WorldWideScience

Sample records for stress phase imaging

  1. Phase Transition Mapping by Means of Neutron Imaging in SOFC Anode Supports During Reduction Under Applied Stress

    DEFF Research Database (Denmark)

    Makowska, Malgorzata; Strobl, M.; Lauridsen, E. M.

    2015-01-01

    Mechanical and electrochemical performance of layers composed of Ni-YSZ cermet in solid oxide fuel and electrolysis cells (SOC) depends on their microstructure and initial internal stresses. After sintering, the manufacturing conditions, i.e. temperature, atmosphere and loads, can influence...... the microstructure and in particular the internal stresses in the Ni-YSZ layer and thereby the cell performance. Spatially resolved observation of the phase transition during reduction can provide information on how parameters like temperature and external load influence the reaction progress. This information...... is crucial for optimization of the SOC performance. In this work the measurements with energy resolved neutron imaging of the phase transition during the NiOYSZ reduction performed at different temperatures with and without applied load, are presented. The results indicate a link between reduction rate...

  2. Exploring the use of thermal infrared imaging in human stress research.

    Directory of Open Access Journals (Sweden)

    Veronika Engert

    Full Text Available High resolution thermal infrared imaging is a pioneering method giving indices of sympathetic activity via the contact-free recording of facial tissues (thermal imprints. Compared to established stress markers, the great advantage of this method is its non-invasiveness. The goal of our study was to pilot the use of thermal infrared imaging in the classical setting of human stress research. Thermal imprints were compared to established stress markers (heart rate, heart rate variability, finger temperature, alpha-amylase and cortisol in 15 participants undergoing anticipation, stress and recovery phases of two laboratory stress tests, the Cold Pressor Test and the Trier Social Stress Test. The majority of the thermal imprints proved to be change-sensitive in both tests. While correlations between the thermal imprints and established stress markers were mostly non-significant, the thermal imprints (but not the established stress makers did correlate with stress-induced mood changes. Multivariate pattern analysis revealed that in contrast to the established stress markers the thermal imprints could not disambiguate anticipation, stress and recovery phases of both tests. Overall, these results suggest that thermal infrared imaging is a valuable method for the estimation of sympathetic activity in the stress laboratory setting. The use of this non-invasive method may be particularly beneficial for covert recordings, in the study of special populations showing difficulties in complying with the standard instruments of data collection and in the domain of psychophysiological covariance research. Meanwhile, the established stress markers seem to be superior when it comes to the characterization of complex physiological states during the different phases of the stress cycle.

  3. Three-phase radionuclide bone imaging in sports medicine

    International Nuclear Information System (INIS)

    Rupani, H.D.; Holder, L.E.; Espinola, D.A.; Engin, S.I.

    1985-01-01

    Three-phase radionuclide bone (TPB) imaging was performed on 238 patients with sports-related injuries. A wide variety of lesions was encountered, but the most frequent lesions seen were stress fractures of the lower part of the leg at the junction of the middle and distal thirds of the posterior tibial cortex (42 of 79 lesions). There were no differences in the type, location, or distribution of lesions between males and females or between competitive and noncompetitive athletes. In 110 cases, bone stress lesions were often diagnosed when radiographs were normal, whereas subacute or chronic soft-tissue abnormalities had few specific scintigraphic features. TPB imaging provides significant early diagnostic information about bone stress lesions. Normal examination results (53 cases) exclude underlying osseous pathologic conditions

  4. Stress-Induced Crystallization of Ge-Doped Sb Phase-Change Thin Films

    NARCIS (Netherlands)

    Eising, Gert; Pauza, Andrew; Kooi, Bart J.

    The large effects of moderate stresses on the crystal growth rate in Ge-doped Sb phase-change thin films are demonstrated using direct optical imaging. For Ge6Sb94 and Ge7Sb93 phase-change films, a large increase in crystallization temperature is found when using a polycarbonate substrate instead of

  5. Phase Contrast Imaging

    International Nuclear Information System (INIS)

    Menk, Ralf Hendrik

    2008-01-01

    All standard (medical) x-ray imaging technologies, rely primarily on the amplitude properties of the incident radiation, and do not depend on its phase. This is unchanged since the discovery by Roentgen that the intensity of an x-ray beam, as measured by the exposure on a film, was related to the relative transmission properties of an object. However, recently various imaging techniques have emerged which depend on the phase of the x-rays as well as the amplitude. Phase becomes important when the beam is coherent and the imaging system is sensitive to interference phenomena. Significant new advances have been made in coherent optic theory and techniques, which now promise phase information in medical imaging. The development of perfect crystal optics and the increasing availability of synchrotron radiation facilities have contributed to a significant increase in the application of phase based imaging in materials and life sciences. Unique source characteristics such as high intensity, monochromaticity, coherence and high collimating provide an ideal source for advanced imaging. Phase contrast imaging has been applied in both projection and computed tomography modes, and recent applications have been made in the field of medical imaging. Due to the underlying principle of X-ray detection conventional image receptors register only intensities of wave fields and not their phases. During the last decade basically five different methods were developed that translate the phase information into intensity variations. These methods are based on measuring the phase shift φ directly (using interference phenomena), the gradient ∇ φ , or the Laplacian ∇ 2 φ. All three methods can be applied to polychromatic X-ray sources keeping in mind that the native source is synchrotron radiation, featuring monochromatic and reasonable coherent X-ray beams. Due to the vast difference in the coefficients that are driven absorption and phase effects (factor 1,000-10,000 in the energy

  6. Phase Contrast Imaging

    DEFF Research Database (Denmark)

    1996-01-01

    The invention relates to a method and a system for synthesizing a prescribed intensity pattern based on phase contrast imaging that is not based on the assumption of prior art methods that the pahase shift phi is less than 1 radian. An improved method based on a simple imaging operation...... phasors attain predetermined values for predetermined spatial frequencies, and the phasor value of the specific resolution element of the spatial phase mask corresponds to a distinct intensity level of the image of the resolution element in the intensity pattern, and a spatial phase filter for phase...... shifting of a part of the electromagntic radiation, in combination with an imaging system for generation of the intensity pattern by interference in the image plane of the imaging system between the part of the electromagnetic raidation that has been phase shifted by the phase filter and the remaining part...

  7. Stress-induced myocardial ischemia is associated with early post-stress left ventricular mechanical dyssynchrony as assessed by phase analysis of {sup 201}Tl gated SPECT myocardial perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chien-Cheng; Shen, Thau-Yun [Show Chwan Memorial Hospital, Department of Cardiology, Changhua (China); Chang, Ming-Che [Changhua Christian Hospital, Department of Nuclear Medicine, Changhua (China); Hung, Guang-Uei [Chang Bing Show Chwan Memorial Hospital, Department of Nuclear Medicine, Changhua (China); China Medical University, Department of Biomedical Imaging and Radiological Science, Taichung (China); Chen, Wan-Chen [Chang Bing Show Chwan Memorial Hospital, Department of Nuclear Medicine, Changhua (China); Kao, Chia-Hung [China Medical University, Department of Biomedical Imaging and Radiological Science, Taichung (China); Chen, Ji [Emory University School of Medicine, Department of Radiology and Imaging Sciences, Atlanta, GA (United States)

    2012-12-15

    In {sup 201}Tl SPECT myocardial perfusion imaging (MPI) data are acquired shortly after the stress injection to assess early post-stress left ventricle (LV) function. The purpose of this study was to use {sup 201}Tl SPECT MPI to investigate whether stress-induced myocardial ischemia is associated with LV mechanical dyssynchrony. Enrolled in the study were 75 patients who were referred for dipyridamole stress and rest {sup 201}Tl gated SPECT MPI. The early post-stress scan was started 5 min after injection, and followed by the rest scan 4 h later. The patients were divided into three groups: ischemia group (N = 25, summed stress score, SSS, {>=}5, summed rest score, SRS, <5), infarct group (N = 16, SSS {>=}5, SRS {>=}5) and normal group (N = 34, SSS <5, SRS <5). LV dyssynchrony parameters were calculated by phase analysis, and compared between the stress and rest images. In the ischemia group, LV dyssynchrony was significantly larger during stress than during rest. On the contrary, LV dyssynchrony during stress was significantly smaller than during rest in the normal and infarct groups. LV dyssynchrony during rest was significantly larger in the infarct group than in the normal and ischemia groups. There were no significant differences in LV dyssynchrony during rest between the normal and ischemia groups. Stress-induced myocardial ischemia caused dyssynchronous contraction in the ischemic region, leading to a deterioration in LV synchrony. Normal myocardium had more synchronous contraction during stress. The different dyssynchrony pattern between ischemic and normal myocardium early post-stress may aid the diagnosis of coronary artery disease using {sup 201}Tl gated SPECT MPI. (orig.)

  8. Value of lateral blood pool imaging in patients with suspected stress fractures of the tibia.

    Science.gov (United States)

    Mohan, Hosahalli K; Clarke, Susan E M; Centenara, Martin; Lucarelli, Amanda; Baron, Daniel; Fogelman, Ignac

    2011-03-01

    To critically evaluate the use of lateral blood pool imaging in athletes with lower limb pain and with a clinical suspicion of stress fracture. Two experienced nuclear medicine physicians evaluated 3-phase bone scans using 99mTc-methylene diphosphonate performed in 50 consecutive patients referred from a specialist sports injury clinic for suspected tibial stress fracture. The vascularity to the tibia as seen on the blood pool (second phase) images in the anterior/posterior views was compared with the lateral/medial view assessments. Stress fractures were presumed to be present when on the delayed images (third phase) there was a focal or fusiform area of increased tracer uptake involving the tibial cortex. Shin splints which are a recognized cause of lower limb pain in athletes mimicking stress fracture were diagnosed if increased tracer uptake was seen extending along the posterior tibial surface with no significant focal or fusiform area of uptake within this. Inter-reviewer agreement for the assessment of vascularity was also assessed using Cohen's Kappa scores. Twenty-four stress fractures in 24 patients and 66 shin splints in 40 patients were diagnosed. In 18 patients stress fracture and shin splints coexisted. In 10 patients no tibial pathology was identified. Of the 24 patients diagnosed with stress fractures, lateral/medial blood pool imaging was superior in the assessment of blood pool activity (P tibial stress fractures, lateral views of the tibia provide the optimal method for evaluation of vascularity. Prospective studies with quantitative or semi-quantitative assessment of skeletal vascularity could provide supplementary information relating to the pathophysiology of stress fractures, for example, the time scale of vascular changes after a tibial stress fracture, and potentially could have clinical relevance as to the assessment of the severity of stress fractures and their prognosis.

  9. Phase contrast image synthesis

    DEFF Research Database (Denmark)

    Glückstad, J.

    1996-01-01

    A new method is presented for synthesizing arbitrary intensity patterns based on phase contrast imaging. The concept is grounded on an extension of the Zernike phase contrast method into the domain of full range [0; 2 pi] phase modulation. By controlling the average value of the input phase funct...... function and by choosing appropriate phase retardation at the phase contrast filter, a pure phase to intensity imaging is accomplished. The method presented is also directly applicable in dark field image synthesis....

  10. Volumetric Arterial Wall Shear Stress Calculation Based on Cine Phase Contrast MRI

    NARCIS (Netherlands)

    Potters, Wouter V.; van Ooij, Pim; Marquering, Henk; VanBavel, Ed; Nederveen, Aart J.

    2015-01-01

    PurposeTo assess the accuracy and precision of a volumetric wall shear stress (WSS) calculation method applied to cine phase contrast magnetic resonance imaging (PC-MRI) data. Materials and MethodsVolumetric WSS vectors were calculated in software phantoms. WSS algorithm parameters were optimized

  11. Imaging of upper extremity stress fractures in the athlete.

    Science.gov (United States)

    Anderson, Mark W

    2006-07-01

    Although it is much less common than injuries in the lower extremities, an upper extremity stress injury can have a significant impact on an athlete. If an accurate and timely diagnosis is to be made, the clinician must have a high index of suspicion of a stress fracture in any athlete who is involved in a throwing, weightlifting, or upper extremity weight-bearing sport and presents with chronic pain in the upper extremity. Imaging should play an integral role in the work-up of these patients; if initial radiographs are unrevealing, further cross-sectional imaging should be strongly considered. Although a three-phase bone scan is highly sensitive in this regard, MRI has become the study of choice at most centers.

  12. Differential Effects of Acute Stress on Anticipatory and Consummatory Phases of Reward Processing

    Science.gov (United States)

    Kumar, Poornima; Berghorst, Lisa H.; Nickerson, Lisa D.; Dutra, Sunny J.; Goer, Franziska; Greve, Douglas; Pizzagalli, Diego A.

    2014-01-01

    Anhedonia is one of the core symptoms of depression and has been linked to blunted responses to rewarding stimuli in striatal regions. Stress, a key vulnerability factor for depression, has been shown to induce anhedonic behavior, including reduced reward responsiveness in both animals and humans, but the brain processes associated with these effects remain largely unknown in humans. Emerging evidence suggests that stress has dissociable effects on distinct components of reward processing, as it has been found to potentiate motivation/‘wanting’ during the anticipatory phase but reduce reward responsiveness/‘liking’ during the consummatory phase. To examine the impact of stress on reward processing, we used a monetary incentive delay (MID) task and an acute stress manipulation (negative performance feedback) in conjunction with functional magnetic resonance imaging (fMRI). Fifteen healthy participants performed the MID task under no-stress and stress conditions. We hypothesized that stress would have dissociable effects on the anticipatory and consummatory phases in reward-related brain regions. Specifically, we expected reduced striatal responsiveness during reward consumption (mirroring patterns previously observed in clinical depression) and increased striatal activation during reward anticipation consistent with non-human findings. Supporting our hypotheses, significant Phase (Anticipation/Consumption) x Stress (Stress/No-stress) interactions emerged in the putamen, nucleus accumbens, caudate and amygdala. Post-hoc tests revealed that stress increased striatal and amygdalar activation during anticipation but decreased striatal activation during consumption. Importantly, stress-induced striatal blunting was similar to the profile observed in clinical depression under baseline (no-stress) conditions in prior studies. Given that stress is a pivotal vulnerability factor for depression, these results offer insight to better understand the etiology of this

  13. Using the phase-space imager to analyze partially coherent imaging systems: bright-field, phase contrast, differential interference contrast, differential phase contrast, and spiral phase contrast

    Science.gov (United States)

    Mehta, Shalin B.; Sheppard, Colin J. R.

    2010-05-01

    Various methods that use large illumination aperture (i.e. partially coherent illumination) have been developed for making transparent (i.e. phase) specimens visible. These methods were developed to provide qualitative contrast rather than quantitative measurement-coherent illumination has been relied upon for quantitative phase analysis. Partially coherent illumination has some important advantages over coherent illumination and can be used for measurement of the specimen's phase distribution. However, quantitative analysis and image computation in partially coherent systems have not been explored fully due to the lack of a general, physically insightful and computationally efficient model of image formation. We have developed a phase-space model that satisfies these requirements. In this paper, we employ this model (called the phase-space imager) to elucidate five different partially coherent systems mentioned in the title. We compute images of an optical fiber under these systems and verify some of them with experimental images. These results and simulated images of a general phase profile are used to compare the contrast and the resolution of the imaging systems. We show that, for quantitative phase imaging of a thin specimen with matched illumination, differential phase contrast offers linear transfer of specimen information to the image. We also show that the edge enhancement properties of spiral phase contrast are compromised significantly as the coherence of illumination is reduced. The results demonstrate that the phase-space imager model provides a useful framework for analysis, calibration, and design of partially coherent imaging methods.

  14. Phase-space evolution of x-ray coherence in phase-sensitive imaging.

    Science.gov (United States)

    Wu, Xizeng; Liu, Hong

    2008-08-01

    X-ray coherence evolution in the imaging process plays a key role for x-ray phase-sensitive imaging. In this work we present a phase-space formulation for the phase-sensitive imaging. The theory is reformulated in terms of the cross-spectral density and associated Wigner distribution. The phase-space formulation enables an explicit and quantitative account of partial coherence effects on phase-sensitive imaging. The presented formulas for x-ray spectral density at the detector can be used for performing accurate phase retrieval and optimizing the phase-contrast visibility. The concept of phase-space shearing length derived from this phase-space formulation clarifies the spatial coherence requirement for phase-sensitive imaging with incoherent sources. The theory has been applied to x-ray Talbot interferometric imaging as well. The peak coherence condition derived reveals new insights into three-grating-based Talbot-interferometric imaging and gratings-based x-ray dark-field imaging.

  15. The Effect of Heart Rate on Exposure Window and Best Phase for Stress Perfusion Computed Tomography: Lessons From the CORE320 Study.

    Science.gov (United States)

    Steveson, Chloe; Schuijf, Joanne D; Vavere, Andrea L; Mather, Richard T; Caton, Teresa; Mehra, Vishal; Betoko, Aisha; Cox, Christopher; Lima, Joao Ac; George, Richard T

    The aim of this study is to evaluate the effect of heart rate on exposure window, best phase, and image quality for stress computed tomography perfusion (CTP) in the CORE320 study. The CTP data sets were analyzed to determine the best phase for perfusion analysis. A predefined exposure window covering 75% to 95% of the R-R cycle was used. Of the 368 patients included in the analysis, 93% received oral β blockade before the rest scan. The median heart rate during the stress acquisition was 69 bpm (interquartile range [IQR], 60-77). The median best phase was 81% (IQR, 76-90), and length of exposure window was 22% (IQR, 19-24). The best phase was significantly later in the cardiac cycle with higher heart rates (P stress scan was 5.3 mSv (IQR, 3.8-6.1). Stress myocardial CTP imaging can be performed using prospective electrocardiography triggering, an exposure window of 75% to 95%, and β-blockade resulting in good or excellent image quality in the majority (80%) of patients while maintaining a low effective radiation dose.

  16. Dual focal-spot imaging for phase extraction in phase-contrast radiography

    International Nuclear Information System (INIS)

    Donnelly, Edwin F.; Price, Ronald R.; Pickens, David R.

    2003-01-01

    The purpose of this study was to evaluate dual focal spot imaging as a method for extracting the phase component from a phase-contrast radiography image. All measurements were performed using a microfocus tungsten-target x-ray tube with an adjustable focal-spot size (0.01 mm to 0.045 mm). For each object, high-resolution digital radiographs were obtained with two different focal spot sizes to produce matched image pairs in which all other geometric variables as well as total exposure and tube kVp were held constant. For each image pair, a phase extraction was performed using pixel-wise division. The phase-extracted image resulted in an image similar to the standard image processing tool commonly referred to as 'unsharp masking' but with the additional edge-enhancement produced by phase-contrast effects. The phase-extracted image illustrates the differences between the two images whose imaging parameters differ only in focal spot size. The resulting image shows effects from both phase contrast as well as geometric unsharpness. In weakly attenuating materials the phase-contrast effect predominates, while in strongly attenuating materials the phase effects are so small that they are not detectable. The phase-extracted image in the strongly attenuating object reflects differences in geometric unsharpness. The degree of phase extraction depends strongly on the size of the smallest focal spot used. This technique of dual-focal spot phase-contrast radiography provides a simple technique for phase-component (edge) extraction in phase-contrast radiography. In strongly attenuating materials the phase-component is overwhelmed by differences in geometric unsharpness. In these cases the technique provides a form of unsharp masking which also accentuates the edges. Thus, the two effects are complimentary and may be useful in the detection of small objects

  17. On Inclusion-Matrix Interfacial Stresses in Composites Containing Phase-Transforming Phases

    International Nuclear Information System (INIS)

    Wang, Y.-C.; Ko, C.-C.

    2010-01-01

    Recent development in composites containing phase-transforming particles, such as vanadium dioxide or barium titanate, reveals the overall stiffness and viscoelastic damping of the composites may be unbounded. Negative stiffness is induced from phase transformation predicted by the Landau phase transformation theory. Although this unbounded phenomenon is theoretically supported with the composite homogenization theory, detailed stress analyses of the composites are still lacking. In this work, we analyze the two-dimensional plane stress elasticity problem of a square plate containing a circular inclusion, under the assumption that the Young's modulus of the inclusion is negative. Assumption of negative stiffness is a priori in the present analysis. A static loading condition is adopted to estimate the effective modulus of the composites by the ratio of applied stress to averaged strain on the loading edges. It is found that the interfacial stresses between the circular inclusion and matrix increase dramatically when the negative stiffness is so tuned that overall stiffness is unbounded. Furthermore, it is found that stress distributions in the inclusion are not uniform, contrary to Eshelby's theorem, which states, for two-phase, infinite composites, the inclusion's stress distribution is uniform when the shape of the inclusion has higher symmetry than an ellipse. The rationale for this nonuniform stress distributions is due to nonlocal effects induced from negative stiffness.

  18. Image fusion in x-ray differential phase-contrast imaging

    Science.gov (United States)

    Haas, W.; Polyanskaya, M.; Bayer, F.; Gödel, K.; Hofmann, H.; Rieger, J.; Ritter, A.; Weber, T.; Wucherer, L.; Durst, J.; Michel, T.; Anton, G.; Hornegger, J.

    2012-02-01

    Phase-contrast imaging is a novel modality in the field of medical X-ray imaging. The pioneer method is the grating-based interferometry which has no special requirements to the X-ray source and object size. Furthermore, it provides three different types of information of an investigated object simultaneously - absorption, differential phase-contrast and dark-field images. Differential phase-contrast and dark-field images represent a completely new information which has not yet been investigated and studied in context of medical imaging. In order to introduce phase-contrast imaging as a new modality into medical environment the resulting information about the object has to be correctly interpreted. The three output images reflect different properties of the same object the main challenge is to combine and visualize these data in such a way that it diminish the information explosion and reduce the complexity of its interpretation. This paper presents an intuitive image fusion approach which allows to operate with grating-based phase-contrast images. It combines information of the three different images and provides a single image. The approach is implemented in a fusion framework which is aimed to support physicians in study and analysis. The framework provides the user with an intuitive graphical user interface allowing to control the fusion process. The example given in this work shows the functionality of the proposed method and the great potential of phase-contrast imaging in medical practice.

  19. Residual stress measurements of 2-phase sprayed coating layer

    International Nuclear Information System (INIS)

    Nishida, Masayuki; Hanabusa, Takao

    1997-01-01

    In a series of the already reported single phase metal and ceramic melt sprayed films, on two phase melt sprayed films, their stress and thermal stress changes due to their bending load are tried to test. In order to prepare two phase state, austenitic stainless steel wire is used by a laser melt spraying method. In this method, CO 2 laser is used for a thermal source, and proceeding direction of its laser is selected to cross melt spraying direction. As a result, the following facts can be elucidated. The stress values at α- and γ-phase in the stainless steel film are linearly responsive to the bending load, and the stress change in α-phase is smaller than that in γ-phase. In a heat and cool cycle, α-phase shows a trend of extension with increasing temperature but γ-phase shows a trend of compression inversely. And, stress behavior at α- and γ-phases in the stainless steel film does not agree with a mixing rule in common two-phase materials. (G.K.)

  20. WE-AB-202-05: Validation of Lung Stress Maps for CT-Ventilation Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cazoulat, G; Jolly, S; Matuszak, M; Balter, J; Brock, K [University of Michigan, Ann Arbor, MI (United States); Kipritidis, J; Keall, P [University of Sydney, Sydney NSW (Australia); Siva, S; Hofman, M [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne VIC (Australia)

    2016-06-15

    Purpose: To date, lung CT-ventilation imaging has been based on quantification of local breathing-induced changes in Hounsfield Units (HU) or volume. This work investigates the use of a stress map resulting from a biomechanical deformable image registration (DIR) algorithm as a metric of the ventilation function. Method: Eight lung cancer patients presenting different kinds of ventilation defects were retrospectively analyzed. Additionally, to the 4DCT acquired for radiotherapy planning, five of them had PET and three had SPECT imaging following inhalation of Ga-68 and Tc-99m, respectively. For each patient, the inhale phase of the 4DCT was registered to the exhale phase using Morfeus, a biomechanical DIR algorithm based on the determination of boundary conditions on the lung surfaces and vessel tree. To take into account the heterogeneity of the tissue stiffness in the stress map estimation, each tetrahedral element of the finite-element model was assigned a Young’s modulus ranging from 60kPa to 12MPa, as a function of the HU in the inhale CT. The node displacements and element stresses resulting from the numerical simulation were used to generate three CT-ventilation maps based on: (i) volume changes (Jacobian determinant), (ii) changes in HU, (iii) the maximum principal stress. The voxel-wise correlation between each CT-ventilation map and the PET or SPECT V image was computed in a lung mask. Results: For patients with PET, the mean (min-max) Spearman correlation coefficients r were: 0.33 (0.19–0.45), 0.36 (0.16–0.51) and 0.42 (0.21–0.59) considering the Jacobian, changes in HU and maximum principal stress, respectively. For patients with SPECT V, the mean r were: 0.12 (−0.12–0.43), 0.29 (0.22–0.45) and 0.33 (0.25–0.39). Conclusion: The maximum principal stress maps showed a stronger correlation with the ventilation images than the previously proposed Jacobian or change in HU maps. This metric thus appears promising for CT-ventilation imaging

  1. Stress Analysis of an Edge-Cracked Plate by using Photoelastic Fringe Phase Shifting Method

    International Nuclear Information System (INIS)

    Baek, Tae Hyun; Kim, Myung Soo; Cho, Sung Ho

    2000-01-01

    The method of photoelasticity allows one to obtain principal stress differences and principal stress directions in a photoelastic model. In the classical approach, the photoelastic parameters are measured manually point by point. The previous methods require much time and skill in the identification and measurement of photoelastic data. Fringe phase shifting method has been recently developed and widely used to measure and analyze fringe data in photo-mechanics. This paper presents the test results of photoelastic fringe phase shifting technique for the stress analysis of a circular disk under compression and an edge-cracked plate subjected to tensile load. The technique used here requires four phase stepped photoelastic images obtained from a circular polariscope by rotating the analyzer at 0 .deg. ,45 .deg. ,90 .deg. ,and 135 .deg. . Experimental results are compared with those or FEM. Good agreement between the results can be observed. However, some error may be included if the technique is used to general direction which is not parallel to isoclinic fringe

  2. Subtalar joint stress imaging with tomosynthesis.

    Science.gov (United States)

    Teramoto, Atsushi; Watanabe, Kota; Takashima, Hiroyuki; Yamashita, Toshihiko

    2014-06-01

    The purpose of this study was to perform stress imaging of hindfoot inversion and eversion using tomosynthesis and to assess the subtalar joint range of motion (ROM) of healthy subjects. The subjects were 15 healthy volunteers with a mean age of 29.1 years. Coronal tomosynthesis stress imaging of the subtalar joint was performed in a total of 30 left and right ankles. A Telos stress device was used for the stress load, and the load was 150 N for both inversion and eversion. Tomographic images in which the posterior talocalcaneal joint could be confirmed on the neutral position images were used in measurements. The angle of the intersection formed by a line through the lateral articular facet of the posterior talocalcaneal joint and a line through the surface of the trochlea of the talus was measured. The mean change in the angle of the calcaneus with respect to the talus was 10.3 ± 4.8° with inversion stress and 5.0 ± 3.8° with eversion stress from the neutral position. The result was a clearer depiction of the subtalar joint, and inversion and eversion ROM of the subtalar joint was shown to be about 15° in healthy subjects. Diagnostic, Level IV.

  3. Stress-Triggered Phase Separation Is an Adaptive, Evolutionarily Tuned Response

    Energy Technology Data Exchange (ETDEWEB)

    Riback, Joshua A.; Katanski, Christopher D.; Kear-Scott, Jamie L.; Pilipenko, Evgeny V.; Rojek, Alexandra E.; Sosnick, Tobin R.; Drummond, D. Allan

    2017-03-01

    In eukaryotic cells, diverse stresses trigger coalescence of RNA-binding proteins into stress granules. In vitro, stress-granule-associated proteins can demix to form liquids, hydrogels, and other assemblies lacking fixed stoichiometry. Observing these phenomena has generally required conditions far removed from physiological stresses. We show that poly(A)-binding protein (Pab1 in yeast), a defining marker of stress granules, phase separates and forms hydrogels in vitro upon exposure to physiological stress conditions. Other RNA-binding proteins depend upon low-complexity regions (LCRs) or RNA for phase separation, whereas Pab1’s LCR is not required for demixing, and RNA inhibits it. Based on unique evolutionary patterns, we create LCR mutations, which systematically tune its biophysical properties and Pab1 phase separation in vitro and in vivo. Mutations that impede phase separation reduce organism fitness during prolonged stress. Poly(A)-binding protein thus acts as a physiological stress sensor, exploiting phase separation to precisely mark stress onset, a broadly generalizable mechanism.

  4. Quantitative phase imaging and differential interference contrast imaging for biological TEM

    International Nuclear Information System (INIS)

    Allman, B.E.; McMahon, P.J.; Barone-Nugent, E.D.; Nugent, E.D.

    2002-01-01

    Full text: Phase microscopy is a central technique in science. An experienced microscopist uses this effect to visualise (edge) structure within transparent samples by slightly defocusing the microscope. Although widespread in optical microscopy, phase contrast transmission electron microscopy (TEM) has not been widely adopted. TEM for biological specimens has largely relied on staining techniques to yield sufficient contrast. We show here a simple method for quantitative TEM phase microscopy that quantifies this phase contrast effect. Starting with conventional, digital, bright field images of the sample, our algorithm provides quantitative phase information independent of the sample's bright field intensity image. We present TEM phase images of a range of stained and unstained, biological and material science specimens. This independent phase and intensity information is then used to emulate a range of phase visualisation images familiar to optical microscopy, e.g. differential interference contrast. The phase images contain features not visible with the other imaging modalities. Further, if the TEM samples have been prepared on a microtome to a uniform thickness, the phase information can be converted into refractive index structure of the specimen. Copyright (2002) Australian Society for Electron Microscopy Inc

  5. Application of phase contrast imaging to mammography

    International Nuclear Information System (INIS)

    Tohyama, Keiko; Yamada, Katsuhiko; Katafuchi, Tetsuro; Matsuo, Satoru; Morishita, Junji

    2005-01-01

    Phase contrast images were obtained experimentally by using a customized mammography unit with a nominal focal spot size of 100 μm and variable source-to-image distances of up to 1.5 m. The purpose of this study was to examine the applicability and potential usefulness of phase contrast imaging for mammography. A mammography phantom (ACR156 RMI phantom) was imaged, and its visibility was examined. The optical density of the phantom images was adjusted to approximately 1.3 for both the contact and phase contrast images. Forty-one observers (18 medical doctors and 23 radiological technologists) participated in visual evaluation of the images. Results showed that, in comparison with the images of contact mammography, the phantom images of phase contrast imaging demonstrated statistically significantly superior visibility for fibers, clustered micro-calcifications, and masses. Therefore, phase contrast imaging obtained by using the customized mammography unit would be useful for improving diagnostic accuracy in mammography. (author)

  6. Parallel imaging with phase scrambling.

    Science.gov (United States)

    Zaitsev, Maxim; Schultz, Gerrit; Hennig, Juergen; Gruetter, Rolf; Gallichan, Daniel

    2015-04-01

    Most existing methods for accelerated parallel imaging in MRI require additional data, which are used to derive information about the sensitivity profile of each radiofrequency (RF) channel. In this work, a method is presented to avoid the acquisition of separate coil calibration data for accelerated Cartesian trajectories. Quadratic phase is imparted to the image to spread the signals in k-space (aka phase scrambling). By rewriting the Fourier transform as a convolution operation, a window can be introduced to the convolved chirp function, allowing a low-resolution image to be reconstructed from phase-scrambled data without prominent aliasing. This image (for each RF channel) can be used to derive coil sensitivities to drive existing parallel imaging techniques. As a proof of concept, the quadratic phase was applied by introducing an offset to the x(2) - y(2) shim and the data were reconstructed using adapted versions of the image space-based sensitivity encoding and GeneRalized Autocalibrating Partially Parallel Acquisitions algorithms. The method is demonstrated in a phantom (1 × 2, 1 × 3, and 2 × 2 acceleration) and in vivo (2 × 2 acceleration) using a 3D gradient echo acquisition. Phase scrambling can be used to perform parallel imaging acceleration without acquisition of separate coil calibration data, demonstrated here for a 3D-Cartesian trajectory. Further research is required to prove the applicability to other 2D and 3D sampling schemes. © 2014 Wiley Periodicals, Inc.

  7. Investigating Adolescent Stress and Body Image

    Science.gov (United States)

    Murray, Kristen M.; Byrne, Don G.; Rieger, Elizabeth

    2011-01-01

    Adolescent stress is clearly implicated in the development of mental health problems. However, its role in dysfunctional body image, which rises markedly in adolescence, has not been investigated. The present study examined the link between stress and body image, as well as self-esteem and depressive symptoms, in 533 high school students in grades…

  8. Benchtop phase-contrast X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)], E-mail: o.gundogdu@surrey.ac.uk; Nirgianaki, E.; Che Ismail, E.; Jenneson, P.M.; Bradley, D.A. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2007-12-15

    Clinical radiography has traditionally been based on contrast obtained from absorption when X-rays pass through the body. The contrast obtained from traditional radiography can be rather poor, particularly when it comes to soft tissue. A wide range of media of interest in materials science, biology and medicine exhibit very weak absorption contrast, but they nevertheless produce significant phase shifts with X-rays. The use of phase information for imaging purposes is therefore an attractive prospect. Some of the X-ray phase-contrast imaging methods require highly monochromatic plane wave radiation and sophisticated X-ray optics. However, the propagation-based phase-contrast imaging method adapted in this paper is a relatively simple method to implement, essentially requiring only a microfocal X-ray tube and electronic detection. In this paper, we present imaging results obtained from two different benchtop X-ray sources employing the free space propagation method. X-ray phase-contrast imaging provides higher contrast in many samples, including biological tissues that have negligible absorption contrast.

  9. Optical image transformation and encryption by phase-retrieval-based double random-phase encoding and compressive ghost imaging

    Science.gov (United States)

    Yuan, Sheng; Yang, Yangrui; Liu, Xuemei; Zhou, Xin; Wei, Zhenzhuo

    2018-01-01

    An optical image transformation and encryption scheme is proposed based on double random-phase encoding (DRPE) and compressive ghost imaging (CGI) techniques. In this scheme, a secret image is first transformed into a binary image with the phase-retrieval-based DRPE technique, and then encoded by a series of random amplitude patterns according to the ghost imaging (GI) principle. Compressive sensing, corrosion and expansion operations are implemented to retrieve the secret image in the decryption process. This encryption scheme takes the advantage of complementary capabilities offered by the phase-retrieval-based DRPE and GI-based encryption techniques. That is the phase-retrieval-based DRPE is used to overcome the blurring defect of the decrypted image in the GI-based encryption, and the CGI not only reduces the data amount of the ciphertext, but also enhances the security of DRPE. Computer simulation results are presented to verify the performance of the proposed encryption scheme.

  10. Isotropic differential phase contrast microscopy for quantitative phase bio-imaging.

    Science.gov (United States)

    Chen, Hsi-Hsun; Lin, Yu-Zi; Luo, Yuan

    2018-05-16

    Quantitative phase imaging (QPI) has been investigated to retrieve optical phase information of an object and applied to biological microscopy and related medical studies. In recent examples, differential phase contrast (DPC) microscopy can recover phase image of thin sample under multi-axis intensity measurements in wide-field scheme. Unlike conventional DPC, based on theoretical approach under partially coherent condition, we propose a new method to achieve isotropic differential phase contrast (iDPC) with high accuracy and stability for phase recovery in simple and high-speed fashion. The iDPC is simply implemented with a partially coherent microscopy and a programmable thin-film transistor (TFT) shield to digitally modulate structured illumination patterns for QPI. In this article, simulation results show consistency of our theoretical approach for iDPC under partial coherence. In addition, we further demonstrate experiments of quantitative phase images of a standard micro-lens array, as well as label-free live human cell samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Phase retrieval for X-ray in-line phase contrast imaging

    International Nuclear Information System (INIS)

    Scattarella, F.; Bellotti, R.; Tangaro, S.; Gargano, G.; Giannini, C.

    2011-01-01

    A review article about phase retrieval problem in X-ray phase contrast imaging is presented. A simple theoretical framework of Fresnel diffraction imaging by X-rays is introduced. A review of the most important methods for phase retrieval in free-propagation-based X-ray imaging and a new method developed by our collaboration are shown. The proposed algorithm, Combined Mixed Approach (CMA) is based on a mixed transfer function and transport of intensity approach, and it requires at most an initial approximate estimate of the average phase shift introduced by the object as prior knowledge. The accuracy with which this initial estimate is known determines the convenience speed of algorithm. The new proposed algorithm is based on the retrieval of both the object phase and its complex conjugate. The results obtained by the algorithm on simulated data have shown that the obtained reconstructed phase maps are characterized by particularly low normalized mean square errors. The algorithm was also tested on noisy experimental phase contrast data, showing a good efficiency in recovering phase information and enhancing the visibility of details inside soft tissues.

  12. Dobutamine Stress Echocardiography and Tissue Synchronization Imaging

    Science.gov (United States)

    Tas, Hakan; Gundogdu, Fuat; Gurlertop, Yekta; Karakelleoglu, Sule

    2008-01-01

    Dobutamine stress echocardiography has emerged as a reliable method for the diagnosis of coronary artery disease and the management of its treatment. Several studies have shown that that this technique works with 80–85% accuracy in comparison with other imaging methods. There are few studies aimed at developing the clinical utility of dobutamine stress echocardiography for the evaluation of normal and abnormal segments that result from dobutamine stress with Tissue Synchronization Imaging. PMID:25610034

  13. Future of X-ray phase imaging in medical imaging technology

    International Nuclear Information System (INIS)

    Momose, Atsushi

    2007-01-01

    Weakly absorbing materials, such as biological, soft tissues, can be imaged by generating contrast due to the phase shift of X-rays. In the past decade, several methods for X-ray phase imaging were proposed and demonstrated. The performance of X-ray phase imaging is attractive in the field of medical imaging technology, and its development for practical use is expected. Many methods, however, have been developed under the assumption of the use of synchrotron radiation, which is an obstacle to practical use. The method based on Talbot (-Lau) interferometry enables us to use a compact X-ray source, and its development is expected as a breakthrough for medical applications. (author)

  14. Interactions between the phase stress and the grain-orientation-dependent stress in duplex stainless steel during deformation

    International Nuclear Information System (INIS)

    Jia, N.; Peng, R. Lin; Wang, Y.D.; Chai, G.C.; Johansson, S.; Wang, G.; Liaw, P.K.

    2006-01-01

    The development of phase stress and grain-orientation-dependent stress under uniaxial compression was investigated in a duplex stainless steel consisting of austenite and ferrite. Using in situ neutron diffraction measurements, the strain response of several h k l planes to the applied compressive stress was mapped as a function of applied stress and sample direction. Analysis based on the experimental results and elastoplastic self-consistent simulations shows that phase stresses of thermal origin further increase during elastic loading but decrease with increased plastic deformation. Grain-orientation-dependent stresses become significant in both austenite and ferrite after loading into the plastic region. After unloading from the plastic regime, a considerable intergranular stress remains in the austenitic phase and dominates over the phase stress. This study provides fundamental experimental inputs for future micromechanical modeling aiming at the evaluation and prediction of the mechanical performance of multiphase materials

  15. Stress-Induced Cubic-to-Hexagonal Phase Transformation in Perovskite Nanothin Films.

    Science.gov (United States)

    Cao, Shi-Gu; Li, Yunsong; Wu, Hong-Hui; Wang, Jie; Huang, Baoling; Zhang, Tong-Yi

    2017-08-09

    The strong coupling between crystal structure and mechanical deformation can stabilize low-symmetry phases from high-symmetry phases or induce novel phase transformation in oxide thin films. Stress-induced structural phase transformation in oxide thin films has drawn more and more attention due to its significant influence on the functionalities of the materials. Here, we discovered experimentally a novel stress-induced cubic-to-hexagonal phase transformation in the perovskite nanothin films of barium titanate (BaTiO 3 ) with a special thermomechanical treatment (TMT), where BaTiO 3 nanothin films under various stresses are annealed at temperature of 575 °C. Both high-resolution transmission electron microscopy and Raman spectroscopy show a higher density of hexagonal phase in the perovskite thin film under higher tensile stress. Both X-ray photoelectron spectroscopy and electron energy loss spectroscopy does not detect any change in the valence state of Ti atoms, thereby excluding the mechanism of oxygen vacancy induced cubic-to-hexagonal (c-to-h) phase transformation. First-principles calculations show that the c-to-h phase transformation can be completed by lattice shear at elevated temperature, which is consistent with the experimental observation. The applied bending plus the residual tensile stress produces shear stress in the nanothin film. The thermal energy at the elevated temperature assists the shear stress to overcome the energy barriers during the c-to-h phase transformation. The stress-induced phase transformation in perovskite nanothin films with TMT provides materials scientists and engineers a novel approach to tailor nano/microstructures and properties of ferroelectric materials.

  16. X-ray phase-contrast imaging

    Science.gov (United States)

    Endrizzi, Marco

    2018-01-01

    X-ray imaging is a standard tool for the non-destructive inspection of the internal structure of samples. It finds application in a vast diversity of fields: medicine, biology, many engineering disciplines, palaeontology and earth sciences are just few examples. The fundamental principle underpinning the image formation have remained the same for over a century: the X-rays traversing the sample are subjected to different amount of absorption in different parts of the sample. By means of phase-sensitive techniques it is possible to generate contrast also in relation to the phase shifts imparted by the sample and to extend the capabilities of X-ray imaging to those details that lack enough absorption contrast to be visualised in conventional radiography. A general overview of X-ray phase contrast imaging techniques is presented in this review, along with more recent advances in this fast evolving field and some examples of applications.

  17. Quantitative phase imaging of arthropods

    Science.gov (United States)

    Sridharan, Shamira; Katz, Aron; Soto-Adames, Felipe; Popescu, Gabriel

    2015-11-01

    Classification of arthropods is performed by characterization of fine features such as setae and cuticles. An unstained whole arthropod specimen mounted on a slide can be preserved for many decades, but is difficult to study since current methods require sample manipulation or tedious image processing. Spatial light interference microscopy (SLIM) is a quantitative phase imaging (QPI) technique that is an add-on module to a commercial phase contrast microscope. We use SLIM to image a whole organism springtail Ceratophysella denticulata mounted on a slide. This is the first time, to our knowledge, that an entire organism has been imaged using QPI. We also demonstrate the ability of SLIM to image fine structures in addition to providing quantitative data that cannot be obtained by traditional bright field microscopy.

  18. An autonomous surface discontinuity detection and quantification method by digital image correlation and phase congruency

    Science.gov (United States)

    Cinar, A. F.; Barhli, S. M.; Hollis, D.; Flansbjer, M.; Tomlinson, R. A.; Marrow, T. J.; Mostafavi, M.

    2017-09-01

    Digital image correlation has been routinely used to measure full-field displacements in many areas of solid mechanics, including fracture mechanics. Accurate segmentation of the crack path is needed to study its interaction with the microstructure and stress fields, and studies of crack behaviour, such as the effect of closure or residual stress in fatigue, require data on its opening displacement. Such information can be obtained from any digital image correlation analysis of cracked components, but it collection by manual methods is quite onerous, particularly for massive amounts of data. We introduce the novel application of Phase Congruency to detect and quantify cracks and their opening. Unlike other crack detection techniques, Phase Congruency does not rely on adjustable threshold values that require user interaction, and so allows large datasets to be treated autonomously. The accuracy of the Phase Congruency based algorithm in detecting cracks is evaluated and compared with conventional methods such as Heaviside function fitting. As Phase Congruency is a displacement-based method, it does not suffer from the noise intensification to which gradient-based methods (e.g. strain thresholding) are susceptible. Its application is demonstrated to experimental data for cracks in quasi-brittle (Granitic rock) and ductile (Aluminium alloy) materials.

  19. Thallium-201 stress imaging in hypertensive patients

    International Nuclear Information System (INIS)

    Schulman, D.S.; Francis, C.K.; Black, H.R.; Wackers, F.J.

    1987-01-01

    To assess the potential effect of hypertension on the results of thallium-201 stress imaging in patients with chest pain, 272 thallium-201 stress tests performed in 133 hypertensive patients and 139 normotensive patients over a 1-year period were reviewed. Normotensive and hypertensive patients were similar in age, gender distribution, prevalence of cardiac risk factors (tobacco smoking, hyperlipidemia, and diabetes mellitus), medications, and clinical symptoms of coronary disease. Electrocardiographic criteria for left ventricular hypertrophy were present in 16 hypertensive patients. Stepwise probability analysis was used to determine the likelihood of coronary artery disease for each patient. In patients with mid to high likelihood of coronary disease (greater than 25% probability), abnormal thallium-201 stress images were present in 54 of 60 (90%) hypertensive patients compared with 51 of 64 (80%) normotensive patients. However, in 73 patients with a low likelihood of coronary disease (less than or equal to 25% probability), abnormal thallium-201 stress images were present in 21 patients (29%) of the hypertensive group compared with only 5 of 75 (7%) of the normotensive patients (p less than 0.001). These findings suggest that in patients with a mid to high likelihood of coronary artery disease, coexistent hypertension does not affect the results of thallium-201 exercise stress testing. However, in patients with a low likelihood of coronary artery disease, abnormal thallium-201 stress images are obtained more frequently in hypertensive patients than in normotensive patients

  20. Safety of adenosine in stress cerebral perfusion imaging

    International Nuclear Information System (INIS)

    Hu Pengcheng; Gu Yushen; Liu Wenguan; Xiu Yan; Zhu Weimin; Chen Shuguang; Shi Hongcheng

    2009-01-01

    Objective: To evaluate the safety of adenosine as pharmacological stress agents in stress cerebral perfusion imaging. Methods: Eighty patients under investigation for suspected cerebral vessel disease were recruited. Each had a resting scan and a stress scan on different days. The adenosine stress protocol was as same as the protocol used in adenosine stress myocardial perfusion imaging. Subjective and objective side-effects were investigated during pharmacological stress procedure. Results: All patients completed the 6 min infusion protocol without premature termination on safety criteria or due to intolerable symptoms. 46 patients had mild side effects. 20 patients (25%) had dizziness, 12 patients (15%) had palpitation, 1 patient (1%) was hypotensive, 7 patients (9%) had dyspnoea, 4 patients (5%) felt hot, 3 patients (4%) had sweat, 4 patients (5%) had nausea, 6 patients (8%) had flushing, 19 patients (24%) had chest pain, 6 patients (8%) had abdomen pain, 3 patients (4%) had abnormal taste and 1 patient (1%) were thirsty. Transient ST change occurred in only 1 patient. Conclusion: Adenosine stress cerebral perfusion imaging is a safe diagnostic method with mild side effects. (authors)

  1. Computational Phase Imaging for Biomedical Applications

    Science.gov (United States)

    Nguyen, Tan Huu

    When a sample is illuminated by an imaging field, its fingerprints are left on the amplitude and the phase of the emerging wave. Capturing the information of the wavefront grants us a deeper understanding of the optical properties of the sample, and of the light-matter interaction. While the amplitude information has been intensively studied, the use of the phase information has been less common. Because all detectors are sensitive to intensity, not phase, wavefront measurements are significantly more challenging. Deploying optical interferometry to measure phase through phase-intensity conversion, quantitative phase imaging (QPI) has recently gained tremendous success in material and life sciences. The first topic of this dissertation describes our effort to develop a new QPI setup, named transmission Spatial Light Interference Microscopy (tSLIM), that uses the twisted nematic liquid-crystal (TNLC) modulators. Compared to the established SLIM technique, tSLIM is much less expensive to build than its predecessor (SLIM) while maintaining significant performance. The tSLIM system uses parallel aligned liquid-crystal (PANLC) modulators, has a slightly smaller signal-to-noise Ratio (SNR), and a more complicated model for the image formation. However, such complexity is well addressed by computing. Most importantly, tSLIM uses TNLC modulators that are popular in display LCDs. Therefore, the total cost of the system is significantly reduced. Alongside developing new imaging modalities, we also improved current QPI imaging systems. In practice, an incident field to the sample is rarely perfectly spatially coherent, i.e., plane wave. It is generally partially coherent; i.e., it comprises of many incoherent plane waves coming from multiple directions. This illumination yields artifacts in the phase measurement results, e.g., halo and phase-underestimation. One solution is using a very bright source, e.g., a laser, which can be spatially filtered very well. However, the

  2. Bone stress: a radionuclide imaging perspective

    International Nuclear Information System (INIS)

    Roub, L.W.; Gumerman, L.W.; Hanley, E.N. Jr.; Clark, M.W.; Goodman, M.; Herbert, D.L.

    1979-01-01

    Thirty-five college athletes with lower leg pain underwent radiography and radionuclide studies to rule out a stress fracture. Their asymptomatic extremities and 13 pain-free athletes served as controls. Four main patterns were observed: (a) sharply marginated scintigraphic abnormalities and positive radiographs; (b) sharply marginated scintigraphic abnormalities and negatives radiographs; (c) ill-defined scintigraphic abnormalities and negative radiographs; and (d) negative radionuclide images and negative radiographs. Since the patients with the first two patterns were otherwise identical medically, the authors feel that this scintigraphic appearance is characterisic of bone stress in the appropriate clinical setting, regardless of the radiographic findings. A schema is proposed to explain the occurrence of positive radionuclide images and negative radiographs in the same patient, using a broad conceptual approach to the problem of bone stress

  3. An algebraic stress/flux model for two-phase turbulent flow

    International Nuclear Information System (INIS)

    Kumar, R.

    1995-12-01

    An algebraic stress model (ASM) for turbulent Reynolds stress and a flux model for turbulent heat flux are proposed for two-phase bubbly and slug flows. These mathematical models are derived from the two-phase transport equations for Reynolds stress and turbulent heat flux, and provide C μ , a turbulent constant which defines the level of eddy viscosity, as a function of the interfacial terms. These models also include the effect of heat transfer. When the interfacial drag terms and the interfacial momentum transfer terms are absent, the model reduces to a single-phase model used in the literature

  4. Robustness of phase retrieval methods in x-ray phase contrast imaging: A comparison

    International Nuclear Information System (INIS)

    Yan, Aimin; Wu, Xizeng; Liu, Hong

    2011-01-01

    Purpose: The robustness of the phase retrieval methods is of critical importance for limiting and reducing radiation doses involved in x-ray phase contrast imaging. This work is to compare the robustness of two phase retrieval methods by analyzing the phase maps retrieved from the experimental images of a phantom. Methods: Two phase retrieval methods were compared. One method is based on the transport of intensity equation (TIE) for phase contrast projections, and the TIE-based method is the most commonly used method for phase retrieval in the literature. The other is the recently developed attenuation-partition based (AP-based) phase retrieval method. The authors applied these two methods to experimental projection images of an air-bubble wrap phantom for retrieving the phase map of the bubble wrap. The retrieved phase maps obtained by using the two methods are compared. Results: In the wrap's phase map retrieved by using the TIE-based method, no bubble is recognizable, hence, this method failed completely for phase retrieval from these bubble wrap images. Even with the help of the Tikhonov regularization, the bubbles are still hardly visible and buried in the cluttered background in the retrieved phase map. The retrieved phase values with this method are grossly erroneous. In contrast, in the wrap's phase map retrieved by using the AP-based method, the bubbles are clearly recovered. The retrieved phase values with the AP-based method are reasonably close to the estimate based on the thickness-based measurement. The authors traced these stark performance differences of the two methods to their different techniques employed to deal with the singularity problem involved in the phase retrievals. Conclusions: This comparison shows that the conventional TIE-based phase retrieval method, regardless if Tikhonov regularization is used or not, is unstable against the noise in the wrap's projection images, while the AP-based phase retrieval method is shown in these

  5. Surface stress mediated image force and torque on an edge dislocation

    Science.gov (United States)

    Raghavendra, R. M.; Divya, Iyer, Ganesh; Kumar, Arun; Subramaniam, Anandh

    2018-07-01

    The proximity of interfaces gives prominence to image forces experienced by dislocations. The presence of surface stress alters the traction-free boundary conditions existing on free-surfaces and hence is expected to alter the magnitude of the image force. In the current work, using a combined simulation of surface stress and an edge dislocation in a semi-infinite body, we evaluate the configurational effects on the system. We demonstrate that if the extra half-plane of the edge dislocation is parallel to the surface, the image force (glide) is not altered due to surface stress; however, the dislocation experiences a torque. The surface stress breaks the 'climb image force' symmetry, thus leading to non-equivalence between positive and negative climb. We discover an equilibrium position for the edge dislocation in the positive 'climb geometry', arising due to a competition between the interaction of the dislocation stress fields with the surface stress and the image dislocation. Torque in the climb configuration is not affected by surface stress (remains zero). Surface stress is computed using a recently developed two-scale model based on Shuttleworth's idea and image forces using a finite element model developed earlier. The effect of surface stress on the image force and torque experienced by the dislocation monopole is analysed using illustrative 3D models.

  6. Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup

    Energy Technology Data Exchange (ETDEWEB)

    Diemoz, Paul C., E-mail: p.diemoz@ucl.ac.uk; Vittoria, Fabio A. [University College London, London WC1 E6BT (United Kingdom); Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom); Hagen, Charlotte K.; Endrizzi, Marco [University College London, London WC1 E6BT (United Kingdom); Coan, Paola [Ludwig-Maximilians-University, Munich 81377 (Germany); Ludwig-Maximilians-University, Garching 85748 (Germany); Brun, Emmanuel [Ludwig-Maximilians-University, Garching 85748 (Germany); European Synchrotron Radiation Facility, Grenoble 38043 (France); Wagner, Ulrich H.; Rau, Christoph [Diamond Light Source, Harwell Oxford Campus, Didcot OX11 0DE (United Kingdom); Robinson, Ian K. [Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom); London Centre for Nanotechnology, London WC1 H0AH (United Kingdom); Bravin, Alberto [European Synchrotron Radiation Facility, Grenoble 38043 (France); Olivo, Alessandro [University College London, London WC1 E6BT (United Kingdom); Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom)

    2015-06-25

    A method enabling the retrieval of thickness or projected electron density of a sample from a single input image is derived theoretically and successfully demonstrated on experimental data. A method is proposed which enables the retrieval of the thickness or of the projected electron density of a sample from a single input image acquired with an edge illumination phase-contrast imaging setup. The method assumes the case of a quasi-homogeneous sample, i.e. a sample with a constant ratio between the real and imaginary parts of its complex refractive index. Compared with current methods based on combining two edge illumination images acquired in different configurations of the setup, this new approach presents advantages in terms of simplicity of acquisition procedure and shorter data collection time, which are very important especially for applications such as computed tomography and dynamical imaging. Furthermore, the fact that phase information is directly extracted, instead of its derivative, can enable a simpler image interpretation and be beneficial for subsequent processing such as segmentation. The method is first theoretically derived and its conditions of applicability defined. Quantitative accuracy in the case of homogeneous objects as well as enhanced image quality for the imaging of complex biological samples are demonstrated through experiments at two synchrotron radiation facilities. The large range of applicability, the robustness against noise and the need for only one input image suggest a high potential for investigations in various research subjects.

