WorldWideScience

Sample records for stress ratio fatigue

  1. Multiaxial Fatigue Properties of 2A12 Aluminum Alloy Under Different Stress Amplitude Ratio Loadings

    Directory of Open Access Journals (Sweden)

    CHEN Ya-jun

    2017-09-01

    Full Text Available The multiaxial fatigue behavior of 2A12 aluminum alloy was studied with SDN100/1000 electro-hydraulic servo tension-torsion fatigue tester under different stress amplitude ratios, the fracture morphology and the fatigue loading curve were observed to study the failure mechanism. The results show that, under the one stage loading condition, the fatigue life prolongs with the stress amplitude ratio increasing. Under pure torsion loading, smooth and even area exists in the fracture surface. As the stress amplitude ratio increases, the number of scratch reduces, the fatigue striation and some special morphology such as the fishbone pattern, scale pattern and honeycomb pattern can be observed; under cumulative paths of different stress amplitude ratios, the variation of multiaxial fatigue life changes with first stage loading cycles; under cumulative paths of high-low stress amplitude ratio, the cycle hardening occurs obviously in the axial direction for the first stage high stress amplitude ratio loading and 2A12 alloy shows training effect.

  2. Effect of stress ratio and frequency on fatigue crack growth rate of ...

    Indian Academy of Sciences (India)

    Effect of stress ratio and frequency on the fatigue crack propagation of 2618 aluminium alloy–silicon carbide composite were investigated at ambient temperature. With the first set of specimens, the fatigue crack growth rates were studied at three frequencies of 1 Hz, 5 Hz and 10 Hz at a stress ratio of 0.1 whereas the effects ...

  3. Effects of Stress Ratio and Microstructure on Fatigue Failure Behavior of Polycrystalline Nickel Superalloy

    Science.gov (United States)

    Zhang, H.; Guan, Z. W.; Wang, Q. Y.; Liu, Y. J.; Li, J. K.

    2018-05-01

    The effects of microstructure and stress ratio on high cycle fatigue of nickel superalloy Nimonic 80A were investigated. The stress ratios of 0.1, 0.5 and 0.8 were chosen to perform fatigue tests in a frequency of 110 Hz. Cleavage failure was observed, and three competing failure crack initiation modes were discovered by a scanning electron microscope, which were classified as surface without facets, surface with facets and subsurface with facets. With increasing the stress ratio from 0.1 to 0.8, the occurrence probability of surface and subsurface with facets also increased and reached the maximum value at R = 0.5, meanwhile the probability of surface initiation without facets decreased. The effect of microstructure on the fatigue fracture behavior at different stress ratios was also observed and discussed. Based on the Goodman diagram, it was concluded that the fatigue strength of 50% probability of failure at R = 0.1, 0.5 and 0.8 is lower than the modified Goodman line.

  4. A test procedure for determining the influence of stress ratio on fatigue crack growth

    Science.gov (United States)

    Fitzgerald, J. H.; Wei, R. P.

    1974-01-01

    A test procedure is outlined by which the rate of fatigue crack growth over a range of stress ratios and stress intensities can be determined expeditiously using a small number of specimens. This procedure was developed to avoid or circumvent the effects of load interactions on fatigue crack growth, and was used to develop data on a mill annealed Ti-6Al-4V alloy plate. Experimental data suggest that the rates of fatigue crack growth among the various stress ratios may be correlated in terms of an effective stress intensity range at given values of K max. This procedure is not to be used, however, for determining the corrosion fatigue crack growth characteristics of alloys when nonsteady-state effects are significant.

  5. Fatigue crack closure behavior at high stress ratios

    Science.gov (United States)

    Turner, C. Christopher; Carman, C. Davis; Hillberry, Ben M.

    1988-01-01

    Fatigue crack delay behavior at high stress ratio caused by single peak overloads was investigated in two thicknesses of 7475-T731 aluminum alloy. Closure measurements indicated no closure occurred before or throughout the overload plastic zones following the overload. This was further substantiated by comparing the specimen compliance following the overload with the compliance of a low R ratio test when the crack was fully open. Scanning electron microscope studies revealed that crack tunneling and possibly reinitiation of the crack occurred, most likely a result of crack-tip blunting. The number of delay cycles was greater for the thinner mixed mode stress state specimen than for the thicker plane strain stress state specimen, which is similar to low R ratio test results and may be due to a larger plastic zone for the mixed mode cased.

  6. Validation of Analytical Damping Ratio by Fatigue Stress Limit

    Science.gov (United States)

    Foong, Faruq Muhammad; Chung Ket, Thein; Beng Lee, Ooi; Aziz, Abdul Rashid Abdul

    2018-03-01

    The optimisation process of a vibration energy harvester is usually restricted to experimental approaches due to the lack of an analytical equation to describe the damping of a system. This study derives an analytical equation, which describes the first mode damping ratio of a clamp-free cantilever beam under harmonic base excitation by combining the transverse equation of motion of the beam with the damping-stress equation. This equation, as opposed to other common damping determination methods, is independent of experimental inputs or finite element simulations and can be solved using a simple iterative convergence method. The derived equation was determined to be correct for cases when the maximum bending stress in the beam is below the fatigue limit stress of the beam. However, an increasing trend in the error between the experiment and the analytical results were observed at high stress levels. Hence, the fatigue limit stress was used as a parameter to define the validity of the analytical equation.

  7. Effects of applied stress ratio on the fatigue behavior of additively manufactured porous biomaterials under compressive loading.

    Science.gov (United States)

    de Krijger, Joep; Rans, Calvin; Van Hooreweder, Brecht; Lietaert, Karel; Pouran, Behdad; Zadpoor, Amir A

    2017-06-01

    Additively manufactured (AM) porous metallic biomaterials are considered promising candidates for bone substitution. In particular, AM porous titanium can be designed to exhibit mechanical properties similar to bone. There is some experimental data available in the literature regarding the fatigue behavior of AM porous titanium, but the effect of stress ratio on the fatigue behavior of those materials has not been studied before. In this paper, we study the effect of applied stress ratio on the compression-compression fatigue behavior of selective laser melted porous titanium (Ti-6Al-4V) based on the diamond unit cell. The porous titanium biomaterial is treated as a meta-material in the context of this work, meaning that R-ratios are calculated based on the applied stresses acting on a homogenized volume. After morphological characterization using micro computed tomography and quasi-static mechanical testing, the porous structures were tested under cyclic loading using five different stress ratios, i.e. R = 0.1, 0.3, 0.5, 0.7 and 0.8, to determine their S-N curves. Feature tracking algorithms were used for full-field deformation measurements during the fatigue tests. It was observed that the S-N curves of the porous structures shift upwards as the stress ratio increases. The stress amplitude was the most important factor determining the fatigue life. Constant fatigue life diagrams were constructed and compared with similar diagrams for bulk Ti-6Al-4V. Contrary to the bulk material, there was limited dependency of the constant life diagrams to mean stress. The notches present in the AM biomaterials were the sites of crack initiation. This observation and other evidence suggest that the notches created by the AM process cause the insensitivity of the fatigue life diagrams to mean stress. Feature tracking algorithms visualized the deformation during fatigue tests and demonstrated the root cause of inclined (45°) planes of specimen failure. In conclusion, the R-ratio

  8. Fatigue crack threshold relevant to stress ratio, crack wake and loading histories

    International Nuclear Information System (INIS)

    Okazaki, Masakazu; Iwasaki, Akira; Kasahara, Naoto

    2013-01-01

    Fatigue crack propagation behavior was investigated in a low alloy steel which experienced several kind of loading histories. Both the effects of stress ratio, test temperature on the fatigue crack threshold, and the change in the threshold depending on the thermo-mechanical loading histories, were experimentally investigated. It was shown that the thermo-mechanical loading history left its effect along the prior fatigue crack wake resulting in the change of fatigue crack threshold. Some discussions are made on how this type of loading history effect should be treated from engineering point of view. (author)

  9. Effects of Shot-Peening and Stress Ratio on the Fatigue Crack Propagation of AL 7475-T7351 Specimens

    Directory of Open Access Journals (Sweden)

    Natália Ferreira

    2018-03-01

    Full Text Available Shot peening is an attractive technique for fatigue enhanced performance of metallic components, because it increases fatigue crack initiation life prevention and retards early crack growth. Engineering design based on fatigue crack propagation predictions applying the principles of fracture mechanics is commonly used in aluminum structures for aerospace engineering. The main purpose of present work was to analyze the effect of shot peening on the fatigue crack propagation of the 7475 aluminum alloy, under both constant amplitude loading and periodical overload blocks. The tests were performed on 4 and 8 mm thickness specimens with stress ratios of 0.05 and 0.4. The analysis of the shot-peened surface showed a small increase of the micro-hardness values due to the plastic deformations imposed by shot peening. The surface peening beneficial effect on fatigue crack growth is very limited; its main effect is more noticeable near the threshold. The specimen’s thickness only has marginal influence on the crack propagation, in opposite to the stress ratio. Periodic overload blocks of 300 cycles promotes a reduction of the fatigue crack growth rate for both intervals of 7500 and 15,000 cycles.

  10. High Load Ratio Fatigue Strength and Mean Stress Evolution of Quenched and Tempered 42CrMo4 Steel

    Science.gov (United States)

    Bertini, Leonardo; Le Bone, Luca; Santus, Ciro; Chiesi, Francesco; Tognarelli, Leonardo

    2017-08-01

    The fatigue strength at a high number of cycles with initial elastic-plastic behavior was experimentally investigated on quenched and tempered 42CrMo4 steel. Fatigue tests on unnotched specimens were performed both under load and strain controls, by imposing various levels of amplitude and with several high load ratios. Different ratcheting and relaxation trends, with significant effects on fatigue, are observed and discussed, and then reported in the Haigh diagram, highlighting a clear correlation with the Smith-Watson-Topper model. High load ratio tests were also conducted on notched specimens with C (blunt) and V (sharp) geometries. A Chaboche model with three parameter couples was proposed by fitting plain specimen cyclic and relaxation tests, and then finite element analyses were performed to simulate the notched specimen test results. A significant stress relaxation at the notch root became clearly evident by reporting the numerical results in the Haigh diagram, thus explaining the low mean stress sensitivity of the notched specimens.

  11. Effect of residual stress induced by cold expansion on fatigue crack ...

    African Journals Online (AJOL)

    Fatigue life and fatigue crack growth rate are controlled by stress ratio, stress level, orientation of crack, temper-ature, residual stress, corrosion, etc. The effects of residual stress on fatigue crack growth in aluminium (Al) alloy 2024-T351 by Mode I crack were investigated by applying constant amplitude cycles based on ...

  12. Fatigue limit prediction of ferritic-pearlitic ductile cast iron considering stress ratio and notch size

    Science.gov (United States)

    Deguchi, T.; Kim, H. J.; Ikeda, T.

    2017-05-01

    The mechanical behavior of ductile cast iron is governed by graphite particles and casting defects in the microstructures, which can significantly decrease the fatigue strength. In our previous study, the fatigue limit of ferritic-pearlitic ductile cast iron specimens with small defects ((\\sqrt{{area}}=80˜ 1500{{μ }}{{m}})) could successfully be predicted based on the \\sqrt{{area}} parameter model by using \\sqrt{{area}} as a geometrical parameter of defect as well as the tensile strength as a material parameter. In addition, the fatigue limit for larger defects could be predicted based on the conventional fracture mechanics approach. In this study, rotating bending and tension-compression fatigue tests with ferritic-pearlitic ductile cast iron containing circumferential sharp notches as well as smooth specimens were performed to investigate quantitatively the effects of defect. The notch depths ranged 10 ˜ 2500 μm and the notch root radii were 5 and 50 μm. The stress ratios were R = -1 and 0.1. The microscopic observation of crack propagation near fatigue limit revealed that the fatigue limit was determined by the threshold condition for propagation of a small crack emanating from graphite particles. The fatigue limit could be successfully predicted as a function of R using a method proposed in this study.

  13. Fatigue and Oxidative Stress in Children Undergoing Leukemia Treatment.

    Science.gov (United States)

    Rodgers, Cheryl; Sanborn, Chelse; Taylor, Olga; Gundy, Patricia; Pasvogel, Alice; Moore, Ida M Ki; Hockenberry, Marilyn J

    2016-10-01

    Fatigue is a frequent and distressing symptom in children undergoing leukemia treatment; however, little is known about factors influencing this symptom. Antioxidants such as glutathione can decrease symptom severity in adult oncology patients, but no study has evaluated antioxidants' effects on symptoms in pediatric oncology patients. This study describes fatigue patterns and associations of fatigue with antioxidants represented by reduced glutathione (GSH) and the reduced/oxidized glutathione (GSH/GSSG) ratio among children receiving leukemia treatment. A repeated measures design assessed fatigue and antioxidants among 38 children from two large U.S. cancer centers. Fatigue was assessed among school-age children and by parent proxy among young children. Antioxidants (GSH and GSH/GSSG ratio) were assessed from cerebrospinal fluid at four phases during leukemia treatment. Young children had a steady decline of fatigue from the end of induction treatment through the continuation phase of treatment, but no significant changes were noted among the school-age children. Mean antioxidant scores varied slightly over time; however, the GSH/GSSG ratios in these children were significantly lower than the normal ratio. Mean GSH/GSSG ratios significantly correlated to fatigue scores of the school-age children during early phases of treatment. Children with low mean GSH/GSSG ratios demonstrated oxidative stress. The low ratios noted early in therapy were significantly correlated with higher fatigue scores during induction and postinduction treatment phases. This finding suggests that increased oxidative stress during the more intensive phases of therapy may explain the experience of fatigue children report. © The Author(s) 2016.

  14. The fatigue behavior of composite laminates under various mean stresses

    Science.gov (United States)

    Rotem, A.

    1991-01-01

    A method is developed for predicting the S-N curve of a composite laminate which is subjected to an arbitrary stress ratio, R (minimum stress/maximum stress). The method is based on the measuring of the S-N behavior of two distinct cases, tension-tension and compression-compression fatigue loadings. Using these parameters, expressions are formulated that estimate the fatigue behavior under any stress ratio loading. Experimental results from the testing of graphite/epoxy laminates, with various structures, are compared with the predictions and show good agreement.

  15. Stress management skills, neuroimmune processes and fatigue levels in persons with chronic fatigue syndrome.

    Science.gov (United States)

    Lattie, Emily G; Antoni, Michael H; Fletcher, Mary Ann; Penedo, Frank; Czaja, Sara; Lopez, Corina; Perdomo, Dolores; Sala, Andreina; Nair, Sankaran; Fu, Shih Hua; Klimas, Nancy

    2012-08-01

    Stressors and emotional distress responses impact chronic fatigue syndrome (CFS) symptoms, including fatigue. Having better stress management skills might mitigate fatigue by decreasing emotional distress. Because CFS patients comprise a heterogeneous population, we hypothesized that the role of stress management skills in decreasing fatigue may be most pronounced in the subgroup manifesting the greatest neuroimmune dysfunction. In total, 117 individuals with CFS provided blood and saliva samples, and self-report measures of emotional distress, perceived stress management skills (PSMS), and fatigue. Plasma interleukin-1-beta (IL-1β, IL-2, IL-6, IL-10, and tumor necrosis factor-alpha (TNF-α), and diurnal salivary cortisol were analyzed. We examined relations among PSMS, emotional distress, and fatigue in CFS patients who did and did not evidence neuroimmune abnormalities. Having greater PSMS related to less fatigue (p=.019) and emotional distress (pfatigue levels most strongly in CFS patients in the top tercile of IL-6, and emotional distress mediated the relationship between PSMS and fatigue most strongly in patients with the greatest circulating levels of IL-6 and a greater inflammatory (IL-6):anti-inflammatory (IL-10) cytokine ratio. CFS patients having greater PSMS show less emotional distress and fatigue, and the influence of stress management skills on distress and fatigue appear greatest among patients who have elevated IL-6 levels. These findings support the need for research examining the impact of stress management interventions in subgroups of CFS patients showing neuroimmune dysfunction. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Probability of failure prediction for step-stress fatigue under sine or random stress

    Science.gov (United States)

    Lambert, R. G.

    1979-01-01

    A previously proposed cumulative fatigue damage law is extended to predict the probability of failure or fatigue life for structural materials with S-N fatigue curves represented as a scatterband of failure points. The proposed law applies to structures subjected to sinusoidal or random stresses and includes the effect of initial crack (i.e., flaw) sizes. The corrected cycle ratio damage function is shown to have physical significance.

  17. Incorporating Small Fatigue Crack Growth in Probabilistic Life Prediction: Effect of Stress Ratio in Ti-6Al-2Sn-4Zr-6-Mo (Preprint)

    Science.gov (United States)

    2012-08-01

    contains color. 14. ABSTRACT The effect of stress ratio on the statistical aspects of small fatigue crack growth behavior was studied in a duplex ...on the statistical aspects of small fatigue crack growth behavior was studied in a duplex microstructure of Ti-6Al-2Sn-4Zr-6Mo (Ti-6-2-4-6) at 260°C...Similarly, an accurate representation of the R effect is required in problems where the crack grows through regions of varying stress state, such as a weld

  18. Evaluation of an energy-based fatigue approach considering mean stress effects

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, S. M. Humayun [Chittagong University of Engineering and Technology, Chittagong (Bangladesh); Yeo, Tae In [University of Ulsan, Ulsan (Korea, Republic of)

    2014-04-15

    In this paper, an attempt is made to extend the total strain energy approach for predicting the fatigue life subjected to mean stress under uniaxial state. The effects of means stress on the fatigue failure of a ferritic stainless steel and high pressure tube steel are studied under strain-controlled low cycle fatigue condition. Based on the fatigue results from different strain ratios, modified total strain energy density approach is proposed to account for the mean stress effects. The proposed damage parameter provides convenient means of evaluating fatigue life with mean stress effects considering the fact that the definitions used for measuring strain energies are the same as in the fully-reversed cycling (R = -1). A good agreement is observed between experimental life and predicted life using proposed approach. Two other mean stress models (Smith-Watson-Topper model and Morrow model) are also used to evaluate the low cycle fatigue data. Based on a simple statistical estimator, the proposed approach is compared with these models and is found realistic.

  19. Evaluation of an energy-based fatigue approach considering mean stress effects

    International Nuclear Information System (INIS)

    Kabir, S. M. Humayun; Yeo, Tae In

    2014-01-01

    In this paper, an attempt is made to extend the total strain energy approach for predicting the fatigue life subjected to mean stress under uniaxial state. The effects of means stress on the fatigue failure of a ferritic stainless steel and high pressure tube steel are studied under strain-controlled low cycle fatigue condition. Based on the fatigue results from different strain ratios, modified total strain energy density approach is proposed to account for the mean stress effects. The proposed damage parameter provides convenient means of evaluating fatigue life with mean stress effects considering the fact that the definitions used for measuring strain energies are the same as in the fully-reversed cycling (R = -1). A good agreement is observed between experimental life and predicted life using proposed approach. Two other mean stress models (Smith-Watson-Topper model and Morrow model) are also used to evaluate the low cycle fatigue data. Based on a simple statistical estimator, the proposed approach is compared with these models and is found realistic.

  20. Tensile and compressive failure modes of laminated composites loaded by fatigue with different mean stress

    Science.gov (United States)

    Rotem, Assa

    1990-01-01

    Laminated composite materials tend to fail differently under tensile or compressive load. Under tension, the material accumulates cracks and fiber fractures, while under compression, the material delaminates and buckles. Tensile-compressive fatigue may cause either of these failure modes depending on the specific damage occurring in the laminate. This damage depends on the stress ratio of the fatigue loading. Analysis of the fatigue behavior of the composite laminate under tension-tension, compression-compression, and tension-compression had led to the development of a fatigue envelope presentation of the failure behavior. This envelope indicates the specific failure mode for any stress ratio and number of loading cycles. The construction of the fatigue envelope is based on the applied stress-cycles to failure (S-N) curves of both tensile-tensile and compressive-compressive fatigue. Test results are presented to verify the theoretical analysis.

  1. Cyclic fatigue of near-isotopic graphite: influence of stress cycle and neutron irradiation

    International Nuclear Information System (INIS)

    Price, R.J.

    1977-11-01

    Near-isotropic graphites H-451 and PGX were tested in uniaxial cyclic fatigue, and fatigue life (S-N) curves were generated to a maximum of 10 5 cycles. The stress ratio, R (minimum stress during a cycle divided by maximum stress) ranged from -1 to +0.5. With R = - 1, the homologous stress limits (maximum applied fatigue stress divided by the tensile strength) for 50% specimen survival to 10 5 cycles averaged 0.63 in the axial direction and 0.74 in the radial direction. Corresponding homologous stress limits for 99% specimen survival (99/95 tolerance limits) were 0.48 and 0.53. Higher R-values resulted in longer fatigue lives and increased stress limits. H-451 graphite specimens irradiated with fast neutrons at 1173 to 1263 0 K at fluences of up to 10 26 n/m 2 (equivalent fission fluence) showed fatigue stress limits of about twice the unirradiated levels when the unirradiated tensile strength was used as the basis for normalization

  2. An experimental study on the effects of compressive stress on the fatigue crack growth of low-alloy steel

    International Nuclear Information System (INIS)

    Jones, D.P.; Hoppe, R.G.; James, B.A.

    1993-01-01

    A series of fatigue crack growth rate tests was conducted in order to study effects of negative stress ratio on fatigue crack growth rate of low-alloy steel in air. Four-point bend specimens were used to simulate linear stress distributions typical of pressure vessel applications. This type of testing adds to knowledge on negative stress ratio effects for low-alloy steels obtained in the past from uniform tension-compression tests. Applied bending stress range was varied over twice the yield strength. Load control was used for tests for which the stress range was less than twice the yield strength and deflection control was used for the higher stress range tests. Crack geometries were both short and long fatigue cracks started at notches and tight fatigue cracks for which crack closure could occur over the full crack face. Results are presented in terms of the stress intensity factor ratio R = K MIN /K MAX . The negative R-ratio test results were correlated to an equation of the form da/dN = C[ΔK/(A-R)] n , where A, C, and n are curve fitting parameters. It was found that effects of negative R-ratio on fatigue crack growth rates for even the high stress range tests could be bounded by correlating the above equation to only positive R-ratio test results and extending the resulting equation into the negative R-ratio regime

  3. Fatigue crack growth behavior under cyclic thermal transient stress

    International Nuclear Information System (INIS)

    Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.

    1986-01-01

    Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)

  4. Fatigue crack growth behavior under cyclic transient thermal stress

    International Nuclear Information System (INIS)

    Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.

    1987-01-01

    Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)

  5. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller

    Science.gov (United States)

    Sun, Jiao; Chen, Songying; Qu, Yanpeng; Li, Jianfeng

    2015-03-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  6. Residual stress evaluation and fatigue life prediction in the welded joint by X-ray diffraction

    International Nuclear Information System (INIS)

    Yoo, Keun Bong; Kim, Jae Hoon

    2009-01-01

    In the fossil power plant, the reliability of the components which consist of the many welded parts depends on the quality of welding. The residual stress is occurred by the heat flux of high temperature during weld process. This decreases the mechanical properties as the strength of fatigue and fracture or occurs the stress corrosion cracking and fatigue fracture. The residual stress of the welded part in the recently constructed power plants has been the cause of a variety of accidents. The objective of this study is measurement of the residual stress by X-ray diffraction method and to estimate the feasibility of this application for fatigue life assessment of the high-temperature pipeline. The materials used for the study is P92 steel for the use of high temperature pipe on super critical condition. The test results were analyzed by the distributed characteristics of residual stresses and the Full Width at Half Maximum intensity (FWHM) in x-ray diffraction intensity curve. Also, X-ray diffraction tests using specimens simulated low cycle fatigue damage were performed in order to analyze fatigue properties when fatigue damage conditions become various stages. As a result of X-ray diffraction tests for specimens simulated fatigue damages, we conformed that the ratio of the FWHM due to fatigue damage has linear relationship with fatigue life ratio algebraically. From this relationships, it was suggested that direct expectation of the life consumption rate was feasible.

  7. The Effect of the Free Surface on the Singular Stress Field at the Fatigue Crack Front

    Directory of Open Access Journals (Sweden)

    Oplt Tomáš

    2017-11-01

    Full Text Available Description of stress singularity in the vicinity of a free surface is presented. Its presence causes the retardation of the fatigue crack growth in that region and fatigue crack is being curved. Numerical model is used to study dependence of the stress singularity exponent on Poisson’s ratio. Estimated values are compared to those already published. Experimentally measured angles of fatigue crack on SENB specimens confirm the relation between Poisson’s ratio and the angle between crack front and free surface.

  8. Increased Th17/Treg Ratio in Poststroke Fatigue

    Directory of Open Access Journals (Sweden)

    Xinjing Liu

    2015-01-01

    Full Text Available Fatigue is a major debilitating symptom after stroke. The biological mechanisms underlying poststroke fatigue (PFS are unknown. We hypothesized that PSF is associated with an alteration in the balance between Th17 and Treg cells. To test this hypothesis we assessed fatigue in 30 stroke survivors using the Fatigue Scale for Motor and Cognitive Functions (FSMC. Peripheral blood was collected for assessment of Th17 and Treg cell populations and measurement of interleukin-10 (IL-10. Participants were dichotomized into severe fatigue n=14 and low-moderate fatigue n=16 groups by K-mean cluster analysis of FSMC scores. There were no group differences in age, gender, stroke type, stroke severity, or time since stroke. Stroke survivors in the severe fatigue group reported greater anxiety p=0.004 and depression p=0.001 than in the low-moderate fatigue group. The ratio of Th17 to Treg cells was significantly increased in the severe fatigue group relative to the mild-moderate fatigue group p=0.035. Serum levels of IL-10 negatively correlated withTh17/Treg ratio (r=-0.408,  p=0.025. Our preliminary findings suggest that an imbalance in the Th17/Treg ratio is associated with the severity of PSF.

  9. Effects of stress concentrations on the fatigue life of a gamma based titanium aluminide

    International Nuclear Information System (INIS)

    Trail, S.J.; Bowen, P.

    1995-01-01

    S-N curves for a gamma based titanium aluminide alloy of composition Ti-47.2Al-2.1Mn-1.9Nb(at.%)+2TiB 2 (wt.%) have been used to define fatigue life. Effects of residual stress, stressed volume, loading ratio, loading mode, elevated temperature and surface roughness have been considered. Residual tensile stresses and micro-cracking are introduced by Electro Discharge Machining and the fatigue life is reduced slightly compared with polished samples. Notched fatigue tests show a significant notch strengthening effect which increases with increasing stress concentration factor. The fracture surfaces of specimens tested at room temperature reveal fully brittle failure mechanisms and no evidence of stable crack growth is observed. The fatigue life appears, therefore, to be determined predominantly by the number of cycles to crack initiation. At the elevated temperature of 830 C, evidence for some stable fatigue crack growth has been found. Probable sites for crack initiation are addressed

  10. Evaluation of a functional medicine approach to treating fatigue, stress, and digestive issues in women.

    Science.gov (United States)

    Cutshall, Susanne M; Bergstrom, Larry R; Kalish, Daniel J

    2016-05-01

    Fatigue, stress, and digestive disorders are common among adults, especially women. We conducted a 28-week pilot study to assess the efficacy of a functional medicine approach to improving stress, energy, fatigue, digestive issues, and quality of life in middle-aged women. Findings showed significant improvements in many stress, fatigue, and quality-of-life measures. The treatment program increased mean salivary dehydroepiandrosterone levels and the cortisol-dehydroepiandrosterone ratio. Stool sample analyses suggested that these treatments reduced Helicobacter pylori infections. This study suggests that functional medicine may be an effective approach to managing stress and gastrointestinal symptoms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Residual stress relief due to fatigue in tetragonal lead zirconate titanate ceramics

    International Nuclear Information System (INIS)

    Hall, D. A.; Mori, T.; Comyn, T. P.; Ringgaard, E.; Wright, J. P.

    2013-01-01

    High energy synchrotron XRD was employed to determine the lattice strain ε{111}and diffraction peak intensity ratio R{200}in tetragonal PZT ceramics, both in the virgin poled state and after a bipolar fatigue experiment. It was shown that the occurrence of microstructural damage during fatigue was accompanied by a reduction in the gradient of the ε{111}–cos 2 ψ plot, indicating a reduction in the level of residual stress due to poling. In contrast, the fraction of oriented 90° ferroelectric domains, quantified in terms of R{200}, was not affected significantly by fatigue. The change in residual stress due to fatigue is interpreted in terms of a change in the average elastic stiffness of the polycrystalline matrix due to the presence of inter-granular microcracks

  12. Residual stress relief due to fatigue in tetragonal lead zirconate titanate ceramics

    Science.gov (United States)

    Hall, D. A.; Mori, T.; Comyn, T. P.; Ringgaard, E.; Wright, J. P.

    2013-07-01

    High energy synchrotron XRD was employed to determine the lattice strain ɛ{111} and diffraction peak intensity ratio R{200} in tetragonal PZT ceramics, both in the virgin poled state and after a bipolar fatigue experiment. It was shown that the occurrence of microstructural damage during fatigue was accompanied by a reduction in the gradient of the ɛ{111}-cos2 ψ plot, indicating a reduction in the level of residual stress due to poling. In contrast, the fraction of oriented 90° ferroelectric domains, quantified in terms of R{200}, was not affected significantly by fatigue. The change in residual stress due to fatigue is interpreted in terms of a change in the average elastic stiffness of the polycrystalline matrix due to the presence of inter-granular microcracks.

  13. Fatigue crack growth in 2024-T3 aluminum under tensile and transverse shear stresses

    Science.gov (United States)

    Viz, Mark J.; Zehnder, Alan T.

    1994-01-01

    The influence of transverse shear stresses on the fatigue crack growth rate in thin 2024-T3 aluminum alloy sheets is investigated experimentally. The tests are performed on double-edge cracked sheets in cyclic tensile and torsional loading. This loading generates crack tip stress intensity factors in the same ratio as the values computed for a crack lying along a lap joint in a pressurized aircraft fuselage. The relevant fracture mechanics of cracks in thin plates along with the details of the geometrically nonlinear finite element analyses used for the test specimen calibration are developed and discussed. Preliminary fatigue crack growth data correlated using the fully coupled stress intensity factor calibration are presented and compared with fatigue crack growth data from pure delta K(sub I)fatigue tests.

  14. Influence of mean stress on fatigue strength of ferritic-pearlite ductile cast iron with small defects

    Science.gov (United States)

    Deguchi, T.; Kim, H. J.; Ikeda, T.; Yanase, K.

    2017-05-01

    Because of their excellent mechanical properties, low cost and good workability, the application of ductile cast iron has been increased in various industries such as the automotive, construction and rail industries. For safety designing of the ductile cast iron component, it is necessary to understand the effect of stress ratio, R, on fatigue limit of ductile cast iron in the presence of small defects. Correspondingly in this study, rotating bending fatigue tests at R = -1 and tension-compression fatigue tests at R = -1 and 0.1 were performed by using a ferritic-pearlitic ductile cast iron. To study the effects of small defects, we introduced a small drilled hole at surface of a specimen. The diameter and depth of a drilled hole were 50, 200 and 500 μm, respectively. The non-propagating cracks emanating from graphite particles and holes edge were observed at fatigue limit, irrespective of the value of stress ratio. From the microscopic observation of crack propagation behavior, it can be concluded that the fatigue limit is determined by the threshold condition for propagation of a small crack. It was found that the effect of stress ratio on the fatigue limit of ductile cast iron with small defects can be successfully predicted based on \\sqrt {area} parameter model. Furthermore, a use of the tensile strength, σ B, instead of the Vickers hardness, HV, is effective for fatigue limit prediction.

  15. Damage assessment of low-cycle fatigue by crack growth prediction. Fatigue life under cyclic thermal stress

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2013-01-01

    The number of cycles to failure of specimens in fatigue tests can be estimated by predicting crack growth. Under a cyclic thermal stress caused by fluctuation of fluid temperature, due to the stress gradient in the thickness direction, the estimated fatigue life differs from that estimated for mechanical fatigue tests. In this paper, the influence of crack growth under cyclic thermal loading on the fatigue life was investigated. First, the thermal stress was derived by superposing analytical solutions, and then, the stress intensity factor was obtained by the weight function method. It was shown that the thermal stress depended not on the rate of the fluid temperature change but on the rise time, and the magnitude of the stress was increased as the rise time was decreased. The stress intensity factor under the cyclic thermal stress was smaller than that under the uniform stress distribution. The change in the stress intensity factor with the crack depth was almost the same regardless of the rise time. The estimated fatigue life under the cyclic thermal loading could be 1.6 times longer than that under the uniform stress distribution. The critical size for the fatigue life determination was assumed to be 3 mm for fatigue test specimens of 10 mm diameter. By evaluating the critical size by structural integrity analyses, the fatigue life was increased and the effect of the critical size on the fatigue life was more pronounced for the cyclic thermal stress. (author)

  16. Impacts of obesity and stress on neuromuscular fatigue development and associated heart rate variability.

    Science.gov (United States)

    Mehta, R K

    2015-02-01

    Obesity and stress are independently associated with decrements in neuromuscular functions. The present study examined the interplay of obesity and stress on neuromuscular fatigue and associated heart rate variability (HRV). Forty-eight non-obese (18.5obese (30⩽BMI) adults performed repetitive handgrip exertions at 30% of their maximum strength until exhaustion in the absence and presence of a mental arithmetic stressor. Dependent measures included gold standard fatigue indicators (endurance time and rate of strength loss), perceived effort and mental demand, heart rate and temporal (RMSSD: root mean square of successive differences between N-N intervals) and spectral (LF/HF: ratio of low to high frequency) indices of HRV. Stress negatively affected endurance time (Pobesity × stress interactions were found on endurance time (P=0.0073), rate of strength loss (P=0.027) and perceived effort (P=0.026), indicating that stress increased fatigability, particularly in the obese group. Both obesity (P=0.001) and stress (P=0.033) independently lowered RMSSD. Finally, stress increased LF/HF ratio (P=0.028) and the interaction of stress and obesity (P=0.008) indicated that this was augmented in the obese group. The present study provides the first evidence that stress-related neuromuscular fatigue development is accelerated in obese individuals. In addition, the stress condition resulted in poorer HRV indices, which is indicative of autonomic dysfunction, particularly in the obese group. These findings indicate that workers are more susceptible to fatigue in high-stress work environments, particularly those with higher BMI, which can increase the risk of musculoskeletal injuries as well as cardiovascular diseases in this population.

  17. Crack propagation at stresses below the fatigue limit.

    Science.gov (United States)

    Holden, F. C.; Hyler, W. S.; Marschall, C. W.

    1967-01-01

    Crack propagation for stainless steel and Ti alloy at stresses below fatigue limit, noting of alternating stress cycles crack propagation for stainless steel and Ti alloy at stresses below fatigue limit, noting role of alternating stress cycles

  18. Damage assessment of low-cycle fatigue by crack growth prediction. Fatigue life under cyclic thermal stress

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2013-01-01

    The number of cycles to failure of specimens in fatigue tests can be estimated by predicting crack growth. Under a cyclic thermal stress caused by fluctuation of fluid temperature, due to the stress gradient in the thickness direction, the estimated fatigue life differs from that estimated for mechanical fatigue tests. In this paper, the influence of crack growth under cyclic thermal loading on the fatigue life was investigated. First, the thermal stress was derived by superposing analytical solutions, and then, the stress intensity factor was obtained by the weight function method. It was shown that the thermal stress depended not on the rate of the fluid temperature change but on the rise time, and the magnitude of the stress was increased as the rise time was decreased. The stress intensity factor under the cyclic thermal stress was smaller than that under the uniform stress distribution. The change in the stress intensity factor with the crack depth did not depend on the heat transfer coefficient and only slightly depended on the rise time. The estimated fatigue life under the cyclic thermal loading could be 1.6 times longer than that under the uniform stress distribution. The critical size for the fatigue life determination was assumed to be 3 mm for fatigue test specimens of 10 mm diameter. By evaluating the critical size by structural integrity analyses, the fatigue life was increased and the effect of the critical size on the fatigue life was more pronounced for the cyclic thermal stress. (author)

  19. Mean load effect on fatigue of welded joints using structural stress and fracture mechanics approach

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Kim, Cheol; Jin, Tae Eun; Dong, P.

    2006-01-01

    In order to ensure the structural integrity of nuclear welded structures during design life, the fatigue life has to be evaluated by fatigue analysis procedures presented in technical codes such as ASME B and PV Code Section III. However, existing fatigue analysis procedures do not explicitly consider the presence of welded joints. A new fatigue analysis procedure based on a structural stress/fracture mechanics approach has been recently developed in order to reduce conservatism by erasing uncertainty in the analysis procedure. A recent review of fatigue crack growth data under various mean loading conditions using the structural stress/fracture mechanics approach, does not consider the mean loading effect, revealed some significant discrepancies in fatigue crack growth curves according to the mean loading conditions. In this paper, we propose the use of the stress intensity factor range ΔK characterized with loading ratio R effects in terms of the structural stress. We demonstrate the effectiveness in characterizing fatigue crack growth and S-N behavior using the well-known data. It was identified that the S-N data under high mean loading could be consolidated in a master S-N curve for welded joints

  20. Evaluation of micro fatigue crack growth under equi-biaxial stress by membranous pressure fatigue test

    International Nuclear Information System (INIS)

    Iida, Satoshi; Abe, Shigeki; Nakamura, Takao; Kamaya, Masayuki

    2014-01-01

    For preventing nuclear power plant (NPP) accidents, NPPs are required to ensure system safety in long term safe operation under aging degradation. Now, fatigue accumulation is one of major ageing phenomena and are evaluated to ensure safety by design fatigue curve that are based on the results of uniaxial fatigue tests. On the other hand, thermal stress that occurs in piping of actual components is not uniaxial but equi-biaxial. For accurate evaluation, it is required to conform real circumstance. In this study, membranous pressure fatigue test was conducted to simulated equi-biaxial stress. Crack initiation and crack growth were examined by replica investigation. Calculation result of equivalent stress intensity factor shows crack growth under equi-biaxial stress is faster than under uniaxial stress. It is concluded that equi-biaxial fatigue behavior should be considered in the evaluation of fatigue crack initiation and crack growth. (author)

  1. Influence of stress change on the fatigue behavior and fatigue life of aluminum oxide-dispersion-strengthening copper alloy at room temperature and 350degC

    International Nuclear Information System (INIS)

    Kawagoishi, Norio; Kondo, Eiji; Nisitani, Hironobu; Shimamoto, Atsunori; Tashiro, Rieko

    2004-01-01

    In order to investigate the influence of stress change on the fatigue behavior and fatigue life of an aluminum oxide-dispersion-strengthening copper alloy at elevated temperature, rotating bending fatigue tests were carried out under two-step loading at room temperature and 350degC. Both of static strength and fatigue strength decreased at 350degC. However, at the same relative stress σ a /σ B , fatigue life was longer at 350degC than at room temperature. Although the cumulative ratios Σ(N/N f ) were nearly unity for both the low to high and the high to low block loadings at room temperature, Miner's rule did not hold at 350degC. These results were related to the stress dependence on the log l-N/N f relation. That is, the crack length initiated at the same N/N f was larger in higher stress level at 350degC, whereas there was no stress dependence in the relation at room temperature. The stress dependence on the relation at 350degC was caused by the suppression of crack initiation due to the surface oxidation. (author)

  2. On residual stresses and fatigue of laser hardened steels

    International Nuclear Information System (INIS)

    Lin, Ru.

    1992-01-01

    This thesis deals with studies on residual stresses and fatigue properties of laser-transformation hardened steels. Two types of specimens, cylinders and fatigue specimens were used in the studies. The cylinders, made of Swedish steels SS 2244 and SS 2258 which correspond to AISI 4140 and AISI 52100 respectively, were locally hardened by a single scan of laser beam in the longitudinal direction, with various laser parameters. Residual stress distributions across the hardened tracks were measured by means of X-ray diffraction. The origins of residual stresses were investigated and discussed. For the fatigue specimens, including smooth and notched types made of Swedish steels SS 2244, SS 2225 and SS 1572 (similar to AISI 4140, AISI 4130 and AISI 1035, respectively), laser hardening was carried out in the gauge section. The residual stress field induced by the hardening process and the fatigue properties by plane bending fatigue test were studied. In order to investigate the stability of the residual stress field, stress measurements were also made on specimens being loaded near the fatigue limits for over 10 7 cycles. Further the concept of local fatigue strength was employed to correlate quantitatively the effect of hardness and residual stress field on the fatigue limits. In addition a group of smooth specimens of SS 2244 was induction hardened and the hardening results were compared with the corresponding laser hardened ones in terms of residual stress and fatigue behaviour. It has been found that compressive stresses exist in the hardened zone of all the specimens studied. The laser hardening condition, the specimen and how the hardening is carried out can significantly affect the residual stress field. Laser hardening can greatly improve the fatigue properties by inducing a hardened and compressed surface layer. (112 refs.)(au)

  3. On residual stresses and fatigue of laser hardened steels

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ru.

    1992-01-01

    This thesis deals with studies on residual stresses and fatigue properties of laser-transformation hardened steels. Two types of specimens, cylinders and fatigue specimens were used in the studies. The cylinders, made of Swedish steels SS 2244 and SS 2258 which correspond to AISI 4140 and AISI 52100 respectively, were locally hardened by a single scan of laser beam in the longitudinal direction, with various laser parameters. Residual stress distributions across the hardened tracks were measured by means of X-ray diffraction. The origins of residual stresses were investigated and discussed. For the fatigue specimens, including smooth and notched types made of Swedish steels SS 2244, SS 2225 and SS 1572 (similar to AISI 4140, AISI 4130 and AISI 1035, respectively), laser hardening was carried out in the gauge section. The residual stress field induced by the hardening process and the fatigue properties by plane bending fatigue test were studied. In order to investigate the stability of the residual stress field, stress measurements were also made on specimens being loaded near the fatigue limits for over 10[sup 7] cycles. Further the concept of local fatigue strength was employed to correlate quantitatively the effect of hardness and residual stress field on the fatigue limits. In addition a group of smooth specimens of SS 2244 was induction hardened and the hardening results were compared with the corresponding laser hardened ones in terms of residual stress and fatigue behaviour. It has been found that compressive stresses exist in the hardened zone of all the specimens studied. The laser hardening condition, the specimen and how the hardening is carried out can significantly affect the residual stress field. Laser hardening can greatly improve the fatigue properties by inducing a hardened and compressed surface layer. (112 refs.)(au).

  4. Fatigue life estimation considering welding residual stress and hot-spot stress of welded components

    International Nuclear Information System (INIS)

    Han, S. H.; Lee, T. K.; Shin, B. C.

    2002-01-01

    The fatigue life of welded joints is sensitive to welding residual stress and complexity of their geometric shapes. To predict the fatigue life more reasonably, the effects of welding residual stress and its relaxation have to be considered quantitatively which are equivalent to mean stress by external loads. The hot-spot stress concept should be also adopted which can be reduce the dependence of fatigue strengths for various welding details. Considering the factors mentioned above, a fatigue life prediction model using the modified Goodman's diagram was proposed. In this model, an equivalent stress was introduced which are composed of the mean stress based on the hot-spot stress concept and the relaxed welding residual stress. From the verification of the proposed model to real welding details, it is confirmed that this model can be applied to predict reasonably their fatigue lives

  5. Notch size effects on high cycle fatigue limit stress of Udimet 720

    International Nuclear Information System (INIS)

    Ren Weiju; Nicholas, Theodore

    2003-01-01

    Notch size effects on the high cycle fatigue (HCF) limit stress of Ni-base superalloy Udimet 720 were investigated on cylindrical specimens with three notch sizes of the same stress concentration factor K t =2.74. The HCF limit stress corresponding to a life of 10 6 cycles was experimentally determined at a stress ratio of 0.1 and a frequency of 25 Hz at room temperature. The stresses were calculated using finite element analysis (FEA) and the specimens analyzed using scanning electron microscopy (SEM). Test results show that at the same K t value, notch size can slightly affect the HCF limit stress of U720 when notch root plasticity occurs. FEA and SEM results reveal that the notch size effects are influenced by a complicated combination of the stress and plastic strain fields at the notch tip, the nominal stress, and the effects of prior plastic deformation on fatigue crack initiation

  6. An investigation of the effect of load ratio on near-threshold fatigue crack propagation in a Ni-Base superalloy

    International Nuclear Information System (INIS)

    Schooling, J.M.; Reed, P.A.S.

    1995-01-01

    The near-threshold fatigue crack growth behavior of Waspaloy has been investigated to elucidate important parameters relevant to the development of a modelling program for fatigue behavior in Ni-base superalloys. At low values of load-ratio, R, threshold stress intensity values are found to be highly sensitive to R. This behavior is rationalized in terms of roughness induced crack closure. At high load ratios there is less sensitivity to R, and stage II behavior appears to persist to threshold. The threshold stress intensity at high R-ratios is lower than that for closure corrected Stage I (low load ratio) threshold behavior, indicating the existence of two intrinsic threshold values. This difference appears to be due not only to crack branching and deflection in Stage I, but also to be intrinsic difference in resistance to threshold behavior in the two growth modes. (author)

  7. Results of fatigue tests and prediction of fatigue life under superposed stress wave and combined superposed stress wave

    International Nuclear Information System (INIS)

    Takasugi, Shunji; Horikawa, Takeshi; Tsunenari, Toshiyasu; Nakamura, Hiroshi

    1983-01-01

    In order to examine fatigue life prediction methods at high temperatures where creep damage need not be taken into account, fatigue tests were carried out on plane bending specimens of alloy steels (SCM 435, 2 1/4Cr-1Mo) under superposed and combined superposed stress waves at room temperature and 500 0 C. The experimental data were compared with the fatigue lives predicted by using the cycle counting methods (range pair, range pair mean and zero-cross range pair mean methods), the modified Goodman's equation and the modified Miner's rule. The main results were as follows. (1) The fatigue life prediction method which is being used for the data at room temperature is also applicable to predict the life at high temperatures. The range pair mean method is especially better than other cycle counting methods. The zero-cross range pair mean method gives the estimated lives on the safe side of the experimental lives. (2) The scatter bands of N-bar/N-barsub(es) (experimental life/estimated life) becomes narrower when the following equation is used instead of the modified Goodman's equation for predicting the effect of mean stress on fatigue life. σ sub(t) = σ sub(a) / (1 - Sigma-s sub(m) / kσ sub(B)) σ sub(t); stress amplitude at zero mean stress (kg/mm 2 ) σ sub(B); tensile strength (kg/mm 2 ) σ sub(m); mean stress (kg/mm 2 ) σ sub(a); stress amplitude (kg/mm 2 ) k; modified coefficient of σ sub(B) (author)

  8. Physical activity buffers fatigue only under low chronic stress.

    Science.gov (United States)

    Strahler, Jana; Doerr, Johanna M; Ditzen, Beate; Linnemann, Alexandra; Skoluda, Nadine; Nater, Urs M

    2016-09-01

    Fatigue is one of the most commonly reported complaints in the general population. As physical activity (PA) has been shown to have beneficial effects, we hypothesized that everyday life PA improves fatigue. Thirty-three healthy students (21 women, 22.8 ± 3.3 years, 21.7 ± 2.3 kg/m(2)) completed two ambulatory assessment periods. During five days at the beginning of the semester (control condition) and five days during final examination preparation (examination condition), participants repeatedly reported on general fatigue (awakening, 10 am, 2 pm, 6 pm and 9 pm) by means of an electronic diary, collected saliva samples for the assessment of cortisol and α-amylase immediately after providing information on fatigue and wore a triaxial accelerometer to continuously record PA. Self-perceived chronic stress was assessed as a moderator. Using hierarchical linear modeling, including PA, condition (control vs. examination), sex and chronic stress as predictors, PA level during the 15 min prior to data entry did not predict momentary fatigue level. Furthermore, there was no effect of condition. However, a significant cross-level interaction of perceived chronic stress with PA was observed. In fact, the (negative) relationship between PA and fatigue was stronger in those participants with less chronic stress. Neither cortisol nor α-amylase was significantly related to physical activity or fatigue. Our study showed an immediate short-term buffering effect of everyday life PA on general fatigue, but only when experiencing lower chronic stress. There seems to be no short-term benefit of PA in the face of higher chronic stress. These findings highlight the importance of considering chronic stress when evaluating the effectiveness of PA interventions in different target populations, in particular among chronically stressed and fatigued subjects.

  9. Hope and fatigue in chronic illness: The role of perceived stress.

    Science.gov (United States)

    Hirsch, Jameson K; Sirois, Fuschia M

    2016-04-01

    Fatigue is a debilitating symptom of chronic illness that is deleteriously affected by perceived stress, a process particularly relevant to inflammatory disease. Hopefulness, a goal-based motivational construct, may beneficially influence stress and fatigue, yet little research has examined these associations. We assessed the relation between hope and fatigue, and the mediating effect of stress, in individuals with fibromyalgia, arthritis, and inflammatory bowel disease. Covarying age, sex, and pain, stress partially mediated the association between hope and fatigue; those with greater hope reported less stress and consequent fatigue. Therapeutically, bolstering hope may allow proactive management of stressors, resulting in less fatigue. © The Author(s) 2014.

  10. Fatigue life estimation of welded components considering welding residual stress relaxation and its mean stress effect

    International Nuclear Information System (INIS)

    Han, Seung Ho; Han, Jeong Woo; Shin, Byung Chun; Kim, Jae Hoon

    2003-01-01

    The fatigue life of welded joints is sensitive to welding residual stress and complexity of their geometric shapes. To predict the fatigue life more reasonably, the effects of welding residual stress and its relaxation on their fatigue strengths should be considered quantitatively, which are often regarded to be equivalent to the effects of mean stresses by external loads. The hot-spot stress concept should be also adopted which can reduce the dependence of fatigue strengths for various welding details. Considering the factors mentioned above, a fatigue life prediction model using the modified Goodman's diagram was proposed. In this model, an equivalent stress was introduced which is composed of the mean stress based on the hot-spot stress concept and the relaxed welding residual stress. From the verification of the proposed model to real welding details, it is proved that this model can be applied to predict reasonably their fatigue lives

  11. Thermal stress analysis for fatigue damage evaluation at a mixing tee

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Nakamura, Akira

    2011-01-01

    Highlights: → Thermal stress and fatigue damage have been analyzed for a mixing tee. → Fatigue damage was accumulated near boundaries of the cold spot. → It was found that fatigue damage was brought about by fluctuation of cold spot. → Simple one-dimensional analysis could derive stress for fatigue evaluation. - Abstract: Fatigue cracks have been found at mixing tees where fluids of different temperature flow in. In this study, the thermal stress at a mixing tee was calculated by the finite element method using temperature transients obtained by a fluid dynamics simulation. The simulation target was an experiment for a mixing tee, in which cold water flowed into the main pipe from a branch pipe. The cold water flowed along the main pipe wall and caused a cold spot, at which the membrane stress was relatively large. Based on the evaluated thermal stress, the magnitude of the fatigue damage was assessed according to the linear damage accumulation rule and the rain-flow procedure. Precise distributions of the thermal stress and fatigue damage could be identified. Relatively large axial stress occurred downstream from the branch pipe due to the cold spot. The variation ranges of thermal stress and fatigue damage became large near the position 20 o from the symmetry line in the circumferential direction. The position of the cold spot changed slowly in the circumferential direction, and this was the main cause of the fatigue damage. The fatigue damage was investigated for various differences in the temperature between the main and branch pipes. Since the magnitude of accumulated damage increased abruptly when the temperature difference exceeded the value corresponding to the fatigue limit, it was suggested that the stress amplitude should be suppressed less than the fatigue limit. In the thermal stress analysis for fatigue damage assessment, it was found that the detailed three-dimensional structural analysis was not required. Namely, for the current case, a one

  12. Stress, fatigue, and sleep quality leading up to and following a stressful life event.

    Science.gov (United States)

    Van Laethem, Michelle; Beckers, Debby G J; Dijksterhuis, Ap; Geurts, Sabine A E

    2017-10-01

    This study aims to examine (a) the time course of stress, fatigue, and sleep quality among PhD students awaiting a stressful event and (b) whether daily anticipation of this event influences day-level stress, fatigue, and sleep quality. Forty-four PhD students completed evening and morning questionnaires on eight days from 1 month before their dissertation defense until one month thereafter. Results showed increased stress leading up to the defense, while fatigue and sleep quality remained unchanged. Comparing the night before the defense with the night after, stress rapidly decreased, whereas fatigue and sleep quality increased. Following the defense, stress and sleep quality remained stable, whereas fatigue declined. Stress 1 month before the defense was higher than 1 month thereafter. Regarding day-level relations, stress was adversely affected by negative anticipation and favorably by positive outcome expectancy, whereas positive anticipation had no influence. Positive outcome expectancy was an important predictor of improved sleep quality. We conclude that stress may be elevated long before a stressful event takes place but that one can recover rather quickly from temporary stress. Positive outcome expectancy of a stressful event may be an important predictor of reduced day-level stress and improved day-level sleep quality leading up to a stressful event. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Significance of residual stress on fatigue properties of welded pipes

    International Nuclear Information System (INIS)

    Ohta, A.; Maeda, Y.; Kanao, M.

    1984-01-01

    The mean stress effect on the fatigue properties of two kinds of welded pipes was investigated in cantilever bending. The fatigue strength changed with the mean stress on fillet welded pipes, but did not change on butt welded pipes. The fatigue crack initiated from the toe of weld on the outer surface of fillet welded pipes and from the undercut on the inner surface of butt welded pipes. The measurement of the fatigue crack propagation rate and the residual stress distribution through the thickness of pipe revealed that the difference in the fatigue properties between fillet and butt welded pipes arose from the weld-induced residual stress, tension on the inner surface and compression on the outer surface. It is suggested that the production of compressive residual stress along the inner surface would be an effective means for improving the fatigue strength of butt welded pipes. (author)

  14. Correlation of Stress Concentration Factors for T-Welded Connections – Finite Element Simulations and Fatigue Behavior

    Directory of Open Access Journals (Sweden)

    Gerardo Terán Méndez

    Full Text Available Abstract The stress concentration factors (SCFs in welded connections usually occur at zones with high stress levels. Stress concentrations reduce the fatigue behavior of welded connections in offshore structures and cracking can develop. By using the grinding technique, cracking can be eliminated. Stress concentration factors are defined as a ratio of maximum stress at the intersection to nominal stress on the brace. Defining the stress concentration factor is an important stage in the fatigue behavior of welded connections. Several approaches have evolved for designing structures with the classical S-N approach for estimating total life. This work correlates to the stress concentration factors of T-welded connections and the fatigue behavior. Stress concentration factors were computed with the finite element employing 3D T-welded connections with intact and grinding depth conditions. Then, T-welded connections were constructed with A36 plate steel and welded with E6013 electrodes to obtain the stress-life (S-N approach. The methodology from previous works was used to compute the SCF and fabricate the T-welded connections. The results indicated that the grinding process could restore the fatigue life of the T-welded connections for SCFs values in the range of 1.29. This value can be considered to be a low SCF value in T-welded connection. However, for higher SCF values, the fatigue life decreased, compromising and reducing the structural integrity of the T-welded connections.

  15. Effect of mean stress (stress ratio) and aging on fatigue-crack growth in a metastable beta titanium alloy, Ti-10V-2Fe-3Al

    International Nuclear Information System (INIS)

    Jha, S.K.; Ravichandran, K.S.

    2000-01-01

    The effect of mean stress, or the stress ratio (R), on the fatigue-crack growth (FCG) behavior of α-aged and ω-aged microstructures of the beta titanium alloy Ti-10V-2Fe-3Al was investigated. While the mean stress had a negligible effect on the FCG behavior of the α-aged microstructure, a strong effect was observed in the ω-aged microstructure. In particular, the values of the threshold stress-intensity range (ΔK th ) exhibited a strong dependence on R in the ω-aged microstructure, while this dependence was weak in the α-aged microstructure. These effects seem to arise primarily from fracture-surface roughness-induced crack closure. The crack closure levels for the α-aged microstructure were found to be very low compared to those for the ω-aged microstructure. Transmission electron microscopy and scanning electron microscopy studies of microstructures and fracture surfaces were performed to gain insight into the deformation characteristics and crack propagation mechanisms, respectively, in these microstructures. The microstructure-induced differences in FCG behavior are rationalized in terms of the effect of aging on slip and crack closure

  16. The concept of fatigue fracture toughness in fatigue delamination growth behavior

    NARCIS (Netherlands)

    Yao, L.; Alderliesten, R.C.; Benedictus, R.

    2015-01-01

    This paper provides a study on mode I fatigue delamination growth in composite laminates using energy principles. Experimental data has been obtained from fatigue tests conducted on Double Cantilever Beam (DCB) specimens at various stress ratios. A concept of fatigue fracture toughness is proposed

  17. Effects of Meridian Acupressure Massage on Body Composition, Edema, Stress, and Fatigue in Postpartum Women.

    Science.gov (United States)

    Jung, Geum-Sook; Choi, In-Ryoung; Kang, Hee-Young; Choi, Eun-Young

    2017-10-01

    This study aims to investigate the effects of meridian acupressure massage on body composition, edema, stress, and fatigue in postpartum women. A quasi-experimental design with a nonequivalent control group was utilized. The Postpartum Care Center of Women's Hospital in Gwangju City, Republic of Korea. The study group consisted of 39 postpartum women, 19 in the experimental group and 20 in the control group, recruited from the postpartum care center of Women's Hospital in Gwangju city, South Korea. The experimental group was provided with meridian acupressure massage for 90 min daily over 5 days as an experimental therapy. Body composition (body weight, BMI, total body water, ECW ratio, LBM, and body fat) Edema (subjective edema, average girth of the upper limbs, and average girth of the lower limbs), Stress (psychological stress and physical stress), and Fatigue. The experimental group demonstrated a significantly larger decrease compared with the control group in measures of body composition, edema, total subjective stress, psychological stress, and subjective fatigue. Meridian acupressure massage can hasten the return to original body composition after childbirth.

  18. Mean stress and the exhaustion of fatigue-damage resistance

    Science.gov (United States)

    Berkovits, Avraham

    1989-01-01

    Mean-stress effects on fatigue life are critical in isothermal and thermomechanically loaded materials and composites. Unfortunately, existing mean-stress life-prediction methods do not incorporate physical fatigue damage mechanisms. An objective is to examine the relation between mean-stress induced damage (as measured by acoustic emission) and existing life-prediction methods. Acoustic emission instrumentation has indicated that, as with static yielding, fatigue damage results from dislocation buildup and motion until dislocation saturation is reached, after which void formation and coalescence predominate. Correlation of damage processes with similar mechanisms under monotonic loading led to a reinterpretation of Goodman diagrams for 40 alloys and a modification of Morrow's formulation for life prediction under mean stresses. Further testing, using acoustic emission to monitor dislocation dynamics, can generate data for developing a more general model for fatigue under mean stress.

  19. Probabilistic fatigue life prediction methodology for notched components based on simple smooth fatigue tests

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z. R.; Li, Z. X. [Dept.of Engineering Mechanics, Jiangsu Key Laboratory of Engineering Mechanics, Southeast University, Nanjing (China); Hu, X. T.; Xin, P. P.; Song, Y. D. [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing (China)

    2017-01-15

    The methodology of probabilistic fatigue life prediction for notched components based on smooth specimens is presented. Weakestlink theory incorporating Walker strain model has been utilized in this approach. The effects of stress ratio and stress gradient have been considered. Weibull distribution and median rank estimator are used to describe fatigue statistics. Fatigue tests under different stress ratios were conducted on smooth and notched specimens of titanium alloy TC-1-1. The proposed procedures were checked against the test data of TC-1-1 notched specimens. Prediction results of 50 % survival rate are all within a factor of two scatter band of the test results.

  20. Effects of loading sequences and size of repeated stress block of loads on fatigue life calculated using fatigue functions

    International Nuclear Information System (INIS)

    Schott, G.

    1989-01-01

    It is well-known that collective form, stress intensity and loading sequence of individual stresses as well as size of repeated stress blocks can influence fatigue life, significantly. The basic variant of the consecutive Woehler curve concept will permit these effects to be involved into fatigue life computation. The paper presented will demonstrate that fatigue life computations using fatigue functions reflect the loading sequence effect with multilevel loading precisely and provide reliable fatigue life data. Effects of size of repeated stress block and loading sequence on fatigue life as observed with block program tests can be reproduced using the new computation method. (orig.) [de

  1. Perceived stress and fatigue among students in a doctor of chiropractic training program.

    Science.gov (United States)

    Kizhakkeveettil, Anupama; Vosko, Andrew M; Brash, Marissa; Ph, Dr; Philips, Michael A

    2017-03-01

    High levels of stress and fatigue are associated with decreased academic success, well-being, and quality of life. The objective of this research was to quantify levels of perceived stress and fatigue among chiropractic students to identify sources of and student coping mechanisms for perceived stress and fatigue and to identify the relationship between students' perceived stress and fatigue. A survey comprised of the Perceived Stress Scale, the Undergraduate Sources of Stress Survey, and the Piper Fatigue Scale was administered to chiropractic students in their 2nd, 5th, and 8th trimesters of doctoral study. Data were analyzed by descriptive statistics, 1-way analysis of variance, and linear correlation tests. Students reported having moderate to high levels of stress and fatigue, with higher levels of stress and fatigue seen in women than in men. A nonsignificant difference among stress scores and a significant difference among fatigue scores were observed based on program term. Levels of stress predicted levels of fatigue, and stress was strongly correlated with psychological health, relationships with family members, mood, and need for learning accommodations. Fatigue was strongly correlated with psychological health, academic demands, and conflicts between studies and other activities. There are differences in the reporting of perceived stress and fatigue levels in this chiropractic student population based on gender. The correlation between fatigue and stress also suggests that measures that may alleviate one may likely affect the other.

  2. Dysregulated stress signal sensitivity and inflammatory disinhibition as a pathophysiological mechanism of stress-related chronic fatigue.

    Science.gov (United States)

    Strahler, Jana; Skoluda, Nadine; Rohleder, Nicolas; Nater, Urs M

    2016-09-01

    Chronic stress and its subsequent effects on biological stress systems have long been recognized as predisposing and perpetuating factors in chronic fatigue, although the exact mechanisms are far from being completely understood. In this review, we propose that sensitivity of immune cells to glucocorticoids (GCs) and catecholamines (CATs) may be the missing link in elucidating how stress turns into chronic fatigue. We searched for in vitro studies investigating the impact of GCs or CATs on mitogen-stimulated immune cells in chronically stressed or fatigued populations, with 34 original studies fulfilling our inclusion criteria. Besides mixed cross-sectional findings for stress- and fatigue-related changes of GC sensitivity under basal conditions or acute stress, longitudinal studies indicate a decrease with ongoing stress. Research on CATs is still scarce, but initial findings point towards a reduction of CAT sensitivity under chronic stress. In the long run, resistance of immune cells to stress signals under conditions of chronic stress might translate into self-maintaining inflammation and inflammatory disinhibition under acute stress, which in turn lead to fatigue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Reliability analysis of offshore structures using OMA based fatigue stresses

    DEFF Research Database (Denmark)

    Silva Nabuco, Bruna; Aissani, Amina; Glindtvad Tarpø, Marius

    2017-01-01

    focus is on the uncertainty observed on the different stresses used to predict the damage. This uncertainty can be reduced by Modal Based Fatigue Monitoring which is a technique based on continuously measuring of the accelerations in few points of the structure with the use of accelerometers known...... points of the structure, the stress history can be calculated in any arbitrary point of the structure. The accuracy of the estimated actual stress is analyzed by experimental tests on a scale model where the obtained stresses are compared to strain gauges measurements. After evaluating the fatigue...... stresses directly from the operational response of the structure, a reliability analysis is performed in order to estimate the reliability of using Modal Based Fatigue Monitoring for long term fatigue studies....

  4. Fatigue crack growth threshold as a design criterion - statistical scatter and load ratio in the Kitagawa-Takahashi diagram

    International Nuclear Information System (INIS)

    Kolitsch, S.; Gänser, H.-P.; Maierhofer, J.; Pippan, R.

    2016-01-01

    Cracks in components reduce the endurable stress so that the endurance limit obtained from common smooth fatigue specimens cannot be used anymore as a design criterion. In such cases, the Kitagawa-Takahashi diagram can be used to predict the admissible stress range for infinite life, at a given crack length and stress range. This diagram is constructed for a single load ratio R. However, in typical mechanical engineering applications, the load ratio R varies widely due to the applied load spectra and residual stresses. In the present work an extended Kitagawa-Takahashi diagram accounting for crack length, crack extension and load ratio is constructed. To describe the threshold behaviour of short cracks, a master resistance curve valid for a wide range of steels is developed using a statistical approach. (paper)

  5. Co-variation of fatigue and psychobiological stress in couples' everyday life.

    Science.gov (United States)

    Doerr, Johanna M; Nater, Urs M; Ehlert, Ulrike; Ditzen, Beate

    2018-06-01

    There is limited knowledge about how fatigue develops and worsens and what influences fluctuations in daily fatigue. Stress was found to influence fatigue, and being in a relationship seems to either increase or decrease stress depending on the couple interaction. In this study, co-variation of fatigue, self-reported stress, and biological stress markers in couples' everyday lives was investigated. Specifically, we examined a) whether momentary couple interactions moderated dyadic outcomes and b) whether and how stress and relationship measures influenced individual momentary fatigue. Forty heterosexual couples (age: 28 ± 5 years) reported subjective fatigue and stress levels 4 times a day for 5 consecutive days (1600 measures). Furthermore, participants reported whether they had interacted with their partner since the last data entry and, if so, they rated the valence of this interaction. Salivary cortisol (a measure of HPA axis activity) and alpha amylase (a measure of ANS activity) were analyzed as biological stress markers from saliva samples obtained at the same time points. Moment-to-moment data were analyzed using dyadic multilevel models to account for the nested design. Stress (women and men: p ≤ 0.001) and fatigue (women: p = .003, men: p = .020) showed patterns of co-variation within couples, especially if partners had interacted with each other since the previous data entry. Cortisol was also found to co-vary between partners (women: unstandardized coefficient (UC) = 0.12, p ≤ .001, men: UC = 0.18, p ≤ .001), whereas the regulation of alpha-amylase levels depending on the partner's levels was only present in women (UC = 0.11, p = .002). Valence of couple interaction was negatively associated with fatigue (women: UC = -0.13, p ≤ .001, men: UC = -0.06, p = .011). There was no momentary association of fatigue with an individual's own or the partner's subjective or biological stress markers

  6. Relationship between fatigue life in the creep-fatigue region and stress-strain response

    Science.gov (United States)

    Berkovits, A.; Nadiv, S.

    1988-01-01

    On the basis of mechanical tests and metallographic studies, strainrange partitioned lives were predicted by introducing stress-strain materials parameters into the Universal Slopes Equation. This was the result of correlating fatigue damage mechanisms and deformation mechanisms operating at elevated temperatures on the basis of observed mechanical and microstructural behavior. Correlation between high temperature fatigue and stress strain properties for nickel base superalloys and stainless steel substantiated the method. Parameters which must be evaluated for PP- and CC- life are the maximum stress achievable under entirely plastic and creep conditions respectively and corresponding inelastic strains, and the two more pairs of stress strain parameters must be ascertained.

  7. The Influence of Loading Ratio on Fatigue Crack Propagation Through a Bi-material Interface

    Czech Academy of Sciences Publication Activity Database

    Náhlík, Luboš; Hutař, Pavel; Knésl, Zdeněk

    2007-01-01

    Roč. 348-349, - (2007), s. 317-320 ISSN 1013-9826. [International Conference on Fracture and Damage Mechanics /6./. Funchal, Madeira, 17.07.2007-19.07.2007] R&D Projects: GA ČR(CZ) GA101/05/0320 Institutional research plan: CEZ:AV0Z20410507 Keywords : bi-material interface * loading ratio * plasticity-induced crack closure * critical stress Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.224, year: 2005

  8. Computational stress and damage modelling for rolling contact fatigue

    DEFF Research Database (Denmark)

    Cerullo, Michele

    Rolling contact fatigue in radial roller bearings is studied by means of a 2D plane strain nite element program. The Dang Van multiaxial fatigue criterion is firstly used, in a macroscopic study modeling the bearing raceway, to investigate the region where fatigue cracks are more likely to nucleate...... and of compressive residual stresses are also analyzed. The stress history of a material point at the depth where the maximum Dang Van damage factor is reached is then recorded and used in a subsequent micro-mechanical analysis. The stress history is applied as periodic boundary conditions in a representative volume...

  9. Fatigue Crack Propagation Simulation in Plane Stress Constraint

    DEFF Research Database (Denmark)

    Ricardo, Luiz Carlos Hernandes; Spinelli, Dirceu

    2010-01-01

    Nowadays, structural and materials engineers develop structures and materials properties using finite element method. This work presents a numerical determination of fatigue crack opening and closure stress intensity factors of a C(T) specimen. Two different standard variable spectrum loadings...... are utilized, Mini-Falstaff and Wisper. The effects in two-dimensional (2D) small scale yielding models of fatigue crack growth were studied considering plane stress constraint....

  10. Interaction of high cycle fatigue and creep in 9%Cr-1%Mo steel at elevated temperature

    International Nuclear Information System (INIS)

    Vasina, R.; Lukas, P.; Kunz, L.; Sklenicka, V.

