimen stem diameter and height. We also assessed differences between vegetation associated or not with outcrops using satellite imaging. For dendrochronological analyses, we sampled 42 individuals. Tree rings of 31 individuals were dated, and climate-growth relationships were tested. Rock outcrops produce a favorable microclimate by reducing average temperature by 4.9 °C and increasing average air humidity by 12 %. They also reduce the variability of atmospheric temperature by 42 % and air humidity by 20 % supporting a vegetation with higher leaf area index. Within this vegetation, specimen height was strongly constrained by the outcrop height. Although temperature and precipitation modulate this species growth, temperature-induced stress is the key limiting growth factor for this population of P. lambertii. We conclude that this species growth and survival depend on the presence of rock outcrops. These topography elements decouple regional climate in a favorable way for this species growth. However, these benefits are restricted to the areas sheltered by rock outcrops. Although this microrefuge supported P. lambertii growth so far, it is unclear whether this protection would be sufficient to withstand the stress of future climate changes.

  11. Investigating the Effect of Drought Stress on Growth and distribution of Purple Nutsedge (Cyperus rotundus L.

    Directory of Open Access Journals (Sweden)

    N. Karimi Arpanahi

    2017-08-01

    Full Text Available Introduction: Drought is one of the most important and common environmental stresses in the country, which affect different stages of plant growth and development. Drought can affect plants growth in various ways, thereby reduces and delays germination, and decreases shoot growth and dry matter production. In the case of high water stress, it results showed great reductions in photosynthesis and disruption of the physiological processes, as well as growth stop and eventually plant death.Purple nutsedge (Cyperus rotundus L. has been listed as the world’s worst weed based onits worldwide distribution (92 countries and interference with over 50 crops. It causes high yield losses in fruiting vegetables and cucurbits in eastern and southeastern parts of Iran, where drought stress is a common phenomenon. Therefore, it is of utmost importance to understand the response of this noxious weed species to drought stress. Materials and Methods: In order to study the effect of drought stress on growth and distribution of purple nutsedge, two separate experiments were carried out in a randomized complete block design with three replications in the Research Greenhouse at Birjand University in 2013. The first experiment consisted of 6 irrigation interval levels (3, 6, 9, 12, 15 and 18- day irrigation intervals and the second one were 5 irrigation levels based on field capacity (12.5, 25, 50, 75 and 100 % FC. Results and Discussion: ANOVA results of both experiments showed that all growth characteristics of purple nutsedge were affected by drought stress. The results of irrigation interval stress experiment showed that the maximum height (76 cm, leaf area (110.83 cm2, stem number (4.66 stemperpot, shoot dry weight (4.132 gr per plant, tuber number (7.66 tuber per pot and total underground organs dry weight (4.435 gr per plant were observed in 3- day irrigation interval. Also, the lowest amount of these characteristics was obtained in 18- day irrigation interval

  12. Posttraumatic stress disorder and posttraumatic growth in breast cancer patients: a systematic review.

    Science.gov (United States)

    Koutrouli, Natalia; Anagnostopoulos, Fotios; Potamianos, Gregory

    2012-01-01

    Breast cancer, potentially a traumatic stressor, may be accompanied by negative outcomes, such as posttraumatic stress disorder or positive changes, such as posttraumatic growth. The authors reviewed 24 studies published from 1990 to 2010 that measured posttraumatic stress disorder and posttraumatic growth in women with breast cancer, in terms of frequency rates, factors associated with posttraumatic stress disorder and posttraumatic growth, and their interrelationships. A relatively small percentage of women experienced posttraumatic stress disorder, while the majority of them reported posttraumatic growth. Age, education, economic status, subjective appraisal of the threat of the disease, treatment, support from significant others, and positive coping strategies were among the most frequently reported factors associated with these phenomena. Moreover, posttraumatic stress disorder and posttraumatic growth were not related. Future research should shed more light on posttraumatic growth and posttraumatic stress disorder among women with breast cancer, the parameters that influence them, and their possible relationship.

  13. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings.

    Science.gov (United States)

    Liu, Fangchun; Xing, Shangjun; Ma, Hailin; Du, Zhenyu; Ma, Bingyao

    2013-10-01

    One of the proposed mechanisms through which plant growth-promoting rhizobacteria (PGPR) enhance plant growth is the production of plant growth regulators, especially cytokinin. However, little information is available regarding cytokinin-producing PGPR inoculation on growth and water stress consistence of forest container seedlings under drought condition. This study determined the effects of Bacillus subtilis on hormone concentration, drought resistance, and plant growth under water-stressed conditions. Although no significant difference was observed under well-watered conditions, leaves of inoculated Platycladus orientalis (oriental thuja) seedlings under drought stress had higher relative water content and leaf water potential compared with those of noninoculated ones. Regardless of water supply levels, the root exudates, namely sugars, amino acids and organic acids, significantly increased because of B. subtilis inoculation. Water stress reduced shoot cytokinins by 39.14 %. However, inoculation decreased this deficit to only 10.22 %. The elevated levels of cytokinins in P. orientalis shoot were associated with higher concentration of abscisic acid (ABA). Stomatal conductance was significantly increased by B. subtilis inoculation in well-watered seedlings. However, the promoting effect of cytokinins on stomatal conductance was hampered, possibly by the combined action of elevated cytokinins and ABA. B. subtilis inoculation increased the shoot dry weight of well-watered and drought seedlings by 34.85 and 19.23 %, as well as the root by 15.445 and 13.99 %, respectively. Consequently, the root/shoot ratio significantly decreased, indicative of the greater benefits of PGPR on shoot growth than root. Thus, inoculation of cytokinin-producing PGPR in container seedlings can alleviate the drought stress and interfere with the suppression of shoot growth, showing a real potential to perform as a drought stress inhibitor in arid environments.

  14. The impact of stress on tumor growth: peripheral CRF mediates tumor-promoting effects of stress

    Directory of Open Access Journals (Sweden)

    Stathopoulos Efstathios N

    2010-09-01

    Full Text Available Abstract Introduction Stress has been shown to be a tumor promoting factor. Both clinical and laboratory studies have shown that chronic stress is associated with tumor growth in several types of cancer. Corticotropin Releasing Factor (CRF is the major hypothalamic mediator of stress, but is also expressed in peripheral tissues. Earlier studies have shown that peripheral CRF affects breast cancer cell proliferation and motility. The aim of the present study was to assess the significance of peripheral CRF on tumor growth as a mediator of the response to stress in vivo. Methods For this purpose we used the 4T1 breast cancer cell line in cell culture and in vivo. Cells were treated with CRF in culture and gene specific arrays were performed to identify genes directly affected by CRF and involved in breast cancer cell growth. To assess the impact of peripheral CRF as a stress mediator in tumor growth, Balb/c mice were orthotopically injected with 4T1 cells in the mammary fat pad to induce breast tumors. Mice were subjected to repetitive immobilization stress as a model of chronic stress. To inhibit the action of CRF, the CRF antagonist antalarmin was injected intraperitoneally. Breast tissue samples were histologically analyzed and assessed for neoangiogenesis. Results Array analysis revealed among other genes that CRF induced the expression of SMAD2 and β-catenin, genes involved in breast cancer cell proliferation and cytoskeletal changes associated with metastasis. Cell transfection and luciferase assays confirmed the role of CRF in WNT- β-catenin signaling. CRF induced 4T1 cell proliferation and augmented the TGF-β action on proliferation confirming its impact on TGFβ/SMAD2 signaling. In addition, CRF promoted actin reorganization and cell migration, suggesting a direct tumor-promoting action. Chronic stress augmented tumor growth in 4T1 breast tumor bearing mice and peripheral administration of the CRF antagonist antalarmin suppressed this

  15. ECONOMIC GROWTH AND EQUALITY IN REDUCING POVERTY

    Directory of Open Access Journals (Sweden)

    Zaenal Muttaqin

    2016-02-01

    Full Text Available In some developing countries, the instrument to alleviate the poverty is by using the economic growth. So, the increasing in investment, infrastructure development, and macroeconomics stability always be priority from developing countries. In this article explain that economic growth is not the important factor to alleviate the poverty, because equality sometimes is more important rather than the economic growth. In this context, its measure by inequality growth trade off index (IGTI. This method is to measure the influence of economic growth to reducing the inequality, with this method every country can measure which one is better to reducing the poverty whether the economic growth or equality. With this method, Laos in 2000 show that economic growth is more important than equality, but in the same year in Thailand show that equality is more important than economic growth.DOI: 10.15408/sjie.v1i1.2592

  16. Fatigue Crack Growth Rate and Stress-Intensity Factor Corrections for Out-of-Plane Crack Growth

    Science.gov (United States)

    Forth, Scott C.; Herman, Dave J.; James, Mark A.

    2003-01-01

    Fatigue crack growth rate testing is performed by automated data collection systems that assume straight crack growth in the plane of symmetry and use standard polynomial solutions to compute crack length and stress-intensity factors from compliance or potential drop measurements. Visual measurements used to correct the collected data typically include only the horizontal crack length, which for cracks that propagate out-of-plane, under-estimates the crack growth rates and over-estimates the stress-intensity factors. The authors have devised an approach for correcting both the crack growth rates and stress-intensity factors based on two-dimensional mixed mode-I/II finite element analysis (FEA). The approach is used to correct out-of-plane data for 7050-T7451 and 2025-T6 aluminum alloys. Results indicate the correction process works well for high DeltaK levels but fails to capture the mixed-mode effects at DeltaK levels approaching threshold (da/dN approximately 10(exp -10) meter/cycle).

  17. Expectancy of Stress-Reducing Aromatherapy Effect and Performance on a Stress-Sensitive Cognitive Task

    Science.gov (United States)

    Chamine, Irina; Oken, Barry S.

    2015-01-01

    Objective. Stress-reducing therapies help maintain cognitive performance during stress. Aromatherapy is popular for stress reduction, but its effectiveness and mechanism are unclear. This study examined stress-reducing effects of aromatherapy on cognitive function using the go/no-go (GNG) task performance and event related potentials (ERP) components sensitive to stress. The study also assessed the importance of expectancy in aromatherapy actions. Methods. 81 adults were randomized to 3 aroma groups (active experimental, detectable, and undetectable placebo) and 2 prime subgroups (prime suggesting stress-reducing aroma effects or no-prime). GNG performance, ERPs, subjective expected aroma effects, and stress ratings were assessed at baseline and poststress. Results. No specific aroma effects on stress or cognition were observed. However, regardless of experienced aroma, people receiving a prime displayed faster poststress median reaction times than those receiving no prime. A significant interaction for N200 amplitude indicated divergent ERP patterns between baseline and poststress for go and no-go stimuli depending on the prime subgroup. Furthermore, trends for beneficial prime effects were shown on poststress no-go N200/P300 latencies and N200 amplitude. Conclusion. While there were no aroma-specific effects on stress or cognition, these results highlight the role of expectancy for poststress response inhibition and attention. PMID:25802539

  18. Expectancy of Stress-Reducing Aromatherapy Effect and Performance on a Stress-Sensitive Cognitive Task

    Directory of Open Access Journals (Sweden)

    Irina Chamine

    2015-01-01

    Full Text Available Objective. Stress-reducing therapies help maintain cognitive performance during stress. Aromatherapy is popular for stress reduction, but its effectiveness and mechanism are unclear. This study examined stress-reducing effects of aromatherapy on cognitive function using the go/no-go (GNG task performance and event related potentials (ERP components sensitive to stress. The study also assessed the importance of expectancy in aromatherapy actions. Methods. 81 adults were randomized to 3 aroma groups (active experimental, detectable, and undetectable placebo and 2 prime subgroups (prime suggesting stress-reducing aroma effects or no-prime. GNG performance, ERPs, subjective expected aroma effects, and stress ratings were assessed at baseline and poststress. Results. No specific aroma effects on stress or cognition were observed. However, regardless of experienced aroma, people receiving a prime displayed faster poststress median reaction times than those receiving no prime. A significant interaction for N200 amplitude indicated divergent ERP patterns between baseline and poststress for go and no-go stimuli depending on the prime subgroup. Furthermore, trends for beneficial prime effects were shown on poststress no-go N200/P300 latencies and N200 amplitude. Conclusion. While there were no aroma-specific effects on stress or cognition, these results highlight the role of expectancy for poststress response inhibition and attention.

  19. Maghemite Nanoparticles Acts as Nanozymes, Improving Growth and Abiotic Stress Tolerance in Brassica napus

    Science.gov (United States)

    Palmqvist, N. G. Martin; Seisenbaeva, Gulaim A.; Svedlindh, Peter; Kessler, Vadim G.

    2017-12-01

    Yttrium doping-stabilized γ-Fe2O3 nanoparticles were studied for its potential to serve as a plant fertilizer and, through enzymatic activity, support drought stress management. Levels of both hydrogen peroxide and lipid peroxidation, after drought, were reduced when γ-Fe2O3 nanoparticles were delivered by irrigation in a nutrient solution to Brassica napus plants grown in soil. Hydrogen peroxide was reduced from 151 to 83 μM g-1 compared to control, and the malondialdehyde formation was reduced from 36 to 26 mM g-1. Growth rate of leaves was enhanced from 33 to 50% growth compared to fully fertilized plants and SPAD-measurements of chlorophyll increased from 47 to 52 suggesting improved agronomic properties by use of γ-Fe2O3 nanoparticles as fertilizer as compared to chelated iron.

  20. Prediction of residual stress distributions due to surface machining and welding and crack growth simulation under residual stress distribution

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Katsuyama, JInya; Onizawa, Kunio; Hashimoto, Tadafumi; Mikami, Yoshiki; Mochizuki, Masahito

    2011-01-01

    Research highlights: → Residual stress distributions due to welding and machining are evaluated by XRD and FEM. → Residual stress due to machining shows higher tensile stress than welding near the surface. → Crack growth analysis is performed using calculated residual stress. → Crack growth result is affected machining rather than welding. → Machining is an important factor for crack growth. - Abstract: In nuclear power plants, stress corrosion cracking (SCC) has been observed near the weld zone of the core shroud and primary loop recirculation (PLR) pipes made of low-carbon austenitic stainless steel Type 316L. The joining process of pipes usually includes surface machining and welding. Both processes induce residual stresses, and residual stresses are thus important factors in the occurrence and propagation of SCC. In this study, the finite element method (FEM) was used to estimate residual stress distributions generated by butt welding and surface machining. The thermoelastic-plastic analysis was performed for the welding simulation, and the thermo-mechanical coupled analysis based on the Johnson-Cook material model was performed for the surface machining simulation. In addition, a crack growth analysis based on the stress intensity factor (SIF) calculation was performed using the calculated residual stress distributions that are generated by welding and surface machining. The surface machining analysis showed that tensile residual stress due to surface machining only exists approximately 0.2 mm from the machined surface, and the surface residual stress increases with cutting speed. The crack growth analysis showed that the crack depth is affected by both surface machining and welding, and the crack length is more affected by surface machining than by welding.

  1. The Effect of Vermicompost on Reducing the Adverse Effects of Water Stress on Growth and Chemical Composition of Corn in a Calcareous Soil

    Directory of Open Access Journals (Sweden)

    leila zare

    2017-01-01

    Full Text Available Introduction: Vermicompost is one of the important bio-fertilizer which is the product of the process of composting different organic wastes such as manures and crop residues using different earthworms. Vermicomposts, especially those are derived from animal wastes,contain the large amounts of nutrients compaired with the composts prepared from crop residues. Vermicomposts contain plant available form of nutrients such as nitrate nitrogen, exchangeable phosphorus and potassium, calcium and magnesium. Nowadays, the use of vermicompost in sustainable agriculture to improve the growth and quality of fruits and crops is very common. Drought occurs when the amount of moisture in soil and water resources and rainfall is less than what plants need for normal growth and function. Two thirds of farm lands in Iran have been located in arid and semi-arid regions with annual rainfall less than150 mm that has been distributed irregularly and unpredictable during growth season imposing water stress in most crops. It indicates the importance of water management and proposing different strategies for mitigating detrimental effect of water stress in croplands. Due to the fact that crops nutrient management under drought and water stress using organic fertilizers is an effective method in reaching to high yields in sustainable agriculture, the objective of the present study was to investigate the influence of vermicompost application on reducing the adverse effects of water stress on the growth and chemical composition of corn in a calcareous soil. Materials and Methods: In order to study the influence of water stress and application of vermicompost on corn dry matter yield and nutrients concentration of corn shoot, a greenhouse factorial experiment (4×3 in completely randomized design with three replications was conducted in college of agriculture, Shiraz university, Shiraz, Iran. The factors consisted of four vermicompost levels (0, 10, 20 and30g kg-1soil

  2. Experimental drought and heat can delay phenological development and reduce foliar and shoot growth in semiarid trees.

    Science.gov (United States)

    Adams, Henry D; Collins, Adam D; Briggs, Samuel P; Vennetier, Michel; Dickman, L Turin; Sevanto, Sanna A; Garcia-Forner, Núria; Powers, Heath H; McDowell, Nate G

    2015-11-01

    Higher temperatures associated with climate change are anticipated to trigger an earlier start to the growing season, which could increase the terrestrial C sink strength. Greater variability in the amount and timing of precipitation is also expected with higher temperatures, bringing increased drought stress to many ecosystems. We experimentally assessed the effects of higher temperature and drought on the foliar phenology and shoot growth of mature trees of two semiarid conifer species. We exposed field-grown trees to a ~45% reduction in precipitation with a rain-out structure ('drought'), a ~4.8 °C temperature increase with open-top chambers ('heat'), and a combination of both simultaneously ('drought + heat'). Over the 2013 growing season, drought, heat, and drought + heat treatments reduced shoot and needle growth in piñon pine (Pinus edulis) by ≥39%, while juniper (Juniperus monosperma) had low growth and little response to these treatments. Needle emergence on primary axis branches of piñon pine was delayed in heat, drought, and drought + heat treatments by 19-57 days, while secondary axis branches were less likely to produce needles in the heat treatment, and produced no needles at all in the drought + heat treatment. Growth of shoots and needles, and the timing of needle emergence correlated inversely with xylem water tension and positively with nonstructural carbohydrate concentrations. Our findings demonstrate the potential for delayed phenological development and reduced growth with higher temperatures and drought in tree species that are vulnerable to drought and reveal potential mechanistic links to physiological stress responses. Climate change projections of an earlier and longer growing season with higher temperatures, and consequent increases in terrestrial C sink strength, may be incorrect for regions where plants will face increased drought stress with climate change. © 2015 John Wiley & Sons Ltd.

  3. Separating the Influence of Environment from Stress Relaxation Effects on Dwell Fatigue Crack Growth

    Science.gov (United States)

    Telesman, Jack; Gabb, Tim; Ghosn, Louis J.

    2016-01-01

    Seven different microstructural variations of LSHR were produced by controlling the cooling rate and the subsequent aging and thermal exposure heat treatments. Through cyclic fatigue crack growth testing performed both in air and vacuum, it was established that four out of the seven LSHR heat treatments evaluated, possessed similar intrinsic environmental resistance to cyclic crack growth. For these four heat treatments, it was further shown that the large differences in dwell crack growth behavior which still persisted, were related to their measured stress relaxation behavior. The apparent differences in their dwell crack growth resistance were attributed to the inability of the standard linear elastic fracture mechanics (LEFM) stress intensity parameter to account for visco-plastic behavior. Crack tip stress relaxation controls the magnitude of the remaining local tensile stresses which are directly related to the measured dwell crack growth rates. It was hypothesized that the environmentally weakened grain boundary crack tip regions fail during the dwells when their strength is exceeded by the remaining local crack tip tensile stresses. It was shown that the classical creep crack growth mechanisms such as grain boundary sliding did not contribute to crack growth, but the local visco-plastic behavior still plays a very significant role by determining the crack tip tensile stress field which controls the dwell crack growth behavior. To account for the influence of the visco-plastic behavior on the crack tip stress field, an empirical modification to the LEFM stress intensity parameter, Kmax, was developed by incorporating into the formulation the remaining stress level concept as measured by simple stress relaxation tests. The newly proposed parameter, Ksrf, did an excellent job in correlating the dwell crack growth rates for the four heat treatments which were shown to have similar intrinsic environmental cyclic fatigue crack growth resistance.

  4. The experience of acculturative stress-related growth from immigrants’ perspectives

    Science.gov (United States)

    Kim, Junhyoung; Kim, Hakjun

    2013-01-01

    Previous literature has mainly focused on the positive effects of stress associated with disability and illness, called stress-related growth. Little research has explored positive changes as a result of acculturative stress among a group of immigrants. In particular, older Asian immigrants may experience a high level of stress related to acculturation because they may face more challenges to adapt to and navigate a new culture. This study was designed to capture the characteristics of stress-related growth associated with acculturative stress. Using in-depth interviews among 13 older Korean immigrants, three main themes associated with the stress-coping strategies were identified: (a) the development of mental toughness, (b) engagement in meaningful activities, and (c) promotion of cultural understanding. These themes indicate that by following the stressful acculturation process, participants developed a better understanding of the new culture, engaged in various leisure activities, and enhanced mental strength. This finding provides information on how immigrants deal with acculturative stress and have positive psychological changes, which results in a sense of happiness and psychological well-being. PMID:24070225

  5. The experience of acculturative stress-related growth from immigrants’ perspectives

    Directory of Open Access Journals (Sweden)

    Junhyoung Kim

    2013-09-01

    Full Text Available Previous literature has mainly focused on the positive effects of stress associated with disability and illness, called stress-related growth. Little research has explored positive changes as a result of acculturative stress among a group of immigrants. In particular, older Asian immigrants may experience a high level of stress related to acculturation because they may face more challenges to adapt to and navigate a new culture. This study was designed to capture the characteristics of stress-related growth associated with acculturative stress. Using in-depth interviews among 13 older Korean immigrants, three main themes associated with the stress-coping strategies were identified: (a the development of mental toughness, (b engagement in meaningful activities, and (c promotion of cultural understanding. These themes indicate that by following the stressful acculturation process, participants developed a better understanding of the new culture, engaged in various leisure activities, and enhanced mental strength. This finding provides information on how immigrants deal with acculturative stress and have positive psychological changes, which results in a sense of happiness and psychological well-being.

  6. Effects of cadmium stress on growth and amino acid metabolism in two Compositae plants.

    Science.gov (United States)

    Zhu, Guangxu; Xiao, Huayun; Guo, Qingjun; Zhang, Zhongyi; Zhao, Jingjing; Yang, Dan

    2018-08-30

    Cadmium, a high toxic heavy metal, is one of the most serious contaminants in soil and a potential threat to plant growth and human health. Amino acid metabolism has the central role in heavy metal stress resistance of plants. In this paper, a pot experiment was carried out to study the effects of different concentrations of cadmium (0, 3, 6, 12, 30 mg kg -1 ) on the growth, Cd accumulation and amino acid metabolism in two Compositae plants (Ageratum conyzoides L. and Crassocephalum crepidioides). The results showed that under cadmium stress, C. crepidioides accumulated more Cd in its shoot and was tolerant to Cd, whereas its low Cd-accumulating relative, A. conyzoides, suffered reduced growth. The Cd content in the aerial part of C. crepidioides exceeded the threshold of Cd-hyperaccumulator. Furthermore, the bioaccumulation factor (BCF) and biological transfer factor (BTF) values for Cd in C. crepidioides were > 1. Thus, C. crepidioides can be regarded as Cd-hyperaccumulator. The comparison between both studied plants indicated that Cd stress resulted in a differential but coordinated response of amino acid levels, which are playing a significant role in plant adaptation to Cd stress. Glu, Gln, Asp, Asn, Gaba, Val and Ala dominated the major amino acids. Higher Cd tolerance and Cd accumulation in C. crepidioides was associated with greater accumulation of free amino acids, especially for Gln and Asn, in C. crepidioides than in A. conyzoides. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Dry Priming of Maize Seeds Reduces Aluminum Stress

    Science.gov (United States)

    Alcântara, Berenice Kussumoto; Machemer-Noonan, Katja; Silva Júnior, Francides Gomes; Azevedo, Ricardo Antunes

    2015-01-01

    Aluminum (Al) toxicity is directly related to acidic soils and substantially limits maize yield. Earlier studies using hormones and other substances to treat the seeds of various crops have been carried out with the aim of inducing tolerance to abiotic stress, especially chilling, drought and salinity. However, more studies regarding the effects of seed treatments on the induction of Al tolerance are necessary. In this study, two independent experiments were performed to determine the effect of ascorbic acid (AsA) seed treatment on the tolerance response of maize to acidic soil and Al stress. In the first experiment (greenhouse), the AsA seed treatment was tested in B73 (Al-sensitive genotype). This study demonstrates the potential of AsA for use as a pre-sowing seed treatment (seed priming) because this metabolite increased root and shoot growth under acidic and Al stress conditions. In the second test, the evidence from field experiments using an Al-sensitive genotype (Mo17) and an Al-tolerant genotype (DA) suggested that prior AsA seed treatment increased the growth of both genotypes. Enhanced productivity was observed for DA under Al stress after priming the seeds. Furthermore, the AsA treatment decreased the activity of oxidative stress-related enzymes in the DA genotype. In this study, remarkable effects using AsA seed treatment in maize were observed, demonstrating the potential future use of AsA in seed priming. PMID:26714286

  8. Reduced Insulin/IGF-1 Signaling Restores the Dynamic Properties of Key Stress Granule Proteins during Aging

    Directory of Open Access Journals (Sweden)

    Marie C. Lechler

    2017-01-01

    Full Text Available Summary: Low-complexity “prion-like” domains in key RNA-binding proteins (RBPs mediate the reversible assembly of RNA granules. Individual RBPs harboring these domains have been linked to specific neurodegenerative diseases. Although their aggregation in neurodegeneration has been extensively characterized, it remains unknown how the process of aging disturbs RBP dynamics. We show that a wide variety of RNA granule components, including stress granule proteins, become highly insoluble with age in C. elegans and that reduced insulin/insulin-like growth factor 1 (IGF-1 daf-2 receptor signaling efficiently prevents their aggregation. Importantly, stress-granule-related RBP aggregates are associated with reduced fitness. We show that heat shock transcription factor 1 (HSF-1 is a main regulator of stress-granule-related RBP aggregation in both young and aged animals. During aging, increasing DAF-16 activity restores dynamic stress-granule-related RBPs, partly by decreasing the buildup of other misfolded proteins that seed RBP aggregation. Longevity-associated mechanisms found to maintain dynamic RBPs during aging could be relevant for neurodegenerative diseases. : Lechler et al. show that RNA-binding proteins (RBPs including stress granule proteins are prone to aggregate with age in C. elegans. Aggregation of stress granule RBPs with “prion-like” domains is associated with reduced fitness. Their aggregation is prevented by longevity pathways and promoted by the aggregation of other misfolded proteins. Keywords: neurodegenerative diseases, Caenorhabditis elegans, protein aggregation, aging, RNA-binding proteins, stress granules, HSF-1, DAF-2, longevity

  9. PWSCC Growth Assessment Model Considering Stress Triaxiality Factor for Primary Alloy 600 Components

    Directory of Open Access Journals (Sweden)

    Jong-Sung Kim

    2016-08-01

    Full Text Available We propose a primary water stress corrosion cracking (PWSCC initiation model of Alloy 600 that considers the stress triaxiality factor to apply to finite element analysis. We investigated the correlation between stress triaxiality effects and PWSCC growth behavior in cold-worked Alloy 600 stream generator tubes, and identified an additional stress triaxiality factor that can be added to Garud's PWSCC initiation model. By applying the proposed PWSCC initiation model considering the stress triaxiality factor, PWSCC growth simulations based on the macroscopic phenomenological damage mechanics approach were carried out on the PWSCC growth tests of various cold-worked Alloy 600 steam generator tubes and compact tension specimens. As a result, PWSCC growth behavior results from the finite element prediction are in good agreement with the experimental results.

  10. The Effect of Creep on the Residual Stresses Generated During Silicon Sheet Growth

    Science.gov (United States)

    Hutchinson, J. W.; Lambropoulos, J. C.

    1984-01-01

    The modeling of stresses generated during the growth of thin silicon sheets at high speeds is an important part of the EFG technique since the experimental measurement of the stresses is difficult and prohibitive. The residual stresses which arise in such a growth process lead to serious problems which make thin Si ribbons unsuitable for fabrication. The constitutive behavior is unrealistic because at high temperature (close to the melting point) Si exhibits considerable creep which significantly relaxes the residual stresses. The effect of creep on the residual stresses generated during the growth of Si sheets at high speeds was addressed and the basic qualitative effect of creep are reported.

  11. Effects of salt-drought stress on growth and physiobiochemical characteristics of Tamarix chinensis seedlings.

    Science.gov (United States)

    Liu, Junhua; Xia, Jiangbao; Fang, Yanming; Li, Tian; Liu, Jingtao

    2014-01-01

    The present study was designed to clarify the effects of salinity and water intercross stresses on the growth and physiobiochemical characteristics of Tamarix chinensis seedlings by pots culture under the artificial simulated conditions. The growth, activities of SOD, POD, and contents of MDA and osmotic adjusting substances of three years old seedlings of T. chinensis were studied under different salt-drought intercross stress. Results showed that the influence of salt stress on growth was greater than drought stress, the oxidation resistance of SOD and POD weakened gradually with salt and drought stresses intensified, and the content of MDA was higher under severe drought and mild and moderate salt stresses. The proline contents increased with the stress intensified but only significantly higher than control under the intercross stresses of severe salt-severe drought. It implied that T. chinensis could improve its stress resistance by adjusted self-growth and physiobiochemical characteristics, and the intercross compatibility of T. chinensis to salt and drought stresses can enhance the salt resistance under appropriate drought stress, but the dominant factors influencing the physiological biochemical characteristics of T. chinensis were various with the changing of salt-drought intercross stresses gradients.

  12. Effects of Salt-Drought Stress on Growth and Physiobiochemical Characteristics of Tamarix chinensis Seedlings

    Directory of Open Access Journals (Sweden)

    Junhua Liu

    2014-01-01

    Full Text Available The present study was designed to clarify the effects of salinity and water intercross stresses on the growth and physiobiochemical characteristics of Tamarix chinensis seedlings by pots culture under the artificial simulated conditions. The growth, activities of SOD, POD, and contents of MDA and osmotic adjusting substances of three years old seedlings of T. chinensis were studied under different salt-drought intercross stress. Results showed that the influence of salt stress on growth was greater than drought stress, the oxidation resistance of SOD and POD weakened gradually with salt and drought stresses intensified, and the content of MDA was higher under severe drought and mild and moderate salt stresses. The proline contents increased with the stress intensified but only significantly higher than control under the intercross stresses of severe salt-severe drought. It implied that T. chinensis could improve its stress resistance by adjusted self-growth and physiobiochemical characteristics, and the intercross compatibility of T. chinensis to salt and drought stresses can enhance the salt resistance under appropriate drought stress, but the dominant factors influencing the physiological biochemical characteristics of T. chinensis were various with the changing of salt-drought intercross stresses gradients.

  13. Effect of Bio char on Plant Growth and Aluminium Form of Soil under Aluminium Stress

    Science.gov (United States)

    Qian, Lianwen; Li, Qingbiao; Sun, Jingwei; Feng, Ying

    2018-01-01

    Aluminium-enriched acid red soils in South China easily cause aluminium toxicity to plants, but biochip can improve soils and eliminate soil contaminations. In this project, biochip was used in potted plant control test to study the effect of biochip on plant growth in soil under acid aluminium stress and the migration and conversion of aluminium in plant-soil system. The fin dings show that the application of biochip increases the pH value of soil under aluminium stress significantly, changes the existing form of aluminium ion in soil, reduces the plants’ absorption of aluminium, and alleviates the aluminium toxicity to plants, but too much biochip may inhibit the growth of plants. In this case, further study should be carried out as regards the volume and way of biochip input in practical applications as well as the timeliness of aluminium toxicity removal.

  14. Growth, carcase and meat characteristics of stress susceptible and ...

    African Journals Online (AJOL)

    Growth, carcase and meat characteristics of stress susceptible and stress resistant. South African Landrace gilts. P.H. Heinze*. Animal and Dairy Science Research Institute, Private Bag X2, Irene, 1675Republic of South Africa. G. Mitchell. Department of Physiology, Medical School, University of the Witwatersrand, York ...

  15. Effect of residual stresses on interface crack growth by void expansion mechanism

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2006-01-01

    Crack growth along an interface between two adjacent elastic-plastic materials in a layered solid is analysed, using special interface elements to represent the fracture process ahead of the crack-tip. These interface elements account for ductile failure by the nucleation and growth of voids to c....... The results show that the value of the T-stress component in the softer material adjacent to the interface crack plays the dominant role, such that a negative value of this stress component gives a significant increase of the interface fracture toughness.......Crack growth along an interface between two adjacent elastic-plastic materials in a layered solid is analysed, using special interface elements to represent the fracture process ahead of the crack-tip. These interface elements account for ductile failure by the nucleation and growth of voids...... to coalescence. In these elements the stress components normal to the interface and the shear stresses are given by equilibrium with the surrounding material, and the stress component tangential to the interface is determined by the requirement of compatibility with the surrounding material in the tangential...

  16. Intrinsic stress evolution during amorphous oxide film growth on Al surfaces

    International Nuclear Information System (INIS)

    Flötotto, D.; Wang, Z. M.; Jeurgens, L. P. H.; Mittemeijer, E. J.

    2014-01-01

    The intrinsic stress evolution during formation of ultrathin amorphous oxide films on Al(111) and Al(100) surfaces by thermal oxidation at room temperature was investigated in real-time by in-situ substrate curvature measurements and detailed atomic-scale microstructural analyses. During thickening of the oxide a considerable amount of growth stresses is generated in, remarkably even amorphous, ultrathin Al 2 O 3 films. The surface orientation-dependent stress evolutions during O adsorption on the bare Al surfaces and during subsequent oxide-film growth can be interpreted as a result of (i) adsorption-induced surface stress changes and (ii) competing processes of free volume generation and structural relaxation, respectively

  17. CCN2/CTGF is required for matrix organization and to protect growth plate chondrocytes from cellular stress.

    Science.gov (United States)

    Hall-Glenn, Faith; Aivazi, Armen; Akopyan, Lusi; Ong, Jessica R; Baxter, Ruth R; Benya, Paul D; Goldschmeding, Roel; van Nieuwenhoven, Frans A; Hunziker, Ernst B; Lyons, Karen M

    2013-08-01

    CCN2 (connective tissue growth factor (CTGF/CCN2)) is a matricellular protein that utilizes integrins to regulate cell proliferation, migration and survival. The loss of CCN2 leads to perinatal lethality resulting from a severe chondrodysplasia. Upon closer inspection of Ccn2 mutant mice, we observed defects in extracellular matrix (ECM) organization and hypothesized that the severe chondrodysplasia caused by loss of CCN2 might be associated with defective chondrocyte survival. Ccn2 mutant growth plate chondrocytes exhibited enlarged endoplasmic reticula (ER), suggesting cellular stress. Immunofluorescence analysis confirmed elevated stress in Ccn2 mutants, with reduced stress observed in Ccn2 overexpressing transgenic mice. In vitro studies revealed that Ccn2 is a stress responsive gene in chondrocytes. The elevated stress observed in Ccn2-/- chondrocytes is direct and mediated in part through integrin α5. The expression of the survival marker NFκB and components of the autophagy pathway were decreased in Ccn2 mutant growth plates, suggesting that CCN2 may be involved in mediating chondrocyte survival. These data demonstrate that absence of a matricellular protein can result in increased cellular stress and highlight a novel protective role for CCN2 in chondrocyte survival. The severe chondrodysplasia caused by the loss of CCN2 may be due to increased chondrocyte stress and defective activation of autophagy pathways, leading to decreased cellular survival. These effects may be mediated through nuclear factor κB (NFκB) as part of a CCN2/integrin/NFκB signaling cascade.

  18. Adaptation to Chronic Nutritional Stress Leads to Reduced Dependence on Microbiota in Drosophila melanogaster.

    Science.gov (United States)

    Erkosar, Berra; Kolly, Sylvain; van der Meer, Jan R; Kawecki, Tadeusz J

    2017-10-24

    Numerous studies have shown that animal nutrition is tightly linked to gut microbiota, especially under nutritional stress. In Drosophila melanogaster , microbiota are known to promote juvenile growth, development, and survival on poor diets, mainly through enhanced digestion leading to changes in hormonal signaling. Here, we show that this reliance on microbiota is greatly reduced in replicated Drosophila populations that became genetically adapted to a poor larval diet in the course of over 170 generations of experimental evolution. Protein and polysaccharide digestion in these poor-diet-adapted populations became much less dependent on colonization with microbiota. This was accompanied by changes in expression levels of dFOXO transcription factor, a key regulator of cell growth and survival, and many of its targets. These evolutionary changes in the expression of dFOXO targets to a large degree mimic the response of the same genes to microbiota, suggesting that the evolutionary adaptation to poor diet acted on mechanisms that normally mediate the response to microbiota. Our study suggests that some metazoans have retained the evolutionary potential to adapt their physiology such that association with microbiota may become optional rather than essential. IMPORTANCE Animals depend on gut microbiota for various metabolic tasks, particularly under conditions of nutritional stress, a relationship usually regarded as an inherent aspect of animal physiology. Here, we use experimental evolution in fly populations to show that the degree of host dependence on microbiota can substantially and rapidly change as the host population evolves in response to poor diet. Our results suggest that, although microbiota may initially greatly facilitate coping with suboptimal diets, chronic nutritional stress experienced over multiple generations leads to evolutionary adaptation in physiology and gut digestive properties that reduces dependence on the microbiota for growth and

  19. Constitutive modeling of stress-driven grain growth in nanocrystalline metals

    KAUST Repository

    Gürses, Ercan

    2013-02-08

    In this work, we present a variational multiscale model for grain growth in face-centered cubic nanocrystalline (nc) metals. In particular, grain-growth-induced stress softening and the resulting relaxation phenomena are addressed. The behavior of the polycrystal is described by a conventional Taylor-type averaging scheme in which the grains are treated as two-phase composites consisting of a grain interior phase and a grain boundary-affected zone. Furthermore, a grain-growth law that captures the experimentally observed characteristics of the grain coarsening phenomena is proposed. To this end, the grain size is not taken as constant and varies according to the proposed stress-driven growth law. Several parametric studies are conducted to emphasize the influence of the grain-growth rule on the overall macroscopic response. Finally, the model is shown to provide a good description of the experimentally observed grain-growth-induced relaxation in nc-copper. © 2013 IOP Publishing Ltd.

  20. Numerical study of how creep and progressive stiffening affect the growth stress formation in trees

    DEFF Research Database (Denmark)

    Ormarsson, Sigurdur; Dahlblom, O.; Johansson, M.

    2010-01-01

    It is not fully understood how much growth stresses affect the final quality of solid timber products in terms of e.g. shape stability. It is for example difficult to predict the internal growth stress field within the tree stem. Growth stresses are progressively generated during the tree growth...... and they are highly influenced by climate, biologic and material related factors. To increase the knowledge of the stress formation a finite element model was created to study how the growth stresses develop during the tree growth. The model is an axisymmetric general plane strain model where material for all new...... annual rings is progressively added to the tree during the analysis. The material model used is based on the theory of small strains (where strains refer to the undeformed configuration which is good approximation for strains less than 4%) where so-called biological maturation strains (growth...

  1. Involvement of DNA methylation in the control of cell growth during heat stress in tobacco BY-2 cells.

    Science.gov (United States)

    Centomani, Isabella; Sgobba, Alessandra; D'Addabbo, Pietro; Dipierro, Nunzio; Paradiso, Annalisa; De Gara, Laura; Dipierro, Silvio; Viggiano, Luigi; de Pinto, Maria Concetta

    2015-11-01

    The alteration of growth patterns, through the adjustment of cell division and expansion, is a characteristic response of plants to environmental stress. In order to study this response in more depth, the effect of heat stress on growth was investigated in tobacco BY-2 cells. The results indicate that heat stress inhibited cell division, by slowing cell cycle progression. Cells were stopped in the pre-mitotic phases, as shown by the increased expression of CycD3-1 and by the decrease in the NtCycA13, NtCyc29 and CDKB1-1 transcripts. The decrease in cell length and the reduced expression of Nt-EXPA5 indicated that cell expansion was also inhibited. Since DNA methylation plays a key role in controlling gene expression, the possibility that the altered expression of genes involved in the control of cell growth, observed during heat stress, could be due to changes in the methylation state of their promoters was investigated. The results show that the altered expression of CycD3-1 and Nt-EXPA5 was consistent with changes in the methylation state of the upstream region of these genes. These results suggest that DNA methylation, controlling the expression of genes involved in plant development, contributes to growth alteration occurring in response to environmental changes.

  2. Stress-reducing preventive maintenance model for a unit under stressful environment

    International Nuclear Information System (INIS)

    Park, J.H.; Chang, Woojin; Lie, C.H.

    2012-01-01

    We develop a preventive maintenance (PM) model for a unit operated under stressful environment. The PM model in this paper consists of a failure rate model and two cost models to determine the optimal PM scheduling which minimizes a cost rate. The assumption for the proposed model is that stressful environment accelerates the failure of the unit and periodic maintenances reduce stress from outside. The failure rate model handles the maintenance effect of PM using improvement and stress factors. The cost models are categorized into two failure recognition cases: immediate failure recognition and periodic failure detection. The optimal PM scheduling is obtained by considering the trade-off between the related cost and the lifetime of a unit in our model setting. The practical usage of our proposed model is tested through a numerical example.

  3. GaN growth via HVPE on SiC/Si substrates: growth mechanisms

    Science.gov (United States)

    Sharofidinov, Sh Sh; Redkov, A. V.; Osipov, A. V.; Kukushkin, S. A.

    2017-11-01

    The article focuses on the study of GaN thin film growth via chloride epitaxy on SiC/Si hybrid substrate. SiC buffer layer was grown by a method of substitution of atoms, which allows one to reduce impact of mechanical stress therein on subsequent growth of III-nitride films. It is shown, that change in GaN growth conditions leads to change in its growth mechanism. Three mechanisms: epitaxial, spiral and stepwise growth are considered and mechanical stresses are estimated via Raman spectroscopy.

  4. Maintenance of water uptake and reduced water loss contribute to water stress tolerance of Spiraea alba Du Roi and Spiraea tomentosa L.

    Science.gov (United States)

    Stanton, Kelly M; Mickelbart, Michael V

    2014-01-01

    Two primarily eastern US native shrubs, Spiraea alba Du Roi and Spiraea tomentosa L., are typically found growing in wet areas, often with standing water. Both species have potential for use in the landscape, but little is known of their environmental requirements, including their adaptation to water stress. Two geographic accessions of each species were evaluated for their response to water stress under greenhouse conditions. Above-ground biomass, water relations and gas exchange were measured in well-watered and water stress treatments. In both species, water stress resulted in reduced growth, transpiration and pre-dawn water potential. However, both species also exhibited the ability to osmotically adjust to lower soil water content, resulting in maintained midday leaf turgor potential in all accessions. Net CO2 assimilation was reduced only in one accession of S. alba, primarily due to large reductions in stomatal conductance. S. tomentosa lost a larger proportion of leaves than S. alba in response to water stress. The primary water stress tolerance strategies of S. alba and S. tomentosa appear to be the maintenance of water uptake and reduced water loss.

  5. Growth and stress response mechanisms underlying post-feeding regenerative organ growth in the Burmese python.

    Science.gov (United States)

    Andrew, Audra L; Perry, Blair W; Card, Daren C; Schield, Drew R; Ruggiero, Robert P; McGaugh, Suzanne E; Choudhary, Amit; Secor, Stephen M; Castoe, Todd A

    2017-05-02

    Previous studies examining post-feeding organ regeneration in the Burmese python (Python molurus bivittatus) have identified thousands of genes that are significantly differentially regulated during this process. However, substantial gaps remain in our understanding of coherent mechanisms and specific growth pathways that underlie these rapid and extensive shifts in organ form and function. Here we addressed these gaps by comparing gene expression in the Burmese python heart, liver, kidney, and small intestine across pre- and post-feeding time points (fasted, one day post-feeding, and four days post-feeding), and by conducting detailed analyses of molecular pathways and predictions of upstream regulatory molecules across these organ systems. Identified enriched canonical pathways and upstream regulators indicate that while downstream transcriptional responses are fairly tissue specific, a suite of core pathways and upstream regulator molecules are shared among responsive tissues. Pathways such as mTOR signaling, PPAR/LXR/RXR signaling, and NRF2-mediated oxidative stress response are significantly differentially regulated in multiple tissues, indicative of cell growth and proliferation along with coordinated cell-protective stress responses. Upstream regulatory molecule analyses identify multiple growth factors, kinase receptors, and transmembrane receptors, both within individual organs and across separate tissues. Downstream transcription factors MYC and SREBF are induced in all tissues. These results suggest that largely divergent patterns of post-feeding gene regulation across tissues are mediated by a core set of higher-level signaling molecules. Consistent enrichment of the NRF2-mediated oxidative stress response indicates this pathway may be particularly important in mediating cellular stress during such extreme regenerative growth.

  6. A description of stress driven bubble growth of helium implanted tungsten

    International Nuclear Information System (INIS)

    Sharafat, Shahram; Takahashi, Akiyuki; Nagasawa, Koji; Ghoniem, Nasr

    2009-01-01

    Low energy (<100 keV) helium implantation of tungsten has been shown to result in the formation of unusual surface morphologies over a large temperature range (700-2100 deg. C). Simulation of these macroscopic phenomena requires a multiscale approach to modeling helium transport in both space and time. We present here a multiscale helium transport model by coupling spatially-resolved kinetic rate theory (KRT) with kinetic Monte Carlo (KMC) simulation to model helium bubble nucleation and growth. The KRT-based HEROS Code establishes defect concentrations as well as stable helium bubble nuclei as a function of implantation parameters and position from the implanted surface and the KMC-based Mc-HEROS Code models the growth of helium bubbles due to migration and coalescence. Temperature- and stress-gradients can act as driving forces, resulting in biased bubble migration. The Mc-HEROS Code was modified to simulate the impact of stress gradients on bubble migration and coalescence. In this work, we report on bubble growth and gas release of helium implanted tungsten W/O stress gradients. First, surface pore densities and size distributions are compared with available experimental results for stress-free helium implantation conditions. Next, the impact of stress gradients on helium bubble evolution is simulated. The influence of stress fields on bubble and surface pore evolution are compared with stress-free simulations. It is shown that near surface stress gradients accelerate helium bubbles towards the free surface, but do not increasing average bubble diameters significantly.

  7. Three-dimensional modelling of thermal stress in floating zone silicon crystal growth

    Science.gov (United States)

    Plate, Matiss; Krauze, Armands; Virbulis, Jānis

    2018-05-01

    During the growth of large diameter silicon single crystals with the industrial floating zone method, undesirable level of thermal stress in the crystal is easily reached due to the inhomogeneous expansion as the crystal cools down. Shapes of the phase boundaries, temperature field and elastic material properties determine the thermal stress distribution in the solid mono crystalline silicon during cylindrical growth. Excessive stress can lead to fracture, generation of dislocations and altered distribution of intrinsic point defects. Although appearance of ridges on the crystal surface is the decisive factor of a dislocation-free growth, the influence of these ridges on the stress field is not completely clear. Here we present the results of thermal stress analysis for 4” and 5” diameter crystals using a quasi-stationary three dimensional mathematical model including the material anisotropy and the presence of experimentally observed ridges which cannot be addressed with axis-symmetric models. The ridge has a local but relatively strong influence on thermal stress therefore its relation to the origin of fracture is hypothesized. In addition, thermal stresses at the crystal rim are found to increase for a particular position of the crystal radiation reflector.

  8. Interior design for ambulatory care facilities: how to reduce stress and anxiety in patients and families.

    Science.gov (United States)

    Frasca-Beaulieu, K

    1999-01-01

    The following article illustrates some important factors to consider when designing ambulatory care facilities (ACFs), and focuses on how wayfinding, noise control, privacy, security, color and lighting, general ambience, textures, and nature can have a profound influence on patient and family stress, consumer satisfaction, health and well-being. Other important design issues: convenience and accessibility, accommodation to various populations, consumer and family focus, patient education, image, as well as current equipment needs and future growth are examined in light of the prevailing trends in health care delivery. In sum, this feature explores the important stress-reducing and health-promoting elements involved in successful ACF design.

  9. Local stressors reduce coral resilience to bleaching.

    Science.gov (United States)

    Carilli, Jessica E; Norris, Richard D; Black, Bryan A; Walsh, Sheila M; McField, Melanie

    2009-07-22

    Coral bleaching, during which corals lose their symbiotic dinoflagellates, typically corresponds with periods of intense heat stress, and appears to be increasing in frequency and geographic extent as the climate warms. A fundamental question in coral reef ecology is whether chronic local stress reduces coral resistance and resilience from episodic stress such as bleaching, or alternatively promotes acclimatization, potentially increasing resistance and resilience. Here we show that following a major bleaching event, Montastraea faveolata coral growth rates at sites with higher local anthropogenic stressors remained suppressed for at least 8 years, while coral growth rates at sites with lower stress recovered in 2-3 years. Instead of promoting acclimatization, our data indicate that background stress reduces coral fitness and resilience to episodic events. We also suggest that reducing chronic stress through local coral reef management efforts may increase coral resilience to global climate change.

  10. Effects of drought and salt stresses on growth characteristics of euhalophyte Suaeda salsa in coastal wetlands

    Science.gov (United States)

    Jia, Jia; Huang, Chen; Bai, Junhong; Zhang, Guangliang; Zhao, Qingqing; Wen, Xiaojun

    2018-02-01

    The pot experiment was carried out in the Yellow River Delta to investigate the effects of drought and salt stresses on growth characteristics of Suaeda salsa, and to reveal the role of nitrogen (N) application in alleviation effects of drought and salt stresses on Suaeda salsa in coastal wetlands. In this study, plants were exposed to two water contents treatments (i.e., 14% and 26% water content), four salinity treatments (i.e., 2 g/kg, 4 g/kg, 6 g/kg, and 8 g/kg NaCl) and two N application treatments (i.e., 0 and 200 N mg/kg) in field conditions. Growth characteristics of Suaeda salsa were assessed as fresh weight, dry weight, height, total nitrogen (TN) and total carbon (TC). Our results showed that fresh weight, dry weight and height of Suaeda salsa promoted at lower salinity treatments but reduced at higher salinity treatments, while TN and TC contents kept stable with increasing salinity levels. Drought stress diminished the fresh weight, dry weight and height of Suaeda salsa, whereas enhanced TN contents. Under the interactive stresses of drought and salt, fresh weight and dry weight showed slight increases at lower salinity treatments, whereas decreases at higher salinity treatments. N application promoted the fresh weight, dry weight and TN contents other than the height and TC contents of Suaeda salsa. The interaction between N application and salt stress exhibited a significant influence on the fresh weight and dry weight of Suaeda salsa, whereas no significant interaction between N application and drought stress was observed. These findings of this study suggested that higher salinity, drought and the interaction of drought and higher salinity would retard the growth of Suaeda salsa, whereas N application could only mitigate the deleterious effects of salt stress on Suaeda salsa.

  11. ADAPTATION MODEL FOR REDUCING THE MANAGERIAL STRESS

    Directory of Open Access Journals (Sweden)

    VIOLETA GLIGOROVSKI

    2017-12-01

    Full Text Available Changes are an inseparable component of the company's life cycle and they can contribute to its essential growth in the future. The purpose of this paper is to explain managerial stress caused by implementation of changes and creating an adaptation model to decrease managerial stress. How much the manager will successfully lead the project for implementation of a change and how much they will manage to amortize stress among employees, mostly depends on their expertise, knowledge and skills to accurately and comprehensively inform and integrate the employees in the overall process. The adaptation model is actually a new approach and recommendation for managers for dealing with stress when the changes are implemented. Methodology. For this purpose, the data presented, in fact, were collected through a questionnaire that was submitted to 61 respondents/ managers. The data were measured using the Likert scale from 1 to 7. Namely, with the help of the Likert scale, quantification of stress was made in relation to the various variables that were identified as the most important for the researched issues. An adaption model (new approach for amortizing changes was created using the DIA Diagram application, to show the relations between manager and the relevant amortization approaches.

  12. The experience of acculturative stress-related growth from immigrants’ perspectives

    OpenAIRE

    Kim, Junhyoung; Kim, Hakjun

    2013-01-01

    Previous literature has mainly focused on the positive effects of stress associated with disability and illness, called stressrelated growth. Little research has explored positive changes as a result of acculturative stress among a group of immigrants. In particular, older Asian immigrants may experience a high level of stress related to acculturation because they may face more challenges to adapt to and navigate a new culture. This study was designed to capture the characteristics of stress-...

  13. A stress driven growth model for soft tissue considering biological availability

    International Nuclear Information System (INIS)

    Oller, S; Bellomo, F J; Nallim, L G; Armero, F

    2010-01-01

    Some of the key factors that regulate growth and remodeling of tissues are fundamentally mechanical. However, it is important to take into account the role of bioavailability together with the stresses and strains in the processes of normal or pathological growth. In this sense, the model presented in this work is oriented to describe the growth of soft biological tissue under 'stress driven growth' and depending on the biological availability of the organism. The general theoretical framework is given by a kinematic formulation in large strain combined with the thermodynamic basis of open systems. The formulation uses a multiplicative decomposition of deformation gradient, splitting it in a growth part and visco-elastic part. The strains due to growth are incompatible and are controlled by an unbalanced stresses related to a homeostatic state. Growth implies a volume change with an increase of mass maintaining constant the density. One of the most interesting features of the proposed model is the generation of new tissue taking into account the contribution of mass to the system controlled through biological availability. Because soft biological tissues in general have a hierarchical structure with several components (usually a soft matrix reinforced with collagen fibers), the developed growth model is suitable for the characterization of the growth of each component. This allows considering a different behavior for each of them in the context of a generalized theory of mixtures. Finally, we illustrate the response of the model in case of growth and atrophy with an application example.

  14. Resilience of Penicillium resedanum LK6 and exogenous gibberellin in improving Capsicum annuum growth under abiotic stresses.

    Science.gov (United States)

    Khan, Abdul Latif; Waqas, Muhammad; Lee, In-Jung

    2015-03-01

    Understanding how endophytic fungi mitigate abiotic stresses in plants will be important in a changing global climate. A few endophytes can produce phytohormones, but their ability to induce physiological changes in host plants during extreme environmental conditions are largely unexplored. In the present study, we investigated the ability of Penicillium resedanum LK6 to produce gibberellins and its role in improving the growth of Capsicum annuum L. under salinity, drought, and heat stresses. These effects were compared with exogenous application of gibberellic acid (GA3). Endophyte treatment significantly increased shoot length, biomass, chlorophyll content, and the photosynthesis rate compared with the uninfected control during abiotic stresses. The endophyte and combined endophyte + GA3 treatments significantly ameliorated the negative effects of stresses compared with the control. Stress-responsive endogenous abscisic acid and its encoding genes, such as zeaxanthin epoxidase, 9-cis-epoxycarotenoid dioxygenase 3, and ABA aldehyde oxidase 3, were significantly reduced in endophyte-treated plants under stress. Conversely, salicylic acid and biosynthesis-related gene (isochorismate synthase) had constitutive expressions while pathogenesis related (PR1 and PR5) genes showed attenuated responses during endophyte treatment under abiotic stresses. The present findings suggest that endophytes have effects comparable to those of exogenous GA3; both can significantly increase plant growth and yield under changing environmental conditions by reprogramming the host plant's physiological responses.

  15. Effects of antecedent fermentative and respiratory growth on the detection of chloramine-stressed Escherichia coil and Salmonella typhimurium.

    Science.gov (United States)

    Thunberg, R L; Sexstone, A J; Calabrese, J P; Bissonnette, G K

    2001-08-01

    In vitro laboratory studies were performed to assess the effects of antecedent growth conditions on the recovery of Escherichia coli ATCC 25922 and Salmonella typhimurium ATCC 14028 following chloramine disinfection. Six- and 18-h cultures of each organism were grown under aerobic, fermentative, and nitrate-reducing conditions prior to disinfection. At predetermined time intervals during a 10-min exposure to chloramine, survivors were surface plated on nonselective recovery media to determine C(n)t values. It was observed that nitrate-reducing growth predisposed the test organisms towards an increased sensitivity to chloramine stress over cells grown under fermentation or aerobic conditions (p < 0.01).

  16. Cadmium stress in wheat seedlings: growth, cadmium accumulation and photosynthesis

    DEFF Research Database (Denmark)

    Ci, Dunwei; Jiang, Dong; Wollenweber, Bernd

    2010-01-01

    parameters were generally depressed by Cd stress, especially under the high Cd concentrations. Cd concentration and accumulation in both shoots and roots increased with increasing external Cd concentrations. Relationships between corrected parameters of growth, photosynthesis and fluorescence and corrected......Seedlings of wheat (Triticum aestivum L.) cultivars Jing 411, Jinmai 30 and Yangmai 10 were exposed to 0, 10, 20, 30, 40 or 50 μM of CdCl2 in a solution culture experiment. The effects of cadmium (Cd) stress on wheat growth, leaf photon energy conversion, gas exchange, and Cd accumulation in wheat...

  17. A test procedure for determining the influence of stress ratio on fatigue crack growth

    Science.gov (United States)

    Fitzgerald, J. H.; Wei, R. P.

    1974-01-01

    A test procedure is outlined by which the rate of fatigue crack growth over a range of stress ratios and stress intensities can be determined expeditiously using a small number of specimens. This procedure was developed to avoid or circumvent the effects of load interactions on fatigue crack growth, and was used to develop data on a mill annealed Ti-6Al-4V alloy plate. Experimental data suggest that the rates of fatigue crack growth among the various stress ratios may be correlated in terms of an effective stress intensity range at given values of K max. This procedure is not to be used, however, for determining the corrosion fatigue crack growth characteristics of alloys when nonsteady-state effects are significant.

  18. Effect of sodium chloride and cadmium on the growth, oxidative stress and antioxidant enzyme activities of Zygosaccharomyces rouxii

    Science.gov (United States)

    Li, Chunsheng; Xu, Ying; Jiang, Wei; Lv, Xin; Dong, Xiaoyan

    2014-06-01

    Zygosaccharomyces rouxii is a salt-tolerant yeast species capable of removing cadmium (Cd) pollutant from aqueous solution. Presently, the physiological characteristics of Z. rouxii under the stress of sodium chloride (NaCl) and Cd are poorly understood. This study investigated the effects of NaCl and Cd on the growth, oxidative stress and antioxidant enzyme activities of Z. rouxii after stress treatment for 24 h. Results showed that NaCl or Cd alone negatively affected the growth of Z. rouxii, but the growth-inhibiting effect of Cd on Z. rouxii was reduced in the presence of NaCl. Flow cytometry assay showed that under Cd stress, NaCl significantly reduced the production of reactive oxygen species (ROS) and cell death of Z. rouxii compared with those in the absence of NaCl. The activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) of Z. rouxii were significantly enhanced by 2%-6% NaCl, which likely contributed to the high salt tolerance of Z. rouxii. The POD activity was inhibited by 20 mg L-1 Cd while the SOD and CAT activities were enhanced by 8 mg L-1 Cd and inhibited by 20 mg L-1 or 50 mg L-1 Cd. The inhibitory effect of high-level Cd on the antioxidant enzyme activities of Z. rouxii was counteracted by the combined use of NaCl, especially at 6%. This probably accounted for the decrease in Cd-induced ROS production and cell death of Z. rouxii after incubation with NaCl and Cd. Our work provided physiological clues as to the use of Z. rouxii as a biosorbent for Cd removal from seawater and liquid highly salty food.

  19. The influence of wall stress on AAA growth and biomarkers

    NARCIS (Netherlands)

    Speelman, L.; Hellenthal, F.A.M.V.I.; Pulinx, B.; Bosboom, E.M.H.; Breeuwer, M.; Sambeek, M.R.; Vosse, van de F.N.; Jacobs, M.J.H.M.; Wodzig, W.K.W.H.; Schurink, G.W.H.

    2010-01-01

    Objectives This study investigated the relation between abdominal aortic aneurysm (AAA) wall stress, AAA growth rate and biomarker concentrations. With increasing wall stress, more damage may be caused to the AAA wall, possibly leading to progression of the aneurysm and reflection in up- or

  20. Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site

    International Nuclear Information System (INIS)

    Farwell, Andrea J.; Vesely, Susanne; Nero, Vincent; Rodriguez, Hilda; McCormack, Kimberley; Shah, Saleh; Dixon, D. George; Glick, Bernard R.

    2007-01-01

    The growth of transgenic canola (Brassica napus) expressing a gene for the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase was compared to non-transformed canola exposed to flooding and elevated soil Ni concentration, in situ. In addition, the ability of the plant growth-promoting bacterium Pseudomonas putida UW4, which also expresses ACC deaminase, to facilitate the growth of non-transformed and transgenic canola under the above mentioned conditions was examined. Transgenic canola and/or canola treated with P. putida UW4 had greater shoot biomass compared to non-transformed canola under low flood-stress conditions. Under high flood-stress conditions, shoot biomass was reduced and Ni accumulation was increased in all instances relative to low flood-stress conditions. This is the first field study to document the increase in plant tolerance utilizing transgenic plants and plant growth-promoting bacteria exposed to multiple stressors. - Using transgenic plants and plant growth-promoting bacteria as phytoremediation methods increased plant tolerance at a metal-contaminated field site under low flood conditions

  1. Reciprocal Regulation of the TOR Kinase and ABA Receptor Balances Plant Growth and Stress Response.

    Science.gov (United States)

    Wang, Pengcheng; Zhao, Yang; Li, Zhongpeng; Hsu, Chuan-Chih; Liu, Xue; Fu, Liwen; Hou, Yueh-Ju; Du, Yanyan; Xie, Shaojun; Zhang, Chunguang; Gao, Jinghui; Cao, Minjie; Huang, Xiaosan; Zhu, Yingfang; Tang, Kai; Wang, Xingang; Tao, W Andy; Xiong, Yan; Zhu, Jian-Kang

    2018-01-04

    As sessile organisms, plants must adapt to variations in the environment. Environmental stress triggers various responses, including growth inhibition, mediated by the plant hormone abscisic acid (ABA). The mechanisms that integrate stress responses with growth are poorly understood. Here, we discovered that the Target of Rapamycin (TOR) kinase phosphorylates PYL ABA receptors at a conserved serine residue to prevent activation of the stress response in unstressed plants. This phosphorylation disrupts PYL association with ABA and with PP2C phosphatase effectors, leading to inactivation of SnRK2 kinases. Under stress, ABA-activated SnRK2s phosphorylate Raptor, a component of the TOR complex, triggering TOR complex dissociation and inhibition. Thus, TOR signaling represses ABA signaling and stress responses in unstressed conditions, whereas ABA signaling represses TOR signaling and growth during times of stress. Plants utilize this conserved phospho-regulatory feedback mechanism to optimize the balance of growth and stress responses. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Disentangling the Effects of Water Stress on Carbon Acquisition, Vegetative Growth, and Fruit Quality of Peach Trees by Means of the QualiTree Model

    Directory of Open Access Journals (Sweden)

    Mitra Rahmati

    2018-01-01

    Full Text Available Climate change projections predict warmer and drier conditions. In general, moderate to severe water stress reduce plant vegetative growth and leaf photosynthesis. However, vegetative and reproductive growths show different sensitivities to water deficit. In fruit trees, water restrictions may have serious implications not only on tree growth and yield, but also on fruit quality, which might be improved. Therefore, it is of paramount importance to understand the complex interrelations among the physiological processes involved in within-tree carbon acquisition and allocation, water uptake and transpiration, organ growth, and fruit composition when affected by water stress. This can be studied using process-based models of plant functioning, which allow assessing the sensitivity of various physiological processes to water deficit and their relative impact on vegetative growth and fruit quality. In the current study, an existing fruit-tree model (QualiTree was adapted for describing the water stress effects on peach (Prunus persica L. Batsch vegetative growth, fruit size and composition. First, an energy balance calculation at the fruit-bearing shoot level and a water transfer formalization within the plant were integrated into the model. Next, a reduction function of vegetative growth according to tree water status was added to QualiTree. Then, the model was parameterized and calibrated for a late-maturing peach cultivar (“Elberta” under semi-arid conditions, and for three different irrigation practices. Simulated vegetative and fruit growth variability over time was consistent with observed data. Sugar concentrations in fruit flesh were well simulated. Finally, QualiTree allowed for determining the relative importance of photosynthesis and vegetative growth reduction on carbon acquisition, plant growth and fruit quality under water constrains. According to simulations, water deficit impacted vegetative growth first through a direct effect on

  3. Disentangling the Effects of Water Stress on Carbon Acquisition, Vegetative Growth, and Fruit Quality of Peach Trees by Means of the QualiTree Model.

    Science.gov (United States)

    Rahmati, Mitra; Mirás-Avalos, José M; Valsesia, Pierre; Lescourret, Françoise; Génard, Michel; Davarynejad, Gholam H; Bannayan, Mohammad; Azizi, Majid; Vercambre, Gilles

    2018-01-01

    Climate change projections predict warmer and drier conditions. In general, moderate to severe water stress reduce plant vegetative growth and leaf photosynthesis. However, vegetative and reproductive growths show different sensitivities to water deficit. In fruit trees, water restrictions may have serious implications not only on tree growth and yield, but also on fruit quality, which might be improved. Therefore, it is of paramount importance to understand the complex interrelations among the physiological processes involved in within-tree carbon acquisition and allocation, water uptake and transpiration, organ growth, and fruit composition when affected by water stress. This can be studied using process-based models of plant functioning, which allow assessing the sensitivity of various physiological processes to water deficit and their relative impact on vegetative growth and fruit quality. In the current study, an existing fruit-tree model (QualiTree) was adapted for describing the water stress effects on peach ( Prunus persica L. Batsch) vegetative growth, fruit size and composition. First, an energy balance calculation at the fruit-bearing shoot level and a water transfer formalization within the plant were integrated into the model. Next, a reduction function of vegetative growth according to tree water status was added to QualiTree. Then, the model was parameterized and calibrated for a late-maturing peach cultivar ("Elberta") under semi-arid conditions, and for three different irrigation practices. Simulated vegetative and fruit growth variability over time was consistent with observed data. Sugar concentrations in fruit flesh were well simulated. Finally, QualiTree allowed for determining the relative importance of photosynthesis and vegetative growth reduction on carbon acquisition, plant growth and fruit quality under water constrains. According to simulations, water deficit impacted vegetative growth first through a direct effect on its sink strength

  4. Reducing longitudinal emittance growth in RFQ accelerators

    International Nuclear Information System (INIS)

    Koscielniak, S.

    1994-08-01

    Bunching and capture of a monochromatic beam into an rf bucket inevitably lead to substantial emittance growth through the mechanisms of filamentation and non-adiabatic variation of parameters. We describe a three step strategy for minimizing this growth, based on a clear understanding of the non-linear beam dynamics, and apply to acceleration of heavy ions with Z/A = 1/60 (and initial kinetic energy 60 keV/u) in a radio frequency quadrupole (RFQ) operating at 25 MHz. We also describe a scheme, to further reduce the emittance, based upon the use of an external RFQ-type prebuncher before the main accelerator. The external unit permits the bunching voltage to be reduced, to inject into a moving bucket, and to reduce the structure length. (author). 7 refs., 6 figs

  5. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates

    Science.gov (United States)

    Wang, Xu; Zeng, Wei; Hong, Liang; Xu, Wenwen; Yang, Haokai; Wang, Fan; Duan, Huigao; Tang, Ming; Jiang, Hanqing

    2018-03-01

    Problems related to dendrite growth on lithium-metal anodes such as capacity loss and short circuit present major barriers to next-generation high-energy-density batteries. The development of successful lithium dendrite mitigation strategies is impeded by an incomplete understanding of the Li dendrite growth mechanisms, and in particular, Li-plating-induced internal stress in Li metal and its effect on Li growth morphology are not well addressed. Here, we reveal the enabling role of plating residual stress in dendrite formation through depositing Li on soft substrates and a stress-driven dendrite growth model. We show that dendrite growth is mitigated on such soft substrates through surface-wrinkling-induced stress relaxation in the deposited Li film. We demonstrate that this dendrite mitigation mechanism can be utilized synergistically with other existing approaches in the form of three-dimensional soft scaffolds for Li plating, which achieves higher coulombic efficiency and better capacity retention than that for conventional copper substrates.

  6. Crop yield response to water stress imposed at different growth stages

    International Nuclear Information System (INIS)

    Iqbal, M.; Mahmood Shah, M.; Wisal, M.

    1995-01-01

    Potato requires sufficient soil moisture and fertilization to produce high yields but the present water resoures are limited compared to the cultivable land, field experiments were conduced from 1991 to 1995 to study relationship between yield and crop water use as a function of water stress imposed at different growth stages. The irrigation treatments involved application of full and stress watering s selectively at four growth stages : Establishment , Flowering Tuber formation and ripening. In full watering, full water requirements of the crop were met, i.e., ET sub a = ET sub m whereas in stress watering about half the amount of full watering was applied, i.e., ET sub a < ET sub m. Changes in moisture content of the soil pre files after irrigation were monitored with the help of neutron moisture probe in order to compute ET sub a by the water balance method. The results obtained showed that the tuber yield was produced by full watering ( T 1) and the lowest by continuous stress watering (T 2). A plot of relative yield against relative evapotranspiration deficit revealed that ripening was the lest sensitive whereas early development followed by flowering the most sensitive growth stage to water stress. The crop water use efficiencies were generally higher in the treatments where a combination of normal and stress watering was applied compared to where all - normal watering s were applied. The traditional irrigation practice resulted in wasteful water application with relatively lower yields, hence the results from this project will have high value for the farming community to get this higher yields with scarce water resources. The studies with labelled fertilizer showed that planting and earthing - up were equally important growth stages of potato for applying fertilizer for its efficient utilization. 3 figs; 25 tabs; 12 refs (Author)

  7. Investigation of Stress Indices and Directional Loading of Eccentric Reducers

    International Nuclear Information System (INIS)

    Carter, R.; Wais, E.A.; Rodabaugh, E.C.

    2003-01-01

    OAK- B135 Engineering for fatigue is an essential concern in piping systems. Addressing this concern, the ASME Section III and ANSI B31.1 Codes provide stress indices and stress intensification factors (SIFs) to be used in the design and evaluation of Class 1, 2 and 3 systems. In recent research cosponsored by EPRI and the U.S. DOE, new test data have been developed for comparison with the ASME stress indices and SIFs. This report presents the results of fatigue tests on eccentric reducers, taking into account the directionality of the loading. As detailed in the report, the results can help to improve the evaluation of reducers and can help to reduce unnecessary conservatism in piping system design

  8. Improving Wheat Growth and Yield Using Chlormequat Chloride, Salicylic Acid and Jasmonic Acid under Water Stress

    Directory of Open Access Journals (Sweden)

    N Vahabi

    2017-06-01

    Full Text Available Introduction Drought stress is most important abiotic stress reducing growth and production of wheat worldwide. Protective role of plant growth regulators (PGRs against drought stress has been accepted in general, however, comparison of PGRs types to determine the optimum one is crucial. Many PGRs are known to alleviate the negative effects of drought stress in plants. However, limited research has been conducted to investigate the potential benefits of exogenous application of different PGRs in wheat plants grown under drought stress. Chlormequat chloride (CCC, salicylic acid (SA and jasmonic acid (JA could consider as three major PGRs using in cereals. Materials and Methods To examine the effect of three PGRs consisted of CCC, SA and JA on yield components and grain yield of wheat cv. Roshan under different water stress conditions (a range of light to severe drought levels two separated experiments were conducted at controlled and field conditions at College of Agriculture, Shiraz University during 2012-2013 growing seasons. Concentration of CCC, SA and JA were 19.0, 1.0 and 0.1 mM, respectively. Drought stress levels were 100%, 80%, 60% and 40% of field capacity in greenhouse and were 100%, 2/3 and 1/5 of field capacity in the field experiment. Field capacity was determined as 25% (g g-1 for the experimental field. Greenhouse and field researches were carried out in factorial experiment based on completely randomized design and in split plot experiment based on randomized complete block design, respectively. Four and three replications were used greenhouse and field experiments, respectively. Roshan as a bread wheat cultivar with standard height was used. Foliar application of 3 PGRs was done at double ridges stage in both experiments; however, irrigation treatments were applied at double ridges stage and early anthesis at greenhouse and field experiment, respectively. For plot irrigation a tape system was used and amount of irrigation was

  9. Effect of Water Deficit Stress on Peach Growth under Commercial Orchard Management Conditions

    Directory of Open Access Journals (Sweden)

    M. Rahmati

    2015-06-01

    Full Text Available In order to study the sensitivity of vegetative growth to water deficit stress of a late-maturing peach (Prunus persica L. cv. Elberta under orchard conditions, an experiment was conducted as randomized complete-block design with three treatments and four repetitions in Shahdiran commercial orchard in Mashhad during 2011. Three irrigation treatments including 360 (low stress, 180 (moderate stress and 90 (severe stress m3ha-1week-1 using a drip irrigation system (minimum stem water potential near harvest: -1.2, -1.5 and -1.7 MPa, respectively from the mid-pit hardening stage (12th of June until harvest (23rd of Sep. applied. Predawn, stem and leaf water potentials, leaf photosynthesis, transpiration, stomatal conductance and leaf temperature, the number of new shoots on fruit bearing shoots and vegetative shoots lengths during growing season as well as leaf area at harvest were measured. The results showed that water deficit stress had negative effects on peach tree water status, thereby resulting in decreased leaf gas exchange and tree vegetative growth. As significant decreased assimilate production of tree was resulted from both decreased leaf assimilation rate (until about 23 % and 50 %, respectively under moderate and severe stress conditions compared to low stress conditions and decreased leaf area of tree (until about 57% and 79%, respectively under moderate and severe stress conditions compared to low stress conditions at harvest. The significant positive correlation between leaf water potential and vegetative growth of peach revealed that shoot growth would decrease by 30% and 50% of maximum at leaf water potential of –1.56 and –2.30 MPa, respectively.