  7. In situ time-of-flight neutron imaging of NiO-YSZ anode support reduction under influence of stress

    DEFF Research Database (Denmark)

    Makowska, Malgorzata Grazyna; Strobl, Markus; Lauridsen, Erik M.

    2016-01-01

    This article reports on in situ macroscopic scale imaging of NiO-YSZ (YSZ is yttria-stabilized zirconia) reduction under applied stress - a phase transition taking place in solid oxide electrochemical cells in a reducing atmosphere of a hydrogen/nitrogen mixture and at operation temperatures of u...... of applying energy-resolved neutron imaging with both approaches to the NiO-YSZ reduction investigation indicate enhancement of the reduction rate due to applied stress, which is consistent with the results of the authors’ previous research....

  8. Stress engineering for the design of morphotropic phase boundary in piezoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Tomoya, E-mail: ohno@mail.kitami-it.ac.jp [Department of Materials Science, Kitami Institute of Technology, 165 Kouen-cho, Kitami 090-8507 (Japan); Yanagida, Hiroshi; Maekawa, Kentaroh [Department of Materials Science, Kitami Institute of Technology, 165 Kouen-cho, Kitami 090-8507 (Japan); Arai, Takashi; Sakamoto, Naonori; Wakiya, Naoki; Suzuki, Hisao [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561 (Japan); Satoh, Shigeo [Graduate School of Science and Engineering, Ibaragi University, 4-12-1 Nakanarusawa-cho, Hitachi, Ibaragi 316-0033 (Japan); Matsuda, Takeshi [Department of Materials Science, Kitami Institute of Technology, 165 Kouen-cho, Kitami 090-8507 (Japan)

    2015-06-30

    Alkoxide-derived lead zirconate titanate thin films having Zr/Ti = 50/50 to 60/40 compositions with different residual stress conditions were deposited on a Si wafer to clarify the effects of the residual stress on the morphotropic phase boundary shift. The residual stress condition was controlled to − 0.1 to − 0.9 GPa by the design of the buffer layer structure on the Si wafer. Results show that the maximum effective piezoelectric constant d{sub 33} was obtained at 58/42 composition under − 0.9 GPa compressive residual stress condition. Moreover, the MPB composition shifted linearly to Zr-rich phase with increasing compressive residual stress. - Highlights: • The residual stress in lead zirconate titanate film on silicon was controlled. • The maximum residual stress in lead zirconate titanate film was − 0.9 GPa. • The morphotropic phase boundary shifted to zirconium rich phase by the strain.

  9. Multimodal quantitative phase and fluorescence imaging of cell apoptosis

    Science.gov (United States)

    Fu, Xinye; Zuo, Chao; Yan, Hao

    2017-06-01

    Fluorescence microscopy, utilizing fluorescence labeling, has the capability to observe intercellular changes which transmitted and reflected light microscopy techniques cannot resolve. However, the parts without fluorescence labeling are not imaged. Hence, the processes simultaneously happen in these parts cannot be revealed. Meanwhile, fluorescence imaging is 2D imaging where information in the depth is missing. Therefore the information in labeling parts is also not complete. On the other hand, quantitative phase imaging is capable to image cells in 3D in real time through phase calculation. However, its resolution is limited by the optical diffraction and cannot observe intercellular changes below 200 nanometers. In this work, fluorescence imaging and quantitative phase imaging are combined to build a multimodal imaging system. Such system has the capability to simultaneously observe the detailed intercellular phenomenon and 3D cell morphology. In this study the proposed multimodal imaging system is used to observe the cell behavior in the cell apoptosis. The aim is to highlight the limitations of fluorescence microscopy and to point out the advantages of multimodal quantitative phase and fluorescence imaging. The proposed multimodal quantitative phase imaging could be further applied in cell related biomedical research, such as tumor.

  10. Non-linear elastic thermal stress analysis with phase changes

    International Nuclear Information System (INIS)

    Amada, S.; Yang, W.H.

    1978-01-01

    The non-linear elastic, thermal stress analysis with temperature induced phase changes in the materials is presented. An infinite plate (or body) with a circular hole (or tunnel) is subjected to a thermal loading on its inner surface. The peak temperature around the hole reaches beyond the melting point of the material. The non-linear diffusion equation is solved numerically using the finite difference method. The material properties change rapidly at temperatures where the change of crystal structures and solid-liquid transition occur. The elastic stresses induced by the transient non-homogeneous temperature distribution are calculated. The stresses change remarkably when the phase changes occur and there are residual stresses remaining in the plate after one cycle of thermal loading. (Auth.)

  11. Meta-Analysis of Stress Myocardial Perfusion Imaging

    Science.gov (United States)

    2017-06-06

    Coronary Disease; Echocardiography; Fractional Flow Reserve, Myocardial; Hemodynamics; Humans; Magnetic Resonance Imaging; Myocardial Perfusion Imaging; Perfusion; Predictive Value of Tests; Single Photon Emission Computed Tomography; Positron Emission Tomography; Multidetector Computed Tomography; Echocardiography, Stress; Coronary Angiography

  12. Comparison of diagnostic value of coronary artery disease between ATP-stress and exercise-stress thallium myocardial SPECT images

    International Nuclear Information System (INIS)

    Suzuki, Shigeo

    1994-01-01

    A study was made between adenosine triphosphate disodium (ATP)-stress thallium myocardial scintigrams and exercise-stress scintigrams to compare their respective extents and degree of defects. The subjects of the study were 33 ischemic heart disease patients, who received ATP stress and treadmill exercise stress with a mean interval of 25 days. ATP was infused for 5 minutes with an infusion rate of 0.16 or 0.18 mg per kg of body weight per minute. Thallium was injected three minutes after infusion. The percent-defect index (percentage of the extent and degree of the defects for all 33 patients), was calculated with visual scoring using a five-zone myocardial division method and semi-quantitative four-grade representation method for both the ATP and exercise SPECT images. The extent of the defects in ATP- and exercise-stress images was 51.5% and 44.2%, and that in redistribution images was 36.4% and 33.9%, respectively. The degree of defects in ATP- and exercise-stress images was 35.8% and 32.3%, while that in redistribution images was 20.8% and 17.2%, respectively (p=NS in all cases). In conclusion, the image quality of thallium SPECT with ATP stress was equivalent that of exercise stress, indicating identical diagnostic values for coronary lesions. (author)

  13. Contact Stress Design Parameters for Titanium Bearings, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Air-Lock's Phase I effort tested the effects of ball induced contact stresses on Titanium bearing races. The contact stress design limit that would achieve a...

  14. Imaging of Phase Objects using Partially Coherent Illumination

    Energy Technology Data Exchange (ETDEWEB)

    Ravizza, F. L. [Univ. of Arizona, Tucson, AZ (United States)

    2013-01-01

    Screening high-power laser optics for light intensifying phase objects that cause laserinduced damage on downstream optics is critical to sustaining laser operation. Identifying such flaws on large-apertures is quite challenging since they are relatively small and invisible to conventional inspection methods. A Linescan Phase Differential Imaging (LPDI) system was developed to rapidly identify these flaws on large-aperture optics within a single full-aperture dark-field image. We describe a two-step production phase object screening process consisting of LPDI mapping and image analysis, followed by high-resolution interferometry and propagation based evaluation of the downstream damage potential of identified flaws. An image simulation code capable of modeling the LPDI partially coherent illumination was used to optimize its phase object sensitivity.

  15. Simultaneous X-ray imaging and diffraction study of shock propagation and phase transition in silicon

    Science.gov (United States)

    Galtier, Eric

    2017-06-01

    X-ray phase contrast imaging technique using a free electron laser have observed the propagation of laser-driven shock waves directly inside materials. While providing images with few hundred nanometers spatial resolution, access to more quantitative information like the material density and the various shock front speeds remain challenging due to imperfections in the images limiting the convergence in the reconstruction algorithm. Alternatively, pump-probe X-ray diffraction (XRD) is a robust technique to extract atomic crystalline structure of compressed matter, providing insight into the kinetics of phase transformation and material response to stress. However, XRD by itself is not sufficient to extract the equation of state of the material under study. Here we report on the use of the LCLS free electron laser as a source of a high-resolution X-ray microscopy enabling the direct imaging of shock waves and phase transitions in optically opaque silicon. In this configuration, no algorithm is necessary to extract the material density and the position of the shock fronts. Simultaneously, we probed the crystalline structure via XRD of the various phases in laser compressed silicon. E. Galtier, B. Nagler, H. J. Lee, S. Brown, E. Granados, A. Hashim, E. McBride, A. Mackinnon, I. Nam, J. Zimmerman (SLAC) A. Gleason (Stanford, LANL) A. Higginbotham (University of York) A. Schropp, F. Seiboth (DESY).

  16. Nanoscale multiphase phase field approach for stress- and temperature-induced martensitic phase transformations with interfacial stresses at finite strains

    Science.gov (United States)

    Basak, Anup; Levitas, Valery I.

    2018-04-01

    A thermodynamically consistent, novel multiphase phase field approach for stress- and temperature-induced martensitic phase transformations at finite strains and with interfacial stresses has been developed. The model considers a single order parameter to describe the austenite↔martensitic transformations, and another N order parameters describing N variants and constrained to a plane in an N-dimensional order parameter space. In the free energy model coexistence of three or more phases at a single material point (multiphase junction), and deviation of each variant-variant transformation path from a straight line have been penalized. Some shortcomings of the existing models are resolved. Three different kinematic models (KMs) for the transformation deformation gradient tensors are assumed: (i) In KM-I the transformation deformation gradient tensor is a linear function of the Bain tensors for the variants. (ii) In KM-II the natural logarithms of the transformation deformation gradient is taken as a linear combination of the natural logarithm of the Bain tensors multiplied with the interpolation functions. (iii) In KM-III it is derived using the twinning equation from the crystallographic theory. The instability criteria for all the phase transformations have been derived for all the kinematic models, and their comparative study is presented. A large strain finite element procedure has been developed and used for studying the evolution of some complex microstructures in nanoscale samples under various loading conditions. Also, the stresses within variant-variant boundaries, the sample size effect, effect of penalizing the triple junctions, and twinned microstructures have been studied. The present approach can be extended for studying grain growth, solidifications, para↔ferro electric transformations, and diffusive phase transformations.

  17. Corticotropin releasing hormone and imaging, rethinking the stress axis

    International Nuclear Information System (INIS)

    Contoreggi, Carlo

    2015-01-01

    The stress system provides integration of both neurochemical and somatic physiologic functions within organisms as an adaptive mechanism to changing environmental conditions throughout evolution. In mammals and primates the complexity and sophistication of these systems have surpassed other species in triaging neurochemical and physiologic signaling to maximize chances of survival. Corticotropin releasing hormone (CRH) and its related peptides and receptors have been identified over the last three decades and are fundamental molecular initiators of the stress response. They are crucial in the top down regulatory cascade over a myriad of neurochemical, neuroendocrine and sympathetic nervous system events. From neuroscience, we've seen that stress activation impacts behavior, endocrine and somatic physiology and influences neurochemical events that one can capture in real time with current imaging technologies. To delineate these effects one can demonstrate how the CRH neuronal networks infiltrate critical cognitive, emotive and autonomic regions of the central nervous system (CNS) with somatic effects. Abundant preclinical and clinical studies show inter-regulatory actions of CRH with multiple neurotransmitters/peptides. Stress, both acute and chronic has epigenetic effects which magnify genetic susceptibilities to alter neurochemistry; stress system activation can add critical variables in design and interpretation of basic and clinical neuroscience and related research. This review will attempt to provide an overview of the spectrum of known functions and speculative actions of CRH and stress responses in light of imaging technology and its interpretation. Metabolic and neuroreceptor positron emission/single photon tomography (PET/SPECT), functional magnetic resonance imaging (fMRI), anatomic MRI, diffusion tensor imaging (DTI), and proton magnetic resonance spectroscopy (pMRS) are technologies that can delineate basic mechanisms of neurophysiology and

  18. Phase-preserving beam expander for biomedical X-ray imaging

    International Nuclear Information System (INIS)

    Martinson, Mercedes; Samadi, Nazanin; Bassey, Bassey; Gomez, Ariel; Chapman, Dean

    2015-01-01

    Building on previous work, a phase-preserving bent Laue beam-expanding monochromator was developed with the capability of performing live animal phase contrast dynamic imaging at the Biomedical Imaging and Therapy beamline at the Canadian Light Source. The BioMedical Imaging and Therapy beamlines at the Canadian Light Source are used by many researchers to capture phase-based imaging data. These experiments have so far been limited by the small vertical beam size, requiring vertical scanning of biological samples in order to image their full vertical extent. Previous work has been carried out to develop a bent Laue beam-expanding monochromator for use at these beamlines. However, the first attempts exhibited significant distortion in the diffraction plane, increasing the beam divergence and eliminating the usefulness of the monochromator for phase-related imaging techniques. Recent work has been carried out to more carefully match the polychromatic and geometric focal lengths in a so-called ‘magic condition’ that preserves the divergence of the beam and enables full-field phase-based imaging techniques. The new experimental parameters, namely asymmetry and Bragg angles, were evaluated by analysing knife-edge and in-line phase images to determine the effect on beam divergence in both vertical and horizontal directions, using the flat Bragg double-crystal monochromator at the beamline as a baseline. The results show that by using the magic condition, the difference between the two monochromator types is less than 10% in the diffraction plane. Phase fringes visible in test images of a biological sample demonstrate that this difference is small enough to enable in-line phase imaging, despite operating at a sub-optimal energy for the wafer and asymmetry angle that was used

  19. Extracting flat-field images from scene-based image sequences using phase correlation

    Energy Technology Data Exchange (ETDEWEB)

    Caron, James N., E-mail: Caron@RSImd.com [Research Support Instruments, 4325-B Forbes Boulevard, Lanham, Maryland 20706 (United States); Montes, Marcos J. [Naval Research Laboratory, Code 7231, 4555 Overlook Avenue, SW, Washington, DC 20375 (United States); Obermark, Jerome L. [Naval Research Laboratory, Code 8231, 4555 Overlook Avenue, SW, Washington, DC 20375 (United States)

    2016-06-15

    Flat-field image processing is an essential step in producing high-quality and radiometrically calibrated images. Flat-fielding corrects for variations in the gain of focal plane array electronics and unequal illumination from the system optics. Typically, a flat-field image is captured by imaging a radiometrically uniform surface. The flat-field image is normalized and removed from the images. There are circumstances, such as with remote sensing, where a flat-field image cannot be acquired in this manner. For these cases, we developed a phase-correlation method that allows the extraction of an effective flat-field image from a sequence of scene-based displaced images. The method uses sub-pixel phase correlation image registration to align the sequence to estimate the static scene. The scene is removed from sequence producing a sequence of misaligned flat-field images. An average flat-field image is derived from the realigned flat-field sequence.

  20. Magnetic Imaging with a Novel Hole-Free Phase Plate

    DEFF Research Database (Denmark)

    Pollard, Shawn; Malac, Marek; Beleggia, Marco

    2014-01-01

    One of the main interests in phase plate imaging is motivated by a decrease in irradiation dose needed to obtain desired signal to noise ratio, a result of improved contrast transfer [1]. The decrease in irradiation improves the imaging of biological materials [2]. Here we demonstrate that phase...... most phase objects, including magnetic and electrostatic fields in vacuum. The requirement for phase plate imaging, including that by HFPP, is that the object spectrum in the back focal plane of the objective lens must not be broadened via the effect of chromatic aberration. In other words, the imaged...

  1. Quantitative Phase Imaging Using Hard X Rays

    International Nuclear Information System (INIS)

    Nugent, K.A.; Gureyev, T.E.; Cookson, D.J.; Paganin, D.; Barnea, Z.

    1996-01-01

    The quantitative imaging of a phase object using 16keV xrays is reported. The theoretical basis of the techniques is presented along with its implementation using a synchrotron x-ray source. We find that our phase image is in quantitative agreement with independent measurements of the object. copyright 1996 The American Physical Society

  2. Phase contrast image segmentation using a Laue analyser crystal

    International Nuclear Information System (INIS)

    Kitchen, Marcus J; Paganin, David M; Lewis, Robert A; Pavlov, Konstantin M; Uesugi, Kentaro; Allison, Beth J; Hooper, Stuart B

    2011-01-01

    Dual-energy x-ray imaging is a powerful tool enabling two-component samples to be separated into their constituent objects from two-dimensional images. Phase contrast x-ray imaging can render the boundaries between media of differing refractive indices visible, despite them having similar attenuation properties; this is important for imaging biological soft tissues. We have used a Laue analyser crystal and a monochromatic x-ray source to combine the benefits of both techniques. The Laue analyser creates two distinct phase contrast images that can be simultaneously acquired on a high-resolution detector. These images can be combined to separate the effects of x-ray phase, absorption and scattering and, using the known complex refractive indices of the sample, to quantitatively segment its component materials. We have successfully validated this phase contrast image segmentation (PCIS) using a two-component phantom, containing an iodinated contrast agent, and have also separated the lungs and ribcage in images of a mouse thorax. Simultaneous image acquisition has enabled us to perform functional segmentation of the mouse thorax throughout the respiratory cycle during mechanical ventilation.

  3. Phase-contrast X-ray imaging using an X-ray interferometer for biological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi; Koyama, Ichiro [Tokyo Univ., Dept. of Applied Physics, Tokyo (Japan); Takeda, Tohoru; Itai, Yuji [Tsukuba Univ., Inst. of Clinical Medicine, Tsukuba, Ibaraki (Japan); Yoneyama, Akio [Hitachi Ltd., Advanced Research Laboratory, Saitama (Japan)

    2002-04-01

    The potential of phase-contrast X-ray imaging using an X-ray interferometer is discussed comparing with other phase-contrast X-ray imaging methods, and its principle of contrast generation is presented including the case of phase-contrast X-ray computed tomography. The status of current instrumentation is described and perspectives for practical applications are discussed. (author)

  4. Ultrasonic phased array with surface acoustic wave for imaging cracks

    Directory of Open Access Journals (Sweden)

    Yoshikazu Ohara

    2017-06-01

    Full Text Available To accurately measure crack lengths, we developed a real-time surface imaging method (SAW PA combining an ultrasonic phased array (PA with a surface acoustic wave (SAW. SAW PA using a Rayleigh wave with a high sensitivity to surface defects was implemented for contact testing using a wedge with the third critical angle that allows the Rayleigh wave to be generated. Here, to realize high sensitivity imaging, SAW PA was optimized in terms of the wedge and the imaging area. The improved SAW PA was experimentally demonstrated using a fatigue crack specimen made of an aluminum alloy. For further verification in more realistic specimens, SAW PA was applied to stainless-steel specimens with a fatigue crack and stress corrosion cracks (SCCs. The fatigue crack was visualized with a high signal-to-noise ratio (SNR and its length was measured with a high accuracy of better than 1 mm. The SCCs generated in the heat-affected zones (HAZs of a weld were successfully visualized with a satisfactory SNR, although responses at coarse grains appeared throughout the imaging area. The SCC lengths were accurately measured. The imaging results also precisely showed complicated distributions of SCCs, which were in excellent agreement with the optically observed distributions.

  5. Troubleshooting arterial-phase MR images of gadoxetate disodium-enhanced liver

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Ji Mi; Kim, So Yeon; Lee, Seung Soo; Kim, Kyoung Won [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yeh, Benjamin M.; Wang, Z. Jane [Dept. of Radiologyand Biomedical Imaging, University of California San Francisco, San Francisco (United States); Wu, En Haw [Dept. of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou and Chang Gung University College of Medicine, Taoyuan (China); Zhao, Li Qin [Beijing Friendship Hospital, Capital Medical University, Beijing (China); Chang, Wei Chou [Tri-Service General Hospital and National Defense Medical Center, Taipei (China)

    2015-12-15

    Gadoxetate disodium is a widely used magnetic resonance (MR) contrast agent for liver MR imaging, and it provides both dynamic and hepatobiliary phase images. However, acquiring optimal arterial phase images at liver MR using gadoxetate disodium is more challenging than using conventional extracellular MR contrast agent because of the small volume administered, the gadolinium content of the agent, and the common occurrence of transient severe motion. In this article, we identify the challenges in obtaining high-quality arterial-phase images of gadoxetate disodium-enhanced liver MR imaging and present strategies for optimizing arterial-phase imaging based on the thorough review of recent research in this field.

  6. Troubleshooting arterial-phase MR images of gadoxetate disodium-enhanced liver

    International Nuclear Information System (INIS)

    Huh, Ji Mi; Kim, So Yeon; Lee, Seung Soo; Kim, Kyoung Won; Yeh, Benjamin M.; Wang, Z. Jane; Wu, En Haw; Zhao, Li Qin; Chang, Wei Chou

    2015-01-01

    Gadoxetate disodium is a widely used magnetic resonance (MR) contrast agent for liver MR imaging, and it provides both dynamic and hepatobiliary phase images. However, acquiring optimal arterial phase images at liver MR using gadoxetate disodium is more challenging than using conventional extracellular MR contrast agent because of the small volume administered, the gadolinium content of the agent, and the common occurrence of transient severe motion. In this article, we identify the challenges in obtaining high-quality arterial-phase images of gadoxetate disodium-enhanced liver MR imaging and present strategies for optimizing arterial-phase imaging based on the thorough review of recent research in this field

  7. Effect of smoking on acute phase reactants, stress hormone ...

    African Journals Online (AJOL)

    smoking, vitamin C status, and the acute phase and stress hormone responses in ... the longest symptom for the groups of non-smokers and smokers were 6.8 and ..... N, Nestorovic V (2013) Changes in vitamin C and oxi- dative stress status ...

  8. Image decomposition as a tool for validating stress analysis models

    Directory of Open Access Journals (Sweden)

    Mottershead J.

    2010-06-01

    Full Text Available It is good practice to validate analytical and numerical models used in stress analysis for engineering design by comparison with measurements obtained from real components either in-service or in the laboratory. In reality, this critical step is often neglected or reduced to placing a single strain gage at the predicted hot-spot of stress. Modern techniques of optical analysis allow full-field maps of displacement, strain and, or stress to be obtained from real components with relative ease and at modest cost. However, validations continued to be performed only at predicted and, or observed hot-spots and most of the wealth of data is ignored. It is proposed that image decomposition methods, commonly employed in techniques such as fingerprinting and iris recognition, can be employed to validate stress analysis models by comparing all of the key features in the data from the experiment and the model. Image decomposition techniques such as Zernike moments and Fourier transforms have been used to decompose full-field distributions for strain generated from optical techniques such as digital image correlation and thermoelastic stress analysis as well as from analytical and numerical models by treating the strain distributions as images. The result of the decomposition is 101 to 102 image descriptors instead of the 105 or 106 pixels in the original data. As a consequence, it is relatively easy to make a statistical comparison of the image descriptors from the experiment and from the analytical/numerical model and to provide a quantitative assessment of the stress analysis.

  9. Tomographic image reconstruction using x-ray phase information

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Hirano, Keiichi

    1996-04-01

    We have been developing phase-contrast x-ray computed tomography (CT) to make possible the observation of biological soft tissues without contrast enhancement. Phase-contrast x-ray CT requires for its input data the x-ray phase-shift distributions or phase-mapping images caused by an object. These were measured with newly developed fringe-scanning x-ray interferometry. Phase-mapping images at different projection directions were obtained by rotating the object in an x-ray interferometer, and were processed with a standard CT algorithm. A phase-contrast x-ray CT image of a nonstained cancerous tissue was obtained using 17.7 keV synchrotron x rays with 12 micrometer voxel size, although the size of the observation area was at most 5 mm. The cancerous lesions were readily distinguishable from normal tissues. Moreover, fine structures corresponding to cancerous degeneration and fibrous tissues were clearly depicted. It is estimated that the present system is sensitive down to a density deviation of 4 mg/cm3.

  10. Phase-contrast tomographic imaging using an X-ray interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Momose, A. [Hitachi Ltd, Advanced Research Lab., Saitama (Japan); Takeda, T.; Itai, Y. [Univ. of Tsukuba, Inst. of Clinical Medicine, Ibaraki (Japan); Yoneyama, A. [Hitachi Ltd, Central Resarch Lab., Tokyo (Japan); Hirano, K. [High Energy Accelerator Research Organization, Inst. of Materials Structure Science, Ibaraki (Japan)

    1998-05-01

    Apparatus for phase-contrast X-ray computed tomography using a monolithic X-ray interferometer is presented with some observational results for human breast tissues. Structures characteristic of the tissues were revealed in the phase-contrast tomograms. The procedure of image analysis consists of phase retrieval from X-ray interference patterns and tomographic image reconstruction from the retrieved phase shift. Next, feasibility of phase-contrast imaging using a two-crystal X-ray interferometer was studied aiming at in vivo observation in the future. In a preliminary study, the two-crystal X-ray interferometer was capable of generating fringes of 70% visibility using synchrotron X-rays. 35 refs.

  11. Phase-contrast tomographic imaging using an X-ray interferometer

    International Nuclear Information System (INIS)

    Momose, A.; Takeda, T.; Itai, Y.; Yoneyama, A.; Hirano, K.

    1998-01-01

    Apparatus for phase-contrast X-ray computed tomography using a monolithic X-ray interferometer is presented with some observational results for human breast tissues. Structures characteristic of the tissues were revealed in the phase-contrast tomograms. The procedure of image analysis consists of phase retrieval from X-ray interference patterns and tomographic image reconstruction from the retrieved phase shift. Next, feasibility of phase-contrast imaging using a two-crystal X-ray interferometer was studied aiming at in vivo observation in the future. In a preliminary study, the two-crystal X-ray interferometer was capable of generating fringes of 70% visibility using synchrotron X-rays

  12. Fourier domain image fusion for differential X-ray phase-contrast breast imaging

    International Nuclear Information System (INIS)

    Coello, Eduardo; Sperl, Jonathan I.; Bequé, Dirk; Benz, Tobias; Scherer, Kai; Herzen, Julia; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz; Cozzini, Cristina; Grandl, Susanne

    2017-01-01

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well.

  13. Fourier domain image fusion for differential X-ray phase-contrast breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Coello, Eduardo, E-mail: eduardo.coello@tum.de [GE Global Research, Garching (Germany); Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality, Institut für Informatik, Technische Universität München, Garching (Germany); Sperl, Jonathan I.; Bequé, Dirk [GE Global Research, Garching (Germany); Benz, Tobias [Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality, Institut für Informatik, Technische Universität München, Garching (Germany); Scherer, Kai; Herzen, Julia [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching (Germany); Sztrókay-Gaul, Anikó; Hellerhoff, Karin [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich (Germany); Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching (Germany); Cozzini, Cristina [GE Global Research, Garching (Germany); Grandl, Susanne [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich (Germany)

    2017-04-15

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well.

  14. A stress-induced phase transition model for semi-crystallize shape memory polymer

    Science.gov (United States)

    Guo, Xiaogang; Zhou, Bo; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2014-03-01

    The developments of constitutive models for shape memory polymer (SMP) have been motivated by its increasing applications. During cooling or heating process, the phase transition which is a continuous time-dependent process happens in semi-crystallize SMP and the various individual phases form at different temperature and in different configuration. Then, the transformation between these phases occurred and shape memory effect will emerge. In addition, stress applied on SMP is an important factor for crystal melting during phase transition. In this theory, an ideal phase transition model considering stress or pre-strain is the key to describe the behaviors of shape memory effect. So a normal distributed model was established in this research to characterize the volume fraction of each phase in SMP during phase transition. Generally, the experiment results are partly backward (in heating process) or forward (in cooling process) compared with the ideal situation considering delay effect during phase transition. So, a correction on the normal distributed model is needed. Furthermore, a nonlinear relationship between stress and phase transition temperature Tg is also taken into account for establishing an accurately normal distributed phase transition model. Finally, the constitutive model which taking the stress as an influence factor on phase transition was also established. Compared with the other expressions, this new-type model possesses less parameter and is more accurate. For the sake of verifying the rationality and accuracy of new phase transition and constitutive model, the comparisons between the simulated and experimental results were carried out.

  15. Multichannel far-infrared phase imaging for fusion plasmas

    International Nuclear Information System (INIS)

    Young, P.E.; Neikirk, D.P.; Tong, P.P.; Rutledge, D.B.; Luhmann, N.C. Jr.

    1985-01-01

    A 20-channel far-infrared imaging interferometer system has been used to obtain single-shot density profiles in the UCLA Microtor tokamak. This system differs from conventional multichannel interferometers in that the phase distribution produced by the plasma is imaged onto a single, monolithic, integrated microbolometer linear detector array and provides significantly more channels than previous far-infrared interferometers. The system has been demonstrated to provide diffraction-limited phase images of dielectric targets

  16. Full-field stress determination in photoelasticity with phase shifting technique

    Science.gov (United States)

    Guo, Enhai; Liu, Yonggang; Han, Yongsheng; Arola, Dwayne; Zhang, Dongsheng

    2018-04-01

    Photoelasticity is an effective method for evaluating the stress and its spatial variations within a stressed body. In the present study, a method to determine the stress distribution by means of phase shifting and a modified shear-difference is proposed. First, the orientation of the first principal stress and the retardation between the principal stresses are determined in the full-field through phase shifting. Then, through bicubic interpolation and derivation of a modified shear-difference method, the internal stress is calculated from the point with a free boundary along its normal direction. A method to reduce integration error in the shear difference scheme is proposed and compared to the existing methods; the integration error is reduced when using theoretical photoelastic parameters to calculate the stress component with the same points. Results show that when the value of Δx/Δy approaches one, the error is minimum, and although the interpolation error is inevitable, it has limited influence on the accuracy of the result. Finally, examples are presented for determining the stresses in a circular plate and ring subjected to diametric loading. Results show that the proposed approach provides a complete solution for determining the full-field stresses in photoelastic models.

  17. Martensite phase stress and the strengthening mechanism in TRIP steel by neutron diffraction.

    Science.gov (United States)

    Harjo, Stefanus; Tsuchida, Noriyuki; Abe, Jun; Gong, Wu

    2017-11-09

    Two TRIP-aided multiphase steels with different carbon contents (0.2 and 0.4 mass%) were analyzed in situ during tensile deformation by time-of-flight neutron diffraction to clarify the deformation induced martensitic transformation behavior and its role on the strengthening mechanism. The difference in the carbon content affected mainly the difference in the phase fractions before deformation, where the higher carbon content increased the phase fraction of retained austenite (γ). However, the changes in the relative fraction of martensitic transformation with respect to the applied strain were found to be similar in both steels since the carbon concentrations in γ were similar regardless of different carbon contents. The phase stress of martensite was found much larger than that of γ or bainitic ferrite since the martensite was generated at the beginning of plastic deformation. Stress contributions to the flow stress were evaluated by multiplying the phase stresses and their phase fractions. The stress contribution from martensite was observed increasing during plastic deformation while that from bainitic ferrite hardly changing and that from γ decreasing.

  18. Study of key technology of ghost imaging via compressive sensing for a phase object based on phase-shifting digital holography

    International Nuclear Information System (INIS)

    Leihong, Zhang; Dong, Liang; Bei, Li; Zilan, Pan; Dawei, Zhang; Xiuhua, Ma

    2015-01-01

    In this article, the algorithm of compressing sensing is used to improve the imaging resolution and realize ghost imaging via compressive sensing for a phase object based on the theoretical analysis of the lensless Fourier imaging of the algorithm of ghost imaging based on phase-shifting digital holography. The algorithm of ghost imaging via compressive sensing based on phase-shifting digital holography uses the bucket detector to measure the total light intensity of the interference and the four-step phase-shifting method is used to obtain the total light intensity of differential interference light. The experimental platform is built based on the software simulation, and the experimental results show that the algorithm of ghost imaging via compressive sensing based on phase-shifting digital holography can obtain the high-resolution phase distribution figure of the phase object. With the same sampling times, the phase clarity of the phase distribution figure obtained by the algorithm of ghost imaging via compressive sensing based on phase-shifting digital holography is higher than that obtained by the algorithm of ghost imaging based on phase-shift digital holography. In this article, this study further extends the application range of ghost imaging and obtains the phase distribution of the phase object. (letter)

  19. High-resolution axial MR imaging of tibial stress injuries

    Directory of Open Access Journals (Sweden)

    Mammoto Takeo

    2012-05-01

    Full Text Available Abstract Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries.

  20. High-resolution axial MR imaging of tibial stress injuries

    Science.gov (United States)

    2012-01-01

    Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries. PMID:22574840

  1. Quantification of signal detection performance degradation induced by phase-retrieval in propagation-based x-ray phase-contrast imaging

    Science.gov (United States)

    Chou, Cheng-Ying; Anastasio, Mark A.

    2016-04-01

    In propagation-based X-ray phase-contrast (PB XPC) imaging, the measured image contains a mixture of absorption- and phase-contrast. To obtain separate images of the projected absorption and phase (i.e., refractive) properties of a sample, phase retrieval methods can be employed. It has been suggested that phase-retrieval can always improve image quality in PB XPC imaging. However, when objective (task-based) measures of image quality are employed, this is not necessarily true and phase retrieval can be detrimental. In this work, signal detection theory is utilized to quantify the performance of a Hotelling observer (HO) for detecting a known signal in a known background. Two cases are considered. In the first case, the HO acts directly on the measured intensity data. In the second case, the HO acts on either the retrieved phase or absorption image. We demonstrate that the performance of the HO is superior when acting on the measured intensity data. The loss of task-specific information induced by phase-retrieval is quantified by computing the efficiency of the HO as the ratio of the test statistic signal-to-noise ratio (SNR) for the two cases. The effect of the system geometry on this efficiency is systematically investigated. Our findings confirm that phase-retrieval can impair signal detection performance in XPC imaging.

  2. Evaluation of anterior talofibular ligament injury with stress radiography, ultrasonography and MR imaging

    International Nuclear Information System (INIS)

    Oae, Kazunori; Uchio, Yuji; Takao, Masato; Ochi, Mitsuo

    2010-01-01

    The purpose of this study was to clarify the efficacy of stress radiography (stress X-P), ultrasonography (US), and magnetic resonance (MR) imaging in the detection of the anterior talofibular ligament (ATFL) injury. Thirty-four patients with ankle sprain were involved. In all patients, Stress X-P, US, MR imaging, and arthroscopy were performed. The arthroscopic results were considered to be the gold standard. The imaging results were compared with the arthroscopic results, and the accuracy calculated. Arthroscopic findings showed ATFL injury in 30 out of 34 cases. The diagnosis of ATFL injury with stress X-P, US, MR imaging were made with an accuracy of 67, 91 and 97%. US and MR imaging demonstrated the same location of the injury as arthroscopy in 63 and 93%. We have clarified the diagnostic value of stress X-P, US, and MR imaging in diagnosis of ATFL injury. We obtained satisfactory results with US and MR imaging. (orig.)

  3. Evaluation of anterior talofibular ligament injury with stress radiography, ultrasonography and MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Oae, Kazunori; Uchio, Yuji [Shimane University School of Medicine, Department of Orthopaedics, Shimane, Izumo (Japan); Takao, Masato [Teikyo University, Department of Orthopaedic Surgery, Tokyo, Itabashi-ku (Japan); Ochi, Mitsuo [Hiroshima University, Department of Orthopaedic Surgery, Hiroshima, Minami-ku (Japan)

    2010-01-15

    The purpose of this study was to clarify the efficacy of stress radiography (stress X-P), ultrasonography (US), and magnetic resonance (MR) imaging in the detection of the anterior talofibular ligament (ATFL) injury. Thirty-four patients with ankle sprain were involved. In all patients, Stress X-P, US, MR imaging, and arthroscopy were performed. The arthroscopic results were considered to be the gold standard. The imaging results were compared with the arthroscopic results, and the accuracy calculated. Arthroscopic findings showed ATFL injury in 30 out of 34 cases. The diagnosis of ATFL injury with stress X-P, US, MR imaging were made with an accuracy of 67, 91 and 97%. US and MR imaging demonstrated the same location of the injury as arthroscopy in 63 and 93%. We have clarified the diagnostic value of stress X-P, US, and MR imaging in diagnosis of ATFL injury. We obtained satisfactory results with US and MR imaging. (orig.)

  4. Structural phase transitions in boron carbide under stress

    International Nuclear Information System (INIS)

    Korotaev, P; Pokatashkin, P; Yanilkin, A

    2016-01-01

    Structural transitions in boron carbide B 4 C under stress were studied by means of first-principles molecular dynamics in the framework of density functional theory. The behavior depends strongly on degree of non-hydrostatic stress. Under hydrostatic stress continuous bending of the three-atom C–B–C chain was observed up to 70 GPa. The presence of non-hydrostatic stress activates abrupt reversible chain bending, which is displacement of the central boron atom in the chain with the formation of weak bonds between this atom and atoms in the nearby icosahedra. Such structural change can describe a possible reversible phase transition in dynamical loading experiments. High non-hydrostatic stress achieved in uniaxial loading leads to disordering of the initial structure. The formation of carbon chains is observed as one possible transition route. (paper)

  5. Neutron stress measurement using image plate and the cos α method

    International Nuclear Information System (INIS)

    Sasaki, Toshihiko; Hirose, Yukio; Minakawa, Nobuaki; Morii, Yukio

    2004-01-01

    A new type of the neutron stress measurement method, in which the stress is determined by the cos α method, was studied. A neutron image plate was used in this study for detecting the diffraction image. Steel specimens of 5 mm thickness were used for the tensile stress test. The stresses obtain from the experiment showed one-to-one ratio with respect to the applied stresses, though the misfit stress of about 400 MPa was also observed in the result. A simple correction technique for calibrating raw data was proposed to obtain the true stress. A simulation study was carried out to check the experimental result on the peak positions in the diffraction ring and the stress calculation by the cos α method. (author)

  6. Preliminary study on X-ray phase contrast imaging using synchrotron radiation facility

    International Nuclear Information System (INIS)

    Xiong Zhuang; Wang Jianhua; Yu Yongqiang; Jiang Shiping; Chen Yang; Tian Yulian

    2006-01-01

    Objective: To study the methodology of X-ray phase contrast imaging using synchrotron radiation, and evaluate the quality of phase contrast images. Methods: Several experiments to obtain phase contrast images and absorption contrast images of various biological samples were conducted in Beijing Synchrotron Radiation Facility (BSRF), and then these images were interpreted to find out the difference between the two kinds of imaging methods. Results: Satisfactory phase contrast images of these various samples were obtained, and the quality of these images was superior to that obtained with absorption contrast imaging. The phase contrast formation is based on the phenomenon of fresnel diffraction which transforms phase shifts into intensity variations upon a simple act of free-space propagation, so it requires highly coherent X-rays and appropriate distance between sample and detector. This method of imaging is very useful in imaging of low-absorption objects or objects with little absorption variation, and its resolution is far higher than that of the conventional X-ray imaging. The photographs obtained showed very fine inner microstructure of the biological samples, and the smallest microstructure to be distinguished is within 30-40 μm. There is no doubt that phase contrast imaging has a practical applicability in medicine. Moreover, it improves greatly the efficiency and the resolution of the existing X-ray diagnostic techniques. Conclusions: X-ray phase contrast imaging can be performed with synchrotron radiation source and has some advantages over the conventional absorption contrast imaging. (authors)

  7. Thermal residual stress evaluation based on phase-shift lateral shearing interferometry

    Science.gov (United States)

    Dai, Xiangjun; Yun, Hai; Shao, Xinxing; Wang, Yanxia; Zhang, Donghuan; Yang, Fujun; He, Xiaoyuan

    2018-06-01

    An interesting phase-shift lateral shearing interferometry system was proposed to evaluate the thermal residual stress distribution in transparent specimen. The phase-shift interferograms was generated by moving a parallel plane plate. Based on analyzing the fringes deflected by deformation and refractive index change, the stress distribution can be obtained. To verify the validity of the proposed method, a typical experiment was elaborately designed to determine thermal residual stresses of a transparent PMMA plate subjected to the flame of a lighter. The sum of in-plane stress distribution was demonstrated. The experimental data were compared with values measured by digital gradient sensing method. Comparison of the results reveals the effectiveness and feasibility of the proposed method.

  8. Analyser-based phase contrast image reconstruction using geometrical optics

    International Nuclear Information System (INIS)

    Kitchen, M J; Pavlov, K M; Siu, K K W; Menk, R H; Tromba, G; Lewis, R A

    2007-01-01

    Analyser-based phase contrast imaging can provide radiographs of exceptional contrast at high resolution (<100 μm), whilst quantitative phase and attenuation information can be extracted using just two images when the approximations of geometrical optics are satisfied. Analytical phase retrieval can be performed by fitting the analyser rocking curve with a symmetric Pearson type VII function. The Pearson VII function provided at least a 10% better fit to experimentally measured rocking curves than linear or Gaussian functions. A test phantom, a hollow nylon cylinder, was imaged at 20 keV using a Si(1 1 1) analyser at the ELETTRA synchrotron radiation facility. Our phase retrieval method yielded a more accurate object reconstruction than methods based on a linear fit to the rocking curve. Where reconstructions failed to map expected values, calculations of the Takagi number permitted distinction between the violation of the geometrical optics conditions and the failure of curve fitting procedures. The need for synchronized object/detector translation stages was removed by using a large, divergent beam and imaging the object in segments. Our image acquisition and reconstruction procedure enables quantitative phase retrieval for systems with a divergent source and accounts for imperfections in the analyser

  9. Space-Ready Advanced Imaging System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II effort Toyon will increase the state-of-the-art for video/image systems. This will include digital image compression algorithms as well as system...

  10. Study on Stress Development in the Phase Transition Layer of Thermal Barrier Coatings

    Directory of Open Access Journals (Sweden)

    Yijun Chai

    2016-09-01

    Full Text Available Stress development is one of the significant factors leading to the failure of thermal barrier coating (TBC systems. In this work, stress development in the two phase mixed zone named phase transition layer (PTL, which grows between the thermally grown oxide (TGO and the bond coat (BC, is investigated by using two different homogenization models. A constitutive equation of the PTL based on the Reuss model is proposed to study the stresses in the PTL. The stresses computed with the proposed constitutive equation are compared with those obtained with Voigt model-based equation in detail. The stresses based on the Voigt model are slightly higher than those based on the Reuss model. Finally, a further study is carried out to explore the influence of phase transition proportions on the stress difference caused by homogenization models. Results show that the stress difference becomes more evident with the increase of the PTL thickness ratio in the TGO.

  11. Imaging phase holdup distribution of three phase flow systems using dual source gamma ray tomography

    International Nuclear Information System (INIS)

    Varma, Rajneesh; Al-Dahhan, Muthanna; O'Sullivan, Joseph

    2008-01-01

    Full text: Multiphase reaction and process systems are used in abundance in the chemical and biochemical industry. Tomography has been successfully employed to visualize the hydrodynamics of multiphase systems. Most of the tomography methods (gamma ray, x-ray and electrical capacitance and resistance) have been successfully implemented for two phase dynamic systems. However, a significant number of chemical and biochemical systems consists of dynamic three phases. Research effort directed towards the development of tomography techniques to image such dynamic system has met with partial successes for specific systems with applicability to limited operating conditions. A dual source tomography scanner has been developed that uses the 661 keV and 1332 keV photo peaks from the 137 Cs and 60 Co for imaging three phase systems. A new approach has been developed and applied that uses the polyenergetic Alternating Minimization (A-M) algorithm, developed by O'Sullivan and Benac (2007), for imaging the holdup distribution in three phases' dynamic systems. The new approach avoids the traditional post image processing approach used to determine the holdup distribution where the attenuation images of the mixed flow obtained from gamma ray photons of two different energies are used to determine the holdup of three phases. In this approach the holdup images are directly reconstructed from the gamma ray transmission data. The dual source gamma ray tomography scanner and the algorithm were validated using a three phase phantom. Based in the validation, three phase holdup studies we carried out in slurry bubble column containing gas liquid and solid phases in a dynamic state using the dual energy gamma ray tomography. The key results of the holdup distribution studies in the slurry bubble column along with the validation of the dual source gamma ray tomography system would be presented and discussed

  12. Improving image quality of parallel phase-shifting digital holography

    International Nuclear Information System (INIS)

    Awatsuji, Yasuhiro; Tahara, Tatsuki; Kaneko, Atsushi; Koyama, Takamasa; Nishio, Kenzo; Ura, Shogo; Kubota, Toshihiro; Matoba, Osamu

    2008-01-01

    The authors propose parallel two-step phase-shifting digital holography to improve the image quality of parallel phase-shifting digital holography. The proposed technique can increase the effective number of pixels of hologram twice in comparison to the conventional parallel four-step technique. The increase of the number of pixels makes it possible to improve the image quality of the reconstructed image of the parallel phase-shifting digital holography. Numerical simulation and preliminary experiment of the proposed technique were conducted and the effectiveness of the technique was confirmed. The proposed technique is more practical than the conventional parallel phase-shifting digital holography, because the composition of the digital holographic system based on the proposed technique is simpler.

  13. Phase Image Analysis in Conduction Disturbance Patients

    Energy Technology Data Exchange (ETDEWEB)

    Kwark, Byeng Su; Choi, Si Wan; Kang, Seung Sik; Park, Ki Nam; Lee, Kang Wook; Jeon, Eun Seok; Park, Chong Hun [Chung Nam University Hospital, Daejeon (Korea, Republic of)

    1994-03-15

    It is known that the normal His-Purkinje system provides for nearly synchronous activation of right (RV) and left (LV) ventricles. When His-Purkinje conduction is abnormal, the resulting sequence of ventricular contraction must be correspondingly abnormal. These abnormal mechanical consequences were difficult to demonstrate because of the complexity and the rapidity of its events. To determine the relationship of the phase changes and the abnormalities of ventricular conduction, we performed phase image analysis of Tc-RBC gated blood pool scintigrams in patients with intraventricular conduction disturbances (24 complete left bundle branch block (C-LBBB), 15 complete right bundle branch block (C-RBBB), 13 Wolff-Parkinson-White syndrome (WPW), 10 controls). The results were as follows; 1) The ejection fraction (EF), peak ejection rate (PER), and peak filling rate (PFR) of LV in gated blood pool scintigraphy (GBPS) were significantly lower in patients with C-LBBB than in controls (44.4 +- 13.9% vs 69.9 +- 4.2%, 2.48 +- 0.98 vs 3.51 +- 0,62, 1.76 +- 0.71 vs 3.38 +- 0.92, respectively, p<0.05). 2) In the phase angle analysis of LV, Standard deviation (SD), width of half maximum of phase angle (FWHM), and range of phase angle were significantly increased in patients with C-LBBB than in controls (20.6 + 18.1 vs S.6 + I.8, 22. 5 + 9.2 vs 16.0 + 3.9, 95.7 + 31.7 vs 51.3 + 5.4, respectively, p<0.05). 3) There was no significant difference in EF, PER, PFR between patients with the WolffParkinson-White syndrome and controls. 4) Standard deviation and range of phase angle were significantly higher in patients with WPW syndrome than in controls (10.6 + 2.6 vs 8.6 + 1.8, p<0.05, 69.8 + 11.7 vs 51.3 + 5 4, p<0.001, respectively), however, there was no difference between the two groups in full width of half maximum. 5) Phase image analysis revealed relatively uniform phase across the both ventriles in patients with normal conduction, but markedly delayed phase in the left ventricle

  14. Modelling of stresses generated in steels by phase transformations

    International Nuclear Information System (INIS)

    Dudek, K.; Glowacki, M.; Pietrzyk, M.

    1999-01-01

    Numerical model describing stresses arising during phase transformations in steels products is presented. The full model consists of three components. The first component uses finite element solution of Fourier equation for an evaluation of the temperature field inside the sample. The second component predicts kinetics of phase transformation occurring during cooling of steel products. Coupling of these two components allows prediction of structure and properties of final products at room temperature. The third component uses elastic-plastic finite element model for prediction of stresses caused by non-uniform temperatures and by changes of volume during transformations. Typical results of simulations performed for cooling of rails after hot rolling are presented. (author)

  15. Retrofit implementation of Zernike phase plate imaging for cryo-TEM.

    Science.gov (United States)

    Marko, Michael; Leith, Ardean; Hsieh, Chyongere; Danev, Radostin

    2011-05-01

    In-focus phase-plate imaging is particularly beneficial for cryo-TEM because it offers a substantial overall increase in image contrast, without an electron dose penalty, and it simplifies image interpretation. We show how phase-plate cryo-TEM can be implemented with an appropriate existing TEM, and provide a basic practical introduction to use of thin-film (carbon) phase plates. We point out potential pitfalls of phase-plate operation, and discuss solutions. We provide information on evaluating a particular TEM for its suitability. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Brain imaging for oxidative stress and mitochondrial dysfunction in neurodegenerative diseases

    International Nuclear Information System (INIS)

    Okazawa, H.; Tsujikawa, T.; Kiyono, Y.; Ikawa, M.; Yoneda, M.

    2014-01-01

    Oxidative stress, one of the most probable molecular mechanisms for neuronal impairment, is reported to occur in the affected brain regions of various neurodegenerative diseases. Recently, many studies showed evidence of a link between oxidative stress or mitochondrial damage and neuronal degeneration. Basic in vitro experiments and postmortem studies demonstrated that biomarkers for oxidative damage can be observed in the pathogenic regions of the brain and the affected neurons. Model animal studies also showed oxidative damage associated with neuronal degeneration. The molecular imaging method with positron emission tomography (PET) is expected to delineate oxidatively stressed microenvironments to elucidate pathophysiological changes of the in vivo brain; however, only a few studies have successfully demonstrated enhanced stress in patients. Radioisotope copper labeled diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) may be the most promising candidate for this oxidative stress imaging. The tracer is usually known as a hypoxic tissue imaging PET probe, but the accumulation mechanism is based on the electron rich environment induced by mitochondrial impairment and/or microsomal over-reduction, and thus it is considered to represent the oxidative stress state correlated with the degree of disease severity. In this review, Cu-ATSM PET is introduced in detail from the basics to practical methods in clinical studies, as well as recent clinical studies on cerebrovascular diseases and neurodegenerative diseases. Several other PET probes are also introduced from the point of view of neuronal oxidative stress imaging. These molecular imaging methods should be promising tools to reveal oxidative injuries in various brain diseases

  17. Fatigue stress fractures of the sacrum: diagnosis with MR imaging

    International Nuclear Information System (INIS)

    Ahovuo, J.A.; Vusuri, T.

    2004-01-01

    The aim of this study was to describe the MRI findings and clinical observations in a fatigue stress fracture of the sacrum. In this retrospective study, 380 conscripts (53 women, 327 men; age range 18-29 years, mean age 20.7 years) who suffered from stress-related hip pain were studied with MRI of the pelvis. The findings of MRI were evaluated with regard to stress fracture of the sacrum. Thirty-one (8%) patients had MRI changes in signal intensity of the cranial part of the sacrum, extending to the first and second sacral foramina. The MRI changes in signal intensity were intermediate on T1-weighted images, and high on short tau inversion recovery or T2-weighted fat-suppressed images. A linear signal void fracture line was also seen. Multiple stress injuries to the pelvic bones were also seen in 7 of 31 (23%) patients. Five patients (16%) had bilateral sacral stress fracture. Fatigue sacral stress fractures appeared more commonly in women than in men (p<0.001). During recovery time 20 of the 31 patients underwent control MRI, and fatty marrow conversion was seen in 8 (40%) cases as high signal intensity on T1-weighted images, which disappeared 5-6 months after the onset of symptoms. Fatigue sacral stress fractures are associated with stress-related hip pain. These fractures were more common in women than in men. Other stress injuries of the pelvis may be seen simultaneously with sacral stress fractures. Signal intensity of the sacrum was normal after 5-6 months

  18. Photostress analysis of stress-induced martensite phase transformation in superelastic NiTi

    International Nuclear Information System (INIS)

    Katanchi, B.; Choupani, N.; Khalil-Allafi, J.; Baghani, M.

    2017-01-01

    Phase transformation in shape memory alloys is the most important factor in their unique behavior. In this paper, the formation of stress induced martensite phase transformation in a superelastic NiTi (50.8% Ni) shape memory alloy was investigated by using the photo-stress method. First, the material's fabrication procedure has been described and then the material was studied using the metallurgical tests such as differential scanning calorimetry and X-ray diffraction to characterize the material features and the mechanical tensile test to investigate the superelastic behavior. As a new method in observation of the phase transformation, photo-stress pictures showed the formation of stress induced martensite in a superelastic dog-bone specimen during loading and subsequently it's disappearing during unloading. Finally, finite element analysis was implemented using the constitutive equations derived based on the Boyd-Lagoudas phenomenological model.

  19. Photostress analysis of stress-induced martensite phase transformation in superelastic NiTi

    Energy Technology Data Exchange (ETDEWEB)

    Katanchi, B. [Mechanical Engineering Faculty, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Choupani, N., E-mail: choupani@sut.ac.ir [Mechanical Engineering Faculty, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Khalil-Allafi, J. [Research Center for Advance Materials, Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Baghani, M. [School of Mechanical Engineering, College of Engineering, University of Tehran (Iran, Islamic Republic of)

    2017-03-14

    Phase transformation in shape memory alloys is the most important factor in their unique behavior. In this paper, the formation of stress induced martensite phase transformation in a superelastic NiTi (50.8% Ni) shape memory alloy was investigated by using the photo-stress method. First, the material's fabrication procedure has been described and then the material was studied using the metallurgical tests such as differential scanning calorimetry and X-ray diffraction to characterize the material features and the mechanical tensile test to investigate the superelastic behavior. As a new method in observation of the phase transformation, photo-stress pictures showed the formation of stress induced martensite in a superelastic dog-bone specimen during loading and subsequently it's disappearing during unloading. Finally, finite element analysis was implemented using the constitutive equations derived based on the Boyd-Lagoudas phenomenological model.

  20. Simultaneous acquisition of dual analyser-based phase contrast X-ray images for small animal imaging

    International Nuclear Information System (INIS)

    Kitchen, Marcus J.; Pavlov, Konstantin M.; Hooper, Stuart B.; Vine, David J.; Siu, Karen K.W.; Wallace, Megan J.; Siew, Melissa L.L.; Yagi, Naoto; Uesugi, Kentaro; Lewis, Rob A.