    1995-01-01

    High-cycle-fatigue/creep experiments were performed on a 9%Cr-1%Mo tempered martensite ferritic steel at 873 K in air. The stress ratio R = σ min /σ max ranged from -1 (''pure'' fatigue) to 1 (''pure'' creep). The maximum stress σ max was kept constant at 240 MPa.The lifetime depends on the stress ratio R in a non-monotonic way. In the stress ratio interval 0.6 mean of the stress cycle. In the stress ratio interval -1 a . The fatigue/creep interaction occurs in between these intervals. The fatigue/creep loading induces transformation of the tempered martensite ferritic structure into an equiaxed subgrain structure. The resulting subgrain size depends strongly on the stress ratio. (author)

  11. Fatigue Behavior under Multiaxial Stress States Including Notch Effects and Variable Amplitude Loading

    Science.gov (United States)

    Gates, Nicholas R.

    life predictions were found to improve for all loading conditions considered in this study. The quantification of multiaxial fatigue damage was identified as being a key area of improvement, where the shear-based Fatemi-Socie (FS) critical plane damage parameter was shown to correlate all fully-reversed constant amplitude fatigue data relatively well. Additionally, a proposed modification to the FS parameter was found to result in improved life predictions in the presence of high tensile mean stress and for different ratios of nominal shear to axial stress. For notched specimens, improvements were also gained through the use of more robust notch deformation and stress gradient models. Theory of Critical Distances (TCD) approaches, together with pseudo stress-based plasticity modeling techniques for local stress-strain estimation, resulted in better correlation of multiaxial fatigue data when compared to traditional approaches such as Neuber's rule with fatigue notch factor. Since damage parameters containing both stress and strain terms, such as the FS parameter, are able to reflect changes in fatigue damage due to transient material hardening behavior, this issue was also investigated with respect to its impact on variable amplitude life predictions. In order to ensure that material deformation behavior was properly accounted for, stress-strain predictions based on an Armstrong-Frederick-Chaboche style cyclic plasticity model were first compared to results from deformation tests performed under a variety of complex multiaxial loading conditions. The model was simplified based on the assumption of Masing material behavior, and a new transient hardening formulation was proposed so that all modeling parameters could be determined from a relatively limited amount of experimental data. Overall, model predictions were found to agree fairly well with experimental results for all loading histories considered. Finally, in order to evaluate life prediction procedures under

  12. Oxidative stress and fatigue in systemic lupus erythematosus.

    Science.gov (United States)

    Segal, B M; Thomas, W; Zhu, X; Diebes, A; McElvain, G; Baechler, E; Gross, M

    2012-08-01

    The objective of this study is to investigate the relationship of oxidative stress to fatigue in systemic lupus erythematosus (SLE). Patients with a confirmed diagnosis of SLE by ACR criteria and healthy controls completed validated questionnaires to assess depression and fatigue. Fatigue was measured with the Fatigue Severity Scale (FSS) and the Profile of Fatigue (Prof-F). Visual analogue scales (VAS) were also used to assess fatigue and pain. Depression was measured with the Center for Epidemiologic Studies Depression Scale (CES-D). Plasma F(2)-isoprostane was measured with gas chromatography/mass spectroscopy to assess oxidative stress. Evaluation included medical record review, physical exam and calculation of body mass index (BMI), disease activity (SLEDAI) and damage (SLICC) in the SLE patients. Seventy-one SLE patients with low disease activity (mean SLEDAI = 1.62 standard error (SE) 0.37, range 0-8) were compared to 51 controls. Fatigue-limiting physical activity (defined as FSS ≥ 4) was present in 56% of patients and 12% of controls. F(2)-isoprostane was higher in SLE patients with fatigue compared to not-fatigued SLE subjects (p = .0076) who were otherwise similar in ethnicity, disease activity and cardiovascular risk factors. Plasma F(2)-isoprostane was strongly correlated with FSS and Profile of Somatic Fatigue (Prof-S) (p fatigue (p = .005), CES-D (p = .008) and with BMI (p = .0001.) In a multivariate model, F(2)-isoprostane was a significant predictor of FSS after adjustment for age, BMI, pain and depression (p = .0002). Fatigue in SLE patients with low disease activity is associated with increased F(2)-isoprostane. F2-isoprostane could provide a useful biomarker to explore mitochondrial function and the regulation of oxidative pathways in patients with SLE in whom fatigue is a debilitating symptom.

  13. Fatigue Fracture Behaviors of Transparent Polycarbonate Materials

    OpenAIRE

    ZHANG Xiao-wen; WU Nan; ZHANG Xuan; MA Li-ting; LI Lei

    2017-01-01

    The effect of the different stress ratios (R) and annealing treatment on the fatigue properties of the transparent polycarbonate (PC) sheet and the mechanism behind were studied, the fatigue crack propagation (FCP) process and mechanism were analyzed. The results show that after annealing, the residual stress of the PC samples decreases obviously and the fatigue properties are greatly improved. This is because the machining process results in tensile stress in the PC samples, eliminating the ...

  14. Mean Stress Effect on the Axial Fatigue Strength of DIN 34CrNiMo6 Quenched and Tempered Steel

    Directory of Open Access Journals (Sweden)

    Luis Pallarés-Santasmartas

    2018-03-01

    Full Text Available The present study consists of a theoretical and experimental investigation of the effect of axial mean stresses on the high cycle fatigue behaviour of DIN 34CrNiMo6 high strength steel in quenched and tempered conditions. The axial S-N curves under 4 different stresses ratios were obtained. Experimental results show that increasing the value of the tension mean stresses gradually reduces the axial stress amplitude the material can withstand without failure. Moreover, the compressive mean stresses show a beneficial effect in terms of the axial fatigue strength, resulting in a non-symmetrical Haigh diagram. A historic review of the axial mean stress effect is presented, showing the shape of the Haigh diagrams for ductile metals and presenting the most-known empirical and physical theories. The results for this steel are compared with the physical theories of Findley based on the critical plane; the Froustey’s and Marin’s methods, based on energetic theories; and the Crossland invariants method based on the Gough’s theory of fatigue damage. Taking into account the experimental results, a physical fatigue function based on energetic considerations is proposed. Its application to the fatigue case with mean stresses can be interpreted in terms of a balance of elastic energies of distortion and volume change. Macro-analyses of specimen fracture appearance were conducted in order to obtain the fracture characteristics for different mean stress values.

  15. X-ray fractography by using synchrotron radiation source. Residual stress distribution just beneath fatigue fracture surface

    International Nuclear Information System (INIS)

    Akita, Koichi; Yoshioka, Yasuo; Suzuki, Hiroshi; Sasaki, Toshihiko

    2000-01-01

    The residual stress distributions just beneath the fatigue fracture surface were measured using synchrotron radiation with three different wavelengths, i.e., three different penetration depths. The residual stress distributions were estimated from three kinds of diffraction data by the following process. First, a temporary residual stress distribution in the depth direction is assumed. Theoretical 2θ-sin 2 ψ diagrams for each wavelength, where each has a different penetration depth, are calculated by the cosψ method developed by one of the authors. The sum total of the differences between the theoretical and experimental values of the diffraction angle in 2θ-sin 2 ψ diagrams is calculated. This total value is minimized by changing the assumed stress distribution by the quasi-Newton optimization method. Finally, optimized 2θ-sin 2 ψ diagrams for each penetration depth and detailed stress distribution are determined. The true surface residual stress is obtained from this stress distribution. No effect of load ratio R (= P min /P max ) on the residual stresses of the fatigue fracture surfaces in low-carbon steels was observed when the sin 2 ψ method was used for stress measurement. However, the residual stresses became higher with increasing R when these were measured by the proposed method. On the basis of this, the stress intensity factor range, ΔK, can be estimated from the residual stress on the fatigue fracture surface. (author)

  16. Effectiveness of Mindfulness-Based Stress Reduction (MBSR In Stress and Fatigue in Patients with Multiple Sclerosis (MS

    Directory of Open Access Journals (Sweden)

    Ebrahimi Alisaleh

    2016-07-01

    Full Text Available Multiple sclerosis (MS disease can lead to creation of mental and behavioral disorders such as stress and fatigue. Controlling the problems in patients is essential. Hence, this study has considered effectiveness of mindfulnessbased stress reduction in stress and fatigue symptoms in patients with multiple sclerosis (MS.this study is in kind of semi-experimental research in form of pretest posttest pattern with control group. Statistical population of the study consists of all patients with multiple sclerosis referred to Iran MS Association by 2016. Sampling method in this study is available sampling and based on having inclusion criteria. among patients who gained point higher than 21.8 in stress inventory and point higher than 5.1 in fatigue inventory, 30 people are selected as sample randomly and are placed in 2 groups with 15 people in each group. The experimental group was placed under mindfulnessbased stress reduction (MBSR training course including 8 sessions with 2hrs per session. k\\however, no intervention was done in control group. All patients in experimental and control groups fulfilled stress and fatigue inventories before and after intervention. obtained data was analyzed using MANCOVA and in SPSS22 software. obtained results show that there is significant difference between the two groups in terms of stress and fatigue after intervention (p<0.001.according to obtained results, it could be found that treatment method of mindfulness-based stress reduction can help reduction of symptoms of stress and fatigue in patients with MS.

  17. Two different mechanisms of fatigue damage due to cyclic stress loading at 77 K for MOCVD-YBCO-coated conductors

    International Nuclear Information System (INIS)

    Sugano, M; Yoshida, Y; Hojo, M; Shikimachi, K; Hirano, N; Nagaya, S

    2008-01-01

    Tensile fatigue tests were carried out at 77 K for YBCO-coated conductors fabricated by metal-organic chemical vapor deposition (MOCVD). The S-N relationship, variation of critical current (I c ) during cyclic loading and microscopic fatigue damage were investigated. Fatigue strength at 10 6 cycles was evaluated to be σ max = 1300 MPa and 890 MPa under the stress ratios of 0.5 and 0.1. Two different mechanisms of fatigue damage, depending on the number of stress cycles to failure, were observed. In one of the fracture mechanisms, fatigue behavior is characterized by overall fracture which occurs at 10 4 -10 5 cycles. For these specimens, I c after unloading does not degrade before overall fracture. Although only shallow slip bands were found at the Ag surface, fatigue cracks were found on the Hastelloy C-276 surface of the fractured specimen. These results suggest that overall fracture due to cyclic stress was caused by fatigue of the Hastelloy substrate. In the other fracture mechanism, even though overall fracture did not occur at 10 6 cycles, a slight decrease of I c was detected after 10 5 cycles. No fatigue crack was found on the Hastelloy surface, while deep slip bands corresponding to the initial stage of fatigue crack were observed on the Ag surface. From these results, we concluded that I c degradation at a high cycle number is attributed to the fatigue of the Ag stabilizing layer

  18. Thermal-stress fatigue behavior of twenty-six superalloys

    Science.gov (United States)

    Bizon, P. T.; Spera, D. A.

    1976-01-01

    The comparative thermal-stress fatigue resistances of 26 nickeland cobalt-base alloys were determined by fluidized bed tests. Cycles to cracking differed by almost three orders of magnitude for these materials, with directional solidification and surface protection showing definite benefit. The alloy-coating combination with the highest thermal-stress fatigue resistance was directionally solidified NASA TAZ-8A with an RT-SP coating. Its oxidation resistance was also excellent, showing approximately a 1/2 percent weight loss after 14,000 fluidized bed cycles.

  19. Experience with the Notch Stress Approach for Fatigue Assessment of Welded Joints

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters; Mouritsen, Ole Ø.; Hansen, Michael Rygaard

    2010-01-01

    In this paper, fatigue assessment using the notch stress approach is discussed based on re-analysis of many fatigue test results and experience from practical application. Three topics are treated; evaluation of the fatigue strength for as-welded details (FAT225) in the notch stress system......, problems regarding assessment of mild-SCF details and a novel proposal for extension of the notch stress approach for use with post-weld treated details....

  20. A study on fatigue crack growth model considering high mean loading effects based on structural stress

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Kim, Cheol; Jin, Tae Eun; Dong, P.

    2004-01-01

    The mesh-insensitive structural stress procedure by Dong is modified to apply to the welded joints with local thickness variation and inarguable shear/normal stresses along local discontinuity surface. In order to make use of the structural stress based K solution for fatigue correlation of welded joints, a proper crack growth model needs to be developed. There exist some significant discrepancies in inferring the slope or crack growth exponent in the conventional Paris law regime. Two-stage crack growth model was not considered since its applications are focused upon the fatigue behavior in welded joints in which the load ratio effects are considered negligible. In this paper, a two-stage crack growth law considering high mean loading is proposed and proven to be effective in unifying the so-called anomalous short crack growth data

  1. Influence of mechanical stress level in preliminary stress-corrosion testing on fatigue strength of a low-carbon steel

    International Nuclear Information System (INIS)

    Aleskerova, S.A.; Pakharyan, V.A.

    1978-01-01

    Effect of corrosion and mechanical factors of preliminary stress corrosion of a metal in its fatigue strength, has been investigated. Smooth cylindrical samples of 20 steel have been tested. Preliminary corrosion under stress has been carried out under natural sea conditions. It is shown that mechanical stresses in the case of preliminary corrosion affect fatigue strength of low-carbon steels, decreasing the range of limited durability and fatigue limit. This effect increases with the increase of stress level and agressivity of corrosive medium

  2. Finite element modelling for fatigue stress analysis of large suspension bridges

    Science.gov (United States)

    Chan, Tommy H. T.; Guo, L.; Li, Z. X.

    2003-03-01

    Fatigue is an important failure mode for large suspension bridges under traffic loadings. However, large suspension bridges have so many attributes that it is difficult to analyze their fatigue damage using experimental measurement methods. Numerical simulation is a feasible method of studying such fatigue damage. In British standards, the finite element method is recommended as a rigorous method for steel bridge fatigue analysis. This paper aims at developing a finite element (FE) model of a large suspension steel bridge for fatigue stress analysis. As a case study, a FE model of the Tsing Ma Bridge is presented. The verification of the model is carried out with the help of the measured bridge modal characteristics and the online data measured by the structural health monitoring system installed on the bridge. The results show that the constructed FE model is efficient for bridge dynamic analysis. Global structural analyses using the developed FE model are presented to determine the components of the nominal stress generated by railway loadings and some typical highway loadings. The critical locations in the bridge main span are also identified with the numerical results of the global FE stress analysis. Local stress analysis of a typical weld connection is carried out to obtain the hot-spot stresses in the region. These results provide a basis for evaluating fatigue damage and predicting the remaining life of the bridge.

  3. Fatigue Evaluation Algorithms: Review

    DEFF Research Database (Denmark)

    Passipoularidis, Vaggelis; Brøndsted, Povl

    series can be simulated. The predictions are validated against fatigue life data both from repeated block tests at a single stress ratio as well as against spectral fatigue using the WISPER, WISPERX and NEW WISPER load sequences on a Glass/Epoxy multidirectional laminate typical of a wind turbine rotor...

  4. Effects of residual stress on fatigue strength of small diameter welded pipe joint

    International Nuclear Information System (INIS)

    Yamashita, Tetsuo; Hattori, Takahiro; Nomoto, Toshiharu; Iida, Kunihiro; Sato, Masanobu

    1996-01-01

    A power plant consists of many welded components, therefore, it is essential in establishing the reliability of the power plant to maintain the reliability of all welded components. The fatigue failure caused by mechanical vibrations of small diameter welded joints, which is represented by socket welded joints, is one of the major causes of trouble for the welded parts of the power plant. Here, bending fatigue tests were conducted to investigate the fatigue strength of small diameter socket welded pipe joints. In the most cases of large diameter socket joints, a fatigue crack started from the root of the fillet weld though the stress amplitude at the root was smaller than that at the toe of fillet weld. Additionally, the fatigue strength was affected by the weld bead sequence. The residual stress was considered to be one of the important parameters governing fatigue strength, therefore, its effects were investigated. In several types of pipe joints, the local stress and residual stress distributions were calculated by finite element analysis. The residual stresses were compressive at the toe and tensile at the root of the socket welded joints. Based on these results, the effects of residual stresses on the fatigue strength are discussed for small diameter welded pipe joints in the present work

  5. Reciprocal relationship between acute stress and acute fatigue in everyday life in a sample of university students.

    Science.gov (United States)

    Doerr, Johanna M; Ditzen, Beate; Strahler, Jana; Linnemann, Alexandra; Ziemek, Jannis; Skoluda, Nadine; Hoppmann, Christiane A; Nater, Urs M

    2015-09-01

    We investigated whether stress may influence fatigue, or vice versa, as well as factors mediating this relationship. Fifty healthy participants (31 females, 23.6±3.2 years) completed up to 5 momentary assessments of stress and fatigue during 5 days of preparation for their final examinations (exam condition) and 5 days of a regular semester week (control condition). Sleep quality was measured by self-report at awakening. A sub-group of participants (n=25) also collected saliva samples. Fatigue was associated with concurrent stress, stress reported at the previous measurement point, and previous-day stress. However, momentary stress was also predicted by concurrent fatigue, fatigue at the previous time point, and previous-day fatigue. Sleep quality mediated the association between stress and next-day fatigue. Cortisol and alpha-amylase did not mediate the stress-fatigue relationship. In conclusion, there is a reciprocal stress-fatigue relationship. Both prevention and intervention programs should comprehensively cover how stress and fatigue might influence one another. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Fatigue life prediction method for contact wire using maximum local stress

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Seok; Haochuang, Li; Seok, Chang Sung; Koo, Jae Mean [Sungkyunkwan University, Suwon (Korea, Republic of); Lee, Ki Won; Kwon, Sam Young; Cho, Yong Hyeon [Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-01-15

    Railway contact wires supplying electricity to trains are exposed to repeated mechanical strain and stress caused by their own weight and discontinuous contact with a pantograph during train operation. Since the speed of railway transportation has increased continuously, railway industries have recently reported a number of contact wire failures caused by mechanical fatigue fractures instead of normal wear, which has been a more common failure mechanism. To secure the safety and durability of contact wires in environments with increased train speeds, a bending fatigue test on contact wire has been performed. The test equipment is too complicated to evaluate the fatigue characteristics of contact wire. Thus, the axial tension fatigue test was performed for a standard specimen, and the bending fatigue life for the contact wire structure was then predicted using the maximum local stress occurring at the top of the contact wire. Lastly, the tested bending fatigue life of the structure was compared with the fatigue life predicted by the axial tension fatigue test for verification.

  7. Fatigue life prediction method for contact wire using maximum local stress

    International Nuclear Information System (INIS)

    Kim, Yong Seok; Haochuang, Li; Seok, Chang Sung; Koo, Jae Mean; Lee, Ki Won; Kwon, Sam Young; Cho, Yong Hyeon

    2015-01-01

    Railway contact wires supplying electricity to trains are exposed to repeated mechanical strain and stress caused by their own weight and discontinuous contact with a pantograph during train operation. Since the speed of railway transportation has increased continuously, railway industries have recently reported a number of contact wire failures caused by mechanical fatigue fractures instead of normal wear, which has been a more common failure mechanism. To secure the safety and durability of contact wires in environments with increased train speeds, a bending fatigue test on contact wire has been performed. The test equipment is too complicated to evaluate the fatigue characteristics of contact wire. Thus, the axial tension fatigue test was performed for a standard specimen, and the bending fatigue life for the contact wire structure was then predicted using the maximum local stress occurring at the top of the contact wire. Lastly, the tested bending fatigue life of the structure was compared with the fatigue life predicted by the axial tension fatigue test for verification.

  8. Fatigue and damage tolerance scatter models

    Science.gov (United States)

    Raikher, Veniamin L.

    1994-09-01

    Effective Total Fatigue Life and Crack Growth Scatter Models are proposed. The first of them is based on the power form of the Wohler curve, fatigue scatter dependence on mean life value, cycle stress ratio influence on fatigue scatter, and validated description of the mean stress influence on the mean fatigue life. The second uses in addition are fracture mechanics approach, assumption of initial damage existence, and Paris equation. Simple formulas are derived for configurations of models. A preliminary identification of the parameters of the models is fulfilled on the basis of experimental data. Some new and important results for fatigue and crack growth scatter characteristics are obtained.

  9. The dynamics of stress and fatigue across menopause: attractors, coupling, and resilience.

    Science.gov (United States)

    Taylor-Swanson, Lisa; Wong, Alexander E; Pincus, David; Butner, Jonathan E; Hahn-Holbrook, Jennifer; Koithan, Mary; Wann, Kathryn; Woods, Nancy F

    2018-04-01

    The objective of this study was to evaluate the regulatory dynamics between stress and fatigue experienced by women during the menopausal transition (MT) and early postmenopause (EPM). Fatigue and perceived stress are commonly experienced by women during the MT and EPM. We sought to discover relationships between these symptoms and to employ these symptoms as possible markers for resilience. Participants were drawn from the longitudinal Seattle Midlife Women's Health Study. Eligible women completed questionnaires on 60+ occasions (annual health reports and monthly health diaries) (n = 56 women). The total number of observations across the sample was 4,224. STRAW+10 criteria were used to stage women in either in late reproductive, early or late transition, or EPM stage. Change values were generated for fatigue and stress and analyzed with a multilevel structural equation model; slopes indicate how quickly a person returns to homeostasis after a perturbation. Coupling of stress and fatigue was modeled to evaluate resilience, the notion of maintaining stability during change. Eligible women were on average 35 years old (SD = 4.71), well educated, employed, married or partnered, and white. Fit indices suggested the model depicts the relationships of stress and fatigue (χ(9 df) = 7.638, P = 0.57, correction factor = 4.9244; root mean square error of approximation (RMSEA) 90% CI = 0.000 ≤ 0.000 ≤ 0.032; comparative fit index (CFI) = 1.00). A loss in model fit across stages suggests that the four stages differed in their dynamics (χΔ(12 df) = 21.181, P = .048). All stages showed fixed-point attractor dynamics: fatigue became less stable over time; stress generally became more stable over time. Coupling relationships of stress on fatigue show evidence for shifts in regulatory relationships with one another across the MT. Results are suggestive of general dysregulation via disruptions to coupling relationships of stress and

  10. Ability of multiaxial fatigue criteria accounting for stress gradient effect for surface defective material

    Directory of Open Access Journals (Sweden)

    Niamchaona Wichian

    2018-01-01

    Full Text Available New high strength steels are widely used nowadays in many industrial areas as in automotive industry. These steels are more resistant and provide higher fatigue limits than latter ones but they are also more sensible to small defects. Natural defects that outcome from metallurgy (as shrinkage, inclusion, void are not considered in this study. We focus on small manufacturing defects such as cutting edge defects generated by punching or other surface defects due to stamping. These defects are harmful on the material fatigue behaviour due to high stress concentration at defects root. They also generate stress gradient that is beneficial from the fatigue strength point of view. This study focusses on the stress gradient (it does not account for the size effect from cylindrical defect on specimen edge. Practically a normal stress gradient is added in multiaxial fatigue criteria formulation. Both critical plane approach and integral approach are involved in the present study. This gradient is calculated from stress states at defects root by using FEM. Criteria fatigue function at N cycles is used to assess the material fatigue strength. Obviously multiaxial fatigue criteria accounting for stress gradient give more precise fatigue functions than criteria that do not consider the gradient influence.

  11. Study on effect of mean stress on fatigue life prediction of thin film structure

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Myung Soo [Ahtti Co., Seongnam (Korea, Republic of); Park, Jun Hyu [Tongmyong University, Busan (Korea, Republic of); Kim, Jung Yup [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2016-04-15

    This paper describes the effect of mean stress on fatigue life prediction of structure made with thin film. It is well known that the mean stress influences fatigue life prediction of mechanical structure. We investigated a reasonable method for considering mean stress when fatigue strength assessment of micro structure of thin film should be performed. Fatigue tests of smooth specimen of beryllium-copper (BeCu) thin film were performed in ambient air at R = 0.1 with 5 Hz. A micro probe was designed and made with BeCu thin film by the precision press process. Fatigue tests of micro structure were performed with 5 Hz frequency, in ambient air to verify the fatigue life predicted by computer simulation through FE analysis. The fatigue life predicted by the Sa -N curve modified by Goodman method with principal stress through FE analysis shows a more reasonable result than other methods.

  12. Study on effect of mean stress on fatigue life prediction of thin film structure

    International Nuclear Information System (INIS)

    Shin, Myung Soo; Park, Jun Hyu; Kim, Jung Yup

    2016-01-01

    This paper describes the effect of mean stress on fatigue life prediction of structure made with thin film. It is well known that the mean stress influences fatigue life prediction of mechanical structure. We investigated a reasonable method for considering mean stress when fatigue strength assessment of micro structure of thin film should be performed. Fatigue tests of smooth specimen of beryllium-copper (BeCu) thin film were performed in ambient air at R = 0.1 with 5 Hz. A micro probe was designed and made with BeCu thin film by the precision press process. Fatigue tests of micro structure were performed with 5 Hz frequency, in ambient air to verify the fatigue life predicted by computer simulation through FE analysis. The fatigue life predicted by the Sa -N curve modified by Goodman method with principal stress through FE analysis shows a more reasonable result than other methods

  13. Wind-Induced Fatigue Analysis of High-Rise Steel Structures Using Equivalent Structural Stress Method

    Directory of Open Access Journals (Sweden)

    Zhao Fang

    2017-01-01

    Full Text Available Welded beam-to-column connections of high-rise steel structures are susceptive to fatigue damage under wind loading. However, most fatigue assessments in the field of civil engineering are mainly based on nominal stress or hot spot stress theories, which has the disadvantage of dependence on the meshing styles and massive curves selected. To address this problem, in this paper, the equivalent structural stress method with advantages of mesh-insensitive quality and capability of unifying different stress-life curves (S-N curves into one is introduced to the wind-induced fatigue assessment of a large-scale complicated high-rise steel structure. The multi-scale finite element model is established and the corresponding wind loading is simulated. Fatigue life assessments using equivalent structural stress method, hot spot stress method and nominal stress method are performed, and the results are verified and comparisons are made. The mesh-insensitive quality is also verified. The results show that the lateral weld toe of the butt weld connecting the beam flange plate and the column is the location where fatigue damage most likely happens. Nominal stress method considers fatigue assessment of welds in a more global way by averaging all the stress on the weld section while in equivalent structural stress method and hot spot method local stress concentration can be taken into account more precisely.

  14. A study on multi-axial fatigue model based on structural stress

    International Nuclear Information System (INIS)

    Kim, Cheol; Kim, Jong Sung; Jin, Tae Eun; Dong, P.

    2004-01-01

    In nuclear components, cyclic loadings that cause complex states of stress are common. Through a reference review, four sources of the multi-axial fatigue data were collected from LBF, University of Illinois, EPRI, and TWI. All these tests were conducted using tube to flange specimens with a circumferential fillet welds. The loading conditions were mostly bending/ torsion combinations, except that TWI used tension/ torsion combinations. None of fatigue correlation parameters have been demonstrated to be satisfactory in correlating the multi-axial fatigue data outside of their own. In this paper, we proposed the characterizing multi-axial fatigue behavior in terms of the structural stress methods by using some of the well-known multi-axial fatigue data available in the references

  15. Influence of the non-singular stress on the crack extension and fatigue life

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Recho, N.; Niu, Z.R.

    2012-01-01

    Highlights: ► BEM is combined by characteristic analysis to calculate the singular stress field. ► A new method is proposed to evaluate the full stress field at crack tip region. ► Effect of non-singular stress on the propagation direction of the fatigue crack is analyzed. ► The influence of non-singular stress on the fatigue crack life is evaluated. - Abstract: The complete elasticity stress field at a crack tip region can be presented by the sum of the singular stress and several non-singular stress terms according to the Williams asymptotic expansion theory. The non-singular stress has a non-negligible influence on the prediction of the crack extension direction and crack growth rate under the fatigue loading. A novel method combining the boundary element method and the singularity characteristic analysis is proposed here to evaluate the complete stress field at a crack tip region. In this new method, any non-singular stress term in the Williams series expansion can be evaluated according to the computational accuracy requirement. Then, a modified Paris law is introduced to predict the crack propagation under the mixed-mode loading for exploring the influence of the non-singular stress on the fatigue life duration. By comparing with the existed experimental results, the predicted crack fatigue life when the non-singular stress is taken into consideration is more accurate than the predicted ones only considering the singular stress.

  16. Experimental Investigation of Principal Residual Stress and Fatigue Performance for Turned Nickel-Based Superalloy Inconel 718.

    Science.gov (United States)

    Hua, Yang; Liu, Zhanqiang

    2018-05-24

    Residual stresses of turned Inconel 718 surface along its axial and circumferential directions affect the fatigue performance of machined components. However, it has not been clear that the axial and circumferential directions are the principle residual stress direction. The direction of the maximum principal residual stress is crucial for the machined component service life. The present work aims to focuses on determining the direction and magnitude of principal residual stress and investigating its influence on fatigue performance of turned Inconel 718. The turning experimental results show that the principal residual stress magnitude is much higher than surface residual stress. In addition, both the principal residual stress and surface residual stress increase significantly as the feed rate increases. The fatigue test results show that the direction of the maximum principal residual stress increased by 7.4%, while the fatigue life decreased by 39.4%. The maximum principal residual stress magnitude diminished by 17.9%, whereas the fatigue life increased by 83.6%. The maximum principal residual stress has a preponderant influence on fatigue performance as compared to the surface residual stress. The maximum principal residual stress can be considered as a prime indicator for evaluation of the residual stress influence on fatigue performance of turned Inconel 718.

  17. Experimental Investigation of Principal Residual Stress and Fatigue Performance for Turned Nickel-Based Superalloy Inconel 718

    Directory of Open Access Journals (Sweden)

    Yang Hua

    2018-05-01

    Full Text Available Residual stresses of turned Inconel 718 surface along its axial and circumferential directions affect the fatigue performance of machined components. However, it has not been clear that the axial and circumferential directions are the principle residual stress direction. The direction of the maximum principal residual stress is crucial for the machined component service life. The present work aims to focuses on determining the direction and magnitude of principal residual stress and investigating its influence on fatigue performance of turned Inconel 718. The turning experimental results show that the principal residual stress magnitude is much higher than surface residual stress. In addition, both the principal residual stress and surface residual stress increase significantly as the feed rate increases. The fatigue test results show that the direction of the maximum principal residual stress increased by 7.4%, while the fatigue life decreased by 39.4%. The maximum principal residual stress magnitude diminished by 17.9%, whereas the fatigue life increased by 83.6%. The maximum principal residual stress has a preponderant influence on fatigue performance as compared to the surface residual stress. The maximum principal residual stress can be considered as a prime indicator for evaluation of the residual stress influence on fatigue performance of turned Inconel 718.

  18. [Chronic fatigue and strategies of coping with occupational stress in police officers].

    Science.gov (United States)

    Stepka, Ewa; Basińska, Małgorzata Anna

    2014-01-01

    Work as one of the most important activities in human life is related to stressful and difficult situations. Police officers make one of the many occupational groups that are particularly threatened by contact with a number of stressors. Therefore, their strategies of coping with stress are particularly important, because they play an important role in their functioning at work. The nature of the service as well as shift work and psychological costs incurred by police officers contribute to the emergence of chronic fatigue. The aim of this study was to evaluate the level of chronic fatigue in police officers and its relationship with the strategies of coping with occupational stress. A group of 61 police officers was examined. The following research methods were used: 1) Latack Coping Scale examining stress coping strategies at work (positive thinking, direct action, avoidance/resignation, seeking help, alcohol or stimulants use); 2) Mood Assessment Questionnaire CIS-20R examining the level of chronic fatigue and its components (subjective feeling of fatigue, impaired attention and concentration, reduced motivation, reduced activity); 3) Personal questionnaire providing socio-demographic data. It was found that the level of chronic fatigue in the group of the examined police officers was high (sten 8th). The most often used strategies of coping with stress were direct action and positive thinking, and the least often used strategy was the use of alcohol and stimulants. A significant negative correlation between the general level of chronic fatigue and the avoidance/resignation strategy was found. The results indicate that chronic fatigue is a problem affecting police officers and it is related to the stress coping strategies used.

  19. The causal role of fatigue in the stress-perceived health relationship: a MetroNet study.

    Science.gov (United States)

    Maghout-Juratli, Sham; Janisse, James; Schwartz, Kendra; Arnetz, Bengt B

    2010-01-01

    We conducted a cross-sectional survey of 4 primary care MetroNet centers in metropolitan Detroit. Our objective was to describe the causal role of fatigue in the relationship among stress, stress resiliency, and perceived health in primary care. Fatigue is a public health problem that has been linked to stress and poor health. The causal role of fatigue between stress and perceived health is unknown. Four hundred surveys were distributed to adult patients in 4 primary care centers in metropolitan Detroit between 2006 and 2007. Internal consistency reliabilities and principal factor analyses were calculated for the key psychological scales. Perceived health is the primary outcome. Path models were used to study the relationship among stress, fatigue, and perceived health. We also modeled the impact of select stress resiliency factors including sleep, recovery, and social support. Of the 400 distributed surveys, 315 (78.7%) had a response rate of 70% or more and were included in the analysis. Respondents were predominantly middle aged (median age, 43 years); female (58.7%); and African American (52.0%). The majority worked full time (56.5%); did not have a college degree (77.7%); and were not married (55.2%). Fatigue was reported by 59% of respondents, 42.7% of which was unexplained. The path model supported the causal role of fatigue between stress and perceived health. The positive effects of sleep, recovery, and social support on fatigue, stress, and perceived health were validated. Fatigue was common in this metropolitan primary care environment and completely mediated the relationship between stress and poor perceived health. Therefore, stress, when significant enough to cause fatigue, may lead to poor health.

  20. Multiaxial fatigue assessment of welded joints using the notch stress approach

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters

    2016-01-01

    This paper presents an evaluation of the safety involved when performing fatigue assessment of multiaxially loaded welded joints. The notch stress approach according to the IIW is used together with 8 different multiaxial criteria, including equivalent stress-, interaction equation- and critical...... plane approaches. The investigation is carried out by testing the criteria on a large amount of fatigue test results collected from the literature (351 specimens total). Subsequently, the probability of achieving a non-conservative fatigue assessment is calculated in order to evaluate the different...

  1. Fatigue Behavior of Steel Fiber Reinforced High-Strength Concrete under Different Stress Levels

    Science.gov (United States)

    Zhang, Chong; Gao, Danying; Gu, Zhiqiang

    2017-12-01

    The investigation was conducted to study the fatigue behavior of steel fiber reinforced high-strength concrete (SFRHSC) beams. A series of 5 SFRHSC beams was conducted flexural fatigue tests at different stress level S of 0.5, 0.55, 0.6, 0.7 and 0.8 respectively. Static test was conducted to determine the ultimate static capacity prior to fatigue tests. Fatigue modes and S-N curves were analyzed. Besides, two fatige life prediction model were analyzed and compared. It was found that stress level S significantly influenced the fatigue life of SFRHSC beams and the fatigue behavior of SFRHSC beams was mainly determined by the tensile reinforcement.

  2. Effects of fretting fatigue on the residual stress of shot peened Ti-6Al-4V samples

    International Nuclear Information System (INIS)

    Martinez, S.A.; Sathish, S.; Blodgett, M.P.; Mall, S.; Namjoshi, S.

    2005-01-01

    X-ray diffraction residual stress measurement has been utilized as nondestructive tool for the characterization of fretting fatigue damage in shot peened samples of Ti-6Al-4V. Prior to fretting fatigue damage, compressive residual stresses were found to be uniform over the entire face of the sample and independent of the measurement direction. After fretting fatigue, inside and in the vicinity of the fretting damage zone large relaxation of compressive residual stress was observed. An anisotropic residual stress distribution has been observed in the fretting fatigue damaged region. Residual stress measurements in interrupted fretting fatigue experiments showed that the relaxation of residual stress increases as the number of fretting fatigue cycles increase. The results are discussed in the light of their importance in establishing X-ray diffraction residual stress measurement technique as a nondestructive tool to characterize fretting fatigue damage

  3. Prediction of composite fatigue life under variable amplitude loading using artificial neural network trained by genetic algorithm

    Science.gov (United States)

    Rohman, Muhamad Nur; Hidayat, Mas Irfan P.; Purniawan, Agung

    2018-04-01

    Neural networks (NN) have been widely used in application of fatigue life prediction. In the use of fatigue life prediction for polymeric-base composite, development of NN model is necessary with respect to the limited fatigue data and applicable to be used to predict the fatigue life under varying stress amplitudes in the different stress ratios. In the present paper, Multilayer-Perceptrons (MLP) model of neural network is developed, and Genetic Algorithm was employed to optimize the respective weights of NN for prediction of polymeric-base composite materials under variable amplitude loading. From the simulation result obtained with two different composite systems, named E-glass fabrics/epoxy (layups [(±45)/(0)2]S), and E-glass/polyester (layups [90/0/±45/0]S), NN model were trained with fatigue data from two different stress ratios, which represent limited fatigue data, can be used to predict another four and seven stress ratios respectively, with high accuracy of fatigue life prediction. The accuracy of NN prediction were quantified with the small value of mean square error (MSE). When using 33% from the total fatigue data for training, the NN model able to produce high accuracy for all stress ratios. When using less fatigue data during training (22% from the total fatigue data), the NN model still able to produce high coefficient of determination between the prediction result compared with obtained by experiment.

  4. Neck muscle fatigue alters the cervical flexion relaxation ratio in sub-clinical neck pain patients.

    Science.gov (United States)

    Zabihhosseinian, Mahboobeh; Holmes, Michael W R; Ferguson, Brad; Murphy, Bernadette

    2015-06-01

    The cervical flexion relaxation ratio is lower in neck pain patients compared to healthy controls. Fatigue modulates the onset and offset angles of the silent period in both the lumbar and cervical spine in healthy individuals; however, this response has not been studied with neck pain patients. The purpose of this study was to determine if cervical extensor fatigue would alter the parameters of the cervical flexion relaxation more in a neck pain group than a healthy control group. Thirteen healthy and twelve neck pain patients participated. Cervical extensor activity was examined bilaterally and kinematics of the neck and head were collected. An isometric, repetitive neck extension task at 70% of maximum elicited fatigue. Participants performed 3 trials of maximal cervical flexion both pre and post fatigue. The healthy controls and neck pain groups fatigued after 56 (41) and 39 (31) repetitions, respectively. There was a significant interaction effect for the flexion relaxation ratio between the control and neck pain groups from pre to post fatigue trials (F1,96=22.67, P=0.0001), but not for onset and offset angles (F1, 96=0.017, P=0.897), although the onset and offset angles did decrease significantly for both groups following fatigue (F1,96=9.26, P=0.002). Individuals with mild to moderate neck pain have significant differences in their neuromuscular control relative to controls, experienced myoelectric fatigue with fewer repetitions in a shorter time, had a lower cervical flexion relaxation ratio at baseline and had an inability to decrease this ratio further in response to fatigue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Fatigue Equivalent Stress State Approach Validation in Non-conservative Criteria: a Comparative Study

    Directory of Open Access Journals (Sweden)

    Kévin Martial Tsapi Tchoupou

    Full Text Available Abstract This paper is concerned with the fatigue prediction models for estimating the multiaxial fatigue limit. An equivalent loading approach with zero out-of-phase angles intended for fatigue limit evaluation under multiaxial loading is used. Based on experimental data found in literatures, the equivalent stress is validated in Crossland and Sines criteria and predictions compared to the predictions of existing multiaxial fatigue; results over 87 experimental items show that the equivalent stress approach is very efficient.

  6. High-cycle fatigue behavior of Co-based superalloy 9CrCo at elevated temperatures

    OpenAIRE

    Wan, Aoshuang; Xiong, Junjiang; Lyu, Zhiyang; Li, Kuang; Du, Yisen; Chen, Kejiao; Man, Ziyu

    2016-01-01

    A modified model is developed to characterize and evaluate high-cycle fatigue behavior of Co-based superalloy 9CrCo at elevated temperatures by considering the stress ratio effect. The model is informed by the relationship surface between maximum nominal stress, stress ratio and fatigue life. New formulae are derived to deal with the test data for estimating the parameters of the proposed model. Fatigue tests are performed on Co-based superalloy 9CrCo subjected to constant amplitude loading a...

  7. Comparing older and younger Japanese primiparae: fatigue, depression and biomarkers of stress.

    Science.gov (United States)

    Mori, Emi; Maehara, Kunie; Iwata, Hiroko; Sakajo, Akiko; Tsuchiya, Miyako; Ozawa, Harumi; Morita, Akiko; Maekawa, Tomoko; Saeki, Akiko

    2015-03-01

    This cohort study of primiparae was conducted to answer the following questions: Do older (≧ 35 years) and younger (20-29 years) Japanese primiparous mothers differ when comparing biomarkers of stress and measures of fatigue and depression? Are there changes in fatigue, depression and stress biomarkers when comparing older and younger mothers during the postpartum period? The Postnatal Accumulated Fatigue Scale and the Edinburgh Postnatal Depression Scale were administered in a time-series method four times: shortly after birth and monthly afterwards. Assays to measure biomarkers of stress, urinary 17-ketosteroids, urinary 17-hydroxycorticosteroids and salivary chromogranin-A, were collected shortly after delivery and at 1 month postpartum in both groups and a third time in older mothers at the 4th month. Statistical testing showed very little difference in fatigue, depression or stress biomarkers between older and younger mothers shortly after birth or 1 month later. Accumulated fatigue and depression scores of older mothers were highest 1 month after delivery. Additional cohort studies are required to characterize physical/psychological well-being of older Japanese primiparae. © 2015 Wiley Publishing Asia Pty Ltd.

  8. Effects of Specimen Diameters on the Distribution of Corrosion Fatigue Cracks

    OpenAIRE

    石原, 外美; 塩澤, 和章; 宮尾, 嘉寿

    1988-01-01

    The distribution of corrosion fatigue cracks observed on the un-notched round specimen surface differs with specimen diameter, especially in the low stress amplitude region. At a constant fatigue life ratio, many long cracks are initiated on the larger specimen, 12 mm (diameter), in comparison with the smaller specimen, 6 mm (diameter). On the other hand, in the high stress amplitude region of corrosion fatigue and fatigue in laboratory air, the distribution of cracks during the fatigue proce...

  9. Fatigue criterion for the design of rotating shafts under combined stress

    Science.gov (United States)

    Loewenthal, S. H.

    1977-01-01

    A revised approach to the design of transmission shafting which considers the flexure fatigue characteristics of the shaft material under combined cyclic bending and static torsion stress is presented. A fatigue failure relation, corroborated by published combined stress test data, is presented which shows an elliptical variation of reversed bending endurance strength with static torsional stress. From this elliptical failure relations, a design formula for computing the diameter of rotating solid shafts under the most common condition of loading is developed.

  10. Thermal stratification and fatigue stress analysis for pressurizer surge line

    International Nuclear Information System (INIS)

    Yu Xiaofei; Zhang Yixiong

    2011-01-01

    Thermal stratification of pressurizer surge line induced by the inside fluid results in the global bending moments, local thermal stresses, unexpected displacements and support loadings of the pipe system. In order to avoid a costly three-dimensional computation, a combined 1D/2D technique has been developed and implemented to analyze the thermal stratification and fatigue stress of pressurize surge line of QINSHAN Phase II Extension Nuclear Power Project in this paper, using the computer codes SYSTUS and ROCOCO. According to the mechanical analysis results of stratification, the maximum stress and cumulative usage factor are obtained. The results indicate that the stress and fatigue intensity considering thermal stratification satisfies RCC-M criterion. (authors)

  11. A potential biomarker for fatigue: Oxidative stress and anti-oxidative activity.

    Science.gov (United States)

    Fukuda, Sanae; Nojima, Junzo; Motoki, Yukari; Yamaguti, Kouzi; Nakatomi, Yasuhito; Okawa, Naoko; Fujiwara, Kazumi; Watanabe, Yasuyoshi; Kuratsune, Hirohiko

    2016-07-01

    We sought to determine whether oxidative stress and anti-oxidative activity could act as biomarkers that discriminate patients with chronic fatigue syndrome (CFS) from healthy volunteers at acute and sub-acute fatigue and resting conditions. We calculated the oxidative stress index (OSI) from reactive oxygen metabolites-derived compounds (d-ROMs) and the biological antioxidant potential (BAP). We determined changes in d-ROMs, BAP, and OSI in acute and sub-acute fatigue in two healthy groups, and compared their values at rest between patients with CFS (diagnosed by Fukuda 1994 criteria) and another group of healthy controls. Following acute fatigue in healthy controls, d-ROMs and OSI increased, and BAP decreased. Although d-ROMs and OSI were significantly higher after sub-acute fatigue, BAP did not decrease. Resting condition yielded higher d-ROMs, higher OSI, and lower BAP in patients with CFS than in healthy volunteers, but lower d-ROMs and OSI when compared with sub-acute controls. BAP values did not significantly differ between patients with CFS and controls in the sub-acute condition. However, values were significantly higher than in the resting condition for controls. Thus, measured of oxidative stress (d-ROMS) and anti-oxidative activity (BAP) might be useful for discriminating acute, sub-acute, and resting fatigue in healthy people from patients with CFS, or for evaluating fatigue levels in healthy people. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Stress corrosion and corrosion fatigue crack growth monitoring in metals

    International Nuclear Information System (INIS)

    Senadheera, T.; Shipilov, S.A.

    2003-01-01

    Environmentally assisted cracking (including stress corrosion cracking and corrosion fatigue) is one of the major causes for materials failure in a wide variety of industries. It is extremely important to understand the mechanism(s) of environmentally assisted crack propagation in structural materials so as to choose correctly from among the various possibilities-alloying elements, heat treatment of steels, parameters of cathodic protection, and inhibitors-to prevent in-service failures due to stress corrosion cracking and corrosion fatigue. An important step towards understanding the mechanism of environmentally assisted crack propagation is designing a testing machine for crack growth monitoring and that simultaneously provides measurement of electrochemical parameters. In the present paper, a direct current (DC) potential drop method for monitoring crack propagation in metals and a testing machine that uses this method and allows for measuring electrochemical parameters during stress corrosion and corrosion fatigue crack growth are described. (author)

  13. Cycle counting procedure for fatigue failure preditions for complicated multi-axial stress histories

    International Nuclear Information System (INIS)

    Jones, D.P.; Friedrich, C.M.; Hoppe, R.G.

    1977-12-01

    A procedure has been developed to determine the cumulative fatigue damage in structures experiencing complicated multi-axial stress histories. The procedure is a generalization of the rainflow method developed by Matsuishi and Endo for one-dimensional situations. It provides a consistent treatment of three-dimensional stress states that is especially suited to computer programming applications for the post-processing of finite element stress data. The procedure includes a unique method to account for the rotation of principal stresses with time during the stress history and for the cumulative fatigue damage resulting from partial stress reversals within a stress cycle. The general procedure and necessary equations for programming are presented. Comparisons are made with life predictions using Section III of the ASME Boiler and Pressure Vessel Code for two hypothetical multi-axial stress histories for which the principal stresses are rotating with time. These comparisons show that the cycle counting method provides a consistent unambiguous interpretation of the fatigue design procedure in the ASME Code for these cases. Finally, the fatigue life of a perforated plate, as analyzed by finite elements, is computed for the combination of several hypothetical stress histories. This example demonstrates the utility of the proposed method when used in conjunction with finite element programs

  14. Fatigue characteristics of dual-phase steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Onn, Irwan Herman; Ahmad, Norhayati; Tamin, Mohd Nasir [Universiti Teknologi Malaysia, Skudai (Malaysia)

    2015-01-15

    Fatigue characteristics of dual-phase steel sheets, commonly used in automobile body construction were established. For this purpose, a series of fatigue tests, each at constant stress amplitude were conducted on 1.2 mm-thick, dual-phase DP600 steel sheet specimens with two different load ratios of minimum-to-maximum stress, R = 0.1 and -1. The resulting fatigue behavior is expressed in terms of fatigue strength-life (S-N) curves. Fatigue behavior of the steel sheets in the high-cycle fatigue region can be represented by Basquin's equation with coefficient and exponent value of 921.2 and 0.093, respectively. An endurance limit of 255 MPa is observed. In addition, fatigue strengths of the dual-phase steel sheets display lower magnitude than their bulk counterparts. Effect of mean stress on fatigue behavior of the steel sheets is well predicted by Walker's model. Exponential calibration factor is introduced to the models by SWT, Goodman and Morrow with comparable prediction to the Walker's model.

  15. Markov model of fatigue of a composite material with the poisson process of defect initiation

    Science.gov (United States)

    Paramonov, Yu.; Chatys, R.; Andersons, J.; Kleinhofs, M.

    2012-05-01

    As a development of the model where only one weak microvolume (WMV) and only a pulsating cyclic loading are considered, in the current version of the model, we take into account the presence of several weak sites where fatigue damage can accumulate and a loading with an arbitrary (but positive) stress ratio. The Poisson process of initiation of WMVs is considered, whose rate depends on the size of a specimen. The cumulative distribution function (cdf) of the fatigue life of every individual WMV is calculated using the Markov model of fatigue. For the case where this function is approximated by a lognormal distribution, a formula for calculating the cdf of fatigue life of the specimen (modeled as a chain of WMVs) is obtained. Only a pulsating cyclic loading was considered in the previous version of the model. Now, using the modified energy method, a loading cycle with an arbitrary stress ratio is "transformed" into an equivalent cycle with some other stress ratio. In such a way, the entire probabilistic fatigue diagram for any stress ratio with a positive cycle stress can be obtained. Numerical examples are presented.

  16. Fatigue stress fractures of the sacrum: diagnosis with MR imaging

    International Nuclear Information System (INIS)

    Ahovuo, J.A.; Vusuri, T.

    2004-01-01

    The aim of this study was to describe the MRI findings and clinical observations in a fatigue stress fracture of the sacrum. In this retrospective study, 380 conscripts (53 women, 327 men; age range 18-29 years, mean age 20.7 years) who suffered from stress-related hip pain were studied with MRI of the pelvis. The findings of MRI were evaluated with regard to stress fracture of the sacrum. Thirty-one (8%) patients had MRI changes in signal intensity of the cranial part of the sacrum, extending to the first and second sacral foramina. The MRI changes in signal intensity were intermediate on T1-weighted images, and high on short tau inversion recovery or T2-weighted fat-suppressed images. A linear signal void fracture line was also seen. Multiple stress injuries to the pelvic bones were also seen in 7 of 31 (23%) patients. Five patients (16%) had bilateral sacral stress fracture. Fatigue sacral stress fractures appeared more commonly in women than in men (p<0.001). During recovery time 20 of the 31 patients underwent control MRI, and fatty marrow conversion was seen in 8 (40%) cases as high signal intensity on T1-weighted images, which disappeared 5-6 months after the onset of symptoms. Fatigue sacral stress fractures are associated with stress-related hip pain. These fractures were more common in women than in men. Other stress injuries of the pelvis may be seen simultaneously with sacral stress fractures. Signal intensity of the sacrum was normal after 5-6 months

  17. Effect of Chlorella Ingestion on Oxidative Stress and Fatigue Symptoms in Healthy Men.

    Science.gov (United States)

    Okada, Hirotaka; Yoshida, Noriko; Kakuma, Tatsuyuki; Toyomasu, Kouji

    2018-05-21

    We examined the effects of dietary chlorella ingestion on oxidative stress and fatigue symptoms in healthy men under resting and fatigue conditions. We conducted a double-blind, parallel-arm controlled study. Twenty-seven healthy male volunteers (mean age, 35.4±10.4 years) were randomly divided into the chlorella and placebo groups, and received chlorella (6 g/day) and lactose as placebo (7.2 g/day), respectively, for 4 weeks. To simulate mild fatigue, subjects underwent exercise (40% of the heart rate reserve) for 30 minutes. Fatigue was measured using the visual analog scale of fatigue (F-VAS) pre- and post-exercise. Serum antioxidant capacity (AC), malondialdehyde levels, and other indices of oxidative stress were measured pre- and post-exercise. All measurements were repeated after the intervention period and the results were compared with baseline measurements. Under resting conditions, AC significantly increased after the intervention period in the chlorella group, but not in the placebo group. Malondialdehyde levels after the intervention period were significantly lower in the chlorella group than in the placebo group. There were no significant differences in any of the oxidative-stress indices measured pre- and post-exercise, either before or after intervention, in either group. F-VAS significantly increased after exercise at all measurement time-points in both groups, except after the intervention period in the chlorella group. Under fatigue conditions, there were no significant differences in oxidative stress indices between the groups. Our results suggest that chlorella ingestion has the potential to relieve oxidative stress and enhance tolerance for fatigue under resting conditions.

  18. Common Mathematical Model of Fatigue Characteristics

    Directory of Open Access Journals (Sweden)

    Z. Maléř

    2004-01-01

    Full Text Available This paper presents a new common mathematical model which is able to describe fatigue characteristics in the whole necessary range by one equation only:log N = A(R + B(R ∙ log Sawhere A(R = AR2 + BR + C and B(R = DR2 + AR + F.This model was verified by five sets of fatigue data taken from the literature and by our own three additional original fatigue sets. The fatigue data usually described the region of N 104 to 3 x 106 and stress ratio of R = -2 to 0.5. In all these cases the proposed model described fatigue results with small scatter. Studying this model, following knowledge was obtained:– the parameter ”stress ratio R” was a good physical characteristic– the proposed model provided a good description of the eight collections of fatigue test results by one equation only– the scatter of the results through the whole scope is only a little greater than that round the individual S/N curve– using this model while testing may reduce the number of test samples and shorten the test time– as the proposed model represents a common form of the S/N curve, it may be used for processing uniform objective fatigue life results, which may enable mutual comparison of fatigue characteristics.

  19. The effect of residual stresses induced by prestraining on fatigue life of notched specimens

    Science.gov (United States)

    Sadeler, R.; Ozel, A.; Kaymaz, I.; Totik, Y.

    2005-06-01

    The effect of tensile prestraining-induced residual stress on the fatigue life of notched steel parts was investigated. The study was performed on AISI 4140 steel. Rotating bending fatigue tests were carried out on semicircular notched specimens with different notch radii in the as-quenched and tempered conditions. Metallography of the specimens was performed by means of light optical microscopy. The finite-element method was used to evaluate the residual stress distribution near the notch region. Fatigue tests revealed fatigue life improvement for notched specimens, which changes depending on the notch radii and applied stress. Scanning electron microscopy was used to examine the fracture surfaces of the specimens.

  20. Effect of residual stresses on fatigue strength of plasma nitrided 4140 steel

    International Nuclear Information System (INIS)

    Aghazadeh, J.; Amidi, M.R.

    2004-01-01

    Almost every method that has been presented to determine residual stress has some limitation and complexities. The aim of this work is to present a new, yet simple method so called strain indentation for measuring the residual stresses particularly in thin layers. In this method in addition to the precision measurements, components of residual stress at different directions may be determined. AISI 4140 steel specimens nitrided at 350 d ig C , 450 d ig C and 550 d ig C for 5 hours in the mixture of 75% nitrogen- 25% hydrogen gas. The, components of residual stress in the radials axial and hoop directions in the nitrided layer were determined considering the elastic strain recovery after removal of residual stress inducer(i.e. the nitrided layer). Fatigue strength of the nitrided specimens was obtained by plotting the S-N curves and fractographic studies carried out on the fracture surface of the specimens. The effect of residual stress on the stress pattern was simulated. The calculated residual stress components were in the range of 40-210 Mpa and the radial components of residual stress were more than the other two directions. Maximum fatigue strength improvement of up to 110% was observed in the plasma nitrided specimens at 550 d ig C and also 40% improvement in fatigue strength was detected by increasing the nitriding temperature from 350 d ig C to 550 d ig C . This was due to 100% increase in residual stress. Fatigue crack growth velocity in the hoop direction was more than that of radial direction. This seems to be due to higher radial residual stress component compared with the hoop stress component in the sub layer

  1. Research on fatigue behavior and residual stress of large-scale cruciform welding joint with groove

    International Nuclear Information System (INIS)

    Zhao, Xiaohui; Liu, Yu; Liu, Yong; Gao, Yuan

    2014-01-01

    Highlights: • The fatigue behavior of the large-scale cruciform welding joint with groove was studied. • The longitudinal residual stress of the large-scale cruciform welding joint was tested by contour method. • The fatigue fracture mechanism of the large-scale cruciform welding joint with groove was analyzed. - Abstract: Fatigue fracture behavior of the 30 mm thick Q460C-Z steel cruciform welded joint with groove was investigated. The fatigue test results indicated that fatigue strength of 30 mm thick Q460C-Z steel cruciform welded joint with groove can reach fatigue level of 80 MPa (FAT80). Fatigue crack source of the failure specimen initiated from weld toe. Meanwhile, the microcrack was also found in the fusion zones of the fatigue failure specimen, which was caused by weld quality and weld metal integrity resulting from the multi-pass welds. Two-dimensional map of the longitudinal residual stress of 30 mm thick Q460C-Z steel cruciform welded joint with groove was obtained by using the contour method. The stress nephogram of Two-dimensional map indicated that longitudinal residual stress in the welding center is the largest

  2. Possible use of repeated cold stress for reducing fatigue in Chronic Fatigue Syndrome: a hypothesis

    Directory of Open Access Journals (Sweden)

    Shevchuk Nikolai A

    2007-10-01

    Full Text Available Abstract Background Physiological fatigue can be defined as a reduction in the force output and/or energy-generating capacity of skeletal muscle after exertion, which may manifest itself as an inability to continue exercise or usual activities at the same intensity. A typical example of a fatigue-related disorder is chronic fatigue syndrome (CFS, a disabling condition of unknown etiology and with uncertain therapeutic options. Recent advances in elucidating pathophysiology of this disorder revealed hypofunction of the hypothalamic-pituitary-adrenal axis and that fatigue in CFS patients appears to be associated with reduced motor neurotransmission in the central nervous system (CNS and to a smaller extent with increased fatigability of skeletal muscle. There is also some limited evidence that CFS patients may have excessive serotonergic activity in the brain and low opioid tone. Presentation of the hypothesis This work hypothesizes that repeated cold stress may reduce fatigue in CFS because brief exposure to cold may transiently reverse some physiological changes associated with this illness. For example, exposure to cold can activate components of the reticular activating system such as raphe nuclei and locus ceruleus, which can result in activation of behavior and increased capacity of the CNS to recruit motoneurons. Cold stress has also been shown to reduce the level of serotonin in most regions of the brain (except brainstem, which would be consistent with reduced fatigue according to animal models of exercise-related fatigue. Finally, exposure to cold increases metabolic rate and transiently activates the hypothalamic-pituitary-adrenal axis as evidenced by a temporary increase in the plasma levels of adrenocorticotropic hormone, beta-endorphin and a modest increase in cortisol. The increased opioid tone and high metabolic rate could diminish fatigue by reducing muscle pain and accelerating recovery of fatigued muscle, respectively. Testing

  3. Control of welding residual stress for ensuring integrity against fatigue and stress-corrosion cracking

    International Nuclear Information System (INIS)

    Mochizuki, Masahito

    2007-01-01

    The availability of several techniques for residual stress control is discussed in this paper. The effectiveness of these techniques in protecting from fatigue and stress-corrosion cracking is verified by numerical analysis and actual experiment. In-process control during welding for residual stress reduction is easier to apply than using post-weld treatment. As an example, control of the welding pass sequence for multi-pass welding is applied to cruciform joints and butt-joints with an X-shaped groove. However, residual stress improvement is confirmed for post-weld processes. Water jet peening is useful for obtaining a compressive residual stress on the surface, and the tolerance against both fatigue and stress-corrosion cracking is verified. Because cladding with a corrosion-resistant material is also effective for preventing stress-corrosion cracking from a metallurgical perspective, the residual stress at the interface of the base metal is carefully considered. The residual stress of the base metal near the clad edge is confirmed to be within the tolerance of crack generation. Controlling methods both during and after welding processes are found to be effective for ensuring the integrity of welded components

  4. Fracture mechanics and residual fatigue life analysis for complex stress fields. Technical report

    International Nuclear Information System (INIS)

    Besuner, P.M.

    1975-07-01

    This report reviews the development and application of an influence function method for calculating stress intensity factors and residual fatigue life for two- and three-dimensional structures with complex stress fields and geometries. Through elastic superposition, the method properly accounts for redistribution of stress as the crack grows through the structure. The analytical methods used and the computer programs necessary for computation and application of load independent influence functions are presented. A new exact solution is obtained for the buried elliptical crack, under an arbitrary Mode I stress field, for stress intensity factors at four positions around the crack front. The IF method is then applied to two fracture mechanics problems with complex stress fields and geometries. These problems are of current interest to the electric power generating industry and include (1) the fatigue analysis of a crack in a pipe weld under nominal and residual stresses and (2) fatigue analysis of a reactor pressure vessel nozzle corner crack under a complex bivariate stress field

  5. Stress-life relation of the rolling-contact fatigue spin rig

    Science.gov (United States)

    Butler, Robert H; Carter, Thomas L

    1957-01-01

    The rolling-contact fatigue spin rig was used to test groups of SAE 52100 9.16-inch-diameter balls lubricated with a mineral oil at 600,000-, 675,000-, and 750,000-psi maximum Hertz stress. Cylinders of AISI M-1 vacuum and commercial melts and MV-1 (AISI M-50) were used as race specimens. Stress-life exponents produced agree closely with values accepted in industry. The type of failure obtained in the spin rig was similar to the subsurface fatigue spells found in bearings.

  6. Numerical analysis for prediction of fatigue crack opening level

    International Nuclear Information System (INIS)

    Choi, Hyeon Chang

    2004-01-01

    Finite Element Analysis (FEA) is the most popular numerical method to simulate plasticity-induced fatigue crack closure and can predict fatigue crack closure behavior. Finite element analysis under plane stress state using 4-node isoparametric elements is performed to investigate the detailed closure behavior of fatigue cracks and the numerical results are compared with experimental results. The mesh of constant size elements on the crack surface can not correctly predict the opening level for fatigue crack as shown in the previous works. The crack opening behavior for the size mesh with a linear change shows almost flat stress level after a crack tip has passed by the monotonic plastic zone. The prediction of crack opening level presents a good agreement with published experimental data regardless of stress ratios, which are using the mesh of the elements that are in proportion to the reversed plastic zone size considering the opening stress intensity factors. Numerical interpolation results of finite element analysis can precisely predict the crack opening level. This method shows a good agreement with the experimental data regardless of the stress ratios and kinds of materials

  7. Fatigue Characterization of Fire Resistant Syntactic Foam Core Material

    Science.gov (United States)

    Hossain, Mohammad Mynul

    Eco-Core is a fire resistant material for sandwich structural application; it was developed at NC A&T State University. The Eco-Core is made of very small amount of phenolic resin and large volume of flyash by a syntactic process. The process development, static mechanical and fracture, fire and toxicity safety and water absorption properties and the design of sandwich structural panels with Eco-Core material was established and published in the literature. One of the important properties that is needed for application in transportation vehicles is the fatigue performance under different stress states. Fatigue data are not available even for general syntactic foams. The objective of this research is to investigate the fatigue performance of Eco-Core under three types of stress states, namely, cyclic compression, shear and flexure, then document failure modes, and develop empherical equations for predicting fatigue life of Eco-Core under three stress states. Compression-Compression fatigue was performed directly on Eco-Core cylindrical specimen, whereas shear and flexure fatigue tests were performed using sandwich beam made of E glass-Vinyl Ester face sheet and Eco-Core material. Compression-compression fatigue test study was conducted at two values of stress ratios (R=10 and 5), for the maximum compression stress (sigmamin) range of 60% to 90% of compression strength (sigmac = 19.6 +/- 0.25 MPa) for R=10 and 95% to 80% of compression strength for R=5. The failure modes were characterized by the material compliance change: On-set (2% compliance change), propagation (5%) and ultimate failure (7%). The number of load cycles correspond to each of these three damages were characterized as on-set, propagation and total lives. A similar approach was used in shear and flexure fatigue tests with stress ratio of R=0.1. The fatigue stress-number of load cycles data followed the standard power law equation for all three stress states. The constant of the equation were

  8. A study on the stress history condensation method for a fatigue monitoring system

    International Nuclear Information System (INIS)

    Ko, Hanok; Jhung, Myungjo; Lee, Kihyoung

    2014-01-01

    Fatigue damage is the one of important aging mechanisms. Time-varying thermal, pressure and mechanical loads produce perturbations of stress cycles primarily at the surface of a component. Stress cycles of sufficient magnitude cause fatigue damage, which can ultimately lead to cracking of the component. According to NUREG-1801, fatigue monitoring systems identify acceptable aging management programs, including programs for fatigue and cyclic operation. In a monitoring system, the rainflow counting method is mainly used as the stress cycle counting method. Before determining the stress cycles using rainflow counting method, stress extremum (or peak/valley) must be identified. Because real stress history contains large numbers of very small cycles, which may be a result of digitization noise, these cycles will slow down the analysis and distort the scaling of graphical displays. As a result, it is found that stress cycles smaller than a threshold value are discarded by using the proposed method. In this paper, an engineering methodology which extracts extremum from the real-time transient data, so-called SEE, has been developed. The proposed method is very simple and so fast because it only uses the difference between the input value and local peak/valley. The stress cycles counted by two methods are compared with those counted by only rainflow counting method and it is found that stress cycles smaller than a threshold value were eliminated

  9. Role of residual stresses induced by double peening on fatigue durability of automotive leaf springs

    International Nuclear Information System (INIS)

    Scuracchio, Bruno Geoffroy; Batista de Lima, Nelson; Schön, Cláudio Geraldo

    2013-01-01

    Highlights: ► Proper choice of peening media is needed for higher fatigue strength in leaf springs. ► Optimum double-peening condition for leaf springs: 0.8 mm shot, followed by 0.3 mm. ► Fatigue life correlates with residual stress levels at the surface (up to 0.02 mm). ► Residual stress profile below 0.02 mm has no measurable effect over fatigue life. ► Failure of the investigated parts is nucleation-controlled. - Abstract: Improvement of fatigue life in parts subjected to cyclic stresses by application of mechanical surface treatment processes is already well known, both in the industry and in the academy. Dealing with automotive springs, the shot peening process becomes an essential step in manufacturing. In the case of leaf springs, however, a systematic investigation of the effect of shot peening on fatigue life is still required. The aim of the present work is to improve the knowledge on the role of shot peening in manufacturing leaf springs for vehicles, through the analysis of residual stresses by X-ray diffraction and fatigue tests on a series of samples that were subject to ten different peening schedules. Among the investigated processes, the usage of 0.8 mm diameter cast steel shot followed by a second peening with 0.3 mm diameter cast steel shot leads to optimal performance, regarding fatigue life. X-ray diffraction analysis shows that this improved performance may be attributed to residual compressive stress maintained until a depth of 0.02 mm below the surface, which directly influences fatigue crack nucleation. Residual stresses induced by shot peening in larger depths have no influence on the sample’s fatigue life

  10. Effect of tensile overloads on fatigue crack growth of high strength steel wires

    International Nuclear Information System (INIS)

    Haag, J.; Reguly, A.; Strohaecker, T.R.

    2013-01-01

    Highlights: • A proof load process may be an option to increase the fatigue life of flexible pipelines. • There is possibility to produce plastic deformation at crack tip of tensile armor wires. • Controlled overloads provide effective crack growth retardation. • Crack growth retardation is also evident at higher stress ratios. - Abstract: Fatigue of the tensile armor wires is the main failure mode of flexible risers. Techniques to increase the life of these components are required to improve the processes safety on oil exploration. This work evaluates the crack growth retardation of high strength steel wires used in flexible pipelines. Fracture toughness tests were performed to establish the level of stress intensity factor wherein the wires present significant plastic deformation at the crack tip. The effect of tensile overload on fatigue behavior was assessed by fatigue crack growth testing under constant ΔK control and different overload ratios with two different load ratios. The outcomes show that the application of controlled overloads provides crack retardation and increases the fatigue life of the wires more than 31%. This behavior is also evident at stress ratio of 0.5, in spite of the crack closure effect being minimized by increasing the applied mean stress

  11. Curcumin, a polyphenolic antioxidant, attenuates chronic fatigue syndrome in murine water immersion stress model.

    Science.gov (United States)

    Gupta, Amit; Vij, Garima; Sharma, Sameer; Tirkey, Naveen; Rishi, Praveen; Chopra, Kanwaljit

    2009-01-01

    Chronic fatigue syndrome, infection and oxidative stress are interrelated in epidemiological case studies. However, data demonstrating scientific validation of epidemiological claims regarding effectiveness of nutritional supplements for chronic fatigue syndrome are lacking. This study is designed to evaluate the effect of natural polyphenol, curcumin, in a mouse model of immunologically induced fatigue, where purified lipopolysaccharide (LPS) and Brucella abortus (BA) antigens were used as immunogens. The assessment of chronic fatigue syndrome was based on chronic water-immersion stress test for 10 min daily for 19 days and the immobility time was taken as the marker of fatigue. Mice challenged with LPS or BA for 19 days showed significant increase in the immobility time and hyperalgesia on day 19, as well as marked increase in serum tumor necrosis factor-alpha (TNF-alpha) levels. Concurrent treatment with curcumin resulted in significantly decreased immobility time as well as hyperalgesia. There was significant attenuation of oxidative stress as well as TNF-alpha levels. These findings strongly suggest that during immunological activation, there is significant increase in oxidative stress and curcumin can be a valuable option in the treatment of chronic fatigue syndrome.

  12. The direct-stress fatigue strength of 17S-T aluminum alloy throughout the range from 1/2 to 500,000,000 cycles of stress

    Science.gov (United States)

    Hartmann, E C; Stickley, G W

    1942-01-01

    Fatigue-test were conducted on six specimens made from 3/4-inch-diameter 17S-T rolled-and-drawn rod for the purpose of obtaining additional data on the fatigue life of the material at stresses up to the static strength. The specimens were tested in direct tension using a stress range from zero to a maximum in tension. A static testing machine was used to apply repeated loads in the case of the first three specimens; the other three specimens were tested in a direct tension-compression fatigue machine. The direct-stress fatigue curve obtained for the material indicates that, in the range of stresses above about two-thirds the tensile strength, the fatigue strength is higher than might be expected by simply extrapolating the ordinary curve of stress plotted against the number of cycles determined at lower stresses.

  13. The specific heat loss combined with the thermoelastic effect for an experimental analysis of the mean stress influence on axial fatigue of stainless steel plain specimens

    Directory of Open Access Journals (Sweden)

    G. Meneghetti

    2014-10-01

    Full Text Available The energy dissipated to the surroundings as heat in a unit volume of material per cycle, Q, was recently proposed by the authors as fatigue damage index and it was successfully applied to correlate fatigue data obtained by carrying out fully reversed stress- and strain-controlled fatigue tests on AISI 304L stainless steel plain and notched specimens. The use of the Q parameter to analyse the experimental results led to the definition of a scatter band having constant slope from the low- to the high-cycle fatigue regime. In this paper the energy approach is extended to analyse the influence of mean stress on the axial fatigue behaviour of unnotched cold drawn AISI 304L stainless steel bars. In view of this, stress controlled fatigue tests on plain specimens at different load ratios R (R=-1; R=0.1; R=0.5 were carried out. A new energy parameter is defined to account for the mean stress effect, which combines the specific heat loss Q and the relative temperature variation due to the thermoelastic effect corresponding to the achievement of the maximum stress level of the stress cycle. The new two-parameter approach was able to rationalise the mean stress effect observed experimentally. It is worth noting that the results found in the present contribution are meant to be specific for the material and testing condition investigated here.

  14. An Investigation of the Combined Effect of Stress, Fatigue and Workload on Human Performance: Position Paper

    Science.gov (United States)

    Mock, Jessica

    2005-01-01

    Stress, fatigue, and workload affect worker performance. NSF reported that 61% of respondents state losing concentration at work while 79% occasionally or frequently made errors as a result of being fatigued. Shift work, altered work schedules, long hours of continuous wakefulness, and sleep loss can create sleep and circadian disruptions that degrade waking fundions causing stress and fatigue. Review of the literature has proven void of information that links the combined effects of fatigue, stress, and workload to human performance. This paper will address which occupational factors within stress, fatigue, and workload were identified as occupational contributors to performance changes. The results of this research will be apglied to underlying models and algorithms that will help predict performance changes in control room operators.