  10. Evaluation of stress corrosion crack growth in BWR piping systems

    International Nuclear Information System (INIS)

    Kassir, M.; Sharma, S.; Reich, M.; Chang, M.T.

    1985-05-01

    This report presents the results of a study conducted to evaluate the effects of stress intensity factor and environment on the growth behavior of intergranular stress corrosion cracks in type 304 stainless steel piping systems. Most of the detected cracks are known to be circumferential in shape, and initially started at the inside surface in the heat affected zone near girth welds. These cracks grow both radially in-depth and circumferentially in length and, in extreme cases, may cause leakage in the installation. The propagation of the crack is essentially due to the influence of the following simultaneous factors: (1) the action of applied and residual stress; (2) sensitization of the base metal in the heat affected zone adjacent to girth weld; and (3) the continuous exposure of the material to an aggressive environment of high temperature water containing dissolved oxygen and some levels of impurities. Each of these factors and their effects on the piping systems is discussed in detail in the report. The report also evaluates the time required for hypothetical cracks in BWR pipes to propagate to their critical size. The pertinent times are computed and displayed graphically. Finally, parametric study is performed in order to assess the relative influence and sensitivity of the various input parameters (residual stress, crack growth law, diameter of pipe, initial size of defect, etc.) which have bearing on the growth behavior of the intergranular stress corrosion cracks in type 304 stainless steel. Cracks in large-diameter as well as in small-diameter pipes are considered and analyzed. 27 refs., 25 figs., 10 tabs

  11. The effects of stress on nuclear power plant operational decision making and training approaches to reduce stress effects

    International Nuclear Information System (INIS)

    Mumaw, R.J.

    1994-08-01

    Operational personnel may be exposed to significant levels of stress during unexpected changes in plant state an plant emergencies. The decision making that identifies operational actions, which is strongly determined by procedures, may be affected by stress, and performance may be impaired. ER report analyzes potential effects of stress in nuclear power plant (NPP) settings, especially in the context of severe accident management (SAM). First, potential sources of stress in the NPP setting are identified. This analysis is followed by a review of the ways in which stress is likely to affect performance, with an emphasis on performance of cognitive skills that are linked to operational decision making. Finally, potential training approaches for reducing or eliminating stress effects are identified. Several training approaches have the potential to eliminate or mitigate stress effects on cognitive skill performance. First, the use of simulated events for training can reduce the novelty and uncertainty that can lead to stress and performance impairments. Second, training to make cognitive processing more efficient and less reliant on attention and memory resources can offset the reductions in these resources that occur under stressful conditions. Third, training that targets crew communications skills can reduce the likelihood that communications will fail under stress

  12. The effects of stress on nuclear power plant operational decision making and training approaches to reduce stress effects

    Energy Technology Data Exchange (ETDEWEB)

    Mumaw, R.J.

    1994-08-01

    Operational personnel may be exposed to significant levels of stress during unexpected changes in plant state an plant emergencies. The decision making that identifies operational actions, which is strongly determined by procedures, may be affected by stress, and performance may be impaired. ER report analyzes potential effects of stress in nuclear power plant (NPP) settings, especially in the context of severe accident management (SAM). First, potential sources of stress in the NPP setting are identified. This analysis is followed by a review of the ways in which stress is likely to affect performance, with an emphasis on performance of cognitive skills that are linked to operational decision making. Finally, potential training approaches for reducing or eliminating stress effects are identified. Several training approaches have the potential to eliminate or mitigate stress effects on cognitive skill performance. First, the use of simulated events for training can reduce the novelty and uncertainty that can lead to stress and performance impairments. Second, training to make cognitive processing more efficient and less reliant on attention and memory resources can offset the reductions in these resources that occur under stressful conditions. Third, training that targets crew communications skills can reduce the likelihood that communications will fail under stress.

  13. Chronic drought stress reduced but not protected Shantung maple (Acer truncatum Bunge) from adverse effects of ozone (O3) on growth and physiology in the suburb of Beijing, China.

    Science.gov (United States)

    Li, Li; Manning, William J; Tong, Lei; Wang, Xiaoke

    2015-06-01

    A two-year experiment exposing Acer truncatum Bunge seedlings to elevated ozone (O3) concentrations above ambient air (AO) and drought stress (DS) was carried out using open-top chambers (OTCs) in a suburb of Beijing in north China in 2012-2013. The results suggested that AO and DS had both significantly reduced leaf mass area (LMA), stomatal conductance (Gs), light saturated photosynthetic rate (Asat) as well as above and below ground biomass at the end of the experiment. It appeared that while drought stress mitigated the expression of foliar injury, LMA, leaf photosynthetic pigments, height growth and basal diameter, due to limited carbon fixation, the O3 - induced reductions in Asat, Gs and total biomass were enhanced 23.7%. 15.5% and 8.1% respectively. These data suggest that when the whole plant was considered that drought under the conditions of this experiment did not protect the Shantung maple seedlings from the effects of O3. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A Benzimidazole Proton Pump Inhibitor Increases Growth and Tolerance to Salt Stress in Tomato

    Directory of Open Access Journals (Sweden)

    Michael J. Van Oosten

    2017-07-01

    Full Text Available Pre-treatment of tomato plants with micromolar concentrations of omeprazole (OP, a benzimidazole proton pump inhibitor in mammalian systems, improves plant growth in terms of fresh weight of shoot and roots by 49 and 55% and dry weight by 54 and 105% under salt stress conditions (200 mM NaCl, respectively. Assessment of gas exchange, ion distribution, and gene expression profile in different organs strongly indicates that OP interferes with key components of the stress adaptation machinery, including hormonal control of root development (improving length and branching, protection of the photosynthetic system (improving quantum yield of photosystem II and regulation of ion homeostasis (improving the K+:Na+ ratio in leaves and roots. To our knowledge OP is one of the few known molecules that at micromolar concentrations manifests a dual function as growth enhancer and salt stress protectant. Therefore, OP can be used as new inducer of stress tolerance to better understand molecular and physiological stress adaptation paths in plants and to design new products to improve crop performance under suboptimal growth conditions.Highlight: Omeprazole enhances growth of tomato and increases tolerance to salinity stress through alterations of gene expression and ion uptake and transport.

  15. The effects of anxiety and depression on stress-related growth among Chinese army recruits: Resilience and coping as mediators.

    Science.gov (United States)

    Yu, Yongju; Peng, Li; Liu, Botao; Liu, Yunbo; Li, Min; Chen, Long; Xie, Junrun; Li, Jing; Li, Jiawen

    2016-09-01

    Stress-related growth can occur after various traumas or stressful events. In order to investigate how anxiety and depression relate to stress-related growth, this study was conducted with 443 Chinese army recruits who had just finished a 3-month recruit training program. Path analyses revealed that resilience and positive/negative coping partially mediated the effect of anxiety on perceived stress-related growth, while negative coping fully mediated the relationship between depression and perceived stress-related growth. Moreover, positive coping partially carried the influence of resilience on perceived stress-related growth. Anxiety and depression may be potential targets for intervention to enhance the development of stress-related growth among Chinese army recruits. © The Author(s) 2015.

  16. Prolactin, thyrotropin, and growth hormone release during stress associated with parachute jumping.

    Science.gov (United States)

    Noel, G L; Dimond, R C; Earll, J M; Frantz, A G

    1976-05-01

    Prolactin, growth hormone, and thyrotropin (TSH) release during the stress of parachute jumping has been evaluated in 14 male subjects. Subjects were studied at several times before and immediately after their first military parachute jump. All three hormones had risen significantly 1 to 14 min after the jump, compared to mean levels measured immediately beforehand. Earlier studies of physical exercise by ourselves and others would suggest that emotional stress played a role in producing changes of this magnitude. We conclude that prolactin, TSH, and growth hormone are released in physiologically significant amounts in association with the stress of parachute jumping.

  17. Cumulative effects of prenatal-exposure to exogenous chemicals and psychosocial stress on fetal growth: Systematic-review of the human and animal evidence.

    Science.gov (United States)

    Vesterinen, Hanna M; Morello-Frosch, Rachel; Sen, Saunak; Zeise, Lauren; Woodruff, Tracey J

    2017-01-01

    Adverse effects of prenatal stress or environmental chemical exposures on fetal growth are well described, yet their combined effect remains unclear. To conduct a systematic review on the combined impact and interaction of prenatal exposure to stress and chemicals on developmental outcomes. We used the first three steps of the Navigation Guide systematic review. We wrote a protocol, performed a robust literature search to identify relevant animal and human studies and extracted data on developmental outcomes. For the most common outcome (fetal growth), we evaluated risk of bias, calculated effect sizes for main effects of individual and combined exposures, and performed a random effects meta-analysis of those studies reporting on odds of low birthweight (LBW) by smoking and socioeconomic status (SES). We identified 17 human- and 22 animal-studies of combined chemical and stress exposures and fetal growth. Human studies tended to have a lower risk of bias across nine domains. Generally, we found stronger effects for chemicals than stress, and these exposures were associated with reduced fetal growth in the low-stress group and the association was often greater in high stress groups, with limited evidence of effect modification. We found smoking associated with significantly increased odds of LBW, with a greater effect for high stress (low SES; OR 4.75 (2.46-9.16)) compared to low stress (high SES; OR 1.95 (95% CI 1.53-2.48)). Animal studies generally had a high risk of bias with no significant combined effect or effect modification. We found that despite concern for the combined effects of environmental chemicals and stress, this is still an under-studied topic, though limited available human studies indicate chemical exposures exert stronger effects than stress, and this effect is generally larger in the presence of stress.

  18. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress

    Directory of Open Access Journals (Sweden)

    Aisha Waheed Qurashi

    2012-09-01

    Full Text Available To compensate for stress imposed by salinity, biofilm formation and exopolysaccharide production are significant strategies of salt tolerant bacteria to assist metabolism. We hypothesized that two previously isolated salt-tolerant strains Halomonas variabilis (HT1 and Planococcus rifietoensis (RT4 have an ability to improve plant growth, These strains can form biofilm and accumulate exopolysacharides at increasing salt stress. These results showed that bacteria might be involved in developing microbial communities under salt stress and helpful in colonizing of bacterial strains to plant roots and soil particles. Eventually, it can add to the plant growth and soil structure. We investigated the comparative effect of exopolysacharide and biofilm formation in two bacterial strains Halomonas variabilis (HT1 and Planococcus rifietoensis (RT4 in response to varying salt stress. We found that biofilm formation and exopolysaccharide accumulation increased at higher salinity. To check the effect of bacterial inoculation on the plant (Cicer arietinum Var. CM-98 growth and soil aggregation, pot experiment was conducted by growing seedlings under salt stress. Inoculation of both strains increased plant growth at elevated salt stress. Weight of soil aggregates attached with roots and present in soil were added at higher salt concentrations compared to untreated controls. Soil aggregation was higher at plant roots under salinity. These results suggest the feasibility of using above strains in improving plant growth and soil fertility under salinity.

  19. Effect of omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation to lactating sows on growth and indicators of stress in post-weaned pig

    Science.gov (United States)

    Dietary n-3 PUFA are precursors for lipid metabolites that reduce inflammation. Two experiments were conducted to test the hypothesis that enriching the sow diet in n-3 PUFA during late gestation and throughout lactation reduces stress and inflammation, and promotes growth in weaned pigs. A protecte...

  20. Psychological Stress Delays Periodontitis Healing in Rats: The Involvement of Basic Fibroblast Growth Factor

    Directory of Open Access Journals (Sweden)

    Ya-Juan Zhao

    2012-01-01

    Full Text Available Objective. To evaluate the effects of psychological stress on periodontitis healing in rats and the contribution of basic fibroblast growth factor (bFGF expression to the healing process. Methods. Ninety-six rats were randomly distributed into control group, periodontitis group, and periodontitis plus stress group. Then, the rats were sacrificed at baseline and week(s 1, 2, and 4. The periodontitis healing condition was assessed, and the expression of interleukin-1β (IL-1β, tumor necrosis factor-α (TNF-α, and bFGF were tested by immunohistochemistry. Results. The stressed rats showed reduced body weight gain, behavioral changes, and increased serum corticosterone and ACTH levels (. The surface of inflammatory infiltrate, alveolar bone loss, attachment loss, and expression of IL-1β and TNF-α in the stress group were higher than those in the periodontitis group at weeks 2 and 4 (. Rats with experimental periodontitis showed decreased bFGF expression (, and the recovery of bFGF expression in the stress group was slower than that in the periodontitis group (. Negative correlations between inflammatory cytokines and bFGF were detected. Conclusion. Psychological stress could delay periodontitis healing in rats, which may be partly mediated by downregulation of the expression of bFGF in the periodontal ligament.

  1. Effect of salt stress on growth, inorganic ion and proline ...

    African Journals Online (AJOL)

    The inhibitory effect of salt stress in rice is complex and is one of the main reasons for reduction of plant growth and crop productivity. In the present study, the response of rice callus cultivar Khao Dawk Mali 105 (KDML105), commonly known as Thai jasmine rice, to salt stress was examined. Callus cultures of KDML105 rice ...

  2. Bone growth, limb proportions and non-specific stress in archaeological populations from Croatia.

    Science.gov (United States)

    Pinhasi, R; Timpson, A; Thomas, M; Slaus, M

    2014-01-01

    The effect of environmental factors and, in particular, non-specific stress on the growth patterns of limbs and other body dimensions of children from past populations is not well understood. This study assesses whether growth of mediaeval and post-mediaeval children aged between 0-11.5 years from Adriatic (coastal) and continental Croatia varies by region and by the prevalence and type of non-specific stress. Dental ages were estimated using the Moorrees, Fanning and Hunt (MFH) scoring method. Growth of long bone diaphyses (femur, tibia, humerus, radius and ulna) was assessed by using a composite Z-score statistic (CZS). Clavicular length was measured as a proxy for upper trunk width, distal metaphyseal width of the femur was measured as a proxy for body mass and upper and lower intra-limb indices were calculated. Differences between sub-sets sampled by (a) region and (b) active vs healed non-specific stress indicators and (c) intra-limb indices were tested by Mann--Whitney U-tests and Analysis of Covariance (ANCOVA). Adriatic children attained larger dimensions-per-age than continental children. Children with healed stress lesions had larger dimensions-per-age than those with active lesions. No inter-regional difference was found in intra-limb indices. These findings highlight the complexity of growth patterns in past populations and indicate that variation in environmental conditions such as diet and differences in the nature of non-specific stress lesions both exert a significant effect on long bone growth.

  3. Restoration of hippocampal growth hormone reverses stress-induced hippocampal impairment

    Directory of Open Access Journals (Sweden)

    Caitlin M. Vander Weele

    2013-06-01

    Full Text Available Though growth hormone (GH is synthesized by hippocampal neurons, where its expression is influenced by stress exposure, its function is poorly characterized. Here, we show that a regimen of chronic stress that impairs hippocampal function in rats also leads to a profound decrease in hippocampal GH levels. Restoration of hippocampal GH in the dorsal hippocampus via viral-mediated gene transfer completely reversed stress-related impairment of two hippocampus-dependent behavioral tasks, auditory trace fear conditioning and contextual fear conditioning, without affecting hippocampal function in unstressed control rats. GH overexpression reversed stress-induced decrements in both fear acquisition and long-term fear memory. These results suggest that loss of hippocampal GH contributes to hippocampal dysfunction following prolonged stress and demonstrate that restoring hippocampal GH levels following stress can promote stress resilience.

  4. Stress corrosion and corrosion fatigue crack growth monitoring in metals

    International Nuclear Information System (INIS)

    Senadheera, T.; Shipilov, S.A.

    2003-01-01

    Environmentally assisted cracking (including stress corrosion cracking and corrosion fatigue) is one of the major causes for materials failure in a wide variety of industries. It is extremely important to understand the mechanism(s) of environmentally assisted crack propagation in structural materials so as to choose correctly from among the various possibilities-alloying elements, heat treatment of steels, parameters of cathodic protection, and inhibitors-to prevent in-service failures due to stress corrosion cracking and corrosion fatigue. An important step towards understanding the mechanism of environmentally assisted crack propagation is designing a testing machine for crack growth monitoring and that simultaneously provides measurement of electrochemical parameters. In the present paper, a direct current (DC) potential drop method for monitoring crack propagation in metals and a testing machine that uses this method and allows for measuring electrochemical parameters during stress corrosion and corrosion fatigue crack growth are described. (author)

  5. Growth and production kinetics of human x mouse and mouse hybridoma cells at reduced temperature and serum content.

    Science.gov (United States)

    Borth, N; Heider, R; Assadian, A; Katinger, H

    1992-09-01

    The growth and production kinetics of a mouse hybridoma cell line and a human-mouse heterohybridoma were analyzed under conditions of reduced temperature and serum content. The mouse hybridoma P24 had a constant cell specific production rate and RNA content, while the heterohybridoma 3D6-LC4 showed growth associated production kinetics and an increased RNA content at higher growth rates. This behaviour of 3D6-LC4 cells can be explained by the unusual cell cycle kinetics of this line, which can be arrested in any phase under growth limiting conditions, so that a low growth rate does not result in a greater portion of high producing G1-phase cells. Substrate limitation changes the cell cycle distribution of this cell line to a greater extent than low temperature or serum content, which indicates that this stress factor exerts a greater physiological control than assumed.

  6. Impact of exogenous salicylic acid on growth and ornamental characteristics of calendula (Calendula officinalis L. under salinity stress

    Directory of Open Access Journals (Sweden)

    Bayat H.

    2012-04-01

    Full Text Available Application of salicylic acid (SA as a phytohormone has been increased due to resistance to stresses such as salt stress. Pot experiments were conducted to determine the effect of exogenous salicylic acid application on growth and ornamental characteristics of calendula grown under salt stress and greenhouse conditions. For this purpose a factorial experiment based on completely randomized design was conducted with 3 levels of SA (0 (control, 1, 2 mM and 3 levels of NaCl (0, 100 and 200 mM with 4 replications. At flowering stage, SA was applied with spraying two times in two week intervals. NaCl was also applied as drench (200 ml per pot in two day intervals. The results showed that salinity decreased the growth, Chlorophyll reading values, flower number per plant and flower diameter. However, foliar applications of SA resulted in greater root, shoot and total dry weight, plant height and leaf area of calendula plants under salt stress. The highest chlorophyll reading values was obtained from 2.00 mM SA application in all NaCl treatments. Salinity decreased number of flower per plant and flower diameter as ornamental characteristics; however SA increased them under salinity stress. Plants treated with 1.00 mM SA had the highest flower diameter at 100 and 200 mM of NaCl. Electrolyte leakage increased by salinity, however foliar application of SA significantly reduced electrolyte leakage under salt stress. Based on the present results, foliar application of SA treatments can ameliorate the negative effects of salinity on the growth and ornamental characteristics of calendula plants.

  7. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10

    Directory of Open Access Journals (Sweden)

    Khan Abdul

    2012-01-01

    Full Text Available Abstract Background Endophytic fungi are little known for exogenous secretion of phytohormones and mitigation of salinity stress, which is a major limiting factor for agriculture production worldwide. Current study was designed to isolate phytohormone producing endophytic fungus from the roots of cucumber plant and identify its role in plant growth and stress tolerance under saline conditions. Results We isolated nine endophytic fungi from the roots of cucumber plant and screened their culture filtrates (CF on gibberellins (GAs deficient mutant rice cultivar Waito-C and normal GAs biosynthesis rice cultivar Dongjin-byeo. The CF of a fungal isolate CSH-6H significantly increased the growth of Waito-C and Dongjin-byeo seedlings as compared to control. Analysis of the CF showed presence of GAs (GA1, GA3, GA4, GA8, GA9, GA12, GA20 and GA24 and indole acetic acid. The endophyte CSH-6H was identified as a strain of Paecilomyces formosus LHL10 on the basis of phylogenetic analysis of ITS sequence similarity. Under salinity stress, P. formosus inoculation significantly enhanced cucumber shoot length and allied growth characteristics as compared to non-inoculated control plants. The hypha of P. formosus was also observed in the cortical and pericycle regions of the host-plant roots and was successfully re-isolated using PCR techniques. P. formosus association counteracted the adverse effects of salinity by accumulating proline and antioxidants and maintaining plant water potential. Thus the electrolytic leakage and membrane damage to the cucumber plants was reduced in the association of endophyte. Reduced content of stress responsive abscisic acid suggest lesser stress convened to endophyte-associated plants. On contrary, elevated endogenous GAs (GA3, GA4, GA12 and GA20 contents in endophyte-associated cucumber plants evidenced salinity stress modulation. Conclusion The results reveal that mutualistic interactions of phytohormones secreting endophytic

  8. Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes

    Directory of Open Access Journals (Sweden)

    Sheikh Hasna Habib

    2016-01-01

    Full Text Available Salinity is a major environmental stress that limits crop production worldwide. In this study, we characterized plant growth-promoting rhizobacteria (PGPR containing 1-aminocyclopropane-1-carboxylate (ACC deaminase and examined their effect on salinity stress tolerance in okra through the induction of ROS-scavenging enzyme activity. PGPR inoculated okra plants exhibited higher germination percentage, growth parameters, and chlorophyll content than control plants. Increased antioxidant enzyme activities (SOD, APX, and CAT and upregulation of ROS pathway genes (CAT, APX, GR, and DHAR were observed in PGPR inoculated okra plants under salinity stress. With some exceptions, inoculation with Enterobacter sp. UPMR18 had a significant influence on all tested parameters under salt stress, as compared to other treatments. Thus, the ACC deaminase-containing PGPR isolate Enterobacter sp. UPMR18 could be an effective bioresource for enhancing salt tolerance and growth of okra plants under salinity stress.

  9. Drought stress, growth and nonstructural carbohydrate dynamics of pine trees in a semi-arid forest.

    Science.gov (United States)

    Klein, Tamir; Hoch, Günter; Yakir, Dan; Körner, Christian

    2014-09-01

    In trees exposed to prolonged drought, both carbon uptake (C source) and growth (C sink) typically decrease. This correlation raises two important questions: (i) to what degree is tree growth limited by C availability; and (ii) is growth limited by concurrent C storage (e.g., as nonstructural carbohydrates, NSC)? To test the relationships between drought, growth and C reserves, we monitored the changes in NSC levels and constructed stem growth chronologies of mature Pinus halepensis Miller trees of three drought stress levels growing in Yatir forest, Israel, at the dry distribution limit of forests. Moderately stressed and stressed trees showed 34 and 14% of the stem growth, 71 and 31% of the sap flux density, and 79 and 66% of the final needle length of healthy trees in 2012. In spite of these large reductions in growth and sap flow, both starch and soluble sugar concentrations in the branches of these trees were similar in all trees throughout the dry season (2-4% dry mass). At the same time, the root starch concentrations of moderately stressed and stressed trees were 47 and 58% of those of healthy trees, but never drought there is more than one way for a tree to maintain a positive C balance. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. EFFECT OF DROUGHT STRESS ON EARLY GROWTH OF ...

    African Journals Online (AJOL)

    Ridwan

    ABSTRACT. Drought and high temperatures are said to have triggered increased tree mortality and could be linked to the menace of climate change. This research therefore investigated the effect of drought stress on early growth of Adansonia digitata where seedlings were exposed to different watering frequencies (Once ...

  11. In utero glucocorticoid (GLC) exposure reduces fetal skeletal muscle growth in rats

    Science.gov (United States)

    Maternal undernutrition and stress expose the fetus to above normal levels of GLC and predispose to intrauterine growth restriction. The aim of this study was to determine if fetal GLC exposure impairs skeletal muscle growth independently of maternal undernutrition. Three groups (n=7/group) of timed...

  12. Reduced Deforestation and Economic Growth

    OpenAIRE

    Patrick Doupe

    2014-01-01

    The clearing of forests for agricultural land and other marketable purposes is a well-trodden path of economic development. With these private benefits from deforestation come external costs: emissions from deforestation currently account for 12 per cent of global carbon emissions. A widespread intervention in reducing emissions from deforestation will affect the paths of agricultural expansion and economic growth of lower income nations. To investigate these processes, this paper presents a ...

  13. Growth recovery in newly arrived international adoptees in Italy: relation to parenting stress.

    Science.gov (United States)

    Canzi, Elena; Rosnati, Rosa; Miller, Laurie C

    2018-04-12

    Following initial adversities, most internationally adopted children arrive with significant growth delays. Post-placement recovery has been widely documented, but research about risk or protective factors is still limited. Even less is known about the relationship between growth recovery and the quality of the family environment. 28 children in 26 adoptive families were involved in this longitudinal study. A comprehensive evaluation (including anthropometry, cognitive assessment [using the Leiter International Performance Scale-Revised], and completion by both parents of the Parenting Stress Index - Short Form) was done at arrival of the child, and 1 year later. Results evidenced that on arrival nearly half of children had growth measurements in the normal range. All the children showed a significant recovery in height and weight at 6 and 12 months post-placement. Initial and follow up growth measurements correlated strongly. Growth recovery was related to the age of the child at adoption, the proportion of time the child had resided in institutional care, as well as parenting stress. Results suggested that the higher the parenting stress experienced the less improvements occurred in children: for mothers for height and weight, for fathers for all the growth indicators. Results suggested the critical importance of family factor in influencing children's growth recovery.

  14. Numerical analysis of thermal stress and dislocation density distributions in large size multi-crystalline silicon ingots during the seeded growth process

    Science.gov (United States)

    Nguyen, Thi Hoai Thu; Chen, Jyh-Chen; Hu, Chieh; Chen, Chun-Hung; Huang, Yen-Hao; Lin, Huang-Wei; Yu, Andy; Hsu, Bruce

    2017-06-01

    In this study, a global transient numerical simulation of silicon growth from the beginning of the solidification process until the end of the cooling process is carried out modeling the growth of an 800 kg ingot in an industrial seeded directional solidification furnace. The standard furnace is modified by the addition of insulating blocks in the hot zone. The simulation results show that there is a significant decrease in the thermal stress and dislocation density in the modified model as compared to the standard one (a maximal decrease of 23% and 75% along the center line of ingot for thermal stress and dislocation density, respectively). This modification reduces the heating power consumption for solidification of the silicon melt by about 17% and shortens the growth time by about 2.5 h. Moreover, it is found that adjusting the operating conditions of modified model to obtain the lower growth rate during the early stages of the solidification process can lower dislocation density and total heater power.

  15. A crack opening stress equation for fatigue crack growth

    Science.gov (United States)

    Newman, J. C., Jr.

    1984-01-01

    A general crack opening stress equation is presented which may be used to correlate crack growth rate data for various materials and thicknesses, under constant amplitude loading, once the proper constraint factor has been determined. The constraint factor, alpha, is a constraint on tensile yielding; the material yields when the stress is equal to the product of alpha and sigma. Delta-K (LEFM) is plotted against rate for 2024-T3 aluminum alloy specimens 2.3 mm thick at various stress ratios. Delta-K sub eff was plotted against rate for the same data with alpha = 1.8; the rates correlate well within a factor of two.

  16. Transgenic tobacco plants constitutively expressing peanut BTF3 exhibit increased growth and tolerance to abiotic stresses.

    Science.gov (United States)

    Pruthvi, V; Rama, N; Parvathi, M S; Nataraja, K N

    2017-05-01

    Abiotic stresses limit crop growth and productivity worldwide. Cellular tolerance, an important abiotic stress adaptive trait, involves coordinated activities of multiple proteins linked to signalling cascades, transcriptional regulation and other diverse processes. Basal transcriptional machinery is considered to be critical for maintaining transcription under stressful conditions. From this context, discovery of novel basal transcription regulators from stress adapted crops like peanut would be useful for improving tolerance of sensitive plant types. In this study, we prospected a basal transcription factor, BTF3 from peanut (Arachis hypogaea L) and studied its relevance in stress acclimation by over expression in tobacco. AhBTF3 was induced under PEG-, NaCl-, and methyl viologen-induced stresses in peanut. The constitutive expression of AhBTF3 in tobacco increased plant growth under non stress condition. The transgenic plants exhibited superior phenotype compared to wild type under mannitol- and NaCl-induced stresses at seedling level. The enhanced cellular tolerance of transgenic plants was evidenced by higher cell membrane stability, reactive oxygen species (ROS) scavenging activity, seedling survival and vigour than wild type. The transgenic lines showed better in vitro regeneration capacity on growth media supplemented with NaCl than wild type. Superior phenotype of transgenic plants under osmotic and salinity stresses seems to be due to constitutive activation of genes of multiple pathways linked to growth and stress adaptation. The study demonstrated that AhBTF3 is a positive regulator of growth and stress acclimation and hence can be considered as a potential candidate gene for crop improvement towards stress adaptation. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Effect of salt stress on growth and physiology in amaranth and lettuce: Implications for bioregenerative life support system

    Science.gov (United States)

    Qin, Lifeng; Guo, Shuangsheng; Ai, Weidang; Tang, Yongkang; Cheng, Quanyong; Chen, Guang

    2013-02-01

    Growing plants can be used to clean waste water in bioregenerative life support system (BLSS). However, NaCl contained in the human urine always restricts plant growth and further reduces the degree of mass cycle closure of the system (i.e. salt stress). This work determined the effect of NaCl stress on physiological characteristics of plants for the life support system. Amaranth (Amaranthus tricolor L. var. Huahong) and leaf lettuce (Lactuca sativa L. var. Luoma) were cultivated at nutrient solutions with different NaCl contents (0, 1000, 5000 and 10,000 ppm, respectively) for 10 to 18 days after planted in the Controlled Ecological Life Support System Experimental Facility in China. Results showed that the two plants have different responses to the salt stress. The amaranth showed higher salt-tolerance with NaCl stress. If NaCl content in the solution is below 5000 ppm, the salt stress effect is insignificant on above-ground biomass output, leaf photosynthesis rate, Fv/Fm, photosynthesis pigment contents, activities of antioxidant enzymes, and inducing lipid peroxidation. On the other hand, the lettuce is sensitive to NaCl which significantly decreases those indices of growth and physiology. Notably, the lettuce remains high productivity of edible biomass in low NaCl stress, although its salt-tolerant limitation is lower than amaranth. Therefore, we recommended that amaranth could be cultivated under a higher NaCl stress condition (lettuce should be under a lower NaCl stress (<1000 ppm) for water cleaning in future BLSS.

  18. The stress-reducing effect of music listening varies depending on the social context.

    Science.gov (United States)

    Linnemann, Alexandra; Strahler, Jana; Nater, Urs M

    2016-10-01

    Given that music listening often occurs in a social context, and given that social support can be associated with a stress-reducing effect, it was tested whether the mere presence of others while listening to music enhances the stress-reducing effect of listening to music. A total of 53 participants responded to questions on stress, presence of others, and music listening five times per day (30min after awakening, 1100h, 1400h, 1800h, 2100h) for seven consecutive days. After each assessment, participants were asked to collect a saliva sample for the later analysis of salivary cortisol (as a marker for the hypothalamic-pituitary-adrenal axis) and salivary alpha-amylase (as a marker for the autonomic nervous system). Hierarchical linear modeling revealed that music listening per se was not associated with a stress-reducing effect. However, listening to music in the presence of others led to decreased subjective stress levels, attenuated secretion of salivary cortisol, and higher activity of salivary alpha-amylase. When listening to music alone, music that was listened to for the reason of relaxation predicted lower subjective stress. The stress-reducing effect of music listening in daily life varies depending on the presence of others. Music listening in the presence of others enhanced the stress-reducing effect of music listening independently of reasons for music listening. Solitary music listening was stress-reducing when relaxation was stated as the reason for music listening. Thus, in daily life, music listening can be used for stress reduction purposes, with the greatest success when it occurs in the presence of others or when it is deliberately listened to for the reason of relaxation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Predictors of Stress-Related Growth in Parents of Children with ADHD

    Science.gov (United States)

    Finzi-Dottan, Ricky; Triwitz, Yael Segal; Golubchik, Pavel

    2011-01-01

    This study was designed to investigate stress-related growth in 71 parents of children with ADHD, compared with 80 parents of non-clinical children. Adopting Tedeschi and Calhoun's (2004) theoretical framework for predicting personal growth, the study investigated the contribution of emotional intelligence (individual characteristics), social…

  20. Active power decoupling with reduced converter stress for single ...

    Indian Academy of Sciences (India)

    SUJATA BHOWMICK

    Department of Electronic Systems Engineering, Indian Institute of Science, ... Single phase; double-frequency ripple; active power decoupling; reduced stress; ... sation of renewable energy sources (e.g., PV), potential ... In standard grid connected DC/AC H-bridge configuration, ..... solar inverter with reduced-size dc link.

  1. Taking Exception. Reduced mortality leads to population growth: an inconvenient truth.

    Science.gov (United States)

    Shelton, James D

    2014-05-01

    Reduced mortality has been the predominant cause of the marked global population growth over the last 3/4 of a century. While improved child survival increases motivation to reduce fertility, it comes too little and too late to forestall substantial population growth. And, beyond motivation, couples need effective means to control their fertility. It is an inconvenient truth that reducing child mortality contributes considerably to the population growth destined to compromise the quality of life of many, particularly in sub-Saharan Africa. Vigorous child survival programming is of course imperative. Wide access to voluntary family planning can help mitigate that growth and provide many other benefits.

  2. Effect of Foliar Application of Chitosan on Growth and Biochemical Characteristics of Safflower (Carthamus tinctorius L. under Water Deficit Stress

    Directory of Open Access Journals (Sweden)

    batool mahdavi

    2014-09-01

    Full Text Available In order to study the effects of water deficit stress and foliar application of chitosan in safflower (Carthamus tinctorius L., a pot experiment was conducted in 2009. Experimental design was a randomized complete block in factorial arrangement with three replications. Experimental factors were water deficit levels (unstressed (control and 70% available water depletion from soil (water deficit stress, chitosan concentrations (0, 0.05, 0.1%, all dissolved in 1% acetic acid along with an additional treatment of distilled water and foliar application times (before and during stem elongation. The results showed that water deficit stress reduced plant height, leaf area, shoot and root dry weight, root height and volume. Whereas, foliar application of chitosan increased mentioned traits. In addition, water deficit stress decreased chlorophyll fluorescence, chlorophyll concentration and relative water content. Carotenoid, proline and malondialdehyde (MDA content were increased in response to stress. Foliar application of chitosan increased chlorophyll fluorescence, relative water content (68.77% and chlorophyll b in the water deficit stressed plants, whereas decreased MDA content. The results of the present study indicate that application of chitosan can reduce the harmful effects of water deficit and improve plant growth.

  3. EFFECT OF TWO COMMERCIAL ANTI-STRESS DRUGS ON THE GROWTH OF ARTIFICIALLY INDUCED STRESSED BROILERS

    Directory of Open Access Journals (Sweden)

    A. Memon, N. A. Qureshi, Mol. Rind, A.A. Solangi and G. Memono1

    2001-01-01

    Full Text Available The Study was carried out to evaluate the efficacy of anti-stress commercial drugs (Vitasol Super and Vitamionic-33 on growth of stressed broilers, at the Poultry Experimental Station, Sindh Agriculture University Tandojam during August-September, 1998. A-day old 150 chicks were equally housed in three groups that were A, Band C. In group “A” five grams Vitasol Super was added in 40 litres of drinking water, while in group “B” one gram of Vitaminic-33 was added in three litres of drinking water. Group “C” was kept as control, where no anti-stress drug was supplemented in water. Results revealed highly significant difference among weight gain of broilers fed on ration supplemented with different anti-stress drugs. Average weight gain of all groups A, Band C were 1796.50, 1899.80 and 1760.52 gms, respectively. Average feed consumption of different groups were 3830, 3859 and 3818 gms, respectively. Average feed conversion ratio of different groups A, Band C was 2.14, 2.03 and 2.17, respectively. The average dressing percentage of difference groups were 62.10, 64.52 and 61.60. Highly significant difference was observed in weight of internal organs of different groups. The average per kilogram of broilers profit of different groups were Rs. 10.49, 13.81 and 10.95, respectively. The birds of group B, which was, earned maximum profit given Vitaminic-33 (anti-stress drug. It was concluded that anti-stress vitamin (Vitaminic-33 at the rate of 5grams/40 litres of water ad libitum can be successfully used for better growth of broilers

  4. ER stress-induced protein, VIGG, disturbs plant cation homeostasis, which is correlated with growth retardation and robustness to ER stress

    International Nuclear Information System (INIS)

    Katoh, Hironori; Fujita, Keiko; Takuhara, Yuki; Ogawa, Atsushi; Suzuki, Shunji

    2011-01-01

    Highlights: → VIGG is an ER stress-induced protein in plant. → We examine the characteristics of VIGG-overexpressing Arabidopsis plants. → VIGG-overexpressing plants reveal growth retardation and robustness to ER stress. → VIGG disturbs cation homeostasis in plant. -- Abstract: VIGG is a putative endoplasmic reticulum (ER) resident protein induced by virus infection and ER stress, and is correlated with fruit quality in grapevine. The present study was undertaken to determine the biological function of VIGG in grapevine. Experiments using fluorescent protein-VIGG fusion protein demonstrated that VIGG is localized in ER and the ER targeting sequence is in the N-terminus. The overexpression of VIGG in Arabidopsis plant led to growth retardation. The rosette leaves of VIGG-overexpressing plants were smaller than those of the control plants and rolled at 42 days after seeding. VIGG-overexpressing plants revealed robustness to ER stress as well as the low expression of ER stress marker proteins, such as the luminal binding proteins. These characteristics of VIGG-overexpressing plants were supported by a microarray experiment that demonstrated the disruption of genes related to ER stress response and flowering, as well as cation mobility, in the plants. Finally, cation homeostasis in the plants was disturbed by the overexpression of VIGG. Taken together, these results suggest that VIGG may disturb cation homeostasis in plant, which is correlated with the robustness to ER stress and growth retardation.

  5. ER stress-induced protein, VIGG, disturbs plant cation homeostasis, which is correlated with growth retardation and robustness to ER stress

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Hironori; Fujita, Keiko; Takuhara, Yuki [Laboratory of Fruit Genetic Engineering, The Institute of Enology and Viticulture, University of Yamanashi, Kofu, Yamanashi 400-0005 (Japan); Ogawa, Atsushi [Department of Biological Production, Akita Prefectural University, Shimosinjyou-nakano 241-438, Akita 010-0195 (Japan); Suzuki, Shunji, E-mail: suzukis@yamanashi.ac.jp [Laboratory of Fruit Genetic Engineering, The Institute of Enology and Viticulture, University of Yamanashi, Kofu, Yamanashi 400-0005 (Japan)

    2011-02-18

    Highlights: {yields} VIGG is an ER stress-induced protein in plant. {yields} We examine the characteristics of VIGG-overexpressing Arabidopsis plants. {yields} VIGG-overexpressing plants reveal growth retardation and robustness to ER stress. {yields} VIGG disturbs cation homeostasis in plant. -- Abstract: VIGG is a putative endoplasmic reticulum (ER) resident protein induced by virus infection and ER stress, and is correlated with fruit quality in grapevine. The present study was undertaken to determine the biological function of VIGG in grapevine. Experiments using fluorescent protein-VIGG fusion protein demonstrated that VIGG is localized in ER and the ER targeting sequence is in the N-terminus. The overexpression of VIGG in Arabidopsis plant led to growth retardation. The rosette leaves of VIGG-overexpressing plants were smaller than those of the control plants and rolled at 42 days after seeding. VIGG-overexpressing plants revealed robustness to ER stress as well as the low expression of ER stress marker proteins, such as the luminal binding proteins. These characteristics of VIGG-overexpressing plants were supported by a microarray experiment that demonstrated the disruption of genes related to ER stress response and flowering, as well as cation mobility, in the plants. Finally, cation homeostasis in the plants was disturbed by the overexpression of VIGG. Taken together, these results suggest that VIGG may disturb cation homeostasis in plant, which is correlated with the robustness to ER stress and growth retardation.

  6. Reduced growth due to belowground sink limitation is not fully explained by reduced photosynthesis.

    Science.gov (United States)

    Campany, Courtney E; Medlyn, Belinda E; Duursma, Remko A

    2017-08-01

    Sink limitation is known to reduce plant growth, but it is not known how plant carbon (C) balance is affected, limiting our ability to predict growth under sink-limited conditions. We manipulated soil volume to impose sink limitation of growth in Eucalyptus tereticornis Sm. seedlings. Seedlings were grown in the field in containers of different sizes and planted flush to the soil alongside freely rooted (Free) seedlings. Container volume negatively affected aboveground growth throughout the experiment, and light saturated rates of leaf photosynthesis were consistently lower in seedlings in containers (-26%) compared with Free seedlings. Significant reductions in photosynthetic capacity in containerized seedlings were related to both reduced leaf nitrogen content and starch accumulation, indicating direct effects of sink limitation on photosynthetic downregulation. After 120 days, harvested biomass of Free seedlings was on average 84% higher than seedlings in containers, but biomass distribution in leaves, stems and roots was not different. However, the reduction in net leaf photosynthesis over the growth period was insufficient to explain the reduction in growth, so that we also observed an apparent reduction in whole-plant C-use efficiency (CUE) between Free seedlings and seedlings in containers. Our results show that sink limitation affects plant growth through feedbacks to both photosynthesis and CUE. Mass balance approaches to predicting plant growth under sink-limited conditions need to incorporate both of these feedbacks. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. PGPR Potentially Improve Growth of Tomato Plants in Salt-Stressed Environment

    Directory of Open Access Journals (Sweden)

    Mariam Zameer

    2016-06-01

    Full Text Available Plant growth promoting rhizobacteria are colonized bacterial species that has the capability to improve plant growth by certain direct and indirect means. Environmental factors including both biotic and abiotic stresses are among the major constraints to crop production. In the current study, the effectiveness of microbial inoculation (Bacillus megaterium for enhancing growth of tomato plants under salt stress conditions has been investigated. Significant improvement in shoot length, root length, leaf surface area, number of leaves, total weight of the shoot and root was observed in tomato plants inoculated with zm7 strain post 15 and 30 days of its application. Zm3, Zm4 and Zm6 strains improved the morphological parameters as compared to the control. Chlorophyll content a, chlorophyll content b, anthocyanin and carotenoid content was increased in tomato plants subjected to Zm7, Zm6 and Zm4 strains. Stress responsive genes; metallothionein and glutothion gene were found highly expressed in Zm7 treated tomato plants as compared to control, untreated plants. Significant correlation of anthocyanin was reported for carotenoids, chlorophyll-b, shoot weight and total weight of seedling while carotenoids were significantly correlated with leaf surface area, root length, chlorophyll-b and anthocyanin. Overall, Zm7 strain proved best for improvement in salt stressed plant’s morphological parameters and biochemical parameters as compared to control, untreated plants.

  8. DAF-2/insulin-like signaling in C. elegans modifies effects of dietary restriction and nutrient stress on aging, stress and growth.

    Directory of Open Access Journals (Sweden)

    Wendy B Iser

    2007-11-01

    Full Text Available Dietary restriction (DR and reduced insulin/IGF-I-like signaling (IIS are two regimens that promote longevity in a variety of organisms. Genetic analysis in C. elegans nematodes has shown that DR and IIS couple to distinct cellular signaling pathways. However, it is not known whether these pathways ultimately converge on overlapping or distinct targets to extend lifespan.We investigated this question by examining additional effects of DR in wildtype animals and in daf-2 mutants with either moderate or severe IIS deficits. Surprisingly, DR and IIS had opposing effects on these physiological processes. First, DR induced a stress-related change in intestinal vesicle trafficking, termed the FIRE response, which was suppressed in daf-2 mutants. Second, DR did not strongly affect expression of a daf-2- and stress-responsive transcriptional reporter. Finally, DR-related growth impairment was suppressed in daf-2 mutants.These findings reveal that an important biological function of DAF-2/IIS is to enhance growth and survival under nutrient-limited conditions. However, we also discovered that levels of DAF-2 pathway activity modified the effects of DR on longevity. Thus, while DR and IIS clearly affect lifespan through independent targets, there may also be some prolongevity targets that are convergently regulated by these pathways.

  9. DAF-2/insulin-like signaling in C. elegans modifies effects of dietary restriction and nutrient stress on aging, stress and growth.

    Science.gov (United States)

    Iser, Wendy B; Wolkow, Catherine A

    2007-11-28

    Dietary restriction (DR) and reduced insulin/IGF-I-like signaling (IIS) are two regimens that promote longevity in a variety of organisms. Genetic analysis in C. elegans nematodes has shown that DR and IIS couple to distinct cellular signaling pathways. However, it is not known whether these pathways ultimately converge on overlapping or distinct targets to extend lifespan. We investigated this question by examining additional effects of DR in wildtype animals and in daf-2 mutants with either moderate or severe IIS deficits. Surprisingly, DR and IIS had opposing effects on these physiological processes. First, DR induced a stress-related change in intestinal vesicle trafficking, termed the FIRE response, which was suppressed in daf-2 mutants. Second, DR did not strongly affect expression of a daf-2- and stress-responsive transcriptional reporter. Finally, DR-related growth impairment was suppressed in daf-2 mutants. These findings reveal that an important biological function of DAF-2/IIS is to enhance growth and survival under nutrient-limited conditions. However, we also discovered that levels of DAF-2 pathway activity modified the effects of DR on longevity. Thus, while DR and IIS clearly affect lifespan through independent targets, there may also be some prolongevity targets that are convergently regulated by these pathways.

  10. Large-area sheet task: Advanced dendritic-web-growth development

    Science.gov (United States)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Schruben, J.

    1983-01-01

    Thermally generated stresses in the growing web crystal were reduced. These stresses, which if too high cause the ribbon to degenerate, were reduced by a factor of three, resulting in the demonstrated growth of high-quality web crystals to widths of 5.4 cm. This progress was brought about chiefly by the application of thermal models to the development of low-stress growth configurations. A new temperature model was developed which can analyze the thermal effects of much more complex lid and top shield configurations than was possible with the old lumped shield model. Growth experiments which supplied input data such as actual shield temperature and melt levels were used to verify the modeling results. Desirable modifications in the melt level-sensing circuitry were made in the new experimental web growth furnace, and this furnace has been used to carry out growth experiments under steady-state conditions. New growth configurations were tested in long growth runs at Westinghouse AESD which produced wider, lower stress and higher quality web crystals than designs previously used.

  11. Systematic review of interventions for reducing occupational stress in health care workers

    NARCIS (Netherlands)

    Ruotsalainen, Jani; Serra, Consol; Marine, Albert; Verbeek, Jos

    2008-01-01

    This study evaluated the effectiveness of interventions in reducing stress at work among health care workers. A systematic search was conducted of the literature on reducing stress or burnout in health care workers. The quality of the studies found was then appraised and the results combined. A

  12. Effectiveness of stress release geometries on reducing residual stress in electroforming metal microstructure

    Science.gov (United States)

    Song, Chang; Du, Liqun; Zhao, Wenjun; Zhu, Heqing; Zhao, Wen; Wang, Weitai

    2018-04-01

    Micro electroforming, as a mature micromachining technology, is widely used to fabricate metal microdevices in micro electro mechanical systems (MEMS). However, large residual stress in the local positions of the micro electroforming layer often leads to non-uniform residual stress distributions, dimension accuracy defects and reliability issues during fabrication of the metal microdevice. To solve this problem, a novel design method of presetting stress release geometries in the topological structure of the metal microstructure is proposed in this paper. First, the effect of stress release geometries (circular shape, annular groove shape and rivet shape) on the residual stress in the metal microstructure was investigated by finite element modeling (FEM) analysis. Two evaluation parameters, stress concentration factor K T and stress non-uniformity factor δ were calculated. The simulation results show that presetting stress release geometries can effectively reduce and homogenize the residual stress in the metal microstructures were measured metal microstructure. By combined use with stress release geometries of annular groove shape and rivet shape, the stress concentration factor K T and the stress non-uniformity factor δ both decreased at a maximum of 49% and 53%, respectively. Meanwhile, the average residual stress σ avg decreased at a maximum of 20% from  -292.4 MPa to  -232.6 MPa. Then, micro electroforming experiments were carried out corresponding to the simulation models. The residual stresses in the metal microstructures were measured by micro Raman spectroscopy (MRS) method. The results of the experiment proved that the stress non-uniformity factor δ and the average residual stress σ avg also decreased at a maximum with the combination use of annular groove shape and rivet shape stress release geometries, which is in agreement with the results of FEM analysis. The stress non-uniformity factor δ has a maximum decrease of 49% and the

  13. Role of high-temperature creep stress in thermally grown oxide growth of thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K.; Nakao, Y.; Seo, D.; Miura, H.; Shoji, T. [Tohoku Univ., Sendai (Japan)

    2008-07-01

    Thermally grown oxide (TGO) grows at the top / bond coating interface of the thermal barrier coating (TBC) in service. It is supposed that the failures of the TBC occur due to thermal stress and the decrease of adhesive strength caused by the TGO growth. Recently, large local stress has been found to change both the diffusion constant of oxygen through an existing oxide and the rate of chemical reaction at the oxide / oxidized material interface. Since high thermal stress occurs in the TBC, the volume expansion of the newly grown oxide, and centrifugal force, the growth rate of the TGO may change depending on not only temperature but also the stress. The aim of this study is to make clear the influence of stress on the growth rate of the TGO quantitatively. As a result, the thickness of the TGO clearly increases with increase of the amplitude of the applied stress and temperature. The increase rate of the TGO thickness is approximately 23% when the applied stress is increased from 0 to 205 MPa at 900 C, and approximately 29% when the stress is increased from 0 to 150 MPa at 950 C. (orig.)

  14. Effect of salt stress on growth and contents of organic and inorganic ...

    African Journals Online (AJOL)

    Effect of salt stress on growth and contents of organic and inorganic compounds in noni ( Morinda citrifolia L.) ... seedlings at 1, 10, 20, 30 and 40 days of salt stress in a 5 x 2 completely randomized experimental design. ... from 32 Countries:.

  15. Constitutive modeling of void-growth-based tensile ductile failures with stress triaxiality effects

    KAUST Repository

    Mora Cordova, Angel

    2014-07-01

    In most metals and alloys, the evolution of voids has been generally recognized as the basic failure mechanism. Furthermore, stress triaxiality has been found to influence void growth dramatically. Besides strain intensity, it is understood to be the most important factor that controls the initiation of ductile fracture. We include sensitivity of stress triaxiality in a variational porous plasticity model, which was originally derived from hydrostatic expansion. Under loading conditions rather than hydrostatic deformation, we allow the critical pressure for voids to be exceeded so that the growth due to plasticity becomes dependent on the stress triaxiality. The limitations of the spherical void growth assumption are investigated. Our improved constitutive model is validated through good agreements with experimental data. Its capacity for reproducing realistic failure patterns is also indicated by a numerical simulation of a compact tensile (CT) test. © 2013 Elsevier Inc.

  16. Insights on the host stress, fear and growth responses to the deoxynivalenol feed contaminant in broiler chickens.

    Science.gov (United States)

    Ghareeb, Khaled; Awad, Wageha A; Sid-Ahmed, Omer E; Böhm, Josef

    2014-01-01

    Mycotoxins pose an important danger to human and animal health. Poultry feeds are frequently contaminated with deoxynivalenol (DON) mycotoxin. It is thus of great importance to evaluate the effects of DON on the welfare related parameters in poultry industry. In the present study, the effects of contamination of broiler diet with 10 mg DON/kg feed on plasma corticosterone and heterophil to lymphocyte (H/L) ratio as indicators of stress, tonic immobility duration as an index for fear response and growth performance of broiler chickens were studied. In addition, the effect of a microbial feed additive either alone or in combination with DON contamination on these different aspects was also evaluated. The results showed that DON feeding significantly affected the welfare related parameters of broiler chickens. The feeding of DON contaminated diet resulted in an elevation of plasma corticosterone, higher H/L ratio and increased the fear levels as indicated by longer duration of tonic immobility reaction. Furthermore, DON reduced the body weight and body weight gain during the starter phase definitely at the second and third week. However, during grower phase, feeding of DON decreased the body weight at the fourth week and reduced the body gain at the fifth week. Addition of the microbial feed additive, a commercial antidote for DON mycotoxin, was able to overcome DON effects on stress index (H/L ratio), fearfulness and growth parameters of broilers. In conclusion, we showed for the first time that the DON feeding increased the underlying fearfulness and physiological stress responses of broilers and resulted in a reduction in the welfare status as indicated by higher plasma corticosterone, higher H/L ratio and higher fearfulness. Additionally, feeding the microbial feed additive was effective in reducing the adverse effects of DON on the bird's welfare and can improve the performance of broiler chickens.

  17. Insights on the host stress, fear and growth responses to the deoxynivalenol feed contaminant in broiler chickens.

    Directory of Open Access Journals (Sweden)

    Khaled Ghareeb

    Full Text Available Mycotoxins pose an important danger to human and animal health. Poultry feeds are frequently contaminated with deoxynivalenol (DON mycotoxin. It is thus of great importance to evaluate the effects of DON on the welfare related parameters in poultry industry. In the present study, the effects of contamination of broiler diet with 10 mg DON/kg feed on plasma corticosterone and heterophil to lymphocyte (H/L ratio as indicators of stress, tonic immobility duration as an index for fear response and growth performance of broiler chickens were studied. In addition, the effect of a microbial feed additive either alone or in combination with DON contamination on these different aspects was also evaluated. The results showed that DON feeding significantly affected the welfare related parameters of broiler chickens. The feeding of DON contaminated diet resulted in an elevation of plasma corticosterone, higher H/L ratio and increased the fear levels as indicated by longer duration of tonic immobility reaction. Furthermore, DON reduced the body weight and body weight gain during the starter phase definitely at the second and third week. However, during grower phase, feeding of DON decreased the body weight at the fourth week and reduced the body gain at the fifth week. Addition of the microbial feed additive, a commercial antidote for DON mycotoxin, was able to overcome DON effects on stress index (H/L ratio, fearfulness and growth parameters of broilers. In conclusion, we showed for the first time that the DON feeding increased the underlying fearfulness and physiological stress responses of broilers and resulted in a reduction in the welfare status as indicated by higher plasma corticosterone, higher H/L ratio and higher fearfulness. Additionally, feeding the microbial feed additive was effective in reducing the adverse effects of DON on the bird's welfare and can improve the performance of broiler chickens.

  18. Long-term salt stress responsive growth, carbohydrate metabolism ...

    African Journals Online (AJOL)

    We investigated the long-term responses of tobacco tissues to salt stress, with a particular interest for growth parameters, proline (Pro) accumulation, and carbohydrate metabolism. Exposure of 17-day-old tobacco plants to 0.2 M NaCl was followed by a higher decrease in dry matter in roots than shoots with a decrease of ...

  19. Music as a Therapeutic Assistant: Strategy to Reduce Work Stress

    Directory of Open Access Journals (Sweden)

    Dereck Sena de Lima

    2017-02-01

    Full Text Available Objective: to understand the influence of music as a therapeutic assistant in reducing work stress of nursing professionals in a basic health unit. Method: it is an exploratory and descriptive research with a quantitative approach, developed with 9 nursing professionals from UBS Integrated Nova Esperança in João Pessoa, Paraíba. Data collection began after approval of the Research Ethics Committee of the Health Sciences Center of the Federal University of Paraíba, nº. 0508/16, CAAE: 58741916.6.0000.5188. Results: we identified that 33.3% of nursing professionals presented signs of stress, of the 33.3% who presented stress, 100% demonstrated to be in the resistance phase, 100% of the nursing professionals evaluated the musical strategy in a positive way. Conclusion: the musical strategy received extremely positive evaluations by the participants of the research, about 100% of professionals said that listening to music can reduce work stress.

  20. Impact of water stress on growth reserves and re-growth of Themeda ...

    African Journals Online (AJOL)

    Four water stress treatments (T1 = 0–25%, T2 = 25–50%, T3 = 50–75% and T4 = 75–100% depletion of plant available water) were applied to the plants in pots in a glasshouse. The TNCC declined drastically after severe defoliation over all the water treatments (P < 0.05), in all the plant parts (P < 0.05) and for all the growth ...

  1. Effects of microstructure and residual stress on fatigue crack growth of stainless steel narrow gap welds

    International Nuclear Information System (INIS)

    Jang, Changheui; Cho, Pyung-Yeon; Kim, Minu; Oh, Seung-Jin; Yang, Jun-Seog

    2010-01-01

    The effects of weld microstructure and residual stress distribution on the fatigue crack growth rate of stainless steel narrow gap welds were investigated. Stainless steel pipes were joined by the automated narrow gap welding process typical to nuclear piping systems. The weld fusion zone showed cellular-dendritic structures with ferrite islands in an austenitic matrix. Residual stress analysis showed large tensile stress in the inner-weld region and compressive stress in the middle of the weld. Tensile properties and the fatigue crack growth rate were measured along and across the weld thickness direction. Tensile tests showed higher strength in the weld fusion zone and the heat affected zone compared to the base metal. Within the weld fusion zone, strength was greater in the inner weld than outer weld region. Fatigue crack growth rates were several times greater in the inner weld than the outer weld region. The spatial variation of the mechanical properties is discussed in view of weld microstructure, especially dendrite orientation, and in view of the residual stress variation within the weld fusion zone. It is thought that the higher crack growth rate in the inner-weld region could be related to the large tensile residual stress despite the tortuous fatigue crack growth path.

  2. Evaluation of micro fatigue crack growth under equi-biaxial stress by membranous pressure fatigue test

    International Nuclear Information System (INIS)

    Iida, Satoshi; Abe, Shigeki; Nakamura, Takao; Kamaya, Masayuki

    2014-01-01

    For preventing nuclear power plant (NPP) accidents, NPPs are required to ensure system safety in long term safe operation under aging degradation. Now, fatigue accumulation is one of major ageing phenomena and are evaluated to ensure safety by design fatigue curve that are based on the results of uniaxial fatigue tests. On the other hand, thermal stress that occurs in piping of actual components is not uniaxial but equi-biaxial. For accurate evaluation, it is required to conform real circumstance. In this study, membranous pressure fatigue test was conducted to simulated equi-biaxial stress. Crack initiation and crack growth were examined by replica investigation. Calculation result of equivalent stress intensity factor shows crack growth under equi-biaxial stress is faster than under uniaxial stress. It is concluded that equi-biaxial fatigue behavior should be considered in the evaluation of fatigue crack initiation and crack growth. (author)

  3. Dynamics of seed germination, seedling growth and physiological responses of sweet corn under peg-induced water stress

    International Nuclear Information System (INIS)

    Li, W.; Zhang, X.; Li, G.; Suo, H.; Ashraf, U.; Mo, Z.

    2017-01-01

    Stress induced variations in seed germination of various crops has been well reported but germination potential of sweet corn seeds under osmotic stress with relation to time dynamics is still elusive. Present study explored the water absorption, germination potential and physiological indices and of sweet corn seeds exposed to five different levels of PEG-induced water stress i.e., 0, -0.3, -0.6, -0.9 and -1.2 M Pa water potential (Psi /sub w/) with respect to time dynamics. Results showed that enhanced water stress for prolonged time period (96 h) led to substantial reduction in water absorption and seed moisture contents, seed germination and vigor index as well as seedlings growth and fresh and dry biomass. Osmotic stress triggered antioxidant defense system like super-oxide dismutase (SOD), peroxidase (POD) and catalase (CAT) and accumulation of soluble sugars, proline and protein contents considerably. Initially, activities of SOD and CAT were higher but then reduced as stress persisted, however, POD showed a linear increase with respect to stress exposure time. Water stress also increased MDA contents up to 36 h then declined. Further, alpha-amylase activity and soluble protein showed significant correlations with maize seed germination. Overall, germination potential decreased with increase in osmotic stress in sweet corn seeds. (author)

  4. Ultraviolet-B and water stress effects on growth, gas exchange and oxidative stress in sunflower plants.

    Science.gov (United States)

    Cechin, Inês; Corniani, Natália; de Fátima Fumis, Terezinha; Cataneo, Ana Catarina

    2008-07-01

    The effects and interaction of drought and UV-B radiation were studied in sunflower plants (Helianthus annuus L. var. Catissol-01), growing in a greenhouse under natural photoperiod conditions. The plants received approximately 1.7 W m(-2) (controls) or 8.6 W m(-2) (+UV-B) of UV-B radiation for 7 h per day. The UV-B and water stress treatments started 18 days after sowing. After a period of 12 days of stress, half of the water-stressed plants (including both UV-B irradiated or non-irradiated) were rehydrated. Both drought and UV-B radiation treatments resulted in lower shoot dry matter per plant, but there was no significant interaction between the two treatments. Water stress and UV-B radiation reduced photosynthesis, stomatal conductance and transpiration. However, the amplitude of the effects of both stressors was dependent on the interactions. This resulted in alleviation of the negative effect of drought on photosynthesis and transpiration by UV-B radiation as the water stress intensified. Intercelluar CO(2) concentration was initially reduced in all treatments compared to control plants but it increased with time. Photosynthetic pigments were not affected by UV-B radiation. Water stress reduced photosynthetic pigments only under high UV-B radiation. The decrease was more accentuated for chlorophyll a than for chlorophyll b. As a measure for the maximum efficiency of photosystem II in darkness F (v)/F (m) was used, which was not affected by drought stress but initially reduced by UV-B radiation. Independent of water supply, UV-B radiation increased the activity of pirogalol peroxidase and did not increase the level of malondialdehyde. On the other hand, water stress did not alter the activity of pirogalol peroxidase and caused membrane damage as assessed by lipid peroxidation. The application of UV-B radiation together with drought seemed to have a protective effect by lowering the intensity of lipid peroxidation caused by water stress. The content of proline

  5. Nitrogen Nutrition Improves the Potential of Wheat (Triticum aestivum L.) to Alleviate the Effects of Drought Stress during Vegetative Growth Periods.

    Science.gov (United States)

    Abid, Muhammad; Tian, Zhongwei; Ata-Ul-Karim, Syed Tahir; Cui, Yakun; Liu, Yang; Zahoor, Rizwan; Jiang, Dong; Dai, Tingbo

    2016-01-01

    Efficient nitrogen (N) nutrition has the potential to alleviate drought stress in crops by maintaining metabolic activities even at low tissue water potential. This study was aimed to understand the potential of N to minimize the effects of drought stress applied/occur during tillering (Feekes stage 2) and jointing (Feekes stage 6) growth stages of wheat by observing the regulations and limitations of physiological activities, crop growth rate during drought periods as well as final grain yields at maturity. In present study, pot cultured plants of a wheat cultivar Yangmai-16 were exposed to three water levels [severe stress at 35-40% field capacity (FC), moderate stress at 55-60% FC and well-watered at 75-80% FC] under two N rates (0.24 g and 0.16 g/kg soil). The results showed that the plants under severe drought stress accompanied by low N exhibited highly downregulated photosynthesis, and chlorophyll (Chl) fluorescence during the drought stress periods, and showed an accelerated grain filling rate with shortened grain filling duration (GFD) at post-anthesis, and reduced grain yields. Severe drought-stressed plants especially at jointing, exhibited lower Chl and Rubisco contents, lower efficiency of photosystem II and greater grain yield reductions. In contrast, drought-stressed plants under higher N showed tolerance to drought stress by maintaining higher leaf water potential, Chl and Rubisco content; lower lipid peroxidation associated with higher superoxide dismutase and ascorbate peroxidase activities during drought periods. The plants under higher N showed delayed senescence, increased GFD and lower grain yield reductions. The results of the study suggested that higher N nutrition contributed to drought tolerance in wheat by maintaining higher photosynthetic activities and antioxidative defense system during vegetative growth periods.

  6. Reduced Stress Tensor and Dissipation and the Transport of Lamb Vector

    Science.gov (United States)

    Wu, Jie-Zhi; Zhou, Ye; Wu, Jian-Ming

    1996-01-01

    We develop a methodology to ensure that the stress tensor, regardless of its number of independent components, can be reduced to an exactly equivalent one which has the same number of independent components as the surface force. It is applicable to the momentum balance if the shear viscosity is constant. A direct application of this method to the energy balance also leads to a reduction of the dissipation rate of kinetic energy. Following this procedure, significant saving in analysis and computation may be achieved. For turbulent flows, this strategy immediately implies that a given Reynolds stress model can always be replaced by a reduced one before putting it into computation. Furthermore, we show how the modeling of Reynolds stress tensor can be reduced to that of the mean turbulent Lamb vector alone, which is much simpler. As a first step of this alternative modeling development, we derive the governing equations for the Lamb vector and its square. These equations form a basis of new second-order closure schemes and, we believe, should be favorably compared to that of traditional Reynolds stress transport equation.

  7. Grain boundary cavity growth under applied stress and internal pressure

    International Nuclear Information System (INIS)

    Mancuso, J.F.

    1977-08-01

    The growth of grain boundary cavities under applied stress and internal gas pressure was investigated. Methane gas filled cavities were produced by the C + 4H reversible CH4 reaction in the grain boundaries of type 270 nickel by hydrogen charging in an autoclave at 500 0 C with a hydrogen pressure of either 3.4 or 14.5 MPa. Intergranular fracture of nickel was achieved at a charging temperature of 300 0 C and 10.3 MPa hydrogen pressure. Cavities on the grain boundaries were observed in the scanning electron microscope after fracture. Photomicrographs of the cavities were produced in stereo pairs which were analyzed so as to correct for perspective distortion and also to determine the orientational dependence of cavity growth under an applied tensile stress

  8. A study on fatigue crack growth model considering high mean loading effects based on structural stress

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Kim, Cheol; Jin, Tae Eun; Dong, P.

    2004-01-01

    The mesh-insensitive structural stress procedure by Dong is modified to apply to the welded joints with local thickness variation and inarguable shear/normal stresses along local discontinuity surface. In order to make use of the structural stress based K solution for fatigue correlation of welded joints, a proper crack growth model needs to be developed. There exist some significant discrepancies in inferring the slope or crack growth exponent in the conventional Paris law regime. Two-stage crack growth model was not considered since its applications are focused upon the fatigue behavior in welded joints in which the load ratio effects are considered negligible. In this paper, a two-stage crack growth law considering high mean loading is proposed and proven to be effective in unifying the so-called anomalous short crack growth data

  9. Growth Stresses in Thermally Grown Oxides on Nickel-Based Single-Crystal Alloys

    Science.gov (United States)

    Rettberg, Luke H.; Laux, Britta; He, Ming Y.; Hovis, David; Heuer, Arthur H.; Pollock, Tresa M.

    2016-03-01

    Growth stresses that develop in α-Al2O3 scale that form during isothermal oxidation of three Ni-based single crystal alloys have been studied to elucidate their role in coating and substrate degradation at elevated temperatures. Piezospectroscopy measurements at room temperature indicate large room temperature compressive stresses in the oxides formed at 1255 K or 1366 K (982 °C or 1093 °C) on the alloys, ranging from a high of 4.8 GPa for René N4 at 1366 K (1093 °C) to a low of 3.8 GPa for René N5 at 1255 K (982 °C). Finite element modeling of each of these systems to account for differences in coefficients of thermal expansion of the oxide and substrate indicates growth strains in the range from 0.21 to 0.44 pct at the oxidation temperature, which is an order of magnitude higher than the growth strains measured in the oxides on intermetallic coatings that are typically applied to these superalloys. The magnitudes of the growth strains do not scale with the parabolic oxidation rate constants measured for the alloys. Significant spatial inhomogeneities in the growth stresses were observed, due to (i) the presence of dendritic segregation and (ii) large carbides in the material that locally disrupts the structure of the oxide scale. The implications of these observations for failure during cyclic oxidation, fatigue cycling, and alloy design are considered.

  10. Fatigue crack growth in 2024-T3 aluminum under tensile and transverse shear stresses

    Science.gov (United States)

    Viz, Mark J.; Zehnder, Alan T.

    1994-01-01

    The influence of transverse shear stresses on the fatigue crack growth rate in thin 2024-T3 aluminum alloy sheets is investigated experimentally. The tests are performed on double-edge cracked sheets in cyclic tensile and torsional loading. This loading generates crack tip stress intensity factors in the same ratio as the values computed for a crack lying along a lap joint in a pressurized aircraft fuselage. The relevant fracture mechanics of cracks in thin plates along with the details of the geometrically nonlinear finite element analyses used for the test specimen calibration are developed and discussed. Preliminary fatigue crack growth data correlated using the fully coupled stress intensity factor calibration are presented and compared with fatigue crack growth data from pure delta K(sub I)fatigue tests.

  11. Growth and nitrogen metabolism changes in NaCl-stressed tobacco ...

    African Journals Online (AJOL)

    Growth and nitrogen metabolism changes in NaCl-stressed tobacco (Nicotiana rustica L. var. Souffi) seedlings. Chokri Zaghdoud, Houda Maâroufi-Dguimi, Youssef Ouni, Mokhtar Guerfel, Houda Gouia, Kamel-Eddine Negaz, Ali Ferchichi, Mohamed Debouba ...

  12. The impact of long-term water stress on relative growth rate and morphology of needles and shoots of Metasequoia glyptostroboides seedlings: research toward identifying mechanistic models.

    Science.gov (United States)

    Zhang, Yanxiang; Equiza, Maria Alejandra; Zheng, Quanshui; Tyree, Melvin T

    2011-09-01

    Leaf morphology in the upper canopy of trees tends to be different from that lower down. The effect of long-term water stress on leaf growth and morphology was studied in seedlings of Metasequoia glyptostroboides to understand how tree height might affect leaf morphology in larger trees. Tree height increases water stress on growing leaves through increased hydraulic resistance to water flow and increased gravitational potential, hence we assume that water stress imposed by soil dehydration will have an effect equivalent to stress induced by height. Seedlings were subjected to well-watered and two constant levels of long-term water stress treatments. Drought treatment significantly reduced final needle count, area and mass per area (leaf mass area, LMA) and increased needle density. Needles from water-stressed plants had lower maximum volumetric elastic modulus (ε(max)), osmotic potential at full turgor (Ψ¹⁰⁰(π)) (and at zero turgor (Ψ⁰(π)) (than those from well-watered plants. Palisade and spongy mesophyll cell size and upper epidermal cell size decreased significantly in drought treatments. Needle relative growth rate, needle length and cell sizes were linear functions of the daily average water potential at the time of leaf growth (r² 0.88-0.999). We conclude that water stress alone does mimic the direction and magnitude of changes in leaf morphology observed in tall trees. The results are discussed in terms of various models for leaf growth rate. Copyright © Physiologia Plantarum 2011.

  13. Effect of Salinity and Drought Stresses on Germination Stage and Growth of Black Cumin (Bunium Persicum Boiss

    Directory of Open Access Journals (Sweden)

    H. R. Saeedi Goraghani

    2017-06-01

    Full Text Available Introduction Range plants have important and crucial roles in medicinal industry andtogether with scarcity and low quality of the water and soil resources, prevent a quick recovery of the soil plant covering. Because of these restrictions, it is important to consider the use of salt and drought tolerant species for plantation and to preserve plant cover. In this sense, the use of native species such as black cumin (Bunium persicum Boiss may be of interest due to their medicinal characteristics and potential ability to adapt to adverse conditions (dry and saline conditions. Black cumin (B. persicum as a medicinal plant plays a vital role in Iranian medicine so there is a need to know about the factors affecting their growth and propagation. Materials and Methods To investigate the effects of drought and salt stresses on germination and growth in black cumin two separate experiments were conducted. Drought stress was applied through incubation in four different concentrations of PEG 6000 that provide solutions with water potentials ranging from -0.2 to -0.8 MPa (including control and four levels of dryness. Salinity treatments (including control and four levels of salinity were prepared by adding molar concentrations of NaCl to provide a range of salinity from 50 to 300 mM. Germination percentage and speed was calculated by computation of germinated seeds every day. Growth parameters (rootlet, shoot and seedling length total, allometric index and seed vigority were obtained accordingly. Results and Discussion Seeds under both drought and salt stress showed significant reduction in germination percentage, germination rate, radicle length, plumule length, and alometric and seed vigor indices. This trend was much pronounced under high levels of NaCl and low levels of water potentials, so that germination at Ψs = -0.6 MP was completely stopped. Conclusions Assessment of drought and salt stresses on germination and growth in black cumin is very

  14. The Impact of Urban Growth and Climate Change on Heat Stress in an Australian City

    Science.gov (United States)

    Chapman, S.; Mcalpine, C. A.; Thatcher, M. J.; Salazar, A.; Watson, J. R.