    2008-01-01

    Analyser-based phase contrast X-ray imaging can provide high-contrast images of biological tissues with exquisite sensitivity to the boundaries between tissues. The phase and absorption information can be extracted by processing multiple images acquired at different analyser orientations. Recording both the transmitted and diffracted beams from a thin Laue analyser crystal can make phase retrieval possible for dynamic systems by allowing full field imaging. This technique was used to image the thorax of a mechanically ventilated newborn rabbit pup using a 25 keV beam from the SPring-8 synchrotron radiation facility. The diffracted image was produced from the (1 1 1) planes of a 50 mm x 40 mm, 100 μm thick Si analyser crystal in the Laue geometry. The beam and analyser were large enough to image the entire chest, making it possible to observe changes in anatomy with high contrast and spatial resolution

  1. Simultaneous acquisition of dual analyser-based phase contrast X-ray images for small animal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kitchen, Marcus J. [School of Physics, Monash University, Victoria 3800 (Australia)], E-mail: Marcus.Kitchen@sci.monash.edu.au; Pavlov, Konstantin M. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia); Physics and Electronics, School of Science and Technology, University of New England, NSW 2351 (Australia)], E-mail: Konstantin.Pavlov@sci.monash.edu.au; Hooper, Stuart B. [Department of Physiology, Monash University, Victoria 3800 (Australia)], E-mail: Stuart.Hooper@med.monash.edu.au; Vine, David J. [School of Physics, Monash University, Victoria 3800 (Australia)], E-mail: David.Vine@sci.monash.edu.au; Siu, Karen K.W. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia)], E-mail: Karen.Siu@sci.monash.edu.au; Wallace, Megan J. [Department of Physiology, Monash University, Victoria 3800 (Australia)], E-mail: Megan.Wallace@med.monash.edu.au; Siew, Melissa L.L. [Department of Physiology, Monash University, Victoria 3800 (Australia)], E-mail: Melissa.Siew@med.monash.edu.au; Yagi, Naoto [SPring-8/JASRI, Sayo (Japan)], E-mail: yagi@spring8.or.jp; Uesugi, Kentaro [SPring-8/JASRI, Sayo (Japan)], E-mail: ueken@spring8.or.jp; Lewis, Rob A. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia)], E-mail: Rob.Lewis@sync.monash.edu.au

    2008-12-15

    Analyser-based phase contrast X-ray imaging can provide high-contrast images of biological tissues with exquisite sensitivity to the boundaries between tissues. The phase and absorption information can be extracted by processing multiple images acquired at different analyser orientations. Recording both the transmitted and diffracted beams from a thin Laue analyser crystal can make phase retrieval possible for dynamic systems by allowing full field imaging. This technique was used to image the thorax of a mechanically ventilated newborn rabbit pup using a 25 keV beam from the SPring-8 synchrotron radiation facility. The diffracted image was produced from the (1 1 1) planes of a 50 mm x 40 mm, 100 {mu}m thick Si analyser crystal in the Laue geometry. The beam and analyser were large enough to image the entire chest, making it possible to observe changes in anatomy with high contrast and spatial resolution.

  2. High sensitivity phase retrieval method in grating-based x-ray phase contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhao; Gao, Kun; Chen, Jian; Wang, Dajiang; Wang, Shenghao; Chen, Heng; Bao, Yuan; Shao, Qigang; Wang, Zhili, E-mail: wangnsrl@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Zhang, Kai [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhu, Peiping; Wu, Ziyu, E-mail: wuzy@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China and Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-02-15

    Purpose: Grating-based x-ray phase contrast imaging is considered as one of the most promising techniques for future medical imaging. Many different methods have been developed to retrieve phase signal, among which the phase stepping (PS) method is widely used. However, further practical implementations are hindered, due to its complex scanning mode and high radiation dose. In contrast, the reverse projection (RP) method is a novel fast and low dose extraction approach. In this contribution, the authors present a quantitative analysis of the noise properties of the refraction signals retrieved by the two methods and compare their sensitivities. Methods: Using the error propagation formula, the authors analyze theoretically the signal-to-noise ratios (SNRs) of the refraction images retrieved by the two methods. Then, the sensitivities of the two extraction methods are compared under an identical exposure dose. Numerical experiments are performed to validate the theoretical results and provide some quantitative insight. Results: The SNRs of the two methods are both dependent on the system parameters, but in different ways. Comparison between their sensitivities reveals that for the refraction signal, the RP method possesses a higher sensitivity, especially in the case of high visibility and/or at the edge of the object. Conclusions: Compared with the PS method, the RP method has a superior sensitivity and provides refraction images with a higher SNR. Therefore, one can obtain highly sensitive refraction images in grating-based phase contrast imaging. This is very important for future preclinical and clinical implementations.

  3. High sensitivity phase retrieval method in grating-based x-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Wu, Zhao; Gao, Kun; Chen, Jian; Wang, Dajiang; Wang, Shenghao; Chen, Heng; Bao, Yuan; Shao, Qigang; Wang, Zhili; Zhang, Kai; Zhu, Peiping; Wu, Ziyu

    2015-01-01

    Purpose: Grating-based x-ray phase contrast imaging is considered as one of the most promising techniques for future medical imaging. Many different methods have been developed to retrieve phase signal, among which the phase stepping (PS) method is widely used. However, further practical implementations are hindered, due to its complex scanning mode and high radiation dose. In contrast, the reverse projection (RP) method is a novel fast and low dose extraction approach. In this contribution, the authors present a quantitative analysis of the noise properties of the refraction signals retrieved by the two methods and compare their sensitivities. Methods: Using the error propagation formula, the authors analyze theoretically the signal-to-noise ratios (SNRs) of the refraction images retrieved by the two methods. Then, the sensitivities of the two extraction methods are compared under an identical exposure dose. Numerical experiments are performed to validate the theoretical results and provide some quantitative insight. Results: The SNRs of the two methods are both dependent on the system parameters, but in different ways. Comparison between their sensitivities reveals that for the refraction signal, the RP method possesses a higher sensitivity, especially in the case of high visibility and/or at the edge of the object. Conclusions: Compared with the PS method, the RP method has a superior sensitivity and provides refraction images with a higher SNR. Therefore, one can obtain highly sensitive refraction images in grating-based phase contrast imaging. This is very important for future preclinical and clinical implementations

  4. Transverse Oscillations for Phased Array Vector Velocity Imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes; Jensen, Jørgen Arendt

    2010-01-01

    of superficial blood vessels. To broaden the usability of the method, it should be expanded to a phased array geometry enabling vector velocity imaging of the heart. Therefore, the scan depth has to be increased to 10-15 cm. This paper presents suitable pulse echo fields (PEF). Two lines are beamformed...... (correlation coefficient, R: -0.76), and therefore predict estimator performance. CV is correlated with the standard deviation (R=0.74). The results demonstrate the potential for using a phased array for vector velocity imaging at larger depths, and potentially for imaging the heart....

  5. ESR imaging for estimation oxidative stress in the brain of rats

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Hidekatsu; Itoh, Osam; Aoyama, Masaaki; Obara, Heitaro; Ohya, Hiroaki; Kamada, Hitoshi [Inst. for Life Support Technology, Matsuei, Yamagata (Japan)

    2002-04-01

    ESR imaging for estimating intracerebral oxidative stress of rats was performed. An acyl-protected hydroxylamine, 1-acetoxy-3-carbamoyl-2,2,5,5-tetramethylpyrrolidine (ACP), is a very stable non-radical compound outside cells, however, within cells, it is easily deprotected with esterase to yield 1-hydroxy-3-carbamoyl-2,2,5,5-tetramethylpyrrolidine, which is oxidized by oxidative stress to yield an ESR-detectable stable nitroxide radical, 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl. Thus signal intensity in the ESR image reflects the strength of intracellular oxidative stress. From in vivo ESR image data of the brain of rats that received ACP, the average values of ESR signal intensity from the hippocampus, striatum, and cerebral cortex were computed. This imaging technique was applied to an epileptic seizure model. As a result, it was found that following a kainic acid-induced seizure, the oxidative stress in the hippocampus and striatum is enhanced, but not so in the cerebral cortex. (author)

  6. Diagnosis of the three-phase induction motor using thermal imaging

    Science.gov (United States)

    Glowacz, Adam; Glowacz, Zygfryd

    2017-03-01

    Three-phase induction motors are used in the industry commonly for example woodworking machines, blowers, pumps, conveyors, elevators, compressors, mining industry, automotive industry, chemical industry and railway applications. Diagnosis of faults is essential for proper maintenance. Faults may damage a motor and damaged motors generate economic losses caused by breakdowns in production lines. In this paper the authors develop fault diagnostic techniques of the three-phase induction motor. The described techniques are based on the analysis of thermal images of three-phase induction motor. The authors analyse thermal images of 3 states of the three-phase induction motor: healthy three-phase induction motor, three-phase induction motor with 2 broken bars, three-phase induction motor with faulty ring of squirrel-cage. In this paper the authors develop an original method of the feature extraction of thermal images MoASoID (Method of Areas Selection of Image Differences). This method compares many training sets together and it selects the areas with the biggest changes for the recognition process. Feature vectors are obtained with the use of mentioned MoASoID and image histogram. Next 3 methods of classification are used: NN (the Nearest Neighbour classifier), K-means, BNN (the back-propagation neural network). The described fault diagnostic techniques are useful for protection of three-phase induction motor and other types of rotating electrical motors such as: DC motors, generators, synchronous motors.

  7. Optical double-image cryptography based on diffractive imaging with a laterally-translated phase grating.

    Science.gov (United States)

    Chen, Wen; Chen, Xudong; Sheppard, Colin J R

    2011-10-10

    In this paper, we propose a method using structured-illumination-based diffractive imaging with a laterally-translated phase grating for optical double-image cryptography. An optical cryptosystem is designed, and multiple random phase-only masks are placed in the optical path. When a phase grating is laterally translated just before the plaintexts, several diffraction intensity patterns (i.e., ciphertexts) can be correspondingly obtained. During image decryption, an iterative retrieval algorithm is developed to extract plaintexts from the ciphertexts. In addition, security and advantages of the proposed method are analyzed. Feasibility and effectiveness of the proposed method are demonstrated by numerical simulation results. © 2011 Optical Society of America

  8. Two-dimensional imaging of Debye-Scherrer ring for tri-axial stress analysis of industrial materials

    International Nuclear Information System (INIS)

    Sasaki, T; Maruyama, Y; Ohba, H; Ejiri, S

    2014-01-01

    In this study, an application of the two-dimensional imaging technology to the X ray tri-axial stress analysis was studied. An image plate (IP) was used to obtain a Debye-Scherre ring and the image data was analized for determining stress. A new principle for stress analysis which is suitable to two-dimensional imaging data was used. For the verification of this two-dimensional imaging type X-ray stress measurement method, an experiment was conducted using a ferritic steel sample which was processed with a surface grinder. Tri-axial stress analysis was conducted to evaluate the sample. The conventional method for X-ray tri-axial stress analysis proposed by Dölle and Hauk was used to evaluate residual stress in order to compare with the present method. As a result, it was confirmed that a sufficiently highly precise and high-speed stress measurement was enabled with the two-dimensional imaging technology compared with the conventional method

  9. Influence of vapor phase turbulent stress to the onset of slugging in a horizontal pipe

    International Nuclear Information System (INIS)

    Park, Jee Won

    1995-01-01

    An influence of the vapor phase turbulent stress(i, e., the two-phase Reynolds stress)to the characteristics of two-phase system in a horizontal pipe has been theoretically investigated. The average two-fluid model has been constituted with closure relations for stratified flow in a horizontal pipe. A vapor phase turbulent stress model for the regular interface geometry has been included. It is found that the second order waves propagate in opposite direction with almost the same speed in the moving frame of reference of the liquid phase velocity. Using the well-posedness limit of the two-phase system, the dispersed-stratified flow regime boundary has been modeled. Two-phase Froude number has been found to be a convenient parameter in quantifying the onset of slugging as a function of the global void fraction. The influence of the vapor phase turbulent stress was found to stabilize the flow stratification. 4 figs., 12 refs. (Author)

  10. Core stress distribution of phase shifting multimode polymer optical fiber

    International Nuclear Information System (INIS)

    Furukawa, Rei; Matsuura, Motoharu; Nagata, Morio; Mishima, Kenji; Inoue, Azusa; Tagaya, Akihiro; Koike, Yasuhiro

    2013-01-01

    Poly-(methyl methacrylate-co-benzyl methacrylate) polarization-maintaining optical fibers are known for their high response to normal stress. In this report, responses to higher stress levels up to 0.45 MPa were investigated. The stress amplitude and direction in the fiber cross section were calculated and analyzed with a coincident mode-field obtained from the near-field pattern. The stress amplitude varies significantly in the horizontal direction and is considered to create multiple phases, explaining the measurement results. To investigate possible permanent deformation, the core yield point profile was analyzed. Although it largely exceeds the average applied stress, the calculated stress distribution indicates that the core could partially experience stress that exceeds the yield point

  11. Optical colour image watermarking based on phase-truncated linear canonical transform and image decomposition

    Science.gov (United States)

    Su, Yonggang; Tang, Chen; Li, Biyuan; Lei, Zhenkun

    2018-05-01

    This paper presents a novel optical colour image watermarking scheme based on phase-truncated linear canonical transform (PT-LCT) and image decomposition (ID). In this proposed scheme, a PT-LCT-based asymmetric cryptography is designed to encode the colour watermark into a noise-like pattern, and an ID-based multilevel embedding method is constructed to embed the encoded colour watermark into a colour host image. The PT-LCT-based asymmetric cryptography, which can be optically implemented by double random phase encoding with a quadratic phase system, can provide a higher security to resist various common cryptographic attacks. And the ID-based multilevel embedding method, which can be digitally implemented by a computer, can make the information of the colour watermark disperse better in the colour host image. The proposed colour image watermarking scheme possesses high security and can achieve a higher robustness while preserving the watermark’s invisibility. The good performance of the proposed scheme has been demonstrated by extensive experiments and comparison with other relevant schemes.

  12. Experimental validation of the Wigner distributions theory of phase-contrast imaging

    International Nuclear Information System (INIS)

    Donnelly, Edwin F.; Price, Ronald R.; Pickens, David R.

    2005-01-01

    Recently, a new theory of phase-contrast imaging has been proposed by Wu and Liu [Med. Phys. 31, 2378-2384 (2004)]. This theory, based upon Wigner distributions, provides a much stronger foundation for the evaluation of phase-contrast imaging systems than did the prior theories based upon Fresnel-Kirchhoff diffraction theory. In this paper, we compare results of measurements made in our laboratory of phase contrast for different geometries and tube voltages to the predictions of the Wu and Liu model. In our previous publications, we have used an empirical measurement (the edge enhancement index) to parametrize the degree of phase-contrast effects in an image. While the Wu and Liu model itself does not predict image contrast, it does measure the degree of phase contrast that the system can image for a given spatial frequency. We have found that our previously published experimental results relating phase-contrast effects to geometry and x-ray tube voltage are consistent with the predictions of the Wu and Liu model

  13. Phase Imaging: A Compressive Sensing Approach

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Sebastian; Stevens, Andrew; Browning, Nigel D.; Pohl, Darius; Nielsch, Kornelius; Rellinghaus, Bernd

    2017-07-01

    Since Wolfgang Pauli posed the question in 1933, whether the probability densities |Ψ(r)|² (real-space image) and |Ψ(q)|² (reciprocal space image) uniquely determine the wave function Ψ(r) [1], the so called Pauli Problem sparked numerous methods in all fields of microscopy [2, 3]. Reconstructing the complete wave function Ψ(r) = a(r)e-iφ(r) with the amplitude a(r) and the phase φ(r) from the recorded intensity enables the possibility to directly study the electric and magnetic properties of the sample through the phase. In transmission electron microscopy (TEM), electron holography is by far the most established method for phase reconstruction [4]. Requiring a high stability of the microscope, next to the installation of a biprism in the TEM, holography cannot be applied to any microscope straightforwardly. Recently, a phase retrieval approach was proposed using conventional TEM electron diffractive imaging (EDI). Using the SAD aperture as reciprocal-space constraint, a localized sample structure can be reconstructed from its diffraction pattern and a real-space image using the hybrid input-output algorithm [5]. We present an alternative approach using compressive phase-retrieval [6]. Our approach does not require a real-space image. Instead, random complimentary pairs of checkerboard masks are cut into a 200 nm Pt foil covering a conventional TEM aperture (cf. Figure 1). Used as SAD aperture, subsequently diffraction patterns are recorded from the same sample area. Hereby every mask blocks different parts of gold particles on a carbon support (cf. Figure 2). The compressive sensing problem has the following formulation. First, we note that the complex-valued reciprocal-space wave-function is the Fourier transform of the (also complex-valued) real-space wave-function, Ψ(q) = F[Ψ(r)], and subsequently the diffraction pattern image is given by |Ψ(q)|2 = |F[Ψ(r)]|2. We want to find Ψ(r) given a few differently coded diffraction pattern measurements yn

  14. Phase Image Analysis in Conduction Disturbance Patients

    International Nuclear Information System (INIS)

    Kwark, Byeng Su; Choi, Si Wan; Kang, Seung Sik; Park, Ki Nam; Lee, Kang Wook; Jeon, Eun Seok; Park, Chong Hun

    1994-01-01

    It is known that the normal His-Purkinje system provides for nearly synchronous activation of right (RV) and left (LV) ventricles. When His-Purkinje conduction is abnormal, the resulting sequence of ventricular contraction must be correspondingly abnormal. These abnormal mechanical consequences were difficult to demonstrate because of the complexity and the rapidity of its events. To determine the relationship of the phase changes and the abnormalities of ventricular conduction, we performed phase image analysis of Tc-RBC gated blood pool scintigrams in patients with intraventricular conduction disturbances (24 complete left bundle branch block (C-LBBB), 15 complete right bundle branch block (C-RBBB), 13 Wolff-Parkinson-White syndrome (WPW), 10 controls). The results were as follows; 1) The ejection fraction (EF), peak ejection rate (PER), and peak filling rate (PFR) of LV in gated blood pool scintigraphy (GBPS) were significantly lower in patients with C-LBBB than in controls (44.4 ± 13.9% vs 69.9 ± 4.2%, 2.48 ± 0.98 vs 3.51 ± 0,62, 1.76 ± 0.71 vs 3.38 ± 0.92, respectively, p<0.05). 2) In the phase angle analysis of LV, Standard deviation (SD), width of half maximum of phase angle (FWHM), and range of phase angle were significantly increased in patients with C-LBBB than in controls (20.6 + 18.1 vs S.6 + I.8, 22. 5 + 9.2 vs 16.0 + 3.9, 95.7 + 31.7 vs 51.3 + 5.4, respectively, p<0.05). 3) There was no significant difference in EF, PER, PFR between patients with the WolffParkinson-White syndrome and controls. 4) Standard deviation and range of phase angle were significantly higher in patients with WPW syndrome than in controls (10.6 + 2.6 vs 8.6 + 1.8, p<0.05, 69.8 + 11.7 vs 51.3 + 5 4, p<0.001, respectively), however, there was no difference between the two groups in full width of half maximum. 5) Phase image analysis revealed relatively uniform phase across the both ventriles in patients with normal conduction, but markedly delayed phase in the left ventricle

  15. Triple-phase bone image abnormalities in Lyme arthritis

    International Nuclear Information System (INIS)

    Brown, S.J.; Dadparvar, S.; Slizofski, W.J.; Glab, L.B.; Burger, M.

    1989-01-01

    Arthritis is a frequent manifestation of Lyme disease. Limited triple-phase Tc-99m MDP bone imaging of the wrists and hands with delayed whole-body images was performed in a patient with Lyme arthritis. This demonstrated abnormal joint uptake in the wrists and hands in all three phases, with increased activity seen in other affected joints on delayed whole-body images. These findings are nonspecific and have been previously described in a variety of rheumatologic conditions, but not in Lyme disease. Lyme disease should be considered in the differential diagnosis of articular and periarticular bone scan abnormalities

  16. GPC and quantitative phase imaging

    DEFF Research Database (Denmark)

    Palima, Darwin; Banas, Andrew Rafael; Villangca, Mark Jayson

    2016-01-01

    shaper followed by the potential of GPC for biomedical and multispectral applications where we experimentally demonstrate the active light shaping of a supercontinuum laser over most of the visible wavelength range. Finally, we discuss how GPC can be advantageously applied for Quantitative Phase Imaging...

  17. Four-dimensional dose reconstruction through in vivo phase matching of cine images of electronic portal imaging device.

    Science.gov (United States)

    Yoon, Jihyung; Jung, Jae Won; Kim, Jong Oh; Yi, Byong Yong; Yeo, Inhwan

    2016-07-01

    A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume of the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as "reference" images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the time of planning CT was

  18. Four-dimensional dose reconstruction through in vivo phase matching of cine images of electronic portal imaging device

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jihyung; Jung, Jae Won, E-mail: jungj@ecu.edu [Department of Physics, East Carolina University, Greenville, North Carolina 27858 (United States); Kim, Jong Oh [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232 (United States); Yi, Byong Yong [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201 (United States); Yeo, Inhwan [Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, California 92354 (United States)

    2016-07-15

    Purpose: A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). Methods: (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume of the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as “reference” images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the

  19. Quantitative differential phase contrast imaging at high resolution with radially asymmetric illumination.

    Science.gov (United States)

    Lin, Yu-Zi; Huang, Kuang-Yuh; Luo, Yuan

    2018-06-15

    Half-circle illumination-based differential phase contrast (DPC) microscopy has been utilized to recover phase images through a pair of images along multiple axes. Recently, the half-circle based DPC using 12-axis measurements significantly provides a circularly symmetric phase transfer function to improve accuracy for more stable phase recovery. Instead of using half-circle-based DPC, we propose a new scheme of DPC under radially asymmetric illumination to achieve circularly symmetric phase transfer function and enhance the accuracy of phase recovery in a more stable and efficient fashion. We present the design, implementation, and experimental image data demonstrating the ability of our method to obtain quantitative phase images of microspheres, as well as live fibroblast cell samples.

  20. Stress-induced thickening of Ω phase in Al–Cu–Mg alloys containing various Ag additions

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Song [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China); Liu, Zhiyi, E-mail: liuzhiyi@mail.csu.edu.cn [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China); Zhou, Xuanwei; Xia, Peng; Liu, Meng [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China)

    2014-01-01

    The thickening of Ω phase in Al–Cu–Mg alloys containing various bulk Ag contents during stress aging at 200 °C with a tensile stress of 240 MPa was investigated by a combination of transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and atom probe tomography (APT). TEM characterization confirmed preferred orientation of Ω phase in all stress-aged samples. Corresponding quantitative TEM calculations revealed the thickening kinetics of Ω phase was significantly accelerated during stress aging as compared to that during stress-free aging at 200 °C. HRTEM analysis on the α/Ω interfacial structure confirmed that the applied tensile stress facilitated the rapid nucleation of the growth ledge on the broad face of Ω phase, thereby resulting in the accelerated plate thickening during stress aging at 200 °C. Meanwhile, quantitative TEM analysis highlighted the stress-induced thickening of Ω phase at 200 °C was affected by the bulk Ag content. This was consistent with the HRTEM observation as the ledge nucleation was found to be suppressed with increasing Ag addition. Our APT analysis on different stress-aged samples further suggested the progressive enrichment of Ag atoms in the segregation layer helped to stabilize the interfacial structure and was responsible for the lowest nucleation rate of the ledge in 1.77Ag alloy as compared to that in 0.46Ag alloy.

  1. Stress-induced thickening of Ω phase in Al–Cu–Mg alloys containing various Ag additions

    International Nuclear Information System (INIS)

    Bai, Song; Liu, Zhiyi; Zhou, Xuanwei; Xia, Peng; Liu, Meng

    2014-01-01

    The thickening of Ω phase in Al–Cu–Mg alloys containing various bulk Ag contents during stress aging at 200 °C with a tensile stress of 240 MPa was investigated by a combination of transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and atom probe tomography (APT). TEM characterization confirmed preferred orientation of Ω phase in all stress-aged samples. Corresponding quantitative TEM calculations revealed the thickening kinetics of Ω phase was significantly accelerated during stress aging as compared to that during stress-free aging at 200 °C. HRTEM analysis on the α/Ω interfacial structure confirmed that the applied tensile stress facilitated the rapid nucleation of the growth ledge on the broad face of Ω phase, thereby resulting in the accelerated plate thickening during stress aging at 200 °C. Meanwhile, quantitative TEM analysis highlighted the stress-induced thickening of Ω phase at 200 °C was affected by the bulk Ag content. This was consistent with the HRTEM observation as the ledge nucleation was found to be suppressed with increasing Ag addition. Our APT analysis on different stress-aged samples further suggested the progressive enrichment of Ag atoms in the segregation layer helped to stabilize the interfacial structure and was responsible for the lowest nucleation rate of the ledge in 1.77Ag alloy as compared to that in 0.46Ag alloy

  2. Measurements of liquid-phase turbulence in gas–liquid two-phase flows using particle image velocimetry

    International Nuclear Information System (INIS)

    Zhou, Xinquan; Doup, Benjamin; Sun, Xiaodong

    2013-01-01

    Liquid-phase turbulence measurements were performed in an air–water two-phase flow loop with a circular test section of 50 mm inner diameter using a particle image velocimetry (PIV) system. An optical phase separation method-–planar laser-induced fluorescence (PLIF) technique—which uses fluorescent particles and an optical filtration technique, was employed to separate the signals of the fluorescent seeding particles from those due to bubbles and other noises. An image pre-processing scheme was applied to the raw PIV images to remove the noise residuals that are not removed by the PLIF technique. In addition, four-sensor conductivity probes were adopted to measure the radial distribution of the void fraction. Two benchmark tests were performed: the first was a comparison of the PIV measurement results with those of similar flow conditions using thermal anemometry from previous studies; the second quantitatively compared the superficial liquid velocities calculated from the local liquid velocity and void fraction measurements with the global liquid flow rate measurements. The differences of the superficial liquid velocity obtained from the two measurements were bounded within ±7% for single-phase flows and two-phase bubbly flows with the area-average void fraction up to 18%. Furthermore, a preliminary uncertainty analysis was conducted to investigate the accuracy of the two-phase PIV measurements. The systematic uncertainties due to the circular pipe curvature effects, bubble surface reflection effects and other potential uncertainty sources of the PIV measurements were discussed. The purpose of this work is to facilitate the development of a measurement technique (PIV-PLIF) combined with image pre-processing for the liquid-phase turbulence in gas–liquid two-phase flows of relatively high void fractions. The high-resolution data set can be used to more thoroughly understand two-phase flow behavior, develop liquid-phase turbulence models, and assess high

  3. Ongoing Oxidative Stress Causes Subclinical Neuronal Dysfunction in the Recovery Phase of EAE

    Science.gov (United States)

    Radbruch, Helena; Bremer, Daniel; Guenther, Robert; Cseresnyes, Zoltan; Lindquist, Randall; Hauser, Anja E.; Niesner, Raluca

    2016-01-01

    Most multiple sclerosis (MS) patients develop over time a secondary progressive disease course, characterized histologically by axonal loss and atrophy. In early phases of the disease, focal inflammatory demyelination leads to functional impairment, but the mechanism of chronic progression in MS is still under debate. Reactive oxygen species generated by invading and resident central nervous system (CNS) macrophages have been implicated in mediating demyelination and axonal damage, but demyelination and neurodegeneration proceed even in the absence of obvious immune cell infiltration, during clinical recovery in chronic MS. Here, we employ intravital NAD(P)H fluorescence lifetime imaging to detect functional NADPH oxidases (NOX1–4, DUOX1, 2) and, thus, to identify the cellular source of oxidative stress in the CNS of mice affected by experimental autoimmune encephalomyelitis (EAE) in the remission phase of the disease. This directly affects neuronal function in vivo, as monitored by cellular calcium levels using intravital FRET–FLIM, providing a possible mechanism of disease progression in MS. PMID:27014271

  4. Hard-x-ray phase-imaging microscopy using the self-imaging phenomenon of a transmission grating

    International Nuclear Information System (INIS)

    Yashiro, Wataru; Harasse, Sebastien; Momose, Atsushi; Takeuchi, Akihisa; Suzuki, Yoshio

    2010-01-01

    We report on a hard-x-ray imaging microscope consisting of a lens, a sample, and a transmission grating. After the theoretical framework of self-imaging phenomenon by the grating in the system is presented, equations for the electric field on the image plane are derived for ideal and real lenses and an equation for the intensity on the image plane for partially coherent illumination is derived. The equations are simple and similar to those applying to a projection microscope consisting of a transmission grating except that there is no defocusing effect, regardless of whether the grating is in front of or behind the lens. This means that x-ray phase-imaging microscopy can be done without the defocusing effect. It is also shown that, by resolving the self-image on the image plane, high-sensitive x-ray phase-imaging microscopy can be attained without degradation in the spatial resolution due to diffraction by the grating. Experimental results obtained using partially coherent illumination from a synchrotron x-ray source confirm that hard-x-ray phase-imaging microscopy can be quantitatively performed with high sensitivity and without the spatial resolution degradation.

  5. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science.

    Science.gov (United States)

    Mayo, Sheridan C; Stevenson, Andrew W; Wilkins, Stephen W

    2012-05-24

    X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies.

  6. X-ray phase imaging-From static observation to dynamic observation-

    International Nuclear Information System (INIS)

    Momose, A.; Yashiro, W.; Olbinado, M. P.; Harasse, S.

    2012-01-01

    We are attempting to expand the technology of X-ray grating phase imaging/tomography to enable dynamic observation. X-ray phase imaging has been performed mainly for static cases, and this challenge is significant since properties of materials (and hopefully their functions) would be understood by observing their dynamics in addition to their structure, which is an inherent advantage of X-ray imaging. Our recent activities in combination with white synchrotron radiation for this purpose are described. Taking advantage of the fact that an X-ray grating interferometer functions with X-rays of a broad energy bandwidth (and therefore high flux), movies of differential phase images and visibility images are obtained with a time resolution of a millisecond. The time resolution of X-ray phase tomography can therefore be a second. This study is performed as a part of a project to explore X-ray grating interferometry, and our other current activities are also briefly outlined.

  7. An effective approach for iris recognition using phase-based image matching.

    Science.gov (United States)

    Miyazawa, Kazuyuki; Ito, Koichi; Aoki, Takafumi; Kobayashi, Koji; Nakajima, Hiroshi

    2008-10-01

    This paper presents an efficient algorithm for iris recognition using phase-based image matching--an image matching technique using phase components in 2D Discrete Fourier Transforms (DFTs) of given images. Experimental evaluation using CASIA iris image databases (versions 1.0 and 2.0) and Iris Challenge Evaluation (ICE) 2005 database clearly demonstrates that the use of phase components of iris images makes possible to achieve highly accurate iris recognition with a simple matching algorithm. This paper also discusses major implementation issues of our algorithm. In order to reduce the size of iris data and to prevent the visibility of iris images, we introduce the idea of 2D Fourier Phase Code (FPC) for representing iris information. The 2D FPC is particularly useful for implementing compact iris recognition devices using state-of-the-art Digital Signal Processing (DSP) technology.

  8. Optical multiple-image encryption based on multiplane phase retrieval and interference

    International Nuclear Information System (INIS)

    Chen, Wen; Chen, Xudong

    2011-01-01

    In this paper, we propose a new method for optical multiple-image encryption based on multiplane phase retrieval and interference. An optical encoding system is developed in the Fresnel domain. A phase-only map is iteratively extracted based on a multiplane phase retrieval algorithm, and multiple plaintexts are simultaneously encrypted. Subsequently, the extracted phase-only map is further encrypted into two phase-only masks based on a non-iterative interference algorithm. During image decryption, the advantages and security of the proposed optical cryptosystem are analyzed. Numerical results are presented to demonstrate the validity of the proposed optical multiple-image encryption method

  9. Analyser-based phase contrast image reconstruction using geometrical optics.

    Science.gov (United States)

    Kitchen, M J; Pavlov, K M; Siu, K K W; Menk, R H; Tromba, G; Lewis, R A

    2007-07-21

    Analyser-based phase contrast imaging can provide radiographs of exceptional contrast at high resolution (geometrical optics are satisfied. Analytical phase retrieval can be performed by fitting the analyser rocking curve with a symmetric Pearson type VII function. The Pearson VII function provided at least a 10% better fit to experimentally measured rocking curves than linear or Gaussian functions. A test phantom, a hollow nylon cylinder, was imaged at 20 keV using a Si(1 1 1) analyser at the ELETTRA synchrotron radiation facility. Our phase retrieval method yielded a more accurate object reconstruction than methods based on a linear fit to the rocking curve. Where reconstructions failed to map expected values, calculations of the Takagi number permitted distinction between the violation of the geometrical optics conditions and the failure of curve fitting procedures. The need for synchronized object/detector translation stages was removed by using a large, divergent beam and imaging the object in segments. Our image acquisition and reconstruction procedure enables quantitative phase retrieval for systems with a divergent source and accounts for imperfections in the analyser.

  10. An imaging method of wavefront coding system based on phase plate rotation

    Science.gov (United States)

    Yi, Rigui; Chen, Xi; Dong, Liquan; Liu, Ming; Zhao, Yuejin; Liu, Xiaohua

    2018-01-01

    Wave-front coding has a great prospect in extending the depth of the optical imaging system and reducing optical aberrations, but the image quality and noise performance are inevitably reduced. According to the theoretical analysis of the wave-front coding system and the phase function expression of the cubic phase plate, this paper analyzed and utilized the feature that the phase function expression would be invariant in the new coordinate system when the phase plate rotates at different angles around the z-axis, and we proposed a method based on the rotation of the phase plate and image fusion. First, let the phase plate rotated at a certain angle around the z-axis, the shape and distribution of the PSF obtained on the image surface remain unchanged, the rotation angle and direction are consistent with the rotation angle of the phase plate. Then, the middle blurred image is filtered by the point spread function of the rotation adjustment. Finally, the reconstruction images were fused by the method of the Laplacian pyramid image fusion and the Fourier transform spectrum fusion method, and the results were evaluated subjectively and objectively. In this paper, we used Matlab to simulate the images. By using the Laplacian pyramid image fusion method, the signal-to-noise ratio of the image is increased by 19% 27%, the clarity is increased by 11% 15% , and the average gradient is increased by 4% 9% . By using the Fourier transform spectrum fusion method, the signal-to-noise ratio of the image is increased by 14% 23%, the clarity is increased by 6% 11% , and the average gradient is improved by 2% 6%. The experimental results show that the image processing by the above method can improve the quality of the restored image, improving the image clarity, and can effectively preserve the image information.

  11. Imaging stress effects on memory: a review of neuroimaging studies

    NARCIS (Netherlands)

    van Stegeren, A.H.

    2009-01-01

    Objective: To review and give an overview of neuroimaging studies that look at the role of stress (hormones) on memory. Method: An overview will be given of imaging studies that looked at the role of stress (hormones) on memory. Stress is here defined as the acute provocation of the sympathetic

  12. Monte Carlo simulation of grating-based neutron phase contrast imaging at CPHS

    International Nuclear Information System (INIS)

    Zhang Ran; Chen Zhiqiang; Huang Zhifeng; Xiao Yongshun; Wang Xuewu; Wie Jie; Loong, C.-K.

    2011-01-01

    Since the launching of the Compact Pulsed Hadron Source (CPHS) project of Tsinghua University in 2009, works have begun on the design and engineering of an imaging/radiography instrument for the neutron source provided by CPHS. The instrument will perform basic tasks such as transmission imaging and computerized tomography. Additionally, we include in the design the utilization of coded-aperture and grating-based phase contrast methodology, as well as the options of prompt gamma-ray analysis and neutron-energy selective imaging. Previously, we had implemented the hardware and data-analysis software for grating-based X-ray phase contrast imaging. Here, we investigate Geant4-based Monte Carlo simulations of neutron refraction phenomena and then model the grating-based neutron phase contrast imaging system according to the classic-optics-based method. The simulated experimental results of the retrieving phase shift gradient information by five-step phase-stepping approach indicate the feasibility of grating-based neutron phase contrast imaging as an option for the cold neutron imaging instrument at the CPHS.

  13. Visualization of velocity field and phase distribution in gas-liquid two-phase flow by NMR imaging

    International Nuclear Information System (INIS)

    Matsui, G.; Monji, H.; Obata, J.

    2004-01-01

    NMR imaging has been applied in the field of fluid mechanics, mainly single phase flow, to visualize the instantaneous flow velocity field. In the present study, NMR imaging was used to visualize simultaneously both the instantaneous phase structure and velocity field of gas-liquid two-phase flow. Two methods of NMR imaging were applied. One is useful to visualize both the one component of liquid velocity and the phase distribution. This method was applied to horizontal two-phase flow and a bubble rising in stagnant oil. It was successful in obtaining some pictures of velocity field and phase distribution on the cross section of the pipe. The other is used to visualize a two-dimensional velocity field. This method was applied to a bubble rising in a stagnant water. The velocity field was visualized after and before the passage of a bubble at the measuring cross section. Furthermore, the distribution of liquid velocity was obtained. (author)

  14. Phase contrast imaging with coherent high energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Snigireva, I. [ESRF, Grenoble (France)

    1997-02-01

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known in optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.

  15. Perceptual and statistical analysis of cardiac phase and amplitude images

    International Nuclear Information System (INIS)

    Houston, A.; Craig, A.

    1991-01-01

    A perceptual experiment was conducted using cardiac phase and amplitude images. Estimates of statistical parameters were derived from the images and the diagnostic potential of human and statistical decisions compared. Five methods were used to generate the images from 75 gated cardiac studies, 39 of which were classified as pathological. The images were presented to 12 observers experienced in nuclear medicine. The observers rated the images using a five-category scale based on their confidence of an abnormality presenting. Circular and linear statistics were used to analyse phase and amplitude image data, respectively. Estimates of mean, standard deviation (SD), skewness, kurtosis and the first term of the spatial correlation function were evaluated in the region of the left ventricle. A receiver operating characteristic analysis was performed on both sets of data and the human and statistical decisions compared. For phase images, circular SD was shown to discriminate better between normal and abnormal than experienced observers, but no single statistic discriminated as well as the human observer for amplitude images. (orig.)

  16. On the stress calculation within phase-field approaches: a model for finite deformations

    Science.gov (United States)

    Schneider, Daniel; Schwab, Felix; Schoof, Ephraim; Reiter, Andreas; Herrmann, Christoph; Selzer, Michael; Böhlke, Thomas; Nestler, Britta

    2017-08-01

    Numerical simulations based on phase-field methods are indispensable in order to investigate interesting and important phenomena in the evolution of microstructures. Microscopic phase transitions are highly affected by mechanical driving forces and therefore the accurate calculation of the stresses in the transition region is essential. We present a method for stress calculations within the phase-field framework, which satisfies the mechanical jump conditions corresponding to sharp interfaces, although the sharp interface is represented as a volumetric region using the phase-field approach. This model is formulated for finite deformations, is independent of constitutive laws, and allows using any type of phase inherent inelastic strains.

  17. A multimodal image sensor system for identifying water stress in grapevines

    Science.gov (United States)

    Zhao, Yong; Zhang, Qin; Li, Minzan; Shao, Yongni; Zhou, Jianfeng; Sun, Hong

    2012-11-01

    Water stress is one of the most common limitations of fruit growth. Water is the most limiting resource for crop growth. In grapevines, as well as in other fruit crops, fruit quality benefits from a certain level of water deficit which facilitates to balance vegetative and reproductive growth and the flow of carbohydrates to reproductive structures. A multi-modal sensor system was designed to measure the reflectance signature of grape plant surfaces and identify different water stress levels in this paper. The multi-modal sensor system was equipped with one 3CCD camera (three channels in R, G, and IR). The multi-modal sensor can capture and analyze grape canopy from its reflectance features, and identify the different water stress levels. This research aims at solving the aforementioned problems. The core technology of this multi-modal sensor system could further be used as a decision support system that combines multi-modal sensory data to improve plant stress detection and identify the causes of stress. The images were taken by multi-modal sensor which could output images in spectral bands of near-infrared, green and red channel. Based on the analysis of the acquired images, color features based on color space and reflectance features based on image process method were calculated. The results showed that these parameters had the potential as water stress indicators. More experiments and analysis are needed to validate the conclusion.

  18. X-ray phase imaging using a X-ray tube with a small focal spot. Improvement of image quality in mammography

    International Nuclear Information System (INIS)

    Honda, Chika; Ohara, Hiromu; Ishisaka, Akira; Shimada, Fumio

    2002-01-01

    Phase contrast X-ray imaging has been studied intensively using X-rays from synchrotron radiation and micro-focus X-ray tubes. However, these studies have revealed the difficulty of this technique's application to practical medical imaging. We have created a phase contrast imaging technique using a molybdenum X-ray tube with a small focal spot size for mammography. We identified the radiographic conditions in phase contrast magnification mammography with a screen-film system, where edge effect due to phase contrast overcomes geometrical unsharpness caused by the 0.1 mm-focal spot of a molybdenum X-ray tube. The edge enhancement due to phase imaging was observed in an image of a plastic tube, and then geometrical configuration of the X-ray tube, the object and the screen-film system was determined for phase imaging of mammography. In order to investigate a potential for medical application of this method, we conducted evaluation of the images of the American Collage of Radiology (ACR) 156 mammography phantom. We obtained higher scores for phase imaging using high speed screen-film systems without any increase of X-ray dose than the score for contract imaging using a standard speed screen-film system. (author)

  19. Characterisation of phase evolution under load by means of phase contrast imaging using synchrotron radiation

    International Nuclear Information System (INIS)

    Besseghini, S.; Stortiero, F.; Carcano, G.; Villa, E.; Mancini, L.; Tromba, G.; Zanini, F.; Montanari, F.; Airoldi, G.

    2003-01-01

    Phase contrast radiography (PCR) is a quite novel technique that is collecting increasing attention due to the possibility to obtain image information in presence of very small differences in the densities of the materials under analysis. Phase contrast imaging (PCI) has some specific advantage when compared with common microscopic techniques: (a) no special preparation of the sample is needed (b) the simultaneously investigated area is very large and (c) it allows the setting up of complex experimental apparatus. The results here presented are a good evidence of these three advantages. In this paper, we report on the application of phase contrast imaging in the study of the phase evolution during pseudoelastic transformation in the NiTiCu shape memory alloys (SMAs). The investigation was undertaken with the aim to identify some modification of the structure taking place at the end of the transformation plateau in the pseudoelastic behaviour of the alloy

  20. Echo Particle Image Velocimetry for Estimation of Carotid Artery Wall Shear Stress: Repeatability, Reproducibility and Comparison with Phase-Contrast Magnetic Resonance Imaging.

    Science.gov (United States)

    Gurung, Arati; Gates, Phillip E; Mazzaro, Luciano; Fulford, Jonathan; Zhang, Fuxing; Barker, Alex J; Hertzberg, Jean; Aizawa, Kunihiko; Strain, William D; Elyas, Salim; Shore, Angela C; Shandas, Robin

    2017-08-01

    Measurement of hemodynamic wall shear stress (WSS) is important in investigating the role of WSS in the initiation and progression of atherosclerosis. Echo particle image velocimetry (echo PIV) is a novel ultrasound-based technique for measuring WSS in vivo that has previously been validated in vitro using the standard optical PIV technique. We evaluated the repeatability and reproducibility of echo PIV for measuring WSS in the human common carotid artery. We measured WSS in 28 healthy participants (18 males and 10 females, mean age: 56 ± 12 y). Echo PIV was highly repeatable, with an intra-observer variability of 1.0 ± 0.1 dyn/cm 2 for peak systolic (maximum), 0.9 dyn/cm 2 for mean and 0.5 dyn/cm 2 for end-diastolic (minimum) WSS measurements. Likewise, echo PIV was reproducible, with a low inter-observer variability (max: 2.0 ± 0.2 dyn/cm 2 , mean: 1.3 ± 0.1 dyn/cm 2 , end-diastolic: 0.7 dyn/cm 2 ) and more variable inter-scan (test-retest) variability (max: 7.1 ± 2.3 dyn/cm 2 , mean: 2.9 ± 0.4 dyn/cm 2 , min: 1.5 ± 0.1 dyn/cm 2 ). We compared echo PIV with the reference method, phase-contrast magnetic resonance imaging (PC-MRI); echo PIV-based WSS measurements agreed qualitatively with PC-MRI measurements (r = 0.89, p PIV vs. PC-MRI): WSS at peak systole: 21 ± 7.0 dyn/cm 2 vs. 15 ± 5.0 dyn/cm 2 ; time-averaged WSS: 8.9 ± 3.0 dyn/cm 2 vs. 7.1 ± 3.0 dyn/cm 2 (p  0.05). For the first time, we report that echo PIV can measure WSS with good repeatability and reproducibility in adult humans with a broad age range. Echo PIV is feasible in humans and offers an easy-to-use, ultrasound-based, quantitative technique for measuring WSS in vivo in humans with good repeatability and reproducibility. Copyright © 2017. Published by Elsevier Inc.

  1. Two-phase summation imaging using transvenous DSA in subclavian steal syndrome

    International Nuclear Information System (INIS)

    Arlart, I.P.

    1984-01-01

    A simple method is reported to obtain a two-phase summation image in subclavian steal syndrome using digital subtraction angiography (DSA) via selection of a mask during the early arterial phase and the contrast image during delayed retrograde filling of the ipsilateral vertebral artery and the postocclusive subclavian artery. The summation image results by employing replay of the stored image information. (orig.) [de

  2. Residual stress distribution analysis of heat treated APS TBC using image based modelling.

    Science.gov (United States)

    Li, Chun; Zhang, Xun; Chen, Ying; Carr, James; Jacques, Simon; Behnsen, Julia; di Michiel, Marco; Xiao, Ping; Cernik, Robert

    2017-08-01

    We carried out a residual stress distribution analysis in a APS TBC throughout the depth of the coatings. The samples were heat treated at 1150 °C for 190 h and the data analysis used image based modelling based on the real 3D images measured by Computed Tomography (CT). The stress distribution in several 2D slices from the 3D model is included in this paper as well as the stress distribution along several paths shown on the slices. Our analysis can explain the occurrence of the "jump" features near the interface between the top coat and the bond coat. These features in the residual stress distribution trend were measured (as a function of depth) by high-energy synchrotron XRD (as shown in our related research article entitled 'Understanding the Residual Stress Distribution through the Thickness of Atmosphere Plasma Sprayed (APS) Thermal Barrier Coatings (TBCs) by high energy Synchrotron XRD; Digital Image Correlation (DIC) and Image Based Modelling') (Li et al., 2017) [1].

  3. Probing stress state and phase content in ultra-thin Ta films

    International Nuclear Information System (INIS)

    Whitacre, J.F.; Yalisove, S.M.; Bilello, J.C.; Rek, Z.U.

    1998-01-01

    Ta films 25 angstrom to 200 angstrom in thickness were sputter-deposited using different sputter gas (Ar) pressures and cathode power settings. The average in-plane stresses were determined using double crystal diffraction topography (DCDT). X-ray analysis (using the grazing incidence x-ray scattering (GIXS) geometry) was performed using a synchrotron light source. To study microstructure and phase content, transmission electron microscopy (TEM) and transmission electron diffraction (TED) were used. Well resolved x-ray patterns were collected for all of the films. The DCDT stress data was found to be consistent with stress effects evidence in the GIXS data. In general, residual stress state was not strongly dependent upon Ar pressure. The strongest evidence of amorphous content was found in both x-ray and TED data taken from 25 angstrom thick films deposited using 2mTorr Ar pressure and 460 W cathode power. These results show that it is possible to create and study ultra-thin Ta films which possess a range of residual stresses and phase compositions

  4. Neurobiology of Chronic Stress-Related Psychiatric Disorders: Evidence from Molecular Imaging Studies

    Science.gov (United States)

    Davis, Margaret T.; Holmes, Sophie E.; Pietrzak, Robert H.; Esterlis, Irina

    2018-01-01

    Chronic stress accounts for billions of dollars of economic loss annually in the United States alone, and is recognized as a major source of disability and mortality worldwide. Robust evidence suggests that chronic stress plays a significant role in the onset of severe and impairing psychiatric conditions, including major depressive disorder, bipolar disorder, and posttraumatic stress disorder. Application of molecular imaging techniques such as positron emission tomography and single photon emission computed tomography in recent years has begun to provide insight into the molecular mechanisms by which chronic stress confers risk for these disorders. The present paper provides a comprehensive review and synthesis of all positron emission tomography and single photon emission computed tomography imaging publications focused on the examination of molecular targets in individuals with major depressive disorder, posttraumatic stress disorder, or bipolar disorder to date. Critical discussion of discrepant findings and broad strengths and weaknesses of the current body of literature is provided. Recommended future directions for the field of molecular imaging to further elucidate the neurobiological substrates of chronic stress-related disorders are also discussed. This article is part of the inaugural issue for the journal focused on various aspects of chronic stress. PMID:29862379

  5. Phase contrast imaging using a micro focus x-ray source

    Science.gov (United States)

    Zhou, Wei; Majidi, Keivan; Brankov, Jovan G.

    2014-09-01

    Phase contrast x-ray imaging, a new technique to increase the imaging contrast for the tissues with close attenuation coefficients, has been studied since mid 1990s. This technique reveals the possibility to show the clear details of the soft tissues and tumors in small scale resolution. A compact and low cost phase contrast imaging system using a conventional x-ray source is described in this paper. Using the conventional x-ray source is of great importance, because it provides the possibility to use the method in hospitals and clinical offices. Simple materials and components are used in the setup to keep the cost in a reasonable and affordable range.Tungsten Kα1 line with the photon energy 59.3 keV was used for imaging. Some of the system design details are discussed. The method that was used to stabilize the system is introduced. A chicken thigh bone tissue sample was used for imaging followed by the image quality, image acquisition time and the potential clinical application discussion. High energy x-ray beam can be used in phase contrast imaging. Therefore the radiation dose to the patients can be greatly decreased compared to the traditional x-ray radiography.

  6. Influences of the Menstrual Phase on Cortisol Response to Stress in Nicotine Dependent Women: A Preliminary Examination.

    Science.gov (United States)

    Nakajima, Motohiro; Allen, Sharon; al'Absi, Mustafa

    2018-04-10

    Evidence indicates that menstrual cycle phase plays a role in smoking withdrawal symptoms and craving. Stress increases these symptoms. Whether the stress regulatory mechanism is associated with menstrual phase and withdrawal symptoms is not well understood. Thirty-seven female smokers and 16 female nonsmokers were asked to complete a laboratory session. In each group, approximately half of the participants were tested when they were in the follicular phase and the other half was tested in the luteal phase. The session included resting baseline, stress, and recovery periods. Saliva samples for the measurement of cortisol and subjective measures of craving and withdrawal symptoms were collected at the end of each period. A series of repeated measures ANCOVAs found a significant smoking group x menstrual phase x sampling time interaction in cortisol levels (p < .05). Follow-up analyses indicated a reduced cortisol stress response in the luteal group relative to the follicular group in smokers (p < .02). This difference was not found in nonsmokers. Menstrual cycle phase is related to hormonal stress response and smoking withdrawal symptomatology. We show influences of the menstrual cycle phase on stress response among smokers. This is demonstrated by a reduced cortisol response to stress in the luteal group relative to the follicular group among smokers. This menstrual phase difference was not found in nonsmokers.

  7. Code-modulated interferometric imaging system using phased arrays

    Science.gov (United States)

    Chauhan, Vikas; Greene, Kevin; Floyd, Brian

    2016-05-01

    Millimeter-wave (mm-wave) imaging provides compelling capabilities for security screening, navigation, and bio- medical applications. Traditional scanned or focal-plane mm-wave imagers are bulky and costly. In contrast, phased-array hardware developed for mass-market wireless communications and automotive radar promise to be extremely low cost. In this work, we present techniques which can allow low-cost phased-array receivers to be reconfigured or re-purposed as interferometric imagers, removing the need for custom hardware and thereby reducing cost. Since traditional phased arrays power combine incoming signals prior to digitization, orthogonal code-modulation is applied to each incoming signal using phase shifters within each front-end and two-bit codes. These code-modulated signals can then be combined and processed coherently through a shared hardware path. Once digitized, visibility functions can be recovered through squaring and code-demultiplexing operations. Pro- vided that codes are selected such that the product of two orthogonal codes is a third unique and orthogonal code, it is possible to demultiplex complex visibility functions directly. As such, the proposed system modulates incoming signals but demodulates desired correlations. In this work, we present the operation of the system, a validation of its operation using behavioral models of a traditional phased array, and a benchmarking of the code-modulated interferometer against traditional interferometer and focal-plane arrays.

  8. Identification of various phases in HRTEM images of MgO-PSZ

    International Nuclear Information System (INIS)

    Liu, Z.; Spargo, A.E.C.

    2000-01-01

    Magnesia partially stabilized zirconia is one of the most commonly used engineering ceramics based on zirconia. A detailed discussion about how to identify the various phases in the high resolution transmission electron microscopy images of this material is presented. It shows that in some cases, the standard procedures of image simulation are inadequate to interpret these images. By including the effect of astigmatism in both experimental and simulated images, together with the digital Fourier transforms of the images, orthorhombic ZrO 2 in [001] orientation was identified. The δ-phase, which has a marked effect on the thermomechanical properties of MgO-PSZ, can most easily be identified by high resolution imaging in the [130] c zone which coincides with a low-index zone axis of the δ-phase

  9. Phase-Sensitive Coherence and the Classical-Quantum Boundary in Ghost Imaging

    Science.gov (United States)

    Erkmen, Baris I.; Hardy, Nicholas D.; Venkatraman, Dheera; Wong, Franco N. C.; Shapiro, Jeffrey H.

    2011-01-01

    The theory of partial coherence has a long and storied history in classical statistical optics. the vast majority of this work addresses fields that are statistically stationary in time, hence their complex envelopes only have phase-insensitive correlations. The quantum optics of squeezed-state generation, however, depends on nonlinear interactions producing baseband field operators with phase-insensitive and phase-sensitive correlations. Utilizing quantum light to enhance imaging has been a topic of considerable current interest, much of it involving biphotons, i.e., streams of entangled-photon pairs. Biphotons have been employed for quantum versions of optical coherence tomography, ghost imaging, holography, and lithography. However, their seemingly quantum features have been mimicked with classical-sate light, questioning wherein lies the classical-quantum boundary. We have shown, for the case of Gaussian-state light, that this boundary is intimately connected to the theory of phase-sensitive partial coherence. Here we present that theory, contrasting it with the familiar case of phase-insensitive partial coherence, and use it to elucidate the classical-quantum boundary of ghost imaging. We show, both theoretically and experimentally, that classical phase-sensitive light produces ghost imaging most closely mimicking those obtained in biphotons, and we derived the spatial resolution, image contrast, and signal-to-noise ratio of a standoff-sensing ghost imager, taking into account target-induced speckle.