  15. The association between pregame snacks and exercise intensity, stress, and fatigue in children.

    Science.gov (United States)

    Sacheck, Jennifer M; Rasmussen, Helen M; Hall, Meghan M; Kafka, Tamar; Blumberg, Jeffrey B; Economos, Christina D

    2014-05-01

    To investigate the association between pregame snacks varying in macronutrient content and exercise intensity, physiological stress, and fatigue in young soccer players. One hour before a 50-min soccer game, children (n = 79; 9.1 ± 0.8 y) were randomly assigned to consume a raisin-, peanut-butter-, or cereal-based snack. Body mass index, blood glucose, and salivary measures of stress (cortisol and immunoglobulin A-IgA) were measured pre- and post-game. Exercise intensity was measured by accelerometry. Self-administered questionnaires were used to assess diet quality and fatigue. Analysis of covariance was used to examine the relationship between pregame snacks and biochemical outcomes. Postgame glucose and cortisol increased [12.9 ± 21.3 mg/dL (p fatigue (p fatigue but not changes in blood sugar or stress biomarkers following a soccer game in children.

  16. Fatigue Moderates the Relationship Between Perceived Stress and Suicidal Ideation: Evidence From Two High-Resolution Studies.

    Science.gov (United States)

    Kleiman, Evan M; Turner, Brianna J; Chapman, Alexander L; Nock, Matthew K

    2018-01-01

    Theoretical models of self-harm suggest that high perceived stress and high fatigue (which might affect the ability to cope with stress) may interact to predict the short-term occurrence of suicidal ideation and nonsuicidal self-injury (NSSI). We tested 3 approaches to examining this interaction, each of which provided a different understanding of the specific nature of these associations: comparing each individual's daily stress/fatigue to the entire sample's overall average (i.e., grand-mean centering), comparing each individual's daily perceived stress/fatigue to his or her overall average (i.e., group- or participant-mean centering), and comparing each individual's average perceived stress/fatigue to the sample's overall average (i.e., centering participant means on overall grand mean). In 2 studies, adolescents (n = 30; 574 daily reports, M age = 17.3 years, range = 12-19; 87.6% female) and young adults (n = 60; 698 daily reports; M age = 23.25 years, range = 18-35; 85% female) completed daily measures of perceived stress, fatigue, suicidal ideation, and NSSI. In both samples, the interaction between high daily perceived stress and high daily fatigue predicted greater odds of daily suicidal ideation (but not NSSI). Only the model comparing each individual's daily stress/fatigue to the entire sample's overall average was consistently significant across the two studies. Participants were most likely to experience suicidal ideation on days when both perceived stress and fatigue were elevated relative to the average level experienced across people and time points. Studies should build upon these findings with more in-depth examination of the temporal nature of stability and change in these factors as they relate to sustained suicidal ideation.

  17. Perinatal stress, fatigue, depressive symptoms, and immune modulation in late pregnancy and one month postpartum.

    Science.gov (United States)

    Cheng, C Y; Pickler, R H

    2014-01-01

    Stress and fatigue are common complaints of pregnant and postpartum women as is depression. These symptoms may be related to immunomodulation. However, few studies have examined these relationships. The aim of this study was to examine the relationships among stress, fatigue, depression, and cytokines as markers of immune modulation in prenatal and postpartum women. Women completed questionnaires and gave blood samples during late pregnancy and again at 4-6 weeks postpartum. Blood was analyzed for cytokines as measures of immune modulation. Stress, fatigue, and depression were experienced at moderately high levels, with higher levels of fatigue and depression in the postpartum but higher stress in the prenatal period. Levels of several cytokines were increased in the postpartum over the prenatal period. Stress and depression were related in the prenatal period and stress, depression, and fatigue were related in the postpartum. While various cytokines were related to each other in both periods, only stress was related to MIP-1β, a cytokine that may be important for childbirth processes. More studies, especially longitudinal and interventional studies, are needed to increase our knowledge about etiology, patterns, symptoms, factors, and management of maternal distress. The search for reliable biomarkers for at-risk mothers remains a priority.

  18. Stress and Fatigue Management Using Balneotherapy in a Short-Time Randomized Controlled Trial

    Science.gov (United States)

    Razbadauskas, Artūras; Sąlyga, Jonas; Martinkėnas, Arvydas

    2016-01-01

    Objective. To investigate the influence of high-salinity geothermal mineral water on stress and fatigue. Method. 180 seamen were randomized into three groups: geothermal (65), music (50), and control (65). The geothermal group was administered 108 g/L salinity geothermal water bath for 2 weeks five times a week. Primary outcome was effect on stress and fatigue. Secondary outcomes were the effect on cognitive function, mood, and pain. Results. The improvements after balneotherapy were a reduction in the number and intensity of stress-related symptoms, a reduction in pain and general, physical, and mental fatigue, and an improvement in stress-related symptoms management, mood, activation, motivation, and cognitive functions with effect size from 0.8 to 2.3. In the music therapy group, there were significant positive changes in the number of stress symptoms, intensity, mood, pain, and activity with the effect size of 0.4 to 1.1. The researchers did not observe any significant positive changes in the control group. The comparison between the groups showed that balneotherapy was superior to music therapy and no treatment group. Conclusions. Balneotherapy is beneficial for stress and fatigue reduction in comparison with music or no therapy group. Geothermal water baths have a potential as an efficient approach to diminish stress caused by working or living conditions. PMID:27051455

  19. Stress and Fatigue Management Using Balneotherapy in a Short-Time Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Lolita Rapolienė

    2016-01-01

    Full Text Available Objective. To investigate the influence of high-salinity geothermal mineral water on stress and fatigue. Method. 180 seamen were randomized into three groups: geothermal (65, music (50, and control (65. The geothermal group was administered 108 g/L salinity geothermal water bath for 2 weeks five times a week. Primary outcome was effect on stress and fatigue. Secondary outcomes were the effect on cognitive function, mood, and pain. Results. The improvements after balneotherapy were a reduction in the number and intensity of stress-related symptoms, a reduction in pain and general, physical, and mental fatigue, and an improvement in stress-related symptoms management, mood, activation, motivation, and cognitive functions with effect size from 0.8 to 2.3. In the music therapy group, there were significant positive changes in the number of stress symptoms, intensity, mood, pain, and activity with the effect size of 0.4 to 1.1. The researchers did not observe any significant positive changes in the control group. The comparison between the groups showed that balneotherapy was superior to music therapy and no treatment group. Conclusions. Balneotherapy is beneficial for stress and fatigue reduction in comparison with music or no therapy group. Geothermal water baths have a potential as an efficient approach to diminish stress caused by working or living conditions.

  20. Fatigue evaluation algorithms: Review

    Energy Technology Data Exchange (ETDEWEB)

    Passipoularidis, V.A.; Broendsted, P.

    2009-11-15

    A progressive damage fatigue simulator for variable amplitude loads named FADAS is discussed in this work. FADAS (Fatigue Damage Simulator) performs ply by ply stress analysis using classical lamination theory and implements adequate stiffness discount tactics based on the failure criterion of Puck, to model the degradation caused by failure events in ply level. Residual strength is incorporated as fatigue damage accumulation metric. Once the typical fatigue and static properties of the constitutive ply are determined,the performance of an arbitrary lay-up under uniaxial and/or multiaxial load time series can be simulated. The predictions are validated against fatigue life data both from repeated block tests at a single stress ratio as well as against spectral fatigue using the WISPER, WISPERX and NEW WISPER load sequences on a Glass/Epoxy multidirectional laminate typical of a wind turbine rotor blade construction. Two versions of the algorithm, the one using single-step and the other using incremental application of each load cycle (in case of ply failure) are implemented and compared. Simulation results confirm the ability of the algorithm to take into account load sequence effects. In general, FADAS performs well in predicting life under both spectral and block loading fatigue. (author)

  1. A population-based study of associations between current posttraumatic stress symptoms and current fatigue.

    Science.gov (United States)

    Lerdal, Anners; Lee, Kathryn A; Rokne, Berit; Knudsen, Øistein; Wahl, Astrid K; Dahl, Alv A

    2010-10-01

    This study explores current experience with posttraumatic stress disorder (PTSD) symptoms and other variables (sociodemographic, mental distress, somatic morbidity, self-rated health, and quality of life [QoL]) in relation to fatigue. A representative sample of the Norwegian population (N = 3,944) was invited to participate in a mailed survey, and 1,857 (47%) returned valid responses on the questionnaire that included the Fatigue Severity Scale and the Posttraumatic Symptom Scale-10. Posttraumatic stress disorder symptoms showed a strong association with fatigue in univariate (β = .41) and multivariate analyses (β = .33). Associations between psychosocial health variables, QoL, and fatigue were confirmed. However, PTSD symptoms showed the strongest association with fatigue in the analyses. Findings need to be replicated in other population samples and in clinical samples with PTSD and fatigue.

  2. Continuous fatigue crack monitoring of bridges: Long-Term Electrochemical Fatigue Sensor (LTEFS)

    Science.gov (United States)

    Moshier, Monty A.; Nelson, Levi; Brinkerhoff, Ryan; Miceli, Marybeth

    2016-04-01

    Fatigue cracks in steel bridges degrade the load-carrying capacity of these structures. Fatigue damage accumulation caused by the repetitive loading of everyday truck traffic can cause small fatigue cracks initiate. Understanding the growth of these fatigue cracks is critical to the safety and reliability of our transportation infrastructure. However, modeling fatigue in bridges is difficult due to the nature of the loading and variations in connection integrity. When fatigue cracks reach critical lengths failures occur causing partial or full closures, emergency repairs, and even full structural failure. Given the aging US highway and the trend towards asset management and life extension, the need for reliable, cost effective sensors and monitoring technologies to alert bridge owners when fatigue cracks are growing is higher than ever. In this study, an innovative Long-Term Electrochemical Fatigue Sensor (LTEFS) has been developed and introduced to meet the growing NDT marketplace demand for sensors that have the ability to continuously monitor fatigue cracks. The performance of the LTEFS has been studied in the laboratory and in the field. Data was collected using machined specimens with different lengths of naturally initiated fatigue cracks, applied stress levels, applied stress ratios, and for both sinusoidal and real-life bridge spectrum type loading. The laboratory data was evaluated and used to develop an empirically based algorithm used for crack detection. Additionally, beta-tests on a real bridge structure has been completed. These studies have conclusively demonstrated that LTEFS holds great potential for long-term monitoring of fatigue cracks in steel structures

  3. The numerical high cycle fatigue damage model of fillet weld joint under weld-induced residual stresses

    Science.gov (United States)

    Nguyen Van Do, Vuong

    2018-04-01

    In this study, a development of nonlinear continuum damage mechanics (CDM) model for multiaxial high cycle fatigue is proposed in which the cyclic plasticity constitutive model has been incorporated in the finite element (FE) framework. T-joint FE simulation of fillet welding is implemented to characterize sequentially coupled three-dimensional (3-D) of thermo-mechanical FE formulation and simulate the welding residual stresses. The high cycle fatigue damage model is then taken account into the fillet weld joints under the various cyclic fatigue load types to calculate the fatigue life considering the residual stresses. The fatigue crack initiation and the propagation in the present model estimated for the total fatigue is compared with the experimental results. The FE results illustrated that the proposed high cycle fatigue damage model in this study could become a powerful tool to effectively predict the fatigue life of the welds. Parametric studies in this work are also demonstrated that the welding residual stresses cannot be ignored in the computation of the fatigue life of welded structures.

  4. Task-related increases in fatigue predict recovery time after academic stress.

    Science.gov (United States)

    Blasche, Gerhard; Zilic, Jelena; Frischenschlager, Oskar

    2016-01-01

    The aim of this study was to investigate the time course of recovery after an academic exam as a model of high workload and its association with stress-related fatigue. Thirty-six medical students (17 females, 19 males) filled out diaries during an exam phase, starting 2 days prior to the exam, and a control phase 4 weeks after the exam for 14 days, respectively. Fatigue, distress, quality of sleep, and health complaints were assessed. Recovery time was determined for each individual and variable by comparing the 3-day average with the confidence interval of the control phase. Recovery time was predicted by Cox regression analyses. Recovery times of all variables except health complaints were predicted by stress-related fatigue. Half of the individuals had recovered after 6 days, and 80% of the individuals had recovered after 8 days. The time necessary for recovery from work demands is determined by fatigue as a measure of resource depletion.

  5. Stress analysis and fatigue life prediction for a U-bend steam generator tube

    International Nuclear Information System (INIS)

    Cheng Weili; Finnie, I.

    1996-01-01

    An analysis is carried out to determine the stresses in a steam generator tube that failed by fatigue. Using data available for the failed tube and for failures in two similar steam generators, the magnitudes of the alternating and mean stresses produced during operation are estimated. The cause for the early fatigue failure is shown to be the high mean stress caused by denting of the tube in the location where it passed through the tube sheet. (orig.)

  6. Fatigue assessment of laserbeam welded PM steel components by the notch stress approach

    Energy Technology Data Exchange (ETDEWEB)

    Waterkotte, R. [Schaeffler Technologies GmbH and Co. KG, Herzogenaurach (Germany); Sonsino, C.M. [Fraunhofer Institute for Structural Durability and System Reliability LBF, Darmstadt (Germany); Baumgartner, J.

    2011-10-15

    The local fatigue strength of a laserbeam weld of a complex engine component, which joins a PM with a formed sheet component, was assessed by the notch stress concept with the fictitious reference radius of r{sub ref}= 0.05 mm. First, simplified specimens, following the main geometric dimensions of the parts, were manufactured. On these specimens the fatigue strength was identified by tests and the notch stresses calculated by finite element analysis. Based on these results a design SN-curve was derived to assess the fatigue strength of the engine component. The numerical assessment of the welded joint was verified by proof tests with the component. The assessment could be improved by considering statistical and stress gradient dependent size effects according to the concept of the highly stressed volume. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Association of childhood trauma with fatigue, depression, stress, and inflammation in breast cancer patients undergoing radiotherapy.

    Science.gov (United States)

    Han, Tatiana J; Felger, Jennifer C; Lee, Anna; Mister, Donna; Miller, Andrew H; Torres, Mylin A

    2016-02-01

    This pilot study examined whether breast cancer patients with childhood trauma exhibit increased fatigue, depression, and stress in association with inflammation as a result of whole breast radiotherapy (RT). Twenty breast cancer patients were enrolled in a prospective, longitudinal study of fatigue, depression, and perceived stress prior to RT, week 6 of RT, and 6 weeks post-RT. Six weeks after RT, subjects completed the childhood trauma questionnaire (CTQ). Patients were also administered the multidimensional fatigue inventory, inventory of depressive symptomatology-self-reported, and perceived stress scale at all three time-points and underwent blood sampling prior to RT for gene expression and inflammatory markers previously associated with childhood trauma and behavioral symptoms in breast cancer patients. Eight subjects (40%) had past childhood trauma (CTQ+). Compared to CTQ- patients, CTQ+ patients had significantly higher fatigue, depression, and stress scores before, during, and after RT (p fatigue, and stress scores in CTQ+ but not CTQ- patients. Childhood trauma was prevalent and was associated with increased symptoms of fatigue, depression, and stress irrespective of RT. Increased symptoms in CTQ+ patients were also associated with baseline inflammatory markers. Treatments targeting childhood trauma and related inflammation may improve symptoms in breast cancer patients. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Residual Stress Estimation and Fatigue Life Prediction of an Autofrettaged Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyung Jin; Kim, Eun Kyum; Koh, Seung Kee [Kunsan Nat’l Univ., Kunsan (Korea, Republic of)

    2017-09-15

    Fatigue failure of an autofrettaged pressure vessel with a groove at the outside surface occurs owing to the fatigue crack initiation and propagation at the groove root. In order to predict the fatigue life of the autofrettaged pressure vessel, residual stresses in the autofrettaged pressure vessel were evaluated using the finite element method, and the fatigue properties of the pressure vessel steel were obtained from the fatigue tests. Fatigue life of a pressure vessel obtained through summation of the crack initiation and propagation lives was calculated to be 2,598 cycles for an 80% autofrettaged pressure vessel subjected to a pulsating internal pressure of 424 MPa.

  9. Effects of cyclic fatigue stress-biocorrosion on noncarious cervical lesions.

    Science.gov (United States)

    Grippo, John O; Chaiyabutr, Yada; Kois, John C

    2013-08-01

    Although there is a high prevalence of noncarious cervical lesions (NCCLs), the etiology of these lesions remains contentious. To evaluate the combined effects of cyclic fatigue stress and biocorrosion activity on NCCLs. Extracted premolar teeth were allocated into four groups (N = 10). Two groups were cyclically fatigue loaded (100 N; 72 cycles per minute; 9,200 cycles) and placed in either hydrochloric acid gel (pH = 0.1) or orange juice (pH = 4). The other two groups were stored in identical chemical solutions without fatigue load. The buccal-lingual width of each tooth was measured before and after testing. The depth of biocorrosion, normalized by the percentage change in buccolingual width, normalized by time (hour) was calculated. The data were analyzed using a two-way analysis of variance and Tukey's HSD multiple comparison test (α = 0.05). Mean (SD) of the depth of biocorrosion values were as follows: teeth receiving fatigue loading with hydrochloric acid gel exposure (1.003%/hour [0.063]) revealed a significantly higher depth of biocorrosion than the fatigue-loaded group with orange juice exposure (0.511%/hour [0.281]) (p biocorrosion than the group with orange juice (0.009%/hour [0.004]) (p biocorrosion than either group without fatigue loading (p biocorrosion had a significant effect on the depth of the NCCLs. In order to manage the destructive NCCLs lesions properly, it is essential to understand the etiology of these lesions. The present study indicated that the combined mechanisms of cyclic fatigue stress and biocorrosion could contribute to the formation of NCCLs. © 2013 Wiley Periodicals, Inc.

  10. Life estimation of low-cycle fatigue of pipe elbows. Proposed criteria of low-cycle fatigue life under the multi-axial stress field

    International Nuclear Information System (INIS)

    Ando, Kotoji; Takahashi, Koji; Matsuo, Kazuya; Urabe, Yoshio

    2013-01-01

    Pipe elbows were important parts frequently used in the pipelines of nuclear power, thermal power and chemical plants, and their integrity needed to be assured under seismic loads and thermal stresses considering local wall thinning or complex stress distribution due to special configuration different from straight pipe. This article investigated in details elastic-plastic stress-strain state of pipe elbow using finite element analysis and clarified there existed high bi-axial stress field at side inner surface of pipe elbow axial cracks initiated. Bi-axial stress factor was around 0.6 for sound elbow and up to 0.95 for local wall thinning at crown. Fracture strain of 1.15 was reduced to around 0.15 for bi-axial stress factor from 0.6 to 0.9. Normalized fatigue life for bi-axial stress field (0.6 - 0.8) was largely reduced to around 15, 19 and 10% of fatigue life of uni-axial state dependent on material strength level. Proposed revised universal slopes taking account of multi-axial stress factor could explain qualitatively effects of strain range, internal pressure and ratchet strain (pre-strain) on low-cycle fatigue life of pipe elbow. (T. Tanaka)

  11. Relationship between stress corrosion cracking and low frequency fatigue-corrosion of alloy 600 in PWR primary water

    International Nuclear Information System (INIS)

    Bosch, C.

    1998-01-01

    Stress corrosion cracking of PWR vessel head adapters is a main problem for nuclear industry. With the aim to better understand the influence of the mechanical parameters on the cracking phenomena (by stress corrosion (SCC) or fatigue corrosion (FC)) of alloy 600 exposed to primary PWR coolant, a parametrical study has been carried out. Crack propagation tests on CT test specimens have been implemented under static loads (stress corrosion tests) or low frequency cyclic loads (fatigue corrosion tests). Results (frequency influence, type of cycles, ratio charge on velocities and propagation modes of cracks) have allowed to characterize the transition domain between the crack phenomena of SCC and FC. With the obtained results, it has been possible too to differentiate the effects due to environmental factors and the effects due to mechanical factors. At last, a quantitative fractographic study and the observations of the microstructure at the tip of crack have led to a better understanding of the transitions of the crack propagation mode between the SCC and the FC. (O.M.)

  12. Stress-based fatigue assessment of major component in NPP using modified Green's function approach

    International Nuclear Information System (INIS)

    Ko, Han Ok; Jhung, Myung Jo; Choi, Jae Boong

    2013-01-01

    In this paper, the modified GFA which can consider temperature-dependent material properties is proposed by using a neural network (NN) and weight factor. To verify the modified GFA, thermal stresses by the proposed method are compared with those by FEM. Finally, pros and cons of the new method as well as technical findings from the assessment are discussed to show applicability of them. In this paper, the modified GFA considering temperature-dependent material properties is proposed by using NN and weight factor. To verify the proposed method, thermal stresses by the modified Green's function are compared with those by FEM and the results between two methods show a good agreement. Finally, it is anticipated that more precise fatigue evaluation is performed by using the proposed method. Recently, 434 nuclear reactors are being operated in the world. Among them, about 40% reactors are being operated beyond their design life or will be approaching their life. During the long term operation, various degradation mechanisms are occurred. Fatigue damage caused by alternating operational stresses in terms of temperature or pressure change is the one of important damage mechanisms in the nuclear power plants (NPPs). Although components important to safety were designed to withstand the fatigue damage, cumulative usage factor (CUF) at some locations can exceed the design limit beyond the design life. So, it is necessary to monitor the fatigue damage of major components during the long term operation. Researches on fatigue monitoring system (FMS) have been widely performed. In USA, the FatiguePro was developed by EPRI and was applied to the CE, WEC, B and W and GE type reactors. In Korea, the Kori unit 1 which started commercial operation in 1978 is being operated beyond its design life. At the stage of the license renewal, various plans for degradation mechanisms were established and reviewed. And, in case of fatigue damage, to monitor the fatigue damage of major components

  13. High-cycle fatigue behavior of Co-based superalloy 9CrCo at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Wan Aoshuang

    2016-10-01

    Full Text Available A modified model is developed to characterize and evaluate high-cycle fatigue behavior of Co-based superalloy 9CrCo at elevated temperatures by considering the stress ratio effect. The model is informed by the relationship surface between maximum nominal stress, stress ratio and fatigue life. New formulae are derived to deal with the test data for estimating the parameters of the proposed model. Fatigue tests are performed on Co-based superalloy 9CrCo subjected to constant amplitude loading at four stress ratios of −1, −0.3, 0.5 and 0.9 in three environments of room temperature (i.e., about 25 °C and elevated temperatures of 530 °C and 620 °C, and the interaction mechanisms between the elevated temperature and stress ratio are deduced and compared with each other from fractographic studies. Finally, the model is applied to experimental data, demonstrating the practical and effective use of the proposed model. It is shown that new model has good correlation with experimental results.

  14. Influence of outdoor running fatigue and medial tibial stress syndrome on accelerometer-based loading and stability.

    Science.gov (United States)

    Schütte, Kurt H; Seerden, Stefan; Venter, Rachel; Vanwanseele, Benedicte

    2018-01-01

    Medial tibial stress syndrome (MTSS) is a common overuse running injury with pathomechanics likely to be exaggerated by fatigue. Wearable accelerometry provides a novel alternative to assess biomechanical parameters continuously while running in more ecologically valid settings. The purpose of this study was to determine the influence of outdoor running fatigue and MTSS on both dynamic loading and dynamic stability derived from trunk and tibial accelerometery. Runners with (n=14) and without (n=16) history of MTSS performed an outdoor fatigue run of 3200m. Accelerometer-based measures averaged per lap included dynamic loading of the trunk and tibia (i.e. axial peak positive acceleration, signal power magnitude, and shock attenuation) as well as dynamic trunk stability (i.e. tri-axial root mean square ratio, step and stride regularity, and sample entropy). Regression coefficients from generalised estimating equations were used to evaluate group by fatigue interactions. No evidence could be found for dynamic loading being higher with fatigue in runners with MTSS history (all measures p>0.05). One significant group by running fatigue interaction effect was detected for dynamic stability. Specifically, in MTSS only, decreases mediolateral sample entropy i.e. loss of complexity was associated with running fatigue (prunning state. We suggest that a practical outdoor running fatigue protocol that concurrently captures trunk accelerometry-based movement complexity warrants further prospective investigation as an in-situ screening tool for MTSS individuals. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Fatigue reliability of structural members under combined axial mean and alternating stresses for AISI 1018, 1038, 4130 and 4340 steels

    International Nuclear Information System (INIS)

    Kececioglu, D.

    1977-01-01

    The failure governing strength distributions of round specimens subjected to a mean axial stress onto which alternating tensile and compressive axial stresses are superimposed, for 10 6 and 2x10 6 cycles of operation, are determined. AISI 1018, 1038, 4130 and 4340 steel 3/8-in. diameter, specimens are tested on an axial, Baldwin-Lima-Hamilton Universal Fatigue Testing Machine. Staircase-testing is used to determine the endurance strength distributions at various ratios of alternating to mean tensile stresses. Testing is accomplished at a sufficient number of ratios to enable the construction of a distributional, statistical Goodman strength diagram for each one of the four steels. A digital computer program of the Reliability Engineering Research Laboratory at The University of Arizona, Program LEAST, is used to determine the equation of the distributional Goodman diagram which best fits the loci of the experimental data at stress ratios between zero and infinity

  16. Static and Fatigue Behavior Investigation of Artificial Notched Steel Reinforcement

    Directory of Open Access Journals (Sweden)

    Yafei Ma

    2017-05-01

    Full Text Available Pitting corrosion is one of the most common forms of localized corrosion. Corrosion pit results in a stress concentration and fatigue cracks usually initiate and propagate from these corrosion pits. Aging structures may fracture when the fatigue crack reaches a critical size. This paper experimentally simulates the effects of pitting morphologies on the static and fatigue behavior of steel bars. Four artificial notch shapes are considered: radial ellipse, axial ellipse, triangle and length-variable triangle. Each shape notch includes six sizes to simulate a variety of pitting corrosion morphologies. The stress-strain curves of steel bars with different notch shape and depth are obtained based on static tensile testing, and the stress concentration coefficients for various conditions are determined. It was determined that the triangular notch has the highest stress concentration coefficient, followed by length-variable triangle, radial ellipse and axial ellipse shaped notches. Subsequently, the effects of notch depth and notch aspect ratios on the fatigue life under three stress levels are investigated by fatigue testing, and the equations for stress range-fatigue life-notch depth are obtained. Several conclusions are drawn based on the proposed study. The established relationships provide an experimental reference for evaluating the fatigue life of concrete bridges.

  17. Fatigue Life Prediction of High Modulus Asphalt Concrete Based on the Local Stress-Strain Method

    Directory of Open Access Journals (Sweden)

    Mulian Zheng

    2017-03-01

    Full Text Available Previously published studies have proposed fatigue life prediction models for dense graded asphalt pavement based on flexural fatigue test. This study focused on the fatigue life prediction of High Modulus Asphalt Concrete (HMAC pavement using the local strain-stress method and direct tension fatigue test. First, the direct tension fatigue test at various strain levels was conducted on HMAC prism samples cut from plate specimens. Afterwards, their true stress-strain loop curves were obtained and modified to develop the strain-fatigue life equation. Then the nominal strain of HMAC course determined using finite element method was converted into local strain using the Neuber method. Finally, based on the established fatigue equation and converted local strain, a method to predict the pavement fatigue crack initiation life was proposed and the fatigue life of a typical HMAC overlay pavement which runs a risk of bottom-up cracking was predicted and validated. Results show that the proposed method was able to produce satisfactory crack initiation life.

  18. Random non-proportional fatigue tests with planar tri-axial fatigue testing machine

    Directory of Open Access Journals (Sweden)

    T. Inoue

    2016-10-01

    Full Text Available Complex stresses, which occur on the mechanical surfaces of transport machinery in service, bring a drastic degradation in fatigue life. However, it is hard to reproduce such complex stress states for evaluating the fatigue life with conventional multiaxial fatigue machines. We have developed a fatigue testing machine that enables reproduction of such complex stresses. The testing machine can reproduce arbitrary in-plane stress states by applying three independent loads to the test specimen using actuators which apply loads in the 0, 45, and 90 degree directions. The reproduction was tested with complex stress data obtained from the actual operation of transport machinery. As a result, it was found that the reproduced stress corresponded to the measured stress with an error range of less than 10 %. Then, we made a comparison between measured fatigue lives under random non-proportional loading conditions and predicted fatigue lives. It was found that predicted fatigue lives with cr, stress on critical plane, were over a factor of 10 against measured fatigue lives. On the other hand, predicted fatigue lives with ma, stress in consideration of a non-proportional level evaluated by using amplitude and direction of principal stress, were within a factor of 3 against measured fatigue lives

  19. Strain ratio effects on low-cycle fatigue behavior and deformation microstructure of 2124-T851 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Hong, E-mail: 10928008@zju.edu.cn [Institute for Process Equipment, Zhejiang University, Hangzhou 310027 (China); School of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan 030024 (China); Ye, Duyi, E-mail: duyi_ye@zju.edu.cn [Institute for Process Equipment, Zhejiang University, Hangzhou 310027 (China); Chen, Chuanyong [Institute for Process Equipment, Zhejiang University, Hangzhou 310027 (China)

    2014-05-01

    The low-cycle fatigue tests of 2124-T851 aluminum alloy with strain ratios of −1, −0.06, 0.06 and 0.5 were conducted under constant amplitude at room temperature. Microstructural and fractographic examinations of the material after fatigue tests were performed by optical microscopy (OM) and scanning electron microscopy (SEM), respectively. Firstly, the results showed that the material exhibited cyclic softening characteristic as a whole. The degree of softening decreased linearly with the increasing strain amplitude and the decreasing strain ratio. The lower fatigue life and ductility of the material corresponded to the larger strain ratios. Secondly, microstructure observations revealed that the density and length of slip bands increased with the increasing strain ratio at the given strain amplitude, and so did the volume fraction and size of coarse constituents, which were responsible for the reduction of fatigue life and ductility of the material. Finally, the SEM micrographs revealed that multiple crack initiation sites took place on the fracture surfaces at different strain ratios. The reduction of stable crack growth area with the increasing strain ratio was observed. Unstable crack growth region was only observed under R≠−1.

  20. Fatigue crack closure in submicron-thick freestanding copper films

    International Nuclear Information System (INIS)

    Kondo, Toshiyuki; Ishii, Takaki; Hirakata, Hiroyuki; Minoshima, Kohji

    2015-01-01

    The fatigue crack closure in approximately 500-nm-thick freestanding copper films were investigated by in situ field emission scanning electron microscope (FESEM) observations of the fatigue crack opening/closing behavior at three stress ratios of R=0.1, 0.5, and 0.8 in the low–K max (maximum stress intensity factor) region of K max <4.5 MPam 1/2 . The direct observation of fatigue cracks clarified that crack closure occurred at R=0.1 and 0.5, while the fatigue crack was always open at R=0.8. Changes in the gage distance across the fatigue crack during a fatigue cycle were measured from the FESEM images, and the crack opening stress intensity factor K op was evaluated on the basis of the stress intensity factor K vs. the gage distance relationship. The effective stress intensity factor range ΔK eff =K max −K op was then evaluated. The R-dependence of the da/dN vs. ΔK eff relationship was smaller than that of the da/dN vs. ΔK relationship. This suggests that ΔK eff is a dominating parameter rather than ΔK in the fatigue crack propagation in the films. This paper is the first report on the presence of the fatigue crack closure in submicron-thick freestanding metallic films

  1. Stress and Fatigue Life Modeling of Cannon Breech Closures Including Effects of Material Strength and Residual Stress

    National Research Council Canada - National Science Library

    Underwood, John

    2000-01-01

    ...; overload residual stress. Modeling of applied and residual stresses at the location of the fatigue failure site is performed by elastic-plastic finite element analysis using ABAQUS and by solid...

  2. Very high cycle fatigue crack initiation in electroplated Ni films under extreme stress gradients

    International Nuclear Information System (INIS)

    Baumert, E.K.; Pierron, O.N.

    2012-01-01

    A characterization technique based on kilohertz micro-resonators is presented to investigate the very high cycle fatigue behavior of 20 μm thick electroplated Ni films with a columnar microstructure (grain diameter less than 2 μm). The films exhibit superior fatigue resistance due to the extreme stress gradients at the surface. The effects of stress amplitude and environment on the formation of fatigue extrusions and micro-cracks are discussed based on scanning electron microscopy and the tracking of the specimens’ resonant frequency.

  3. Incorporating mesh-insensitive structural stress into the fatigue assessment procedure of common structural rules for bulk carriers

    Directory of Open Access Journals (Sweden)

    Seong-Min Kim

    2015-01-01

    Full Text Available This study introduces a fatigue assessment procedure using mesh-insensitive structural stress method based on the Common Structural Rules for Bulk Carriers by considering important factors, such as mean stress and thickness effects. The fatigue assessment result of mesh-insensitive structural stress method have been compared with CSR procedure based on equivalent notch stress at major hot spot points in the area near the ballast hold for a 180 K bulk carrier. The possibility of implementing mesh-insensitive structural stress method in the fatigue assessment procedure for ship structures is discussed.

  4. Talar body fatigue stress fractures: three cases observed in elite female gymnasts

    International Nuclear Information System (INIS)

    Rossi, F.; Dragoni, S.

    2005-01-01

    To introduce and emphasize the clinical and radiological findings of three talar body fatigue stress fractures in competitive athletes. Clinical and radiographic skeletal records of 24,562 athletes taken between 1962 and 2002 were retrospectively reviewed. Among these, 6851 files related to acute foot and ankle injuries or chronic post-traumatic sequelae were found. There were 925 (3.76%) stress fatigue fractures selected from the whole collection. Among these there were three cases (0.32%) of talar body stress fractures diagnosed in elite female gymnasts 15 - 17 years old. The negative first radiograph become positive 4-6 weeks later. Scintigraphy was positive at an early stage and consistent for the diagnosis. CT and MRI gave positive results 1-2 weeks after the beginning of symptoms which were always greatly diagnostic. The sports medicine literature lacks reports of talar body fatigue stress fractures. The poor initial sensitivity of radiography makes it problematic to establish an early diagnosis. A wise combination of scintigraphy, CT and MRI has therefore to be relied upon. Familiarity with this rare location for a stress fracture may prevent delayed diagnosis and long-lasting damage, both of which are important factors in competitive athletes. (orig.)

  5. Talar body fatigue stress fractures: three cases observed in elite female gymnasts

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, F. [National Institute of Sports Medicine of the Italian Olympic Committee, Rome (Italy); Dragoni, S. [National Institute of Sports Medicine of the Italian Olympic Committee, Rome (Italy); Istituto Nazionale di Medicina dello Sport, Rome (Italy)

    2005-07-01

    To introduce and emphasize the clinical and radiological findings of three talar body fatigue stress fractures in competitive athletes. Clinical and radiographic skeletal records of 24,562 athletes taken between 1962 and 2002 were retrospectively reviewed. Among these, 6851 files related to acute foot and ankle injuries or chronic post-traumatic sequelae were found. There were 925 (3.76%) stress fatigue fractures selected from the whole collection. Among these there were three cases (0.32%) of talar body stress fractures diagnosed in elite female gymnasts 15 - 17 years old. The negative first radiograph become positive 4-6 weeks later. Scintigraphy was positive at an early stage and consistent for the diagnosis. CT and MRI gave positive results 1-2 weeks after the beginning of symptoms which were always greatly diagnostic. The sports medicine literature lacks reports of talar body fatigue stress fractures. The poor initial sensitivity of radiography makes it problematic to establish an early diagnosis. A wise combination of scintigraphy, CT and MRI has therefore to be relied upon. Familiarity with this rare location for a stress fracture may prevent delayed diagnosis and long-lasting damage, both of which are important factors in competitive athletes. (orig.)

  6. Residual stress relaxation due to fretting fatigue in shot peened surfaces of Ti-6Al-4V

    International Nuclear Information System (INIS)

    Martinez, S.A.; Blodgett, M.P.; Mall, S.; Sathish, S.; Namjoshi, S.

    2003-01-01

    Fretting fatigue occurs at locations where the materials are sliding against each other under load. In order to enhance the fatigue life under fretting conditions the surface of the component is shot peened. In general, the shot peening process produces a compressive stress on the surface of the material, thereby increasing the resistance of the material to crack initiation. This paper presents the relaxation of residual stress caused during fretting fatigue. X-ray diffraction has been utilized as the method to measure residual stress in fretting fatigued samples of Ti-6Al-4V

  7. Fatigue properties of type 316LN stainless steel in air and mercury

    International Nuclear Information System (INIS)

    Strizak, J.P.; Tian, H.; Liaw, P.K.; Mansur, L.K.

    2005-01-01

    An extensive fatigue testing program on 316LN stainless steel was recently carried out to support the design of the mercury target container for the spallation neutron source (SNS) that is currently under construction at the Oak Ridge National Laboratory in the United States. The major objective was to determine the effects of mercury on fatigue behavior. The S-N fatigue behavior of 316LN stainless steel is characterized by a family of bilinear fatigue curves which are dependent on frequency, environment, mean stress and cold work. Generally, fatigue life increases with decreasing stress and levels off in the high cycle region to an endurance limit below which the material will not fail. For fully reversed loading as well as tensile mean stress loading conditions mercury had no effect on endurance limit. However, at higher stresses a synergistic relationship between mercury and cyclic loading frequency was observed at low frequencies. As expected, fatigue life decreased with decreasing frequency, but the response was more pronounced in mercury compared with air. As a result of liquid metal embrittlement (LME), fracture surfaces of specimens tested in mercury showed widespread brittle intergranular cracking as opposed to typical transgranular cracking for specimens tested in air. For fully reversed loading (zero mean stress) the effect of mercury disappeared as frequency increased to 10 Hz. For mean stress conditions with R-ratios of 0.1 and 0.3, LME was still evident at 10 Hz, but at 700 Hz the effect of mercury had disappeared (R 0.1). Further, for higher R-ratios (0.5 and 0.75) fatigue curves for 10 Hz showed no environmental effect. Finally, cold working (20%) increased tensile strength and hardness, and improved fatigue resistance. Fatigue behavior at 10 and 700 Hz was similar and no environmental effect was observed

  8. Fatigue properties of type 316LN stainless steel in air and mercury

    Science.gov (United States)

    Strizak, J. P.; Tian, H.; Liaw, P. K.; Mansur, L. K.

    2005-08-01

    An extensive fatigue testing program on 316LN stainless steel was recently carried out to support the design of the mercury target container for the spallation neutron source (SNS) that is currently under construction at the Oak Ridge National Laboratory in the United States. The major objective was to determine the effects of mercury on fatigue behavior. The S- N fatigue behavior of 316LN stainless steel is characterized by a family of bilinear fatigue curves which are dependent on frequency, environment, mean stress and cold work. Generally, fatigue life increases with decreasing stress and levels off in the high cycle region to an endurance limit below which the material will not fail. For fully reversed loading as well as tensile mean stress loading conditions mercury had no effect on endurance limit. However, at higher stresses a synergistic relationship between mercury and cyclic loading frequency was observed at low frequencies. As expected, fatigue life decreased with decreasing frequency, but the response was more pronounced in mercury compared with air. As a result of liquid metal embrittlement (LME), fracture surfaces of specimens tested in mercury showed widespread brittle intergranular cracking as opposed to typical transgranular cracking for specimens tested in air. For fully reversed loading (zero mean stress) the effect of mercury disappeared as frequency increased to 10 Hz. For mean stress conditions with R-ratios of 0.1 and 0.3, LME was still evident at 10 Hz, but at 700 Hz the effect of mercury had disappeared ( R = 0.1). Further, for higher R-ratios (0.5 and 0.75) fatigue curves for 10 Hz showed no environmental effect. Finally, cold working (20%) increased tensile strength and hardness, and improved fatigue resistance. Fatigue behavior at 10 and 700 Hz was similar and no environmental effect was observed.

  9. Areva fatigue concept. Fast fatigue evaluation, a new method for fatigue analysis

    International Nuclear Information System (INIS)

    Heinz, Benedikt; Bergholz, Steffen; Rudolph, Juergen

    2011-01-01

    Within the discussions on the long term operation (LTO) of nuclear power plants the ageing management is on the focus of that analysis. The knowledge of the operational thermal cyclic load data on components of the power plants and their evaluation in the fatigue analysis is a central concern. The changes in fatigue requirements (e.g. the consideration of environmentally assisted fatigue - EAF) recently discussed and LTO efforts are a strong motivation for the identification of margins in the existing fatigue analysis approaches. These margins should be considered within new approaches in order to obtain realistic (or more accurate) analysis results. Of course, these new analysis approaches have to be manageable and efficient. The Areva Fatigue Concept (AFC) offers the comprehensive conceptual basis for the consideration of fatigue on different levels and depths. The combination of data logging and automated fatigue evaluation are important modules of the AFC. Besides the established simplified stress based fatigue estimation Areva develops a further automated fatigue analysis method called Fast Fatigue Evaluation (FFE). This method comprises highly automated stress analyses at the fatigue relevant locations of the component. Hence, a component specific course of stress as a function of time is determined based on FAMOS or similar temperature measurement systems. The subsequent application of the rain flow cycle counting algorithm allows for the determination of the usage factor following the rules of the design code requirements. The new FFE approach constitutes a cycle counting method based on the real stresses in the component, and determined as result a rule-conformity cumulative usage factor. (orig.)

  10. Post-inflammatory fatigue in sarcoidosis: personality profiles, psychological symptoms and stress hormones.

    Science.gov (United States)

    Korenromp, Ingrid H E; Grutters, Jan C; van den Bosch, Jules M M; Heijnen, Cobi J

    2012-02-01

    Chronic fatigue following inflammatory diseases has been well documented. However, little is known about possible risk factors of chronic post-inflammatory fatigue. The aim of this study was to investigate whether chronic post-inflammatory fatigue after clinical remission of the disease sarcoidosis is associated with specific dimensions of personality, psychological symptoms and baseline levels of stress hormones. Thirty-seven non-fatigued and 33 fatigued patients in clinical remission of sarcoidosis were evaluated with the Temperament and Character Inventory-short form (TCI); the Symptom CheckList-90 (SCL), and the Checklist Individual Strength (CIS). Baseline levels of ACTH and cortisol were measured in plasma. Principal component analysis with orthogonal rotation (varimax) was conducted on all personality, psychological and stress hormone data in order to obtain a smaller set of components. Logistic regression was performed to associate these components with chronic post-inflammatory fatigue. Principal component analyses identified 5 components, of which two components were significantly associated with chronic post-inflammatory fatigue. The first component comprised the personality trait Harm Avoidance and all SCL-subscales except Sleep. The second component consisted of baseline levels ACTH and cortisol, and showed an inverse association with chronic post-inflammatory fatigue. The 3 other components, consisting of respectively SCL-Sleep, TCI-Novelty Seeking-Reward Dependence-Self Transcendence, and TCI-Persistence, were not significantly associated with chronic fatigue. Chronic post-inflammatory fatigue after clinical remission of sarcoidosis is associated with a triad of risk factors: a specific personality profile with profound neurotic characteristics in combination with high levels of psychological distress, and decreased baseline ACTH/cortisol levels. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Stress and fatigue analysis for lower joint of control rod drive mechanisms seal house

    International Nuclear Information System (INIS)

    Shao Xuejiao; Zhang Liping; Du Juan; Xie Hai

    2013-01-01

    Two kinds of seal houses for control rod drive mechanisms which have different thickness of the lower seal ring was analyzed for its stress and fatigue by finite element method. In the fatigue computation, all the transitions were grouped into several groups, and then the elastoplastic strain correction factor was modified by analyzing thermal and mechanical load separately referring the rules of RCC-M 2002. The results show that the structure with thicker seal ring behaves more safely than the other one except in the second condition. Meanwhile, the amplify of the primary and secondary stress as well as fatigue usage factor can be reduced by regrouping the transients. The precision of fatigue usage factor can be elevated using modified K e when the amplify of the primary and secondary stress is large to some extent produced by both thermal and mechanical loads. (authors)

  12. Scale effect in fatigue resistance under complex stressed state

    International Nuclear Information System (INIS)

    Sosnovskij, L.A.

    1979-01-01

    On the basis the of the fatigue failure statistic theory obtained is the formula for calculated estimation of probabillity of failure under complex stressed state according to partial probabilities of failure under linear stressed state with provision for the scale effect. Also the formula for calculation of equivalent stress is obtained. The verification of both formulae using literary experimental data for plane stressed state torsion has shown that the error of estimations does not exceed 10% for materials with the ultimate strength changing from 61 to 124 kg/mm 2

  13. Bending fatigue tests on SiC-Al tapes under alternating stress at room temperature

    Science.gov (United States)

    Herzog, J. A.

    1981-01-01

    The development of a testing method for fatigue tests on SiC-Al tapes containing a small amount of SiC filaments under alternating stress is reported. The fatigue strength curves resulting for this composite are discussed. They permit an estimate of its behavior under continuous stress and in combination with various other matrices, especially metal matrices.

  14. Estimation of muscle fatigue by ratio of mean frequency to average rectified value from surface electromyography.

    Science.gov (United States)

    Fernando, Jeffry Bonar; Yoshioka, Mototaka; Ozawa, Jun

    2016-08-01

    A new method to estimate muscle fatigue quantitatively from surface electromyography (EMG) is proposed. The ratio of mean frequency (MNF) to average rectified value (ARV) is used as the index of muscle fatigue, and muscle fatigue is detected when MNF/ARV falls below a pre-determined or pre-calculated baseline. MNF/ARV gives larger distinction between fatigued muscle and non-fatigued muscle. Experiment results show the effectiveness of our method in estimating muscle fatigue more correctly compared to conventional methods. An early evaluation based on the initial value of MNF/ARV and the subjective time when the subjects start feeling the fatigue also indicates the possibility of calculating baseline from the initial value of MNF/ARV.

  15. An Experimental Investigation of the Effects of Vacuum Environment on the Fatigue Life, Fatigue-Crack-Growth Behavior, and Fracture Toughness of 7075-T6 Aluminum Alloy. Ph.D. Thesis - North Carolina State Univ.

    Science.gov (United States)

    Hudson, C. M.

    1972-01-01

    Axial load fatigue life, fatigue-crack propagation, and fracture toughness tests were conducted on 0.090-inch thick specimens made of 7075-T6 aluminum alloy. The fatigue life and fatigue-crack propagation experiments were conducted at a stress ratio of 0.02. Maximum stresses ranged from 33 to 60 ksi in the fatigue life experiments, and from 10 to 40 ksi in the fatigue-crack propagation experiments, and fatigue life experiments were conducted at gas pressures of 760, 0.5, 0.05, and 0.00000005 torr. Fatigue-crack-growth and fracture toughness experiments were conducted at gas pressures of 760 and 5 x 10 to the minus 8th power torr. Residual stress measurements were made on selected fatigue life specimens to determine the effect of such stresses on fatigue life. Analysis of the results from the fatigue life experiments indicated that fatigue life progressively increased as the gas pressure decreased. Analysis of the results from the fatigue-crack-growth experiments indicates that at low values of stress-intensity range, the fatigue crack growth rates were approximately twice as high in air as in vacuum. Fracture toughness data showed there was essentially no difference in the fracture toughness of 7075-T6 in vacuum and in air.

  16. Effect of Chinese traditional medicine anti-fatigue prescription on the concentration of the serum testosterone and cortisol in male rats under stress of maximum intensive training

    International Nuclear Information System (INIS)

    Dong Ling; Si Xulan

    2008-01-01

    Objective: To study the effect of chinese traditional medicine anti-fatigue prescription on the concentration of the serum testosterone (T) and cortisol (C) in male rats under the stress of maximum intensive training. Methods: Wistar male rat models of stress under maximum intensity training were established (n=40) and half of them were treated with Chinese traditional medicine anti-fatigue prescription twenty undisturbed rats served as controls. Testosterone and cortisol serum levels were determined with RIA at the end of the seven weeks' experiment. Results: Maximum intensive training would cause the level of the serum testosterone lowered, the concentration of the cortisol elevated and the ratio of T/C reduced. The serum T levels and T/C ratio were significantly lower and cortisol levels significantly higher in the untreated models than those in the treated models and controls (P<0.01). The levels of the two hormones were markedly corrected in the treated models with no significantly differences from those in the controls. However, the T/C ratio was still significantly lower than that in the controls (P <0.05) due to a relatively slightly greater degree of reduction of T levels. Conclusion: Anti-fatigue prescription can not only promote the recovery of fatigue after the maximum intensive training but also strengthen the anabolism of the rats. (authors)

  17. Influence of surface finish on the high cycle fatigue behavior of a 304L austenitic stainless steel

    International Nuclear Information System (INIS)

    Petitjean, S.

    2003-06-01

    This work has dealt with the influence of surface finish on the high cycle fatigue behavior of a 304L. The role played by roughness, surface hardening and residual stresses has been particularly described. First part of this study has consisted of the production of several surface finishes. These latter were obtained by turning, grinding, mechanical polishing and sandblasting. The obtained surfaces were then characterised in terms of roughness, hardening, microstructure and residual stresses. Fatigue tests were finally conducted under various stress ratios or mean stresses at two temperatures (25 C and 300 C). Results clearly evidenced an effect of the surface integrity on the fatigue resistance of the 304L. This influence is nevertheless more pronounced at ambient temperature and for a positive mean stress. For all explored testing conditions, the lowest endurance limit was obtained for ground specimens whereas polished samples exhibited the best fatigue strength. Results also cleared out a detrimental influence of a positive mean stress in the case of specimens having surface defaults of a great acuity. The study of the relative effect of each of the surface parameter, under a positive stress ratio and at the ambient temperature, showed that roughness profile and surface hardening are the two more influential factors. The role of the residual stresses remains negligible due to their rapid relaxation during the application of the first cycles of fatigue. The estimation of the initiation and propagation periods showed that mechanisms differed as a function of the applied stress ratio. Crack propagation is governed by the parameter DK at a positive stress ratio and by Dep/2 in the case of tension-compression tests. (author)

  18. Analysis of the Mechanical Behavior, Creep Resistance and Uniaxial Fatigue Strength of Martensitic Steel X46Cr13

    Science.gov (United States)

    Brnic, Josip; Krscanski, Sanjin; Lanc, Domagoj; Brcic, Marino; Turkalj, Goran; Canadija, Marko; Niu, Jitai

    2017-01-01

    The article deals with the analysis of the mechanical behavior at different temperatures, uniaxial creep and uniaxial fatigue of martensitic steel X46Cr13 (1.4034, AISI 420). For the purpose of considering the aforementioned mechanical behavior, as well as determining the appropriate resistance to creep and fatigue strength levels, numerous uniaxial tests were carried out. Tests related to mechanical properties performed at different temperatures are presented in the form of engineering stress-strain diagrams. Short-time creep tests performed at different temperatures and different stress levels are presented in the form of creep curves. Fatigue tests carried out at stress ratios R=0.25 and R=−1 are shown in the form of S–N (fatigue) diagrams. The finite fatigue regime for each of the mentioned stress ratios is modeled by an inclined log line, while the infinite fatigue regime is modeled by a horizontal line, which represents the fatigue limit of the material and previously was calculated by the modified staircase method. Finally, the fracture toughness has been calculated based on the Charpy V-notch impact energy. PMID:28772749

  19. Effects of a high mean stress on the high cycle fatigue life of PWA 1480 and correlation of data by linear elastic fracture mechanics

    Science.gov (United States)

    Majumdar, S.; Kwasny, R.

    1985-01-01

    High-cycle fatigue tests using 5-mm-diameter smooth specimens were performed on the single crystal alloy PWA 1480 (001 axis) at 70F (room temperature) in air and at 100F (538C) in vacuum (10 to the -6 power torr). Tests were conducted at zero mean stress as well as at high tensile mean stress. The results indicate that, although a tensile mean stress, in general, reduces life, the reduction in fatigue strength, for a given mean stress at a life of one million cycles, is much less than what is predicted by the usual linear Goodman plot. Further, the material appears to be significantly more resistant to mean stress effects at 1000F than at 70F. Metallographic examinations of failed specimens indicate that failures in all cases are initiated from micropores of sizes of the order of 30 to 40 microns. Since the macroscopic stress-strain response in all cases was observed to be linear elastic, linear elastic fracture mechanics (LEFM) analyses were carried out to determine the crack growth curves of the material assuming that crack initiation from a micropore (a sub o = 40 microns) occurs very early in life. The results indicate that the calculated crack growth rates at an R (defined as the ratio between minimum stress to maximum stress) value of zero are approximately the same at 70F as at 1000F. However, the calculated crack growth rates at other R ratios, both positive and negative, tend to be higher at 70F than at 1000F. Calculated threshold effects at large R values tend to be independent of temperature in the temperature regime studied. They are relatively constant with increasing R ratio up to a value of about 0.6, beyond which the calculated threshold stress intensity factor range decreases rapidly with increasing R ratios.

  20. Relation Between Residual and Hoop Stresses and Rolling Bearing Fatigue Life

    Science.gov (United States)

    Oswald, Fred B.; Zaretsky, Erwin V.; Poplawski, Joseph V.

    2015-01-01

    Rolling-element bearings operated at high speed or high vibration may require a tight interference fit between the bore of the bearing and shaft to prevent rotation of the bearing bore around the shaft and fretting damage at the interfaces. Previous work showed that the hoop stresses resulting from tight interference fits can reduce bearing lives by as much as 65 percent. Where tight interference fits are required, case-carburized steel such as AISI 9310 or M50 NiL is often used because the compressive residual stresses inhibit subsurface crack formation and the ductile core inhibits inner-ring fracture. The presence of compressive residual stress and its combination with hoop stress also modifies the Hertz stress-life relation. This paper analyzes the beneficial effect of residual stresses on rolling-element bearing fatigue life in the presence of high hoop stresses for three bearing steels. These additional stresses were superimposed on Hertzian principal stresses to calculate the inner-race maximum shearing stress and the resulting fatigue life of the bearing. The load-life exponent p and Hertz stress-life exponent n increase in the presence of compressive residual stress, which yields increased life, particularly at lower stress levels. The Zaretsky life equation is described and is shown to predict longer bearing lives and greater load- and stress-life exponents, which better predicts observed life of bearings made from vacuum-processed steel.

  1. The role of TRAIL in fatigue induced by repeated stress from radiotherapy.

    Science.gov (United States)

    Feng, Li Rebekah; Suy, Simeng; Collins, Sean P; Saligan, Leorey N

    2017-08-01

    Fatigue is one of the most common and debilitating side effects of cancer and cancer treatment, and yet its etiology remains elusive. The goal of this study is to understand the role of chronic inflammation in fatigue following repeated stress from radiotherapy. Fatigue and non-fatigue categories were assessed using ≥ 3-point change in Functional Assessment of Cancer Therapy-Fatigue questionnaire (FACT-F) administered to participants at baseline/before radiotherapy and one year post-radiotherapy. Whole genome microarray and cytokine multiplex panel were used to examine fatigue-related transcriptome and serum cytokine changes, respectively. The study included 86 subjects (discovery phase n = 40, validation phase n = 46). The sample in the discovery phase included men with prostate cancer scheduled to receive external-beam radiotherapy. A panel of 48 cytokines were measured and the significantly changed cytokine found in the discovery phase was validated using sera from a separate cohort of men two years after completing radiotherapy for prostate cancer at a different institution. Effects of the significantly changed cytokine on cell viability was quantified using the MTT assay. During the discovery phase, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and TRAIL decoy receptor, TNFRSF10C (TRAIL-R3), were significantly upregulated in fatigued (≥3-point decrease from baseline to 1yr-post radiotherapy) subjects (n = 15). In the validation phase, TRAIL correlated with fatigue scores 2yrs post-radiotherapy. TRAIL caused selective cytotoxicity in neuronal cells, but not in microglial and muscle cells, in vitro. Late-onset inflammation directed by TRAIL may play a role in fatigue pathogenesis post-repeated stress from irradiation. Published by Elsevier Ltd.

  2. Fatigue Life Analysis and Prediction of 316L Stainless Steel Under Low Cycle Fatigue Loading

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Hyeong; Myung, NohJun; Choi, Nak-Sam [Hanyang Univ., Seoul (Korea, Republic of)

    2016-12-15

    In this study, a strain-controlled fatigue test of widely-used 316L stainless steel with excellent corrosion resistance and mechanical properties was conducted, in order to assess its fatigue life. Low cycle fatigue behaviors were analyzed at room temperature, as a function of the strain amplitude and strain ratio. The material was hardened during the initial few cycles, and then was softened during the long post period, until failure occurred. The fatigue life decreased with increasing strain amplitude. Masing behavior in the hysteresis loop was shown under the low strain amplitude, whereas the high strain amplitude caused non-Masing behavior and reduced the mean stress. Low cycle fatigue life prediction based on the cyclic plastic energy dissipation theory, considering Masing and non-Masing effects, showed a good correlation with the experimental results.

  3. On low cycle fatigue in metal matrix composites

    DEFF Research Database (Denmark)

    Pedersen, Thomas Ø; Tvergaard, Viggo

    2000-01-01

    A numerical cell model analysis is used to study the development of fatigue damage in aluminium reinforced by aligned, short SiC fibres. The material is subjected to cyclic loading with either stress control or strain control, and the matrix material is represented by a cyclic plasticity model......, in which continuum damage mechanics is incorporated to model fatigue damage evolution. This material model uses a superposition of kinematic and isotropic hardening, and is able to account for the Bauschinger effect as well as ratchetting, mean stress relaxation, and cyclic hardening or softening. The cell...... model represents a material with transversely staggered fibres. With focus on low cyclic fatigue, the effect of different fibre aspect ratios, different triaxial stress states, and balanced as well as unbalanced cyclic loading is studied....

  4. Neuroprotective mechanism of losartan and its interaction with nimesulide against chronic fatigue stress.

    Science.gov (United States)

    Kumar, Anil; Singh, Barinder; Mishra, Jitendriya; Sah, Sangeeta Pilkhwal; Pottabathini, Raghavender

    2015-12-01

    Potential role of angiotensin-II and cyclooxygenase have been suggested in the pathophysiology of chronic fatigue stress. The present study has been designed to evaluate the neuroprotective effect of losartan and its interaction with nimesulide against chronic fatigue stress and related complications in mice. In the present study, male Laca mice (20-30 g) were subjected to running wheel activity test session (RWATS) for 6 min daily for 21 days. Losartan, nimesulide and their combinations were administered daily for 21 days, 45 min before being subjected to RWATS. Various behavioral and biochemical and neuroinflammatory mediators were assessed subsequently. 21 days RWATS treatment significantly decreased number of wheel rotations/6 min indicating fatigue stress like behaviors as compared to naive group. 21 days treatment with losartan (10 and 20 mg/kg, ip), nimesulide (5 and 10 mg/kg, po) and their combinations significantly improved behavior [increased number of wheel rotations, reversal of post-exercise fatigue, locomotor activity, antianxiety-like behavior (number of entries, latency to enter and time spent in mirror chamber), and memory performance (transfer latency in plus-maze performance task)], biochemical parameters (reduced serum corticosterone, brain lipid peroxidation, nitrite concentration, acetylcholinesterase activity, restored reduced glutathione levels and catalase activity) as compared to RWATS control. Besides, TNF-α, CRP levels were significantly attenuated by these drugs and their combinations as compared to control. The present study highlights the role of cyclooxygenase modulation in the neuroprotective effect of losartan against chronic fatigue stress-induced behavioral, biochemical and cellular alterations in mice.

  5. Fatigue tests and life estimation of Incoloy alloy 908

    International Nuclear Information System (INIS)

    Feng, J.; Toma, L.S.; Jang, C.H.; Steeves, M.M.

    1997-01-01

    Incoloy reg-sign alloy 908* is a candidate conduit material for Nb 3 Sn cable-in-conduit superconductors. The conduit is expected to experience cyclic loads at 4 K. Fatigue fracture of the conduit is one possible failure mode. So far, fatigue life has been estimated from fatigue crack growth data, which provide conservative results. The more traditional practice of life estimation using S-N curves has not been done for alloy 908 due to a lack of data at room and cryogenic temperatures. This paper presents a series of fatigue test results in response to this need. Tests were performed in reversed bending, rotating bending, and uniaxial fatigue machines. The test matrix included different heat treatments, two load ratios (R=-1 and 0.1), two temperatures (298 and 77 K), and two orientations (longitudinal and transverse). As expected, there is a semi-log linear relation between the applied stress and fatigue life above an applied stress (e.g., 310 MPa for tests at 298 K and R=-1). Below this stress the curves show an endurance limit. The aged and cold-worked materials have longer fatigue lives and higher endurance limits than the others. Different orientations have no apparent effect on life. Cryogenic temperature results in a much high fatigue life than room temperature. A higher tensile mean stress gives shorter fatigue life. It was also found that the fatigue lives of the reversed bending specimens were of the same order as those of the uniaxial test specimens, but were only half the lives of the rotating bending specimens for given stresses. A sample application of the S-N data is discussed

  6. Stress and Fatigue Management Using Balneotherapy in a Short-Time Randomized Controlled Trial

    OpenAIRE

    Rapolienė, Lolita; Razbadauskas, Artūras; Sąlyga, Jonas; Martinkėnas, Arvydas

    2016-01-01

    Objective. To investigate the influence of high-salinity geothermal mineral water on stress and fatigue. Method. 180 seamen were randomized into three groups: geothermal (65), music (50), and control (65). The geothermal group was administered 108?g/L salinity geothermal water bath for 2 weeks five times a week. Primary outcome was effect on stress and fatigue. Secondary outcomes were the effect on cognitive function, mood, and pain. Results. The improvements after balneotherapy were a reduct...

  7. Effects of an Exercise Intervention on Cancer-Related Fatigue and Its Relationship to Markers of Oxidative Stress.

    Science.gov (United States)

    Repka, Chris P; Hayward, Reid

    2018-06-01

    Although the underlying mechanisms of cancer-related fatigue (CRF) are not fully characterized, treatment-associated oxidative stress may play a role. The purpose of this study was to determine the effect of an exercise intervention on the relationship between CRF and oxidative stress. Upon cessation of radiation or chemotherapy, 8 cancer patients participated in a 10-week exercise intervention (EX), while 7 continued standard care (CON). Blood draws and fatigue questionnaires were administered to cancer patients before and after the intervention as well as to 7 age-matched individuals with no cancer history. Changes in plasma 8-hydroxy-deoxyguanosine (8-OHdG), protein carbonyls, antioxidant capacity, and fatigue were compared between groups. Correlations between CRF and oxidative stress were evaluated. Mean total fatigue scores decreased significantly (5.0 ± 2.2 to 2.6 ± 1.5, P fatigue ( r = -.58). Changes in total ( r = .46) and affective ( r = .47) fatigue exhibited significant correlations with changes in 8-OHdG over time, while behavioral ( r = .46) and sensory ( r = .47) fatigue changes were significantly correlated with protein carbonyls. Oxidative stress may be implicated in CRF, while improved antioxidant capacity following an exercise intervention may play a role in mitigating CRF in cancer survivors.

  8. Influences of Processing and Fatigue Cycling on Residual Stresses in a NiCrY-Coated Powder Metallurgy Disk Superalloy

    Science.gov (United States)

    Gabb, T. P.; Rogers, R. B.; Nesbitt, J. A.; Miller, R. A.; Puleo, B. J.; Johnson, D.; Telesman, J.; Draper, S. L.; Locci, I. E.

    2017-11-01

    Oxidation and corrosion can attack superalloy disk surfaces exposed to increasing operating temperatures in some turbine engine environments. Any potential protective coatings must also be resistant to harmful fatigue cracking during service. The objective of this study was to investigate how residual stresses evolve in one such coating. Fatigue specimens of a powder metallurgy-processed disk superalloy were coated with a NiCrY coating, shot peened, and then subjected to fatigue in air at room and high temperatures. The effects of this processing and fatigue cycling on axial residual stresses and other aspects of the coating were assessed. While shot peening did induce beneficial compressive residual stresses in the coating and substrate, these stresses relaxed in the coating with subsequent heating. Several cast alloys having compositions near the coating were subjected to thermal expansion and tensile stress relaxation tests to help explain this response of residual stresses in the coating. For the coated fatigue specimens, this response contributed to earlier cracking of the coating than for the uncoated surface during long intervals of cycling at 760 °C. Yet, substantial compressive residual stresses still remained in the substrate adjacent to the coating, which were sufficient to suppress fatigue cracking there. The coating continued to protect the substrate from hot corrosion pitting, even after fatigue cracks initiated in the coating.

  9. Experimental Study on Fatigue Performance of Foamed Lightweight Soil

    Science.gov (United States)

    Qiu, Youqiang; Yang, Ping; Li, Yongliang; Zhang, Liujun

    2017-12-01

    In order to study fatigue performance of foamed lightweight soil and forecast its fatigue life in the supporting project, on the base of preliminary tests, beam fatigue tests on foamed lightweight soil is conducted by using UTM-100 test system. Based on Weibull distribution and lognormal distribution, using the mathematical statistics method, fatigue equations of foamed lightweight soil are obtained. At the same time, according to the traffic load on real road surface of the supporting project, fatigue life of formed lightweight soil is analyzed and compared with the cumulative equivalent axle loads during the design period of the pavement. The results show that even the fatigue life of foamed lightweight soil has discrete property, the linear relationship between logarithmic fatigue life and stress ratio still performs well. Especially, the fatigue life of Weibull distribution is more close to that derived from the lognormal distribution, in the instance of 50% guarantee ratio. In addition, the results demonstrated that foamed lightweight soil as subgrade filler has good anti-fatigue performance, which can be further adopted by other projects in the similar research domain.

  10. Monitoring and modeling stress corrosion and corrosion fatigue damage in nuclear reactors

    International Nuclear Information System (INIS)

    Andresen, P.L.; Ford, F.P.; Solomon, H.D.; Taylor, D.F.

    1990-01-01

    Stress corrosion and corrosion fatigue are significant problems in many industries, causing economic penalties from decreased plant availability and component repair or replacement. In nuclear power reactors, environmental cracking occurs in a wide variety of components, including reactor piping and steam generator tubing, bolting materials and pressure vessels. Life assessment for these components is complicated by the belief that cracking is quite irreproducible. Indeed, for conditions which were once viewed as nominally similar, orders of magnitude variability in crack growth rates are observed for stress corrosion and corrosion fatigue of stainless steels and low-alloy steels in 288 degrees C water. This paper shows that design and life prediction approaches are destined to be overly conservative or to risk environmental failure if life is predicted by quantifying only the effects of mechanical parameters and/or simply ignoring or aggregating environmental and material variabilities. Examples include the Nuclear Regulatory Commission (NRC) disposition line for stress-corrosion cracking of stainless steel in boiling water reactor (BWR) water and the American Society of Mechanical Engineers' Section XI lines for corrosion fatigue

  11. Stress and Coping Styles Are Associated with Severe Fatigue in Medical Students

    Science.gov (United States)

    Tanaka, Masaaki; Fukuda, Sanae; Mizuno, Kei; Kuratsune, Hirohiko; Watanabe, Yasuyoshi

    2009-01-01

    Fatigue is a common complaint among medical students and researchers consider it to be related to poor academic outcomes. The authors' goal in the present study was to determine whether stress and coping strategies were associated with fatigue in medical students. The study group consisted of 73 second-year healthy students attending the Osaka…

  12. Effect of tensile mean stress on fatigue behavior of single-crystal and directionally solidified superalloys

    Science.gov (United States)

    Kalluri, Sreeramesh; Mcgaw, Michael A.

    1990-01-01

    Two nickel base superalloys, single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf, were studied in view of the potential usage of the former and usage of the latter as blade materials for the turbomachinery of the space shuttle main engine. The baseline zero mean stress (ZMS) fatigue life (FL) behavior of these superalloys was established, and then the effect of tensile mean stress (TMS) on their FL behavior was characterized. At room temperature these superalloys have lower ductilities and higher strengths than most polycrystalline engineering alloys. The cycle stress-strain response was thus nominally elastic in most of the fatigue tests. Therefore, a stress range based FL prediction approach was used to characterize both the ZMS and TMS fatigue data. In the past, several researchers have developed methods to account for the detrimental effect of tensile mean stress on the FL for polycrystalline engineering alloys. However, the applicability of these methods to single crystal and directionally solidified superalloys has not been established. In this study, these methods were applied to characterize the TMS fatigue data of single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf and were found to be unsatisfactory. Therefore, a method of accounting for the TMS effect on FL, that is based on a technique proposed by Heidmann and Manson was developed to characterize the TMS fatigue data of these superalloys. Details of this method and its relationship to the conventionally used mean stress methods in FL prediction are discussed.

  13. Effect of residual stresses on the reliability of components under fatigue

    International Nuclear Information System (INIS)

    Ruestenberg, I.

    1995-01-01

    The assurance of the reliability of mechanical components relative to a variety of failure mechanisms is of decisive technical, industrial, and economic importance. In this dissertation, the reliability, i.e. the probability that the lifetime does not fall below a given value, is examined with respect to the particularly important failure mechanisms of fracture and fatigue. The general problem of uniaxial fatigue is studied on the basis of both continuum damage mechanics and crack mechanics. In particular, the mechanisms of crack initiation, as characterized by the Coffin-Manson-Neuber local strain-life equations for notched components as well as the mechanism of crack growth, as governed by the Paris-Erdogang relation, are taken into account. The nonlinear fatigue damage accumulation process for components subjected to general, cyclic loading histories is modeled by a multilinear damage law which allows, in principle, to characterize the subsequent activation of different fatigue mechanisms. Explicit equations are developed for quintuple-, quadruple-, and triple-linear damage accumulation. Particularly promising appears the triple-linear damage approach which allows, in principle, the identification of a nucleation, an initiation, and a final growth stage up to rupture of fatigue cracks. The beneficial effect of intentionally induced compressive residual stresses on the lifetime of the component is investigated. To this end, an elasto-plastic contact problem, based on Prandtl-Reuss' constitutive equations, is numerically solved, and the residual stress field, as it is typically produced by the mechanical process of cold rolling, is established. Assessments of the effect of adaptation, i.e. the subsequent reduction of the residual stresses due to cyclic in-service loading as well as of the effect of unavoidable surface roughness, introduced by manufacturing processes like forging, are carried out. (author) figs., tabs., refs

  14. Profiled Roller Stress/Fatigue Life Analysis Methodology and Establishment of an Appropriate Stress/Life Exponent

    Science.gov (United States)

    1997-01-01

    The objective of this work was to determine the three dimensional volumetric stress field, surface pressure distribution and actual contact area between a 0.50" square roller with different crown profiles and a flat raceway surface using Finite Element Analysis. The 3-dimensional stress field data was used in conjunction with several bearing fatigue life theories to extract appropriate values for stress-life exponents. Also, results of the FEA runs were used to evaluate the laminated roller model presently used for stress and life prediction.

  15. The relation of illness perceptions to stress, depression, and fatigue in patients with chronic lymphocytic leukaemia.