    2017-12-01

    Over half of the world's population lives in urban areas. Most people will therefore be exposed to climate change in an urban environment. One of the climate risks facing urban residents is heat stress, which can lead to illness and death. Urban residents are at increased risk of heat stress due to the urban heat island effect. The urban heat island is a modification of the urban environment and increases temperatures on average by 2°C, though the increase can be much higher, up to 8°C when wind speeds and cloud cover are low. The urban heat island is also expected to increase in the future due to urban growth and intensification, further exacerbating urban heat stress. Climate change alters the urban heat island due to changes in weather (wind speed and cloudiness) and evapotranspiration. Future urban heat stress will therefore be affected by urban growth and climate change. The aim of this study was to examine the impact of urban growth and climate change on the urban heat island and heat stress in Brisbane, Australia. We used CCAM, the conformal cubic atmospheric model developed by the CSIRO, to examine temperatures in Brisbane using scenarios of urban growth and climate change. We downscaled the urban climate using CCAM, based on bias corrected Sea Surface Temperatures from the ACCESS1.0 projection of future climate. We used Representative Concentration Pathway (RCP) 8.5 for the periods 1990 - 2000, 2049 - 2060 and 2089 - 2090 with current land use and an urban growth scenario. The present day climatology was verified using weather station data from the Australian Bureau of Meteorology. We compared the urban heat island of the present day with the urban heat island with climate change to determine if climate change altered the heat island. We also calculated heat stress using wet-bulb globe temperature and apparent temperature for the climate change and base case scenarios. We found the urban growth scenario increased present day temperatures by 0.5°C in the

  15. Garlic Organosulfur Compounds Reduce Inflammation and Oxidative Stress during Dengue Virus Infection

    Science.gov (United States)

    Hall, Alex; Troupin, Andrea; Londono-Renteria, Berlin; Colpitts, Tonya M.

    2017-01-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant global human disease and mortality. One approach to develop treatments for DENV infection and the prevention of severe disease is through investigation of natural medicines. Inflammation plays both beneficial and harmful roles during DENV infection. Studies have proposed that the oxidative stress response may be one mechanism responsible for triggering inflammation during DENV infection. Thus, blocking the oxidative stress response could reduce inflammation and the development of severe disease. Garlic has been shown to both reduce inflammation and affect the oxidative stress response. Here, we show that the garlic active compounds diallyl disulfide (DADS), diallyl sulfide (DAS) and alliin reduced inflammation during DENV infection and show that this reduction is due to the effects on the oxidative stress response. These results suggest that garlic could be used as an alternative treatment for DENV infection and for the prevention of severe disease development. PMID:28644404

  16. Garlic Organosulfur Compounds Reduce Inflammation and Oxidative Stress during Dengue Virus Infection.

    Science.gov (United States)

    Hall, Alex; Troupin, Andrea; Londono-Renteria, Berlin; Colpitts, Tonya M

    2017-06-23

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant global human disease and mortality. One approach to develop treatments for DENV infection and the prevention of severe disease is through investigation of natural medicines. Inflammation plays both beneficial and harmful roles during DENV infection. Studies have proposed that the oxidative stress response may be one mechanism responsible for triggering inflammation during DENV infection. Thus, blocking the oxidative stress response could reduce inflammation and the development of severe disease. Garlic has been shown to both reduce inflammation and affect the oxidative stress response. Here, we show that the garlic active compounds diallyl disulfide (DADS), diallyl sulfide (DAS) and alliin reduced inflammation during DENV infection and show that this reduction is due to the effects on the oxidative stress response. These results suggest that garlic could be used as an alternative treatment for DENV infection and for the prevention of severe disease development.

  17. A ghrelin-growth hormone axis drives stress-induced vulnerability to enhanced fear.

    Science.gov (United States)

    Meyer, R M; Burgos-Robles, A; Liu, E; Correia, S S; Goosens, K A

    2014-12-01

    Hormones in the hypothalamus-pituitary-adrenal (HPA) axis mediate many of the bodily responses to stressors, yet there is no clear relationship between the levels of these hormones and stress-associated mental illnesses such as posttraumatic stress disorder (PTSD). Therefore, other hormones are likely to be involved in this effect of stress. Here we used a rodent model of PTSD in which rats repeatedly exposed to a stressor display heightened fear learning following auditory Pavlovian fear conditioning. Our results show that stress-related increases in circulating ghrelin, a peptide hormone, are necessary and sufficient for stress-associated vulnerability to exacerbated fear learning and these actions of ghrelin occur in the amygdala. Importantly, these actions are also independent of the classic HPA stress axis. Repeated systemic administration of a ghrelin receptor agonist enhanced fear memory but did not increase either corticotropin-releasing factor (CRF) or corticosterone. Repeated intraamygdala infusion of a ghrelin receptor agonist produced a similar enhancement of fear memory. Ghrelin receptor antagonism during repeated stress abolished stress-related enhancement of fear memory without blunting stress-induced corticosterone release. We also examined links between ghrelin and growth hormone (GH), a major downstream effector of the ghrelin receptor. GH protein was upregulated in the amygdala following chronic stress, and its release from amygdala neurons was enhanced by ghrelin receptor stimulation. Virus-mediated overexpression of GH in the amygdala was also sufficient to increase fear. Finally, virus-mediated overexpression of a GH receptor antagonist was sufficient to block the fear-enhancing effects of repeated ghrelin receptor stimulation. Thus, ghrelin requires GH in the amygdala to exert fear-enhancing effects. These results suggest that ghrelin mediates a novel branch of the stress response and highlight a previously unrecognized role for ghrelin and

  18. Growth, stress, and defects of heteroepitaxial diamond on Ir/YSZ/Si(111)

    Science.gov (United States)

    Gallheber, B.-C.; Fischer, M.; Mayr, M.; Straub, J.; Schreck, M.

    2018-06-01

    Basic understanding of the fundamental processes in crystal growth as well as the structural quality of diamond synthesized by chemical vapour deposition on iridium surfaces has reached a high level for samples with (001) orientation. Diamond deposition on the alternative (111) surface is generally more challenging but of appreciable technological interest, too. In the present work, heteroepitaxy of diamond on Ir/YSZ/Si(111) with different off-axis angles and directions has been studied. During the growth of the first microns, strong and complex intrinsic stress states were rapidly formed. They restricted the range of suitable temperatures in this study to values between 830 °C and 970 °C. At low-stress conditions, the maximum growth rates were about 1 μm/h. They facilitated long-time processes which yielded pronounced structural improvements with minimum values of 0.08° for the azimuthal mosaic spread, 4 × 107 cm-2 for the dislocation density and 1.8 cm-1 for the Raman line width. This refinement is even faster than on (001) growth surfaces. It indicates substantial differences between the two crystal directions in terms of merging of mosaic blocks and annihilation of dislocations. Crystals with a thickness of up to 330 μm have been grown. The correlation of photoluminescence and μ-Raman tomograms with topography data also revealed fundamental differences in the off-axis growth between (001) and (111) orientation. Finally, the analysis of the microscopic structures at the growth surface provided the base for a model that can conclusively explain the intriguing reversal of stress tensor anisotropy caused by a simple inversion in sign of the off-axis angle.

  19. Survival, growth and stress response of juvenile tidewater goby, Eucyclogobius newberryi, to interspecific competition for food

    Science.gov (United States)

    Chase, Daniel A; Flynn, Erin E; Todgham, Anne E

    2016-01-01

    Abstract Reintroduction of endangered fishes to historic habitat has been used as a recovery tool; however, these fish may face competition from other fishes that established in their native habitat since extirpation. This study investigated the physiological response of tidewater goby, Eucyclogobius newberryi, an endangered California fish, when competing for food with threespine stickleback, Gasterosteus aculeatus, a native species, and rainwater killifish, Lucania parva, a non-native species. Survival, growth and physiological indicators of stress (i.e. cortisol, glucose and lactate concentrations) were assessed for juvenile fish held for 28 days in two food-limited conditions. When fed a 75% ration, survival of E. newberryi was significantly lower when held with G. aculeatus. In all fish assemblages, weight and relative condition decreased then stabilized over the 28 day experiment, while length remained unchanged. Whole-body cortisol in E. newberryi was not affected by fish assemblage; however, glucose and lactate concentrations were significantly higher with conspecifics than with other fish assemblages. When fed a 50% ration, survival of E. newberryi decreased during the second half of the experiment, while weight and relative condition decreased and length remained unchanged in all three fish assemblages. Cortisol concentrations were significantly higher for all fish assemblages compared with concentrations at the start of the experiment, whereas glucose and lactate concentrations were depressed relative to concentrations at the start of the experiment, with the magnitude of decrease dependent on the species assemblage. Our findings indicate that E. newberryi exhibited reduced growth and an elevated generalized stress response during low food availability. In response to reduced food availability, competition with G. aculeatus had the greatest physiological effect on E. newberryi, with minimal effects from the non-native L. parva. This study presents

  20. Cotton growth potassium deficiency stress is influenced by photosynthetic apparatus and root system

    International Nuclear Information System (INIS)

    Hussain, Z.U.; Arshad, M.

    2010-01-01

    Due to rapid depletion of soil potassium (K) and increasing cost of K fertilizers in Pakistan, the K-use efficient crop genotypes become very important for agricultural sustain ability. However, limited research has been done on this important issue particularly in cotton, an important fibre crop. We studied the growth and biomass production of three cotton genotypes (CIM-506, NIAB- 78 and NIBGE-2) different in K-use efficiency in a K-deficient solution culture. Genotypes differed significantly for biomass production, absolute growth rates (shoot, root, leaf, total), leaf area, mean leaf area and relative growth rate of leaf under K deficiency stress, besides specific leaf area. The relative growth rate (shoot, root, total) did not differ significantly, except for leaf. For all these characters, NIBGE-2 was the best performer followed by NIAB-78 and CIM-506. Shoot dry weight was significantly related with (in decreasing order of significance): mean leaf area, leaf dry weight, leaf area, root dry weight, absolute growth rate of shoot, absolute growth rate of root, absolute growth rate total, absolute growth rate root, relative growth rate leaf, relative growth rate total and relative growth rate shoot. Hence, the enhanced biomass accumulation of cotton genotypes under K deficiency stress is related to their efficient photosynthetic apparatus and root system, appeared to be the most important morphological markers while breeding for K-use efficient cotton genotypes.(author)

  1. Nitric oxide reduces oxidative damage induced by water stress in sunflower plants

    Directory of Open Access Journals (Sweden)

    Inês Cechin

    2015-06-01

    Full Text Available Drought is one of the main environmental constraints that can reduce plant yield. Nitric oxide (NO is a signal molecule involved in plant responses to several environmental stresses. The objective of this study was to investigate the cytoprotective effect of a single foliar application of 0, 1, 10 or 100 µM of the NO donor sodium nitroprusside (SNP in sunflower plants under water stress. Water stressed plants treated with 1μM SNP showed an increase in the relative water content compared with 0 μM SNP. Drought reduced the shoot dry weight but SNP applications did not result in alleviation of drought effects. Neither drought nor water stress plus SNP applications altered the content of photosynthetic pigments. Stomatal conductance was reduced by drought and this reduction was accompanied by a significant reduction in intercellular CO2 concentration and photosynthesis. Treatment with SNP did not reverse the effect of drought on the gas exchange characteristics. Drought increased the level of malondialdehyde (MDA and proline and reduced pirogalol peroxidase (PG-POD activity, but did not affect the activity of superoxide dismutase (SOD. When the water stressed plants were treated with 10 μM SNP, the activity of PG-POD and the content of proline were increased and the level of MDA was decreased. The results show that the adverse effects of water stress on sunflower plants are dependent on the external NO concentration. The action of NO may be explained by its ability to increase the levels of antioxidant compounds and the activity of ROS-scavenging enzymes.

  2. THE EFFECTIVENESS OF PLAY THERAPY AND MUSICAL THERAPY IN REDUCING THE HOSPITALIZATION STRESS

    Directory of Open Access Journals (Sweden)

    Yuni Sufyanti Arief

    2017-07-01

    Full Text Available Introduction: Hospitalization in pediatric patients may caused an anxiety and stress in all age levels. Several techniques can be applied to reduced hospitalization stress in children, such as playing therapy and music therapy. The objective of this study was to analyze the difference of effectiveness between both therapies in reducing the hospitalization stress in 4-6 years old children. Method: A quasy-experimental pre-posttest design was used in this study. There were 18 respondents, divided into three groups, i.e. group one receiving playing therapy, group two receiving music therapy and the last group as control group. Data were collected by using observation sheet before and after intervention to recognize the hospitalization stress. Data were analyzed by using Wilcoxon Signed Rank Test and Mann Whitney U Test with significance level of α<0.05. Result: Result showed that playing therapy and music therapy had significant effect to reduce the hospitalization stress with p=0.027 for play therapy, p=0.024 for musical therapy, and p=0.068 for control. Mann Whitney U Test revealed that there were no difference in the effectiveness of play therapy and musical therapy in reducing the hospitalization stress with p=0.009 for play therapy and control group, p=0.012 for music therapy and control group, and p=0.684 for playing therapy and musical therapy. Discussion: It can be concluded that play therapy and musical therapy are equally effective to reduce the hospitalization stress in children. It’s recommended for nurses in pediatric ward to do  playg therapy and musical therapy periodically.

  3. Growth on Alpha-Ketoglutarate Increases Oxidative Stress Resistance in the Yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Maria Bayliak

    2017-01-01

    Full Text Available Alpha-ketoglutarate (AKG is an important intermediate in cell metabolism, linking anabolic and catabolic processes. The effect of exogenous AKG on stress resistance in S. cerevisiae cells was studied. The growth on AKG increased resistance of yeast cells to stresses, but the effects depended on AKG concentration and type of stressor. Wild-type yeast cells grown on AKG were more resistant to hydrogen peroxide, menadione, and transition metal ions (Fe2+ and Cu2+ but not to ethanol and heat stress as compared with control ones. Deficiency in SODs or catalases abolished stress-protective effects of AKG. AKG-supplemented growth led to higher values of total metabolic activity, level of low-molecular mass thiols, and activities of catalase and glutathione reductase in wild-type cells compared with the control. The results suggest that exogenous AKG may enhance cell metabolism leading to induction of mild oxidative stress. It turn, it results in activation of antioxidant system that increases resistance of S. cerevisiae cells to H2O2 and other stresses. The presence of genes encoding SODs or catalases is required for the expression of protective effects of AKG.

  4. Spatial and temporal patterns of chickpea genotypes (Cicer arietinum L. root growth under waterlogging stress

    Directory of Open Access Journals (Sweden)

    ali ganjali

    2009-06-01

    Full Text Available The dynamic of root growth of chickpea genotypes; including Rupali (Desi and Flip 97-530 (Kabuli were evaluated under waterlogging stress in a Glasshouse experiment at CSIRO, Perth, WA. during 2005. Root growth boxes (0.1×0.24×1.0 m with one wall of glass were used as experimental units. Data were analyzed based on Randomized Complete Block Design with three replications. Waterlogging was induced when the first root reached 50cm. The water level was maintained on the soil surface for 12 days. After that, waterlogging was finished by draining the root growth boxes. In soil profile, root growth rate were calculated based on recorded information on transparent films during growing season. There was positive and strong linear correlation between the root traits that were measured in soil (direct measurment and transparent films (indirect measurment. Decay and death of roots caused a severe decrease on root growth rate during waterlogging, but root growth rate was sharply increased at the end of recovery period on 0-40 cm layer of soil surface. In both genotypes, spatial and temporal patterns of the root growth were different. Root growth rate was highest on distinc time for each layer of soil profile. In both genotypes, RLD decreased with increasing soil depth. Results showed that more distribution of root system on upper soil layers (0-40 cm is a strategy for chickpea plants, and so, soil management is very important on this layer. In stress and non stress environments, Flip 97-530 showed better root characteristics than the Rupali during growing season, so this genotype is probably more tolerate to water logging stress.

  5. Di (2-ethylhexyl) phthalate inhibits growth of mouse ovarian antral follicles through an oxidative stress pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei, E-mail: weiwang2@illinois.edu; Craig, Zelieann R., E-mail: zelieann@illinois.edu; Basavarajappa, Mallikarjuna S., E-mail: mbasava2@illinois.edu; Gupta, Rupesh K., E-mail: drrupesh@yahoo.com; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    2012-01-15

    Di (2-ethylhexyl) phthalate (DEHP) is a plasticizer that has been shown to inhibit growth of mouse antral follicles, however, little is known about the mechanisms by which DEHP does so. Oxidative stress has been linked to follicle growth inhibition as well as phthalate-induced toxicity in non-ovarian tissues. Thus, we hypothesized that DEHP causes oxidative stress and that this leads to inhibition of the growth of antral follicles. To test this hypothesis, antral follicles isolated from CD-1 mice (age 31–35 days) were cultured with vehicle control (dimethylsulfoxide [DMSO]) or DEHP (1–100 μg/ml) ± N-acetyl cysteine (NAC, an antioxidant at 0.25–1 mM). During culture, follicles were measured daily. At the end of culture, follicles were collected and processed for in vitro reactive oxygen species (ROS) assays to measure the presence of free radicals or for measurement of the expression and activity of various key antioxidant enzymes: Cu/Zn superoxide dismutase (SOD1), glutathione peroxidase (GPX) and catalase (CAT). The results indicate that DEHP inhibits the growth of follicles compared to DMSO control and that NAC (0.25–1 mM) blocks the ability of DEHP to inhibit follicle growth. Furthermore, DEHP (10 μg/ml) significantly increases ROS levels and reduces the expression and activity of SOD1 compared to DMSO controls, whereas NAC (0.5 mM) rescues the effects of DEHP on ROS levels and SOD1. However, the expression and activity of GPX and CAT were not affected by DEHP treatment. Collectively, these data suggest that DEHP inhibits follicle growth by inducing production of ROS and by decreasing the expression and activity of SOD1. -- Highlights: ► DEHP inhibits growth and increases reactive oxygen species in ovarian antral follicles in vitro. ► NAC rescues the effects of DEHP on the growth and reactive oxygen species levels in follicles. ► DEHP decreases the expression and activity of Cu/Zn superoxide dismutase, which can be rescued by NAC, in antral

  6. Growth of marine yeast on different strength of stress solutes

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, R.

    tested against the stress solutes NaCl (0-16%), potassium chloride (KCl) and sodium sulphate (Na sub(2) SO sub(4)) at 0.4%, 4% and 8% concentrations. D. hansenii and D. marama were the most versatile isolates exhibiting excellent growth in all...

  7. The role of surface roughness on dislocation bending and stress evolution in low mobility AlGaN films during growth

    Science.gov (United States)

    Bardhan, Abheek; Mohan, Nagaboopathy; Chandrasekar, Hareesh; Ghosh, Priyadarshini; Sridhara Rao, D. V.; Raghavan, Srinivasan

    2018-04-01

    The bending and interaction of threading dislocations are essential to reduce their density for applications involving III-nitrides. Bending of dislocation lines also relaxes the compressive growth stress that is essential to prevent cracking on cooling down due to tensile thermal expansion mismatch stress while growing on Si substrates. It is shown in this work that surface roughness plays a key role in dislocation bending. Dislocations only bend and relax compressive stresses when the lines intersect a smooth surface. These films then crack. In rough films, dislocation lines which terminate at the bottom of the valleys remain straight. Compressive stresses are not relaxed and the films are relatively crack-free. The reasons for this difference are discussed in this work along with the implications on simultaneously meeting the requirements of films being smooth, crack free and having low defect density for device applications.

  8. Growth Following Adversity: Positive Psychological Perspectives on Posttraumatic Stress

    Directory of Open Access Journals (Sweden)

    Stephen Joseph

    2009-12-01

    Full Text Available The impact of traumatic events is well documented within the clinical psychology literature where it is recognized that people who experience traumatic events may go on to develop posttraumatic stress disorder (PTSD. At first glance one might ask what the relevance of positive psychology is to the study of trauma. But a number of literatures and philosophies throughout human history have conveyed the idea that there is personal gain to be found in suffering. The observation that stressful and traumatic events can provoke positive psychological changes is also contained in the major religions of Buddhism, Christianity, Hinduism, Islam, and Judaism. Within existential philosophy and humanistic psychology it has also been recognized that positive changes can come about as a result of suffering. But it is only within the last decade that the topic of growth following adversity has become a focus for empirical work. In this paper I will provide an overview of the subject and the research we have conducted at the Centre for Trauma, Resilience, and Growth (CTRG.

  9. Effects of transverse temperature field nonuniformity on stress in silicon sheet growth

    Science.gov (United States)

    Mataga, P. A.; Hutchinson, J. W.; Chalmers, B.; Bell, R. O.; Kalejs, J. P.

    1987-01-01

    Stress and strain rate distributions are calculated using finite element analysis for steady-state growth of thin silicon sheet temperature nonuniformities imposed in the transverse (sheet width) dimension. Significant reductions in residual stress are predicted to occur for the case where the sheet edge is cooled relative to its center provided plastic deformation with high creep rates is present.

  10. Effect of stress ratio and frequency on fatigue crack growth rate of ...

    Indian Academy of Sciences (India)

    Effect of stress ratio and frequency on the fatigue crack propagation of 2618 aluminium alloy–silicon carbide composite were investigated at ambient temperature. With the first set of specimens, the fatigue crack growth rates were studied at three frequencies of 1 Hz, 5 Hz and 10 Hz at a stress ratio of 0.1 whereas the effects ...

  11. Reducing stress and fuel consumption providing road information

    Directory of Open Access Journals (Sweden)

    Víctor CORCOBA MAGAÑA

    2014-12-01

    Full Text Available In this paper, we propose a solution to reduce the stress level of the driver, minimize fuel consumption and improve safety. The system analyzes the driving style and the driver’s workload during the trip while driving. If it discovers an area where the stress increases and the driving style is not appropriate from the point of view of energy efficiency and safety for a particular driver, the location of this area is saved in a shared database. On the other hand, the implemented solution warns a particular user when approaching a region where the driving is difficult (high fuel consumption and stress using the shared database based on previous recorded knowledge of similar drivers in that area. In this case, the proposal provides an optimal deceleration profile if the vehicle speed is not adequate. Therefore, he or she may adjust the vehicle speed with both a positive impact on the driver workload and fuel consumption. The Data Envelopment Analysis algorithm is used to estimate the efficiency of driving and the driver’s workload in in each area. We employ this method because there is no preconceived form on the data in order to calculate the efficiency and stress level. A validation experiment has been conducted using both a driving simulator and a real environment with 12 participants who made 168 driving tests. The system reduced the slowdowns (38%, heart rate (4.70%, and fuel consumption (12.41% in the real environment. The proposed solution is implemented on Android mobile devices and does not require the installation of infrastructure on the road. It can be installed on any model of vehicle.

  12. Oxidative stress reduces levels of dysbindin-1A via its PEST domain.

    Science.gov (United States)

    Yap, Mei-Yi Alicia; Lo, Yew-Long; Talbot, Konrad; Ong, Wei-Yi

    2014-12-01

    Oxidative stress resulting from the generation of reactive oxygen species has been proposed as an etiological factor in schizophrenia. The present study tests the hypothesis that oxidative stress can affect levels of dysbindin-1A, encoded by Dtnbp1, a genetic risk factor for schizophrenia, via its PEST domain. In vitro studies on SH-SY5Y cells indicate that oxidative stress triggers proteasomal degradation of dysbindin-1A, and that this requires interactions with its PEST domain, which may be a TRIM32 target. We specifically found (a) that oxidative stress induced in SH-SY5Y cells by 500 µM hydrogen peroxide reduced levels of full-length dysbindin-1, but did not reduce levels of that protein lacking its PEST domain and (b) that levels of full-length dysbindin-1, but not dysbindin-1 lacking its PEST domain, were higher in cells treated with the proteasome inhibitor MG132. Oxidative stress thus emerges as the first known cellular factor regulating dysbindin-1 isoforms with PEST domains. These findings are consistent with the previously noted fact that phosphorylation of PEST domains often marks proteins for proteasomal degradation, and raises the possibility that treatments reducing oxidative stress in the brain, especially during development, may lower schizophrenia risk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Plant growth regulators ameliorate or exacerbate abiotic and biotic stress effects on Zea mays kernel weight in a genotype-specific manner

    OpenAIRE

    Wang, Yishi; Stutts, Lauren; Stapleton, Ann

    2016-01-01

    Plant growth regulators have documented roles in plant responses to single stresses. In combined-stress environments, plants display novel genetic architecture for growth traits and the response to growth regulators is unclear. We investigated the role of plant growth regulators in combined-stress responses in Zea mays. Twelve maize inbreds were exposed to all combinations of the following stressors: drought, nitrogen, and density stress. Chemical treatments were utilized to alter balances of...

  14. Separating the Influence of Environment from Stress Relaxation Effects on Dwell Fatigue Crack Growth in a Nickel-Base Disk Alloy

    Science.gov (United States)

    Telesman, J.; Gabb, T. P.; Ghosn, L. J.

    2016-01-01

    Both environmental embrittlement and crack tip visco-plastic stress relaxation play a significant role in determining the dwell fatigue crack growth (DFCG) resistance of nickel-based disk superalloys. In the current study performed on the Low Solvus High Refractory (LSHR) disk alloy, the influence of these two mechanisms were separated so that the effects of each could be quantified and modeled. Seven different microstructural variations of LSHR were produced by controlling the cooling rate and the subsequent aging and thermal exposure heat treatments. Through cyclic fatigue crack growth testing performed both in air and vacuum, it was established that four out of the seven LSHR heat treatments evaluated, possessed similar intrinsic environmental resistance to cyclic crack growth. For these four heat treatments, it was further shown that the large differences in dwell crack growth behavior which still persisted, were related to their measured stress relaxation behavior. The apparent differences in their dwell crack growth resistance were attributed to the inability of the standard linear elastic fracture mechanics (LEFM) stress intensity parameter to account for visco-plastic behavior. Crack tip stress relaxation controls the magnitude of the remaining local tensile stresses which are directly related to the measured dwell crack growth rates. It was hypothesized that the environmentally weakened grain boundary crack tip regions fail during the dwells when their strength is exceeded by the remaining local crack tip tensile stresses. It was shown that the classical creep crack growth mechanisms such as grain boundary sliding did not contribute to crack growth, but the local visco-plastic behavior still plays a very significant role by determining the crack tip tensile stress field which controls the dwell crack growth behavior. To account for the influence of the visco-plastic behavior on the crack tip stress field, an empirical modification to the LEFM stress

  15. Reducing Variability in Stress Drop with Root-Mean Acceleration

    Science.gov (United States)

    Crempien, J.; Archuleta, R. J.

    2012-12-01

    Stress drop is a fundamental property of the earthquake source. For a given tectonic region stress drop is assumed to be constant allowing for the scaling of earthquake spectra. However, the variability of the stress drop, either for worldwide catalogs or regional catalogs, is quite large. The variability around the median value is on the order of 1.5 in log10 units. One question that continues to pervade the analysis of stress drop is whether this variability is an inherent characteristic of the Earth or is an artifact of the determination of stress drop via the use of the spectral analysis. It is simple to see that the stress drop determined by seismic moment times corner frequency cubed that errors in the corner frequency will strongly influence the variability in the stress drop. To avoid this strong dependence on corner frequency cubed, we have examined the determination of stress drop based on the approach proposed by Hanks (1979), namely using the root-mean-square acceleration. The stress drop determined using rms acceleration may be advantageous because the stress drop is only affected by the square root of the corner frequency. To test this approach we have determined stress drops for the 2000 Tottori earthquake and its aftershocks. We use both the classic method of fitting to a spectrum as well as using rms acceleration. For a preliminary analysis of eight aftershocks and the mainshock we find that the variability in stress drop is reduced by about a factor of two. This approach needs more careful analysis of more events, which will be shown at the meeting.

  16. Comparative study of drought and salt stress effects on germination and seedling growth of pea

    Directory of Open Access Journals (Sweden)

    Petrović Gordana

    2016-01-01

    Full Text Available Seed germination is first critical and the most sensitive stage in the life cycle of plants compromise the seedlings establishment. Salt and drought tolerance testing in initial stages of plant development is of vital importance, because the seed with more rapid germination under salt or water deficit conditions may be expected to achieve a rapid seedling establishment, resulting in higher yields. The aim of this study was to determine whether the pea seed germination and seedling growth were inhibited by the salt toxicity and osmotic effect during the seedling development, and also identification of the sensitive seedling growth parameters in response to those stresses. Based on the obtained results, pea has been presented to be more tolerant to salt than water stress during germination and early embryo growth. Investigated cultivars showed greater susceptibility to both abiotic stresses when it comes growth parameters compared to seed germination. [Projekat Ministarstva nauke Republike Srbije, br. TR-31024 i br. TR-31022

  17. Does Economic Growth Reduce Childhood Undernutrition in Ethiopia?

    Science.gov (United States)

    Biadgilign, Sibhatu; Shumetie, Arega; Yesigat, Habtamu

    2016-01-01

    Policy discussions and debates in the last couple of decades emphasized efficiency of development policies for translating economic growth to development. One of the key aspects in this regard in the developing world is achieving improved nutrition through economic development. Nonetheless, there is a dearth of literature that empirically verifies the association between economic growth and reduction of childhood undernutrition in low- and middle-income countries. Thus, the aim of the study is to assess the interplay between economic growth and reduction of childhood undernutrition in Ethiopia. The study used pooled data of three rounds (2000, 2005 and 2010) from the Demographic and Health Surveys (DHS) of Ethiopia. A multilevel mixed logistic regression model with robust standard errors was utilized in order to account for the hierarchical nature of the data. The dependent variables were stunting, underweight, and wasting in children in the household. The main independent variable was real per capita income (PCI) that was adjusted for purchasing power parity. This information was obtained from World Bank. A total of 32,610 children were included in the pooled analysis. Overall, 11,296 (46.7%) [46.0%-47.3%], 8,197(33.8%) [33.2%-34.4%] and 3,175(13.1%) [12.7%-13.5%] were stunted, underweight, and wasted, respectively. We found a strong correlation between prevalence of early childhood undernutrition outcomes and real per capita income (PCI). The proportions of stunting (r = -0.1207, peconomic growth substantially reduced stunting [β = -0.0016, SE = 0.00013, pEconomic growth reduces child undernutrition in Ethiopia. This verifies the fact that the economic growth of the country accompanied with socio-economic development and improvement of the livelihood of the poor. Direct nutrition specific and nutrition sensitive interventions could also be recommended in order to have an impact on the massive reduction of childhood undernutrition in the country.

  18. Growth and Development Temperature Influences Level of Tolerance to High Light Stress 1

    Science.gov (United States)

    Steffen, Kenneth L.; Palta, Jiwan P.

    1989-01-01

    The influence of growth and development temperature on the relative tolerance of photosynthetic tissue to high light stress at chilling temperatures was investigated. Two tuber-bearing potato species, Solanum tuberosum L. cv Red Pontiac and Solanum commersonii were grown for 4 weeks, at either 12 or 24°C with 12 hours of about 375 micromoles per second per square meter of photosynthetically active radiation. Paired leaf discs were cut from directly across the midvein of leaflets of comparable developmental stage and light environment from each species at each growth temperature treatment. One disc of each pair was exposed to 1°C and about 1000 micromoles per second per square meter photosynthetically active radiation for 4 hours, and the other disc was held at 1°C in total darkness for the same duration. Photosynthetic tissue of S. tuberosum, developed at 12°C, was much more tolerant to high light and low temperature stress than tissue developed under 24°C conditions. Following the high light treatment, 24°C-grown S. tuberosum tissue demonstrated light-limited and light-saturated rates that were approximately 50% of their paired dark controls. In contrast, the 12°C-grown tissue from S. tuberosum that was subjected to the light stress showed only a 18 and 6% reduction in light-limited and light-saturated rates of photosynthetic oxygen evolution, respectively. Tissue from 24°C-grown S. commersonii was much less sensitive to the light stress than was tissue from S. tuberosum grown under the same conditions. The results presented here demonstrate that: (a) acclimation of S. tuberosum to lower temperature growth conditions with a constant light environment, results in the increased capacity of photosynthetic tissue to tolerate high light stress at chilling temperature and (b) following growth and development at relatively high temperatures S. commersonii, a frost- and heat-tolerant wild species, has a much greater tolerance to the high light stress at chilling

  19. A Discrete Fracture Network Model with Stress-Driven Nucleation and Growth

    Science.gov (United States)

    Lavoine, E.; Darcel, C.; Munier, R.; Davy, P.

    2017-12-01

    The realism of Discrete Fracture Network (DFN) models, beyond the bulk statistical properties, relies on the spatial organization of fractures, which is not issued by purely stochastic DFN models. The realism can be improved by injecting prior information in DFN from a better knowledge of the geological fracturing processes. We first develop a model using simple kinematic rules for mimicking the growth of fractures from nucleation to arrest, in order to evaluate the consequences of the DFN structure on the network connectivity and flow properties. The model generates fracture networks with power-law scaling distributions and a percentage of T-intersections that are consistent with field observations. Nevertheless, a larger complexity relying on the spatial variability of natural fractures positions cannot be explained by the random nucleation process. We propose to introduce a stress-driven nucleation in the timewise process of this kinematic model to study the correlations between nucleation, growth and existing fracture patterns. The method uses the stress field generated by existing fractures and remote stress as an input for a Monte-Carlo sampling of nuclei centers at each time step. Networks so generated are found to have correlations over a large range of scales, with a correlation dimension that varies with time and with the function that relates the nucleation probability to stress. A sensibility analysis of input parameters has been performed in 3D to quantify the influence of fractures and remote stress field orientations.

  20. Work satisfaction and posttraumatic growth 1 year after the 2008 Wenchuan earthquake: the perceived stress as a moderating factor.

    Science.gov (United States)

    Xu, Jiuping; Wu, Wei

    2014-06-01

    This study investigated the role of perceived stress as a possible moderating factor between posttraumatic growth (PTG) and work satisfaction. A stratified random sampling strategy was used to survey 2080 adult survivors of the 2008 Sichuan earthquake. The Posttraumatic Growth Inventory, the Job Satisfaction Index Scale and the Perceived Stress Scale were used in the assessment of the posttraumatic growth, work satisfaction and perceived stress respectively, and hierarchical multiple regression analyses were used for the analysis. The findings highlight work satisfaction as an important factor in both the prediction of posttraumatic growth and for its moderating effect on perceived stress. Some demographic characteristics, such as gender, education level, and housing condition were found to also affect the survivors' posttraumatic growth. This conclusion indicates that managers should pay closer attention to their employees' psychological state after a disaster and medical practitioners should consider survivors' work status and perceived stress when dispensing mental health care. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Nurses' experiences, expectations, and preferences for mind-body practices to reduce stress

    OpenAIRE

    McCool Jane A; Ott Mary; Krueger Deborah; Bulla Sally; Kemper Kathi; Gardiner Paula

    2011-01-01

    Abstract Background Most research on the impact of mind-body training does not ask about participants' baseline experience, expectations, or preferences for training. To better plan participant-centered mind-body intervention trials for nurses to reduce occupational stress, such descriptive information would be valuable. Methods We conducted an anonymous email survey between April and June, 2010 of North American nurses interested in mind-body training to reduce stress. The e-survey included:...

  2. Effect of plant growth hormones and abiotic stresses on germination ...

    African Journals Online (AJOL)

    Phosphatases are widely found in plants having intracellular and extracellular activities. Phosphatases are believed to be important for phosphorous scavenging and remobilization in plants, but its role in adaptation to abiotic stresses and growth hormones at germination level has not been critically evaluated. To address ...

  3. Effect of Salicylic Acid on the Growth and Physiological Characteristics of Maize under Stress Conditions

    International Nuclear Information System (INIS)

    Manzoor, K.; Ilyas, N.; Batool, N.; Arshad, M.; Ahmad, B.

    2015-01-01

    Salicylic acid (SA) is a naturally occurring signaling molecule and growth regulator that enhances plant growth particularly in stress conditions. The present study was planned to evaluate the effects of different levels of SA on maize growth under drought and salt stress conditions. An experiment was conducted to test the morphological, physiological and biochemical changes in two cultivar of maize D-1184 and TG-8250. Varying levels of salicylic acid, i.e. 5mM, 10mM and 15mM were applied through foliar method. Exogenous applications of salicylic acid were done after 20 days of germination of the maize plants. Salicylic acid significantly affects root and shoot dry matter under drought and salt stress. Foliar application of SA significantly increased proline concentration (11 percentage and 12 percentage), amino acid accumulation (25 percentage and 18 percentage), relative water (17 percentage and 14 percentage) and Chlorophyll content. Overall, it can be concluded that SA at lower concentration is effective to minimize the effect of stress conditions. Maize cultivar TG-8250 showed better tolerance under drought and salt stress condition as compared to D-1184 cultivar. (author)

  4. Brassinolide Increases Potato Root Growth In Vitro in a Dose-Dependent Way and Alleviates Salinity Stress

    Directory of Open Access Journals (Sweden)

    Yueqing Hu

    2016-01-01

    Full Text Available Brassinosteroids (BRs are steroidal phytohormones that regulate various physiological processes, such as root development and stress tolerance. In the present study, we showed that brassinolide (BL affects potato root in vitro growth in a dose-dependent manner. Low BL concentrations (0.1 and 0.01 μg/L promoted root elongation and lateral root development, whereas high BL concentrations (1–100 μg/L inhibited root elongation. There was a significant (P<0.05 positive correlation between root activity and BL concentrations within a range from 0.01 to 100 μg/L, with the peak activity of 8.238 mg TTC·g−1 FW·h−1 at a BL concentration of 100 μg/L. Furthermore, plants treated with 50 μg/L BL showed enhanced salt stress tolerance through in vitro growth. Under this scenario, BL treatment enhanced the proline content and antioxidant enzymes’ (superoxide dismutase, peroxidase, and catalase activity and reduced malondialdehyde content in potato shoots. Application of BL maintain K+ and Na+ homeostasis by improving tissue K+/Na+ ratio. Therefore, we suggested that the effects of BL on root development from stem fragments explants as well as on primary root development are dose-dependent and that BL application alleviates salt stress on potato by improving root activity, root/shoot ratio, and antioxidative capacity in shoots and maintaining K+/Na+ homeostasis in potato shoots and roots.

  5. Effect of polyethylene glycol induced drought stress on physio-hormonal attributes of soybean

    International Nuclear Information System (INIS)

    Hamayun, M.; Khan, A.L.; Ahmad, N.; Lee, In-Jung; Khan, S.A.; Shinwari, Z.K.

    2010-01-01

    Drought stress is a major abiotic constraint limiting crop production world wide. In current study, we investigated the adverse effects of drought stress on growth, yield and endogenous phytohormones of soybean. Polyethylene glycol (PEG) solutions of elevated strength (8% and 16%) were used for drought stress induction. Drought stress period span for two weeks each at pre and post flowering growth stage. It was observed that soybean growth and yield attributes significantly reduced under drought stress at both pre and post flowering period, while maximum reduction was caused by PEG (16%) applied at pre flowering time. The endogenous bioactive GA/sub 1/ and GA/sub 4/ content decreased under elevated drought stress. On the other hand, jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA) content increased under drought stress. On the basis of current study, we concluded that application of earlier drought stress severely reduced growth and yield attributes of soybean when compared to its later application. Furthermore, increases in the endogenous contents of JA, SA and ABA in response to drought stress demonstrate the involvement of these hormones in drought stress resistance. (author)

  6. A short-term supranutritional vitamin E supplementation alleviated respiratory alkalosis but did not reduce oxidative stress in heat stressed pigs

    Directory of Open Access Journals (Sweden)

    Fan Liu

    2018-02-01

    Full Text Available Objective Heat stress (HS triggers oxidative stress and respiratory alkalosis in pigs. The objective of this experiment was to study whether a short-term supranutritional amount of dietary vitamin E (VE can mitigate oxidative stress and respiratory alkalosis in heat-stressed pigs. Methods A total of 24 pigs were given either a control diet (17 IU/kg VE or a high VE (200 IU/kg VE; HiVE diet for 14 d, then exposed to thermoneutral (TN; 20°C, 45% humidity or HS (35°C, 35% to 45% humidity, 8 h daily conditions for 7 d. Respiration rate and rectal temperature were measured three times daily during the thermal exposure. Blood gas variables and oxidative stress markers were studied in blood samples collected on d 7. Results Although HiVE diet did not affect the elevated rectal temperature or respiration rate observed during HS, it alleviated (all p<0.05 for diet×temperature the loss of blood CO2 partial pressure and bicarbonate, as well as the increase in blood pH in the heat-stressed pigs. The HS reduced (p = 0.003 plasma biological antioxidant potential (BAP and tended to increase (p = 0.067 advanced oxidized protein products (AOPP in the heat-stressed pigs, suggesting HS triggers oxidative stress. The HiVE diet did not affect plasma BAP or AOPP. Only under TN conditions the HiVE diet reduced the plasma reactive oxygen metabolites (p<0.05 for diet× temperature. Conclusion A short-term supplementation with 200 IU/kg VE partially alleviated respiratory alkalosis but did not reduce oxidative stress in heat-stressed pigs.

  7. The Arabidopsis PLAT domain protein1 promotes abiotic stress tolerance and growth in tobacco

    Czech Academy of Sciences Publication Activity Database

    Hyun, T.K.; Albacete, A.; van der Graaff, E.; Eom, S. H.; Großkinsky, D.K.; Böhm, H.; Janschek, U.; Rim, Y.; Ali, W.; Kim, S.Y.; Roitsch, Thomas

    2015-01-01

    Roč. 24, č. 4 (2015), s. 651-663 ISSN 0962-8819 Institutional support: RVO:67179843 Keywords : Abiotic stress * Biotic stress * Plant growth * AtPLAT1 gene * Tobacco Subject RIV: EH - Ecology, Behaviour Impact factor: 2.054, year: 2015

  8. Effects of alkali stress on growth, free amino acids and carbohydrates metabolism in Kentucky bluegrass (Poa pratensis).

    Science.gov (United States)

    Zhang, Pingping; Fu, Jinmin; Hu, Longxing

    2012-10-01

    Soil alkalization is one of the most prominent adverse environmental factors limiting plant growth, while alkali stress affects amino acids and carbohydrates metabolism. The objective of this study was conducted to investigate the effects of alkali stress on growth, amino acids and carbohydrates metabolism in Kentucky bluegrass (Poa pratensis). Seventy-day-old plants were subjected to four pH levels: 6.0 (control), 8.0 (low), 9.4 (moderate) and 10.3 (severe) for 7 days. Moderate to severe alkali stress (pH >9.4) caused a significant decline in turf quality and growth rate in Kentucky bluegrass. Soluble protein was unchanged in shoots, but decreased in roots as pH increased. The levels of amino acids was kept at the same level as control level at 4 days after treatment (DAT) in shoots, but greater at 7 DAT, when plants were subjected to severe (pH 10.3) alkali stress. The alkali stressed plants had a greater level of starch, water soluble carbohydrate and sucrose content, but lower level of fructose and glucose. Fructan and total non-structural carbohydrate (TNC) increased at 4 DAT and decreased at 7 DAT for alkali stressed plants. These results suggested that the decrease in fructose and glucose contributed to the growth reduction under alkali stress, while the increase in amino acids, sucrose and storage form of carbohydrate (fructan, starch) could be an adaptative mechanism in Kentucky bluegrass under alkali stress.

  9. Comparative Effects of Salt Stress and Extreme pH Stress Combined on Glycinebetaine Accumulation, Photosynthetic Abilities and Growth Characters of Two Rice Genotypes

    Directory of Open Access Journals (Sweden)

    Suriyan CHA-UM

    2009-12-01

    Full Text Available Glycinebetaine (Glybet accumulation, photosynthetic efficiency and growth performance in indica rice cultivated under salt stress and extreme pH stress were investigated. Betaine aldehyde dehydrogenase (BADH activity and Glybet accumulation in the seedlings of salt-tolerant and salt-sensitive rice varieties grown under saline and acidic conditions peaked after treatment for 72 h and 96 h, respectively, and were higher than those grown under neutral pH and alkaline salt stress. A positive correlation was found between BADH activity and Glybet content in both salt-tolerant (r2 = 0.71 and salt-sensitive (r2 = 0.86 genotypes. The chlorophyll a, chlorophyll b, total chlorophyll and total carotenoids contents in the stressed seedlings significantly decreased under both acidic and alkaline stresses, especially in the salt-sensitive genotype. Similarly, the maximum quantum yield of PSII (Fv/Fm, photon yield of PSII (ΦPSII, non-photochemical quenching (NPQ and net photosynthetic rate (Pn in the stressed seedlings were inhibited, leading to overall growth reduction. The positive correlations between chlorophyll a content and Fv/Fm, total chlorophyll content and ΦPSII, ΦPSII and Pn as well as Pn and leaf area in both salt-tolerant and salt-sensitive genotypes were found. Saline acidic and saline alkaline soils may play a key role affecting vegetative growth prior to the reproductive stage in rice plants.

  10. Effect of α-lipoic acid combined with nerve growth factor on bone metabolism, oxidative stress and nerve conduction function after femoral fracture surgery

    Directory of Open Access Journals (Sweden)

    An-Jun Cao

    2017-11-01

    Full Text Available Objective: To discuss the effect of 毩 -lipoic acid combined with nerve growth factor on bone metabolism, oxidative stress and nerve conduction function after femoral fracture surgery. Methods: A total of 110 patients with femoral fracture who received surgical treatment in the hospital between January 2015 and January 2017 were collected and divided into the control group (n=55 and study group (n=55 by random number table. Control group received postoperative nerve growth factor therapy, and study group received postoperative 毩 -lipoic acid combined with nerve growth factor therapy. The differences in the contents of bone metabolism and oxidative stress indexes as well as the levels of nerve conduction function indexes were compared between the two groups before and after treatment. Results: Before treatment, the differences in the contents of bone metabolism and oxidative stress indexes as well as the levels of nerve conduction function indexes were not statistically significant between the two groups. After treatment, serum bone metabolism indexes BGP and PⅠNP contents of study group were higher than those of control group while CTX-Ⅰ and TRAP contents were lower than those of control group; serum oxidative stress indexes TAC, CAT and SOD contents of study group were higher than those of control group while MDA content was lower than that of control group; limb nerve conduction velocity SCV and MCV levels of study group were higher than those of control group. Conclusion: 毩 -lipoic acid combined with nerve growth factor therapy after femoral fracture surgery can effectively balance osteoblast/ osteoclast activity, reduce oxidative stress and improve limb nerve conduction velocity.

  11. Chronic mild stress influences nerve growth factor through a matrix metalloproteinase-dependent mechanism.

    Science.gov (United States)

    Kucharczyk, Mateusz; Kurek, Anna; Detka, Jan; Slusarczyk, Joanna; Papp, Mariusz; Tota, Katarzyna; Basta-Kaim, Agnieszka; Kubera, Marta; Lason, Wladyslaw; Budziszewska, Bogusława

    2016-04-01

    Stress is generally a beneficial experience that motivates an organism to action to overcome the stressful challenge. In particular situations, when stress becomes chronic might be harmful and devastating. The hypothalamus is a critical coordinator of stress and the metabolic response; therefore, disruptions in this structure may be a significant cause of the hormonal and metabolic disturbances observed in depression. Chronic stress induces adverse changes in the morphology of neural cells that are often associated with a deficiency of neurotrophic factors (NTFs); additionally, many studies indicate that insufficient NTF synthesis may participate in the pathogenesis of depression. The aim of the present study was to determine the expression of the nerve growth factor (NGF) in the hypothalamus of male rats subjected to chronic mild stress (CMS) or to prenatal stress (PS) and to PS in combination with an acute stress event (AS). It has been found that chronic mild stress, but not prenatal stress, acute stress or a combination of PS with AS, decreased the concentration of the mature form of NGF (m-NGF) in the rat hypothalamus. A discrepancy between an increase in the Ngf mRNA and a decrease in the m-NGF levels suggested that chronic mild stress inhibited NGF maturation or enhanced the degradation of this factor. We have shown that NGF degradation in the hypothalamus of rats subjected to chronic mild stress is matrix metalloproteinase-dependent and related to an increase in the active forms of some metalloproteinases (MMP), including MMP2, MMP3, MMP9 and MMP13, while the NGF maturation process does not seem to be changed. We suggested that activated MMP2 and MMP9 potently cleave the mature but not the pro- form of NGF into biologically inactive products, which is the reason for m-NGF decomposition. In turn, the enhanced expression of Ngf in the hypothalamus of these rats is an attempt to overcome the reduced levels of m-NGF. Additionally, the decreased level of m

  12. Growth rate regulated genes and their wide involvement in the Lactococcus lactis stress responses

    Directory of Open Access Journals (Sweden)

    Redon Emma

    2008-07-01

    Full Text Available Abstract Background The development of transcriptomic tools has allowed exhaustive description of stress responses. These responses always superimpose a general response associated to growth rate decrease and a specific one corresponding to the stress. The exclusive growth rate response can be achieved through chemostat cultivation, enabling all parameters to remain constant except the growth rate. Results We analysed metabolic and transcriptomic responses of Lactococcus lactis in continuous cultures at different growth rates ranging from 0.09 to 0.47 h-1. Growth rate was conditioned by isoleucine supply. Although carbon metabolism was constant and homolactic, a widespread transcriptomic response involving 30% of the genome was observed. The expression of genes encoding physiological functions associated with biogenesis increased with growth rate (transcription, translation, fatty acid and phospholipids metabolism. Many phages, prophages and transposon related genes were down regulated as growth rate increased. The growth rate response was compared to carbon and amino-acid starvation transcriptomic responses, revealing constant and significant involvement of growth rate regulations in these two stressful conditions (overlap 27%. Two regulators potentially involved in the growth rate regulations, llrE and yabB, have been identified. Moreover it was established that genes positively regulated by growth rate are preferentially located in the vicinity of replication origin while those negatively regulated are mainly encountered at the opposite, thus indicating the relationship between genes expression and their location on chromosome. Although stringent response mechanism is considered as the one governing growth deceleration in bacteria, the rigorous comparison of the two transcriptomic responses clearly indicated the mechanisms are distinct. Conclusion This work of integrative biology was performed at the global level using transcriptomic analysis

  13. Cyanobacteria-mediated phenylpropanoids and phytohormones in rice (Oryza sativa) enhance plant growth and stress tolerance.

    Science.gov (United States)

    Singh, Dhananjaya P; Prabha, Ratna; Yandigeri, Mahesh S; Arora, Dilip K

    2011-11-01

    Phenylpropanoids, flavonoids and plant growth regulators in rice (Oryza sativa) variety (UPR 1823) inoculated with different cyanobacterial strains namely Anabaena oryzae, Anabaena doliolum, Phormidium fragile, Calothrix geitonos, Hapalosiphon intricatus, Aulosira fertilissima, Tolypothrix tenuis, Oscillatoria acuta and Plectonema boryanum were quantified using HPLC in pot conditions after 15 and 30 days. Qualitative analysis of the induced compounds using reverse phase HPLC and further confirmation with LC-MS/MS showed consistent accumulation of phenolic acids (gallic, gentisic, caffeic, chlorogenic and ferulic acids), flavonoids (rutin and quercetin) and phytohormones (indole acetic acid and indole butyric acid) in rice leaves. Plant growth promotion (shoot, root length and biomass) was positively correlated with total protein and chlorophyll content of leaves. Enzyme activity of peroxidase and phenylalanine ammonia lyase and total phenolic content was fairly high in rice leaves inoculated with O. acuta and P. boryanum after 30 days. Differential systemic accumulation of phenylpropanoids in plant leaves led us to conclude that cyanobacterial inoculation correlates positively with plant growth promotion and stress tolerance in rice. Furthermore, the study helped in deciphering possible mechanisms underlying plant growth promotion and stress tolerance in rice following cyanobacterial inoculation and indicated the less explored avenue of cyanobacterial colonization in stress tolerance against abiotic stress.

  14. Prebiotics, Prosynbiotics and Synbiotics: Can They Reduce Plasma Oxidative Stress Parameters? A Systematic Review.

    Science.gov (United States)

    Salehi-Abargouei, Amin; Ghiasvand, Reza; Hariri, Mitra

    2017-03-01

    This study assessed the effectiveness of presybiotics, prosybiotics and synbiotics on reducing serum oxidative stress parameters. PubMed/Medline, Ovid, Google Scholar, ISI Web of Science and SCOPUS were searched up to September 2016. English language randomized clinical trials reporting the effect of presybiotics, prosybiotics or synbiotic interventions on serum oxidative stress parameters in human adults were included. Twenty-one randomized clinical trials met the inclusion criteria for systematic review. Two studies investigated prebiotics, four studies synbiotics and fifteen studies probiotics. According to our systematic review, prebiotic could decrease malondialdehyde and increase superoxidative dismutase, but evidence is not enough. In comparison with fructo-oligosaccharide, inulin is much more useful for oxidative stress reduction. Using probiotics with dairy products could reduce oxidative stress significantly, but probiotic in form of supplementation did not have any effect on oxidative stress. There is limited but supportive evidence that presybiotics, prosybiotics and synbiotics are effective for reducing oxidative stress parameters. Further randomized clinical trials with longer duration of intervention especially on population with increased oxidative stress are needed to provide more definitive results before any recommendation for clinical use of these interventions.

  15. Role of anuloma viloma pranayama in reducing stress in chronic alcoholics

    International Nuclear Information System (INIS)

    Kumar, L.R.

    2011-01-01

    Despite improved clinical care, heightened public awareness and wide spread use of health innovations, alcoholism remains a leading cause of death in many parts of the world. Chronic alcoholics suffer from stress and multitude of symptoms. The progressive addiction to alcohol will gradually nullify all other interests in the patient's life so that a deterioration of the physical, psychological, social, cultural and religious values takes place. The role of yoga in healing asthma, arthritis and other disorders has been known. Methods: Breathing technique (Anuloma Viloma Pranayama) was taught to chronic alcoholics. Using galvanic skin resistance, stress levels were measured before and after anuloma viloma yoga in controls and chronic alcoholics. Results: Reduced stress levels were noted using the galvanic skin resistance in both controls and chronic alcoholics after yogic breathing. Conclusion: There is a promising effect of simple yoga techniques in organising effective rehabilitation and treatment programmes to reduce stress in chronic alcoholics. This study would help to chart out a better management programme for enhancing relapse and alleviate the symptoms. (author)

  16. Effects of root radius, stress, crack growth and rate on fracture instability

    Energy Technology Data Exchange (ETDEWEB)

    McClintock, F A

    1965-01-01

    Of various criteria for fracture at the root of a notch, the energy, local stress, and displacement criteria have limited validity. More appropriate is the history of both stress and strain over a small region ahead of the crack, as required for fracture by the coalescence of holes. Expressions are given for crack initiation, growth, and subsequent instability in anti-plane strain of a nonhardening material. Instability is shown to depend primarily on those strain increments arising from crack growth at constant load rather than on those from increasing load at constant crack length. Thus final instability conditions are similar for single and double- ended cracks, round notches, and cracks cut under constant load. Round notches may give instability, restabilization and final instability. The growth and coalescence of holes in front of a crack in a linearly viscous material is studied for both tensile and anti-plant-strain cracks. The absence of residual strain eliminates instability, but the crack continually accelerates. (26 refs.)

  17. Nurses' experiences, expectations, and preferences for mind-body practices to reduce stress.

    Science.gov (United States)

    Kemper, Kathi; Bulla, Sally; Krueger, Deborah; Ott, Mary Jane; McCool, Jane A; Gardiner, Paula

    2011-04-11

    Most research on the impact of mind-body training does not ask about participants' baseline experience, expectations, or preferences for training. To better plan participant-centered mind-body intervention trials for nurses to reduce occupational stress, such descriptive information would be valuable. We conducted an anonymous email survey between April and June, 2010 of North American nurses interested in mind-body training to reduce stress. The e-survey included: demographic characteristics, health conditions and stress levels; experiences with mind-body practices; expected health benefits; training preferences; and willingness to participate in future randomized controlled trials. Of the 342 respondents, 96% were women and 92% were Caucasian. Most (73%) reported one or more health conditions, notably anxiety (49%); back pain (41%); GI problems such as irritable bowel syndrome (34%); or depression (33%). Their median occupational stress level was 4 (0 = none; 5 = extreme stress). Nearly all (99%) reported already using one or more mind-body practices to reduce stress: intercessory prayer (86%), breath-focused meditation (49%), healing or therapeutic touch (39%), yoga/tai chi/qi gong (34%), or mindfulness-based meditation (18%). The greatest expected benefits were for greater spiritual well-being (56%); serenity, calm, or inner peace (54%); better mood (51%); more compassion (50%); or better sleep (42%). Most (65%) wanted additional training; convenience (74% essential or very important), was more important than the program's reputation (49%) or scientific evidence about effectiveness (32%) in program selection. Most (65%) were willing to participate in a randomized trial of mind-body training; among these, most were willing to collect salivary cortisol (60%), or serum biomarkers (53%) to assess the impact of training. Most nurses interested in mind-body training already engage in such practices. They have greater expectations about spiritual and emotional than

  18. Low lifetime stress exposure is associated with reduced stimulus–response memory

    Science.gov (United States)

    Goldfarb, Elizabeth V.; Shields, Grant S.; Daw, Nathaniel D.; Slavich, George M.; Phelps, Elizabeth A.

    2017-01-01

    Exposure to stress throughout life can cumulatively influence later health, even among young adults. The negative effects of high cumulative stress exposure are well-known, and a shift from episodic to stimulus–response memory has been proposed to underlie forms of psychopathology that are related to high lifetime stress. At the other extreme, effects of very low stress exposure are mixed, with some studies reporting that low stress leads to better outcomes, while others demonstrate that low stress is associated with diminished resilience and negative outcomes. However, the influence of very low lifetime stress exposure on episodic and stimulus–response memory is unknown. Here we use a lifetime stress assessment system (STRAIN) to assess cumulative lifetime stress exposure and measure memory performance in young adults reporting very low and moderate levels of lifetime stress exposure. Relative to moderate levels of stress, very low levels of lifetime stress were associated with reduced use and retention (24 h later) of stimulus–response (SR) associations, and a higher likelihood of using context memory. Further, computational modeling revealed that participants with low levels of stress exhibited worse expression of memory for SR associations than those with moderate stress. These results demonstrate that very low levels of stress exposure can have negative effects on cognition. PMID:28298555

  19. Accelerated Growth Rate and Increased Drought Stress Resilience of the Model Grass Brachypodium distachyon Colonized by Bacillus subtilis B26.

    Directory of Open Access Journals (Sweden)

    François Gagné-Bourque

    Full Text Available Plant growth-promoting bacteria (PGB induce positive effects in plants, for instance, increased growth and reduced abiotic stresses susceptibility. The mechanisms by which these bacteria impact the host plant are numerous, diverse and often specific. Here, we studied the agronomical, molecular and biochemical effects of the endophytic PGB Bacillus subtilis B26 on the full life cycle of Brachypodium distachyon Bd21, an established model species for functional genomics in cereal crops and temperate grasses. Inoculation of Brachypodium with B. subtilis strain B26 increased root and shoot weights, accelerated growth rate and seed yield as compared to control plants. B. subtilis strain B26 efficiently colonized the plant and was recovered from roots, stems and blades as well as seeds of Brachypodium, indicating that the bacterium is able to migrate, spread systemically inside the plant, establish itself in the aerial plant tissues and organs, and is vertically transmitted to seeds. The presence of B. subtilis strain B26 in the seed led to systemic colonization of the next generation of Brachypodium plants. Inoculated Brachypodium seedlings and mature plants exposed to acute and chronic drought stress minimized the phenotypic effect of drought compared to plants not harbouring the bacterium. Protection from the inhibitory effects of drought by the bacterium was linked to upregulation of the drought-response genes, DREB2B-like, DHN3-like and LEA-14-A-like and modulation of the DNA methylation genes, MET1B-like, CMT3-like and DRM2-like, that regulate the process. Additionally, total soluble sugars and starch contents increased in stressed inoculated plants, a biochemical indication of drought tolerance. In conclusion, we show a single inoculation of Brachypodium with a PGB affected the whole growth cycle of the plant, accelerating its growth rates, shortening its vegetative period, and alleviating drought stress effects. These effects are relevant to

  20. Stress-reducing effects of indoor plants in the built healthcare environment: The mediating role of perceived attractiveness

    NARCIS (Netherlands)

    Dijkstra, K.; Pieterse, Marcel E.; Pruyn, Adriaan T.H.

    2008-01-01

    Objective: Natural elements in the built healthcare environment have shown to hold potential stress-reducing properties. In order to shed light on the underlying mechanism of stress-reducing effects of nature, the present study investigates whether the stress-reducing effects of indoor plants occur

  1. Stress-reducing effects of indoor plants in the built healthcare environment : The mediating role of perceived attractiveness

    NARCIS (Netherlands)

    Dijkstra, K.; Pieterse, Marcel E.; Pruyn, A.Th.

    Objective: Natural elements in the built healthcare environment have shown to hold potential stress-reducing properties. In order to shed light on the underlying mechanism of stress-reducing effects of nature, the present study investigates whether the stress-reducing effects of indoor plants occur

  2. Growth stress buildup in ion beam sputtered Mo thin films and comparative study of stress relaxation upon thermal annealing or ion irradiation

    International Nuclear Information System (INIS)

    Debelle, A.; Abadias, G.; Michel, A.; Jaouen, C.; Pelosin, V.

    2007-01-01

    In an effort to address the understanding of the origin of growth stress in thin films deposited under very energetic conditions, the authors investigated the stress state and microstructure of Mo thin films grown by ion beam sputtering (IBS) as well as the stress relaxation processes taking place during subsequent thermal annealing or ion irradiation. Different sets of samples were grown by varying the IBS deposition parameters, namely, the energy E 0 and the flux j of the primary ion beam, the target-to-sputtering gas mass ratio M 1 /M 2 as well as film thickness. The strain-stress state was determined by x-ray diffraction using the sin 2 ψ method and data analyzed using an original stress model which enabled them to correlate information at macroscopic (in terms of stress) and microscopic (in terms of defect concentration) levels. Results indicate that these refractory metallic thin films are characterized by a high compressive growth stress (-2.6 to -3.8 GPa), resulting from the creation of a large concentration (up to ∼1.4%) of point or cluster defects, due to the atomic peening mechanism. The M 1 /M 2 mass ratio enables tuning efficiently the mean deposited energy of the condensing atoms; thus, it appears to be the more relevant deposition parameter that allows modifying both the microstructure and the stress level in a significant way. The growth stress comes out to be highly unstable. It can be easily relaxed either by postgrowth thermal annealing or ion irradiation in the hundred keV range at very low dose [<0.1 dpa (displacement per atom)]. It is shown that thermal annealing induces deleterious effects such as oxidation of the film surface, decrease of the film density, and in some cases adhesion loss at the film/substrate interface, while ion irradiation allows controlling the stress level without generating any macroscopic damage

  3. The response of leaves to heat stress in tomato plants with source-sink modulated by growth regulators

    Directory of Open Access Journals (Sweden)

    Zofia Starck

    2014-01-01

    Full Text Available The response to heat stress was investigated in heat-sensitive, Roma V. F. and heat-tolerant, Robin, cultivars whose fruit growth was stimulated by NOA + GA3 , or NOA + GA3 + zeatin. The treated plants were compared with untreated control plant. In each of these series half of the plants were subjected to one or three cycles of heat stress. A single cycle of 38°/25°C day and night did not significantly affect either the respiration rate or chlorophyll content. In PGR-untreated intact cv. Roma, heat stress inhibited starch formation during the day and strongly depressed night export from the blades. High temperature depressed the night transport less in plants having a higher sink demand of fruits in plant treated with PGR. In this case the amount of substances available for export was much higher and both sugars and starch were more intensively remobilized at night. In intact Robin plants, PGR and heat stress much less affected sugar and starch content. High temperature diminished noctural starch remobilization only in the NOA + GA3 series. Leaf disc growth was evaluated as a measure of response to heat stress after elimination of the direct effect of fruit demands. One cycle of high temperature did not negatively affect the growth of leaf discs; it even caused thermal low growth activation in both cultivars. Three cycles of heat stress depressed leaf disc growth after short-term stimulation, especially in Roma plants. Immediately after 3-day heat stress, there was no response of discs to GA3 or zeatin added to the solution on which the discs were floated. Leaf disc growth of Robin control and NOA + GA3 series was very similar in plants from optimal temperature conditions. High temperature inhibited only disc growth of the NOA + GA3 series owing to depression of starch break-down, diminishing the pool of sugars. In contrast, leaf discs of Roma cv. excided from NOA + GA3 treated plants from the optimal temperature series, grew more intensively

  4. Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress

    DEFF Research Database (Denmark)

    Akhtar, Saqib Saleem; Andersen, Mathias Neumann; Liu, Fulai

    2015-01-01

    Salinity is one of the major threats to global food security. Biochar amendment could alleviate the negative impacts of salt stress in crop in the season. However, its long-term residual effect on reducing Na+ uptake in latter crops remains unknown. A pot experiment with wheat was conducted...... in a greenhouse. The soil used was from an earlier experiment on potato where the plants were irrigated with tap water (S0), 25 mM (S1) and 50 mM (S2) NaCl solutions and with 0 and 5% (w/w) biochar amendment. At onset of the experiment, three different EC levels at S0, S1 and S2 were established in the non...... by transient Na+ binding due to its high adsorption capacity, decreasing osmotic stress by enhancing soil moisture content, and by releasing mineral nutrients (particularly K+, Ca++, Mg++) into the soil solution. Growth, physiology and yield of wheat were affected positively with biochar amendment...

  5. Posttraumatic growth and reduced suicidal ideation among adolescents at month 1 after the Sichuan Earthquake.

    Science.gov (United States)

    Yu, Xiao-nan; Lau, Joseph T F; Zhang, Jianxin; Mak, Winnie W S; Choi, Kai Chow; Lui, Wacy W S; Zhang, Jianxin; Chan, Emily Y Y

    2010-06-01

    This study investigated posttraumatic growth (PTG) and reduced suicidal ideation among Chinese adolescents at one month after the occurrence of the Sichuan Earthquake. A cross-sectional survey was administered to 3324 high school students in Chengdu, Sichuan. The revised Posttraumatic Growth Inventory for Children and the Children's Revised Impact of Event Scale assessed PTG and posttraumatic stress disorder (PTSD), respectively. Multivariate analysis showed that being in junior high grade 2, having probable PTSD, visiting affected areas, possessing a perceived sense of security from teachers, and being exposed to touching news reports and encouraging news reports were associated with probable PTG; the reverse was true for students in senior high grade 1 or senior high grade 2 who had experienced prior adversities. Among the 623 students (19.3% of all students) who had suicidal ideation prior to the earthquake, 57.4% self-reported reduced suicidal ideation when the pre-earthquake and post-earthquake situations were compared. Among these 623 students, the multivariate results showed that being females, perceived sense of security obtained from teachers and exposure to encouraging news reports were factors associated with reduced suicidal ideation; the reverse was true for experience of pre-earthquake corporal punishment and worry about severe earthquakes in the future. The study population was not directly hit by the earthquake. This study is cross-sectional and no baseline data were collected prior to the occurrence of the earthquake. The earthquake resulted in PTG and reduced suicidal ideation among adolescents. PTSD was associated with PTG. Special attention should be paid to teachers' support, contents of media reports, and students' experience of prior adversities. Copyright 2009 Elsevier B.V. All rights reserved.

  6. Growth and physiological responses of some Capsicum frutescens varieties to copper stress

    Science.gov (United States)

    Jadid, Nurul; Maziyah, Rizka; Nurcahyani, Desy Dwi; Mubarokah, Nilna Rizqiyah

    2017-06-01

    Copper (Cu) is an essential micronutrient participating in various physiological processes. However, excessive uptake of this micronutrient could potentially affect plant growth and development as well as plant productivity. In this present work, growth and physiological responses of some Capsicum frustescens varieties to Cu stress were determined. Three C. frutescens varieties used in this work were var. Bara, CF 291, and Genie. In addition, these varieties were treated with different concentration of Cu (0, 30, 70, and 120 ppm). The growth and physiological responses measured in this work included plant height, root length, malondialdehyde (MDA), and chlorophyll. The result showed that all varieties tested relatively displayed plant growth reduction including plant height and root length. Likewise, an increase of MDA level, a major bioindicator for oxidative damage was also found in all varieties following exposure to elevated Cu concentration. Finally, the chlorophyll content was also affected indicated by a decreased amount of chlorophyll, especially in var. CF291. The overall results demonstrated that elevated Cu concentration might decrease C. frutescens productivity where among the three varieties tested, var CF 291 seemed to be the most sensitive varieties to Cu stress.

  7. Growth responses of NaCl stressed rice (Oryza sativa L.) plants ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-27

    Sep 27, 2010 ... Growth responses of NaCl stressed rice (Oryza sativa. L.) plants ... 2008), which is a real threat to human's food security. Existed situation may ..... content and composition of essential oil and minerals in black cumin. (Nigella ...

  8. Acute psychosocial stress reduces pain modulation capabilities in healthy men.

    Science.gov (United States)

    Geva, Nirit; Pruessner, Jens; Defrin, Ruth

    2014-11-01

    Anecdotes on the ability of individuals to continue to function under stressful conditions despite injuries causing excruciating pain suggest that acute stress may induce analgesia. However, studies exploring the effect of acute experimental stress on pain perception show inconsistent results, possibly due to methodological differences. Our aim was to systematically study the effect of acute stress on pain perception using static and dynamic, state-of-the-art pain measurements. Participants were 29 healthy men who underwent the measurement of heat-pain threshold, heat-pain intolerance, temporal summation of pain, and conditioned pain modulation (CPM). Testing was conducted before and during exposure to the Montreal Imaging Stress Task (MIST), inducing acute psychosocial stress. Stress levels were evaluated using perceived ratings of stress and anxiety, autonomic variables, and salivary cortisol. The MIST induced a significant stress reaction. Although pain threshold and pain intolerance were unaffected by stress, an increase in temporal summation of pain and a decrease in CPM were observed. These changes were significantly more robust among individuals with stronger reaction to stress ("high responders"), with a significant correlation between the perception of stress and the performance in the pain measurements. We conclude that acute psychosocial stress seems not to affect the sensitivity to pain, however, it significantly reduces the ability to modulate pain in a dose-response manner. Considering the diverse effects of stress in this and other studies, it appears that the type of stress and the magnitude of its appraisal determine its interactions with the pain system. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  9. Competition from native hydrophytes reduces establishment and growth of invasive dense-flowered cordgrass (Spartina densiflora

    Directory of Open Access Journals (Sweden)

    Ahmed M. Abbas

    2015-10-01

    Full Text Available Experimental studies to determine the nature of ecological interactions between invasive and native species are necessary for conserving and restoring native species in impacted habitats. Theory predicts that species boundaries along environmental gradients are determined by physical factors in stressful environments and by competitive ability in benign environments, but little is known about the mechanisms by which hydrophytes exclude halophytes and the life history stage at which these mechanisms are able to operate. The ongoing invasion of the South American Spartina densiflora in European marshes is causing concern about potential impacts to native plants along the marsh salinity gradient, offering an opportunity to evaluate the mechanisms by which native hydrophytes may limit, or even prevent, the expansion of invasive halophytes. Our study compared S. densiflora seedling establishment with and without competition with Phragmites australis and Typha domingensis, two hydrophytes differing in clonal architecture. We hypothesized that seedlings of the stress tolerant S. densiflora would be out-competed by stands of P. australis and T. domingensis. Growth, survivorship, biomass patterns and foliar nutrient content were recorded in a common garden experiment to determine the effect of mature P. australis and T. domingensis on the growth and colonization of S. densiflora under fresh water conditions where invasion events are likely to occur. Mature P. australis stands prevented establishment of S. densiflora seedlings and T. domingensis reduced S. densiflora establishment by 38%. Seedlings grown with P. australis produced fewer than five short shoots and all plants died after ca. 2 yrs. Our results showed that direct competition, most likely for subterranean resources, was responsible for decreased growth rate and survivorship of S. densiflora. The presence of healthy stands of P. australis, and to some extent T. domingensis, along river channels

  10. Arsenic tolerant Trichoderma sp. reduces arsenic induced stress in chickpea (Cicer arietinum).

    Science.gov (United States)

    Tripathi, Pratibha; Singh, Poonam C; Mishra, Aradhana; Srivastava, Suchi; Chauhan, Reshu; Awasthi, Surabhi; Mishra, Seema; Dwivedi, Sanjay; Tripathi, Preeti; Kalra, Alok; Tripathi, Rudra D; Nautiyal, Chandra S

    2017-04-01

    Toxic metalloids including arsenic (As) can neither be eliminated nor destroyed from environment; however, they can be converted from toxic to less/non-toxic forms. The form of As species and their concentration determines its toxicity in plants. Therefore, the microbe mediated biotransformation of As is crucial for its plant uptake and toxicity. In the present study the role of As tolerant Trichoderma in modulating As toxicity in chickpea plants was explored. Chickpea plants grown in arsenate spiked soil under green house conditions were inoculated with two plant growth promoting Trichoderma strains, M-35 (As tolerant) and PPLF-28 (As sensitive). Total As concentration in chickpea tissue was comparable in both the Trichoderma treatments, however, differences in levels of organic and inorganic As (iAs) species were observed. The shift in iAs to organic As species ratio in tolerant Trichoderma treatment correlated with enhanced plant growth and nutrient content. Arsenic stress amelioration in tolerant Trichoderma treatment was also evident through rhizospheric microbial community and anatomical studies of the stem morphology. Down regulation of abiotic stress responsive genes (MIPS, PGIP, CGG) in tolerant Trichoderma + As treatment as compared to As alone and sensitive Trichoderma + As treatment also revealed that tolerant strain enhanced the plant's potential to cope with As stress as compared to sensitive one. Considering the bioremediation and plant growth promotion potential, the tolerant Trichoderma may appear promising for its utilization in As affected fields for enhancing agricultural productivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Consequences of inbreeding and reduced genetic variation on tolerance to cadmium stress in the midge Chironomus riparius

    International Nuclear Information System (INIS)

    Nowak, Carsten; Jost, Daniel; Vogt, Christian; Oetken, Matthias; Schwenk, Klaus; Oehlmann, Joerg

    2007-01-01

    Inbreeding and loss of genetic variation are considered to be major threats to small and endangered populations. The reduction of fitness due to inbreeding is believed to be more severe under stressful environmental conditions. We generated nine strains of the ecotoxicological model organism Chironomus riparius of different inbreeding levels in order to test the hypothesis that the inbreeding level and thus the degree of genome-wide homozygosity influences the life-history under cadmium exposure. Therefore, midge populations were exposed to a gradient of sediment-bound cadmium. The level of genetic variation in the used strains was assessed using microsatellite markers. In the life-cycle tests, inbreeding reduced fitness within C. riparius populations both under control and stressed conditions. However, differences between genetically diverse and impoverished strains were greatest at high cadmium exposure. Overall, inbreeding effects were not only dependent on cadmium concentrations in the sediment, but also on the life-history trait investigated. While some parameters where only affected by inbreeding, others were altered by both, inbreeding and cadmium. For the larval developmental time, a significant interaction was found between inbreeding and cadmium stress. While all strains showed a similar developmental time under control conditions, high rates of inbreeding led to a significantly delayed emergence time under high cadmium concentrations, resulting in longer generation periods and reduced population growth rates as population-relevant effects. The results show, that bioassays with C. riparius are affected by the level of inbreeding within Chironomus test strains. Pollution stress is therefore likely to affect the survival of rare and endangered populations more severe than that of large and genetically diverse ones

  12. Skeletal muscle protein accretion rates and hindlimb growth are reduced in late gestation intrauterine growth-restricted fetal sheep.