  10. Time-resolved computed tomography of the liver: retrospective, multi-phase image reconstruction derived from volumetric perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Michael A.; Kartalis, Nikolaos; Aspelin, Peter; Albiin, Nils; Brismar, Torkel B. [Karolinska University Hospital, Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm (Sweden); Leidner, Bertil; Svensson, Anders [Karolinska University Hospital, Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm (Sweden); Karolinska University Hospital Huddinge, Department of Radiology, Stockholm (Sweden)

    2014-01-15

    To assess feasibility and image quality (IQ) of a new post-processing algorithm for retrospective extraction of an optimised multi-phase CT (time-resolved CT) of the liver from volumetric perfusion imaging. Sixteen patients underwent clinically indicated perfusion CT using 4D spiral mode of dual-source 128-slice CT. Three image sets were reconstructed: motion-corrected and noise-reduced (MCNR) images derived from 4D raw data; maximum and average intensity projections (time MIP/AVG) of the arterial/portal/portal-venous phases and all phases (total MIP/ AVG) derived from retrospective fusion of dedicated MCNR split series. Two readers assessed the IQ, detection rate and evaluation time; one reader assessed image noise and lesion-to-liver contrast. Time-resolved CT was feasible in all patients. Each post-processing step yielded a significant reduction of image noise and evaluation time, maintaining lesion-to-liver contrast. Time MIPs/AVGs showed the highest overall IQ without relevant motion artefacts and best depiction of arterial and portal/portal-venous phases respectively. Time MIPs demonstrated a significantly higher detection rate for arterialised liver lesions than total MIPs/AVGs and the raw data series. Time-resolved CT allows data from volumetric perfusion imaging to be condensed into an optimised multi-phase liver CT, yielding a superior IQ and higher detection rate for arterialised liver lesions than the raw data series. (orig.)

  11. Multi-color phase imaging and sickle cell anemia (Conference Presentation)

    Science.gov (United States)

    Hosseini, Poorya; Zhou, Renjie; Yaqoob, Zahid; So, Peter T. C.

    2016-03-01

    Quantitative phase measurements at multiple wavelengths has created an opportunity for exploring new avenues in phase microscopy such as enhancing imaging-depth (1), measuring hemoglobin concentrations in erythrocytes (2), and more recently in tomographic mapping of the refractive index of live cells (3). To this end, quantitative phase imaging has been demonstrated both at few selected spectral points as well as with high spectral resolution (4,5). However, most of these developed techniques compromise imaging speed, field of view, or the spectral resolution to perform interferometric measurements at multiple colors. In the specific application of quantitative phase in studying blood diseases and red blood cells, current techniques lack the required sensitivity to quantify biological properties of interest at individual cell level. Recently, we have set out to develop a stable quantitative interferometric microscope allowing for measurements of such properties for red cells without compromising field of view or speed of the measurements. The feasibility of the approach will be initially demonstrated in measuring dispersion curves of known solutions, followed by measuring biological properties of red cells in sickle cell anemia. References: 1. Mann CJ, Bingham PR, Paquit VC, Tobin KW. Quantitative phase imaging by three-wavelength digital holography. Opt Express. 2008;16(13):9753-64. 2. Park Y, Yamauchi T, Choi W, Dasari R, Feld MS. Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells. Opt Lett. 2009;34(23):3668-70. 3. Hosseini P, Sung Y, Choi Y, Lue N, Yaqoob Z, So P. Scanning color optical tomography (SCOT). Opt Express. 2015;23(15):19752-62. 4. Jung J-H, Jang J, Park Y. Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging. Anal Chem. 2013;85(21):10519-25. 5. Rinehart M, Zhu Y, Wax A. Quantitative phase spectroscopy. Biomed Opt Express. 2012;3(5):958-65.

  12. Concurrent phase separation and clustering in the ferrite phase during low temperature stress aging of duplex stainless steel weldments

    International Nuclear Information System (INIS)

    Zhou, J.; Odqvist, J.; Thuvander, M.; Hertzman, S.; Hedström, P.

    2012-01-01

    The concurrent phase separation and clustering of alloying elements in the ferrite phase of duplex stainless steel weldments after stress aging at 325 °C have been investigated by atom probe tomography analysis. Both phase separation, into Fe-rich and Cr-rich ferrite, and solute clustering were observed. Phase separation in the heat-affected zone (HAZ) is most pronounced in the high alloyed SAF 2507, followed by SAF 2205 and SAF 2304. Moreover Cu clustering was observed in the HAZ of SAF 2507. However, decomposition in the weld bead (25.10.4L) was more pronounced than in the HAZs, with both phase separation and clustering of Ni–Mn–Si–Cu. The observed differences in the decomposition behaviors in the HAZ and weld bead can be attributed to the high Ni content and the characteristic microstructure of the weld bead with high internal strains. In addition, an applied tensile stress during aging of weldments has been found to further promote the kinetics of phase separation and clustering.

  13. Combined mixed approach algorithm for in-line phase-contrast x-ray imaging

    International Nuclear Information System (INIS)

    De Caro, Liberato; Scattarella, Francesco; Giannini, Cinzia; Tangaro, Sabina; Rigon, Luigi; Longo, Renata; Bellotti, Roberto

    2010-01-01

    Purpose: In the past decade, phase-contrast imaging (PCI) has been applied to study different kinds of tissues and human body parts, with an increased improvement of the image quality with respect to simple absorption radiography. A technique closely related to PCI is phase-retrieval imaging (PRI). Indeed, PCI is an imaging modality thought to enhance the total contrast of the images through the phase shift introduced by the object (human body part); PRI is a mathematical technique to extract the quantitative phase-shift map from PCI. A new phase-retrieval algorithm for the in-line phase-contrast x-ray imaging is here proposed. Methods: The proposed algorithm is based on a mixed transfer-function and transport-of-intensity approach (MA) and it requires, at most, an initial approximate estimate of the average phase shift introduced by the object as prior knowledge. The accuracy in the initial estimate determines the convergence speed of the algorithm. The proposed algorithm retrieves both the object phase and its complex conjugate in a combined MA (CMA). Results: Although slightly less computationally effective with respect to other mixed-approach algorithms, as two phases have to be retrieved, the results obtained by the CMA on simulated data have shown that the obtained reconstructed phase maps are characterized by particularly low normalized mean square errors. The authors have also tested the CMA on noisy experimental phase-contrast data obtained by a suitable weakly absorbing sample consisting of a grid of submillimetric nylon fibers as well as on a strongly absorbing object made of a 0.03 mm thick lead x-ray resolution star pattern. The CMA has shown a good efficiency in recovering phase information, also in presence of noisy data, characterized by peak-to-peak signal-to-noise ratios down to a few dBs, showing the possibility to enhance with phase radiography the signal-to-noise ratio for features in the submillimetric scale with respect to the attenuation

  14. Noise propagation in x-ray phase-contrast imaging and computed tomography

    International Nuclear Information System (INIS)

    Nesterets, Yakov I; Gureyev, Timur E

    2014-01-01

    Three phase-retrieval algorithms, based on the transport-of-intensity equation and on the contrast transfer function for propagation-based imaging, and on the linearized geometrical optics approximation for analyser-based imaging, are investigated. The algorithms are compared in terms of their effect on propagation of noise from projection images to the corresponding phase-retrieved images and further to the computed tomography (CT) images/slices of a monomorphous object reconstructed using filtered backprojection algorithm. The comparison is carried out in terms of an integral noise characteristic, the variance, as well as in terms of a simple figure-of-merit, i.e. signal-to-noise ratio per unit dose. A gain factor is introduced that quantitatively characterizes the effect of phase retrieval on the variance of noise in the reconstructed projection images and in the axial slices of the object. Simple analytical expressions are derived for the gain factor and the signal-to-noise ratio, which indicate that the application of phase-retrieval algorithms can increase these parameters by up to two orders of magnitude compared to raw projection images and conventional CT, thus allowing significant improvement in the image quality and/or reduction of the x-ray dose delivered to the patient. (paper)

  15. A common-path phase-shift interferometry surface plasmon imaging system

    Science.gov (United States)

    Su, Y.-T.; Chen, Shean-Jen; Yeh, T.-L.

    2005-03-01

    A biosensing imaging system is proposed based on the integration of surface plasmon resonance (SPR) and common-path phase-shift interferometry (PSI) techniques to measure the two-dimensional spatial phase variation caused by biomolecular interactions upon a sensing chip. The SPR phase imaging system can offer high resolution and high-throughout screening capabilities to analyze microarray biomolecular interaction without the need for additional labeling. With the long-term stability advantage of the common-path PSI technique even with external disturbances such as mechanical vibration, buffer flow noise, and laser unstable issue, the system can match the demand of real-time kinetic study for biomolecular interaction analysis (BIA). The SPR-PSI imaging system has achieved a detection limit of 2×10-7 refraction index change, a long-term phase stability of 2.5x10-4π rms over four hours, and a spatial phase resolution of 10-3 π with a lateral resolution of 100μm.

  16. Dynamic Studies of Lung Fluid Clearance with Phase Contrast Imaging

    International Nuclear Information System (INIS)

    Kitchen, Marcus J.; Williams, Ivan; Irvine, Sarah C.; Morgan, Michael J.; Paganin, David M.; Lewis, Rob A.; Pavlov, Konstantin; Hooper, Stuart B.; Wallace, Megan J.; Siu, Karen K. W.; Yagi, Naoto; Uesugi, Kentaro

    2007-01-01

    Clearance of liquid from the airways at birth is a poorly understood process, partly due to the difficulties of observing and measuring the distribution of air within the lung. Imaging dynamic processes within the lung in vivo with high contrast and spatial resolution is therefore a major challenge. However, phase contrast X-ray imaging is able to exploit inhaled air as a contrast agent, rendering the lungs of small animals visible due to the large changes in the refractive index at air/tissue interfaces. In concert with the high spatial resolution afforded by X-ray imaging systems (<100 μm), propagation-based phase contrast imaging is ideal for studying lung development. To this end we have utilized intense, monochromatic synchrotron radiation, together with a fast readout CCD camera, to study fluid clearance from the lungs of rabbit pups at birth. Local rates of fluid clearance have been measured from the dynamic sequences using a single image phase retrieval algorithm

  17. Grating-based x-ray differential phase contrast imaging with twin peaks in phase-stepping curves—phase retrieval and dewrapping

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yi; Xie, Huiqiao; Tang, Xiangyang, E-mail: xiangyang.tang@emory.edu [Imaging and Medical Physics, Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1701 Uppergate Dr., C-5018, Atlanta, Georgia 30322 (United States); Cai, Weixing [Department of Radiation Oncology, Brigham and Women’s Hospital Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115 (United States); Mao, Hui [Laboratory of Functional and Molecular Imaging and Nanomedicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1841 Clifton Road NE, Atlanta, Georgia 30329 (United States)

    2016-06-15

    Purpose: X-ray differential phase contrast CT implemented with Talbot interferometry employs phase-stepping to extract information of x-ray attenuation, phase shift, and small-angle scattering. Since inaccuracy may exist in the absorption grating G{sub 2} due to an imperfect fabrication, the effective period of G{sub 2} can be as large as twice the nominal period, leading to a phenomenon of twin peaks that differ remarkably in their heights. In this work, the authors investigate how to retrieve and dewrap the phase signal from the phase-stepping curve (PSC) with the feature of twin peaks for x-ray phase contrast imaging. Methods: Based on the paraxial Fresnel–Kirchhoff theory, the analytical formulae to characterize the phenomenon of twin peaks in the PSC are derived. Then an approach to dewrap the retrieved phase signal by jointly using the phases of the first- and second-order Fourier components is proposed. Through an experimental investigation using a prototype x-ray phase contrast imaging system implemented with Talbot interferometry, the authors evaluate and verify the derived analytic formulae and the proposed approach for phase retrieval and dewrapping. Results: According to theoretical analysis, the twin-peak phenomenon in PSC is a consequence of combined effects, including the inaccuracy in absorption grating G{sub 2}, mismatch between phase grating and x-ray source spectrum, and finite size of x-ray tube’s focal spot. The proposed approach is experimentally evaluated by scanning a phantom consisting of organic materials and a lab mouse. The preliminary data show that compared to scanning G{sub 2} over only one single nominal period and correcting the measured phase signal with an intuitive phase dewrapping method that is being used in the field, stepping G{sub 2} over twice its nominal period and dewrapping the measured phase signal with the proposed approach can significantly improve the quality of x-ray differential phase contrast imaging in both

  18. Blind phase retrieval for aberrated linear shift-invariant imaging systems

    International Nuclear Information System (INIS)

    Yu, Rotha P; Paganin, David M

    2010-01-01

    We develop a means to reconstruct an input complex coherent scalar wavefield, given a through focal series (TFS) of three intensity images output from a two-dimensional (2D) linear shift-invariant optical imaging system with unknown aberrations. This blind phase retrieval technique unites two methods, namely (i) TFS phase retrieval and (ii) iterative blind deconvolution. The efficacy of our blind phase retrieval procedure has been demonstrated using simulated data, for a variety of Poisson noise levels.

  19. Grating-based X-ray phase contrast for biomedical imaging applications

    International Nuclear Information System (INIS)

    Pfeiffer, Franz; Willner, Marian; Chabior, Michael; Herzen, Julia; Helmholtz-Zentrum Geesthacht, Geesthacht; Auweter, Sigrid; Reiser, Maximilian; Bamberg, Fabian

    2013-01-01

    In this review article we describe the development of grating-based X-ray phase-contrast imaging, with particular emphasis on potential biomedical applications of the technology. We review the basics of image formation in grating-based phase-contrast and dark-field radiography and present some exemplary multimodal radiography results obtained with laboratory X-ray sources. Furthermore, we discuss the theoretical concepts to extend grating-based multimodal radiography to quantitative transmission, phase-contrast, and dark-field scattering computed tomography. (orig.)

  20. Effect of residual stresses on individual phase mechanical properties of austeno-ferritic duplex stainless steel

    International Nuclear Information System (INIS)

    Dakhlaoui, R.; Baczmanski, A.; Braham, C.; Wronski, S.; Wierzbanowski, K.; Oliver, E.C.

    2006-01-01

    The mechanical properties of both phases in duplex stainless steel have been studied in situ using neutron diffraction during mechanical loading. Important differences in the evolution of lattice strains are observed between tests carried out in tension and compression. An elastoplastic self-consistent model is used to predict the evolution of internal stresses during loading and to identify critical resolved shear stresses and strain hardening parameters of the material. The differences between tensile and compressive behaviours of the phases are explained when the initial stresses are taken into account in model calculations. The yield stresses in each phase of the studied steel have been experimentally determined and successfully compared with the results of the elastoplastic self-consistent model

  1. ONGOING OXIDATIVE STRESS CAUSES SUBCLINICAL NEURONAL DYSFUNCTION IN THE RECOVERY PHASE OF EAE

    Directory of Open Access Journals (Sweden)

    Helena eRadbruch

    2016-03-01

    Full Text Available Most multiple sclerosis patients develop over time a secondary progressive disease course, characterized histologically by axonal loss and atrophy. In early phases of the disease, focal inflammatory demyelination leads to functional impairment, but the mechanism of chronic progression in multiple sclerosis is still under debate. Reactive oxygen species generated by invading and resident central nervous system (CNS macrophages have been implicated in mediating demyelination and axonal damage, but demyelination and neurodegeneration proceed even in the absence of obvious immune cell infiltration, during clinical recovery in chronic multiple sclerosis. Here, we employ intravital NAD(PH fluorescence lifetime imaging to detect functional NADPH oxidases (NOX1-4, DUOX1,2 and, thus, to identify the cellular source of oxidative stress in the central nervous system of mice affected by experimental autoimmune encephalomyelitis (EAE in the remission phase of the disease. This directly affects neuronal function in vivo, as monitored by cellular calcium levels using intravital FRET-FLIM, providing a possible mechanism of disease progression in multiple sclerosis.

  2. Quantitative evaluation of a single-distance phase-retrieval method applied on in-line phase-contrast images of a mouse lung

    International Nuclear Information System (INIS)

    Mohammadi, Sara; Larsson, Emanuel; Alves, Frauke; Dal Monego, Simeone; Biffi, Stefania; Garrovo, Chiara; Lorenzon, Andrea; Tromba, Giuliana; Dullin, Christian

    2014-01-01

    Quantitative analysis concerning the application of a single-distance phase-retrieval algorithm on in-line phase-contrast images of a mouse lung at different sample-to-detector distances is presented. Propagation-based X-ray phase-contrast computed tomography (PBI) has already proven its potential in a great variety of soft-tissue-related applications including lung imaging. However, the strong edge enhancement, caused by the phase effects, often hampers image segmentation and therefore the quantitative analysis of data sets. Here, the benefits of applying single-distance phase retrieval prior to the three-dimensional reconstruction (PhR) are discussed and quantified compared with three-dimensional reconstructions of conventional PBI data sets in terms of contrast-to-noise ratio (CNR) and preservation of image features. The PhR data sets show more than a tenfold higher CNR and only minor blurring of the edges when compared with PBI in a predominately absorption-based set-up. Accordingly, phase retrieval increases the sensitivity and provides more functionality in computed tomography imaging

  3. Phase image characterization of ventricular contraction in left anterior hemiblock

    International Nuclear Information System (INIS)

    Ono, Akifumi; Mizuno, Haruyoshi; Tahara, Yorio; Ishikawa, Kyozo

    1991-01-01

    We investigated whether or not left anterior hemiblock is present in patients with left axis deviation using first-harmonic Fourier analysis of gated blood-pool images. Gated blood-pool images were taken in 50 patients without contraction abnormality. They included 14 normal subjects, 8 patients with right bundle branch block (RBBB), 20 with left axis deviation (LAD) and 8 with both RBBB and LAD (RBBB+LAD). ECG gated blood-pool scans were acquired in the anterior and 'best septal' left anterior oblique projections. First, the phase images were displayed cinematically as a continuous-loop movie. Next, for quantitative analysis of the phase image, the whole left ventricular and left ventricular high lateral regions of interest were drawn. The 'regional phase shift' (RPS) was then defined as {RPS=A-a} where 'A' is the mean value of the whole left ventricular phase angles and 'a' is that of phase angles in the high lateral region. The left ventricular phase changes and the RPSs in the RBBB and LAD groups were similar to those in the normal group. In the RBBB+LAD group, the latest phase changes occurred in the high anterolateral region. The RPSs of this group were significantly lower than those in the other 3 groups (p<0.01). These data suggest that left anterior hemiblock might coexist with RBBB in patients with RBBB+LAD, whereas left anterior hemiblock might not exist in the majority of patients with LAD alone. (author)

  4. Interferometric Imaging Directly with Closure Phases and Closure Amplitudes

    Science.gov (United States)

    Chael, Andrew A.; Johnson, Michael D.; Bouman, Katherine L.; Blackburn, Lindy L.; Akiyama, Kazunori; Narayan, Ramesh

    2018-04-01

    Interferometric imaging now achieves angular resolutions as fine as ∼10 μas, probing scales that are inaccessible to single telescopes. Traditional synthesis imaging methods require calibrated visibilities; however, interferometric calibration is challenging, especially at high frequencies. Nevertheless, most studies present only a single image of their data after a process of “self-calibration,” an iterative procedure where the initial image and calibration assumptions can significantly influence the final image. We present a method for efficient interferometric imaging directly using only closure amplitudes and closure phases, which are immune to station-based calibration errors. Closure-only imaging provides results that are as noncommittal as possible and allows for reconstructing an image independently from separate amplitude and phase self-calibration. While closure-only imaging eliminates some image information (e.g., the total image flux density and the image centroid), this information can be recovered through a small number of additional constraints. We demonstrate that closure-only imaging can produce high-fidelity results, even for sparse arrays such as the Event Horizon Telescope, and that the resulting images are independent of the level of systematic amplitude error. We apply closure imaging to VLBA and ALMA data and show that it is capable of matching or exceeding the performance of traditional self-calibration and CLEAN for these data sets.

  5. Same day injections of Tc-99m methoxy isobutyl isonitrile (hexamibi) for myocardial tomographic imaging: Comparison between rest-stress and stress-rest injection sequences

    International Nuclear Information System (INIS)

    Taillefer, R.; Gagnon, A.; Laflamme, L.; Leveille, J.; Phaneuf, D.C.

    1989-01-01

    It has been shown that both rest and stress 99m Tc-hexamibi myocardial perfusion imaging can be performed on the same day using two different doses injected within few h (the first one at rest followed by a second at stress). In order to evaluate and compare 2 sequences (rest-stress and stress-rest) of 99m Tc-hexamibi injections performed the same day, 18 patients with either abnormal 201 Tl myocardial scan or abnormal coronary angiography were studied with 2 99m Tc-hexamibi injections protocols. The rest-stress study was performed as follows: 7 mCi 99m Tc-hexamibi was injected at rest. Single photon emission computed tomography (SPECT) was performed 60 min later. Immediately after the rest study, patients were injected at peak stress with 25 mCi 99m Tc-hexamibi. Tomographic imaging was repeated 1 h later. Patients were submitted to the stress-rest protocol within 3 days. Tomographic imaging was done 1 h after a 7 mCi injection at stress. This study was followed by an injection of 25 mCi 99m Tc-hexamibi at rest, a tomographic study was performed 60 min later. Myocardial sections were reconstructed in horizontal long, vertical long, and short axes. Data analysis also included polar map representation. A total of 324 segments were interpreted blind by 3 observers, there was an agreement in 283/324 (87.3%) segments between the 2 protocols. However, 24 segments (7.4%) judged ischemic on rest-stress were called scars on stress-rest. In three patients, myocardial segments were judged normal on the rest image of the rest-stress protocol while they were found abnormal (false positive images) on the stress-rest sequence. Stress images from both protocols were judged similar in 17 patients. In conclusion, when using a short time interval (less than 2 h) between two 99m Tc-hexamibi injections, it is preferable to do a rest-stress sequence since the rest image performed initially represents a true rest study, which is not necessarily the case with the stress-rest sequence

  6. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.

    Science.gov (United States)

    Raben, Jaime S; Hariharan, Prasanna; Robinson, Ronald; Malinauskas, Richard; Vlachos, Pavlos P

    2016-03-01

    We present advanced particle image velocimetry (PIV) processing, post-processing, and uncertainty estimation techniques to support the validation of computational fluid dynamics analyses of medical devices. This work is an extension of a previous FDA-sponsored multi-laboratory study, which used a medical device mimicking geometry referred to as the FDA benchmark nozzle model. Experimental measurements were performed using time-resolved PIV at five overlapping regions of the model for Reynolds numbers in the nozzle throat of 500, 2000, 5000, and 8000. Images included a twofold increase in spatial resolution in comparison to the previous study. Data was processed using ensemble correlation, dynamic range enhancement, and phase correlations to increase signal-to-noise ratios and measurement accuracy, and to resolve flow regions with large velocity ranges and gradients, which is typical of many blood-contacting medical devices. Parameters relevant to device safety, including shear stress at the wall and in bulk flow, were computed using radial basis functions. In addition, in-field spatially resolved pressure distributions, Reynolds stresses, and energy dissipation rates were computed from PIV measurements. Velocity measurement uncertainty was estimated directly from the PIV correlation plane, and uncertainty analysis for wall shear stress at each measurement location was performed using a Monte Carlo model. Local velocity uncertainty varied greatly and depended largely on local conditions such as particle seeding, velocity gradients, and particle displacements. Uncertainty in low velocity regions in the sudden expansion section of the nozzle was greatly reduced by over an order of magnitude when dynamic range enhancement was applied. Wall shear stress uncertainty was dominated by uncertainty contributions from velocity estimations, which were shown to account for 90-99% of the total uncertainty. This study provides advancements in the PIV processing methodologies over

  7. Application of Fourier-wavelet regularized deconvolution for improving image quality of free space propagation x-ray phase contrast imaging.

    Science.gov (United States)

    Zhou, Zhongxing; Gao, Feng; Zhao, Huijuan; Zhang, Lixin

    2012-11-21

    New x-ray phase contrast imaging techniques without using synchrotron radiation confront a common problem from the negative effects of finite source size and limited spatial resolution. These negative effects swamp the fine phase contrast fringes and make them almost undetectable. In order to alleviate this problem, deconvolution procedures should be applied to the blurred x-ray phase contrast images. In this study, three different deconvolution techniques, including Wiener filtering, Tikhonov regularization and Fourier-wavelet regularized deconvolution (ForWaRD), were applied to the simulated and experimental free space propagation x-ray phase contrast images of simple geometric phantoms. These algorithms were evaluated in terms of phase contrast improvement and signal-to-noise ratio. The results demonstrate that the ForWaRD algorithm is most appropriate for phase contrast image restoration among above-mentioned methods; it can effectively restore the lost information of phase contrast fringes while reduce the amplified noise during Fourier regularization.

  8. Usefulness of tomographic phase image in ventricular conduction abnormalities

    International Nuclear Information System (INIS)

    Sakurai, Mitsuru; Watanabe, Yoshihiko; Kondo, Takeshi

    1985-01-01

    In order to evaluate three-dimensional phase changes in ventricular conduction abnormalities, tomographic phase images were constructed in 7 normal subjects, 12 patients with ventricular pacing, 21 patients with bundle branch block and 12 patients with Wolff-Parkinson-White syndrome. Eight to 12 slices of the short-axis ventricular tomographic phase image (TPI) were derived using a 7-pinhole collimator, and compared with planar phase images (PPIs) in left anterior oblique (LAO) and right anterior oblique (RAO) projections. TPIs were excellent for observing biventricular phase changes in the long-axis direction. In 6 cases of complete right bundle branch block with left axis deviation (beyond -30 0 ), the phase delay in the left ventricular anterior wall was recognized in 5 cases by TPI, although it was difficult to be detected by PPIs. The site of the pacing electrode was identified by TPI in 11 out of 12 cases, compared to 8 cases by PPIs in LAO and RAO projections. The site of the accessory pathway in Wolff-Parkinson-White syndrome was detected in the basal slice of TPIs in 10 out of 12 cases, compared to 8 cases by PPI in the LAO projection. Therefore, it is obvious that TPIs offer more valid information than PPIs. In conclusion, TPI is useful for investigation of ventricular conduction abnormalities. (author)

  9. Thallium reinjection after stress-redistribution imaging. Does 24-hour delayed imaging after reinjection enhance detection of viable myocardium

    International Nuclear Information System (INIS)

    Dilsizian, V.; Smeltzer, W.R.; Freedman, N.M.; Dextras, R.; Bonow, R.O.

    1991-01-01

    Thallium reinjection immediately after conventional stress-redistribution imaging improves the detection of viable myocardium, as many myocardial regions with apparently 'irreversible' thallium defects on standard 3-4-hour redistribution images manifest enhanced thallium uptake after reinjection. Because the 10-minute period between reinjection and imaging may be too short, the present study was designed to determine whether 24-hour imaging after thallium reinjection provides additional information regarding myocardial viability beyond that obtained by imaging shortly after reinjection. We studied 50 patients with chronic stable coronary artery disease undergoing exercise thallium tomography, radionuclide angiography, and coronary arteriography. Immediately after the 3-4-hour redistribution images were obtained, 1 mCi thallium was injected at rest, and images were reacquired at 10 minutes and 24 hours after reinjection. The stress, redistribution, reinjection, and 24-hour images were then analyzed qualitatively and quantitatively. Of the 127 abnormal myocardial regions on the stress images, 55 had persistent defects on redistribution images by qualitative analysis, of which 25 (45%) demonstrated improved thallium uptake after reinjection. At the 24-hour study, 23 of the 25 regions (92%) with previously improved thallium uptake by reinjection showed no further improvement. Similarly, of the 30 regions determined to have irreversible defects after reinjection, 29 (97%) remained irreversible on 24-hour images. These findings were confirmed by the quantitative analysis. The mean normalized thallium activity in regions with enhanced thallium activity after reinjection increased from 57 +/- 13% on redistribution studies to 70 +/- 14% after reinjection but did not change at 24 hours (71 +/- 14%)

  10. Longitudinal stress fractures of the tibia: diagnosis by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Umans, H.R.; Kaye, J.J.

    1996-01-01

    Previous works describe magnetic resonance (MR) imaging characteristics of stress fractures. This report focusses on MR imaging of longitudinal stress fractures of the tibia. Six cases are presented in which a longitudinal linear abnormal marrow signal was detected in the middle and distal parts of the tibial shaft. Five patients were imaged using a 1.5 Tesla MR unit. Axial, sagittal and coronal T1 and T2-weighted or fat suppressed proton density fast spin echo images were obtained in all but one patient. One patient was imaged using a 0.5 Tesla MR unit with axial and coronal T1- and T2-weighted sequences. Initial conventional radiographs seen at clinical presentation were interpreted as normal in all cases. Two patients underwent radionuclide bone scan, and one patient was imaged with CT prior to MR imaging. In each instance, MR imaging demonstrated linear marrow signal abnormalities orientated along the long axis of the tibial shaft. Endosteal and periosteal callus was identified on axial images. In all cases, MR imaging clearly demonstrated a fracture extending through one cortex with abnormal signal in both the marrow cavity as well as adjacent soft tissues indicating edema. (orig./MG)

  11. Longitudinal stress fractures of the tibia: diagnosis by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Umans, H.R. [Dept. of Radiology, Albert Einstein Coll. of Medicine and Montefiore Medical Center, Bronx, NY (United States); Kaye, J.J. [The Hospital for Special Surgery, New York, NY (United States)

    1996-05-01

    Previous works describe magnetic resonance (MR) imaging characteristics of stress fractures. This report focusses on MR imaging of longitudinal stress fractures of the tibia. Six cases are presented in which a longitudinal linear abnormal marrow signal was detected in the middle and distal parts of the tibial shaft. Five patients were imaged using a 1.5 Tesla MR unit. Axial, sagittal and coronal T1 and T2-weighted or fat suppressed proton density fast spin echo images were obtained in all but one patient. One patient was imaged using a 0.5 Tesla MR unit with axial and coronal T1- and T2-weighted sequences. Initial conventional radiographs seen at clinical presentation were interpreted as normal in all cases. Two patients underwent radionuclide bone scan, and one patient was imaged with CT prior to MR imaging. In each instance, MR imaging demonstrated linear marrow signal abnormalities orientated along the long axis of the tibial shaft. Endosteal and periosteal callus was identified on axial images. In all cases, MR imaging clearly demonstrated a fracture extending through one cortex with abnormal signal in both the marrow cavity as well as adjacent soft tissues indicating edema. (orig./MG)

  12. Direct imaging of phase objects enables conventional deconvolution in bright field light microscopy.

    Directory of Open Access Journals (Sweden)

    Carmen Noemí Hernández Candia

    Full Text Available In transmitted optical microscopy, absorption structure and phase structure of the specimen determine the three-dimensional intensity distribution of the image. The elementary impulse responses of the bright field microscope therefore consist of separate absorptive and phase components, precluding general application of linear, conventional deconvolution processing methods to improve image contrast and resolution. However, conventional deconvolution can be applied in the case of pure phase (or pure absorptive objects if the corresponding phase (or absorptive impulse responses of the microscope are known. In this work, we present direct measurements of the phase point- and line-spread functions of a high-aperture microscope operating in transmitted bright field. Polystyrene nanoparticles and microtubules (biological polymer filaments serve as the pure phase point and line objects, respectively, that are imaged with high contrast and low noise using standard microscopy plus digital image processing. Our experimental results agree with a proposed model for the response functions, and confirm previous theoretical predictions. Finally, we use the measured phase point-spread function to apply conventional deconvolution on the bright field images of living, unstained bacteria, resulting in improved definition of cell boundaries and sub-cellular features. These developments demonstrate practical application of standard restoration methods to improve imaging of phase objects such as cells in transmitted light microscopy.

  13. Prospects and challenges of quantitative phase imaging in tumor cell biology

    Science.gov (United States)

    Kemper, Björn; Götte, Martin; Greve, Burkhard; Ketelhut, Steffi

    2016-03-01

    Quantitative phase imaging (QPI) techniques provide high resolution label-free quantitative live cell imaging. Here, prospects and challenges of QPI in tumor cell biology are presented, using the example of digital holographic microscopy (DHM). It is shown that the evaluation of quantitative DHM phase images allows the retrieval of different parameter sets for quantification of cellular motion changes in migration and motility assays that are caused by genetic modifications. Furthermore, we demonstrate simultaneously label-free imaging of cell growth and morphology properties.

  14. Influence of stress and phase on corrosion of a superelastic nickel-titanium orthodontic wire.

    Science.gov (United States)

    Segal, Nadav; Hell, Jess; Berzins, David W

    2009-06-01

    The purpose of this investigation was to study the effect of stress and phase transformation on the corrosion properties of a superelastic nickel-titanium orthodontic wire. The phase transformation profiles of superelastic nickel-titanium (Sentalloy, GAC International, Bohemia, NY) and beta-titanium (TMA, Ormco, Orange, Calif) archwires were analyzed by using differential scanning calorimetry. The force/deflection behavior of the wires at 37 degrees C was measured in a 3-point bending test per modified American Dental Association specification no. 32. Electrochemical testing consisted of monitoring the open circuit potential (OCP) for 2 hours followed by polarization resistance and cyclic polarization tests on archwire segments engaged in a 5-bracket simulation apparatus with bend deflections of 0.75, 1.5, or 3 mm in artificial saliva at 37 degrees C. Nondeflected segments were also tested. Sentalloy was additionally examined for bending and corrosion at 5 degrees C, where it exists as martensite and is devoid of stress-induced phase transformation. OCP at 2 hours and corrosion current density (i(corr)) were analyzed by using ANOVA and Tukey tests (alpha = .05) (n = 10 per deflection). Significant differences (P Sentalloy wires at 5 degrees C, but not for Sentalloy at 37 degrees C. Significant differences (P Sentalloy (37 degrees C) peaked at 0.75 mm deflection before the wire's stress-induced phase transformation point and then decreased with further deflection and transformation. The i(corr) values for TMA and Sentalloy at 5 degrees C, both of which do not undergo phase transformation with deformation, continuously increased from 0 to 1.5 mm deflection before decreasing at the 3.0-mm deflection. Stress increased the corrosion rate in nickel-titanium and beta-titanium orthodontic wires. Alterations in stress/strain associated with phase transformation in superelastic nickel-titanium might alter the corrosion rate in ways different from wires not undergoing phase

  15. Effect of masking phase-only holograms on the quality of reconstructed images.

    Science.gov (United States)

    Deng, Yuanbo; Chu, Daping

    2016-04-20

    A phase-only hologram modulates the phase of the incident light and diffracts it efficiently with low energy loss because of the minimum absorption. Much research attention has been focused on how to generate phase-only holograms, and little work has been done to understand the effect and limitation of their partial implementation, possibly due to physical defects and constraints, in particular as in the practical situations where a phase-only hologram is confined or needs to be sliced or tiled. The present study simulates the effect of masking phase-only holograms on the quality of reconstructed images in three different scenarios with different filling factors, filling positions, and illumination intensity profiles. Quantitative analysis confirms that the width of the image point spread function becomes wider and the image quality decreases, as expected, when the filling factor decreases, and the image quality remains the same for different filling positions as well. The width of the image point spread function as derived from different filling factors shows a consistent behavior to that as measured directly from the reconstructed image, especially as the filling factor becomes small. Finally, mask profiles of different shapes and intensity distributions are shown to have more complicated effects on the image point spread function, which in turn affects the quality and textures of the reconstructed image.

  16. Comparison of adenosine stress and exercise stress 201Tl myocardial perfusion imaging for diagnosis of coronary heart disease

    International Nuclear Information System (INIS)

    Chen Guibing; Wu Hua; Jiang Ningyi; Liu Sheng; Lu Xianping; Liang Jiugen; Zhang Hong

    2007-01-01

    Objective: The aim of this study was to compare the diagnostic values of adenosine and exercise stress 201 Tl myocardial perfusion imaging for detecting coronary heart disease (CHD). Methods: 41 patients with suspected CHD were randomly divided into two groups. In one group adenosine stress was submitted, the exercise stress myocardial SPECT was performed in another. Coronary angiography (CAG) was performed in each patient within 2 weeks before or after SPECT. The result of CAG was taken as 'gold standard of CHD. They compared the diagnostic value of two methods. Results: In adenosine group, the sensitivity, specificity, positive predictive value, negative predictive value, accuracy are 92.86%, 57.14%, 81.25%, 80.00%, 80.95% respectively. In exercise stress group, are 100%, 60.0%, 71.43%, 100%, 80.00% respectively. Detection rates of coronary artery lesions were 66.67% and 72.22% in two groups respectively. Conclusion Adenosine stress testing and exercise stress testing 201 Tl myocardial perfusion imaging may provide similar value for detection of CHD. (authors)

  17. Assessment of coronary artery disease with nicorandil stress magnetic resonance imaging

    International Nuclear Information System (INIS)

    Kawase, Yoshio; Nichimoto, Masaki; Hato, Katsunori; Okajima, Kazue; Yoshikawa, Junichi

    2004-01-01

    Although dipyridamole and adenosine have been used as vasodilator agents, we believe they are inadequate for vasodilator perfusion magnetic resonance imaging, due to adverse effects (flushing, warmth, headaches, and arrhythmia). Nicorandil, a potassium channel opener, has been reported to increase coronary blood flow and it was associated with fewer adverse effects than adenosine or dipiridamole. We set out to investigate whether the coronary artery stenosis could be assessed by nicorandil stress perfusion magnetic resonance imaging. First-pass contrast-enhanced magnetic resonance images of the left ventricle acquired from 50 patients at rest and during intravenous administration of nicorandil using multi-slice turbo field echo with multi shot echo-planar-imaging. Coronary angiography was performed within 1 week. There was no adverse effects during nicorandil stress in any patients. The overall sensitivity and specificity of magnetic resonance imaging in identifying patients with significant stenosis of at least one coronary artery were 93.9% (31 of 33 patients) and 94.1% (16 of 17 patients), respectively. The sensitivity of magnetic resonance imaging for detecting significant stenosis in the left anterior descending artery was 87.5%; the sensitivity in the left circumflex artery was 80%; the sensitivity in the right coronary artery was 92.3%. Similar sensitivities were observed for all 3 vascular regions, indicating that all myocardial segments were visualized with similar image quality. The present study shows that nicorandil stress perfusion magnetic resonance imaging is a safe, feasible technique for assessing coronary artery stenosis severity in a totally-noninvasive manner. (authors)

  18. Effects of plasticization and shear stress on phase structure development and properties of soy protein blends.

    Science.gov (United States)

    Chen, Feng; Zhang, Jinwen

    2010-11-01

    In this study, soy protein concentrate (SPC) was used as a plastic component to blend with poly(butylene adipate-co-terephthalate) (PBAT). Effects of SPC plasticization and blend composition on its deformation during mixing were studied in detail. Influence of using water as the major plasticizer and glycerol as the co-plasticizer on the deformation of the SPC phase during mixing was explored. The effect of shear stress, as affected by SPC loading level, on the phase structure of SPC in the blends was also investigated. Quantitative analysis of the aspect ratio of SPC particles was conducted by using ImageJ software, and an empirical model predicting the formation of percolated structure was applied. The experimental results and the model prediction showed a fairly good agreement. The experimental results and statistic analysis suggest that both SPC loading level and its water content prior to compounding had significant influences on development of the SPC phase structure and were correlated in determining the morphological structures of the resulting blends. Consequently, physical and mechanical properties of the blends greatly depended on the phase morphology and PBAT/SPC ratio of the blends.

  19. MR imaging of pelvic floor in stress urinary incontinence=20

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Rae; Park, Heung Jae; Kook, Shin Ho; Chung, Eun Chul [Kangbuk Samsung Hospital, College of Medicine, Sungkyunkwan University, Seoul (Korea, Republic of)

    2000-04-01

    To demonstrate the anatomy of the female pelvic floor and to determine the anatomic differences between normal controls and women with stress urinary incontinence, using MRI. Five healthy, young, nulliparous women and 12 with stress urinary incontinence underwent MR imaging. We obtained FSE T2-weighted axial images, 3mm thick, of the region extending from the urethroversical junction to the perineal membrane. The following parameters were determined : angle, asymmetry and signal intensity of the levator ani muscles, the distance between the urethra and symphysis, and the presence, shape and angulation of urethropelvic ligament. In contrast to normal controls, frequent findings in women with stress incontinence were as follows : increased angle (43%), asymmetry (43%) and higher signal intensity (67%) of the levator ani muscles; increased distance between the urethra and symphysis; loss (43%), discontinuity (60%) and dorsal angulation (43%) of the urethropelvic ligament. In women with stress urinary incontinence, MRI clearly demonstrates the anatomy of the female pelvic floor, changes in the levator ani muscles, the distance between the urethra and symphysis, and the urethropelvic ligament. The modality can therefore be used to evaluate the anatomical changes occurring in cases of stress urinary incontinence. (author)

  20. Model-based magnetization retrieval from holographic phase images

    Energy Technology Data Exchange (ETDEWEB)

    Röder, Falk, E-mail: f.roeder@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, Bautzner Landstr. 400, D-01328 Dresden (Germany); Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Vogel, Karin [Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Wolf, Daniel [Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, Bautzner Landstr. 400, D-01328 Dresden (Germany); Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Hellwig, Olav [Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, Bautzner Landstr. 400, D-01328 Dresden (Germany); AG Magnetische Funktionsmaterialien, Institut für Physik, Technische Universität Chemnitz, D-09126 Chemnitz (Germany); HGST, A Western Digital Company, 3403 Yerba Buena Rd., San Jose, CA 95135 (United States); Wee, Sung Hun [HGST, A Western Digital Company, 3403 Yerba Buena Rd., San Jose, CA 95135 (United States); Wicht, Sebastian; Rellinghaus, Bernd [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany)

    2017-05-15

    The phase shift of the electron wave is a useful measure for the projected magnetic flux density of magnetic objects at the nanometer scale. More important for materials science, however, is the knowledge about the magnetization in a magnetic nano-structure. As demonstrated here, a dominating presence of stray fields prohibits a direct interpretation of the phase in terms of magnetization modulus and direction. We therefore present a model-based approach for retrieving the magnetization by considering the projected shape of the nano-structure and assuming a homogeneous magnetization therein. We apply this method to FePt nano-islands epitaxially grown on a SrTiO{sub 3} substrate, which indicates an inclination of their magnetization direction relative to the structural easy magnetic [001] axis. By means of this real-world example, we discuss prospects and limits of this approach. - Highlights: • Retrieval of the magnetization from holographic phase images. • Magnetostatic model constructed for a magnetic nano-structure. • Decomposition into homogeneously magnetized components. • Discretization of a each component by elementary cuboids. • Analytic solution for the phase of a magnetized cuboid considered. • Fitting a set of magnetization vectors to experimental phase images.

  1. Fast X-ray imaging of two-phase flows: Application to cavitating flows

    International Nuclear Information System (INIS)

    Khlifa, Ilyass

    2014-01-01

    A promising method based on fast X-ray imaging has been developed to investigate the dynamics and the structure of complex two-phase flows. It has been applied in this work on cavitating flows created inside a Venturi-type test section and helped therefore to better understand flows inside cavitation pockets. Seeding particles were injected into the flow to trace the liquid phase. Thanks to the characteristics of the beam provided by the APS synchrotron (Advance Photon Source, USA), high definition X-ray images of the flow containing simultaneously information for both liquid and vapour were obtained. Velocity fields of both phases were thus calculated using image cross-correlation algorithms. Local volume fractions of vapour have also been obtained using local intensities of the images. Beforehand however, image processing is required to separate phases for velocity measurements. Validation methods of all applied treatments were developed, they allowed to characterise the measurement accuracy. This experimental technique helped us to have more insight into the dynamic of cavitating flows and especially demonstrates the presence of significant slip velocities between phases. (author)

  2. Gradient stress induced coexistence of tetragonal and rhombohedral phases in Pb(Zr,Ti)O3 films

    International Nuclear Information System (INIS)

    Li Liben; Chen Qingdong; Li Xinzhong; Hu Zhixiang; Zhen Zhiqiang

    2009-01-01

    Thermodynamic theory has been used to explain quantitatively the coexistence of tetragonal and rhombohedral phases in Zr-rich Pb(Zr, Ti)O 3 (PZT) films grown on a compressive substrate. The key is to consider a set of gradient thermal stresses imposed on the films. The 'stress-temperature' phase diagrams were developed for PZT films of several different compositions (Ti/Zr=20/80, 30/70, 40/60, 50/50). The characteristic feature of the phase diagrams for Zr-rich PZT films is the coexistence of tetragonal and rhombohedral phases in the compressive stress region. The volume fractions of the rhombohedral phase were calculated for the Zr-rich PZT films grown on MgO substrate. The result agrees with the experiment.

  3. Improvements in image quality with pseudo-parallel imaging in the phase-scrambling fourier transform technique

    International Nuclear Information System (INIS)

    Ito, Satoshi; Kawawa, Yasuhiro; Yamada, Yoshifumi

    2010-01-01

    The signal obtained in the phase-scrambling Fourier transform (PSFT) imaging technique can be transformed to the signal described by the Fresnel transform of the objects, in which the amplitude of the PSFT presents some kind of blurred image of the objects. Therefore, the signal can be considered to exist in the object domain as well as the Fourier domain of the object. This notable feature makes it possible to assign weights to the reconstructed images by applying a weighting function to the PSFT signal after data acquisition, and as a result, pseudo-parallel image reconstruction using these aliased image data with different weights on the images is feasible. In this study, the improvements in image quality with such pseudo-parallel imaging were examined and demonstrated. The weighting function of the PSFT signal that provides a given weight on the image is estimated using the obtained image data and is iteratively updated after sensitivity encoding (SENSE)-based image reconstruction. Simulation studies showed that reconstruction errors were dramatically reduced and that the spatial resolution was also improved in almost all image spaces. The proposed method was applied to signals synthesized from MR image data with phase variations to verify its effectiveness. It was found that the image quality was improved and that images almost entirely free of aliasing artifacts could be obtained. (author)

  4. Approximated transport-of-intensity equation for coded-aperture x-ray phase-contrast imaging.

    Science.gov (United States)

    Das, Mini; Liang, Zhihua

    2014-09-15

    Transport-of-intensity equations (TIEs) allow better understanding of image formation and assist in simplifying the "phase problem" associated with phase-sensitive x-ray measurements. In this Letter, we present for the first time to our knowledge a simplified form of TIE that models x-ray differential phase-contrast (DPC) imaging with coded-aperture (CA) geometry. The validity of our approximation is demonstrated through comparison with an exact TIE in numerical simulations. The relative contributions of absorption, phase, and differential phase to the acquired phase-sensitive intensity images are made readily apparent with the approximate TIE, which may prove useful for solving the inverse phase-retrieval problem associated with these CA geometry based DPC.

  5. Noninterferometric phase imaging of a neutral atomic beam

    International Nuclear Information System (INIS)

    Fox, P.J.; Mackin, T.R.; Turner, L.D.; Colton, I.; Nugent, K.A.; Scholten, R.E.

    2002-01-01

    We demonstrate quantitative phase imaging of a neutral atomic beam by using a noninterferometric technique. A collimated thermal atomic beam is phase shifted by an off-resonant traveling laser beam with both a Gaussian and a TEM 01 profile and with both red and blue detuning of as much as 50 GHz. Phase variations of more than 1000 rad were recovered from velocity-selective measurements of the propagation of the atomic beam and were found to be in quantitative agreement with theoretical predictions based on independently measured phase object intensity profiles and detunings

  6. Young's modulus and residual stress of GeSbTe phase-change thin films

    NARCIS (Netherlands)

    Nazeer, H.; Bhaskaran, Harish; Woldering, L.A.; Abelmann, Leon

    2015-01-01

    The mechanical properties of phase change materials alter when the phase is transformed. In this paper, we report on experiments that determine the change in crucial parameters such as Young's modulus and residual stress for two of the most widely employed compositions of phase change films,

  7. Danish dentists' career satisfaction in relation to perceived occupational stress and public image

    DEFF Research Database (Denmark)

    Moore, R.

    2000-01-01

    The relationship between Danish dentists' perceptions of satisfaction with their career choice and beliefs about their occupational stress or public image was surveyed. A mailed questionnaire was completed by 216 randomly selected Danish private dentists in and around Århus. Of these, only 19% were...... dissatisfied and would not recommend dentistry as a career to young people, while almost 60% perceived dentistry as more stressful than other professions and 31% felt that dentists' public image was less than good or poor. Odds ratio (OR) analyses indicated that perceived career dissatisfaction was most...... prevalent in dentists aged >45 years (OR = 3.1) or who practiced more than 18 years (OR = 2.7), with perceived poor role image (OR = 3.0) or high perceived stress (OR = 2.1). The contribution of perceived high stress approached, but did not attain statistical significance. Adjusted odds ratios provided...

  8. Phase-Image Encryption Based on 3D-Lorenz Chaotic System and Double Random Phase Encoding

    Science.gov (United States)

    Sharma, Neha; Saini, Indu; Yadav, AK; Singh, Phool

    2017-12-01

    In this paper, an encryption scheme for phase-images based on 3D-Lorenz chaotic system in Fourier domain under the 4f optical system is presented. The encryption scheme uses a random amplitude mask in the spatial domain and a random phase mask in the frequency domain. Its inputs are phase-images, which are relatively more secure as compared to the intensity images because of non-linearity. The proposed scheme further derives its strength from the use of 3D-Lorenz transform in the frequency domain. Although the experimental setup for optical realization of the proposed scheme has been provided, the results presented here are based on simulations on MATLAB. It has been validated for grayscale images, and is found to be sensitive to the encryption parameters of the Lorenz system. The attacks analysis shows that the key-space is large enough to resist brute-force attack, and the scheme is also resistant to the noise and occlusion attacks. Statistical analysis and the analysis based on correlation distribution of adjacent pixels have been performed to test the efficacy of the encryption scheme. The results have indicated that the proposed encryption scheme possesses a high level of security.

  9. Phase-contrast enhanced mammography: A new diagnostic tool for breast imaging

    International Nuclear Information System (INIS)

    Wang Zhentian; Thuering, Thomas; David, Christian; Roessl, Ewald; Trippel, Mafalda; Kubik-Huch, Rahel A.; Singer, Gad; Hohl, Michael K.; Hauser, Nik; Stampanoni, Marco

    2012-01-01

    Phase contrast and scattering-based X-ray imaging can potentially revolutionize the radiological approach to breast imaging by providing additional and complementary information to conventional, absorption-based methods. We investigated native, non-fixed whole breast samples using a grating interferometer with an X-ray tube-based configuration. Our approach simultaneously recorded absorption, differential phase contrast and small-angle scattering signals. The results show that this novel technique - combined with a dedicated image fusion algorithm - has the potential to deliver enhanced breast imaging with complementary information for an improved diagnostic process.

  10. Phase-contrast enhanced mammography: A new diagnostic tool for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhentian; Thuering, Thomas; David, Christian; Roessl, Ewald; Trippel, Mafalda; Kubik-Huch, Rahel A.; Singer, Gad; Hohl, Michael K.; Hauser, Nik; Stampanoni, Marco [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen (Switzerland); Laboratory for Micro and Nanotechnology, Paul Scherrer Institut, 5232 Villigen (Switzerland); Philips Technologie GmbH, Roentgenstrasse 24, 22335 Hamburg (Germany); Institute of Pathology, Kantonsspital Baden, 5404 Baden (Switzerland); Department of Radiology, Kantonsspital Baden, 5404 Baden (Switzerland); Institute of Pathology, Kantonsspital Baden, 5404 Baden (Switzerland); Department of Gynecology and Obstetrics, Interdisciplinary Breast Center Baden, Kantonsspital Baden, 5404 Baden (Switzerland); Swiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland and Institute for Biomedical Engineering, University and ETH Zuerich, 8092 Zuerich (Switzerland)

    2012-07-31

    Phase contrast and scattering-based X-ray imaging can potentially revolutionize the radiological approach to breast imaging by providing additional and complementary information to conventional, absorption-based methods. We investigated native, non-fixed whole breast samples using a grating interferometer with an X-ray tube-based configuration. Our approach simultaneously recorded absorption, differential phase contrast and small-angle scattering signals. The results show that this novel technique - combined with a dedicated image fusion algorithm - has the potential to deliver enhanced breast imaging with complementary information for an improved diagnostic process.

  11. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinquan [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Sun, Xiaodong, E-mail: sun.200@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Liu, Yang [Nuclear Engineering Program, Department of Mechanical Engineering, Virginia Tech, 635 Prices Fork Road, Blacksburg, VA 24061 (United States)

    2016-12-15

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  12. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    International Nuclear Information System (INIS)

    Zhou, Xinquan; Sun, Xiaodong; Liu, Yang

    2016-01-01

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  13. Polarization Imaging Apparatus for Cell and Tissue Imaging and Diagnostics, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This work proposes to capitalize on our Phase I success in a novel visible-near infrared Stokes polarization imaging technology based on high performance fast...

  14. In-line X-ray phase-contrast imaging of murine liver microvasculature ex vivo

    International Nuclear Information System (INIS)

    Li Beilei; Xu Min; Shi Hongcheng; Chen Shaoliang; Wu Weizhong; Peng Guanyun; Zhang Xi; Peng Yifeng

    2012-01-01

    Imaging blood vessels is of importance for determining the vascular distribution of organs and tumors. Phase-contrast X-ray imaging can reveal the vessels in much more detail than conventional X-ray absorption method. Visualizing murine liver microvasculature ex vivo with phase-contrast X-ray imaging was performed at Shanghai Synchrotron Radiation Facility. Barium sulfate and physiological saline were used as contrast agents for the blood vessels. Blood vessels of <Φ20 μm could be detected by replacing resident blood with physiological saline or barium sulfate. An entire branch of the portal vein (from the main axial portal vein to the ninth generation of branching) could be captured in a single phase-contrast image. It is demonstrated that selective angiography based on phase contrast X-ray imaging, with a physiological material of low Z elements (such as saline) being the contrast agent, is a viable imaging strategy. Further efforts will be focused on using the technique to image tumor angiogenesis. (authors)

  15. Stress fractures: pathophysiology, clinical presentation, imaging features, and treatment options.

    Science.gov (United States)

    Matcuk, George R; Mahanty, Scott R; Skalski, Matthew R; Patel, Dakshesh B; White, Eric A; Gottsegen, Christopher J

    2016-08-01

    Stress fracture, in its most inclusive description, includes both fatigue and insufficiency fracture. Fatigue fractures, sometimes equated with the term "stress fractures," are most common in runners and other athletes and typically occur in the lower extremities. These fractures are the result of abnormal, cyclical loading on normal bone leading to local cortical resorption and fracture. Insufficiency fractures are common in elderly populations, secondary to osteoporosis, and are typically located in and around the pelvis. They are a result of normal or traumatic loading on abnormal bone. Subchondral insufficiency fractures of the hip or knee may cause acute pain that may present in the emergency setting. Medial tibial stress syndrome is a type of stress injury of the tibia related to activity and is a clinical syndrome encompassing a range of injuries from stress edema to frank-displaced fracture. Atypical subtrochanteric femoral fracture associated with long-term bisphosphonate therapy is also a recently discovered entity that needs early recognition to prevent progression to a complete fracture. Imaging recommendations for evaluation of stress fractures include initial plain radiographs followed, if necessary, by magnetic resonance imaging (MRI), which is preferred over computed tomography (CT) and bone scintigraphy. Radiographs are the first-line modality and may reveal linear sclerosis and periosteal reaction prior to the development of a frank fracture. MRI is highly sensitive with findings ranging from periosteal edema to bone marrow and intracortical signal abnormality. Additionally, a brief description of relevant clinical management of stress fractures is included.