    Science.gov (United States)

    Westbrook, Travis D; Maddocks, Kami; Andersen, Barbara L

    2016-07-01

    Chronic lymphocytic leukaemia (CLL) is the most prevalent adult leukaemia and is incurable. The course and treatment of CLL is unique and characterised by repeated cycles of treatment, stable disease and relapse. Utilising a Self-Regulatory Model framework, we examined the relationship between patients' illness perceptions and cancer-specific stress, depressive symptoms and fatigue. Our aim was to test illness perceptions as predictors of these outcomes when variance due to disease and treatment variables was controlled. Data were collected on 147 patients with relapsed/refractory CLL as they entered a phase II clinical trial of an investigational medication at a university affiliated, National Cancer Institute designated comprehensive cancer center. Cancer-specific stress, depressive symptoms and fatigue interference. . Hierarchical multiple regression was used. Consequences and emotional representation were related to all outcomes (ps stress (p fatigue interference (p stress, depressive symptoms and fatigue interference in relapsed/refractory CLL. Interventions targeted at restructuring maladaptive illness perceptions may have clinical benefit in this population.

  16. Fatigue behaviour of 304L steel welded structures: influence of residual stresses and surface mechanical finishing

    International Nuclear Information System (INIS)

    Magnier-Monin, L.

    2007-12-01

    This study focuses on the influence of residual stresses and surface mechanical finishing on lifetime of stainless steel 304L welded structures. Residual stresses are determined on specific specimens of three types: base-metal, as-welded and ground-welded specimens. Each type is submitted to fatigue tests in order to assess the influence of these parameters on the lifetime, and to determine their evolution. The experiments show that an important surface stress concentration is located in the weld root of as-welded structures, which has a negative effect on the fatigue life. The grinding operation generates high-level surface residual stresses but the lifetime is higher thanks to the reduction of the notch effect. The fatigue test results are compared to the nuclear industry best-fit S-N curves. This enables the determination of correction factors related to fatigue test results of polished specimens, and to assess the lifetime of structures. (author)

  17. SI:FatiguePro 4 Advanced Approach for Fatigue Monitoring

    International Nuclear Information System (INIS)

    Evon, Keith; Gilman, Tim; Carney, Curt

    2012-01-01

    Many nuclear plants are making commitments to implement fatigue monitoring systems in support of license renewal. Current fatigue monitoring systems use the methodology of ASME Code Subarticle NB-3200, which is a design code intended to compute a bounding cumulative usage factor (CUF). The first generation of fatigue monitoring software utilized a simplified, single stress term assumption and classical stress cycle-counting methods that take order into account such as Rainflow or Ordered Overall Range counting. Recently, the NRC has indicated in Regulatory Issue Summary 2008-30 that any fatigue analyses in support of License Renewal should use ASME Code Section III methodologies considering all six stress components. In addition, fatigue calculations for the license renewal term are required to consider the effects of environment. The implementation of a six stress term NB-3200 fatigue calculation to a Boiling Water Reactor (BWR) feedwater nozzle, including environmental effects, is the topic of this paper. Differences in results between the advanced methodology and the simplified methodology are discussed. (author)

  18. Random non-proportional fatigue tests with planar tri-axial fatigue testing machine

    OpenAIRE

    Inoue, T.; Nagao, R.; Takeda, N.

    2016-01-01

    Complex stresses, which occur on the mechanical surfaces of transport machinery in service, bring a drastic degradation in fatigue life. However, it is hard to reproduce such complex stress states for evaluating the fatigue life with conventional multiaxial fatigue machines. We have developed a fatigue testing machine that enables reproduction of such complex stresses. The testing machine can reproduce arbitrary in-plane stress states by applying three independent loads to the test specimen u...

  19. An investigation into the change of shape of fatigue cracks initiated at surface flaws

    International Nuclear Information System (INIS)

    Portch, D.J.

    1979-09-01

    Surface fatigue cracks found in plant can often be closely approximated in shape by a semi-ellipse. The stress intensity factor range at the deepest part of the surface crack is dependent upon a number of variables, including the crack aspect ratio. In fatigue life analysis, the aspect ratio of a propagating crack is frequently assumed to remain constant, possibly due to the complexity of estimating aspect ratio change on the basis of linear elastic fracture mechanics. This report describes the results of an experimental programme to examine the change of shape of fatigue cracks subjected to uniaxial tensile or bending stresses. The data obtained has been used to modify equations proposed by the author in a previous report to predict the change of aspect ratio of a crack propagating from a known defect. These modified equations, although not including terms to account for the effects of varying mean stress levels or material properties, generally give a good agreement with published experimental results. Crack propagation rate data obtained from the tensile fatigue tests has been used to estimate crack tip stress intensity factors. These are compared with values calculated from published solutions using both the constant geometry assumption and also the shape change equations proposed in this report. Use of these equations gives improved agreement with experiment in most cases. (author)

  20. Effect of residual stresses induced by prestressing on rolling element fatigue life

    Science.gov (United States)

    Parker, R. J.; Zaretsky, E. V.

    1972-01-01

    A mechanical prestress cycle suitable to induce compressive stress beneath the surface of the inner race of radially loaded 207-size bearings was determined. Compressive residual stress in excess 0.69 x 10 to the 9th power N/sq m (100,000 psi), as measured by X-ray diffraction, were induced at the depth of maximum shearing stress. The prestress cycle consisted of running the bearings for 25 hours at 2750 rpm at a radial load which produced a maximum Hertz stress of 3.3 x 10 to the 9th power N/sq m (480,000 psi) at the contact of the inner race and the heaviest loaded ball. Bearings subjected to this prestress cycle and subsequently fatigue tested gave a 10 percent fatigue life greater than twice that of a group of baseline bearings.

  1. Pediatric novice nurses: examining compassion fatigue as a mediator between stress exposure and compassion satisfaction, burnout, and job satisfaction.

    Science.gov (United States)

    Meyer, Rika M L; Li, Angela; Klaristenfeld, Jessica; Gold, Jeffrey I

    2015-01-01

    We investigated whether compassion fatigue mediated associations between nurse stress exposure and job satisfaction, compassion satisfaction, and burnout, controlling for pre-existing stress. The Life Events Checklist was administered to 251 novice pediatric nurses at the start of the nurse residency program (baseline) and 3 months after to assess pre-existing and current stress exposure. Compassion satisfaction, compassion fatigue, and burnout were assessed 3 months after baseline and job satisfaction 6 months after. Stress exposure significantly predicted lower compassion satisfaction and more burnout. Compassion fatigue partially mediated these associations. Results demonstrate a need for hospitals to prevent compassion fatigue in healthcare providers. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Stress and Fatigue in Operators Under Radiofrequency Electromagnetic Radiation and Shift Work

    Directory of Open Access Journals (Sweden)

    Vangelova K.

    2014-12-01

    Full Text Available The aim was to study the effect of radiofrequency electromagnetic radiation (EMR on stress indices, health complaints and fatigue of operators working fast-rotating extended shifts. Working conditions, job content, job control, social support, health complaints and fatigue were followed in 220 operators, 110 exposed to EMR and 110 control operators, matched by age and sex. The EMR was measured and time-weighted average (TWA was calculated. The excretion rates of stress hormones cortisol, adrenaline and noradrenaline were followed during the extended shifts in 36 operators, working at different levels of exposure and 24-hour exposure was calculated. The exposed group pointed more problems with the working conditions, including EMR, noise, currents and risk of accidents, more health complaints and higher level of fatigue. The most common health complaints were mental and physical exhaustion after work, pains in the chest, musculoskeletal complaints, headache, and apathy. High level EMR exposure (TWAmean = 3.10 μW/cm2, TWAmax = 137.00 μW/cm2 significantly increased the 24-hour excretion of cortisol and noradrenaline, whereas the increase of adrenaline excretion did not reach significance, as well as hormone excretion rates under low level exposure (TWAmean = 1.89 μW/cm2, TWAmax = 5.24 μW/cm2. In conclusion, higher number of health complaints, higher stress hormone excretion rates and fatigue were found in operators under EMR.

  3. Nanoscale and submicron fatigue crack growth in nickel microbeams

    International Nuclear Information System (INIS)

    Yang, Y.; Yao, N.; Imasogie, B.; Soboyejo, W.O.

    2007-01-01

    This paper presents a novel edge-notched microbeam technique for the study of short fatigue crack growth. The technique is used to study submicron and nanoscale fatigue in LIGA Ni thin films with columnar microstructures. The edge-notched microbeams were fabricated within LIGA Ni thin films, using focused ion beam (FIB) techniques. The microbeams were then cyclically deformed to failure at a stress ratio of 0.1. Different slip-band structures were observed below the nanoscale notches. Cyclic deformation resulted in the formation of primary slip bands below the notch. Subsequent crack growth then occurred by the unzipping of fatigue cracks along intersecting slip bands. The effects of the primary slip bands were idealized using dislocation-based models. These were used to estimate the intrinsic fatigue threshold and the fatigue endurance limit. The estimates from the model are shown to be consistent with experimental data from prior stress-life experiments and current/prior fatigue threshold estimates

  4. The interaction of fatigue cracks with a residual stress field using thermoelastic stress analysis and synchrotron X-ray diffraction experiments

    Science.gov (United States)

    Amjad, Khurram; Asquith, David; Sebastian, Christopher M.; Wang, Wei-Chung

    2017-01-01

    This article presents an experimental study on the fatigue behaviour of cracks emanating from cold-expanded holes utilizing thermoelastic stress analysis (TSA) and synchrotron X-ray diffraction (SXRD) techniques with the aim of resolving the long-standing ambiguity in the literature regarding potential relaxation, or modification, of beneficial compressive residual stresses as a result of fatigue crack propagation. The crack growth rates are found to be substantially lower as the crack tip moved through the residual stress zone induced by cold expansion. The TSA results demonstrated that the crack tip plastic zones were reduced in size by the presence of the residual compressive stresses induced by cold expansion. The crack tip plastic zones were found to be insignificant in size in comparison to the residual stress zone resulting from cold expansion, which implied that they were unlikely to have had a notable impact on the surrounding residual stresses induced by cold expansion. The residual stress distributions measured along the direction of crack growth, using SXRD, showed no signs of any significant stress relaxation or redistribution, which validates the conclusions drawn from the TSA data. Fractographic analysis qualitatively confirmed the influence on crack initiation of the residual stresses induced by the cold expansion. It was found that the application of single compressive overload caused a relaxation, or reduction in the residual stresses, which has wider implications for improving the fatigue life. PMID:29291095

  5. Near-threshold fatigue crack behaviour in EUROFER 97 at different temperatures

    Science.gov (United States)

    Aktaa, J.; Lerch, M.

    2006-07-01

    The fatigue crack behaviour in EUROFER 97 was investigated at room temperature (RT), 300, 500 and 550 °C for the assessment of cracks in first wall structures built from EUROFER 97 of future fusion reactors. For this purpose, fatigue crack growth tests were performed using CT specimens with two R-ratios, R = 0.1 and R = 0.5 ( R is the load ratio with R = Fmin/ Fmax where Fmin and Fmax are the minimum and maximum applied loads within a cycle, respectively). Hence, fatigue crack threshold, fatigue crack growth behaviour in the near-threshold range and their dependences on temperature and R-ratio were determined and described using an analytical formula. The fatigue crack threshold showed a monotonous dependence on temperature which is for R = 0.5 insignificantly small. The fatigue crack growth behaviour exhibited for R = 0.1 a non-monotonous dependence on temperature which is explained by the decrease of yield stress and the increase of creep damage with increasing temperature.

  6. Competing fatigue failure behaviors of Ni-based superalloy FGH96 at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Guolei [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Yang, Xiaoguang [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-engine(CICAAE), Beihang University, Beijing 100191 (China); Shi, Duoqi, E-mail: shdq@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-engine(CICAAE), Beihang University, Beijing 100191 (China)

    2016-06-21

    Fatigue experiments were performed on a polycrystalline P/M processed nickel-based superalloy, FGH96 at 600 °C to investigate competing fatigue failure behaviors of the alloy. The experiments were performed at four levels of stress (from high cycle fatigue to low cycle fatigue) at stress ratio of 0.05. There was large variability in fatigue life at both high and low stresses. Scanning electron microscopy (SEM) was used to analyze the failure surfaces. Three types of competing failure modes were observed (surface, sub-surface and internal initiated failures). Crack initiation sites were gradually changed from the surface to the interior with the decreasing of stress level. Roles of microstructures in competing failure mechanism were analyzed. There were six kinds of fatigue crack initiation modes: (1) surface inclusion initiated; (2) surface facet initiated; (3) sub-surface inclusion initiated; (4) sub-surface facet initiated; (5) internal inclusion initiated; (6) internal facet initiated. Inclusions at surface were the life-limiting microstructures at higher stress levels. The probability of occurrence of inclusions initiated is gradually reduced with decreasing of stress level, simultaneously the probability of occurrence of facets initiated is increasing. The existence of the inclusions resulted in large life variability at higher stress levels, while heterogeneity of material caused by random combinations of grains was the main cause of fatigue variability at lower stress levels.

  7. Competing fatigue failure behaviors of Ni-based superalloy FGH96 at elevated temperature

    International Nuclear Information System (INIS)

    Miao, Guolei; Yang, Xiaoguang; Shi, Duoqi

    2016-01-01

    Fatigue experiments were performed on a polycrystalline P/M processed nickel-based superalloy, FGH96 at 600 °C to investigate competing fatigue failure behaviors of the alloy. The experiments were performed at four levels of stress (from high cycle fatigue to low cycle fatigue) at stress ratio of 0.05. There was large variability in fatigue life at both high and low stresses. Scanning electron microscopy (SEM) was used to analyze the failure surfaces. Three types of competing failure modes were observed (surface, sub-surface and internal initiated failures). Crack initiation sites were gradually changed from the surface to the interior with the decreasing of stress level. Roles of microstructures in competing failure mechanism were analyzed. There were six kinds of fatigue crack initiation modes: (1) surface inclusion initiated; (2) surface facet initiated; (3) sub-surface inclusion initiated; (4) sub-surface facet initiated; (5) internal inclusion initiated; (6) internal facet initiated. Inclusions at surface were the life-limiting microstructures at higher stress levels. The probability of occurrence of inclusions initiated is gradually reduced with decreasing of stress level, simultaneously the probability of occurrence of facets initiated is increasing. The existence of the inclusions resulted in large life variability at higher stress levels, while heterogeneity of material caused by random combinations of grains was the main cause of fatigue variability at lower stress levels.

  8. Mean stress effects on high-cycle fatigue of Alloy 718

    International Nuclear Information System (INIS)

    Korth, G.E.

    1980-07-01

    This report covers an investigation of the effects of tensile mean stress on the high-cycle fatigue properties of Alloy 718. Three test temperatures (24, 427, and 649 degree C) were employed, and there were tests in both strain and load control. Results were compared with three different models: linear Modified-Goodman, Peterson cubic, and stress-strain parameter. The linear Modified-Goodman model gave good correlation with actual test data for low and moderate mean stress values, but the stress-strain parameter showed excellent correlation over the entire range of possible mean stresses and therefore is recommended for predicting mean stress effects of Alloy 718. 13 refs., 12 figs

  9. Fatigue Analysis of a Mono-Tower Platform

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed thro...... of the natural period, damping ratio, current, stress Spectrum and parameters describing the fatigue strength. Further, soil damping is shown to be significant for the Mono-tower.......In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed...... through linear-elastic fracture mechanics (LEFM). In determining the cumulative fatigue damage, Palmgren-Miner's rule is applied. Element reliability as well as systems reliability is estimated using first-order reliability methods (FORM). The sensitivity of the systems reliability to various parameters...

  10. Fatigue Characteristics of Selected Light Metal Alloys

    Directory of Open Access Journals (Sweden)

    Cieśla M.

    2016-03-01

    Full Text Available The paper addresses results of fatigue testing of light metal alloys used in the automotive as well as aerospace and aviation industries, among others. The material subject to testing comprised hot-worked rods made of the AZ31 alloy, the Ti-6Al-4V two-phase titanium alloy and the 2017A (T451 aluminium alloy. Both low- and high-cycle fatigue tests were conducted at room temperature on the cycle asymmetry ratio of R=-1. The low-cycle fatigue tests were performed using the MTS-810 machine on two levels of total strain, i.e.Δεc= 1.0% and 1.2%. The high-cycle fatigue tests, on the other hand, were performed using a machine from VEB Werkstoffprufmaschinen-Leipzig under conditions of rotary bending. Based on the results thus obtained, one could develop fatigue life characteristics of the materials examined (expressed as the number of cycles until failure of sample Nf as well as characteristics of cyclic material strain σa=f(N under the conditions of low-cycle fatigue testing. The Ti-6Al-4V titanium alloy was found to be characterised by the highest value of fatigue life Nf, both in lowand high-cycle tests. The lowest fatigue life, on the other hand, was established for the aluminium alloys examined. Under the high-cycle fatigue tests, the life of the 2017A aluminium and the AZ31 magnesium alloy studied was determined by the value of stress amplitude σa. With the stress exceeding 150 MPa, it was the aluminium alloy which displayed higher fatigue life, whereas the magnesium alloy proved better on lower stress.

  11. Effects of high mean stress on the high-cycle fatigue behavior of PWA 1480

    International Nuclear Information System (INIS)

    Majumdar, S.; Antolovich, S.; Milligan, W.

    1985-03-01

    PWA 1480 is a potential candidate material for use in the high-pressure fuel turbine blade of the Space Shuttle Main Engine. As an engine material it will be subjected to high-cycle fatigue loading superimposed on a high mean stress due to combined centrifugal and thermal loadings. This paper describes results obtained in an ongoing program to determine the effects of a high mean stress on the high-cycle fatigue behavior of this material

  12. Heat affected zone and fatigue crack propagation behavior of high performance steel

    International Nuclear Information System (INIS)

    Choi, Sung Won; Kang, Dong Hwan; Kim, Tae Won; Lee, Jong Kwan

    2009-01-01

    The effect of heat affected zone in high performance steel on fatigue crack propagation behavior, which is related to the subsequent microstructure, was investigated. A modified Paris-Erdogan equation was presented for the analysis of fatigue crack propagation behavior corresponding to the heat affected zone conditions. Fatigue crack propagation tests under 0.3 stress ratio and 0.1 load frequency were conducted for both finegrained and coarse-grained heat affected zones, respectively. As shown in the results, much higher crack growth rate occurred in a relatively larger mean grain size material under the same stress intensity range of fatigue crack propagation process for the material.

  13. Monitoring Poisson’s Ratio Degradation of FRP Composites under Fatigue Loading Using Biaxially Embedded FBG Sensors

    Science.gov (United States)

    Akay, Erdem; Yilmaz, Cagatay; Kocaman, Esat S.; Turkmen, Halit S.; Yildiz, Mehmet

    2016-01-01

    The significance of strain measurement is obvious for the analysis of Fiber-Reinforced Polymer (FRP) composites. Conventional strain measurement methods are sufficient for static testing in general. Nevertheless, if the requirements exceed the capabilities of these conventional methods, more sophisticated techniques are necessary to obtain strain data. Fiber Bragg Grating (FBG) sensors have many advantages for strain measurement over conventional ones. Thus, the present paper suggests a novel method for biaxial strain measurement using embedded FBG sensors during the fatigue testing of FRP composites. Poisson’s ratio and its reduction were monitored for each cyclic loading by using embedded FBG sensors for a given specimen and correlated with the fatigue stages determined based on the variations of the applied fatigue loading and temperature due to the autogenous heating to predict an oncoming failure of the continuous fiber-reinforced epoxy matrix composite specimens under fatigue loading. The results show that FBG sensor technology has a remarkable potential for monitoring the evolution of Poisson’s ratio on a cycle-by-cycle basis, which can reliably be used towards tracking the fatigue stages of composite for structural health monitoring purposes. PMID:28773901

  14. Modelling probabilistic fatigue crack propagation rates for a mild structural steel

    Directory of Open Access Journals (Sweden)

    J.A.F.O. Correia

    2015-01-01

    Full Text Available A class of fatigue crack growth models based on elastic–plastic stress–strain histories at the crack tip region and local strain-life damage models have been proposed in literature. The fatigue crack growth is regarded as a process of continuous crack initializations over successive elementary material blocks, which may be governed by smooth strain-life damage data. Some approaches account for the residual stresses developing at the crack tip in the actual crack driving force assessment, allowing mean stresses and loading sequential effects to be modelled. An extension of the fatigue crack propagation model originally proposed by Noroozi et al. (2005 to derive probabilistic fatigue crack propagation data is proposed, in particular concerning the derivation of probabilistic da/dN-ΔK-R fields. The elastic-plastic stresses at the vicinity of the crack tip, computed using simplified formulae, are compared with the stresses computed using an elasticplastic finite element analyses for specimens considered in the experimental program proposed to derive the fatigue crack propagation data. Using probabilistic strain-life data available for the S355 structural mild steel, probabilistic crack propagation fields are generated, for several stress ratios, and compared with experimental fatigue crack propagation data. A satisfactory agreement between the predicted probabilistic fields and experimental data is observed.

  15. Fatigue crack growth in an aluminum alloy-fractographic study

    Science.gov (United States)

    Salam, I.; Muhammad, W.; Ejaz, N.

    2016-08-01

    A two-fold approach was adopted to understand the fatigue crack growth process in an Aluminum alloy; fatigue crack growth test of samples and analysis of fractured surfaces. Fatigue crack growth tests were conducted on middle tension M(T) samples prepared from an Aluminum alloy cylinder. The tests were conducted under constant amplitude loading at R ratio 0.1. The stress applied was from 20,30 and 40 per cent of the yield stress of the material. The fatigue crack growth data was recorded. After fatigue testing, the samples were subjected to detailed scanning electron microscopic (SEM) analysis. The resulting fracture surfaces were subjected to qualitative and quantitative fractographic examinations. Quantitative fracture analysis included an estimation of crack growth rate (CGR) in different regions. The effect of the microstructural features on fatigue crack growth was examined. It was observed that in stage II (crack growth region), the failure mode changes from intergranular to transgranular as the stress level increases. In the region of intergranular failure the localized brittle failure was observed and fatigue striations are difficult to reveal. However, in the region of transgranular failure the crack path is independent of the microstructural features. In this region, localized ductile failure mode was observed and well defined fatigue striations were present in the wake of fatigue crack. The effect of interaction of growing fatigue crack with microstructural features was not substantial. The final fracture (stage III) was ductile in all the cases.

  16. Effects of microstructure and residual stress on fatigue crack growth of stainless steel narrow gap welds

    International Nuclear Information System (INIS)

    Jang, Changheui; Cho, Pyung-Yeon; Kim, Minu; Oh, Seung-Jin; Yang, Jun-Seog

    2010-01-01

    The effects of weld microstructure and residual stress distribution on the fatigue crack growth rate of stainless steel narrow gap welds were investigated. Stainless steel pipes were joined by the automated narrow gap welding process typical to nuclear piping systems. The weld fusion zone showed cellular-dendritic structures with ferrite islands in an austenitic matrix. Residual stress analysis showed large tensile stress in the inner-weld region and compressive stress in the middle of the weld. Tensile properties and the fatigue crack growth rate were measured along and across the weld thickness direction. Tensile tests showed higher strength in the weld fusion zone and the heat affected zone compared to the base metal. Within the weld fusion zone, strength was greater in the inner weld than outer weld region. Fatigue crack growth rates were several times greater in the inner weld than the outer weld region. The spatial variation of the mechanical properties is discussed in view of weld microstructure, especially dendrite orientation, and in view of the residual stress variation within the weld fusion zone. It is thought that the higher crack growth rate in the inner-weld region could be related to the large tensile residual stress despite the tortuous fatigue crack growth path.

  17. Effects of mean tensile stresses on high-cycle fatigue life and strain accumulation in some reactor materials

    International Nuclear Information System (INIS)

    Soo, P.; Chow, J.G.Y.

    1977-05-01

    An assessment has been made of the effects of mean tensile stresses on the high-cycle fatigue behavior of solution-treated Type 304 stainless steel, normalized and tempered 2 1 / 4 Cr-1Mo steel, Incoloy-800H, and low-carbon Incoloy-800. Mean stresses are usually detrimental to fatigue strength, especially at high temperatures and stress levels, where significant creep can occur during fatigue cycling. Depending on the magnitudes of the alternating and mean stresses, failure may be creep or fatigue controlled. Strain accumulation is also affected by these stress levels and possibly, also, by the cyclic work-hardening characteristics of the material. It is shown that the Goodman Law for estimating mean stress effects is inadequate, since it does not account for time-dependent deformation. An alternative expression not having such a limitation was, therefore, derived and this relates the alternating and mean stresses to the time to failure. Based on limited metallographic observations of fatigue striations in the 2 1 / 4 Cr-1Mo steel an estimate was made of the crack propagation rate. It was found that a crack of critical size could, under certain conditions, propagate through most of the specimen diameter in a matter of seconds. This presents a more significant safety problem than the case for a crack extending under low-cycle conditions since preventative measures probably could not be implemented before the crack had grown to a large size

  18. Association of psychological stress response of fatigue with white blood cell count in male daytime workers.

    Science.gov (United States)

    Nishitani, Naoko; Sakakibara, Hisataka

    2014-01-01

    Relationships between work-related psychological and physical stress responses and counts of white blood cells (WBCs), neutrophils, and lymphocytes were investigated in 101 daytime workers. Counts of WBCs and neutrophils were positively associated with smoking and inversely correlated with high density lipoprotein (HDL)-cholesterol levels. Additionally, general fatigue score as measured by the profile of mood state was positively correlated with WBC and neutrophil counts whereas lymphocyte counts was not significantly associated with fatigue score. Multiple regression analysis showed that WBC count was significantly related to general fatigue, age, and HDL-cholesterol levels. Neutrophil count was significantly related to HDL-cholesterol levels and fatigue score. Among various psychological stress response variables, general fatigue may be a key determinant of low-grade inflammation as represented by increases of WBC and neutrophil counts.

  19. Fatigue strength evaluation of friction stir welded aluminium joints using the nominal and notch stress concepts

    International Nuclear Information System (INIS)

    Barsoum, Z.; Khurshid, M.; Barsoum, I.

    2012-01-01

    Highlights: ► Fatigue testing and evaluation of friction stir welded butt and overlap joints. ► Evaluation based on nominal and effective notch stress concept. ► Comparison with different design recommendations and codes. ► Higher fatigue strength and SN-slopes is observed. ► New fatigue design recommendations proposed for FSW joints. -- Abstract: In this study the fatigue strength is investigated for Friction Stir Welded (FSW) overlap and butt welded joints in different thicknesses based on nominal and effective notch stress concepts. The fatigue test results are compared with fatigue strength recommendations according to EN 1999-1-3 and International Institute of Welding (IIW). The results are also compared with available published data and Finite Element Analysis (FEA) is carried out to investigate the effect of plate thickness and nugget size on the fatigue strength of overlap joints. 3–3 mm butt welded joints shows the highest fatigue strength in comparison with 3–5 mm butt welded and overlap joints. Slopes of the SN-curves for two different joint types differ from the slope recommended by IIW. A specific failure trend is observed in overlap FSW joints. However, the slopes of the SN-curves are in close agreement with slopes found in EN 1999-1-3. The slopes of various published results and test results presented in this study are in good agreement with each other. The suggested fatigue design curves for the nominal and effective notch stress concept have a higher slope than given for fusion welds by IIW.

  20. The evolution of crack-tip stresses during a fatigue overload event

    International Nuclear Information System (INIS)

    Steuwer, A.; Rahman, M.; Shterenlikht, A.; Fitzpatrick, M.E.; Edwards, L.; Withers, P.J.

    2010-01-01

    The mechanisms responsible for the transient retardation or acceleration of fatigue crack growth subsequent to overloading are a matter of intense debate. Plasticity-induced closure and residual stresses have often been invoked to explain these phenomena, but closure mechanisms are disputed, especially under conditions approximating to generalised plane strain. In this paper we exploit synchrotron radiation to report very high spatial resolution two-dimensional elastic strain and stress maps at maximum and minimum loading measured under plane strain during a normal fatigue cycle, as well as during and after a 100% overload event, in ultra-fine grained AA5091 aluminium alloy. These observations provide direct evidence of the material stress state in the vicinity of the crack-tip in thick samples. Significant compressive residual stresses were found both in front of and behind the crack-tip immediately following the overload event. The effective stress intensity at the crack-tip was determined directly from the local stress field measured deep within the bulk (plane strain) by comparison with linear elastic fracture mechanical theory. This agrees well with that nominally applied at maximum load and 100% overload. After overload, however, the stress fields were not well described by classical K fields due to closure-related residual stresses. Little evidence of overload closure was observed sometime after the overload event, in our case possibly because the overload plastic zone was very small.

  1. Experimental observations on uniaxial whole-life transformation ratchetting and low-cycle stress fatigue of super-elastic NiTi shape memory alloy micro-tubes

    Science.gov (United States)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-07-01

    In this work, the low-cycle fatigue failure of super-elastic NiTi shape memory alloy micro-tubes with a wall thickness of 150 μm is investigated by uniaxial stress-controlled cyclic tests at human body temperature 310 K. The effects of mean stress, peak stress, and stress amplitude on the uniaxial whole-life transformation ratchetting and fatigue failure of the NiTi alloy are observed. It is concluded that the fatigue life depends significantly on the stress levels, and the extent of martensite transformation and its reverse play an important role in determining the fatigue life. High peak stress or complete martensite transformation shortens the fatigue life.

  2. Experimental observations on uniaxial whole-life transformation ratchetting and low-cycle stress fatigue of super-elastic NiTi shape memory alloy micro-tubes

    International Nuclear Information System (INIS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-01-01

    In this work, the low-cycle fatigue failure of super-elastic NiTi shape memory alloy micro-tubes with a wall thickness of 150 μm is investigated by uniaxial stress-controlled cyclic tests at human body temperature 310 K. The effects of mean stress, peak stress, and stress amplitude on the uniaxial whole-life transformation ratchetting and fatigue failure of the NiTi alloy are observed. It is concluded that the fatigue life depends significantly on the stress levels, and the extent of martensite transformation and its reverse play an important role in determining the fatigue life. High peak stress or complete martensite transformation shortens the fatigue life. (paper)

  3. Residual stress and microstructural behaviour of a shot peened steel in fatigue. An X-ray diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, J.

    1986-01-01

    The surface residual stress behaviour during fatigue of the quenched and tempered medium strength low-alloyed steel SS 2244-05, equivalent to AISI 4140, has been investigated. Notched specimens of shot peened and ground surface conditions were used. The residual stresses were measured by the X-ray diffraction sin/sup 2/psi-method at intervals in the fatigue tests. Fatigue testing was performed with constant load amplitude at nominal pull-push and pull-pull cycling. The effects of peak-load and variable amplitude were also examined. It was found that the residual stress relaxation could be linked to a total mean stress relaxation towards zero, to an extent which is ruled by a softening criteria. Fatigue test data of the shot peened and ground surface conditions are also given. An X-ray diffraction line broadening analysis was undertaken to examine the microstructural behaviour due to fatigue loading and its correlation to the residual stress behaviour. Single-peak analysis with a Voigt-function method was used to estimate the microstructural parameters, domain size and microstrain. Multiple-peak analysis according to the Warren-Averbach method was used to verify the single-peak analysis. The dislocation density was found to decrease depending on the load amplitude, while the dislocation arrangement follows a pattern depending on yield history.

  4. Fatigue Stress Fracture of the Talar Body: An Uncommon Cause of Ankle Pain.

    Science.gov (United States)

    Kim, Young Sung; Lee, Ho Min; Kim, Jong Pil; Moon, Han Sol

    2016-01-01

    Fatigue stress fractures of the talus are rare and usually involve the head of the talus in military recruits. We report an uncommon cause of ankle pain due to a fatigue stress fracture of the body of the talus in a 32-year-old male social soccer player. Healing was achieved after weightbearing suppression for 6 weeks. Although rare, a stress fracture of the body of the talus should be considered in an athlete with a gradual onset of chronic ankle pain. Magnetic resonance imaging and bone scan are useful tools for early diagnosis. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  5. Interference fits and stress-corrosion failure. [aircraft parts fatigue life analysis

    Science.gov (United States)

    Hanagud, S.; Carter, A. E.

    1976-01-01

    It is pointed out that any proper design of interference fit fastener, interference fit bushings, or stress coining processes should consider both the stress-corrosion susceptibility and fatigue-life improvement together. Investigations leading to such a methodology are discussed. A service failure analysis of actual aircraft parts is considered along with the stress-corrosion susceptibility of cold-working interference fit bushings. The optimum design of the amount of interference is considered, giving attention to stress formulas and aspects of design methodology.

  6. A critical analysis of the Mises stress criterion used in frequency domain fatigue life prediction

    Directory of Open Access Journals (Sweden)

    Adam Niesłony

    2016-10-01

    Full Text Available Multiaxial fatigue failure criteria are formulated in time and frequency domain. The number of frequency domain criteria is rather small and the most popular one is the equivalent von Mises stress criterion. This criterion was elaborated by Preumont and Piefort on the basis of well-known von Mises stress concept, first proposed by Huber in 1907, and well accepted by the scientific community and engineers. It is important to know, that the criterion was developed to determine the yield stress and material effort under static load. Therefore the direct use of equivalent von Mises stress criterion for fatigue life prediction can lead to some incorrectness of theoretical and practical nature. In the present study four aspects were discussed: influence of the value of fatigue strength of tension and torsion, lack of parallelism of the SN curves, abnormal behaviour of the criterion under biaxial tensioncompression and influence of phase shift between particular stress state components. Information contained in this article will help to prevent improper use of this criterion and contributes to its better understanding

  7. Protective effect of epigallocatechin gallate in murine water-immersion stress model of chronic fatigue syndrome.

    Science.gov (United States)

    Sachdeva, Anand Kamal; Kuhad, Anurag; Tiwari, Vinod; Arora, Vipin; Chopra, Kanwaljit

    2010-06-01

    Chronic fatigue syndrome (CFS) is a specific clinical condition that characterizes unexplained disabling fatigue. In the present study, chronic fatigue was produced in mice by subjecting them to forced swim inside a rectangular jar of specific dimensions for 6 min. daily for 15 days. Epigallocatechin gallate (EGCG; 25, 50 and 100 mg/kg, p.o.) was administered daily 30 min. before forced swim session. Immobility period and post-swim fatigue was assessed on alternate days. On the 16th day, after assessment of various behavioural parameters, mice were killed to harvest the brain, spleen and thymus. There was significant increase in oxidative-nitrosative stress and tumour necrosis factor-alpha levels in the brain of mice subjected to water-immersion stress as compared with naive group. These behavioural and biochemical alterations were restored after chronic treatment with EGCG. The present study points out that EGCG could be of therapeutic potential in the treatment of chronic fatigue.

  8. Feasibility of using a biowatch to monitor GSR as a measure of radiologists' stress and fatigue

    Science.gov (United States)

    Krupinski, Elizabeth A.; MacKinnon, Lea; Reiner, Bruce I.

    2015-03-01

    We have been investigating the impact of fatigue on diagnostic performance of radiologists interpreting medical images. In previous studies we found evidence that eye strain could be objectively measured and that it correlates highly with degradations in diagnostic accuracy as radiologists work long hours. Eye strain however can be difficult to measure in a non-invasive and continuous manner over the work day so we have been investigating other ways to measure physiological stress and fatigue. In this study we evaluated the feasibility of using a commercially available biowatch to measure galvanic skin response (GSR), a well known indicator of stress. 10 radiology residents wore the biowatch for about 8 hours during their normal work day and data were automatically collected at 10 Hz. They completed the Swedish Occupational Fatigue Inventory (SOFI) at the start and finish of the day. GSR values (microsiemens) ranged from 0.14 to 38.27 with an average of 0.50 (0.28 median). Overall GSR tended to be fairly constant as the day progressed, but there were definite spikes indicating higher levels of stress. SOFI scores indicated greater levels of fatigue and stress at the end of the work day. Although further work is needed, GSR measurements obtained via an easy to wear watch may provide a means to monitor stress/fatigue and alert radiologists when to take a break from interpreting images to avoid making errors.

  9. Effect of laser shock peening on residual stress and fatigue life of clad 2024 aluminium sheet containing scribe defects

    International Nuclear Information System (INIS)

    Dorman, M.; Toparli, M.B.; Smyth, N.; Cini, A.; Fitzpatrick, M.E.; Irving, P.E.

    2012-01-01

    Highlights: ► Effect of laser peen intensity on local residual stress fields in 2024 aluminium. ► Peening induces significant changes in surface topography and local hardness. ► Residual stress at peen spot centre in tension, spot overlap in compression. ► Notched fatigue lives increased; crack morphology correlated to residual stress field. ► Large peening power densities can cause fatigue life reduction in notched samples. - Abstract: Laser peening at a range of power densities has been applied to 2 mm-thick sheets of 2024 T351 aluminium. The induced residual stress field was measured using incremental hole drilling and synchrotron X-ray diffraction techniques. Fatigue samples were subjected to identical laser peening treatments followed by scribing at the peen location to introduce stress concentrations, after which they were fatigue tested. The residual stresses were found to be non-biaxial: orthogonal to the peen line they were tensile at the surface, moving into the desired compression with increased depth. Regions of peen spot overlap were associated with large compression strains; the centre of the peen spot remaining tensile. Fatigue lives showed moderate improvement over the life of unpeened samples for 50 μm deep scribes, and slight improvement for samples with 150 μm scribes. Use of the residual stress intensity K resid approach to calculate fatigue life improvement arising from peening was unsuccessful at predicting the relative effects of the different peening treatments. Possible reasons for this are explored.

  10. Stress and fatigue analyses of primary circuit components of NPP using FEM

    International Nuclear Information System (INIS)

    Gal, P.

    2015-01-01

    This poster is a short illustration of the numerical assessment of the VVER-440 reactor pressure vessel (RPV) main flange. RPV main flange consists in free flange, pressure ring, flange bolts, nut and nickel gasket. Operating temperature transient modes, like heat up regime can lead to serious tension in bolts. So temperature fields have to be calculated. The fatigue assessment of the main flange bolt requires the determination of the coefficient of stress concentrators in bolt thread. Stress concentrators can be computed through FEM or given by norms (PNAEG). The most significant value of fatigue usage factor is in the first thread connection between bolt and nut. A finite element method (FEM) is used for calculation stress and temperature distribution in the reactor flange. The reassessment was performed according Czech normative document NTD-A.S.I. and VERLIFE

  11. Fatigue Reliability Analysis of a Mono-Tower Platform

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    1991-01-01

    In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed thro...... of the natural period, damping ratio, current, stress spectrum and parameters describing the fatigue strength. Further, soil damping is shown to be significant for the Mono-tower.......In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed...... through linear-elastic fracture mechanics (LEFM). In determining the cumulative fatigue damage, Palmgren-Miner's rule is applied. Element reliability, as well as systems reliability, is estimated using first-order reliability methods (FORM). The sensitivity of the systems reliability to various parameters...

  12. Near-threshold fatigue crack behaviour in EUROFER 97 at different temperatures

    International Nuclear Information System (INIS)

    Aktaa, J.; Lerch, M.

    2006-01-01

    The fatigue crack behaviour in EUROFER 97 was investigated at room temperature (RT), 300, 500 and 550 deg. C for the assessment of cracks in first wall structures built from EUROFER 97 of future fusion reactors. For this purpose, fatigue crack growth tests were performed using CT specimens with two R-ratios, R = 0.1 and R = 0.5 (R is the load ratio with R = F min /F max where F min and F max are the minimum and maximum applied loads within a cycle, respectively). Hence, fatigue crack threshold, fatigue crack growth behaviour in the near-threshold range and their dependences on temperature and R-ratio were determined and described using an analytical formula. The fatigue crack threshold showed a monotonous dependence on temperature which is for R = 0.5 insignificantly small. The fatigue crack growth behaviour exhibited for R = 0.1 a non-monotonous dependence on temperature which is explained by the decrease of yield stress and the increase of creep damage with increasing temperature

  13. Effect of residual stress on fatigue crack propagation at 200 C in a welded joint austenitic stainless steel - ferritic steel

    International Nuclear Information System (INIS)

    Zahouane, A.I.; Gauthier, J.P.; Petrequin, P.

    1988-01-01

    Fatigue resistance of heterogeneous welded joints between austenitic stainless steels and ferritic steels is evaluated for reactor components and more particularly effect of residual stress on fatigue crack propagation in a heterogeneous welded joint. Residual stress is measured by the hole method in which a hole is drilled through the center of a strain gage glued the surface of the materials. In the non uniform stress field a transmissibility function is used for residual stress calculation. High compression residual stress in the ferritic metal near the interface ferritic steel/weld slow down fatigue crack propagation. 5 tabs., 15 figs., 19 refs [fr

  14. On the fatigue behavior of friction stir welded AlSi 10 Mg alloy

    International Nuclear Information System (INIS)

    Alburquerque, J. M.; Ramos, P. A.; Gomes, M. A.; Cruz, A. C.

    2005-01-01

    The high cycle fatigue behaviour of friction stir welded AISi 10 Mg samples was investigated for a stress ratio R=0.1, ranging from 0.5 to 0.9 of the yield strength, in addition to tensile tests. The welds were produced with different tool rotation and travel speeds, and these welding parameters were correlated to residual stresses, measured by X-ray diffraction (sen''2Ψ method). Moreover, the residual stresses were measured during the fatigue testing, at fixed cycle intervals, being reported. It was observed that the residual (compressive)stresses within the nugget were smaller than in the interface regions (between the thermo-mechanically affected zone and the base metal) and stabilized above 4 x 10''5 cycles. Fatigue crack morphology and microstructural changes were characterized by optical and electron microscopy and the observations are discussed along with the fatigue results. (Author) 14 refs

  15. I Am So Tired… How Fatigue May Exacerbate Stress Reactions to Psychological Contract Breach.

    Science.gov (United States)

    Achnak, Safâa; Griep, Yannick; Vantilborgh, Tim

    2018-01-01

    Previous research showed that perceptions of psychological contract (PC) breach have undesirable individual and organizational consequences. Surprisingly, the PC literature has paid little to no attention to the relationship between PC breach perceptions and stress. A better understanding of how PC breach may elicit stress seems crucial, given that stress plays a key role in employees' physical and mental well-being. Based on Conservation of Resources Theory, we suggest that PC breach perceptions represent a perceived loss of valued resources, subsequently leading employees to experience higher stress levels resulting from emerging negative emotions. Moreover, we suggest that this mediated relationship is moderated by initial levels of fatigue, due to fatigue lowering the personal resources necessary to cope with breach events. To tests our hypotheses, we analyzed the multilevel data we obtained from two experience sampling designs (Study 1: 51 Belgian employees; Study 2: 53 US employees). Note that the unit of analysis is "observations" rather than "respondents," resulting in an effective sample size of 730 (Study 1) and 374 (Study 2) observations. In both studies, we found evidence for the mediating role of negative emotions in the PC breach-stress relationship. In the second study, we also found evidence for the moderating role of fatigue in the mediated PC breach-stress relationship. Implications for research and practice are discussed.

  16. I Am So Tired… How Fatigue May Exacerbate Stress Reactions to Psychological Contract Breach

    Directory of Open Access Journals (Sweden)

    Safâa Achnak

    2018-03-01

    Full Text Available Previous research showed that perceptions of psychological contract (PC breach have undesirable individual and organizational consequences. Surprisingly, the PC literature has paid little to no attention to the relationship between PC breach perceptions and stress. A better understanding of how PC breach may elicit stress seems crucial, given that stress plays a key role in employees' physical and mental well-being. Based on Conservation of Resources Theory, we suggest that PC breach perceptions represent a perceived loss of valued resources, subsequently leading employees to experience higher stress levels resulting from emerging negative emotions. Moreover, we suggest that this mediated relationship is moderated by initial levels of fatigue, due to fatigue lowering the personal resources necessary to cope with breach events. To tests our hypotheses, we analyzed the multilevel data we obtained from two experience sampling designs (Study 1: 51 Belgian employees; Study 2: 53 US employees. Note that the unit of analysis is “observations” rather than “respondents,” resulting in an effective sample size of 730 (Study 1 and 374 (Study 2 observations. In both studies, we found evidence for the mediating role of negative emotions in the PC breach—stress relationship. In the second study, we also found evidence for the moderating role of fatigue in the mediated PC breach—stress relationship. Implications for research and practice are discussed.

  17. I Am So Tired… How Fatigue May Exacerbate Stress Reactions to Psychological Contract Breach

    Science.gov (United States)

    Achnak, Safâa; Griep, Yannick; Vantilborgh, Tim

    2018-01-01

    Previous research showed that perceptions of psychological contract (PC) breach have undesirable individual and organizational consequences. Surprisingly, the PC literature has paid little to no attention to the relationship between PC breach perceptions and stress. A better understanding of how PC breach may elicit stress seems crucial, given that stress plays a key role in employees' physical and mental well-being. Based on Conservation of Resources Theory, we suggest that PC breach perceptions represent a perceived loss of valued resources, subsequently leading employees to experience higher stress levels resulting from emerging negative emotions. Moreover, we suggest that this mediated relationship is moderated by initial levels of fatigue, due to fatigue lowering the personal resources necessary to cope with breach events. To tests our hypotheses, we analyzed the multilevel data we obtained from two experience sampling designs (Study 1: 51 Belgian employees; Study 2: 53 US employees). Note that the unit of analysis is “observations” rather than “respondents,” resulting in an effective sample size of 730 (Study 1) and 374 (Study 2) observations. In both studies, we found evidence for the mediating role of negative emotions in the PC breach—stress relationship. In the second study, we also found evidence for the moderating role of fatigue in the mediated PC breach—stress relationship. Implications for research and practice are discussed. PMID:29559935

  18. Influence of fatigue, stress, muscle soreness and sleep on perceived exertion during submaximal effort.

    Science.gov (United States)

    Haddad, Monoem; Chaouachi, Anis; Wong, Del P; Castagna, Carlo; Hambli, Mourad; Hue, Olivier; Chamari, Karim

    2013-07-02

    The aim of this study was to assess the effects of the Hooper's Index variations (i.e., self-ratings of fatigue, stress, delayed onset muscle soreness (DOMS), and sleep) on rating of perceived exertion during a 10 min submaximal exercise training session (RPE-10 min) and then check the stability and the internal consistency of RPE-10 min. Seventeen junior soccer players took part in this study. The individual Hooper's indices taken before each training session were correlated with RPE-10 min during a constant intensity and duration effort (10 min) using Pearson product moment correlation. Intraclass correlation (ICC) was used to assess the internal consistency of the RPE-10 min. All individual correlations between RPE-10 min and quality of sleep and quantity of fatigue, stress, and DOMS were non-significant (p>0.05). No significant correlations were resulted between RPE-10 min and Hooper's Index in all athletes. The ICC of RPE-10 min was 0.77 thus demonstrating internal consistency. The results of the present study demonstrated the objectivity and utility of RPE as a psychological tool for monitoring training during traditional soccer training. Therefore, the results of the present study suggest that fatigue, stress, DOMS and sleep are not major contributors of perceived exertion during traditional soccer training without excessive training loads. It seems that psychobiological factors other than fatigue, stress, DOMS and sleep may have mediated the 10 min exercise perceptual intensity. © 2013.

  19. The effects of compressive stress and contamination liquids on the ultrasonic detection of fatigue cracks

    International Nuclear Information System (INIS)

    Wooldridge, A.B.

    1980-01-01

    The influence of compressive stress on the reflection and transmission of ultrasound has been investigated for fatigue cracks. An examination has been made of the shear wave corner echoes from surface breaking fatigue cracks which were grown at constant stress intensity factor to control the roughness of the faces. In this way a correlation has been established between the roughness of the surfaces and the ultrasonic response at both zero load and under stress. The effect of liquids in the cracks has also been studied and the results compared with theoretical predictions for a thin sided parallel gap. (author)

  20. [Effects of self-foot reflexology on stress, fatigue and blood circulation in premenopausal middle-aged women].

    Science.gov (United States)

    Jang, Soo Hyun; Kim, Kye Ha

    2009-10-01

    This study was to examine the effects of self-foot reflexology on stress, fatigue and blood circulation in premenopausal middle-aged women. A quasi-experimental nonequivalent control group, pretest-posttest design was used. Participants were 59 premenopausal, middle-aged women in their 40s and 60s living in G city: 30 in the experiment group and 29 in the control group. Data were collected from May to August 2008. Self-foot reflexology was performed three times a week for 6 weeks for 40 min at each session. The results showed that self-foot reflexology was effective in reducing perceived stress and fatigue and helped blood circulation in premenopausal middle-aged women. Self-foot reflexology may be an effective nursing intervention in reducing perceived stress and fatigue and in improving blood circulation.

  1. Fatigue crack growth behavior and tearing instability characteristics under cyclic high stress, 2

    International Nuclear Information System (INIS)

    Mogami, Kazunari; Yamakawa, Jun; Ando, Kotoji; Ogura, Nobukazu

    1990-01-01

    The J-R curve, fatigue crack growth rate and characteristics of ductile unstable fracture under monotonic and cyclic load were investigated using 1TCT test specimens which were cut out from A508 steel for reactor pressure vessels. All the tests were carried out at 100degc. The main results obtained were as follows. (1) The J-R curve under the cyclic load is not a material constant but is dependent on the test conditions. (2) da/dN from typical fatigue data cannot be extrapolated by ΔJ only if the value of da/dN is above 5x10 -4 mm/cycles. However, it can be extrapolated by using the following equation in which J max is used: da/dN=C{√(ΔJ)/(B-√J max )} m . (3) The J values at instability obtained from the ductile unstable fracture test carried out under the cyclic load of stress ratio R=0, 01 and -1.0 were compared with those from the monotonically increasing load. These J values at instability were almost the same as that for the monotonically increasing load. (author)

  2. Multispecimen fatigue crack propagation testing

    International Nuclear Information System (INIS)

    Ermi, A.M.; Bauer, R.E.; Chin, B.A.; Straalsund, J.L.

    1981-01-01

    Chains of miniature center-cracked-tension specimens were tested on a conventional testing machine and on a prototypic in-reactor fatigue machine as part of the fusion reactor materials alloy development program. Annealed and 20 percent cold-worked 316 stainless steel specimens were cycled under various conditions of temperature, frequency, stress ratio and chain length. Crack growth rates determined from multispecimen visual measurements and from an electrical potential technique were consistent with those obtained by conventional test methods. Results demonstrate that multispecimen chain testing is a valid method of obtaining fatigue crack propagation information for alloy development. 8 refs

  3. Crack mode and life of Ti-6Al-4V under multiaxial low cycle fatigue

    Directory of Open Access Journals (Sweden)

    Takamoto Itoh

    2015-10-01

    Full Text Available This paper studies multiaxial low cycle fatigue crack mode and failure life of Ti-6Al-4V. Stress controlled fatigue tests were carried out using a hollow cylinder specimen under multiaxial loadings of λ=0, 0.4, 0.5 and 1 of which stress ratio R=0 at room temperature. λ is a principal stress ratio and is defined as λ=II/I, where I and II are principal stresses of which absolute values take the largest and middle ones, respectively. Here, the test at λ=0 is a uniaxial loading test and that at λ=1 an equi-biaxial loading test. A testing machine employed is a newly developed multiaxial fatigue testing machine which can apply push-pull and reversed torsion loadings with inner pressure onto the hollow cylinder specimen. Based on the obtained results, this study discusses evaluation of the biaxial low cycle fatigue life and crack mode. Failure life is reduced with increasing λ induced by cyclic ratcheting. The crack mode is affected by the surface condition of cut-machining and the failure life depends on the crack mode in the multiaxial loading largely.

  4. Parametric analysis of fatigue crack growth

    International Nuclear Information System (INIS)

    Carden, A.E.

    1975-01-01

    The effect of temperature and frequency on fatigue crack growth were empirically observed and treated as a coefficient on a stress intensity factor term. The stress intensity factor term is a function of Ksub(max), Ksub(min) (or stress ratio) and a threshold K term. The apparent threshold values were selected in order to linearize the data. At 1000 0 F a constant da/dt (creep crack growth rate) is approached for cycle periods approaching 2000 s indicating a limiting and linear-inverse frequency effect. (author)

  5. Corrosion fatigue cracking behavior of Inconel 690 (TT) in secondary water of pressurized water reactors

    International Nuclear Information System (INIS)

    Xiao Jun; Chen Luyao; Qiu Shaoyu; Chen Yong; Lin Zhenxia; Fu Zhenghong

    2015-01-01

    Inconel 690 (TT) is one of the key materials for tubes of steam generators for pressurized water reactors, where it is susceptible to corrosion fatigue cracking. In this paper, the corrosion fatigue cracking behavior of Inconel 690 (TT) was investigated under small scale yielding conditions, in the simulated secondary water of pressurized water reactor. It was observed that the fatigue crack growth rate was accelerated by a maximum factor up to 3 in the simulated secondary water, comparing to that in room temperature air. In addition, it was found that the accelerating effect was influenced by out-of-plane cracking of corrosion fatigue cracks and also correlated with stress intensity factor range, maximum stress intensity factor and stress ratio. (authors)

  6. Effects of Changing Stress Amplitude on the Rate of Fatigue-Crack Propagation in Two Aluminum Alloys

    Science.gov (United States)

    Hudson, C. Michael; Hardrath, Herbert F.

    1961-01-01

    A series of fatigue tests with specimens subjected to constant amplitude and two-step axial loads were conducted on 12-inch-wide sheet specimens of 2024-T3 and 7075-T6 aluminum alloy to study the effects of a change in stress level on fatigue-crack propagation. Comparison of the results of the tests in which the specimens were tested at first a high and then a low stress level with those of the constant-stress- amplitude tests indicated that crack propagation was generally delayed after the transition to the lower stress level. In the tests in which the specimens were tested at first a low and then a high stress level, crack propagation continued at the expected rate after the change in stress levels.

  7. Do sleep, stress, and illness explain daily variations in fatigue? A prospective study.

    Science.gov (United States)

    Akerstedt, Torbjörn; Axelsson, John; Lekander, Mats; Orsini, Nicola; Kecklund, Göran

    2014-04-01

    Fatigue is related to a number of serious diseases, as well as to general well-being. It is also a major cause of sickness absence and use of health facilities. Still, the determinants of variations in fatigue are little investigated. The purpose of present study was to investigate the relationships between the daily variations of fatigue with sleep during the previous night, stress or disease symptoms during the same day - across 42 consecutive days of normal life. 50 individuals participated and gave diary reports and used an actigraph across the 42days. The data was analyzed using a multilevel approach with mixed model regression. The analyses showed that the day-to-day variation in fatigue was related to (poor) sleep quality (pstress (pfatigue rating. Fatigue was also strongly related to poorer subjective health (pstress and illness are consistently connected to how fatigue is experienced during normal living conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Sleep quality and fatigue after a stress management intervention for women with early-stage breast cancer in southern Florida.

    Science.gov (United States)

    Vargas, Sara; Antoni, Michael H; Carver, Charles S; Lechner, Suzanne C; Wohlgemuth, William; Llabre, Maria; Blomberg, Bonnie B; Glück, Stefan; DerHagopian, Robert P

    2014-12-01

    Sleep disruption and fatigue are ubiquitous among cancer patients and are sources of stress that may compromise treatment outcomes. Previously, we showed that a cognitive behavioral stress management (CBSM) intervention reduced anxiety and other stress-related processes in women undergoing primary treatment for breast cancer. This study examined secondary outcomes from a CBSM intervention trial for women with early-stage breast cancer to test if CBSM would improve sleep quality and fatigue among these patients at a single site in southern Florida. CBSM-related effects have already been demonstrated for indicators of psychosocial adaptation (e.g., general and cancer-related anxiety). Patients were randomized to CBSM (n= 120) or a 1-day psychoeducation control group (n= 120). The Pittsburgh Sleep Quality Index (PSQI) and Fatigue Symptom Inventory were completed prior to randomization and 6 and 12 months after the baseline assignment. In latent growth analyses, women in CBSM reported greater improvements in PSQI sleep quality scores than controls, although there were no significant differences between conditions on PSQI total scores. Women in CBSM also reported greater reductions in fatigue-related daytime interference than controls, though there were no significant differences in changes in fatigue intensity. Changes in sleep quality were associated with changes in fatigue. Future work may consider integrating sleep and fatigue content into stress management interventions for women with early-stage breast cancer.

  9. The traditional drug Gongjin-Dan ameliorates chronic fatigue in a forced-stress mouse exercise model.

    Science.gov (United States)

    Hong, Sung-Shin; Lee, Ji-Young; Lee, Jin-Seok; Lee, Hye-Won; Kim, Hyeong-Geug; Lee, Sam-Keun; Park, Bong-Ki; Son, Chang-Gue

    2015-06-20

    Gongjin-Dan is a representative traditional Oriental medicine herbal drug that has been used to treat chronic fatigue symptoms for several hundred years. We evaluated the anti-fatigue effects of Gongjin-Dan and the underlying mechanisms in a chronic forced exercise mouse model. Balb/C male mice underwent an extreme treadmill-based running stress (1-h, 5 days/week), and daily oral administration of distilled water, Gongjin-Dan (100, 200, or 400 mg/kg), or ascorbic acid (100 mg/kg) for 28 days. The anti-fatigue effects of Gongjin-Dan were evaluated with behavioral tests (exercise tolerance and swimming tests), and the corresponding mechanisms were investigated based on oxidative stress and inflammatory cytokine and stress hormone levels in skeletal muscle, sera, and brain tissue. Gongjin-Dan significantly increased exercise tolerance and latency times but reduced the number of electric shocks and immobilization time on the treadmill running and swimming tests, compared with the control group. Gongjin-Dan also significantly ameliorated alterations in oxidative stress-related biomarkers (reactive oxygen species and malondialdehyde), inflammatory cytokines (tumor necrosis factor-α, interleukin-1 beta, interleukin-6, and interferon-γ) and glycogen and L-lactate levels in skeletal muscle, compared with those in the control group. Moreover, Gongjin-Dan considerably normalized the forced running stress-induced changes in serum corticosterone and adrenaline levels, as well as brain serotonin level. These antioxidant and anti-stress effects of Gongjin-Dan were supported by the results of Western blotting (4-hydroxynonenal and heme oxygenase-1) and the gene expression levels (serotonin receptor and serotonin transporter). These results support the clinical relevance of Gongjin-Dan regarding anti-chronic fatigue properties. The underlying mechanisms involve attenuation of oxidative and inflammatory reactions in muscle and regulation of the stress response through the

  10. Fatigue life assessment of thin-walled welded joints under non-proportional load-time histories by the shear stress rate integral approach

    Directory of Open Access Journals (Sweden)

    A. Bolchoun

    2016-10-01

    Full Text Available Fatigue life tests under constant and variable amplitude loadings were performed on the tube-tube thin-walled welded specimens made of magnesium (AZ31 and AZ61 alloys. The tests included pure axial, pure torsional and combined in-phase and out-of-phase loadings with the load ratio  RR " ", " " 1  . For the tests with variable amplitude loads a Gaußdistributed loading spectrum with S L 4 5 10  cycles was used. Since magnesium welds show a fatigue life reduction under out-of-phase loads, a stress-based method, which takes this behavior into account, is proposed. The out-of-phase loading results in rotating shear stress vectors in the section planes, which are not orthogonal to the surface. This fact is used in order to provide an out-of-phase measure of the load. This measure is computed as an area covered by the shear stress vectors in all planes over a certain time interval, its computation involves the shear stress and the shear stress rate vectors in the individual planes. Fatigue life evaluation for the variable amplitudes loadings is performed using the Palmgren-Miner linear damage accumulation, whereas the total damage of every cycle is split up into two components: the amplitude component and the out-of-phase component. In order to compute the two components a modification of the rainflow counting method, which keeps track of the time intervals, where the cycles occur, must be used. The proposed method also takes into account different slopes of the pure axial and the pure torsional Wöhler-line by means of a Wöhler-line interpolation for combined loadings

  11. Possible role of oxidative stress and immunological activation in mouse model of chronic fatigue syndrome and its attenuation by olive extract.

    Science.gov (United States)

    Gupta, Amit; Vij, Garima; Chopra, Kanwaljit

    2010-09-14

    Various putative theories involved in the development of chronic fatigue syndrome revolve around the role of stress, infection and oxidative stress. Scientific evidence highlighting the protective role of nutritional supplements in chronic fatigue syndrome is lacking. Based on these assumptions, the present study was designed to evaluate the effect of olive extract in a mouse model of immunologically-induced fatigue, wherein purified lipopolysaccharide (LPS) and Brucella abortus (BA) antigen were used as immunogens. The assessment of chronic fatigue syndrome was based on immobility period during chronic water-immersion stress test for 10 min daily. The stress-induced hyperalgesia was measured by tail withdrawal latency. Mice challenged with LPS or BA for 19 days showed significant increase in the immobility time, hyperalgesia and oxidative stress on the 19th day. Serum tumor necrosis factor-alpha (TNF-α) levels were also markedly increased with LPS or BA challenge. Concurrent treatment with olive extract resulted in a significant decrease in the immobility time as well as hyperalgesia. There was significant attenuation of oxidative stress as well as serum TNF-α levels. The results of the present study strongly indicate the role of oxidative stress and immunological activation in the pathophysiology of chronic fatigue syndrome and highlight the valuable role of olive extract in combating chronic fatigue syndrome. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Fatigue-crack propagation behavior of Inconel 600

    International Nuclear Information System (INIS)

    James, L.A.

    1976-05-01

    The techniques of linear-elastic fracture mechanics were employed to characterize the effects of several parameters upon the fatigue-crack propagation behavior of Inconel 600. The parameters studied included temperature, cyclic frequency, stress ratio, thermal aging, and a limited amount of testing in a liquid sodium environment

  13. Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants.

    Science.gov (United States)

    Lee, Woo-Taek; Koak, Jai-Young; Lim, Young-Jun; Kim, Seong-Kyun; Kwon, Ho-Beom; Kim, Myung-Joo

    2012-05-01

    The poly-ether-ether-ketone (PEEK) polymer is of great interest as an alternative to titanium in orthopedics because of its biocompatibility and low elastic modulus. This study evaluated the fatigue limits of PEEK and the effects of the low elastic modulus PEEK in relation to existing dental implants. Compressive loading tests were performed with glass fiber-reinforced PEEK (GFR-PEEK), carbon fiber-reinforced PEEK (CFR-PEEK), and titanium rods. Among these tests, GFR-PEEK fatigue tests were performed according to ISO 14801. For the finite element analysis, three-dimensional models of dental implants and bone were constructed. The implants in the test groups were coated with a 0.5-mm thick and 5-mm long PEEK layer on the upper intrabony area. The strain energy densities (SED) were calculated, and the bone resorption was predicted. The fatigue limits of GFR-PEEK were 310 N and were higher than the static compressive strength of GFR-PEEK. The bone around PEEK-coated implants showed higher levels of SED than the bone in direct contact with the implants, and the wider diameter and stiffer implants showed lower levels of SED. The compressive strength of the GFR-PEEK and CFR-PEEK implants ranged within the bite force of the anterior and posterior dentitions, respectively, and the PEEK implants showed adequate fatigue limits for replacing the anterior teeth. Dental implants with PEEK coatings and PEEK implants may reduce stress shielding effects. Dental implant application of PEEK polymer-fatigue limit and stress shielding. Copyright © 2012 Wiley Periodicals, Inc.

  14. Stress Analysis and Fatigue Behaviour of PTFE-Bronze Layered Journal Bearing under Real-Time Dynamic Loading

    Science.gov (United States)

    Duman, M. S.; Kaplan, E.; Cuvalcı, O.

    2018-01-01

    The present paper is based on experimental studies and numerical simulations on the surface fatigue failure of the PTFE-bronze layered journal bearings under real-time loading. ‘Permaglide Plain Bearings P10’ type journal bearings were experimentally tested under different real time dynamic loadings by using real time journal bearing test system in our laboratory. The journal bearing consists of a PTFE-bronze layer approximately 0.32 mm thick on the steel support layer with 2.18 mm thick. Two different approaches have been considered with in experiments: (i) under real- time constant loading with varying bearing widths, (ii) under different real-time loadings at constant bearing widths. Fatigue regions, micro-crack dispersion and stress distributions occurred at the journal bearing were experimentally and theoretically investigated. The relation between fatigue region and pressure distributions were investigated by determining the circumferential pressure distribution under real-time dynamic loadings for the position of every 10° crank angles. In the theoretical part; stress and deformation distributions at the surface of the journal bearing analysed by using finite element methods to determine the relationship between stress and fatigue behaviour. As a result of this study, the maximum oil pressure and fatigue cracks were observed in the most heavily loaded regions of the bearing surface. Experimental results show that PTFE-Bronze layered journal bearings fatigue behaviour is better than the bearings include white metal alloy.

  15. Effects of cold working ratio and stress intensity factor on intergranular stress corrosion cracking susceptibility of non-sensitized austenitic stainless steels in simulated BWR and PWR primary water

    International Nuclear Information System (INIS)

    Yaguchi, Seiji; Yonezawa, Toshio

    2012-01-01

    To evaluate the effects of cold working ratio, stress intensity factor and water chemistry on an IGSCC susceptibility of non-sensitized austenitic stainless steel, constant displacement DCB specimens were applied to SCC tests in simulated BWR and PWR primary water for the three types of austenitic stainless steels, Types 316L, 347 and 321. IGSCC was observed on the test specimens in simulated BWR and PWR primary water. The observed IGSCC was categorized into the following two types. The one is that the IGSCC observed on the same plane of the pre-fatigue crack plane, and the other is that the IGSCC observed on a plane perpendicular to the pre-fatigue crack plane. The later IGSCC fractured plane is parallel to the rolling plane of a cold rolled material. Two types of IGSCC fractured planes were changed according to the combination of the testing conditions (cold working ratio, stress intensity factor and simulated water). It seems to suggest that the most susceptible plane due to fabrication process of materials might play a significant role of IGSCC for non-sensitized cold worked austenitic stainless steels, especially, in simulated PWR primary water. Based upon evaluating on the reference crack growth rate (R-CGR) of the test specimens, the R-CGR seems to be mainly affected by cold working ratio. In case of simulated PWR primary water, it seems that the effect of metallurgical aspects dominates IGSCC susceptibility. (author)

  16. Probabilistic Fatigue Damage Program (FATIG)

    Science.gov (United States)

    Michalopoulos, Constantine

    2012-01-01

    FATIG computes fatigue damage/fatigue life using the stress rms (root mean square) value, the total number of cycles, and S-N curve parameters. The damage is computed by the following methods: (a) traditional method using Miner s rule with stress cycles determined from a Rayleigh distribution up to 3*sigma; and (b) classical fatigue damage formula involving the Gamma function, which is derived from the integral version of Miner's rule. The integration is carried out over all stress amplitudes. This software solves the problem of probabilistic fatigue damage using the integral form of the Palmgren-Miner rule. The software computes fatigue life using an approach involving all stress amplitudes, up to N*sigma, as specified by the user. It can be used in the design of structural components subjected to random dynamic loading, or by any stress analyst with minimal training for fatigue life estimates of structural components.

  17. Illness perceptions of fatigue and the association with sense of coherence and stress in patients one year after myocardial infarction.

    Science.gov (United States)

    Alsén, Pia; Eriksson, Monica

    2016-02-01

    To explore the associations between illness perceptions of fatigue, sense of coherence and stress in patients one year after myocardial infarction. Post-myocardial infarction fatigue is a stressful symptom that is difficult to cope with. Patients' illness perceptions of fatigue guide professionals in predicting how individuals will respond emotionally and cognitively to symptoms. Individuals' sense of coherence can be seen as a coping resource in managing stressors. A cross-sectional study design was used. One year post-myocardial infarction, a total of 74 patients still experiencing fatigue completed four questionnaires: the Multidimensional Fatigue Scale Inventory-20, the Brief Illness Perception Questionnaire, the Sense of Coherence scale (sense of coherence-13) and a single-item measure of stress symptoms. Descriptive statistics, correlations and stepwise regression analysis were carried out. Strong negative associations were found between illness perceptions of fatigue, sense of coherence and stress. Sense of coherence has an impact on illness perceptions of fatigue. Of the dimensions of sense of coherence, comprehensibility seemed to play the greatest role in explaining illness perceptions of fatigue one year after myocardial infarction. To strengthen patients' coping resources, health-care professionals should create opportunities for patients to gain individual-level knowledge that allows them to distinguish between common fatigue symptoms and warning signs for myocardial infarction. There is a need to improve strategies for coping with fatigue. It is also essential to identify patients with fatigue after myocardial infarction, as they need explanations for their symptoms and extra support. © 2016 John Wiley & Sons Ltd.

  18. Determining the von Mises stress power spectral density for frequency domain fatigue analysis including out-of-phase stress components

    Science.gov (United States)

    Bonte, M. H. A.; de Boer, A.; Liebregts, R.

    2007-04-01

    This paper provides a new formula to take into account phase differences in the determination of an equivalent von Mises stress power spectral density (PSD) from multiple random inputs. The obtained von Mises PSD can subsequently be used for fatigue analysis. The formula was derived for use in the commercial vehicle business and was implemented in combination with Finite Element software to predict and analyse fatigue failure in the frequency domain.

  19. Association of Fatigue with Perceived Stress in Chinese Women with Early Stage Breast Cancer Awaiting Adjuvant Radiotherapy.

    Science.gov (United States)

    Ho, Rainbow T H; Kwan, Tracy T C; Cheung, Irene K M; Chan, Caitlin K P; Lo, Phyllis H Y; Yip, Paul S F; Luk, Mai-Yee; Chan, Cecilia L W

    2015-08-01

    Cancer-related fatigue (CRF) is common in women with breast cancer, but little is known of its relationship with perceived stress. We conducted a cross-sectional study to explore the associations of CRF with perceived stress, anxiety, depression, pain and sleep quality in 133 Chinese women (aged 25-68 years) with early stage breast cancer. The majority of women had completed surgery and chemotherapy and were awaiting radiotherapy. Self-administered questionnaires consisting of the Brief Fatigue Inventory, Perceived Stress Scale-10, Hospital Anxiety and Depression Scale, Brief Pain Inventory, and Pittsburgh Sleep Quality Index were used to collect data. Forty-five per cent of the women were severely fatigued. Compared with local healthy women and US breast cancer patients, the group's mean perceived stress score was significantly higher (both p stress (β = 0.18, p = 0.032), higher anxiety (β = 0.30, p stress was partially mediated by anxiety, suggesting a possible pathway from cancer and cancer treatment to CRF via stress appraisals and emotional distress. The findings indicate the importance of monitoring the psychological status of patients during treatment. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Evidence-based efficacy of adaptogens in fatigue, and molecular mechanisms related to their stress-protective activity.