    Science.gov (United States)

    Rozance, Paul J; Zastoupil, Laura; Wesolowski, Stephanie R; Goldstrohm, David A; Strahan, Brittany; Cree-Green, Melanie; Sheffield-Moore, Melinda; Meschia, Giacomo; Hay, William W; Wilkening, Randall B; Brown, Laura D

    2018-01-01

    Adults who were affected by intrauterine growth restriction (IUGR) suffer from reductions in muscle mass, which may contribute to insulin resistance and the development of diabetes. We demonstrate slower hindlimb linear growth and muscle protein synthesis rates that match the reduced hindlimb blood flow and oxygen consumption rates in IUGR fetal sheep. These adaptations resulted in hindlimb blood flow rates in IUGR that were similar to control fetuses on a weight-specific basis. Net hindlimb glucose uptake and lactate output rates were similar between groups, whereas amino acid uptake was significantly lower in IUGR fetal sheep. Among all fetuses, blood O 2 saturation and plasma glucose, insulin and insulin-like growth factor-1 were positively associated and norepinephrine was negatively associated with hindlimb weight. These results further our understanding of the metabolic and hormonal adaptations to reduced oxygen and nutrient supply with placental insufficiency that develop to slow hindlimb growth and muscle protein accretion. Reduced skeletal muscle mass in the fetus with intrauterine growth restriction (IUGR) persists into adulthood and may contribute to increased metabolic disease risk. To determine how placental insufficiency with reduced oxygen and nutrient supply to the fetus affects hindlimb blood flow, substrate uptake and protein accretion rates in skeletal muscle, late gestation control (CON) (n = 8) and IUGR (n = 13) fetal sheep were catheterized with aortic and femoral catheters and a flow transducer around the external iliac artery. Muscle protein kinetic rates were measured using isotopic tracers. Hindlimb weight, linear growth rate, muscle protein accretion rate and fractional synthetic rate were lower in IUGR compared to CON (P fetal norepinephrine and reduced IGF-1 and insulin. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  13. Effect of Thiamine, Ascorbic acid and Gibberellic acid (GA3 on Growth Characteristics, Pigment Content and Reduced Sugars of Petunia

    Directory of Open Access Journals (Sweden)

    moslem salehi

    2017-02-01

    analyzed using statistical package SAS and means were compared using LSD test at the level of statistical significance of P˂0.05. Results and Discussion: The results indicated that GA3 affected all the measured characteristics except carotenoids in comparison with thiamine and ascorbic acid. Meanwhile, the combined application of GA3 and ascorbic acid affected stem growth, root growth and flower diameter. Simultaneous use of GA3 and thiamine was effective on pigments, reducing sugar, carotenoids and flower number. The simultaneous application of three chemicals resulted in a considerable increase in growth and development traits, such as stem and root growth, flower number and diameter, pigments and reducing sugar compared to control. Generally, gibberellic acid will increase vegetative growth with impress cellular processes, including stimulation cell division and cell elongation. It was reported that the uses of ascorbic acid and gibberellic acid in Thyme (Thymus vulgaris increased plant height and root length. Ascorbic acid makes a set of functions such as cell division and enlargements, cell wall development and other developmental processes in plants. Ascorbic acid affects plasma membrane proton pump and according to the acidic theory stimulates weaking cell wall and consequently will increase cell wall development and cell enlargement. It was found that thiamine significantly increased flower number in chrysanthemum . Conclusion: The results indicated that the synergistic effects of this material can be used to enhance the growth and development of petunia. On the other hand, in arid and semiarid areas of the country, that drought and salinity stresses somewhat inevitable, these materials, especially vitamins are effective in reducing stress and increase flowering period.

  14. The effects of extraversion, social support on the posttraumatic stress disorder and posttraumatic growth of adolescent survivors of the Wenchuan earthquake.

    Science.gov (United States)

    Jia, Xuji; Ying, Liuhua; Zhou, Xiao; Wu, Xinchun; Lin, Chongde

    2015-01-01

    The aim of this study was to examine the relationships among extraversion, social support, posttraumatic stress disorder and posttraumatic growth among adolescent survivors of the Wenchuan earthquake. Six hundred thirty-eight participants were selected from the survivors of the 2008 Wenchuan earthquake. Participants completed four main questionnaires, including the Extraversion Subscale, the Social Support Scale, the Child PTSD Symptom Scale, and the Posttraumatic Growth Inventory. A bivariate correlation analysis revealed significant correlations among extraversion, social support, posttraumatic stress disorder and posttraumatic growth. Extraversion had significant indirect effects on posttraumatic stress disorder (β = -.037, p posttraumatic growth (β = .077, p posttraumatic growth and a nonsignificant direct effect on posttraumatic stress disorder. Social support fully mediates the relationship between extraversion and posttraumatic stress disorder and partially mediates the relationship between extraversion and posttraumatic growth. Psychological interventions and care for survivors of the earthquake should include the various functions and sources of social support and how they serve to benefit individuals.

  15. Osmotic stress confers enhanced cell integrity to hydrostatic pressure but impairs growth in Alcanivorax borkumensis SK2

    Directory of Open Access Journals (Sweden)

    Alberto eScoma

    2016-05-01

    Full Text Available Alcanivorax is a hydrocarbonoclastic genus dominating oil spills worldwide. While its presence has been detected in oil-polluted seawaters, marine sediment and salt marshes under ambient pressure, its presence in deep-sea contaminated environments is negligible. Recent laboratory evidences highlighted the piezosensitive nature of some Alcanivorax species, whose growth yields are highly impacted by mild hydrostatic pressures (HPs. In the present study, osmotic stress was used as a tool to increase HP resistance in the type strain A. borkumensis SK2. Control cultures grown under standard conditions of salinity and osmotic pressure with respect to seawater (35.6 ppt or 1136 mOsm kg-1, respectively were compared with cultures subjected to hypo- and hyperosmosis (330 and 1720 mOsm kg-1, or 18 and 62 ppt in salinity, equivalent to brackish and brine waters, respectively, under atmospheric or increased HP (0.1 and 10MPa. Osmotic stress had a remarkably positive impact on cell metabolic activity in terms of CO2 production (thus, oil bioremediation and O2 respiration under hyperosmosis, as acclimation to high salinity enhanced cell activity under 10MPa by a factor of 10. Both osmotic shocks significantly enhanced cell protection by reducing membrane damage under HP, with cell integrities close to 100% under hyposmosis. The latter was likely due to intracellular water-reclamation as no trace of the piezolyte ectoine was found, contrary to hyperosmosis. Notably, ectoine production was equivalent at 0.1MPa in hyperosmosis-acclimated cells and at 10MPa under isosmotic conditions, supporting the hypothesis that ectoine synthesis may be primarily triggered by HP rather than osmotic stress. While stimulating cell metabolism and enhancing cell integrity, osmotic stress had always a negative impact on culture growth and performance. No net growth was observed during 4-day incubation tests, and CO2:O2 ratios and pH values indicated that culture performance in

  16. Adaptation of BAp crystal orientation to stress distribution in rat mandible during bone growth

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, T; Fujitani, W; Ishimoto, T [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871 (Japan); Umakoshi, Y [National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaragi, 305-0471 (Japan)], E-mail: nakano@mat.eng.osaka-u.ac.jp

    2009-05-01

    Biological apatite (BAp) c-axis orientation strongly depends on stress distribution in vivo and tends to align along the principal stress direction in bones. Dentulous mandible is subjected to a complicated stress condition in vivo during chewing but few studies have been carried out on the BAp c-axis orientation; so the adaptation of BAp crystal orientation to stress distribution was examined in rat dentulous mandible during bone growth and mastication. Female SD rats 4 to 14 weeks old were prepared, and the bone mineral density (BMD) and BAp crystal orientation were analyzed in a cross-section of mandible across the first molar focusing on two positions: separated from and just under the tooth root on the same cross-section perpendicular to the mesiodistal axis. The degree of BAp orientation was analyzed by a microbeam X-ray diffractometer using Cu-K{alpha} radiation equipped with a detector of curved one-dimensional PSPC and two-dimensional PSPC in the reflection and transmission optics, respectively. BMD quickly increased during bone growth up to 14 weeks, although it was independent of the position from the tooth root. In contrast, BAp crystal orientation strongly depended on the age and the position from the tooth root, even in the same cross-section and direction, especially along the mesiodistal and the biting axes. With increased biting stress during bone growth, the degree of BAp orientation increased along the mesiodistal axis in a position separated from the tooth root more than that near the tooth root. In contrast, BAp preferential alignment clearly appeared along the biting axis near the tooth root. We conclude that BAp orientation rather than BMD sensitively adapts to local stress distribution, especially from the chewing stress in vivo in the mandible.

  17. Reduced NK cell IFN-γ secretion and psychological stress are independently associated with herpes zoster.

    Science.gov (United States)

    Kim, Choon Kwan; Choi, Youn Mi; Bae, Eunsin; Jue, Mihn Sook; So, Hyung Seok; Hwang, Eung-Soo

    2018-01-01

    The pathogenesis of herpes zoster is closely linked to reduced varicella-zoster virus-specific cell-mediated immunity. However, little is known about the interplay between natural killer cells and psychological stress in the pathogenesis of herpes zoster. This study aimed to investigate possible associations among natural killer cells, T cells and psychological stress in herpes zoster. Interferon-gamma secretion from natural killer cell, psychological stress events, stress cognition scale scores and cytomegalovirus-specific cell-mediated immunity were compared between 44 patients with herpes zoster and 44 age- and gender-matched control subjects. A significantly lower median level of interferon-gamma secreted by natural killer cells was observed in patients with a recent diagnosis of herpes zoster than in control subjects (582.7 pg/ml vs. 1783 pg/ml; P = 0.004), whereas cytomegalovirus-specific cell-mediated immunity was not associated with herpes zoster. Psychological stress events and high stress cognition scale scores were significantly associated in patients with herpes zoster (Pherpes zoster display reduced interferon-gamma secretion from natural killer cells and frequent previous psychological stress events compared with controls. However, reduced natural killer cell activity is not an immunological mediator between psychological stress and herpes zoster.

  18. Modified stress intensity factor as a crack growth parameter applicable under large scale yielding conditions

    International Nuclear Information System (INIS)

    Yasuoka, Tetsuo; Mizutani, Yoshihiro; Todoroki, Akira

    2014-01-01

    High-temperature water stress corrosion cracking has high tensile stress sensitivity, and its growth rate has been evaluated using the stress intensity factor, which is a linear fracture mechanics parameter. Stress corrosion cracking mainly occurs and propagates around welded metals or heat-affected zones. These regions have complex residual stress distributions and yield strength distributions because of input heat effects. The authors previously reported that the stress intensity factor becomes inapplicable when steep residual stress distributions or yield strength distributions occur along the crack propagation path, because small-scale yielding conditions deviate around those distributions. Here, when the stress intensity factor is modified by considering these distributions, the modified stress intensity factor may be used for crack growth evaluation for large-scale yielding. The authors previously proposed a modified stress intensity factor incorporating the stress distribution or yield strength distribution in front of the crack using the rate of change of stress intensity factor and yield strength. However, the applicable range of modified stress intensity factor for large-scale yielding was not clarified. In this study, the range was analytically investigated by comparison with the J-integral solution. A three-point bending specimen with parallel surface crack was adopted as the analytical model and the stress intensity factor, modified stress intensity factor and equivalent stress intensity factor derived from the J-integral were calculated and compared under large-scale yielding conditions. The modified stress intensity was closer to the equivalent stress intensity factor when compared with the stress intensity factor. If deviation from the J-integral solution is acceptable up to 2%, the modified stress intensity factor is applicable up to 30% of the J-integral limit, while the stress intensity factor is applicable up to 10%. These results showed that

  19. Magnetite (Fe3O4 Nanoparticles Alleviate Growth Inhibition and Oxidative Stress Caused by Heavy Metals in Young Seedlings of Cucumber (Cucumis Sativus L

    Directory of Open Access Journals (Sweden)

    Konate Alexandre

    2017-01-01

    Full Text Available Accumulation of heavy metals in the ecosystem and their toxic effects through food chain can cause serious ecological and health problems. In the present study, experiments were performed to understand how the addition of magnetite (Fe3O4 nanoparticles reduces the toxicity caused by Cd, Pb, Cu, and Zn in cucumber plants. Plant growth parameters, lipid peroxidation, and antioxidant enzymes were measured in seedling samples treated with either metals or metals supplemented with Fe3O4 to demonstrate the reduction in metal-induced oxidative stress conferred by Fe3O4. Results showed that the toxic effect of metals on seedling growth parameters can be arranged in the rank order of inhibition as follows: Cu > Cd > Zn > Pb. Exposure to metals significantly decreased the seedlings growth, the activities of superoxide dismutase (SOD and peroxidases (POD, while the malondialdehyde (MDA content significantly increased in cucumber seedlings. The reducing activity of nano-Fe3O4 against heavy metals stresses was confirmed in this study by the decrease in MDA content. The correlation between the decrease of MDA concentration and the increase in SOD and POD activities in the presence of nano-Fe3O4 suggest that the MDA reduction in the tested seedlings can result from the increased enzyme activity.

  20. Resolved shear stress intensity coefficient and fatigue crack growth in large crystals

    Science.gov (United States)

    Chen, QI; Liu, Hao-Wen

    1988-01-01

    Fatigue crack growth in large grain Al alloy was studied. Fatigue crack growth is caused primarily by shear decohesion due to dislocation motion in the crack tip region. The crack paths in the large crystals are very irregular and zigzag. The crack planes are often inclined to the loading axis both in the inplane direction and the thickness direction. The stress intensity factors of such inclined cracks are approximated from the two dimensional finite element calculations. The plastic deformation in a large crystal is highly anisotropic, and dislocation motion in such crystals are driven by the resolved shear stress. The resolved shear stress intensity coefficient in a crack solid, RSSIC, is defined, and the coefficients for the slip systems at a crack tip are evaluated from the calculated stress intensity factors. The orientations of the crack planes are closely related to the slip planes with the high RSSIC values. If a single slip system has a much higher RSSIC than all the others, the crack will follow the slip plane, and the slip plane becomes the crack plane. If two or more slip systems have a high RSSIC, the crack plane is the result of the decohesion processes on these active slip planes.

  1. Metabolic flux rearrangement in the amino acid metabolism reduces ammonia stress in the α1-antitrypsin producing human AGE1.HN cell line.

    Science.gov (United States)

    Priesnitz, Christian; Niklas, Jens; Rose, Thomas; Sandig, Volker; Heinzle, Elmar

    2012-03-01

    This study focused on metabolic changes in the neuronal human cell line AGE1.HN upon increased ammonia stress. Batch cultivations of α(1)-antitrypsin (A1AT) producing AGE1.HN cells were carried out in media with initial ammonia concentrations ranging from 0mM to 5mM. Growth, A1AT production, metabolite dynamics and finally metabolic fluxes calculated by metabolite balancing were compared. Growth and A1AT production decreased with increasing ammonia concentration. The maximum A1AT concentration decreased from 0.63g/l to 0.51g/l. Central energy metabolism remained relatively unaffected exhibiting only slightly increased glycolytic flux at high initial ammonia concentration in the medium. However, the amino acid metabolism was significantly changed. Fluxes through transaminases involved in amino acid degradation were reduced concurrently with a reduced uptake of amino acids. On the other hand fluxes through transaminases working in the direction of amino acid synthesis, i.e., alanine and phosphoserine, were increased leading to increased storage of excess nitrogen in extracellular alanine and serine. Glutamate dehydrogenase flux was reversed increasingly fixing free ammonia with increasing ammonia concentration. Urea production additionally observed was associated with arginine uptake by the cells and did not increase at high ammonia stress. It was therefore not used as nitrogen sink to remove excess ammonia. The results indicate that the AGE1.HN cell line can adapt to ammonia concentrations usually present during the cultivation process to a large extent by changing metabolism but with slightly reduced A1AT production and growth. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Rhizospheric salt tolerant bacteria improving plant growth in single and mixed culture inoculations under NaCl stress (abstract)

    International Nuclear Information System (INIS)

    Afrasayab, S.; Hasnain, S.

    2005-01-01

    Salt tolerant bacterial strains isolated from rhizosphere of Mazus plant (inhabitant of salt range) were used singly (ST -1; ST -2; ST -3; ST -4) and in mixed combinations (ST -1,3,4; ST -2,3,4) to improve the growth to Tricticum aestivum in the pot experiments. Growth and yield of T. aestivum var. Inqlab-91 plants exposed to NaCl stress (0.75% NaCl) was markedly affected. Na/sup +//K/sup +/ ratios in shoots and roots were profoundly increased under NaCl stress. Bacterial inoculations improved plant growth under salt stress. Bacterial combinations ST - 1,3,4 and ST -2,3,4 were more effective in stimulating growth and showed prominent results as compared to their pure cultures. Mono and mixed bacterial inoculations improved yield parameters of wheat. ST -1,3,4 mixed culture inoculation maximally improved yield under salt stress. Generally bacterial inoculations resulted in increase in Na/sup +//K/sup +/ ratios in shoots and roots under salt free and salt stress conditions. Overall ST -1,3,4 mixed inoculation yielded promising results under NaCl stress, hence 168 rRNA gene sequence analysis of its pure cultures was obtained for their identification to genus level. (author)

  3. Nurses' experiences, expectations, and preferences for mind-body practices to reduce stress

    Directory of Open Access Journals (Sweden)

    McCool Jane A

    2011-04-01

    Full Text Available Abstract Background Most research on the impact of mind-body training does not ask about participants' baseline experience, expectations, or preferences for training. To better plan participant-centered mind-body intervention trials for nurses to reduce occupational stress, such descriptive information would be valuable. Methods We conducted an anonymous email survey between April and June, 2010 of North American nurses interested in mind-body training to reduce stress. The e-survey included: demographic characteristics, health conditions and stress levels; experiences with mind-body practices; expected health benefits; training preferences; and willingness to participate in future randomized controlled trials. Results Of the 342 respondents, 96% were women and 92% were Caucasian. Most (73% reported one or more health conditions, notably anxiety (49%; back pain (41%; GI problems such as irritable bowel syndrome (34%; or depression (33%. Their median occupational stress level was 4 (0 = none; 5 = extreme stress. Nearly all (99% reported already using one or more mind-body practices to reduce stress: intercessory prayer (86%, breath-focused meditation (49%, healing or therapeutic touch (39%, yoga/tai chi/qi gong (34%, or mindfulness-based meditation (18%. The greatest expected benefits were for greater spiritual well-being (56%; serenity, calm, or inner peace (54%; better mood (51%; more compassion (50%; or better sleep (42%. Most (65% wanted additional training; convenience (74% essential or very important, was more important than the program's reputation (49% or scientific evidence about effectiveness (32% in program selection. Most (65% were willing to participate in a randomized trial of mind-body training; among these, most were willing to collect salivary cortisol (60%, or serum biomarkers (53% to assess the impact of training. Conclusions Most nurses interested in mind-body training already engage in such practices. They have greater

  4. Loss of the Arabidopsis thaliana P₄-ATPase ALA3 reduces adaptability to temperature stresses and impairs vegetative, pollen, and ovule development.

    Directory of Open Access Journals (Sweden)

    Stephen C McDowell

    Full Text Available Members of the P4 subfamily of P-type ATPases are thought to help create asymmetry in lipid bilayers by flipping specific lipids between the leaflets of a membrane. This asymmetry is believed to be central to the formation of vesicles in the secretory and endocytic pathways. In Arabidopsis thaliana, a P4-ATPase associated with the trans-Golgi network (ALA3 was previously reported to be important for vegetative growth and reproductive success. Here we show that multiple phenotypes for ala3 knockouts are sensitive to growth conditions. For example, ala3 rosette size was observed to be dependent upon both temperature and soil, and varied between 40% and 80% that of wild-type under different conditions. We also demonstrate that ala3 mutants have reduced fecundity resulting from a combination of decreased ovule production and pollen tube growth defects. In-vitro pollen tube growth assays showed that ala3 pollen germinated ∼2 h slower than wild-type and had approximately 2-fold reductions in both maximal growth rate and overall length. In genetic crosses under conditions of hot days and cold nights, pollen fitness was reduced by at least 90-fold; from ∼18% transmission efficiency (unstressed to less than 0.2% (stressed. Together, these results support a model in which ALA3 functions to modify endomembranes in multiple cell types, enabling structural changes, or signaling functions that are critical in plants for normal development and adaptation to varied growth environments.

  5. The effect of ergonomic training and intervention on reducing occupational stress among computer users

    Directory of Open Access Journals (Sweden)

    T. Yektaee

    2014-05-01

    Result: According to covariance analysis, ergonomic training and interventions lead to reduction of occupational stress of computer users. .Conclusion: Training computer users and informing them of the ergonomic principals and also providing interventions such as correction of posture, reducing duration of work time, using armrest and footrest would have significant implication in reducing occupational stress among computer users.

  6. High intensity and reduced volume training attenuates stress and recovery levels in elite swimmers

    DEFF Research Database (Denmark)

    Elbe, Anne-Marie; Rasmussen, Camilla P; Nielsen, Glen

    2016-01-01

    This study investigated the effect of increased high-intensity interval training (HIT) at the expense of total training volume on the stress and recovery levels of elite swimmers. Forty-one elite swimmers participated in the study and were randomly assigned to either a HIT or a control group (CON....... The Recovery Stress Questionnaire - Sport was used to measure the swimmers' stress and recovery levels. After the 12 week intervention, the general stress level was 16.6% (2.6-30.7%; mean and 95% CI) lower and the general recovery level was 6.5% (0.7-12.4%) higher in HIT compared to the CON, after adjusting...... for baseline values. No significant effects could be observed in sports-specific stress or sports-specific recovery. The results indicate that increasing training intensity and reducing training volume for 12 weeks can reduce general stress and increase general recovery levels in competitive swimmers....

  7. Stress corrosion crack growth rate in dissimilar metal welds

    International Nuclear Information System (INIS)

    Fernandez, M. P.; Lapena, J.; Lancha, A. M.; Perosanz, F. J.; Navas, M.

    2000-01-01

    Dissimilar welds, used to join different sections in light water reactors, are potentially susceptible to stress corrosion cracking (SCC) in aqueous mediums characteristic of nuclear plants. However, the study of these The ma has been limited to evaluating the weld material susceptibility in these mediums. Little scarce data are available on crack growth rates due, fundamentally, to inadequate testing techniques. In order to address this lack of information the crack growth rate at the interface of ferritic SA 533 B-1 alloy and alloy I-82, in a dissimilar weld (SA533B-1/I-82/316L), was studied. Experiments were conducted in water at 288 degree centigrade, 8 ppm of O 2 and 1 μS/cm conductivity. (Author) 33 refs

  8. Osmotic and Salt Stresses Modulate Spontaneous and Glutamate-Induced Action Potentials and Distinguish between Growth and Circumnutation in Helianthus annuus Seedlings

    Directory of Open Access Journals (Sweden)

    Maria Stolarz

    2017-10-01

    Full Text Available Action potentials (APs, i.e., long-distance electrical signals, and circumnutations (CN, i.e., endogenous plant organ movements, are shaped by ion fluxes and content in excitable and motor tissues. The appearance of APs and CN as well as growth parameters in seedlings and 3-week old plants of Helianthus annuus treated with osmotic and salt stress (0–500 mOsm were studied. Time-lapse photography and extracellular measurements of electrical potential changes were performed. The hypocotyl length was strongly reduced by the osmotic and salt stress. CN intensity declined due to the osmotic but not salt stress. The period of CN in mild salt stress was similar to the control (~164 min and increased to more than 200 min in osmotic stress. In sunflower seedlings growing in a hydroponic medium, spontaneous APs (SAPs propagating basipetally and acropetally with a velocity of 12–20 cm min−1 were observed. The number of SAPs increased 2–3 times (7–10 SAPs 24 h−1plant−1 in the mild salt stress (160 mOsm NaCl and KCl, compared to the control and strong salt stress (3–4 SAPs 24 h−1 plant−1 in the control and 300 mOsm KCl and NaCl. Glutamate-induced series of APs were inhibited in the strong salt stress-treated seedlings but not at the mild salt stress and osmotic stress. Additionally, in 3-week old plants, the injection of the hypo- or hyperosmotic solution at the base of the sunflower stem evoked series of APs (3–24 APs transmitted along the stem. It has been shown that osmotic and salt stresses modulate differently hypocotyl growth and CN and have an effect on spontaneous and evoked APs in sunflower seedlings. We suggested that potassium, sodium, and chloride ions at stress concentrations in the nutrient medium modulate sunflower excitability and CN.

  9. Growth hormone releasing hormone (GHRH) signaling modulates intermittent hypoxia-induced oxidative stress and cognitive deficits in mouse.

    Science.gov (United States)

    Nair, Deepti; Ramesh, Vijay; Li, Richard C; Schally, Andrew V; Gozal, David

    2013-11-01

    Intermittent hypoxia (IH) during sleep, such as occurs in obstructive sleep apnea (OSA), leads to degenerative changes in the hippocampus, and is associated with spatial learning deficits in adult mice. In both patients and murine models of OSA, the disease is associated with suppression of growth hormone (GH) secretion, which is actively involved in the growth, development, and function of the central nervous system (CNS). Recent work showed that exogenous GH therapy attenuated neurocognitive deficits elicited by IH during sleep in rats. Here, we show that administration of the Growth Hormone Releasing Hormone (GHRH) agonist JI-34 attenuates IH-induced neurocognitive deficits, anxiety, and depression in mice along with reduction in oxidative stress markers such as MDA and 8-hydroxydeoxyguanosine, and increases in hypoxia inducible factor-1α DNA binding and up-regulation of insulin growth factor-1 and erythropoietin expression. In contrast, treatment with a GHRH antagonist (MIA-602) during intermittent hypoxia did not affect any of the IH-induced deleterious effects in mice. Thus, exogenous GHRH administered as the formulation of a GHRH agonist may provide a viable therapeutic intervention to protect IH-vulnerable brain regions from OSA-associated neurocognitive dysfunction. Sleep apnea, characterized by chronic intermittent hypoxia (IH), is associated with substantial cognitive and behavioral deficits. Here, we show that administration of a GHRH agonist (JI-34) reduces oxidative stress, increases both HIF-1α nuclear binding and downstream expression of IGF1 and erythropoietin (EPO) in hippocampus and cortex, and markedly attenuates water maze performance deficits in mice exposed to intermittent hypoxia during sleep. © 2013 International Society for Neurochemistry.

  10. Neonicotinoid pesticides and nutritional stress synergistically reduce survival in honey bees.

    Science.gov (United States)

    Tosi, Simone; Nieh, James C; Sgolastra, Fabio; Cabbri, Riccardo; Medrzycki, Piotr

    2017-12-20

    The honey bee is a major pollinator whose health is of global concern. Declines in bee health are related to multiple factors, including resource quality and pesticide contamination. Intensive agricultural areas with crop monocultures potentially reduce the quality and quantity of available nutrients and expose bee foragers to pesticides. However, there is, to date, no evidence for synergistic effects between pesticides and nutritional stress in animals. The neonicotinoids clothianidin (CLO) and thiamethoxam (TMX) are common systemic pesticides that are used worldwide and found in nectar and pollen. We therefore tested if nutritional stress (limited access to nectar and access to nectar with low-sugar concentrations) and sublethal, field-realistic acute exposures to two neonicotinoids (CLO and TMX at 1/5 and 1/25 of LD 50 ) could alter bee survival, food consumption and haemolymph sugar levels. Bee survival was synergistically reduced by the combination of poor nutrition and pesticide exposure (-50%). Nutritional and pesticide stressors reduced also food consumption (-48%) and haemolymph levels of glucose (-60%) and trehalose (-27%). Our results provide the first demonstration that field-realistic nutritional stress and pesticide exposure can synergistically interact and cause significant harm to animal survival. These findings have implications for current pesticide risk assessment and pollinator protection. © 2017 The Author(s).

  11. Sex-specific impact of prenatal stress on growth and reproductive parameters of guinea pigs.

    Science.gov (United States)

    Schöpper, Hanna; Klaus, Teresa; Palme, Rupert; Ruf, Thomas; Huber, Susanne

    2012-12-01

    Body condition and reproductive maturation are parameters of reproductive success that are influenced by sexual hormones rising in the circulation during the time of puberty. Various endocrine systems can be programmed by conditions experienced during early life. Stress for instance is supposed to be capable of influencing fetal development, leading to adjustments of offspring's later physiology. We examined whether prenatal stress (induced by exposure to strobe light) during early- to mid-gestation was capable of affecting later reproductive parameters in guinea pigs (Cavia aperea f. porcellus). Therefore, we measured the levels of testosterone and progesterone from the age of day 12-124 in prenatally stressed (PS, n = 20) and unaffected control animals (n = 24). Furthermore, we determined the timing of puberty and growth. Body weight development revealed significantly faster growth in PS females compared to control animals. The onset of first estrus was slightly earlier in PS females, however not significantly so. Cycle lengths and levels of progesterone differed between groups over the course of time with higher progesterone levels and more constant cycles among PS females compared to control females who displayed marked differences between first and subsequent cycles. Levels of testosterone did not differ between groups. We conclude that prenatal stress accelerates growth and maturity in females, but not in males.

  12. Reducing occupational stress with a B-vitamin focussed intervention: a randomized clinical trial: study protocol

    OpenAIRE

    Stough, Con; Simpson, Tamara; Lomas, Justine; McPhee, Grace; Billings, Clare; Myers, Stephen; Oliver, Chris; Downey, Luke A

    2014-01-01

    Background Workplace stress in Australia and other western countries has been steadily increasing over the past decade. It can be observed not only in terms of increased compensation claims but also costs due to absenteeism, loss of productivity at work and reduced psychological and physiological health and well-being. Given the cost and pervasive effects of stress in the modern workforce, time efficient and cost-effective interventions capable of reducing occupational stress (or strain) and ...

  13. Surplus dietary tryptophan reduces plasma cortisol and noradrenaline concentrations and enhances recovery after social stress in pigs.

    Science.gov (United States)

    Koopmans, Sietse Jan; Ruis, Marko; Dekker, Ruud; van Diepen, Hans; Korte, Mechiel; Mroz, Zdzislaw

    2005-07-21

    Social stress occurs in intensive pig farming due to aggressive behavior. This stress may be reduced at elevated dietary levels of tryptophan (TRP). In this study, we compared the effects of high (13.2%) vs. normal (3.4%) dietary TRP to large neutral amino acid (LNAA) ratios on behavior and stress hormones in catheterized pigs ( approximately 50 kg BW), which were exposed to social stress by placing them twice into the territory of a dominant pig ( approximately 60 kg) for 15 min. Pre-stress plasma TRP concentrations were 156+/-15 vs. 53+/-6 micromol/l (psocial confrontations, pigs on the high vs. normal TRP diets show a tendency towards reduced active avoidance behavior (3.2+/-1.1 vs. 6.7+/-1.2 min, psocial confrontations, the post-stress plasma cortisol, noradrenaline and adrenaline concentrations and/or curves (from +5 min to 2 h) were lower/steeper (psurplus TRP in diets for pigs (1) does not significantly affect behavior when exposed to social stress, (2) reduces basal plasma cortisol and noradrenaline concentrations, (3) does not affect the immediate hormonal response to stress, and (4) reduces the long-term hormonal response to stress. In general, pigs receiving high dietary TRP were found to be less affected by stress.

  14. Sugar maple growth in relation to nutrition and stress in the northeastern United States.

    Science.gov (United States)

    Long, Robert P; Horsley, Stephen B; Hallett, Richard A; Bailey, Scott W

    2009-09-01

    Sugar maple, Acer saccharum, decline disease is incited by multiple disturbance factors when imbalanced calcium (Ca), magnesium (Mg), and manganese (Mn) act as predisposing stressors. Our objective in this study was to determine whether factors affecting sugar maple health also affect growth as estimated by basal area increment (BAI). We used 76 northern hardwood stands in northern Pennsylvania, New York, Vermont, and New Hampshire, USA, and found that sugar maple growth was positively related to foliar concentrations of Ca and Mg and stand level estimates of sugar maple crown health during a high stress period from 1987 to 1996. Foliar nutrient threshold values for Ca, Mg, and Mn were used to analyze long-term BAI trends from 1937 to 1996. Significant (P maples sampled in the 1990s had decreased growth in the 1970s, 10-20 years in advance of the 1980s and 1990s decline episode in Pennsylvania. Even apparently healthy stands that had no defoliation, but had below-threshold amounts of Ca or Mg and above-threshold Mn (from foliage samples taken in the mid 1990s), had decreasing growth by the 1970s. Co-occurring black cherry, Prunus serotina, in a subset of the Pennsylvania and New York stands, showed opposite growth responses with greater growth in stands with below-threshold Ca and Mg compared with above-threshold stands. Sugar maple growing on sites with the highest concentrations of foliar Ca and Mg show a general increase in growth from 1937 to 1996 while other stands with lower Ca and Mg concentrations show a stable or decreasing growth trend. We conclude that acid deposition induced changes in soil nutrient status that crossed a threshold necessary to sustain sugar maple growth during the 1970s on some sites. While nutrition of these elements has not been considered in forest management decisions, our research shows species specific responses to Ca and Mg that may reduce health and growth of sugar maple or change species composition, if not addressed.

  15. Study of sugar phloem unloading in ripening grape berries under water stress conditions

    Directory of Open Access Journals (Sweden)

    Zenphing Wang

    2003-12-01

    Full Text Available Sugar phloem unloading in ripening grape berries (Vitis vinifera L. cv. Syrah was studied under water stress conditions using the «beny-cup» technique. After veraison, berry growth, the potential Exposed Leaf Area (pELA and photosynthetic activity are clearly reduced in water-stressed vines (- 0.5 > Ψb > - 0.6 MPa as compared to normal 1 Ψ-watcred vines (Mb = - 0.2 MPa. The ratio pELA/yield is also reduced, which is particular to this experiment. The beiries' ripening period (between veraison and maturity can be divided into three growth phases, Illa, Illb and IIlc. During phase Ma, the berries grow rapidly; at this point, water stress severely inhibits cell expan¬ sion of the berries but does not impact on daily sugar accumulation. During phase Mb, the berries grow slowly in both water-stressed and control vines. Water stress can shorten this phase and reduce sugar accumulation in the berries by decreasing daily sugar unloading. During phase II le, the Iresh weight and volume of the berries decreases as does the daily sugar unloading. During the day, sugar unloading in ripening berries occurs mainly in the morning (7 am to 10.30 am and at noon (1 to 1.30 pm; little sugar is unloaded in the afternoon (4 pm to 4.30 pin. Moderate water stress from veraison to maturity affects végétative growth (i.e. the growth of primary and secoridary shoots, and reduces the exposed leaf area, photosynthetic activity, berry growth, and the accumulation of sugar at the end of ripening (phases Mb and IIlc.

  16. Assesment of economic benefits of foliarly applied osmoprotectants in alleviating the adverse effects of water stress on growth and yield of cotton (gossypium hirsutum L.)

    International Nuclear Information System (INIS)

    Zafar, Z. U.; Hussain, K.; Athar, H. U. R.

    2015-01-01

    Water stress reduces crop growth and productivity by affecting various physiological and biochemical processes. Although foliar application of osmoprotectants alleviates the detrimental effects of drought stress growth and productivity of crops, its economic benefits on large scale has not been explored yet. The studies were carried out to quantify the interactive effects of some osmoprotectantsand various watering regimes on cotton crop. The treatments consisted of water stress and osmoprotectant applications ((a) two watering regimes (well watered, 2689m /sup 3/ water; drought stressed, 2078m /sup 3/), and (b) three osmoprotectants (untreated check; water spray containing 0.1 percentage Tween-80; salicylic acid (100 mg L /sup -1/); proline (100 mg L /sup -1/); glycine betaine (100 mg L /sup -1/)) in split plot design. The crop was subjected to drought stress at day 45 after sowing, i.e. at the flowering stage. The solutions of osmoprotectants were foliarly applied after two weeks of imposition of water stress (at the peak flowering stage). The results showed that imposition of water stress caused substantial reduction in plant growth, biological yield, fruit production, and fiber characteristics as compared to fully irrigated cotton crop. However, the application of osmoprotectants was found effective in off-setting the negative impacts of drought stress. The exogenous application of salicylic acid (100 mgL /sup -1/) caused improvement by 47.9 percentage, 36.5 percentage, 17.4 percentage, 4.86 percentage and 9.9 percentage in main stem height, biological yield, fruit production, fiber length and seed cotton yield over an untreated check, respectively. The efficiency of various osmoprotectants was in order of salicylic acid > glycinebetaine > proline in alleviating the harmful effects of drought stress. The usage of osmoprotectants was also found most cost-effective and the value for money. The cost-benefit ratio was 1:9.1, 1:3.9 and 1:1.7 by spraying of salicylic

  17. From early stress to 12-month development in very preterm infants: Preliminary findings on epigenetic mechanisms and brain growth.

    Science.gov (United States)

    Fumagalli, Monica; Provenzi, Livio; De Carli, Pietro; Dessimone, Francesca; Sirgiovanni, Ida; Giorda, Roberto; Cinnante, Claudia; Squarcina, Letizia; Pozzoli, Uberto; Triulzi, Fabio; Brambilla, Paolo; Borgatti, Renato; Mosca, Fabio; Montirosso, Rosario

    2018-01-01

    Very preterm (VPT) infants admitted to Neonatal Intensive Care Unit (NICU) are at risk for altered brain growth and less-than-optimal socio-emotional development. Recent research suggests that early NICU-related stress contributes to socio-emotional impairments in VPT infants at 3 months through epigenetic regulation (i.e., DNA methylation) of the serotonin transporter gene (SLC6A4). In the present longitudinal study we assessed: (a) the effects of NICU-related stress and SLC6A4 methylation variations from birth to discharge on brain development at term equivalent age (TEA); (b) the association between brain volume at TEA and socio-emotional development (i.e., Personal-Social scale of Griffith Mental Development Scales, GMDS) at 12 months corrected age (CA). Twenty-four infants had complete data at 12-month-age. SLC6A4 methylation was measured at a specific CpG previously associated with NICU-related stress and socio-emotional stress. Findings confirmed that higher NICU-related stress associated with greater increase of SLC6A4 methylation at NICU discharge. Moreover, higher SLC6A4 discharge methylation was associated with reduced anterior temporal lobe (ATL) volume at TEA, which in turn was significantly associated with less-than-optimal GMDS Personal-Social scale score at 12 months CA. The reduced ATL volume at TEA mediated the pathway linking stress-related increase in SLC6A4 methylation at NICU discharge and socio-emotional development at 12 months CA. These findings suggest that early adversity-related epigenetic changes might contribute to the long-lasting programming of socio-emotional development in VPT infants through epigenetic regulation and structural modifications of the developing brain.

  18. Chronic drought stress reduced but not protected Shantung maple (Acer truncatum Bunge) from adverse effects of ozone (O3) on growth and physiology in the suburb of Beijing, China

    International Nuclear Information System (INIS)

    Li, Li; Manning, William J.; Tong, Lei; Wang, Xiaoke

    2015-01-01

    A two-year experiment exposing Acer truncatum Bunge seedlings to elevated ozone (O 3 ) concentrations above ambient air (AO) and drought stress (DS) was carried out using open-top chambers (OTCs) in a suburb of Beijing in north China in 2012–2013. The results suggested that AO and DS had both significantly reduced leaf mass area (LMA), stomatal conductance (Gs), light saturated photosynthetic rate (A sat ) as well as above and below ground biomass at the end of the experiment. It appeared that while drought stress mitigated the expression of foliar injury, LMA, leaf photosynthetic pigments, height growth and basal diameter, due to limited carbon fixation, the O 3 – induced reductions in A sat , Gs and total biomass were enhanced 23.7%. 15.5% and 8.1% respectively. These data suggest that when the whole plant was considered that drought under the conditions of this experiment did not protect the Shantung maple seedlings from the effects of O 3 . - Highlights: • The response of Acer truncatum Bunge to drought and ozone was investigated. • Drought could mitigate the foliage injury and leaf photosynthetic pigments. • The O 3 -induced reductions in Asat, Gs and total biomass were enhanced by drought. - Drought didn't protect Shantung maple from O 3 effects but rather cause more reductions in biomass

  19. The effect of plant growth-promoting rhizobacteria on asparagus seedlings and germinating seeds subjected to water stress under greenhouse conditions.

    Science.gov (United States)

    Liddycoat, Scott M; Greenberg, Bruce M; Wolyn, David J

    2009-04-01

    Plant growth-promoting rhizobacteria (PGPR) can have positive effects on vigour and productivity, especially under stress conditions. In asparagus (Asparagus officinalis L.) field culture, seeds are planted in high-density nurseries, and 1-year-old crowns are transplanted to production fields. Performance can be negatively affected by water stress, transplant shock, and disease pressure on wounded roots. PGPR inoculation has the potential to alleviate some of the stresses incurred in the production system. In this study, the effects of PGPR (Pseudomonas spp.) treatment were determined on 3-week-old greenhouse-grown seedlings and germinating seeds of 2 asparagus cultivars. The pots were irrigated to a predetermined level that resulted in optimum growth or the plants were subjected to drought or flooding stress for 8 weeks. The cultivars responded differently to PGPR: single inoculations of seedlings enhanced growth of 'Guelph Millennium' under optimum conditions and 'Jersey Giant' seedlings under drought stress. Seed inoculations with PGPR resulted in a positive response only for 'Guelph Millennium', for which both single or multiple inoculations enhanced plant growth under drought stress.

  20. Reducing Listening-Related Stress in School-Aged Children with Autism Spectrum Disorder

    Science.gov (United States)

    Rance, Gary; Chisari, Donella; Saunders, Kerryn; Rault, Jean-Loup

    2017-01-01

    High levels of stress and anxiety are common in children with Autism Spectrum Disorder (ASD). Within this study of school-aged children (20 male, 6 female) we hypothesised that functional hearing deficits (also pervasive in ASD) could be ameliorated by auditory interventions and that, as a consequence, stress levels would be reduced. The use of…

  1. Reducing composite restoration polymerization shrinkage stress through resin modified glass-ionomer based adhesives.

    Science.gov (United States)

    Naoum, S J; Mutzelburg, P R; Shumack, T G; Thode, Djg; Martin, F E; Ellakwa, A E

    2015-12-01

    The aim of this study was to determine whether employing resin modified glass-ionomer based adhesives can reduce polymerization contraction stress generated at the interface of restorative composite adhesive systems. Five resin based adhesives (G Bond, Optibond-All-in-One, Optibond-Solo, Optibond-XTR and Scotchbond-Universal) and two resin modified glass-ionomer based adhesives (Riva Bond-LC, Fuji Bond-LC) were analysed. Each adhesive was applied to bond restorative composite Filtek-Z250 to opposing acrylic rods secured within a universal testing machine. Stress developed at the interface of each adhesive-restorative composite system (n = 5) was calculated at 5-minute intervals over 6 hours. The resin based adhesive-restorative composite systems (RBA-RCS) demonstrated similar interface stress profiles over 6 hours; initial rapid contraction stress development (0-300 seconds) followed by continued contraction stress development ≤0.02MPa/s (300 seconds - 6 hours). The interface stress profile of the resin modified glass-ionomer based adhesive-restorative composite systems (RMGIBA-RCS) differed substantially to the RBA-RCS in several ways. Firstly, during 0-300 seconds the rate of contraction stress development at the interface of the RMGIBA-RCS was significantly (p adhesives can significantly reduce the magnitude and rate of polymerization contraction stress developed at the interface of adhesive-restorative composite systems. © 2015 Australian Dental Association.

  2. Effect of membrane and through-wall bending stresses on fatigue crack growth behavior and coolant leakage velocity

    International Nuclear Information System (INIS)

    Yoo, Yeon-Sik

    2003-11-01

    This study clarified the effect of a membrane and a through-wall bending stresses on fatigue crack growth behavior and coolant leakage velocity due to irregularity of crack surface. Each stress component relates to fatigue crack growth behavior directly in general and thus the wild-used K I solutions are anticipated to give good evaluation results on it. Meanwhile, it is necessary to notify that surface irregularity for coolant leakage assessment is made by stress history in nature. Surface irregularity is known to be largely classified into the following two aspects: surface roughness due to continuous crack opening and closure behavior and surface turnover due to cyclic bending stress dominance. Therefore, the deterministic parameters on resistance of coolant leakage by surface irregularity are considered to be not only stress history but crack opening behavior. (author)

  3. Can Arbuscular Mycorrhizal Fungi Reduce the Growth of Agricultural Weeds?

    Science.gov (United States)

    Veiga, Rita S. L.; Jansa, Jan; Frossard, Emmanuel; van der Heijden, Marcel G. A.

    2011-01-01

    Background Arbuscular mycorrhizal fungi (AMF) are known for their beneficial effects on plants. However, there is increasing evidence that some ruderal plants, including several agricultural weeds, respond negatively to AMF colonization. Here, we investigated the effect of AMF on the growth of individual weed species and on weed-crop interactions. Methodology/Principal Findings First, under controlled glasshouse conditions, we screened growth responses of nine weed species and three crops to a widespread AMF, Glomus intraradices. None of the weeds screened showed a significant positive mycorrhizal growth response and four weed species were significantly reduced by the AMF (growth responses between −22 and −35%). In a subsequent experiment, we selected three of the negatively responding weed species – Echinochloa crus-galli, Setaria viridis and Solanum nigrum – and analyzed their responses to a combination of three AMF (Glomus intraradices, Glomus mosseae and Glomus claroideum). Finally, we tested whether the presence of a crop (maize) enhanced the suppressive effect of AMF on weeds. We found that the growth of the three selected weed species was also reduced by a combination of AMF and that the presence of maize amplified the negative effect of AMF on the growth of E. crus-galli. Conclusions/Significance Our results show that AMF can negatively influence the growth of some weed species indicating that AMF have the potential to act as determinants of weed community structure. Furthermore, mycorrhizal weed growth reductions can be amplified in the presence of a crop. Previous studies have shown that AMF provide a number of beneficial ecosystem services. Taken together with our current results, the maintenance and promotion of AMF activity may thereby contribute to sustainable management of agroecosystems. However, in order to further the practical and ecological relevance of our findings, additional experiments should be performed under field conditions. PMID

  4. Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage

    Directory of Open Access Journals (Sweden)

    Ayşin Akıncı

    2017-02-01

    Full Text Available Background: Oxidative stress has been shown to play a principal role in the pathogenesis of stress-induced gastric injury. Parsley (Petroselinum crispum contains many antioxidants such as flavanoids, carotenoids and ascorbic acid. Aims: In this study, the histopathological and biochemical results of nutrition with a parsley-rich diet in terms of eliminating stress-induced oxidative gastric injury were evaluated. Study Design: Animal experimentation. Methods: Forty male Wistar albino rats were divided into five groups: control, stress, stress + standard diet, stress + parsley-added diet and stress + lansoprazole (LPZ groups. Subjects were exposed to 72 hours of fasting and later immobilized and exposed to the cold at +4 degrees for 8 hours to create a severe stress condition. Samples from the animals’ stomachs were arranged for microscopic and biochemical examinations. Results: Gastric mucosal injury was obvious in rats exposed to stress. The histopathologic damage score of the stress group (7.00±0.57 was higher than that of the control group (1.50±0.22 (p<0.05. Significant differences in histopathologic damage score were found between the stress and stress + parsley-added diet groups (p<0.05, the stress and stress + standard diet groups (p<0.05, and the stress and stress + LPZ groups (p<0.05. The mean tissue malondialdehyde levels of the stress + parsley-added group and the stress + LPZ group were lower than that of the stress group (p<0.05. Parsley supported the cellular antioxidant system by increasing the mean tissue glutathione level (53.31±9.50 and superoxide dismutase (15.18±1.05 and catalase (16.68±2.29 activities. Conclusion: Oral administration of parsley is effective in reducing stress-induced gastric injury by supporting the cellular antioxidant defence system

  5. Presence of a dog reduces subjective but not physiological stress responses to an analog trauma

    OpenAIRE

    Lass-Hennemann, Johanna; Peyk, Peter; Streb, Markus; Holz, Elena; Michael, Tanja

    2014-01-01

    Dogs are known to have stress and anxiety reducing effects. Several studies have shown that dogs are able to calm people during cognitive and performance stressors. Recently, therapy dogs have been proposed as a treatment adjunct for post-traumatic stress disorder patients. In this study we aimed to investigate, whether dogs also have anxiety- and stress reducing effect during “traumatic stressors.” 80 healthy female participants were randomly assigned to one of four conditions. They were exp...

  6. [Effect of exogenous sucrose on growth and active ingredient content of licorice seedlings under salt stress conditions].

    Science.gov (United States)

    Liu, Fu-zhi; Yang, Jun

    2015-11-01

    Licorice seedlings were taken as experimental materials, an experiment was conducted to study the effects of exogenous sucrose on growth and active ingredient content of licorice seedlings under NaCl stress conditions. The results of this study showed that under salt stress conditions, after adding a certain concentration of exogenous sucrose, the licorice seedlings day of relative growth rate was increasing, and this stress can be a significant weakening effect, indicating that exogenous sucrose salt stress-relieving effect. The total flavonoids and phenylalanine ammonia lyase (PAL) activity were significantly increased, the exogenous sucrose can mitigated the seedling roots under salt stress, the licorice flavonoid content in the enhanced growth was largely due to the activity of PAL an increased, when the concentration of exogenous sucrose wae 10 mmol x L(-1), PAL activity reaching a maximum, when the concentration of exogenous sucrose was 15 mmol x L(-1), PAL activity turned into a downward trend, the results indicating that this mitigation has concentration effect. After applying different concentrations of exogenous sugar, the contents of liquiritin changes with the change of flavonoids content was similar. After applying different concentrations of exogenous sucrose, the content of licorice acid under salt stress was higher than the levels were not reached during salt stress, the impact of exogenous sucrose concentration gradient of licorice acid accumulation was not obvious.

  7. Impact of elevated nitrate on sulfate-reducing bacteria: A comparative study of Desulfovibrio vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    He, Q.; He, Z.; Joyner, D.C.; Joachimiak, M.; Price, M.N.; Yang, Z.K.; Yen, H.-C. B.; Hemme, C. L.; Chen, W.; Fields, M.; Stahl, D. A.; Keasling, J. D.; Keller, M.; Arkin, A. P.; Hazen, T. C.; Wall, J. D.; Zhou, J.

    2010-07-15

    Sulfate-reducing bacteria have been extensively studied for their potential in heavy-metal bioremediation. However, the occurrence of elevated nitrate in contaminated environments has been shown to inhibit sulfate reduction activity. Although the inhibition has been suggested to result from the competition with nitrate-reducing bacteria, the possibility of direct inhibition of sulfate reducers by elevated nitrate needs to be explored. Using Desulfovibrio vulgaris as a model sulfate-reducing bacterium, functional genomics analysis reveals that osmotic stress contributed to growth inhibition by nitrate as shown by the upregulation of the glycine/betaine transporter genes and the relief of nitrate inhibition by osmoprotectants. The observation that significant growth inhibition was effected by 70 mM NaNO{sub 3} but not by 70 mM NaCl suggests the presence of inhibitory mechanisms in addition to osmotic stress. The differential expression of genes characteristic of nitrite stress responses, such as the hybrid cluster protein gene, under nitrate stress condition further indicates that nitrate stress response by D. vulgaris was linked to components of both osmotic and nitrite stress responses. The involvement of the oxidative stress response pathway, however, might be the result of a more general stress response. Given the low similarities between the response profiles to nitrate and other stresses, less-defined stress response pathways could also be important in nitrate stress, which might involve the shift in energy metabolism. The involvement of nitrite stress response upon exposure to nitrate may provide detoxification mechanisms for nitrite, which is inhibitory to sulfate-reducing bacteria, produced by microbial nitrate reduction as a metabolic intermediate and may enhance the survival of sulfate-reducing bacteria in environments with elevated nitrate level.

  8. Effects of late-gestation heat stress on immunity and performance of calves.

    Science.gov (United States)

    Dahl, G E; Tao, S; Monteiro, A P A

    2016-04-01

    Lactating cows that experience heat stress will have reduced dry matter intake and milk yield and shift metabolism, which ultimately reduces the efficiency of milk production. Dry cows that are heat stressed similarly experience lower intake, reduced mammary growth, and compromised immune function that ultimately results in a poorer transition into lactation and lower milk yield in the next lactation. A recent focus in our laboratory is on the effects of late gestation, in utero heat stress on calf survival and performance. We have completed a series of studies to examine preweaning growth and health, and later reproductive and productive responses, in an attempt to quantify acute and persistent effects of in utero heat strain. Late gestation heat stress results in calves with lower body weight at birth, shorter stature at weaning, and failure to achieve the same weight or height at 12 mo of age observed in calves from dams that are cooled when dry. A portion of the reduced growth may result from the lower immune status observed in calves heat stressed in utero, which begins with poorer apparent efficiency of immunoglobulin absorption and extends to lower survival rates through puberty. Heat-stressed calves, however, have permanent shifts in metabolism that are consistent with greater peripheral accumulation of energy and less lean growth relative to those from cooled dams. Comparing reproductive performance in calves heat stressed versus those cooled in utero, we observe that the cooled heifers require fewer services to attain pregnancy and become pregnant at an earlier age. Tracking the milk production in calves that were heat stressed in utero versus those cooled in late gestation revealed a significant reduction of yield in the first lactation, approximately 5 kg/d through 35 wk of lactation, despite similar body weight and condition score at calving. These observations indicate that a relatively brief period of heat stress in late gestation dramatically alters

  9. Evaluation of rice genotypes to salt stress in different growth stages ...

    African Journals Online (AJOL)

    Tolerant genotypes were tested in young seedling stage in hydroponic system and then reproductive stage in 2010. Results show that vegetative growth was less affected by salt stress comparison to reproductive stage. Na and Na-K ratio in tolerant genotypes were lower than suspectible genotypes in salt condition in ...

  10. Hyperosmotic stress reduces melanin production by altering melanosome formation.

    Science.gov (United States)

    Bin, Bum-Ho; Bhin, Jinhyuk; Yang, Seung Ha; Choi, Dong-Hwa; Park, Kyuhee; Shin, Dong Wook; Lee, Ai-Young; Hwang, Daehee; Cho, Eun-Gyung; Lee, Tae Ryong

    2014-01-01

    Many tissues of the human body encounter hyperosmotic stress. The effect of extracellular osmotic changes on melanin production has not yet been elucidated. In this study, we determined that hyperosmotic stress induced by organic osmolytes results in reduced melanin production in human melanoma MNT-1 cells. Under hyperosmotic stress, few pigmented mature melanosomes were detected, but there was an increase in swollen vacuoles. These vacuoles were stained with an anti-M6PR antibody that recognizes late endosomal components and with anti-TA99 and anti-HMB45 antibodies, implying that melanosome formation was affected by hyperosmotic stress. Electron microscopic analysis revealed that the M6PR-positive swollen vacuoles were multi-layered and contained melanized granules, and they produced melanin when L-DOPA was applied, indicating that these vacuoles were still capable of producing melanin, but the inner conditions were not compatible with melanin production. The vacuolation phenomenon induced by hyperosmotic conditions disappeared with treatment with the PI3K activator 740 Y-P, indicating that the PI3K pathway is affected by hyperosmotic conditions and is responsible for the proper formation and maturation of melanosomes. The microarray analysis showed alterations of the vesicle organization and transport under hyperosmotic stress. Our findings suggest that melanogenesis could be regulated by physiological conditions, such as osmotic pressure.

  11. Exploring How Weathering Related Stresses and Subcritical Crack Growth May Influence the Size of Sediment Produced From Different Rock Types.

    Science.gov (United States)

    Eppes, M. C.; Hallet, B.; Hancock, G. S.; Mackenzie-Helnwein, P.; Keanini, R.

    2016-12-01

    The formation and diminution of rock debris, sediment and soil at and near Earth's surface is driven in large part by in situ, non-transport related, rock cracking. Given the relatively low magnitude stresses that arise in surface and near-surface settings, this production and diminution of granular material is likely strongly influenced and/or driven by subcritical crack growth (Eppes et al., 2016), cracking that occurs under stress loading conditions much lower than a rock's strength as typically measured in the laboratory under rapid loading. Despite a relatively sound understanding of subcritical crack growth through engineering and geophysical studies, its geomorphic and sedimentologic implications have only been minimally explored. Here, based on existing studies, we formulate several hypotheses to predict how weathering-induced stresses combined with the subcritical crack growth properties of rock may influence sediment size distribution. For example, subcritical crack growth velocity (v) can be described by v = CKIn where KI is the mode I (simple opening mode) stress intensity factor, a function of tensile stress at the crack tip and crack length; C is a rock- and environment-dependent constant; and n is material constant, the subcritical crack growth index. Fracture length and spacing in rock is strongly dependent on n, where higher n values result in fewer, more distally spaced cracks (e.g. Olsen, 1993). Thus, coarser sediment might be expected from rocks with higher n values. Weathering-related stresses such as thermal stresses and mineral hydration, however, can disproportionally stress boundaries between minerals with contrasting thermal or chemical properties and orientation, resulting in granular disintegration. Thus, rocks with properties favorable to inducing these stresses might produce sediment whose size is reflective of its constituent grains. We begin to test these hypotheses through a detailed examination of crack and rock characteristics in

  12. Reducing Stress within the Rehabilitative Work Setting - A Report on the ROSE Project

    Science.gov (United States)

    Wells, John S. G.; Denny, Margaret

    Reducing Occupational Stress in Employment (ROSE) is an EU funded project which aims to develop a combined person and work directed stress management programme in order to improve the long-term retention of staff in the vocational rehabilitation sector for mental health and intellectual disabilities.

  13. Mycobacterium tuberculosis Universal Stress Protein Rv2623 Regulates Bacillary Growth by ATP Binding: Requirement for Establishing Chronic Persistent Infection

    Energy Technology Data Exchange (ETDEWEB)

    Drumm, J.; Mi, K; Bilder, P; Sun, M; Lim, J; Bielefeldt-Ohmann, H; Basaraba, R; So, M; Zhu, G; et. al.

    2009-01-01

    Tuberculous latency and reactivation play a significant role in the pathogenesis of tuberculosis, yet the mechanisms that regulate these processes remain unclear. The Mycobacterium tuberculosisuniversal stress protein (USP) homolog, rv2623, is among the most highly induced genes when the tubercle bacillus is subjected to hypoxia and nitrosative stress, conditions thought to promote latency. Induction of rv2623 also occurs when M. tuberculosis encounters conditions associated with growth arrest, such as the intracellular milieu of macrophages and in the lungs of mice with chronic tuberculosis. Therefore, we tested the hypothesis that Rv2623 regulates tuberculosis latency. We observed that an Rv2623-deficient mutant fails to establish chronic tuberculous infection in guinea pigs and mice, exhibiting a hypervirulence phenotype associated with increased bacterial burden and mortality. Consistent with this in vivo growth-regulatory role, constitutive overexpression of rv2623 attenuates mycobacterial growth in vitro. Biochemical analysis of purified Rv2623 suggested that this mycobacterial USP binds ATP, and the 2.9-A-resolution crystal structure revealed that Rv2623 engages ATP in a novel nucleotide-binding pocket. Structure-guided mutagenesis yielded Rv2623 mutants with reduced ATP-binding capacity. Analysis of mycobacteria overexpressing these mutants revealed that the in vitro growth-inhibitory property of Rv2623 correlates with its ability to bind ATP. Together, the results indicate that i M. tuberculosis Rv2623 regulates mycobacterial growth in vitro and in vivo, and ii Rv2623 is required for the entry of the tubercle bacillus into the chronic phase of infection in the host; in addition, iii Rv2623 binds ATP; and iv the growth-regulatory attribute of this USP is dependent on its ATP-binding activity. We propose that Rv2623 may function as an ATP-dependent signaling intermediate in a pathway that promotes persistent infection.

  14. Rate of fatigue crack growth in residual stress fields of welded titanium joints with different contents of embrittling impurities

    International Nuclear Information System (INIS)

    Troshchenko, V.T.; Pokrovskij, V.V.; Yarusevich, V.L.; Mikhajlov, V.I.; Sher, V.A.

    1990-01-01

    Resistance to fatigue crack growth (FCG) has been studied in welded joints of structural titanium alloys contaminated by embrittling impurities. Besides, effect of crack closing has been taken into account what makes it possible to determine the effective coefficient of the stress intensity. The rate of fatigue crack growth is proved to considerably depend on the value and direction of residual stresses. The rate dependence of FCG in welded joints of structural titanium alloys on the swing of effective coefficient of stress intensity is invariant to the value and direction of weld residual stresses

  15. Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration

    Science.gov (United States)

    Chang, Sung-Jin; Hyun, Moon Seop; Myung, Sung; Kang, Min-A.; Yoo, Jung Ho; Lee, Kyoung G.; Choi, Bong Gill; Cho, Youngji; Lee, Gaehang; Park, Tae Jung

    2016-03-01

    Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD. While graphene is laterally grown from RGO flakes on Cu foils up to a few hundred nanometres during CVD process, it shows appreciable improvement in structural quality. The monotonous enhancement of the structural quality of the graphene with increasing length of the graphene growth from RGO suggests that seeded CVD growth of graphene from RGO on Cu surface is accompanied by the restoration of graphitic structure. The finding provides insight into graphene growth and defect reconstruction useful for the production of tailored carbon nanostructures with required properties.

  16. A facilitator of leisure activities for stress-related growth experience among middle-aged Korean women with depression.

    Science.gov (United States)

    Kim, Junhyoung; Kim, Jung-Hyun

    2014-01-01

    Leisure may serve as a coping resource following negative life events that facilitate positive changes. Previous studies on leisure have mainly focused on stress-related growth among individuals living in Western cultures. This study aimed to capture the role of leisure involvement as a facilitator of stress-related growth among middle-aged Korean women with depression. Three main themes were identified as an outcome of participation in leisure activities: (a) strengthening meaningful relationships, (b) improving positive emotions, and (c) facilitating personal strength. By participating in leisure activities, individuals with depression may develop the ability to cope with stress and experience positive changes.

  17. Damage assessment of low-cycle fatigue by crack growth prediction. Fatigue life under cyclic thermal stress

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2013-01-01

    The number of cycles to failure of specimens in fatigue tests can be estimated by predicting crack growth. Under a cyclic thermal stress caused by fluctuation of fluid temperature, due to the stress gradient in the thickness direction, the estimated fatigue life differs from that estimated for mechanical fatigue tests. In this paper, the influence of crack growth under cyclic thermal loading on the fatigue life was investigated. First, the thermal stress was derived by superposing analytical solutions, and then, the stress intensity factor was obtained by the weight function method. It was shown that the thermal stress depended not on the rate of the fluid temperature change but on the rise time, and the magnitude of the stress was increased as the rise time was decreased. The stress intensity factor under the cyclic thermal stress was smaller than that under the uniform stress distribution. The change in the stress intensity factor with the crack depth was almost the same regardless of the rise time. The estimated fatigue life under the cyclic thermal loading could be 1.6 times longer than that under the uniform stress distribution. The critical size for the fatigue life determination was assumed to be 3 mm for fatigue test specimens of 10 mm diameter. By evaluating the critical size by structural integrity analyses, the fatigue life was increased and the effect of the critical size on the fatigue life was more pronounced for the cyclic thermal stress. (author)

  18. Drought stress release increased growth rate but did not affect levels of storage carbohydrates in Scots pine trees

    Science.gov (United States)

    Schönbeck, Leonie; Gessler, Arthur; Rigling, Andreas; Schaub, Marcus; Li, Mai-He

    2017-04-01

    For trees, energy storage in the form of non-structural carbohydrates (NSCs) plays an important role for survival and growth, especially during stress events such as drought. It is hypothesized, that tree individuals that experience long-term drought stress use up larger amounts of NSCs than trees that do not experience drought. Consequently, such drought-induced depletion might lead to a decrease in tree vigor and carbon starvation, a mechanism that is subject of intensive debates in recent literature. Hence, if carbon starvation is occurring during drought, drought stress release should again increase NSC concentrations. A long-term (13 years) irrigation experiment is being conducted in the Pfyn forest, the largest Pinus sylvestris dominated forest in Switzerland, located in the dry inner-Alpine Swiss Rhone valley (average precipitation 600 mm/year, with frequent dry spells). Water addition ( 600 mm/year) is executed every year during the growing season between April and October. Tree height, stem diameter and crown transparency are being measured since 2003. In February, July and October 2015, roots, stem sapwood and needles were harvested from 30 irrigated and 30 control trees and 5 different crown transparency classes. Shoot length, needle morphology, soluble sugars, starch concentrations, needle δ13C and δ15N were measured. Shoot and stem growth were higher in irrigated trees than in control trees. Growth decreased with increasing crown transparency in both treatments. Only in July, needle starch levels were higher in irrigated trees than in control trees but there was no treatment effect for wood and root starch concentrations. Tissue starch and sugar levels were negatively correlated with crown transparency, particularly in the roots (preduced NSC is related to reduced tree vigor under drought.

  19. Reduced heme levels underlie the exponential growth defect of the Shewanella oneidensis hfq mutant.

    Directory of Open Access Journals (Sweden)

    Christopher M Brennan

    Full Text Available The RNA chaperone Hfq fulfills important roles in small regulatory RNA (sRNA function in many bacteria. Loss of Hfq in the dissimilatory metal reducing bacterium Shewanella oneidensis strain MR-1 results in slow exponential phase growth and a reduced terminal cell density at stationary phase. We have found that the exponential phase growth defect of the hfq mutant in LB is the result of reduced heme levels. Both heme levels and exponential phase growth of the hfq mutant can be completely restored by supplementing LB medium with 5-aminolevulinic acid (5-ALA, the first committed intermediate synthesized during heme synthesis. Increasing expression of gtrA, which encodes the enzyme that catalyzes the first step in heme biosynthesis, also restores heme levels and exponential phase growth of the hfq mutant. Taken together, our data indicate that reduced heme levels are responsible for the exponential growth defect of the S. oneidensis hfq mutant in LB medium and suggest that the S. oneidensis hfq mutant is deficient in heme production at the 5-ALA synthesis step.

  20. Effects of NaCl stress on seed germination, early seedling growth ...

    African Journals Online (AJOL)

    Effects of salt stress on seed germination, early seedling growth and some physiological characteristics were evaluated for four cauliflower species in seven treatments of salinity including 0 (control), 34, 68, 102, 136, 170 and 204 mM NaCl in a three replicated randomized completely block design (RCBD). This result shows ...

  1. A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment

    KAUST Repository

    Duddu, Ravindra

    2009-05-01

    We present a two-dimensional biofilm growth model in a continuum framework using an Eulerian description. A computational technique based on the eXtended Finite Element Method (XFEM) and the level set method is used to simulate the growth of the biofilm. The model considers fluid flow around the biofilm surface, the advection-diffusion and reaction of substrate, variable biomass volume fraction and erosion due to the interfacial shear stress at the biofilm-fluid interface. The key assumptions of the model and the governing equations of transport, biofilm kinetics and biofilm mechanics are presented. Our 2D biofilm growth results are in good agreement with those obtained by Picioreanu et al. (Biotechnol Bioeng 69(5):504-515, 2000). Detachment due to erosion is modeled using two continuous speed functions based on: (a) interfacial shear stress and (b) biofilm height. A relation between the two detachment models in the case of a 1D biofilm is established and simulated biofilm results with detachment in 2D are presented. The stress in the biofilm due to fluid flow is evaluated and higher stresses are observed close to the substratum where the biofilm is attached. © 2008 Wiley Periodicals, Inc.

  2. Stress Analysis of Transcatheter Aortic Valve Leaflets Under Dynamic Loading: Effect of Reduced Tissue Thickness.

    Science.gov (United States)

    Abbasi, Mostafa; Azadani, Ali N

    2017-07-01

    In order to accommodate transcatheter valves to miniaturized catheters, the leaflet thickness must be reduced to a value which is typically less than that of surgical bioprostheses. The study aim was to use finite-element simulations to determine the impact of the thickness reduction on stress and strain distribution. A 23 mm transcatheter aortic valve (TAV) was modelled based on the Edwards SAPIEN XT (Edwards Lifesciences, Irvine, CA, USA). Finite-element (FE) analysis was performed using the ABAQUS/Explicit solver. An ensemble-averaged transvalvular pressure waveform measured from in-vitro tests conducted in a pulse duplicator was applied to the leaflets. Through a parametric study, uniform TAV leaflet thickness was reduced from 0.5 to 0.18 mm. By reducing leaflet thickness, significantly higher stress values were found in the leaflet's fixed edge during systole, and in the commissures during diastole. Through dynamic FE simulations, the highest stress values were found during systole in the leaflet fixed edge. In contrast, at the peak of diastole high-stress regions were mainly observed in the commissures. The peak stress was increased by 178% and 507% within the leaflets after reducing the thickness of 0.5 mm to 0.18 mm at the peak of systole and diastole, respectively. The study results indicated that, the smaller the leaflet thickness, the higher the maximum principal stress. Increased mechanical stress on TAV leaflets may lead to accelerated tissue degeneration. By using a thinner leaflet, TAV durability may not atch with that of surgical bioprostheses.

  3. Chewing reduces sympathetic nervous response to stress and prevents poststress arrhythmias in rats.

    Science.gov (United States)

    Koizumi, So; Minamisawa, Susumu; Sasaguri, Kenichi; Onozuka, Minoru; Sato, Sadao; Ono, Yumie

    2011-10-01

    Reducing stress is important in preventing sudden death in patients with cardiovascular disease, as stressful events may cause autonomic imbalance and trigger fatal arrhythmias. Since chewing has been shown to inhibit stress-induced neuronal responses in the hypothalamus, we hypothesized that chewing could ameliorate stress-induced autonomic imbalance and prevent arrhythmias. To test this hypothesis, we analyzed changes in radiotelemetered electrocardiograms in rats that were allowed to chew a wooden stick during a 1-h period of immobilization stress. Chewing significantly reduced the occurrence of ventricular premature beats (VPBs) and complex ventricular ectopy after immobilization and prevented stress-induced prolongation of the QT interval of VPBs throughout the 10-h experimental period. It also prevented prolongation of the QRS complex and fluctuations in the QT interval in normal sinus rhythm beats preceding VPBs during both immobilization and in the poststress period. Fast Fourier transform-based spectral analysis of heart-rate variability further showed that chewing significantly inhibited the stress-induced increase in the power ratio of low-to-high frequency activity (LF/HF: a marker of sympathetic activity) during immobilization and in addition was associated with blunting of the stress-induced increase in plasma noradrenaline observed at the termination of immobilization. Similar suppressive effects on the occurrence of VPBs and the LF/HF were observed in rats that were administered the β-adrenergic blocker propranolol before immobilization. These results indicate that chewing can ameliorate sympathetic hyperactivity during stress and prevent poststress arrhythmias and suggest that chewing may provide a nonpharmacological and cost-effective treatment option for patients with a high risk of stress-induced fatal arrhythmia.