  16. Fast in situ X-ray diffraction phase and stress analysis during complete heat treatment cycles of steel

    International Nuclear Information System (INIS)

    Rocha, A. da S.; Hirsch, T.

    2005-01-01

    This paper presents results obtained with a method for time and temperature resolved analysis of changes in phase composition and stresses/residual stresses during complete heat treatment cycles of steel, including quenching. Sample temperatures of up to 930 deg. C could be reached with a specially designed furnace, where fast cooling of the samples was realized by gas quenching. Measurements for phase and stress analysis could be performed with an acquisition rate of at least one value every 3 s. Results concerning residual stress relaxation during heating, and stress/residual stress development during quenching are presented and discussed for AISI E52100 ball bearing steel. The observed stress development during quenching followed the expected transformation behavior with some deviations that could be explained through the effects of surface decarburization. The system developed proved to be a suitable tool for characterizing phase and stress changes that occur during heat treatment of steels, as a function of time and temperature

  17. Development of phase-contrast imaging technique for material science and medical science applications

    International Nuclear Information System (INIS)

    Kashyap, Y.S.; Roy, Tushar; Sarkar, P.S; Shukla, Mayank; Yadav, P.S; Sinha, Amar; Verma, Vishnu; Ghosh, A.K.

    2007-07-01

    In-line phase contrast imaging technique is an emerging method for study of materials such as carbon fibres, carbon composite materials, polymers etc. These represent the class of materials for which x-ray attenuation cross-section is very small. Similarly, this technique is also well suited for imaging of soft materials such as tissues, distinguishing between tumour and normal tissue. Thus this method promises a far better contrast for low x-ray absorbing substances than the conventional radiography method for material and medical science applications. Though the conventional radiography technique has been carried out for decades, the phase-imaging technique is being demonstrated for the first time within, the country. We have set up an experimental facility for phase contrast imaging using a combination of x-ray CCD detector and a microfocus x-ray source. This facility is dedicated for micro-imaging experiments such as micro-tomography and high resolution phase contrast experiments. In this report, the results of phase contrast imaging using microfocus source and ELETTRA, synchrotron source are discussed. We have also discussed the basic design and heat load calculation for upcoming imaging beamline at Indus-II, RRCAT, Indore. (author)

  18. Three-dimensional imaging using phase retrieval with two focus planes

    Science.gov (United States)

    Ilovitsh, Tali; Ilovitsh, Asaf; Weiss, Aryeh; Meir, Rinat; Zalevsky, Zeev

    2016-03-01

    This work presents a technique for a full 3D imaging of biological samples tagged with gold-nanoparticles (GNPs) using only two images, rather than many images per volume as is currently needed for 3D optical sectioning microscopy. The proposed approach is based on the Gerchberg-Saxton (GS) phase retrieval algorithm. The reconstructed field is free space propagated to all other focus planes using post processing, and the 2D z-stack is merged to create a 3D image of the sample with high fidelity. Because we propose to apply the phase retrieving on nano particles, the regular ambiguities typical to the Gerchberg-Saxton algorithm, are eliminated. In addition, since the method requires the capturing of two images only, it can be suitable for 3D live cell imaging. The proposed concept is presented and validated both on simulated data as well as experimentally.

  19. A simple image-reject mixer based on two parallel phase modulators

    Science.gov (United States)

    Hu, Dapeng; Zhao, Shanghong; Zhu, Zihang; Li, Xuan; Qu, Kun; Lin, Tao; Zhang, Kun

    2018-02-01

    A simple photonic microwave image-reject mixer (IRM) using two parallel phase modulators is proposed. First, a photonic microwave mixer with phase shift ability is achieved using two parallel phase modulators (PMs), an optical bandpass filter, three polarization controllers, three polarization beam splitters and two balanced photodetectors. At the output of the mixer, two frequency downconverted signals with tunable frequency difference can be obtained. By adjusting the phase difference as 90° and utilizing an electrical 90° hybrid, the useless components can be eliminated, and the image reject operation is realized. The key advantage of the proposed scheme is the usage of PM, which avoid the DC bias shifting problem and make the system simple and stable. A simulation is performed to verify the proposed scheme, a relative - 90° or 90° phase shift can be obtained between the two output ports of the photonic microwave mixer, at the output of the IRM, 60 dB image-reject ratio is obtained.

  20. Investigation of the imaging quality of synchrotron-based phase-contrast mammographic tomography

    International Nuclear Information System (INIS)

    Gureyev, T E; Mayo, S C; Nesterets, Ya I; Mohammadi, S; Menk, R H; Arfelli, F; Tromba, G; Lockie, D; Pavlov, K M; Kitchen, M J; Zanconati, F; Dullin, C

    2014-01-01

    We report the results of a systematic study of phase-contrast x-ray computed tomography in the propagation-based and analyser-based modes using specially designed phantoms and excised breast tissue samples. The study is aimed at the quantitative evaluation and subsequent optimization, with respect to detection of small tumours in breast tissue, of the effects of phase contrast and phase retrieval on key imaging parameters, such as spatial resolution, contrast-to-noise ratio, x-ray dose and a recently proposed ‘intrinsic quality’ characteristic which combines the image noise with the spatial resolution. We demonstrate that some of the methods evaluated in this work lead to substantial (more than 20-fold) improvement in the contrast-to-noise and intrinsic quality of the reconstructed tomographic images compared with conventional techniques, with the measured characteristics being in good agreement with the corresponding theoretical estimations. This improvement also corresponds to an approximately 400-fold reduction in the x-ray dose, compared with conventional absorption-based tomography, without a loss in the imaging quality. The results of this study confirm and quantify the significant potential benefits achievable in three-dimensional mammography using x-ray phase-contrast imaging and phase-retrieval techniques. (paper)

  1. Stress-induced phase transformation and room temperature aging in Ti-Nb-Fe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cai, S.; Schaffer, J.E. [Fort Wayne Metals Research Products Corp, 9609 Ardmore Ave., Fort Wayne, IN 46809 (United States); Ren, Y. [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

    2017-01-05

    Room temperature deformation behavior of Ti-17Nb-1Fe and Ti-17Nb-2Fe alloys was studied by synchrotron X-ray diffraction and tensile testing. It was found that, after proper heat treatment, both alloys were able to recover a deformation strain of above 3.5% due to the Stress-induced Martensite (SIM) phase transformation. Higher Fe content increased the beta phase stability and onset stress for SIM transformation. A strong {110}{sub β} texture was produced in Ti-17Nb-2Fe compared to the {210}{sub β} texture that was observed in Ti-17Nb-1Fe. Room temperature aging was observed in both alloys, where the formation of the omega phase increased the yield strength (also SIM onset stress), and decreased the ductility and strain recovery. Other metastable beta Ti alloys may show a similar aging response and this should draw the attention of materials design engineers.

  2. Differential diagnosis of Parkinsonism using dual phase F 18 FP CIT PET imaging

    International Nuclear Information System (INIS)

    Jin, So Young; Oh, Min Young; Ok, Seung Jun; Oh, Jung Su; Lee, Sang Ju; Chung, Sun Ju; Lee, Chong Sik; Kim, Jae Seung

    2012-01-01

    Dopamine transporter (DAT) imaging can demonstrate presynaptic dopaminergic neuronal loss in Parkinson's disease (PD). However, differentiating atypical parkinsonism (APD) from PD is often difficult. We investigated the usefulness of dual phase F 18 FP CIT positron emission tomography (PET) imaging in the differential diagnosis of parkinsonism. Ninety eight subjects [five normal, seven drug induced parkinsonism (DIP), five essential tremor (ET), 24 PD, 20 multiple system atrophy parkinson type (MSA-P), 13 multiple system atrophy cerebellar type (MSA-C), 13 progressive supranuclear palsy (PSP), and 11 dementia with Lewy bodies(DLB)] underwent F 18 FP CIT PET. PET images were acquired at 5 min (early phase) and 3 h (late phase) after F 18 FP CIT administration (185MBq). Regional uptake pattern of cerebral and cerebellar hemispheres was assessed on early phase images, using visual, quantitative, and statistical parametric mapping (SPM) analyses. Striatal DAT binding was normal in normal, ET, DIP, and MSA C groups, but abnormal in PD, MSA P PSP, and DLB groups. No difference was found in regional uptake on early phase images among normal DAT binding groups, except in the MSA C group. Abnormal DAT binding groups showed different regional uptake pattern on early phase images compared with PD in SPM analysis (FDR<0.05). When discriminating APD from PD, visual interpretation of the early phase image showed high diagnostic sensitivity and specificity (75.4% and 100%, respectively). Regarding the ability to distinguish specific APD, sensitivities were 81% for MSA P, 77% for MSA C, 23% for PSP, and 54.5% for DLB. Dual phase F 18 FP CIT PET imaging is useful in demonstrating striatal DAT loss in neurodegenerative parkinsonism, and also in differentiating APD, particularly MSA, from PD

  3. Differential diagnosis of Parkinsonism using dual phase F 18 FP CIT PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jin, So Young; Oh, Min Young; Ok, Seung Jun; Oh, Jung Su; Lee, Sang Ju; Chung, Sun Ju; Lee, Chong Sik; Kim, Jae Seung [Univ. of Ulsan, Seoul (Korea, Republic of)

    2012-03-15

    Dopamine transporter (DAT) imaging can demonstrate presynaptic dopaminergic neuronal loss in Parkinson's disease (PD). However, differentiating atypical parkinsonism (APD) from PD is often difficult. We investigated the usefulness of dual phase F 18 FP CIT positron emission tomography (PET) imaging in the differential diagnosis of parkinsonism. Ninety eight subjects [five normal, seven drug induced parkinsonism (DIP), five essential tremor (ET), 24 PD, 20 multiple system atrophy parkinson type (MSA-P), 13 multiple system atrophy cerebellar type (MSA-C), 13 progressive supranuclear palsy (PSP), and 11 dementia with Lewy bodies(DLB)] underwent F 18 FP CIT PET. PET images were acquired at 5 min (early phase) and 3 h (late phase) after F 18 FP CIT administration (185MBq). Regional uptake pattern of cerebral and cerebellar hemispheres was assessed on early phase images, using visual, quantitative, and statistical parametric mapping (SPM) analyses. Striatal DAT binding was normal in normal, ET, DIP, and MSA C groups, but abnormal in PD, MSA P PSP, and DLB groups. No difference was found in regional uptake on early phase images among normal DAT binding groups, except in the MSA C group. Abnormal DAT binding groups showed different regional uptake pattern on early phase images compared with PD in SPM analysis (FDR<0.05). When discriminating APD from PD, visual interpretation of the early phase image showed high diagnostic sensitivity and specificity (75.4% and 100%, respectively). Regarding the ability to distinguish specific APD, sensitivities were 81% for MSA P, 77% for MSA C, 23% for PSP, and 54.5% for DLB. Dual phase F 18 FP CIT PET imaging is useful in demonstrating striatal DAT loss in neurodegenerative parkinsonism, and also in differentiating APD, particularly MSA, from PD.

  4. Residual stress in silicon wafer using IR polariscope

    Science.gov (United States)

    Lu, Zhijia; Wang, Pin; Asundi, Anand

    2008-09-01

    The infrared phase shift polariscope (IR-PSP) is a full-field optical technique for stress analysis in Silicon wafers. Phase shift polariscope is preferred to a conventional polariscope, as it can provide quantitative information of the normal stress difference and the shear stress in the specimen. The method is based on the principles of photoelasticity, in which stresses induces temporary birefringence in materials which can be quantitatively analyzed using a phase shift polariscope. Compared to other stress analysis techniques such as x-ray diffraction or laser scanning, infrared photoelastic stress analysis provides full-field information with high resolution and in near real time. As the semiconductor fabrication is advancing, larger wafers, thinner films and more compact packages are being manufactured. This results in a growing demand of process control. Residual stress exist in silicon during semiconductor fabrication and these stresses may make cell processing difficult or even cause the failure of the silicon. Reducing these stresses would improve manufacturability and reliability. Therefore stress analysis is essential to trace the root cause of the stresses. The polariscope images are processed using MATLAB and four-step phase shifting method to provide quantitative as well as qualitative information regarding the residual stress of the sample. The system is calibrated using four-point bend specimen and then the residual stress distribution in a MEMS sample is shown.

  5. X-ray phase contrast imaging: From synchrotrons to conventional sources

    International Nuclear Information System (INIS)

    Olivo, A.; Castelli, E.

    2014-01-01

    Phase-based approaches can revolutionize X-ray imaging and remove its main limitation: poor image contrast arising from low attenuation differences. They exploit the unit decrement of the real part of the refractive index, typically 1000 times larger than the imaginary part driving attenuation. This increases the contrast of all details, and enables the detection of features classically considered 'X-ray invisible'. Following pioneering experiments dating back to the mid-sixties, X-ray phase contrast imaging 'exploded' in the mid-nineties, when third generation synchrotron sources became more widely available. Applications were proposed in fields as diverse as material science, palaeontology, biology, food science, cultural heritage preservation, and many others. Among these applications, medicine has been constantly considered the most important; among medical applications, mammography is arguably the one that attracted most attention. Applications to mammography were pioneered by the SYRMEP (SYnchrotron Radiation for MEdical Physics) group in Trieste, which was already active in the area through a combination of innovative ways to do imaging at synchrotrons and development of novel X-ray detectors. This pioneering phase led to the only clinical experience of phase contrast mammography on human patients, and spawned a number of ideas as to how these advances could be translated into clinical practice.

  6. Phase-Field Relaxation of Topology Optimization with Local Stress Constraints

    DEFF Research Database (Denmark)

    Stainko, Roman; Burger, Martin

    2006-01-01

    inequality constraints. We discretize the problem by finite elements and solve the arising finite-dimensional programming problems by a primal-dual interior point method. Numerical experiments for problems with local stress constraints based on different criteria indicate the success and robustness......We introduce a new relaxation scheme for structural topology optimization problems with local stress constraints based on a phase-field method. In the basic formulation we have a PDE-constrained optimization problem, where the finite element and design analysis are solved simultaneously...

  7. Remote laboratory for phase-aided 3D microscopic imaging and metrology

    Science.gov (United States)

    Wang, Meng; Yin, Yongkai; Liu, Zeyi; He, Wenqi; Li, Boqun; Peng, Xiang

    2014-05-01

    In this paper, the establishment of a remote laboratory for phase-aided 3D microscopic imaging and metrology is presented. Proposed remote laboratory consists of three major components, including the network-based infrastructure for remote control and data management, the identity verification scheme for user authentication and management, and the local experimental system for phase-aided 3D microscopic imaging and metrology. The virtual network computer (VNC) is introduced to remotely control the 3D microscopic imaging system. Data storage and management are handled through the open source project eSciDoc. Considering the security of remote laboratory, the fingerprint is used for authentication with an optical joint transform correlation (JTC) system. The phase-aided fringe projection 3D microscope (FP-3DM), which can be remotely controlled, is employed to achieve the 3D imaging and metrology of micro objects.

  8. Multiparticle imaging velocimetry measurements in two-phase flow

    International Nuclear Information System (INIS)

    Hassan, Y.A.

    1998-01-01

    The experimental flow visualization tool, Particle Image Velocimetry (PIV), is being extended to determine the velocity fields in two and three-dimensional, two-phase fluid flows. In the past few years, the technique has attracted quite a lot of interest. PIV enables fluid velocities across a region of a flow to be measured at a single instant in time in global domain. This instantaneous velocity profile of a given flow field is determined by digitally recording particle (microspheres or bubbles) images within the flow over multiple successive video frames and then conducting flow pattern identification and analysis of the data. This paper presents instantaneous velocity measurements in various two and three- dimensional, two-phase flow situations. (author)

  9. Phase accuracy evaluation for phase-shifting fringe projection profilometry based on uniform-phase coded image

    Science.gov (United States)

    Zhang, Chunwei; Zhao, Hong; Zhu, Qian; Zhou, Changquan; Qiao, Jiacheng; Zhang, Lu

    2018-06-01

    Phase-shifting fringe projection profilometry (PSFPP) is a three-dimensional (3D) measurement technique widely adopted in industry measurement. It recovers the 3D profile of measured objects with the aid of the fringe phase. The phase accuracy is among the dominant factors that determine the 3D measurement accuracy. Evaluation of the phase accuracy helps refine adjustable measurement parameters, contributes to evaluating the 3D measurement accuracy, and facilitates improvement of the measurement accuracy. Although PSFPP has been deeply researched, an effective, easy-to-use phase accuracy evaluation method remains to be explored. In this paper, methods based on the uniform-phase coded image (UCI) are presented to accomplish phase accuracy evaluation for PSFPP. These methods work on the principle that the phase value of a UCI can be manually set to be any value, and once the phase value of a UCI pixel is the same as that of a pixel of a corresponding sinusoidal fringe pattern, their phase accuracy values are approximate. The proposed methods provide feasible approaches to evaluating the phase accuracy for PSFPP. Furthermore, they can be used to experimentally research the property of the random and gamma phase errors in PSFPP without the aid of a mathematical model to express random phase error or a large-step phase-shifting algorithm. In this paper, some novel and interesting phenomena are experimentally uncovered with the aid of the proposed methods.

  10. Two-View Gravity Stress Imaging Protocol for Nondisplaced Type II Supination External Rotation Ankle Fractures: Introducing the Gravity Stress Cross-Table Lateral View.

    Science.gov (United States)

    Boffeli, Troy J; Collier, Rachel C; Gervais, Samuel J

    Assessing ankle stability in nondisplaced Lauge-Hansen supination external rotation type II injuries requires stress imaging. Gravity stress mortise imaging is routinely used as an alternative to manual stress imaging to assess deltoid integrity with the goal of differentiating type II from type IV injuries in cases without a posterior or medial fracture. A type II injury with a nondisplaced fibula fracture is typically treated with cast immobilization, and a type IV injury is considered unstable and often requires operative repair. The present case series (two patients) highlights a standardized 2-view gravity stress imaging protocol and introduces the gravity stress cross-table lateral view. The gravity stress cross-table lateral view provides a more thorough evaluation of the posterior malleolus owing to the slight external rotation and posteriorly directed stress. External rotation also creates less bony overlap between the tibia and fibula, allowing for better visualization of the fibula fracture. Gravity stress imaging confirmed medial-sided injury in both cases, confirming the presence of supination external rotation type IV or bimalleolar equivalent fractures. Open reduction and internal fixation was performed, and both patients achieved radiographic union. No further treatment was required at 21 and 33 months postoperatively. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Versatile quantitative phase imaging system applied to high-speed, low noise and multimodal imaging (Conference Presentation)

    Science.gov (United States)

    Federici, Antoine; Aknoun, Sherazade; Savatier, Julien; Wattellier, Benoit F.

    2017-02-01

    Quadriwave lateral shearing interferometry (QWLSI) is a well-established quantitative phase imaging (QPI) technique based on the analysis of interference patterns of four diffraction orders by an optical grating set in front of an array detector [1]. As a QPI modality, this is a non-invasive imaging technique which allow to measure the optical path difference (OPD) of semi-transparent samples. We present a system enabling QWLSI with high-performance sCMOS cameras [2] and apply it to perform high-speed imaging, low noise as well as multimodal imaging. This modified QWLSI system contains a versatile optomechanical device which images the optical grating near the detector plane. Such a device is coupled with any kind of camera by varying its magnification. In this paper, we study the use of a sCMOS Zyla5.5 camera from Andor along with our modified QWLSI system. We will present high-speed live cell imaging, up to 200Hz frame rate, in order to follow intracellular fast motions while measuring the quantitative phase information. The structural and density information extracted from the OPD signal is complementary to the specific and localized fluorescence signal [2]. In addition, QPI detects cells even when the fluorophore is not expressed. This is very useful to follow a protein expression with time. The 10 µm spatial pixel resolution of our modified QWLSI associated to the high sensitivity of the Zyla5.5 enabling to perform high quality fluorescence imaging, we have carried out multimodal imaging revealing fine structures cells, like actin filaments, merged with the morphological information of the phase. References [1]. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, "Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells," Opt. Express, vol. 17, pp. 13080-13094, 2009. [2] P. Bon, S. Lécart, E. Fort and S. Lévêque-Fort, "Fast label-free cytoskeletal network imaging in living mammalian cells," Biophysical journal, 106

  12. Implementation of neutron phase contrast imaging at FRM-II

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Klaus

    2008-11-12

    At ANTARES, the beam line for neutron imaging at the Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM-II) in Garching, the option to do phase contrast imaging besides conventional absorption based neutron imaging was implemented and successfully used for the non-destructive testing of various types of objects. The used propagation-based technique is based on the interference of neutron waves in the detector plane that were differently strong diffracted by the sample. A comparison with other phase-sensitive neutron imaging techniques highlights assets and drawbacks of the different methods. In preliminary measurements at ANTARES and the spallation source SINQ at PSI in Villigen, the influence of the beam geometry, the neutron spectrum and the detector on the quality of the phase contrast measurements were investigated systematically. It was demonstrated that gamma radiation and epithermal neutrons in the beam contribute severely to background noise in measurements, which motivated the installation of a remotely controlled filter wheel for a quick and precise positioning of different crystal filters in the beam. By the installation of a similar aperture wheel, a quick change between eight different beam geometries was made possible. Besides pinhole and slit apertures, coded apertures based on non redundant arrays were investigated. The possibilities, which arise by the exploitation of the real part of the refractive index in neutron imaging, were demonstrated in experiments with especially designed test samples and in measurements with ordinary, industrial components. (orig.)

  13. Implementation of neutron phase contrast imaging at FRM-II

    International Nuclear Information System (INIS)

    Lorenz, Klaus

    2008-01-01

    At ANTARES, the beam line for neutron imaging at the Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM-II) in Garching, the option to do phase contrast imaging besides conventional absorption based neutron imaging was implemented and successfully used for the non-destructive testing of various types of objects. The used propagation-based technique is based on the interference of neutron waves in the detector plane that were differently strong diffracted by the sample. A comparison with other phase-sensitive neutron imaging techniques highlights assets and drawbacks of the different methods. In preliminary measurements at ANTARES and the spallation source SINQ at PSI in Villigen, the influence of the beam geometry, the neutron spectrum and the detector on the quality of the phase contrast measurements were investigated systematically. It was demonstrated that gamma radiation and epithermal neutrons in the beam contribute severely to background noise in measurements, which motivated the installation of a remotely controlled filter wheel for a quick and precise positioning of different crystal filters in the beam. By the installation of a similar aperture wheel, a quick change between eight different beam geometries was made possible. Besides pinhole and slit apertures, coded apertures based on non redundant arrays were investigated. The possibilities, which arise by the exploitation of the real part of the refractive index in neutron imaging, were demonstrated in experiments with especially designed test samples and in measurements with ordinary, industrial components. (orig.)

  14. DIPSI: the diffraction image phase sensing instrument for APE

    Science.gov (United States)

    Montoya-Martínez, Luzma; Reyes, Marcos; Schumacher, Achim; Hernández, Elvio

    2006-06-01

    Large segmented mirrors require efficient co-phasing techniques in order to avoid the image degradation due to segments misalignment. For this purpose in the last few years new co-phasing techniques have been developed in collaboration with several European institutes. The Active Phasing Experiment (APE) will be a technical instrument aimed at testing different phasing techniques for an Extremely Large Telescope (ELT). A mirror composed of 61 hexagonal segments will be conjugated to the primary mirror of the VLT (Very Large Telescope). Each segment can be moved in piston, tip and tilt. Three new types of co-phasing sensors dedicated to the measurement of segmentation errors will be tested, evaluated and compared: ZEUS (Zernike Unit for Segment phasing) developed by LAM and IAC, PYPS (PYramid Phase Sensor) developed by INAF/ARCETRI, and DIPSI (Diffraction Image Phase Sensing Instrument) developed by IAC, GRANTECAN and LAM. This experiment will first run in the laboratory with point-like polychromatic sources and a turbulence generator. In a second step, it will be mounted at the Nasmyth platform focus of a VLT unit telescope. This paper describes the scientific concept of DIPSI, its optomechanical design, the signal analysis to retrieve segment piston and tip-tilt, the multiwavelength algorithm to increase the capture range, and the multiple segmentation case, including both simulation and laboratory tests results.

  15. Optimization of X-ray phase-contrast imaging based on in-line holography

    International Nuclear Information System (INIS)

    Wu Xizeng; Liu Hong; Yan Aimin

    2005-01-01

    This paper introduces a newly conceived formalism for clinical in-line phase-contrast X-ray imaging. The new formalism applies not only to ideal 'thin' objects analyzed in previous studies, but also applies to the real-world tissues used in actual clinical practice. Moreover we have identified the four clinically important factors that affect phase-contrast characteristics. These factors are: (1) body part attenuation (2) the spatial coherence of incident X-rays from an X-ray tube (3) the polychromatic nature of the X-ray source and (4) radiation dose to patients for clinical applications. Techniques of phase image-reconstruction based on the new X-ray in-line holography theory are discussed. Numerical simulations are described which were used to validate the theory. The design parameters of an optimal clinical phase-contrast mammographic imaging system which were determined based on the new theory, and validated in the simulations, are presented. The theory, image reconstruction algorithms, and numerical simulation techniques presented in this paper can be applied widely to clinical diagnostic X-ray imaging applications

  16. Measurement of Two-Phase Flow Fields by Application of Dynamic Electrical Impedance Imaging

    International Nuclear Information System (INIS)

    Kim, KyungYoun; Kang, Sook In; Kim, Ho Chan; Kim, Sin; Lee, Yoon Joon; Kim, Min Chan; Anghaie, Samim

    2002-01-01

    This study presents a visualization technique for the phase distribution in a two-phase flow field with an electrical impedance imaging technique, which reconstructs the resistivity distribution with electrical responses that are determined by corresponding excitations. Special emphasis is placed on the development of dynamic imaging technique for two-phase system undergoing a rapid transient, which could not be visualized with conventional static imaging techniques. The proposed algorithm treats the image reconstruction problem as a nonlinear state estimation problem and the unknown state (resistivity distribution, i.e. phase distribution) is estimated with the aid of a Kalman filter in a minimum mean square error sense. Several illustrative examples with computer simulations are successfully provided to verify the reconstruction performance of the proposed algorithm. (authors)

  17. Simultaneous transmission for an encrypted image and a double random-phase encryption key

    Science.gov (United States)

    Yuan, Sheng; Zhou, Xin; Li, Da-Hai; Zhou, Ding-Fu

    2007-06-01

    We propose a method to simultaneously transmit double random-phase encryption key and an encrypted image by making use of the fact that an acceptable decryption result can be obtained when only partial data of the encrypted image have been taken in the decryption process. First, the original image data are encoded as an encrypted image by a double random-phase encryption technique. Second, a double random-phase encryption key is encoded as an encoded key by the Rivest-Shamir-Adelman (RSA) public-key encryption algorithm. Then the amplitude of the encrypted image is modulated by the encoded key to form what we call an encoded image. Finally, the encoded image that carries both the encrypted image and the encoded key is delivered to the receiver. Based on such a method, the receiver can have an acceptable result and secure transmission can be guaranteed by the RSA cipher system.

  18. Recent advances in synchrotron-based hard x-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Liu, Y; Nelson, J; Andrews, J C; Pianetta, P; Holzner, C

    2013-01-01

    Ever since the first demonstration of phase contrast imaging (PCI) in the 1930s by Frits Zernike, people have realized the significant advantage of phase contrast over conventional absorption-based imaging in terms of sensitivity to ‘transparent’ features within specimens. Thus, x-ray phase contrast imaging (XPCI) holds great potential in studies of soft biological tissues, typically containing low Z elements such as C, H, O and N. Particularly when synchrotron hard x-rays are employed, the favourable brightness, energy tunability, monochromatic characteristics and penetration depth have dramatically enhanced the quality and variety of XPCI methods, which permit detection of the phase shift associated with 3D geometry of relatively large samples in a non-destructive manner. In this paper, we review recent advances in several synchrotron-based hard x-ray XPCI methods. Challenges and key factors in methodological development are discussed, and biological and medical applications are presented. (paper)

  19. Recent advances in synchrotron-based hard x-ray phase contrast imaging

    Science.gov (United States)

    Liu, Y.; Nelson, J.; Holzner, C.; Andrews, J. C.; Pianetta, P.

    2013-12-01

    Ever since the first demonstration of phase contrast imaging (PCI) in the 1930s by Frits Zernike, people have realized the significant advantage of phase contrast over conventional absorption-based imaging in terms of sensitivity to ‘transparent’ features within specimens. Thus, x-ray phase contrast imaging (XPCI) holds great potential in studies of soft biological tissues, typically containing low Z elements such as C, H, O and N. Particularly when synchrotron hard x-rays are employed, the favourable brightness, energy tunability, monochromatic characteristics and penetration depth have dramatically enhanced the quality and variety of XPCI methods, which permit detection of the phase shift associated with 3D geometry of relatively large samples in a non-destructive manner. In this paper, we review recent advances in several synchrotron-based hard x-ray XPCI methods. Challenges and key factors in methodological development are discussed, and biological and medical applications are presented.

  20. Cardiovascular outcomes after pharmacologic stress myocardial perfusion imaging.

    Science.gov (United States)

    Lee, Douglas S; Husain, Mansoor; Wang, Xuesong; Austin, Peter C; Iwanochko, Robert M

    2016-04-01

    While pharmacologic stress single photon emission computed tomography myocardial perfusion imaging (SPECT-MPI) is used for noninvasive evaluation of patients who are unable to perform treadmill exercise, its impact on net reclassification improvement (NRI) of prognosis is unknown. We evaluated the prognostic value of pharmacologic stress MPI for prediction of cardiovascular death or non-fatal myocardial infarction (MI) within 1 year at a single-center, university-based laboratory. We examined continuous and categorical NRI of pharmacologic SPECT-MPI for prediction of outcomes beyond clinical factors alone. Six thousand two hundred forty patients (median age 66 years [IQR 56-74], 3466 men) were studied and followed for 5963 person-years. SPECT-MPI variables associated with increased risk of cardiovascular death or non-fatal MI included summed stress score, stress ST-shift, and post-stress resting left ventricular ejection fraction ≤50%. Compared to a clinical model which included age, sex, cardiovascular disease, risk factors, and medications, model χ(2) (210.5 vs. 281.9, P statistic (0.74 vs. 0.78, P stress score, stress ST-shift and stress resting left ventricular ejection fraction). SPECT-MPI predictors increased continuous NRI by 49.4% (P 3% annualized risk of cardiovascular death or non-fatal MI, yielded a 15.0% improvement in NRI (95% CI 7.6%-27.6%, P stress MPI substantially improved net reclassification of cardiovascular death or MI risk beyond that afforded by clinical factors. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Calculations of and evidence for chain packing stress in inverse lyotropic bicontinuous cubic phases.

    Science.gov (United States)

    Shearman, Gemma C; Khoo, Bee J; Motherwell, Mary-Lynn; Brakke, Kenneth A; Ces, Oscar; Conn, Charlotte E; Seddon, John M; Templer, Richard H

    2007-06-19

    Inverse bicontinuous cubic lyotropic phases are a complex solution to the dilemma faced by all self-assembled water-amphiphile systems: how to satisfy the incompatible requirements for uniform interfacial curvature and uniform molecular packing. The solution reached in this case is for the water-amphiphile interfaces to deform hyperbolically onto triply periodic minimal surfaces. We have previously suggested that although the molecular packing in these structures is rather uniform the relative phase behavior of the gyroid, double diamond, and primitive inverse bicontinuous cubic phases can be understood in terms of subtle differences in packing frustration. In this work, we have calculated the packing frustration for these cubics under the constraint that their interfaces have constant mean curvature. We find that the relative packing stress does indeed differ between phases. The gyroid cubic has the least packing stress, and at low water volume fraction, the primitive cubic has the greatest packing stress. However, at very high water volume fraction, the double diamond cubic becomes the structure with the greatest packing stress. We have tested the model in two ways. For a system with a double diamond cubic phase in excess water, the addition of a hydrophobe may release packing frustration and preferentially stabilize the primitive cubic, since this has previously been shown to have lower curvature elastic energy. We have confirmed this prediction by adding the long chain alkane tricosane to 1-monoolein in excess water. The model also predicts that if one were able to hydrate the double diamond cubic to high water volume fractions, one should destabilize the phase with respect to the primitive cubic. We have found that such highly swollen metastable bicontinuous cubic phases can be formed within onion vesicles. Data from monoelaidin in excess water display a well-defined transition, with the primitive cubic appearing above a water volume fraction of 0.75. Both of

  2. Improving best-phase image quality in cardiac CT by motion correction with MAM optimization

    Energy Technology Data Exchange (ETDEWEB)

    Rohkohl, Christopher; Bruder, Herbert; Stierstorfer, Karl [Siemens AG, Healthcare Sector, Siemensstrasse 1, 91301 Forchheim (Germany); Flohr, Thomas [Siemens AG, Healthcare Sector, Siemensstrasse 1, 91301 Forchheim (Germany); Institute of Diagnostic Radiology, Eberhard Karls University, Hoppe-Seyler-Str. 3, 72076 Tuebingen (Germany)

    2013-03-15

    Purpose: Research in image reconstruction for cardiac CT aims at using motion correction algorithms to improve the image quality of the coronary arteries. The key to those algorithms is motion estimation, which is currently based on 3-D/3-D registration to align the structures of interest in images acquired in multiple heart phases. The need for an extended scan data range covering several heart phases is critical in terms of radiation dose to the patient and limits the clinical potential of the method. Furthermore, literature reports only slight quality improvements of the motion corrected images when compared to the most quiet phase (best-phase) that was actually used for motion estimation. In this paper a motion estimation algorithm is proposed which does not require an extended scan range but works with a short scan data interval, and which markedly improves the best-phase image quality. Methods: Motion estimation is based on the definition of motion artifact metrics (MAM) to quantify motion artifacts in a 3-D reconstructed image volume. The authors use two different MAMs, entropy, and positivity. By adjusting the motion field parameters, the MAM of the resulting motion-compensated reconstruction is optimized using a gradient descent procedure. In this way motion artifacts are minimized. For a fast and practical implementation, only analytical methods are used for motion estimation and compensation. Both the MAM-optimization and a 3-D/3-D registration-based motion estimation algorithm were investigated by means of a computer-simulated vessel with a cardiac motion profile. Image quality was evaluated using normalized cross-correlation (NCC) with the ground truth template and root-mean-square deviation (RMSD). Four coronary CT angiography patient cases were reconstructed to evaluate the clinical performance of the proposed method. Results: For the MAM-approach, the best-phase image quality could be improved for all investigated heart phases, with a maximum

  3. Improving best-phase image quality in cardiac CT by motion correction with MAM optimization

    International Nuclear Information System (INIS)

    Rohkohl, Christopher; Bruder, Herbert; Stierstorfer, Karl; Flohr, Thomas

    2013-01-01

    Purpose: Research in image reconstruction for cardiac CT aims at using motion correction algorithms to improve the image quality of the coronary arteries. The key to those algorithms is motion estimation, which is currently based on 3-D/3-D registration to align the structures of interest in images acquired in multiple heart phases. The need for an extended scan data range covering several heart phases is critical in terms of radiation dose to the patient and limits the clinical potential of the method. Furthermore, literature reports only slight quality improvements of the motion corrected images when compared to the most quiet phase (best-phase) that was actually used for motion estimation. In this paper a motion estimation algorithm is proposed which does not require an extended scan range but works with a short scan data interval, and which markedly improves the best-phase image quality. Methods: Motion estimation is based on the definition of motion artifact metrics (MAM) to quantify motion artifacts in a 3-D reconstructed image volume. The authors use two different MAMs, entropy, and positivity. By adjusting the motion field parameters, the MAM of the resulting motion-compensated reconstruction is optimized using a gradient descent procedure. In this way motion artifacts are minimized. For a fast and practical implementation, only analytical methods are used for motion estimation and compensation. Both the MAM-optimization and a 3-D/3-D registration-based motion estimation algorithm were investigated by means of a computer-simulated vessel with a cardiac motion profile. Image quality was evaluated using normalized cross-correlation (NCC) with the ground truth template and root-mean-square deviation (RMSD). Four coronary CT angiography patient cases were reconstructed to evaluate the clinical performance of the proposed method. Results: For the MAM-approach, the best-phase image quality could be improved for all investigated heart phases, with a maximum

  4. Fractional Fourier domain optical image hiding using phase retrieval algorithm based on iterative nonlinear double random phase encoding.

    Science.gov (United States)

    Wang, Xiaogang; Chen, Wen; Chen, Xudong

    2014-09-22

    We present a novel image hiding method based on phase retrieval algorithm under the framework of nonlinear double random phase encoding in fractional Fourier domain. Two phase-only masks (POMs) are efficiently determined by using the phase retrieval algorithm, in which two cascaded phase-truncated fractional Fourier transforms (FrFTs) are involved. No undesired information disclosure, post-processing of the POMs or digital inverse computation appears in our proposed method. In order to achieve the reduction in key transmission, a modified image hiding method based on the modified phase retrieval algorithm and logistic map is further proposed in this paper, in which the fractional orders and the parameters with respect to the logistic map are regarded as encryption keys. Numerical results have demonstrated the feasibility and effectiveness of the proposed algorithms.

  5. Classified study and clinical value of the phase imaging features

    International Nuclear Information System (INIS)

    Dang Yaping; Ma Aiqun; Zheng Xiaopu; Yang Aimin; Xiao Jiang; Gao Xinyao

    2000-01-01

    445 patients with various heart diseases were examined by the gated cardiac blood pool imaging, and the phase was classified. The relationship between the seven types with left ventricular function index, clinical heart function, different heart diseases as well as electrocardiograph was studied. The results showed that the phase image classification could match with the clinical heart function. It can visually, directly and accurately indicate clinical heart function and can be used to identify diagnosis of heart disease

  6. Coupling image processing and stress analysis for damage identification in a human premolar tooth.

    Science.gov (United States)

    Andreaus, U; Colloca, M; Iacoviello, D

    2011-08-01

    Non-carious cervical lesions are characterized by the loss of dental hard tissue at the cement-enamel junction (CEJ). Exceeding stresses are therefore generated in the cervical region of the tooth that cause disruption of the bonds between the hydroxyapatite crystals, leading to crack formation and eventual loss of enamel and the underlying dentine. Damage identification was performed by image analysis techniques and allowed to quantitatively assess changes in teeth. A computerized two-step procedure was generated and applied to the first left maxillary human premolar. In the first step, dental images were digitally processed by a segmentation method in order to identify the damage. The considered morphological properties were the enamel thickness and total area, the number of fragments in which the enamel is chipped. The information retrieved by the data processing of the section images allowed to orient the stress investigation toward selected portions of the tooth. In the second step, a three-dimensional finite element model based on CT images of both the tooth and the periodontal ligament was employed to compare the changes occurring in the stress distributions in normal occlusion and malocclusion. The stress states were analyzed exclusively in the critical zones designated in the first step. The risk of failure at the CEJ and of crack initiation at the dentin-enamel junction through the quantification of first and third principal stresses, von Mises stress, and normal and tangential stresses, were also estimated. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Improved identification of viable myocardium using second harmonic imaging during dobutamine stress echocardiography

    NARCIS (Netherlands)

    F. Sozzi (Fabiola); D. Poldermans (Don); J.J. Bax (Jeroen); A. Elhendy (Abdou); E.C. Vourvouri (Eleni); R. Valkema (Roelf); J. de Sutter; A.F.L. Schinkel (Arend); A. Borghetti; J.R.T.C. Roelandt (Jos)

    2001-01-01

    textabstractOBJECTIVE: To determine whether, compared with fundamental imaging, second harmonic imaging can improve the accuracy of dobutamine stress echocardiography for identifying viable myocardium, using nuclear imaging as a reference. PATIENTS: 30 patients with chronic left

  8. Imaging of metastatic lymph nodes by X-ray phase-contrast micro-tomography.

    Directory of Open Access Journals (Sweden)

    Torben Haugaard Jensen

    Full Text Available Invasive cancer causes a change in density in the affected tissue, which can be visualized by x-ray phase-contrast tomography. However, the diagnostic value of this method has so far not been investigated in detail. Therefore, the purpose of this study was, in a blinded manner, to investigate whether malignancy could be revealed by non-invasive x-ray phase-contrast tomography in lymph nodes from breast cancer patients. Seventeen formalin-fixed paraffin-embedded lymph nodes from 10 female patients (age range 37-83 years diagnosed with invasive ductal carcinomas were analyzed by X-ray phase-contrast tomography. Ten lymph nodes had metastatic deposits and 7 were benign. The phase-contrast images were analyzed according to standards for conventional CT images looking for characteristics usually only visible by pathological examinations. Histopathology was used as reference. The result of this study was that the diagnostic sensitivity of the image analysis for detecting malignancy was 100% and the specificity was 87%. The positive predictive value was 91% for detecting malignancy and the negative predictive value was 100%. We conclude that x-ray phase-contrast imaging can accurately detect density variations to obtain information regarding lymph node involvement previously inaccessible with standard absorption x-ray imaging.

  9. Vaginal cone use in passive and active phases in patients with stress urinary incontinence

    Directory of Open Access Journals (Sweden)

    Jorge Milhem Haddad

    2011-01-01

    Full Text Available OBJECTIVE: To evaluate vaginal cone therapy in two phases, passive and active, in women with stress urinary incontinence. METHODS: A prospective study was conducted at the Department of Obstetrics and Gynecology, São Paulo University, Brazil. Twenty-four women with a clinical and urodynamic diagnosis of stress urinary incontinence were treated with vaginal cones in a passive phase (without voluntary contractions of the pelvic floor and an active phase (with voluntary contractions, each of which lasted three months. Clinical complaints, a functional evaluation of the pelvic floor, a pad test, and bladder neck mobility were analyzed before and after each phase. RESULTS: Twenty-one patients completed the treatment. The reduction in absolute risk with the pad test was 0.38 (p<0.034 at the end of the passive phase and 0.67 (p<0.0001 at the end of the active phase. The reduction in absolute risk with the pelvic floor evaluation was 0.62 (p<0.0001 at the end of the passive phase and 0.77 (p<0.0001 at the end of the active phase. The reduction in absolute risk of bladder neck mobility was 0.38 (p<0.0089 at the end of the passive phase and 0.52 (p<0.0005 at the end of the active phase. Complete reversal of symptomatology was observed in 12 (57.1% patients, and satisfaction was expressed by 19 (90.4%. CONCLUSION: Using vaginal cones in the passive phase, as other researchers did, was effective. Inclusion of the active phase led to additional improvement in all of the study parameters evaluated in women with stress urinary incontinence. Randomized studies are needed, however, to confirm these results.

  10. Qualification of a Null Lens Using Image-Based Phase Retrieval

    Science.gov (United States)

    Bolcar, Matthew R.; Aronstein, David L.; Hill, Peter C.; Smith, J. Scott; Zielinski, Thomas P.

    2012-01-01

    In measuring the figure error of an aspheric optic using a null lens, the wavefront contribution from the null lens must be independently and accurately characterized in order to isolate the optical performance of the aspheric optic alone. Various techniques can be used to characterize such a null lens, including interferometry, profilometry and image-based methods. Only image-based methods, such as phase retrieval, can measure the null-lens wavefront in situ - in single-pass, and at the same conjugates and in the same alignment state in which the null lens will ultimately be used - with no additional optical components. Due to the intended purpose of a Dull lens (e.g., to null a large aspheric wavefront with a near-equal-but-opposite spherical wavefront), characterizing a null-lens wavefront presents several challenges to image-based phase retrieval: Large wavefront slopes and high-dynamic-range data decrease the capture range of phase-retrieval algorithms, increase the requirements on the fidelity of the forward model of the optical system, and make it difficult to extract diagnostic information (e.g., the system F/#) from the image data. In this paper, we present a study of these effects on phase-retrieval algorithms in the context of a null lens used in component development for the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. Approaches for mitigation are also discussed.

  11. Axial loaded stress views and kinematic MR imaging evaluation of patellar alignment and tracking

    International Nuclear Information System (INIS)

    Shellock, F.G.; Mink, J.H.; Deutsch, A.; Meeks, T.; Fox, J.; Molnar, T.

    1990-01-01

    This paper evaluates patellar alignment and tracking in patients with suspected abnormalities by obtaining axial loaded stress views to assess dynamic stabilizers and kinematic MR images to assess static stabilizers of the patellofemoral joint. Ninety-eight symptomatic joints were studied; 21 joints had prior realignment surgery. Axial loaded stress views were achieved with a device that simulated weight bearing. Images were obtained with knees flexed at 20 degrees ± 5 degrees while the patient resisted with an isometric contraction. Kinematic MR imaging was performed according to previously described methods. Kinematic MR imaging showed normal findings in six joints, lateral subluxation in 22, medial subluxation in 58, lateral tilt in two, and lateral to medial subluxation in 10. Axial stress views showed normal findings in 30, lateral subluxation in 18, and medial subluxation in 50. Both tests agreed on abnormalities for 63% of the joints, while kinematic MR imaging showed abnormalities for an additional 32%

  12. An L1-norm phase constraint for half-Fourier compressed sensing in 3D MR imaging.

    Science.gov (United States)

    Li, Guobin; Hennig, Jürgen; Raithel, Esther; Büchert, Martin; Paul, Dominik; Korvink, Jan G; Zaitsev, Maxim

    2015-10-01

    In most half-Fourier imaging methods, explicit phase replacement is used. In combination with parallel imaging, or compressed sensing, half-Fourier reconstruction is usually performed in a separate step. The purpose of this paper is to report that integration of half-Fourier reconstruction into iterative reconstruction minimizes reconstruction errors. The L1-norm phase constraint for half-Fourier imaging proposed in this work is compared with the L2-norm variant of the same algorithm, with several typical half-Fourier reconstruction methods. Half-Fourier imaging with the proposed phase constraint can be seamlessly combined with parallel imaging and compressed sensing to achieve high acceleration factors. In simulations and in in-vivo experiments half-Fourier imaging with the proposed L1-norm phase constraint enables superior performance both reconstruction of image details and with regard to robustness against phase estimation errors. The performance and feasibility of half-Fourier imaging with the proposed L1-norm phase constraint is reported. Its seamless combination with parallel imaging and compressed sensing enables use of greater acceleration in 3D MR imaging.

  13. Simulation of single grid-based phase-contrast x-ray imaging (g-PCXI)

    Energy Technology Data Exchange (ETDEWEB)

    Lim, H.W.; Lee, H.W. [Department of Radiation Convergence Engineering, iTOMO Group, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 26493 (Korea, Republic of); Cho, H.S., E-mail: hscho1@yonsei.ac.kr [Department of Radiation Convergence Engineering, iTOMO Group, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 26493 (Korea, Republic of); Je, U.K.; Park, C.K.; Kim, K.S.; Kim, G.A.; Park, S.Y.; Lee, D.Y.; Park, Y.O.; Woo, T.H. [Department of Radiation Convergence Engineering, iTOMO Group, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 26493 (Korea, Republic of); Lee, S.H.; Chung, W.H.; Kim, J.W.; Kim, J.G. [R& D Center, JPI Healthcare Co., Ltd., Ansan 425-833 (Korea, Republic of)

    2017-04-01

    Single grid-based phase-contrast x-ray imaging (g-PCXI) technique, which was recently proposed by Wen et al. to retrieve absorption, scattering, and phase-gradient images from the raw image of the examined object, seems a practical method for phase-contrast imaging with great simplicity and minimal requirements on the setup alignment. In this work, we developed a useful simulation platform for g-PCXI and performed a simulation to demonstrate its viability. We also established a table-top setup for g-PCXI which consists of a focused-linear grid (200-lines/in strip density), an x-ray tube (100-μm focal spot size), and a flat-panel detector (48-μm pixel size) and performed a preliminary experiment with some samples to show the performance of the simulation platform. We successfully obtained phase-contrast x-ray images of much enhanced contrast from both the simulation and experiment and the simulated contract seemed similar to the experimental contrast, which shows the performance of the developed simulation platform. We expect that the simulation platform will be useful for designing an optimal g-PCXI system. - Highlights: • It is proposed for the single grid-based phase-contrast x-ray imaging (g-PCXI) technique. • We implemented for a numerical simulation code. • The preliminary experiment with several samples to compare is performed. • It is expected to be useful to design an optimal g-PCXI system.

  14. Clinical implementation of x-ray phase-contrast imaging: Theoretical foundations and design considerations

    International Nuclear Information System (INIS)

    Wu Xizeng; Liu Hong

    2003-01-01

    Theoretical foundation and design considerations of a clinical feasible x-ray phase contrast imaging technique were presented in this paper. Different from the analysis of imaging phase object with weak absorption in literature, we proposed a new formalism for in-line phase-contrast imaging to analyze the effects of four clinically important factors on the phase contrast. These are the body parts attenuation, the spatial coherence of spherical waves from a finite-size focal spot, and polychromatic x-ray and radiation doses to patients for clinical applications. The theory presented in this paper can be applied widely in diagnostic x-ray imaging procedures. As an example, computer simulations were conducted and optimal design parameters were derived for clinical mammography. The results of phantom experiments were also presented which validated the theoretical analysis and computer simulations

  15. ESR imaging investigations of two-phase systems.

    Science.gov (United States)

    Herrmann, Werner; Stösser, Reinhard; Borchert, Hans-Hubert

    2007-06-01

    The possibilities of electron spin resonance (ESR) and electron spin resonance imaging (ESRI) for investigating the properties of the spin probes TEMPO and TEMPOL in two-phase systems have been examined in the systems water/n-octanol, Miglyol/Miglyol, and Precirol/Miglyol. Phases and regions of the phase boundary could be mapped successfully by means of the isotropic hyperfine coupling constants, and, moreover, the quantification of rotational and lateral diffusion of the spin probes was possible. For the quantitative treatment of the micropolarity, a simplified empirical model was established on the basis of the Nernst distribution and the experimentally determined isotropic hyperfine coupling constants. The model does not only describe the summarized micropolarities of coexisting phases, but also the region of the phase boundary, where solvent molecules of different polarities and tendencies to form hydrogen bonds compete to interact with the NO group of the spin probe. Copyright 2007 John Wiley & Sons, Ltd.

  16. High Temperature Fiberoptic Thermal Imaging System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase 1 program will fabricate and demonstrate a small diameter single fiber endoscope that can perform high temperature thermal imaging in a jet engine...

  17. Stress-temperature phase diagram of a ferromagnetic Ni-Mn-Ga shape memory alloy

    International Nuclear Information System (INIS)

    Chernenko, V.A.; Pons, J.; Cesari, E.; Ishikawa, K.

    2005-01-01

    A sequence of thermally and stress-induced intermartensitic transformations has been found in a Ni 52.0 Mn 24.4 Ga 23.6 single crystal, which have been confirmed by transmission electron microscopy through in situ cooling experiments. The stress-strain-temperature behavior under compression along the P and P crystallographic directions has also been studied for this compound and a stress-temperature phase diagram has been established

  18. Multi-phase imaging of intermittency at steady state using differential imaging method by X-ray micro-tomography

    Science.gov (United States)

    Gao, Y.; Lin, Q.; Bijeljic, B.; Blunt, M. J.

    2017-12-01

    To observe intermittency in consolidated rock, we image a steady state flow of brine and decane in Bentheimer sandstone. We devise an experimental method based on X-ray differential imaging method to examine how changes in flow rate impact the pore-scale distribution of fluids during co-injection flow under dynamic flow conditions at steady state. This helps us elucidate the diverse flow regimes (connected, intermittent break-up, or continual break-up of the non-wetting phase pathways) for two capillary numbers. Also, relative permeability curves under both capillary and viscous limited conditions could be measured. We have performed imbibition sample floods using oil-brine and measured steady state relative permeability on a sandstone rock core in order to fully characterize the flow behaviour at low and high Ca. Two sets of experiments at high and low flow rates are provided to explore the time-evolution of the non-wetting phase clusters distribution under different flow conditions. The high flow rate is 0.5 mL/min, whose corresponding capillary number is 7.7×10-6. The low flow rate is 0.02 mL/min, whose capillary number is 3.1×10-7. A procedure based on using high-salinity brine as the contrast phase and applying differential imaging between the dry scan and that of the sample saturation with a 30 wt% Potassium iodide (KI) doped brine help to make sure there is no non-wetting phase in micro-pores. Then the intermittent phase in multiphase flow image at high Ca can be quantified by obtaining the differential image between the 30 wt% KI brine image and the scans that taken at each fixed fractional flow. By using the grey scale histogram distribution of the raw images at each condition, the oil proportion in the intermittent phase can be calculated. The pressure drops at each fractional flow at low and high Ca can be measured by high-precision pressure differential sensors and utilized to calculate to the relative permeability at pore scale. The relative

  19. TIA-1 Self-Multimerization, Phase Separation, and Recruitment into Stress Granules Are Dynamically Regulated by Zn2+

    Directory of Open Access Journals (Sweden)

    Joseph B. Rayman

    2018-01-01

    Full Text Available Summary: Stress granules are non-membranous structures that transiently form in the cytoplasm during cellular stress, where they promote translational repression of non-essential RNAs and modulate cell signaling by sequestering key signal transduction proteins. These and other functions of stress granules facilitate an adaptive cellular response to environmental adversity. A key component of stress granules is the prion-related RNA-binding protein, T cell intracellular antigen-1 (TIA-1. Here, we report that recombinant TIA-1 undergoes rapid multimerization and phase separation in the presence of divalent zinc, which can be reversed by the zinc chelator, TPEN. Similarly, the formation and maintenance of TIA-1-positive stress granules in arsenite-treated cells are inhibited by TPEN. In addition, Zn2+ is released in cells treated with arsenite, before stress granule formation. These findings suggest that Zn2+ is a physiological ligand of TIA-1, acting as a stress-inducible second messenger to promote multimerization of TIA-1 and subsequent localization into stress granules. : Rayman et al. show that Zn2+ is a stress-inducible second messenger that triggers self-multimerization and phase separation of TIA-1 and regulates dynamic recruitment of TIA-1 into stress granules. This mechanism is part of an adaptive cellular response to environmental adversity. Keywords: TIA-1, TIA1, stress granules, cellular stress, functional prion, phase separation, zinc regulation

  20. Low dose reconstruction algorithm for differential phase contrast imaging.

    Science.gov (United States)

    Wang, Zhentian; Huang, Zhifeng; Zhang, Li; Chen, Zhiqiang; Kang, Kejun; Yin, Hongxia; Wang, Zhenchang; Marco, Stampanoni

    2011-01-01

    Differential phase contrast imaging computed tomography (DPCI-CT) is a novel x-ray inspection method to reconstruct the distribution of refraction index rather than the attenuation coefficient in weakly absorbing samples. In this paper, we propose an iterative reconstruction algorithm for DPCI-CT which benefits from the new compressed sensing theory. We first realize a differential algebraic reconstruction technique (DART) by discretizing the projection process of the differential phase contrast imaging into a linear partial derivative matrix. In this way the compressed sensing reconstruction problem of DPCI reconstruction can be transformed to a resolved problem in the transmission imaging CT. Our algorithm has the potential to reconstruct the refraction index distribution of the sample from highly undersampled projection data. Thus it can significantly reduce the dose and inspection time. The proposed algorithm has been validated by numerical simulations and actual experiments.