    Science.gov (United States)

    Panossian, Alexander; Wikman, Georg

    2009-09-01

    The aim of this review article is to assess the level of scientific evidence presented by clinical trials of adaptogens in fatigue, and to provide a rationale at the molecular level for verified effects. Strong scientific evidence is available for Rhodiola rosea SHR-5 extract, which improved attention, cognitive function and mental performance in fatigue and in chronic fatigue syndrome. Good scientific evidence has been documented in trails in which Schisandra chinensis and Eleutherococcus senticosus increased endurance and mental performance in patients with mild fatigue and weakness. Based on their efficacy in clinical studies, adaptogens can be defined as a pharmacological group of herbal preparations that increase tolerance to mental exhaustion and enhance attention and mental endurance in situations of decreased performance. The beneficial stress-protective effect of adaptogens is related to regulation of homeostasis via several mechanisms of action associated with the hypothalamic-pituitary-adrenal axis and the control of key mediators of stress response such as molecular chaperons (e.g. Hsp70), stress-activated c-Jun N-terminal protein kinase (JNK1), Forkhead Box O transcription factor DAF-16, cortisol and nitric oxide (NO). The key point of action of phytoadaptogens appears to be their up-regulating and stress-mimetic effects on the "stress-sensor" protein Hsp70, which plays an important role in cell survival and apoptosis. Hsp70 inhibits the expression of NO synthase II gene and interacts with glucocorticoid receptors directly and via the JNK pathway, thus affecting the levels of circulating cortisol and NO. Prevention of stress-induced increase in NO, and the associated decrease in ATP production, results in increased performance and endurance. Adaptogen-induced up-regulation of Hsp70 triggers stress-induced JNK-1 and DAF-16-mediated pathways regulating the resistance to stress and resulting in enhanced mental and physical performance and, possibly

  1. Fatigue life prediction in composites using progressive damage modelling under block and spectrum loading

    DEFF Research Database (Denmark)

    Passipoularidis, Vaggelis; Philippidis, T.P.; Brøndsted, Povl

    2010-01-01

    series can be simulated. The predictions are validated against fatigue life data both from repeated block tests at a single stress ratio as well as against spectral fatigue using the WISPER, WISPERX and NEW WISPER load sequences on a Glass/Epoxy multidirectional laminate typical of a Wind Turbine Rotor...

  2. Early life stress and inflammatory mechanisms of fatigue in the Coronary Artery Risk Development in Young Adults (CARDIA) study.

    Science.gov (United States)

    Cho, Hyong Jin; Bower, Julienne E; Kiefe, Catarina I; Seeman, Teresa E; Irwin, Michael R

    2012-08-01

    Fatigue is highly prevalent and causes serious disruption in quality of life. Although cross-sectional studies suggest childhood adversity is associated with adulthood fatigue, longitudinal evidence of this relationship and its specific biological mechanisms have not been established. This longitudinal study examined the association between early life stress and adulthood fatigue and tested whether this association was mediated by low-grade systemic inflammation as indexed by circulating C-reactive protein (CRP) and interleukin-6 (IL-6). In the Coronary Artery Risk Development in Young Adults (CARDIA) study, a population-based longitudinal study conducted in 4 US cities, early life stress was retrospectively assessed in 2716 African-American and white adults using the Risky Families Questionnaire at Year 15 examination (2000-2001, ages 33-45 years). Fatigue as indexed by a loss of subjective vitality using the Vitality Subscale of the 12-item Short Form Health Survey was assessed at both Years 15 and 20. While CRP was measured at both Years 15 and 20, IL-6 was measured only at Year 20. Early life stress assessed at Year 15 was associated with adulthood fatigue at Year 20 after adjustment for sociodemographic characteristics, body-mass index, medication use, medical comorbidity, smoking, alcohol consumption, physical activity, current stress, pain, sleep disturbance as well as Year 15 fatigue (adjusted beta 0.047, P=0.007). However, neither CRP nor IL-6 was a significant mediator of this association. In summary, early life stress assessed in adulthood was associated with fatigue 5 years later, but this association was not mediated by low-grade systemic inflammation. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. The physical interpretation of the threshold-stress intensity range during fatigue loading

    International Nuclear Information System (INIS)

    Marci, G.; Bazant, E.

    1977-01-01

    Based on the experimental results, the threshold-stress intensity range is given the physical interpretation that it characterizes a range of effective tensile stresses which need to be exceeded during a loading cycle for stage II fatigue crack growth to occur. The threshold stress intensity range is independent from its relative position in the range of effective tensile stress, has always the same magnitude and, furthermore, is independent of the Ksub(Imax) which produced the active plastic zone. The experimental results available from previous threshold stress intensity determinations are in good agreement with the concept developed. (orig.) [de

  4. X-ray analysis on the fatigue fracture surface of stainless steels

    International Nuclear Information System (INIS)

    Yoshioka, Yasuo; Guimard, B.

    1986-01-01

    Several X-ray diffraction parameters were observed on the fatigue fracture surface and its vicinity of both of SUS420J1 martensitic and SUS304 austenitic stainless steels and we discussed the relation between the stress intensity factor and these parameters. Monotonic plastic zone depth determined by the measurement of residual stress distribution proportionals to the squre of the maximum stress intensity factor as well as the case of ferritic steel. However, it is very difficult to find the relation between the stress intensity factor and residual stress or half value breadth of X-ray diffraction profile in the fracture surface for both materials. On the other hand, the amount of martensite induced by the transformation during fatigue process in SUS304 is related to the maximum stress intensity factor in the fracture surface regardless the stress ratio R. (author)

  5. Effect of Fordyce Happiness Model on depression, stress, anxiety, and fatigue in patients with multiple sclerosis.

    Science.gov (United States)

    Khayeri, Fereydoon; Rabiei, Leili; Shamsalinia, Abbas; Masoudi, Reza

    2016-11-01

    This study was conducted to investigate the effect of Fordyce Happiness Model (FHM) on depression, stress, anxiety, and fatigue in MS patients. In this clinical trial, 140 MS patients assigned to experimental and control groups. Depression, anxiety, stress, and fatigue were measured by Depression Anxiety Stress Scale-21 and Piper Standard Scale before and immediately and three months after the implementation of FHM. The data were analyzed by SPSS 18. Independent t-test indicated that total scores of stress, depression, and fatigue of the two groups were not significantly different before the intervention but were significantly different after the intervention (P˂0.05). Moreover, anxiety scores of the two were not significantly different after the intervention (P˃0.05). FHM can assist MS patients to manage their disease and associated problems in life. Besides that, since FHM is efficient and costless, it can be incorporated into the health interventions for MS patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Cumulative fatigue and creep-fatigue damage at 3500C on recrystallized zircaloy 4

    International Nuclear Information System (INIS)

    Brun, G.; Pelchat, J.; Floze, J.C.; Galimberti, M.

    1985-06-01

    An experimental programme undertaken by C.E.A., E.D.F. and FRAGEMA with the aim of characterizing the fatigue and creep fatigue behaviour of zircaloy-4 following annealing treatments (recrystallized, stress-delived) is in progress. The results given below concern only recrystallized material. Cyclic properties, low-cycle fatigue curves and creep behaviour laws under stresses have been established. Sequential tests of pure fatigue and creep-fatigue were performed. The cumulative life fractions at fracture depend on the sequence of leading, stress history and number of cycles of prestressing. The MINER's rule appears to be conservative with regard to a low-high loading sequence whereas it is not for the reverse high-low loading sequences. Fatigue and creep damage are not interchangeable. Pre-creep improves the fatigue resistance. Pre-fatigue improves the creep strength as long as the beneficial effect of cyclic hardening overcomes the damaging effect of surface cracking. The introduction of a tension hold time into the fatigue cycle slightly increases cyclic hardening and reduces the number of cycles to failure. For hold times of less than one hour, the sum of fatigue and creep life fractions is closed to one

  7. Executive function and attention in patients with stress-related exhaustion: perceived fatigue and effect of distraction.

    Science.gov (United States)

    Krabbe, David; Ellbin, Susanne; Nilsson, Michael; Jonsdottir, Ingibjörg H; Samuelsson, Hans

    2017-07-01

    Cognitive impairment has frequently been shown in patients who seek medical care for stress-related mental health problems. This study aims to extend the current knowledge of cognitive impairments in these patients by focusing on perceived fatigue and effects of distraction during cognitive testing. Executive function and attention were tested in a group of patients with stress-related exhaustion (n = 25) and compared with healthy controls (n = 25). Perceived fatigue was measured before, during and after the test session, and some of the tests were administered with and without standardized auditory distraction. Executive function and complex attention performance were poorer among the patients compared to controls. Interestingly, their performance was not significantly affected by auditory distraction but, in contrast to the controls, they reported a clear-cut increase in mental tiredness, during and after the test session. Thus, patients with stress-related exhaustion manage to perform during distraction but this was achieved at a great cost. These findings are discussed in terms of a possible tendency to adopt a high-effort approach despite cognitive impairments and the likelihood that such an approach will require increased levels of effort, which can result in increased fatigue. We tentatively conclude that increased fatigue during cognitive tasks is a challenge for patients with stress-related exhaustion and plausibly of major importance when returning to work demanding high cognitive performance.

  8. Anabolic hormone profiles in elite military men: Robust associations with age, stress, and fatigue.

    Science.gov (United States)

    Taylor, Marcus K; Padilla, Genieleah A; Hernández, Lisa M

    2017-08-01

    We recently established stable daily profiles of the anabolic hormones dehydroepiandrosterone (DHEA) and testosterone in 57 elite military men. In this follow-on study, we explored associations of salivary anabolic hormone profiles with demographic (i.e., age, body mass index [BMI]) and biobehavioral health indices (i.e., blood pressure, sleep, perceived stress, fatigue) via correlational models. Next, nuanced patterns were constructed using quartile splits followed by one-way analysis of variance and post hoc subgroup comparisons. Both DHEA (r range: -0.33 to -0.49) and testosterone (r range: -0.19 to -0.41) were inversely associated with age. Quartile comparisons revealed that age-related declines in DHEA were linear, curvilinear, or sigmoidal, depending on the summary parameter of interest. Anabolic hormone profiles did not associate with BMI, blood pressure, or sleep efficiency. Robust linear associations were observed between testosterone and perceived stress (r range: -0.29 to -0.36); concentration-dependent patterns were less discernible. Lower DHEA (r range: -0.22 to -0.30) and testosterone (r range: -0.22 to -0.36) concentrations associated with higher fatigue. Subsequent quartile comparisons suggested a concentration-dependent threshold with respect to evening testosterone. Specifically, those individuals within the lowest quartile (≤68.4pg/mL) endorsed the highest fatigue of the four groups (p=0.01), while the remaining three groups did not differ from each other. This study not only showed that anabolic hormone profiles have distinctive age trajectories, but are also valuable predictors of stress and fatigue in elite military men. This highlights the importance of routine monitoring of anabolic hormone profiles to sustain and optimize health and readiness in chronically stressed populations. Published by Elsevier Inc.

  9. The impact of multiple care giving roles on fatigue, stress, and work performance among hospital staff nurses.

    Science.gov (United States)

    Scott, Linda D; Hwang, Wei-Ting; Rogers, Ann E

    2006-02-01

    This study describes fatigue and stress among a random sample of full-time hospital staff nurses (n=393) who provide care for aging family members, compares the results to nurses with and without children younger than 18 years living at home, examines differences in sleep duration, and explores the effects on work performance by care giving status during a 4-week period. Little attention has been given to the effects of care giver well-being when individuals assume dual roles as family and professional care givers. Hospital staff nurses recorded daily information concerning their work hours, errors, sleep/wake patterns, perceptions of fatigue, alertness, and stress and periods of drowsiness and sleep episodes while on duty for 28 days. Fatigue and stress levels were significantly higher among nurses caring for both children and elders. However, nurses providing elder care at home were more fatigued, sleep-deprived, and likely to make errors at work. These findings underscore the importance of restorative sleep interventions and fatigue countermeasures for hospital staff nurses involved in dual care giving roles. Limiting overtime and applying circadian principles to hospital scheduling processes would ensure a more alert workforce, minimize health risks for nurses, and maximize the safety of those in their care.

  10. The frequency effect on the fatigue crack growth rate of 304 stainless steel

    International Nuclear Information System (INIS)

    Shih, Y.-S.; Chen, J.-J.

    1999-01-01

    Under cyclic loading condition, the fatigue crack growth (FCG) rate governed by stress intensity factor and stress ratio is well known; Walker's equation, Forman's equation and Elber's equation are typical formulae to describe the fatigue crack growth rate. However, the loading frequency effect on the fatigue crack growth rate has yet to be explored. Recently, studies have focused on the loading frequency effect on some visco-elastic materials, and have provided a clearer understanding of the frequency effect on the fatigue crack growth rate. In a physical sense, knowledge about the loading frequency effect on the fatigue crack growth rate for 304 stainless steel is still lacking. James conducted a lot of experiments, and through data analysis, he concluded an evaluation equation which is based upon the experimental illustration. In this study, the physical properties of the material are used to illustrate the modification of fatigue crack growth rate, and a new formula which is based upon the modified Forman's equation, is provided. (orig.)

  11. The effect of allergic rhinitis on the degree of stress, fatigue and quality of life in OSA patients.

    Science.gov (United States)

    Park, Cheol Eon; Shin, Seung Youp; Lee, Kun Hee; Cho, Joong Saeng; Kim, Sung Wan

    2012-09-01

    Both allergic rhinitis (AR) and obstructive sleep apnea (OSA) are known to increase stress and fatigue, but the result of their coexistence has not been studied. The objective of this study was to evaluate the amount of stress and fatigue when AR is combined with OSA. One hundred and twelve patients diagnosed with OSA by polysomnography were enrolled. Among them, 37 patients were diagnosed with AR by a skin prick test and symptoms (OSA-AR group) and 75 patients were classified into the OSA group since they tested negative for allergies. We evaluated the Epworth sleepiness scale (ESS), stress score, fatigue score, ability to cope with stress, and rhinosinusitis quality of life questionnaire (RQLQ) with questionnaires and statistically compared the scores of both groups. There were no significant differences in BMI and sleep parameters such as LSAT, AHI, and RERA between the two groups. However, the OSA-AR group showed a significantly higher ESS score compared to the OSA group (13.7 ± 4.7 vs. 9.3 ± 4.8). Fatigue scores were also significantly higher in the OSA-AR group than in the OSA group (39.8 ± 11.0 vs. 30.6 ± 5.4). The OSA-AR group had a significantly higher stress score (60.4 ± 18.6 vs. 51.2 ± 10.4). The ability to cope with stress was higher in the OSA group, although this difference was not statistically significant. RQLQ scores were higher in the OSA-AR group (60.2 ± 16.7 compared to 25.1 ± 13.9). In conclusion, management of allergic rhinitis is very important in treating OSA patients in order to eliminate stress and fatigue and to minimize daytime sleepiness and quality of life.

  12. Effects of High Mean Stress on High-cycle Fatigue Behavior of PWA 1480

    Science.gov (United States)

    Majumdar, S.; Antolovich, S. D.; Milligan, W. W.

    1985-01-01

    PWA 1480 is a potential candidate material for use in the high-pressure fuel turbine blade of the space shuttle main engine. As an engine material it will be subjected to high-cycle fatigue loading superimposed on a high mean stress due to combined centrifugal and thermal loadings. The present paper describes the results obtained in an ongoing program at the Argonne National Laboratory, sponsored by NASA Lewis, to determine the effects of a high mean stress on the high-cycle fatigue behavior of this material. Straight-gauge high-cycle fatigue specimens, 0.2 inch in diameter and with the specimen axis in the 001 direction, were supplied by NASA Lewis. The nominal room temperature yield and ultimate strength of the material were 146 and 154 ksi, respectively. Each specimen was polished with 1-micron diamond paste prior to testing. However, the surface of each specimen contained many pores, some of which were as large as 50 micron. In the initial tests, specimens were subjected to axial-strain-controlled cycles. However, very little cyclic plasticity was observed.

  13. MODELS OF FATIGUE LIFE CURVES IN FATIGUE LIFE CALCULATIONS OF MACHINE ELEMENTS – EXAMPLES OF RESEARCH

    Directory of Open Access Journals (Sweden)

    Grzegorz SZALA

    2014-03-01

    Full Text Available In the paper there was attempted to analyse models of fatigue life curves possible to apply in calculations of fatigue life of machine elements. The analysis was limited to fatigue life curves in stress approach enabling cyclic stresses from the range of low cycle fatigue (LCF, high cycle fatigue (HCF, fatigue limit (FL and giga cycle fatigue (GCF appearing in the loading spectrum at the same time. Chosen models of the analysed fatigue live curves will be illustrated with test results of steel and aluminium alloys.

  14. Effect of shot peening treatment in the behavior of residual stress in duplex stainless steel during medium cycle fatigue

    International Nuclear Information System (INIS)

    Pedrosa, Peter D.S.; Rebello, Joao Marcos A.; Fonseca, Maria P. Cindra

    2010-01-01

    The lifetime of duplex stainless steel parts experiencing cyclic fatigue is directly influenced by the residual stresses present in the ferrite and austenite phases. The motivation for this work was to analyze the behaviour of the residual stresses fields introduced by shot peening treatment in both phases, in the sample surface as in the subsurface layers, in low fatigue cycles, using the X-rays diffraction technique. The results shows that the compressive residual stresses introduced by the shot peening treatment in both phases improved fatigue life of the material. However, the cyclical loads produce partial or total relief in these residual stresses fields. It was verified that the shot peening process induced the formation of microcracks only in the ferrite phase. The largest variations in the total compressive residual stresses fields also occurred in this phase. The samples surfaces were analyzed by scanning electron microscopy. (author)

  15. Analysis of Effective and Internal Cyclic Stress Components in the Inconel Superalloy Fatigued at Elevated Temperature

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Miroslav; Petrenec, Martin; Polák, Jaroslav; Obrtlík, Karel; Chlupová, Alice

    2011-01-01

    Roč. 278, 4 July (2011), s. 393-398 ISSN 1022-6680. [European Symposium on Superalloys and their Application. Wildbad Kreuth, 25.5.2010-28.5.2010] R&D Projects: GA ČR GA106/08/1631 Institutional research plan: CEZ:AV0Z20410507 Keywords : low cycle fatigue * superalloys * high temperature * hysteresis loop * effective and internal stresses Subject RIV: JL - Materials Fatigue, Friction Mechanics; JL - Materials Fatigue, Friction Mechanics (UFM-A)

  16. Behavior of Fatigue Crack Tip Opening in Air and Corrosive Atmosphere

    Science.gov (United States)

    Hayashi, Morihito; Toeda, Kazunori

    In the study, a formula for predicting fatigue crack tip opening displacement is deduced firstly. And then, due to comparing actual crack growth rate with the deduced formula, the crack tip configuration factor is defined to figure out the crack tip opening configuration that is useful to clarify the behavior of fatigue crack tip formation apparently. Applying the concept, the crack growth of 7/3 brass and 6/4 brass is predicted from the formula, by replacing material properties such as plastic flow resistance, Young modulus, the Poisson ratio, and fatigue toughness, and fatigue test conditions such as the stress intensity factor range, the load ratio, and cycle frequency. Furthermore, the theoretically expected results are verified with the fatigue tests which were carried out on CT specimens under different load conditions of load ratio, cycle frequency, and cyclic peak load, in different environments of air or corrosive ammonia atmosphere, for various brasses. And by comparing and discussing the calculated crack growth rate with attained experimental results, the apparent configuration factor at the crack tip is determined. And through the attained factor which changes along with crack growth, the behaviors of fatigue crack tip formation under different test conditions have been found out.

  17. Stress-related psychosocial factors at work, fatigue, and risky driving behavior in bus rapid transport (BRT) drivers.

    Science.gov (United States)

    Useche, Sergio A; Ortiz, Viviola Gómez; Cendales, Boris E

    2017-07-01

    There is consistent scientific evidence that professional drivers constitute an occupational group that is highly exposed to work related stressors. Furthermore, several recent studies associate work stress and fatigue with unsafe and counterproductive work behaviors. This study examines the association between stress-related work conditions of Bus Rapid Transport (BRT) drivers and risky driving behaviors; and examines whether fatigue is a mechanism that mediates the association between the two. A sample of 524 male Bus Rapid Transit (BRT) operators were drawn from four transport companies in Bogotá, Colombia. The participants answered a survey which included an adapted version of the Driver Behavior Questionnaire (DBQ) for BRT operators, as well as the Effort-Reward Imbalance and Job Content Questionnaires, the Subjective Fatigue subscale of the Checklist Individual Strength (CIS) and the Need for Recovery after Work Scale (NFR). Utilizing Structural Equation Models (SEM) it was found that risky driving behaviors in BRT operators could be predicted through job strain, effort-reward imbalance and social support at work. It was also found that fatigue and need for recovery fully mediate the associations between job strain and risky driving, and between social support and risky driving, but not the association between effort/reward imbalance (ERI) and risky driving. The results of this study suggest that a) stress related working conditions (Job Strain, Social Support and ERI) are relevant predictors of risky driving in BRT operators, and b) that fatigue is the mechanism which links another kind of stress related to working conditions (job strain and low social support) with risky driving. The mechanism by which ERI increases risky driving in BRT operators remains unexplained. This research suggests that in addition to the individual centered stress-reduction occupational programs, fatigue management interventions aimed to changing some working conditions may reduce

  18. In situ fatigue-crack-propagation experiment

    International Nuclear Information System (INIS)

    Ermi, A.M.; Chin, B.A.

    1981-01-01

    An in-reactor fatigue experiment was conducted in the Oak Ridge Research Reactor to determine the effects of dynamic irradiation on fatigue crack propagation. Eight 20% cold-worked 316 stainless steel specimens were precracked to various initial crack lengths, linked together to form a chain, and inserted into a specially designed in-reactor fatigue machine. Test conditions included a maximum temperature of 460 0 C, an environment of sodium, a frequency of 1 cycle/min, and a stress ratio of 0.10. Results indicated that (1) no effects of dynamic irradiation were observed for a fluence of 1.5 x 10 21 n/cm 2 (E > 0.1 MeV); and (2) crack growth rates in elevated temperature sodium were a factor of 3 to 4 lower than in room temperature air

  19. A study on the fatigue characteristics of SM 490 A material due to the welding type

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hoon; Goo, Byung Choon [Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2004-07-01

    This study investigates the fatigue characteristics of SM 490 A material specimens for the railway vehicle due to the welding type. The more stress ratio decreases, the more strength of fillet welded specimen decreases. At specially, when the stress ratio of TN(Plate with transverse fillet welded rib) specimens decreases 0.5, 0.1, and -0.1, the fatigue limit decreases uniformly. The strength of TN is higher than it of NCN in the compare of fillet welding type, but the strength of NCN(Non load-carrying cruciform fillet welded joint) is higher than it of CN(Load-carrying cruciform fillet welded joint), which these specimens have the rib in the both side. We analysis the strains on the weld positions of the TN specimens during the fatigue test for the investigation of crack initiation and crack growth. In the theses results, we could find the fatigue crack initiation point and time.

  20. Improving Fatigue Performance of GFRP Composite Using Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Moneeb Genedy

    2015-01-01

    Full Text Available Glass fiber reinforced polymers (GFRP have become a preferable material for reinforcing or strengthening reinforced concrete structures due to their corrosion resistance, high strength to weight ratio, and relatively low cost compared with carbon fiber reinforced polymers (CFRP. However, the limited fatigue life of GFRP hinders their use in infrastructure applications. For instance, the low fatigue life of GFRP caused design codes to impose stringent stress limits on GFRP that rendered their use non-economic under significant cyclic loads in bridges. In this paper, we demonstrate that the fatigue life of GFRP can be significantly improved by an order of magnitude by incorporating Multi-Wall Carbon Nanotubes (MWCNTs during GFRP fabrication. GFRP coupons were fabricated and tested under static tension and cyclic tension with mean fatigue stress equal to 40% of the GFRP tensile strength. Microstructural investigations using scanning electron microscopy (SEM and Fourier Transform Infrared (FTIR spectroscopy were used for further investigation of the effect of MWCNTs on the GFRP composite. The experimental results show the 0.5 wt% and the 1.0 wt% MWCNTs were able to improve the fatigue life of GFRP by 1143% and 986%, respectively, compared with neat GFRP.

  1. Rate of fatigue crack growth in residual stress fields of welded titanium joints with different contents of embrittling impurities

    International Nuclear Information System (INIS)

    Troshchenko, V.T.; Pokrovskij, V.V.; Yarusevich, V.L.; Mikhajlov, V.I.; Sher, V.A.

    1990-01-01

    Resistance to fatigue crack growth (FCG) has been studied in welded joints of structural titanium alloys contaminated by embrittling impurities. Besides, effect of crack closing has been taken into account what makes it possible to determine the effective coefficient of the stress intensity. The rate of fatigue crack growth is proved to considerably depend on the value and direction of residual stresses. The rate dependence of FCG in welded joints of structural titanium alloys on the swing of effective coefficient of stress intensity is invariant to the value and direction of weld residual stresses

  2. Fatigue analysis of aluminum drill pipes

    Directory of Open Access Journals (Sweden)

    João Carlos Ribeiro Plácido

    2005-12-01

    Full Text Available An experimental program was performed to investigate the fundamental fatigue mechanisms of aluminum drill pipes. Initially, the fatigue properties were determined through small-scale tests performed in an optic-mechanical fatigue apparatus. Additionally, full-scale fatigue tests were carried out with three aluminum drill pipe specimens under combined loading of cyclic bending and constant axial tension. Finally, a finite element model was developed to simulate the stress field along the aluminum drill pipe during the fatigue tests and to estimate the stress concentration factors inside the tool joints. By this way, it was possible to estimate the stress values in regions not monitored during the fatigue tests.

  3. Numerical simulation of tearing-fatigue interactions in 316l(N) austenitic stainless steel

    International Nuclear Information System (INIS)

    Sherry, A.H.; Wilkes, M.A.

    2005-01-01

    The loading history of engineering components can influence the behaviour of defects in service. This paper presents, the results of a numerical study aimed at using the Gurson ductile damage model, calibrated against J R-curve data, to simulate load-history effects on ductile tearing behaviour in austenitic materials. The work has demonstrated that ductile crack growth resistance is influenced by sub-critical crack growth by an intervening mechanism such as fatigue. Fatigue crack growth under a positive R-ratio leads to increase in subsequent tearing resistance through three main mechanisms: (i) re-sharpening of the crack tip; (ii) crack extension through the fracture process zone; and (iii) cyclic loading effects on void development. The ratio of minimum to maximum stress during fatigue loading (R-ratio) has been shown to influence subsequent tearing resistance, with an R-ratio of 0.2 generally leading to a greater enhancement in tearing resistance than an R-ratio of 0.1. This behaviour is due to the influence of R-ratio on void development ahead of the fatigue crack tip. Finally, relevant experimental data compare favourably with the predicted J R-curves

  4. Fatigue crack growth in welded joints in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, S.B.

    1988-01-01

    A pipe-to-plate specimen has been developed to study the influence of seawater on the fatigue behaviour of welded tubular joints. DC potential drop techniques have been used to detect fatigue crack initiation, and to monitor the subsequent growth of fatigue cracks. Results for three specimens, tested in air are compared with similar data for tubular and T-plate joints. These comparisons indicate that the pipe/plate is a reasonable model of a tubular joint. Testing was performed on a further six specimens in artificial seawater; two each with free corrosion, optimum cathodic protection, and cathodic overprotection. Fatigue life reduction factors compared with corresponding tests in air were 1.8 and 2.8 for free corrosion, 1.7 and 1.1 with cathodic protection, and 4.2 and 3.3 with cathodic over-protection. These fatigue life reduction factors were comparable to results on T-plate specimens, and were strongly dependent on crack shape development. Linear elastic fracture mechanics techniques appear suitable for the calculation of fatigue crack propagation life. Three approximate solution techniques for crack tip stress intensity factors show reasonable agreement with experimentally derived values. It is recommended that forcing functions be used to model crack aspect ratio development in welded joints. Such forcing functions are influenced by the initial stress distribution and the environment. 207 refs., 192 figs., 22 tabs.

  5. Improved Fatigue Performance of Threaded Drillstring Connections by Cold Rolling

    Energy Technology Data Exchange (ETDEWEB)

    Kristoffersen, Steinar

    2002-01-01

    perform FE fatigue simulation studies of a full threaded cold rolled coupling incorporating make-up torque, include cyclic stress strain behaviour at various amplitudes and mean stress caused by various degrees of prestraining. Such data are not readily available today, and are only possible to obtain in carefully planned and executed experiments. Also, 3D FE model required for cold rolling analysis is extremely CPU time consuming. Consequently, cold rolling simulations could not be successfully implemented in this work. One of the main conclusions from this work is that drillstring connections will respond differently to thread rolling at the pin or box. A significant improvement in the fatigue life of box threads from residual stresses is expected mainly from increased resistance to crack propagation. However, the compressive residual stress is sensitive to overloading in compression, and the improvement from residual stress depends strongly on the mean stress (or R-ratio). (author)

  6. Thermal stresses and cyclic creep-fatigue in fusion reactor blanket

    International Nuclear Information System (INIS)

    Liu, K.C.

    1977-01-01

    Thermal stresses in the first walls of fusion reactor blankets were studied in detail. ORNL multibucket modules are emphasized. Practicality of using the bucket module rather than other blanket designs is examined. The analysis shows that applying intelligent engineering judgment in design can reduce the thermal stresses significantly. Arrangement of coolant flow and distribution of temperature are reviewed. Creep-fatigue property requirements for a first wall are discussed on the basis of existing design rules and criteria. Some major questions are pointed out and experiments needed to resolve basic uncertainties relative to key design decisions are discussed

  7. Resolved shear stress intensity coefficient and fatigue crack growth in large crystals

    Science.gov (United States)

    Chen, QI; Liu, Hao-Wen

    1988-01-01

    Fatigue crack growth in large grain Al alloy was studied. Fatigue crack growth is caused primarily by shear decohesion due to dislocation motion in the crack tip region. The crack paths in the large crystals are very irregular and zigzag. The crack planes are often inclined to the loading axis both in the inplane direction and the thickness direction. The stress intensity factors of such inclined cracks are approximated from the two dimensional finite element calculations. The plastic deformation in a large crystal is highly anisotropic, and dislocation motion in such crystals are driven by the resolved shear stress. The resolved shear stress intensity coefficient in a crack solid, RSSIC, is defined, and the coefficients for the slip systems at a crack tip are evaluated from the calculated stress intensity factors. The orientations of the crack planes are closely related to the slip planes with the high RSSIC values. If a single slip system has a much higher RSSIC than all the others, the crack will follow the slip plane, and the slip plane becomes the crack plane. If two or more slip systems have a high RSSIC, the crack plane is the result of the decohesion processes on these active slip planes.

  8. [Effects of self-foot reflexology on stress, fatigue, skin temperature and immune response in female undergraduate students].

    Science.gov (United States)

    Lee, Young-Mee

    2011-02-01

    The purpose of this study was to evaluate the effects of self-foot reflexology on stress (perceived stress, urine cortisol level, and serum cortisol level), fatigue, skin temperature and immune response in female undergraduate students. The research design was a nonequivalent control group pretest-post test design. Participants were 60 university students: 30 in the experiment group and 30 in the control group. The period of this study was from April to June 2010. The program was performed for 1 hr a session, three times a week for 6 weeks. The data were analyzed using the SPSS/WIN 17.0 program. The results showed that self-foot reflexology was effective in reducing perceived stress and fatigue, and raised skin temperature in female undergraduate students. But cortisol levels and immune response were not statistically significant different. The results of this study indicate that self-foot reflexology is an effective nursing intervention in reducing perceived stress and fatigue and, in improving skin temperature. Therefore, it is recommended that this be used in clinical practice as an effective nursing intervention for in female undergraduate students.

  9. Influence of cold rolling and fatigue on the residual stress state of a metal matrix composite

    International Nuclear Information System (INIS)

    Hanus, E.; Ericsson, T.; Lu, J.; Decomps, F.

    1993-01-01

    The large difference in the coefficient of thermal expansion between the matrix alloy and the particle in a metal matrix composite gives rise to residual stresses in the material. In the present work the effect of cold rolling and four-point bending fatigue on the residual stress state of a silicon carbide particle reinforced aluminium alloy (AA 2014) has been investigated. The three dimensional stress state measured in both phases: matrix and reinforcement, has been determined by using an X-ray diffraction technique. It was found that cold rolling induces surface compressive macrostresses of about -250 MPa, with a penetration depth around 2 mm. The absolute values of the pseudomacrostresses in both phases are significantly reduced due to the single track rolling. Stress relaxation occurs during four-point bending fatigue. (orig.)

  10. Fatigue threshold studies in Fe, Fe-Si, and HSLA steel: Part II. thermally activated behavior of the effective stress intensity at threshold

    Science.gov (United States)

    Yu, W.; Esaklul, K.; Gerberich, W. W.

    1984-05-01

    It is shown that closure mechanisms alone cannot fully explain increasing fatigue thresholds with decreasing test temperature for a sequence of Fe-Si binary alloys and an HSLA steel. Implications are that fatigue crack propagation near threshold is a thermally activated process. The effective threshold stress intensity, which was obtained by subtracting the closure portion from the fatigue threshold, was examined. This effective stress intensity was found to correlate very well to the thermal component of the flow stress. A detailed fractographic study of the fatigue surface was performed. Water vapor in the room air was found to promote the formation of oxide and intergranular crack growth. At lower temperature, a brittle-type cyclic cleavage fatigue surface was observed but the ductile process persisted even at 123 K. Arrest marks were found on all three modes of fatigue crack growth. The regular spacings between these lines and dislocation modeling suggested that fatigue crack growth was controlled by the subcell structure near threshold. A model based on the slip-off of dislocations was examined. From this, it is shown that the effective fatigue threshold may be related to the square root of (one plus the strain rate sensitivity).

  11. Corrosion Fatigue Crack Growth Behavior at Notched Hole in 7075 T6 Under Different Biaxial Stress Ratios

    Science.gov (United States)

    2016-08-18

    Subjected to Biaxial Cyclic Loads.” Engineering Fracture Mechanics , 78:1516- 1528, 2011. [37] Sih, G.C.. “A Special Theory of Crack Propagation...of Aeronautics and Astronautics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and...environments from pre- cracked notched circular hole in a 7075-T6 cruciform specimen using a fracture mechanics approach. With stress ratio of R

  12. Effectiveness of aerobic gymnastic exercise on stress, fatigue, and sleep quality during postpartum: A pilot randomized controlled trial.

    Science.gov (United States)

    Yang, Chiu-Ling; Chen, Chung-Hey

    2018-01-01

    Gymnastics is a preferable safe exercise for postnatal women performing regularly. The aim of this pilot randomized controlled trial was to determine whether the aerobic gymnastic exercise improves stress, fatigue, sleep quality and depression in postpartum women. Single-blinded, randomized controlled trial held from December 2014 until September 2015. Postnatal clinic of a medical center in southern Taiwan. 140 eligible postnatal women were systematically assigned, with a random start to experimental (n=70) or a control (n=70) group. Engage in aerobic gymnastic exercise at least three times (15min per section) a week for three months using compact disc in the home. Perceived Stress Scale, Postpartum Fatigue Scale, Postpartum Sleep Quality Scale, and Edinburgh Postnatal Depression Scale. In a two-way ANOVA with repeated measures, the aerobic gymnastic exercise group showed significant decrease in fatigue after practicing exercise 4 weeks and the positive effects extended to the 12-week posttests. Paired t-tests revealed that aerobic gymnastic exercise participants had improved significantly in perceived stress and fatigue after 4 weeks gymnastic exercise; these positive effects extended to the 12-week posttests. In addition, the changes in physical symptoms-related sleep inefficiency after 12 weeks gymnastic exercise were significantly decreased in the experimental group compared with the control group. The findings can be used to encourage postnatal women to perform moderate-intensity gymnastic exercise in their daily life to reduce their stress, fatigue and improve sleep quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Association of fatigue with emotional-eating behavior and the response to mental stress in food intake in a young adult population.

    Science.gov (United States)

    Yoshikawa, Takahiro; Tanaka, Masaaki; Ishii, Akira; Watanabe, Yasuyoshi

    2014-01-01

    Fatigue is a common complaint among young adults. We investigated whether eating behaviors are associated with fatigue in this population. The participants consisted of 117 healthy students attending Osaka City University. They completed questionnaires assessing fatigue and eating behaviors. To identify the factors associated with the prevalence of fatigue, multivariate logistic regression analysis adjusted for gender was performed. The Emotional Eating subscale score of the Japanese version of Three-Factor Eating Questionnaire Revised 21-item and stress response in food intake (large decrease vs. no change) were positively associated with the prevalence of fatigue assessed by the Japanese version of the Chalder Fatigue Scale. The finding suggests that emotional eating and decrease in amount of food intake under mental stress were associated with fatigue in healthy young adults. Our findings may help to clarify the mechanisms underlying fatigue-eating coupling as well as the etiology of diseases related to abnormal eating behavior.

  14. Effect of Stress Ratio on Fatigue Crack Growth Rate at Notched Hole in 7075-T6 Aluminum Alloy Under Biaxial Fatigue

    Science.gov (United States)

    2016-08-18

    Berezhnitski, L.T., and R.S. Gromyak. “Evaluation of Limiting State of Matrix in Vicinity of Sharp-Edge Rigid Inclusion.” Material Science, Volume 13...Effect of Surface Enhancement on the Corrosion Properties, Fatigue Strength, and Degradation Of Aircraft Aluminum.” Lambda Research, 2010. [38

  15. Effect of membrane and through-wall bending stresses on fatigue crack growth behavior and coolant leakage velocity

    International Nuclear Information System (INIS)

    Yoo, Yeon-Sik

    2003-11-01

    This study clarified the effect of a membrane and a through-wall bending stresses on fatigue crack growth behavior and coolant leakage velocity due to irregularity of crack surface. Each stress component relates to fatigue crack growth behavior directly in general and thus the wild-used K I solutions are anticipated to give good evaluation results on it. Meanwhile, it is necessary to notify that surface irregularity for coolant leakage assessment is made by stress history in nature. Surface irregularity is known to be largely classified into the following two aspects: surface roughness due to continuous crack opening and closure behavior and surface turnover due to cyclic bending stress dominance. Therefore, the deterministic parameters on resistance of coolant leakage by surface irregularity are considered to be not only stress history but crack opening behavior. (author)

  16. Fatigue-crack propagation behavior of Inconel 718

    International Nuclear Information System (INIS)

    James, L.A.

    1975-09-01

    The techniques of linear-elastic fracture mechanics were used to characterize the effect of several variables (temperature, environment, cyclic frequency, stress ratio, and heat-treatment variations) upon the fatigue-crack growth behavior of Inconel 718 base metal and weldments. Relevant crack growth data on this alloy from other laboratories is also presented. (33 fig, 39 references)

  17. Fatigue threshold studies in Fe, Fe-Si, and HSLA steel: Part II. Thermally activated behavior of the effective stress intensity at threshold

    International Nuclear Information System (INIS)

    Yu, W.; Esaklul, K.; Gerberich, W.W.

    1984-01-01

    It is shown that closure mechanisms alone cannot fully explain increasing fatigue thresholds with decreasing test temperature. Implications are that fatigue crack propagation near threshold is a thermally activated process. The effective threshold stress intensity correlate to the thermal component of the flow stress. A fractographic study of the fatigue surface was performed. Water vapor in room air promotes the formation of oxide and intergranular crack growth. At lower temperatures, a brittle-type cyclic cleavage fatigue surface was observed but the ductile process persisted even at 123 K. Arrest marks found on all three modes of fatigue crack growth suggest that fatigue crack growth controlled by the subcell structure near threshold. The effective fatigue threshold may be related to the square root of (one plus the strain rate sensitivity)

  18. [Effects of fatigue and restraint stress on the expression of carnitine palmitoyltransferase-I and 5-hydroxytryptamine receptors in aorta of rats].

    Science.gov (United States)

    Wei, Cong; Han, Jian-ke; Wang, Hong-tao; Jia, Zhen-hua; Chang, Li-Ping; Wu, Yi-ling

    2011-04-05

    To investigate the effect of fatigue and restraint stress on the expressions of CPT (carnitine palmitoyltransferase)-I, PPAR (peroxisome proliferator-activated receptor) δ, 5-HT (hydroxytryptamine) 1D and 5-HT2A receptors in aorta of rats. A total of 45 healthy male Wistar rats were randomly divided into control group, excessive fatigue group and restraint stress group (n = 15 each). The general condition, morphological changes of aortic endothelium cell and the blood levels of ET-1 (endothelin) and NO (nitric oxide) were observed. The real-time reverse transcription PCR (polymerase chain reaction) and Western blot were used to detect the gene and protein expressions of CPT-I, PPAR δ, 5-HT1D and 5-HT2A receptors in aorta. Compared with control group, the structural damages of endothelial cell were induced by excessive fatigue and restraint stress. The plasma levels of ET-1 increased [(124 ± 18) ng/L vs (161 ± 18) ng/L, (154 ± 17) ng/L] (P fatigue rats, [(1.23 ± 0.21) vs (0.42 ± 0.05)], [(1.09 ± 0.10) vs (0.25 ± 0.07)] (P fatigue rats, [(1.32 ± 0.07) vs (0.83 ± 0.04)], [(1.41 ± 0.05) vs. (0.75 ± 0.06)]; the mRNA and protein expressions of 5-HT1D receptor decreased in excessive fatigue rats and restraint stress rats, [(1.10 ± 0.15) vs (0.46 ± 0.13), (0.45 ± 0.02)], [(1.19 ± 0.05) vs (0.71 ± 0.06), (0.70 ± 0.05)] (P fatigue rats and restraint stress rats, [(0.99 ± 0.08) vs (6.73 ± 0.46), (7.01 ± 1.56)], [(0.64 ± 0.03) vs (0.79 ± 0.05), (0.82 ± 0.03)] (P fatigue and restraint stress can injure the structure and function of endothelial cell. The changes in energy of abnormal carnitine metabolism and 5-HT receptors may play important roles.

  19. Fatigue life evaluation based on welding residual stress relaxation and notch strain approach for cruciform welded joint

    International Nuclear Information System (INIS)

    Han, Jeong Woo; Han, Seung Ho; Shin, Byung Chun; Kim, Jae Hoon

    2003-01-01

    The fatigue strength of welded joint is influenced by the welding residual stress which is relaxed depending on local stress distributed in vicinity of stress raisers, eg. under cut, overlap and blow hole. To evaluate its fatigue life the geometry of the stress raisers and the welding residual stress should be taken into account. The several methods based on notch strain approach have been proposed in order to consider the two factors above mentioned. These methods, however, have shown considerable differences between analytical and experimental results. It is due to the fact that the amount of the relaxed welding residual stress evaluated by the cyclic stress-strain relationship do not correspond with that occurred in reality. In this paper the residual stress relaxation model based on experimental results was used in order to reduce the discrepancy of the estimated amount of the relaxed welding residual stress. Under an assumption of the superimposition of the relaxed welding residual stress and the local stress, a modified notch strain approach was proposed and verified to the cruciform welded joint

  20. [Mediator effect analysis of the trait coping style on job stress and fatigue of the military personnel stationed in plateau and high cold region].

    Science.gov (United States)

    Zhang, J J; Jia, J M; Tao, N; Song, Z X; Ge, H; Jiang, Y; Tian, H; Qiu, E C; Tang, J H; Liu, J W

    2017-03-20

    Objective: To investigate the fatigue status of military personnel stationed in plateau and high cold region, and to analyze the mediator effect of trait coping style on job stress and fatigue. Methods: In October 2010, with the method of cluster random sampling survey, 531 military personnel stationed in plateau and high cold region were chosen as subject. The fatigue status were evaluated by the Chinese version multidimensional fatigue inventory (MFI-20) , job stress were evaluated by the Job Stress Survey (JSS) , and trait coping style were evaluated by the Trait Coping Style Questionnaire (TCSQ) . Results: According to the information of different population characteristics, mean rank of physical fatigue about the urban (town) group were higher than that of rural group ( Z =-2.200, P fatigue scores about the urban (town) group were higher than that of rural group ( Z =-3.026, P fatigue about the up or equal 20-years old age group were higher than that of below 20-years old age group ( Z =-4.045, P fatigue about the up or equal 20-years old age group were higher than that of below 20-years old age group ( Z =-2.879, P fatigue scores about the up or equal 20-years old age group were higher than that of below 20-years old age group ( Z =-3.647, P fatigue scores were significant statistical difference among the military officers, sergeancy and soldier group ( F =14.711, P fatigue ( r (s)=0.129) , reduced activity ( r (s)=0.123) , reduced motivation ( r (s)=0.149) and general fatigue ( r (s)=0.174) respectively, the score of organizational support lack strength were positively correlated with the score of physical fatigue ( r (s)=0.090) , reduced activity ( r (s)=0.098) , reduced motivation ( r (s)=0.099) and general fatigue ( r (s)=0.130) respectively. The mediator effect of negative coping style on the job stress and fatigue was 0.013 ( P fatigue statuses of the urban (town) group and the up or equal 20-years old age group are poor, and the negative coping style

  1. Fatigue damage assessment under multi-axial non-proportional cyclic loading

    International Nuclear Information System (INIS)

    Mohta, Keshav; Gupta, Suneel K.; Jadhav, P.A.; Bhasin, V.; Vijayan, P.K.

    2016-01-01

    Detailed fatigue analysis is carried out for class I Nuclear Power Plant (NPP) components to rule out the fatigue failure during their design lifetime. ASME Boiler and Pressure Vessel code Section III NB, has provided two schemes for fatigue assessment, one for fixed principal directions (proportional) loading and the other for varying principal directions (non-proportional) loading conditions. Recent literature on multi-axial fatigue tests has revealed lower fatigue lives under nonproportional loading conditions. In an attempt to understand the loading parameter lowering the fatigue life, a finite element based study has been carried out. Here, fatigue damage in a tube has been correlated with the applied axial to shear strain ratio and phase difference between them. The FE analysis has used Chaboche nonlinear kinematic hardening rule to model material's realistic cyclic plastic deformation behavior. The ASME alternating stress intensity (based on linear elastic FEA) and the plastic strain energy dissipation (based on elastic-plastic FEA) have been considered to assess the per cycle fatigue damage. The study has revealed that ASME criteria predicts lower alternating stress intensity (fatigue damage parameter S alt ) for some cases of non-proportional loading than that predicted for corresponding proportional loading case. However, the actual fatigue damage is higher in non-proportional loading than that in corresponding proportional loading case. Further the fatigue damage of an NPP component under realistic multi-axial cyclic loading conditions has been assessed using some popular critical plane based models vis-à-vis ASME Sec. III criteria. (author)

  2. Comparison of evaluation results of piping thermal fatigue evaluation method based on equivalent stress amplitude

    International Nuclear Information System (INIS)

    Suzuki, Takafumi; Kasahara, Naoto

    2012-01-01

    In recent years, reports have increased about failure cases caused by high cycle thermal fatigue both at light water reactors and fast breeder reactors. One of the reasons of the cases is a turbulent mixing at a Tee-junction, where hot and cold temperature fluids are mixed, in a coolant system. In order to prevent thermal fatigue failures at Tee-junctions. The Japan Society of Mechanical Engineers published the guideline which is an evaluation method of high cycle thermal fatigue damage at nuclear pipes. In order to justify safety margin and make the procedure of the guideline concise, this paper proposes a new evaluation method of thermal fatigue damage with use of the 'equivalent stress amplitude.' Because this new method makes procedure of evaluation clear and concise, it will contribute to improving the guideline for thermal fatigue evaluation. (author)

  3. Stress ratio determination from the core-disking phenomenon

    International Nuclear Information System (INIS)

    Lehnhoff, T.F.; Stefansson, B.; Thirumalai, K.

    1982-08-01

    The ability to predict in situ stress conditions from standard core samples offers planning and site-selection advantages for most underground facilities. This paper presents an empirical relation for estimating the horizontal to vertical stress ratio in basalt. The resulting estimates can then be used to help assess the extent to which measurement of in situ stress is required. The core disking phenomenon has long been used as an indicator of high in situ stress. It is concluded that disks form as the result of tensile failure initiation rather than shear failure initiation of the core. It is deduced that the tensile failure begins at the edge of the core and propagates toward the center in shear rather than beginning at the center and propagating outward. An empirical relation for horizontal to vertical stress ratio variation with depth has been developed and is shown to agree substantially with previous measured horizontal to vertical stress ratios for locations in several areas of the world. The stress-ratio predictions are justified based on finite-element studies using linear elastic analysis and also nonlinear (tension cut-off) analysis. Indications of fracture propagation paths were determined from the analyses. The shape of the predicted propagation path agrees well with physical observations

  4. Current state of low-cycle fatigue research based on multiaxial stress intensity and its challenges. Part 1. Focusing on low-cycle fatigue strength evaluation method of elbow piping subjected to in-plane cyclic bending displacement load

    International Nuclear Information System (INIS)

    Urabe, Yoshio

    2017-01-01

    The R and D of fatigue strength at multiaxial stress intensity is recognized to become extremely important in the future in terms of the elaboration of low-cycle fatigue evaluation of various structures including piping systems and reflection on those standards. This paper focuses on the evaluation method developed by the author, namely cumulative damage rule in consideration of multiaxial stress intensity, and explains the concept and the results of verification and evaluation. It also discusses the engineering problems of the current low cycle fatigue assessment technology that were clarified in the process of developing low-cycle fatigue assessment method based on multiaxial stress intensity. The conservative lifespan and somewhat more conservative actual lifetime of elbow piping can be estimated by the conventional 'revised universal slope method' and 'advanced revised universal slope method.' However, these are empirical rules, and the theoretical basis is not clear. From 'cumulative damage rule in consideration of multiaxial stress intensity,' the author calculated furthermore 'low cycle fatigue evaluation formula based on cumulative damage rule in consideration of multi-axial stress intensity,' and examined it. As a result, an evaluation formula that can reasonably assume the equivalent thermoplastic strain range could be obtained at half of the repeat count as targeted. Furthermore, at the stage where future high precision FEM analysis can be used, direct low-cycle fatigue life curve can be established. (A.O.)

  5. [Relationship between fatigue recovery after late-night shifts and stress relief awareness].

    Science.gov (United States)

    Kakamu, Takeyasu; Tsuji, Masayoshi; Hidaka, Tomoo; Kumagai, Tomohiro; Hayakawa, Takehito; Fukushima, Tetsuhito

    2014-01-01

    To examine the factors related to fatigue accumulation by irregular shift workers after the late-night shift. We studied employees of a company in the transportation industry in Fukushima prefecture. The company transports passengers, and many employees, including the crew, engage in irregular shift work. We performed the investigation by using a self-administered questionnaire which was sent to 89 employees in October, 2011. Of the 89 who were given the survey, 84 replied, and 52 of those employees had worked the late-night shift (straddling midnight) at least once during September. In answer to the question "How long does it take you to recover after working the late-night-shift?" choices were "I don't feel tired ", "I recover the next day", "I recover in two or three days", and "It takes more than three days". We classified the choices into two groups of: 1) "I don't feel tired" and "I recover the next day", and 2) "I recover in two or three days" and "It takes more than three days". Other questions were asked about age, BMI, weekday average duration of sleep, whether or not a nap was taken before the late-night shift, risk of lifestyle-related diseases (hypertension, dyslipidemia, and diabetes), awareness of life stress accumulation, and exercise habits. Thirty-two employees answered that they recovered from the late-night shift by the next day, whereas 20 employees answered that it took more than 2 days to recover after the late-night-shift. The group who answered that recovery time after the late-night shift took more than 2 days significantly (p=0.035) felt that their stress management was insufficient. Age, BMI, weekday average duration of sleep, whether or not a nap was taken before the late-night shifts, risk of lifestyle-related diseases, and exercise habits showed no significant association with fatigue accumulation. The group who answered that their stress management was insufficient significantly chose liquor (p=0.045) and cigarettes (p=0.030) for

  6. [Effects of Foot-Reflexology Massage on Fatigue, Stress and Postpartum Depression in Postpartum Women].

    Science.gov (United States)

    Choi, Mi Son; Lee, Eun Ja

    2015-08-01

    To identify the effects of foot reflexology massage on fatigue, stress and depression of postpartum women. A nonequivalent control group pre-post design was used. A total of 70 women in a postpartum care center were recruited and were assigned to the experimental group (35) or control group (35). Foot reflexology massage was provided to the experimental group once a day for three days. Data were collected before and after the intervention program which was carried out from December, 2013 to February, 2014. Data were analyzed using Chi-square test, Fisher's exact test, and t-test. The level of fatigue in the experimental group was significantly lower than the control group (t=-2.74, p=.008). The level of cortisol in the urine of women in the experimental group was significantly lower than the control group (t=-2.19, p=.032). The level of depression in the experimental group was significantly lower than the control group (t=-3.00, p=.004). The results show that the foot reflexology massage is an effective nursing intervention to relieve fatigue, stress, and depression for postpartum women.

  7. Detecting vocal fatigue in student singers using acoustic measures of mean fundamental frequency, jitter, shimmer, and harmonics-to-noise ratio

    Science.gov (United States)

    Sisakun, Siphan

    2000-12-01

    The purpose of this study is to explore the ability of four acoustic parameters, mean fundamental frequency, jitter, shimmer, and harmonics-to-noise ratio, to detect vocal fatigue in student singers. The participants are 15 voice students, who perform two distinct tasks, data collection task and vocal fatiguing task. The data collection task includes the sustained vowel /a/, reading a standard passage, and self-rate on a vocal fatigue form. The vocal fatiguing task is the vocal practice of musical scores for a total of 45 minutes. The four acoustic parameters are extracted using the software EZVoicePlus. The data analyses are performed to answer eight research questions. The first four questions relate to correlations of the self-rating scale and each of the four parameters. The next four research questions relate to differences in the parameters over time using one-factor repeated measures analysis of variance (ANOVA). The result yields a proposed acoustic profile of vocal fatigue in student singers. This profile is characterized by increased fundamental frequency; slightly decreased jitter; slightly decreased shimmer; and slightly increased harmonics-to-noise ratio. The proposed profile requires further investigation.

  8. Flexural fatigue failures and lives of Eco-Core sandwich beams

    International Nuclear Information System (INIS)

    Hossain, Mohammad Mynul; Shivakumar, Kunigal

    2014-01-01

    Highlights: • Eco-Core sandwich beam is flexural fatigue tested to study its fatigue response. • The core showed three failure types: damage onset, progression and final failure. • These failures were found to be represented by 1%, 5% and 7% change in compliance. • The fatigue stress-life (S–N) relationship follows a power low, σ max /σ ct = A o N α . • The fatigue failure was by multiple vertical cracks followed by 45° shear failure. - Abstract: Eco-Core is a class of syntactic foam made from small volume of high char yield binder and large volume of a class of flyash for fire resistance application. Very little or no flexural fatigue data of this class of core material is reported in the open literature. This paper presents a flexural fatigue response of Eco-Core in a glass/vinyl ester composite face sheet sandwich beam. A four-point loaded flexural test specimen was designed and tested in static and fatigue loadings to cause tension failure in the core. The fatigue test was conducted at maximum cyclic stress (σ max ) ranged from 0.7σ ct to 0.9σ ct , where σ ct is the static flexural strength of the core. The sinusoidal loading frequency of 2 Hz with the stress ratio of 0.1 was used. Flexural fatigue failure modes of Eco-Core sandwich beam were classified: damage onset (single tension crack), damage progression (multiple tension cracks) and ultimate failure (a combination of tension and shear). These failures were characterized by 1%, 5% and 7% changes in compliance that corresponds to N 1% , N 5% and N 7% lives. The fatigue stress-life (S–N) relationship was found to follow the well-known power law equation, σ max /σ ct = A o N α . The constants A o and α were established for all three types of failures. The endurance limit was established based on 1 million cycles limit and it was found to be 0.65σ ct , 0.70σ ct and 0.71σ ct , respectively for the three modes of failure. Flexural fatigue and static failure modes of Eco-Core sandwich

  9. Formation of stress/strain cycles for analytical assessment of fatigue crack initiation and growth

    International Nuclear Information System (INIS)

    Tashkinov, A.V.

    2005-01-01

    This paper discusses standard techniques for setting up cycles of stresses, strains and stress intensity factors (SIF) for use in analysing the fatigue characteristics of crack-free components or the fatigue crack growth if crack-like flaws are present. A number of improved techniques are proposed. An enhanced procedure for analytical description of true metal stress-strain curves, covering plastic effects, is presented. This procedure involves standard physical and mechanical properties of the metal in question, such as ultimate stress, yield stress and elasticity modulus. It is emphasized that the currently practiced rain-flow method of design cycle formation, which is effective for an actual (truly known) cyclic loading history, is not suitable for a projected (anticipated) history, as it leaves out of account possible variations in the sequence of operating conditions. Improved techniques for establishing design stress/strain and SIF cycles are described, which make allowance for the most unfavourable sequence of events in the projected loading history. The paper points to a basic difference in the methods of design cycle formation, employed in assessment of the current condition of a component (with the actual history accounted for) and in estimation of the residual lifetime or life extension (for a projected history). (authors)

  10. Ratcheting fatigue behavior of Zircaloy-2 at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rajpurohit, R.S., E-mail: rsrajpurohit.rs.met13@iitbhu.ac.in [Department of Metallurgical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005 (India); Sudhakar Rao, G. [Nuclear Energy and Safety Department, Paul Scherrer Institute, Villigen, CH-5232 (Switzerland); Chattopadhyay, K.; Santhi Srinivas, N.C.; Singh, Vakil [Department of Metallurgical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005 (India)

    2016-08-15

    Nuclear core components of zirconium alloys experience asymmetric stress or strain cycling during service which leads to plastic strain accumulation and drastic reduction in fatigue life as well as dimensional instability of the component. Variables like loading rate, mean stress, and stress amplitude affect the influence of asymmetric loading. In the present investigation asymmetric stress controlled fatigue tests were conducted with mean stress from 80 to 150 MPa, stress amplitude from 270 to 340 MPa and stress rate from 30 to 750 MPa/s to study the process of plastic strain accumulation and its effect on fatigue life of Zircaloy-2 at room temperature. It was observed that with increase in mean stress and stress amplitude accumulation of ratcheting strain was increased and fatigue life was reduced. However, increase in stress rate led to improvement in fatigue life due to less accumulation of ratcheting strain. - Highlights: • Ratcheting strain accumulation occurred due to asymmetric cyclic loading. • Accumulation of ratcheting strain increased with mean stress and stress amplitude. • Ratcheting strain accumulation decreased with increase in stress rate. • With increase in mean stress and stress amplitude there was reduction in fatigue life. • Fatigue life is improved with increase in stress rate.

  11. Role of microstructure in the mean stress dependence of fatigue strength in Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, S.G.; Cohen, F.S.; Biederman, R.R.; Sisson, R.D. Jr.

    1999-07-01

    The high cycle fatigue properties of Ti-6Al-4V alloy with six different microstructure/texture combinations were investigated. Only materials with lamellar and fine bimodal microstructures exhibited linear Goodman relationship on the constant fatigue life diagram. Materials with coarse bimodal and equiaxed microstructures had anomalous mean stress dependency, with HCF strength at intermediate mean stresses being significantly lower than predicted by Goodman relationship, regardless of whether material was forged or cross-rolled. The role of microstructure in mean stress sensitivity behavior of Ti-6Al-4V is studied. Cyclic strain tests were conducted for all microstructures, and the results of strain-controlled and stress-controlled cyclic tests are compared and discussed.

  12. Effects of fatigue-induced changes in microstructure and stress on domain structure and magnetic properties of Fe-C alloys

    International Nuclear Information System (INIS)

    Lo, C. C. H.; Tang, F.; Biner, S. B.; Jiles, D. C.

    2000-01-01

    A study of the effects of microstructural changes on domain structure and magnetic properties as a result of fatigue has been made on Fe-C alloys subjected to either cold work, stress-relief annealing, or heat treatment that produced a ferritic/pearlitic structure. The magnetic properties varied with stress cycling depending on the initial condition of the samples. Variations in coercivity in the initial stage of fatigue were closely related to the changes in dislocation structure. In the intermediate stage of fatigue the observed refinement of domain structures was related to the development of dislocation cell structures and formation of slip bands. In the final stage of fatigue the remanence and maximum permeability decreased dramatically, and this rate of decrease was dependent on the crack propagation rate. (c) 2000 American Institute of Physics

  13. Fatigue properties of particle reinforced aluminium alloys

    International Nuclear Information System (INIS)

    Tabernig, B.J.

    2000-06-01

    In this work the particle reinforced Al-alloys 359 T6 + 20 % SiC and 2124 + 17 % SiC which differ significantly in their production and microstructure are investigated. Standard and in-situ tensile tests show, that in the powder metallurgically produced alloy 2124 reinforcement leads to a higher Young's modulus, yield and ultimate tensile stress where the cast alloy 359 + 20 % SiC exhibit increased stiffness, but low ductility due to cast porosity of some 100 μm. The failure mechanism governed by microstructural parameters is found to play an important role for ductility. The fatigue properties are investigated with specific regard to the influence of the in-service condition (load ratio, temperature, variable amplitude loading) in the foreseen applications in the automobile- and aerospace industry. Standard fatigue tests point out that the endurance limit is improved by reinforcement, but is strongly dependent on the size of given initial defects. The fatigue crack properties are characterised by standard crack growth curves and r(esistance)-curves for the threshold of stress intensity factor range. Both composites exhibit a higher effective threshold than their unreinforced alloys. Furthermore the fatigue resistance described by the R-curve as well as the long crack threshold are improved in the alloy 2124 + 17 % SiC. While in crack growth tests under constant amplitude loading the alloy 2124 + 17 % SiC shows lower crack growth rates than its unreinforced alloy, the opposite case is in the alloy 359 + 20 % SiC at high DK. Periodic overloads lead in the 359 + 20 % SiC to particle fracture at the crack tip and to a steeper increase in the crack growth rate. In the 2124 + 17% SiC the fatigue crack grows predominately in the matrix and a retardation effect due to overloads is observed. In order to describe the fatigue limit of components as a function of initial defect size an analytical concept is developed assuming that the fatigue limit is controlled by the

  14. Oxidative Stress and COPD: The Impact of Oral Antioxidants on Skeletal Muscle Fatigue

    Science.gov (United States)

    Rossman, Matthew J.; Groot, H. Jonathan; Van Reese; Zhao, Jia; Amann, Markus; Richardson, Russell S.

    2014-01-01

    PURPOSE Oxidative stress may contribute to exercise intolerance in patients with chronic obstructive pulmonary disease (COPD). This study sought to determine the effect of an acute oral antioxidant cocktail (AOC: vitamins C, E, and alpha-lipoic acid) on skeletal muscle function during dynamic quadriceps exercise in COPD. METHODS Ten patients with COPD performed knee extensor exercise to exhaustion and isotime trials following either the AOC or placebo (PL). Pre- to post-exercise changes in quadriceps maximal voluntary contractions (MVCs) and potentiated twitch forces (Qtw,pot) quantified quadriceps fatigue. RESULTS Under PL conditions, the plasma electron paramagnetic resonance (EPR) spectroscopy signal was inversely correlated with the forced expiratory volume in one second to forced vital capacity ratio (FEV1/FVC), an index of lung dysfunction (r=−0.61, p=0.02), and MVC force (r=−0.56, p=0.04). AOC consumption increased plasma ascorbate levels (10.1±2.2 to 24.1±3.8 ug/ml, p<0.05) and attenuated the area under the curve of the EPR spectroscopy free radical signal (11.6±3.7 to 4.8±2.2 AU, p<0.05), but did not alter endurance time or quadriceps fatigue. The ability of the AOC to decrease the EPR spectroscopy signal, however, was prominent in those with high basal free radicals (n=5, PL: 19.7±5.8 to AOC: 5.8±4.5 AU, p<0.05) with minimal effects in those with low levels (n=5, PL: 1.6±0.5 to AOC: 3.4±1.1 AU). DISCUSSION These data document a relationship between directly measured free radicals and lung dysfunction, and the ability of the AOC to decrease oxidative stress in COPD. Acute amelioration of free radicals, however, does not appear to impact dynamic quadriceps exercise performance. PMID:23299763

  15. The research of axial corrosion fatigue on 10Ni3CrMoV steel

    Science.gov (United States)

    Xie, Xing; Yi, Hong; Xu, Jian; Xie, Kun

    2017-09-01

    Fatigue life had been studied with 10CrNi3MoV steel at different load ratios and in different environmental medias. The microstructure and micro-topography had been observed and analyzed by means of SEM, EDS and TEM. Our findings indicated that, the fatigue life of 10Ni3CrMoV steel in seawater was shorter than in air, the difference in longevity was larger with the decreasing of axis stress. Corrosion pits had a great influence on corrosion fatigue life.

  16. Residual stresses and fatigue in a duplex stainless steel

    International Nuclear Information System (INIS)

    Johansson, Johan

    1999-01-01

    Duplex stainless steels, consisting of approximately equal amounts of austenite and ferrite, often combine the best features of austenitic and ferritic stainless steels. They generally have good mechanical properties, including high strength and ductility, and the corrosion resistance is often better than conventional austenitic grades. This has lead to a growing use of duplex stainless steels as a material in mechanically loaded constructions. However, detailed knowledge regarding its mechanical properties and deformation mechanisms are still lacking. In this thesis special emphasis has been placed on the residual stresses and their influence on mechanical behaviour of duplex stainless steels. Due to the difference in coefficient of thermal expansion between the two phases, tensile microstresses are found in the austenitic phase and balancing compressive microstresses in the ferritic phase. The first part of this thesis is a literature survey, which will give an introduction to duplex stainless steels and review the fatigue properties of duplex stainless steels and the influence of residual stresses in two-phase material. The second part concerns the evolution of the residual stress state during uniaxial loading. Initial residual stresses were found to be almost two times higher in the transverse direction compared to the rolling direction. During loading the absolute value of the microstresses increased in the macroscopic elastic regime but started to decrease with increasing load in the macroscopic plastic regime. A significant increase of the microstresses was also found to occur during unloading. Finite element simulations also show stress variation within one phase and a strong influence of both the elastic and plastic anisotropy of the individual phases on the simulated stress state. In the third part, the load sharing between the phases during cyclic loading is studied. X-ray diffraction stress analysis and transmission electron microscopy show that even if

  17. Residual stresses and fatigue in a duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Johan

    1999-05-01

    Duplex stainless steels, consisting of approximately equal amounts of austenite and ferrite, often combine the best features of austenitic and ferritic stainless steels. They generally have good mechanical properties, including high strength and ductility, and the corrosion resistance is often better than conventional austenitic grades. This has lead to a growing use of duplex stainless steels as a material in mechanically loaded constructions. However, detailed knowledge regarding its mechanical properties and deformation mechanisms are still lacking. In this thesis special emphasis has been placed on the residual stresses and their influence on mechanical behaviour of duplex stainless steels. Due to the difference in coefficient of thermal expansion between the two phases, tensile microstresses are found in the austenitic phase and balancing compressive microstresses in the ferritic phase. The first part of this thesis is a literature survey, which will give an introduction to duplex stainless steels and review the fatigue properties of duplex stainless steels and the influence of residual stresses in two-phase material. The second part concerns the evolution of the residual stress state during uniaxial loading. Initial residual stresses were found to be almost two times higher in the transverse direction compared to the rolling direction. During loading the absolute value of the microstresses increased in the macroscopic elastic regime but started to decrease with increasing load in the macroscopic plastic regime. A significant increase of the microstresses was also found to occur during unloading. Finite element simulations also show stress variation within one phase and a strong influence of both the elastic and plastic anisotropy of the individual phases on the simulated stress state. In the third part, the load sharing between the phases during cyclic loading is studied. X-ray diffraction stress analysis and transmission electron microscopy show that even if

  18. Creep-fatigue behavior of turbine disc of superalloy GH720Li at 650 °C and probabilistic creep-fatigue modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dianyin [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China); Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191 (China); Ma, Qihang [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Shang, Lihong [Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5 (Canada); Gao, Ye [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Wang, Rongqiao, E-mail: wangrq@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China); Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191 (China)

    2016-07-18

    Creep-fatigue experiments have been conducted in nickel-based superalloy GH720Li at an elevated temperature of 650 °C with a stress ratio of 0.1, based on which, different dwell times at the maximum loading were applied to investigate the effect of dwell time on the creep-fatigue behaviors. The tested specimens were cut from the rim region of an actual turbine disc in the hoop direction. The grain size and precipitates of the GH720Li superalloy were examined through scanning electronic microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) analyses. Experimental data shows creep-fatigue lifetime decreases as the dwell time prolongs. Further, different scattering was observed in the creep-fatigue lifetime at different dwell times. Then a probabilistic model based on the applied mechanical work density (AMWD), with a linear heteroscedastic function that evaluates the non-constant deviation in the creep-fatigue lifetime, was formulated to describe the dependence of creep-fatigue lifetime on the dwell time. Finally, the possible microscopic mechanism of the creep-fatigue behavior has been discussed by SEM with EDS on the fracture surfaces.

  19. Non-pharmacological interventions to manage fatigue and psychological stress in children and adolescents with cancer: an integrative review.

    Science.gov (United States)

    Lopes-Júnior, L C; Bomfim, E O; Nascimento, L C; Nunes, M D R; Pereira-da-Silva, G; Lima, R A G

    2016-11-01

    Cancer-related fatigue (CRF) is the most stressful and prevalent symptom in paediatric oncology patients. This integrative review aimed to identify, analyse and synthesise the evidence of non-pharmacological intervention studies to manage fatigue and psychological stress in a paediatric population with cancer. Eight electronic databases were used for the search: PubMed, Web of Science, CINAHL, LILACS, EMBASE, SCOPUS, PsycINFO and the Cochrane Library. Initially, 273 articles were found; after the exclusion of repeated articles, reading of the titles, abstracts and the full articles, a final sample of nine articles was obtained. The articles were grouped into five categories: physical exercise, healing touch, music therapy, therapeutic massage, nursing interventions and health education. Among the nine studies, six showed statistical significance regarding the fatigue and/or stress levels, showing that the use of the interventions led to symptoms decrease. The most frequently tested intervention was programmed physical exercises. It is suggested that these interventions are complementary to conventional treatment and that their use can indicate an improvement in CRF and psychological stress. © 2015 John Wiley & Sons Ltd.

  20. Development of a Fatigue Model for Low Alloy Steels Using a Cycle-Dependent Cohesive Zone Law

    Directory of Open Access Journals (Sweden)

    Kyungmok Kim

    2014-03-01

    Full Text Available A fatigue model for SAE 4130 steels is developed using a cycle-dependent cohesive zone law. Reduction of fracture energy and degradation of stiffness are considered to describe failure resistance after certain number of cycles. The reduction rate of fracture energy is determined with experimental stress (S- number of cycles to failure (N scatter found in the literature. Three-dimensional finite element models containing a cohesive zone are generated with commercial software (ABAQUS. Calculated fatigue lives at different stress ratios are in good agreement with experimental ones. In addition, fatigue behavior of hardened SAE 4130 steels is predicted with that of normalized material.

  1. Fatigue crack growth behavior in niobium-hydrogen alloys

    International Nuclear Information System (INIS)

    Lin, M.C.C.; Salama, K.