  4. Reducing Listening-Related Stress in School-Aged Children with Autism Spectrum Disorder.

    Science.gov (United States)

    Rance, Gary; Chisari, Donella; Saunders, Kerryn; Rault, Jean-Loup

    2017-07-01

    High levels of stress and anxiety are common in children with Autism Spectrum Disorder (ASD). Within this study of school-aged children (20 male, 6 female) we hypothesised that functional hearing deficits (also pervasive in ASD) could be ameliorated by auditory interventions and that, as a consequence, stress levels would be reduced. The use of Ear-Level Remote Microphone devices and Classroom Amplification systems resulted in significantly improved listening, communication and social interaction and a reduction in physiologic stress levels (salivary cortisol) in both one-on-one and group listening situations.

  5. Effect of Plant Growth Promoting Rhizobacteria on the Concentration and Uptake of Macro Nutrients by Corn in a Cd-contaminated Calcareous Soil under Drought Stress

    Directory of Open Access Journals (Sweden)

    shahrzad karami

    2017-02-01

    Full Text Available Introduction: Heavy metals such as cadmium (Cd are found naturally in soils, but their amount can be changed by human activities. The study of the uptake and accumulation of heavy metals by plants is done in order to prevent their threats on human and animal’s health.Cadmium is a toxic element for living organisms. Cadmium competes with many of nutrients to be absorbed by the plant and interferes with their biological roles. Water stress affects the cell structure and the food is diverted from its normal metabolic pathway. It also reduces the availability and uptake of nutrients by the plant. One reason for the reduction of plant growth under drought stress is the accumulation of ethylene in plants. There are ways to mitigate the negative effects of drought stress that one of which is the use of Plant Growth Promoting Rhizobacteria(PGPRs to increasing the availability of nutrients. Soil beneficial bacteria play an important role in the biological cycles and have been used to increase plant health and soil fertility over the past few decades.The aim of this study was to investigate theeffect of PGPRson the concentration and uptake of macro nutrients by corn in a Cd-contaminated calcareous soil under drought stress. Materials and Methods: A greenhouse factorial experiment was conducted in a completely randomized design with three replications. The treatments were two levels of bacteria (with and without bacteria, four levels of Cd (5, 10, 20, and 40 mg kg-1, and three levels of drought stress (without stress, 80, and 65% of field capacity. The pots were filled with 3 kg of treated soil. Cd was treated as its sulfate salt in amounts of 5, 10, 20, and 40 mg kg-1. The soil was mixed uniformly with 150 mg N kg-1 as urea, 20 mg P kg-1 as Ca (H2PO42, 5 mg Fe kg-1 as Fe-EDDHA and 10, 10 and 2.5 mg Zn, Mn and Cu kg-1, respectively as their sulfate salt in order to meet plant needs for these nutrients. Six seeds of Zea mays (var. HIDO were planted at

  6. Phenotypic indications of FtsZ inhibition in hok/sok-induced bacterial growth changes and stress response.

    Science.gov (United States)

    Chukwudi, Chinwe Uzoma; Good, Liam

    2018-01-01

    The hok/sok locus has been shown to enhance the growth of bacteria in adverse growth conditions such as high temperature, low starting-culture densities and antibiotic treatment. This is in addition to their well-established plasmid-stabilization effect via post-segregational killing of plasmid-free daughter cells. It delays the onset of growth by prolonging the lag phase of bacterial culture, and increases the rate of exponential growth when growth eventually begins. This enables the cells adapt to the prevailing growth conditions and enhance their survival in stressful conditions. These effects functionally complement defective SOS response mechanism, and appear analogous to the growth effects of FtsZ in the SOS pathway. In this study, the role of FtsZ in the hok/sok-induced changes in bacterial growth and cell division was investigated. Morphologic studies of early growth-phase cultures and cells growing under temperature stress showed elongated cells typical of FtsZ inhibition/deficiency. Both ftsZ silencing and over-expression produced comparable growth effects in control cells, and altered the growth changes observed otherwise in the hok/sok + cells. These changes were diminished in SOS-deficient strain containing mutant FtsZ. The involvement of FtsZ in the hok/sok-induced growth changes may be exploited as drug target in host bacteria, which often propagate antibiotic resistance elements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria x ananassa var. Selva) in conditions of reduced fertilization.

    Science.gov (United States)

    Lingua, Guido; Bona, Elisa; Manassero, Paola; Marsano, Francesco; Todeschini, Valeria; Cantamessa, Simone; Copetta, Andrea; D'Agostino, Giovanni; Gamalero, Elisa; Berta, Graziella

    2013-08-06

    Anthocyanins are a group of common phenolic compounds in plants. They are mainly detected in flowers and fruits, are believed to play different important roles such as in the attraction of animals and seed dispersal, and also in the increase of the antioxidant response in tissues directly or indirectly affected by biotic or abiotic stress factors. As a major group of secondary metabolites in plants commonly consumed as food, they are of importance in both the food industry and human nutrition. It is known that arbuscular mycorrhizal (AM) fungi can influence the plant secondary metabolic pathways such as the synthesis of essential oils in aromatic plants, of secondary metabolites in roots, and increase flavonoid concentration. Plant Growth-Promoting Bacteria (PGPB) are able to increase plant growth, improving plant nutrition and supporting plant development under natural or stressed conditions. Various studies confirmed that a number of bacterial species living on and inside the root system are beneficial for plant growth, yield and crop quality. In this work it is shown that inoculation with AM fungi and/or with selected and tested Pseudomonas strains, under conditions of reduced fertilization, increases anthocyanin concentration in the fruits of strawberry.

  8. Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting Pseudomonads Increases Anthocyanin Concentration in Strawberry Fruits (Fragaria x ananassa var. Selva in Conditions of Reduced Fertilization

    Directory of Open Access Journals (Sweden)

    Elisa Gamalero

    2013-08-01

    Full Text Available Anthocyanins are a group of common phenolic compounds in plants. They are mainly detected in flowers and fruits, are believed to play different important roles such as in the attraction of animals and seed dispersal, and also in the increase of the antioxidant response in tissues directly or indirectly affected by biotic or abiotic stress factors. As a major group of secondary metabolites in plants commonly consumed as food, they are of importance in both the food industry and human nutrition. It is known that arbuscular mycorrhizal (AM fungi can influence the plant secondary metabolic pathways such as the synthesis of essential oils in aromatic plants, of secondary metabolites in roots, and increase flavonoid concentration. Plant Growth-Promoting Bacteria (PGPB are able to increase plant growth, improving plant nutrition and supporting plant development under natural or stressed conditions. Various studies confirmed that a number of bacterial species living on and inside the root system are beneficial for plant growth, yield and crop quality. In this work it is shown that inoculation with AM fungi and/or with selected and tested Pseudomonas strains, under conditions of reduced fertilization, increases anthocyanin concentration in the fruits of strawberry.

  9. Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting Pseudomonads Increases Anthocyanin Concentration in Strawberry Fruits (Fragaria x ananassa var. Selva) in Conditions of Reduced Fertilization

    Science.gov (United States)

    Lingua, Guido; Bona, Elisa; Manassero, Paola; Marsano, Francesco; Todeschini, Valeria; Cantamessa, Simone; Copetta, Andrea; D’Agostino, Giovanni; Gamalero, Elisa; Berta, Graziella

    2013-01-01

    Anthocyanins are a group of common phenolic compounds in plants. They are mainly detected in flowers and fruits, are believed to play different important roles such as in the attraction of animals and seed dispersal, and also in the increase of the antioxidant response in tissues directly or indirectly affected by biotic or abiotic stress factors. As a major group of secondary metabolites in plants commonly consumed as food, they are of importance in both the food industry and human nutrition. It is known that arbuscular mycorrhizal (AM) fungi can influence the plant secondary metabolic pathways such as the synthesis of essential oils in aromatic plants, of secondary metabolites in roots, and increase flavonoid concentration. Plant Growth-Promoting Bacteria (PGPB) are able to increase plant growth, improving plant nutrition and supporting plant development under natural or stressed conditions. Various studies confirmed that a number of bacterial species living on and inside the root system are beneficial for plant growth, yield and crop quality. In this work it is shown that inoculation with AM fungi and/or with selected and tested Pseudomonas strains, under conditions of reduced fertilization, increases anthocyanin concentration in the fruits of strawberry. PMID:23924942

  10. Characterization of the E.coli proteome and its modifications during growth and ethanol stress

    Directory of Open Access Journals (Sweden)

    Boumediene eSoufi

    2015-02-01

    Full Text Available We set out to provide a resource to the microbiology community especially with respect to systems biology based endeavors. To this end, we generated a comprehensive dataset monitoring the changes in protein expression, copy number, and post translational modifications in a systematic fashion during growth and ethanol stress in E.coli. We utilized high-resolution mass spectrometry combined with the Super-SILAC approach. In a single experiment, we have identified over 2,300 proteins, which represent approximately 88% of the estimated expressed proteome of E. coli and estimated protein copy numbers using the Intensity Based Absolute Quantitation (IBAQ. The dynamic range of protein expression spanned up to six orders of magnitude, with the highest protein copy per cell estimated at approximately 300,000. We focused on the proteome dynamics involved during stationary phase growth. A global up-regulation of proteins related to stress response was detected in later stages of growth. We observed the down-regulation of the methyl directed mismatch repair system containing MutS and MutL of E. coli growing in long term growth cultures, confirming that higher incidence of mutations presents an important mechanism in the increase in genetic diversity and stationary phase survival in E.coli. During ethanol stress, known markers such as alcohol dehydrogenase and aldehyde dehydrogenase were induced, further validating the dataset. Finally, we performed unbiased protein modification detection and revealed changes of many known and unknown protein modifications in both experimental conditions.

  11. Predictors of Posttraumatic Stress and Posttraumatic Growth in Childhood Cancer Survivors

    Czech Academy of Sciences Publication Activity Database

    Koutná, Veronika; Jelínek, Martin; Blatný, Marek; Kepák, T.

    2017-01-01

    Roč. 9, č. 3 (2017), s. 1-11, č. článku 26. ISSN 2072-6694 R&D Projects: GA ČR(CZ) GAP407/11/2421 Institutional support: RVO:68081740 Keywords : posttraumatic stress * posttraumatic growth * benefit finding * childhood cancer survivors Subject RIV: AN - Psychology OBOR OECD: Psychology (including human - machine relations)

  12. Does Economic Growth Reduce Childhood Undernutrition in Ethiopia?

    Directory of Open Access Journals (Sweden)

    Sibhatu Biadgilign

    Full Text Available Policy discussions and debates in the last couple of decades emphasized efficiency of development policies for translating economic growth to development. One of the key aspects in this regard in the developing world is achieving improved nutrition through economic development. Nonetheless, there is a dearth of literature that empirically verifies the association between economic growth and reduction of childhood undernutrition in low- and middle-income countries. Thus, the aim of the study is to assess the interplay between economic growth and reduction of childhood undernutrition in Ethiopia.The study used pooled data of three rounds (2000, 2005 and 2010 from the Demographic and Health Surveys (DHS of Ethiopia. A multilevel mixed logistic regression model with robust standard errors was utilized in order to account for the hierarchical nature of the data. The dependent variables were stunting, underweight, and wasting in children in the household. The main independent variable was real per capita income (PCI that was adjusted for purchasing power parity. This information was obtained from World Bank.A total of 32,610 children were included in the pooled analysis. Overall, 11,296 (46.7% [46.0%-47.3%], 8,197(33.8% [33.2%-34.4%] and 3,175(13.1% [12.7%-13.5%] were stunted, underweight, and wasted, respectively. We found a strong correlation between prevalence of early childhood undernutrition outcomes and real per capita income (PCI. The proportions of stunting (r = -0.1207, p<0.0001, wasting (r = -0.0338, p<0.0001 and underweight (r = -0.1035, p<0.0001 from the total children in the household were negatively correlated with the PCI. In the final model adjustment with all the covariates, economic growth substantially reduced stunting [β = -0.0016, SE = 0.00013, p<0.0001], underweight [β = -0.0014, SE = 0.0002, p<0.0001] and wasting [β = -0.0008, SE = 0.0002, p<0.0001] in Ethiopia over a decade.Economic growth reduces child undernutrition in

  13. Protective effect of catechin in type I Gaucher disease cells by reducing endoplasmic reticulum stress

    International Nuclear Information System (INIS)

    Lee, Yea-Jin; Kim, Sung-Jo; Heo, Tae-Hwe

    2011-01-01

    Highlights: → Catechin reduces the expression level of ER stress marker protein in type I Gaucher disease cells. → Catechin induces the proliferation rate of GD cells similar levels to normal cells. → Catechin improves wound healing activity. → Catechin-mediated reductions in ER stress may be associated with enhanced cell survival. → We identified catechin as a protective agent against ER stress in GD cells. -- Abstract: Gaucher disease (GD) is the most common lysosomal storage disorder (LSD) and is divided into three phenotypes, I, II, and III. Type I is the most prevalent form and has its onset in adulthood. The degree of endoplasmic reticulum (ER) stress is one of the factors that determine GD severity. It has recently been reported that antioxidants reduce ER stress and apoptosis by scavenging the oxidants that cause oxidative stress. For this report, we investigated the possibility that catechin can act on type I GD patient cells to alleviate the pathogenic conditions of GD. We treated GD cells with catechin and examined the expression level of GRP78/BiP (an ER stress marker) by western blots and fluorescence microscopy, the proliferation rate of GD cells, and scratch-induced wound healing activity. Our results show that catechin reduces the expression level of GRP78/BiP, leads to cell proliferation rates of GD cells similar levels to normal cells, and improves wound healing activity. We conclude that catechin protects against ER stress in GD cells and catechin-mediated reductions in ER stress may be associated with enhanced cell survival.

  14. Protective effect of catechin in type I Gaucher disease cells by reducing endoplasmic reticulum stress

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yea-Jin [Department of Biotechnology, Hoseo University, Baebang, Asan, Chungnam, 336-795 (Korea, Republic of); Kim, Sung-Jo, E-mail: sungjo@hoseo.edu [Department of Biotechnology, Hoseo University, Baebang, Asan, Chungnam, 336-795 (Korea, Republic of); Heo, Tae-Hwe, E-mail: thhur92@catholic.ac.kr [College of Pharmacy, The Catholic University of Korea, Bucheon 420-743 (Korea, Republic of)

    2011-09-23

    Highlights: {yields} Catechin reduces the expression level of ER stress marker protein in type I Gaucher disease cells. {yields} Catechin induces the proliferation rate of GD cells similar levels to normal cells. {yields} Catechin improves wound healing activity. {yields} Catechin-mediated reductions in ER stress may be associated with enhanced cell survival. {yields} We identified catechin as a protective agent against ER stress in GD cells. -- Abstract: Gaucher disease (GD) is the most common lysosomal storage disorder (LSD) and is divided into three phenotypes, I, II, and III. Type I is the most prevalent form and has its onset in adulthood. The degree of endoplasmic reticulum (ER) stress is one of the factors that determine GD severity. It has recently been reported that antioxidants reduce ER stress and apoptosis by scavenging the oxidants that cause oxidative stress. For this report, we investigated the possibility that catechin can act on type I GD patient cells to alleviate the pathogenic conditions of GD. We treated GD cells with catechin and examined the expression level of GRP78/BiP (an ER stress marker) by western blots and fluorescence microscopy, the proliferation rate of GD cells, and scratch-induced wound healing activity. Our results show that catechin reduces the expression level of GRP78/BiP, leads to cell proliferation rates of GD cells similar levels to normal cells, and improves wound healing activity. We conclude that catechin protects against ER stress in GD cells and catechin-mediated reductions in ER stress may be associated with enhanced cell survival.

  15. Constitutive modeling of void-growth-based tensile ductile failures with stress triaxiality effects

    KAUST Repository

    Mora Cordova, Angel; Liu, Jinxing; El Sayed, Tamer S.

    2014-01-01

    In most metals and alloys, the evolution of voids has been generally recognized as the basic failure mechanism. Furthermore, stress triaxiality has been found to influence void growth dramatically. Besides strain intensity, it is understood

  16. The effectiveness of stress inoculation group training (SIT on reducing job stress of employees of RAZAK pharmaceutical company in Tehran

    Directory of Open Access Journals (Sweden)

    M. Soudani

    2011-01-01

    Full Text Available Background and aims Despite the fact that work is the major part of human life and the source of satisfying the sense of idealism, innovation and the feeling of consent in the individual, but it is one of the most important factors of creating stress in today's societies. One of the most efficient methods of interfering in stress inoculation group training (SIT. The aim of the present research is the investigation of the efficacy of the stress inoculation group training (SIT on reducing career stress of employees of Razak Co.'s employees.     Methodsthis study is an intermediary study and the research method is experimental of pretest and posttest type with control group. 46 of subjects whose score in career stress test was above the average score were selected as sample, and were replaced in simple random way in two groups of test and control. 8-session test group of 1.5 hours each received team immunity training against stress. Both groups were tested and evaluated three times at the same time (pretest, posttest and follow up.   Resultsafter adjusting the posttest scores based on pretest scores, the results of one-way covariance pretest showed that stress inoculation group training (SIT had a meaningful influence on reduction of career stress on employees. Also the results of multivariable covariance analysis (Mankoa showed that this effect existed in every component of career stress, i.e. exceeding accountability, responsibility of others, very high working pressure, decision making that influences the others, and understanding of self as an individual not quite competent and qualified. In follow up studies after one month, the results showed that stress inoculation group training (SIT has a stable influence on reduction of career stress and it components.   Conclusion on the base of the obtained findings from research and effectiveness from the stress inoculation group training (SIT , it is recommended to apply this therapeutic

  17. Altered Expression of the Malate-Permeable Anion Channel OsALMT4 Reduces the Growth of Rice Under Low Radiance

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2018-05-01

    Full Text Available We examined the function of OsALMT4 in rice (Oryza sativa L. which is a member of the aluminum-activated malate transporter family. Previous studies showed that OsALMT4 localizes to the plasma membrane and that expression in transgenic rice lines results in a constitutive release of malate from the roots. Here, we show that OsALMT4 is expressed widely in roots, shoots, flowers, and grain but not guard cells. Expression was also affected by ionic and osmotic stress, light and to the hormones ABA, IAA, and salicylic acid. Malate efflux from the transgenic plants over-expressing OsALMT4 was inhibited by niflumate and salicylic acid. Growth of transgenic lines with either increased OsALMT4 expression or reduced expression was measured in different environments. Light intensity caused significant differences in growth between the transgenic lines and controls. When day-time light was reduced from 700 to 300 μmol m-2s-1 independent transgenic lines with either increased or decreased OsALMT4 expression accumulated less biomass compared to their null controls. This response was not associated with differences in photosynthetic capacity, stomatal conductance or sugar concentrations in tissues. We propose that by disrupting malate fluxes across the plasma membrane carbon partitioning and perhaps signaling are affected which compromises growth under low light. We conclude that OsALMT4 is expressed widely in rice and facilitates malate efflux from different cell types. Altering OsALMT4 expression compromises growth in low-light environments.

  18. Melatonin Attenuates Potato Late Blight by Disrupting Cell Growth, Stress Tolerance, Fungicide Susceptibility and Homeostasis of Gene Expression in Phytophthora infestans

    Directory of Open Access Journals (Sweden)

    Shumin Zhang

    2017-11-01

    Full Text Available Phytophthora infestans (P. infestans is the causal agent of potato late blight, which caused the devastating Irish Potato Famine during 1845-1852. Until now, potato late blight is still the most serious threat to potato growth and has caused significant economic losses worldwide. Melatonin can induce plant innate immunity against pathogen infection, but the direct effects of melatonin on plant pathogens are poorly understood. In this study, we investigated the direct effects of melatonin on P. infestans. Exogenous melatonin significantly attenuated the potato late blight by inhibiting mycelial growth, changing cell ultrastructure, and reducing stress tolerance of P. infestans. Notably, synergistic anti-fungal effects of melatonin with fungicides on P. infestans suggest that melatonin could reduce the dose levels and enhance the efficacy of fungicide against potato late blight. A transcriptome analysis was carried out to mine downstream genes whose expression levels were affected by melatonin. The analysis of the transcriptome suggests that 66 differentially expressed genes involved in amino acid metabolic processes were significantly affected by melatonin. Moreover, the differentially expressed genes associated with stress tolerance, fungicide resistance, and virulence were also affected. These findings contribute to a new understanding of the direct functions of the melatonin on P. infestans and provide a potential ecofriendly biocontrol approach using a melatonin-based paradigm and application to prevent potato late blight.

  19. Effectiveness of a Comprehensive Stress Management Program to Reduce Work-Related Stress in a Medium-Sized Enterprise

    Science.gov (United States)

    2014-01-01

    Objectives To assess the effectiveness of a comprehensive workplace stress management program consisting of participatory action-oriented training (PAOT) and individual management. Methods A comprehensive workplace stress management program was conducted in a medium-sized enterprise. The baseline survey was conducted in September 2011, using the Korean Occupational Stress Scale (KOSS) and Worker’s Stress Response Inventory (WSRI). After implementing both organizational and individual level interventions, the follow up evaluation was conducted in November 2011. Results Most of the workers participated in the organizational level PAOT and made Team-based improvement plans. Based on the stress survey, 24 workers were interviewed by a researcher. After the organizational and individual level interventions, there was a reduction of several adverse psychosocial factors and stress responses. In the case of blue-collar workers, psychosocial factors such as the physical environment, job demands, organizational system, lack of rewards, and occupational climate were significantly improved; in the case of white-collar workers, the occupational climate was improved. Conclusions In light of these results, we concluded that the comprehensive stress management program was effective in reducing work-related stress in a short-term period. A persistent long-term follow up is necessary to determine whether the observed effects are maintained over time. Both team-based improvement activities and individual interviews have to be sustainable and complementary to each other under the long-term plan. PMID:24524591

  20. Effectiveness of a comprehensive stress management program to reduce work-related stress in a medium-sized enterprise.

    Science.gov (United States)

    Kim, Shin-Ae; Suh, Chunhui; Park, Mi-Hee; Kim, Kunhyung; Lee, Chae-Kwan; Son, Byung-Chul; Kim, Jeong-Ho; Lee, Jong-Tae; Woo, Kuck-Hyun; Kang, Kabsoon; Jung, Hyunjin

    2014-01-01

    To assess the effectiveness of a comprehensive workplace stress management program consisting of participatory action-oriented training (PAOT) and individual management. A comprehensive workplace stress management program was conducted in a medium-sized enterprise. The baseline survey was conducted in September 2011, using the Korean Occupational Stress Scale (KOSS) and Worker's Stress Response Inventory (WSRI). After implementing both organizational and individual level interventions, the follow up evaluation was conducted in November 2011. Most of the workers participated in the organizational level PAOT and made Team-based improvement plans. Based on the stress survey, 24 workers were interviewed by a researcher. After the organizational and individual level interventions, there was a reduction of several adverse psychosocial factors and stress responses. In the case of blue-collar workers, psychosocial factors such as the physical environment, job demands, organizational system, lack of rewards, and occupational climate were significantly improved; in the case of white-collar workers, the occupational climate was improved. In light of these results, we concluded that the comprehensive stress management program was effective in reducing work-related stress in a short-term period. A persistent long-term follow up is necessary to determine whether the observed effects are maintained over time. Both team-based improvement activities and individual interviews have to be sustainable and complementary to each other under the long-term plan.

  1. Effect of T-stress on crack growth along an interface between ductile and elastic solids

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2003-01-01

    For crack growth along an interface joining an elastic-plastic solid to an elastic substrate the effect of a non-singular stress component in the crack growth direction in the elastic-plastic solid is investigated. Conditions of small scale yielding are assumed, and due to the mismatch of elastic...

  2. Combined effects of drought stress and npk foliar spray on growth, physiological processes and nutrient uptake in wheat

    International Nuclear Information System (INIS)

    Shabir, R.N.; Waraocj, E.A.

    2015-01-01

    The present study investigated the effects of supplemental foliar nitrogen (N), phosphorous (P) and potassium (K) spray, alone or in various combinations, on physiological processes and nutrients uptake in wheat under water deficit conditions. The study comprised of two phases; during the first phase, ten local wheat (Triticum aestivum L.) genotypes were evaluated for their response to PEG-6000 induced osmotic stress. One drought tolerant (Bhakkar-2002) and sensitive (Shafaq-2006) genotype selected from screening experiments were used in the second phase to determine the individual and combined effects of N, P and K foliar spray on physiological mechanisms in wheat under drought stress. The results revealed that limited water supply significantly reduced germination, growth and uptake of N, P and K. Supplemental foliar fertilisation of these macronutrients alone or in different combinations significantly improved the water relations, gas exchange characteristics and nutrient contents in both the genotypes. Bhakkar-2002 maintained higher turgor, net CO/sub 2/ assimilation rate (Pn), transpiration rate (E), stomatal conductance (gs) and accumulated more N, P and K in shoot than Shafaq-2006. The foliar spray of NPK in combination was effective in improving wheat growth under both well-watered and water-deficit conditions. (author)

  3. Damage assessment of low-cycle fatigue by crack growth prediction. Fatigue life under cyclic thermal stress

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2013-01-01

    The number of cycles to failure of specimens in fatigue tests can be estimated by predicting crack growth. Under a cyclic thermal stress caused by fluctuation of fluid temperature, due to the stress gradient in the thickness direction, the estimated fatigue life differs from that estimated for mechanical fatigue tests. In this paper, the influence of crack growth under cyclic thermal loading on the fatigue life was investigated. First, the thermal stress was derived by superposing analytical solutions, and then, the stress intensity factor was obtained by the weight function method. It was shown that the thermal stress depended not on the rate of the fluid temperature change but on the rise time, and the magnitude of the stress was increased as the rise time was decreased. The stress intensity factor under the cyclic thermal stress was smaller than that under the uniform stress distribution. The change in the stress intensity factor with the crack depth did not depend on the heat transfer coefficient and only slightly depended on the rise time. The estimated fatigue life under the cyclic thermal loading could be 1.6 times longer than that under the uniform stress distribution. The critical size for the fatigue life determination was assumed to be 3 mm for fatigue test specimens of 10 mm diameter. By evaluating the critical size by structural integrity analyses, the fatigue life was increased and the effect of the critical size on the fatigue life was more pronounced for the cyclic thermal stress. (author)

  4. Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments

    DEFF Research Database (Denmark)

    Knoblauch, C.; Jørgensen, BB

    1999-01-01

    Five psychrophilic sulphate-reducing bacteria (strains ASv26, LSv21, PSv29, LSv54 and LSv514) isolated from Arctic sediments were examined for their adaptation to permanently low temperatures, All strains grew at -1.8 degrees C, the freezing point of sea water, but their optimum temperature...... and T(opt). For strains LSv21 and LSv514, however, growth yields were highest at the lowest temperatures, around 0 degrees C. The results indicate that psychrophilic sulphate-reducing bacteria are specially adapted to permanently low temperatures by high relative growth rates and high growth yields...... at in site conditions....

  5. Physiological and biochemical responses of Hibiscus sabdariffa to drought stress in the presence of salicylic acid

    Directory of Open Access Journals (Sweden)

    Marzieh Mirshekari

    2017-08-01

    Salicylic acid (SA is one of the important signal molecules, which modulates plant responses to environmental stress. In the present work, impact of exogenous SA on some physiological and biochemical traits of Hibiscus sabdariffa in response to drought stress was studied. Hibiscus sabdariffa seedlings were exposed to six drought levels (0, -0.05, -0.1, -0.5, -0.75, and 1 MPa with two SA concentrations (0 and 500 µM in 5 days intervals up to 20 days in a factorial design. During drought stress period, the root and shoot growth, relative water content, pigments content, non-reducing sugar and starch content was significantly decreased. SA treatment cause prevention of the growth reduction and improvement of relative water content. Protein concentration was roughly unchanged during drought stress with SA, while, reducing sugars accumulates and non-reducing sugars and starch significantly decreases. The results show that exogenous SA application on leaves during drought stress can ameliorate detrimental effects of stress through reducing water loss and accumulating reducing sugars, which cause preserving turgor pressure of the cells.

  6. Exogenous 5-Aminolevulenic Acid Promotes Antioxidative Defence System, Photosynthesis and Growth in Soybean against Cold Stress

    Directory of Open Access Journals (Sweden)

    Elahe MANAFI

    2015-12-01

    Full Text Available In the present study, the possibility of enhancing cold stress tolerance of young soybean plants (Glycine max [L.] Merr by exogenous application of 5-aminolevulinic acid (ALA was investigated. ALA was applied at various concentrations (0, 0.3, 0.6 and 0.9 mM by seed priming and foliar application method. After ALA treatment, the plants were subjected to cold stress at 10 ± 0.5 °C for 72 h. Cold stress significantly decreased plant growth, relative water content, chlorophyll, photosynthesis and stomatal conductivity, while it increased electrolyte leakage and proline accumulation. ALA at low concentrations (0.3 mM protected plants against cold stress, enhancing plant height, shoot fresh and dry weight, chlorophyll content, photosynthesis, stomatal conductivity as well as relative water content. Increase of electrolyte leakage was also prevented by 0.6 mM ALA. ALA also enhanced superoxide dismutase and catalase activities at 0.6 mM concentration especially under cold stress conditions. Proline increased with increasing in ALA concentration under both temperature conditions. In most cases, application of ALA by spraying method was better than seed priming method. Results showed that ALA, which is considered as an endogenous plant growth regulator, can be used effectively to protect soybean plants from the damaging effects of cold stress, by enhancing the activity of antioxidative enzymes, protecting cell membrane against reactive oxygen species and finally by promoting chlorophyll synthesis, leading to more intense photosynthesis and more carbon fixation, without any adverse effect on the plant growth.

  7. Induction of neutral trehalase Nth1 by heat and osmotic stress is controlled by STRE elements and Msn2/Msn4 transcription factors: variations of PKA effect during stress and growth.

    Science.gov (United States)

    Zähringer, H; Thevelein, J M; Nwaka, S

    2000-01-01

    Saccharomyces cerevisiae neutral trehalase, encoded by NTH1, controls trehalose hydrolysis in response to multiple stress conditions, including nutrient limitation. The presence of three stress responsive elements (STREs, CCCCT) in the NTH1 promoter suggested that the transcriptional activator proteins Msn2 and Msn4, as well as the cAMP-dependent protein kinase (PKA), control the stress-induced expression of Nth1. Here, we give direct evidence that Msn2/Msn4 and the STREs control the heat-, osmotic stress- and diauxic shift-dependent induction of Nth1. Disruption of MSN2 and MSN4 abolishes or significantly reduces the heat- and NaCl-induced increases in Nth1 activity and transcription. Stress-induced increases in activity of a lacZ reporter gene put under control of the NTH1 promoter is nearly absent in the double mutant. In all instances, basal expression is also reduced by about 50%. The trehalose concentration in the msn2 msn4 double mutant increases less during heat stress and drops more slowly during recovery than in wild-type cells. This shows that Msn2/Msn4-controlled expression of enzymes of trehalose synthesis and hydrolysis help to maintain trehalose concentration during stress. However, the Msn2/Msn4-independent mechanism exists for heat control of trehalose metabolism. Site-directed mutagenesis of the three STREs (CCCCT changed to CATCT) in NTH1 promoter fused to a reporter gene indicates that the relative proximity of STREs to each other is important for the function of NTH1. Elimination of the three STREs abolishes the stress-induced responses and reduces basal expression by 30%. Contrary to most STRE-regulated genes, the PKA effect on the induction of NTH1 by heat and sodium chloride is variable. During diauxic growth, NTH1 promoter-controlled reporter activity strongly increases, as opposed to the previously observed decrease in Nth1 activity, suggesting a tight but opposite control of the enzyme at the transcriptional and post-translational levels

  8. Acute immobilization stress following contextual fear conditioning reduces fear memory: timing is essential.

    Science.gov (United States)

    Uwaya, Akemi; Lee, Hyunjin; Park, Jonghyuk; Lee, Hosung; Muto, Junko; Nakajima, Sanae; Ohta, Shigeo; Mikami, Toshio

    2016-02-24

    Histone acetylation is regulated in response to stress and plays an important role in learning and memory. Chronic stress is known to deteriorate cognition, whereas acute stress facilitates memory formation. However, whether acute stress facilitates memory formation when it is applied after fear stimulation is not yet known. Therefore, this study aimed to investigate the effect of acute stress applied after fear training on memory formation, mRNA expression of brain-derived neurotrophic factor (BDNF), epigenetic regulation of BDNF expression, and corticosterone level in mice in vivo. Mice were subjected to acute immobilization stress for 30 min at 60 or 90 min after contextual fear conditioning training, and acetylation of histone 3 at lysine 14 (H3K14) and level of corticosterone were measured using western blot analysis and enzyme-linked immunosorbent assay (ELISA), respectively. A freezing behavior test was performed 24 h after training, and mRNA expression of BDNF was measured using real-time polymerase chain reactions. Different groups of mice were used for each test. Freezing behavior significantly decreased with the down-regulation of BDNF mRNA expression caused by acute immobilization stress at 60 min after fear conditioning training owing to the reduction of H3K14 acetylation. However, BDNF mRNA expression and H3K14 acetylation were not reduced in animals subjected to immobilization stress at 90 min after the training. Further, the corticosterone level was significantly high in mice subjected to immobilization stress at 60 min after the training. Acute immobilization stress for 30 min at 60 min after fear conditioning training impaired memory formation and reduced BDNF mRNA expression and H3K14 acetylation in the hippocampus of mice owing to the high level of corticosterone.

  9. An experimental study on the effects of compressive stress on the fatigue crack growth of low-alloy steel

    International Nuclear Information System (INIS)

    Jones, D.P.; Hoppe, R.G.; James, B.A.

    1993-01-01

    A series of fatigue crack growth rate tests was conducted in order to study effects of negative stress ratio on fatigue crack growth rate of low-alloy steel in air. Four-point bend specimens were used to simulate linear stress distributions typical of pressure vessel applications. This type of testing adds to knowledge on negative stress ratio effects for low-alloy steels obtained in the past from uniform tension-compression tests. Applied bending stress range was varied over twice the yield strength. Load control was used for tests for which the stress range was less than twice the yield strength and deflection control was used for the higher stress range tests. Crack geometries were both short and long fatigue cracks started at notches and tight fatigue cracks for which crack closure could occur over the full crack face. Results are presented in terms of the stress intensity factor ratio R = K MIN /K MAX . The negative R-ratio test results were correlated to an equation of the form da/dN = C[ΔK/(A-R)] n , where A, C, and n are curve fitting parameters. It was found that effects of negative R-ratio on fatigue crack growth rates for even the high stress range tests could be bounded by correlating the above equation to only positive R-ratio test results and extending the resulting equation into the negative R-ratio regime

  10. Morpholino-Mediated Isoform Modulation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR2) Reduces Colon Cancer Xenograft Growth

    Energy Technology Data Exchange (ETDEWEB)

    Stagg, Brian C., E-mail: briancstagg@gmail.com; Uehara, Hironori; Lambert, Nathan; Rai, Ruju; Gupta, Isha; Radmall, Bryce; Bates, Taylor; Ambati, Balamurali K. [John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132 (United States)

    2014-11-26

    Angiogenesis plays a key role in tumor growth. Vascular endothelial growth factor (VEGF) is a pro-angiogenic that is involved in tumor angiogenesis. When VEGF binds to membrane-bound vascular endothelial growth factor receptor 2 (mVEGFR2), it promotes angiogenesis. Through alternative polyadenylation, VEGFR2 is also expressed in a soluble form (sVEGFR2). sVEGFR2 sequesters VEGF and is therefore anti-angiogenic. The aim of this study was to show that treatment with a previously developed and reported antisense morpholino oligomer that shifts expression from mVEGFR2 to sVEGFR2 would lead to reduced tumor vascularization and growth in a murine colon cancer xenograft model. Xenografts were generated by implanting human HCT-116 colon cancer cells into the flanks of NMRI nu/nu mice. Treatment with the therapeutic morpholino reduced both tumor growth and tumor vascularization. Because the HCT-116 cells used for the experiments did not express VEGFR2 and because the treatment morpholino targeted mouse rather than human VEGFR2, it is likely that treatment morpholino was acting on the mouse endothelial cells rather than directly on the tumor cells.

  11. Assisted Reproduction Causes Reduced Fetal Growth Associated with Downregulation of Paternally Expressed Imprinted Genes That Enhance Fetal Growth in Mice.

    Science.gov (United States)

    Li, Bo; Chen, Shuqiang; Tang, Na; Xiao, Xifeng; Huang, Jianlei; Jiang, Feng; Huang, Xiuying; Sun, Fangzhen; Wang, Xiaohong

    2016-02-01

    Alteration of intrauterine growth trajectory is linked to metabolic diseases in adulthood. In mammalian and, specifically, human species, pregnancies through assisted reproductive technology (ART) are associated with changes in intrauterine growth trajectory. However, it is still unclear how ART alters intrauterine growth trajectory, especially reduced fetal growth in early to midgestation. In this study, using a mouse model, it was found that ART procedures reduce fetal and placental growth at Embryonic Day 10.5. Furthermore, ART leads to decreased methylation levels at H19, KvDMR1, and Snrpn imprinting control regions in the placentae, instead of fetuses. Furthermore, in the placenta, ART downregulated a majority of parentally expressed imprinted genes, which enhance fetal growth, whereas it upregulated a majority of maternally expressed genes which repress fetal growth. Additionally, the expression of genes that regulate placental development was also affected by ART. ART also downregulated a majority of placental nutrient transporters. Disruption of genomic imprinting and abnormal expression of developmentally and functionally relevant genes in placenta may influence the placental development and function, which affect fetal growth and reprogramming. © 2016 by the Society for the Study of Reproduction, Inc.

  12. Investigating the ability of Pseudomonas fluorescens UW4 to reduce cadmium stress in Lactuca sativa via an intervention in the ethylene biosynthetic pathway.

    Science.gov (United States)

    Albano, Lucas J; Macfie, Sheila M

    2016-12-01

    A typical plant response to any biotic or abiotic stress, including cadmium (Cd), involves increased ethylene synthesis, which causes senescence of the affected plant part. Stressed plants can experience reduced ethylene and improved growth if they are inoculated with bacteria that have the enzyme ACC deaminase, which metabolizes the ethylene precursor ACC (1-aminocyclopropane-1-carboxylate). We investigated whether one such bacterium, Pseudomonas fluorescens UW4, reduces the production of ethylene and improves the growth of lettuce (Lactuca sativa) sown in Cd-contaminated potting material (PRO-MIX® BX). Plants were inoculated with the wild-type P. fluorescens UW4 or a mutant strain that cannot produce ACC deaminase. Cadmium-treated plants contained up to 50 times more Cd than did control plants. In noninoculated plants, Cd induced a 5-fold increase in ethylene concentration. The wild-type bacterium prevented Cd-induced reductions in root biomass but there was no relationship between Cd treatment and ethylene production in inoculated plants. In contrast, when the concentration of ethylene was plotted against the extent of bacterial colonization of the roots, increased colonization with wild-type P. fluorescens UW4 was associated with 20% less ethylene production. Ours is the first study to show that the protective effect of this bacterium is proportional to the quantity of bacteria on the root surface.

  13. Starved Escherichia coli preserve reducing power under nitric oxide stress

    Energy Technology Data Exchange (ETDEWEB)

    Gowers, Glen-Oliver F. [Department of Molecular Biology, Princeton University, Princeton, NJ (United States); Robinson, Jonathan L. [Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ (United States); Brynildsen, Mark P., E-mail: mbrynild@princeton.edu [Department of Molecular Biology, Princeton University, Princeton, NJ (United States); Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ (United States)

    2016-07-15

    Nitric oxide (NO) detoxification enzymes, such as NO dioxygenase (NOD) and NO reductase (NOR), are important to the virulence of numerous bacteria. Pathogens use these defense systems to ward off immune-generated NO, and they do so in environments that contain additional stressors, such as reactive oxygen species, nutrient deprivation, and acid stress. NOD and NOR both use reducing equivalents to metabolically deactivate NO, which suggests that nutrient deprivation could negatively impact their functionality. To explore the relationship between NO detoxification and nutrient deprivation, we examined the ability of Escherichia coli to detoxify NO under different levels of carbon source availability in aerobic cultures. We observed failure of NO detoxification under both carbon source limitation and starvation, and those failures could have arisen from inabilities to synthesize Hmp (NOD of E. coli) and/or supply it with sufficient NADH (preferred electron donor). We found that when limited quantities of carbon source were provided, NO detoxification failed due to insufficient NADH, whereas starvation prevented Hmp synthesis, which enabled cells to maintain their NADH levels. This maintenance of NADH levels under starvation was confirmed to be dependent on the absence of Hmp. Intriguingly, these data show that under NO stress, carbon-starved E. coli are better positioned with regard to reducing power to cope with other stresses than cells that had consumed an exhaustible amount of carbon. -- Highlights: •Carbon source availability is critical to aerobic E. coli NO detoxification. •Carbon source starvation, under NO stress, preserves intracellular NADH levels. •Preservation of NADH depends on starvation-dependent inhibition of Hmp induction.

  14. Stress-related hormonal alterations, growth and pelleted starter intake in pre-weaning Holstein calves in response to thermal stress.

    Science.gov (United States)

    López, E; Mellado, M; Martínez, A M; Véliz, F G; García, J E; de Santiago, A; Carrillo, E

    2018-04-01

    This study aimed to investigate the effect of heat stress and month of birth on growth performance, pelleted starter intake, and stress-related hormones in Holstein calves. Birth weight and growth records, representing 4735 Holstein calves from a large commercial dairy herd in northern Mexico (25° N; 22.3 °C mean annual temperature) from 2013 to 2015, were analyzed. Temperature-humidity index (THI) at calving, season of birth, and month of birth were the independent variables, whereas growth traits were the dependent variables. Increased THI at birth from  85 units was associated with a decrease in birth weight from 39.3 to 38.7 kg. Calves subjected to high THI (> 75 units) at calving showed lesser (P calves born with THI calves born in the fall was about 70 g less (P calves delivered in winter months. Plasma triiodothyronine and tetraiodothyronine levels were lower (1.02 ± 0.21 and 48 ± 7.9 ng/mL, respectively; P calves born in summer (59 ± 40 ng/mL) than calves born in winter (20 ± 28 ng/mL). Pelleted starter intake 1 week before weaning was lowest (P calves. Thus, environmental management of the newborn calf during hot spring and summer months is warranted to optimize pelleted starter intake and calf growth rates.

  15. Changes in mycelia growth, sporulation, and virulence of Phytophthora capsici when challenged by heavy metals (Cu2+, Cr2+ and Hg2+) under acid pH stress.

    Science.gov (United States)

    Liu, Peiqing; Wei, Mengyao; Zhang, Jinzhu; Wang, Rongbo; Li, Benjin; Chen, Qinghe; Weng, Qiyong

    2018-04-01

    Phytophthora capsici, an economically devastating oomycete pathogen, causes devastating disease epidemics on a wide range of vegetable plants and pose a grave threat to global vegetables production. Heavy metals and acid pH are newly co-occurring stresses to soil micro-organisms, but what can be expected for mycelia growth and virulence and how they injure the oomycetes (especially P. capsici) remains unknown. Here, the effects of different heavy metals (Cu 2+ , Cr 2+ , and Hg 2+ ) on mycelia growth and virulence were investigated at different pHs (4.0 vs. 7.0) and the plausible molecular and physiological mechanisms were analyzed. In the present study, we compared the effective inhibition of different heavy metals (Cu 2+ , Cr 2+ , and Hg 2+ ) and acid pH on a previously genome sequenced P. capsici virulent strain LT1534. Both stress factors independently affected its mycelia growth and sporulation. Next, we investigated whether ROS participated in the pH-inhibited mycelial growth, finding that the ROS scavenger, catalase (CAT), significantly inhibited the acid pH-induced ROS in mycelia. Additionally, because MAPK specially transmits different stress responsive signals in environment into cells, we employed CAT and a p38-MAPK pathway inhibitor to investigate ROS and p38-MAPK roles in heavy metal-inhibited mycelia growth at different pHs (4.0 vs. 7.0), finding that they significantly inhibited growth. Furthermore, ROS and p38-MAPK influenced the heavy metal-induced TBARS content, total antioxidant capacity (TAC), and CAT activity at different pHs, and also reduced the expression of infection-related laccases (PcLAC2) and an effector-related protein (PcNLP14). We propose that acid pH stress accelerates how heavy metals inhibit mycelium growth, sporulation, and virulence change in P. capsici, and posit that ROS and p38-MAPK function to regulate the molecular and physiological mechanisms underlying this toxicity. Although these stresses induce molecular and

  16. Aerobic Training Prevents Heatstrokes in Calsequestrin-1 Knockout Mice by Reducing Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Flávia Alessandra Guarnier

    2018-01-01

    Full Text Available Calsequestrin-1 knockout (CASQ1-null mice suffer lethal episodes when exposed to strenuous exercise and environmental heat, crises known as exertional/environmental heatstroke (EHS. We previously demonstrated that administration of exogenous antioxidants (N-acetylcysteine and trolox reduces CASQ1-null mortality during exposure to heat. As aerobic training is known to boost endogenous antioxidant protection, we subjected CASQ1-null mice to treadmill running for 2 months at 60% of their maximal speed for 1 h, 5 times/week. When exposed to heat stress protocol (41°C/1 h, the mortality rate of CASQ1-null mice was significantly reduced compared to untrained animals (86% versus 16%. Protection from heatstrokes was accompanied by a reduced increase in core temperature during the stress protocol and by an increased threshold of response to caffeine of isolated extensor digitorum longus muscles during in vitro contracture test. At cellular and molecular levels, aerobic training (i improved mitochondrial function while reducing their damage and (ii lowered calpain activity and lipid peroxidation in membranes isolated from sarcoplasmic reticulum and mitochondria. Based on this evidence, we hypothesize that the protective effect of aerobic training is essentially mediated by a reduction in oxidative stress during exposure of CASQ1-null mice to adverse environmental conditions.

  17. Interventions to reduce stress in university students: a review and meta-analysis.

    Science.gov (United States)

    Regehr, Cheryl; Glancy, Dylan; Pitts, Annabel

    2013-05-15

    Recent research has revealed concerning rates of anxiety and depression among university students. Nevertheless, only a small percentage of these students receive treatment from university health services. Universities are thus challenged with instituting preventative programs that address student stress and reduce resultant anxiety and depression. A systematic review of the literature and meta-analysis was conducted to examine the effectiveness of interventions aimed at reducing stress in university students. Studies were eligible for inclusion if the assignment of study participants to experimental or control groups was by random allocation or parallel cohort design. Retrieved studies represented a variety of intervention approaches with students in a broad range of programs and disciplines. Twenty-four studies, involving 1431 students were included in the meta-analysis. Cognitive, behavioral and mindfulness interventions were associated with decreased symptoms of anxiety. Secondary outcomes included lower levels of depression and cortisol. Included studies were limited to those published in peer reviewed journals. These studies over-represent interventions with female students in Western countries. Studies on some types of interventions such as psycho-educational and arts based interventions did not have sufficient data for inclusion in the meta-analysis. This review provides evidence that cognitive, behavioral, and mindfulness interventions are effective in reducing stress in university students. Universities are encouraged to make such programs widely available to students. In addition however, future work should focus on developing stress reduction programs that attract male students and address their needs. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress

    Directory of Open Access Journals (Sweden)

    ِArafat eAbdel Latef

    2016-03-01

    Full Text Available Silicon (Si has been known to augment plant defense against biotic and abiotic pressures. Maize (Zea maize L. is classified as a Si accumulator and is relatively susceptible to alkaline stress. In this work, grains of maize were grown in pots and exposed to various concentrations of Na2CO3 (0, 25, 50 and 75 mM with or without 1.5 mM Si in the form of sodium metasilicate Na2O3Si.5H2O for 25 days. Alkaline-stressed plants showed a decrease in growth parameters, leaf relative water content (LRWC, and the contents of photosynthetic pigments, soluble sugars, total phenols and potassium ion (K+, as well as potassium/sodium ion (K+/Na+ ratio. By contrast, alkaline stress increased the contents of soluble proteins, total free amino acids, proline, Na+ and malondialdehyde (MDA, as well as the activities of superoxide dismutase (SOD, catalase (CAT and peroxidase (POD in stressed plants. On the other hand, application of Si by grain priming improved growth of stressed plants, which was accompanied by the enhancement in LRWC, levels of photosynthetic pigments, soluble sugars, soluble proteins, total free amino acids, K+ and activities of SOD, CAT and POD enzymes. Furthermore, Si supplement resulted in a decrease in the contents of proline, MDA and Na+, which together with enhanced K+ level led to a favorable adjustment of K+/Na+ ratio, in stressed plants relative to plants treated with alkaline stress alone. Taken together, these results indicate that Si plays a pivotal role in alleviating the negative effects of alkaline stress on the maize growth by improving water status, enhancing photosynthetic pigments, accumulating osmoprotectants rather than proline, activating the antioxidant machinery, and maintaining the balance of K+/Na+. Thus, our findings demonstrate that seed priming with Si is an efficient strategy that can be used to boost tolerance of maize plants to alkaline stress.

  19. The Effect of Salinity Stress on the Growth, quantity and quality of Essential oil of Lavender (Lavandula angustifulia Miller

    Directory of Open Access Journals (Sweden)

    sarah khorasaninejad

    2017-02-01

    essential oil are flowers and leaves. Materials and Methods: This experiment was carried out using a randomized complete block design with three replications to study the effect of salinity stress on growth parameters, essential oil constituents and yield of Lavender (Lavandula angustifulia at the Horticultural Sciences Department, Plant Product faculty, Gorgan Agricultural Sciences and Natural Resources University. Lavender plants were obtained from seed plantation. The seeds in this investigation were obtained from the Institution of Forests and Range researches in Tehran. After three weeks stratification (4ºC and germination, five plants were transplanted into similarized pots that were filled with perlite and cocopeat (2:1. Irrigation treatments with hydroponic solution were completed during germination until stage of 6-8 leaf. Then, five levels of salt stress, including 0, 25, 50, 75 and 100 mM NaCl levels were investigated during four months, applied in hydroponic. Length, shoot wet weight, root wet weight and root dry weight were measured at full flowering stage (after five months. The same time in order to evaluate percentage and composition essential oil, each plant were harvested and dried under room condition. After two weeks, Clevenger method was used to extract the essential oil from the plant foliage. The obtained essential oil were measured for calculating of essential oils percentage and then, analyzed by using GC/MS (Gas choromatography-mass spectrometry for identification and quantification of the components. Statistical analysis of data was used with SAS software and charts preparing was done with Excel software. Mean comparison with LSD’s test in 5 percent probability was used. Results and Discussion: Results indicated that salinity stress motivated a significant influence in all of the growth parameters and essential oil yield and percent in P < 0.05. Increasing salt of the soil led to reduce in stem length, shoot wet weight, root wet weight and root

  20. Simplified method of computation for fatigue crack growth

    International Nuclear Information System (INIS)

    Stahlberg, R.

    1978-01-01

    A procedure is described for drastically reducing the computation time in calculating crack growth for variable-amplitude fatigue loading when the loading sequence is periodic. By the proposed procedure, the crack growth, r, per loading is approximated as a smooth function and its reciprocal is integrated, rather than summing crack growth cycle by cycle. The savings in computation time results since only a few pointwise values of r must be computed to generate an accurate interpolation function for numerical integration. Further time savings can be achieved by selecting the stress intensity coefficient (stress intensity divided by load) as the argument of r. Once r has been obtained as a function of stress intensity coefficient for a given material, environment, and loading sequence, it applies to any configuration of cracked structure. (orig.) [de

  1. Immunoreactive cortisone in droppings reflect stress levels, diet and growth rate of gull-billed tern chicks.

    Science.gov (United States)

    Albano, Noelia; Santiago-Quesada, Francisco; Masero, José A; Sánchez-Guzmán, Juan M; Möstl, Erich

    2015-03-01

    Blood levels of corticosterone have been traditionally analyzed to assess stress levels in birds; however, measuring steroid hormone metabolites in feces and droppings has gained much interest as a noninvasive technique successfully used for such purposed in vertebrates. Diet may affect these fecal metabolite levels (e.g., due to nutritional stress), however, this variable has not been taken into account in studies with chicks despite the great dietary flexibility of many avian species. In this study, we addressed for the first time this key issue and validated the technique in wild gull-billed tern chicks (Gelochelidon nilotica). Several enzyme immunoassays were used to determine the most appropriate test to measure the stress response. Subsequently, we performed an experiment in captivity to assess adrenocortical activity in gull-billed tern chicks fed with two diets: piscivorous vs. insectivorous. Finally, the relation between the chicks' growth rate and excreted immunoreactive glucocorticoid metabolites (EGMs) was also evaluated. We found the immunoreactive cortisone metabolites to be a good index of stress (as being an index of adrenocortical reactivity) in chicks of this species. Fish-fed chicks had higher levels of cortisone metabolites when comparing both concentration and total daily excreted metabolites. Within each treatment diet, cortisone metabolite levels and growth rates were negatively correlated. These findings suggest that the diet should be considered when using this technique for comparative purposes and highlight the trade-off between stress levels and chicks growth rates. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Lifelong Aerobic Exercise Reduces the Stress Response in Rats.

    Science.gov (United States)

    Pietrelli, A; Di Nardo, M; Masucci, A; Brusco, A; Basso, N; Matkovic, L

    2018-04-15

    The aim of this study was to analyze the effects of lifelong aerobic exercise (AE) on the adaptive response of the stress system in rats. It is well known that hypothalamic-pituitary-adrenal axis (HPA) activity differs when triggered by voluntary or forced exercise models. Male Wistar rats belonging to exercise (E) or control (C) groups were subjected to chronic AE, and two cutoff points were established at 8 (middle age) and 18 months (old age). Behavioral, biochemical and histopathological studies were performed on the main components/targets of the stress system. AE increased adrenal sensitivity (AS), brain corticosterone (CORT) and corticotropin-releasing factor (CRF), but had no effect on the thymus, adrenal glands (AGs) weight or plasma CORT. In addition, AE exerted no effect on the sympathetic tone, but significantly reduced anxiety-related behavior and emotionality. Aging decreased AS and deregulated neuroendocrine feedback, leading to an anxiogenic state which was mitigated by AE. Histopathological and morphometric analysis of AGs showed no alterations in middle-aged rats but adrenal vacuolization in approximately 20% old rats. In conclusion, lifelong AE did not produce adverse effects related to a chronic stress state. On the contrary, while AE upregulated some components of the HPA axis, it generated an adaptive response to cumulative changes, possibly through different compensatory and/or super compensatory mechanisms, modulated by age. The long-term practice of AE had a strong positive impact on stress resilience so that it could be recommended as a complementary therapy in stress and depression disease. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress.

    Science.gov (United States)

    Tavakkoli, Ehsan; Rengasamy, Pichu; McDonald, Glenn K

    2010-10-01

    Despite the fact that most plants accumulate both sodium (Na(+)) and chloride (Cl(-)) ions to high concentration in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na(+) accumulation. There have also been some recent concerns about the ability of hydroponic systems to predict the responses of plants to salinity in soil. To address these two issues, an experiment was conducted to compare the responses to Na(+) and to Cl(-) separately in comparison with the response to NaCl in a soil-based system using two varieties of faba bean (Vicia faba), that differed in salinity tolerance. The variety Nura is a salt-sensitive variety that accumulates Na(+) and Cl(-) to high concentrations while the line 1487/7 is salt tolerant which accumulates lower concentrations of Na(+) and Cl(-). Soils were prepared which were treated with Na(+) or Cl(-) by using a combination of different Na(+) salts and Cl(-) salts, respectively, or with NaCl. While this method produced Na(+)-dominant and Cl(-)-dominant soils, it unavoidably led to changes in the availability of other anions and cations, but tissue analysis of the plants did not indicate any nutritional deficiencies or toxicities other than those targeted by the salt treatments. The growth, water use, ionic composition, photosynthesis, and chlorophyll fluorescence were measured. Both high Na(+) and high Cl(-) reduced growth of faba bean but plants were more sensitive to Cl(-) than to Na(+). The reductions in growth and photosynthesis were greater under NaCl stress and the effect was mainly additive. An important difference to previous hydroponic studies was that increasing the concentrations of NaCl in the soil increased the concentration of Cl(-) more than the concentration of Na(+). The data showed that salinity caused by high concentrations of NaCl can reduce growth by the accumulation of high concentrations of both Na(+) and Cl(-) simultaneously, but

  4. Heterologous Expression of the Carrot Hsp17.7 gene Increased Growth, Cell Viability, and Protein Solubility in Transformed Yeast (Saccharomyces cerevisiae) under Heat, Cold, Acid, and Osmotic Stress Conditions.

    Science.gov (United States)

    Ko, Eunhye; Kim, Minhye; Park, Yunho; Ahn, Yeh-Jin

    2017-08-01

    In industrial fermentation of yeast (Saccharomyces cerevisiae), culture conditions are often modified from the optimal growth conditions of the cells to maintain large-scale cultures and/or to increase recombinant protein production. However, altered growth conditions can be stressful to yeast cells resulting in reduced cell growth and viability. In this study, a small heat shock protein gene from carrot (Daucus carota L.), Hsp17.7, was inserted into the yeast genome via homologous recombination to increase tolerance to stress conditions that can occur during industrial culture. A DNA construct, Translational elongation factor gene promoter-carrot Hsp17.7 gene-Phosphoribosyl-anthranilate isomerase gene (an auxotrophic marker), was generated by a series of PCRs and introduced into the chromosome IV of the yeast genome. Immunoblot analysis showed that carrot Hsp17.7 accumulated in the transformed yeast cell lines. Growth rates and cell viability of these cell lines were higher than control cell lines under heat, cold, acid, and hyperosmotic stress conditions. Soluble protein levels were higher in the transgenic cell lines than control cell lines under heat and cold conditions, suggesting the molecular chaperone function of the recombinant Hsp17.7. This study showed that a recombinant DNA construct containing a HSP gene from carrot was successfully expressed in yeast by homologous recombination and increased tolerances to abiotic stress conditions.

  5. Fibroblast growth factor 21 and its novel association with oxidative stress

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Gómez-Sámano

    2017-04-01

    Full Text Available Fibroblast growth factor 21 (FGF21 is an endocrine-member of the FGF family. It is synthesized mainly in the liver, but it is also expressed in adipose tissue, skeletal muscle, and many other organs. It has a key role in glucose and lipid metabolism, as well as in energy balance. FGF21 concentration in plasma is increased in patients with obesity, insulin resistance, and metabolic syndrome. Recent findings suggest that such increment protects tissue from an increased oxidative stress environment. Different types of physical stress, such as strenuous exercising, lactation, diabetic nephropathy, cardiovascular disease, and critical illnesses, also increase FGF21 circulating concentration. FGF21 is now considered a stress-responsive hormone in humans. The discovery of an essential response element in the FGF21 gene, for the activating transcription factor 4 (ATF4, involved in the regulation of oxidative stress, and its relation with genes such as NRF2, TBP-2, UCP3, SOD2, ERK, and p38, places FGF21 as a key regulator of the oxidative stress cell response. Its role in chronic diseases and its involvement in the treatment and follow-up of these diseases has been recently the target of new studies. The diminished oxidative stress through FGF21 pathways observed with anti-diabetic therapy is another clue of the new insights of this hormone.

  6. Ectopic overexpression of WsSGTL1, a sterol glucosyltransferase gene in Withania somnifera, promotes growth, enhances glycowithanolide and provides tolerance to abiotic and biotic stresses.

    Science.gov (United States)

    Saema, Syed; Rahman, Laiq Ur; Singh, Ruchi; Niranjan, Abhishek; Ahmad, Iffat Zareen; Misra, Pratibha

    2016-01-01

    Overexpression of sterol glycosyltransferase (SGTL1) gene of Withania somnifera showing its involvement in glycosylation of withanolide that leads to enhanced growth and tolerance to biotic and abiotic stresses. Withania somnifera is widely used in Ayurvedic medicines for over 3000 years due to its therapeutic properties. It contains a variety of glycosylated steroids called withanosides that possess neuroregenerative, adaptogenic, anticonvulsant, immunomodulatory and antioxidant activities. The WsSGTL1 gene specific for 3β-hydroxy position has a catalytic specificity to glycosylate withanolide and sterols. Glycosylation not only stabilizes the products but also alters their physiological activities and governs intracellular distribution. To understand the functional significance and potential of WsSGTL1 gene, transgenics of W. somnifera were generated using Agrobacterium tumefaciens-mediated transformation. Stable integration and overexpression of WsSGTL1 gene were confirmed by Southern blot analysis followed by quantitative real-time PCR. The WsGTL1 transgenic plants displayed number of alterations at phenotypic and metabolic level in comparison to wild-type plants which include: (1) early and enhanced growth with leaf expansion and increase in number of stomata; (2) increased production of glycowithanolide (majorly withanoside V) and campesterol, stigmasterol and sitosterol in glycosylated forms with reduced accumulation of withanolides (withaferin A, withanolide A and withanone); (3) tolerance towards biotic stress (100 % mortality of Spodoptera litura), improved survival capacity under abiotic stress (cold stress) and; (4) enhanced recovery capacity after cold stress, as indicated by better photosynthesis performance, chlorophyll, anthocyanin content and better quenching regulation of PSI and PSII. Our data demonstrate overexpression of WsSGTL1 gene which is responsible for increase in glycosylated withanolide and sterols, and confers better growth and

  7. Acute stress reduces wound-induced activation of microbicidal potential of ex vivo isolated human monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Ulrike Kuebler

    Full Text Available BACKGROUND: Psychological stress delays wound healing but the precise underlying mechanisms are unclear. Macrophages play an important role in wound healing, in particular by killing microbes. We hypothesized that (a acute psychological stress reduces wound-induced activation of microbicidal potential of human monocyte-derived macrophages (HMDM, and (b that these reductions are modulated by stress hormone release. METHODS: Fourty-one healthy men (mean age 35 ± 13 years were randomly assigned to either a stress or stress-control group. While the stress group underwent a standardized short-term psychological stress task after catheter-induced wound infliction, stress-controls did not. Catheter insertion was controlled. Assessing the microbicidal potential, we investigated PMA-activated superoxide anion production by HMDM immediately before and 1, 10 and 60 min after stress/rest. Moreover, plasma norepinephrine and epinephrine and salivary cortisol were repeatedly measured. In subsequent in vitro studies, whole blood was incubated with norepinephrine in the presence or absence of phentolamine (norepinephrine blocker before assessing HMDM microbicidal potential. RESULTS: Compared with stress-controls, HMDM of the stressed subjects displayed decreased superoxide anion-responses after stress (p's <.05. Higher plasma norepinephrine levels statistically mediated lower amounts of superoxide anion-responses (indirect effect 95% CI: 4.14-44.72. Norepinephrine-treated HMDM showed reduced superoxide anion-production (p<.001. This effect was blocked by prior incubation with phentolamine. CONCLUSIONS: Our results suggest that acute psychological stress reduces wound-induced activation of microbicidal potential of HMDM and that this reduction is mediated by norepinephrine. This might have implications for stress-induced impairment in wound healing.

  8. MAPK-mediated regulation of growth and essential oil composition in a salt-tolerant peppermint (Mentha piperita L.) under NaCl stress.

    Science.gov (United States)

    Li, Zhe; Wang, Wenwen; Li, Guilong; Guo, Kai; Harvey, Paul; Chen, Quan; Zhao, Zhongjuan; Wei, Yanli; Li, Jishun; Yang, Hetong

    2016-11-01

    Peppermint (Mentha × piperita L.) is an important and commonly used flavoring agent worldwide, and salinity is a major stress that limits plant growth and reduces crop productivity. This work demonstrated the metabolic responses of essential oil production including the yield and component composition, gene expression, enzyme activity, and protein activation in a salt-tolerant peppermint Keyuan-1 with respect to NaCl stress. Our results showed that Keyuan-1 maintained normal growth and kept higher yield and content of essential oils under NaCl stress than wild-type (WT) peppermint.Gas chromatography-mass spectrometry (GC-MS) and qPCR results showed that compared to WT seedlings, a 150-mM NaCl stress exerted no obvious changes in essential oil composition, transcriptional level of enzymes related to essential oil metabolism, and activity of pulegone reductase (Pr) in Keyuan-1 peppermint which preserved the higher amount of menthol and menthone as well as the lower content of menthofuran upon the 150-mM NaCl stress. Furthermore, it was noticed that a mitogen-activated protein kinase (MAPK) protein exhibited a time-dependent activation in the Keyuan-1 peppermint and primarily involved in the modulation of the essential oil metabolism in the transcript and enzyme levels during the 12-day treatment of 150 mM NaCl. In all, our data elucidated the effect of NaCl on metabolic responses of essential oil production, and demonstrated the MAPK-dependent regulation mechanism of essential oil biosynthesis in the salt-tolerant peppermint, providing scientific basis for the economic and ecological utilization of peppermint in saline land.

  9. Exposure of P. gingivalis to noradrenaline reduces bacterial growth and elevates ArgX protease activity.

    Science.gov (United States)

    Saito, Takayuki; Inagaki, Satoru; Sakurai, Kaoru; Okuda, Katsuji; Ishihara, Kazuyuki

    2011-03-01

    Periodontitis, an infectious disease caused by periodontopathic bacteria, including Porphyromonas gingivalis, is reported to be accelerated by stress, under which noradrenaline levels are increased in the bloodstream. The purpose of this study was to evaluate the effects of noradrenaline on P. gingivalis. P. gingivalis was incubated in the presence of 25μM, 50μM, or 100μM adrenaline or noradrenaline at 37°C for 12, 24 or 36h and growth was evaluated by OD(660). Auto-inducer-2 (AI-2) was measured by luminescence of Vibrio harveyi BB 170. Expression of P. gingivalis genes was evaluated using a microarray and RT-PCR. Rgp activity of arg-gingipainA and B (Rgp) was measured with a synthetic substrate. Growth of P. gingivalis FDC381 was inhibited by noradrenaline at 24 and 36h. Growth inhibition by noradrenaline increased dose-dependently. Inhibition of growth partially recovered with addition of propranolol. AI-2 production from P. gingivalis showed a marked decrease with addition of noradrenaline compared with peak production levels in the control group. Microarray analysis revealed an increase in expression in 18 genes and a decrease in expression in 2 genes. Amongst these genes, expression of the protease arg-gingipainB (RgpB) gene, a major virulence factor of P. gingivalis, was further analysed. Expression of rgpB showed a significant increase with addition of noradrenaline, which was partially reduced by addition of propranolol. Cell-associated Rgp activity also increased with addition of noradrenaline. These results suggest that stressors influence the expression of the virulence factors of P. gingivalis via noradrenaline. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Effect of drought stress on early growth of Adansonia digitata (L.) in ...

    African Journals Online (AJOL)

    Drought and high temperatures are said to have triggered increased tree mortality and could be linked to the menace of climate change. This research therefore investigated the effect of drought stress on early growth of Adansonia digitata where seedlings were exposed to different watering frequencies (Once daily, after 3, ...

  11. Effect of Nitrogen Nutritional Stress on Some Growth Parameters of Zea mays L. and Vigna unguiculata (L. Walp.

    Directory of Open Access Journals (Sweden)

    Akinbode Foluso OLOGUNDUDU

    2013-02-01

    Full Text Available This study investigated the responses of maize (Zea mays L. and cowpea (Vigna unguiculata L. Walp. seedlings growth parameters to nitrogen nutritional stress. This was with a view to determining whether nitrogen nutritional stress would retard or enhance maize and cowpea growth, partly, wholly or not at all through its effect on biomass accumulation and some morphological parameters. Germination of seeds was done using treated sand in sixty plastic pots. A group of the seedlings was nutrient stressed by administering 200 ml of complete nutrient solution minus nitrogen (-N while the other groups were fed with five times (X5N and ten times (X10N the optimal concentration of nitrogen and the last regime was fed with full nutrient solution (FN. The effects of optimal concentration and nitrogen stress on the growth rates (as measured by their fresh and dry weight were studied. The result of the growth analysis showed that there was increase in shoot height with supraoptimal concentrations of nitrogen treatments (X10N and X5N while there was a decrease in shoot height with minus nitrogen (-N regimes. The observed higher biomass (dry matter yield under the FN regimes in both Zea mays and Vigna unguiculata were attributed to optimal nutrient assimilation rate.

  12. Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments

    DEFF Research Database (Denmark)

    Knoblauch, C.; Jørgensen, BB

    1999-01-01

    and T(opt). For strains LSv21 and LSv514, however, growth yields were highest at the lowest temperatures, around 0 degrees C. The results indicate that psychrophilic sulphate-reducing bacteria are specially adapted to permanently low temperatures by high relative growth rates and high growth yields......Five psychrophilic sulphate-reducing bacteria (strains ASv26, LSv21, PSv29, LSv54 and LSv514) isolated from Arctic sediments were examined for their adaptation to permanently low temperatures, All strains grew at -1.8 degrees C, the freezing point of sea water, but their optimum temperature...... for growth (T(opt)) were 7 degrees C (PSv29), 10 degrees C (ASv26, LSv54) and 18 degrees C (LSv21, LSv514), Although T(opt) was considerably above the in situ temperatures of their habitats (-1.7 degrees C and 2.6 degrees C), relative growth rates were still high at 0 degrees C, accounting for 25...

  13. Pets in Workplace Please Workers, May Reduce Stress

    Institute of Scientific and Technical Information of China (English)

    Melissa; Schorr; 余爱邛

    2001-01-01

    新闻!新闻!美国的一家杂志the Journal of Occupational Health Psychology(职业健康心理杂志)载文认为把家里的宠物带到工作场所,能够reduce stress and improve their health!另外的好处还有:…foster(培养)social interaction(互相作用)and are good for business.不过本文在谈到如此做法的drawbacks(缺点),倒也客观公允。

  14. A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress.

    Science.gov (United States)

    Sarkar, Anumita; Ghosh, Pallab Kumar; Pramanik, Krishnendu; Mitra, Soumik; Soren, Tithi; Pandey, Sanjeev; Mondal, Monohar Hossain; Maiti, Tushar Kanti

    2018-01-01

    Agricultural productivity is proven to be hampered by the synthesis of reactive oxygen species (ROS) and production of stress-induced ethylene under salinity stress. One-aminocyclopropane-1-carboxylic acid (ACC) is the direct precursor of ethylene synthesized by plants. Bacteria possessing ACC deaminase activity can use ACC as a nitrogen source preventing ethylene production. Several salt-tolerant bacterial strains displaying ACC deaminase activity were isolated from rice fields, and their plant growth-promoting (PGP) properties were determined. Among them, strain P23, identified as an Enterobacter sp. based on phenotypic characteristics, matrix-assisted laser desorption ionization-time of flight mass spectrometry data and the 16S rDNA sequence, was selected as the best-performing isolate for several PGP traits, including phosphate solubilization, IAA production, siderophore production, HCN production, etc. Enterobacter sp. P23 was shown to promote rice seedling growth under salt stress, and this effect was correlated with a decrease in antioxidant enzymes and stress-induced ethylene. Isolation of an acdS mutant strain enabled concluding that the reduction in stress-induced ethylene content after inoculation of strain P23 was linked to ACC deaminase activity. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  15. Reduced Slc6a15 in Nucleus Accumbens D2-Neurons Underlies Stress Susceptibility.