  1. X-ray imaging with monochromatic synchrotron radiation. Fluorescent and phase-contrast method

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Tohoru; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine

    2002-05-01

    To obtain the high sensitive x-ray images of biomedical object, new x-ray imaging techniques using fluorescent x-ray and phase-contrast x-ray are being developed in Japan. Fluorescent x-ray CT can detect very small amounts of specific elements in the order of ppm at one pixel, whereas phase-contrast x-ray imaging with interferometer can detect minute differences of biological object. Here, our recent experimental results are presented. (author)

  2. Characteristics of the stress-induced formation of R-phase in ultrafine-grained NiTi shape memory wire

    International Nuclear Information System (INIS)

    Olbricht, J.; Yawny, A.; Pelegrina, J.L.; Eggeler, G.; Yardley, V.A.

    2013-01-01

    Highlights: •We investigated the stress-induced formation of R-phase in NiTi shape memory wires. •The R-phase related strains were isolated from the overall stress-strain-behavior. •The stress–strain characteristics of R-phase suggest a homogeneous transformation. •Thermography confirms the homogeneous R-phase formation in ultrafine-grained NiTi. -- Abstract: The transformation between the cubic B2 and monoclinic B19′ phases in ultrafine-grained pseudoelastic NiTi can occur as a two-step process involving the intermediate rhombohedral R-phase. Experimental work using differential scanning calorimetry, electrical resistance measurements and transmission electron microscopy has demonstrated the formation of this intermediate phase during thermal cycling and during mechanical loading. In the present paper, complementary mechanical and thermographic results are presented which allow to further assess the character of the stress-induced R-phase formation. The transformation from B2 to R-phase is demonstrated to occur homogeneously within the gauge length rather than via advancing Lüders-type transition regions as it is the case in the localized transformation from B2 or R-phase to B19′

  3. Software for imaging phase-shift interference microscope

    Science.gov (United States)

    Malinovski, I.; França, R. S.; Couceiro, I. B.

    2018-03-01

    In recent years absolute interference microscope was created at National Metrology Institute of Brazil (INMETRO). The instrument by principle of operation is imaging phase-shifting interferometer (PSI) equipped with two stabilized lasers of different colour as traceable reference wavelength sources. We report here some progress in development of the software for this instrument. The status of undergoing internal validation and verification of the software is also reported. In contrast with standard PSI method, different methodology of phase evaluation is applied. Therefore, instrument specific procedures for software validation and verification are adapted and discussed.

  4. Temperature-stress phase diagram of strain glass Ti48.5Ni51.5

    International Nuclear Information System (INIS)

    Wang, Y.; Ren, X.; Otsuka, K.; Saxena, A.

    2008-01-01

    The temperature and stress dependence of the properties of a recently discovered strain glass Ti 48.5 Ni 51.5 , which is a glass of frozen local lattice strains, was investigated systematically. It was found that the ideal freezing temperature (T 0 ) of the strain glass decreases with increasing stress. When the stress exceeds a critical value σ c (T), the pseudo-B2 strain glass transforms into B19' martensite. However, the stress-strain behavior associated with such a stress-induced transition showed a crossover at a crossover temperature T CR , which is ∼20 K below T 0 . Above T CR , the sample showed superelastic behavior; however, below T CR , the sample demonstrated plastic behavior. More interestingly, the σ c vs. temperature relation for unfrozen strain glass obeys the Clausius-Clapyeron relationship, whereas that for frozen strain glass disobeys this universal thermodynamic law. A phenomenological explanation is provided for all the phenomena observed, and it is shown that all the anomalous effects come from the broken ergodicity of the glass system and a temperature-dependent relative stability of the martensitic phase. Based on experimental observations, a temperature-stress phase diagram is constructed for this strain glass, which may serve as a guide map for understanding and predicting the properties of strain glass

  5. From Relativistic Electrons to X-ray Phase Contrast Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Garson, A. B. [Washington U., St. Louis; Anastasio, M. A. [Washington U., St. Louis

    2017-10-09

    We report the initial demonstrations of the use of single crystals in indirect x-ray imaging for x-ray phase contrast imaging at the Washington University in St. Louis Computational Bioimaging Laboratory (CBL). Based on single Gaussian peak fits to the x-ray images, we observed a four times smaller system point spread function (21 μm (FWHM)) with the 25-mm diameter single crystals than the reference polycrystalline phosphor’s 80-μm value. Potential fiber-optic plate depth-of-focus aspects and 33-μm diameter carbon fiber imaging are also addressed.

  6. Phase-image-based content-addressable holographic data storage

    Science.gov (United States)

    John, Renu; Joseph, Joby; Singh, Kehar

    2004-03-01

    We propose and demonstrate the use of phase images for content-addressable holographic data storage. Use of binary phase-based data pages with 0 and π phase changes, produces uniform spectral distribution at the Fourier plane. The absence of strong DC component at the Fourier plane and more intensity of higher order spatial frequencies facilitate better recording of higher spatial frequencies, and improves the discrimination capability of the content-addressable memory. This improves the results of the associative recall in a holographic memory system, and can give low number of false hits even for small search arguments. The phase-modulated pixels also provide an opportunity of subtraction among data pixels leading to better discrimination between similar data pages.

  7. Measurement of edge residual stresses in glass by the phase-shifting method

    Science.gov (United States)

    Ajovalasit, A.; Petrucci, G.; Scafidi, M.

    2011-05-01

    Control and measurement of residual stress in glass is of great importance in the industrial field. Since glass is a birefringent material, the residual stress analysis is based mainly on the photoelastic method. This paper considers two methods of automated analysis of membrane residual stress in glass sheets, based on the phase-shifting concept in monochromatic light. In particular these methods are the automated versions of goniometric compensation methods of Tardy and Sénarmont. The proposed methods can effectively replace manual methods of compensation (goniometric compensation of Tardy and Sénarmont, Babinet and Babinet-Soleil compensators) provided by current standards on the analysis of residual stresses in glasses.

  8. Magnetic resonance imaging for stress incontinence: evaluation of patients before and after surgical correction

    Energy Technology Data Exchange (ETDEWEB)

    Perk, Hakki E-mail: hakkiperk@yahoo.com; Oral, Baha; Yesildag, Ahmet; Serel, T. Ahmet; Oezsoy, Mesut; Turgut, Tayfun

    2002-10-01

    Objective: The purpose of this study was to evaluate the accuracy of magnetic resonance imaging (MRI) in the pre and postoperative assessment of stress urinary incontinence. Methods: Fifteen female patients with clinical evidence of stress urinary incontinence were included in this prospective study. All the patients underwent MRI in the supine position both preoperatively and postoperatively. For imaging, we used a 1.0 T magnet, T2-weighted images were obtained in the midline sagittal plane with patients at rest. Images were evaluated for anatomical stress urinary incontinence alterations, such as the increased distance between the pubococcygeal line and the bladder base and the posterior urethro-vesical angle and the urethral inclination angle changes. Wilcoxon signed rank test allowed comparisons of pre and postoperative results. Results: Compared with postoperative measurements, the bladder base was lowered significantly by an average of 9.4{+-}4.0 mm (P<0.01), posterior urethro-vesical angle was significantly increased by an average of 127.8{+-}11.4 deg. (P<0.01), and the urethral inclination angle was significantly increased by an average of 54.9{+-}10.1 deg. (P<0.01) preoperatively. Conclusion: Our results suggest that MRI can play a major role in the preoperative and postoperative assessment of stress urinary incontinence. It can reliably detect anatomical urinary incontinence alterations. MRI should be considered in failed surgery, complex prolapse, and in differentiating genuine stress incontinence resulting from malposition of the bladder neck from stress incontinence due to intrinsic urethral damage.

  9. [Investigation of the hyperspectral image characteristics of wheat leaves under different stress].

    Science.gov (United States)

    Zhang, Dong-Yan; Zhang, Jing-Cheng; Zhu, Da-Zhou; Wang, Ji-Hua; Luo, Ju-Hua; Zhao, Jin-Ling; Huang, Wen-Jiang

    2011-04-01

    The diagnosis of growing status and vigor of crops under various stresses is an important step in precision agriculture. Hyperspectral imaging technology has the advantage of providing both spectral and spatial information simultaneously, and has become a research hot spot. In the present study, auto-development of the pushbroom imaging spectrometer (PIS) was utilized to collect hyperspectral images of wheat leaves which suffer from shortage of nutrient, pest and disease stress. The hyperspectral cube was processed by the method of pixel average step by step to highlight the spectral characteristics, which facilitate the analysis based on the differences of leaves reflectance. The results showed that the hyperspectra of leaves from different layers can display nutrient differences, and recognize intuitively different stress extent by imaging figures. With the 2 nanometer spectral resolution and millimeter level spatial resolution of PIS, the number of disease spot can be qualitatively calculated when crop is infected with diseases, and, the area of plant disease could also be quantitatively analyzed; when crop suffered from pest and insect, the spectral information of leaves with single aphid and aphids can be detected by PIS, which provides a new means to quantitatively detect the aphid destroying of wheat leaf. The present study demonstrated that hyperspecral imaging has a great potential in quantitative and qualitative analysis of crop growth.

  10. Phase correction of MR perfusion/diffusion images

    International Nuclear Information System (INIS)

    Chenevert, T.L.; Pipe, J.G.; Brunberg, J.A.; Yeung, H.N.

    1989-01-01

    Apparent diffusion coefficient (ADC) and perfusion MR sequences are exceptionally sensitive to minute motion and, therefore, are prone to bulk motions that hamper ADC/perfusion quantification. The authors have developed a phase correction algorithm to substantially reduce this error. The algorithm uses a diffusion-insensitive data set to correct data that are diffusion sensitive but phase corrupt. An assumption of the algorithm is that bulk motion phase shifts are uniform in one dimension, although they may be arbitrarily large and variable from acquisition to acquisition. This is facilitated by orthogonal section selection. The correction is applied after one Fourier transform of a two-dimensional Fourier transform reconstruction. Imaging experiments on rat and human brain demonstrate significant artifact reduction in ADC and perfusion measurements

  11. Thermal hydraulics-I. 1. Phasic Discrimination in Two-Phase-Flow Measurements Using Particle Image Velocimetry

    International Nuclear Information System (INIS)

    Todd, D.R.; Ortiz-Villafuerte, J.; Schmidl, W.D.; Hassan, Y.A.; Sanchez-Silva, F.

    2001-01-01

    Information about the dispersed phase parameters -such as location, displacement, and interfacial area -are very important in the analysis of two-phase flows. Local flow disturbances in the continuous phase can be quite significant when the dispersed phase (i.e., a particle, drop, or bubble) passes through the medium. Application of point-wise measurement methods such as hot wire anemometry and laser anemometry suffer significant limitations in two-phase-flow measurements when these local disturbances are strong. Also, these two methods typically lack the ability to quantify the dispersed phase. Previous work has shown that meaningful analysis of the instantaneous continuous phase velocity field requires knowledge of the dispersed phase parameters, especially location and trajectory. Continuous phase parameters such as the local instantaneous vorticity and local turbulence fluctuations are influenced by the passage of the dispersed phase. Thus, development of two-phase-flow models (such as a bubble wake model) requires knowledge of the relative location of a local continuous phase parameter to the dispersed flow object (i.e., directly behind or off the side of the object). Also, conditional sampling must be performed using a meaningful parameter as the sampling point, i.e., the passage of a specific size of bubble. A system has been developed at Texas A and M University to quantify the dispersed phase parameters for two-phase bubbly flow in a vertical pipe with co-current upward flow. This system uses an orthogonal shadow particle image velocimetry (SPIV) technique, which instantaneously measures three-dimensional bubble locations, volumes, and interfacial areas -while measuring the three-dimensional bubble velocities and accelerations over a sequence of discrete measurements. The SPIV system is capable of analyzing flows with a large number of bubbles in close proximity. A set of sample images has been collected as part of the preliminary testing and development

  12. A Multispectral Photon-Counting Double Random Phase Encoding Scheme for Image Authentication

    Directory of Open Access Journals (Sweden)

    Faliu Yi

    2014-05-01

    Full Text Available In this paper, we propose a new method for color image-based authentication that combines multispectral photon-counting imaging (MPCI and double random phase encoding (DRPE schemes. The sparsely distributed information from MPCI and the stationary white noise signal from DRPE make intruder attacks difficult. In this authentication method, the original multispectral RGB color image is down-sampled into a Bayer image. The three types of color samples (red, green and blue color in the Bayer image are encrypted with DRPE and the amplitude part of the resulting image is photon counted. The corresponding phase information that has nonzero amplitude after photon counting is then kept for decryption. Experimental results show that the retrieved images from the proposed method do not visually resemble their original counterparts. Nevertheless, the original color image can be efficiently verified with statistical nonlinear correlations. Our experimental results also show that different interpolation algorithms applied to Bayer images result in different verification effects for multispectral RGB color images.

  13. A multispectral photon-counting double random phase encoding scheme for image authentication.

    Science.gov (United States)

    Yi, Faliu; Moon, Inkyu; Lee, Yeon H

    2014-05-20

    In this paper, we propose a new method for color image-based authentication that combines multispectral photon-counting imaging (MPCI) and double random phase encoding (DRPE) schemes. The sparsely distributed information from MPCI and the stationary white noise signal from DRPE make intruder attacks difficult. In this authentication method, the original multispectral RGB color image is down-sampled into a Bayer image. The three types of color samples (red, green and blue color) in the Bayer image are encrypted with DRPE and the amplitude part of the resulting image is photon counted. The corresponding phase information that has nonzero amplitude after photon counting is then kept for decryption. Experimental results show that the retrieved images from the proposed method do not visually resemble their original counterparts. Nevertheless, the original color image can be efficiently verified with statistical nonlinear correlations. Our experimental results also show that different interpolation algorithms applied to Bayer images result in different verification effects for multispectral RGB color images.

  14. Simultaneous maximal exercise radionuclide angiography and thallium stress perfusion imaging

    International Nuclear Information System (INIS)

    Narahara, K.A.; Mena, I.; Maublant, J.C.; Brizendine, M.; Criley, J.M.

    1984-01-01

    Gold-195m is a new ultra-short-lived radionuclide that can be used for cardiac studies. Accurate, reproducible ejection fraction and ventricular wall motion studies can be obtained from first-transit angiography using commercially available imaging and image-processing equipment. The short half-life of gold-195m (30.5 seconds) makes simultaneous dual isotope imaging possible and substantially reduces the radiation exposure from the isotope angiography. The feasibility and possible benefits of performing dual radionuclide studies were evaluated during a single exercise stress test in 24 subjects with known coronary artery disease (CAD) and in 20 normal volunteers. High-quality first-transit angiograms were obtained in all subjects. An 83% sensitivity and 95% specificity for detecting CAD with thallium-201 imaging was noted in this investigation, suggesting that its diagnostic accuracy was not altered by simultaneous dual isotone imaging. When segmental left ventricular (LV) wall motion was compared with thallium-201 perfusion imaging, divergent results were noted in 15 of 44 subjects. An analysis of the ejection fraction (EF) results at rest and stress provided additional information that could be useful in assessing the clinical significance of such differences in segmental wall motion and perfusion. Simultaneous dual isotope imaging appears to be appropriate for situations in which both LV perfusion and function require evaluation. The use of gold-195m allows such information to be obtained from a single exercise test and can thereby reduce the cost and time required for noninvasive evaluations of patients for CAD

  15. Design of a compact high-energy setup for x-ray phase-contrast imaging

    Science.gov (United States)

    Schüttler, Markus; Yaroshenko, Andre; Bech, Martin; Potdevin, Guillaume; Malecki, Andreas; Chabior, Michael; Wolf, Johannes; Tapfer, Arne; Meiser, Jan; Kunka, Danays; Amberger, Maximilian; Mohr, Jürgen; Pfeiffer, Franz

    2014-03-01

    The main shortcoming of conventional biomedical x-ray imaging is the weak soft-tissue contrast caused by the small differences in the absorption coefficients between different materials. This issue can be addressed by x-ray phasesensitive imaging approaches, e.g. x-ray Talbot-Lau grating interferometry. The advantage of the three-grating Talbot-Lau approach is that it allows to acquire x-ray phase-contrast and dark-field images with a conventional lab source. However, through the introduction of the grating interferometer some constraints are imposed on the setup geometry. In general, the grating pitch and the mean x-ray energy determine the setup dimensions. The minimal length of the setup increases linearly with energy and is proportional to p2, where p is the grating pitch. Thus, a high-energy (100 keV) compact grating-based setup for x-ray imaging can be realized only if gratings with aspect-ratio of approximately 300 and a pitch of 1-2 μm were available. However, production challenges limit the availability of such gratings. In this study we consider the use of non-binary phase-gratings as means of designing a more compact grating interferometer for phase-contrast imaging. We present simulation and experimental data for both monochromatic and polychromatic case. The results reveal that phase-gratings with triangular-shaped structures yield visibilities that can be used for imaging purposes at significantly shorter distances than binary gratings. This opens the possibility to design a high-energy compact setup for x-ray phase-contrast imaging. Furthermore, we discuss different techniques to achieve triangular-shaped phase-shifting structures.

  16. An assessment of psychological stress and symptomatology for didactic phase physician assistant students.

    Science.gov (United States)

    Childers, William A; May, Ryan K; Ball, Natalie

    2012-01-01

    The purpose of this study was to assess the amount of psychological stress experienced by didactic phase, physician assistant (PA) students. The Symptom Checklist-90-R (SCL-90-R) survey was administered to 81 students in 2011 during the first two didactic phase semesters at two PA programs. Using ANOVA and t-tests, several variables were analyzed for significance. The SCL-90-R results portray that a significant proportion of the students from both programs reported elevated levels of stress during the first and second semester of the didactic year. Although several significant levels were noted throughout this study, it is not known how these scores from PA students would compare to other medical and/or nonmedical graduate students. Additional studies of stress from both medical and nonmedical graduate students would be beneficial for comparison to PA students.

  17. Segmentation and classification of cell cycle phases in fluorescence imaging.

    Science.gov (United States)

    Ersoy, Ilker; Bunyak, Filiz; Chagin, Vadim; Cardoso, M Christina; Palaniappan, Kannappan

    2009-01-01

    Current chemical biology methods for studying spatiotemporal correlation between biochemical networks and cell cycle phase progression in live-cells typically use fluorescence-based imaging of fusion proteins. Stable cell lines expressing fluorescently tagged protein GFP-PCNA produce rich, dynamically varying sub-cellular foci patterns characterizing the cell cycle phases, including the progress during the S-phase. Variable fluorescence patterns, drastic changes in SNR, shape and position changes and abundance of touching cells require sophisticated algorithms for reliable automatic segmentation and cell cycle classification. We extend the recently proposed graph partitioning active contours (GPAC) for fluorescence-based nucleus segmentation using regional density functions and dramatically improve its efficiency, making it scalable for high content microscopy imaging. We utilize surface shape properties of GFP-PCNA intensity field to obtain descriptors of foci patterns and perform automated cell cycle phase classification, and give quantitative performance by comparing our results to manually labeled data.

  18. Phase distribution measurements in narrow rectangular channels using image processing techniques

    International Nuclear Information System (INIS)

    Bentley, C.; Ruggles, A.

    1991-01-01

    Many high flux research reactor fuel assemblies are cooled by systems of parallel narrow rectangular channels. The HFIR is cooled by single phase forced convection under normal operating conditions. However, two-phase forced convection or two phase mixed convection can occur in the fueled region as a result of some hypothetical accidents. Such flow conditions would occur only at decay power levels. The system pressure would be around 0.15 MPa in such circumstances. Phase distribution of air-water flow in a narrow rectangular channel is examined using image processing techniques. Ink is added to the water and clear channel walls are used to allow high speed still photographs and video tape to be taken of the air-water flow field. Flow field images are digitized and stored in a Macintosh 2ci computer using a frame grabber board. Local grey levels are related to liquid thickness in the flow channel using a calibration fixture. Image processing shareware is used to calculate the spatially averaged liquid thickness from the image of the flow field. Time averaged spatial liquid distributions are calculated using image calculation algorithms. The spatially averaged liquid distribution is calculated from the time averaged spatial liquid distribution to formulate the combined temporally and spatially averaged fraction values. The temporally and spatially averaged liquid fractions measured using this technique compare well to those predicted from pressure gradient measurements at zero superficial liquid velocity

  19. In vitro shear stress measurements using particle image velocimetry in a family of carotid artery models: effect of stenosis severity, plaque eccentricity, and ulceration.

    Directory of Open Access Journals (Sweden)

    Sarah Kefayati

    Full Text Available Atherosclerotic disease, and the subsequent complications of thrombosis and plaque rupture, has been associated with local shear stress. In the diseased carotid artery, local variations in shear stress are induced by various geometrical features of the stenotic plaque. Greater stenosis severity, plaque eccentricity (symmetry and plaque ulceration have been associated with increased risk of cerebrovascular events based on clinical trial studies. Using particle image velocimetry, the levels and patterns of shear stress (derived from both laminar and turbulent phases were studied for a family of eight matched-geometry models incorporating independently varied plaque features - i.e. stenosis severity up to 70%, one of two forms of plaque eccentricity, and the presence of plaque ulceration. The level of laminar (ensemble-averaged shear stress increased with increasing stenosis severity resulting in 2-16 Pa for free shear stress (FSS and approximately double (4-36 Pa for wall shear stress (WSS. Independent of stenosis severity, marked differences were found in the distribution and extent of shear stress between the concentric and eccentric plaque formations. The maximum WSS, found at the apex of the stenosis, decayed significantly steeper along the outer wall of an eccentric model compared to the concentric counterpart, with a 70% eccentric stenosis having 249% steeper decay coinciding with the large outer-wall recirculation zone. The presence of ulceration (in a 50% eccentric plaque resulted in both elevated FSS and WSS levels that were sustained longer (∼20 ms through the systolic phase compared to the non-ulcerated counterpart model, among other notable differences. Reynolds (turbulent shear stress, elevated around the point of distal jet detachment, became prominent during the systolic deceleration phase and was widely distributed over the large recirculation zone in the eccentric stenoses.

  20. Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed

    Science.gov (United States)

    Taylor, Jaime; Rakoczy, John; Steincamp, James

    2003-01-01

    Phase retrieval requires calculation of the real-valued phase of the pupil fimction from the image intensity distribution and characteristics of an optical system. Genetic 'algorithms were used to solve two one-dimensional phase retrieval problem. A GA successfully estimated the coefficients of a polynomial expansion of the phase when the number of coefficients was correctly specified. A GA also successfully estimated the multiple p h e s of a segmented optical system analogous to the seven-mirror Systematic Image-Based Optical Alignment (SIBOA) testbed located at NASA s Marshall Space Flight Center. The SIBOA testbed was developed to investigate phase retrieval techniques. Tiphilt and piston motions of the mirrors accomplish phase corrections. A constant phase over each mirror can be achieved by an independent tip/tilt correction: the phase Conection term can then be factored out of the Discrete Fourier Tranform (DFT), greatly reducing computations.

  1. Influence of phase transformations on the asymptotic residual stress distribution arising near a sharp V-notch tip

    International Nuclear Information System (INIS)

    Ferro, P

    2012-01-01

    In this work, the residual stress distribution induced by the solidification and cooling of a fusion zone in the vicinity of a sharp V-notch tip is investigated. The intensity of the residual asymptotic stress fields, quantified by the notch stress intensity factors, was studied for two different V-notch specimen geometries under generalized plane-strain conditions. In order to analyze the influence of phase transformations on the obtained results, simulations with and without the effects of phase transformation were carried out on ASTM SA 516 steel plates. Thanks to the possibilities of numerical modelling, additional analyses were performed without taking into account the transformation plasticity phenomenon. It was found that phase transformation effects (both volume change and transformation plasticity) have a great influence on the intensity and sign of the asymptotic stress fields at the sharp V-notch tips. This result is believed to be very important for the correct numerical determination (and future applications) of notch stress intensity factors resulting from asymptotic residual stress distributions induced by transient thermal loads. The analyses were performed with the finite element code SYSWELD. (paper)

  2. Constitutive model for a stress- and thermal-induced phase transition in a shape memory polymer

    International Nuclear Information System (INIS)

    Guo, Xiaogang; Liu, Liwu; Liu, Yanju; Zhou, Bo; Leng, Jinsong

    2014-01-01

    Recently, increasing applications of shape memory polymers have pushed forward the development of appropriate constitutive models for smart materials such as the shape memory polymer. During the heating process, the phase transition, which is a continuous time-dependent process, happens in the shape memory polymer, and various individual phases will form at different configuration temperatures. In addition, these phases can generally be divided into two parts: the frozen and active phase (Liu Y et al 2006 Int. J. Plast. 22 279–313). During the heating or cooling process, the strain will be stored or released with the occurring phase transition between these two parts. Therefore, a shape memory effect emerges. In this paper, a new type of model was developed to characterize the variation of the volume fraction in a shape memory polymer during the phase transition. In addition to the temperature variation, the applied stress was also taken as a significant influence factor on the phase transition. Based on the experimental results, an exponential equation was proposed to describe the relationship between the stress and phase transition temperature. For the sake of describing the mechanical behaviors of the shape memory polymer, a three-dimensional constitutive model was established. Also, the storage strain, which was the key factor of the shape memory effect, was also discussed in detail. Similar to previous works, we first explored the effect of applied stress on storage strain. Through comparisons with the DMA and the creep experimental results, the rationality and accuracy of the new phase transition and constitutive model were finally verified. (paper)

  3. Phenotyping of Arabidopsis Drought Stress Response Using Kinetic Chlorophyll Fluorescence and Multicolor Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Jieni Yao

    2018-05-01

    Full Text Available Plant responses to drought stress are complex due to various mechanisms of drought avoidance and tolerance to maintain growth. Traditional plant phenotyping methods are labor-intensive, time-consuming, and subjective. Plant phenotyping by integrating kinetic chlorophyll fluorescence with multicolor fluorescence imaging can acquire plant morphological, physiological, and pathological traits related to photosynthesis as well as its secondary metabolites, which will provide a new means to promote the progress of breeding for drought tolerant accessions and gain economic benefit for global agriculture production. Combination of kinetic chlorophyll fluorescence and multicolor fluorescence imaging proved to be efficient for the early detection of drought stress responses in the Arabidopsis ecotype Col-0 and one of its most affected mutants called reduced hyperosmolality-induced [Ca2+]i increase 1. Kinetic chlorophyll fluorescence curves were useful for understanding the drought tolerance mechanism of Arabidopsis. Conventional fluorescence parameters provided qualitative information related to drought stress responses in different genotypes, and the corresponding images showed spatial heterogeneities of drought stress responses within the leaf and the canopy levels. Fluorescence parameters selected by sequential forward selection presented high correlations with physiological traits but not morphological traits. The optimal fluorescence traits combined with the support vector machine resulted in good classification accuracies of 93.3 and 99.1% for classifying the control plants from the drought-stressed ones with 3 and 7 days treatments, respectively. The results demonstrated that the combination of kinetic chlorophyll fluorescence and multicolor fluorescence imaging with the machine learning technique was capable of providing comprehensive information of drought stress effects on the photosynthesis and the secondary metabolisms. It is a promising

  4. Differentiation of osteoporotic and neoplastic vertebral fractures by chemical shift {in-phase and out-of phase} MR imaging

    International Nuclear Information System (INIS)

    Ragab, Yasser; Emad, Yasser; Gheita, Tamer; Mansour, Maged; Abou-Zeid, A.; Ferrari, Serge; Rasker, Johannes J.

    2009-01-01

    Objective: The objective of this study was to establish the cut-off value of the signal intensity drop on chemical shift magnetic resonance imaging (MRI) with appropriate sensitivity and specificity to differentiate osteoporotic from neoplastic wedging of the spine. Patients and methods: All patients with wedging of vertebral bodies were included consecutively between February 2006 and January 2007. A chemical shift MRI was performed and signal intensity after (in-phase and out-phase) images were obtained. A DXA was performed in all. Results: A total of 40 patients were included, 20 with osteoporotic wedging (group 1) and 20 neoplastic (group 2). They were 21 males and 19 females. Acute vertebral collapse was observed in 15 patients in group 1 and subacute collapse in another 5 patients, while in group 2, 11 patients showed acute collapse and 9 patients (45%) showed subacute vertebral collapse. On the chemical shift MRI a substantial reduction in signal intensity was found in all lesions in both groups. The proportional changes observed in signal intensity of bone marrow lesions on in-phase compared with out-of-phase images showed significant differences in both groups (P < 0.05). At a cut-off value of 35%, the observed sensitivity of out-of-phase images was 95%, specificity was 100%, positive predictive value was 100% and negative predictive value was 95.2%. Conclusion: A chemical shift MRI is useful in order to differentiate patients with vertebral collapse due to underlying osteoporosis or neoplastic process.

  5. Joint Processing of Envelope Alignment and Phase Compensation for Isar Imaging

    Science.gov (United States)

    Chen, Tao; Jin, Guanghu; Dong, Zhen

    2018-04-01

    Range envelope alignment and phase compensation are spilt into two isolated parts in the classical methods of translational motion compensation in Inverse Synthetic Aperture Radar (ISAR) imaging. In classic method of the rotating object imaging, the two reference points of the envelope alignment and the Phase Difference (PD) estimation are probably not the same point, making it difficult to uncouple the coupling term by conducting the correction of Migration Through Resolution Cell (MTRC). In this paper, an improved approach of joint processing which chooses certain scattering point as the sole reference point is proposed to perform with utilizing the Prominent Point Processing (PPP) method. With this end in view, we firstly get the initial image using classical methods from which a certain scattering point can be chose. The envelope alignment and phase compensation using the selected scattering point as the same reference point are subsequently conducted. The keystone transform is thus smoothly applied to further improve imaging quality. Both simulation experiments and real data processing are provided to demonstrate the performance of the proposed method compared with classical method.

  6. Kinetics of the stress induced phase transition in quartz by real-time neutron scattering

    International Nuclear Information System (INIS)

    Gibhardt, H.; Eckold, G.; Guethoff, F.

    1999-01-01

    Complete text of publication follows. The stability regime of the incommensurate phase of quartz is influenced by uniaxial stress. Hence, the phase transition can be induced under isothermal conditions by the application of external mechanical forces. Using real-time neutron scattering the time evolution of structural changes is investigated id detail during stress variations. The time dependent behaviour of the satellite reflection is compared with that one of the fundamental Bragg reflection which - via primary extinction - gives information about the perfection of the crystal. On increasing stress the perfection of the lattice is destroyed immediately while the modulated structure is built up with a delay of about 1 s. Decreasing the stress leads to a reverse behaviour. Moreover, there is evidence that under periodical load residual non-relaxed strain fields survive leading to a different temperature dependence as compared to static conditions. This finding is compatible with pronounced hysteresis effects observed under cycling stress. It is argued that these residual strains are associated with non-relaxed topological 4-line defects, that drive the structural changes in quartz (1). (author)

  7. Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies

    International Nuclear Information System (INIS)

    Li, Ke; Ge, Yongshuai; Garrett, John; Bevins, Nicholas; Zambelli, Joseph; Chen, Guang-Hong

    2014-01-01

    Purpose: This paper concerns the feasibility of x-ray differential phase contrast (DPC) tomosynthesis imaging using a grating-based DPC benchtop experimental system, which is equipped with a commercial digital flat-panel detector and a medical-grade rotating-anode x-ray tube. An extensive system characterization was performed to quantify its imaging performance. Methods: The major components of the benchtop system include a diagnostic x-ray tube with a 1.0 mm nominal focal spot size, a flat-panel detector with 96 μm pixel pitch, a sample stage that rotates within a limited angular span of ±30°, and a Talbot-Lau interferometer with three x-ray gratings. A total of 21 projection views acquired with 3° increments were used to reconstruct three sets of tomosynthetic image volumes, including the conventional absorption contrast tomosynthesis image volume (AC-tomo) reconstructed using the filtered-backprojection (FBP) algorithm with the ramp kernel, the phase contrast tomosynthesis image volume (PC-tomo) reconstructed using FBP with a Hilbert kernel, and the differential phase contrast tomosynthesis image volume (DPC-tomo) reconstructed using the shift-and-add algorithm. Three inhouse physical phantoms containing tissue-surrogate materials were used to characterize the signal linearity, the signal difference-to-noise ratio (SDNR), the three-dimensional noise power spectrum (3D NPS), and the through-plane artifact spread function (ASF). Results: While DPC-tomo highlights edges and interfaces in the image object, PC-tomo removes the differential nature of the DPC projection data and its pixel values are linearly related to the decrement of the real part of the x-ray refractive index. The SDNR values of polyoxymethylene in water and polystyrene in oil are 1.5 and 1.0, respectively, in AC-tomo, and the values were improved to 3.0 and 2.0, respectively, in PC-tomo. PC-tomo and AC-tomo demonstrate equivalent ASF, but their noise characteristics quantified by the 3D NPS

  8. Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies

    Science.gov (United States)

    Li, Ke; Ge, Yongshuai; Garrett, John; Bevins, Nicholas; Zambelli, Joseph; Chen, Guang-Hong

    2014-01-01

    Purpose: This paper concerns the feasibility of x-ray differential phase contrast (DPC) tomosynthesis imaging using a grating-based DPC benchtop experimental system, which is equipped with a commercial digital flat-panel detector and a medical-grade rotating-anode x-ray tube. An extensive system characterization was performed to quantify its imaging performance. Methods: The major components of the benchtop system include a diagnostic x-ray tube with a 1.0 mm nominal focal spot size, a flat-panel detector with 96 μm pixel pitch, a sample stage that rotates within a limited angular span of ±30°, and a Talbot-Lau interferometer with three x-ray gratings. A total of 21 projection views acquired with 3° increments were used to reconstruct three sets of tomosynthetic image volumes, including the conventional absorption contrast tomosynthesis image volume (AC-tomo) reconstructed using the filtered-backprojection (FBP) algorithm with the ramp kernel, the phase contrast tomosynthesis image volume (PC-tomo) reconstructed using FBP with a Hilbert kernel, and the differential phase contrast tomosynthesis image volume (DPC-tomo) reconstructed using the shift-and-add algorithm. Three inhouse physical phantoms containing tissue-surrogate materials were used to characterize the signal linearity, the signal difference-to-noise ratio (SDNR), the three-dimensional noise power spectrum (3D NPS), and the through-plane artifact spread function (ASF). Results: While DPC-tomo highlights edges and interfaces in the image object, PC-tomo removes the differential nature of the DPC projection data and its pixel values are linearly related to the decrement of the real part of the x-ray refractive index. The SDNR values of polyoxymethylene in water and polystyrene in oil are 1.5 and 1.0, respectively, in AC-tomo, and the values were improved to 3.0 and 2.0, respectively, in PC-tomo. PC-tomo and AC-tomo demonstrate equivalent ASF, but their noise characteristics quantified by the 3D NPS

  9. Stress magnetic resonance imaging in coronary artery disease. 11

    International Nuclear Information System (INIS)

    Pennell, D.J.; Underwood, S.R.

    1991-01-01

    The feasibility of MRI of wall motion and cardiovascular haemodynamics has been investigated during pharmacological stress with dipyridamole and dobutamine as pharmacological stressors. The authors conclude that dobutamine is preferable to dipyridamole for inducing myocardial ischemia during imaging. (H.W.). 74 refs.; 8 figs.; 5 tabs

  10. Triple Arterial Phase MR Imaging with Gadoxetic Acid Using a Combination of Contrast Enhanced Time Robust Angiography, Keyhole, and Viewsharing Techniques and Two-Dimensional Parallel Imaging in Comparison with Conventional Single Arterial Phase

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jeong Hee [Department of Radiology, Seoul National University Hospital, Seoul 03080 (Korea, Republic of); Department of Radiology, Seoul National University College of Medicine, Seoul 03087 (Korea, Republic of); Lee, Jeong Min [Department of Radiology, Seoul National University Hospital, Seoul 03080 (Korea, Republic of); Department of Radiology, Seoul National University College of Medicine, Seoul 03087 (Korea, Republic of); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 03087 (Korea, Republic of); Yu, Mi Hye [Department of Radiology, Konkuk University Medical Center, Seoul 05030 (Korea, Republic of); Kim, Eun Ju [Philips Healthcare Korea, Seoul 04342 (Korea, Republic of); Han, Joon Koo [Department of Radiology, Seoul National University Hospital, Seoul 03080 (Korea, Republic of); Department of Radiology, Seoul National University College of Medicine, Seoul 03087 (Korea, Republic of); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 03087 (Korea, Republic of)

    2016-11-01

    To determine whether triple arterial phase acquisition via a combination of Contrast Enhanced Time Robust Angiography, keyhole, temporal viewsharing and parallel imaging can improve arterial phase acquisition with higher spatial resolution than single arterial phase gadoxetic-acid enhanced magnetic resonance imaging (MRI). Informed consent was waived for this retrospective study by our Institutional Review Board. In 752 consecutive patients who underwent gadoxetic acid-enhanced liver MRI, either single (n = 587) or triple (n = 165) arterial phases was obtained in a single breath-hold under MR fluoroscopy guidance. Arterial phase timing was assessed, and the degree of motion was rated on a four-point scale. The percentage of patients achieving the late arterial phase without significant motion was compared between the two methods using the χ{sup 2} test. The late arterial phase was captured at least once in 96.4% (159/165) of the triple arterial phase group and in 84.2% (494/587) of the single arterial phase group (p < 0.001). Significant motion artifacts (score ≤ 2) were observed in 13.3% (22/165), 1.2% (2/165), 4.8% (8/165) on 1st, 2nd, and 3rd scans of triple arterial phase acquisitions and 6.0% (35/587) of single phase acquisitions. Thus, the late arterial phase without significant motion artifacts was captured in 96.4% (159/165) of the triple arterial phase group and in 79.9% (469/587) of the single arterial phase group (p < 0.001). Triple arterial phase imaging may reliably provide adequate arterial phase imaging for gadoxetic acid-enhanced liver MRI.

  11. Triple arterial phase MR imaging with gadoxetic acid using a combination of contrast enhanced time robust angiography, keyhole, and viewsharing techniques and two-dimensional parallel imaging in comparison with conventional single arterial phase

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jeong Hee; Lee, Jeong Min; Han, Joon Koo [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of); Yu, Mi Hye [Dept. of Radiology, Konkuk University Medical Center, Seoul (Korea, Republic of); Kim, Eun Ju [Philips Healthcare Korea, Seoul (Korea, Republic of)

    2016-07-15

    To determine whether triple arterial phase acquisition via a combination of Contrast Enhanced Time Robust Angiography, keyhole, temporal viewsharing and parallel imaging can improve arterial phase acquisition with higher spatial resolution than single arterial phase gadoxetic-acid enhanced magnetic resonance imaging (MRI). Informed consent was waived for this retrospective study by our Institutional Review Board. In 752 consecutive patients who underwent gadoxetic acid-enhanced liver MRI, either single (n = 587) or triple (n = 165) arterial phases was obtained in a single breath-hold under MR fluoroscopy guidance. Arterial phase timing was assessed, and the degree of motion was rated on a four-point scale. The percentage of patients achieving the late arterial phase without significant motion was compared between the two methods using the χ2 test. The late arterial phase was captured at least once in 96.4% (159/165) of the triple arterial phase group and in 84.2% (494/587) of the single arterial phase group (p < 0.001). Significant motion artifacts (score ≤ 2) were observed in 13.3% (22/165), 1.2% (2/165), 4.8% (8/165) on 1st, 2nd, and 3rd scans of triple arterial phase acquisitions and 6.0% (35/587) of single phase acquisitions. Thus, the late arterial phase without significant motion artifacts was captured in 96.4% (159/165) of the triple arterial phase group and in 79.9% (469/587) of the single arterial phase group (p < 0.001). Triple arterial phase imaging may reliably provide adequate arterial phase imaging for gadoxetic acid-enhanced liver MRI.

  12. Interaction of stress with the martensitic phase transition in A15 compounds

    International Nuclear Information System (INIS)

    Welch, D.O.

    1981-01-01

    Recently there has been a resurgence of interest in the effect of the martensitic phase transition which occurs in many A15 compounds on superconductivity and on elastic and anelastic behavior. Since in many practical applications, A15 compounds are subject to considerable stress and strain, it is of interest to examine the interaction of stress with the martensitic transition; this paper is an examination of the effects of stress predicted by a simple Landau model which successfully describes many features of the transition and the related temperature dependence of the elastic modulus (c 11 -c 12 )/2. The effect of stress on the temperature ranges of stability and metastability of various types of martensitic domain is discussed. The non-linearity of the stress-strain relation in a polycrystalline A15 is studied

  13. Initial studies of synchrotron radiation phase-contrast imaging in the field of medicine

    International Nuclear Information System (INIS)

    Chen Shaoliang; Zhang Xi; Peng Yifeng; Li Beilei; Cheng Aiping; Zhu Peiping; Yuan Xiqing; Huang Wanxia

    2010-01-01

    Recently,research on using X-ray phase information in medicine has been growing remarkably fast. Phase-contrast imaging with synchrotron radiation can reveal inner soft tissues such as tendons, cartilage, ligaments, adipose tissue, vessels and nerves without a contrast agent. We have visualized the liver, bile duct, lung, kidney, stomach and intestine, heart, blood vessel, bone and arthrosis, and tumor tissues using 'in-line' phase contrast imaging and diffraction-enhanced imaging. It is seen that the synchrotron radiation graphs show much higher resolution. This method is especially suitable for studying soft tissue structure and blood vessels. (authors)

  14. Phase identification and internal stress analysis of steamside oxides on superheater tubes by means of X-ray diffraction

    DEFF Research Database (Denmark)

    Pantleon, Karen; Montgomery, Melanie

    Steamside oxides formed on plant exposed superheated tubes were investigated using X-ray diffraction. Phase identification and stress analysis revealed that on ferritic X20CrMoV12-1 pure Hematite and pure Magnetite formed and both phases are under tensile stress. IN contrast, on austenitic TP347H...... Mn-, Cr- and/or Ni-containing oxides are observed, instead of pure Magnetite, underneath a pure Hematite surface layer. Oxides on the austenitic steel are under compressive stress or even stress-free....

  15. Sequential processing of quantitative phase images for the study of cell behaviour in real-time digital holographic microscopy.

    Science.gov (United States)

    Zikmund, T; Kvasnica, L; Týč, M; Křížová, A; Colláková, J; Chmelík, R

    2014-11-01

    Transmitted light holographic microscopy is particularly used for quantitative phase imaging of transparent microscopic objects such as living cells. The study of the cell is based on extraction of the dynamic data on cell behaviour from the time-lapse sequence of the phase images. However, the phase images are affected by the phase aberrations that make the analysis particularly difficult. This is because the phase deformation is prone to change during long-term experiments. Here, we present a novel algorithm for sequential processing of living cells phase images in a time-lapse sequence. The algorithm compensates for the deformation of a phase image using weighted least-squares surface fitting. Moreover, it identifies and segments the individual cells in the phase image. All these procedures are performed automatically and applied immediately after obtaining every single phase image. This property of the algorithm is important for real-time cell quantitative phase imaging and instantaneous control of the course of the experiment by playback of the recorded sequence up to actual time. Such operator's intervention is a forerunner of process automation derived from image analysis. The efficiency of the propounded algorithm is demonstrated on images of rat fibrosarcoma cells using an off-axis holographic microscope. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  16. Dependence of stress-induced omega transition and mechanical twinning on phase stability in metastable β Ti–V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.L.; Li, L.; Mei, W.; Wang, W.L.; Sun, J., E-mail: jsun@sjtu.edu.cn

    2015-09-15

    Tensile properties and deformation microstructures of a series of binary β Ti–16–22V alloys have been investigated. The results show that the plastic deformation mode changes from the plate-like stress-induced ω phase transformation with a special habit plane of (− 5052){sub ω}//(3 − 3 − 2){sub β} to (332)<113> type deformation twinning with increasing the content of vanadium in the β Ti–16–22 wt.% V alloys. The plate-like stress-induced ω phase has a special orientation relationship with the β phase matrix, i.e., [110]{sub β}//[− 12 − 10]{sub ω}, (3 − 3 − 2){sub β}//(− 5052){sub ω} and (− 55 − 4){sub β}//(30 − 31){sub ω}. The alloys plastically deformed by stress-induced ω phase transformation exhibit relatively higher yield strength than those deformed via (332)<113> type deformation twinning. It can be concluded that the stability of β phase plays a significant role in plastic deformation mode, i.e., stress-induced ω phase transformation or (332)<113> type deformation twinning, which governs the mechanical property of the β Ti–16–22 wt.% V alloys. - Highlights: • Tensile properties and deformed microstructures of β Ti–16–22V alloys were studied. • Stress-induced ω phase transformation and (332)<113> twinning occur in the alloys. • Stability of β phase plays a significant role in plastic deformation mode. • Plastic deformation mode governs the mechanical property of the alloys.

  17. Demonstration of Focusing Wolter Mirrors for Neutron Phase and Magnetic Imaging

    Directory of Open Access Journals (Sweden)

    Daniel S. Hussey

    2018-03-01

    Full Text Available Image-forming focusing mirrors were employed to demonstrate their applicability to two different modalities of neutron imaging, phase imaging with a far-field interferometer, and magnetic-field imaging through the manipulation of the neutron beam polarization. For the magnetic imaging, the rotation of the neutron polarization in the magnetic field was measured by placing a solenoid at the focus of the mirrors. The beam was polarized upstream of the solenoid, while the spin analyzer was situated between the solenoid and the mirrors. Such a polarized neutron microscope provides a path toward considerably improved spatial resolution in neutron imaging of magnetic materials. For the phase imaging, we show that the focusing mirrors preserve the beam coherence and the path-length differences that give rise to the far-field moiré pattern. We demonstrated that the visibility of the moiré pattern is modified by small angle scattering from a highly porous foam. This experiment demonstrates the feasibility of using Wolter optics to significantly improve the spatial resolution of the far-field interferometer.

  18. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging

    Science.gov (United States)

    Willner, M.; Herzen, J.; Grandl, S.; Auweter, S.; Mayr, D.; Hipp, A.; Chabior, M.; Sarapata, A.; Achterhold, K.; Zanette, I.; Weitkamp, T.; Sztrókay, A.; Hellerhoff, K.; Reiser, M.; Pfeiffer, F.

    2014-04-01

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography.

  19. Correlation of early-phase 18F-florbetapir (AV-45/Amyvid) PET images to FDG images: preliminary studies

    International Nuclear Information System (INIS)

    Hsiao, Ing-Tsung; Hsieh, Chia-Ju; Wey, Shiaw-Pyng; Lin, Kun-Ju; Huang, Chin-Chang; Hsu, Wen-Chun; Yen, Tzu-Chen; Kung, Mei-Ping

    2012-01-01

    18 F-Florbetapir (AV-45/Amyvid) is a novel positron emission tomography (PET) tracer for imaging plaque pathology in Alzheimer's disease (AD), while PET images of fluorodeoxyglucose (FDG) for cerebral glucose metabolism can provide complementary information to amyloid plaque images for diagnosis of AD. The goal of this preliminary study was to investigate the perfusion-like property of relative cerebral blood flow estimates (R 1 ) and summed early-phase AV-45 images [perfusion AV-45 (pAV-45)] and optimize the early time frame for pAV-45. Dynamic AV-45 PET scans (0-180 min) were performed in seven subjects. pAV-45, late-phase AV-45, and FDG images were spatially normalized to the Montreal Neurological Institute template aided by individual MRI images, and the corresponding standardized uptake value ratio (SUVR) was computed. The R 1 images were derived from a simplified reference tissue model. Correlations between regional and voxelwise R 1 and the corresponding FDG images were calculated. An optimization of time frames of pAV-45 was conducted in terms of correlation to FDG images. The optimal early time frame was validated in a separate cohort. The regional distribution in the R 1 images correlated well (R = 0.91) to that of the FDG within subjects. Consistently high correlation was noted across a long range of time frames. The maximal correlation of pAV-45 to FDG SUVR of R = 0.95 was observed at the time frame of 1-6 min, while the peak correlation of R = 0.99 happened at 0-2 min between pAV-45 and R 1 . A similar result was achieved in the validation cohort. Preliminary results showed that the distribution patterns of R 1 and pAV-45 images are highly correlated with normalized FDG images, and the initial 5-min early time frame of 1-6 min is potentially useful in providing complementary FDG-like information to the amyloid plaque density by late-phase AV-45 images. (orig.)

  20. JUPITER’S PHASE VARIATIONS FROM CASSINI : A TESTBED FOR FUTURE DIRECT-IMAGING MISSIONS

    International Nuclear Information System (INIS)

    Mayorga, L. C.; Jackiewicz, J.; Rages, K.; West, R. A.; Knowles, B.; Lewis, N.; Marley, M. S.

    2016-01-01

    We present empirical phase curves of Jupiter from ∼0° to 140° as measured in multiple optical bandpasses by Cassini /Imaging Science Subsystem (ISS) during the Millennium flyby of Jupiter in late 2000 to early 2001. Phase curves are of interest for studying the energy balance of Jupiter and understanding the scattering behavior of the planet as an exoplanet analog. We find that Jupiter is significantly darker at partial phases than an idealized Lambertian planet by roughly 25% and is not well fit by Jupiter-like exoplanet atmospheric models across all wavelengths. We provide analytic fits to Jupiter’s phase function in several Cassini /ISS imaging filter bandpasses. In addition, these observations show that Jupiter’s color is more variable with phase angle than predicted by models. Therefore, the color of even a near Jupiter-twin planet observed at a partial phase cannot be assumed to be comparable to that of Jupiter at full phase. We discuss how the Wide-Field Infrared Survey Telescope and other future direct-imaging missions can enhance the study of cool giants.

  1. Quantitative phase imaging of living cells with a swept laser source

    Science.gov (United States)

    Chen, Shichao; Zhu, Yizheng

    2016-03-01

    Digital holographic phase microscopy is a well-established quantitative phase imaging technique. However, interference artifacts from inside the system, typically induced by elements whose optical thickness are within the source coherence length, limit the imaging quality as well as sensitivity. In this paper, a swept laser source based technique is presented. Spectra acquired at a number of wavelengths, after Fourier Transform, can be used to identify the sources of the interference artifacts. With proper tuning of the optical pathlength difference between sample and reference arms, it is possible to avoid these artifacts and achieve sensitivity below 0.3nm. Performance of the proposed technique is examined in live cell imaging.

  2. Photon-counting-based diffraction phase microscopy combined with single-pixel imaging

    Science.gov (United States)

    Shibuya, Kyuki; Araki, Hiroyuki; Iwata, Tetsuo

    2018-04-01

    We propose a photon-counting (PC)-based quantitative-phase imaging (QPI) method for use in diffraction phase microscopy (DPM) that is combined with a single-pixel imaging (SPI) scheme (PC-SPI-DPM). This combination of DPM with the SPI scheme overcomes a low optical throughput problem that has occasionally prevented us from obtaining quantitative-phase images in DPM through use of a high-sensitivity single-channel photodetector such as a photomultiplier tube (PMT). The introduction of a PMT allowed us to perform PC with ease and thus solved a dynamic range problem that was inherent to SPI. As a proof-of-principle experiment, we performed a comparison study of analogue-based SPI-DPM and PC-SPI-DPM for a 125-nm-thick indium tin oxide (ITO) layer coated on a silica glass substrate. We discuss the basic performance of the method and potential future modifications of the proposed system.

  3. Spirituality among College Freshmen: Relationships To Self-Esteem, Body Image, and Stress

    Science.gov (United States)

    Hayman, Jessie Wetherbe; Kurpius, Sharon Robinson; Befort, Christy; Nicpon, Megan Foley; Hull-Blanks, Elva; Sollenberger, Sonja; Huser, Laura

    2007-01-01

    The authors investigated the relationships between spirituality, body image, self-esteem, and stress in 204 college freshmen who identified themselves as being highly spiritual. A positive relationship was found between spirituality and self-esteem. Although self-esteem was found to be negatively related to stress, spirituality served as a buffer…

  4. Phase changes caused by hyperventilation stress in spastic angina pectoris analyzed by first-pass radionuclide ventriculography

    International Nuclear Information System (INIS)

    Wu, Jin; Takeda, Tohoru; Ajisaka, Ryuichi; Masuoka, Takeshi; Watanabe, Sigeyuki; Sato, Motohiro; Itai, Yuji; Toyama, Hinako; Ishikawa, Nobuyoshi

    1999-01-01

    To understand the effect of hyperventilation (HV) stress in patients with spastic angina, left ventricular (LV) contraction was analyzed by quantitative phase analysis. The study was performed on 36 patients with spastic angina pectoris, including vasospastic angina pectoris (VspAP: 16 patients) and variant angina pectoris (VAP: 20 patients). First-pass radionuclide ventriculography (first-pass RNV) was performed at rest and after HV stress, and standard deviation of the LV phase distribution (SD) was analyzed. The SD was lower in patients with VspAP than in VAP(12.8±1.4 degrees vs. 14.6±2.2 degrees, p<0.005) at rest. After HV stress, the SD (HVSD) tended to increase in VspAP patients (62.5%), whereas the SD decreased in VAP patients (70%). Due to HV stress, the percentage change in SD (%SD) in VspAP patients was 8.9±23.7% whereas that in VAP patients was -9.1±17.3% (p<0.01). Moreover, phase histograms were divided into HVSD increase and HVSD decrease groups. The HVSD increase group had a decrease of HVEF, but the HVSD decrease group tended to have more decreased HVEF than the HVSD increase group. These results indicate that spastic angina pectoris patients show various responses to HV stress. The HVSD increase group might have additional myocardial ischemia due to regional coronary spasm. In contrast, in the HVSD decrease group severe LV dysfunction or diffuse wall motion abnormality might have been generated, and this caused a reduction in the SD value. Phase analysis would therefore add new information regarding electrocardiographically silent myocardial ischemia due to coronary spasm, and HV stress might increase sensitivity for the detection of abnormalities in quantitative phase analysis, especially in VspAP patients. (author)

  5. Phase changes caused by hyperventilation stress in spastic angina pectoris analyzed by first-pass radionuclide ventriculography

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jin; Takeda, Tohoru; Ajisaka, Ryuichi; Masuoka, Takeshi; Watanabe, Sigeyuki; Sato, Motohiro; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Toyama, Hinako; Ishikawa, Nobuyoshi

    1999-02-01

    To understand the effect of hyperventilation (HV) stress in patients with spastic angina, left ventricular (LV) contraction was analyzed by quantitative phase analysis. The study was performed on 36 patients with spastic angina pectoris, including vasospastic angina pectoris (VspAP: 16 patients) and variant angina pectoris (VAP: 20 patients). First-pass radionuclide ventriculography (first-pass RNV) was performed at rest and after HV stress, and standard deviation of the LV phase distribution (SD) was analyzed. The SD was lower in patients with VspAP than in VAP(12.8{+-}1.4 degrees vs. 14.6{+-}2.2 degrees, p<0.005) at rest. After HV stress, the SD (HVSD) tended to increase in VspAP patients (62.5%), whereas the SD decreased in VAP patients (70%). Due to HV stress, the percentage change in SD (%SD) in VspAP patients was 8.9{+-}23.7% whereas that in VAP patients was -9.1{+-}17.3% (p<0.01). Moreover, phase histograms were divided into HVSD increase and HVSD decrease groups. The HVSD increase group had a decrease of HVEF, but the HVSD decrease group tended to have more decreased HVEF than the HVSD increase group. These results indicate that spastic angina pectoris patients show various responses to HV stress. The HVSD increase group might have additional myocardial ischemia due to regional coronary spasm. In contrast, in the HVSD decrease group severe LV dysfunction or diffuse wall motion abnormality might have been generated, and this caused a reduction in the SD value. Phase analysis would therefore add new information regarding electrocardiographically silent myocardial ischemia due to coronary spasm, and HV stress might increase sensitivity for the detection of abnormalities in quantitative phase analysis, especially in VspAP patients. (author)

  6. Aetiology, imaging and treatment of medial tibial stress syndrome

    NARCIS (Netherlands)

    Moen, M.H.