    1997-01-01

    Near-threshold fatigue crack growth behavior has been investigated in niobium-hydrogen alloys. Compact tension specimens (CTS) with three hydrogen conditions are used: hydrogen-free, hydrogen in solid solution, and hydride alloy. The specimens are fatigued at a temperature of 296 K and load ratios of 0.05, 0.4, and 0.75. The results at load ratios of 0.05 and 0.4 show that the threshold stress intensity range (ΔK th ) decreases as hydrogen is added to niobium. It reaches a minimum at the critical hydrogen concentration (C cr ), where maximum embrittlement occurs. The critical hydrogen concentration is approximately equal to the solubility limit of hydrogen in niobium. As the hydrogen concentration exceeds C cr , ΔK th increases slowly as more hydrogen is added to the specimen. At load ratio 0.75, ΔK th decreases continuously as the hydrogen concentration is increased. The results provide evidence that two mechanisms are responsible for fatigue crack growth behavior in niobium-hydrogen alloys. First, embrittlement is retarded by hydride transformation--induced and plasticity-induced crack closures. Second, embrittlement is enhanced by the presence of hydrogen and hydride

  2. Fatigue and creep-fatigue strength of 304 steel under biaxial strain conditions

    International Nuclear Information System (INIS)

    Asayama, Tai; Aoto, Kazumi; Wada, Yusaku

    1990-01-01

    A series of fatigue and creep-fatigue tests were conducted with 304 stainless steel at 550degC under a variety of biaxial strain conditions. Fatigue life under nonproportional loading conditions showed a significant life reduction compared with that of proportional loading, and this life reduction was reasonably estimated by taking into account the strain paths along which the strain history is imposed. Furthermore, a marked life reduction was shown to occur under nonproportional loading by imposing a strain hold period at a peak tensile strain. This life reduction was evaluated by the linear damage rule. It was shown to be possible to estimate the fatigue damage and the creep damage under nonproportional loading by a linear damage rule by estimating a stress relaxation behavior by Mises-type equivalent stress or Huddleston-type equivalent stress. (author)

  3. Study of the corrosion fatigue resistance of steel grades for automotive suspension springs

    Energy Technology Data Exchange (ETDEWEB)

    Mougin, J. [Ascometal CREAS, BP70045, F-57301 Hagondange Cedex (France); Mostacchi, A. [Ascometal Developpement, BP17, F-38570 Le Cheylas (France); Hersart, Y. [Allevard Rejna Autosuspensions CRDT, 201 Rue de Sin-le-Noble, BP629, F-59506 Douai Cedex (France)

    2004-07-01

    In order to reduce the total weight of vehicles for ecological and economical reasons, the car makers use down-sizing for several components of the cars. Concerning helical suspension springs, the size of the bar diameter and the number of spring coils are decreased, leading to an increase of the stress level applied on the spring. In this respect, steels with high mechanical properties are required, to achieve a good fatigue resistance of the springs. The corrosion resistance is also important for this application. Indeed, during service, the protective coating applied on the springs can be scratched by gravels, and bare underlying metal can be put in contact with the atmosphere, including humidity, drops of rain but also de-icing salts. Generally speaking, an increase of mechanical properties decreases the corrosion fatigue resistance of the steels. In this respect, a compromise needs to be found, that is why the study of corrosion fatigue resistance is very important. In order to study the corrosion fatigue resistance of spring steels, an original device and test procedure have been set up. Torsional fatigue on specimens is used to simulate the stress applied on each spring coil. The stress levels are chosen to be representative of the actual inservice loads. The specimens are shot-peened and coated in a same way as the actual springs. Scratching of the painting is performed, giving rise to small areas of bare metal. Three types of tests are performed: fatigue in air (taken as the reference level), fatigue on specimens which have been corroded previously (test similar to the spring-makers practice) and coupled corrosion fatigue. The mechanisms involved in corrosion fatigue have been studied. For all the specimens, crack initiated on corrosion pits. For the specimens corroded prior fatigue testing, the corrosion pits can be quite severe. In this case, these pits act as a surface defect which increases locally the stress concentration and accelerates the crack

  4. Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Symptom Severity: Stress Management Skills are Related to Lower Illness Burden.

    Science.gov (United States)

    Lattie, Emily G; Antoni, Michael H; Fletcher, Mary Ann; Czaja, Sara; Perdomo, Dolores; Sala, Andreina; Nair, Sankaran; Fu, Shih Hua; Penedo, Frank J; Klimas, Nancy

    2013-01-01

    The onset of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) typically involves reductions in activities of daily living and social interactions (jointly referred to as "illness burden"). Emotional distress has been linked to increased reported symptoms, and stress management skills have been related to lower fatigue severity in CFS patients. Symptom severity and illness burden are highly correlated. The ability to manage stress may attenuate this relationship, allowing individuals to feel less burdened by the illness independent of the severity of their symptoms. This study aimed to evaluate if perceived stress management skills affect illness burden via emotional distress, independent of ME/CFS symptom severity. A total of 117 adults with ME/CFS completed measures of perceived stress management skills, emotional distress, ME/CFS symptom severity and illness burden. Regression analyses revealed that greater perceived stress management skills related to less social and fatigue-related illness burden, via lower emotional distress. This relationship existed independent of the association of symptom severity on illness burden, and was stronger among those not currently employed. Ability to manage stress is associated with a lower illness burden for individuals with ME/CFS. Future studies should evaluate the efficacy of psychosocial interventions in lowering illness burden by targeting stress management skills.

  5. Fatigue analysis of HANARO primary cooling system piping

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo

    1998-05-01

    A main form of piping failure which occurring leak before break (LBB) is fatigue failure. The fatigue analysis of HANARO primary cooling system (PCS) piping was performed. The PCS piping had been designed in accordance with ASME Class 3 for service conditions. However fatigue analysis is not required in Class 3. In this study the quantitative fatigue analysis was carried out according to ASME Class 1. The highest stress points which have the largest possibility of ASME class 1. The highest stress points which have the largest possibility of the fatigue were determined from the piping stress analysis for each subsection piping. The fatigue analysis was performed for 3 highest stress points, i.e., branch connection, anchor point and butt welding joint. After calculating the peak stress intensity range the fatigue usage factors were evaluated considering operating cycles and S-N curve. The cumulative usage factors for 3 highest stress points were much less than 1. The results show that the possibility of fatigue failure for PCS piping subjected to thermal expansion and seismic loads is very small. The structural integrity of the HANARO PCS piping for fatigue failure was proved to apply the LBB. (author). 11 tabs., 6 figs

  6. Effect of boron and carbon on thermomechanical fatigue of IN 718 superalloy

    International Nuclear Information System (INIS)

    Xiao, L.; Chen, D.L.; Chaturvedi, M.C.

    2006-01-01

    Stress-controlled thermomechanical fatigue (TMF) behavior of IN 718 superalloy with different concentrations of boron (B) and carbon (C) was studied with temperature varying between 350 and 650 deg. C at different cyclic stress ranges and at a stress ratio of R = 0.1. Initial cyclic softening followed by a significant cyclic hardening was observed in the in-phase (IP) TMF, while continuous cyclic hardening occurred during out-of-phase (OP) TMF. Tensile cyclic creep was observed in all the TMF deformation regimes, and the creep strain increased with increasing number of cycles and stress range. B and C additions were found to retard the cyclic creep, leading to an effective improvement in the fatigue life of IP-TMF. Among the four alloys tested, the alloy with 29 ppm B and 225 ppm C exhibited the lowest creep strain and the highest IP-TMF life at the lower stress range. In the OP-TMF, the fatigue life increased with increasing B concentration at the higher stress range, and with C concentration at the lower stress range. The IP-TMF life was observed to be much shorter than that of the OP-TMF, with a crossover occurring at the higher stress range. Fractographic examinations showed that the fracture was predominantly intergranular in the IP-TMF mode, and transgranular, as characterized by typical fatigue striations, in the OP-TMF mode of deformation. The difference in the fracture mechanisms between the IP and OP-TMF mode of deformation was the primary reason for a significant influence of the loading mode on the TMF lifetime

  7. Review of provisions on corrosion fatigue and stress corrosion in WWER and Western LWR Codes and Standards

    International Nuclear Information System (INIS)

    Buckthorpe, D.; Filatov, V.; Tashkinov, A.; Evropin, S.V.; Matocha, K.; Guinovart, J.

    2003-01-01

    Results are presented from a collaborative project performed on behalf of the European Commission, Working Group Codes and Standards. The work covered the contents of current codes and standards, plant experience and R and D results. Current fatigue design rules use S-N curves based on tests in air. Although WWER and LWR design curves are often similar they are derived, presented and used in different ways and it is neither convenient nor appropriate to harmonise them. Similarly the fatigue crack growth laws used in the various design and in-service inspection rules differ significantly with respect to both growth rates in air and the effects of water reactor environments. Harmonised approaches to the effects of WWER and LWR environments are possible based on results from R and D programmes carried out over the last decade. For carbon and low alloy steels a consistent approach to both crack initiation and growth can be formulated based on the superposition of environmentally assisted cracking effects on the fatigue crack development. The approach indicates that effects of the water environment are minimal given appropriate control of the oxygen content of the water and/or the sulphur content of the steel. For austenitic stainless steels a different mechanisms may apply and a harmonised approach is possible at present only for S-N curves. Although substantial progress has been made with respect to corrosion fatigue, more data and a clearer understanding are required in order to write code provisions particularly in the area of high cycle fatigue. Reactor operation experience shows stress corrosion cracking of austenitic steels is the most common cause of failure. These failures are associated with high residual stresses combined with high levels of dissolved oxygen or the presence of contaminants. For primary circuit internals there is a potential threat to integrity from irradiated assisted stress corrosion cracking. Design and in-service inspection rules do not at

  8. Compassion satisfaction, compassion fatigue, anxiety, depression and stress in registered nurses in Australia: phase 2 results.

    Science.gov (United States)

    Drury, Vicki; Craigie, Mark; Francis, Karen; Aoun, Samar; Hegney, Desley G

    2014-05-01

    This is the first two-phase Australian study to explore the factors impacting upon compassion satisfaction, compassion fatigue, anxiety, depression and stress and to describe the strategies nurses use to build compassion satisfaction into their working lives. Compassion fatigue has been found to impact on job satisfaction, the quality of patient care and retention within nursing. This study provides new knowledge on the influences of anxiety, stress and depression and how they relate to compassion satisfaction and compassion fatigue. In Phase 2 of the study, 10 nurses from Phase 1 of the study participated in individual interviews and a focus group. A semi-structured interview schedule guided the conversations with the participants. Data analysis resulted in seven main themes: social networks and support;infrastructure and support; environment and lifestyle; learning; leadership; stress; and suggestions to build psychological wellness in nurses. Findings suggest that a nurse’s capacity to cope is enhanced through strong social and collegial support, infrastructure that supports the provision of quality nursing care and positive affirmation. These concepts are strongly linked to personal resilience. for nursing management These findings support the need for management to develop appropriate interventions to build resilience in nurses.

  9. A new formulation of mean stress effects in fatigue

    Science.gov (United States)

    Manson, S. S.; Heidmann, K. R.

    1987-01-01

    A common method of treating the mean stress effect on fatigue life is to displace the elastic line on a Manson-Coffin-Basquin diagram while retaining the position of the plastic line. Manson and Halford pointed out that this procedure implies that mean stress significantly affects the cyclic stress-strain curve. Actually, however, they showed experimentally and by more general reasoning, that mean stress has little, if any, effect on the cyclic stress-strain curve. Thus, they concluded that it is necessary to displace the plastic line as well as the elastic line in order to keep the cyclic stress-strain curve unaltered. Another way to express the common displacement of the two lines is to keep the lines in place and change the horizontal coordinate to include a term relating to the displacement. Thus, instead of life, 2N sub f, as the horizontal coordinate, a new coordinate can become 2N sub f (1-sigma sub m/sigma sub f) superscript 1/b, thereby displacing both the elastic and plastic lines by an amount (1-sigma sub m/sigma sub f) superscript 1/b where sigma sub m is the mean stress and sigma sub f is the intercept of the elastic line at N sub f = 1/2 cycles and b is the slope of the elastic line.

  10. Potential fatigue strength improvement of AA 5083-H111 notched parts by wire brush hammering: Experimental analysis and numerical simulation

    International Nuclear Information System (INIS)

    Sidhom, Naziha; Moussa, Naoufel Ben; Janeb, Sameh; Braham, Chedly; Sidhom, Habib

    2014-01-01

    Highlights: • Wire brush hammering increases by 20% the AA 5083-H111 notched parts fatigue limit. • Improvement of fatigue strength is related to the fatigue cracks nucleation. • Fatigue strength prediction accounts for wire brush hammering effects. - Abstract: The effects of milling as machining process and a post-machining treatment by wire-brush hammering, on the near surface layer characteristics of AA 5083-H111 were investigated. Surface texture, work-hardening and residual stress profiles were determined by roughness measurement, scanning electron microscope (SEM) examinations, microhardness and X-ray diffraction (XRD) measurements. The effects of surface preparation on the fatigue strength were assessed by bending fatigue tests performed on notched samples for two loading stress ratios R 0.1 and R 0.5 . It is found that the bending fatigue limit at R 0.1 and 10 7 cycles is 20% increased, with respect to the machined surface, by wire-brush hammering. This improvement was discussed on the basis of the role of surface topography, stabilized residual stress and work-hardening on the fatigue-crack network nucleation and growth. The effects biaxial residual stress field and surface work-hardening were taken into account in the finite element model. A multi-axial fatigue criterion was proposed to predict the fatigue strength of aluminum alloy notched parts for both machined and treated states

  11. Fatigue Analysis of Load-Carrying Fillet Welds

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Tychsen, Jesper; Andersen, Jens Ulfkjær

    2006-01-01

    that the degree of bending (DOB) has an influence on the fatigue lifetime. The fatigue lifetime decreases significantly when increasing the bending stress. In order to take into account the effect of the bending, a new fatigue stress definition applicable for fillet welds failing through the weld is presented....... Using the test results, it is shown that the new definition of fatigue stress can be used for a wide range of DOB with a low standard deviation of the resulting SN curve....

  12. Influence of stress systems and physical activity on different dimensions of fatigue in female fibromyalgia patients.

    Science.gov (United States)

    Doerr, Johanna M; Fischer, Susanne; Nater, Urs M; Strahler, Jana

    2017-02-01

    Fatigue is a defining characteristic and one of the most debilitating features of fibromyalgia syndrome (FMS). The mechanisms underlying different dimensions of fatigue in FMS remain unclear. The aim of the current study was to test whether stress-related biological processes and physical activity modulate fatigue experience. Using an ambulatory assessment design, 26 female FMS patients reported general, mental, and physical fatigue levels at six time points per day for 14 consecutive days. Salivary cortisol and alpha-amylase were analyzed as markers of neuroendocrine functioning. Participants wore wrist actigraphs for the assessment of physical activity. Lower increases in cortisol after awakening predicted higher mean daily general and physical fatigue levels. Additionally, mean daily physical activity positively predicted next-day mean general fatigue. Levels of physical fatigue at a specific time point were positively associated with momentary cortisol levels. The increase in cortisol after awakening did not mediate the physical activity - fatigue relationship. There were no associations between alpha-amylase and fatigue. Our findings imply that both changes in hypothalamic-pituitary-adrenal axis activity and physical activity contribute to variance in fatigue in the daily lives of patients with FMS. This study helps to paint a clearer picture of the biological and behavioral underpinnings of fatigue in FMS and highlight the necessity of interdisciplinary treatment approaches targeting biological, behavioral and psychological aspects of FMS. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Fatigue of graphite/epoxy /0/90/45/-45/s laminates under dual stress levels

    Science.gov (United States)

    Yang, J. N.; Jones, D. L.

    1982-01-01

    A model for the prediction of loading sequence effects on the statistical distribution of fatigue life and residual strength in composite materials is generalized and applied to (0/90/45/-45)s graphite/epoxy laminates. Load sequence effects are found to be caused by both the difference in residual strength when failure occurs (boundary effect) and the effect of previously applied loads (memory effect). The model allows the isolation of these two effects, and the estimation of memory effect magnitudes under dual fatigue loading levels. It is shown that the material memory effect is insignificant, and that correlations between predictions of the number of early failures agree with the verification tests, as do predictions of fatigue life and residual strength degradation under dual stress levels.

  14. Peripheral markers of central fatigue in trained and untrained during uncompensable heat stress.

    Science.gov (United States)

    Wright, Heather E; Selkirk, Glen A; Rhind, Shawn G; McLellan, Tom M

    2012-03-01

    The development of fatigue is more pronounced in the heat than thermoneutral environments; however, it is unclear whether biomarkers of central fatigue are consistent with the higher core temperature (T (c)) tolerated by endurance trained (TR) versus untrained (UT) during exertional heat stress (EHS). The purpose of this study was to examine the indicators of central fatigue during EHS in TR versus UT. Twelve TR and 11 UT males (mean ± SE [Formula: see text] = 70 ± 2 and 50 ± 1 mL kg LBM(-1) min(-1), respectively) walked on a treadmill to exhaustion (EXH) in 40°C (dry) wearing protective clothing. Venous blood was obtained at PRE and 0.5°C T (c) increments from 38 to 40°C/EXH. Free tryptophan (f-TRP) decreased dramatically at 39.5°C for the TR. Branch chain amino acids decreased with T (c) and were greater for UT than TR at EXH. Tyrosine and phenylalanine remained unchanged. Serum S100β was undetectable (fatigue.

  15. Cerebral responses to exercise and the influence of heat stress in human fatigue.

    Science.gov (United States)

    Robertson, Caroline V; Marino, Frank E

    2017-01-01

    There are a number of mechanisms thought to be responsible for the onset of fatigue during exercise-induced hyperthermia. A greater understanding of the way in which fatigue develops during exercise could be gleaned from the studies which have examined the maintenance of cerebral blood flow through the process of cerebral autoregulation. Given that cerebral blood flow is a measure of the cerebral haemodynamics, and might reflect a level of brain activation, it is useful to understand the implications of this response during exercise and in the development of fatigue. It is known that cerebral blood flow is significantly altered under certain conditions such as altitude and exacerbated during exercise induced - hyperthermia. In this brief review we consider the processes of cerebral autoregulation predominantly through the measurement of cerebral blood flow and contrast these responses between exercise undertaken in normothermic versus heat stress conditions in order to draw some conclusions about the role cerebral blood flow might play in determining fatigue. Copyright © 2016. Published by Elsevier Ltd.

  16. Demographic and occupational predictors of stress and fatigue in French intensive-care registered nurses and nurses' aides: a cross-sectional study.

    Science.gov (United States)

    Jones, Gabrielle; Hocine, Mounia; Salomon, Jérôme; Dab, William; Temime, Laura

    2015-01-01

    Healthcare workers (HCWs) working in intensive-care units (ICUs) are exposed to high physical and mental demands potentially affecting their health or having repercussions on patient care. Although several studies have explored the links between some aspects of working conditions in hospitals and HCW health, the complex dynamics at play are not fully understood. This study aimed to explore the impact of a wide array of demographic, employment and organizational factors related to fatigue and stress of French ICU HCWs. A cross-sectional study was conducted in ICUs of Paris-area hospitals between January 18, 2013 and April 2, 2013. All types of adult ICUs were included (medical, surgical and polyvalent). Included in the study were HCWs with patient contact (doctors, residents, registered nurses, nurse's aides and physical therapists). Participation was proposed to all eligible HCWs present during on-site visits. Temporary staff not typically assigned to the given ICU was excluded. Data were collected using an individual questionnaire administered in interviews during day and night shifts (N=682). Stress and fatigue outcomes included the 10-item Perceived Stress Scale (PSS10), the Nottingham Health Profile sleep and energy level rubrics and the current fatigue state at the interview. Multivariate analysis was restricted to nurse and nurse's aide data (n=536). Doctors and residents reported fewer sleep difficulties but were more likely to report a tired current state. Female gender was associated with higher stress levels and greater fatigue for all outcomes, while greater social support of supervisor or colleagues decreased stress and fatigue. At the organizational level, longer shifts (12 h vs. 8 h) were associated with tired current state and greater sleep difficulties. Personnel on rotating shifts had lower stress and a better current state, while those on night shifts had greater sleep and energy level difficulties. Even when controlling for demographic factors

  17. Fretting Fatigue Behaviour of Pin-Loaded Thermoset Carbon-Fibre-Reinforced Polymer (CFRP Straps

    Directory of Open Access Journals (Sweden)

    Fabio Baschnagel

    2016-04-01

    Full Text Available This paper focuses on the fretting fatigue behaviour of pin-loaded carbon-fibre-reinforced polymer (CFRP straps studied as models for rigging systems in sailing yachts, for suspenders of arch bridges and for pendent cables in cranes. Eight straps were subjected to an ultimate tensile strength test. In total, 26 straps were subjected to a fretting fatigue test, of which ten did not fail. An S–N curve was generated for a load ratio R of 0.1 and a frequency f of 10 Hz, showing a fatigue limit stress of the straps around the matrix fatigue limit, corresponding to 46% of the straps’ ultimate tensile strength (σUTS. The fatigue limit was defined as 3 million load cycles (N = 3 × 106, but tests were even conducted up to N = 11.09 × 106. Catastrophic failure of the straps was initiated in their vertex areas. Investigations on the residual strength and stiffness properties of straps tested around the fatigue limit stress (for N ≥ 1 × 106 showed little influence of the fatigue loading on these properties. Quasi-static finite element analyses (FEA were conducted. The results obtained from the FEA are in good agreement with the experiments and demonstrate a fibre parallel stress concentration in the vertex area of factor 1.3, under the realistic assumption of a coefficient of friction (cof between pin and strap of 0.5.

  18. Fatigue damage evolution and property degradation of a SCS-6/Ti-22Al-23Nb orthorhombic titanium aluminide composite

    International Nuclear Information System (INIS)

    Wang, P.C.; Jeng, S.M.; Yang, J.M.; Russ, S.M.

    1996-01-01

    The fatigue damage evolution and property degradation of a SCS-6/Ti-22Al-23Nb orthorhombic titanium aluminide composite under low cycle fatigue loading at room temperature was investigated. The fatigue test was conducted under a load-controlled mode with a load ratio (R) of 0.1, a frequency of 10 Hz, and a maximum applied stress ranging from 600 to 945 MPa. The stiffness reduction as well as the evolution of microstructural damage which includes matrix crack length, matrix crack density and interfacial debonding length as a function of fatigue cycles, and applied stresses were measured. An analytical model and a computer simulation were also developed to predict the residual stiffness and the post-fatigued tensile strength as a function of microstructural damage. Finally, a steady-state crack growth model proposed by Marshall et al. was used to predict the interfacial frictional stress and the critical crack length. Correlation between the theoretical predictions and experimental results were also discussed

  19. Fatigue crack propagation behavior of stainless steel welds

    Science.gov (United States)

    Kusko, Chad S.

    The fatigue crack propagation behavior of austenitic and duplex stainless steel base and weld metals has been investigated using various fatigue crack growth test procedures, ferrite measurement techniques, light optical microscopy, stereomicroscopy, scanning electron microscopy, and optical profilometry. The compliance offset method has been incorporated to measure crack closure during testing in order to determine a stress ratio at which such closure is overcome. Based on this method, an empirically determined stress ratio of 0.60 has been shown to be very successful in overcoming crack closure for all da/dN for gas metal arc and laser welds. This empirically-determined stress ratio of 0.60 has been applied to testing of stainless steel base metal and weld metal to understand the influence of microstructure. Regarding the base metal investigation, for 316L and AL6XN base metals, grain size and grain plus twin size have been shown to influence resulting crack growth behavior. The cyclic plastic zone size model has been applied to accurately model crack growth behavior for austenitic stainless steels when the average grain plus twin size is considered. Additionally, the effect of the tortuous crack paths observed for the larger grain size base metals can be explained by a literature model for crack deflection. Constant Delta K testing has been used to characterize the crack growth behavior across various regions of the gas metal arc and laser welds at the empirically determined stress ratio of 0.60. Despite an extensive range of stainless steel weld metal FN and delta-ferrite morphologies, neither delta-ferrite morphology significantly influence the room temperature crack growth behavior. However, variations in weld metal da/dN can be explained by local surface roughness resulting from large columnar grains and tortuous crack paths in the weld metal.

  20. Group versus individual stress management intervention in breast cancer patients for fatigue and emotional reactivity: a randomised intervention study.

    Science.gov (United States)

    Rissanen, Ritva; Arving, Cecilia; Ahlgren, Johan; Nordin, Karin

    2014-09-01

    Fatigue and emotional reactivity are common among women suffering from breast cancer and might detrimentally affect these women's quality of life. This study evaluates if the stress management delivered either in a group or individual setting would improve fatigue and emotional reactivity among women with a newly diagnosed breast cancer. Participants (n = 304) who reported elevated levels of distress at three-month post-inclusion were randomised between stress management in a group (GSM) (n = 77) or individual (ISM) (n = 78) setting. Participation was declined by 149 women. Participants completed the Multidimensional Fatigue Inventory (MFI-20) and the Everyday Life Stress Scale (ELSS) at the time of inclusion, 3- and 12-month post-inclusion. Analyses were made according to intention to treat and per-protocol principles. Mann-Whitney tests were used to examine differences between the two intervention groups. No significant differences were detected between the GSM and ISM groups on fatigue or emotional reactivity. In addition, there were no changes over time for these outcomes. There were no differences between the two intervention arms with reference to fatigue or emotional reactivity; however, a clinically interesting finding was the low number of women who were interested in participating in a psychosocial intervention. This finding may have clinical implications when psychosocial support is offered to women with a newly diagnosed breast cancer and also in the planning of future studies.

  1. Re-analysis of fatigue data for welded joints using the notch stress approach

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters; Mouritsen, Ole Ø.; Hansen, Michael Rygaard

    2010-01-01

    Experimental fatigue data for welded joints have been collected and subjected to re-analysis using the notch stress approach according to IIW recommendations. This leads to an overview regarding the reliability of the approach, based on a large number of results (767 specimens). Evidently......-welded joints agree quite well with the FAT 225 curve; however a reduction to FAT 200 is suggested in order to achieve approximately the same safety as observed in the nominal stress approach....

  2. The Nature of Fatigue in Chronic Fatigue Syndrome.

    Science.gov (United States)

    Olson, Karin; Zimka, Oksana; Stein, Eleanor

    2015-10-01

    In this article, we report the findings of our study on the nature of fatigue in patients diagnosed with chronic fatigue syndrome. Using ethnoscience as a design, we conducted a series of unstructured interviews and card sorts to learn more about how people with chronic fatigue syndrome describe fatigue. Participants (N = 14) described three distinct domains: tiredness, fatigue, and exhaustion. Most participants experienced tiredness prior to diagnosis, fatigue during daily life, and exhaustion after overexertion. We also discuss participants' ability to adapt to a variety of stressors and prevent shifts to exhaustion, and relate our findings to stress theory and other current research. Primary strategies that promoted adaptation to stressors included pacing and extended rest periods. These findings can aid health care professionals in detecting impending shifts between tiredness, fatigue, and exhaustion and in improving adaptive strategies, thereby improving quality of life. © The Author(s) 2015.

  3. Achieving high aspect ratio wrinkles by modifying material network stress.

    Science.gov (United States)

    Chen, Yu-Cheng; Wang, Yan; McCarthy, Thomas J; Crosby, Alfred J

    2017-06-07

    Wrinkle aspect ratio, or the amplitude divided by the wavelength, is hindered by strain localization transitions when an increasing global compressive stress is applied to synthetic material systems. However, many examples from living organisms show extremely high aspect ratios, such as gut villi and flower petals. We use three experimental approaches to demonstrate that these high aspect ratio structures can be achieved by modifying the network stress in the wrinkle substrate. We modify the wrinkle stress and effectively delay the strain localization transition, such as folding, to larger aspect ratios by using a zero-stress initial wavy substrate, creating a secondary network with post-curing, or using chemical stress relaxation materials. A wrinkle aspect ratio as high as 0.85, almost three times higher than common values of synthetic wrinkles, is achieved, and a quantitative framework is presented to provide understanding the different strategies and predictions for future investigations.

  4. Stress state during fixation determines susceptibility to fatigue-linked biodegradation in bioprosthetic heart valve materials.

    Science.gov (United States)

    Margueratt, Sean D; Lee, J Michael

    2002-01-01

    Mechanical loading contributes to the structural deterioration of bioprosthetic heart valves. The influence of stress state during fixation may play a substantial role in their failure, linking fatigue damage caused by buckling and tension and the enzymatic degradation of glutaraldehyde-crosslinked collagen. Bovine pericardia were obtained immediately postmortem and 100 mm x 15 mm samples were cut in the base-to-apex direction. Half the samples were subjected to a uniaxial tensile stress of 250 kPa and half remained unloaded during a crosslinking treatment in 0.5% glutaraldehyde. Tissue samples were rinsed and cut into 16 mm x 4 mm test strips. Half of these strips were exposed to cyclic compressive buckling and alternating tension at 30 Hz for 20 million cycles (approx. 7.5 days) using a custom-built multi-sample fatigue system. Fatigue-damaged and non-damaged samples were subsequently incubated at 37 C for 48 hrs in: (i) Type I bacterial collagenase (20 U/ml) buffered in 0.05 M Tris, 10 mM CaCl2 2H2O (pH 7.4) or (ii) 0.05 M Tris buffer (pH 7.4) only. In both cases, the samples were loaded sinusoidally between 40 and 80 g using a previously described microtensile culture system. Tissue removed from the bath was rinsed in 0.1 M EDTA solution and mounted in a servo-hydraulic mechanical testing system (MTS). Ultimate tensile strength (UTS), maximum tissue modulus, and fracture strain were determined. The percent collagen solubilized was assessed by a colourmetric hydroxyproline assay of the enzyme bath and tissue sample. All data were analyzed by analysis of variance (ANOVA). The results confirmed the synergy between fatigue damage and collagenase proteolysis in these materials; however, there were no significant differences in this effect between simple fixation and stress-fixation up to 20 million cycles. There were significant decreases in the mechanical properties and an increase in the amount of collagen solubilized with increased exposure to fatigue cycling.

  5. A Study on Fatigue Design Automation of Plug- and Ring-type Gas-welded Joints of STS301L Taking Welded Residual Stress into Account

    International Nuclear Information System (INIS)

    Baek, Seung yeb; Yun, Ki Ho

    2010-01-01

    This paper presents a fatigue design method for plug- and ring-type gas-welded joints, which takes into account the effects of welding residual stress. To develop this method, we simulated the gas-welding process by performing nonlinear finite element analysis (FEA) To validate the FEA results, numerically calculated residual stresses in the gas welds were then compared with experimental results obtained by the hole-drilling method. To evaluate the fatigue strength of plug- and ring-type gas-welded joints influenced by welding residual stresses, the use of stress amplitude (σ a )R, which includes the welding residual stress in gas welds, is proposed (σ a )R on the basis of a modified Goodman equation that includes the residual stress effects. Using the stress amplitude (σ a )R at the hot spot point of gas weld, the relations obtained as the fatigue test results for plug and ring type gas welded joints having various dimensions and shapes were systematically rearranged to obtain the (σ a )R-N f relationship. It was found that more systematic and accurate evaluation of the fatigue strength of plug- and ring-type gas-welded joints can be achieved by using (σ a )R

  6. Basic psychological need experiences, fatigue, and sleep in individuals with unexplained chronic fatigue.

    Science.gov (United States)

    Campbell, Rachel; Tobback, Els; Delesie, Liesbeth; Vogelaers, Dirk; Mariman, An; Vansteenkiste, Maarten

    2017-12-01

    Grounded in self-determination theory, this study tested the hypothesis that the satisfaction and frustration of the psychological needs for autonomy, competence, and relatedness would relate to fatigue and subjective and objective sleep parameters, with stress and negative sleep cognitions playing an explanatory role in these associations. During a stay at a sleep laboratory in Belgium, individuals with unexplained chronic fatigue (N = 160; 78% female) underwent polysomnography and completed a questionnaire at 3 different points in time (i.e., after arrival in the sleep lab, before bedtime, and the following morning) that assessed their need-based experiences and stress during the previous week, fatigue during the preceding day, and sleep-related cognitions and sleep during the previous night. Results indicated that need frustration related to higher stress, which in turn, related to higher evening fatigue. Need frustration also related to poorer subjective sleep quality and shorter sleep duration, as indicated by both subjective and objective shorter total sleep time and subjective (but not objective) longer sleep latency. These associations were accounted for by stress and negative sleep cognitions. These findings suggest that health care professionals working with individuals with unexplained chronic fatigue may consider focusing on basic psychological needs within their therapeutic approach. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Influence of type D personality on job stress and job satisfaction in clinical nurses: the mediating effects of compassion fatigue, burnout, and compassion satisfaction.

    Science.gov (United States)

    Kim, Yeon Hee; Kim, Sung Reul; Kim, Yeo Ok; Kim, Ji Young; Kim, Hyun Kyung; Kim, Hye Young

    2017-04-01

    To test a hypothetical path model evaluating the influence of type D personality on job stress and job satisfaction and to identify the mediating effects of compassion fatigue, burnout, and compassion satisfaction among clinical nurses in South Korea. Personalities susceptible to stress, compassion fatigue, and burnout in clinical nurses have negative effects on the job stress and job satisfaction. A correlational, cross-sectional design was used. A convenience sample of 875 clinical nurses was recruited between December 2014 - February 2015. The structured questionnaires included the Type D personality scale-14, Professional Quality of Life, job stress, job satisfaction, and general characteristics. To test the hypothetical path model, we performed a path analysis by using the AMOS 18·0 program. Based on the path model, type D personality was significantly associated with compassion fatigue, burnout, and compassion satisfaction in our study subjects. Type D personality was significantly associated with job stress and job satisfaction via the effect of burnout, compassion satisfaction, and job stress. Since type D personality is associated with job stress and job satisfaction, identifying personalities vulnerable to stress would help to address job stress and to enhance job satisfaction when nurses have a high level of compassion fatigue and burnout and a low level of compassion satisfaction. The development of interventions that can reduce negative affect and social inhibition of nurses with type D personality and investigation of methods to decrease their compassion fatigue and burnout and to increase compassion satisfaction should be encouraged. © 2016 John Wiley & Sons Ltd.

  8. The Effectiveness of Self Management Program on Pain, Fatigue, Depression, Anxiety, and Stress in Sickle Cell Patients: A Quasi-Experimental Study

    Directory of Open Access Journals (Sweden)

    Ahmadi

    2015-10-01

    Full Text Available Background Patients with sickle cell disease, who must manage serious and unpredictable complications related to their disease, particularly chronic pain, suffer from numerous psychosocial problems such as depression, anxiety, stress, and disruption of interpersonal relationships; these problems often lead to fatigue and poor quality of life. Objectives This study aimed to determine the effectiveness of self-management programs targeting pain, fatigue, depression, anxiety, and stress in sickle cell patients. Patients and Methods This was a quasi-experimental study; participants were 53 patients with sickle cell disease who were referred to the Thalassemia Clinic of Ahvaz Shafa Hospital. Participants were recruited by census in 2013. Participants received a self-management program that was implemented in five sessions over 12 weeks. Levels of fatigue, depression, anxiety, and stress were assessed before and 24 weeks after the intervention; pain was assessed during the intervention and at a 24 week post-intervention follow-up using the fatigue severity scale (FSS, DASS21, and a pain record. Descriptive statistics, Fisher’s exact test, Chi-square, independent t-tests, paired t-tests, repeated measures tests and correlations were used to analyze the data. Results Scores for fatigue, anxiety, depression, and stress after the intervention were significantly decreased compared to before the intervention (P < 0.001. Repeated measures testing showed that mean scores for frequency and duration of pain decreased significantly during the 12 weeks of intervention, as well as during the 24 weeks of follow-up (P < 0.001. Conclusions The results suggest the effectiveness of self-management programs on the reduction of pain, fatigue, anxiety, depression, and stress in sickle cell patients. Therefore, self-management programs are advisable in order to empower patients and assist their management of health-related problems.

  9. Determining the von Mises stress power spectral density for frequency domain fatigue analysis including out-of-phase stress components

    NARCIS (Netherlands)

    Bonte, M.H.A.; de Boer, Andries; Liebregts, R.

    This paper provides a new formula to take into account phase differences in the determination of an equivalent von Mises stress power spectral density (PSD) from multiple random inputs. The obtained von Mises PSD can subsequently be used for fatigue analysis. The formula was derived for use in the

  10. Comparison of Post Weld Treatment of High Strength Steel Welded Joints in Medium Cycle Fatigue

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters; Mouritsen, Ole Ø.; Hansen, Michael Rygaard

    2010-01-01

    This paper presents a comparison of three post-weld treatments for fatigue life improvement of welded joints. The objective is to determine the most suitable post-weld treatment for implementation in mass production of certain crane components manufactured from very high-strength steel...... the stress range can exceed the yield-strength of ordinary structural steel, especially when considering positive stress ratios (R > 0). Fatigue experiments and qualitative evaluation of the different post-weld treatments leads to the selection of TIG dressing. The process of implementing TIG dressing...... in mass production and some inherent initial problems are discussed. The treatment of a few critical welds leads to a significant increase in fatigue performance of the entire structure and the possibility for better utilization of very high-strength steel....

  11. Flexural fatigue life prediction of closed hat-section using materially nonlinear axial fatigue characteristics

    Science.gov (United States)

    Razzaq, Zia

    1989-01-01

    Straight or curved hat-section members are often used as structural stiffeners in aircraft. For instance, they are employed as stiffeners for the dorsal skin as well as in the aerial refueling adjacent area structure in F-106 aircraft. The flanges of the hat-section are connected to the aircraft skin. Thus, the portion of the skin closing the hat-section interacts with the section itself when resisting the stresses due to service loads. The flexural fatigue life of such a closed section is estimated using materially nonlinear axial fatigue characteristics. It should be recognized that when a structural shape is subjected to bending, the fatigue life at the neutral axis is infinity since the normal stresses are zero at that location. Conversely, the fatigue life at the extreme fibers where the normal bending stresses are maximum can be expected to be finite. Thus, different fatigue life estimates can be visualized at various distances from the neural axis. The problem becomes compounded further when significant portions away from the neutral axis are stressed into plastic range. A theoretical analysis of the closed hat-section subjected to flexural cyclic loading is first conducted. The axial fatigue characteristics together with the related axial fatigue life formula and its inverted form given by Manson and Muralidharan are adopted for an aluminum alloy used in aircraft construction. A closed-form expression for predicting the flexural fatigue life is then derived for the closed hat-section including materially nonlinear action. A computer program is written to conduct a study of the variables such as the thicknesses of the hat-section and the skin, and the type of alloy used. The study has provided a fundamental understanding of the flexural fatigue life characteristics of a practical structural component used in aircraft when materially nonlinear action is present.

  12. Environmental heat stress enhances mental fatigue during sustained attention task performing: evidence from an ASL perfusion study.

    Science.gov (United States)

    Qian, Shaowen; Li, Min; Li, Guoying; Liu, Kai; Li, Bo; Jiang, Qingjun; Li, Li; Yang, Zhen; Sun, Gang

    2015-03-01

    This study was to investigate the potential enhancing effect of heat stress on mental fatigue progression during sustained attention task using arterial spin labeling (ASL) imaging. Twenty participants underwent two thermal exposures in an environmental chamber: normothermic (NT) condition (25°C, 1h) and hyperthermic (HT) condition (50°C, 1h). After thermal exposure, they performed a twenty-minute psychomotor vigilance test (PVT) in the scanner. Behavioral analysis revealed progressively increasing subjective fatigue ratings and reaction time as PVT progressed. Moreover, heat stress caused worse performance. Perfusion imaging analyses showed significant resting-state cerebral blood flow (CBF) alterations after heat exposure. Specifically, increased CBF mainly gathered in thalamic-brainstem area while decreased CBF predominantly located in fronto-parietal areas, anterior cingulate cortex, posterior cingulate cortex, and medial frontal cortex. More importantly, diverse CBF distributions and trend of changes between both conditions were observed as the fatigue level progressed during subsequent PVT task. Specifically, higher CBF and enhanced rising trend were presented in superior parietal lobe, precuneus, posterior cingulate cortex and anterior cingulate cortex, while lower CBF or inhibited rising trend was found in dorsolateral frontal cortex, medial frontal cortex, inferior parietal lobe and thalamic-brainstem areas. Furthermore, the decrease of post-heat resting-state CBF in fronto-parietal cortex was correlated with subsequent slower reaction time, suggesting prior disturbed resting-state CBF might be indicator of performance potential and fatigue level in following task. These findings may provide proof for such a view: heat stress has a potential fatigue-enhancing effect when individual is performing highly cognition-demanding attention task. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Performance of 3Y-TZP bioceramics under cyclic fatigue loading

    Directory of Open Access Journals (Sweden)

    Renato Chaves Souza

    2008-03-01

    Full Text Available In this work, the static mechanical properties and cyclic fatigue life of 3 mol. (% Y2O3-stabilized tetragonal zirconia polycrystalline (3Y-TZP ceramics were investigated. Pre-sintered samples were sintered in air at 1600 °C for 120 minutes, and characterized by X ray diffraction and scanning electronic microscopy. Hardness and fracture toughness were determined by Vicker's indentation method, and Modulus of Rupture was determined by four-point bending testing. Fully dense sintered samples, near to 100% of theoretical density, presented hardness, fracture toughness and bending strength of 13.5 GPa, 8.2 MPa.m½ and 880 MPa, respectively. The cyclic fatigue tests were also realized using four-point bending testing, within a frequency of 25 Hz and stress ratio R of 0.1. The increasing of load stress lead to decreasing of the number of cycles and the run-out specimens number. The tetragonal-monoclinic (t-m ZrO2-transformation observed by X ray diffraction contributes to the increasing of the fatigue life. The 3Y-TZP samples clearly presents a range of loading conditions where cyclic fatigue can be detected.

  14. Influence of dental restorations and mastication loadings on dentine fatigue behaviour: Image-based modelling approach.

    Science.gov (United States)

    Vukicevic, Arso M; Zelic, Ksenija; Jovicic, Gordana; Djuric, Marija; Filipovic, Nenad

    2015-05-01

    The aim of this study was to use Finite Element Analysis (FEA) to estimate the influence of various mastication loads and different tooth treatments (composite restoration and endodontic treatment) on dentine fatigue. The analysis of fatigue behaviour of human dentine in intact and composite restored teeth with root-canal-treatment using FEA and fatigue theory was performed. Dentine fatigue behaviour was analysed in three virtual models: intact, composite-restored and endodontically-treated tooth. Volumetric change during the polymerization of composite was modelled by thermal expansion in a heat transfer analysis. Low and high shrinkage stresses were obtained by varying the linear shrinkage of composite. Mastication forces were applied occlusally with the load of 100, 150 and 200N. Assuming one million cycles, Fatigue Failure Index (FFI) was determined using Goodman's criterion while residual fatigue lifetime assessment was performed using Paris-power law. The analysis of the Goodman diagram gave both maximal allowed crack size and maximal number of cycles for the given stress ratio. The size of cracks was measured on virtual models. For the given conditions, fatigue-failure is not likely to happen neither in the intact tooth nor in treated teeth with low shrinkage stress. In the cases of high shrinkage stress, crack length was much larger than the maximal allowed crack and failure occurred with 150 and 200N loads. The maximal allowed crack size was slightly lower in the tooth with root canal treatment which induced somewhat higher FFI than in the case of tooth with only composite restoration. Main factors that lead to dentine fatigue are levels of occlusal load and polymerization stress. However, root canal treatment has small influence on dentine fatigue. The methodology proposed in this study provides a new insight into the fatigue behaviour of teeth after dental treatments. Furthermore, it estimates maximal allowed crack size and maximal number of cycles for a

  15. Finite Element Analysis for Fatigue Damage Reduction in Metallic Riveted Bridges Using Pre-Stressed CFRP Plates

    Directory of Open Access Journals (Sweden)

    Elyas Ghafoori

    2014-04-01

    Full Text Available Many old riveted steel bridges remain operational and require retrofit to accommodate ever increasing demands. Complicating retrofit efforts, riveted steel bridges are often considered historical structures where structural modifications that affect the original construction are to be avoided. The presence of rivets along with preservation requirements often prevent the use of traditional retrofit methods, such as bonding of fiber reinforced composites, or the addition of supplementary steel elements. In this paper, an un-bonded post-tensioning retrofit method is numerically investigated using existing railway riveted bridge geometry in Switzerland. The finite element (FE model consists of a global dynamic model for the whole bridge and a more refined sub-model for a riveted joint. The FE model results include dynamic effects from axle loads and are compared with field measurements. Pre-stressed un-bonded carbon fiber reinforced plastic (CFRP plates will be considered for the strengthening elements. Fatigue critical regions of the bridge are identified, and the effects of the un-bonded post-tensioning method with different pre-stress levels on fatigue susceptibility are explored. With an applied 40% CFRP pre-stress, fatigue damage reductions of more than 87% and 85% are achieved at the longitudinal-to-cross beam connections and cross-beam bottom flanges, respectively.

  16. Correlation between residual stress and plastic strain amplitude during low cycle fatigue of mechanically surface treated austenitic stainless steel AISI 304 and ferritic-pearlitic steel SAE 1045

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, I. [Institute of Materials Engineering, University of Kassel, 34125 Kassel, Hessen (Germany)], E-mail: Ivan.Nikitin@infineon.com; Besel, M. [Institute of Materials Engineering, University of Kassel, 34125 Kassel, Hessen (Germany)

    2008-09-15

    Mechanical surface treatments such as deep rolling are known to affect the near-surface microstructure and induce, e.g. residual stresses and/or increase the surface hardness. It is well known that, e.g. compressive residual stress states usually increase the lifetime under fatigue loading. The stress relaxation behaviour and the stability of the residual stress during fatigue loading depend on the mechanical surface treatment method. In this paper three different surface treatments are used and their effects on the low cycle fatigue behaviour of austenitic stainless steel (AISI 304) and ferritic-pearlitic steel (SAE 1045) are investigated. X-ray diffraction is applied for the non-destructive evaluation of the stress state and the microstructure. It is found that consecutive deep rolling and annealing as well as high temperature deep rolling produce more stable near-surface stress states than conventional deep rolling at room temperature. The plastic strain amplitudes during fatigue loading are measured and it is shown that they correlate well with the induced residual stress and its relaxation, respectively. Furthermore, Coffin-Manson plots are presented which clearly show the correlation between the plastic strain amplitude and the fatigue lifetime.

  17. Fatigue testing of wood composites for aerogenerator blades. Pt. 11: Assessment of fatigue damage accumulation using a fatigue modulus approach

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, C L; Ansell, M P [Bath Univ. (United Kingdom)

    1996-12-31

    Stress-strain hysteresis loops have been captured during fatigue tests performed at R=10 (compression-compression) and R=0.1 (tension-tension) on Khaya epoxy wood composites. A fatigue modulus approach, proposed by Hwang and Han in 1989, has been applied to the data and a relationship established between the initial change in fatigue modulus and fatigue life. By following changes in fatigue modulus during the first 100 test cycles it is possible to predict the life of the sample allowing rapid evaluation of the fatigue performance of wood composites. Fatigue modulus values have also been calculated for hysteresis loops captured during complex load - time history tests. Similar trends in change in fatigue modulus suggest that this approach could be used in complex loading conditions to evaluate fatigue damage accumulation and predict fatigue life. (Author)

  18. Fretting fatigue life estimation using fatigue damage gradient correction factor in various contact configurations

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dong Hyeon; Cho, Sung-San [Hongik University, Seoul (Korea, Republic of)

    2017-03-15

    A fretting fatigue life estimation method that takes into account the stress gradient effect was developed by the authors [Journal of Mechanical Science and Technology, 28 (2014) 2153-2159]. In the developed method, fatigue damage value at the cracking location is corrected with fatigue damage gradient and the corrected value is compared directly with the plain fatigue data for life estimation. In other words, the correction factor is the ratio of plain fatigue damage to fretting fatigue damage at the same life and a function of fatigue damage gradient. Since reliability of the method was verified only for cylinder-on-flat contact configuration in the previous study, the present study extends application of the method to flat-on-flat contact configurations by developing the correction factor for both the contact configuration. Fretting fatigue experiments were conducted to obtain fatigue life data for various fretting pads. Finite element analyses were conducted to evaluate the Smith-Watson-Topper (SWT) fatigue damage parameter in the cracking region. It is revealed that the SWT parameter in fat-on-flat contact configuration decreases exponentially away from the surface as in cylinder-on-flat contact configuration, and thus the SWT gradient at the surface can be evaluated reliably. Moreover, it is found that decrease in the SWT parameter around the cracking location can be expressed by piecewise exponential curves. If the gradient of SWT at the surface is used as a representative value of SWT gradient, it is impossible to establish functional relationship between the SWT gradient and the correction factor for both the contact configurations although it was possible for cylinder-on-flat contact configuration. However, if weighted average of the SWT gradient values obtained from each exponential curve in the piecewise exponential curve is used as a representative value, the correction factor for both the contact configurations becomes a function of the SWT gradient

  19. Creep-Fatigue Life Design with Various Stress and Temperature Conditions on the Basis of Lethargy Coefficient

    International Nuclear Information System (INIS)

    Park, Jung Eun; Yang, Sung Mo; Han, Jae Hee; Yu, Hyo Sun

    2011-01-01

    High temperature and stress are encounted in power plants and vehicle engines. Therefore, determination of the creep-fatigue life of a material is necessary prior to fabricating equipment. In this study, life design was determined on the basis of the lethargy coefficient for different temperatures, stress and rupture times. SP-Creep test data was compared with computed data. The SP-Creep test was performed to obtain the rupture time for X20CrMoV121 steel. The integration life equation was considered for three cases with various load, temperature and load-temperature. First, the lethargy coefficient was calculated by using the obtained rupture stress and the rupture time that were determined by carrying out the SP-Creep test. Next, life was predicted on the basis of the temperature condition. Finally, it was observed that life decreases considerably due to the coupling effect that results when fatigue and creep occur simultaneously

  20. Separating the Influence of Environment from Stress Relaxation Effects on Dwell Fatigue Crack Growth

    Science.gov (United States)

    Telesman, Jack; Gabb, Tim; Ghosn, Louis J.

    2016-01-01

    Seven different microstructural variations of LSHR were produced by controlling the cooling rate and the subsequent aging and thermal exposure heat treatments. Through cyclic fatigue crack growth testing performed both in air and vacuum, it was established that four out of the seven LSHR heat treatments evaluated, possessed similar intrinsic environmental resistance to cyclic crack growth. For these four heat treatments, it was further shown that the large differences in dwell crack growth behavior which still persisted, were related to their measured stress relaxation behavior. The apparent differences in their dwell crack growth resistance were attributed to the inability of the standard linear elastic fracture mechanics (LEFM) stress intensity parameter to account for visco-plastic behavior. Crack tip stress relaxation controls the magnitude of the remaining local tensile stresses which are directly related to the measured dwell crack growth rates. It was hypothesized that the environmentally weakened grain boundary crack tip regions fail during the dwells when their strength is exceeded by the remaining local crack tip tensile stresses. It was shown that the classical creep crack growth mechanisms such as grain boundary sliding did not contribute to crack growth, but the local visco-plastic behavior still plays a very significant role by determining the crack tip tensile stress field which controls the dwell crack growth behavior. To account for the influence of the visco-plastic behavior on the crack tip stress field, an empirical modification to the LEFM stress intensity parameter, Kmax, was developed by incorporating into the formulation the remaining stress level concept as measured by simple stress relaxation tests. The newly proposed parameter, Ksrf, did an excellent job in correlating the dwell crack growth rates for the four heat treatments which were shown to have similar intrinsic environmental cyclic fatigue crack growth resistance.

  1. RMS fatigue curves for random vibrations

    International Nuclear Information System (INIS)

    Brenneman, B.; Talley, J.G.

    1984-01-01

    Fatigue usage factors for deterministic or constant amplitude vibration stresses may be calculated with well known procedures and fatigue curves given in the ASME Boiler and Pressure Vessel Code. However, some phenomena produce nondeterministic cyclic stresses which can only be described and analyzed with statistical concepts and methods. Such stresses may be caused by turbulent fluid flow over a structure. Previous methods for solving this statistical fatigue problem are often difficult to use and may yield inaccurate results. Two such methods examined herein are Crandall's method and the ''3sigma'' method. The objective of this paper is to provide a method for creating ''RMS fatigue curves'' which accurately incorporate the requisite statistical information. These curves are given and may be used by analysts with the same ease and in the same manner as the ASME fatigue curves

  2. Study on fatigue strength of specimens with stress concentrators accounting for inelastic cyclic strains

    International Nuclear Information System (INIS)

    Troshchenko, V.T.; Khamaza, L.A.; Mishchenko, Yu.D.

    1978-01-01

    A possibility of plotting the fatigue curves for structural elements with stress concentrators was examined according to the results of testing smooth specimens made of 1Kh2M steel. The technique has been suggested, based on using the Neuber formula, while taking into account the dependence of the effective coefficient of stresses concentration on the number of cycles prior to failure. A good agreement between the calculated and the experimental data has been obtained

  3. Dietary supplementation with a superoxide dismutase-melon concentrate reduces stress, physical and mental fatigue in healthy people: a randomised, double-blind, placebo-controlled trial.

    Science.gov (United States)

    Carillon, Julie; Notin, Claire; Schmitt, Karine; Simoneau, Guy; Lacan, Dominique

    2014-06-19

    We aimed to investigate effects of superoxide dismutase (SOD)-melon concentrate supplementation on psychological stress, physical and mental fatigue in healthy people. A randomized, double-blind, placebo-controlled trial was performed on 61 people divided in two groups: active supplement (n = 32) and placebo (n = 29) for 12 weeks. Volunteers were given one small hard capsule per day. One capsule contained 10 mg of SOD-melon concentrate (140 U of SOD) and starch for the active supplement and starch only for the placebo. Stress and fatigue were evaluated using four psychometric scales: PSS-14; SF-36; Stroop tests and Prevost scale. The supplementation with SOD-melon concentrate significantly decreased perceived stress, compared to placebo. Moreover, quality of life was improved and physical and mental fatigue were reduced with SOD-melon concentrate supplementation. SOD-melon concentrate supplementation appears to be an effective and natural way to reduce stress and fatigue. trial approved by the ethical committee of Poitiers (France), and the ClinicalTrials.gov Identifier is NCT01767922.

  4. Fatigue Strength Assessment of Welded Mild Steel Joints Containing Bulk Imperfections

    Directory of Open Access Journals (Sweden)

    Martin Leitner

    2018-04-01

    Full Text Available This work investigates the effect of gas pores, as bulk imperfections, on the fatigue strength of welded mild steel joints. Two test series containing different butt joint geometries and weld process parameters are included in order to achieve two variable types of pore sizes. Based on the √area-parameter by Murakami, the test series can be grouped into imperfections exhibiting √area < 1000 µm and √area > 1000 µm. Fatigue tests at a load stress ratio of R = 0.1 are performed, which act as comparison for the subsequent fatigue estimation. To assess the fatigue resistance, the approaches by Murakami, De Kazinczy, and Mitchell are utilized, which highlight certain differences in the applicability depending on the imperfection size. It is found that, on one hand, Murakami’s approach is well suitable for both small and large gas pores depending on the applied model parameters. On the other hand, the fatigue concepts by De Kazinczy and Mitchell are preferably practicable for large defects with √area > 1000 µm. In addition, the method by Mitchell incorporates the stress concentration factor of the imperfection, which can be numerically computed considering the size, shape, and location of the gas pore, as presented in this paper.

  5. Fatigue-type stress fractures of the lower limb associated with fibrous cortical defects/non-ossifying fibromas in the skeletally immature.

    Science.gov (United States)

    Shimal, A; Davies, A M; James, S L J; Grimer, R J

    2010-05-01

    To investigate the association of a fatigue-type stress fracture and a fibrous cortical defect/non-ossifying fibroma (FCD/NOF) of the lower limb long bones in skeletally immature patients. The patient database of a specialist orthopaedic oncology centre was searched to determine the number of skeletally immature patients (lower limb long bone lesion ultimately shown to be a fatigue-type stress fracture. The diagnosis was established by a combination of typical imaging findings of a fatigue-type stress fracture, the absence of aggressive features suggestive of a sarcoma (e.g., interrupted periosteal reaction, cortical breach, and a soft-tissue mass) together with evidence of consolidation or healing on follow-up radiographs and resolution of symptoms over the subsequent weeks. The database was also used to determine the number of skeletally immature cases (lower limb long bones. The clinical and imaging features of those cases common to both groups (i.e., with both a fatigue-type stress fracture and a FCD or NOF) were reviewed. Six percent of patients (five cases) referred to an orthopaedic oncology unit, who were subsequently shown to have a stress fracture of the lower limb long bones, were found to have a related FCD/NOF. All had been referred with a suggested diagnosis of a bone sarcoma and/or osteomyelitis. The possibility of a stress fracture had been raised in only one case. Four cases involved the proximal tibia and one the distal femur. Radiographs revealed that both lesions arose in the posteromedial cortex in all but one of the cases. The radiographs and magnetic resonance imaging (MRI) features were considered typical of the overlapping pathological features of the lesions. A sarcoma could be effectively excluded in the absence of true cortical destruction and soft-tissue extension. Both fatigue-type stress fractures and FCD/NOFs occur at similar sites in the long bones. It is postulated that the existence of the latter may cause localized weakening of

  6. Fatigue, Stress and Coping in Mothers of Children with an Autism Spectrum Disorder

    Science.gov (United States)

    Seymour, Monique; Wood, Catherine; Giallo, Rebecca; Jellett, Rachel

    2013-01-01

    Raising a child with an autism spectrum disorder (ASD) can be exhausting, which has the potential to impact on parental health and wellbeing. The current study investigated the influence of maternal fatigue and coping on the relationship between children's problematic behaviours and maternal stress for 65 mothers of young children (aged…

  7. Class I review of LOFT steam generator stress and fatigue life analysis report

    International Nuclear Information System (INIS)

    Fors, R.M.; Silverman, S.

    1977-01-01

    Review of the LOFT steam generator stress and fatigue life analysis report is presented. Deficiencies were found which will require evaluation and in some areas reanalysis. The effects of these deficiencies upon the steam generator will include: to further reduce the allowable ΔP across the tubesheet for the abnormal design case of pressure on primary; and to reduce the allowable number of LOCE transients at some locations of the steam generator from the numbers listed in the stress report and to increase them at other locations

  8. Corrosion fatigue of steels

    International Nuclear Information System (INIS)

    Spaehn, H.; Wagner, G.H.

    1976-01-01

    Corrosion fatigue phenomena can be classified into two main groups according to the electrochemical state of the metal surface in the presence of electrolytes: the active and the passive state with an important sub-group of corrosion fatigue in the unstable passive state. The allowable stress for structures exposed to the conjoint action of corrosion and fatigue is influenced by many factors: kind of media, number of cycles, frequency, mean stress, size, notches, loading mode, alloy composition and mechanical strength. A critical literature review shows contradictory results if a classification by the electrochemical surface state is not applied. Case histories and counter measures illustrate the practical importance of corrosion fatigue in many branches of industry as well as the urgent need for a better knowledge about the mutual influence of the phenomena to get rules by which the engineer can appraise the risk of corrosion fatigue. (orig.) [de

  9. Quality of life in multiple sclerosis (MS) and role of fatigue, depression, anxiety, and stress: A bicenter study from north of Iran.

    Science.gov (United States)

    Salehpoor, Ghasem; Rezaei, Sajjad; Hosseininezhad, Mozaffar

    2014-11-01

    Although studies have demonstrated significant negative relationships between quality of life (QOL), fatigue, and the most common psychological symptoms (depression, anxiety, stress), the main ambiguity of previous studies on QOL is in the relative importance of these predictors. Also, there is lack of adequate knowledge about the actual contribution of each of them in the prediction of QOL dimensions. Thus, the main objective of this study is to assess the role of fatigue, depression, anxiety, and stress in relation to QOL of multiple sclerosis (MS) patients. One hundred and sixty-two MS patients completed the questionnaire on demographic variables, and then they were evaluated by the Persian versions of Short-Form Health Survey Questionnaire (SF-36), Fatigue Survey Scale (FSS), and Depression, Anxiety, Stress Scale-21 (DASS-21). Data were analyzed by Pearson correlation coefficient and hierarchical regression. Correlation analysis showed a significant relationship between QOL elements in SF-36 (physical component summary and mental component summary) and depression, fatigue, stress, and anxiety (P depression, and anxiety were identified as the physical component summary predictor variables. Anxiety was found to be the most powerful predictor variable amongst all (β = -0.46, P depression as the only significant mental component summary predictor variable (β = -0.39, P anxiety, fatigue, and depression in physical dimensions and the role of depression in psychological dimensions of the lives of MS patients. In addition, the findings of this study indirectly suggest that psychological interventions for reducing fatigue, depression, and anxiety can lead to improved QOL of MS patients.

  10. A study of fatigue and fracture response of cantilevered luminaire structures made from aluminum alloy 6063

    Energy Technology Data Exchange (ETDEWEB)

    Menzemer, Craig C. [Department of Civil Engineering, University of Akron, Akron, OH 443265 (United States); Azzam, Diya [Department of Civil Engineering, University of Akron, Akron, OH 443265 (United States); California Department of Transportation (Caltrans), Bridge Structure Design (Branch, 10) Los Angeles Projects, 1801 30th Street, Sacramento, CA 95816 (United States); Srivatsan, T.S., E-mail: TSrivatsan@uakron.edu [Division of Materials Science and Engineering, Department of Mechanical Engineering, University of Akron, Akron, OH 44325-3903 (United States)

    2010-07-15

    In the experimental results elegantly and exhaustively elaborated upon in this paper the local stresses, obtained from finite element analysis, was used to develop estimates of the stress intensity factor (SIF). In combination with crack growth data, the fatigue lives of both the through-plate and an integrally stiffened socket connection were estimated using software developed by the U.S. Air Force (and referred to as AFGROW). The fatigue life estimates correlated well with the test results provided the crack growth rate data was obtained under conditions of minimal closure at higher stress ratios (of the order R = 0.7). In an attempt to establish the fatigue lives in the high cycle regime, the measured residual stresses had to be included in the analysis. For identical stress ranges, the 25 mm thick through-plate socket connection exhibited noticeably lower fatigue lives when compared to the integrally stiffened shoe-base structure. Scanning electron microscopy observations revealed pockets of well-defined striations consistent with stable growth of the crack through the microstructure prior to the onset of unstable crack growth culminating in catastrophic fracture. In the slow growth region, the fracture surface revealed pockets of shallow, well-defined striations that were uniformly spaced indicative of the occurrence of localized microplastic deformation.

  11. System-Level Heat Transfer Analysis, Thermal- Mechanical Cyclic Stress Analysis, and Environmental Fatigue Modeling of a Two-Loop Pressurized Water Reactor. A Preliminary Study

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish [Argonne National Lab. (ANL), Argonne, IL (United States); Soppet, William [Argonne National Lab. (ANL), Argonne, IL (United States); Majumdar, Saurin [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, Ken [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-03

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in April 2015 under the work package for environmentally assisted fatigue under DOE's Light Water Reactor Sustainability program. In this report, updates are discussed related to a system level preliminary finite element model of a two-loop pressurized water reactor (PWR). Based on this model, system-level heat transfer analysis and subsequent thermal-mechanical stress analysis were performed for typical design-basis thermal-mechanical fatigue cycles. The in-air fatigue lives of components, such as the hot and cold legs, were estimated on the basis of stress analysis results, ASME in-air fatigue life estimation criteria, and fatigue design curves. Furthermore, environmental correction factors and associated PWR environment fatigue lives for the hot and cold legs were estimated by using estimated stress and strain histories and the approach described in NUREG-6909. The discussed models and results are very preliminary. Further advancement of the discussed model is required for more accurate life prediction of reactor components. This report only presents the work related to finite element modelling activities. However, in between multiple tensile and fatigue tests were conducted. The related experimental results will be presented in the year-end report.

  12. The fatigue life and fatigue crack through thickness behavior of a surface cracked plate, 2

    International Nuclear Information System (INIS)

    Nam, Ki-Woo; Fujibayashi, Shinpei; Ando, Kotoji; Ogura, Nobukazu.

    1987-01-01

    Most structures have a region where stresses concentrate, and the probability of fatigue crack initiation may be higher than in other parts. Therefore, to improve the reliability of an LBB design, it is necessary to evaluate the growth and through thickness behavior of fatigue cracks in the stress concentration part. In this paper, a fatigue crack growth test at a stress concentration region has been made on 3 % NiCrMo and HT 80 steel. Stress concentration is caused by a fillet on the plate. The main results obtained are as follows : (1) Before cracking through the plate thickness, stress concentration has a remarkable effect on the fatigue crack growth behavior and it flatens the shape of a surface crack. The crack growth behavior can be explained quantatively by using the Newman-Raju equation and the stress resolving method proposed by ASME B and P Code SecXI. (2) The da/dN-ΔK relation obtained in a stress concentration specimen shows good agreement with that obtained in a surface cracked smooth specimen. (3) It is shown that stress concentration caused by a fillet has little effect on the crack growth rate after cracking through the plate thickness. (4) By using the K value based on eq. (1), (2), particular crack growth behavior and the change in crack shape after cracking through thickness can be explained quantatively. (author)

  13. Environmental-assisted fatigue in austenitic stainless steels under light water reactor conditions

    International Nuclear Information System (INIS)

    Seifert, H.P.; Ritter, S.; Spaetig, P.

    2015-01-01

    The environmental-assisted fatigue (EAF) initiation and subsequent short crack growth behaviour of different austenitic stainless steels were characterised under simulated BWR/HWC and primary PWR conditions by cyclic fatigue tests with sharply notched fracture mechanics specimens. After a brief summary overview on the previous PSI observations, an update with new and preliminary results about the effect of pH, dissolved hydrogen, load ratio/mean stress, long static load hold times and load sequences is given in this paper. At low electrochemical corrosion potentials (ECP), the physical EAF initiation life moderately decreases with increasing dissolved hydrogen content and decreasing pH. Both parameters have little effect on the subsequent short EAF crack growth within the investigated range. Notch strain amplitude thresholds for environmental effects on physical EAF crack initiation decrease with increasing load ratio and mean stress. At small notch strain amplitudes, the effect of mean stress is more pronounced in BWR/HWC environment than in air and predicted by typical fatigue life mean stress corrections. Under certain loading conditions, long static load hold times result in an increase of the physical EAF initiation life, which saturates for very long hold times. On the other hand, little effect of hold times on subsequent stationary short EAF crack growth rates is observed. The physical EAF initiation life under load sequence loading in high-temperature water may be moderately shorter or significantly longer than predicted by a linear damage accumulation rule and corresponding constant load amplitude tests depending on the load history. (authors)

  14. Cumulative damage fatigue tests on nuclear reactor Zircaloy-2 fuel tubes at room temperature and 3000C

    International Nuclear Information System (INIS)

    Pandarinathan, P.R.; Vasudevan, P.

    1980-01-01

    Cumulative damage fatigue tests were conducted on the Zircaloy-2 fuel tubes at room temperature and 300 0 C on the modified Moore type, four-point-loaded, deflection-controlled, rotating bending fatigue testing machine. The cumulative cycle ratio at fracture for the Zircaloy-2 fuel tubes was found to depend on the sequence of loading, stress history, number of cycles of application of the pre-stress and the test temperature. A Hi-Lo type fatigue loading was found to be very much damaging at room temperature and this feature was not observed in the tests at 300 0 C. Results indicate significant differences in damage interaction and damage propagation under cumulative damage tests at room temperature and at 300 0 C. Block-loading fatigue tests are suggested as the best method to determine the life-time of Zircaloy-2 fuel tubes under random fatigue loading during their service in the reactor. (orig.)

  15. Effect of load ratio and saltwater corrosive environment on the initiation life of fatigue of 10Ni5CrMoV steel

    Science.gov (United States)

    Xie, Xing; Yi, Hong; Xu, Jian; Gen, Liming; Chen, Luyun

    2017-09-01

    Fatigue initiation life has been studied with 10CrNi5MoV steel for use in ocean engineering at different load ratios and in different environmental media. The microstructure and micro-topography have been observed and analyzed by means of SEM, EDS and EBSD. Our findings indicate that, the initiation life of 10Ni5CrMoV steel in seawater is shorter than that in air, and the difference in longevity is larger with the increasing of load ratio. Corrosion pits had a great influence on initial corrosion fatigue life.

  16. Stresses, fatigue and fracture analysis in the tube sheets

    International Nuclear Information System (INIS)

    Billon, F.

    1986-05-01

    The purpose of the present work is to study the behaviour of the nuclear PWR steam generator tube sheet. But the methods developed in this field can easily be generalized in order to study tube sheets from any other type of heat exchangers. The aim of the stress analysis of these sheets is to verify their correct design, to quantify the risk of fatigue damage in the areas submitted to a high stress concentration and through the fracture mechanic, to make sure there is no risk of fast fracture resulting from initiated or pre-existing defects. This analysis necessarily relates to the calculation of stresses in all parts of the multidrilled area, mainly around the holes where they are concentrated. However the tube sheets are so complexe structures that their direct modelization cannot be envisaged within the context of the finite element method. We then must refer to the concept of equivalent medium in order to calculate the nominal stresses. Then using the stresses multiple fonctions appropriate to the net geometry, we can calculate the actual stresses concentrated around the holes. The method depends on the behaviour of the elementary volume which represents the behaviour of the multidrilled medium. This approach must allow to correctly take account of the ''thermal skin effect'', which is a phenomenon particular to the tube sheets with thermal loads. It must as well be generalized in order to analyse the irregular ligaments which affect the periodical stresses distribution and locally overconcentrate them [fr

  17. Mechanical Properties, Short Time Creep, and Fatigue of an Austenitic Steel

    Directory of Open Access Journals (Sweden)

    Josip Brnic

    2016-04-01

    Full Text Available The correct choice of a material in the process of structural design is the most important task. This study deals with determining and analyzing the mechanical properties of the material, and the material resistance to short-time creep and fatigue. The material under consideration in this investigation is austenitic stainless steel X6CrNiTi18-10. The results presenting ultimate tensile strength and 0.2 offset yield strength at room and elevated temperatures are displayed in the form of engineering stress-strain diagrams. Besides, the creep behavior of the steel is presented in the form of creep curves. The material is consequently considered to be creep resistant at temperatures of 400 °C and 500 °C when subjected to a stress which is less than 0.9 of the yield strength at the mentioned temperatures. Even when the applied stress at a temperature of 600 °C is less than 0.5 of the yield strength, the steel may be considered as resistant to creep. Cyclic tensile fatigue tests were carried out at stress ratio R = 0.25 using a servo-pulser machine and the results were recorded. The analysis shows that the stress level of 434.33 MPa can be adopted as a fatigue limit. The impact energy was also determined and the fracture toughness assessed.