    Science.gov (United States)

    Chandra, Ramesh; Francis, T Chase; Nam, Hyungwoo; Riggs, Lace M; Engeln, Michel; Rudzinskas, Sarah; Konkalmatt, Prasad; Russo, Scott J; Turecki, Gustavo; Iniguez, Sergio D; Lobo, Mary Kay

    2017-07-05

    Previous research demonstrates that Slc6a15, a neutral amino acid transporter, is associated with depression susceptibility. However, no study examined Slc6a15 in the ventral striatum [nucleus accumbens (NAc)] in depression. Given our previous characterization of Slc6a15 as a striatal dopamine receptor 2 (D2)-neuron-enriched gene, we examined the role of Slc6a15 in NAc D2-neurons in mediating susceptibility to stress in male mice. First, we showed that Slc6a15 mRNA was reduced in NAc of mice susceptible to chronic social defeat stress (CSDS), a paradigm that produces behavioral and molecular adaptations that resemble clinical depression. Consistent with our preclinical data, we observed Slc6a15 mRNA reduction in NAc of individuals with major depressive disorder (MDD). The Slc6a15 reduction in NAc occurred selectively in D2-neurons. Next, we used Cre-inducible viruses combined with D2-Cre mice to reduce or overexpress Slc6a15 in NAc D2-neurons. Slc6a15 reduction in D2-neurons caused enhanced susceptibility to a subthreshold social defeat stress (SSDS) as observed by reduced social interaction, while a reduction in social interaction following CSDS was not observed when Slc6a15 expression in D2-neurons was restored. Finally, since both D2-medium spiny neurons (MSNs) and D2-expressing choline acetyltransferase (ChAT) interneurons express Slc6a15, we examined Slc6a15 protein in these interneurons after CSDS. Slc6a15 protein was unaltered in ChAT interneurons. Consistent with this, reducing Slc5a15 selectively in NAc D2-MSNs, using A2A-Cre mice that express Cre selectively in D2-MSNs, caused enhanced susceptibility to SSDS. Collectively, our data demonstrate that reduced Slc6a15 in NAc occurs in MDD individuals and that Slc6a15 reduction in NAc D2-neurons underlies stress susceptibility. SIGNIFICANCE STATEMENT Our study demonstrates a role for reduced Slc6a15, a neutral amino acid transporter, in nucleus accumbens (NAc) in depression and stress susceptibility. The

  16. Antenatal taurine reduces cerebral cell apoptosis in fetal rats with intrauterine growth restriction.

    Science.gov (United States)

    Liu, Jing; Wang, Xiaofeng; Liu, Ying; Yang, Na; Xu, Jing; Ren, Xiaotun

    2013-08-15

    From pregnancy to parturition, Sprague-Dawley rats were daily administered a low protein diet to establish a model of intrauterine growth restriction. From the 12(th) day of pregnancy, 300 mg/kg rine was daily added to food until spontaneous delivery occurred. Brain tissues from normal neonatal rats at 6 hours after delivery, neonatal rats with intrauterine growth restriction, and neonatal rats with intrauterine growth restriction undergoing taurine supplement were obtained for further experiments. The terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling assay revealed that the number of apoptotic cells in the brain tissue of neonatal rats with intrauterine growth restriction significantly increased. Taurine supplement in pregnant rats reduced cell apoptosis in brain tissue from neonatal rats with intrauterine growth restriction. nohistochemical staining revealed that taurine supplement increased glial cell line-derived neurotrophic factor expression and decreased caspase-3 expression in the cerebral cortex of intrauterine growth-restricted fetal rats. These results indicate that taurine supplement reduces cell apoptosis through the glial cell line-derived neurotrophic factor-caspase-3 signaling pathway, resulting in a protective effect on the intrauterine growth-restricted fetal rat brain.

  17. Soil type affects Pinus ponderosa var. scopulorum (Pinaceae) seedling growth in simulated drought experiments 1

    OpenAIRE

    Lindsey, Alexander J.; Kilgore, Jason S.

    2013-01-01

    Premise of the study: Effects of drought stress and media type interactions on growth of Pinus ponderosa var. scopulorum germinants were investigated. Methods and Results: Soil properties and growth responses under drought were compared across four growth media types: two native soils (dolomitic limestone and granite), a soil-less industry standard conifer medium, and a custom-mixed conifer medium. After 35 d of growth, the seedlings under drought stress (reduced watering) produced less sh...

  18. The membrane tethered transcription factor EcbZIP17 from finger millet promotes plant growth and enhances tolerance to abiotic stresses.

    Science.gov (United States)

    Ramakrishna, Chopperla; Singh, Sonam; Raghavendrarao, Sangala; Padaria, Jasdeep C; Mohanty, Sasmita; Sharma, Tilak Raj; Solanke, Amolkumar U

    2018-02-01

    The occurrence of various stresses, as the outcome of global climate change, results in the yield losses of crop plants. Prospecting of genes in stress tolerant plant species may help to protect and improve their agronomic performance. Finger millet (Eleusine coracana L.) is a valuable source of superior genes and alleles for stress tolerance. In this study, we isolated a novel endoplasmic reticulum (ER) membrane tethered bZIP transcription factor from finger millet, EcbZIP17. Transgenic tobacco plants overexpressing this gene showed better vegetative growth and seed yield compared with wild type (WT) plants under optimal growth conditions and confirmed upregulation of brassinosteroid signalling genes. Under various abiotic stresses, such as 250 mM NaCl, 10% PEG6000, 400 mM mannitol, water withdrawal, and heat stress, the transgenic plants showed higher germination rate, biomass, primary and secondary root formation, and recovery rate, compared with WT plants. The transgenic plants exposed to an ER stress inducer resulted in greater leaf diameter and plant height as well as higher expression of the ER stress-responsive genes BiP, PDIL, and CRT1. Overall, our results indicated that EcbZIP17 improves plant growth at optimal conditions through brassinosteroid signalling and provide tolerance to various environmental stresses via ER signalling pathways.

  19. Absence of surface stress change during pentacene thin film growth on the Si(111)-(7 x 7) surface: a buried reconstruction interface

    International Nuclear Information System (INIS)

    Kury, P; Horn von Hoegen, M; Heringdorf, F-J Meyer zu; Roos, K R

    2008-01-01

    We use high-resolution surface stress measurements to monitor the surface stress during the growth of pentacene (C 22 H 14 ) on the (7x7) reconstructed silicon (111) surface. No significant change in the surface stress is observed during the pentacene growth. Compared to the changes in the surface stress observed for Si and Ge deposition on the Si(111)-(7x7) surface, the insignificant change in the surface stress observed for the pentacene growth suggests that the pentacene molecules of the first adsorbate layer, although forming strong covalent bonds with the Si adatoms, do not alter the structure of the (7x7) reconstruction. The (7x7) reconstruction remains intact and, with subsequent deposition of pentacene, eventually becomes buried under the growing film. This failure of the pentacene to affect the structure of the reconstruction may represent a fundamental difference between the growth of organic thin films and that of inorganic thin films on semiconductor surfaces

  20. A short-term supranutritional vitamin E supplementation alleviated respiratory alkalosis but did not reduce oxidative stress in heat stressed pigs.

    Science.gov (United States)

    Liu, Fan; Celi, Pietro; Chauhan, Surinder Singh; Cottrell, Jeremy James; Leury, Brian Joseph; Dunshea, Frank Rowland

    2018-02-01

    Heat stress (HS) triggers oxidative stress and respiratory alkalosis in pigs. The objective of this experiment was to study whether a short-term supranutritional amount of dietary vitamin E (VE) can mitigate oxidative stress and respiratory alkalosis in heat-stressed pigs. A total of 24 pigs were given either a control diet (17 IU/kg VE) or a high VE (200 IU/kg VE; HiVE) diet for 14 d, then exposed to thermoneutral (TN; 20°C, 45% humidity) or HS (35°C, 35% to 45% humidity, 8 h daily) conditions for 7 d. Respiration rate and rectal temperature were measured three times daily during the thermal exposure. Blood gas variables and oxidative stress markers were studied in blood samples collected on d 7. Although HiVE diet did not affect the elevated rectal temperature or respiration rate observed during HS, it alleviated (all prespiratory alkalosis but did not reduce oxidative stress in heat-stressed pigs.

  1. Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens.

    Science.gov (United States)

    Liu, L L; He, J H; Xie, H B; Yang, Y S; Li, J C; Zou, Y

    2014-01-01

    This study investigated the effects of dietary resveratrol at 0, 200, 400, or 600 mg/kg of diet on the performance, immune organ growth index, serum parameters, and expression levels of heat shock protein (Hsp) 27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius, thymus, and spleen of 42-d-old female black-boned chickens exposed to heat stress at 37 ± 2°C for 15 d. The results showed that heat stress reduced daily feed intake and BW gain; decreased serum glutathione (GSH), growth hormone, and insulin-like growth factor-1 levels; and inhibited GSH peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities compared with birds subjected to thermo-neutral circumstances. Chickens that were fed diets supplemented with resveratrol exhibited a linear increase in feed intake and BW gain (P stress. In contrast, serum malonaldehyde concentrations were decreased (P stress also reduced (P stress and coincided with an increase in supplemental resveratrol levels. The expression of Hsp27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius and spleen were increased (P stress compared with no heat stress. Resveratrol attenuated the heat stress-induced overexpression of Hsp27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius and spleen and increased the low expression of Hsp27 and Hsp90 mRNA in thymus upon heat stress. The results suggest that supplemental resveratrol improves growth performance and reduces oxidative stress in heat-stressed black-boned chickens by increasing serum growth hormone concentrations and modulating the expression of heat shock genes in organs of the immune system.

  2. Analysis of Zero Reynolds Shear Stress Appearing in Dilute Surfactant Drag-Reducing Flow

    Directory of Open Access Journals (Sweden)

    Weiguo Gu

    2011-01-01

    Full Text Available Dilute surfactant solution of 25 ppm in the two-dimensional channel is investigated experimentally compared with water flow. Particle image velocimetry (PIV system is used to take 2D velocity frames in the streamwise and wall-normal plane. Based on the frames of instantaneous vectors and statistical results, the phenomenon of zero Reynolds shear stress appearing in the drag-reducing flow is discussed. It is found that 25 ppm CTAC solution exhibits the highest drag reduction at Re = 25000 and loses drag reduction completely at Re = 40000. When drag reduction lies in the highest, Reynolds shear stress disappears and reaches zero although the RMS of the velocity fluctuations is not zero. By the categorization in four quadrants, the fluctuations of 25 ppm CTAC solution are distributed in all four quadrants equally at Re = 25000, which indicates that turnaround transportation happens in drag-reducing flow besides Reynolds shear stress transportation. Moreover, the contour distribution of streamwise velocity and the fluctuations suggests that turbulence transportation is depressed in drag-reducing flow. The viscoelasticity is possible to decrease the turbulence transportation and cause the turnaround transportation.

  3. Oxidation of Fe–22Cr Coated with Co3O4: Microstructure Evolution and the Effect of Growth Stresses

    DEFF Research Database (Denmark)

    Hansson, Anette Nørgaard; Burriel, Monica; Garcia, Gemma

    2007-01-01

    The oxidation behavior of a commercially available Fe–22Cr alloy coated with a Co3O4 layer by metal organic—chemical vapor deposition was investigated in air with 1% H2O at 1,173 K and compared to the oxidation behavior of the non-coated alloy. The oxide morphology was examined with X......-ray diffraction, electron microscopy, and energy dispersive X-ray spectroscopy. Cr2O3 developed in between the Co3O4 coating and the alloy, while alloying elements of the substrate were incorporated into the coating. Particular attention was devoted to possible sources of growth stresses and the effect...... of the growth stresses on microstructure evolution in the scales that developed on the non-coated and the coated Fe–22Cr alloy. Microstructural features suggested that scale spallation on coated Fe–22Cr occurred as a result of superimposing thermal stresses during cooling onto the growth stresses, that had...

  4. Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield.

    Science.gov (United States)

    Moshelion, Menachem; Halperin, Ofer; Wallach, Rony; Oren, Ram; Way, Danielle A

    2015-09-01

    The global shortage of fresh water is one of our most severe agricultural problems, leading to dry and saline lands that reduce plant growth and crop yield. Here we review recent work highlighting the molecular mechanisms allowing some plant species and genotypes to maintain productivity under water stress conditions, and suggest molecular modifications to equip plants for greater production in water-limited environments. Aquaporins (AQPs) are thought to be the main transporters of water, small and uncharged solutes, and CO2 through plant cell membranes, thus linking leaf CO2 uptake from the intercellular airspaces to the chloroplast with water loss pathways. AQPs appear to play a role in regulating dynamic changes of root, stem and leaf hydraulic conductivity, especially in response to environmental changes, opening the door to using AQP expression to regulate plant water-use efficiency. We highlight the role of vascular AQPs in regulating leaf hydraulic conductivity and raise questions regarding their role (as well as tonoplast AQPs) in determining the plant isohydric threshold, growth rate, fruit yield production and harvest index. The tissue- or cell-specific expression of AQPs is discussed as a tool to increase yield relative to control plants under both normal and water-stressed conditions. © 2014 John Wiley & Sons Ltd.

  5. Randomized test of an implementation intention-based tool to reduce stress-induced eating.

    Science.gov (United States)

    O'Connor, Daryl B; Armitage, Christopher J; Ferguson, Eamonn

    2015-06-01

    Stress may indirectly contribute to disease (e.g. cardiovascular disease, cancer) by producing deleterious changes to diet. The purpose of this study was to test the effectiveness of a stress management support (SMS) tool to reduce stress-related unhealthy snacking and to promote stress-related healthy snacking. Participants were randomized to complete a SMS tool with instruction to link stressful situations with healthy snack alternatives (experimental) or a SMS tool without a linking instruction (control). On-line daily reports of stressors and snacking were completed for 7 days. Daily stressors were associated with unhealthy snack consumption in the control condition but not in the experimental condition. Participants highly motivated towards healthy eating consumed a greater number of healthy snacks in the experimental condition on stressful days compared to participants in the experimental condition with low and mean levels of motivation. This tool is an effective, theory driven, intervention that helps to protect against stress-induced high-calorie snack consumption.

  6. Growth and ionic content of quinoa under saline irrigation

    DEFF Research Database (Denmark)

    Riccardi, M.; Pulvento, C.; Lavini, A.

    2014-01-01

    Drought and salinity are the most important abiotic stresses that affect plant's growth and productivity. The aim of the present work was to evaluate the effect of salt and water deficit on water relations, growth parameters and capacity to accumulate inorganic solutes in quinoa plants. An irriga......Drought and salinity are the most important abiotic stresses that affect plant's growth and productivity. The aim of the present work was to evaluate the effect of salt and water deficit on water relations, growth parameters and capacity to accumulate inorganic solutes in quinoa plants...... incorporated salt ions in the tissues (stems, roots, leaves) preserving seed quality. Treatment with a reduction in the irrigation water to 25 % of full irrigated treatment (Q25) caused an increase in WP and a reduced dry matter accumulation in the leaves. Quinoa plants (Q25) were initially negatively affected...... by severe drought with RGR and NAR reduction, and then, they adapted to it. Quinoa could be considered a drought tolerant crop that adapt photosynthetic rate to compensate for a reduced growth....

  7. Exposure of mental health nurses to violence associated with job stress, life satisfaction, staff resilience, and post-traumatic growth.

    Science.gov (United States)

    Itzhaki, Michal; Peles-Bortz, Anat; Kostistky, Hava; Barnoy, Dor; Filshtinsky, Vivian; Bluvstein, Irit

    2015-10-01

    Workplace violence towards health workers in hospitals and in mental health units in particular is increasing. The aim of the present study was to explore the effects of exposure to violence, job stress, staff resilience, and post-traumatic growth (PTG) on the life satisfaction of mental health nurses. A descriptive, cross-sectional design was used. The sample consisted of mental health nurses (n = 118) working in a large mental health centre in Israel. Verbal violence by patients was reported by 88.1% of the nurses, and 58.4% experienced physical violence in the past year. Physical and verbal violence towards nurses was correlated with job stress, and life satisfaction was correlated with PTG and staff resilience. Linear regression analyses indicated that life satisfaction was mainly affected by PTG, staff resilience, and job stress, and less by exposure to verbal and physical violence. The present study is the first to show that, although mental health nurses are frequently exposed to violence, their life satisfaction is affected more by staff resilience, PTG, and job stress than by workplace violence. Therefore, it is recommended that intervention programmes that contribute to PTG and staff resilience, as well as those that reduce job stress among mental health nurses, be explored and implemented. © 2015 Australian College of Mental Health Nurses Inc.

  8. Reducing stress to minimize injury: the nation's first employee assistance program for dairy farmers.

    Science.gov (United States)

    Dickens, Steven; Dotter, Earl; Handy, Myra; Waterman, Louise

    2014-01-01

    This commentary describes the nation's first Employee Assistance Program (EAP) for dairy farmers. It discusses (1) the significant financial strain and emotional stress experienced by Vermont's dairy farmers reaching dangerous levels; (2) the effect of stress and anxiety on workplace safety; and (3) the highly effective role of an EAP in reducing stress. The commentary depicts the Farm First program model of prevention and early intervention services for dairy farmers that include short-term solution-focused counseling, resources, and referrals to help farmers address the stressors they confront daily. The Farm First program mitigates depression, anxiety, financial and legal problems, family issues, and other stressors on farms that are correlated with accidents, on-the-job injuries, disability, and harm to self or others. EAPs specifically have been shown to reduce on-the-job injuries by reducing employee stress. Ultimately the program has seen good usage commensurate with that at any place of employment. Further, in addition to seeking help for themselves, a number of farmers have used this management consultation service to obtain assistance with farm worker issues. Although the authors have not systematically studied this approach, it shows promise and the authors encourage its duplication and further study in other states.

  9. Baicalein reduces oxidative stress in CHO cell cultures and improves recombinant antibody productivity

    DEFF Research Database (Denmark)

    Kwang Ha, Tae; Hansen, Anders Holmgaard; Kol, Stefan

    2017-01-01

    . Addition of baicalein significantly reduced the expression level of BiP and CHOP along with reduced reactive oxygen species level, suggesting oxidative stress accumulated in the cells can be relieved using baicalein. As a result, addition of baicalein in batch cultures resulted in 1.7 - 1.8-fold increase...

  10. Mobile phone radiation inhibits Vigna radiata (mung bean) root growth by inducing oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ved Parkash [Department of Environment and Vocational Studies, Panjab University, Chandigarh 160014 (India); Department of Zoology, Panjab University, Chandigarh 160014 (India); Singh, Harminder Pal, E-mail: hpsingh_01@yahoo.com [Department of Environment and Vocational Studies, Panjab University, Chandigarh 160014 (India); Kohli, Ravinder Kumar; Batish, Daizy Rani [Department of Botany, Panjab University, Chandigarh 160014 (India)

    2009-10-15

    During the last couple of decades, there has been a tremendous increase in the use of cell phones. It has significantly added to the rapidly increasing EMF smog, an unprecedented type of pollution consisting of radiation in the environment, thereby prompting the scientists to study the effects on humans. However, not many studies have been conducted to explore the effects of cell phone EMFr on growth and biochemical changes in plants. We investigated whether EMFr from cell phones inhibit growth of Vigna radiata (mung bean) through induction of conventional stress responses. Effects of cell phone EMFr (power density: 8.55 {mu}W cm{sup -2}; 900 MHz band width; for 1/2, 1, 2, and 4 h) were determined by measuring the generation of reactive oxygen species (ROS) in terms of malondialdehyde and hydrogen peroxide (H{sub 2}O{sub 2}) content, root oxidizability and changes in levels of antioxidant enzymes. Our results showed that cell phone EMFr significantly inhibited the germination (at {>=}2 h), and radicle and plumule growths ({>=}1 h) in mung bean in a time-dependent manner. Further, cell phone EMFr enhanced MDA content (indicating lipid peroxidation), and increased H{sub 2}O{sub 2} accumulation and root oxidizability in mung bean roots, thereby inducing oxidative stress and cellular damage. In response to EMFr, there was a significant upregulation in the activities of scavenging enzymes, such as superoxide dismutases, ascorbate peroxidases, guaiacol peroxidases, catalases and glutathione reductases, in mung bean roots. The study concluded that cell phone EMFr inhibit root growth of mung bean by inducing ROS-generated oxidative stress despite increased activities of antioxidant enzymes.

  11. Mobile phone radiation inhibits Vigna radiata (mung bean) root growth by inducing oxidative stress

    International Nuclear Information System (INIS)

    Sharma, Ved Parkash; Singh, Harminder Pal; Kohli, Ravinder Kumar; Batish, Daizy Rani

    2009-01-01

    During the last couple of decades, there has been a tremendous increase in the use of cell phones. It has significantly added to the rapidly increasing EMF smog, an unprecedented type of pollution consisting of radiation in the environment, thereby prompting the scientists to study the effects on humans. However, not many studies have been conducted to explore the effects of cell phone EMFr on growth and biochemical changes in plants. We investigated whether EMFr from cell phones inhibit growth of Vigna radiata (mung bean) through induction of conventional stress responses. Effects of cell phone EMFr (power density: 8.55 μW cm -2 ; 900 MHz band width; for 1/2, 1, 2, and 4 h) were determined by measuring the generation of reactive oxygen species (ROS) in terms of malondialdehyde and hydrogen peroxide (H 2 O 2 ) content, root oxidizability and changes in levels of antioxidant enzymes. Our results showed that cell phone EMFr significantly inhibited the germination (at ≥2 h), and radicle and plumule growths (≥1 h) in mung bean in a time-dependent manner. Further, cell phone EMFr enhanced MDA content (indicating lipid peroxidation), and increased H 2 O 2 accumulation and root oxidizability in mung bean roots, thereby inducing oxidative stress and cellular damage. In response to EMFr, there was a significant upregulation in the activities of scavenging enzymes, such as superoxide dismutases, ascorbate peroxidases, guaiacol peroxidases, catalases and glutathione reductases, in mung bean roots. The study concluded that cell phone EMFr inhibit root growth of mung bean by inducing ROS-generated oxidative stress despite increased activities of antioxidant enzymes.

  12. Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils.

    Science.gov (United States)

    Wani, Parvaze Ahmad; Khan, Mohammad Saghir

    2010-11-01

    Pollution of the agricultural land by the toxic chromium is a global threat that has accelerated dramatically since the beginning of industrial revolution. Toxic chromium affects both the microbial diversity as well as reduces the growth of the plants. Understanding the effect of the chromium reducing and plant growth promoting rhizobacteria on chickpea crop will be useful. Chromium reducing and plant growth promoting Bacillus species PSB10 significantly improved growth, nodulation, chlorophyll, leghaemoglobin, seed yield and grain protein of chickpea crop grown in the presence of different concentrations of chromium compared to the plants grown in the absence of bio-inoculant. The strain also reduced the uptake of chromium in roots, shoots and grains of chickpea crop compared to plants grown in the absence of bio-inoculant. This study thus suggested that the Bacillus species PSB10 due to its intrinsic abilities of growth promotion and attenuation of the toxic effects of chromium could be exploited for remediation of chromium from chromium contaminated sites. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Impacts of weld residual stresses and fatigue crack growth threshold on crack arrest under high-cycle thermal fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Said, E-mail: Said.taheri@edf.fr [EDF-LAB, IMSIA, 7 Boulevard Gaspard Monge, 91120 Palaiseau Cedex (France); Julan, Emricka [EDF-LAB, AMA, 7 Boulevard Gaspard Monge, 91120 Palaiseau Cedex (France); Tran, Xuan-Van [EDF Energy R& D UK Centre/School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL (United Kingdom); Robert, Nicolas [EDF-DPN, UNIE, Strategic Center, Saint Denis (France)

    2017-01-15

    Highlights: • For crack growth analysis, weld residual stress field must be considered through its SIF in presence of a crack. • Presence of cracks of same depth proves their arrest, where equal depth is because mean stress acts only on crack opening. • Not considering amplitudes under a fatigue crack growth threshold (FCGT) does not compensate the lack of FGCT in Paris law. • Propagation rates are close for axisymmetric and circumferential semi-elliptical cracks. - Abstract: High cycle thermal crazing has been observed in some residual heat removal (RHR) systems made of 304 stainless steel in PWR nuclear plants. This paper deals with two types of analyses including logical argumentation and simulation. Crack arrest in networks is demonstrated due to the presence of two cracks of the same depth in the network. This identical depth may be proved assuming that mean stress acts only on crack opening and that cracks are fully open during the load cycle before arrest. Weld residual stresses (WRS) are obtained by an axisymmetric simulation of welding on a tube with a chamfer. Axisymmetric and 3D parametric studies of crack growth on: representative sequences for variable amplitude thermal loading, fatigue crack growth threshold (FCGT), permanent mean stress, cyclic counting methods and WRS, are performed with Code-Aster software using XFEM methodology. The following results are obtained on crack depth versus time: the effect of WRS on crack growth cannot be determined by the initial WRS field in absence of crack, but by the associated stress intensity factor. Moreover the relation between crack arrest depth and WRS is analyzed. In the absence of FCGT Paris’s law may give a significant over-estimation of crack depth even if amplitudes of loading smaller than FCGT have not been considered. Appropriate depth versus time may be obtained using different values of FCGT, but axisymmetric simulations do not really show a possibility of arrest for shallow cracks in

  14. Impacts of weld residual stresses and fatigue crack growth threshold on crack arrest under high-cycle thermal fluctuations

    International Nuclear Information System (INIS)

    Taheri, Said; Julan, Emricka; Tran, Xuan-Van; Robert, Nicolas

    2017-01-01

    Highlights: • For crack growth analysis, weld residual stress field must be considered through its SIF in presence of a crack. • Presence of cracks of same depth proves their arrest, where equal depth is because mean stress acts only on crack opening. • Not considering amplitudes under a fatigue crack growth threshold (FCGT) does not compensate the lack of FGCT in Paris law. • Propagation rates are close for axisymmetric and circumferential semi-elliptical cracks. - Abstract: High cycle thermal crazing has been observed in some residual heat removal (RHR) systems made of 304 stainless steel in PWR nuclear plants. This paper deals with two types of analyses including logical argumentation and simulation. Crack arrest in networks is demonstrated due to the presence of two cracks of the same depth in the network. This identical depth may be proved assuming that mean stress acts only on crack opening and that cracks are fully open during the load cycle before arrest. Weld residual stresses (WRS) are obtained by an axisymmetric simulation of welding on a tube with a chamfer. Axisymmetric and 3D parametric studies of crack growth on: representative sequences for variable amplitude thermal loading, fatigue crack growth threshold (FCGT), permanent mean stress, cyclic counting methods and WRS, are performed with Code-Aster software using XFEM methodology. The following results are obtained on crack depth versus time: the effect of WRS on crack growth cannot be determined by the initial WRS field in absence of crack, but by the associated stress intensity factor. Moreover the relation between crack arrest depth and WRS is analyzed. In the absence of FCGT Paris’s law may give a significant over-estimation of crack depth even if amplitudes of loading smaller than FCGT have not been considered. Appropriate depth versus time may be obtained using different values of FCGT, but axisymmetric simulations do not really show a possibility of arrest for shallow cracks in

  15. Brief, pre-learning stress reduces false memory production and enhances true memory selectively in females.

    Science.gov (United States)

    Zoladz, Phillip R; Peters, David M; Kalchik, Andrea E; Hoffman, Mackenzie M; Aufdenkampe, Rachael L; Woelke, Sarah A; Wolters, Nicholas E; Talbot, Jeffery N

    2014-04-10

    Some of the previous research on stress-memory interactions has suggested that stress increases the production of false memories. However, as accumulating work has shown that the effects of stress on learning and memory depend critically on the timing of the stressor, we hypothesized that brief stress administered immediately before learning would reduce, rather than increase, false memory production. In the present study, participants submerged their dominant hand in a bath of ice cold water (stress) or sat quietly (no stress) for 3 min. Then, participants completed a short-term memory task, the Deese-Roediger-McDermott paradigm, in which they were presented with 10 different lists of semantically related words (e.g., candy, sour, sugar) and, after each list, were tested for their memory of presented words (e.g., candy), non-presented unrelated "distractor" words (e.g., hat), and non-presented semantically related "critical lure" words (e.g., sweet). Stress, overall, significantly reduced the number of critical lures recalled (i.e., false memory) by participants. In addition, stress enhanced memory for the presented words (i.e., true memory) in female, but not male, participants. These findings reveal that stress does not unequivocally enhance false memory production and that the timing of the stressor is an important variable that could mediate such effects. Such results could have important implications for understanding the dependability of eyewitness accounts of events that are observed following stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Alleviation of Boron Stress through Plant Derived Smoke Extracts in Sorghum bicolor

    Directory of Open Access Journals (Sweden)

    Pirzada Khan

    2014-08-01

    Full Text Available Boron is an essential micronutrient necessary for plant growth at optimum concentration. However, at high concentrations boron affects plant growth and is toxic to cells. Aqueous extract of plant-derived smoke has been used as a growth regulator for the last two decades to improve seed germination and seedling vigor. It has been established that plant-derived smoke possesses some compounds that act like plant growth hormones. The present research was the first comprehensive attempt to investigate the alleviation of boron stress with plant-derived smoke aqueous extract on Sorghum (Sorghum bicolor seed. Smoke extracts of five plants, i.e. Cymbopogon jwarancusa, Eucalyptus camaldulensis, Peganum harmala, Datura alba and Melia azedarach each with six dilutions (Concentrated, 1:100, 1:200, 1:300, 1:400 and 1:500 were used. While boron solutions at concentrations of 5, 10, 15, 20 and 25 ppm were used for stress. Among the dilutions of smoke, 1:500 of E. camaldulensis significantly increased germination percentage, root and shoot length, number of secondary roots and fresh weight of root and shoot while, boron stress reduced growth of Sorghum. It was observed that combined effect of boron solution and E. camaldulensis smoke extract overcome inhibition and significantly improved plant growth. Present research work investigated that the smoke solution has the potential to alleviate boron toxicity by reducing the uptake of boron by maintaining integrity of plant cell wall. The present investigation suggested that plant derived smoke has the potential to alleviate boron stress and can be used to overcome yield losses caused by boron stress to plants.

  17. Effect Of Dried Whey Milk Supplement On Some Blood Biochemical And Immunological Indices In Relation To Growth Performance Of Heat Stressed Bovine baladi Calves

    International Nuclear Information System (INIS)

    ABDALLA, E.B.; EL-MASRY, K.A.; TEAMA, F.E.; EMARA, S.S.

    2009-01-01

    This experiment was carried out under hot environmental conditions, where temperature-humidity index was equivalent to 86 - 90 and 78 - 80 during day and night, respectively. Twelve bovine Baladi calves of 8 - 10 months old and 112 kg average initial live body weight were used in this study. The calves were divided into two groups of 6 animals each to study the effect of supplementation of dried whey milk on some blood biochemical and immunological indices and growth performance of calves under hot weather conditions of Egypt. The results showed that supplementation of dried whey milk to the diet of heat-stressed calves at the level of 150 g / calf / day reduced significantly each of respiration rate and rectal temperature as well as serum lipid concentrations and their fractions e.g. total cholesterol and phospholipids. Also, dried whey milk supplement caused a significant decline in both AST and ALT activities and reduced significantly alpha globulin concentration, while non-significant changes were observed in each of beta globulin, gamma globulin and immunoglobulin G. However, supplementing dried whey milk to growing calves increased significantly serum concentrations of total protein, albumin, calcium, phosphorous, T 3 and T 4 . Moreover, dried whey milk improved significantly both feed efficiency and daily gain of growing calves. It could be concluded that addition of dried whey milk to the diet reduced rectal temperature and respiration rate and induced an improvement in most blood biochemical parameters and growth performance of heat-stressed bovine Baladi calves.

  18. Role of Growth Arrest and DNA Damage–inducible α in Akt Phosphorylation and Ubiquitination after Mechanical Stress-induced Vascular Injury

    Science.gov (United States)

    Mitra, Sumegha; Sammani, Saad; Wang, Ting; Boone, David L.; Meyer, Nuala J.; Dudek, Steven M.; Moreno-Vinasco, Liliana; Garcia, Joe G. N.

    2011-01-01

    Rationale: The stress-induced growth arrest and DNA damage–inducible α (GADD45a) gene is up-regulated by mechanical stress with GADD45a knockout (GADD45a−/−) mice demonstrating both increased susceptibility to ventilator-induced lung injury (VILI) and reduced levels of the cell survival and vascular permeability signaling effector (Akt). However, the functional role of GADD45a in the pathogenesis of VILI is unknown. Objectives: We sought to define the role of GADD45a in the regulation of Akt activation induced by mechanical stress. Methods: VILI-challenged GADD45a−/− mice were administered a constitutively active Akt1 vector and injury was assessed by bronchoalveolar lavage cell counts and protein levels. Human pulmonary artery endothelial cells (EC) were exposed to 18% cyclic stretch (CS) under conditions of GADD45a silencing and used for immunoprecipitation, Western blotting or immunofluoresence. EC were also transfected with mutant ubiquitin vectors to characterize site-specific Akt ubiquitination. DNA methylation was measured using methyl-specific polymerase chain reaction assay. Measurements and Main Results: Studies exploring the linkage of GADD45a with mechanical stress and Akt regulation revealed VILI-challenged GADD45a−/− mice to have significantly reduced lung injury on overexpression of Akt1 transgene. Increased mechanical stress with 18% CS in EC induced Akt phosphorylation via E3 ligase tumor necrosis factor receptor–associated factor 6 (TRAF6)–mediated Akt K63 ubiquitination resulting in Akt trafficking and activation at the membrane. GADD45a is essential to this process because GADD45a-silenced endothelial cells and GADD45a−/− mice exhibited increased Akt K48 ubiquitination leading to proteasomal degradation. These events involve loss of ubiquitin carboxyl terminal hydrolase 1 (UCHL1), a deubiquitinating enzyme that normally removes K48 polyubiquitin chains bound to Akt thus promoting Akt K63 ubiquitination. Loss of GADD45a

  19. High Pb concentration stress on Typha latifolia growth and Pb removal in microcosm wetlands.

    Science.gov (United States)

    Han, Jianqiu; Chen, Fengzhen; Zhou, Yumei; Wang, Chaohua

    2015-01-01

    When constructed wetlands are used to treat high-Pb wastewater, Pb may become a stress to wetland plants, which subsequently reduces treatment performance and the other ecosystem services. To facilitate the design and operation of constructed wetlands for treatment of Pb-rich wastewater, we investigated the irreversible inhibitory level of Pb for Typha latifolia through experiments in microcosm wetlands. Seven horizontal subsurface flow constructed wetlands were built with rectangular plastic tanks and packed with marble chips and sand. All wetlands were transplanted with nine stems of Typha latifolia each. The wetlands were batch operated in a greenhouse with artificial wastewater (10 L each) for 12 days. Influent to the seven wetlands had different concentrations of Pb: 0 mg/L, 10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 200 mg/L, and 500 mg/L, respectively. The results suggested that leaf chlorophyll relative content, relative growth rate, photosynthetic characteristics, activities of superoxide dismutase, peroxidase, and content of malondialdehyde were not affected when initial Pb concentration was at 100 mg/L and below. But when initial Pb concentration was above 100 mg/L, all of them were seriously affected. We conclude that high Pb concentrations wastewater could inhibit the growth of Typha latifolia and decrease the removal rate of wetlands.

  20. The freeze-thaw stress response of the yeast Saccharomyces cerevisiae is growth phase specific and is controlled by nutritional state via the RAS-cyclic AMP signal transduction pathway.

    Science.gov (United States)

    Park, J I; Grant, C M; Attfield, P V; Dawes, I W

    1997-10-01

    The ability of cells to survive freezing and thawing is expected to depend on the physiological conditions experienced prior to freezing. We examined factors affecting yeast cell survival during freeze-thaw stress, including those associated with growth phase, requirement for mitochondrial functions, and prior stress treatment(s), and the role played by relevant signal transduction pathways. The yeast Saccharomyces cerevisiae was frozen at -20 degrees C for 2 h (cooling rate, less than 4 degrees C min-1) and thawed on ice for 40 min. Supercooling occurred without reducing cell survival and was followed by freezing. Loss of viability was proportional to the freezing duration, indicating that freezing is the main determinant of freeze-thaw damage. Regardless of the carbon source used, the wild-type strain and an isogenic petite mutant ([rho 0]) showed the same pattern of freeze-thaw tolerance throughout growth, i.e., high resistance during lag phase and low resistance during log phase, indicating that the response to freeze-thaw stress is growth phase specific and not controlled by glucose repression. In addition, respiratory ability and functional mitochondria are necessary to confer full resistance to freeze-thaw stress. Both nitrogen and carbon source starvation led to freeze-thaw tolerance. The use of strains affected in the RAS-cyclic AMP (RAS-cAMP) pathway or supplementation of an rca1 mutant (defective in the cAMP phosphodiesterase gene) with cAMP showed that the freeze-thaw response of yeast is under the control of the RAS-cAMP pathway. Yeast did not adapt to freeze-thaw stress following repeated freeze-thaw treatment with or without a recovery period between freeze-thaw cycles, nor could it adapt following pretreatment by cold shock. However, freeze-thaw tolerance of yeast cells was induced during fermentative and respiratory growth by pretreatment with H2O2, cycloheximide, mild heat shock, or NaCl, indicating that cross protection between freeze-thaw stress

  1. Stress redistribution and void growth in butt-welded canisters for spent nuclear fuel

    International Nuclear Information System (INIS)

    Josefson, B.L.; Karlsson, L.; Haeggblad, H.Aa.

    1993-02-01

    The stress-redistribution in Cu-Fe canisters for spent nuclear fuel during waiting for deposition and after final deposition is calculated numerically. The constitutive equation modelling creep deformation during this time period employs values on materials parameters determined within the SKB-project on 'mechanical integrity of canisters for spent nuclear fuel'. The welding residual stresses are redistributed without lowering maximum values during the waiting period, a very low amount of void growth is predicted for this type of copper during the deposition period. This leads to an estimated very large rupture time

  2. Aluminium resistant, plant growth promoting bacteria induce overexpression of Aluminium stress related genes in Arabidopsis thaliana and increase the ginseng tolerance against Aluminium stress.

    Science.gov (United States)

    Farh, Mohamed El-Agamy; Kim, Yeon-Ju; Sukweenadhi, Johan; Singh, Priyanka; Yang, Deok-Chun

    2017-07-01

    Panax ginseng is an important cash crop in the Asian countries due to its pharmaceutical effects, however the plant is exposed to various abiotic stresses, lead to reduction of its quality. One of them is the Aluminum (Al) accumulation. Plant growth promoting bacteria which able to tolerate heavy metals has been considered as a new trend for supporting the growth of many crops in heavy metal occupied areas. In this study, twelve bacteria strains were isolated from rhizosphere of diseased Korean ginseng roots located in Gochang province, Republic of Korea and tested for their ability to grow in Al-embedded broth media. Out of them, four strains (Pseudomonas simiae N3, Pseudomonas fragi N8, Chryseobacterium polytrichastri N10, and Burkholderia ginsengiterrae N11-2) were able to grow. The strains could also show other plant growth promoting activities e.g. auxins and siderophores production and phosphate solubilization. P. simiae N3, C. polytrichastri N10, and B. ginsengiterrae N11-2 strains were able to support the growth of Arabidopsis thaliana stressed by Al while P. fragi N8 could not. Plants inoculated with P. simiae N3, C. polytrichastri N10, and B. ginsengiterrae N11-2 showed higher expression level of Al-stress related genes, AtAIP, AtALS3 and AtALMT1, compared to non-bacterized plants. Expression profiles of the genes reveal the induction of external mechanism of Al resistance by P. simiae N3 and B. ginsengiterrae N11-2 and internal mechanism by C. polytrichastri N10. Korean ginseng seedlings treated with these strains showed higher biomass, particularly the foliar part, higher chlorophyll content than non-bacterized Al-stressed seedlings. According to the present results, these strains can be used in the future for the cultivation of ginseng in Al-persisted locations. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Reduced interaction layer growth of U-Mo dispersion in Al-Si

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Park, Jong Man; Ryu, Ho Jin; Jung, Yang Hong [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong, Daejeon 305-353 (Korea, Republic of); Hofman, G.L. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2012-11-15

    Development of high U-density U-Mo fuel particle dispersion in Al is needed to convert high power research and test reactors from HEU to LEU. Interaction layer growth between U-Mo and Al poses a challenge to this goal. The KOMO-4 test was designed at KAERI and irradiated in the HANARO reactor to {approx}50% burnup of initial 19.75% U-235 enrichment at {approx}200 Degree-Sign C. The main objective of the test was to examine the effect of the Si content in the matrix up to 8 wt.%. U-Mo/Al-Si dispersion samples with a Si addition in the range 0-8 wt.% in the matrix were tested. A sample with pre-irradiation Si-containing interaction layers (ILs) was also tested. As the Si content in the matrix increases, the IL growth was progressively reduced. Contrary to the thermodynamics prediction and out-of-pile observations, however, Si accumulation in the ILs occurred near the IL-matrix interface with only a slight increase in concentration. The effect of the pre-formed ILs was insignificant in reducing IL growth.

  4. Reduced interaction layer growth of U–Mo dispersion in Al–Si

    International Nuclear Information System (INIS)

    Kim, Yeon Soo; Park, Jong Man; Ryu, Ho Jin; Jung, Yang Hong; Hofman, G.L.

    2012-01-01

    Development of high U-density U–Mo fuel particle dispersion in Al is needed to convert high power research and test reactors from HEU to LEU. Interaction layer growth between U–Mo and Al poses a challenge to this goal. The KOMO-4 test was designed at KAERI and irradiated in the HANARO reactor to ∼50% burnup of initial 19.75% U-235 enrichment at ∼200 °C. The main objective of the test was to examine the effect of the Si content in the matrix up to 8 wt.%. U–Mo/Al–Si dispersion samples with a Si addition in the range 0–8 wt.% in the matrix were tested. A sample with pre-irradiation Si-containing interaction layers (ILs) was also tested. As the Si content in the matrix increases, the IL growth was progressively reduced. Contrary to the thermodynamics prediction and out-of-pile observations, however, Si accumulation in the ILs occurred near the IL–matrix interface with only a slight increase in concentration. The effect of the pre-formed ILs was insignificant in reducing IL growth.

  5. Presence of a dog reduces subjective but not physiological stress responses to an analogue trauma

    OpenAIRE

    Johanna eLass-Hennemann; Peter ePeyk; Markus eStreb; Elena eHolz; Tanja eMichael

    2014-01-01

    Dogs are known to have stress and anxiety reducing effects. Several studies have shown that dogs are able to calm people during cognitive and performance stressors. Recently, therapy dogs have been proposed as a treatment adjunct for PTSD patients. In this study we aimed to investigate, whether dogs also have anxiety- and stress reducing effect during traumatic stressors. 80 healthy female participants were randomly assigned to one of 4 conditions. They were exposed to a traumatic film clip (...

  6. Growth form-dependent response to physical disturbance and thermal stress in Acropora corals

    Science.gov (United States)

    Muko, S.; Arakaki, S.; Nagao, M.; Sakai, Kazuhiko

    2013-03-01

    To predict the community structure in response to changing environmental conditions, it is necessary to know the species-specific reaction and relative impact strength of each disturbance. We investigated the coral communities in two sites, an exposed and a protected site, at Iriomote Island, Japan, from 2005 to 2008. During the study period, a cyclone and thermal stress were observed. All Acropora colonies, classified into four morphologies (arborescent, tabular, corymbose, and digitate), were identified and tracked through time to calculate the annual mortality and growth rate. The mortality of all Acropora colonies in the protected site was lower than that in the exposed site during the period without disturbances. Extremely higher mortality due to bleaching was observed in tabular and corymbose Acropora, compared to other growth forms, at the protected sites after thermal stress. In contrast, physical disturbance by a tropical cyclone induced the highest mortality in arborescent and digitate corals at the exposed site. Moreover, arborescent corals exhibited a remarkable decline 1 year after the tropical cyclone at the exposed site. The growth of colonies that survived coral bleaching did not decrease in the following year compared to previous year for all growth forms, but the growth of arborescent and tabular remnant corals at the exposed site declined severely after the tropical cyclone compared to previous year. The delayed mortality and lowered growth rate after the tropical cyclone were probably due to the damage caused by the tropical cyclone. These results indicate that the cyclone had a greater impact on fragile corals than expected. This study provides useful information for the evaluation of Acropora coral response to progressing global warming conditions, which are predicted to increase in frequency and intensity in the near future.

  7. Stress and Protein Turnover in Lemna minor1

    Science.gov (United States)

    Cooke, Robert J.; Oliver, Jane; Davies, David D.

    1979-01-01

    Transfer of fronds of Lemna minor L. to adverse growth conditions or stress situations causes a lowering of the growth rate and a loss of soluble protein per frond, the extent of the loss being dependent on the nature of the stress. The loss or protein is due to two factors: (a) a decrease in the rate constant of protein synthesis (ks); (b) an increase in the rate constant of protein degradation (kd). In plants adapted to the stresses, protein synthesis increases and the initially rapid rate of proteolysis is reduced. Addition of abscisic acid both lowers ks and increases kd, whereas benzyladenine seems to alleviate the effects of stress on protein content by decreasing kd rather than by altering ks. Based on the measurement of enzyme activities, stress-induced protein degradation appears to be a general phenomenon, affecting many soluble proteins. The adaptive significance of stress-induced proteolysis is discussed. PMID:16661102

  8. Computer-based versus in-person interventions for preventing and reducing stress in workers.

    Science.gov (United States)

    Kuster, Anootnara Talkul; Dalsbø, Therese K; Luong Thanh, Bao Yen; Agarwal, Arnav; Durand-Moreau, Quentin V; Kirkehei, Ingvild

    2017-08-30

    Chronic exposure to stress has been linked to several negative physiological and psychological health outcomes. Among employees, stress and its associated effects can also result in productivity losses and higher healthcare costs. In-person (face-to-face) and computer-based (web- and mobile-based) stress management interventions have been shown to be effective in reducing stress in employees compared to no intervention. However, it is unclear if one form of intervention delivery is more effective than the other. It is conceivable that computer-based interventions are more accessible, convenient, and cost-effective. To compare the effects of computer-based interventions versus in-person interventions for preventing and reducing stress in workers. We searched CENTRAL, MEDLINE, PubMed, Embase, PsycINFO, NIOSHTIC, NIOSHTIC-2, HSELINE, CISDOC, and two trials registers up to February 2017. We included randomised controlled studies that compared the effectiveness of a computer-based stress management intervention (using any technique) with a face-to-face intervention that had the same content. We included studies that measured stress or burnout as an outcome, and used workers from any occupation as participants. Three authors independently screened and selected 75 unique studies for full-text review from 3431 unique reports identified from the search. We excluded 73 studies based on full-text assessment. We included two studies. Two review authors independently extracted stress outcome data from the two included studies. We contacted study authors to gather additional data. We used standardised mean differences (SMDs) with 95% confidence intervals (CIs) to report study results. We did not perform meta-analyses due to variability in the primary outcome and considerable statistical heterogeneity. We used the GRADE approach to rate the quality of the evidence. Two studies met the inclusion criteria, including a total of 159 participants in the included arms of the studies

  9. Liver Growth Factor (LGF Upregulates Frataxin Protein Expression and Reduces Oxidative Stress in Friedreich’s Ataxia Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Lucía Calatrava-Ferreras

    2016-12-01

    Full Text Available Friedreich’s ataxia (FA is a severe disorder with autosomal recessive inheritance that is caused by the abnormal expansion of GAA repeat in intron 1 of FRDA gen. This alteration leads to a partial silencing of frataxin transcription, causing a multisystem disorder disease that includes neurological and non-neurological damage. Recent studies have proven the effectiveness of neurotrophic factors in a number of neurodegenerative diseases. Therefore, we intend to determine if liver growth factor (LGF, which has a demonstrated antioxidant and neuroprotective capability, could be a useful therapy for FA. To investigate the potential therapeutic activity of LGF we used transgenic mice of the FXNtm1MknTg (FXNYG8Pook strain. In these mice, intraperitoneal administration of LGF (1.6 μg/mouse exerted a neuroprotective effect on neurons of the lumbar spinal cord and improved cardiac hypertrophy. Both events could be the consequence of the increment in frataxin expression induced by LGF in spinal cord (1.34-fold and heart (1.2-fold. LGF also upregulated by 2.6-fold mitochondrial chain complex IV expression in spinal cord, while in skeletal muscle it reduced the relation oxidized glutathione/reduced glutathione. Since LGF partially restores motor coordination, we propose LGF as a novel factor that may be useful in the treatment of FA.

  10. Potential drop technique for monitoring stress corrosion cracking growth

    International Nuclear Information System (INIS)

    Neves, Celia F.C.; Schvartzman, Monica M.A.M.; Moreira, Pedro A.L.D.P.L.P.

    2002-01-01

    Stress corrosion cracking is one of most severe damage mechanisms influencing the lifetime of components in the operation of nuclear power plants. To assess the initiation stages and kinetics of crack growth as the main parameters coming to residual lifetime determination, the testing facility should allow active loading of specimens in the environment which is close to the real operation conditions of assessed component. Under cooperation of CDTN/CNEN and International Atomic Energy Agency a testing system has been developed by Nuclear Research Institute, Czech Republic, that will be used for the environmentally assisted cracking testing at CDTN/CNEN. The facility allows high temperature autoclave corrosion mechanical testing in well-defined LWR water chemistry using constant load, slow strain rate and rising displacement techniques. The facility consists of autoclave and refreshing water loop enabling testing at temperatures up to 330 deg C. Active loading system allows the maximum load on a specimen as high as 60 kN. The potential drop measurement is used to determine the instant crack length and its growth rate. The paper presents the facility and describes the potential drop technique, that is one of the most used techniques to monitor crack growth in specimens under corrosive environments. (author)

  11. Running Reduces Uncontrollable Stress-Evoked Serotonin and Potentiates Stress-Evoked Dopamine Concentrations in the Rat Dorsal Striatum.

    Directory of Open Access Journals (Sweden)

    Peter J Clark

    Full Text Available Accumulating evidence from both the human and animal literature indicates that exercise reduces the negative consequences of stress. The neurobiological etiology for this stress protection, however, is not completely understood. Our lab reported that voluntary wheel running protects rats from expressing depression-like instrumental learning deficits on the shuttle box escape task after exposure to unpredictable and inescapable tail shocks (uncontrollable stress. Impaired escape behavior is a result of stress-sensitized serotonin (5-HT neuron activity in the dorsal raphe (DRN and subsequent excessive release of 5-HT into the dorsal striatum following exposure to a comparatively mild stressor. However, the possible mechanisms by which exercise prevents stress-induced escape deficits are not well characterized. The purpose of this experiment was to test the hypothesis that exercise blunts the stress-evoked release of 5-HT in the dorsal striatum. Changes to dopamine (DA levels were also examined, since striatal DA signaling is critical for instrumental learning and can be influenced by changes to 5-HT activity. Adult male F344 rats, housed with or without running wheels for 6 weeks, were either exposed to tail shock or remained undisturbed in laboratory cages. Twenty-four hours later, microdialysis was performed in the medial (DMS and lateral (DLS dorsal striatum to collect extracellular 5-HT and DA before, during, and following 2 mild foot shocks. We report wheel running prevents foot shock-induced elevation of extracellular 5-HT and potentiates DA concentrations in both the DMS and DLS approximately 24 h following exposure to uncontrollable stress. These data may provide a possible mechanism by which exercise prevents depression-like instrumental learning deficits following exposure to acute stress.

  12. A Yoga and Compassion Meditation Program Reduces Stress in Familial Caregivers of Alzheimer's Disease Patients

    Directory of Open Access Journals (Sweden)

    M. A. D. Danucalov

    2013-01-01

    Full Text Available Familial caregivers of patients with Alzheimer's disease exhibit reduced quality of life and increased stress levels. The aim of this study was to investigate the effects of an 8-week yoga and compassion meditation program on the perceived stress, anxiety, depression, and salivary cortisol levels in familial caregivers. A total of 46 volunteers were randomly assigned to participate in a stress-reduction program for a 2-month period (yoga and compassion meditation program—YCMP group (n=25 or an untreated group for the same period of time (control group (n=21. The levels of stress, anxiety, depression, and morning salivary cortisol of the participants were measured before and after intervention. The groups were initially homogeneous; however, after intervention, the groups diverged significantly. The YCMP group exhibited a reduction of the stress (P<0.05, anxiety (P<0.000001, and depression (P<0.00001 levels, as well as a reduction in the concentration of salivary cortisol (P<0.05. Our study suggests that an 8-week yoga and compassion meditation program may offer an effective intervention for reducing perceived stress, anxiety, depression, and salivary cortisol in familial caregivers.

  13. A randomized controlled trial of mindfulness to reduce stress and burnout among intern medical practitioners.

    Science.gov (United States)

    Ireland, Michael J; Clough, Bonnie; Gill, Kim; Langan, Fleur; O'Connor, Angela; Spencer, Lyndall

    2017-04-01

    Stress and burnout are highly prevalent among medical doctors, and are associated with negative consequences for doctors, patients, and organizations. The purpose of the current study was to examine the effectiveness of a mindfulness training intervention in reducing stress and burnout among medical practitioners, by means of a Randomised Controlled Trial design. Participants were 44 intern doctors completing an emergency department rotation in a major Australian hospital. Participants were randomly assigned to either an active control (one hour extra break per week) or the 10-week mindfulness training intervention. Measures of stress and burnout were taken pre-, mid- and post intervention. Participants undergoing the 10-week mindfulness training program reported greater improvements in stress and burnout relative to participants in the control condition. Significant reduction in stress and burnout was observed for participants in the mindfulness condition. No such reductions were observed for participants in the control condition. Mindfulness interventions may provide medical practitioners with skills to effectively manage stress and burnout, thereby reducing their experience of these symptoms. It is likely that doctors would benefit from the inclusion of such a training program as a part of their general medical education.

  14. Fibroblast growth factor 21 participates in adaptation to endoplasmic reticulum stress and attenuates obesity-induced hepatic metabolic stress.

    Science.gov (United States)

    Kim, Seong Hun; Kim, Kook Hwan; Kim, Hyoung-Kyu; Kim, Mi-Jeong; Back, Sung Hoon; Konishi, Morichika; Itoh, Nobuyuki; Lee, Myung-Shik

    2015-04-01

    Fibroblast growth factor 21 (FGF21) is an endocrine hormone that exhibits anti-diabetic and anti-obesity activity. FGF21 expression is increased in patients with and mouse models of obesity or nonalcoholic fatty liver disease (NAFLD). However, the functional role and molecular mechanism of FGF21 induction in obesity or NAFLD are not clear. As endoplasmic reticulum (ER) stress is triggered in obesity and NAFLD, we investigated whether ER stress affects FGF21 expression or whether FGF21 induction acts as a mechanism of the unfolded protein response (UPR) adaptation to ER stress induced by chemical stressors or obesity. Hepatocytes or mouse embryonic fibroblasts deficient in UPR signalling pathways and liver-specific eIF2α mutant mice were employed to investigate the in vitro and in vivo effects of ER stress on FGF21 expression, respectively. The in vivo importance of FGF21 induction by ER stress and obesity was determined using inducible Fgf21-transgenic mice and Fgf21-null mice with or without leptin deficiency. We found that ER stressors induced FGF21 expression, which was dependent on a PKR-like ER kinase-eukaryotic translation factor 2α-activating transcription factor 4 pathway both in vitro and in vivo. Fgf21-null mice exhibited increased expression of ER stress marker genes and augmented hepatic lipid accumulation after tunicamycin treatment. However, these changes were attenuated in inducible Fgf21-transgenic mice. We also observed that Fgf21-null mice with leptin deficiency displayed increased hepatic ER stress response and liver injury, accompanied by deteriorated metabolic variables. Our results suggest that FGF21 plays an important role in the adaptive response to ER stress- or obesity-induced hepatic metabolic stress.

  15. Reduced Stress and Improved Sleep Quality Caused by Green Tea Are Associated with a Reduced Caffeine Content

    Directory of Open Access Journals (Sweden)

    Keiko Unno

    2017-07-01

    Full Text Available Caffeine, one of the main components in green tea, can interfere with sleep and block the effect of theanine. Since theanine, the main amino acid in tea leaves, has significant anti-stress effects in animals and humans, we examined the effects of green tea with lowered caffeine content, i.e., low-caffeine green tea (LCGT, on stress and quality of sleep of middle–aged individuals (n = 20, mean age 51.3 ± 6.7 years in a double-blind crossover design. Standard green tea (SGT was used as the control. These teas (≥300 mL/day, which were eluted with room temperature water, were consumed over a period of seven days after a single washout term. The level of salivary α-amylase activity (sAA, a stress marker, was significantly lower in participants that consumed LCGT (64.7 U/mL than in those that consumed SGT (73.9 U/mL. Sleep quality was higher in participants that consumed a larger quantity of LCGT. In addition, a self-diagnostic check for accumulated fatigue was significantly lower in those participants that consumed LCGT than SGT. These results indicate that LCGT intake can reduce stress in middle-aged individuals and improve their quality of sleep. The reduction in caffeine is suggested to be a valid reason for enhancing the anti-stress effect of green tea.

  16. Reduced Stress and Improved Sleep Quality Caused by Green Tea Are Associated with a Reduced Caffeine Content.

    Science.gov (United States)

    Unno, Keiko; Noda, Shigenori; Kawasaki, Yohei; Yamada, Hiroshi; Morita, Akio; Iguchi, Kazuaki; Nakamura, Yoriyuki

    2017-07-19

    Caffeine, one of the main components in green tea, can interfere with sleep and block the effect of theanine. Since theanine, the main amino acid in tea leaves, has significant anti-stress effects in animals and humans, we examined the effects of green tea with lowered caffeine content, i.e., low-caffeine green tea (LCGT), on stress and quality of sleep of middle-aged individuals ( n = 20, mean age 51.3 ± 6.7 years) in a double-blind crossover design. Standard green tea (SGT) was used as the control. These teas (≥300 mL/day), which were eluted with room temperature water, were consumed over a period of seven days after a single washout term. The level of salivary α-amylase activity (sAA), a stress marker, was significantly lower in participants that consumed LCGT (64.7 U/mL) than in those that consumed SGT (73.9 U/mL). Sleep quality was higher in participants that consumed a larger quantity of LCGT. In addition, a self-diagnostic check for accumulated fatigue was significantly lower in those participants that consumed LCGT than SGT. These results indicate that LCGT intake can reduce stress in middle-aged individuals and improve their quality of sleep. The reduction in caffeine is suggested to be a valid reason for enhancing the anti-stress effect of green tea.

  17. Effects of salt stress imposed during two growth phases on cauliflower production and quality.

    Science.gov (United States)

    Giuffrida, Francesco; Cassaniti, Carla; Malvuccio, Angelo; Leonardi, Cherubino

    2017-03-01

    Cultivation of cauliflower is diffused in Mediterranean areas where water salinity results in the need to identify alternative irrigation sources or management strategies. Using saline water during two growth phases (from transplanting to visible appearance of inflorescence or from appearance of inflorescence to head harvest), the present study aimed to identify the growth period that is more suitable for irrigation with low quality water in relation to cauliflower production and quality. Salinity affected cauliflower growth mainly when imposed in the first growth phase. The growth reduction depended mainly on ion-specific effects, although slight nutrient imbalances as a result of Na + and Cl - antagonisms were observed. The use of non-saline water in the first or second growth period reduced both the osmotic and toxic effects of salinity. When salinity was applied during inflorescence growth, yield was reduced because of a restriction of water accumulation in the head. The results of the present study demonstrate the possibility of producing marketable cauliflower heads under conditions of salinity by timing the application of the best quality water during the first growth phase to improve fruit quality and during the second phase to reduce the negative effects of salinity on yield. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Meniscus Imaging for Crystal-Growth Control

    Science.gov (United States)

    Sachs, E. M.

    1983-01-01

    Silicon crystal growth monitored by new video system reduces operator stress and improves conditions for observation and control of growing process. System optics produce greater magnification vertically than horizontally, so entire meniscus and melt is viewed with high resolution in both width and height dimensions.

  19. Adaptation to different types of stress converge on mitochondrial metabolism

    DEFF Research Database (Denmark)

    Lahtvee, Petri-Jaan; Kumar, Rahul; Hallstrom, B. M.

    2016-01-01

    Yeast cell factories encounter physical and chemical stresses when used for industrial production of fuels and chemicals. These stresses reduce productivity and increase bioprocess costs. Understanding the mechanisms of the stress response is essential for improving cellular robustness in platform...... strains. We investigated the three most commonly encountered industrial stresses for yeast (ethanol, salt, and temperature) to identify the mechanisms of general and stress-specific responses under chemostat conditions in which specific growth rate–dependent changes are eliminated. By applying systems...

  20. The impact of reduced worktime on sleep and perceived stress - a group randomized intervention study using diary data.

    Science.gov (United States)

    Schiller, Helena; Lekander, Mats; Rajaleid, Kristiina; Hellgren, Carina; Åkerstedt, Torbjörn; Barck-Holst, Peter; Kecklund, Göran

    2017-03-01

    Objective Insufficient time for recovery between workdays may cause fatigue and disturbed sleep. This study evaluated the impact of an intervention that reduced weekly working hours by 25% on sleep, sleepiness and perceived stress for employees within the public sector. Method Participating workplaces (N=33) were randomized into intervention and control groups. Participants (N=580, 76% women) worked full-time at baseline. The intervention group (N=354) reduced worktime to 75% with preserved salary during 18 months. Data were collected at baseline and after 9 and 18 months follow-up. Sleep quality, sleep duration, sleepiness, perceived stress,and worries and stress at bedtime were measured with diary during one week per data collection. Result A multilevel mixed model showed that compared with the control group, at the 18-month follow-up, the intervention group had improved sleep quality and sleep duration (+23 minutes) and displayed reduced levels of sleepiness, perceived stress, and worries and stress at bedtime on workdays (Psleep length. Effect sizes were small (Cohen's f2sleep quality and worries and stress at bedtime as additional between-group factors did not influence the results. Conclusion A 25% reduction of weekly work hours with retained salary resulted in beneficial effects on sleep, sleepiness and perceived stress both on workdays and days off. These effects were maintained over an 18-month period. This randomized intervention thus indicates that reduced worktime may improve recovery and perceived stress.

  1. Non-square quantum well growth for reduced threshold current in ...

    African Journals Online (AJOL)

    This paper presents calculations demonstrating that non-square quantum well growth (well shaping) can result in reduced threshold current for tensilely strained quantum well bipolar diode lasers operating at 1.52ìm m. Calculations of subband structure, optical matrix elements and laser gain are performed for arbitrarily ...

  2. Influence of biostimulants-seed-priming on Ceratotheca triloba germination and seedling growth under low temperatures, low osmotic potential and salinity stress.

    Science.gov (United States)

    Masondo, Nqobile A; Kulkarni, Manoj G; Finnie, Jeffrey F; Van Staden, Johannes

    2018-01-01

    Extreme temperatures, drought and salinity stress adversely affect seed germination and seedling growth in crop species. Seed priming has been recognized as an indispensable technique in the production of stress-tolerant plants. Seed priming increases seed water content, improves protein synthesis using mRNA and DNA and repair mitochondria in seeds prior to germination. The current study aimed to determine the role of biostimulants-seed-priming during germination and seedling growth of Ceratotheca triloba (Bernh.) Hook.f. (an indigenous African leafy vegetable) under low temperature, low osmotic potential and salinity stress conditions. Ceratotheca triloba seeds were primed with biostimulants [smoke-water (SW), synthesized smoke-compound karrikinolide (KAR 1 ), Kelpak ® (commercial seaweed extract), phloroglucinol (PG) and distilled water (control)] for 48h at 25°C. Thereafter, primed seeds were germinated at low temperatures, low osmotic potential and high NaCl concentrations. Low temperature (10°C) completely inhibited seed germination. However, temperature shift to 15°C improved germination. Smoke-water and KAR 1 enhanced seed germination with SW improving seedling growth under different stress conditions. Furthermore, priming seeds with Kelpak ® stimulated percentage germination, while PG and the control treatment improved seedling growth at different PEG and NaCl concentrations. Generally, high concentrations of PEG and NaCl brought about detrimental effects on seed germination and seedling growth. Findings from this study show the potential role of seed priming with biostimulants in the alleviation of abiotic stress conditions during seed germination and seedling growth in C. triloba plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Role of internal stresses in the transient of irradiation growth of zircaloy-2

    International Nuclear Information System (INIS)

    Tome, C.N.; Christodoulou, N.; Turner, P.A.; Miller, M.A.; Woo, C.H.; Root, J.; Holden, T.M.

    1995-07-01

    A 'self-consistent' polycrystalline model is used to simulate irradiation growth of Zircaloy-2 samples irradiated at about 330 K. The predictions of the model are compared with experimental measurements obtained from specimens irradiated in the Advanced Test Reactor (ATR) at Idaho Falls. Three types of material are studied here: annealed, cold worked in tension and cold worked by rolling. In general, the growth rate attains a steady-state value after it goes through a transient that depends on the initial state of the material. The transient growth behaviour is explained in terms of the evolution of intergranular residual stresses that are present in the sample, and in terms of the dislocation structure. From this study, information regarding irradiation creep and growth mechanisms occurring at the single crystal level is obtained. (author). 28 refs., 1 tab., 4 figs

  4. Computational analysis of heat transfer, thermal stress and dislocation density during resistively Czochralski growth of germanium single crystal

    Science.gov (United States)

    Tavakoli, Mohammad Hossein; Renani, Elahe Kabiri; Honarmandnia, Mohtaram; Ezheiyan, Mahdi

    2018-02-01

    In this paper, a set of numerical simulations of fluid flow, temperature gradient, thermal stress and dislocation density for a Czochralski setup used to grow IR optical-grade Ge single crystal have been done for different stages of the growth process. A two-dimensional steady state finite element method has been applied for all calculations. The obtained numerical results reveal that the thermal field, thermal stress and dislocation structure are mainly dependent on the crystal height, heat radiation and gas flow in the growth system.

  5. Single-cell analysis of S. cerevisiae growth recovery after a sublethal heat-stress applied during an alcoholic fermentation.

    Science.gov (United States)

    Tibayrenc, Pierre; Preziosi-Belloy, Laurence; Ghommidh, Charles

    2011-06-01

    Interest in bioethanol production has experienced a resurgence in the last few years. Poor temperature control in industrial fermentation tanks exposes the yeast cells used for this production to intermittent heat stress which impairs fermentation efficiency. Therefore, there is a need for yeast strains with improved tolerance, able to recover from such temperature variations. Accordingly, this paper reports the development of methods for the characterization of Saccharomyces cerevisiae growth recovery after a sublethal heat stress. Single-cell measurements were carried out in order to detect cell-to-cell variability. Alcoholic batch fermentations were performed on a defined medium in a 2 l instrumented bioreactor. A rapid temperature shift from 33 to 43 °C was applied when ethanol concentration reached 50 g l⁻¹. Samples were collected at different times after the temperature shift. Single cell growth capability, lag-time and initial growth rate were determined by monitoring the growth of a statistically significant number of cells after agar medium plating. The rapid temperature shift resulted in an immediate arrest of growth and triggered a progressive loss of cultivability from 100 to 0.0001% within 8 h. Heat-injured cells were able to recover their growth capability on agar medium after a lag phase. Lag-time was longer and more widely distributed as the time of heat exposure increased. Thus, lag-time distribution gives an insight into strain sensitivity to heat-stress, and could be helpful for the selection of yeast strains of technological interest.

  6. Effects of Cadmium Stress on Seed Germination, Seedling Growth and Seed Amylase Activities in Rice (Oryza sativa

    Directory of Open Access Journals (Sweden)

    Jun-yu HE

    2008-12-01

    Full Text Available Two rice varieties, Xiushui 110 with high cadmium (Cd tolerance and Xiushui 11 with low Cd tolerance were used to study the effects of Cd stress on seed germination, seedling growth and amylase activities. The low cadmium concentration had little effect on seed germination rate. However, cadmium stress could significantly inhibit plumule and radicle growth, especially for radicle growth. Germination index, vigour index, radicle length and amylase activities of Xiushui 11 decreased more significantly with the increasing cadmium level compared with Xiushui 110. The cadmium content in seedlings of Xiushui 11 was higher than that in Xiushui 110 when the cadmium concentration exceeded 5 μmol/L, which caused lower mitotic index in root tips and amylase activities, and more serious cadmium toxicity in Xiushui 11.

  7. Growth factor-induced mobilization of cardiac progenitor cells reduces the risk of arrhythmias, in a rat model of chronic myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Leonardo Bocchi

    Full Text Available Heart repair by stem cell treatment may involve life-threatening arrhythmias. Cardiac progenitor cells (CPCs appear best suited for reconstituting lost myocardium without posing arrhythmic risks, being commissioned towards cardiac phenotype. In this study we tested the hypothesis that mobilization of CPCs through locally delivered Hepatocyte Growth Factor and Insulin-Like Growth Factor-1 to heal chronic myocardial infarction (MI, lowers the proneness to arrhythmias. We used 133 adult male Wistar rats either with one-month old MI and treated with growth factors (GFs, n = 60 or vehicle (V, n = 55, or sham operated (n = 18. In selected groups of animals, prior to and two weeks after GF/V delivery, we evaluated stress-induced ventricular arrhythmias by telemetry-ECG, cardiac mechanics by echocardiography, and ventricular excitability, conduction velocity and refractoriness by epicardial multiple-lead recording. Invasive hemodynamic measurements were performed before sacrifice and eventually the hearts were subjected to anatomical, morphometric, immunohistochemical, and molecular biology analyses. When compared with untreated MI, GFs decreased stress-induced arrhythmias and concurrently prolonged the effective refractory period (ERP without affecting neither the duration of ventricular repolarization, as suggested by measurements of QTc interval and mRNA levels for K-channel α-subunits Kv4.2 and Kv4.3, nor the dispersion of refractoriness. Further, markers of cardiomyocyte reactive hypertrophy, including mRNA levels for K-channel α-subunit Kv1.4 and β-subunit KChIP2, interstitial fibrosis and negative structural remodeling were significantly reduced in peri-infarcted/remote ventricular myocardium. Finally, analyses of BrdU incorporation and distribution of connexin43 and N-cadherin indicated that cytokines generated new vessels and electromechanically-connected myocytes and abolished the correlation of infarct size with deterioration

  8. Growth, immune, antioxidant, and bone responses of heat stress-exposed broilers fed diets supplemented with tomato pomace

    Science.gov (United States)

    Hosseini-Vashan, S. J.; Golian, A.; Yaghobfar, A.

    2016-08-01

    A study was conducted to investigate the effects of supplementation of dried tomato pomace (DTP) on growth performance, relative weights of viscera, serum biological parameters, antioxidant status, immune response, and bone composition of broilers exposed to a high ambient temperature. A total of 352 one-day-old male broiler chickens were randomly divided into four groups consisting of four replicates with 22 birds each. One group was reared under the thermoneutral zone and fed a corn-soybean meal basal diet. The other three groups were subjected to a cyclic heat stress from 29 to 42 days of age (34 ± 1 °C, 55 % RH, 5 h/day). These birds were fed corn-soybean meal basal diet or the same diet supplemented with 3 % DTP (420 mg lycopene/kg diet) or 5 % (708 mg lycopene/kg diet) of DTP. Blood samples were collected on days 28 and 42, and the birds were slaughtered at the same times. Supplementation of 5 % of DTP increased body weight and production index and decreased feed conversion ratio during 1-28 days of age. On day 28, the broilers supplemented with 5 % DTP had lower serum triglycerides and higher high-density lipoprotein (HDL) cholesterol concentration than those on the other dietary treatments. The activities of glutathione peroxidase (GPx) and superoxide dismutase (SOD) were higher and the concentration of malondialdehyde (MDA) was lower in the broilers fed 5 % TP than those of the broilers fed other diets at 28 days of age. The effects of heat stress (HS) were impaired body weight, enhanced serum activities of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lipase, and MDA concentration while reducing the activities of GPx and SOD. Dried tomato pomace supplementation did not influence growth performance under HS but ameliorated the negative effects of HS on the serum enzyme activities, GPx activity, and lipid peroxidation. Heat stress did not change the relative weights of the lymphoid organs but reduced the total and IgG titers

  9. Responses of growth and primary metabolism of water-stressed barley roots to rehydration

    Science.gov (United States)

    Barley seedlings [Hordeum vulgare L. Brant] were grown in pots in controlled environment chambers and drought treatments were imposed 11 days after sowing. Soil water content decreased from 92% to 10% after an additional 14 days of water stress. Shoot and root growth ceased after 4 and 9 days of wat...

  10. Effects of pulsed magnetic field treatment of soybean seeds on calli growth, cell damage, and biochemical changes under salt stress.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Leelapriya, Thasari; Kumari, Bollipo Diana Ranjitha

    2012-12-01

    The effects of magnetic field (MF) treatments of soybean seeds on calli growth, cell damage, and biochemical changes under salt stress were investigated under controlled conditions. Soybean seeds were exposed to a 1.0 Hz sinusoidal uniform pulsed magnetic field (PMF) of 1.5 µT for 5 h/day for 20 days. Non-treated seeds were considered as controls. For callus regeneration, the embryonic axis explants were taken from seeds and inoculated in a saline medium with a concentration of 10 mM NaCl for calli growth analysis and biochemical changes. The combined treatment of MF and salt stress was found to significantly increase calli fresh weight, total soluble sugar, total protein, and total phenol contents, but it decreased the ascorbic acid, lipid peroxidation, and catalase activity of calli from magnetically exposed seeds compared to the control calli. PMF treatment significantly improved calli tolerance to salt stress in terms of an increase in flavonoid, flavone, flavonole, alkaloid, saponin, total polyphenol, genistein, and daidzein contents under salt stress. The results suggest that PMF treatment of soybean seeds has the potential to counteract the adverse effects of salt stress on calli growth by improving primary and secondary metabolites under salt stress conditions. Copyright © 2012 Wiley Periodicals, Inc.