    2012-01-01

    The work contained is this thesis discusses aetiology, imaging and treatment of a common leg injury: medial tibial stress syndrome (MTSS). Although a common injury, the number of scientific articles on this topic is relatively low as is explained in chapter 1. This chapter also highlights that the

  7. Stress test with adenosine in cerebral perfusion imaging for the diagnosis of ischemic cerebrovascular disease

    International Nuclear Information System (INIS)

    Yuan Gengbiao; Kuang Anren; Chen Xuehong; Li Xihuan; Feng Jianzhong

    2004-01-01

    Objective: This study purpose is to evaluate cerebrovascular response and reserve capacity (CVR, CVRC) by stress test with adenosine in cerebral perfusion imaging for the diagnosis of ischemic cerebrovascular diseases. Methods There were 25 patients suffered from transient ischemia attack and 16 patients suffered from occlusive cerebral artery in this study. The rest cerebral perfusion imaging was obtained 30 minutes post-injection of 99mTC-ethylene cysteinate dimmer. After 2-5 days, adenosine stress tests were performed. Adenosine (0.14 mg/kg min) was administered intravenously 3 minutes pre-injection of 99mTC-ECD.Under same condition, the rest and stress tests of cerebral perfusion imaging were performed. By visual and semiquantitative analysis, the results of the rest/stress imaging were divided into the following four patterns: A: The stress imaging showed an expand areas of hypoperfusion, asymmetry index (AI) was decreased; B: Rest imaging was normal but new hypoperfused areas appeared with AI index declining in stress test; C: The hypoperfused areas were decreased or disappeared in size with AI index increasing in stress test; D: No changes showed in cerebral perfusion imaging patterns and Al index between rest and stress tests. AI index was ratio of radio account of interest regions than average radio account of cerebella. Results It was found that A, B, C and D type were 24%,12%,56% and 8% respectively in the group of transient ischemia attack patients, and 31%,44%, 19% and 6% respectively in the group of occlusive cerebrovascular patients. In rest test, of 41 patients of cerebrovascular disease, there were 28 cases decreased of radio uptake, moreover in stress test, there were 38 case decreased of radio uptake, positive rate were 68.29% and 92.68% respectively. Compared to X±SD of AI index of rest/stress test, it is found to increasing and being significant statistics (p<0.01, Spass 8.0 statistics software). Conclusion: Adenosinal-induced vasodilatation

  8. X-ray elastography: Modification of x-ray phase contrast images using ultrasonic radiation pressure

    International Nuclear Information System (INIS)

    Hamilton, Theron J.; Bailat, Claude; Rose-Petruck, Christoph; Diebold, Gerald J.; Gehring, Stephan; Laperle, Christopher M.; Wands, Jack

    2009-01-01

    The high resolution characteristic of in-line x-ray phase contrast imaging can be used in conjunction with directed ultrasound to detect small displacements in soft tissue generated by differential acoustic radiation pressure. The imaging method is based on subtraction of two x-ray images, the first image taken with, and the second taken without the presence of ultrasound. The subtraction enhances phase contrast features and, to a large extent, removes absorption contrast so that differential movement of tissues with different acoustic impedances or relative ultrasonic absorption is highlighted in the image. Interfacial features of objects with differing densities are delineated in the image as a result of both the displacement introduced by the ultrasound and the inherent sensitivity of x-ray phase contrast imaging to density variations. Experiments with ex vivo murine tumors and human tumor phantoms point out a diagnostic capability of the method for identifying tumors.

  9. Differential X-ray phase-contrast imaging with a grating interferometer using a laboratory X-ray micro-focus tube

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Kwon-Ha; Ryu, Jong-Hyun; Jung, Chang-Won [Wonkwang University School of Medicine, Iksan (Korea, Republic of); Ryu, Cheol-Woo; Kim, Young-Jo; Kwon, Young-Man [Jeonbuk Technopark, Iksan (Korea, Republic of); Park, Mi-Ran; Cho, Seung-Ryong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Chon, Kwon-Su [Catholic University of Daegu, Gyeongsan (Korea, Republic of)

    2014-12-15

    X-ray phase-contrast imaging can provide images with much greater soft-tissue contrast than conventional absorption-based images. In this paper, we describe differential X-ray phase-contrast images of insect specimens that were obtained using a grating-based Talbot interferometer and a laboratory X-ray source with a spot size of a few tens of micrometers. We developed the interferometer on the basis of the wavelength, periods, and height of the gratings; the field of view depends on the size of the grating, considering the refractive index of the specimen. The phase-contrast images were acquired using phase-stepping methods. The phase contrast imaging provided a significantly enhanced soft-tissue contrast compared with the attenuation data. The contour of the sample was clearly visible because the refraction from the edges of the object was strong in the differential phase-contrast image. Our results demonstrate that a grating-based Talbot interferometer with a conventional X-ray tube may be attractive as an X-ray imaging system for generating phase images. X-ray phase imaging obviously has sufficient potential and is expected to soon be a great tool for medical diagnostics.

  10. Differential X-ray phase-contrast imaging with a grating interferometer using a laboratory X-ray micro-focus tube

    International Nuclear Information System (INIS)

    Yoon, Kwon-Ha; Ryu, Jong-Hyun; Jung, Chang-Won; Ryu, Cheol-Woo; Kim, Young-Jo; Kwon, Young-Man; Park, Mi-Ran; Cho, Seung-Ryong; Chon, Kwon-Su

    2014-01-01

    X-ray phase-contrast imaging can provide images with much greater soft-tissue contrast than conventional absorption-based images. In this paper, we describe differential X-ray phase-contrast images of insect specimens that were obtained using a grating-based Talbot interferometer and a laboratory X-ray source with a spot size of a few tens of micrometers. We developed the interferometer on the basis of the wavelength, periods, and height of the gratings; the field of view depends on the size of the grating, considering the refractive index of the specimen. The phase-contrast images were acquired using phase-stepping methods. The phase contrast imaging provided a significantly enhanced soft-tissue contrast compared with the attenuation data. The contour of the sample was clearly visible because the refraction from the edges of the object was strong in the differential phase-contrast image. Our results demonstrate that a grating-based Talbot interferometer with a conventional X-ray tube may be attractive as an X-ray imaging system for generating phase images. X-ray phase imaging obviously has sufficient potential and is expected to soon be a great tool for medical diagnostics

  11. Preliminary evaluation of cryogenic two-phase flow imaging using electrical capacitance tomography

    Science.gov (United States)

    Xie, Huangjun; Yu, Liu; Zhou, Rui; Qiu, Limin; Zhang, Xiaobin

    2017-09-01

    The potential application of the 2-D eight-electrode electrical capacitance tomography (ECT) to the inversion imaging of the liquid nitrogen-vaporous nitrogen (LN2-VN2) flow in the tube is theoretically evaluated. The phase distribution of the computational domain is obtained using the simultaneous iterative reconstruction technique with variable iterative step size. The detailed mathematical derivations for the calculations are presented. The calculated phase distribution for the two detached LN2 column case shows the comparable results with the water-air case, regardless of the much reduced dielectric permittivity of LN2 compared with water. The inversion images of total eight different LN2-VN2 flow patterns are presented and quantitatively evaluated by calculating the relative void fraction error and the correlation coefficient. The results demonstrate that the developed reconstruction technique for ECT has the capacity to reconstruct the phase distribution of the complex LN2-VN2 flow, while the accuracy of the inversion images is significantly influenced by the size of the discrete phase. The influence of the measurement noise on the image quality is also considered in the calculations.

  12. Comparison of exercise and pharmacologic stress in myocardium perfusion imaging for CHD

    International Nuclear Information System (INIS)

    Li Zebo; Zheng Kangni; Cheng Xiaorui; Liu Hui; Cheng Yihai

    1995-01-01

    In order to provide a proper stress test, exercise, dipyridamole and ATP stress were compared. Three modalities were compared with respect to the detecting rate, methodology, hemodynamic and side effects. There are no significant differences in their ability of detecting coronary heart disease (CHD) (P>0.05). Exercise stress causes an increase in heart rate, blood pressure and myocardium oxygen consumption. Pharmacologic stress cause a slight increase in heart rate, but a decrease in blood pressure (P<0.01). Exercise stress is a basic method with good image quality, but it needs a special equipment. Pharmacologic stress is an easier, cheaper and safer method, particularly useful for patients unable to perform exercise test

  13. Stress analysis in oral obturator prostheses: imaging photoelastic

    Science.gov (United States)

    Pesqueira, Aldiéris Alves; Goiato, Marcelo Coelho; dos Santos, Daniela Micheline; Haddad, Marcela Filié; Andreotti, Agda Marobo; Moreno, Amália

    2013-06-01

    Maxillary defects resulting from cancer, trauma, and congenital malformation affect the chewing efficiency and retention of dentures in these patients. The use of implant-retained palatal obturator dentures has improved the self-esteem and quality of life of several subjects. We evaluate the stress distribution of implant-retained palatal obturator dentures with different attachment systems by using the photoelastic analysis images. Two photoelastic models of the maxilla with oral-sinus-nasal communication were fabricated. One model received three implants on the left side of the alveolar ridge (incisive, canine, and first molar regions) and the other did not receive implants. Afterwards, a conventional palatal obturator denture (control) and two implant-retained palatal obturator dentures with different attachment systems (O-ring; bar-clip) were constructed. Models were placed in a circular polariscope and a 100-N axial load was applied in three different regions (incisive, canine, and first molar regions) by using a universal testing machine. The results were photographed and analyzed qualitatively using a software (Adobe Photoshop). The bar-clip system exhibited the highest stress concentration followed by the O-ring system and conventional denture (control). Images generated by the photoelastic method help in the oral rehabilitator planning.

  14. Precision mass measurements using the Phase-Imaging Ion-Cyclotron-Resonance detection technique

    CERN Document Server

    Karthein, Jonas

    This thesis presents the implementation and improvement of the Phase-Imaging Ion-Cyclotron-Resonance (PI-ICR) detection technique at the ISOLTRAP experiment, located at the ISOLDE / CERN, with the purpose of on-line high-precision and high-resolution mass spectrometry. Extensive simulation studies were performed with the aim of improving the phase-imaging resolution and finding the optimal position for detector placement. Following the outcome of these simulations, the detector was moved out of a region of electric-field distortion and closer to the center of the Penning trap, showing a dramatic improvement in the quality and reproducibility of the phase-imaging measurements. A new image reconstitution and analysis software for the MCP-PS detector was written in Python and ROOT and introduced in the framework of PI-ICR mass measurements. The state of the art in the field of time-of-flight ion-cyclotron-resonance measurements is illustrated through an analysis of on-line measurements of the mirror nuclei $...

  15. Cumulative phase delay imaging for contrast-enhanced ultrasound tomography

    International Nuclear Information System (INIS)

    Demi, Libertario; Van Sloun, Ruud J G; Wijkstra, Hessel; Mischi, Massimo

    2015-01-01

    Standard dynamic-contrast enhanced ultrasound (DCE-US) imaging detects and estimates ultrasound-contrast-agent (UCA) concentration based on the amplitude of the nonlinear (harmonic) components generated during ultrasound (US) propagation through UCAs. However, harmonic components generation is not specific to UCAs, as it also occurs for US propagating through tissue. Moreover, nonlinear artifacts affect standard DCE-US imaging, causing contrast to tissue ratio reduction, and resulting in possible misclassification of tissue and misinterpretation of UCA concentration. Furthermore, no contrast-specific modality exists for DCE-US tomography; in particular speed-of-sound changes due to UCAs are well within those caused by different tissue types. Recently, a new marker for UCAs has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental component is in fact observable for US propagating through UCAs, and is absent in tissue. In this paper, tomographic US images based on CPD are for the first time presented and compared to speed-of-sound US tomography. Results show the applicability of this marker for contrast specific US imaging, with cumulative phase delay imaging (CPDI) showing superior capabilities in detecting and localizing UCA, as compared to speed-of-sound US tomography. Cavities (filled with UCA) which were down to 1 mm in diameter were clearly detectable. Moreover, CPDI is free of the above mentioned nonlinear artifacts. These results open important possibilities to DCE-US tomography, with potential applications to breast imaging for cancer localization. (fast track communication)

  16. Refractive indices of K2ZnCl4 crystals in an incommensurate phase under uniaxial stresses

    International Nuclear Information System (INIS)

    Gaba, V.M.; Kogut, Z.O.; Brezvin, R.S.; Stadnik, V.I.

    2010-01-01

    The influence of uniaxial mechanical stresses directed along the principal crystallophysical axes on refractiveindex temperature dependences in K 2 ZnCl 4 crystals was studied. It is established that the refractive indices ni are quite sensitive to uniaxial stresses. Significant baric shifts of the paraphase-incommensurate-commensurate phase transition points to different temperature regions were observed, which is due to the effect of the uniaxial stress on the K 2 ZnCl 4 crystal structure. It is found that applying uniaxial pressure increases the value of the temperature hysteresis of the commensurate-incommensurate phase transition. (authors)

  17. ISAR Imaging of Maneuvering Targets Based on the Modified Discrete Polynomial-Phase Transform

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2015-09-01

    Full Text Available Inverse synthetic aperture radar (ISAR imaging of a maneuvering target is a challenging task in the field of radar signal processing. The azimuth echo can be characterized as a multi-component polynomial phase signal (PPS after the translational compensation, and the high quality ISAR images can be obtained by the parameters estimation of it combined with the Range-Instantaneous-Doppler (RID technique. In this paper, a novel parameters estimation algorithm of the multi-component PPS with order three (cubic phase signal-CPS based on the modified discrete polynomial-phase transform (MDPT is proposed, and the corresponding new ISAR imaging algorithm is presented consequently. This algorithm is efficient and accurate to generate a focused ISAR image, and the results of real data demonstrate the effectiveness of it.

  18. Optical phase plates as a creative medium for special effects in images

    Science.gov (United States)

    Shaoulov, Vesselin I.; Meyer, Catherine; Argotti, Yann; Rolland, Jannick P.

    2001-12-01

    A new paradigm and methods for special effects in images were recently proposed by artist and movie producer Steven Hylen. Based on these methods, images resembling painting may be formed using optical phase plates. The role of the mathematical and optical properties of the phase plates is studied in the development of these new art forms. Results of custom software as well as ASAP simulations are presented.

  19. Combined phase and X-Ray fluorescence imaging at the sub-cellular level

    International Nuclear Information System (INIS)

    Kosior, Ewelina

    2013-01-01

    This work presents some recent developments in the field of hard X-ray imaging applied to biomedical research. As the discipline is evolving quickly, new questions appear and the list of needs becomes bigger. Some of them are dealt with in this manuscript. It has been shown that the ID22NI beamline of the ESRF can serve as a proper experimental setup to investigate diverse aspects of cellular research. Together with its high spatial resolution, high flux and high energy range the experimental setup provides bigger field of view, is less sensitive to radiation damages (while taking phase contrast images) and suits well chemical analysis with emphasis on endogenous metals (Zn, Fe, Mn) but also with a possibility for exogenous one's like these found in nanoparticles (Au, Pt, Ag) study. Two synchrotron-based imaging techniques, fluorescence and phase contrast imaging were used in this research project. They were correlated with each other on a number of biological cases, from bacteria E.coli to various cells (HEK 293, PC12, MRC5VA, red blood cells). The explorations made in the chapter 5 allowed preparation of more established and detailed analysis, described in the next chapter where both techniques, X-ray fluorescence and phase contrast imaging, were exploited in order to access absolute metal projected mass fraction in a whole cell. The final image presents for the first time true quantitative information at the sub-cellular level, not biased by the cell thickness. Thus for the first time a fluorescence map serves as a complete quantitative image of a cell without any risk of misinterpretation. Once both maps are divided by each other pixel by pixel (fluorescence map divided by the phase map) they present a complete and final result of the metal (Zn in this work) projected mass fraction in ppm of dry weight. For the purpose of this calculation the analysis was extended to calibration (non-biological) samples. Polystyrene spheres of a known diameter and known

  20. Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy

    Science.gov (United States)

    Descloux, A.; Grußmayer, K. S.; Bostan, E.; Lukes, T.; Bouwens, A.; Sharipov, A.; Geissbuehler, S.; Mahul-Mellier, A.-L.; Lashuel, H. A.; Leutenegger, M.; Lasser, T.

    2018-03-01

    Super-resolution fluorescence microscopy provides unprecedented insight into cellular and subcellular structures. However, going `beyond the diffraction barrier' comes at a price, since most far-field super-resolution imaging techniques trade temporal for spatial super-resolution. We propose the combination of a novel label-free white light quantitative phase imaging with fluorescence to provide high-speed imaging and spatial super-resolution. The non-iterative phase retrieval relies on the acquisition of single images at each z-location and thus enables straightforward 3D phase imaging using a classical microscope. We realized multi-plane imaging using a customized prism for the simultaneous acquisition of eight planes. This allowed us to not only image live cells in 3D at up to 200 Hz, but also to integrate fluorescence super-resolution optical fluctuation imaging within the same optical instrument. The 4D microscope platform unifies the sensitivity and high temporal resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy.

  1. Quantitative phase imaging using quadri-wave lateral shearing interferometry. Application to X-ray domain

    International Nuclear Information System (INIS)

    Rizzi, Julien

    2013-01-01

    Since Roentgen discovered X-rays, X-ray imaging systems are based on absorption contrast. This technique is inefficient for weakly absorbing objects. As a result, X-ray standard radiography can detect bones lesions, but cannot detect ligament lesions. However, phase contrast imaging can overcome this limitation. Since the years 2000, relying on former works of opticians, X-ray scientists are developing phase sensitive devices compatible with industrial applications such as medical imaging or non destructive control. Standard architectures for interferometry are challenging to implement in the X-ray domain. This is the reason why grating based interferometers became the most promising devices to envision industrial applications. They provided the first x-ray phase contrast images of living human samples. Nevertheless, actual grating based architectures require the use of at least two gratings, and are challenging to adapt on an industrial product. So, the aim of my thesis was to develop a single phase grating interferometer. I demonstrated that such a device can provide achromatic and propagation invariant interference patterns. I used this interferometer to perform quantitative phase contrast imaging of a biological fossil sample and x-ray at mirror metrology. (author)

  2. Spirometrically gated 133Xe ventilation imaging and phase analysis for assessment of regional lung function

    International Nuclear Information System (INIS)

    Inoue, Tomio

    1984-01-01

    The purpose of this study is to develop the technique of performing spirometrically gated 133 Xe ventilation imaging and to evaluate its clinical usefulness for the assessmentof regional ventilatory function in various lung diseases. Patients rebreathe d 133 Xe gas through the system with constant rates signaled by a metronom. The trigger signals from the patients were recorded in a minicomputer for 60 respiratory cycles simultaneously with posterior lung images. Functional images (phase analysis images) indicating phase and amplitude of regional ventilation were constructed by the first harmonic Fourier analysis. Materials included 13 normal volunteers and patients with COPD (24), lung cancer (5), pulmonary embolism (4) and others (20). In normal controls, phase analysis images before respiratory motion correction revealed gradual decrease in amplitude from base to apex with uniform phase distribution. The amplitude and phase distribution after respiratory motion correction became even more uniform. In patients with COPD, phase analysis images showed asymmetrical and irregular amplitude distribution with non-uniform phase distribution. The standard deviation (S.D.) of phase histogram correlated well with FEVsub(1.0)% (r=0.71, p<0.001) and down slope of flowvolume curve (r=0.55, p<0.001), and less prominently with %VC (r=0.42, p<0.01). Mean S.D. in patients with COPD (12.3+-6.5 degree, mean+-1 s.d.) was significantly larger than in normal controls (6.3+-1.5). Amplitude profile curve analysis revealed 83% sensitivity for the detection of abnormal spirometric respiratory function test. Data aquisition and processing of present method are rapid and easy to perform. The phase analysis of the gated ventilation images should prove useful in the clinical evaluation of patients with uneven ventilation such as COPD. (J.P.N.)

  3. Turbulent stress measurements with phase-contrast magnetic resonance through tilted slices

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, Jordan; Soederberg, Daniel; Lundell, Fredrik [Linne FLOW Centre, KTH Mechanics, Stockholm (Sweden); Swerin, Agne [SP Technical Research Institute of Sweden-Chemistry, Materials and Surfaces, Stockholm (Sweden); KTH Royal Institute of Technology, Surface and Corrosion Science, Stockholm (Sweden)

    2017-05-15

    Aiming at turbulent measurements in opaque suspensions, a simplistic methodology for measuring the turbulent stresses with phase-contrast magnetic resonance velocimetry is described. The method relies on flow-compensated and flow-encoding protocols with the flow encoding gradient normal to the slice. The experimental data is compared with direct numerical simulations (DNS), both directly but also, more importantly, after spatial averaging of the DNS data that resembles the measurement and data treatment of the experimental data. The results show that the most important MRI data (streamwise velocity, streamwise variance and Reynolds shear stress) is reliable up to at least anti r = 0.75 without any correction, paving the way for dearly needed turbulence and stress measurements in opaque suspensions. (orig.)

  4. Third order harmonic imaging for biological tissues using three phase-coded pulses.

    Science.gov (United States)

    Ma, Qingyu; Gong, Xiufen; Zhang, Dong

    2006-12-22

    Compared to the fundamental and the second harmonic imaging, the third harmonic imaging shows significant improvements in image quality due to the better resolution, but it is degraded by the lower sound pressure and signal-to-noise ratio (SNR). In this study, a phase-coded pulse technique is proposed to selectively enhance the sound pressure of the third harmonic by 9.5 dB whereas the fundamental and the second harmonic components are efficiently suppressed and SNR is also increased by 4.7 dB. Based on the solution of the KZK nonlinear equation, the axial and lateral beam profiles of harmonics radiated from a planar piston transducer were theoretically simulated and experimentally examined. Finally, the third harmonic images using this technique were performed for several biological tissues and compared with the images obtained by the fundamental and the second harmonic imaging. Results demonstrate that the phase-coded pulse technique yields a dramatically cleaner and sharper contrast image.

  5. Combined fluorescence and phase contrast imaging at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Hornberger, B.; Feser, M.; Jacobsen, C.; Vogt, S.; Legnini, D.; Paterson, D.; Rehak, P.; DeGeronimo, G.; Palmer, B.M.; Experimental Facilities Division; State Univ. of New York at Stony Brook Univ.; BNL; Univ. of Vermont

    2006-01-01

    X-ray fluorescence microprobes excel at detecting and quantifying trace metals in biological and environmental science samples, but typically do not detect low Z elements such as carbon and nitrogen. Therefore, it is hard to put the trace metals into context with their natural environment. We are implementing phase contrast capabilities with a segmented detector into several microprobes at the Advanced Photon Source (APS) to address this problem. Qualitative differential phase contrast images from a modified soft x-ray detector already provide very useful information for general users. We are also implementing a quantitative method to recover the absolute phase shift by Fourier filtering detector images. New detectors are under development which are optimized for the signal levels present at the APS. In this paper, we concentrate on fundamental signal to noise considerations comparing absorption and differential phase contrast

  6. Post-traumatic and stress-induced osteolysis of the distal clavicle: MR imaging findings in 17 patients

    International Nuclear Information System (INIS)

    Puente, R. de la; Boutin, R.D.; Theodorou, D.J.; Hooper, A.; Resnick, D.; Schweitzer, M.

    1999-01-01

    Objective. To describe the MR imaging findings in patients with osteolysis of the distal clavicle and to compare the MR imaging appearance of clavicular osteolysis following acute injury with that related to chronic stress. Design and patients. MR imaging examinations were reviewed in 17 patients (14 men, 3 women; ages 16-55 years) with the diagnosis of post-traumatic or stress-induced osteolysis of the clavicle. A history of a single direct injury was present in seven patients and a history of weight-lifting, participation in sports, or repetitive microtrauma was present in 10 patients. Results. MR imaging showed edema in the distal clavicle in 17 patients and, of these, eight also had edema in the acromion. The edema was most evident in STIR and fat-suppressed T2-weighted pulse sequences. Other findings about the acromioclavicular (AC) joint were prominence of the joint capsule in 14, joint fluid in eight, cortical irregularity in 12, and bone fragmentation in six patients. No differences in the MR imaging features of post-traumatic and stress-induced osteolysis of the distal clavicle were observed. Conclusion. Post-traumatic and stress-induced osteolysis of the distal clavicle have similar appearances on MR imaging, the most common and conspicuous MR imaging feature being increased T2 signal intensity in the distal clavicle. (orig.)

  7. Post-traumatic and stress-induced osteolysis of the distal clavicle: MR imaging findings in 17 patients

    Energy Technology Data Exchange (ETDEWEB)

    Puente, R. de la [Department of Radiology, University of California San Diego and Veterans Affairs Medical Center, San Diego, CA (United States)]|[Servicio de Radioloxia, CXH Cristal Pinor, Ourense (Spain); Boutin, R.D. [Department of Radiology, University of California San Diego and Veterans Affairs Medical Center, San Diego, CA (United States)]|[Department of Radiology, Veterans Affairs Medical Center, San Diego, CA (United States); Theodorou, D.J.; Hooper, A.; Resnick, D. [Department of Radiology, University of California San Diego and Veterans Affairs Medical Center, San Diego, CA (United States); Schweitzer, M. [Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, PA (United States)

    1999-04-01

    Objective. To describe the MR imaging findings in patients with osteolysis of the distal clavicle and to compare the MR imaging appearance of clavicular osteolysis following acute injury with that related to chronic stress. Design and patients. MR imaging examinations were reviewed in 17 patients (14 men, 3 women; ages 16-55 years) with the diagnosis of post-traumatic or stress-induced osteolysis of the clavicle. A history of a single direct injury was present in seven patients and a history of weight-lifting, participation in sports, or repetitive microtrauma was present in 10 patients. Results. MR imaging showed edema in the distal clavicle in 17 patients and, of these, eight also had edema in the acromion. The edema was most evident in STIR and fat-suppressed T2-weighted pulse sequences. Other findings about the acromioclavicular (AC) joint were prominence of the joint capsule in 14, joint fluid in eight, cortical irregularity in 12, and bone fragmentation in six patients. No differences in the MR imaging features of post-traumatic and stress-induced osteolysis of the distal clavicle were observed. Conclusion. Post-traumatic and stress-induced osteolysis of the distal clavicle have similar appearances on MR imaging, the most common and conspicuous MR imaging feature being increased T2 signal intensity in the distal clavicle. (orig.) With 5 figs., 1 tab., 19 refs.

  8. Stress and flow analyses of ultraviolet-curable resin during curing

    Science.gov (United States)

    Umezaki, Eisaku; Okano, Akira; Koyama, Hiroto

    2014-06-01

    The stress and flow generated in ultraviolet (UV)-curable resin during curing in molds were measured to investigate their relationship. The specimens were molds consisting of glass plates and acrylic bars, and UV-curable liquid resin. The specimens were illuminated from above with UV rays. Photoelastic and visual images were separately obtained at a constant time interval using cameras during curing. To help obtain the visual images, acrylic powder was mixed with the liquid resin. The stress was obtained from the photoelastic images by a digital photoelastic technique with phase stepping, and the flow was obtained from the visual images by a particle-tracking velocimetry technique. Results indicate that the stress generated in the UV-curable resin during curing depends on the degree of contact between the mold and the cured area of the resin, and is hardly related to the flow.

  9. A Multi-Phase Based Fluid-Structure-Microfluidic interaction sensor for Aerodynamic Shear Stress

    Science.gov (United States)

    Hughes, Christopher; Dutta, Diganta; Bashirzadeh, Yashar; Ahmed, Kareem; Qian, Shizhi

    2014-11-01

    A novel innovative microfluidic shear stress sensor is developed for measuring shear stress through multi-phase fluid-structure-microfluidic interaction. The device is composed of a microfluidic cavity filled with an electrolyte liquid. Inside the cavity, two electrodes make electrochemical velocimetry measurements of the induced convection. The cavity is sealed with a flexible superhydrophobic membrane. The membrane will dynamically stretch and flex as a result of direct shear cross-flow interaction with the seal structure, forming instability wave modes and inducing fluid motion within the microfluidic cavity. The shear stress on the membrane is measured by sensing the induced convection generated by membrane deflections. The advantages of the sensor over current MEMS based shear stress sensor technology are: a simplified design with no moving parts, optimum relationship between size and sensitivity, no gaps such as those created by micromachining sensors in MEMS processes. We present the findings of a feasibility study of the proposed sensor including wind-tunnel tests, microPIV measurements, electrochemical velocimetry, and simulation data results. The study investigates the sensor in the supersonic and subsonic flow regimes. Supported by a NASA SBIR phase 1 contract.

  10. X-ray phase contrast imaging of the bone-cartilage interface

    International Nuclear Information System (INIS)

    Ismail, Elna Che; Kaabar, W.; Garrity, D.; Gundogdu, O.; Bunk, O.; Pfeiffer, F.; Farquharson, M.J.; Bradley, D.A.

    2010-01-01

    Synovial joints articulate in a lubricating environment, the system providing for smooth articulation. The articular cartilage overlying the bone consists of a network of collagen fibres. This network is essential to cartilage integrity, suffering damage in degenerative joint disease such as osteoarthritis. At Surrey and also in work conducted by this group at the Paul Scherrer Institute (PSI) synchrotron site we have been applying a number of techniques to study the bone-cartilage interface and of changes occurring in this with disease. One of the techniques attracting particular interest is X-ray phase contrast imaging, yielding information on anatomical features that manifest from the large scale organisation of collagen and the mineralised phase contained within the collagen fibres in the deep cartilage zone. This work briefly reviews some of the basic supporting physics of X-ray phase contrast imaging and then shows example images of the articular surface and subchondral bone and other supporting results obtained to-date. Present results have been obtained on sections of bone not displaying evidence of an osteoarthritic lesion and can be used as a baseline against which diseased bone can be compared.

  11. X-ray phase contrast imaging of the bone-cartilage interface

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Elna Che; Kaabar, W.; Garrity, D.; Gundogdu, O. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Bunk, O. [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Pfeiffer, F. [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Farquharson, M.J. [Department of Radiography, City University, London EC1V OHB (United Kingdom); Bradley, D.A. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)], E-mail: d.a.bradley@surrey.ac.uk

    2010-04-15

    Synovial joints articulate in a lubricating environment, the system providing for smooth articulation. The articular cartilage overlying the bone consists of a network of collagen fibres. This network is essential to cartilage integrity, suffering damage in degenerative joint disease such as osteoarthritis. At Surrey and also in work conducted by this group at the Paul Scherrer Institute (PSI) synchrotron site we have been applying a number of techniques to study the bone-cartilage interface and of changes occurring in this with disease. One of the techniques attracting particular interest is X-ray phase contrast imaging, yielding information on anatomical features that manifest from the large scale organisation of collagen and the mineralised phase contained within the collagen fibres in the deep cartilage zone. This work briefly reviews some of the basic supporting physics of X-ray phase contrast imaging and then shows example images of the articular surface and subchondral bone and other supporting results obtained to-date. Present results have been obtained on sections of bone not displaying evidence of an osteoarthritic lesion and can be used as a baseline against which diseased bone can be compared.

  12. A new method for information retrieval in two-dimensional grating-based X-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Wang Zhi-Li; Gao Kun; Chen Jian; Ge Xin; Tian Yang-Chao; Wu Zi-Yu; Zhu Pei-Ping

    2012-01-01

    Grating-based X-ray phase contrast imaging has been demonstrated to be an extremely powerful phase-sensitive imaging technique. By using two-dimensional (2D) gratings, the observable contrast is extended to two refraction directions. Recently, we have developed a novel reverse-projection (RP) method, which is capable of retrieving the object information efficiently with one-dimensional (1D) grating-based phase contrast imaging. In this contribution, we present its extension to the 2D grating-based X-ray phase contrast imaging, named the two-dimensional reverse-projection (2D-RP) method, for information retrieval. The method takes into account the nonlinear contributions of two refraction directions and allows the retrieval of the absorption, the horizontal and the vertical refraction images. The obtained information can be used for the reconstruction of the three-dimensional phase gradient field, and for an improved phase map retrieval and reconstruction. Numerical experiments are carried out, and the results confirm the validity of the 2D-RP method

  13. Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source

    International Nuclear Information System (INIS)

    Donath, Tilman; Bunk, Oliver; Groot, Waldemar; Bednarzik, Martin; Gruenzweig, Christian; David, Christian; Pfeiffer, Franz; Hempel, Eckhard; Popescu, Stefan; Hoheisel, Martin

    2009-01-01

    Phase-contrast imaging at laboratory-based x-ray sources using grating interferometers has been developed over the last few years for x-ray energies of up to 28 keV. Here, we show first phase-contrast projection and tomographic images recorded at significantly higher x-ray energies, produced by an x-ray tube source operated at 100 kV acceleration voltage. We find our measured tomographic phase images in good agreement with tabulated data. The extension of phase-contrast imaging to this significantly higher x-ray energy opens up many applications of the technique in medicine and industrial nondestructive testing.

  14. Multidetector row CT angiography of living related renal donors: Is there a need for venous phase imaging?

    Energy Technology Data Exchange (ETDEWEB)

    Namasivayam, Saravanan [Department of Radiology, Division of Abdominal Imaging, Emory University School of Medicine, 1364 Clifton Road NE, Atlanta, GA 30322 (United States); Kalra, Mannudeep K. [Department of Radiology, Division of Abdominal Imaging, Emory University School of Medicine, 1364 Clifton Road NE, Atlanta, GA 30322 (United States); Waldrop, Sandra M. [Department of Radiology, Division of Abdominal Imaging, Emory University School of Medicine, 1364 Clifton Road NE, Atlanta, GA 30322 (United States); Mittal, Pardeep K. [Department of Radiology, Division of Abdominal Imaging, Emory University School of Medicine, 1364 Clifton Road NE, Atlanta, GA 30322 (United States); Small, William C. [Department of Radiology, Division of Abdominal Imaging, Emory University School of Medicine, 1364 Clifton Road NE, Atlanta, GA 30322 (United States)]. E-mail: wsmall@emory.edu

    2006-09-15

    Objective: To prospectively evaluate whether renal venous anatomy can be detected from arterial phase images of multidetector row CT (MDCT) of renal donors. Material and methods: Institutional review board approved our study protocol with waiver of consent. Forty-eight consecutive renal donors (age range, 21-56 years; M:F, 20:28) referred for MDCT evaluation were included. Two sub-specialty radiologists performed an independent and separate evaluation of renal venous anatomy in arterial and venous phase images. Opacification of renal venous structures was scored on a five-point scale (1-not seen; 3-minimal opacification; 5-excellent opacification). Arterial and venous phase opacification scores were compared by Wilcoxon signed rank test. Results: Both readers detected all renal venous anomalies in arterial as well as venous phase images. Each reader detected accessory right renal veins (n = 14), retroaortic left renal vein (n = 2), circumaortic left renal vein (n = 1), and left renal hilar arteriovenous malformation (n = 1) in arterial phase images. Retroaortic left renal venous branch was difficult to differentiate from lumbar vein (reader-1, n = 1; reader-2, n = 2) in both arterial and venous phase images. Sensitivity of detection of renal veins, left adrenal, gonadal and lumbar veins in arterial phase images was 100, 83-88, 100, and 85-90%, respectively. As expected, venous phase images showed significantly greater opacification of renal veins, left gonadal, adrenal and lumbar veins (p < .05). However, this did not substantially limit the evaluation of renal venous anatomy in arterial phase images. Both readers had substantial interobserver agreement (kappa coefficient, 0.7; p < 0.05). Conclusions: Arterial phase MDCT images alone can be used to detect renal venous anomalies, and to identify small left renal venous branches namely, the left gonadal, adrenal and lumbar veins in renal donors. Venous phase MDCT acquisition is not necessary for evaluation of renal

  15. Multidetector row CT angiography of living related renal donors: Is there a need for venous phase imaging?

    International Nuclear Information System (INIS)

    Namasivayam, Saravanan; Kalra, Mannudeep K.; Waldrop, Sandra M.; Mittal, Pardeep K.; Small, William C.

    2006-01-01

    Objective: To prospectively evaluate whether renal venous anatomy can be detected from arterial phase images of multidetector row CT (MDCT) of renal donors. Material and methods: Institutional review board approved our study protocol with waiver of consent. Forty-eight consecutive renal donors (age range, 21-56 years; M:F, 20:28) referred for MDCT evaluation were included. Two sub-specialty radiologists performed an independent and separate evaluation of renal venous anatomy in arterial and venous phase images. Opacification of renal venous structures was scored on a five-point scale (1-not seen; 3-minimal opacification; 5-excellent opacification). Arterial and venous phase opacification scores were compared by Wilcoxon signed rank test. Results: Both readers detected all renal venous anomalies in arterial as well as venous phase images. Each reader detected accessory right renal veins (n = 14), retroaortic left renal vein (n = 2), circumaortic left renal vein (n = 1), and left renal hilar arteriovenous malformation (n = 1) in arterial phase images. Retroaortic left renal venous branch was difficult to differentiate from lumbar vein (reader-1, n = 1; reader-2, n = 2) in both arterial and venous phase images. Sensitivity of detection of renal veins, left adrenal, gonadal and lumbar veins in arterial phase images was 100, 83-88, 100, and 85-90%, respectively. As expected, venous phase images showed significantly greater opacification of renal veins, left gonadal, adrenal and lumbar veins (p < .05). However, this did not substantially limit the evaluation of renal venous anatomy in arterial phase images. Both readers had substantial interobserver agreement (kappa coefficient, 0.7; p < 0.05). Conclusions: Arterial phase MDCT images alone can be used to detect renal venous anomalies, and to identify small left renal venous branches namely, the left gonadal, adrenal and lumbar veins in renal donors. Venous phase MDCT acquisition is not necessary for evaluation of renal

  16. Hybrid phase retrieval algorithm for solving the twin image problem in in-line digital holography

    Science.gov (United States)

    Zhao, Jie; Wang, Dayong; Zhang, Fucai; Wang, Yunxin

    2010-10-01

    For the reconstruction in the in-line digital holography, there are three terms overlapping with each other on the image plane, named the zero order term, the real image and the twin image respectively. The unwanted twin image degrades the real image seriously. A hybrid phase retrieval algorithm is presented to address this problem, which combines the advantages of two popular phase retrieval algorithms. One is the improved version of the universal iterative algorithm (UIA), called the phase flipping-based UIA (PFB-UIA). The key point of this algorithm is to flip the phase of the object iteratively. It is proved that the PFB-UIA is able to find the support of the complicated object. Another one is the Fienup algorithm, which is a kind of well-developed algorithm and uses the support of the object as the constraint among the iteration procedure. Thus, by following the Fienup algorithm immediately after the PFB-UIA, it is possible to produce the amplitude and the phase distributions of the object with high fidelity. The primary simulated results showed that the proposed algorithm is powerful for solving the twin image problem in the in-line digital holography.

  17. Role of SPECT imaging in symptomatic posterior element lumbar stress injuries

    Directory of Open Access Journals (Sweden)

    Debnath U

    2005-01-01

    Full Text Available Background : Diagnosis of stress injuries of spine is very difficult with conventional radiography. Methods : In a observational study, 132 subjects were recruited (between 8 and 38 years of age, who had lumbar spondylolysis or posterior element stress injuries. All these patients underwent clinical examination followed by plain X-rays, planar bone scintigraphy and SPECT (single photon emission computerised tomography. SPECT scans can identify the posterior element lumbar stress injuries earlier than other imaging modalities. As the lesions evolve and the completed spondylolysis becomes chronic, the SPECT scans tend to revert to normal even though healing of the defect has not occurred. The aim of the study was to determine the time lag after which SPECT imaging tends to be negative. We divided the patients into two groups, one SPECT positive group and the other SPECT negative group. Pre treatment background variables such as age, gender, back pain in extension or flexion, sporting activities, time of onset of symptoms, Oswestry Disability Index (ODI were used in a univariate logistic regression model to find the strong predictors of positive SPECT imaging results. Determinants of positivity versus negativity of SPECT were identified by discriminant analysis using multivariate logistic regression. Results : Seventy nine patients had positive SPECT scans whereas 53 patients had negative SPECT scans. Bilateral increased uptake was more common than unilateral uptake. Increased uptake at the L5 lumbar spine was more common (70% in SPECT positive group. Low back pain in extension was significantly more common in SPECT positive subjects. Active sporting individuals had higher probability of having a positive SPECT scan. The mean time lag from the onset of low back pain to SPECT imaging was 7 months in SPECT positive group and 25 months in the SPECT negative group. Multivariate analysis predicted that there is a significant difference in positivity of

  18. Phase modulation due to crystal diffraction by ptychographic imaging

    Science.gov (United States)

    Civita, M.; Diaz, A.; Bean, R. J.; Shabalin, A. G.; Gorobtsov, O. Yu.; Vartanyants, I. A.; Robinson, I. K.

    2018-03-01

    Solving the phase problem in x-ray crystallography has occupied a considerable scientific effort in the 20th century and led to great advances in structural science. Here we use x-ray ptychography to demonstrate an interference method which measures the phase of the beam transmitted through a crystal, relative to the incoming beam, when diffraction takes place. The observed phase change of the direct beam through a small gold crystal is found to agree with both a quasikinematical model and full dynamical theories of diffraction. Our discovery of a diffraction contrast mechanism will enhance the interpretation of data obtained from crystalline samples using the ptychography method, which provides some of the most accurate x-ray phase-contrast images.

  19. Correlation of early-phase {sup 18}F-florbetapir (AV-45/Amyvid) PET images to FDG images: preliminary studies

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Ing-Tsung; Hsieh, Chia-Ju; Wey, Shiaw-Pyng; Lin, Kun-Ju [Chang Gung Memorial Hospital, Department of Nuclear Medicine and Molecular Imaging Center, Taipei (China); Chang Gung University, Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, Taipei (China); Huang, Chin-Chang; Hsu, Wen-Chun [Chang Gung Memorial Hospital, Department of Neurology, Taipei (China); Yen, Tzu-Chen [Chang Gung Memorial Hospital, Department of Nuclear Medicine and Molecular Imaging Center, Taipei (China); Kung, Mei-Ping [Chang Gung Memorial Hospital, Department of Nuclear Medicine and Molecular Imaging Center, Taipei (China); Chang Gung University, Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, Taipei (China); University of Pennsylvania, Department of Radiology, Philadelphia, PA (United States)

    2012-04-15

    {sup 18}F-Florbetapir (AV-45/Amyvid) is a novel positron emission tomography (PET) tracer for imaging plaque pathology in Alzheimer's disease (AD), while PET images of fluorodeoxyglucose (FDG) for cerebral glucose metabolism can provide complementary information to amyloid plaque images for diagnosis of AD. The goal of this preliminary study was to investigate the perfusion-like property of relative cerebral blood flow estimates (R{sub 1}) and summed early-phase AV-45 images [perfusion AV-45 (pAV-45)] and optimize the early time frame for pAV-45. Dynamic AV-45 PET scans (0-180 min) were performed in seven subjects. pAV-45, late-phase AV-45, and FDG images were spatially normalized to the Montreal Neurological Institute template aided by individual MRI images, and the corresponding standardized uptake value ratio (SUVR) was computed. The R{sub 1} images were derived from a simplified reference tissue model. Correlations between regional and voxelwise R{sub 1} and the corresponding FDG images were calculated. An optimization of time frames of pAV-45 was conducted in terms of correlation to FDG images. The optimal early time frame was validated in a separate cohort. The regional distribution in the R{sub 1} images correlated well (R = 0.91) to that of the FDG within subjects. Consistently high correlation was noted across a long range of time frames. The maximal correlation of pAV-45 to FDG SUVR of R = 0.95 was observed at the time frame of 1-6 min, while the peak correlation of R = 0.99 happened at 0-2 min between pAV-45 and R{sub 1}. A similar result was achieved in the validation cohort. Preliminary results showed that the distribution patterns of R{sub 1} and pAV-45 images are highly correlated with normalized FDG images, and the initial 5-min early time frame of 1-6 min is potentially useful in providing complementary FDG-like information to the amyloid plaque density by late-phase AV-45 images. (orig.)

  20. Wide-field phase imaging for the endoscopic detection of dysplasia and early-stage esophageal cancer

    Science.gov (United States)

    Fitzpatrick, C. R. M.; Gordon, G. S. D.; Sawyer, T. W.; Wilkinson, T. D.; Bohndiek, S. E.

    2018-02-01

    Esophageal cancer has a 5-year survival rate below 20%, but can be curatively resected if it is detected early. At present, poor contrast for early lesions in white light imaging leads to a high miss rate in standard-of- care endoscopic surveillance. Early lesions in the esophagus, referred to as dysplasia, are characterized by an abundance of abnormal cells with enlarged nuclei. This tissue has a different refractive index profile to healthy tissue, which results in different light scattering properties and provides a source of endogenous contrast that can be exploited for advanced endoscopic imaging. For example, point measurements of such contrast can be made with scattering spectroscopy, while optical coherence tomography generates volumetric data. However, both require specialist interpretation for diagnostic decision making. We propose combining wide-field phase imaging with existing white light endoscopy in order to provide enhanced contrast for dysplasia and early-stage cancer in an image format that is familiar to endoscopists. Wide-field phase imaging in endoscopy can be achieved using coherent illumination combined with phase retrieval algorithms. Here, we present the design and simulation of a benchtop phase imaging system that is compatible with capsule endoscopy. We have undertaken preliminary optical modelling of the phase imaging setup, including aberration correction simulations and an investigation into distinguishing between different tissue phantom scattering coefficients. As our approach is based on phase retrieval rather than interferometry, it is feasible to realize a device with low-cost components for future clinical implementation.

  1. Drive frequency dependent phase imaging in piezoresponse force microscopy

    International Nuclear Information System (INIS)

    Bo Huifeng; Kan Yi; Lu Xiaomei; Liu Yunfei; Peng Song; Wang Xiaofei; Cai Wei; Xue Ruoshi; Zhu Jinsong

    2010-01-01

    The drive frequency dependent piezoresponse (PR) phase signal in near-stoichiometric lithium niobate crystals is studied by piezoresponse force microscopy. It is clearly shown that the local and nonlocal electrostatic forces have a great contribution to the PR phase signal. The significant PR phase difference of the antiparallel domains are observed at the contact resonances, which is related to the electrostatic dominated electromechanical interactions of the cantilever and tip-sample system. Moreover, the modulation voltage induced frequency shift at higher eigenmodes could be attributed to the change of indention force depending on the modulation amplitude with a piezoelectric origin. The PR phase of the silicon wafer is also measured for comparison. It is certificated that the electrostatic interactions are universal in voltage modulated scanning probe microscopy and could be extended to other phase imaging techniques.

  2. In-line phase-contrast stereoscopic X-ray imaging for radiological purposes: An initial experimental study

    International Nuclear Information System (INIS)

    Siegbahn, E.A.; Coan, P.; Zhou, S.-A.; Bravin, A.; Brahme, A.

    2011-01-01

    We report results from a pilot study in which the in-line propagation-based phase-contrast imaging technique is combined with the stereoscopic method. Two phantoms were imaged at several sample-detector distances using monochromatic, 30 keV, X-rays. High contrast- and spatial-resolution phase-contrast stereoscopic pairs of X-ray images were constructed using the anaglyph approach and a vivid stereoscopic effect was demonstrated. On the other hand, images of the same phantoms obtained with a shorter sample-to-detector distance, but otherwise the same experimental conditions (i.e. the same X-ray energy and absorbed radiation dose), corresponding to the conventional attenuation-based imaging mode, hardly revealed stereoscopic effects because of the lower image contrast produced. These results have confirmed our hypothesis that stereoscopic X-ray images of samples with objects composed of low-atomic-number elements are considerably improved if phase-contrast imaging is used. It is our belief that the high-resolution phase-contrast stereoscopic method will be a valuable new medical imaging tool for radiologists and that it will be of help to enhance the diagnostic capability in the examination of patients in future clinical practice, even though further efforts will be needed to optimize the system performance.

  3. Phase Retrieval Using a Genetic Algorithm on the Systematic Image-Based Optical Alignment Testbed

    Science.gov (United States)

    Taylor, Jaime R.

    2003-01-01

    NASA s Marshall Space Flight Center s Systematic Image-Based Optical Alignment (SIBOA) Testbed was developed to test phase retrieval algorithms and hardware techniques. Individuals working with the facility developed the idea of implementing phase retrieval by breaking the determination of the tip/tilt of each mirror apart from the piston motion (or translation) of each mirror. Presented in this report is an algorithm that determines the optimal phase correction associated only with the piston motion of the mirrors. A description of the Phase Retrieval problem is first presented. The Systematic Image-Based Optical Alignment (SIBOA) Testbeb is then described. A Discrete Fourier Transform (DFT) is necessary to transfer the incoming wavefront (or estimate of phase error) into the spatial frequency domain to compare it with the image. A method for reducing the DFT to seven scalar/matrix multiplications is presented. A genetic algorithm is then used to search for the phase error. The results of this new algorithm on a test problem are presented.

  4. An analysis of the flow stress of a two-phase alloy system, Ti-6Al-4V

    International Nuclear Information System (INIS)

    Reed-Hill, R.E.; Iswaran, C.V.; Kaufman, M.J.

    1996-01-01

    An analysis of the tensile deformation behavior of a two-phase body-centered cubic (bcc)-hexagonal close-packed (hcp) alloy, Ti-6Al-4V, has been made. This has shown that the temperature dependence of the flow stress, the logarithm of the effective stress, and the strain-rate sensitivities can be described by simple analytical equations if the thermally activated strain-rate equation contains the Yokobori activation enthalpy H = H 0 ln (σ* 0 /σ*), where H 0 is a constant, σ* the effective stress, and σ* 0 its 0 K value. The flow stress-temperature plateau region (500 to 600 K) also can be rationalized analytically in terms of oxygen dynamic strain aging in the alpha phase

  5. In-phase and out-of-phase gradient-echo imaging in abdominal studies: intra-individual comparison of three different techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ramalho, Miguel; Heredia, Vasco; Campos, Rafael O. P. de; Azevedo, Rafael M.; Semelka, Richard C. (Dept. of Radiology, Univ. of North Carolina at Chapel Hill (United States)); Dale, Brian M. (Siemens Medical Systems, Morrisville (United States)), email: richsem@med.unc.edu

    2012-05-15

    Background: T1-weighted gradient-echo in-phase and out-of-phase imaging is an essential component of comprehensive abdominal MR exams. It is useful for the study of fat-containing lesions and to identify various disease states related to the presence of fat in the liver. Purpose: To compare three T1-weighted in-phase and out-of-phase (IP/OP) gradient-echo imaging sequences in an intra-individual fashion, and to determine whether advantages exist for each of these sequences for various patient types. Material and Methods: One hundred and eighteen consecutive subjects (74 men, 44 women; mean age 53.9 +- 13.8 years) who had MRI examinations containing all three different IP/OP sequences (two-dimensional spoiled gradient-echo [2D-GRE], three-dimensional gradient-echo [3D-GRE], and magnetization-prepared gradient-recall echo [MP-GRE]) were included. Two different reviewers independently and blindly qualitatively evaluated IP/OP sequences to determine image quality, extent of artifacts, lesion detectability and conspicuity, and subjective grading of liver steatosis for the various sequences. Quantitative analysis was also performed. Qualitative and quantitative data were subjected to statistical analysis. Results: Respiratory ghosting, parallel imaging, and truncation artifacts as well as shading and blurring were more pronounced with 3D-GRE IP/OP imaging. Overall image quality was higher with 2D-GRE (P < 0.05). Detectability of low-fluid content lesions was lower with IP/OP MP-GRE sequences. MP-GRE sequences had the lowest SNRs (P < 0.001). Liver-to-spleen and liver-to-lesion CNRs were significantly lower with 3D-GRE and MP-GR, respectively (P < 0.001). Fat liver indexes showed strongly positive correlation between all sequences. Conclusion: Currently, 2D-GRE remains the best approach for clinical IP/OP imaging. The good image quality of MP-GRE sequences acquired in a free-breathing manner should recommend its use in patients unable to suspend breathing

  6. In-phase and out-of-phase gradient-echo imaging in abdominal studies: intra-individual comparison of three different techniques

    International Nuclear Information System (INIS)

    Ramalho, Miguel; Heredia, Vasco; Campos, Rafael O. P. de; Azevedo, Rafael M.; Semelka, Richard C.; Dale, Brian M.