  18. Mechanical Properties, Short Time Creep, and Fatigue of an Austenitic Steel.

    Science.gov (United States)

    Brnic, Josip; Turkalj, Goran; Canadija, Marko; Lanc, Domagoj; Krscanski, Sanjin; Brcic, Marino; Li, Qiang; Niu, Jitai

    2016-04-20

    The correct choice of a material in the process of structural design is the most important task. This study deals with determining and analyzing the mechanical properties of the material, and the material resistance to short-time creep and fatigue. The material under consideration in this investigation is austenitic stainless steel X6CrNiTi18-10. The results presenting ultimate tensile strength and 0.2 offset yield strength at room and elevated temperatures are displayed in the form of engineering stress-strain diagrams. Besides, the creep behavior of the steel is presented in the form of creep curves. The material is consequently considered to be creep resistant at temperatures of 400 °C and 500 °C when subjected to a stress which is less than 0.9 of the yield strength at the mentioned temperatures. Even when the applied stress at a temperature of 600 °C is less than 0.5 of the yield strength, the steel may be considered as resistant to creep. Cyclic tensile fatigue tests were carried out at stress ratio R = 0.25 using a servo-pulser machine and the results were recorded. The analysis shows that the stress level of 434.33 MPa can be adopted as a fatigue limit. The impact energy was also determined and the fracture toughness assessed.

  19. A Comparison Study of Machine Learning Based Algorithms for Fatigue Crack Growth Calculation.

    Science.gov (United States)

    Wang, Hongxun; Zhang, Weifang; Sun, Fuqiang; Zhang, Wei

    2017-05-18

    The relationships between the fatigue crack growth rate ( d a / d N ) and stress intensity factor range ( Δ K ) are not always linear even in the Paris region. The stress ratio effects on fatigue crack growth rate are diverse in different materials. However, most existing fatigue crack growth models cannot handle these nonlinearities appropriately. The machine learning method provides a flexible approach to the modeling of fatigue crack growth because of its excellent nonlinear approximation and multivariable learning ability. In this paper, a fatigue crack growth calculation method is proposed based on three different machine learning algorithms (MLAs): extreme learning machine (ELM), radial basis function network (RBFN) and genetic algorithms optimized back propagation network (GABP). The MLA based method is validated using testing data of different materials. The three MLAs are compared with each other as well as the classical two-parameter model ( K * approach). The results show that the predictions of MLAs are superior to those of K * approach in accuracy and effectiveness, and the ELM based algorithms show overall the best agreement with the experimental data out of the three MLAs, for its global optimization and extrapolation ability.

  20. Associations of fatigue to work-related stress, mental and physical health in an employed community sample.

    Science.gov (United States)

    Rose, D M; Seidler, A; Nübling, M; Latza, U; Brähler, E; Klein, E M; Wiltink, J; Michal, M; Nickels, S; Wild, P S; König, J; Claus, M; Letzel, S; Beutel, M E

    2017-05-05

    While work-related fatigue has become an issue of concern among European employees, the relationship between fatigue, depression and work-related stressors is far from clear. The purposes of this study were (1) to determine the associations of fatigue with work-related stressors, severe medical disease, health behavior and depression in the working population and (2) to determine the unique impact of work-related stressors on fatigue. We used cross-sectional data of N = 7,930 working participants enrolled in the Gutenberg Health Study (GHS) from 2007 to 2012 filled out the Personal Burnout Scale (PBS) of the Copenhagen Psychosocial Questionnaire (COPSOQ), the PHQ-9, and a list of work-related stressors. A total of 27.5% reported increased fatigue, esp. women, younger persons with a lower social status and income, smokers, severely medically ill, previously and currently depressed participants. Fatigue was consistently associated with severe medical disease, health behavior and depression, which need to be taken into account as potential confounders when analyzing its relationship to work-related strains. Depression was consistently associated with work-related stressors. However, after statistically partialling out depression, fatigue was still significantly associated with work-related stress. Fatigue as an indicator of allostatic load is consistently associated with work-related stressors such as work overload after controlling for depression. The brief Personal Burn-out Scale is suitable for assessing work-related fatigue in the general population.

  1. Multiaxial low cycle fatigue life under non-proportional loading

    International Nuclear Information System (INIS)

    Itoh, Takamoto; Sakane, Masao; Ohsuga, Kazuki

    2013-01-01

    A simple and clear method of evaluating stress and strain ranges under non-proportional multiaxial loading where principal directions of stress and strain are changed during a cycle is needed for assessing multiaxial fatigue. This paper proposes a simple method of determining the principal stress and strain ranges and the severity of non-proportional loading with defining the rotation angles of the maximum principal stress and strain in a three dimensional stress and strain space. This study also discusses properties of multiaxial low cycle fatigue lives for various materials fatigued under non-proportional loadings and shows an applicability of a parameter proposed by author for multiaxial low cycle fatigue life evaluation

  2. Comparing Fatigue Life Estimations of Composite Wind Turbine Blades using different Fatigue Analysis Tools

    DEFF Research Database (Denmark)

    Ardila, Oscar Gerardo Castro; Lennie, Matthew; Branner, Kim

    2015-01-01

    In this paper, fatigue lifetime prediction of NREL 5MW reference wind turbine is presented. The fatigue response of materials used in selected blade cross sections was obtained by applying macroscopic fatigue approaches and assuming uniaxial stress states. Power production and parked load cases...... suggested by the IEC 61400-1 standard were studied employing different load time intervals and by using two novel fatigue tools called ALBdeS and BECAS+F. The aeroelastic loads were defined thought aeroelastic simulations performed with both FAST and HAWC2 tools. The stress spectra at each layer were...... calculated employing laminated composite theory and beam cross section methods. The Palmgren-Miner linear damage rule was used to calculate the accumulation damage. The theoretical results produced by both fatigue tools proved a prominent effect of analysed design load conditions on the estimated lifetime...

  3. Standard practice for statistical analysis of linear or linearized stress-life (S-N) and strain-life (ε-N) fatigue data

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers only S-N and ε-N relationships that may be reasonably approximated by a straight line (on appropriate coordinates) for a specific interval of stress or strain. It presents elementary procedures that presently reflect good practice in modeling and analysis. However, because the actual S-N or ε-N relationship is approximated by a straight line only within a specific interval of stress or strain, and because the actual fatigue life distribution is unknown, it is not recommended that (a) the S-N or ε-N curve be extrapolated outside the interval of testing, or (b) the fatigue life at a specific stress or strain amplitude be estimated below approximately the fifth percentile (P ≃ 0.05). As alternative fatigue models and statistical analyses are continually being developed, later revisions of this practice may subsequently present analyses that permit more complete interpretation of S-N and ε-N data.

  4. Fatigue Crack Growth Behavior of Nickel-base Superalloy Haynes 282 at 550-750 °C

    Science.gov (United States)

    Rozman, K. A.; Kruzic, J. J.; Hawk, J. A.

    2015-08-01

    The fatigue crack growth rates for nickel-based superalloy Haynes 282 were measured at temperatures of 550, 650, and 750 °C using compact tension specimens with a load ratio of 0.1 and cyclic loading frequencies of 25 Hz and 0.25 Hz. Increasing the temperature from 550 to 750 °C caused the fatigue crack growth rates to increase from ~20 to 60% depending upon the applied stress intensity level. The effect of reducing the applied loading frequency increased the fatigue crack growth rates from ~20 to 70%, also depending upon the applied stress intensity range. The crack path was observed to be transgranular for the temperatures and frequencies used during fatigue crack growth rate testing. At 750 °C, there were some indications of limited intergranular cracking excursions at both loading frequencies; however, the extent of intergranular crack growth was limited and the cause is not understood at this time.

  5. Cyclic fatigue-crack propagation, stress-corrosion, and fracture-toughness behavior in pyrolytic carbon-coated graphite for prosthetic heart valve applications.

    Science.gov (United States)

    Ritchie, R O; Dauskardt, R H; Yu, W K; Brendzel, A M

    1990-02-01

    Fracture-mechanics tests were performed to characterize the cyclic fatigue, stress-corrosion cracking, and fracture-toughness behavior of a pyrolytic carbon-coated graphite composite material used in the manufacture of cardiac valve prostheses. Testing was carried out using compact tension C(T) samples containing "atomically" sharp precracks, both in room-temperature air and principally in a simulated physiological environment of 37 degrees C Ringer's lactate solution. Under sustained (monotonic) loads, the composite exhibited resistance-curve behavior, with a fracture toughness (KIc) between 1.1 and 1.9 MPa square root of m, and subcritical stress-corrosion crack velocities (da/dt) which were a function of the stress intensity K raised to the 74th power (over the range approximately 10(-9) to over 10(-5) m/s). More importantly, contrary to common perception, under cyclic loading conditions the composite was found to display true (cyclic) fatigue failure in both environments; fatigue-crack growth rates (da/dN) were seen to be a function of the 19th power of the stress-intensity range delta K (over the range approximately 10(-11) to over 10(-8) m/cycle). As subcritical crack velocities under cyclic loading were found to be many orders of magnitude faster than those measured under equivalent monotonic loads and to occur at typically 45% lower stress-intensity levels, cyclic fatigue in pyrolytic carbon-coated graphite is reasoned to be a vital consideration in the design and life-prediction procedures of prosthetic devices manufactured from this material.

  6. Assessment and propagation of mechanical property uncertainties in fatigue life prediction of composite laminates

    DEFF Research Database (Denmark)

    Castro, Oscar; Branner, Kim; Dimitrov, Nikolay Krasimirov

    2018-01-01

    amplitude loading cycles. Fatigue life predictions of unidirectional and multi-directional glass/epoxy laminates are carried out to validate the proposed model against experimental data. The probabilistic fatigue behavior of laminates is analyzed under constant amplitude loading conditions as well as under......A probabilistic model for estimating the fatigue life of laminated composite materials considering the uncertainty in their mechanical properties is developed. The uncertainty in the material properties is determined from fatigue coupon tests. Based on this uncertainty, probabilistic constant life...... diagrams are developed which can efficiently estimate probabilistic É›-N curves at any load level and stress ratio. The probabilistic É›-N curve information is used in a reliability analysis for fatigue limit state proposed for estimating the probability of failure of composite laminates under variable...

  7. FATIGUE CRACK PROPAGATION THROUGH AUSTEMPERED DUCTILE IRON MICROSTRUCTURE

    Directory of Open Access Journals (Sweden)

    Lukáš Bubenko

    2010-10-01

    Full Text Available Austempered ductile iron (ADI has a wide range of application, particularly for castings used in automotive and earth moving machinery industries. These components are usually subjected to variable dynamic loading that may promote initiation and propagation of fatigue cracks up to final fracture. Thus, it is important to determine the fatigue crack propagation behavior of ADI. Since fatigue crack growth rate (da/dN vs. stress intensity factor K data describe fatigue crack propagation resistance and fatigue durability of structural materials, da/dN vs. Ka curves of ADI 1050 are reported here. The threshold amplitude of stress intensity factor Kath is also determined. Finally, the influence of stress intensity factor amplitude to the character of fatigue crack propagation through the ADI microstructure is described.

  8. Cyclic Strain Resistance, Stress Response, Fatigue Life, and Fracture Behavior of High Strength Low Alloy Steel 300 M

    Science.gov (United States)

    Manigandan, K.; Srivatsan, T. S.; Tammana, Deepthi; Poorgangi, Behrang; Vasudevan, Vijay K.

    2014-05-01

    The focus of this technical manuscript is a record of the specific role of microstructure and test specimen orientation on cyclic stress response, cyclic strain resistance, and cyclic stress versus strain response, deformation and fracture behavior of alloy steel 300 M. The cyclic strain amplitude-controlled fatigue properties of this ultra-high strength alloy steel revealed a linear trend for the variation of log elastic strain amplitude with log reversals-to-failure, and log plastic strain amplitude with log reversals-to-failure for both longitudinal and transverse orientations. Test specimens of the longitudinal orientation showed only a marginal improvement over the transverse orientation at equivalent values of plastic strain amplitude. Cyclic stress response revealed a combination of initial hardening for the first few cycles followed by gradual softening for a large portion of fatigue life before culminating in rapid softening prior to catastrophic failure by fracture. Fracture characteristics of test specimens of this alloy steel were different at both the macroscopic and fine microscopic levels over the entire range of cyclic strain amplitudes examined. Both macroscopic and fine microscopic observations revealed fracture to be a combination of both brittle and ductile mechanisms. The underlying mechanisms governing stress response, deformation characteristics, fatigue life, and final fracture behavior are presented and discussed in light of the competing and mutually interactive influences of test specimen orientation, intrinsic microstructural effects, deformation characteristics of the microstructural constituents, cyclic strain amplitude, and response stress.

  9. Fatigue Properties of Layered Double Hydroxides Modified Asphalt and Its Mixture

    Directory of Open Access Journals (Sweden)

    Xing Liu

    2014-01-01

    Full Text Available This study investigated the influence of layered double hydroxides (LDHs on the fatigue properties of asphalt mixture. In this paper, different aging levels (thin film oven test (TFOT and ultraviolet radiation aging (UV aging for short of bitumen modified with various mass ratios of the LDHs were investigated. The TFOT and UV aging process were used to simulate short-term field thermal-oxidative aging and long-term field light UV aging of bitumen, respectively. The influences of LDHs on the fatigue properties of LDHs were evaluated by dynamic shear rheometer (DSR and indirect tensile fatigue test. Results indicated that the introduction of LDHs could change the fatigue properties of bitumen under a stress control mode. The mixture with modified bitumen showed better fatigue resistance than the mixture with base bitumen. The results illustrated that the LDHs would be alternative modifiers used in the bitumen to improve the lifetime of asphalt pavements.

  10. X-ray fractography on fatigue fracture surface of high manganese austenitic steel

    International Nuclear Information System (INIS)

    Akita, Koichi; Misawa, Hiroshi; Kodama, Shotaro; Saito, Tetsuro.

    1997-01-01

    Fatigue tests were carried out under constant stress amplitude, using a non-magnetic high manganese Mn-Cr steel. X-ray fractography was applied on the fatigue fractured surface to investigate the relationship between stress intensity factor and residual stress or half-value breadth of the X-ray diffraction profile. The fatigue crack propagation rate of this non-magnetic Mn-Cr steel had the same tendency as in the ordinary structural ferritic steels. The relationship between stress intensity factor and the residual stress or half-value breadth of the steel was almost the same as that of the ferritic cyclic work hardening steels. No stress induced transformation was observed on the fracture surface, but the residual stress on the fractured surface was compressive in the high stress intensity factors range, which is typical in the cyclic work hardening steels. The half-value breadth on the fractured surface increased with increasing effective stress intensity factor range. The relationship between the half-value breadth and stress intensity factor range was represented by a linear line regardless of the stress ratio. Therefore, the acting stress intensity factor range at the time of fracture can be estimated from the half-value breadth. The depth of monotonic plastic zone was estimated from the distribution of half-value breadth beneath the fractured surface. The relationship between the maximum stress intensity factor and half-value breadth was expressed by the equation ω m α(K max /σ y ) 2 , where the value of α was 0.025. This is about one sixth of the value for ferritic steels, and the fact shows the severe work hardening occuring in the plastic zone in this manganese steel. (author)

  11. Akebia quinata Decaisne aqueous extract acts as a novel anti-fatigue agent in mice exposed to chronic restraint stress.

    Science.gov (United States)

    Park, Sun Haeng; Jang, Seol; Lee, Si Woo; Park, Sun Dong; Sung, Yoon-Young; Kim, Ho Kyoung

    2018-08-10

    Akebia quinata Decaisne extract (AQE; Lardizabalaceae) is used in traditional herbal medicine for stress- and fatigue-related depression, improvement of fatigue, and mental relaxation. To clarify the effects of AQE on stress-induced fatigue, we investigated the neuroprotective pharmacological effects of A. quinata Decaisne in mice exposed to chronic restraint stress. Seven-week old C57BL/6 mice chronically stressed by immobilization for 3 h daily for 15 d and non-stressed control mice underwent daily oral administration of AQE or distilled water. The open field, sucrose preference, and forced swimming behavioral tests were carried out once weekly, and immunohistochemical analyses of NeuN, brain-derived neurotrophic factor (BDNF), phosphorylated cAMP response element-binding (CREB) protein, and BDNF receptor tropomyosin receptor kinase B (TrkB) in striatum and hippocampus were performed at the end of the experimental period. Brain levels of serotonin, adrenaline, and noradrenaline as well as serum levels of corticosterone were measured. Behavioral tests showed that treatment with AQE improved all lethargic behaviors examined. AQE significantly attenuated the elevated levels of adrenaline, noradrenaline, and serotonin in the brain and corticosterone, alanine transaminase, and aspartate transaminase levels in the serum. Histopathological analysis showed that AQE reduced liver injury and lateral ventricle size in restraint-stress mice via inhibition of neuronal cell death. Immunohistochemical analysis showed increased phosphorylation of CREB and expression of BDNF and its receptor TrkB in striatum and hippocampus. Chlorogenic acid, isochlorogenic acid A, and isochlorogenic acid C were identified as the primary components of AQE. All three agents increased expression of BDNF in SH-SY5Y cells and PC12 cells with H 2 O 2 -induced neuronal cell damage. AQE may have a neuroprotective effect and ameliorate the effects of stress and fatigue-associated brain damage through

  12. Fatigue of cord-rubber composites for tires

    Science.gov (United States)

    Song, Jaehoon

    Fatigue behaviors of cord-rubber composite materials forming the belt region of radial pneumatic tires have been characterized to assess their dependence on stress, strain and temperature history as well as materials composition and construction . Using actual tires, it was found that interply shear strain is one of the crucial parameters for damage assessment from the result that higher levels of interply shear strain of actual tires reduce the fatigue lifetime. Estimated at various levels of load amplitude were the fatigue life, the extent and rate of resultant strain increase ("dynamic creep"), cyclic strains at failure, and specimen temperature. The interply shear strain of 2-ply 'tire belt' composite laminate under circumferential tension was affected by twisting of specimen due to tension-bending coupling. However, a critical level of interply shear strain, which governs the gross failure of composite laminate due to the delamination, appeared to be independent of different lay-up of 2-ply vs. symmetric 4-ply configuration. Reflecting their matrix-dominated failure modes such as cord-matrix debonding and delamination, composite laminates with different cord reinforcements showed the same S-N relationship as long as they were constructed with the same rubber matrix, the same cord angle, similar cord volume, and the same ply lay-up. Because of much lower values of single cycle strength (in terms of gross fracture load per unit width), the composite laminates with larger cord angle and the 2-ply laminates exhibited exponentially shorter fatigue lifetime, at a given stress amplitude, than the composite laminates with smaller cord angle and 4-ply symmetric laminates, respectively. The increase of interply rubber thickness lengthens their fatigue lifetime at an intermediate level of stress amplitude. However, the increase in the fatigue lifetime of the composite laminate becomes less noticeable at very low stress amplitude. Even with small compressive cyclic

  13. Effects of mean strain on the random cyclic stress-strain relations of 0Cr18Ni10Ti pipe steel

    International Nuclear Information System (INIS)

    Zhao Yongxiang; Yang Bing

    2005-01-01

    Experimental study is performed for the effects of the mean strain on the random cyclic stress-strain relations of the new nuclear material, 0Cr18Ni10Ti pipe steel. From saving the size of specimens, an improved maximum likelihood fatigue test method is proposed to operate the present strain-controlled fatigue tests. Six straining ratios, -1, -0.52, -0.22, 0.029, 0.18, and 0.48, respectively, are applied to study the effects. Fatigue test has been carried out on totally 104 specimens. The test results reveal that the material exhibits a Masing behaviour and the saturation hysteresis loops under the six ratios hold an entirely relaxation effect of mean stress. There is no effectively method for the description of the mean straining effects under this case. Previous Zhao's random stress-strain relations are therefore applied to characterizing effectively the scattering test data under the six ratios on a basis of Ramberg-Osgood equation. Then the effects of the ratios are analyzed respectively on the average stress amplitudes, the standard deviations of the stress amplitudes, and the stress amplitudes under different survival probabilities and confidences. The results reveal that the ratios act a relatively decreasing effect to the stress amplitudes under higher survival probabilities and confidences. The strongest effect appears at the ratio of 0.029, and a weaker effect acts as the distance increase of the ratio from the zero. In addition, it is indicated that the effects from the sense of average fatigue lives might result in a wrong conclusion. The effects can be appropriately assessed from a probabilistic sense to take into account the scattering regularity of test data and the size of sampling. (author)

  14. The Effect of Clown Intervention on Self-Report and Biomarker Measures of Stress and Fatigue in Pediatric Osteosarcoma Inpatients: A Pilot Study.

    Science.gov (United States)

    Lopes-Júnior, Luis C; Pereira-da-Silva, Gabriela; Silveira, Denise S C; Veronez, Luciana C; Santos, Jéssica C; Alonso, Jonas B; Lima, Regina A G

    2018-06-01

    Pediatric cancer patients experience different psychological processes during hospitalization that may regulate the immune response and affect recovery and response to cancer treatment. In this study, we aimed to examine the feasibility of longitudinal testing of psychophysiological parameters of stress and fatigue in pediatric osteosarcoma patients hospitalized for chemotherapy submitted to clown intervention; and to investigate whether changes in the levels of biomarkers are associated with psychological stress and fatigue levels in these patients after the clown intervention. A pretest-posttest quasi-experimental pilot study was conducted at the pediatric oncology inpatient unit in a comprehensive cancer care center in Brazil including children and adolescents with osteosarcoma hospitalized for chemotherapy. Eight saliva samples were collected, comprising 4 at baseline (pre-intervention) and 4 after the clown intervention (+1, +4, +9, and +13 hours post-awakening). Salivary cortisol, α-amylase (sAA), cytokines, and matrix metalloproteinase-9 (MMP-9) levels were determined using high-sensitivity enzyme-linked immunosorbent assay (ELISA) kits. Stress and fatigue were measured by Child Stress Scale-ESI and PedsQL Multidimensional Fatigue Scale respectively. Bivariate association analysis between stress and fatigue scores and biomarker levels were investigated using nonparametric statistics. Effect sizes were calculated for each outcome variable. Six pediatric osteosarcoma patients were enrolled with no missing data. No significant effects sizes were observed for psychophysiological outcomes. Effect sizes ranged from 0.54 (cortisol) to 0 (interleukin-1β [IL-1β]). Decreasing overall trends were observed for cortisol levels for all 6 pediatric osteosarcoma patients over time. In addition, a similar pattern of tumor necrosis factor-α (TNF-α) levels over time was found for all 6 patients. Patients with metastatic osteosarcoma showed a linear trend for a decrease in

  15. The fatigue-crack propagation behavior of ASTM A533-B steel tested in vacuo at LWR operating temperatures

    International Nuclear Information System (INIS)

    James, L.A.

    1987-01-01

    The fatigue-crack propagation (FCP) behavior of ASTM A533-B-1 steel was characterized in vacuo at 288 0 C. Tests were conducted at two stress ratios: R = 0.05 and R = 0.7. Results of these tests were compared with results from previous studies for the same type of steel tested in an air environment, and FCP rates in vacuo were generally lower than those in air. Stress ratio effects in vacuo were not as great as those in air, and both stress ratio effects and environmental effects are discussed from the standpoint of crack closure concepts

  16. Damage development in woven fabric composites during tension-tension fatigue

    DEFF Research Database (Denmark)

    Hansen, U.

    1999-01-01

    of the operating fatigue damage mechanism(s). Fatigue leads to a degradation of material properties. Consequently, in connection with impact induced local stress raisers, fatigue produces continuously changing non-uniform stress fields because of stress redistribution effects. Other models addressing evolution...... of fatigue damage in composite materials have not been able to simulate evolving nonuniform stress fields. Therefore. in the second part of this paper, an analytical/numerical approach capable of addressing these issues is also proposed.......Impacted woven fabric composites were tested in tension-tension fatigue. In contrast to results from static testing, the effects of low energy impact damage in a fatigue environment were found to be the critical element leading to failure of the specimen. This difference emphasizes the need...

  17. Parametric calculations of fatigue-crack growth in piping

    International Nuclear Information System (INIS)

    Simonen, F.A.; Goodrich, C.W.

    1983-06-01

    This study presents calculations of the growth of piping flaws produced by fatigue. Flaw growth was predicted as a function of the initial flaw size, the level and number of stress cycles, the piping material, and environmental factors. The results indicate that the present flaw acceptance standards of ASME Section XI provide a relatively consistent set of allowable flaw sizes because the predicted life of flawed piping is relatively insensitive to pipe wall thickness, flaw aspect ratio, and piping material (ferritic versus austenitic). On the other hand, the results show that flaws that are acceptable under ASME Section XI can grow at unacceptable rates if the cyclic stresses are at the maximum level permitted by the design rules of ASME Section III. However, a review of the conservatisms inherent to the ASME code rules is presented to explain the low occurrence of piping fatigue failures in service. It is concluded that decreases in the allowable flaw sizes are not justified

  18. Fatigue Performance of Composite Laminates After Low-velocity Impact

    Directory of Open Access Journals (Sweden)

    LIANG Xiao-lin

    2016-12-01

    Full Text Available Compression-compression fatigue tests were carried out on T300/5405 composite laminates after low-velocity impact, compression performance of the laminates with different impact damages was studied together with its fatigue life and damage propagation under different stress levels, then the effects of impact energy, stress level and damage propagation on fatigue life of laminates were discussed. The results indicate that impact damage can greatly reduce the residual strength of laminates; under low fatigue load levels, the higher impact energy is, the shorter the fatigue life of laminates with impact damage will be; damage propagation undergoes two stages during the fatigue test, namely the steady propagation and the rapid propagation, accounting for 80% and 20% of the overall fatigue life, respectively; damage propagation rate decreases with the reduction of stress level.

  19. Dietary Supplementation with a Superoxide Dismutase-Melon Concentrate Reduces Stress, Physical and Mental Fatigue in Healthy People: A Randomised, Double-Blind, Placebo-Controlled Trial

    Directory of Open Access Journals (Sweden)

    Julie Carillon

    2014-06-01

    Full Text Available Background: We aimed to investigate effects of superoxide dismutase (SOD-melon concentrate supplementation on psychological stress, physical and mental fatigue in healthy people. Methods: A randomized, double-blind, placebo-controlled trial was performed on 61 people divided in two groups: active supplement (n = 32 and placebo (n = 29 for 12 weeks. Volunteers were given one small hard capsule per day. One capsule contained 10 mg of SOD-melon concentrate (140 U of SOD and starch for the active supplement and starch only for the placebo. Stress and fatigue were evaluated using four psychometric scales: PSS-14; SF-36; Stroop tests and Prevost scale. Results: The supplementation with SOD-melon concentrate significantly decreased perceived stress, compared to placebo. Moreover, quality of life was improved and physical and mental fatigue were reduced with SOD-melon concentrate supplementation. Conclusion: SOD-melon concentrate supplementation appears to be an effective and natural way to reduce stress and fatigue. Trial registration: trial approved by the ethical committee of Poitiers (France, and the ClinicalTrials.gov Identifier is NCT01767922.

  20. Joined application of a multiaxial critical plane criterion and a strain energy density criterion in low-cycle fatigue

    Directory of Open Access Journals (Sweden)

    Andrea Carpinteri

    2017-07-01

    Full Text Available In the present paper, the multiaxial fatigue life assessment of notched structural components is performed by employing a strain-based multiaxial fatigue criterion. Such a criterion, depending on the critical plane concept, is extended by implementing the control volume concept reated to the Strain Energy Density (SED approach: a material point located at a certain distance from the notch tip is assumed to be the verification point where to perform the above assessment. Such a distance, measured along the notch bisector, is a function of both the biaxiality ratio (defined as the ratio between the applied shear stress amplitude and the normal stress amplitude and the control volume radii under Mode I and Mode III. Once the position of the verification point is determined, the fatigue lifetime is assessed through an equivalent strain amplitude, acting on the critical plane, together with a unique material reference curve (i.e. the Manson-Coffin curve. Some uniaxial and multiaxial fatigue data related to V-notched round bars made of titanium grade 5 alloy (Ti-6Al-4V are examined to validate the present criterion.

  1. Cyclic deformation and fatigue behaviors of Hadfield manganese steel

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, F.C., E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Long, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Lv, B. [School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2014-01-03

    The cyclic deformation characteristics and fatigue behaviors of Hadfield manganese steel have been investigated by means of its ability to memorize strain and stress history. Detailed studies were performed on the strain-controlled low cycle fatigue (LCF) and stress-controlled high cycle fatigue (HCF). Initial cyclic hardening to saturation or peak stress followed by softening to fracture occurred in LCF. Internal stress made the dominant contribution to the fatigue crack propagation until failure. Effective stress evolution revealed the existence of C–Mn clusters with short-range ordering in Hadfield manganese steel and demonstrated that the interaction between C atoms in the C–Mn cluster and dislocation was essential for its cyclic hardening. The developing/developed dislocation cells and stacking faults were the main cyclic deformation microstructures on the fractured sample surface in LCF and HCF, which manifested that fatigue failure behavior of Hadfield manganese steel was induced by plastic deformation during strain-controlled or stress-controlled testing.

  2. Fatigue assessment of the ITER TF coil case based on JJ1 fatigue tests

    International Nuclear Information System (INIS)

    Hamada, K.; Nakajima, H.; Takano, K.; Kudo, Y.; Tsutsumi, F.; Okuno, K.; Jong, C.

    2005-01-01

    The material of the TF coil case in the ITER requires to withstand cyclic electromagnetic forces applied up to 3 x 10 4 cycles at 4.2 K. A cryogenic stainless steel, JJ1, is used in high stress region of TF coil case. The fatigue characteristics (S-N curve) of JJ1 base metal and welded joint at 4.2 K has been measured. The fatigue strength of base metal and welded joint at 3 x 10 4 cycles are measured as 1032 and 848 MPa, respectively. The design S-N curve is derived from the measured data taking account of the safety factor of 20 for cycle-to-failure and 2 for fatigue strength, and it indicates that an equivalent alternating stress of the case should be kept less than 516 MPa for the base metal and 424 MPa for the welded joint at 3 x 10 4 cycles. It is demonstrated that the TF coil case has enough margins for the cyclic operation. It is also shown the welded joint should be located in low cyclic stress region because a residual stress affects the fatigue life

  3. Nonlinear Fatigue Damage Model Based on the Residual Strength Degradation Law

    Science.gov (United States)

    Yongyi, Gao; Zhixiao, Su

    In this paper, a logarithmic expression to describe the residual strength degradation process is developed in order to fatigue test results for normalized carbon steel. The definition and expression of fatigue damage due to symmetrical stress with a constant amplitude are also given. The expression of fatigue damage can also explain the nonlinear properties of fatigue damage. Furthermore, the fatigue damage of structures under random stress is analyzed, and an iterative formula to describe the fatigue damage process is deduced. Finally, an approximate method for evaluating the fatigue life of structures under repeated random stress blocking is presented through various calculation examples.

  4. A methodology for on line fatigue life monitoring : rainflow cycle counting method

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.K.; Dutta, B.K.; Kushwaha, H.S.

    1992-01-01

    Green's function technique is used in on line fatigue life monitoring to convert plant data to stress versus time data. This technique converts plant data most efficiently to stress versus time data. To compute the fatigue usage factor the actual number of cycles experienced by the component is to be found out from stress versus time data. Using material fatigue properties the fatigue usage factor is to be computed from the number of cycles. Generally the stress response is very irregular in nature. To convert an irregular stress history to stress frequency spectra rainflow cycle counting method is used. This method is proved to be superior to other counting methods and yields best fatigue estimates. A code has been developed which computes the number of cycles experienced by the component from stress time history using rainflow cycle counting method. This postprocessor also computes the accumulated fatigue usage factor from material fatigue properties. The present report describes the development of a code to compute fatigue usage factor using rainflow cycle counting technique and presents a real life case study. (author). 10 refs., 10 figs

  5. Calculation of Local Stress and Fatigue Resistance due to Thermal Stratification on Pressurized Surge Line Pipe

    Science.gov (United States)

    Bandriyana, B.; Utaja

    2010-06-01

    Thermal stratification introduces thermal shock effect which results in local stress and fatique problems that must be considered in the design of nuclear power plant components. Local stress and fatique calculation were performed on the Pressurize Surge Line piping system of the Pressurize Water Reactor of the Nuclear Power Plant. Analysis was done on the operating temperature between 177 to 343° C and the operating pressure of 16 MPa (160 Bar). The stagnant and transient condition with two kinds of stratification model has been evaluated by the two dimensional finite elements method using the ANSYS program. Evaluation of fatigue resistance is developed based on the maximum local stress using the ASME standard Code formula. Maximum stress of 427 MPa occurred at the upper side of the top half of hot fluid pipe stratification model in the transient case condition. The evaluation of the fatigue resistance is performed on 500 operating cycles in the life time of 40 years and giving the usage value of 0,64 which met to the design requirement for class 1 of nuclear component. The out surge transient were the most significant case in the localized effects due to thermal stratification.

  6. Compassion satisfaction, compassion fatigue, anxiety, depression and stress in registered nurses in Australia: study 1 results.

    Science.gov (United States)

    Hegney, Desley G; Craigie, Mark; Hemsworth, David; Osseiran-Moisson, Rebecca; Aoun, Samar; Francis, Karen; Drury, Vicki

    2014-05-01

    To explore compassion fatigue and compassion satisfaction with the potential contributing factors of anxiety, depression and stress. To date, no studies have connected the quality of work-life with other contributing and co-existing factors such as depression, anxiety and stress. A self-report exploratory cross sectional survey of 132 nurses working in a tertiary hospital. The reflective assessment risk profile model provides an excellent framework for examining the relationships between the professional quality of work factors and contributing factors within the established risk profiles. The results show a definite pattern of risk progression for the six factors examined for each risk profile. Additionally, burnout and secondary traumatic stress were significantly related to higher anxiety and depression levels. Higher anxiety levels were correlated with nurses who were younger, worked full-time and without a postgraduate qualification. Twenty percent had elevated levels of compassion fatigue: 7.6% having a very distressed profile. At-risk nurses' stress and depression scores were significantly higher than nurses with higher compassion satisfaction scores. The employed nurse workforce would benefit from a psychosocial capacity building intervention that reduces a nurse's risk profile, thus enhancing retention. © 2013 John Wiley & Sons Ltd.

  7. Fatigue-type stress fractures of the lower limb associated with fibrous cortical defects/non-ossifying fibromas in the skeletally immature

    Energy Technology Data Exchange (ETDEWEB)

    Shimal, A.; Davies, A.M. [Department of Radiology, Royal Orthopaedic Hospital, Birmingham B31 2AP (United Kingdom); James, S.L.J., E-mail: steven.james@roh.nhs.u [Department of Radiology, Royal Orthopaedic Hospital, Birmingham B31 2AP (United Kingdom); Grimer, R.J. [Department of Orthopaedic Oncology, Royal Orthopaedic Hospital, Birmingham B31 2AP (United Kingdom)

    2010-05-15

    Aim: To investigate the association of a fatigue-type stress fracture and a fibrous cortical defect/non-ossifying fibroma (FCD/NOF) of the lower limb long bones in skeletally immature patients. Materials and methods: The patient database of a specialist orthopaedic oncology centre was searched to determine the number of skeletally immature patients (<=16 years of age) over an 18 year period with a lower limb long bone lesion ultimately shown to be a fatigue-type stress fracture. The diagnosis was established by a combination of typical imaging findings of a fatigue-type stress fracture, the absence of aggressive features suggestive of a sarcoma (e.g., interrupted periosteal reaction, cortical breach, and a soft-tissue mass) together with evidence of consolidation or healing on follow-up radiographs and resolution of symptoms over the subsequent weeks. The database was also used to determine the number of skeletally immature cases (<=16 years of age) referred in the same period in which the principal lesion was shown to be a fibrous cortical defect (FCD) or non-ossifying fibroma (NOF) of the lower limb long bones. The clinical and imaging features of those cases common to both groups (i.e., with both a fatigue-type stress fracture and a FCD or NOF) were reviewed. Results: Six percent of patients (five cases) referred to an orthopaedic oncology unit, who were subsequently shown to have a stress fracture of the lower limb long bones, were found to have a related FCD/NOF. All had been referred with a suggested diagnosis of a bone sarcoma and/or osteomyelitis. The possibility of a stress fracture had been raised in only one case. Four cases involved the proximal tibia and one the distal femur. Radiographs revealed that both lesions arose in the posteromedial cortex in all but one of the cases. The radiographs and magnetic resonance imaging (MRI) features were considered typical of the overlapping pathological features of the lesions. Conclusions: A sarcoma could be

  8. Fatigue-type stress fractures of the lower limb associated with fibrous cortical defects/non-ossifying fibromas in the skeletally immature

    International Nuclear Information System (INIS)

    Shimal, A.; Davies, A.M.; James, S.L.J.; Grimer, R.J.

    2010-01-01

    Aim: To investigate the association of a fatigue-type stress fracture and a fibrous cortical defect/non-ossifying fibroma (FCD/NOF) of the lower limb long bones in skeletally immature patients. Materials and methods: The patient database of a specialist orthopaedic oncology centre was searched to determine the number of skeletally immature patients (≤16 years of age) over an 18 year period with a lower limb long bone lesion ultimately shown to be a fatigue-type stress fracture. The diagnosis was established by a combination of typical imaging findings of a fatigue-type stress fracture, the absence of aggressive features suggestive of a sarcoma (e.g., interrupted periosteal reaction, cortical breach, and a soft-tissue mass) together with evidence of consolidation or healing on follow-up radiographs and resolution of symptoms over the subsequent weeks. The database was also used to determine the number of skeletally immature cases (≤16 years of age) referred in the same period in which the principal lesion was shown to be a fibrous cortical defect (FCD) or non-ossifying fibroma (NOF) of the lower limb long bones. The clinical and imaging features of those cases common to both groups (i.e., with both a fatigue-type stress fracture and a FCD or NOF) were reviewed. Results: Six percent of patients (five cases) referred to an orthopaedic oncology unit, who were subsequently shown to have a stress fracture of the lower limb long bones, were found to have a related FCD/NOF. All had been referred with a suggested diagnosis of a bone sarcoma and/or osteomyelitis. The possibility of a stress fracture had been raised in only one case. Four cases involved the proximal tibia and one the distal femur. Radiographs revealed that both lesions arose in the posteromedial cortex in all but one of the cases. The radiographs and magnetic resonance imaging (MRI) features were considered typical of the overlapping pathological features of the lesions. Conclusions: A sarcoma could be

  9. Low cycle fatigue: high cycle fatigue damage accumulation in a 304L austenitic stainless steel

    International Nuclear Information System (INIS)

    Lehericy, Y.

    2007-05-01

    The aim of this study was to evaluate the consequences of a Low Cycle Fatigue pre-damage on the subsequent fatigue limit of a 304L stainless steel. The effects of hardening and severe roughness (grinding) have also been investigated. In a first set of tests, the evolution of the surface damage induced by the different LCF pre-cycling was characterized. This has permitted to identify mechanisms and kinetics of damage in the plastic domain for different surface conditions. Then, pre-damaged samples were tested in the High Cycle Fatigue domain in order to establish the fatigue limits associated with each level of pre-damage. Results evidence that, in the case of polished samples, an important number of cycles is required to initiate surface cracks ant then to affect the fatigue limit of the material but, in the case of ground samples, a few number of cycles is sufficient to initiate cracks and to critically decrease the fatigue limit. The fatigue limit of pre-damaged samples can be estimated using the stress intensity factor threshold. Moreover, this detrimental effect of severe surface conditions is enhanced when fatigue tests are performed under a positive mean stress (author)

  10. Fatigue Crack Topography.

    Science.gov (United States)

    1984-01-01

    alloys (2). [--I Fig. 6. Fatigue fracture in Nitrile- butadien rubber ( NBR ). Fig. 7. The characteristic features of fatigue fracture in press moulded...in plastics and even in rubber . It follows therefore, that fatigue fractures must also occur in the mineral layers of our earth or in the rock on...effective until the weakest point yields and forms a crack. To get a feeling for this process, you can imagine that the stressed article is made of rubber

  11. Effects of Range of Stress and of Special Notches on Fatigue Properties of Aluminum Alloys Suitable for Airplane Propellers

    Science.gov (United States)

    Dolan, Thomas J

    1942-01-01

    Laboratory tests were made to obtain information on the load-resisting properties of X76S-T aluminum alloy when subjected to static, impact, and repeated loads. Results are presented from static-load test of unnotched specimens in tension and in torsion and of notched specimens in tension. Charpy impact values obtained from bend tests on notched specimens and tension impact values for both notched and unnotched specimens tested at several different temperatures are included. The endurance limits obtained from repeated bending fatigue tests made on three different types of testing machine are given for unnotched polished specimens, and the endurance limits of notched specimens subjected to six different ranges of bending stress are also reported. The results indicated that: (a) polished rectangular specimens had an endurance limit about 30 percent less than that obtained for round specimens; (b) a comparison of endurance limits obtained from tests on three different types of machine indicated that there was no apparent effect of speed of testing on the endurance limit for the range of speeds used (1,750 to 13,000 rpm). (c) the fatigue strength (endurance limit) of the X76S-T alloy was greatly decreased by the presence of a notch in the specimens; (d) no complete fractures of the entire specimens occurred in notched fatigue specimens when subjected to stress cycles for which the mean stress at the notch during the cycle was a compressive stress; for this test condition a microscopic cracking occurred near the root of the notch and was used as a criterion of failure of the specimen. (e) as the mean stress at the notch was decreased from a tensile (+) stress to a compressive (-) stress, it was found that the alternating stress that could be superimposed on the mean stress in the cycle without causing failure of the specimens was increased.

  12. Fatigue failure of pb-free electronic packages under random vibration loads

    Science.gov (United States)

    Saravanan, S.; Prabhu, S.; Muthukumar, R.; Gowtham Raj, S.; Arun Veerabagu, S.

    2018-03-01

    The electronic equipment are used in several fields like, automotive, aerospace, consumer goods where they are subjected to vibration loads leading to failure of solder joints used in these equipment. This paper presents a methodology to predict the fatigue life of Pb-free surface mounted BGA packages subjected to random vibrations. The dynamic characteristics of the PCB, such as the natural frequencies, mode shapes and damping ratios were determined. Spectrum analysis was used to determine the stress response of the critical solder joint and the cumulative fatigue damage accumulated by the solder joint for a specific duration was determined.

  13. Studies on fatigue life enhancement of pre-fatigued spring steel specimens using laser shock peening

    International Nuclear Information System (INIS)

    Ganesh, P.; Sundar, R.; Kumar, H.; Kaul, R.; Ranganathan, K.; Hedaoo, P.; Raghavendra, G.; Anand Kumar, S.; Tiwari, P.; Nagpure, D.C.; Bindra, K.S.; Kukreja, L.M.; Oak, S.M.

    2014-01-01

    Highlights: • Laser peening significantly extended fatigue life of pre-fatigued spring steel. • Increase in fatigue life of laser peened specimens was more than 15 times. • Black PVC tape is an effective coating for laser peening of ground surfaces. • Repeat peening repaired local surface melted regions on laser peened surface. • Technique is effective for life extension of in-service automobile parts. - Abstract: SAE 9260 spring steel specimens after enduring 50% of their mean fatigue life were subjected to laser shock peening using an in-house developed 2.5 J/7 ns pulsed Neodymium-doped Yttrium Aluminum Garnet (Nd:YAG) laser for studying their fatigue life enhancement. In the investigated range of process parameters, laser shock peening resulted in the extension of fatigue life of these partly fatigue damaged specimens by more than 15 times. Contributing factors for the enhanced fatigue life of laser peened specimens are: about 400 μm thick compressed surface layer with magnitude of surface stress in the range of −600 to −700 MPa, about 20% increase in surface hardness and unaltered surface finish. For laser peening of ground steel surface, an adhesive-backed black polyvinyl chloride (PVC) tape has been found to be a superior sacrificial coating than conventionally used black paint. The effect of repeated laser peening treatment was studied to repair locally surface melted regions and the treatment has been found to be effective in re-establishing desired compressive stress pattern on the erstwhile tensile-stressed surface

  14. [Effects of aroma self-foot reflexology massage on stress and immune responses and fatigue in middle-aged women in rural areas].

    Science.gov (United States)

    Kim, Ja Ok; Kim, In Sook

    2012-10-01

    This study was done to examine the effects of aroma self-foot reflexology massage on stress and immune responses and fatigue in middle-aged women in rural areas. The study was a nonequivalent control group pre-post test design. The participants were 52 middle-aged women from rural areas of which 26 were assigned to the experimental group and 26 to the control group. Data were collected from July to September, 2011 and analyzed using SPSS Win 17.0 version program. The intervention was conducted 3 times a week for six weeks. There were significant differences in reported perceived stress, systolic blood pressure, diastolic blood pressure and fatigue between the two groups. However, the issue of salivary cortisol and immune response were not significant. Aroma self-foot reflexology massage can be utilized as an effective intervention for perceived stress, systolic blood pressure, diastolic blood pressure and fatigue in middle-aged woman in rural areas.

  15. Study on the effect of prior fatigue and creep-fatigue damage on the fatigue and creep characteristics of 316 FR stainless steel. 2nd report. The effect of prior creep-fatigue damage on the creep and fatigue characteristics

    International Nuclear Information System (INIS)

    Yamauchi, Masafumi; Chuman, Yasuharu; Otani, Tomomi; Takahashi, Yukio

    2001-01-01

    The effect of prior creep-fatigue damage on the creep and the fatigue characteristics was studied to investigate the creep-fatigue life evaluation procedure of 316FR stainless steel. Creep and fatigue tests were conducted at 550degC by using the specimen exposed to prior creep-fatigue cycles at the same temperature and interrupted at 1/4 Nf, 1/2 Nf and 3/4 Nf cycle. The creep and fatigue strength of the pre-damaged material showed monotonic reduction with the prior creep-fatigue damage compared with the virgin material. The creep ductility also showed monotonic reduction with the prior creep-fatigue damage. These results were evaluated by the stress-based Time Fraction Rule and the strain-based Ductility Exhaustion Method. The result showed that the application of the Ductility Exhaustion Method to the creep-fatigue damage evaluation is more promising than the Time Fraction Rule. (author)

  16. One- and multistage total strain and stress-controlled fatigue tests with a steel of type 42 CrMo 4 subject to varied residual and mean stress loading. Final report

    International Nuclear Information System (INIS)

    Macherauch, E.; Schulze, V.

    1995-01-01

    Work under this research project covered tests with the quenched and tempered steel 42 CrMo 4 to which one- and two-stage tension-compression fatigue stresses were applied with varying mean loads, under conditions of nominal stress and total strain control. Shot peening was used to induce various microstructural conditions in the material at the surface and near below. Softening in the material was observed to be a continuous process, and the steel showed no stabilised, cyclic deformation behaviour. The cyclic stress-strain curve measured with equal stress amplitudes and total strain control applied shows higher plastic strain amplitudes than that measured with nominal stresses. The fatigue behaviour under two-stage loading depends on the chosen sequence of loads applied, the testing periods, and the overall testing procedure, so that there is no way of deriving data for two-stage testing procedures from single-stage test results. (orig.) [de

  17. Hormone levels in radiotherapy treatment related fatigue

    International Nuclear Information System (INIS)

    Biswal, B.M.; Mallik, G.S.

    2003-01-01

    Radiotherapy is known to cause debilitating treatment related fatigue. Fatigue in general is a conglomeration of psychological, physical, hematological and unknown factors influencing the internal milieu of the cancer patient. Radiotherapy can add stress at the cellular and somatic level to aggravate further fatigue in cancer patients undergoing radiotherapy. Stress related hormones might be mediating in the development of fatigue. This is an ongoing prospective study to evaluate if the hormonal profile related to stress is influenced by radiotherapy treatment related fatigue. The study was conducted from September 2002 onwards in the division of Radiotherapy and Oncology of our Medical School. Previously untreated patients with histopathology proof of malignancy requiring external beam radiotherapy were considered for this study. Selection criteria were applied to exclude other causes of fatigue. Initial fatigue score was obtained using Pipers Fatigue Score questionnaire containing 23 questions, subsequently final fatigue score was obtained at the end of radiotherapy. Blood samples were obtained to estimate the levels of ACTH, TSH, HGH, and cortisol on the final assessment. The hormone levels were compared with resultant post radiotherapy fatigue score. At the time of reporting 50 patients were evaluable for the study. The total significant fatigue score was observed among 12 (24%) patients. The individual debilitating fatigue score were behavioral severity 14 (28%), affective meaning 14(28%), Sensory 13 (26%) and cognitive mood 10 (20%) respectively. From the analysis of hormonal profile, growth hormone level > 1 ng/mL and TSH <0.03 appears to be associated with high fatigue score (though statistically not significant); whereas there was no correlation with ACTH and serum cortisol level. In our prospective study severe radiotherapy treatment related fatigue was found among our patient population. Low levels of TSH and high levels of GH appear to be associated

  18. Separate and combined effects of exposure to heat stress and mental fatigue on endurance exercise capacity in the heat.

    Science.gov (United States)

    Otani, Hidenori; Kaya, Mitsuharu; Tamaki, Akira; Watson, Phillip

    2017-01-01

    This study investigated the effects of exposure to pre-exercise heat stress and mental fatigue on endurance exercise capacity in a hot environment. Eight volunteers completed four cycle exercise trials at 80% maximum oxygen uptake until exhaustion in an environmental chamber maintained at 30 °C and 50% relative humidity. The four trials required them to complete a 90 min pre-exercise routine of either a seated rest (CON), a prolonged demanding cognitive task to induce mental fatigue (MF), warm water immersion at 40 °C during the last 30 min to induce increasing core temperature (WI), or a prolonged demanding cognitive task and warm water immersion at 40 °C during the last 30 min (MF + WI). Core temperature when starting exercise was higher following warm water immersion (~38 °C; WI and MF + WI) than with no water immersion (~36.8 °C; CON and MF, P fatigue when commencing exercise was higher following cognitive task (MF and MF + WI) than with no cognitive task (CON and WI; P stress or mental fatigue, and this response is synergistically increased during combined exposure to them.

  19. Fatigue crack growth in EUROFER 97 at different temperatures. Final report, tasks: TW1-TTMS-002, D22 and TW2-TTMS-002a, D22

    International Nuclear Information System (INIS)

    Aktaa, J.; Lerch, M.

    2005-05-01

    For the assessment of cracks in First Wall structures built from EUROFER 97 of future fusion reactors the fatigue crack behaviour in EUROFER 97 was investigated at room temperature (RT), 300, 500 and 550 C. For this purpose fatigue crack growth tests were performed using CT specimens with two R-ratios, R=0.1 and R=0.5, respectively. Hence, fatigue crack threshold, fatigue crack growth behaviour in the near-threshold range and their dependences on temperature and R-ratio were determined and described using an analytical formula. The fatigue crack threshold showed a monotonic dependence on temperature which is for insignificantly small. The fatigue crack growth behaviour exhibited for a nonmonotonic dependence on temperature which is explained by the decrease of yield stress and the increase of creep damage when increasing the temperature [de

  20. Prediction of fretting fatigue behavior under elastic-plastic conditions

    International Nuclear Information System (INIS)

    Shin, Ki Su

    2009-01-01

    Fretting fatigue generally leads to the degradation of the fatigue strength of a material due to cyclic micro-slip between two contacting materials. Fretting fatigue is regarded as an important issue in designing aerospace structures. While many studies have evaluated fretting fatigue behavior under elastic deformation conditions, few have focused on fretting fatigue behavior under elastic-plastic deformation conditions, especially the crack orientation and fatigue life prediction for Ti-6Al-4V. The primary goal of this study was to characterize the fretting fatigue crack initiation behavior in the presence of plasticity. Experimental tests were performed using pad configurations involving elastic-plastic deformations. To calculate stress distributions under elastic-plastic fretting fatigue conditions, FEA was also performed. Several parametric approaches were used to predict fretting fatigue life along with stress distribution resulting from FEA. However, those parameters using surface stresses were unable to establish an equivalence between elastic fretting fatigue data and elastic-plastic fretting fatigue data. Based on this observation, the critical distance methods, which are commonly used in notch analysis, were applied to the fretting fatigue problem. In conclusion, the effective strain range method when used in conjunction with the SMSSR parameter showed a good correlation of data points between the pad configurations involving elastic and elastic plastic deformations

  1. Fatigue impact on Mod-1 wind turbine design

    Science.gov (United States)

    Stahle, C. V., Jr.

    1978-01-01

    Fatigue is a key consideration in the design of a long-life Wind Turbine Generator (WTG) system. This paper discusses the fatigue aspects of the large Mod-1 horizontal-axis WTG design starting with the characterization of the environment and proceeding through the design. Major sources of fatigue loading are discussed and methods of limiting fatigue loading are described. NASTRAN finite element models are used to determine dynamic loading and internal cyclic stresses. Recent developments in determining the allowable fatigue stress consistent with present construction codes are discussed relative to their application to WTG structural design.

  2. Fatigue life evaluation method of austenitic stainless steel in PWR water

    International Nuclear Information System (INIS)

    Sakaguchi, Katsumi; Nomura, Yuichiro; Suzuki, Shigeki; Kanasaki, Hiroshi; Higuchi, Makoto

    2006-09-01

    It is known that the fatigue life in elevated temperature water is substantially reduced compared with that in the air. The fatigue life reduction has been investigated experimentally in EFT project of Japan Nuclear Energy Safety Organization (JNES) to evaluate the environmental effect on fatigue life. Many tests have been done for carbon, low alloy, stainless steels and nickel-based alloy under the various conditions. In this paper, the results of the stainless steel in simulated PWR water environments were reported. Fatigue life tests in simulated PWR environments were carried out and the effect of key parameters on fatigue life reduction was examined. The materials used in this study were base and weld metal of austenitic stainless steel SS316, weld metal of SS304 and the base and aged metal of the duplex stainless steel SCS14A. In order to evaluate the effects of stain amplitude, strain rate, strain ratio, temperature, aging, water flow rate and strain holding time, many fatigue tests were examined. In transient condition in an actual plant, however, such parameters as temperature and strain rate are not constant. In order to evaluate fatigue damage in actual plant on the basis of experimental results under constant temperature and strain rate condition, the modified rate approach method was developed. Various kinds of transient have to be taken into account of in actual plant fatigue evaluation, and stress cycle of several ranges of amplitude has to be considered in assessing damage from fatigue. Generally, cumulative usage factor is applied in this type of evaluation. In this study, in order to confirm the applicability of modified rate approach method together with cumulative usage factor, fatigue tests were carried out by combining stress cycle blocks of different strain amplitude levels, in which strain rate changes in response to temperature in a simulated PWR water environment. Consequently, fatigue life could be evaluated with an accuracy of factor of 3

  3. Development and characterization of fatigue resistant aramid reinforced aluminium laminates (ARALL) for fatigue critical aircraft components

    International Nuclear Information System (INIS)

    Qaiser, M. H.; Umar, S.; Nauman, S.

    2013-01-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced Aluminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft. (author)

  4. Development and characterization of fatigue resistant Aramid reinforced aluminium laminates (ARALL) for fatigue Critical aircraft components

    Science.gov (United States)

    Qaiser, M. H.; Umar, S.; Nauman, S.

    2014-06-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced ALuminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft.

  5. Development and characterization of fatigue resistant Aramid reinforced aluminium laminates (ARALL) for fatigue Critical aircraft components

    International Nuclear Information System (INIS)

    Qaiser, M H; Umar, S; Nauman, S

    2014-01-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced ALuminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft

  6. Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites

    Science.gov (United States)

    Chamis, Christos C.

    2011-01-01

    A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  7. Yawning, fatigue and cortisol: expanding the Thompson Cortisol Hypothesis.

    OpenAIRE

    Thompson, Simon

    2014-01-01

    Yawning and its involvement in neurological disorders has become the new scientific conundrum. Cortisol levels are known to rise during stress and fatigue; yawning may occur when we are under stress or tired. However, the link between yawning, fatigue, and cortisol has not been fully understood. Expansion of the Thompson Cortisol Hypothesis proposes that the stress hormone, cortisol, is responsible for yawning and fatigue especially in people with incomplete innervation such as multiple sclero...

  8. Lower brain-derived neurotrophic factor levels associated with worsening fatigue in prostate cancer patients during repeated stress from radiation therapy.

    Science.gov (United States)

    Saligan, L N; Lukkahatai, N; Holder, G; Walitt, B; Machado-Vieira, R

    2016-12-01

    Fatigue during cancer treatment is associated with depression. Neurotrophic factors play a major role in depression and stress and might provide insight into mechanisms of fatigue. This study investigated the association between plasma concentrations of three neurotrophic factors (BDNF, brain-derived neurotrophic factor; GDNF, glial-derived neurotrophic factor; and SNAPIN, soluble N-ethylmaleimide sensitive fusion attachment receptor-associated protein) and initial fatigue intensification during external beam radiation therapy (EBRT) in euthymic non-metastatic prostate cancer men. Fatigue, as measured by the 13-item Functional Assessment of Cancer Therapy-Fatigue (FACT-F), and plasma neurotrophic factors were collected at baseline (prior to EBRT) and mid-EBRT. Subjects were categorized into fatigue and no fatigue groups using a > 3-point change in FACT-F scores between the two time points. Multiple linear regressions analysed the associations between fatigue and neurotrophic factors. FACT-F scores of 47 subjects decreased from baseline (43.95 ± 1.3) to mid-EBRT (38.36 ± 1.5, P fatigue. SNAPIN levels were associated with fatigue scores (r s = 0.43, P = 0.005) at baseline. A significant decrease of BDNF concentration (P = 0.008) was found in fatigued subjects during EBRT (n = 39). Baseline SNAPIN and decreasing BDNF levels may influence worsening fatigue during EBRT. Further investigations are warranted to confirm their role in the pathophysiology and therapeutics of fatigue.

  9. Fatigue and creep–fatigue deformation of an ultra-fine precipitate strengthened advanced austenitic alloy

    International Nuclear Information System (INIS)

    Carroll, M.C.; Carroll, L.J.

    2012-01-01

    An advanced austenitic alloy, HT-UPS (high-temperature ultrafine-precipitation-strengthened), has been identified as an ideal candidate material for the structural components of fast reactors and energy-conversion systems. HT-UPS alloys demonstrate improved creep resistance relative to 316 stainless steel (SS) through additions of Ti and Nb, which precipitate to form a widespread dispersion of stable nanoscale metallic carbide (MC) particles in the austenitic matrix. To investigate the behavior in more representative conditions than are offered by uniaxial creep tests, the low-cycle continuous fatigue and combined creep–fatigue response of an HT-UPS alloy have been investigated at 650 °C and 1.0% total strain, with an R-ratio of −1 and hold times at peak tensile strain of up to 150 min. The cyclic deformation response of HT-UPS is directly compared to that of standard 316 SS. The measured values for total cycles to failure between the two alloys are similar, despite differences in peak stress profiles and in qualitative observations of the deformed microstructures. Crack propagation is primarily transgranular in both fatigue and creep–fatigue of each alloy at the investigated conditions. Internal grain boundary damage in the form of fine cracks resulting from the tensile hold is present following the application of hold times of 60 min and longer, and considerably more internal cracks are quantifiable in 316 SS than in HT-UPS. The dislocation substructures observed in the deformed material differ substantially; an equiaxed cellular structure is observed in the microstructure of 316 SS, whereas HT-UPS exhibits widespread and relatively homogenous tangles of dislocations pinned by the nanoscale MC precipitates. The significant effect of the fine distribution of precipitates on observed fatigue and creep–fatigue response is described in three distinct behavioral regions as the microstructure evolves with continued cycling.

  10. Fatigue and creep-fatigue deformation of an ultra-fine precipitate strengthened advanced austenitic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, M.C., E-mail: Mark.Carroll@INL.gov [Idaho National Laboratory, 1955 Fremont, PO Box 1625, Idaho Falls, ID 83415-2218 (United States); Carroll, L.J. [Idaho National Laboratory, 1955 Fremont, PO Box 1625, Idaho Falls, ID 83415-2218 (United States)

    2012-10-30

    An advanced austenitic alloy, HT-UPS (high-temperature ultrafine-precipitation-strengthened), has been identified as an ideal candidate material for the structural components of fast reactors and energy-conversion systems. HT-UPS alloys demonstrate improved creep resistance relative to 316 stainless steel (SS) through additions of Ti and Nb, which precipitate to form a widespread dispersion of stable nanoscale metallic carbide (MC) particles in the austenitic matrix. To investigate the behavior in more representative conditions than are offered by uniaxial creep tests, the low-cycle continuous fatigue and combined creep-fatigue response of an HT-UPS alloy have been investigated at 650 Degree-Sign C and 1.0% total strain, with an R-ratio of -1 and hold times at peak tensile strain of up to 150 min. The cyclic deformation response of HT-UPS is directly compared to that of standard 316 SS. The measured values for total cycles to failure between the two alloys are similar, despite differences in peak stress profiles and in qualitative observations of the deformed microstructures. Crack propagation is primarily transgranular in both fatigue and creep-fatigue of each alloy at the investigated conditions. Internal grain boundary damage in the form of fine cracks resulting from the tensile hold is present following the application of hold times of 60 min and longer, and considerably more internal cracks are quantifiable in 316 SS than in HT-UPS. The dislocation substructures observed in the deformed material differ substantially; an equiaxed cellular structure is observed in the microstructure of 316 SS, whereas HT-UPS exhibits widespread and relatively homogenous tangles of dislocations pinned by the nanoscale MC precipitates. The significant effect of the fine distribution of precipitates on observed fatigue and creep-fatigue response is described in three distinct behavioral regions as the microstructure evolves with continued cycling.

  11. Creep fatigue assessment for EUROFER components

    Energy Technology Data Exchange (ETDEWEB)

    Özkan, Furkan, E-mail: oezkan.furkan@partner.kit.edu; Aktaa, Jarir

    2015-11-15

    Highlights: • Design rules for creep fatigue assessment are developed to EUROFER components. • Creep fatigue assessment tool is developed in FORTRAN code with coupling MAPDL. • Durability of the HCPB-TBM design is discussed under typical fusion reactor loads. - Abstract: Creep-fatigue of test blanket module (TBM) components built from EUROFER is evaluated based on the elastic analysis approach in ASME Boiler Pressure Vessel Code (BPVC). The required allowable number of cycles design fatigue curve and stress-to-rupture curve to estimate the creep-fatigue damage are used from the literature. Local stress, strain and temperature inputs for the analysis of creep-fatigue damage are delivered by the finite element code ANSYS utilizing the Mechanical ANSYS Parametric Design Language (MAPDL). A developed external FORTRAN code used as a post processor is coupled with MAPDL. Influences of different pulse durations (hold-times) and irradiation on creep-fatigue damage for the preliminary design of the Helium Cooled Pebble Bed Test Blanket Module (HCPB-TBM) are discussed for the First Wall component of the TBM box.

  12. The effects of loading history on fatigue crack growth threshold

    International Nuclear Information System (INIS)

    Ogawa, Takeshi; Tokaji, Keiro; Ochi, Satoshi; Kobayashi, Hideo.

    1987-01-01

    The effects of loading history on threshold stress intensity range (ΔK th ) were investigated in a low alloy steel SFVQ1A (A508 - 3) and a low carbon steel S10C. A single overload and multiple overloads were chosen as loading history. Crack growth and crack closure following the loading histories were measured at load ratios of 0.05 and 0.70. Threshold values were determined as a fatigue limit of preloaded specimens. The ΔK th values increased with increasing overload stress intensity factor (K h ). For a given K h value, multiple overloads produced much larger increase in ΔK th than a single overload and threshold values expressed by maximum stress intensity factor (K max,th ) were almost constant, independent of stress ratio. The results obtained were discussed in terms of crack closure behaviour, and a method was proposed to evaluate the threshold value based on plasticity-induced crack closure. (author)

  13. Fatigue Strength of Titanium Risers - Defect Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Babalola, Olusegun Tunde

    2001-07-01

    This study is centred on assessment of the fatigue strength of titanium fusion welds for deep-water riser's applications. Deep-water risers are subjected to significant fatigue loading. Relevant fatigue data for titanium fusion welds are very scarce. Hence there is a need for fatigue data and life prediction models for such weldments. The study has covered three topics: Fatigue testing, Fractography and defect assessment, and Fracture Mechanics modelling of fatigue crack growth. Two series of welded grade of titanium consisting of 14 specimens in each series were fatigue tested under constant amplitude loading. Prior to fatigue testing, strain gauge measurements of some specimens was conducted to enable the definition of stress range in the fatigue assessment procedure. The results were compared with finite solid element analysis and related to fatigue stresses in a riser pipe wall. Distribution and geometry of internal and surface defects both in the as-welded and in the post-weld machined conditions were assessed using fractography. This served as a tool to determine the fatigue initiation point in the welds. Fracture mechanics was applied to model fatigue strength of titanium welds with initiation from weld defects. Two different stress intensity factor formulations for embedded eccentrically placed cracks were used for analysis of elliptical cracks with the major axis parallel and close to one of the free surfaces. The methods were combined to give a satisfactory model for crack growth analysis. The model analyses crack growth of elliptical and semi-elliptical cracks in two directions, with updating of the crack geometry. Fatigue strength assessment was conducted using two crack growth models, the Paris-Erdogan relation with no threshold and the Donahue et al. relation with an implied threshold. The model was validated against experimental data, with a discussion on the choice of crack growth model. (author)

  14. Characterization of fatigue-corrosion phenomena for Zircaloy in iodine environment

    International Nuclear Information System (INIS)

    Schuster-Magallon, Isabelle

    1986-01-01

    In this research thesis, the acquisition of data related to crack propagation rates and to smooth specimen lifetime in corrosion-fatigue of zircaloy allowed the quantification of the influence of iodine with respect to material, to loading direction and to test frequency. A systematic fractographic examination of propagation and fatigue strength specimens allowed the fatigue-corrosion fracture scenario to be described. This scenario comprises pitting for a stress higher than a threshold stress, the development of an intergranular corrosion area limited by a threshold stress intensity factor overrun, and the propagation by fatigue-corrosion in steady regime. This propagation is an association of a quasi-cleavage which is typical of stress corrosion cracking, and a plastic deformation under fatigue. This combination leads to the sudden disappearance of cleavage, and to a ductile fracture [fr

  15. Fatigue strength of socket welded pipe joint

    International Nuclear Information System (INIS)

    Iida, K.; Matsuda, F.; Sato, M.; Higuchi, M.; Nakagawa, A.

    1994-01-01

    Fully reversed four point bending fatigue tests were carried out of small diameter socket welded joints made of carbon steels. Experimental parameters are pipe diameter, thickness of pipe and socket wall, throat depth and shape of fillet welds, slip-on and diametral gaps in the socket welding, lack of penetration at the root of fillet welds, and peening of fillet welds. In most cases a fatigue crack started from the root of the fillet, but in the case of higher stress amplitude, it tended to start from the toe of fillet. The standard socket welded joint of 50 mm diameter showed relatively low fatigue strength, 46 MPa in stress amplitude at the 10 7 cycles failure life. This value corresponds to about 1/5 of that of the smoothed base metal specimens in axial fatigue. The fatigue strength showed decrease with increasing pipe diameter, and increase with increasing the thickness of pipe and socket wall. The effects of throat depth and shape of fillet welds on fatigue strength were not significant. Contrary to the expectation, the fatigue strength of the socket welded joint without slip-on gap is higher than that of the joint with the normal gap. A lack of penetration at the root deleteriously reduced fatigue strength, showing 14 MPa in stress amplitude at the 10 7 cycles failure life for the 50 mm diameter socket joint. (orig.)

  16. Fatigue of coated and laser hardened steels

    International Nuclear Information System (INIS)

    La Cruz, P. de.

    1990-01-01

    In the present work the effect of ion nitriding, laser hardening and hot dip galvanizing upon the fatigue limit and notch sensitivity of a B-Mn Swedish steel SS 2131 have been investigated. The fatigue tests were performed in plane reverse bending fatigue (R=1). The quenched and tempered condition was taken as the reference condition. The microstructure, microhardness, fracture surface and coating appearance of the fatigue surface treated specimens were studied. Residual stress and retained austenite measurements were also carried out. It was found that ion nitriding improves the fatigue limit by 53 % for smooth specimens and by 115 % for notched specimens. Laser hardening improves the fatigue limit by 18 % and 56 % for smooth and notched specimen respectively. Hot dip galvanizing gives a slight deterioration of the fatigue limit (9 % and 10 % for smooth and notched specimen respectively). Ion nitriding and laser hardening decrease the value of the notch sensitivity factor q by 78 % and 65 % respectively. Hot dip galvanizing does not modify it. A simple schematic model based on a residual stress distribution, has been used to explain the different effects. It seems that the presence of the higher compressive residual stresses and the higher uniformity of the microstructure may be the causes of the better fatigue performance of ion nitrided specimens. (119 refs.) (author)

  17. Oxidative stress is involved in fatigue induced by overnight deskwork as assessed by increase in plasma tocopherylhydroqinone and hydroxycholesterol.

    Science.gov (United States)

    Shichiri, Mototada; Harada, Nobuyoshi; Ishida, Noriko; Komaba, Lilian Kaede; Iwaki, Sunao; Hagihara, Yoshihisa; Niki, Etsuo; Yoshida, Yasukazu

    2013-12-01

    In this study, we examined the relationship between fatigue and plasma concentrations of antioxidants and lipid peroxidation products. Fourteen healthy volunteers performed overnight desk work for 18h then took a nap for 4h. Participants answered questionnaires of subjective symptoms of fatigue (QSSF) and completed a self-assessment of fatigue using a visual analog scale (VAS). At each test time, they underwent a critical flicker frequency (CFF) test and blood samples were collected. Plasma levels of α-tocopherol (αT) decreased and α-tocopherylquinone (αTQ), the oxidation product of αT, increased. The ratio of 7β-hydroxycholesterol (7β-OHCh), the oxidation product of cholesterol, against total cholesterol increased until the end of experiment. αTQ levels correlated with VAS and QSSF scores. The ratio of 7β-OHCh to total cholesterol and the value of CFF showed a significant correlation. From these results, plasma levels of αTQ and 7β-OHCh are useful and objective indicators of fatigue induced by overnight deskwork. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Potential role of licofelone, minocycline and their combination against chronic fatigue stress induced behavioral, biochemical and mitochondrial alterations in mice.

    Science.gov (United States)

    Kumar, Anil; Vashist, Aditi; Kumar, Puneet; Kalonia, Harikesh; Mishra, Jitendriya

    2012-01-01

    Chronic fatigue stress (CFS) is a common complaint among general population. Persistent and debilitating fatigue severely impairs daily functioning and is usually accompanied by combination of several physical and psychiatric problems. It is now well established fact that oxidative stress and neuroinflammation are involved in the pathophysiology of chronic fatigue and related disorders. Targeting both COX (cyclooxygenase) and 5-LOX (lipoxygenase) pathways have been proposed to be involved in neuroprotective effect. In the present study, mice were put on the running wheel apparatus for 6 min test session daily for 21 days, what produced fatigue like condition. The locomotor activity and anxiety like behavior were measured on 0, 8(th), 15(th) and 22(nd) day. The brains were isolated on 22(nd) day immediately after the behavioral assessments for the estimation of oxidative stress parameters and mitochondrial enzyme complexes activity. Pre-treatment with licofelone (2.5, 5 and 10 mg/kg, po) and minocycline (50 and 100 mg/kg, po) for 21 days, significantly attenuated fatigue like behavior as compared to the control (rotating wheel activity test session, RWATS) group. Further, licofelone (5 and 10 mg/kg, po) and minocycline (50 and 100 mg/kg, po) drug treatments for 21 days significantly attenuated behavioral alterations, oxidative damage and restored mitochondrial enzyme complex activities (I, II, III and IV) as compared to control, whereas combination of licofelone (5 mg/kg) with minocycline (50 mg/kg) significantly potentiated their protective effect which was significant as compared to their effect per se. The present study highlights the therapeutic potential of licofelone, minocycline and their combination against CFS in mice.