  11. Exogenously applied plant growth regulators enhance the morpho-physiological growth and yield of rice under high temperature

    Directory of Open Access Journals (Sweden)

    Shah Fahad

    2016-08-01

    Full Text Available A two-year experiment was conducted to ascertain the effects of exogenously applied plant growth regulators (PGR on rice growth and yield attributes under high day (HDT and high night temperature (HNT. Two rice cultivars (IR-64 and Huanghuazhan were subjected to temperature treatments in controlled growth chambers and four different combinations of ascorbic acid (Vc, alpha-tocopherol (Ve, brassinosteroids (Br, methyl jasmonates (MeJA and triazoles (Tr were applied. High temperature severely affected rice morphology, and also reduced leaf area, above- and below-ground biomass, photosynthesis, and water use efficiency, while increased the leaf water potential of both rice cultivars. Grain yield and its related attributes except number of panicles, were reduced under high temperature. The HDT posed more negative effects on rice physiological attributes, while HNT was more detrimental for grain formation and yield. The Huanghuazhan performed better than IR-64 under high temperature stress with better growth and higher grain yield. Exogenous application of PGRs was helpful in alleviating the adverse effects of high temperature. Among PGR combinations, the Vc+Ve+MejA+Br was the most effective treatment for both cultivars under high temperature stress. The highest grain production by Vc+Ve+MejA+Br treated plants was due to enhanced photosynthesis, spikelet fertility and grain filling, which compensated the adversities of high temperature stress. Taken together, these results will be of worth for further understanding the adaptation and survival mechanisms of rice to high temperature and will assist in developing heat-resistant rice germplasm in future.

  12. Stress-assisted grain growth in nanocrystalline metals: Grain boundary mediated mechanisms and stabilization through alloying

    International Nuclear Information System (INIS)

    Zhang, Yang; Tucker, Garritt J.; Trelewicz, Jason R.

    2017-01-01

    The mechanisms of stress-assisted grain growth are explored using molecular dynamics simulations of nanoindentation in nanocrystalline Ni and Ni-1 at.% P as a function of grain size and deformation temperature. Grain coalescence is primarily confined to the high stress region beneath the simulated indentation zone in nanocrystalline Ni with a grain size of 3 nm. Grain orientation and atomic displacement vector mapping demonstrates that coalescence transpires through grain rotation and grain boundary migration, which are manifested in the grain interior and grain boundary components of the average microrotation. A doubling of the grain size to 6 nm and addition of 1 at.% P eliminates stress-assisted grain growth in Ni. In the absence of grain coalescence, deformation is accommodated by grain boundary-mediated dislocation plasticity and thermally activated in pure nanocrystalline Ni. By adding solute to the grain boundaries, the temperature-dependent deformation behavior observed in both the lattice and grain boundaries inverts, indicating that the individual processes of dislocation and grain boundary plasticity will exhibit different activity based on boundary chemistry and deformation temperature.

  13. Mindfulness and meditation: treating cognitive impairment and reducing stress in dementia.

    Science.gov (United States)

    Russell-Williams, Jesse; Jaroudi, Wafa; Perich, Tania; Hoscheidt, Siobhan; El Haj, Mohamad; Moustafa, Ahmed A

    2018-02-21

    This study investigates the relationship between mindfulness, meditation, cognition and stress in people with Alzheimer's disease (AD), dementia, mild cognitive impairment and subjective cognitive decline. Accordingly, we explore how the use of meditation as a behavioural intervention can reduce stress and enhance cognition, which in turn ameliorates some dementia symptoms. A narrative review of the literature was conducted with any studies using meditation as an intervention for dementia or dementia-related memory conditions meeting inclusion criteria. Studies where moving meditation was the main intervention were excluded due to the possible confounding of exercise. Ten papers were identified and reviewed. There was a broad use of measures across all studies, with cognitive assessment, quality of life and perceived stress being the most common. Three studies used functional magnetic resonance imaging to measure functional changes to brain regions during meditation. The interventions fell into the following three categories: mindfulness, most commonly mindfulness-based stress reduction (six studies); Kirtan Kriya meditation (three studies); and mindfulness-based Alzheimer's stimulation (one study). Three of these studies were randomised controlled trials. All studies reported significant findings or trends towards significance in a broad range of measures, including a reduction of cognitive decline, reduction in perceived stress, increase in quality of life, as well as increases in functional connectivity, percent volume brain change and cerebral blood flow in areas of the cortex. Limitations and directions for future studies on meditation-based treatment for AD and stress management are suggested.

  14. Melatonin Is Involved in Regulation of Bermudagrass Growth and Development and Response to Low K+ Stress

    Directory of Open Access Journals (Sweden)

    Liang Chen

    2017-11-01

    Full Text Available Melatonin (N-acetyl-5-methoxytryptamine plays critical roles in plant growth and development and during the response to multiple abiotic stresses. However, the roles of melatonin in plant response to K+ deficiency remain largely unknown. In the present study, we observed that the endogenous melatonin contents in bermudagrass were remarkably increased by low K+ (LK treatment, suggesting that melatonin was involved in bermudagrass response to LK stress. Further phenotype analysis revealed that exogenous melatonin application conferred Bermudagrass enhanced tolerance to LK stress. Interestingly, exogenous melatonin application also promoted bermudagrass growth and development at normal condition. Furthermore, the K+ contents measurement revealed that melatonin-treated plants accumulated more K+ in both shoot (under both control and LK condition and root tissues (under LK condition compared with those of melatonin non-treated plants. Expression analysis indicated that the transcripts of K+ transport genes were significantly induced by exogenous melatonin treatment in bermudagrass under both control and LK stress conditions, especially under a combined treatment of LK stress and melatonin, which may increase accumulation of K+ content profoundly under LK stress and thereby contributed to the LK-tolerant phenotype. In addition, we investigated the role of melatonin in the regulation of photosystem II (PSII activities under LK stress. The chlorophyll fluorescence transient (OJIP curves were obviously higher in plants grown in LK with melatonin (LK+Mel than those of plants grown in LK medium without melatonin application for 1 or 2 weeks, suggesting that melatonin plays important roles in PSII against LK stress. After a combined treatment of LK stress and melatonin, the values for performance indexes (PIABS, PITotal, and PICS, flux ratios (φP0, ΨE0, and φE0 and specific energy fluxes (ETO/RC were significantly improved compared with those of LK

  15. The Mitochondrial GTPase Gem1 Contributes to the Cell Wall Stress Response and Invasive Growth of Candida albicans

    Directory of Open Access Journals (Sweden)

    Barbara Koch

    2017-12-01

    Full Text Available The interactions of mitochondria with the endoplasmic reticulum (ER are crucial for maintaining proper mitochondrial morphology, function and dynamics. This enables cells to utilize their mitochondria optimally for energy production and anabolism, and it further provides for metabolic control over developmental decisions. In fungi, a key mechanism by which ER and mitochondria interact is via a membrane tether, the protein complex ERMES (ER-Mitochondria Encounter Structure. In the model yeast Saccharomyces cerevisiae, the mitochondrial GTPase Gem1 interacts with ERMES, and it has been proposed to regulate its activity. Here we report on the first characterization of Gem1 in a human fungal pathogen. We show that in Candida albicans Gem1 has a dominant role in ensuring proper mitochondrial morphology, and our data is consistent with Gem1 working with ERMES in this role. Mitochondrial respiration and steady state cellular phospholipid homeostasis are not impacted by inactivation of GEM1 in C. albicans. There are two major virulence-related consequences of disrupting mitochondrial morphology by GEM1 inactivation: C. albicans becomes hypersusceptible to cell wall stress, and is unable to grow invasively. In the gem1Δ/Δ mutant, it is specifically the invasive capacity of hyphae that is compromised, not the ability to transition from yeast to hyphal morphology, and this phenotype is shared with ERMES mutants. As a consequence of the hyphal invasion defect, the gem1Δ/Δ mutant is drastically hypovirulent in the worm infection model. Activation of the mitogen activated protein (MAP kinase Cek1 is reduced in the gem1Δ/Δ mutant, and this function could explain both the susceptibility to cell wall stress and lack of invasive growth. This result establishes a new, respiration-independent mechanism of mitochondrial control over stress signaling and hyphal functions in C. albicans. We propose that ER-mitochondria interactions and the ER

  16. The Mitochondrial GTPase Gem1 Contributes to the Cell Wall Stress Response and Invasive Growth of Candida albicans.

    Science.gov (United States)

    Koch, Barbara; Tucey, Timothy M; Lo, Tricia L; Novakovic, Stevan; Boag, Peter; Traven, Ana

    2017-01-01

    The interactions of mitochondria with the endoplasmic reticulum (ER) are crucial for maintaining proper mitochondrial morphology, function and dynamics. This enables cells to utilize their mitochondria optimally for energy production and anabolism, and it further provides for metabolic control over developmental decisions. In fungi, a key mechanism by which ER and mitochondria interact is via a membrane tether, the protein complex ERMES (ER-Mitochondria Encounter Structure). In the model yeast Saccharomyces cerevisiae , the mitochondrial GTPase Gem1 interacts with ERMES, and it has been proposed to regulate its activity. Here we report on the first characterization of Gem1 in a human fungal pathogen. We show that in Candida albicans Gem1 has a dominant role in ensuring proper mitochondrial morphology, and our data is consistent with Gem1 working with ERMES in this role. Mitochondrial respiration and steady state cellular phospholipid homeostasis are not impacted by inactivation of GEM1 in C. albicans . There are two major virulence-related consequences of disrupting mitochondrial morphology by GEM1 inactivation: C. albicans becomes hypersusceptible to cell wall stress, and is unable to grow invasively. In the gem1 Δ / Δ mutant, it is specifically the invasive capacity of hyphae that is compromised, not the ability to transition from yeast to hyphal morphology, and this phenotype is shared with ERMES mutants. As a consequence of the hyphal invasion defect, the gem1 Δ / Δ mutant is drastically hypovirulent in the worm infection model. Activation of the mitogen activated protein (MAP) kinase Cek1 is reduced in the gem1 Δ / Δ mutant, and this function could explain both the susceptibility to cell wall stress and lack of invasive growth. This result establishes a new, respiration-independent mechanism of mitochondrial control over stress signaling and hyphal functions in C. albicans . We propose that ER-mitochondria interactions and the ER-Mitochondria Organizing

  17. Optimal design of the gerotor (2-ellipses) for reducing maximum contact stress

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Hyo Seo; Li, Sheng Huan [Dept. of Mechanical Convergence Technology, Pusan National University, Busan (Korea, Republic of); Kim, Chul [School of Mechanical Design and Manufacturing, Busan Institute of Science and Technology, Busan (Korea, Republic of)

    2016-12-15

    The oil pump, which is used as lubricator of engines and auto transmission, supplies working oil to the rotating elements to prevent wear. The gerotor pump is used widely in the automobile industry. When wear occurs due to contact between an inner rotor and an outer rotor, the efficiency of the gerotor pump decreases rapidly, and elastic deformation from the contacts also causes vibration and noise. This paper reports the optimal design of a gerotor with a 2-ellipses combined lobe shape that reduces the maximum contact stress. An automatic program was developed to calculate Hertzian contact stress of the gerotor using the Matlab and the effect of the design parameter on the maximum contact stress was analyzed. In addition, the method of theoretical analysis for obtaining the contact stress was verified by performing the fluid-structural coupled analysis using the commercial software, Ansys, considering both the driving force of the inner rotor and the fluid pressure, which is generated by working oil.

  18. Growth rate analysis and protein identification of Kappaphycus alvarezii (Rhodophyta, Gigartinales under pH induced stress culture

    Directory of Open Access Journals (Sweden)

    Mian Zi Tee

    2015-11-01

    Full Text Available Environmental pH is one of the factors contributing to abiotic stress which in turn influences the growth and development of macroalgae. This study was conducted in order to assess the growth and physiological changes in Kappaphycus alvarezii under different pH conditions: pHs 6, ∼8.4 (control and 9. K. alvarezii explants exhibited a difference in the daily growth rate (DGR among the different pH treatments (p ≤ 0.05. The highest DGR was observed in control culture with pH ∼8.4 followed by alkaline (pH 9 and acidic (pH 6 induced stress cultures. Protein expression profile was generated from different pH induced K. alvarezii cultures using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE followed by protein identification and analysis using matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF-MS and Mascot software. Ribulose bisphosphate carboxylase (Rubisco large chain was identified to be up-regulated under acidic (pH 6 condition during the second and fourth week of culture. The findings indicated that Rubisco can be employed as a biomarker for pH induced abiotic stress. Further study on the association between the expression levels of Rubisco large chain and their underlying mechanisms under pH stress conditions is recommended.

  19. Effects of Coenzyme Q10 and Vitamin C on Growth Performance and Blood Components in Broiler Chickens under Heat Stress

    Directory of Open Access Journals (Sweden)

    Raeisi-Zeydabad S

    2017-10-01

    Full Text Available This experiment was carried out to study the effects of Coenzyme Q10 (CoQ10 and vitamin C (VC on growth performance and blood biochemistry in broiler chickens under heat stress conditions. One of three levels of CoQ10 (0, 20, and 40 mg/kg of diet and one of two levels of VC (0 and 250 mg/kg of diet were supplemented to diets of chicks (from 1-42 d of age in a 3 × 2 factorial arrangement. Each dietary treatment had four replicate pens (10 chicks/pen. In order to create chronic heat stress, the house temperature was set at an ambient temperature of 35±2°C for 8 hrs daily (09:00 to 17:00 between 25-42 d of age. Feed intake, body weight gain (BWG, and feed to gain ratio (F:G were recorded at d 10, 25 and 42. At the end of experiment, two chicks/pen were randomly selected to assess blood components. CoQ10 supplementation improved BWG and F:G during 11-25 days, 26-42 days, and the whole period of the experiment (P < 0.05, while VC supplementation improved BWG and F:G only during 11-25 d of age. Blood glucose, cholesterol and triglycerides concentrations were reduced (P < 0.05 by addition of CoQ10 to the diet. Both Supplementation of CoQ10 and VC together lowered heterophil (H count but increased lymphocyte (L count, thereby reducing H/L ratio (P < 0.05. Serum concentrations of corticosterone and T4 were positively affected by dietary supplementation of CoQ10 (P < 0.05, but no differences were obtained with addition of VC to the diet. In conclusion, our observations demonstrated that dietary supplementation of 40 mg/kg CoQ10 or 250 mg/kg VC improves the growth performance of broiler chickens under the heat stress.

  20. Morphine Protects Spinal Cord Astrocytes from Glutamate-Induced Apoptosis via Reducing Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2016-10-01

    Full Text Available Glutamate is not only a neurotransmitter but also an important neurotoxin in central nervous system (CNS. Chronic elevation of glutamate induces both neuronal and glial cell apoptosis. However, its effect on astrocytes is complex and still remains unclear. In this study, we investigated whether morphine, a common opioid ligand, could affect glutamate-induced apoptosis in astrocytes. Primary cultured astrocytes were incubated with glutamate in the presence/absence of morphine. It was found that morphine could reduce glutamate-induced apoptosis of astrocytes. Furthermore, glutamate activated Ca2+ release, thereby inducing endoplasmic reticulum (ER stress in astrocytes, while morphine attenuated this deleterious effect. Using siRNA to reduce the expression of κ-opioid receptor, morphine could not effectively inhibit glutamate-stimulated Ca2+ release in astrocytes, the protective effect of morphine on glutamate-injured astrocytes was also suppressed. These results suggested that morphine could protect astrocytes from glutamate-induced apoptosis via reducing Ca2+ overload and ER stress pathways. In conclusion, this study indicated that excitotoxicity participated in the glutamate mediated apoptosis in astrocytes, while morphine attenuated this deleterious effect via regulating Ca2+ release and ER stress.

  1. Chronic Stress Reduces Nectin-1 mRNA Levels and Disrupts Dendritic Spine Plasticity in the Adult Mouse Perirhinal Cortex

    Directory of Open Access Journals (Sweden)

    Qian Gong

    2018-03-01

    Full Text Available In adulthood, chronic exposure to stressful experiences disrupts synaptic plasticity and cognitive function. Previous studies have shown that perirhinal cortex-dependent object recognition memory is impaired by chronic stress. However, the stress effects on molecular expression and structural plasticity in the perirhinal cortex remain unclear. In this study, we applied the chronic social defeat stress (CSDS paradigm and measured the mRNA levels of nectin-1, nectin-3 and neurexin-1, three synaptic cell adhesion molecules (CAMs implicated in the adverse stress effects, in the perirhinal cortex of wild-type (WT and conditional forebrain corticotropin-releasing hormone receptor 1 conditional knockout (CRHR1-CKO mice. Chronic stress reduced perirhinal nectin-1 mRNA levels in WT but not CRHR1-CKO mice. In conditional forebrain corticotropin-releasing hormone conditional overexpression (CRH-COE mice, perirhinal nectin-1 mRNA levels were also reduced, indicating that chronic stress modulates nectin-1 expression through the CRH-CRHR1 system. Moreover, chronic stress altered dendritic spine morphology in the main apical dendrites and reduced spine density in the oblique apical dendrites of perirhinal layer V pyramidal neurons. Our data suggest that chronic stress disrupts cell adhesion and dendritic spine plasticity in perirhinal neurons, which may contribute to stress-induced impairments of perirhinal cortex-dependent memory.

  2. Natural abundances of 15Nitrogen and 13Carbon indicative of growth and N2 fixation in potassium fed lentil grown under water stress

    International Nuclear Information System (INIS)

    Kurdali, F.; Alshmmaa, M.

    2010-01-01

    Dual natural abundance analysis of 15 N and 13 C isotopes in lentil plants subjected to different soil moisture levels and rates of potassium fertilizer (K) were determined to assess crop performance variability in terms of growth and N 2 -fixation (Ndfa). δ 15 N values in lentils ranged from +0.67 to +1.36%; whereas, those of the N 2 -fixed and reference plant were -0.45 and +2.94%, respectively. Consequently, the Ndfa% ranged from 45 and 65% of total plant N uptake. Water stress reduced Δ 13 C values. However, K fertilization enhanced whole plant Δ 13 C along with dry matter yield and N 2 -fixation. The water stressed plants amended with K fertilizer seemed to be the best treatment because of its highest pod yield, high N balance and N 2 -fixation with low consumption of irrigation water. This illustrates the ecological and economical importance of K fertilizer in alleviating water stress occurring during the post-flowering period of lentil. (author)

  3. WAYS OF REDUCING THE IMPACT OF STRESS ON HUMAN CAPITAL PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Nicoleta Valentina FLOREA

    2014-06-01

    Full Text Available The world is a dangerous place, offering people less safe conditions to live, to develop, to work and to perform. The organizations are also under a lot of pressure and stressor factors. Yet, the employees must work, communicate, interrelate and obtain performance and organizations competitive advantage. The article analyze the main stressor factors which are influencing the individual and the organization activity, the different causes of stress appearance and its negative influence over the normal activity of employees. It also analyze the best practices which may be implemented by the organization in order to reduce the impact of stress and obtain performance This article suggests some ways of minimizing the stress appearance, by implementing efficient measures at strategic level, such as implementing efficient regulation and procedures, developing efficient programs of communication, creating a strong organizational culture and implicating the management function in solving the problems and finding pertinent solutions.

  4. Reduced Synapse and Axon Numbers in the Prefrontal Cortex of Rats Subjected to a Chronic Stress Model for Depression

    Science.gov (United States)

    Csabai, Dávid; Wiborg, Ove; Czéh, Boldizsár

    2018-01-01

    Stressful experiences can induce structural changes in neurons of the limbic system. These cellular changes contribute to the development of stress-induced psychopathologies like depressive disorders. In the prefrontal cortex of chronically stressed animals, reduced dendritic length and spine loss have been reported. This loss of dendritic material should consequently result in synapse loss as well, because of the reduced dendritic surface. But so far, no one studied synapse numbers in the prefrontal cortex of chronically stressed animals. Here, we examined synaptic contacts in rats subjected to an animal model for depression, where animals are exposed to a chronic stress protocol. Our hypothesis was that long term stress should reduce the number of axo-spinous synapses in the medial prefrontal cortex. Adult male rats were exposed to daily stress for 9 weeks and afterward we did a post mortem quantitative electron microscopic analysis to quantify the number and morphology of synapses in the infralimbic cortex. We analyzed asymmetric (Type I) and symmetric (Type II) synapses in all cortical layers in control and stressed rats. We also quantified axon numbers and measured the volume of the infralimbic cortex. In our systematic unbiased analysis, we examined 21,000 axon terminals in total. We found the following numbers in the infralimbic cortex of control rats: 1.15 × 109 asymmetric synapses, 1.06 × 108 symmetric synapses and 1.00 × 108 myelinated axons. The density of asymmetric synapses was 5.5/μm3 and the density of symmetric synapses was 0.5/μm3. Average synapse membrane length was 207 nm and the average axon terminal membrane length was 489 nm. Stress reduced the number of synapses and myelinated axons in the deeper cortical layers, while synapse membrane lengths were increased. These stress-induced ultrastructural changes indicate that neurons of the infralimbic cortex have reduced cortical network connectivity. Such reduced network connectivity is likely

  5. Reduced Synapse and Axon Numbers in the Prefrontal Cortex of Rats Subjected to a Chronic Stress Model for Depression

    Directory of Open Access Journals (Sweden)

    Dávid Csabai

    2018-01-01

    Full Text Available Stressful experiences can induce structural changes in neurons of the limbic system. These cellular changes contribute to the development of stress-induced psychopathologies like depressive disorders. In the prefrontal cortex of chronically stressed animals, reduced dendritic length and spine loss have been reported. This loss of dendritic material should consequently result in synapse loss as well, because of the reduced dendritic surface. But so far, no one studied synapse numbers in the prefrontal cortex of chronically stressed animals. Here, we examined synaptic contacts in rats subjected to an animal model for depression, where animals are exposed to a chronic stress protocol. Our hypothesis was that long term stress should reduce the number of axo-spinous synapses in the medial prefrontal cortex. Adult male rats were exposed to daily stress for 9 weeks and afterward we did a post mortem quantitative electron microscopic analysis to quantify the number and morphology of synapses in the infralimbic cortex. We analyzed asymmetric (Type I and symmetric (Type II synapses in all cortical layers in control and stressed rats. We also quantified axon numbers and measured the volume of the infralimbic cortex. In our systematic unbiased analysis, we examined 21,000 axon terminals in total. We found the following numbers in the infralimbic cortex of control rats: 1.15 × 109 asymmetric synapses, 1.06 × 108 symmetric synapses and 1.00 × 108 myelinated axons. The density of asymmetric synapses was 5.5/μm3 and the density of symmetric synapses was 0.5/μm3. Average synapse membrane length was 207 nm and the average axon terminal membrane length was 489 nm. Stress reduced the number of synapses and myelinated axons in the deeper cortical layers, while synapse membrane lengths were increased. These stress-induced ultrastructural changes indicate that neurons of the infralimbic cortex have reduced cortical network connectivity. Such reduced network

  6. Investigation on the effects of geometric variables on the residual stresses and PWSCC growth in the RPV BMI penetration nozzles

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Ra, Myoung Soo; Lee, Kyoung Soo

    2015-01-01

    This study investigated the effects of various geometric variables on the residual stresses and PWSCC growth of RPV BMI penetration nozzles. An FE residual stress analysis procedure was developed and validated from the viewpoint of FFS assessment. The validated FE residual stress analysis procedure and the PWSCC growth assessment procedure in the ASME B and PV Code, Sec.XI were applied to the BMI penetration nozzles with specified ranges of the geometric variables. The total stresses at steady state during normal operation including welding residual stresses increase with increasing inclination angle of the BMI nozzles, and with tilt angle, depth, and root width of the J-groove weld. The lifetime from the assumed initial crack to the acceptance criteria according to the ASME B and PV Code, Sec.XI also decreases under these conditions. The total stresses decrease and the lifetime increases with increasing nozzle thickness, but outer radius of the BMI nozzles has an insignificant effect on both of these factors.

  7. Effects of arbuscular mycorrhiza inoculation on growth and yield of tomato (Lycopersicum esculentum Mill. under salinity stress

    Directory of Open Access Journals (Sweden)

    D.R.R. Damaiyanti

    2015-10-01

    Full Text Available Objective of the research was to study the effect mycorrhiza on growth and yield of tomato. The experiment was conducted in screen house 14 m x 10.5 m, in Pasuruan on November 2013 until March 2014, The experiment was conducted as a factorial randomized complete design. The first factor was dose of mycorrhiza (without mycorrhiza, 5 g mycorrhiza, 10 g mycorrhiza, and 20 g mycorrhiza. The second factor was the salinity stress level (without NaCl, 2500 ppm NaCl, 5000 ppm NaCl, and 7500 ppm NaCl. The results showed that salinity stress at the level 7500 ppm decreased the amount of fruit by 30.84% and fresh weight per hectare decreased by 51.72%. Mycorrhizal application was not able to increase the growth and yield in saline stress conditions; it was shown by the level of infection and the number of spores on the roots of tomato plants lower the salinity level 5000 ppm and 7500 ppm. But separately, application of 20 g mycorrhiza enhanced plant growth, such as plant height, leaf area, leaf number and proline. Application of 20 g mycorrhiza increased the yield by 35.99%.

  8. Synergistic Effects of Natural Medicinal Plant Extracts on Growth Inhibition of Carcinoma (KB) Cells under Oxidative Stress

    International Nuclear Information System (INIS)

    Kim, Jeong Hee; Ju, Eun Mi; Kim, Jin Kyu

    2000-01-01

    Medicinal plants with synergistic effects on growth inhibition of cancer cells under oxidative stress were screened in this study. Methanol extracts from 51 natural medicinal plants, which were reported to have anticancer effect on hepatoma, stomach cancer or colon cancers which are frequently found in Korean, were prepared and screened for their synergistic activity on growth inhibition of cancer cells under chemically-induced oxidative stress by using MTT assay. Twenty seven samples showed synergistic activity on the growth inhibition in various extent under chemically-induced oxidative stress. Among those samples, eleven samples, such as Melia azedarach, Agastache rugosa, Catalpa ovata, Prunus persica, Sinomenium acutum, Pulsatilla koreana, Oldenlandia diffiusa, Anthriscus sylvestris, Schizandra chinensis, Gleditsia sinensis, Cridium officinale, showed decrease in IC 50 values more than 50%, other 16 samples showed decrease in IC 50 values between 50-25%, compared with the value acquired when medicinal plant sample was used alone. Among those 11 samples, extract of Catalpa ovata showed the highest activity. IC 50 values were decrease to 61% and 28% when carcinoma cells were treated with Catalpa ovata extract in combination of 75 and 100 μM of hydrogen peroxide, respectively

  9. The Role of Mindfulness in Reducing the Adverse Effects of Childhood Stress and Trauma

    Directory of Open Access Journals (Sweden)

    Robin Ortiz

    2017-02-01

    Full Text Available Research suggests that many children are exposed to adverse experiences in childhood. Such adverse childhood exposures may result in stress and trauma, which are associated with increased morbidity and mortality into adulthood. In general populations and trauma-exposed adults, mindfulness interventions have demonstrated reduced depression and anxiety, reduced trauma-related symptoms, enhanced coping and mood, and improved quality of life. Studies in children and youth also demonstrate that mindfulness interventions improve mental, behavioral, and physical outcomes. Taken together, this research suggests that high-quality, structured mindfulness instruction may mitigate the negative effects of stress and trauma related to adverse childhood exposures, improving short- and long-term outcomes, and potentially reducing poor health outcomes in adulthood. Future work is needed to optimize implementation of youth-based mindfulness programs and to study long-term outcomes into adulthood.

  10. Growth, phenological and yield responses of a bambara groundnut ...

    African Journals Online (AJOL)

    Effects of irrigation levels and seed coat colour on growth, development, yield and ... Drought tolerance in bambara groundnut landraces was achieved by reduced canopy ... and maturity, and maintaining high water use efficiency under stress.

  11. Silicon alleviates the adverse effects of salinity and drought stress on growth and endogenous plant growth hormones of soybean (glycine max L.)

    International Nuclear Information System (INIS)

    Hamzyun, M.; Sohn, Eun-Young; Khan, A.L.; Lee, In-Jung

    2010-01-01

    Agricultural industry is subjected to enormous environmental constraints, particularly due to salinity and drought. We evaluated the role of silicon (Si) in alleviating salinity and drought induced physio-hormonal changes in soybean grown in perlite. The plant growth attributes i.e., shoot length, plant fresh weight and dry weight parameters of soybean improved with elevated Si nutrition, while they decreased with NaCl and polyethylene glycol (PEG) application. The adverse effects of NaCl and PEG on plant growth were alleviated by adding 100 mg L/sup -1/ and 200 mg L/sup -1/ Si to salt and drought stressed treatments. It was observed that Si effectively mitigated the adverse effects of NaCl on soybean than that of PEG. The chlorophyll contents were found to be least affected as an insignificant increase was observed with Si application. Bioactive GA1 and GA4 contents of soybean leaves increased, when Si was added to control or stressed plants. Jasmonic acid (JA) contents sharply increased under salinity and drought stress but declined when the plants were supplemented with Si. Similarly, free salicylic acid (SA) level also increased with NaCl and PEG application. However, free SA level further increased with the addition of Si to salt treated plants, but decreased when Si was given to PEG treated plants. It was concluded that Si improves physio-hormonal attributes of soybean and mitigate adverse effects of salt and drought stress. (author)

  12. Beyond reduced-impact logging: silvicultural treatments to increase growth rates of tropical trees

    NARCIS (Netherlands)

    Peña-Claros, M.; Fredericksen, T.S.; Alarcón, A.; Blate, G.M.; Choque, U.; Leaño, C.; Licona, J.C.; Mostacedo, B.; Pariona, W.; Villegas, Z.; Putz, F.E.

    2008-01-01

    Use of reduced-impact logging (RIL) techniques has repeatedly been shown to reduce damage caused by logging. Unfortunately, these techniques do not necessarily ameliorate the low growth rates of many commercial species or otherwise assure recovery of the initial volume harvested during the next

  13. Blockade of central vasopressin receptors reduces the cardiovascular response to acute stress in freely moving rats.

    Science.gov (United States)

    Stojicić, S; Milutinović-Smiljanić, S; Sarenac, O; Milosavljević, S; Paton, J F R; Murphy, D; Japundzić-Zigon, N

    2008-04-01

    To investigate the contribution of central vasopressin receptors to blood pressure (BP) and heart rate (HR) response to stress we injected non-peptide selective V(1a) (SR49059), V(1b) (SSR149415), V(2) (SR121463) receptor antagonists, diazepam or vehicle in the lateral cerebral ventricle of conscious freely moving rats stressed by blowing air on their heads for 2 min. Cardiovascular effects of stress were evaluated by analyzing maximum increase of BP and HR (MAX), latency of maximum response (LAT), integral under BP and HR curve (integral), duration of their recovery and spectral parameters of BP and HR indicative of increased sympathetic outflow (LF(BP) and LF/HF(HR)). Moreover, the increase of serum corticosterone was measured. Exposure to air-jet stress induced simultaneous increase in BP and HR followed by gradual decline during recovery while LF(BP) oscillation remained increased as well as serum corticosterone level. Rats pre-treated with vasopressin receptor antagonists were not sedated while diazepam induced sedation that persisted during exposure to stress. V(1a), V(1b) and V(2) receptor antagonists applied separately did not modify basal values of cardiovascular parameters but prevented the increase in integral(BP). In addition, V(1b) and V(2) receptor antagonists reduced BP(MAX) whereas V(1a), V(1b) antagonist and diazepam reduced HR(MAX) induced by exposure to air-jet stress. All drugs shortened the recovery period, prevented the increase of LF(BP) without affecting the increase in serum corticosterone levels. Results indicate that vasopressin receptors located within the central nervous system mediate, in part, the cardiovascular response to air-jet stress without affecting either the neuroendocrine component or inducing sedation. They support the view that the V(1b) receptor antagonist may be of potential therapeutic value in reducing arterial pressure induced by stress-related disorders.

  14. Effect of Local Strain Distribution of Cold-Rolled Alloy 690 on Primary Water Stress Corrosion Crack Growth Behavior

    Directory of Open Access Journals (Sweden)

    Kim S.-W.

    2017-06-01

    Full Text Available This work aims to study the stress corrosion crack growth behavior of cold-rolled Alloy 690 in the primary water of a pressurized water reactor. Compared with Alloy 600, which shows typical intergranular cracking along high angle grain boundaries, the cold-rolled Alloy 690, with its heterogeneous microstructure, revealed an abnormal crack growth behavior in mixed mode, that is, in transgranular cracking near a banded region, and in intergranular cracking in a matrix region. From local strain distribution analysis based on local mis-orientation, measured along the crack path using the electron back scattered diffraction method, it was suggested that the abnormal behavior was attributable to a heterogeneity of local strain distribution. In the cold-rolled Alloy 690, the stress corrosion crack grew through a highly strained area formed by a prior cold-rolling process in a direction perpendicular to the maximum principal stress applied during a subsequent stress corrosion cracking test.

  15. Discrimination of growth and water stress in wheat by various vegetation indices through a clear a turbid atmosphere

    Science.gov (United States)

    Jackson, R. D.; Slater, P. M.; Pinter, P. J. (Principal Investigator)

    1982-01-01

    Reflectance data were obtained over a drought-stressed and a well-watered wheat plot with a hand-held radiometer having bands similar to the MSS bands of the LANDSAT satellites. Data for 48 clear days were interpolated to yield reflectance values for each day of the growing season, from planting until harvest. With an atmospheric path radiance model and LANDSAT-2 calibration data, the reflectance were used to simulate LANDSAT digital counts (not quantized) for the four LANDSAT bands for each day of the growing season, through a clear (approximately 100 km meteorological range) and a turbid (approximately 10 km meteorological range) atmosphere. Several ratios and linear combinations of bands were calculated using the simulated data, then assessed for their relative ability to discriminate vegetative growth and plant stress through the two atmospheres. The results show that water stress was not detected by any of the indices until after growth was retarded, and the sensitivity of the various indices to vegetation depended on plant growth stage and atmospheric path radiance.

  16. Growth, photosynthesis and antioxidant responses of endophyte infected and non-infected rice under lead stress conditions.

    Science.gov (United States)

    Li, Xuemei; Bu, Ning; Li, Yueying; Ma, Lianju; Xin, Shigang; Zhang, Lihong

    2012-04-30

    An endophytic fungus was tested in rice (Oryza sativa L.) exposed to four levels of lead (Pb) stress (0, 50, 100 and 200 μM) to assess effects on plant growth, photosynthesis and antioxidant enzyme activity. Under Pb stress conditions, endophyte-infected seedlings had greater shoot length but lower root length compared to non-infected controls, and endophyte-infected seedlings had greater dry weight in the 50 and 100 μM Pb treatments. Under Pb stress conditions, chlorophyll and carotenoid levels were significantly higher in the endophyte-infected seedlings. Net photosynthetic rate, transpiration rate and water use efficiency were significantly higher in endophyte-infected seedlings in the 50 and 100 μM Pb treatments. In addition, chlorophyll fluorescence parameters Fv/Fm and Fv/Fo were higher in the infected seedlings compared to the non-infected seedlings under Pb stress. Malondialdehyde accumulation was induced by Pb stress, and it was present in higher concentration in non-infected seedlings under higher concentrations of Pb (100 and 200 μM). Antioxidant activity was either higher or unchanged in the infected seedlings due to responses to the different Pb concentrations. These results suggest that the endophytic fungus improved rice growth under moderate Pb levels by enhancing photosynthesis and antioxidant activity relative to non-infected rice. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. White tea (Camellia sinensis extract reduces oxidative stress and triacylglycerols in obese mice

    Directory of Open Access Journals (Sweden)

    Lílian Gonçalves Teixeira

    2012-12-01

    Full Text Available White tea is an unfermented tea made from young shoots of Camellia sinensis protected from sunlight to avoid polyphenol degradation. Although its levels of catechins are higher than those of green tea (derived from the same plant, there are no studies addressing the relationship between this tea and obesity associated with oxidative stress.The objective of this study was to evaluate the effect of white tea on obesity and its complications using a diet induced obesity model. Forty male C57BL/6 mice were fed a high-fat diet to induce obesity (Obese group or the same diet supplemented with 0.5% white tea extract (Obese + WTE for 8 weeks. Adipose tissue, serum lipid profile, and oxidative stress were studied. White tea supplementation was not able to reduce food intake, body weight, or visceral adiposity. Similarly, there were no changes in cholesterol rich lipoprotein profile between the groups. A reduction in blood triacylglycerols associated with increased cecal lipids was observed in the group fed the diet supplemented with white tea. White tea supplementation also reduced oxidative stress in liver and adipose tissue. In conclusion, white tea extract supplementation (0.5% does not influence body weight or adiposity in obese mice. Its benefits are restricted to the reduction in oxidative stress associated with obesity and improvement of hypertriacylglycerolemia.

  18. Interventions to reduce postpartum stress in first-time mothers: a randomized-controlled trial.

    Science.gov (United States)

    Osman, Hibah; Saliba, Matilda; Chaaya, Monique; Naasan, Georges

    2014-10-15

    The postpartum period can be a challenging time particularly for first-time mothers. This study aimed to assess two different interventions designed to reduce stress in the postpartum among first-time mothers. Healthy first-time mothers with healthy newborns were recruited from hospitals in Beirut, Lebanon after delivery. The two interventions were a 20-minute film addressing common stressors in the postpartum period and a 24-hour telephone support hotline. Participants were randomized to one of four study arms to receive either the postpartum support film, the hotline service, both interventions, or a music CD (control). Participants were interviewed at eight to twelve weeks postpartum for assessment of levels of stress as measured by the Cohen Perceived Stress Scale (PSS-10). Of the 632 eligible women, 552 (88%) agreed to participate in the study. Of those, 452 (82%) completed the study. Mean PSS-10 scores of mothers who received the film alone (15.76) or the film with the hotline service (15.86) were significantly lower than that of the control group (18.93) (p-value film and the 24-hour telephone hotline service reduced stress in the postpartum period in first-time mothers. These simple interventions can be easily implemented and could have an important impact on the mental wellbeing of new mothers. The trial was registered with clinicaltrials.gov (identifier # NCT00857051) on March 5, 2009.

  19. Microarray and growth analyses identify differences and similarities of early corn response to weeds, shade, and nitrogen stress

    Science.gov (United States)

    Weed interference with crop growth is often attributed to water, nutrient, or light competition; however, specific physiological responses to these stresses are not well described. This study’s objective was to compare growth, yield, and gene expression responses of corn to nitrogen (N), low light (...

  20. Identification of QTLs for shoot and root growth under ionic-osmotic stress in Lotus, using a RIL population

    DEFF Research Database (Denmark)

    Quero, Gastón; Gutíerrez, Lucía; Lascano, Ramiro

    2014-01-01

    The genus Lotus includes a group of forage legume species including genotypes of agronomic interest and model species. In this work, an experimental hydroponic growth system allowed the discrimination of growth responses to ionic-osmotic stress in a population of recombinant inbred lines (RILs...

  1. The effect of residual thermal stresses on the fatigue crack growth of laser-surface-annealed AISI 304 stainless steel Part I: computer simulation

    International Nuclear Information System (INIS)

    Shiue, R.K.; Chang, C.T.; Young, M.C.; Tsay, L.W.

    2004-01-01

    The effect of residual thermal stresses on the fatigue crack growth of the laser-surface-annealed AISI 304 stainless steel, especially the effect of stress redistribution ahead of the crack tip was extensively evaluated in the study. Based on the finite element simulation, the longitudinal residual tensile stress field has a width of roughly 20 mm on the laser-irradiated surface and was symmetric with respect to the centerline of the laser-annealed zone (LAZ). Meanwhile, residual compressive stresses distributed over a wide region away from the LAZ. After introducing a notch perpendicular to the LAZ, the distribution of longitudinal residual stresses became unsymmetrical about the centerline of LAZ. High residual compressive stresses exist within a narrow range ahead of notch tip. The improved crack growth resistance of the laser-annealed specimen might be attributed to those induced compressive stresses. As the notch tip passed through the centerline of the LAZ, the residual stress ahead of the notch tip was completely reverted into residual tensile stresses. The existence of unanimous residual tensile stresses ahead of the notch tip was maintained, even if the notch tip extended deeply into the LAZ. Additionally, the presence of the residual tensile stress ahead of the notch tip did not accelerate the fatigue crack growth rate in the compact tension specimen

  2. Modest Amounts of Voluntary Exercise Reduce Pain- and Stress-Related Outcomes in a Rat Model of Persistent Hind Limb Inflammation.

    Science.gov (United States)

    Pitcher, Mark H; Tarum, Farid; Rauf, Imran Z; Low, Lucie A; Bushnell, Catherine

    2017-06-01

    Aerobic exercise improves outcomes in a variety of chronic health conditions, yet the support for exercise-induced effects on chronic pain in humans is mixed. Although many rodent studies have examined the effects of exercise on persistent hypersensitivity, the most used forced exercise paradigms that are known to be highly stressful. Because stress can also produce analgesic effects, we studied how voluntary exercise, known to reduce stress in healthy subjects, alters hypersensitivity, stress, and swelling in a rat model of persistent hind paw inflammation. Our data indicate that voluntary exercise rapidly and effectively reduces hypersensitivity as well as stress-related outcomes without altering swelling. Moreover, the level of exercise is unrelated to the analgesic and stress-reducing effects, suggesting that even modest amounts of exercise may impart significant benefit in persistent inflammatory pain states. Modest levels of voluntary exercise reduce pain- and stress-related outcomes in a rat model of persistent inflammatory pain, independently of the amount of exercise. As such, consistent, self-regulated activity levels may be more relevant to health improvement in persistent pain states than standardized exercise goals. Published by Elsevier Inc.

  3. Surplus dietary tryptophan reduces plasma cortisol and noradrenaline concentrations and enhances recovery after social stress in pigs

    NARCIS (Netherlands)

    Koopmans, S.J.; Ruis, M.A.W.; Dekker, R.A.; Diepen, van J.T.M.; Korte, S.M.; Mroz, Z.

    2005-01-01

    Social stress occurs in intensive pig farming due to aggressive behavior. This stress may be reduced at elevated dietary levels of tryptophan (TRP). In this study, we compared the effects of high (13.2%) vs. normal (3.4%) dietary TRP to large neutral amino acid (LNAA) ratios on behavior and stress

  4. Characterization of Residual Stress Effects on Fatigue Crack Growth of a Friction Stir Welded Aluminum Alloy

    Science.gov (United States)

    Newman, John A.; Smith, Stephen W.; Seshadri, Banavara R.; James, Mark A.; Brazill, Richard L.; Schultz, Robert W.; Donald, J. Keith; Blair, Amy

    2015-01-01

    An on-line compliance-based method to account for residual stress effects in stress-intensity factor and fatigue crack growth property determinations has been evaluated. Residual stress intensity factor results determined from specimens containing friction stir weld induced residual stresses are presented, and the on-line method results were found to be in excellent agreement with residual stress-intensity factor data obtained using the cut compliance method. Variable stress-intensity factor tests were designed to demonstrate that a simple superposition model, summing the applied stress-intensity factor with the residual stress-intensity factor, can be used to determine the total crack-tip stress-intensity factor. Finite element, VCCT (virtual crack closure technique), and J-integral analysis methods have been used to characterize weld-induced residual stress using thermal expansion/contraction in the form of an equivalent delta T (change in local temperature during welding) to simulate the welding process. This equivalent delta T was established and applied to analyze different specimen configurations to predict residual stress distributions and associated residual stress-intensity factor values. The predictions were found to agree well with experimental results obtained using the crack- and cut-compliance methods.

  5. Alleviation of adverse impact of cadmium stress in sunflower (helianthus annuus l.) by arbuscular mycorrhizal fungi

    International Nuclear Information System (INIS)

    ALLAH, E.F.; Alqarawi, A.A.; Hend, A.

    2015-01-01

    Sunflower (Helianthus annuus L.) is an important ornamental plant and good source of vegetable oil, widely accepted as potential promising plant for phytoremediation. A pot experiment was conducted to evaluate the impact of cadmium on the growth and some biochemical attributes of sunflower and role of arbuscular mycorrhizal fungi (AMF) in assuaging the cadmium stress induced changes. Cadmium treatment reduced growth, chlorophyll contents and cell membrane stability. AMF inoculated plants showed increased growth, chlorophyll contents and cell membrane stability and also mitigated changes caused due to cadmium. Cadmium caused increase in lipid peroxidation, and hydrogen peroxide production. An increase in antioxidant enzyme activity was observed due to cadmium treatment which was further enhanced by inoculation of AMF. Increase in proline and total phenols due to cadmium stress was obvious. Cadmium stressed plants showed enhanced fatty acid content. AMF inoculated plants showed higher activities of acid and alkaline phosphatases which were reduced by cadmium stress. However palmitoleic acid (C16:1), oleic (C18:1), linoleic (C18:2) and linolenic acid (C18:3) reduced in cadmium treated plants and the negative impact of cadmium was mitigated by AMF. (author)

  6. Postwar winners and losers in the long run: determinants of war related stress symptoms and posttraumatic growth.

    Science.gov (United States)

    Kimhi, Shaul; Eshel, Yohanan; Zysberg, Leehu; Hantman, Shira

    2010-02-01

    The study focuses on the long-term impact of war on adolescents (N = 821) and adults (N = 870) living in a war afflicted Israeli community a year after the war. Results indicate the following: (a) stress symptoms and posttraumatic growth (PTG) correlate negatively with each other. (b) Age was positively associated with stress symptoms and negatively with PTG. (c) Economic condition predicted stress symptoms as well as PTG of adults better than exposure to traumatic events, whereas for school students the best predictor of stress symptoms was exposure to traumatic events while the best predictor of PTG was age of participants.

  7. Ecto-5'-Nucleotidase Overexpression Reduces Tumor Growth in a Xenograph Medulloblastoma Model.

    Directory of Open Access Journals (Sweden)

    Angélica R Cappellari

    Full Text Available Ecto-5'-nucleotidase/CD73 (ecto-5'-NT participates in extracellular ATP catabolism by converting adenosine monophosphate (AMP into adenosine. This enzyme affects the progression and invasiveness of different tumors. Furthermore, the expression of ecto-5'-NT has also been suggested as a favorable prognostic marker, attributing to this enzyme contradictory functions in cancer. Medulloblastoma (MB is the most common brain tumor of the cerebellum and affects mainly children.The effects of ecto-5'-NT overexpression on human MB tumor growth were studied in an in vivo model. Balb/c immunodeficient (nude 6 to 14-week-old mice were used for dorsal subcutaneous xenograph tumor implant. Tumor development was evaluated by pathophysiological analysis. In addition, the expression patterns of adenosine receptors were verified.The human MB cell line D283, transfected with ecto-5'-NT (D283hCD73, revealed reduced tumor growth compared to the original cell line transfected with an empty vector. D283hCD73 generated tumors with a reduced proliferative index, lower vascularization, the presence of differentiated cells and increased active caspase-3 expression. Prominent A1 adenosine receptor expression rates were detected in MB cells overexpressing ecto-5'-NT.This work suggests that ecto-5'-NT promotes reduced tumor growth to reduce cell proliferation and vascularization, promote higher differentiation rates and initiate apoptosis, supposedly by accumulating adenosine, which then acts through A1 adenosine receptors. Therefore, ecto-5'-NT might be considered an important prognostic marker, being associated with good prognosis and used as a potential target for therapy.

  8. Environmental stress, TRH and lactation effects on plasma growth hormone of cattle

    International Nuclear Information System (INIS)

    Johnson, H.D.; DeDios, O.; Lippincott, A.C.

    1976-01-01

    Plasma growth hormone (GH) levels of cattle are influenced by numerous environmental and metabolic factors. Acute heat stress increases GH threefold with maximum value at 30 minutes post-exposure. TRH infusion also shows a threefold increase as early as 2 minutes post-infusion but with a continual elevation for approximately 20 minutes. Longer-term environmental heat stress exposure, as occurs in tropics and the summer season, lowers plasma GH of cattle. GH levels in high-producing, lactating cows are greater than in low producers. In summary, plasma increases in levels of GH immediately reflect the stressor effects on cattle, presumably through involvement of TRH release. Long-term heat stressors, such as seasonal or tropic acclimatization, lowers GH of lactating cattle. (author)

  9. Davallialactone reduces inflammation and repairs dentinogenesis on glucose oxidase-induced stress in dental pulp cells.

    Science.gov (United States)

    Lee, Young-Hee; Kim, Go-Eun; Song, Yong-Beom; Paudel, Usha; Lee, Nan-Hee; Yun, Bong-Sik; Yu, Mi-Kyung; Yi, Ho-Keun

    2013-11-01

    The chronic nature of diabetes mellitus (DM) raises the risk of oral complication diseases. In general, DM causes oxidative stress to organs. This study aimed to evaluate the cellular change of dental pulp cells against glucose oxidative stress by glucose oxidase with a high glucose state. The purpose of this study was to test the antioxidant character of davallialactone and to reduce the pathogenesis of dental pulp cells against glucose oxidative stress. The glucose oxidase with a high glucose concentration was tested for hydroxy peroxide (H2O2) production, cellular toxicity, reactive oxygen species (ROS) formation, induction of inflammatory molecules and disturbance of dentin mineralization in human dental pulp cells. The anti-oxidant effect of Davallilactone was investigated to restore dental pulp cells' vitality and dentin mineralization via reduction of H2O2 production, cellular toxicity, ROS formation and inflammatory molecules. The treatment of glucose oxidase with a high glucose concentration increased H2O2 production, cellular toxicity, and inflammatory molecules and disturbed dentin mineralization by reducing pulp cell activity. However, davallialactone reduced H2O2 production, cellular toxicity, ROS formation, inflammatory molecules, and dentin mineralization disturbances even with a long-term glucose oxidative stress state. The results of this study imply that the development of oral complications is related to the irreversible damage of dental pulp cells by DM-induced oxidative stress. Davallialactone, a natural antioxidant, may be useful to treat complicated oral disease, representing an improvement for pulp vital therapy. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Presence of a dog reduces subjective but not physiological stress responses to an analog trauma.

    Science.gov (United States)

    Lass-Hennemann, Johanna; Peyk, Peter; Streb, Markus; Holz, Elena; Michael, Tanja

    2014-01-01

    Dogs are known to have stress and anxiety reducing effects. Several studies have shown that dogs are able to calm people during cognitive and performance stressors. Recently, therapy dogs have been proposed as a treatment adjunct for post-traumatic stress disorder patients. In this study we aimed to investigate, whether dogs also have anxiety- and stress reducing effect during "traumatic stressors." 80 healthy female participants were randomly assigned to one of four conditions. They were exposed to a "traumatic" film clip (trauma-film-paradigm). For one group of participants a friendly dog was present during the film, one group of participants was accompanied by a friendly human, another control group watched the film with a toy animal and the last group watched the film clip alone. Participants that were accompanied by the dog during the film reported lower anxiety ratings and less negative affect after the film clip as compared to the "toy dog group" and the "alone group." Results of the "dog group" were comparable to the group that was accompanied by a friendly human. There were no differences in physiological stress responses between the four conditions. Our results show that dogs are able to lessen subjectively experienced stress and anxiety during a "traumatic" stress situation. This effect was comparable to that of social support by a friendly person. Implications for PTSD patients are discussed.

  11. Reduced endothelial thioredoxin-interacting protein protects arteries from damage induced by metabolic stress in vivo.

    Science.gov (United States)

    Bedarida, Tatiana; Domingues, Alison; Baron, Stephanie; Ferreira, Chrystophe; Vibert, Francoise; Cottart, Charles-Henry; Paul, Jean-Louis; Escriou, Virginie; Bigey, Pascal; Gaussem, Pascale; Leguillier, Teddy; Nivet-Antoine, Valerie

    2018-06-01

    Although thioredoxin-interacting protein (TXNIP) is involved in a variety of biologic functions, the contribution of endothelial TXNIP has not been well defined. To investigate the endothelial function of TXNIP, we generated a TXNIP knockout mouse on the Cdh5-cre background (TXNIP fl/fl cdh5 cre ). Control (TXNIP fl/fl ) and TXNIP fl/fl cdh5 cre mice were fed a high protein-low carbohydrate (HP-LC) diet for 3 mo to induce metabolic stress. We found that TXNIP fl/fl and TXNIP fl/fl cdh5 cre mice on an HP-LC diet displayed impaired glucose tolerance and dyslipidemia concretizing the metabolic stress induced. We evaluated the impact of this metabolic stress on mice with reduced endothelial TXNIP expression with regard to arterial structure and function. TXNIP fl/fl cdh5 cre mice on an HP-LC diet exhibited less endothelial dysfunction than littermate mice on an HP-LC diet. These mice were protected from decreased aortic medial cell content, impaired aortic distensibility, and increased plasminogen activator inhibitor 1 secretion. This protective effect came with lower oxidative stress and lower inflammation, with a reduced NLRP3 inflammasome expression, leading to a decrease in cleaved IL-1β. We also show the major role of TXNIP in inflammation with a knockdown model, using a TXNIP-specific, small interfering RNA included in a lipoplex. These findings demonstrate a key role for endothelial TXNIP in arterial impairments induced by metabolic stress, making endothelial TXNIP a potential therapeutic target.-Bedarida, T., Domingues, A., Baron, S., Ferreira, C., Vibert, F., Cottart, C.-H., Paul, J.-L., Escriou, V., Bigey, P., Gaussem, P., Leguillier, T., Nivet-Antoine, V. Reduced endothelial thioredoxin-interacting protein protects arteries from damage induced by metabolic stress in vivo.

  12. Heteroresistance at the single-cell level: adapting to antibiotic stress through a population-based strategy and growth-controlled interphenotypic coordination.

    Science.gov (United States)

    Wang, Xiaorong; Kang, Yu; Luo, Chunxiong; Zhao, Tong; Liu, Lin; Jiang, Xiangdan; Fu, Rongrong; An, Shuchang; Chen, Jichao; Jiang, Ning; Ren, Lufeng; Wang, Qi; Baillie, J Kenneth; Gao, Zhancheng; Yu, Jun

    2014-02-11

    Heteroresistance refers to phenotypic heterogeneity of microbial clonal populations under antibiotic stress, and it has been thought to be an allocation of a subset of "resistant" cells for surviving in higher concentrations of antibiotic. The assumption fits the so-called bet-hedging strategy, where a bacterial population "hedges" its "bet" on different phenotypes to be selected by unpredicted environment stresses. To test this hypothesis, we constructed a heteroresistance model by introducing a blaCTX-M-14 gene (coding for a cephalosporin hydrolase) into a sensitive Escherichia coli strain. We confirmed heteroresistance in this clone and that a subset of the cells expressed more hydrolase and formed more colonies in the presence of ceftriaxone (exhibited stronger "resistance"). However, subsequent single-cell-level investigation by using a microfluidic device showed that a subset of cells with a distinguishable phenotype of slowed growth and intensified hydrolase expression emerged, and they were not positively selected but increased their proportion in the population with ascending antibiotic concentrations. Therefore, heteroresistance--the gradually decreased colony-forming capability in the presence of antibiotic--was a result of a decreased growth rate rather than of selection for resistant cells. Using a mock strain without the resistance gene, we further demonstrated the existence of two nested growth-centric feedback loops that control the expression of the hydrolase and maximize population growth in various antibiotic concentrations. In conclusion, phenotypic heterogeneity is a population-based strategy beneficial for bacterial survival and propagation through task allocation and interphenotypic collaboration, and the growth rate provides a critical control for the expression of stress-related genes and an essential mechanism in responding to environmental stresses. Heteroresistance is essentially phenotypic heterogeneity, where a population

  13. Targeting the erythropoietin receptor on glioma cells reduces tumour growth

    International Nuclear Information System (INIS)

    Peres, Elodie A.; Valable, Samuel; Guillamo, Jean-Sebastien; Marteau, Lena; Bernaudin, Jean-Francois; Roussel, Simon; Lechapt-Zalcman, Emmanuele; Bernaudin, Myriam; Petit, Edwige

    2011-01-01

    Hypoxia has been shown to be one of the major events involved in EPO expression. Accordingly, EPO might be expressed by cerebral neoplastic cells, especially in glioblastoma, known to be highly hypoxic tumours. The expression of EPOR has been described in glioma cells. However, data from the literature remain descriptive and controversial. On the basis of an endogenous source of EPO in the brain, we have focused on a potential role of EPOR in brain tumour growth. In the present study, with complementary approaches to target EPO/EPOR signalling, we demonstrate the presence of a functional EPO/EPOR system on glioma cells leading to the activation of the ERK pathway. This EPO/EPOR system is involved in glioma cell proliferation in vitro. In vivo, we show that the down-regulation of EPOR expression on glioma cells reduces tumour growth and enhances animal survival. Our results support the hypothesis that EPOR signalling in tumour cells is involved in the control of glioma growth.

  14. Growth platform-dependent and -independent phenotypic and metabolic responses of Arabidopsis and its halophytic relative, Eutrema salsugineum, to salt stress.

    Science.gov (United States)

    Kazachkova, Yana; Batushansky, Albert; Cisneros, Aroldo; Tel-Zur, Noemi; Fait, Aaron; Barak, Simon

    2013-07-01

    Comparative studies of the stress-tolerant Arabidopsis (Arabidopsis thaliana) halophytic relative, Eutrema salsugineum, have proven a fruitful approach to understanding natural stress tolerance. Here, we performed comparative phenotyping of Arabidopsis and E. salsugineum vegetative development under control and salt-stress conditions, and then compared the metabolic responses of the two species on different growth platforms in a defined leaf developmental stage. Our results reveal both growth platform-dependent and -independent phenotypes and metabolic responses. Leaf emergence was affected in a similar way in both species grown in vitro but the effects observed in Arabidopsis occurred at higher salt concentrations in E. salsugineum. No differences in leaf emergence were observed on soil. A new effect of a salt-mediated reduction in E. salsugineum leaf area was unmasked. On soil, leaf area reduction in E. salsugineum was mainly due to a fall in cell number, whereas both cell number and cell size contributed to the decrease in Arabidopsis leaf area. Common growth platform-independent leaf metabolic signatures such as high raffinose and malate, and low fumarate contents that could reflect core stress tolerance mechanisms, as well as growth platform-dependent metabolic responses were identified. In particular, the in vitro growth platform led to repression of accumulation of many metabolites including sugars, sugar phosphates, and amino acids in E. salsugineum compared with the soil system where these same metabolites accumulated to higher levels in E. salsugineum than in Arabidopsis. The observation that E. salsugineum maintains salt tolerance despite growth platform-specific phenotypes and metabolic responses suggests a considerable degree of phenotypic and metabolic adaptive plasticity in this extremophile.

  15. Prenatal zinc reduces stress response in adult rat offspring exposed to lipopolysaccharide during gestation.

    Science.gov (United States)

    Galvão, Marcella C; Chaves-Kirsten, Gabriela P; Queiroz-Hazarbassanov, Nicolle; Carvalho, Virgínia M; Bernardi, Maria M; Kirsten, Thiago B

    2015-01-01

    Previous investigations by our group have shown that prenatal treatment with lipopolysaccharide (LPS; 100 μg/kg, intraperitoneally) on gestation day (GD) 9.5 in rats, which mimics infections by Gram-negative bacteria, induces short- and long-term behavioral and neuroimmune changes in the offspring. Because LPS induces hypozincemia, dams were treated with zinc after LPS in an attempt to prevent or ameliorate the impairments induced by prenatal LPS exposure. LPS can also interfere with hypothalamic-pituitary-adrenal (HPA) axis development; thus, behavioral and neuroendocrine parameters linked to HPA axis were evaluated in adult offspring after a restraint stress session. We prenatally exposed Wistar rats to LPS (100 μg/kg, intraperitoneally, on GD 9.5). One hour later they received zinc (ZnSO4, 2 mg/kg, subcutaneously). Adult female offspring that were in metestrus/diestrus were submitted to a 2 h restraint stress session. Immediately after the stressor, 22 kHz ultrasonic vocalizations, open field behavior, serum corticosterone and brain-derived neurotrophic factor (BDNF) levels, and striatal and hypothalamic neurotransmitter and metabolite levels were assessed. Offspring that received prenatal zinc after LPS presented longer periods in silence, increased locomotion, and reduced serum corticosterone and striatal norepinephrine turnover compared with rats treated with LPS and saline. Prenatal zinc reduced acute restraint stress response in adult rats prenatally exposed to LPS. Our findings suggest a potential beneficial effect of prenatal zinc, in which the stress response was reduced in offspring that were stricken with infectious/inflammatory processes during gestation. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Response of antioxidant system of tomato to water deficit stress and its interaction with ascorbic acid

    Directory of Open Access Journals (Sweden)

    Fatemeh Daneshmand

    2014-03-01

    Full Text Available Environmental stresses including water deficit stress may produce oxidants such as reactive oxygen species that damage the membrane structure in plants. Among the antioxidants, ascorbic acid has a critical role in the cell and scavenges reactive oxygen species. In this research, effects of ascorbic acid at two levels (0 and 10 mM and water deficit stress based on 3 levels of field capacity (100, 60 and 30% were studied in tomato plants. Both levels of stress increased lipid peroxidation, reduced the amount of ascorbic acid and glutathione and increased the activity of enzymes superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, guaiacol peroxidase and reduced the growth parameters. Ascorbic acid treatment, reduced lipid peroxidation, increased ascorbic acid and glutathione levels and decreased the activity of superoxide dismutase, catalase, ascorbate peroxidase, glutathione peroxidase and guaiacol peroxidase and positive effects of ascorbic acid treatment appeared to improve the plant growth parameters.

  17. Cortisol response to the Trier Social Stress Test in obese and reduced obese individuals.

    Science.gov (United States)

    Therrien, Fanny; Drapeau, Vicky; Lalonde, Josée; Lupien, Sonia J; Beaulieu, Serge; Doré, Jean; Tremblay, Angelo; Richard, Denis

    2010-05-01

    Impact of body weight loss, body fat distribution and the nutritional status on the cortisol response to the Trier Social Stress Test (TSST) was investigated in this study. Fifty-one men (17 non-obese, 20 abdominally obese and 14 reduced obese) and 28 women (12 non-obese, 10 peripherally obese and 6 reduced obese) were subjected to the TSST in fed and fasted states. The TSST response was determined using salivary cortisol measurements. The nutritional status (being fed or fasted) had no effect on the cortisol levels during and following the TSST. Reduced obese men exhibited lower cortisol levels than non-obese men. Cortisol levels in obese men were not different from those of non-obese and reduced obese subjects. In women, there was no significant difference between groups. These finding suggest that weight status in men influences cortisol reactivity to a psychological stress and the different responses seen among genders could be linked to the different fat distributions that characterize men and women. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Potassium and calcium application ameliorates growth and oxidative homeostasis in salt-stressed indian mustard (brassica juncea) plants

    International Nuclear Information System (INIS)

    Yousuf, P. Y.; Ahmad, A.; Hemant, M.; Ganie, A. H.; Iqbal, M.; Aref, I. M.

    2015-01-01

    The effect of potassium (K) and calcium (Ca) on growth and antioxidant defence system of salt-stressed Indian mustard plants was studied. Twenty-day-old Indian mustard plants grown hydroponically in Hoagland growth medium were randomly divided into five groups. To served as control and did not receive any additional K or Ca (except that present in Hoagland solution), T1 received 150 mM NaCl, T2 was given an additional doze of 6 mM K, T3 was given 5.6 mM Ca as additional doze, while as T4 received a combination of 150 mM NaCl + 6 mM K + 5.6 mM Ca. The response of the plants was studied ten days after treatment. Salt stress inhibited growth parameters including biomass, chlorophyll content, protein content and NR activity. Membrane damage was induced by the salt treatment with a concurrent increase in antioxidant defence system and proline content. Individual application of K and Ca mitigated the negative influence of the stress with the maximum alleviating potential exhibited by the combined application of these nutrients. Results obtained on real time expression of genes encoding enzymatic antioxidants (SOD, APX, CAT and GR), NR and proline supported our findings with biochemical assays. We conclude from the study that maintaining high K and Ca levels may serve as an effective means for regulating the growth and productivity of Indian mustard plants under saline conditions. (author)

  19. MULCHES AND OTHER COVER MATERIALS TO REDUCE WEED GROWTH IN CONTAINER-GROWN NURSERY STOCK.

    Science.gov (United States)

    Rys, F; Van Wesemael, D; Van Haecke, D; Mechant, E; Gobin, B

    2014-01-01

    Due to the recent EU-wide implementation of Integrated Pest Management (IPM), alternative methods to reduce weed growth in container-grown nursery stock are needed to cut back the use of herbicides. Covering the upper layer of the substrate is known as a potential method to prevent or reduce weed growth in plant containers. As a high variety of mulches and other cover materials are on the market, however, it is no longer clear for growers which cover material is most efficient for use in containers. Therefore, we examined the effect on weed growth of different mulches and other cover materials, including Pinus maritima, P. sylvestris, Bio-Top Basic, Bio-Top Excellent, coco chips fine, hemp fibres, straw pellets, coco disk 180LD and jute disk. Cover materials were applied immediately after repotting of Ligustrum ovalifolium or planting of Fagus sylvatica. At regular times, both weed growth and side effects (e.g., plant growth, water status of the substrate, occurrence of mushrooms, foraging of birds, complete cover of the substrate and fixation) were assessed. All examined mulches or other cover materials were able to reduce weed growth on the containers during the whole growing season. Weed suppression was even better than that of a chemical treated control. Although all materials showed some side effects, the impact on plant growth is most important to the grower and depends not only on material characteristics (e.g., biodegradation, nutrient leaching and N-immobilisation) but also on container size and climatic conditions. In conclusion, mulches and other cover materials can be a valuable tool within IPM to lower herbicide use. To enable a deliberate choice of which cover material is best used in a specific situation more research is needed on lifespan and stability as well as on economic characteristics of the materials.

  20. Effects of Salinity Stress on Gas Exchange, Growth, and Nutrient Concentrations of Two Citrus Rootstocks

    Directory of Open Access Journals (Sweden)

    D. Khoshbakht

    2015-03-01

    Full Text Available A greenhouse study was undertaken to assess the salt tolerance of two citrus rootstocks, namely, Bakraii (Citrus sp. and Trifoliate orange (Poncirus trifoliata. A factorial experiment through a completely randomized design (CRD with three replications and four levels of salt including 0, 20, 40 and 60 mM NaCl was conducted. After eight weeks of treatment, number of leaves, plant height, leaf area, wet and dry weight of leaf, stem and root, length of root, chlorophyll content, net CO2 assimilation rate (ACO2, stomatal conductance (gs, transpiration (E and water use efficiency (WUE and ion concentrations were measured. Salinity decreased growth and net gas exchange. Trifoliate orange showed the most decrease in growth indices and net gas exchange compared with Bakraii. The ability to limit the transfer of sodium to leaves in low levels of salt was observed in Trifoliate orange, but this ability was not observed in high levels of salt. Results showed that accumulation of chloride in leaves and roots were less in Bakraii compared to the Trifoliate orange. The lower Cl- concentration in leaves of Bakraii than trifoliate orange suggests that the salinity tolerance of Bakraii is associated with less transport of Cl- to the leaves. Salinity increased K+ and decreased Mg2+ and Ca2+ concentrations in leaves of both rootstocks. It is proposed that salt stress effect on plant physiological processes such as changes in plant growth, Cl- and Na+ toxicity, and mineral distribution, decreases chlorophyll content and reduces the photosynthetic efficiency of these citrus species.

  1. Histone Deacetylase HDA-2 Regulates Trichoderma atroviride Growth, Conidiation, Blue Light Perception, and Oxidative Stress Responses.

    Science.gov (United States)

    Osorio-Concepción, Macario; Cristóbal-Mondragón, Gema Rosa; Gutiérrez-Medina, Braulio; Casas-Flores, Sergio

    2017-02-01

    Fungal blue-light photoreceptors have been proposed as integrators of light and oxidative stress. However, additional elements participating in the integrative pathway remain to be identified. In Trichoderma atroviride, the blue-light regulator (BLR) proteins BLR-1 and -2 are known to regulate gene transcription, mycelial growth, and asexual development upon illumination, and recent global transcriptional analysis revealed that the histone deacetylase-encoding gene hda-2 is induced by light. Here, by assessing responses to stimuli in wild-type and Δhda-2 backgrounds, we evaluate the role of HDA-2 in the regulation of genes responsive to light and oxidative stress. Δhda-2 strains present reduced growth, misregulation of the con-1 gene, and absence of conidia in response to light and mechanical injury. We found that the expression of hda-2 is BLR-1 dependent and HDA-2 in turn is essential for the transcription of early and late light-responsive genes that include blr-1, indicating a regulatory feedback loop. When subjected to reactive oxygen species (ROS), Δhda-2 mutants display high sensitivity whereas Δblr strains exhibit the opposite phenotype. Consistently, in the presence of ROS, ROS-related genes show high transcription levels in wild-type and Δblr strains but misregulation in Δhda-2 mutants. Finally, chromatin immunoprecipitations of histone H3 acetylated at Lys9/Lys14 on cat-3 and gst-1 promoters display low accumulation of H3K9K14ac in Δblr and Δhda-2 strains, suggesting indirect regulation of ROS-related genes by HDA-2. Our results point to a mutual dependence between HDA-2 and BLR proteins and reveal the role of these proteins in an intricate gene regulation landscape in response to blue light and ROS. Trichoderma atroviride is a free-living fungus commonly found in soil or colonizing plant roots and is widely used as an agent in biocontrol as it parasitizes other fungi, stimulates plant growth, and induces the plant defense system. To survive in

  2. Improved quinoa growth, physiological response, and seed nutritional quality in three soils having different stresses by the application of acidified biochar and compost.

    Science.gov (United States)

    Ramzani, Pia Muhammad Adnan; Shan, Lin; Anjum, Shazia; Khan, Waqas-Ud-Din; Ronggui, Hu; Iqbal, Muhammad; Virk, Zaheer Abbas; Kausar, Salma

    2017-07-01

    Quinoa (Chenopodium quinoa Willd.) is a traditional Andean agronomical resilient seed crop having immense significance in terms of high nutritional qualities and its tolerance against various abiotic stresses. However, finite work has been executed to evaluate the growth, physiological, chemical, biochemical, antioxidant properties, and mineral nutrients bioavailability of quinoa under abiotic stresses. Depending on the consistency in the stability of pH, intended rate of S was selected from four rates (0.1, 0.2, 0.3, 0.4 and 0.5% S) for the acidification of biochar and compost in the presence of Thiobacillus thiooxidans by pH value of 4. All three soils were amended with 1% (w/w) acidified biochar (BC A ) and compost (CO A ). Results revealed that selective plant growth, yield, physiological, chemical and biochemical improved significantly by the application of BC A in all stressed soils. Antioxidants in quinoa fresh leaves increased in the order of control > CO A  > BC A , while reactive oxygen species decreased in the order of control < CO A  < BC A . A significant reduction in anti-nutrients (phytate and polyphenols) was observed in all stressed soils with the application of BC A . Moreover, incorporation of CO A and BC A reduced the pH of rhizosphere soil by 0.4-1.6 units in all stressed soils, while only BC A in bulk soil decreased pH significantly by 0.3 units. These results demonstrate that BC A was more effective than CO A to enhance the bioavailability, translocation of essential nutrients from the soil to plant and their enhanced bioavailability in the seed. Copyright © 2017. Published by Elsevier Masson SAS.

  3. Pea p68, a DEAD-box helicase, provides salinity stress tolerance in transgenic tobacco by reducing oxidative stress and improving photosynthesis machinery.

    Science.gov (United States)

    Tuteja, Narendra; Banu, Mst Sufara Akhter; Huda, Kazi Md Kamrul; Gill, Sarvajeet Singh; Jain, Parul; Pham, Xuan Hoi; Tuteja, Renu

    2014-01-01

    The DEAD-box helicases are required mostly in all aspects of RNA and DNA metabolism and they play a significant role in various abiotic stresses, including salinity. The p68 is an important member of the DEAD-box proteins family and, in animal system, it is involved in RNA metabolism including pre-RNA processing and splicing. In plant system, it has not been well characterized. Here we report the cloning and characterization of p68 from pea (Pisum sativum) and its novel function in salinity stress tolerance in plant. The pea p68 protein self-interacts and is localized in the cytosol as well as the surrounding of cell nucleus. The transcript of pea p68 is upregulated in response to high salinity stress in pea. Overexpression of p68 driven by constitutive cauliflower mosaic virus-35S promoter in tobacco transgenic plants confers enhanced tolerances to salinity stress by improving the growth, photosynthesis and antioxidant machinery. Under stress treatment, pea p68 overexpressing tobacco accumulated higher K+ and lower Na+ level than the wild-type plants. Reactive oxygen species (ROS) accumulation was remarkably regulated by the overexpression of pea p68 under salinity stress conditions, as shown from TBARS content, electrolyte leakage, hydrogen peroxide accumulation and 8-OHdG content and antioxidant enzyme activities. To the best of our knowledge this is the first direct report, which provides the novel function of pea p68 helicase in salinity stress tolerance. The results suggest that p68 can also be exploited for engineering abiotic stress tolerance in crop plants of economic importance.