  19. Calculation of elastic-plastic strain ranges for fatigue analysis based on linear elastic stresses

    International Nuclear Information System (INIS)

    Sauer, G.

    1998-01-01

    Fatigue analysis requires that the maximum strain ranges be known. These strain ranges are generally computed from linear elastic analysis. The elastic strain ranges are enhanced by a factor K e to obtain the total elastic-plastic strain range. The reliability of the fatigue analysis depends on the quality of this factor. Formulae for calculating the K e factor are proposed. A beam is introduced as a computational model for determining the elastic-plastic strains. The beam is loaded by the elastic stresses of the real structure. The elastic-plastic strains of the beam are compared with the beam's elastic strains. This comparison furnishes explicit expressions for the K e factor. The K e factor is tested by means of seven examples. (orig.)

  20. The interaction between non-metallic inclusions and surface roughness in fatigue failure and their influence on fatigue strength

    International Nuclear Information System (INIS)

    Saberifar, S.; Mashreghi, A.R.; Mosalaeepur, M.; Ghasemi, S.S.

    2012-01-01

    Highlights: ► The fatigue strength of a tested steel was affected by inclusions and surface notches. ► Inclusions were the main fatigue crack sources even in rough specimens. ► The stress intensity factor represented the behavior of inclusions properly. ► In rough steels the effect of inclusions was intensified by surface roughness. ► The critical inclusion size increased when surface roughness was removed. -- Abstract: In this study, the influence of non-metallic inclusions on the fatigue behavior of 30MnVS6 steel containing different inclusion sizes and surface roughness has been investigated. Scanning electron microscope (SEM) was used to examine fatigue fracture origins. It was concluded that the non-metallic inclusions were dominant fatigue crack initiation sites in both smooth and rough specimens. This was justified by the calculation of stress intensity factor generated by both surface roughness and non-metallic inclusions, based on Murakami’s model. In addition, it was found that for a given stress, the critical inclusion size could be increased by eliminating the surface roughness.

  1. Analysis of dynamic capacity of low-contact-ratio spur gears using Lundberg-Palmgren theory

    Science.gov (United States)

    Coy, J. J.

    1975-01-01

    A concise mathematical model is developed for surface fatigue life of low-contact-ratio spur gears. The expected fatigue life of the pinion, gear, or gear sets may be calculated from the model. An equation for the dynamic capacity of the gear set was also derived in terms of the transmitted tangential tooth load which will give a 10-percent fatigue life of one million pinion revolutions. The theoretical life was compared with experimental data for a set of VAR AISI 9310 gears operating at a Hertz stress of 1.71X10 to the 9th power newtons per square meter (248,000 psi) and 10 000 revolutions per minute. Good agreement was obtained between the experimental and theoretical surface fatigue life of the gears.

  2. Experimental stress analysis and fatigue tests of five 12-in. NPS ANSI Standard B16.9 tees

    International Nuclear Information System (INIS)

    Moore, S.E.; Grigory, S.C.; Weed, R.A.

    1984-04-01

    The tees, designated as ORNL tees T-4, T-6, T-7, T-8, and T-15, were tested under subcontract at Southwest Research Institute, and the data were analyzed at ORNL. Experimental stress analyses were conducted for 13 individual loadings on each tee, including internal pressure and 3 mutually perpendicular force and moment loads on the branch and on the run. Each test model was instrumented with approx. 220, 1/16-in. three-gage, 45 0 strain rosettes on the body of the tee, and approx. 10, 1/16-in. two-gage, strain rosettes on the pipe extensions. Dial indicators, mounted on a special nonflexible holding frame, were used to measure deflections and rotations of the pipe extensions. Normalized maximum stress intensities for each loading condition on each tee are summarized in the text. Complete sets of strain-gage data, normalized stresses, and displacement measurements for each tee are given on microfiche in the appendixes. Following completion of the strain-gage tests, each tee was tested to failure in a fully reversed displacement-controlled low-cycle fatigue test with an alternating transverse load applied to the branch pipe. The load was directed out of plane for T-4, T-6, T-8, and T-15; and in plane for T-7. A constant internal pressure equal to the nominal design pressure was maintained during the fatigue tests. Failure data from the fatigue tests are summarized in the text

  3. Axial Fatigue Tests at Zero Mean Stress of 24S-T and 75S-T Aluminum-alloy Strips with a Central Circular Hole

    Science.gov (United States)

    Brueggeman, W C; Mayer, M JR

    1948-01-01

    Axial fatigue tests at zero mean stress have been made on 0.032- and 0.064-inch 24S-T and 0.032-inch 75S-T sheet-metal specimens 1/4, 1/2, 1, and 2 inches wide without a hole and with central holes giving a range of hole diameter D to specimen width W from 0.01 to 0.95. No systematic difference was noted between the results for the 0.032-inch and the 0.064-inch specimens although the latter seemed the more consistent. In general the fatigue strength based on the minimum section dropped sharply as the ration D/W was increased from zero to about 0.25. The plain specimens showed quite a pronounced decrease in fatigue strength with increasing width. The holed specimens showed only slight and rather inconclusive evidence of this size effect. The fatigue stress-concentration factor was higher for 75S-T than for 24S-T alloy. Evidence was found that a very small hole would not cause any reduction in fatigue strength.

  4. Fatigue behavior of an insulation system for the ITER magnets

    International Nuclear Information System (INIS)

    Prokopec, R.; Humer, K.; Weber, H.W.

    2006-01-01

    The application of glass-fiber reinforced plastics as insulation materials for fusion magnet coils (e.g. the Toroidal Field Coils of ITER) requires the full characterization of their mechanical performance under ITER-relevant conditions. One of the methods of testing material's response under dynamic load is the tension-tension fatigue procedure. This test can be used to simulate the pulsed tokamak-operation of the ITER coils over a lifetime of more than 20 years. Furthermore, it provides information on the maximum tensile or shear stress in the ITER-relevant range of 10 4 -10 5 cycles. In order to simulate the operation conditions of ITER as closely as possible, several fatigue parameters can be set in the test programme, e.g., the minimum-to-peak stress ratio R and the frequency ν of the sinusoidal load function. Further, the fatigue process can be run under load or strain control. All of these parameters may influence the mechanical response of the insulation system under cyclic load. Therefore, it is highly desirable to investigate the influence of test parameter variations on the measured stress-lifetime diagrams. The investigations were performed at 77 K using an industrial glass-fiber reinforced composite impregnated with epoxy resin. For both the load and the strain controlled mode, R-values of 0.3 and 0.5 and a frequency of 10 Hz were chosen. The results showed almost no deviations in the lifetime behavior between the load and the strain controlled mode, up to the ITER specified number of pulses, i.e. 3 x 10 4 cycles. Beyond this point, the residual strength levels were lower by 5-30 % under strain control than under load control. This effect is more pronounced at higher cycle numbers and for lower R-ratios. (author)

  5. Effect of tensile holds on the deformation behaviour of a nickel base superalloy subjected to low cycle fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Zrnik, J.; Semenak, J.; Wangyao, P.; Vrchovinsky, V.; Hornak, P. [Dept. of Materials Science, Technical Univ. of Kosice, Kosice (Slovakia)

    2002-07-01

    The deformation behaviour of the wrought nickel base superalloy EI698 VD has been investigated in conditions of low cycle fatigue. The tensile hold periods, imposing a constant stress into the fatigue loading, have been introduced at the maximum stress value. The individual hold periods were in the range of 1 minute to 10 hours. The fatigue tests were of tension-tension type defined by a stress ratio R = 0.027 and were conducted at temperature of 650 C. The tests were performed until fracture. The time to failure, the time to failure corresponding to total load at peak amplitude and the number of cycles to failure have been criteria to evaluate the deformation behaviour of the alloy subjected to complex cyclic creep loading. In order to predict lifetime of alloy, regarding the respective types cyclic test, the Kitagawa's modified the linear cumulative damage criterion has been considered. The two regression functions for applied hold period interval were proposed time to calculate the time to failure. The formulae can be used to predict the life of nickel base superalloy considering the specific conditions of low cycle fatigue with tensile hold period introduced at stress amplitude peaks. The failure analysis of fracture surfaces contributed to evaluation of the role of repeatedly reduced stress in damage process. (orig.)

  6. Effect of temperature upon the fatigue-crack propagation behavior of Hastelloy X-280

    International Nuclear Information System (INIS)

    James, L.A.

    1976-05-01

    The techniques of linear-elastic fracture mechanics were employed to characterize the effect of temperature upon the fatigue-crack propagation behavior of Hastelloy X-280 in an air environment. Also included in this study are survey tests to determine the effects of thermal aging and stress ratio upon crack growth behavior in this alloy

  7. Finite element simulation of asphalt fatigue testing

    DEFF Research Database (Denmark)

    Ullidtz, Per; Kieler, Thomas Lau; Kargo, Anders

    1997-01-01

    The traditional interpretation of fatigue tests on asphalt mixes has been in terms of a logarithmic linear relationship between the constant stress or strain amplitude and the number of load repetitions to cause failure, often defined as a decrease in modulus to half the initial value...... damage mechanics.The paper describes how continuum damage mechanics may be used with a finite element program to explain the progressive deterioration of asphalt mixes under laboratory fatigue testing. Both constant stress and constant strain testing are simulated, and compared to the actual results from...... three point and four point fatigue test on different mixes. It is shown that the same damage law, based on energy density, may be used to explain the gradual deterioration under constant stress as well as under constant strain testing.Some of the advantages of using this method for interpreting fatigue...

  8. Fatigue crack growth and endurance data on 9% Cr 1% Mo steels for AGR applications

    International Nuclear Information System (INIS)

    Priddle, E.K.

    1987-01-01

    Experimental investigations have been carried out on 9%Cr 1%Mo steels to examine: (1) The significance of carburisation on the fatigue endurance of plain and welded boiler tubes, and tube spacer strip; (2) the high cycle fatigue endurance of spacer strip and spacer weld metal; (3) fatigue crack growth rates in spacer strip and spacer weld metal. This report summarises the results of these investigations and where necessary compares the data to that in current data sheets. The effects of carburisation are variable depending on the structure and type of carburisation. The fatigue endurance properties of spacer strip and spacer weld metal are also similar and need not be considered separately for assessment or design purposes. Fatigue crack growth rates in spacer strip and space weld metal are similar and are influenced by both stress ratio and temperature. A design curve from a fast reactor data sheet may be used as an upper bound to these fatigue crack growth results. (author)

  9. Fatigue Behavior of Inconel 718 TIG Welds

    Science.gov (United States)

    Alexopoulos, Nikolaos D.; Argyriou, Nikolaos; Stergiou, Vasillis; Kourkoulis, Stavros K.

    2014-08-01

    Mechanical behavior of reference and TIG-welded Inconel 718 specimens was examined in the present work. Tensile, constant amplitude fatigue, and fracture toughness tests were performed in ambient temperature for both, reference and welded specimens. Microstructure revealed the presence of coarse and fine-grained heat-affected zones. It has been shown that without any post-weld heat treatment, welded specimens maintained their tensile strength properties while their ductility decreased by more than 40%. It was found that the welded specimens had lower fatigue life and this decrease was a function of the applied fatigue maximum stress. A 30% fatigue life decrease was noticed in the high cycle fatigue regime for the welded specimens while this decrease exceeded 50% in the low cycle fatigue regime. Cyclic stress-strain curves showed that Inconel 718 experiences a short period of hardening followed by softening for all fatigue lives. Cyclic fatigue response of welded specimens' exhibited cyclically stable behavior. Finally, a marginal decrease was noticed in the Mode I fracture toughness of the welded specimens.

  10. Psychiatric caregiver stress: clinical implications of compassion fatigue.

    Science.gov (United States)

    Franza, Francesco; Del Buono, Gianfranco; Pellegrino, Ferdinando

    2015-09-01

    The capacity to work productively is a key component of health and emotional well-being. People who work in health care can be exposed to the fatigue of care. Compassion fatigue has been described as an occupational hazard specific to clinical work related severe emotional distress. In our study, we have evaluated compassion fatigue in a mental health group (47 psychiatric staff) and its relationship with inpatients (237 inpatients) affected by some psychiatric disorders. At baseline, the more significant data indicate a high percentage of Job Burnout and Compassion Fatigue in psychiatric nurses (respectively, 39.28%, 28.57%). Significant Compassion Fatigue percentage is present also in psychologist group (36.36%). Finally, in psychiatrists, the exposure to patients increased vicarious trauma (28.57%), but not job burnout. After a year of participation in Balint Groups, the psychiatric staff presented an overall reduction in total mean score in any administered scale (CBI: pfatigue causes concern among mental health professionals, and Balint Groups may represent a therapeutic strategy to help health professionals to face difficulties in challenging work environments.

  11. Fatigue of vanadium--hydrogen alloys

    International Nuclear Information System (INIS)

    Lee, K.S.; Stoloff, N.S.

    1975-01-01

    Hydrogen contents near and above the room temperature solubility limit increase the high cycle fatigue life but decrease low cycle life of polycrystalline vanadium. Changes in endurance limit with hydrides may be a consequence of decreased cyclic strain hardening coefficient, n'. 132 ppM hydrogen in solution has only a slightly beneficial effect on stress controlled fatigue life and essentially no effect on low cycle fatigue life. Unalloyed vanadium exhibits profuse striations, while hydrides produce cleavage cracks in fatigued samples. 10 fig

  12. Fatigue crack propagation in aluminum-lithium alloys

    Science.gov (United States)

    Rao, K. T. V.; Ritchie, R. O.; Piascik, R. S.; Gangloff, R. P.

    1989-01-01

    The principal mechanisms which govern the fatigue crack propagation resistance of aluminum-lithium alloys are investigated, with emphasis on their behavior in controlled gaseous and aqueous environments. Extensive data describe the growth kinetics of fatigue cracks in ingot metallurgy Al-Li alloys 2090, 2091, 8090, and 8091 and in powder metallurgy alloys exposed to moist air. Results are compared with data for traditional aluminum alloys 2024, 2124, 2618, 7075, and 7150. Crack growth is found to be dominated by shielding from tortuous crack paths and resultant asperity wedging. Beneficial shielding is minimized for small cracks, for high stress ratios, and for certain loading spectra. While water vapor and aqueous chloride environments enhance crack propagation, Al-Li-Cu alloys behave similarly to 2000-series aluminum alloys. Cracking in water vapor is controlled by hydrogen embrittlement, with surface films having little influence on cyclic plasticity.

  13. Multiaxial creep-fatigue rules

    International Nuclear Information System (INIS)

    Spindler, M.W.; Hales, R.; Ainsworth, R.A.

    1997-01-01

    Within the UK, a comprehensive procedure, called R5, is used to assess the high temperature response of structures. One part of R5 deals with creep-fatigue initiation, and in this paper we describe developments in this part of R5 to cover multiaxial stress states. To assess creep-fatigue, damage is written as the linear sum of fatigue and creep components. Fatigue is assessed using Miner's law with the total endurance split into initiation and growth cycles. Initiation is assessed by entering the curve of initiation cycles vs strain range using a Tresca equivalent strain range. Growth is assessed by entering the curve of growth cycles vs strain range using a Rankine equivalent strain range. The number of allowable cycles is obtained by summing the initiation and growth cycles. In this way the problem of defining an equivalent strain range applicable over a range of endurance is avoided. Creep damage is calculated using ductility exhaustion methods. In this paper we address two aspects; first, the nature of stress relaxation and, hence, accumulated creep strain in multiaxial stress fields; secondly, the effect of multiaxial stress on creep ductility. The effect of multiaxial stress state on creep ductility has been examined using experimental data and mechanistic models. Good agreement is demonstrated between an empirical description of test data and a cavity growth model, provided a simple nucleation criterion is included. A simple scaling factor is applied to uniaxial creep ductility, defined as a function of stress state. The factor is independent of the cavity growth mechanisms and yields a value of equivalent strain which can be conveniently used in determining creep damage by ductility exhaustion. (author). 14 refs, 4 figs

  14. Compressive Fatigue in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1999-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Small clear specimens of spruce are taken to failure in square wave formed fatigue loading at a stress excitation level corresponding to 80% of the short term strength. Four...... frequencies ranging from 0.01 Hz to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation...

  15. Crack growth prediction for low-cycle fatigue regime

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2017-01-01

    The objective of this study is to show a crack growth prediction procedure for the low-cycle fatigue regime. First, fatigue crack growth tests using Type 316 stainless steel specimens at room temperature were reviewed. It was seen that the crack growth rates correlated well with the equivalent stress intensify factor, which was derived using strain range instead of stress range. Furthermore, the effective equivalent stress intensify factor derived using the effective strain range exhibited excellent correlation with the crack growth rates obtained under various specimen geometries and loading conditions including high and low-cycle regimens. The obtained crack growth rates were also compared with the growth rate prescribed in the fitness-for-service code of the Japan Society of Mechanical Engineers (JSME). The test results agreed with the growth rate of JSME code. Finally, the procedure for predicting the low-cycle fatigue crack growth was shown. Although the JSME code is aimed at predicting fatigue crack growth for the so-called small scale yielding condition (high-cycle fatigue regime), the material constants determined for the high-cycle fatigue regime can be used even for the low-cycle fatigue regime. (author)

  16. High cycle fatigue of austenitic stainless steels

    International Nuclear Information System (INIS)

    Gauthier, J.P.; Lehmann, D.; Picker

    1990-01-01

    This study concerns the evaluation of material data to be used in LMFBR design codes. High cycle fatigue properties of three austenitic stainless steels are evaluated: type AISI 316 (UKAEA tests), type AISI 316L (CEA tests) and type AISI 304 (Interatom tests). The data on these steels comprised some 550 data points from 14 casts. This data set covered a wide range of testing parameters: temperature from 20-625 0 C, frequency from 1-20 000 Hz, constant amplitude and random fatigue loading, with and without mean stress, etc. However, the testing conditions chosen by the three partners differed considerably because they had been fixed independently and not harmonized prior to the tests. This created considerable difficulties for the evaluations. Experimental procedures and statistical treatments used for the three subsets of data are described and discussed. Results are presented in tables and graphs. Although it is often difficult to single out the influence of each parameter due to the different testing conditions, several interesting conclusions can be drawn: The HCF properties of the three steels are consistent with the 0.2% proof stress, the fatigue limit being larger than the latter at temperatures above 550 0 C. The type 304 steel has lower tensile properties than the two other steels and hence also lower HCF properties. Parameters which clearly have a significant effect of HCF behaviour are mean stress or R-ratio (less in the non-endurance region than in the endurance region), temperature, cast or product. Other parameters have probably a weak or no effect but it is difficult to conclude due to insufficient data: environment, specimen orientation, frequency, specimen geometry

  17. Elastic creep-fatigue evaluation for ASME code

    International Nuclear Information System (INIS)

    Severud, L.K.; Winkel, B.V.

    1987-01-01

    Experience with applying the ASME Code Case N-47 rules for evaluation of creep-fatigue with elastic analysis results has been problematic. The new elastic evaluation methods are intended to bound the stress level and strain range values needed for use in employing the code inelastic analysis creep-fatigue damage counting procedures. To account for elastic followup effects, ad hoc rules for stress classification, shakedown, and ratcheting are employed. Because elastic followup, inelastic strain concentration, and stress-time effects are accounted for, the design fatigue curves in Case N-47 for inelastic analysis are used instead of the more conservative elastic analysis curves. Creep damage assessments are made using an envelope stress-time history that treats multiple load events and repeated cycles during elevated temperature service life. (orig./GL)

  18. Near-threshold fatigue crack growth behavior of AISI 316 stainless steel

    International Nuclear Information System (INIS)

    Tobler, R.L.

    1986-01-01

    The near-threshold fatigue behavior of an AISI 316 alloy was characterized using a newly developed, fully automatic fatigue test apparatus. Significant differences in the near-threshold behavior at temperatures of 295 and 4 K are observed. At 295 K, where the operationally defined threshold at 10 -10 m/cycle is insensitive contains stress ratio and strongly affected by crack closure, the effective threshold stress intensity factor (ΔK/sub Th/)/sub eff/) is about 4.65 MPa m/sub 1/2/ at R = 0.3. At 4 K, the threshold is higher, crack closure is less pronounced, and there is a stress ratio dependency: (ΔK/sub Th/)/sub eff/ is 5.1 MPa m/sup 1/2/ at R = 0.3 and 6.1 MPa m/sup 1/2/ at R - 0.1. There is also a significant difference in the form of the da/dN-versus-ΔK curves on log-log coordinates: at 4 K the curve has the expected sigmoidal shape, but at 295 K the trend is linear over the region of da/dN from 10 -7 to 10 -10 m/cycle. Other results suggest that the near-threshold measurements of a 6.4-mm-thick specimen of this alloy are insensitive to cyclic test frequency below 40 Hz

  19. Work stress, fatigue and risk behaviors at the wheel: Data to assess the association between psychosocial work factors and risky driving on Bus Rapid Transit drivers

    Directory of Open Access Journals (Sweden)

    Sergio Useche

    2017-12-01

    Full Text Available This Data in Brief (DiB article presents a hierarchical multiple linear regression model that examine the associations between psychosocial work factors and risk behaviors at the wheel in Bus Rapid Transit (BRT drivers (n=524. The data were collected using a structured self-administrable questionnaire made of measurements of wok stress (job strain and effort- reward imbalance, fatigue (need for recovery and chronic fatigue, psychological distress and demographics (professional driving experience, hours driven per day and days working per week. The data contains 4 parts: descriptive statistics, bivariate correlations between the study variables and a regression model predicting risk behaviors at the wheel and the entire study dataset. For further information, it is convenient to read the full article entitled “Stress-related Psychosocial Factors at Work, Fatigue, and Risky Driving Behavior in Bus Rapid Transport (BRT Drivers”, published in Accident Analysis & Prevention. Keywords: Professional drivers, Work stress, Fatigue, Psychological distress, Risk behaviors, Bus Rapid Transport, BRT

  20. Temperament vs. chronic fatigue in police officers

    Directory of Open Access Journals (Sweden)

    Ewa Stępka

    2015-12-01

    Full Text Available Background: Chronic fatigue is a problem affecting a still growing number of people. Among them there are representatives of different professions who are forced to cope not only with occupational stress, but also with the problem of fatigue. The police is one of such occupational groups, in which exposure to stressful and often traumatic situations, contact with those who violate the law, shift work and contact with superiors can play a key role in the development of chronic fatigue. However, chronic fatigue, induced by the above mentioned factors, does not affect all police officers since its occurrence also depends on many personal traits, including temperament. Material and methods: We studied a group of 61 police officers of the Kuyavian-Pomeranian garrison. The study was conducted using the Buss and Plomin EAS (emotionality, activity, sociability Temperament Questionnaire, CIS-20R (community, innovation, survey Questionnaire, developed by Vercoulen et al. and a questionnaire on socio-demographic data. Results: The results indicated the relationship between chronic fatigue and emotionality. Statistical analyses showed a negative correlation between the nature of emotional components, distress, fear, anger, and the general rate of chronic fatigue. There was no statistically significant correlation between age, and service experience and the level of chronic fatigue. Conclusions: The results indicate that the officers of the study group show dramatically high levels of chronic fatigue. The results also revealed that temperament characteristics, such as sociability and activity, reported in the literature as factors reducing fatigue and stress, did not show relevance to chronic fatigue in the study group. Med Pr 2015;66(6:793–801

  1. Acupuncture for chronic fatigue syndrome and idiopathic chronic fatigue: a multicenter, nonblinded, randomized controlled trial.

    Science.gov (United States)

    Kim, Jung-Eun; Seo, Byung-Kwan; Choi, Jin-Bong; Kim, Hyeong-Jun; Kim, Tae-Hun; Lee, Min-Hee; Kang, Kyung-Won; Kim, Joo-Hee; Shin, Kyung-Min; Lee, Seunghoon; Jung, So-Young; Kim, Ae-Ran; Shin, Mi-Suk; Jung, Hee-Jung; Park, Hyo-Ju; Kim, Sung-Phil; Baek, Yong-Hyeon; Hong, Kwon-Eui; Choi, Sun-Mi

    2015-07-26

    The causes of chronic fatigue syndrome (CFS) and idiopathic chronic fatigue (ICF) are not clearly known, and there are no definitive treatments for them. Therefore, patients with CFS and ICF are interested in Oriental medicine or complementary and alternative medicine. For this reason, the effectiveness of complementary and alternative treatments should be verified. We investigated the effectiveness of two forms of acupuncture added to usual care for CFS and ICF compared to usual care alone. A three-arm parallel, non-blinded, randomized controlled trial was performed in four hospitals. We divided 150 participants into treatment and control groups at the same ratio. The treatment groups (Group A, body acupuncture; Group B, Sa-am acupuncture) received 10 sessions for 4 weeks. The control group (Group C) continued usual care alone. The primary outcome was the Fatigue Severity Scale (FSS) at 5 weeks after randomization. Secondary outcomes were the FSS at 13 weeks and a short form of the Stress Response Inventory (SRI), the Beck Depression Inventory (BDI), the Numeric Rating Scale (NRS), and the EuroQol-5 Dimension (EQ-5D) at 5 and 13 weeks. Group A showed significantly lower FSS scores than Group C at 5 weeks (P = 0.023). SRI scores were significantly lower in the treatment groups than in the control group at 5 (Group A, P = 0.032; B, P fatigue in CFS and ICF patients. Clinical Research Information Service (CRIS) KCT0000508; Registered on 12 August 2012.

  2. Fatigue strength depending on position of cracks for weldments

    International Nuclear Information System (INIS)

    Lee, Hae Woo; Park, Won Jo

    2006-01-01

    This is a study of fatigue strength of weld deposits with transverse cracks in plate up to 50 mm thick. It is concerned with the fatigue properties of welds already with transverse cracks. A previous study of transverse crack occurrence, location and microstructure in accordance with welding conditions was published in the Welding Journal (Lee et al., 1998). A fatigue crack develops as a result of stress concentration and extends with each load cycle until fatigue occurs, or until the cyclic loads are transferred to redundant members. The fatigue performance of a member is more dependent on the localized state of stress than the static strength of the base metal or the weld metal. Fatigue specimens were machined to have transverse cracks located on the surface and inside the specimen. Evaluation of fatigue strength depending on location of transverse cracks was then performed. When transverse cracks were propagated in a quarter-or half-circle shape, the specimen broke at low cycle in the presence of a surface crack. However, when the crack was inside the specimen, it propagated in a circular or elliptical shape and the specimen showed high fatigue strength, enough to reach the fatigue limit within tolerance of design stresses

  3. Fatigue behaviour of T welded joints rehabilitated by tungsten inert gas and plasma dressing

    International Nuclear Information System (INIS)

    Ramalho, Armando L.; Ferreira, Jose A.M.; Branco, Carlos A.G.M.

    2011-01-01

    Highlights: → This study addresses the use of improvement techniques for repair T welded joints. → TIG and plasma arc re-melting are applied in joints with fatigue cracks at weld toes. → Plasma dressing provides reasonable repair in joints with cracks greater than 4 mm. → TIG dressing produces a deficient repair in joints with cracks greater than 4 mm. → TIG dressing provides good repair in joints with fatigue cracks lesser than 2.5 mm. -- Abstract: This paper concerns a fatigue study on the effect of tungsten inert gas (TIG) and plasma dressing in non-load-carrying fillet welds of structural steel with medium strength. The fatigue tests were performed in three point bending at the main plate under constant amplitude loading, with a stress ratio of R = 0.05 and a frequency of 7 Hz. Fatigue results are presented in the form of nominal stress range versus fatigue life (S-N) curves obtained from the as welded joints and the TIG dressing joints at the welded toe. These results were compared with the ones obtained in repaired joints, where TIG and plasma dressing were applied at the welded toes, containing fatigue cracks with a depth of 3-5 mm in the main plate and through the plate thickness. A deficient repair was obtained by TIG dressing, caused by the excessive depth of the crack. A reasonable fatigue life benefits were obtained with plasma dressing. Good results were obtained with the TIG dressing technique for specimens with shallower initial defects (depth lesser than 2.5 mm). The fatigue life benefits were presented in terms of a gain parameter assessed using both experimental data and life predictions based on the fatigue crack propagation law.

  4. Thermal fatigue evaluation of partially cooled pipes

    International Nuclear Information System (INIS)

    Kawasaki, N.; Kasahara, N.; Takasho, H.

    2004-01-01

    Concerning thermal striping phenomenon with a cold/hot spot, effect of the thermal spot on fatigue strength was investigated. The thermal spot causes membrane stress and enhances bending stress in the structure. Increased stress shortens the fatigue life and accelerates the crack propagation rate. The mechanism to increase stress was found to be the structural constraint of thermal strain by the thermal spot. To consider this mechanism, constraint efficiency factors were introduced to the thermal stress evaluation method based on frequency transfer functions developed by authors. Proposed method with these factors was validated through comparisons with cyclic FEA considering thermal spots. (orig.)

  5. Fatigue stress detection of VIRTIS cryocoolers on board Rosetta

    Science.gov (United States)

    Giuppi, Stefano; Politi, Romolo; Capria, Maria Teresa; Piccioni, Giuseppe; De Sanctis, Maria Cristina; Erard, Stéphane; Tosi, Federico; Capaccioni, Fabrizio; Filacchione, Gianrico

    Rosetta is a planetary cornerstone mission of the European Space Agency (ESA). It is devoted to the study of minor bodies of our solar system and it will be the first mission ever to land on a comet (the Jupiter-family comet 67P/Churyumov-Gerasimenko). VIRTIS-M is a sophisticated imaging spectrometer that combines two data channels in one compact instrument, respectively for the visible and the infrared range (0.25-5.0 μm). VIRTIS-H is devoted to infrared spectroscopy (2.5-5.0 μm) with high spectral resolution. Since the satellite will be inside the tail of the comet during one of the most important phases of the mission, it would not be appropriate to use a passive cooling system, due to the high flux of contaminants on the radiator. Therefore the IR sensors are cooled by two Stirling cycle cryocoolers produced by RICOR. Since RICOR operated life tests only on ground, it was decided to conduct an analysis on VIRTIS onboard Rosetta telemetries with the purpose of study possible differences in the cryocooler performancies. The analysis led to the conclusion that cryocoolers, when operating on board, are subject to a fatigue stress not present in the on ground life tests. The telemetries analysis shows a cyclic variation in cryocooler rotor angular velocity when -M or -H or both channel are operating (it has been also noted an influence of -M channel operations in -H cryocooler rotor angular velocity and vice versa) with frequencies mostly linked to operational parameters values. The frequencies have been calculated for each mission observation applying the Fast Fourier Transform (FFT). In order to evaluate possible hedge effects it has been also applied the Hanning window to compare the results. For a more complete evaluation of cryocoolers fatigue stress, for each mission observation the angular acceleration and the angular jerk have been calculated.

  6. Service Life Of Main Piping Component Due To Low Thermal Stresses.Fatigue

    International Nuclear Information System (INIS)

    Miroshnik, R.; Jeager, A.; Ben Haim, H.

    1998-01-01

    The paper deals with estimating the service life of the power station Main piping component and describing the repair process for extending of its service life. After a long period of service, several circular fatigue cracks have been discovered at the bottom of the Main piping component chamber. Finite element analyses of transient thermal stresses, caused by power station startup, are carried out in the paper. The calculation results show good agreement between the theoretical locations of the maximum stresses and the actual locations of the cracks. There is a good agreement between theoretical evaluation and actual service life, as well. The possibility of machining out the cracks in order to prevent their growing is examined here. The machining enables us to extend the power station component's life service

  7. The interpretation of stress reductions in creep-fatigue cycles of 316 stainless steel

    International Nuclear Information System (INIS)

    Hales, R.

    1986-11-01

    A statistical analysis of stress-drop results obtained on a number of different casts of 316 stainless steel in the temperature range 550 0 C to 700 0 C is presented. In all cases the results were obtained from strain controlled fatigue tests. The equations used to describe stress relaxation here are derived from forward creep equations which describe the dependence of creep rate on time, stress and temperature. Although there is no clear correspondence between creep and stress relaxation, creep equations offer an attractive starting point. Not all the models considered exhibited the expected response to changes in temperature. A revised analysis was carried out on the assumption that stress relaxation is thermally activated according to the Arrhenius equation. Two models were found to fit the data equally well and it was not possible to choose which of these relationships is the more appropriate to describe stress relaxation of cyclically conditioned material. On the basis of the evidence both are acceptable and may be used to calculate the creep damage according to the various high temperature design codes. Whichever gives the more conservative assessment should be used until a more mechanistically based judgement can be reached. (author)

  8. Reliability improvement of wire bonds subjected to fatigue stresses.

    Science.gov (United States)

    Ravi, K. V.; Philofsky, E. M.

    1972-01-01

    The failure of wire bonds due to repeated flexure when semiconductor devices are operated in an on-off mode has been investigated. An accelerated fatigue testing apparatus was constructed and the major fatigue variables, aluminum alloy composition, and bonding mechanism, were tested. The data showed Al-1% Mg wires to exhibit superior fatigue characteristics compared to Al-1% Cu or Al-1% Si and ultrasonic bonding to be better than thermocompression bonding for fatigue resistance. Based on these results highly reliable devices were fabricated using Al-1% Mg wire with ultrasonic bonding which withstood 120,000 power cycles with no failures.

  9. [Analysis of work-related fatigue characteristics and its influencing factors in scientific and technical personnel].

    Science.gov (United States)

    Yang, Ting; Zhou, Dinglun; Song, Mingying; Lan, Yajia

    2015-02-01

    To investigate the current status and characteristics of work-related fatigue among scientific and technical personnel and its associated factors, and to provide a scientific basis for further interventions. A cross-sectional survey was conducted in the staff from a single scientific institution, using a self-administered questionnaire. Basic information of participants, Fatigue Scale-14, and Job Content Questionnaire were collected. The prevalence of work-related fatigue among the scientific and technical personnel was 54.6%; work-related fatigue was positively correlated with occupational stress (rs = 0.384, P work-related fatigue included occupational stress profiles, social support, and educational status. A higher risk of work-related fatigue was found in the staff under high stress, compared with those under low stress (OR = 8.5, 95%CI = 3.9∼18.7). Social support served as a protective factor for work-related fatigue, while a higher level of education was correlated with more severe work-related fatigue. Work-related fatigue is common and serious among scientific and technical personnel, especially in those under high stress. Effective interventions according to occupational stress are of great importance to reduce work-related fatigue.

  10. Increased plasma peroxides as a marker of oxidative stress in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)

    OpenAIRE

    Maes, Michael; Kubera, Marta; Uytterhoeven, Marc; Vrydags, Nicolas; Bosmans, Eugene

    2011-01-01

    Summary Background There is evidence that myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by activation of immune, inflammatory, oxidative and nitrosative stress (IO&NS) pathways. The present study was carried out in order to examine whether ME/CFS is accompanied by increased levels of plasma peroxides and serum oxidized LDL (oxLDL) antibodies, two biomarkers of oxidative stress. Material/Methods Blood was collected from 56 patients with ME/CFS and 37 normal volun...

  11. Fatigue in Steel Structures under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning

    1999-01-01

    types of welded plate test specimens and full-scale offshore tubular joints. The materials that have been used are either conventional structural steel with a yield stress of ~ 360-410 MPa or high-strength steel with a yield stress of ~ 810-1010 MPa. The fatigue tests and the fracture mechanics analyses......Fatigue damage accumulation in steel structures under random loading is studied. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part of the investigation, fatigue test series have been carried through on various...... have been carried out using load histories, which are realistic in relation to the types of structures studied, i.e. primarily bridges, offshore structures and chimneys. In general, the test series carried through show a significant difference between constant amplitude and variable amplitude fatigue...

  12. Cyclic mechanical fatigue in ceramic-ceramic composites: an update

    International Nuclear Information System (INIS)

    Lewis, D. III

    1983-01-01

    Attention is given to cyclic mechanical fatigue effects in a number of ceramics and ceramic composites, including several monolithic ceramics in which significant residual stresses should be present as a result of thermal expansion mismatches and anisotropy. Fatigue is also noted in several BN-containing ceramic matrix-particulate composites and in SiC fiber-ceramic matrix composites. These results suggest that fatigue testing is imperative for ceramics and ceramic composites that are to be used in applications subject to cyclic loading. Fatigue process models are proposed which provide a rationale for fatigue effect observations, but do not as yet provide quantitative results. Fiber composite fatigue damage models indicate that design stresses in these materials may have to be maintained below the level at which fiber pullout occurs

  13. Study on the change of aspect ratios of small surface cracks emanated from a toe of corner boxing; Mawashi yosetsudome tanbu kara hassei denpasuru bishi bisho hyomen kiretsu no aspect hi henka ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Toyosada, M; Yamaguchi, K; Takeda, K; Watanabe, Y [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1997-10-01

    The fatigue test of specimens with a stiffener was carried out to examine the change in aspect ratio (crack depth/length) of fatigue cracks in a stress concentration field and residual stress field. The aspect ratio of surface cracks just after generation can be represented with the single virtual surface crack with the same value as K value at the deepest point considering an interference effect from near cracks. No discontinuous change in K value is found at the deepest point even during growth and combination of cracks on a surface. The change in K value at the deepest point is thus the criterion to represent growth and combination of surface cracks considering the interference effect. The change in aspect ratio of the typical single virtual surface crack linearly decreases with an increase in crack depth. The shape of surface cracks generating and growing in a residual stress field is more flat than that in no residual stress field. In addition, in a residual stress field, surface cracks are longer at the same crack depth, and fatigue lives are shorter. 7 refs., 12 figs.

  14. In-reactor fatigue crack propagation

    International Nuclear Information System (INIS)

    Ermi, A.M.; Mervyn, D.A.; Straalsund, J.L.

    1979-08-01

    An in-reactor fatigue experiment is being designed to determine the effect of dynamic irradiation on the fatigue crack propagation (FCP) behavior of candidate fusion first wall materials. This investigation has been prompted by studies which show gross differences in crack growth characteristics of creep rupture specimens testing by postirradiation versus dynamic in-reactor methods. The experiment utilizes miniature center-cracked-tension specimens developed specifically for in-reactor studies. In the test, a chain of eight specimens, precracked to various initial crack lengths, is stressed during irradiation to determine crack growth rate as a function of stress intensity. Load levels were chosen which result in small crack growth rates encompassing a regime of the crack growth curve not previously investigated during irradiation studies of FCP. The test will be conducted on 20% cold worked 316 stainless steel at a temperature of 425 0 C, in a sodium environment, and at a frequency of 1 cycle/min. Irradiation will occur in the Oak Ridge Research Reactor, resulting in a He/dpa ratio similar to that expected at the first wall in a fusion reactor. Detailed design of the experiment is presented, along with crack growth data obtained from prototypic testing of the experimental apparatus. These results are compared to data obtained under similar conditions generated by conventional test methods

  15. Influence of reference stress formulae on creep and creep-fatigue crack initiation and growth prediction in plate components

    International Nuclear Information System (INIS)

    Wasmer, K.; Nikbin, K.M.; Webster, G.A.

    2010-01-01

    Creep and creep-fatigue crack growth in pre-cracked plates of 316L(N) austenitic stainless steel, containing a semi-elliptical surface defect and tested at 650 o C under combined axial and bending loading, are investigated. The results have been interpreted in terms of the creep fracture mechanics parameter C* and compared with data obtained on standard compact tension (CT) specimens of the same material and batch. In making the assessments, the reference stress method has been used to determine C*. Several formulae exist for calculating the reference stress depending on whether it is based on a 'global' or a 'local' collapse mechanism and the assessment procedure adopted. When using this approach, it has been found that the most satisfactory comparison of crack growth rates with standard CT specimen data is obtained when the 'global' reference stress solution is used in conjunction with mean uniaxial creep properties. It has been found that the main effect of changing the fatigue cycle range from 0.1 to -1.0 is to cause an acceleration in the early stage of cracking.

  16. Effects of short fiber reinforcement and mean stress on tensile fatigue strength characteristics of polyethersulfone; Tansen`i kyoka porieterusaruhon no hippari hiro tokusei ni oyobosu heikin oryoku no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Furue, H.; Nonaka, K. [Mechanical Engineering Lab., Tsukuba, Ibaraki (Japan)

    1996-01-15

    Thermoplastics are often reinforced with short fibers with aims of improvement of their strengths, rigidities and hardness or maintenance of their dimensional stabilities. Such short fiber reinforced plastic materials have more expectation for high performance plastics. Authors already examined of some effects of reinforced fiber and of orientation in injection molding on flexural fatigue characteristics of the injection-molded high performance thermoplastic materials. However, the examination of short fiber reinforced effects on fatigue strength characteristics was not always sufficient. In this study, in order to obtain a guiding principle for fatigue resistant design of the short fiber reinforced injection molding materials, polyethersulfones (PES) was examined on its tensile fatigue strength and an effect of short fiber reinforcement for improvement of its fundamental dynamic properties on its fatigue characteristics. Especially, its fatigue life characteristics was elucidated mainly on relationship of mean stress, stress amplitude and number of repeating fracture in tensile fatigue behavior. 10 refs., 15 figs., 2 tabs.

  17. Modal characteristics and fatigue strength of compressor blades

    International Nuclear Information System (INIS)

    Kim, Kyung Kook; Lee, Young Shin

    2014-01-01

    High-cycle fatigue (HCF) has been identified as one of the primary causes of gas turbine engine failure. The modal characteristics and endurance strength of a 5 MW gas turbine engine blade developed by Doosan Heavy Industries and Construction Co., Ltd. in HCF fracture were verified through analysis and tests to determine the reliability of the compressor blade. A compressor blade design procedure that considers HCF life was performed in the following order: airfoil and blade profile design, modal analysis, stress distribution test, stress endurance limit test, and fatigue life verification. This study analyzed the Campbell diagram and estimated resonance risk on the basis of the natural frequency analysis and modal test of the compressor blade to guarantee safe and operational reliability. In addition, the maximum stress point of the compressor blade was determined through stress distribution analysis and test. The bonding point of the strain gage was determined by using fatigue test. Stress endurance limit test was performed based on the results of these tests. This research compared and verified the modal characteristics and endurance strengths of the compressor blades to prevent HCF fracture, which is among the major causes of gas turbine engine damage. A fatigue life design procedure of compressor blades was established. The 5 MW class gas turbine compressor blade is well designed in terms of resonance stability and fatigue endurance limit.

  18. Modal characteristics and fatigue strength of compressor blades

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Kook [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of); Lee, Young Shin [Chungnam National University, Daejeon (Korea, Republic of)

    2014-04-15

    High-cycle fatigue (HCF) has been identified as one of the primary causes of gas turbine engine failure. The modal characteristics and endurance strength of a 5 MW gas turbine engine blade developed by Doosan Heavy Industries and Construction Co., Ltd. in HCF fracture were verified through analysis and tests to determine the reliability of the compressor blade. A compressor blade design procedure that considers HCF life was performed in the following order: airfoil and blade profile design, modal analysis, stress distribution test, stress endurance limit test, and fatigue life verification. This study analyzed the Campbell diagram and estimated resonance risk on the basis of the natural frequency analysis and modal test of the compressor blade to guarantee safe and operational reliability. In addition, the maximum stress point of the compressor blade was determined through stress distribution analysis and test. The bonding point of the strain gage was determined by using fatigue test. Stress endurance limit test was performed based on the results of these tests. This research compared and verified the modal characteristics and endurance strengths of the compressor blades to prevent HCF fracture, which is among the major causes of gas turbine engine damage. A fatigue life design procedure of compressor blades was established. The 5 MW class gas turbine compressor blade is well designed in terms of resonance stability and fatigue endurance limit.

  19. IIW guidelines on weld quality in relationship to fatigue strength

    CERN Document Server

    Jonsson, Bertil; Hobbacher, A F; Kassner, M; Marquis, G

    2016-01-01

    This book presents guidelines on quantitative and qualitative measures of the geometric features and imperfections of welds to ensure that it meets the fatigue strength requirements laid out in the recommendations of the IIW (International Institute of Welding). Welds that satisfy these quality criteria can be assessed in accordance with existing IIW recommendations based on nominal stress, structural stress, notch stress or linear fracture mechanics. Further, the book defines more restrictive acceptance criteria based on weld geometry features and imperfections with increased fatigue strength. Fatigue strength for these welds is defined as S-N curves expressed in terms of nominal applied stress or hot spot stress. Where appropriate, reference is made to existing quality systems for welds.In addition to the acceptance criteria and fatigue assessment curves, the book also provides guidance on their inspection and quality control. The successful implementation of these methods depends on adequate training for o...

  20. Effects of Control Mode and R-Ratio on the Fatigue Behavior of a Metal Matrix Composite

    Science.gov (United States)

    2005-01-01

    isothermal, LCF behavior of a [0]_32 MMC tested under strain- and load-controlled conditions for both zero-tension and tension-compression loading conditions. These tests were run at 427 C on thick specimens of SiC-reinforced Ti-15-3. For the fully-reversed tests, no difference was observed in the lives between the load- and strain-controlled tests. However, for the zero-tension tests, the strain-controlled tests had longer lives by a factor of 3 in comparison to the load-controlled tests. This was due to the fact that under strain-control the specimens cyclically softened, reducing the cracking potential. In contrast, the load-controlled tests ratcheted toward larger tensile strains leading to an eventual overload of the fibers. Fatigue tests revealed that specimens tested under fully-reversed conditions had lives approximately an order of magnitude longer than for those specimens tested under zero tension. When examined on a strain-range basis, the fully reversed specimens had similar, but still shorter lives than those of the unreinforced matrix material. However, the composite had a strain limitation at short lives because of the limited strain capacity of the brittle ceramic fiber. The composite also suffered at very high lives because of the lack of an apparent fatigue limit in comparison to the unreinforced matrix. The value of adding fibers to the matrix is apparent when the fatigue lives are plotted as a function of stress range. Here, the composite is far superior to the unreinforced matrix because of the additional load-carrying capacity of the fibers.

  1. Fatigue behavior of ULTIMETRTM alloy: Experiment and theoretical modeling

    Science.gov (United States)

    Jiang, Liang

    ULTIMETRTM alloy is a commercial Co-26Cr-9Ni (weight percent) superalloy, which possesses excellent resistance to both wear and corrosion. In order to extend the structural applications of this alloy and improve the fundamental understanding of the fatigue damage mechanisms, stress- and strain-controlled fatigue tests were performed at various temperatures and in different environments. The stress- and strain-life data were developed for the structural design and engineering applications of this material. Fractographic studies characterized the crack-initiation and propagation behavior of the alloy. Microstructure evolution during fatigue was revealed by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Specifically, it was found that the metastable face-centered-cubic structure of this alloy in the as-received condition could be transformed into a hexagonal-close-packed structure either under the action of plastic deformation at room temperature, or due to the aging and cyclic deformation at intermediate temperatures. This interesting observation constructed a sound basis for the alloy development. The dominant mechanisms, which control the fatigue behavior of ULTIMET alloy, were characterized. High-speed, high-resolution infrared (IR) thermography, as a non-contact, full-field, and nondestructive technique, was used to characterize the damage during fatigue. The temperature variations during each fatigue cycle, which were due to the thermal-elastic-plastic effect, were observed and related to stress-strain analyses. The temperature evolution during fatigue manifested the cumulative fatigue damage process. A constitutive model was developed to predict thermal and mechanical responses of ULTIMET alloy subjected to cyclic deformation. The predicted cyclic stress-strain responses and temperature variations were found to be in good agreement with the experimental results. In addition, a fatigue life prediction model was developed

  2. Probabilistic Analysis for Comparing Fatigue Data Based on Johnson-Weibull Parameters

    Science.gov (United States)

    Vlcek, Brian L.; Hendricks, Robert C.; Zaretsky, Erwin V.

    2013-01-01

    Leonard Johnson published a methodology for establishing the confidence that two populations of data are different. Johnson's methodology is dependent on limited combinations of test parameters (Weibull slope, mean life ratio, and degrees of freedom) and a set of complex mathematical equations. In this report, a simplified algebraic equation for confidence numbers is derived based on the original work of Johnson. The confidence numbers calculated with this equation are compared to those obtained graphically by Johnson. Using the ratios of mean life, the resultant values of confidence numbers at the 99 percent level deviate less than 1 percent from those of Johnson. At a 90 percent confidence level, the calculated values differ between +2 and 4 percent. The simplified equation is used to rank the experimental lives of three aluminum alloys (AL 2024, AL 6061, and AL 7075), each tested at three stress levels in rotating beam fatigue, analyzed using the Johnson- Weibull method, and compared to the ASTM Standard (E739 91) method of comparison. The ASTM Standard did not statistically distinguish between AL 6061 and AL 7075. However, it is possible to rank the fatigue lives of different materials with a reasonable degree of statistical certainty based on combined confidence numbers using the Johnson- Weibull analysis. AL 2024 was found to have the longest fatigue life, followed by AL 7075, and then AL 6061. The ASTM Standard and the Johnson-Weibull analysis result in the same stress-life exponent p for each of the three aluminum alloys at the median, or L(sub 50), lives

  3. Role of multiaxial stress state in the hydrogen-assisted rolling-contact fatigue in bearings for wind turbines

    Directory of Open Access Journals (Sweden)

    J. Toribio

    2015-07-01

    Full Text Available Offshore wind turbines often involve important engineering challenges such as the improvement of hydrogen embrittlement resistance of the turbine bearings. These elements frequently suffer the so-called phenomenon of hydrogen-assisted rolling-contact fatigue (HA-RCF as a consequence of the synergic action of the surrounding harsh environment (the lubricant supplying hydrogen to the material and the cyclic multiaxial stress state caused by in-service mechanical loading. Thus the complex phenomenon could be classified as hydrogen-assisted rolling-contact multiaxial fatigue (HA-RC-MF. This paper analyses, from the mechanical and the chemical points of view, the so-called ball-on-rod test, widely used to evaluate the hydrogen embrittlement susceptibility of turbine bearings. Both the stress-strain states and the steady-state hydrogen concentration distribution are studied, so that a better elucidation can be obtained of the potential fracture places where the hydrogen could be more harmful and, consequently, where the turbine bearings could fail during their life in service.

  4. Study on low cycle fatigue behavior of two titanium alloy materials with elevated temperature effects

    International Nuclear Information System (INIS)

    Cai Lixun; Sun Yafang; Wang Li; Huang Shuzhen

    2000-01-01

    A serial of tensional and low cycle fatigue tests for two titanium alloy materials:T42NG and T225NG under room temperature and 350 degree C elevated temperature are carried out. Based on the test results, four monotonic constitutive relationships between stress and strain and four relationships between life Nf and strain amplitude controlled are given. By three ratio λ σ , λ Δσ and λ Nf of the materials related to the elevated temperature, systematical investigations about the influence of the elevated temperature on monotonic tensional intensity, cyclic intensity and fatigue life are performed. According to the important rule opened out that it exists a linearity relationship between the ratio λ Nf and strain amplitude Δε/2, the author present a λ-M-C model for predicting the fatigue life of a exponential material under R= -1 and an elevated temperature. To get the λ-M-C model, the authors give available discussion about the method simplified test and regression. The authors know from test results that T42NG steel has better fatigue and tensional behaviors than those of T225NG steel

  5. Method for estimating failure probabilities of structural components and its application to fatigue problem of internally cooled superconductors

    International Nuclear Information System (INIS)

    Shibui, M.

    1989-01-01

    A new method for fatigue-life assessment of a component containing defects is presented such that a probabilistic approach is incorporated into the CEGB two-criteria method. The present method assumes that aspect ratio of initial defect, proportional coefficient of fatigue crack growth law and threshold stress intensity range are treated as random variables. Examples are given to illustrate application of the method to the reliability analysis of conduit for an internally cooled cabled superconductor (ICCS) subjected to cyclic quench pressure. The possible failure mode and mechanical properties contributing to the fatigue life of the thin conduit are discussed using analytical and experimental results. 9 refs., 9 figs

  6. Separating the Influence of Environment from Stress Relaxation Effects on Dwell Fatigue Crack Growth in a Nickel-Base Disk Alloy

    Science.gov (United States)

    Telesman, J.; Gabb, T. P.; Ghosn, L. J.

    2016-01-01

    Both environmental embrittlement and crack tip visco-plastic stress relaxation play a significant role in determining the dwell fatigue crack growth (DFCG) resistance of nickel-based disk superalloys. In the current study performed on the Low Solvus High Refractory (LSHR) disk alloy, the influence of these two mechanisms were separated so that the effects of each could be quantified and modeled. Seven different microstructural variations of LSHR were produced by controlling the cooling rate and the subsequent aging and thermal exposure heat treatments. Through cyclic fatigue crack growth testing performed both in air and vacuum, it was established that four out of the seven LSHR heat treatments evaluated, possessed similar intrinsic environmental resistance to cyclic crack growth. For these four heat treatments, it was further shown that the large differences in dwell crack growth behavior which still persisted, were related to their measured stress relaxation behavior. The apparent differences in their dwell crack growth resistance were attributed to the inability of the standard linear elastic fracture mechanics (LEFM) stress intensity parameter to account for visco-plastic behavior. Crack tip stress relaxation controls the magnitude of the remaining local tensile stresses which are directly related to the measured dwell crack growth rates. It was hypothesized that the environmentally weakened grain boundary crack tip regions fail during the dwells when their strength is exceeded by the remaining local crack tip tensile stresses. It was shown that the classical creep crack growth mechanisms such as grain boundary sliding did not contribute to crack growth, but the local visco-plastic behavior still plays a very significant role by determining the crack tip tensile stress field which controls the dwell crack growth behavior. To account for the influence of the visco-plastic behavior on the crack tip stress field, an empirical modification to the LEFM stress

  7. Exploring physical health perceptions, fatigue and stress among health care professionals.

    Science.gov (United States)

    Rice, Vanessa; Glass, Nel; Ogle, Kr; Parsian, Nasrin

    2014-01-01

    Nurses, midwives, and paramedics are exposed to high degrees of job demand, which impacts health status and job satisfaction. The aim of this study was to explore the experiences and perceptions of health with a group of nurses, midwives and paramedics in Australia. Specifically, this paper reveals the findings related to the dataset on physical health. In this regard, the researchers sought to explore the relationship between physical health and job satisfaction, and the relationship between health status and stress levels. The study adopted a mixed methodology and used two methods for data collection: one-on-one interviews exploring the relationship between physical health and job satisfaction, and a survey questionnaire focusing on self-rated stress management. The individual interviews were conducted for further exploration of the participants' responses to the survey. There were 24 health care participants who were drawn from metropolitan and regional Australia. The findings revealed participants: had a desire to increase their physical activity levels; had different perspectives of physical health from those recommended by government guidelines; and viewed physical health as important to job satisfaction, yet related to stress and fatigue.

  8. Residual Fatigue Properties of Asphalt Pavement after Long-Term Field Service

    Directory of Open Access Journals (Sweden)

    Peide Cui

    2018-05-01

    Full Text Available Asphalt pavement is widely used for expressways due to its advantages of flexibility, low cost, and easy maintenance. However, pavement failures, including cracking, raveling, and potholes, will appear after long-term service. This research evaluated the residual fatigue properties of asphalt pavement after long-term field service. Fatigue behavior of specimens with different pavement failure types, traffic load, service time, and layers were collected and characterized. Results indicate that after long-term field service, surface layer has a longer fatigue life under small stress levels, but shorter fatigue life under large stress levels. Longer service time results in greater sensitivity to loading stress, while heavier traffic results in shorter fatigue life. Surface and underneath layers present very close fatigue trend lines in some areas, indicating that the fatigue behavior of asphalt mixture in surface and underneath layers are aged to the same extent after eight to ten years of field service.

  9. Osteopathic manipulative treatment for self-reported fatigue, stress, and depression in first-year osteopathic medical students.

    Science.gov (United States)

    Wiegand, Sarah; Bianchi, William; Quinn, Thomas A; Best, Mark; Fotopoulos, Thomas

    2015-02-01

    During medical education, many students experience psychological distress, including symptoms such as fatigue, stress, and depression. To evaluate the effect of osteopathic manipulative treatment (OMT) on self-perceived fatigue, stress, and depression in first-year osteopathic medical students. This randomized controlled pilot study with repeated measures was conducted at the Lake Erie College of Osteopathic Medicine-Bradenton in Florida during the fall 2012 semester. First-year osteopathic medical students voluntarily enrolled in the study and were randomly assigned to directed OMT (D-OMT), nondirected OMT (ND-OMT), or control groups. The D-OMT and ND-OMT groups received treatment by osteopathic physicians weekly for 4 weeks. The control group received no treatment. All groups completed the Epworth Sleepiness Scale (ESS), the Self-Perceived Stress Scale (SPSS), and the Primary Care Evaluation of Mental Disorders Patient Health Questionnaire 9 (PHQ-9) depression scale before treatment (pretest), after 2 treatments (midtest), and after 4 treatments (posttest). All participants self-reported as white and single, with both sexes equally represented, and had an mean age of 24 years. Analysis of ESS scores revealed a statistically significant decrease in the D-OMT group from pretest and posttest scores and a statistically significant increase in the ND-OMT group from pretest to midtest but not from pretest to posttest scores. No statistically significant differences were noted in the control group scores on this measure. No statistically significant differences were seen in the SPSS or PHQ-9 scores from pretest to midtest or pretest to posttest in any of the 3 groups. The D-OMT regimen used in the current study produced a statistically significant decrease in self-perceived fatigue in first-year osteopathic medical students. Osteopathic manipulative treatment represents a potential modality to reduce self-perceived distress in medical students. Further research is

  10. A methodology to evaluate the fatigue life of flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Fernando J.M. de; Sousa, Jose Renato M. de; Siqueira, Marcos Q. de; Sagrilo, Luis V.S. [Coordenacao dos Programas de Pos-graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Lemos, Carlos Alberto D. de [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This paper focus on a methodology to perform the fatigue analysis of flexible pipes. This methodology employs functions that convert forces and moments obtained in global analyses into stresses. The stresses are then processed by well-known cycle counting methods, and S-N curves evaluate the damage at several points in the pipe cross-section. Palmgren-Miner linear damage hypothesis is assumed in order to calculate the accumulated fatigue damage. A parametric study on the fatigue life of a flexible pipe employing this methodology is presented. The main points addressed in the study are the influence of friction between layers in the results, the importance of evaluating the fatigue life in various points of the pipe cross-section and the effect of different mean stress levels. The obtained results suggest that the consideration of friction effects strongly influences the fatigue life of flexible risers and these effects have to be accounted both in the global and local analyses of the riser. Moreover, mean stress effects are also significant and at least 8 equally spaced wires in each analyzed section of the riser must be considered in fatigue analyses. (author)

  11. Fatigue Assessment of High Strength Steel Welded Joints Under Bending Loading

    International Nuclear Information System (INIS)

    Lee, Myeong-Woo; Kim, Yun-Jae; Park, Jun-Hyub

    2014-01-01

    In this study, a fatigue assessment method for vehicle suspension systems having welded geometries was established under a bending loading condition. For the fatigue life estimation of the actual product s welded joints made of different steels, bending fatigue tests were performed on welded specimens with a simplified shape for obtaining the moment-fatigue-life plot. Further, geometry modeling of the simplified welded specimens was conducted. Results of finite element analysis were used to obtain the stress-fatigue-life plot. The analysis results were also used to calculate the stress concentration factors for notch-factor-based fatigue life estimation. The test results were compared with results of the general notch-factor-based fatigue life estimation for improving fatigue assessment. As a result, it was concluded that both the welded fatigue tests and the notch-factor-based fatigue life estimation are necessary for accurate fatigue assessment

  12. Fatigue crack growth behaviour of 21/4Cr1Mo steel tube at elevated temperature

    International Nuclear Information System (INIS)

    Bulloch, J.H.; Buchanan, L.W.

    1987-01-01

    The fatigue crack growth characteristics of 21/4Cr1Mo steel tube have been examined at 588 0 C over the frequency range 0.02-20 Hz and dwell time range 10-960 min. All tests were conducted under load control in laboratory air at an R-ratio of 0.5. The elevated temperature fatigue crack growth characteristics were adequately described in terms of the stress intensity range ΔKAPPA. The continuous cyclic test data exhibited a significant effect of frequency that agreed well with predicted effects using a simple mathematical model of the high temperature fatigue process. With the dwell time range of 10-100 min there was a significant dwell time effect on the critical ΔKAPPA level for creep-fatigue interactive growth. At dwell times > 100 min the dwell time effect saturates. When creep-fatigue interactive growth occurs, growth rates reside above the maximum for continuum-controlled fatigue crack growth, and exhibit a da/dN varies as ΔKAPPA 10 dependence; failure is then intergranular in nature. (author)

  13. Numerical Analysis of Rolling Contact Fatigue Crack Initiation and Fatigue Life Prediction of the Railway Crossing

    NARCIS (Netherlands)

    Xin, L.; Markine, V.L.; Shevtsov, I.

    2015-01-01

    The procedure for analysing rolling contact fatigue crack initiation and fatigue life prediction of the railway turnout crossing is developed. A three-dimensional finite element (FE) model is used to obtain stress and strain results, considering the dynamic effects of wheel-crossing rolling contact.

  14. Activation of the NLRP3 inflammasome in lipopolysaccharide-induced mouse fatigue and its relevance to chronic fatigue syndrome.

    Science.gov (United States)

    Zhang, Zi-Teng; Du, Xiu-Ming; Ma, Xiu-Juan; Zong, Ying; Chen, Ji-Kuai; Yu, Chen-Lin; Liu, Yan-Gang; Chen, Yong-Chun; Zhao, Li-Jun; Lu, Guo-Cai

    2016-04-05

    The NLRP3 inflammasome (NOD-like receptor family, pyrin domain containing 3) is an intracellular protein complex that plays an important role in innate immune sensing. Its activation leads to the maturation of caspase-1 and regulates the cleavage of interleukin (IL)-1β and IL-18. Various studies have shown that activation of the immune system plays a pivotal role in the development of fatigue. However, the mechanisms underlying the association between immune activation and fatigue remained elusive, and few reports have described the involvement of NLRP3 inflammasome activation in fatigue. We established a mouse fatigue model with lipopolysaccharide (LPS, 3 mg/kg) challenge combined with swim stress. Both behavioural and biochemical parameters were measured to illustrate the characteristics of this model. We also assessed NLRP3 inflammasome activation in the mouse diencephalon, which is the brain region that has been suggested to be responsible for fatigue sensation. To further identify the role of NLRP3 inflammasome activation in the pathogenesis of chronic fatigue syndrome (CFS), NLRP3 KO mice were also subjected to LPS treatment and swim stress, and the same parameters were evaluated. Mice challenged with LPS and subjected to the swim stress test showed decreased locomotor activity, decreased fall-off time in a rota-rod test and increased serum levels of IL-1β and IL-6 compared with untreated mice. Serum levels of lactic acid and malondialdehyde (MDA) were not significantly altered in the treated mice. We demonstrated increased NLRP3 expression, IL-1β production and caspase-1 activation in the diencephalons of the treated mice. In NLRP3 KO mice, we found remarkably increased locomotor activity with longer fall-off times and decreased serum IL-1β levels compared with those of wild-type (WT) mice after LPS challenge and the swim stress test. IL-1β levels in the diencephalon were also significantly decreased in the NLRP3 KO mice. By contrast, IL-6 levels were

  15. On-line fatigue monitoring system for reactor pressure vessel

    International Nuclear Information System (INIS)

    Tokunaga, K.; Sakai, A.; Aoki, T.; Ranganath, S.; Stevens, G.L.

    1994-01-01

    A workstation-based, on-line fatigue monitoring system for tracking fatigue usage applied to an operating boiling water reactor (BWR), Tsuruga Unit-1, is described. The system uses the influence function approach and determines component stresses using temperature, pressure, and flow rate data that are made available via signal taps from previously existing plant sensors. Using plant unique influence functions developed specifically for the feedwater nozzle location, the system calculates stresses as a function of time and computed fatigue usage. The analysis method used to compute fatigue usage complies with MITI Code Notification No.501. Fatigue usage results for an entire fuel cycle are presented and compared to assumed design basis events to confirm that actual plant thermal duty is significantly less severe than originally estimated in the design basis stress report. As a result, the system provides the technical basis to more accurately evaluate actual reactor conditions as well as the justification for plant life extension. (author)

  16. Evidence of significant central fatigue in patients with cancer-related fatigue during repetitive elbow flexions till perceived exhaustion.

    Directory of Open Access Journals (Sweden)

    Bin Cai

    Full Text Available To investigate whether fatigue induced by an intermittent motor task in patients with cancer-related fatigue (CRF is more central or peripheral.Ten patients with CRF who were off chemo and radiation therapies and 14 age-matched healthy controls were enrolled. Participants completed a Brief Fatigue Inventory (BFI and performed a fatigue task consisting of intermittent elbow-flexion contractions at submaximal (40% maximal voluntary contraction intensity till self-perceived exhaustion. Twitch force was elicited by an electrical stimulation applied to the biceps brachii muscle. The relative degree of peripheral (muscle vs. central contribution to fatigue induced by the intermittent motor task (IMT was assessed using twitch force ratio (TF ratio defined as post IMT twitch force to pre IMT twitch force. The total number of trials (intermittent contractions and total duration of all trials performed by each subject were also quantified.BFI scores were higher (p < 0.001 in CRF than controls, indicating greater feeling of fatigue in CRF patients than controls. A significantly smaller number of trials and shorter total duration of the trials (p < 0.05 were observed in CRF than control participants. The TF ratio (0.81 ± 0.05 in CRF was higher (p < 0.05 compared with that of controls (0.62 ± 0.05, suggesting CRF patients experienced a significantly lower degree of muscle (peripheral fatigue at the time of perceived exhaustion.Consistent with prior findings for fatigue under submaximal sustained contraction, our results indicate that motor fatigue in CRF is more of central than peripheral origin during IMT. Significant central fatigue in CRF patients limits their ability to prolong motor performance.

  17. Fatigue processes in thermoplastic fibres; Les mecanismes de fatigue dans les fibres thermoplastiques

    Energy Technology Data Exchange (ETDEWEB)

    Herrera Ramirez, J.M.

    2004-09-15

    The present study examines and compares the behaviour of the two types of PA66 fibres and two types of PET fibres under fatigue loading up to failure, and the correlation between the fibres (nano)structures and their structural heterogeneities, with fatigue lifetimes. Several techniques have been used to analyze the materials, such as scanning electron microscopy (SEM), microanalysis (EDS), differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and micro-Raman spectroscopy. A meticulous analysis by scanning electron microscopy of the fracture morphology of fibres broken in tension and in fatigue, as well as a study of the fatigue life, were undertaken. The fatigue process occurs when the cyclic load amplitude is sufficiently large, however a condition for fatigue failure is that the minimum load each cycle must be lower than a threshold stress level. Failure under fatigue conditions leads to distinctive fracture morphologies which are very different from those seen after tensile or creep failure and this allows easy identification of the fatigue process. The fibres have been analyzed in the as received state and after fatigue failure in order to observe the microstructural changes resulting from the fatigue loading. The results will be compared with those obtained for fibres loaded under conditions where the fatigue process was hindered. The role of the microstructure of the fibres in determining fatigue will be discussed in this work and the possibility of improving their resistance to fatigue or eliminating the fatigue process will be discussed. (author)

  18. Cyclic stress-strain behaviour under thermomechanical fatigue conditions - Modeling by means of an enhanced multi-component model

    Energy Technology Data Exchange (ETDEWEB)

    Christ, H J [Institut fuer Werkstofftechnik, Universitaet Siegen, D-57068 Siegen (Germany); Bauer, V, E-mail: hans-juergen.christ@uni-siegen.d [Wieland Werke AG, Graf-Arco Str. 36, D-89072 Ulm (Germany)

    2010-07-01

    The cyclic stress-strain behaviour of metals and alloys in cyclic saturation can reasonably be described by means of simple multi-component models, such as the model based on a parallel arrangement of elastic-perfectly plastic elements, which was originally proposed by Masing already in 1923. This model concept was applied to thermomechanical fatigue loading of two metallic engineering materials which were found to be rather oppositional with respect to cyclic plastic deformation. One material is an austenitic stainless steel of type AISI304L which shows dynamic strain aging (DSA) and serves as an example for a rather ductile alloy. A dislocation arrangement was found after TMF testing deviating characteristically from the corresponding isothermal microstructures. The second material is a third-generation near-gamma TiAl alloy which is characterized by a very pronounced ductile-to-brittle transition (DBT) within the temperature range of TMF cycling. Isothermal fatigue testing at temperatures below the DBT temperature leads to cyclic hardening, while cyclic softening was found to occur above DBT. The combined effect under TMF leads to a continuously developing mean stress. The experimental observations regarding isothermal and non-isothermal stress-strain behaviour and the correlation to the underlying microstructural processes was used to further develop the TMF multi-composite model in order to accurately predict the TMF stress-strain response by taking the alloy-specific features into account.

  19. Corrosion fatigue performance in simulated sea water of aluminium 6061-T651 welded using ER4043 filler wire

    CSIR Research Space (South Africa)

    Mutombo, K

    2010-10-01

    Full Text Available The fatigue life of Al6061-T651 for various applied stress amplitudes in the unwelded and welded conditions was significantly lower in 3.5% NaCl simulated sea water solution, compared to that in air. The damage ratio increased with a decrease...

  20. Small Crack Growth and Fatigue Life Predictions for High-Strength Aluminium Alloys. Part 1; Experimental and Fracture Mechanics Analysis

    Science.gov (United States)

    Wu, X. R.; Newman, J. C.; Zhao, W.; Swain, M. H.; Ding, C. F.; Phillips, E. P.

    1998-01-01

    The small crack effect was investigated in two high-strength aluminium alloys: 7075-T6 bare and LC9cs clad alloy. Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks. In the experimental program, fatigue tests, small crack and large crack tests A,ere conducted under constant amplitude and Mini-TWIST spectrum loading conditions. A pronounced small crack effect was observed in both materials, especially for the negative stress ratios. For all loading conditions, most of the fatigue life of the SENT specimens was shown to be crack propagation from initial material defects or from the cladding layer. In the analysis program, three-dimensional finite element and A weight function methods were used to determine stress intensity factors and to develop SIF equations for surface and corner cracks at the notch in the SENT specimens. A plastisity-induced crack-closure model was used to correlate small and large crack data, and to make fatigue life predictions, Predicted crack-growth rates and fatigue lives agreed well with experiments. A total fatigue life prediction method for the aluminum alloys was developed and demonstrated using the crack-closure model.