  4. Saline-boron stress in northern Chile olive accessions: water relations, B and Cl contents and impact on plant growth

    OpenAIRE

    Escobar, Hugo; Lara, Nelson; Zapata, Yubinza; Urbina, Camilo; Rodriguez, Manuel; Figueroa, Leonardo

    2013-01-01

    H. Escobar, N. Lara, Y. Zapata, C. Urbina, M. Rodriguez, and L. Figueroa. 2013. Saline-boron stress in northern Chile olive accessions: water relations, B and Cl contents and impact on plant growth. Cien. Inv. Agr. 40(3): 597-607. The objective of this study was to analyze the effect of saline-boron stress on the vegetative growth, dry leaf weight, water potential (Ψw), relative water content, and leaf and root B and Cl- contents in 8 accessions of olive. Rooted one-year-old plants were culti...

  5. The role and effect of residual stress on pore generation during anodization of aluminium thin films

    International Nuclear Information System (INIS)

    Liao, M.W.; Chung, C.K.

    2013-01-01

    Highlights: •Al films of varying residual stress were prepared by sputtering. •Variation of the residual stress in the Al films influences pore growth during anodization. •The change in average pore size with residual stress is fairly small. •Interaction of residual stress with oxide growth stress leads to change in structure. •Residual tensile stress increases the pore density of porous alumina. -- Abstract: The role and effect of residual stress on pore generation of anodized aluminium oxide (AAO) have been investigated into anodizing the various-residual-stresses aluminium films. The plane stresses were characterised by X-ray diffraction with sin 2 ψ method. The pore density roughly linearly increased with residual stress from 64.6 (−132.5 MPa) to 90.5 pores/μm 2 (135.9 MPa). However, the average pore size around 40 nm was not changed significantly except for the rougher film. The tensile residual stress lessened the compressive oxide growth stress to reduce AAO plastic deformation for higher pore density. The findings provide new foundations for realizing AAO films on silicon

  6. Metal stress and decreased tree growth in response to biosolids application in greenhouse seedlings and in situ Douglas-fir stands

    International Nuclear Information System (INIS)

    Cline, Erica T.; Nguyen, Quyen T.N.; Rollins, Lucy; Gawel, James E.

    2012-01-01

    To assess physiological impacts of biosolids on trees, metal contaminants and phytochelatins were measured in Douglas-fir stands amended with biosolids in 1982. A subsequent greenhouse study compared these same soils to soils amended with fresh wastewater treatment plant biosolids. Biosolids-amended field soils had significantly higher organic matter, lower pH, and elevated metals even after 25 years. In the field study, no beneficial growth effects were detected in biosolids-amended stands and in the greenhouse study both fresh and historic biosolids amendments resulted in lower seedling growth rates. Phytochelatins – bioindicators of intracellular metal stress – were elevated in foliage of biosolids-amended stands, and significantly higher in roots of seedlings grown with fresh biosolids. These results demonstrate that biosolids amendments have short- and long-term negative effects that may counteract the expected tree growth benefits. - Highlights: ► Biosolids amendment increases soil metals over 25 years later. ► Douglas-fir growth benefits fail to materialize from biosolids amendments. ► Phytochelatins are elevated in foliage of trees and roots of greenhouse seedlings after new biosolids are added to soil. ► Biosolids connected to metal stress in Douglas-fir. - Biosolids applications increase bioindicators of intracellular metal stress and may counteract tree growth benefits.

  7. Effect of mineral mixture and antioxidant supplementation on growth, reproductive performance and adaptive capability of Malpura ewes subjected to heat stress.

    Science.gov (United States)

    Sejian, V; Singh, A K; Sahoo, A; Naqvi, S M K

    2014-02-01

    This study was conducted to evaluate the effect of mineral and antioxidant supplementation on growth, reproductive performance and physiological adaptability of heat-stressed Malpura ewes. The study was conducted for a period of 21 days in 21 adult Malpura ewes. The ewes were randomly divided into three groups with seven animals each viz. GI (control; n = 7), GII (heat stress; n = 7) and GIII (heat stress + mineral and antioxidant supplementation; n = 7). The animals were stall fed ad libitum with the diet consisting of 70% roughage and 30% concentrate. GI ewes were maintained under normal controlled condition in the shed, while GII and GIII ewes were subjected to heat stress by exposing them to 42 °C in the climatic chamber. The parameters studied were feed intake (FI), water intake (WI), body weight, body condition score (BCS), physiological, biochemical and endocrine responses. Heat stress significantly altered FI, water intake, BCS, respiration rate and rectal temperature in the afternoon, oestrus duration, estradiol, progesterone, Hb, PCV, plasma glucose, total protein, cortisol, T3 and T4 levels while mineral and antioxidant supplementation ameliorated this heat stress effect on the parameters studied. Further, the adverse effect of heat stress on the productive and reproductive efficiency of Malpura ewes was reduced considerably by mineral mixture and antioxidant supplementation. This is evident from the non-significant difference in BCS, oestrus duration and plasma estradiol between GI and GIII in this study. Hence, it is very pertinent to conclude from this study that mineral mixture and antioxidant supplementation were able to protect Malpura ewes against heat stress. © 2013 Blackwell Verlag GmbH.

  8. Effects of PEG-induced osmotic stress on growth and dhurrin levels of forage sorghum

    DEFF Research Database (Denmark)

    O'Donnell, Natalie H.; Møller, Birger Lindberg; Neale, Alan D.

    2013-01-01

    Sorghum (Sorghum bicolor L. Moench) is a valuable forage crop in regions with low soil moisture. Sorghum may accumulate high concentrations of the cyanogenic glucoside dhurrin when drought stressed resulting in possible cyanide (HCN) intoxication of grazing animals. In addition, high concentratio...... of plant growth and root activity, increasing the rate of nitrate uptake. Data presented in this article support a role for cyanogenic glucosides in mitigating oxidative stress....... of nitrate, also potentially toxic to ruminants, may accumulate during or shortly after periods of drought. Little is known about the degree and duration of drought-stress required to induce dhurrin accumulation, or how changes in dhurrin concentration are influenced by plant size or nitrate metabolism....... Given that finely regulating soil moisture under controlled conditions is notoriously difficult, we exposed sorghum plants to varying degrees of osmotic stress by growing them for different lengths of time in hydroponic solutions containing polyethylene glycol (PEG). Plants grown in medium containing 20...

  9. Stress evolution during growth of bilayer self-assembled InAs/GaAs quantum dots

    International Nuclear Information System (INIS)

    Schaadt, D.M.; Krauss, S.; Koch, R.; Ploog, K.H.

    2006-01-01

    We investigated the stress evolution during molecular-beam epitaxy of bilayer InAs/GaAs(001) quantum dot (QD) structures in real time and with sub-monolayer precision using an in-situ cantilever beam setup. During growth of the InAs at 470 C a stress of 5.1 GPa develops in the wetting layer, in good agreement with the theoretical misfit stress. At a critical thickness of 1.5 monolayers the strain is relieved by the QD formation. In the case of InAs/GaAs bilayer structures, the second InAs layer grows identical to the first for GaAs spacer thicknesses exceeding ∝13 nm. For thinner spacers the critical thickness for the 2D/3D transition in the second layer decreases. The stress of the second InAs layer does not reach the value of the first, indicating that InAs QDs grow on partially strained areas due to the strain field of the previous InAs layer. (orig.)

  10. Do labour market reforms reduce labour productivity growth? A panel data analysis of 20 OECD countries (1960–2004)

    NARCIS (Netherlands)

    Vergeer, R.; Kleinknecht, A.

    2014-01-01

    Based on comprehensive regression analysis, the authors find that weak wage growth and a smaller labour share of national income significantly reduce labour productivity growth. They conclude that supply-side labour market reforms have contributed to reducing labour productivity growth: this cannot

  11. Endothelial Dll4 overexpression reduces vascular response and inhibits tumor growth and metastasization in vivo.

    Science.gov (United States)

    Trindade, Alexandre; Djokovic, Dusan; Gigante, Joana; Mendonça, Liliana; Duarte, António

    2017-03-14

    The inhibition of Delta-like 4 (Dll4)/Notch signaling has been shown to result in excessive, nonfunctional vessel proliferation and significant tumor growth suppression. However, safety concerns emerged with the identification of side effects resulting from chronic Dll4/Notch blockade. Alternatively, we explored the endothelial Dll4 overexpression using different mouse tumor models. We used a transgenic mouse model of endothelial-specific Dll4 overexpression, previously produced. Growth kinetics and vascular histopathology of several types of solid tumors was evaluated, namely Lewis Lung Carcinoma xenografts, chemically-induced skin papillomas and RIP1-Tag2 insulinomas. We found that increased Dll4/Notch signaling reduces tumor growth by reducing vascular endothelial growth factor (VEGF)-induced endothelial proliferation, tumor vessel density and overall tumor blood supply. In addition, Dll4 overexpression consistently improved tumor vascular maturation and functionality, as indicated by increased vessel calibers, enhanced mural cell recruitment and increased network perfusion. Importantly, the tumor vessel normalization is not more effective than restricted vessel proliferation, but was found to prevent metastasis formation and allow for increased delivery to the tumor of concomitant chemotherapy, improving its efficacy. By reducing endothelial sensitivity to VEGF, these results imply that Dll4/Notch stimulation in tumor microenvironment could be beneficial to solid cancer patient treatment by reducing primary tumor size, improving tumor drug delivery and reducing metastization. Endothelial specific Dll4 overexpression thus appears as a promising anti-angiogenic modality that might improve cancer control.

  12. Loss of catalase increases malignant mouse keratinocyte cell growth through activation of the stress activated JNK pathway.

    Science.gov (United States)

    Hanke, Neale T; Finch, Joanne S; Bowden, G Timothy

    2008-05-01

    A cell line that produces mouse squamous cell carcinoma (6M90) was modified to develop a cell line with an introduced Tet-responsive catalase transgene (MTOC2). We have previously reported that the overexpressed catalase in the MTOC2 cells reverses the malignant phenotype in part by decreasing epidermal growth factor receptor (EGFR) signaling. With this work we expanded the investigation into the differences between these two cell lines. We found that the decreased EGFR pathway activity of the MTOC2 cells is not because of reduced autocrine secretion of an epidermal growth factor (EGF) ligand but rather because of lower basal receptor activity. Phosphorylated levels of the mitogen-activated protein kinase (MAPK) members JNK and p38 were both higher in the 6M90 cells with low catalase when compared with the MTOC2 cell line. Although treatment with an EGFR inhibitor, AG1478, blocked the increased activity of JNK in the 6M90 cells, a similar effect was not observed for p38. Basal levels of downstream c-jun transcription were also found to be higher in the 6M90 cells versus MTOC2 cells. Activated p38 was found to down-regulate the JNK MAPK pathway in the 6M90 cells. However, the 6M90 cells contain constitutively high levels of phosphorylated JNK, generating higher levels of phosphorylated c-jun and total c-jun than those in the MTOC2 cells. Inhibition of JNK activity in the 6M90 cells reduced AP-1 transcription and cell proliferation. The data confirm the inhibitory effects of catalase on tumor cell growth, specifically through a ligand-independent decrease in the stress activated JNK pathway. (c) 2007 Wiley-Liss, Inc.

  13. Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize

    DEFF Research Database (Denmark)

    Saleem Akhtar, Saqib; Andersen, Mathias Neumann; Naveed, Muhammad

    2015-01-01

    The objective of this work was to study the interactive effect of biochar and plant growth-promoting endophytic bacteria containing 1-aminocyclopropane-1-carboxylate deaminase and exopolysaccharide activity on mitigating salinity stress in maize (Zea mays L.). The plants were grown in a greenhouse...... under controlled conditions, and were subjected to separate or combined treatments of biochar (0% and 5%, w/w) and two endophytic bacterial strains (Burkholderia phytofirmans (PsJN) and Enterobacter sp. (FD17)) and salinity stress. The results indicated that salinity significantly decreased the growth...... of maize, whereas both biochar and inoculation mitigated the negative effects of salinity on maize performance either by decreasing the xylem Na+ concentration ([Na+]xylem) uptake or by maintaining nutrient balance within the plant, especially when the two treatments were applied in combination. Moreover...

  14. Temperature and water stress during conditioning and incubation phase affecting Orobanche crenata seed germination and radicle growth

    Directory of Open Access Journals (Sweden)

    JUAN eMORAL

    2015-06-01

    Full Text Available Orobanche crenata is a holoparasitic plant that is potentially devastating to crop yield of legume species. Soil temperature and humidity are known to affect seed germination, however, the extent of their influence on germination and radicle growth of those of O. crenata is largely unknown. In this work, we studied the effects of temperature, water potential (Ψt and the type of water stress (matric or osmotic on O. crenata seeds during conditioning and incubation periods. We found that seeds germinated between 5 and 30ºC during both periods, with a maximum around 20ºC. Germination increased with increasing Ψt from -1.2 to 0 MPa during conditioning and incubation periods. Likewise, seed germination increased logarithmically with length of conditioning period until 40 days. The impact of the type of water stress on seed germination was similar, although the radicle growth of seeds under osmotic stress was lower than under matric stress, what could explain the lowest infestation of Orobanche spp. in regions characterized by saline soil. The data in this study will be useful to forecast infection of host roots by O. crenata.

  15. Temperature and water stress during conditioning and incubation phase affecting Orobanche crenata seed germination and radicle growth.

    Science.gov (United States)

    Moral, Juan; Lozano-Baena, María Dolores; Rubiales, Diego

    2015-01-01

    Orobanche crenata is a holoparasitic plant that is potentially devastating to crop yield of legume species. Soil temperature and humidity are known to affect seed germination, however, the extent of their influence on germination and radicle growth of those of O. crenata is largely unknown. In this work, we studied the effects of temperature, water potential (Ψt) and the type of water stress (matric or osmotic) on O. crenata seeds during conditioning and incubation periods. We found that seeds germinated between 5 and 30°C during both periods, with a maximum around 20°C. Germination increased with increasing Ψt from -1.2 to 0 MPa during conditioning and incubation periods. Likewise, seed germination increased logarithmically with length of conditioning period until 40 days. The impact of the type of water stress on seed germination was similar, although the radicle growth of seeds under osmotic stress was lower than under matric stress, what could explain the lowest infestation of Orobanche sp. in regions characterized by saline soil. The data in this study will be useful to forecast infection of host roots by O. crenata.

  16. Effect of reduced light and low oxygen concentration on germination, growth and establishment of some plants

    DEFF Research Database (Denmark)

    Yasin, Muhammad

    Many abiotic factors effect plants germination, growth, and development. This Ph.D. study elucidates the effect of reduced light, low oxygen and seed dormancy on germination and growth of some weed species, field crops and vegetables. One study describes the growth and developmental responses...... of some common, invasive and rare weed species to reduced light levels in greenhouse experiments. The seed germination response of some weed species, field crops, and vegetables to different oxygen concentrations was also quantified in the laboratory experiments. The effect of east-west (EW) and north...

  17. Mycorrhiza reduces adverse effects of dark septate endophytes (DSE) on growth of conifers.

    Science.gov (United States)

    Reininger, Vanessa; Sieber, Thomas N

    2012-01-01

    Mycorrhizal roots are frequently colonized by fungi of the Phialocephala fortinii s.l.-Acephala applanata species complex (PAC). These ascomycetes are common and widespread colonizers of tree roots. Some PAC strains reduce growth increments of their hosts but are beneficial in protecting roots against pathogens. Nothing is known about the effects of PAC on mycorrhizal fungi and the PAC-mycorrhiza association on plant growth, even though these two fungal groups occur closely together in natural habitats. We expect reduced colonization rates and reduced negative effects of PAC on host plants if roots are co-colonized by an ectomycorrhizal fungus (ECM). Depending on the temperature regime interactions among the partners in this tripartite ECM-PAC-plant system might also change. To test our hypotheses, effects of four PAC genotypes (two pathogenic and two non-pathogenic on the Norway spruce), mycorrhization by Laccaria bicolor (strain S238N) and two temperature regimes (19°C and 25°C) on the biomass of the Douglas-fir (Pseudotsuga menziesii) and Norway spruce (Picea abies) seedlings were studied. Mycorrhization compensated the adverse effects of PAC on the growth of the Norway spruce at both temperatures. The growth of the Douglas-fir was not influenced either by PAC or mycorrhization at 19°C, but at 25°C mycorrhization had a similar protective effect as in the Norway spruce. The compensatory effects probably rely on the reduction of the PAC-colonization density by mycorrhizae. Temperature and the PAC strain only had a differential effect on the biomass of the Norway spruce but not on the Douglas-fir. Higher temperature reduced mycorrhization of both hosts. We conclude that ectomycorrhizae form physical and/or physiological barriers against PAC leading to reduced PAC-colonization of the roots. Additionally, our results indicate that global warming could cause a general decrease of mycorrhization making primary roots more accessible to other symbionts and pathogens.

  18. Screening of the two-component-system histidine kinases of Listeria monocytogenes EGD-e. LiaS is needed for growth under heat, acid, alkali, osmotic, ethanol and oxidative stresses.

    Science.gov (United States)

    Pöntinen, Anna; Lindström, Miia; Skurnik, Mikael; Korkeala, Hannu

    2017-08-01

    To study the role of each two-component system (TCS) histidine kinase (HK) in stress tolerance of Listeria monocytogenes EGD-e, we monitored the growth of individual HK deletion mutant strains under heat (42.5 °C), acid (pH 5.6), alkali (pH 9.4), osmotic (6% NaCl), ethanol (3.5 vol%), and oxidative (5 mM H 2 O 2 ) stresses. The growth of ΔliaS (Δlmo1021) strain was impaired under each stress, with the most notable decrease under heat and osmotic stresses. The ΔvirS (Δlmo1741) strain showed nearly completely restricted growth at high temperature and impaired growth in ethanol. The growth of ΔagrC (Δlmo0050) strain was impaired under osmotic stress and slightly under oxidative stress. We successfully complemented the HK mutations using a novel allelic exchange based approach. This approach avoided the copy-number problems associated with in trans complementation from a plasmid. The mutant phenotypes were restored to the wild-type level in the complemented strains. This study reveals novel knowledge on the HKs needed for growth of L. monocytogenes EGD-e under abovementioned stress conditions, with LiaS playing multiple roles in stress tolerance of L. monocytogenes EGD-e. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Assessment of Cadmium and Chromium Stress on Growth, Physiology and Metal Uptake Using Mirabilis Jalapa

    OpenAIRE

    S. A. Shahanaz Begum; Tharakeswar Yadamari; Kalyan Yakkala; Sreevani Parvathareddy; Ramakrishna Naidu Gurijala

    2015-01-01

    Phytoextraction potential of Mirabilis jalapa, with tuberous root having high ecological adoptability was studied in the present work . Different levels of cadmium and chromium stress on growth, physiology and metal uptake were studied using pot experiments. The experiment comprised of 5 dosages of cadmium and chromium with different test concentrations (TC) viz, TC1(0), TC2(25), TC3(50), TC4(75) and TC5(100) ppm, for the period of 45 days. Growth, physiological parameters and metal accumulat...

  20. Retinal Pigment Epithelial Cell Culture and Cooperation of L-carnitine in Reducing Stress Induced Cellular Damage

    International Nuclear Information System (INIS)

    Shamsi, Farrukh A.; Al-Rajhi, Ali A.; Athmanathan, S.; Boulton, M.; Chaudhry, Imtiaz A.

    2006-01-01

    Purpose was to show that L-carnitine (LC) is capable of reducing non-oxidative stress in the retinal pigment epithelial cells (RPE) of the human eye. The RPE cells were cultured from donor eyes, obtained immediately after post-mortem. The interaction between bovine serum albumin (BSA) and non-oxidative (sodium hydroxide and methyl methane sulphonate) stress-inducers was observed by recording the change in the absorption profiles of the interacting molecules after incubation in light for 5 hours and after treatment with LC. The isolated and cultured RPE cells from the human eyes were treated with sodium hydroxide or methyl methane sulphonate and/or LC for 5 hours under light, and the qualitative effect on cell morphology after treatment was analyzed by staining cells with Giemsa and visualization by light microscopy. The cell morphology was also qualitatively analyzed by scanning electron microscopy (SEM). L-carnitine and stress-inducers interact with BSA and bring about changes in the spectral profile of the interacted molecules. Light microscopy as well as SEM show that the changes in the cellular morphology, induced by 100 uM concentrations of non-oxidative stress-inducers, are considerably reduced in the presence of 100 uM LC. However, L-carnitine alone does not cause any qualitative damage to the cell morphology during incubation under similar conditions. The results give a preliminary indication that LC has ability to reduce the changes brought about by the non-oxidative stress-inducers in the RPF cells in culture. (author)

  1. Diallyl trisulfide ameliorates myocardial ischemia-reperfusion injury by reducing oxidative stress and endoplasmic reticulum stress-mediated apoptosis in type 1 diabetic rats: role of SIRT1 activation.

    Science.gov (United States)

    Yu, Liming; Li, Shu; Tang, Xinlong; Li, Zhi; Zhang, Jian; Xue, Xiaodong; Han, Jinsong; Liu, Yu; Zhang, Yuji; Zhang, Yong; Xu, Yinli; Yang, Yang; Wang, Huishan

    2017-07-01

    Diallyl trisulfide (DATS) protects against apoptosis during myocardial ischemia-reperfusion (MI/R) injury in diabetic state, although the underlying mechanisms remain poorly defined. Previously, we and others demonstrated that silent information regulator 1 (SIRT1) activation inhibited oxidative stress and endoplasmic reticulum (ER) stress during MI/R injury. We hypothesize that DATS reduces diabetic MI/R injury by activating SIRT1 signaling. Streptozotocin (STZ)-induced type 1 diabetic rats were subjected to MI/R surgery with or without perioperative administration of DATS (40 mg/kg). We found that DATS treatment markedly improved left ventricular systolic pressure and the first derivative of left ventricular pressure, reduced myocardial infarct size as well as serum creatine kinase and lactate dehydrogenase activities. Furthermore, the myocardial apoptosis was also suppressed by DATS as evidenced by reduced apoptotic index and cleaved caspase-3 expression. However, these effects were abolished by EX527 (the inhibitor of SIRT1 signaling, 5 mg/kg). We further found that DATS effectively upregulated SIRT1 expression and its nuclear distribution. Additionally, PERK/eIF2α/ATF4/CHOP-mediated ER stress-induced apoptosis was suppressed by DATS treatment. Moreover, DATS significantly activated Nrf-2/HO-1 antioxidant signaling pathway, thus reducing Nox-2/4 expressions. However, the ameliorative effects of DATS on oxidative stress and ER stress-mediated myocardial apoptosis were inhibited by EX527 administration. Taken together, these data suggest that perioperative DATS treatment effectively ameliorates MI/R injury in type 1 diabetic setting by enhancing cardiac SIRT1 signaling. SIRT1 activation not only upregulated Nrf-2/HO-1-mediated antioxidant signaling pathway but also suppressed PERK/eIF2α/ATF4/CHOP-mediated ER stress level, thus reducing myocardial apoptosis and eventually preserving cardiac function.

  2. Growth and chlorophyll fluorescence under salinity stress in sugar beet (Beta vulgaris L.

    Directory of Open Access Journals (Sweden)

    Fadi Abbas

    2014-02-01

    Full Text Available This study was carried out in the General Commission for Scientific Agricultural Research (GCSAR, Syria, at Der EzZour Agricultural Research Center, from 2008-2010, to examine the effect of salt conditions on some growth attributes and chlorophyll fluorescence in 10 Sugar Beet (Beta vulgaris L. genotypes under salinity stress. Sugar beet plants were irrigated with saline water, having electrical conductivity ranged from 8.6-10 dS.m-1during first year and 8.4-10.4 dS.m-1 during second year. A randomized completely block design with three replicates was used. The results showed that all studied growth attributes, leaf area, leaf number, relative growth rate, and net assimilation rate were decreased in salinity stress conditions compared to the controlled state. The findings indicated that salinity caused a decrement of light utilizing through increased values of fluorescence origin (fo, decreased values of fluorescence maximum (fm, and maximum yield of quantum in photosystem-II (fv/fm. Genotypes differed significantly in all studied attributes except in leaf number. Under salt conditions, Brigitta (monogerm achieved an increase in net assimilation rate, while Kawimera (multigerm achieved the lowest decrement in quantum yield in photosystem-II. Further studies are necessary to correlate the yield with yield components under similar conditions to determine the most tolerant genotype.International Journal of Environment Vol.3(1 2014: 1-9 DOI: http://dx.doi.org/10.3126/ije.v3i1.9937

  3. Biofouling leads to reduced shell growth and flesh weight in the cultured mussel Mytilus galloprovincialis.

    Science.gov (United States)

    Sievers, Michael; Fitridge, Isla; Dempster, Tim; Keough, Michael J

    2013-01-01

    Competitive interactions between cultured mussels and fouling organisms may result in growth and weight reductions in mussels, and compromised aquaculture productivity. Mussel ropes were inoculated with Ciona intestinalis, Ectopleura crocea or Styela clava, and growth parameters of fouled and unfouled Mytilus galloprovincialis were compared after two months. Small mussels (≈ 50 mm) fouled by C. intestinalis and E. crocea were 4.0 and 3.2% shorter in shell length and had 21 and 13% reduced flesh weight, respectively, compared to the controls. Large mussels (≈ 68 mm) fouled by S. clava, C. intestinalis and E. crocea were 4.4, 3.9 and 2.1% shorter than control mussels, respectively, but flesh weights were not significantly reduced. A series of competitive feeding experiments indicated that S. clava and C. intestinalis did not reduce mussels' food consumption, but that E. crocea, through interference competition, did. Fouling by these species at the densities used here reduced mussel growth and flesh weight, likely resulting in economic losses for the industry, and requires consideration when developing biofouling mitigation strategies.

  4. Effect of the absence of the CcpA gene on growth, metabolic production, and stress tolerance in Lactobacillus delbrueckii ssp. bulgaricus.

    Science.gov (United States)

    Li, C; Sun, J W; Zhang, G F; Liu, L B

    2016-01-01

    The catabolite control protein A (CcpA) is a kind of multi-effect regulatory protein. In the study, the effect of the inactivation of CcpA and aerobic conditions on the growth, metabolic production, and stress tolerance to heat, oxidative, and cold stresses in Lactobacillus delbrueckii ssp. bulgaricus was investigated. Results showed that inactivation of CcpA distinctly hindered growth. Total lactic acid concentration was significantly lower in aerobiosis for both strains and was lower for the mutant strain than L. bulgaricus. Acetic acid production from the mutant strain was higher than L. bulgaricus in aerobiosis compared with anaerobiosis. Enzyme activities, lactate dehydrogenase (LDH), phosphate fructose kinase (PFK), pyruvate kinase (PK), and pyruvic dehydrogenase (PDH), were significantly lower in the mutant strain than L. bulgaricus. The diameters of inhibition zone were 13.59 ± 0.02 mm and 9.76 ± 0.02 mm for L. bulgaricus in anaerobiosis and aerobiosis, respectively; and 8.12 ± 0.02 mm and 7.38 ± 0.02 mm for the mutant in anaerobiosis and aerobiosis, respectively. For both strains, cells grown under aerobic environment possess more stress tolerance. This is the first study in which the CcpA-negative mutant of L. bulgaricus is constructed and the effect of aerobic growth on stress tolerance of L. bulgaricus is evaluated. Although aerobic cultivation does not significantly improve growth, it does improve stress tolerance. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Drought priming at vegetative growth stages improves tolerance to drought and heat stresses occurring during grain filling in spring wheat

    DEFF Research Database (Denmark)

    Wang, Xiao; Vignjevic, Marija; Liu, Fulai

    2015-01-01

    Plants of spring wheat (Triticum aestivum L. cv. Vinjett) were exposed to moderate water deficit at the vegetative growth stages six-leaf and/or stem elongation to investigate drought priming effects on tolerance to drought and heat stress events occurring during the grain filling stage. Compared......Plants of spring wheat (Triticum aestivum L. cv. Vinjett) were exposed to moderate water deficit at the vegetative growth stages six-leaf and/or stem elongation to investigate drought priming effects on tolerance to drought and heat stress events occurring during the grain filling stage...... of abscisic acid in primed plants under drought stress could contribute to higher grain yield compared to the non-primed plants. Taken together, the results indicate that drought priming during vegetative stages improved tolerance to both drought and heat stress events occurring during grain filling in wheat....

  6. The bereavement process of tissue donors' family members: responses of grief, posttraumatic stress, personal growth, and ongoing attachment.

    Science.gov (United States)

    Hogan, Nancy; Schmidt, Lee; Coolican, Maggie

    2014-09-01

    Donated tissues can save lives of critically burned patients and those needing a heart valve replacement. Tissues enhance the lives of a million recipients annually through transplants of corneas, bones, tendons, and vein grafts. Unfortunately, the need for some tissues exceeds their availability. The goal of the quantitative component of this mixed methods study was to identify the grief, posttraumatic stress, personal growth, and ongoing attachment response of tissue donors' family members during a 2-year period. Simultaneous mixed methods design. The sample for this study consisted of 52 tissue donors' family members, mostly widows (83%). Data were collected for 2 years to test changes in grief, posttraumatic stress, panic behavior, personal growth, and ongoing attachment. The bereaved participants experienced significantly fewer grief reactions, less posttraumatic stress, and greater personal growth. There was no significant difference in the ongoing attachment to their deceased loved ones. The results of this study may reinforce the positive meaning that tissue donors' family members can find in tissue donation. Findings also demonstrate that the bereavement process corroborates contemporary bereavement and attachment theories. Health professionals are encouraged to seek donations with less worry that tissue donors' family members will experience adverse outcomes during bereavement.

  7. Salicylic acid promotes plant growth and salt-related gene expression in Dianthus superbus L. (Caryophyllaceae) grown under different salt stress conditions.

    Science.gov (United States)

    Zheng, Jian; Ma, Xiaohua; Zhang, Xule; Hu, Qingdi; Qian, Renjuan

    2018-03-01

    Salt stress is a critical factor that affects the growth and development of plants. Salicylic acid (SA) is an important signal molecule that mitigates the negative effects of salt stress on plants. To elucidate salt tolerance in large pink Dianthus superbus L. (Caryophyllaceae) and the regulatory mechanism of exogenous SA on D. superbus under different salt stresses, we conducted a pot experiment to evaluate leaf biomass, leaf anatomy, soluble protein and sugar content, and the relative expression of salt-induced genes in D. superbus under 0.3, 0.6, and 0.9% NaCl conditions with and without 0.5 mM SA. The result showed that exposure of D. superbus to salt stress lead to a decrease in leaf growth, soluble protein and sugar content, and mesophyll thickness, together with an increase in the expression of MYB and P5CS genes. Foliar application of SA effectively increased leaf biomass, soluble protein and sugar content, and upregulated the expression of MYB and P5CS in the D. superbus , which facilitated in the acclimation of D. superbus to moderate salt stress. However, when the plants were grown under severe salt stress (0.9% NaCl), no significant difference in plant physiological responses and relevant gene expression between plants with and without SA was observed. The findings of this study suggest that exogenous SA can effectively counteract the adverse effects of moderate salt stress on D. superbus growth and development.

  8. Parental self-efficacy and stress-related growth in the transition to parenthood: a comparison between parents of pre- and full-term babies.

    Science.gov (United States)

    Spielman, Varda; Taubman-Ben-Ari, Orit

    2009-08-01

    The purpose of the study reported in this article was to examine how the unique circumstances of the birth of a premature baby affect the perception of parental self-efficacy and stress-related growth--which is the experience of positive change in one's life following stressful circumstances--among first-time parents and to examine the contribution of the parents' personal resources of self-esteem and attachment style, and their infant's temperament and medical condition, to their self-efficacy and stress-related growth. Forty-nine sets of parents of preterm babies and 50 sets of parents of full-term babies completed questionnaires about one month after the birth of their child. Parents of premature infants reported a higher level of stress-related growth than those of full-term infants, but no difference was found between them on parental self-efficacy In addition, gender differences in the dependent variables, as well as significant contributions of attachment style and self-esteem, were found. Professional guidance during pregnancy, aimed at expanding parents' knowledge and understanding of the changes they can expect to undergo, may serve to enhance the positive experience of growth in the transition to parenthood.

  9. Drought Stress Effect during Different Growth Stages on Yield, Osmolites and Photosynthetic Pigments Accumulation of Grain Sorghum Genotypes (Sorghum bicolor L.

    Directory of Open Access Journals (Sweden)

    A Azari Nasrabad

    2017-12-01

    number of plants, the number of panicles, grain yield, 1000 grains weight and the number of seeds per panicle were determined. To determine the yield, after removal of 2 marginal lines and a half meter of the beginning and the end of each plot, plants were harvested from the surface of 3 m2. Biochemical parameters including chlorophyll a, chlorophyll b, carotenoids, proline and carbohydrates were measured on the flag leaf after flowering stage in each plot. Flag leaves immediately wrapped in aluminum foil and transferred into liquid nitrogen tanks after separating from the plant. The samples were transferred to a freezer at -20 ° C to be measured traits on them. Measurement of the biochemical characteristics, such as chlorophyll a content, chlorophyll b, total chlorophyll a and b and carotenoid content was done according to Arnon method. Measuring the concentration of soluble carbohydrates was performed using sulfuric acid method. Measurement of free proline was done by Bates method. Sugar percentage of stem (Brix was read by a refractometer after cutting and placement of juice out of it. Results and Discussion Results showed that water stress had a significant effect on grain yield, 1000 grain weight, the numbers of seed per panicle and caused to decrement of them. The performances of different genotypes varied significantly for all traits, indicating high variability among them. In case of 1000 seed weight, the interaction between water stress and genotype did not show a significant difference, however, other traits which mentioned above showed a significant difference in this aspect. Regarding the biochemical characteristics, the impact of drought in the vegetative and reproductive growth stages was different, as drought reduced the content of chlorophyll and carotenoid and increased the content of soluble sugar and free proline and stalk sugar content (Brix. In term of grain yield, genotype KGFS13 with the average yield of 5060 Kg per hectare and then genotype KGFS

  10. Effect of water stress on seedling growth in two species with different abundances: the importance of Stress Resistance Syndrome in seasonally dry tropical forest

    Directory of Open Access Journals (Sweden)

    Wanessa Nepomuceno Ferreira

    2015-09-01

    Full Text Available ABSTRACTIn seasonally dry tropical forests, species carrying attributes of Stress Resistance Syndrome (SRS may have ecological advantages over species demanding high quantities of resources. In such forests, Poincianella bracteosa is abundant, while Libidibia ferrea has low abundance; therefore, we hypothesized that P. bracteosa has characteristics of low-resource species, while L. ferrea has characteristics of high-resource species. To test this hypothesis, we assessed morphological and physiological traits of seedlings of these species under different water regimes (100%, 70%, 40%, and 10% field capacity over 85 days. For most of the studied variables we observed significant decreases with increasing water stress, and these reductions were greater in L. ferrea. As expected, L. ferreamaximized their growth with increased water supply, while P. bracteosa maintained slower growth and had minor adjustments in biomass allocation, characteristics representative of low-resource species that are less sensitive to stress. We observed that specific leaf area, biomass allocation to roots, and root/shoot ratio were higher in L. ferrea, while biomass allocation to leaves and photosynthesis were higher in P. bracteosa. Results suggest that the attributes of SRS can facilitate high abundance of P. bracteosa in dry forest.

  11. Skin morphological changes in growth hormone deficiency and acromegaly

    DEFF Research Database (Denmark)

    Lange, Merete Wolder; Thulesen, J; Feldt-Rasmussen, U

    2001-01-01

    To evaluate the histomorphology of skin and its appendages, especially eccrine sweat glands, in patients with GH disorders, because reduced sweating ability in patients with growth hormone deficiency (GHD) is associated with increased risk of hyperthermia under stressed conditions....

  12. The role of religiosity, social support, and stress-related growth in protecting against HIV risk among transgender women.

    Science.gov (United States)

    Golub, Sarit A; Walker, Ja'nina J; Longmire-Avital, Buffie; Bimbi, David S; Parsons, Jeffrey T

    2010-11-01

    Transgender women completed questionnaires of religiosity, social support, stigma, stress-related growth, and sexual risk behavior. In a multivariate model, both social support and religious stress-related growth were significant negative predictors of unprotected anal sex, but religious behaviors and beliefs emerged as a significant positive predictor. The interaction between religious behaviors and beliefs and social support was also significant, and post-hoc analyses indicated that high-risk sex was least likely among individuals with high-levels of social support but low levels of religious behaviors and beliefs. These data have important implications for understanding factors that might protect against HIV risk for transgender women.

  13. Influence of Ni Solute segregation on the intrinsic growth stresses in Cu(Ni) thin films

    International Nuclear Information System (INIS)

    Kaub, T.M.; Felfer, P.; Cairney, J.M.; Thompson, G.B.

    2016-01-01

    Using intrinsic solute segregation in alloys, the compressive stress in a series of Cu(Ni) thin films has been studied. The highest compressive stress was noted in the 5 at.% Ni alloy, with increasing Ni concentration resulting in a subsequent reduction of stress. Atom probe tomography quantified Ni's Gibbsian interfacial excess in the grain boundaries and confirmed that once grain boundary saturation is achieved, the compressive stress was reduced. This letter provides experimental support in elucidating how interfacial segregation of excess adatoms contributes to the post-coalescence compressive stress generation mechanism in thin films. - Graphical abstract: Cu(Ni) film stress relationship with Ni additions. Atom probe characterization confirms solute enrichment in the boundaries, which was linked to stress response.

  14. Environmental stresses can alleviate the average deleterious effect of mutations

    Directory of Open Access Journals (Sweden)

    Leibler Stanislas

    2003-05-01

    Full Text Available Abstract Background Fundamental questions in evolutionary genetics, including the possible advantage of sexual reproduction, depend critically on the effects of deleterious mutations on fitness. Limited existing experimental evidence suggests that, on average, such effects tend to be aggravated under environmental stresses, consistent with the perception that stress diminishes the organism's ability to tolerate deleterious mutations. Here, we ask whether there are also stresses with the opposite influence, under which the organism becomes more tolerant to mutations. Results We developed a technique, based on bioluminescence, which allows accurate automated measurements of bacterial growth rates at very low cell densities. Using this system, we measured growth rates of Escherichia coli mutants under a diverse set of environmental stresses. In contrast to the perception that stress always reduces the organism's ability to tolerate mutations, our measurements identified stresses that do the opposite – that is, despite decreasing wild-type growth, they alleviate, on average, the effect of deleterious mutations. Conclusions Our results show a qualitative difference between various environmental stresses ranging from alleviation to aggravation of the average effect of mutations. We further show how the existence of stresses that are biased towards alleviation of the effects of mutations may imply the existence of average epistatic interactions between mutations. The results thus offer a connection between the two main factors controlling the effects of deleterious mutations: environmental conditions and epistatic interactions.

  15. A multiscale coupled finite-element and phase-field framework to modeling stressed grain growth in polycrystalline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jamshidian, M., E-mail: jamshidian@cc.iut.ac.ir [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Institute of Structural Mechanics, Bauhaus-University Weimar, Marienstrasse 15, 99423 Weimar (Germany); Thamburaja, P., E-mail: prakash.thamburaja@gmail.com [Department of Mechanical & Materials Engineering, Universiti Kebangsaan Malaysia (UKM), Bangi 43600 (Malaysia); Rabczuk, T., E-mail: timon.rabczuk@tdt.edu.vn [Division of Computational Mechanics, Ton Duc Thang University, Ho Chi Minh City (Viet Nam); Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City (Viet Nam)

    2016-12-15

    A previously-developed finite-deformation- and crystal-elasticity-based constitutive theory for stressed grain growth in cubic polycrystalline bodies has been augmented to include a description of excess surface energy and grain-growth stagnation mechanisms through the use of surface effect state variables in a thermodynamically-consistent manner. The constitutive theory was also implemented into a multiscale coupled finite-element and phase-field computational framework. With the material parameters in the constitutive theory suitably calibrated, our three-dimensional numerical simulations show that the constitutive model is able to accurately predict the experimentally-determined evolution of crystallographic texture and grain size statistics in polycrystalline copper thin films deposited on polyimide substrate and annealed at high-homologous temperatures. In particular, our numerical analyses show that the broad texture transition observed in the annealing experiments of polycrystalline thin films is caused by grain growth stagnation mechanisms. - Graphical abstract: - Highlights: • Developing a theory for stressed grain growth in polycrystalline thin films. • Implementation into a multiscale coupled finite-element and phase-field framework. • Quantitative reproduction of the experimental grain growth data by simulations. • Revealing the cause of texture transition to be due to the stagnation mechanisms.

  16. Nitric oxide participates in cold-inhibited Camellia sinensis pollen germination and tube growth partly via cGMP in vitro.

    Directory of Open Access Journals (Sweden)

    Yu-Hua Wang

    Full Text Available Nitric oxide (NO plays essential roles in many biotic and abiotic stresses in plant development procedures, including pollen tube growth. Here, effects of NO on cold stress inhibited pollen germination and tube growth in Camellia sinensis were investigated in vitro. The NO production, NO synthase (NOS-like activity, cGMP content and proline (Pro accumulation upon treatment with NO scavenger cPTIO, NOS inhibitor L-NNA, NO donor DEA NONOate, guanylate cyclase (GC inhibitor ODQ or phosphodiesterase (PDE inhibitor Viagra at 25°C (control or 4°C were analyzed. Exposure to 4°C for 2 h reduced pollen germination and tube growth along with increase of NOS-like activity, NO production and cGMP content in pollen tubes. DEA NONOate treatment inhibited pollen germination and tube growth in a dose-dependent manner under control and reinforced the inhibition under cold stress, during which NO production and cGMP content promoted in pollen tubes. L-NNA and cPTIO markedly reduced the generation of NO induced by cold or NO donor along with partly reverse of cold- or NO donor-inhibited pollen germination and tube growth. Furthermore, ODQ reduced the cGMP content under cold stress and NO donor treatment in pollen tubes. Meanwhile, ODQ disrupted the reinforcement of NO donor on the inhibition of pollen germination and tube growth under cold condition. Additionally, Pro accumulation of pollen tubes was reduced by ODQ compared with that receiving NO donor under cold or control condition. Effects of cPTIO and L-NNA in improving cold-treated pollen germination and pollen tube growth could be lowered by Viagra. Moreover, the inhibitory effects of cPTIO and L-NNA on Pro accumulation were partly reversed by Viagra. These data suggest that NO production from NOS-like enzyme reaction decreased the cold-responsive pollen germination, inhibited tube growth and reduced Pro accumulation, partly via cGMP signaling pathway in C. sinensis.

  17. How sulphate-reducing microorganisms cope with stress: Lessons from systems biology

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.; He, Q.; Hemme, C.L.; Mukhopadhyay, A.; Hillesland, K.; Zhou, A.; He, Z.; Nostrand, J.D. Van; Hazen, T.C.; Stahl, D.A.; Wall, J.D.; Arkin, A.P.

    2011-04-01

    Sulphate-reducing microorganisms (SRMs) are a phylogenetically diverse group of anaerobes encompassing distinct physiologies with a broad ecological distribution. As SRMs have important roles in the biogeochemical cycling of carbon, nitrogen, sulphur and various metals, an understanding of how these organisms respond to environmental stresses is of fundamental and practical importance. In this Review, we highlight recent applications of systems biology tools in studying the stress responses of SRMs, particularly Desulfovibrio spp., at the cell, population, community and ecosystem levels. The syntrophic lifestyle of SRMs is also discussed, with a focus on system-level analyses of adaptive mechanisms. Such information is important for understanding the microbiology of the global sulphur cycle and for developing biotechnological applications of SRMs for environmental remediation, energy production, biocorrosion control, wastewater treatment and mineral recovery.

  18. Dietary supplementation of biofloc influences growth performance, physiological stress, antioxidant status and immune response of juvenile sea cucumber Apostichopus japonicus (Selenka).

    Science.gov (United States)

    Chen, Jinghua; Ren, Yichao; Wang, Guodong; Xia, Bin; Li, Yuquan

    2018-01-01

    Bioflocs are rich in various probiotics and bioactive compounds, which play an important role in improving growth and health status of aquatic organisms. A 60-day experiment was conducted to investigate the effects of dietary supplementation of biofloc on growth performance, digestive enzyme activity, physiological stress, antioxidant status, expression of immune-related genes and disease resistance of sea cucumber Apostichopus japonicus. Juvenile sea cucumbers were fed five experimental diets containing graded levels of biofloc from 0% to 20% (referred as B0, B5, B10, B15 and B20, respectively). The results showed that the sea cucumbers at dietary supplementation levels of 10%-15% biofloc had significantly higher specific growth rate (SGR) compared to control group (diet B0). Digestive enzyme activity increased with the increasing of dietary biofloc level, while no significant difference was found between diets B15 and B20. Dietary supplementation of biofloc also had significant influences on physiological stress parameters except for lactate. There was no significant discrepancy in total coelomocytes counts (TCC) in coelomic fluid of sea cucumber between the treatments. Phagocytosis and respiratory burst of cellular immune at 15% and 20% biofloc levels were significantly higher than those of control group. Significant increases in superoxide dismutase (SOD), total nitric oxide synthase (T-NOS), lysozyme (LSZ), acid phosphatase (ACP) and alkaline phosphatase (AKP) activities of sea cucumber were found at highest dietary supplementation level of 20% biofloc. The expression patterns of immune-related genes (i.e., Hsp90, Hsp70, p105, Rel, NOS and LSZ) in tissues of sea cucumber were analyzed between the experimental diets, and a general trend of up-regulation was observed at higher biofloc levels. Furthermore, dietary 10%-20% biofloc significantly reduced cumulative mortality of sea cucumber after being challenged with Vibrio splendidus. In conclusion, dietary

  19. Improvement of fetus growth restriction diagnostics in pregnant women by means of biochemical markers that characterize the disorder of stress-adaptation

    Directory of Open Access Journals (Sweden)

    N. G. Kolokot

    2018-04-01

    Full Text Available Object of the work. Regulatory and adaptive processes of the system “mother –placenta – fetus” state determination and detection of pregnant women adaptive capabilities specific features in case of fetus growth restriction based on a number of the blood plasma biochemical indicators. Materials and methods. Markers of oxidative stress were detected spectrophotometrically in the blood plasma according to generally accepted methods: oxidative modification of proteins, stable metabolites of nitrogen oxide, L-arginine, malondialdehyde, thiol compounds and reduced glutathione. Statistical processing of data was made by methods of variational statistics with Microsoft Office Excel 2010, Statistica 6.0. Results. The use applicability of the number of biochemical markers which are predictors of perinatal complications has been scientifically substantiated. Using biochemical diagnostic technique it has been shown that fetus growth restriction syndrome is accompanied by disorders of regulatory and adaptive processes of the system “mother –placenta – fetus”. In particular, the level of proteins and lipids oxidative modification increases, nitric oxide synthase activity decreases and reserves of L-arginine and thiol compounds decrease in the blood plasma. Conclusions. Comparative analysis of a number of biochemical markers determination results of stress-realizing system activity in pregnant women with fetus growth restriction and in women with a physiological pregnancy has revealed a significant (P ≤ 0.05 increase in markers of protein oxidative modification blood levels (the level of dinitrophenylhydrazones of aliphatic aldehyd of basic amino acid residues and dinitrophenylhydrazones of carbonyl compounds of basic amino acid residues in the spontaneous sample increased by 14.2 % and 16.3 %, respectively, and in the stimulated sample by 46.6 % and 43.0 %, the level of malondialdehyde increased by 42.9 %. Reduction of the stress

  20. Subchronic nandrolone administration reduces cardiac oxidative markers during restraint stress by modulating protein expression patterns.

    Science.gov (United States)

    Pergolizzi, Barbara; Carriero, Vitina; Abbadessa, Giuliana; Penna, Claudia; Berchialla, Paola; De Francia, Silvia; Bracco, Enrico; Racca, Silvia

    2017-10-01

    Nandrolone decanoate (ND), an anabolic-androgenic steroid prohibited in collegiate and professional sports, is associated with detrimental cardiovascular effects through redox-dependent mechanisms. We previously observed that high-dose short-term ND administration (15 mg/kg for 2 weeks) did not induce left heart ventricular hypertrophy and, paradoxically, improved postischemic response, whereas chronic ND treatment (5 mg/kg twice a week for 10 weeks) significantly reduced the cardioprotective effect of postconditioning, with an increase in infarct size and a decrease in cardiac performance. We wanted to determine whether short-term ND administration could affect the oxidative redox status in animals exposed to acute restraint stress. Our hypothesis was that, depending on treatment schedule, ND may have a double-edged sword effect. Measurement of malondialdehyde and 4-hydroxynonenal, two oxidative stress markers, in rat plasma and left heart ventricular tissue, revealed that the levels of both markers were increased in animals exposed to restraint stress, whereas no increase in marker levels was noted in animals pretreated with ND, indicating a possible protective action of ND against stress-induced oxidative damage. Furthermore, isolation and identification of proteins extracted from the left heart ventricular tissue samples of rats pretreated or not with ND and exposed to acute stress showed a prevalent expression of enzymes involved in amino acid synthesis and energy metabolism. Among other proteins, peroxiredoxin 6 and alpha B-crystallin, both involved in the oxidative stress response, were predominantly expressed in the left heart ventricular tissues of the ND-pretreated rats. In conclusion, ND seems to reduce oxidative stress by inducing the expression of antioxidant proteins in the hearts of restraint-stressed animals, thus contributing to amelioration of postischemic heart performance.

  1. Biogenic acidification reduces sea urchin gonad growth and increases susceptibility of aquaculture to ocean acidification.

    Science.gov (United States)

    Mos, Benjamin; Byrne, Maria; Dworjanyn, Symon A

    2016-02-01

    Decreasing oceanic pH (ocean acidification) has emphasised the influence of carbonate chemistry on growth of calcifying marine organisms. However, calcifiers can also change carbonate chemistry of surrounding seawater through respiration and calcification, a potential limitation for aquaculture. This study examined how seawater exchange rate and stocking density of the sea urchin Tripneustes gratilla that were reproductively mature affected carbonate system parameters of their culture water, which in turn influenced growth, gonad production and gonad condition. Growth, relative spine length, gonad production and consumption rates were reduced by up to 67% by increased density (9-43 individuals.m(-2)) and reduced exchange rates (3.0-0.3 exchanges.hr(-1)), but survival and food conversion efficiency were unaffected. Analysis of the influence of seawater parameters indicated that reduced pH and calcite saturation state (ΩCa) were the primary factors limiting gonad production and growth. Uptake of bicarbonate and release of respiratory CO2 by T. gratilla changed the carbonate chemistry of surrounding water. Importantly total alkalinity (AT) was reduced, likely due to calcification by the urchins. Low AT limits the capacity of culture water to buffer against acidification. Direct management to counter biogenic acidification will be required to maintain productivity and reproductive output of marine calcifiers, especially as the ocean carbonate system is altered by climate driven ocean acidification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Genome-wide transcriptional reprogramming under drought stress

    KAUST Repository

    Chen, Hao

    2012-01-01

    Soil water deficit is one of the major factors limiting plant productivity. Plants cope with this adverse environmental condition by coordinating the up- or downregulation of an array of stress responsive genes. Reprogramming the expression of these genes leads to rebalanced development and growth that are in concert with the reduced water availability and that ultimately confer enhanced stress tolerance. Currently, several techniques have been employed to monitor genome-wide transcriptional reprogramming under drought stress. The results from these high throughput studies indicate that drought stress-induced transcriptional reprogramming is dynamic, has temporal and spatial specificity, and is coupled with the circadian clock and phytohormone signaling pathways. © 2012 Springer-Verlag Berlin Heidelberg. All rights are reserved.

  3. Effect of laser shock processing on fatigue crack growth of duplex stainless steel

    International Nuclear Information System (INIS)

    Rubio-Gonzalez, C.; Felix-Martinez, C.; Gomez-Rosas, G.; Ocana, J.L.; Morales, M.; Porro, J.A.

    2011-01-01

    Research highlights: → LSP is an effective surface treatment to improve fatigue properties of duplex stainless steel. → Increasing pulse density, fatigue crack growth rate is reduced. → Microstructure is not affected by LSP. → Compressive residual stresses increases increasing pulse density. - Abstract: Duplex stainless steels have wide application in different fields like the ship, petrochemical and chemical industries that is due to their high strength and excellent toughness properties as well as their high corrosion resistance. In this work an investigation is performed to evaluate the effect of laser shock processing on some mechanical properties of 2205 duplex stainless steel. Laser shock processing (LSP) or laser shock peening is a new technique for strengthening metals. This process induces a compressive residual stress field which increases fatigue crack initiation life and reduces fatigue crack growth rate. A convergent lens is used to deliver 2.5 J, 8 ns laser pulses by a Q-switched Nd:YAG laser, operating at 10 Hz with infrared (1064 nm) radiation. The pulses are focused to a diameter of 1.5 mm. Effect of pulse density in the residual stress field is evaluated. Residual stress distribution as a function of depth is determined by the contour method. It is observed that the higher the pulse density the greater the compressive residual stress. Pulse densities of 900, 1600 and 2500 pul/cm 2 are used. Pre-cracked compact tension specimens were subjected to LSP process and then tested under cyclic loading with R = 0.1. Fatigue crack growth rate is determined and the effect of LSP process parameters is evaluated. In addition fracture toughness is determined in specimens with and without LSP treatment. It is observed that LSP reduces fatigue crack growth and increases fracture toughness if this steel.

  4. Growth and physiological response of tall oat grass to salinity stress

    African Journals Online (AJOL)

    Jane

    2011-07-20

    Jul 20, 2011 ... lipid peroxidation and proline in leaves was found during the period of intensive leaf growth. These ..... in cytoplasmic structure and negative feedback by reduced sink .... Classification and salt tolerance analysis of barley ...

  5. Pre-emptive oral dexmethorphan reduces fentanyl-induced cough as well as immediate postoperative adrenocortico-tropic hormone and growth hormone level

    Directory of Open Access Journals (Sweden)

    Avik Mukherjee

    2011-01-01

    Full Text Available Background : Fentanyl-induced cough is not always benign and brief and can be remarkably troublesome, spasmodic, and explosive. Dextromethorphan, an opioid derivative with an antitussive action, may be effective in reducing the fentanyl-induced cough. Dextromethorphan, a N-methyl D aspartate receptor antagonist, may have some effect on diminishing the stress response to surgery. This study was undertaken to determine whether preoperative dextromethorphan could effectively attenuate its incidence, severity, and effect on postoperative stress hormone levels. Materials and Methods : Three hundred and twenty patients of American society of anesthesiologists I-II, aged 18-60 years, undergoing elective laparoscopic cholecystectomy or appendicectomy were randomly allocated into two groups (Group C, control; Group D, dextromethorphan consisting of 160 patients each. Patients in Group D received dextromethorphan 40 mg orally and in Group C received placebo tablets 60 minutes before induction of anesthesia. The incidence of cough was recorded for 1 minute after fentanyl injection and graded as none (0, mild (1-2, moderate (3-5, and severe (>5 cough. Blood samples were collected for estimation of stress hormone levels before surgery and again at 1 hour and 24 hours postoperatively and compared. The appearance of adverse reactions was recorded. Results : The incidence of reflex fentanyl cough was lower in dextromethorphan group (3.9% in comparison to placebo (59.8%. Five patients developed mild and one moderate cough in the dextromethorphan group. In the control group, 31 patients developed mild, 29 moderate, and 32 severe cough. The stress hormones were significantly higher at 1 hour and 24 hours postoperatively in both groups in comparison to its preoperative values. However, at 1 hour postoperatively, adrenocorticotropic hormone, epinephrine, and growth hormone values were significantly low in the dextromethorphan group (61.5 ± 21.1 pg/ ml, 142.1 ± 11

  6. Pea p68, a DEAD-box helicase, provides salinity stress tolerance in transgenic tobacco by reducing oxidative stress and improving photosynthesis machinery.

    Directory of Open Access Journals (Sweden)

    Narendra Tuteja

    Full Text Available The DEAD-box helicases are required mostly in all aspects of RNA and DNA metabolism and they play a significant role in various abiotic stresses, including salinity. The p68 is an important member of the DEAD-box proteins family and, in animal system, it is involved in RNA metabolism including pre-RNA processing and splicing. In plant system, it has not been well characterized. Here we report the cloning and characterization of p68 from pea (Pisum sativum and its novel function in salinity stress tolerance in plant.The pea p68 protein self-interacts and is localized in the cytosol as well as the surrounding of cell nucleus. The transcript of pea p68 is upregulated in response to high salinity stress in pea. Overexpression of p68 driven by constitutive cauliflower mosaic virus-35S promoter in tobacco transgenic plants confers enhanced tolerances to salinity stress by improving the growth, photosynthesis and antioxidant machinery. Under stress treatment, pea p68 overexpressing tobacco accumulated higher K+ and lower Na+ level than the wild-type plants. Reactive oxygen species (ROS accumulation was remarkably regulated by the overexpression of pea p68 under salinity stress conditions, as shown from TBARS content, electrolyte leakage, hydrogen peroxide accumulation and 8-OHdG content and antioxidant enzyme activities.To the best of our knowledge this is the first direct report, which provides the novel function of pea p68 helicase in salinity stress tolerance. The results suggest that p68 can also be exploited for engineering abiotic stress tolerance in crop plants of economic importance.

  7. Formation of stress/strain cycles for analytical assessment of fatigue crack initiation and growth

    International Nuclear Information System (INIS)

    Tashkinov, A.V.

    2005-01-01

    This paper discusses standard techniques for setting up cycles of stresses, strains and stress intensity factors (SIF) for use in analysing the fatigue characteristics of crack-free components or the fatigue crack growth if crack-like flaws are present. A number of improved techniques are proposed. An enhanced procedure for analytical description of true metal stress-strain curves, covering plastic effects, is presented. This procedure involves standard physical and mechanical properties of the metal in question, such as ultimate stress, yield stress and elasticity modulus. It is emphasized that the currently practiced rain-flow method of design cycle formation, which is effective for an actual (truly known) cyclic loading history, is not suitable for a projected (anticipated) history, as it leaves out of account possible variations in the sequence of operating conditions. Improved techniques for establishing design stress/strain and SIF cycles are described, which make allowance for the most unfavourable sequence of events in the projected loading history. The paper points to a basic difference in the methods of design cycle formation, employed in assessment of the current condition of a component (with the actual history accounted for) and in estimation of the residual lifetime or life extension (for a projected history). (authors)

  8. Using Markov Models of Fault Growth Physics and Environmental Stresses to Optimize Control Actions

    Science.gov (United States)

    Bole, Brian; Goebel, Kai; Vachtsevanos, George

    2012-01-01

    A generalized Markov chain representation of fault dynamics is presented for the case that available modeling of fault growth physics and future environmental stresses can be represented by two independent stochastic process models. A contrived but representatively challenging example will be presented and analyzed, in which uncertainty in the modeling of fault growth physics is represented by a uniformly distributed dice throwing process, and a discrete random walk is used to represent uncertain modeling of future exogenous loading demands to be placed on the system. A finite horizon dynamic programming algorithm is used to solve for an optimal control policy over a finite time window for the case that stochastic models representing physics of failure and future environmental stresses are known, and the states of both stochastic processes are observable by implemented control routines. The fundamental limitations of optimization performed in the presence of uncertain modeling information are examined by comparing the outcomes obtained from simulations of an optimizing control policy with the outcomes that would be achievable if all modeling uncertainties were removed from the system.

  9. Professional stress in special and rehabilitation education teachers – what is it and how we can reduce it

    OpenAIRE

    Škorjanc, Nika

    2013-01-01

    The diploma paper is based on the overview of Slovenian and foreign literature connected with stress, occupational stress and strategies for reducing its negative consequences. In the first chapter, the analysis of different definitions of the term stress confirmed that we cannot define it with only one general definition. We presented two most common models of stress and types of stress (according to its origin, reaction and also according to objective factors). The chapter concludes with...

  10. Presence of a dog reduces subjective but not physiological stress responses to an analogue trauma

    Directory of Open Access Journals (Sweden)

    Johanna eLass-Hennemann

    2014-09-01

    Full Text Available Dogs are known to have stress and anxiety reducing effects. Several studies have shown that dogs are able to calm people during cognitive and performance stressors. Recently, therapy dogs have been proposed as a treatment adjunct for PTSD patients. In this study we aimed to investigate, whether dogs also have anxiety- and stress reducing effect during traumatic stressors. 80 healthy female participants were randomly assigned to one of 4 conditions. They were exposed to a traumatic film clip (trauma-film-paradigm. For one group of participants a friendly dog was present during the film, one group of participants was accompanied by a friendly human, another control group watched the film with a toy animal and the last group watched the film clip alone. Participants that were accompanied by the dog during the film reported lower anxiety ratings and less negative affect after the film clip as compared to the toy dog group and the alone group. Results of the dog group were comparable to the group that was accompanied by a friendly human. There were no differences in physiological stress responses between the four conditions. Our results show that dogs are able to lessen subjectively experienced stress and anxiety during a traumatic stress situation. This effect was comparable to that of social support by a friendly person. Implications for PTSD patients are discussed.

  11. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review.

    Science.gov (United States)

    Numan, Muhammad; Bashir, Samina; Khan, Yasmin; Mumtaz, Roqayya; Shinwari, Zabta Khan; Khan, Abdul Latif; Khan, Ajmal; Al-Harrasi, Ahmed

    2018-04-01

    Approximately 5.2 billion hectare agriculture land are affected by erosion, salinity and soil degradation. Salinity stress has significantly affecting the fertile lands, and therefore possesses a huge impact on the agriculture and economy of a country. Salt stress has severe effects on the growth and development of plants as well as reducing its yield. Plants are inherently equipped with stress tolerance ability to responds the specific type of stress. Plants retained specific mechanisms for salt stress mitigation, such as hormonal stimulation, ion exchange, antioxidant enzymes and activation of signaling cascades on their metabolic and genetic frontiers that sooth the stressed condition. Additional to the plant inherent mechanisms, certain plant growth promoting bacteria (PGPB) also have specialized mechanism that play key role for salt stress tolerance and plant growth promotion. These bacteria triggers plants to produce different plant growth hormones like auxin, cytokinine and gibberellin as well as volatile organic compounds. These bacteria also produces growth regulators like siderophore, which fix nitrogen, solubilize organic and inorganic phosphate. Considering the importance of PGPB in compensation of salt tolerance in plants, the present study has reviewed the different aspect and mechanism of bacteria that play key role in promoting plants growth and yield. It can be concluded that PGPB can be used as a cost effective and economical tool for salinity tolerance and growth promotion in plants. Copyright © 2018 Elsevier GmbH. All rights reserved.

  12. Irreversibility of a bad start: early exposure to osmotic stress limits growth and adaptive developmental plasticity.

    Science.gov (United States)

    Wu, Chi-Shiun; Gomez-Mestre, Ivan; Kam, Yeong-Choy

    2012-05-01

    Harsh environments experienced early in development have immediate effects and potentially long-lasting consequences throughout ontogeny. We examined how salinity fluctuations affected survival, growth and development of Fejervarya limnocharis tadpoles. Specifically, we tested whether initial salinity effects on growth and rates of development were reversible and whether they affected the tadpoles' ability to adaptively accelerate development in response to deteriorating conditions later in development. Tadpoles were initially assigned to either low or high salinity, and then some were switched between salinity levels upon reaching either Gosner stage 30 (early switch) or 38 (late switch). All tadpoles initially experiencing low salinity survived whereas those initially experiencing high salinity had poor survival, even if switched to low salinity. Growth and developmental rates of tadpoles initially assigned to high salinity did not increase after osmotic stress release. Initial low salinity conditions allowed tadpoles to attain a fast pace of development even if exposed to high salinity afterwards. Tadpoles experiencing high salinity only late in development metamorphosed faster and at a smaller size, indicating an adaptive acceleration of development to avoid osmotic stress. Nonetheless, early exposure to high salinity precluded adaptive acceleration of development, always causing delayed metamorphosis relative to those in initially low salinity. Our results thus show that stressful environments experienced early in development can critically impact life history traits, having long-lasting or irreversible effects, and restricting their ability to produce adaptive plastic responses.

  13. Effects of growth reducer and nitrogen fertilization on morphological variables, SPAD index, interception of radiation and productivity of wheat

    Directory of Open Access Journals (Sweden)

    Elvis Felipe Elli

    2015-12-01

    Full Text Available ABSTRACT The objective of this study was to evaluate the effect of growth reducer and nitrogen fertilization on morphological variables, SPAD index, radiation interception, and grain yield of three cultivars of wheat. The experimental design was a randomized block in factorial scheme 3x5x2, with three cultivars (Mestre, Iguaçú and Itaipú, five nitrogen doses (0, 40, 80, 120, 160 Kg ha-1, and application or no application of a growth reducer, with three replications. The following characteristics were evaluated: plant height, SPAD index, leaf area index (LAI, Global Radiation Interception (GRI and grain yield. The Tukey test (p < 0.05 was used for the comparison between the means of cultivar and growth reducer factors, and for a regression analysis to evaluate N levels. Increasing the dose of nitrogen promotes an increase in LAI of plants of wheat crops differently among cultivars, which leads to a greater degree of global radiation interception. At doses higher or equal to 120 Kg ha-1 of nitrogen, there are significant differences in grain yield between treatments with and without the application of the growth reducer. The significant interaction between growth reducer and nitrogen dose, showed that applications of growth reducer increase the GRI at doses above and below 80 Kg ha-1 of nitrogen. Nitrogen rates of 138 and 109 Kg ha-1 are responsible for maximum grain yields of wheat, which is 4235 and 3787 Kg ha-1 with and without the use of growth reducer, respectively.

  14. Virtual Institute of Microbial Stress and Survival: Deduction of Stress Response Pathways in Metal and Radionuclide Reducing Microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-04-17

    The projects application goals are to: (1) To understand bacterial stress-response to the unique stressors in metal/radionuclide contamination sites; (2) To turn this understanding into a quantitative, data-driven model for exploring policies for natural and biostimulatory bioremediation; (3) To implement proposed policies in the field and compare results to model predictions; and (4) Close the experimental/computation cycle by using discrepancies between models and predictions to drive new measurements and construction of new models. The projects science goals are to: (1) Compare physiological and molecular response of three target microorganisms to environmental perturbation; (2) Deduce the underlying regulatory pathways that control these responses through analysis of phenotype, functional genomic, and molecular interaction data; (3) Use differences in the cellular responses among the target organisms to understand niche specific adaptations of the stress and metal reduction pathways; (4) From this analysis derive an understanding of the mechanisms of pathway evolution in the environment; and (5) Ultimately, derive dynamical models for the control of these pathways to predict how natural stimulation can optimize growth and metal reduction efficiency at field sites.

  15. Numerical simulations of material mismatch and ductile crack growth

    Energy Technology Data Exchange (ETDEWEB)

    Oestby, Erling

    2002-07-01

    the case in the deep cracked bend specimens. The effect is most pronounced for low levels of hardening. Ductile crack growth in mismatched specimens introduces the possibility of crack growth deviation away from the initial crack plane. This is mainly found to be controlled by the hardening level and mode of loading. Crack growth deviation is promoted by low hardening, and the effect is stronger in the deep cracked bend specimens. Paper III focuses on the effect of ductile crack growth on the near-tip stress level. In homogeneous specimens the peak stress level increases with ductile crack growth, with the most pronounced effect for small amounts of ductile crack growth. No unique stress field exists in front of the growing cracks, and both specimen size and global geometry influences the stress field, with the strongest effect for low hardening materials. In case of mismatch it is demonstrated that if the crack is forced to grow along the interface between the two materials, the effect of mismatch on the stress field is similar to the one found for stationary cracks. If crack growth deviation is allowed for the mismatch effect on the peak stress level is reduced, however, the highest stress level remains at or near the interface, and is not found in front of the current crack tip. (author)

  16. TSL Family Therapy Followed by Improved Marital Quality and Reduced Oxidative Stress

    Science.gov (United States)

    Kim, Jae Yop; Kim, Dong Goo; Nam, Seok In

    2012-01-01

    Objectives: The current study evaluated the effectiveness of a form of family therapy developed in Korea. The "Thank you--Sorry--Love" (TSL) model was applied to a group of elderly retired men to improve the quality of their marriage and to reduce their stress. Methods: Thirty married retired Korean men were assigned to three groups.…

  17. Silicon does not alleviate the adverse effects of drought stress in soybean plants

    Directory of Open Access Journals (Sweden)

    Viviane Ruppenthal

    2016-12-01

    Full Text Available Beneficial effects of silicon (Si in the plants growth under conditions of drought stress have been associated with to uptake and accumulation ability of element by different species. However, the effects of Si on soybean under water stress are still incipient and inconclusive. This study investigated the effect of Si application as a way to confer greater soybean tolerance to drought stress. The experiment was carried out in 20-L pots under greenhouse conditions. Treatments were arranged in a randomized block design in a 2 × 4 factorial: two water regimes (no stress or water stress and four Si rates (0, 50, 100 and 200 mg kg–1. Soybean plants were grown until beginning flowering (R1 growth stage with soil moisture content near at the field capacity, and then it started the differentiation of treatments under drought by the suspension of water supply. Changes in relative water content (RWC in leaf, electrolyte leakage from cells, peroxidase activity, plant nutrition and growth were measured after 7 days of drought stress and 3 days recovery. The RWC in soybean leaves decreased with Si rates in the soil. Silicon supply in soil with average content of this element, reduced dry matter production of soybean under well-irrigated conditions and caused no effect on dry matter under drought stress. The nitrogen uptake by soybean plants is reduced with the Si application under drought stress. The results indicated that the Si application stimulated the defense mechanisms of soybean plants, but was not sufficient to mitigate the negative effects of drought stress on the RWC and dry matter production.

  18. Secondary Traumatic Stress and Adjustment in Therapists Who Work with Sexual Violence Survivors: The Moderating Role of Posttraumatic Growth

    Science.gov (United States)

    Samios, Christina; Rodzik, Amber K.; Abel, Lisa M.

    2012-01-01

    Due to their secondary exposure to the traumatic events disclosed by clients, therapists who work with sexual violence survivors are at risk of experiencing secondary traumatic stress. We examined whether the negative effects of secondary traumatic stress on therapist adjustment would be buffered by posttraumatic growth. Sixty-one therapists who…

  19. Seed Priming with Melatonin Effects on Seed Germination and Seedling Growth in Maize under Salinity Stress

    International Nuclear Information System (INIS)

    Jiang, X.; Li, H.; Song, X.

    2016-01-01

    The effects on seed germination and seedling growth in maize under salinity stress by seed priming with melatonin were investigated. Seeds of maize cultivar Nonghua101 were soaked in 0.4, 0.8 and 1.6 mM aerated solution of melatonin for 24 h, and primed seeds were germinated under the condition of 150 mM NaCl with paper media. The results showed seed priming with 0.8 mM melatonin was the best performance of all the treatments to seed germination and seedling growth in maize under salinity stress. Then primed with 0.8 mM melatonin or water for 24 h and unprimed seeds were germination under the condition of 150 mM NaCl with sand media. The results showed seed priming with 0.8 mM melatonin significantly improved germination energy, germination percentage, seedling vigor index, shoot and root lengths, seedling fresh and dry weights, K/sup +/ content, relative water content, proline and total phenolic contents, superoxide dismutase, catalase and phenylalanin ammonia lyase activities; and significantly decreased mean emergence time, Na/sup +/ content, electrolyte leakage and malondialdehyde content compared with untreated seeds under salinity stress. These results suggest that seed priming with melatonin alleviates the salinity damage to maize and seed priming with melatonin may be an important alternative approach to decrease the impact of salinity stress in maize. (author)

  20. A Novel Non-coding RNA Regulates Drought Stress Tolerance in Arabidopsis thaliana

    KAUST Repository

    Albesher, Nour H.

    2014-05-01

    Drought (soil water deficit) as a major adverse environmental condition can result in serious reduction in plant growth and crop production. Plants respond and adapt to drought stresses by triggering various signalling pathways leading to physiological, metabolic and developmental changes that may ultimately contribute to enhanced tolerance to the stress. Here, a novel non-coding RNA (ncRNA) involved in plant drought stress tolerance was identified. We showed that increasing the expression of this ncRNA led to enhanced sensitivity during seed germination and seedling growth to the phytohormone abscisic acid. The mutant seedlings are also more sensitive to osmotic stress inhibition of lateral root growth. Consistently, seedlings with enhanced expression of this ncRNA exhibited reduced transiprational water loss and were more drought-tolerant than the wild type. Future analyses of the mechanism for its role in drought tolerance may help us to understand how plant drought tolerance could be further regulated by this novel ncRNA.