    2012-01-01

    Background: T1-weighted gradient-echo in-phase and out-of-phase imaging is an essential component of comprehensive abdominal MR exams. It is useful for the study of fat-containing lesions and to identify various disease states related to the presence of fat in the liver. Purpose: To compare three T1-weighted in-phase and out-of-phase (IP/OP) gradient-echo imaging sequences in an intra-individual fashion, and to determine whether advantages exist for each of these sequences for various patient types. Material and Methods: One hundred and eighteen consecutive subjects (74 men, 44 women; mean age 53.9 ± 13.8 years) who had MRI examinations containing all three different IP/OP sequences (two-dimensional spoiled gradient-echo [2D-GRE], three-dimensional gradient-echo [3D-GRE], and magnetization-prepared gradient-recall echo [MP-GRE]) were included. Two different reviewers independently and blindly qualitatively evaluated IP/OP sequences to determine image quality, extent of artifacts, lesion detectability and conspicuity, and subjective grading of liver steatosis for the various sequences. Quantitative analysis was also performed. Qualitative and quantitative data were subjected to statistical analysis. Results: Respiratory ghosting, parallel imaging, and truncation artifacts as well as shading and blurring were more pronounced with 3D-GRE IP/OP imaging. Overall image quality was higher with 2D-GRE (P < 0.05). Detectability of low-fluid content lesions was lower with IP/OP MP-GRE sequences. MP-GRE sequences had the lowest SNRs (P < 0.001). Liver-to-spleen and liver-to-lesion CNRs were significantly lower with 3D-GRE and MP-GR, respectively (P < 0.001). Fat liver indexes showed strongly positive correlation between all sequences. Conclusion: Currently, 2D-GRE remains the best approach for clinical IP/OP imaging. The good image quality of MP-GRE sequences acquired in a free-breathing manner should recommend its use in patients unable to suspend breathing

  7. The role of pharmacological stress Tc-99m sestamibi myocardial perfusion imaging in an Australian population

    International Nuclear Information System (INIS)

    Howarth, D.M.; Booker, J.A.; Tan, T.S.K.; Bellamy, G.R.; Hardy, D.B.; Howarth, G.C.

    2003-01-01

    This observational study was performed in order to assess the exercise-related incremental diagnostic accuracy of Tc-99m sestamibi myocardial perfusion imaging (MPI) in a hospital-based Australian population, and to assess the relative roles of exercise and pharmacological stress in myocardial perfusion imaging (MPI). Two hundred and eight adult patients who had both Tc-99m sestamibi myocardial perfusion imaging and coronary angiography within a median time of 16 weeks were studied. The diagnostic end-point was coronary artery lesions of ≥50% and >70% stenosis detected on angiography. Using receiver operating characteristic curve analysis, the overall diagnostic accuracy was calculated, as well as the comparative accuracies in patients who undertook various levels of exercise stress testing (n=130) and those who received pharmacological (dipyridamole) stress testing (n=78). The overall respective diagnostic accuracy of Tc-99m sestamibi MPI for the diagnosis of coronary artery disease (>70% stenosis) was 81% and 76% when using the diagnostic criterion of ≥50% stenosis. On direct comparison of perfusion defects with angiographic stenoses, the respective sensitivity and specificity for the detection of >70% stenosis in each coronary artery territory was 73% and 79%. Pharmacological MPI showed a significantly greater sensitivity for the detection of localised stenoses compared to the overall group who had exercise MPI performed. Consequently, exercise stress MPI showed significantly more false negative lesions compared to dipyridamole stress imaging (p<0.003). However, a large proportion of patients were unable to perform to adequate exercise levels in this patient sample. We conclude that Tc-99m sestamibi myocardial perfusion imaging is an accurate non-invasive test for the diagnosis of coronary artery disease. Where any doubt exists as to the patient's ability to achieve exercise levels at or above 85% of the predicted value for age and gender, pharmacological

  8. Phase contrast X-ray imaging at the bone-cartilage interface

    International Nuclear Information System (INIS)

    Che Ismail, E.; Gundogdu, O.; Bradley, D.A.

    2008-01-01

    Full text: Phase contrast X-ray imaging is a simple technique to investigate various biological samples. At Surrey, the bone-cartilage interface is one of the biological samples which actively been studied. Bone-cartilage interface study gives a particular interest in this research as the degeneration of cartilage is the hallmark of the degenerative joint disease such as osteoarthritis. We have been applying the phase contrast imaging technique in studying the bone-cartilage interface, obtaining information on anatomical features such as the cartilage, blood vessel, tide mark and cement line. Our samples range from dry bone-cartilage to wet bone-cartilage tissue. This work will briefly review the basic supporting physics of the study. It also shows some of the images and other results that we have obtained to-date. Fig. 1 shows examples obtained using the X-ray tube system at the University of Surrey

  9. Diffusion-stress coupling in liquid phase during rapid solidification of binary mixtures

    International Nuclear Information System (INIS)

    Sobolev, S.L.

    2014-01-01

    An analytical model has been developed to describe the diffusion-viscous stress coupling in the liquid phase during rapid solidification of binary mixtures. The model starts with a set of evolution equations for diffusion flux and viscous pressure tensor, based on extended irreversible thermodynamics. It has been demonstrated that the diffusion-stress coupling leads to non-Fickian diffusion effects in the liquid phase. With only diffusive dynamics, the model results in the nonlocal diffusion equations of parabolic type, which imply the transition to complete solute trapping only asymptotically at an infinite interface velocity. With the wavelike dynamics, the model leads to the nonlocal diffusion equations of hyperbolic type and describes the transition to complete solute trapping and diffusionless solidification at a finite interface velocity in accordance with experimental data and molecular dynamic simulation. -- Highlights: •We propose the diffusion-stress coupling model for binary solidification. •The coupling arises at deep undercooling. •With diffusive dynamics, the models result in parabolic transfer equations. •With the wavelike dynamics, the models lead to hyperbolic transfer equations. •The coupling strongly affects the solute partition coefficient

  10. Binocular contrast-gain control for natural scenes: Image structure and phase alignment.

    Science.gov (United States)

    Huang, Pi-Chun; Dai, Yu-Ming

    2018-05-01

    In the context of natural scenes, we applied the pattern-masking paradigm to investigate how image structure and phase alignment affect contrast-gain control in binocular vision. We measured the discrimination thresholds of bandpass-filtered natural-scene images (targets) under various types of pedestals. Our first experiment had four pedestal types: bandpass-filtered pedestals, unfiltered pedestals, notch-filtered pedestals (which enabled removal of the spatial frequency), and misaligned pedestals (which involved rotation of unfiltered pedestals). Our second experiment featured six types of pedestals: bandpass-filtered, unfiltered, and notch-filtered pedestals, and the corresponding phase-scrambled pedestals. The thresholds were compared for monocular, binocular, and dichoptic viewing configurations. The bandpass-filtered pedestal and unfiltered pedestals showed classic dipper shapes; the dipper shapes of the notch-filtered, misaligned, and phase-scrambled pedestals were weak. We adopted a two-stage binocular contrast-gain control model to describe our results. We deduced that the phase-alignment information influenced the contrast-gain control mechanism before the binocular summation stage and that the phase-alignment information and structural misalignment information caused relatively strong divisive inhibition in the monocular and interocular suppression stages. When the pedestals were phase-scrambled, the elimination of the interocular suppression processing was the most convincing explanation of the results. Thus, our results indicated that both phase-alignment information and similar image structures cause strong interocular suppression. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Three-dimensional real-time synthetic aperture imaging using a rotating phased array transducer

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Dufait, Remi; Schoisswohl, Armin

    2002-01-01

    phased array, which is rotated over the volume of interest. The data is acquired using coded signals and synthetic transmit aperture imaging. Only one group of elements transmits at a time. The delays are set such as to form a cylindrical wave. The back-scattered signal carries information not only from......Current 3D real-time imaging is done either with sparse 2D arrays, or with mechanically moved phased arrays. The former results in a poor resolution and contrast due to a limited amount of elements. The latter has the disadvantage of low frame rates due to the sequential acquisition of the volume...... line-by-line and plane-by-plane. This paper describes an approach which combines mechanically moved phased array with synthetic transmit aperture imaging, resulting in high volume acquisition rates without a trade-off in image quality. The scan method uses a conventional fully populated 64 element...

  12. Defect images in stress thallium-201 myocardial scintigraphy in patients with complete left bundle branch block. Comparison of exercise stress and pharmacological stress

    International Nuclear Information System (INIS)

    Sasaki, Hideki; Shimizu, Mitsuyuki; Ogawa, Kazuhiko; Okazaki, Fumiko; Mizokami, Tsuneo; Kusaka, Masafumi; Uehara, Yoshiki; Taniguchi, Ikuo; Mochizuki, Seibu

    2007-01-01

    Stress thallium-201 ( 201 Tl) myocardial scintigraphy can demonstrate perfusion abnormalities, especially in the septum in patients with complete left bundle branch block (CLBBB) even with angiographically normal coronary arteries. Differences in the images between exercise and pharmacological stress 201 Tl myocardial scintigraphy were evaluated in patients with CLBBB and normal coronary arteries. Forty-five patients with CLBBB underwent exercise stress using treadmill or pharmacological (adenosine triphosphate) stress 201 Tl myocardial scintigraphy from October 1997 to February 2003. Patients with myocardial diseases were excluded, such as cardiomyopathy and coronary artery diseases detected by echocardiography and/or cardiac catheterization. The myocardial segment was classified according to the American Heart Association style for coronary artery disease. Peak blood pressure levels and heart rates were significantly higher in the exercise stress group than in the pharmacological stress group (p 201 Tl myocardial scintigraphy according to the stress method. Moreover, defects also occurred in areas other than the septum. Blood pressure and heart rate were involved in the mechanisms of defects in left bundle branch block. (author)

  13. Measurements and simulations analysing the noise behaviour of grating-based X-ray phase-contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Weber, T., E-mail: thomas.weber@physik.uni-erlangen.de [University of Erlangen-Nuremberg, ECAP - Erlangen Center for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Bartl, P.; Durst, J. [University of Erlangen-Nuremberg, ECAP - Erlangen Center for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Haas, W. [University of Erlangen-Nuremberg, ECAP - Erlangen Center for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); University of Erlangen-Nuremberg, Pattern Recognition Lab, Martensstr. 3, 91058 Erlangen (Germany); Michel, T.; Ritter, A.; Anton, G. [University of Erlangen-Nuremberg, ECAP - Erlangen Center for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany)

    2011-08-21

    In the last decades, phase-contrast imaging using a Talbot-Lau grating interferometer is possible even with a low-brilliance X-ray source. With the potential of increasing the soft-tissue contrast, this method is on its way into medical imaging. For this purpose, the knowledge of the underlying physics of this technique is necessary. With this paper, we would like to contribute to the understanding of grating-based phase-contrast imaging by presenting results on measurements and simulations regarding the noise behaviour of the differential phases. These measurements were done using a microfocus X-ray tube with a hybrid, photon-counting, semiconductor Medipix2 detector. The additional simulations were performed by our in-house developed phase-contrast simulation tool 'SPHINX', combining both wave and particle contributions of the simulated photons. The results obtained by both of these methods show the same behaviour. Increasing the number of photons leads to a linear decrease of the standard deviation of the phase. The number of used phase steps has no influence on the standard deviation, if the total number of photons is held constant. Furthermore, the probability density function (pdf) of the reconstructed differential phases was analysed. It turned out that the so-called von Mises distribution is the physically correct pdf, which was also confirmed by measurements. This information advances the understanding of grating-based phase-contrast imaging and can be used to improve image quality.

  14. Frequency-domain imaging algorithm for ultrasonic testing by application of matrix phased arrays

    Directory of Open Access Journals (Sweden)

    Dolmatov Dmitry

    2017-01-01

    Full Text Available Constantly increasing demand for high-performance materials and systems in aerospace industry requires advanced methods of nondestructive testing. One of the most promising methods is ultrasonic imaging by using matrix phased arrays. This technique allows to create three-dimensional ultrasonic imaging with high lateral resolution. Further progress in matrix phased array ultrasonic testing is determined by the development of fast imaging algorithms. In this article imaging algorithm based on frequency domain calculations is proposed. This approach is computationally efficient in comparison with time domain algorithms. Performance of the proposed algorithm was tested via computer simulations for planar specimen with flat bottom holes.

  15. Two-level image authentication by two-step phase-shifting interferometry and compressive sensing

    Science.gov (United States)

    Zhang, Xue; Meng, Xiangfeng; Yin, Yongkai; Yang, Xiulun; Wang, Yurong; Li, Xianye; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2018-01-01

    A two-level image authentication method is proposed; the method is based on two-step phase-shifting interferometry, double random phase encoding, and compressive sensing (CS) theory, by which the certification image can be encoded into two interferograms. Through discrete wavelet transform (DWT), sparseness processing, Arnold transform, and data compression, two compressed signals can be generated and delivered to two different participants of the authentication system. Only the participant who possesses the first compressed signal attempts to pass the low-level authentication. The application of Orthogonal Match Pursuit CS algorithm reconstruction, inverse Arnold transform, inverse DWT, two-step phase-shifting wavefront reconstruction, and inverse Fresnel transform can result in the output of a remarkable peak in the central location of the nonlinear correlation coefficient distributions of the recovered image and the standard certification image. Then, the other participant, who possesses the second compressed signal, is authorized to carry out the high-level authentication. Therefore, both compressed signals are collected to reconstruct the original meaningful certification image with a high correlation coefficient. Theoretical analysis and numerical simulations verify the feasibility of the proposed method.

  16. Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging.

    Science.gov (United States)

    Jung, Jae-Hwang; Jang, Jaeduck; Park, Yongkeun

    2013-11-05

    We present a novel spectroscopic quantitative phase imaging technique with a wavelength swept-source, referred to as swept-source diffraction phase microscopy (ssDPM), for quantifying the optical dispersion of microscopic individual samples. Employing the swept-source and the principle of common-path interferometry, ssDPM measures the multispectral full-field quantitative phase imaging and spectroscopic microrefractometry of transparent microscopic samples in the visible spectrum with a wavelength range of 450-750 nm and a spectral resolution of less than 8 nm. With unprecedented precision and sensitivity, we demonstrate the quantitative spectroscopic microrefractometry of individual polystyrene beads, 30% bovine serum albumin solution, and healthy human red blood cells.

  17. Early Identification of Herbicide Stress in Soybean (Glycine max (L.) Merr.) Using Chlorophyll Fluorescence Imaging Technology.

    Science.gov (United States)

    Li, Hui; Wang, Pei; Weber, Jonas Felix; Gerhards, Roland

    2017-12-22

    Herbicides may damage soybean in conventional production systems. Chlorophyll fluorescence imaging technology has been applied to identify herbicide stress in weed species a few days after application. In this study, greenhouse experiments followed by field experiments at five sites were conducted to investigate if the chlorophyll fluorescence imaging is capable of identifying herbicide stress in soybean shortly after application. Measurements were carried out from emergence until the three-to-four-leaf stage of the soybean plants. Results showed that maximal photosystem II (PS II) quantum yield and shoot dry biomass was significantly reduced in soybean by herbicides compared to the untreated control plants. The stress of PS II inhibiting herbicides occurred on the cotyledons of soybean and plants recovered after one week. The stress induced by DOXP synthase-, microtubule assembly-, or cell division-inhibitors was measured from the two-leaf stage until four-leaf stage of soybean. We could demonstrate that the chlorophyll fluorescence imaging technology is capable for detecting herbicide stress in soybean. The system can be applied under both greenhouse and field conditions. This helps farmers to select weed control strategies with less phytotoxicity in soybean and avoid yield losses due to herbicide stress.

  18. Clinical significance of increased lung/heart ratio in 210Tl stress myocardial image

    International Nuclear Information System (INIS)

    Liu Zaoli; Chang Fengqin; Zhang Fengge; Wang Xiaoyuan; Liu Liuhua

    1990-01-01

    230 cases were studied with 201 Tl stress image. The results showed that the lung/heart ratio closely correlated with the presence and severity of coronary heart disease (CHD). Among them, 18 cases (7.8%) showed significantly elevated lung/heart ratio (> 0.50). It was confirmed that all of the 18 cases have severe CHD with left ventricular insufficiency. The author emphasizes that measurement of the lung/heart ratio during 201 Tl stress myocardial image may be useful for the assessment of the severity, evalation of the left ventricular function and judgement of prognosis in CHD

  19. Parametric images evaluation of selected phases of the heart cycle with PET

    International Nuclear Information System (INIS)

    Just, U.; Will, E.; Beuthien Baumann, B.; Bredow, J.

    2002-01-01

    The standard evaluation of dynamic heart acquisitions with PET uses image data not corrected for heart wall movement. The evaluation of parametric data sets (Patlak Plot) was investigated for gated studies of selected heart phases (diastolic, systolic) and compared to the standard evaluation. Parametric images of selected heart phases have improved resolution. The values for metabolic rate are different for a ''normal'' and gated evaluation, up to 50% more for the systole compared to the normal one. (orig.)

  20. A user-friendly LabVIEW software platform for grating based X-ray phase-contrast imaging.

    Science.gov (United States)

    Wang, Shenghao; Han, Huajie; Gao, Kun; Wang, Zhili; Zhang, Can; Yang, Meng; Wu, Zhao; Wu, Ziyu

    2015-01-01

    X-ray phase-contrast imaging can provide greatly improved contrast over conventional absorption-based imaging for weakly absorbing samples, such as biological soft tissues and fibre composites. In this study, we introduced an easy and fast way to develop a user-friendly software platform dedicated to the new grating-based X-ray phase-contrast imaging setup at the National Synchrotron Radiation Laboratory of the University of Science and Technology of China. The control of 21 motorized stages, of a piezoelectric stage and of an X-ray tube are achieved with this software, it also covers image acquisition with a flat panel detector for automatic phase stepping scan. Moreover, a data post-processing module for signals retrieval and other custom features are in principle available. With a seamless integration of all the necessary functions in one software package, this platform greatly facilitate users' activities during experimental runs with this grating based X-ray phase contrast imaging setup.

  1. Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice

    KAUST Repository

    Hairmansis, Aris

    2014-08-14

    Background Soil salinity is an abiotic stress wide spread in rice producing areas, limiting both plant growth and yield. The development of salt-tolerant rice requires efficient and high-throughput screening techniques to identify promising lines for salt affected areas. Advances made in image-based phenotyping techniques provide an opportunity to use non-destructive imaging to screen for salinity tolerance traits in a wide range of germplasm in a reliable, quantitative and efficient way. However, the application of image-based phenotyping in the development of salt-tolerant rice remains limited. Results A non-destructive image-based phenotyping protocol to assess salinity tolerance traits of two rice cultivars (IR64 and Fatmawati) has been established in this study. The response of rice to different levels of salt stress was quantified over time based on total shoot area and senescent shoot area, calculated from visible red-green-blue (RGB) and fluorescence images. The response of rice to salt stress (50, 75 and 100 mM NaCl) could be clearly distinguished from the control as indicated by the reduced increase of shoot area. The salt concentrations used had only a small effect on the growth of rice during the initial phase of stress, the shoot Na+ accumulation independent phase termed the ‘osmotic stress’ phase. However, after 20 d of treatment, the shoot area of salt stressed plants was reduced compared with non-stressed plants. This was accompanied by a significant increase in the concentration of Na+ in the shoot. Variation in the senescent area of the cultivars IR64 and Fatmawati in response to a high concentration of Na+ in the shoot indicates variation in tissue tolerance mechanisms between the cultivars. Conclusions Image analysis has the potential to be used for high-throughput screening procedures in the development of salt-tolerant rice. The ability of image analysis to discriminate between the different aspects of salt stress (shoot ion

  2. Distinction of heterogeneity on Au nanostructured surface based on phase contrast imaging of atomic force microscopy

    International Nuclear Information System (INIS)

    Jung, Mi; Choi, Jeong-Woo

    2010-01-01

    The discrimination of the heterogeneity of different materials on nanostructured surfaces has attracted a great deal of interest in biotechnology as well as nanotechnology. Phase imaging through tapping mode of atomic force microscopy (TMAFM) can be used to distinguish the heterogeneity on a nanostructured surface. Nanostructures were fabricated using anodic aluminum oxide (AAO). An 11-mercaptoundecanoic acid (11-MUA) layer adsorbed onto the Au nanodots through self-assembly to improve the bio-compatibility. The Au nanostructures that were modified with 11-MUA and the concave surfaces were investigated using the TMAFM phase images to compare the heterogeneous and homogeneous nanostructured surfaces. Although the topography and phase images were taken simultaneously, the images were different. Therefore, the contrast in the TMAFM phase images revealed the different compositional materials on the heterogeneous nanostructure surface.

  3. Strand specific RNA-sequencing and membrane lipid profiling reveals growth phase-dependent cold stress response mechanisms in Listeria monocytogenes

    Science.gov (United States)

    Hingston, Patricia; Chen, Jessica; Allen, Kevin; Truelstrup Hansen, Lisbeth

    2017-01-01

    The human pathogen Listeria monocytogenes continues to pose a challenge in the food industry, where it is known to contaminate ready-to-eat foods and grow during refrigerated storage. Increased knowledge of the cold-stress response of this pathogen will enhance the ability to control it in the food-supply-chain. This study utilized strand-specific RNA sequencing and whole cell fatty acid (FA) profiling to characterize the bacterium’s cold stress response. RNA and FAs were extracted from a cold-tolerant strain at five time points between early lag phase and late stationary-phase, both at 4°C and 20°C. Overall, more genes (1.3×) were suppressed than induced at 4°C. Late stationary-phase cells exhibited the greatest number (n = 1,431) and magnitude (>1,000-fold) of differentially expressed genes (>2-fold, pmonocytogenes, the growth-phase dependency of its cold-stress regulon, and the active roles of antisense transcripts in regulating its cold stress response. PMID:28662112

  4. Medial tibial plateau morphology and stress fracture location: A magnetic resonance imaging study.

    Science.gov (United States)

    Yukata, Kiminori; Yamanaka, Issei; Ueda, Yuzuru; Nakai, Sho; Ogasa, Hiroyoshi; Oishi, Yosuke; Hamawaki, Jun-Ichi

    2017-06-18

    To determine the location of medial tibial plateau stress fractures and its relationship with tibial plateau morphology using magnetic resonance imaging (MRI). A retrospective review of patients with a diagnosis of stress fracture of the medial tibial plateau was performed for a 5-year period. Fourteen patients [three female and 11 male, with an average age of 36.4 years (range, 15-50 years)], who underwent knee MRI, were included. The appearance of the tibial plateau stress fracture and the geometry of the tibial plateau were reviewed and measured on MRI. Thirteen of 14 stress fractures were linear, and one of them stellated on MRI images. The location of fractures was classified into three types. Three fractures were located anteromedially (AM type), six posteromedially (PM type), and five posteriorly (P type) at the medial tibial plateau. In addition, tibial posterior slope at the medial tibial plateau tended to be larger when the fracture was located more posteriorly on MRI. We found that MRI showed three different localizations of medial tibial plateau stress fractures, which were associated with tibial posterior slope at the medial tibial plateau.

  5. Synchrotron 4-dimensional imaging of two-phase flow through porous media.

    Science.gov (United States)

    Kim, F H; Penumadu, D; Patel, P; Xiao, X; Garboczi, E J; Moylan, S P; Donmez, M A

    2016-01-01

    Near real-time visualization of complex two-phase flow in a porous medium was demonstrated with dynamic 4-dimensional (4D) (3D + time) imaging at the 2-BM beam line of the Advanced Photon Source (APS) at Argonne National Laboratory. Advancing fluid fronts through tortuous flow paths and their interactions with sand grains were clearly captured, and formations of air bubbles and capillary bridges were visualized. The intense X-ray photon flux of the synchrotron facility made 4D imaging possible, capturing the dynamic evolution of both solid and fluid phases. Computed Tomography (CT) scans were collected every 12 s with a pixel size of 3.25 µm. The experiment was carried out to improve understanding of the physics associated with two-phase flow. The results provide a source of validation data for numerical simulation codes such as Lattice-Boltzmann, which are used to model multi-phase flow through porous media.

  6. Estimating Accurate Target Coordinates with Magnetic Resonance Images by Using Multiple Phase-Encoding Directions during Acquisition.

    Science.gov (United States)

    Kim, Minsoo; Jung, Na Young; Park, Chang Kyu; Chang, Won Seok; Jung, Hyun Ho; Chang, Jin Woo

    2018-06-01

    Stereotactic procedures are image guided, often using magnetic resonance (MR) images limited by image distortion, which may influence targets for stereotactic procedures. The aim of this work was to assess methods of identifying target coordinates for stereotactic procedures with MR in multiple phase-encoding directions. In 30 patients undergoing deep brain stimulation, we acquired 5 image sets: stereotactic brain computed tomography (CT), T2-weighted images (T2WI), and T1WI in both right-to-left (RL) and anterior-to-posterior (AP) phase-encoding directions. Using CT coordinates as a reference, we analyzed anterior commissure and posterior commissure coordinates to identify any distortion relating to phase-encoding direction. Compared with CT coordinates, RL-directed images had more positive x-axis values (0.51 mm in T1WI, 0.58 mm in T2WI). AP-directed images had more negative y-axis values (0.44 mm in T1WI, 0.59 mm in T2WI). We adopted 2 methods to predict CT coordinates with MR image sets: parallel translation and selective choice of axes according to phase-encoding direction. Both were equally effective at predicting CT coordinates using only MR; however, the latter may be easier to use in clinical settings. Acquiring MR in multiple phase-encoding directions and selecting axes according to the phase-encoding direction allows identification of more accurate coordinates for stereotactic procedures. © 2018 S. Karger AG, Basel.

  7. Deteriorated stress response in stationary-phase yeast: Sir2 and Yap1 are essential for Hsf1 activation by heat shock and oxidative stress, respectively.

    Directory of Open Access Journals (Sweden)

    Inbal Nussbaum

    Full Text Available Stationary-phase cultures have been used as an important model of aging, a complex process involving multiple pathways and signaling networks. However, the molecular processes underlying stress response of non-dividing cells are poorly understood, although deteriorated stress response is one of the hallmarks of aging. The budding yeast Saccharomyces cerevisiae is a valuable model organism to study the genetics of aging, because yeast ages within days and are amenable to genetic manipulations. As a unicellular organism, yeast has evolved robust systems to respond to environmental challenges. This response is orchestrated largely by the conserved transcription factor Hsf1, which in S. cerevisiae regulates expression of multiple genes in response to diverse stresses. Here we demonstrate that Hsf1 response to heat shock and oxidative stress deteriorates during yeast transition from exponential growth to stationary-phase, whereas Hsf1 activation by glucose starvation is maintained. Overexpressing Hsf1 does not significantly improve heat shock response, indicating that Hsf1 dwindling is not the major cause for Hsf1 attenuated response in stationary-phase yeast. Rather, factors that participate in Hsf1 activation appear to be compromised. We uncover two factors, Yap1 and Sir2, which discretely function in Hsf1 activation by oxidative stress and heat shock. In Δyap1 mutant, Hsf1 does not respond to oxidative stress, while in Δsir2 mutant, Hsf1 does not respond to heat shock. Moreover, excess Sir2 mimics the heat shock response. This role of the NAD+-dependent Sir2 is supported by our finding that supplementing NAD+ precursors improves Hsf1 heat shock response in stationary-phase yeast, especially when combined with expression of excess Sir2. Finally, the combination of excess Hsf1, excess Sir2 and NAD+ precursors rejuvenates the heat shock response.

  8. Deteriorated stress response in stationary-phase yeast: Sir2 and Yap1 are essential for Hsf1 activation by heat shock and oxidative stress, respectively.

    Science.gov (United States)

    Nussbaum, Inbal; Weindling, Esther; Jubran, Ritta; Cohen, Aviv; Bar-Nun, Shoshana

    2014-01-01

    Stationary-phase cultures have been used as an important model of aging, a complex process involving multiple pathways and signaling networks. However, the molecular processes underlying stress response of non-dividing cells are poorly understood, although deteriorated stress response is one of the hallmarks of aging. The budding yeast Saccharomyces cerevisiae is a valuable model organism to study the genetics of aging, because yeast ages within days and are amenable to genetic manipulations. As a unicellular organism, yeast has evolved robust systems to respond to environmental challenges. This response is orchestrated largely by the conserved transcription factor Hsf1, which in S. cerevisiae regulates expression of multiple genes in response to diverse stresses. Here we demonstrate that Hsf1 response to heat shock and oxidative stress deteriorates during yeast transition from exponential growth to stationary-phase, whereas Hsf1 activation by glucose starvation is maintained. Overexpressing Hsf1 does not significantly improve heat shock response, indicating that Hsf1 dwindling is not the major cause for Hsf1 attenuated response in stationary-phase yeast. Rather, factors that participate in Hsf1 activation appear to be compromised. We uncover two factors, Yap1 and Sir2, which discretely function in Hsf1 activation by oxidative stress and heat shock. In Δyap1 mutant, Hsf1 does not respond to oxidative stress, while in Δsir2 mutant, Hsf1 does not respond to heat shock. Moreover, excess Sir2 mimics the heat shock response. This role of the NAD+-dependent Sir2 is supported by our finding that supplementing NAD+ precursors improves Hsf1 heat shock response in stationary-phase yeast, especially when combined with expression of excess Sir2. Finally, the combination of excess Hsf1, excess Sir2 and NAD+ precursors rejuvenates the heat shock response.

  9. Image/patient registration from (partial) projection data by the Fourier phase matching method

    International Nuclear Information System (INIS)

    Weiguo Lu; You, J.

    1999-01-01

    A technique for 2D or 3D image/patient registration, PFPM (projection based Fourier phase matching method), is proposed. This technique provides image/patient registration directly from sequential tomographic projection data. The method can also deal with image files by generating 2D Radon transforms slice by slice. The registration in projection space is done by calculating a Fourier invariant (FI) descriptor for each one-dimensional projection datum, and then registering the FI descriptor by the Fourier phase matching (FPM) method. The algorithm has been tested on both synthetic and experimental data. When dealing with translated, rotated and uniformly scaled 2D image registration, the performance of the PFPM method is comparable to that of the IFPM (image based Fourier phase matching) method in robustness, efficiency, insensitivity to the offset between images, and registration time. The advantages of the former are that subpixel resolution is feasible, and it is more insensitive to image noise due to the averaging effect of the projection acquisition. Furthermore, the PFPM method offers the ability to generalize to 3D image/patient registration and to register partial projection data. By applying patient registration directly from tomographic projection data, image reconstruction is not needed in the therapy set-up verification, thus reducing computational time and artefacts. In addition, real time registration is feasible. Registration from partial projection data meets the geometry and dose requirements in many application cases and makes dynamic set-up verification possible in tomotherapy. (author)

  10. Simple and fast spectral domain algorithm for quantitative phase imaging of living cells with digital holographic microscopy

    Science.gov (United States)

    Min, Junwei; Yao, Baoli; Ketelhut, Steffi; Kemper, Björn

    2017-02-01

    The modular combination of optical microscopes with digital holographic microscopy (DHM) has been proven to be a powerful tool for quantitative live cell imaging. The introduction of condenser and different microscope objectives (MO) simplifies the usage of the technique and makes it easier to measure different kinds of specimens with different magnifications. However, the high flexibility of illumination and imaging also causes variable phase aberrations that need to be eliminated for high resolution quantitative phase imaging. The existent phase aberrations compensation methods either require add additional elements into the reference arm or need specimen free reference areas or separate reference holograms to build up suitable digital phase masks. These inherent requirements make them unpractical for usage with highly variable illumination and imaging systems and prevent on-line monitoring of living cells. In this paper, we present a simple numerical method for phase aberration compensation based on the analysis of holograms in spatial frequency domain with capabilities for on-line quantitative phase imaging. From a single shot off-axis hologram, the whole phase aberration can be eliminated automatically without numerical fitting or pre-knowledge of the setup. The capabilities and robustness for quantitative phase imaging of living cancer cells are demonstrated.

  11. Optical image encryption using password key based on phase retrieval algorithm

    Science.gov (United States)

    Zhao, Tieyu; Ran, Qiwen; Yuan, Lin; Chi, Yingying; Ma, Jing

    2016-04-01

    A novel optical image encryption system is proposed using password key based on phase retrieval algorithm (PRA). In the encryption process, a shared image is taken as a symmetric key and the plaintext is encoded into the phase-only mask based on the iterative PRA. The linear relationship between the plaintext and ciphertext is broken using the password key, which can resist the known plaintext attack. The symmetric key and the retrieved phase are imported into the input plane and Fourier plane of 4f system during the decryption, respectively, so as to obtain the plaintext on the CCD. Finally, we analyse the key space of the password key, and the results show that the proposed scheme can resist a brute force attack due to the flexibility of the password key.

  12. Spirometrically gated /sup 133/Xe ventilation imaging and phase analysis for assessment of regional lung function

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Tomio (Kanto Teishin Hospital, Tokyo (Japan))

    1984-10-01

    The purpose of this study is to develop the technique of performing spirometrically gated /sup 133/Xe ventilation imaging and to evaluate its clinical usefulness for the assessment of regional ventilatory function in various lung diseases. Patients rebreathed /sup 133/Xe gas through the system with constant rates signaled by a metronome. The trigger signals from the patients were recorded in a minicomputer for 60 respiratory cycles simultaneously with posterior lung images. Functional images (phase analysis images) indicating phase and amplitude of regional ventilation were constructed by the first harmonic Fourier analysis. Materials included 13 normal volunteers and patients with COPD (24), lung cancer (5), pulmonary embolism (4) and others (20). In normal controls, phase analysis images before respiratory motion correction revealed gradual decrease in amplitude from base to apex with uniform phase distribution. The amplitude and phase distribution after respiratory motion correction became even more uniform. In patients with COPD, phase analysis images showed asymmetrical and irregular amplitude distribution with non-uniform phase distribution. The standard deviation (S.D.) of phase histogram correlated well with FEVsub(1.0)% (r=0.71, p < 0.001) and down slope of flow-volume curve (r=0.55, p < 0.001), and less prominently with %VC (r=0.42, p < 0.01). Mean S.D. in patients with COPD (12.3 +- 6.5 degree, mean+-1 s.d.) was significantly larger than in normal controls (6.3 +- 1.5). Amplitude profile curve analysis revealed 83% sensitivity for the detection of abnormal spirometric respiratory function test. Data aquisition and processing of present method are rapid and easy to perform. The phase analysis of the gated ventilation images should prove useful in the clinical evaluation of patients with uneven ventilation such as COPD.

  13. Algorithms for image recovery calculation in extended single-shot phase-shifting digital holography

    Science.gov (United States)

    Hasegawa, Shin-ya; Hirata, Ryo

    2018-04-01

    The single-shot phase-shifting method of image recovery using an inclined reference wave has the advantages of reducing the effects of vibration, being capable of operating in real time, and affording low-cost sensing. In this method, relatively low reference angles compared with that in the conventional method using phase shift between three or four pixels has been required. We propose an extended single-shot phase-shifting technique which uses the multiple-step phase-shifting algorithm and the corresponding multiple pixels which are the same as that of the period of an interference fringe. We have verified the theory underlying this recovery method by means of Fourier spectral analysis and its effectiveness by evaluating the visibility of the image using a high-resolution pattern. Finally, we have demonstrated high-contrast image recovery experimentally using a resolution chart. This method can be used in a variety of applications such as color holographic interferometry.

  14. Stress injuries of the pars interarticularis: Radiologic classification and indications for radionuclide imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pennell, R.; Maurer, A.R.; Bonakdarpour, A.

    1984-01-01

    Lumbar spine radiographs and radionuclide images were compared and correlated with clinical histories of 20 athletes with low back pain. Radiographs were classified as: Normal (Type 0); showing a healing stress fracture (an irregular lucent line) with sclerosis (Type I); as an evolving or healed stress injury with either sclerosis, narrowing, or demineralization (Type II); and as a chronic fracture showing a large lucency with well-defined margins classically referred to as spondylolysis (Type III). Patients were grouped clinically on the basis of their pain: acute onset (Group A, n = 7), acute superimposed on chronic (Group B, n = 9), and chronic pain without an acute event (Group C, n = 4). Radiographic abnormalities were present in 95% (19/20) of the patients and radionuclide studies were positive in 60% (12/20). Scintigraphy was positive most often with Type I pars abnormalities (77%, 10/13) and negative most often with Type III abnormalities (91%, 11/12). Of all positive scintigraphy 12/14 (86%) were in pts in Groups A and B (acute symptoms). The authors' findings support theories that radiographic pars abnormalities exist which correspond to stages in the healing of stress induced fractures. With acute symptoms radionuclide imaging need not be obtained if a Type I radiographic abnormality is seen. Radionuclide imaging is indicated with either Type 0, II or III radiographs to confirm or rule out recent stress injury.

  15. Stress injuries of the pars interarticularis: Radiologic classification and indications for radionuclide imaging

    International Nuclear Information System (INIS)

    Pennell, R.; Maurer, A.R.; Bonakdarpour, A.

    1984-01-01

    Lumbar spine radiographs and radionuclide images were compared and correlated with clinical histories of 20 athletes with low back pain. Radiographs were classified as: Normal (Type 0); showing a healing stress fracture (an irregular lucent line) with sclerosis (Type I); as an evolving or healed stress injury with either sclerosis, narrowing, or demineralization (Type II); and as a chronic fracture showing a large lucency with well-defined margins classically referred to as spondylolysis (Type III). Patients were grouped clinically on the basis of their pain: acute onset (Group A, n = 7), acute superimposed on chronic (Group B, n = 9), and chronic pain without an acute event (Group C, n = 4). Radiographic abnormalities were present in 95% (19/20) of the patients and radionuclide studies were positive in 60% (12/20). Scintigraphy was positive most often with Type I pars abnormalities (77%, 10/13) and negative most often with Type III abnormalities (91%, 11/12). Of all positive scintigraphy 12/14 (86%) were in pts in Groups A and B (acute symptoms). The authors' findings support theories that radiographic pars abnormalities exist which correspond to stages in the healing of stress induced fractures. With acute symptoms radionuclide imaging need not be obtained if a Type I radiographic abnormality is seen. Radionuclide imaging is indicated with either Type 0, II or III radiographs to confirm or rule out recent stress injury

  16. Classification of natural circulation two-phase flow patterns using fuzzy inference on image analysis

    International Nuclear Information System (INIS)

    Mesquita, R.N. de; Masotti, P.H.F.; Penha, R.M.L.; Andrade, D.A.; Sabundjian, G.; Torres, W.M.

    2012-01-01

    Highlights: ► A fuzzy classification system for two-phase flow instability patterns is developed. ► Flow patterns are classified based on images of natural circulation experiments. ► Fuzzy inference is optimized to use single grayscale profiles as input. - Abstract: Two-phase flow on natural circulation phenomenon has been an important theme on recent studies related to nuclear reactor designs. The accuracy of heat transfer estimation has been improved with new models that require precise prediction of pattern transitions of flow. In this work, visualization of natural circulation cycles is used to study two-phase flow patterns associated with phase transients and static instabilities of flow. A Fuzzy Flow-type Classification System (FFCS) was developed to classify these patterns based only on image extracted features. Image acquisition and temperature measurements were simultaneously done. Experiments in natural circulation facility were adjusted to generate a series of characteristic two-phase flow instability periodic cycles. The facility is composed of a loop of glass tubes, a heat source using electrical heaters, a cold source using a helicoidal heat exchanger, a visualization section and thermocouples positioned over different loop sections. The instability cyclic period is estimated based on temperature measurements associated with the detection of a flow transition image pattern. FFCS shows good results provided that adequate image acquisition parameters and pre-processing adjustments are used.

  17. Applications of phase-contrast x-ray imaging to medicine using an x-ray interferometer

    Science.gov (United States)

    Momose, Atsushi; Yoneyama, Akio; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-10-01

    We are investigating possible medical applications of phase- contrast X-ray imaging using an X-ray interferometer. This paper introduces the strategy of the research project and the present status. The main subject is to broaden the observation area to enable in vivo observation. For this purpose, large X-ray interferometers were developed, and 2.5 cm X 1.5 cm interference patterns were generated using synchrotron X-rays. An improvement of the spatial resolution is also included in the project, and an X-ray interferometer designed for high-resolution phase-contrast X-ray imaging was fabricated and tested. In parallel with the instrumental developments, various soft tissues are observed by phase- contrast X-ray CT to find correspondence between the generated contrast and our histological knowledge. The observation done so far suggests that cancerous tissues are differentiated from normal tissues and that blood can produce phase contrast. Furthermore, this project includes exploring materials that modulate phase contrast for selective imaging.

  18. PHASED ARRAY FEED CALIBRATION, BEAMFORMING, AND IMAGING

    International Nuclear Information System (INIS)

    Landon, Jonathan; Elmer, Michael; Waldron, Jacob; Jones, David; Stemmons, Alan; Jeffs, Brian D.; Warnick, Karl F.; Richard Fisher, J.; Norrod, Roger D.

    2010-01-01

    Phased array feeds (PAFs) for reflector antennas offer the potential for increased reflector field of view and faster survey speeds. To address some of the development challenges that remain for scientifically useful PAFs, including calibration and beamforming algorithms, sensitivity optimization, and demonstration of wide field of view imaging, we report experimental results from a 19 element room temperature L-band PAF mounted on the Green Bank 20 Meter Telescope. Formed beams achieved an aperture efficiency of 69% and a system noise temperature of 66 K. Radio camera images of several sky regions are presented. We investigate the noise performance and sensitivity of the system as a function of elevation angle with statistically optimal beamforming and demonstrate cancelation of radio frequency interference sources with adaptive spatial filtering.

  19. Grid-Independent Compressive Imaging and Fourier Phase Retrieval

    Science.gov (United States)

    Liao, Wenjing

    2013-01-01

    This dissertation is composed of two parts. In the first part techniques of band exclusion(BE) and local optimization(LO) are proposed to solve linear continuum inverse problems independently of the grid spacing. The second part is devoted to the Fourier phase retrieval problem. Many situations in optics, medical imaging and signal processing call…

  20. Effects of phosphorus on the δ-Ni3Nb phase precipitation and the stress rupture properties in alloy 718

    International Nuclear Information System (INIS)

    Sun, W.R.; Guo, S.R.; Hu, Z.Q.; Park, N.K.; Yoo, Y.S.; Choe, S.J.

    1998-01-01

    The effects of phosphorus on the phase transformation and stress rupture properties of alloy 718 were investigated. The nucleation of δ-phase, which does not contain phosphorus, was suppressed by the enrichment of phosphorus at grain boundaries. A low level of phosphorus resulted in the formation of faults-containing film-like δ-phase along the grain boundaries, while a higher level of phosphorus favored the long lath-like δ-phase precipitation. Phosphorus greatly prolonged the stress rupture life of the alloy in the range of 0.0008-0.013 wt.%, while it reduced the stress rupture life in the range of 0.013-0.049 wt.%. The effect of phosphorus on the stress rupture properties was closely related to its interaction with oxygen. Phosphorus atoms, in the range of 0.0008-0.013 wt.%, enhanced the resistance to oxygen intrusion along the grain boundaries, protected the grain boundaries from decohesion by oxygen atoms and oxidation, and subsequently prolonged the rupture life of the alloy. The protection effect of P is clearly demonstrated by the phenomenon that the crack initiation site was shifted from the surface to the center in the stress-ruptured samples with increasing addition of P. Over 0.013 wt.%, the protection effect of phosphorus is excessive and phosphorus began to display its inherent effect of damaging the grain boundary strength: the stress rupture life of the alloy was reduced accordingly. Maximum stress rupture life was thus obtained at ∼0.013 wt.% P. (orig.)

  1. An efficient reconstruction algorithm for differential phase-contrast tomographic images from a limited number of views

    International Nuclear Information System (INIS)

    Sunaguchi, Naoki; Yuasa, Tetsuya; Gupta, Rajiv; Ando, Masami

    2015-01-01

    The main focus of this paper is reconstruction of tomographic phase-contrast image from a set of projections. We propose an efficient reconstruction algorithm for differential phase-contrast computed tomography that can considerably reduce the number of projections required for reconstruction. The key result underlying this research is a projection theorem that states that the second derivative of the projection set is linearly related to the Laplacian of the tomographic image. The proposed algorithm first reconstructs the Laplacian image of the phase-shift distribution from the second-derivative of the projections using total variation regularization. The second step is to obtain the phase-shift distribution by solving a Poisson equation whose source is the Laplacian image previously reconstructed under the Dirichlet condition. We demonstrate the efficacy of this algorithm using both synthetically generated simulation data and projection data acquired experimentally at a synchrotron. The experimental phase data were acquired from a human coronary artery specimen using dark-field-imaging optics pioneered by our group. Our results demonstrate that the proposed algorithm can reduce the number of projections to approximately 33% as compared with the conventional filtered backprojection method, without any detrimental effect on the image quality

  2. Evaluation of fatty liver by using in-phase and opposed-phase MR images and in-vivo proton MR spectroscopy

    Science.gov (United States)

    Lee, Jae-Seung; Im, In-Chul; Goo, Eun-Hoe; Park, Hyong-Hu; Kwak, Byung-Joon

    2012-12-01

    The purpose of this study was to evaluate the necessity of in-phase and opposed-phase MR images and their correlations with weight, the aspartate aminotransferase/alanine aminotransferase (AST/ALT) value, and age. Magnetic resonance spectroscopy (MRS) was used as a reference in this study. We selected 68 people as subjects, among which 14 were volunteers with normal AST/ALT values ( liver function study and 54 were non-alcoholic fatty liver patients for whom ultrasonic images had been obtained within 3 months of the study. In this study, the liver was more enhanced than the spleen or kidney. When the Eq. (3) formula was applied to normal volunteers, the difference between the in-phase and the opposed-phase images was -3.54 ± 12.56. The MRS study result showed a high sensitivity of 96.6% and a specificity of 100% ( p = 0.000) when the cutoff value was 20%. Furthermore, this result showed a high sensitivity of 94% and a specificity of 80% with a similar cutoff when the Eq. (2) formula was applied to non-alcoholic fatty liver patients ( p = 0.000). The MRS study revealed a strong correlation between normal volunteers and non-alcoholic fatty liver patients (r = 0.59, p = 0.04). The correlations between AST/ALT and Eq. (3) (r = 0.45, p = 0.004), age and Eq. (3) (r = 0.73, p = 0.03), and weight and Eq. (3) (r = 0.77, p = 0.000) values were all statistically significant. In the case of non-alcoholic liver disease, MRS was found to be significantly correlated with Eq. (1) (r = 0.39, p = 0.002), Eq. (2) (r = 0.68, p = 0.04), Eq. (3) (r = 0.67, p = 0.04), and AST/ALT (r = 0.77, p = 0.000). In conclusion, in-phase and opposed-phase images can help to distinguish a normal liver from a fatty liver in order to identify non-alcoholic fatty liver patients. The intensity difference between the in-phase and opposed-phase MR signals showed valuable correlations with respect to weight, AST/ALT value, and age, with all values being above the mild lipid value (r = 0.3).

  3. Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography.

    Science.gov (United States)

    Paturzo, Melania; Finizio, Andrea; Memmolo, Pasquale; Puglisi, Roberto; Balduzzi, Donatella; Galli, Andrea; Ferraro, Pietro

    2012-09-07

    We show that sharp imaging and quantitative phase-contrast microcopy is possible in microfluidics in flowing turbid media by digital holography. In fact, in flowing liquids with suspended colloidal particles, clear vision is hindered and cannot be recovered by any other microscopic imaging technique. On the contrary, using digital holography, clear imaging is possible thanks to the Doppler frequency shift experienced by the photons scattered by the flowing colloidal particles, which do not contribute to the interference process, i.e. the recorded hologram. The method is illustrated and imaging results are demonstrated for pure phase objects, i.e. biological cells in microfluidic channels.

  4. Optical character recognition of camera-captured images based on phase features

    Science.gov (United States)

    Diaz-Escobar, Julia; Kober, Vitaly

    2015-09-01

    Nowadays most of digital information is obtained using mobile devices specially smartphones. In particular, it brings the opportunity for optical character recognition in camera-captured images. For this reason many recognition applications have been recently developed such as recognition of license plates, business cards, receipts and street signal; document classification, augmented reality, language translator and so on. Camera-captured images are usually affected by geometric distortions, nonuniform illumination, shadow, noise, which make difficult the recognition task with existing systems. It is well known that the Fourier phase contains a lot of important information regardless of the Fourier magnitude. So, in this work we propose a phase-based recognition system exploiting phase-congruency features for illumination/scale invariance. The performance of the proposed system is tested in terms of miss classifications and false alarms with the help of computer simulation.

  5. Ultrasonic backscatter imaging by shear-wave-induced echo phase encoding of target locations.

    Science.gov (United States)

    McAleavey, Stephen

    2011-01-01

    We present a novel method for ultrasound backscatter image formation wherein lateral resolution of the target is obtained by using traveling shear waves to encode the lateral position of targets in the phase of the received echo. We demonstrate that the phase modulation as a function of shear wavenumber can be expressed in terms of a Fourier transform of the lateral component of the target echogenicity. The inverse transform, obtained by measurements of the phase modulation over a range of shear wave spatial frequencies, yields the lateral scatterer distribution. Range data are recovered from time of flight as in conventional ultrasound, yielding a B-mode-like image. In contrast to conventional ultrasound imaging, where mechanical or electronic focusing is used and lateral resolution is determined by aperture size and wavelength, we demonstrate that lateral resolution using the proposed method is independent of the properties of the aperture. Lateral resolution of the target is achieved using a stationary, unfocused, single-element transducer. We present simulated images of targets of uniform and non-uniform shear modulus. Compounding for speckle reduction is demonstrated. Finally, we demonstrate image formation with an unfocused transducer in gelatin phantoms of uniform shear modulus.

  6. Usefulness of combination post-stress dysfunction and perfusion imaging in technetium-99m-tetrofosmin myocardial scintigraphy

    International Nuclear Information System (INIS)

    Yamazaki, Yoko; Imai, Kamon; Konaka, Ryohei; Nakajima, Takatomo; Goto, Sayaka; Horie, Toshinobu; Saito, Satoshi; Ozawa, Yukio; Kanmatsuse, Katsuo

    2001-01-01

    Myocardial perfusion imaging has lower sensitivity for the diagnosis of coronary artery disease in patients with three-vessel disease. The presence of post-stress dysfunction of the left ventricle, evaluated by electrocardiography (ECG) gated single photon emission computed tomography (SPECT) with a quantitative gated SPECT program, was investigated in patients with coronary artery disease, and also whether combining post-stress dysfunction and myocardial perfusion imaging improved the diagnosis of coronary artery disease. ECG gated technetium-99m-tetrofosmin SPECT was performed using a one day, stress and rest, protocol in 139 patients. SPECT and coronary angiography were performed within 1 month. The coronary artery disease group consisted of 89 patients: 43 with one-vessel disease (1VD), 28 with two-vessel disease (2VD), and 18 with three-vessel disease (3VD). The group with zero-vessel disease (0VD) consisted of 50 patients. According to post-stress and rest ejection fraction (EF) and end-systolic volume (ESV), post-stress dysfunction is defined as follows: rest EF - post-stress EF≥5% and post-stress ESV - rest ESV≥5ml. In the coronary artery disease group, post-stress ESV was larger than rest ESV (37.8±26.4, 34.0±24.2 ml, p<0.001), and post-stress EF was lower than rest EF (61.5±11.1%, 64.2±10.8%, p<0.001). In the 0VD group, ESV and EF were the same for post-stress and rest (25.7±20.8, 26.2±21.6 ml, NS; 70.4±9.5%, 70.0±9.6%, NS). Post-stress dysfunction was 6.0% in the 0VD group and 30.3% in the coronary artery disease group (p<0.001). Furthermore, post-stress dysfunction in the 2VD (35.7%) and 3VD (38.9%) groups was higher than that in the 0VD group (p<0.01, p<0.01). Sensitivity of coronary artery disease diagnosis by myocardial perfusion imaging was 75%. The combination of post-stress dysfunction and myocardial perfusion imaging improved sensitivity from 75% to 82% (p<0.05), but reduced the specificity from 92% to 86% (p=0.08). Post-stress

  7. Starting up stress thallium cardiac imaging services.

    Science.gov (United States)

    Owens, R G; Neubecker, J S

    1992-01-01

    This paper presents an evaluation of alternative methods for a hospital to establish stress thallium cardiac imaging services at a group of physicians' office. Volume-cost-profit analysis, break-even analysis and capital budgeting techniques were used to determine the most feasible method from a financial perspective without sacrificing quality of services. The main focus of this evaluation centers upon three alternative methods of procuring an imaging camera: (1) purchasing a new camera, (2) purchasing used equipment, or (3) leasing a new camera. Budgeted income statements were constructed using relevant revenue and cost information for each alternative. The payback period, net present value and the internal rate of return for each method of procuring a camera was computed. In addition, the break-even point was also determined for each alternative. After the analysis was completed, it was concluded that the method of choice, without sacrificing quality of service delivery, was that of purchasing a used camera.

  8. Improvement of detection of stress corrosion cracks with ultrasonic phased array probes

    International Nuclear Information System (INIS)

    Wustenberg, H.; Mohrle, W.; Wegner, W.; Schenk, G.; Erhard, A.

    1986-01-01

    Probes with linear arrays can be used for the detection of stress corrosion cracks especially if the variability of the sound field is used to change the skewing angle of angle beam probes. The phased array concept can be used to produce a variable skewing angle or a variable angle of incidence depending on the orientation of the linear array on the wedge. This helps to adapt the direction of the ultrasonic beam to probable crack orientations. It has been demonstrated with artificial reflectors as well as with corrosion cracks, that the detection of misoriented cracks can be improved by this approach. The experiences gained during the investigations are encouraging the application of phased array probes for stress corrosion phenomena close to the heat effected zone of welds. Probes with variable skewing angles may find some interesting applications on welds in tubular structures e.g., at off shore constructions and on some difficult geometries within the primary circuit of nuclear power plants

  9. Phase-coded multi-pulse technique for ultrasonic high-order harmonic imaging of biological tissues in vitro

    International Nuclear Information System (INIS)

    Ma Qingyu; Zhang Dong; Gong Xiufen; Ma Yong

    2007-01-01

    Second or higher order harmonic imaging shows significant improvement in image clarity but is degraded by low signal-noise ratio (SNR) compared with fundamental imaging. This paper presents a phase-coded multi-pulse technique to provide the enhancement of SNR for the desired high-order harmonic ultrasonic imaging. In this technique, with N phase-coded pulses excitation, the received Nth harmonic signal is enhanced by 20 log 10 N dB compared with that in the single-pulse mode, whereas the fundamental and other order harmonic components are efficiently suppressed to reduce image confusion. The principle of this technique is theoretically discussed based on the theory of the finite amplitude sound waves, and examined by measurements of the axial and lateral beam profiles as well as the phase shift of the harmonics. In the experimental imaging for two biological tissue specimens, a plane piston source at 2 MHz is used to transmit a sequence of multiple pulses with equidistant phase shift. The second to fifth harmonic images are obtained using this technique with N = 2 to 5, and compared with the images obtained at the fundamental frequency. Results demonstrate that this technique of relying on higher order harmonics seems to provide a better resolution and contrast of ultrasonic images

  10. Origins of residual stress in Mo and Ta films: The role of impurities, microstructural evolution, and phase transformations

    International Nuclear Information System (INIS)

    Parfitt, L.J.; Karpenko, O.P.; Yalisove, S.M.; Bilello, J.C.

    1997-01-01

    Both the sign and magnitude of residual stress can vary with the thickness of sputter deposited films. The origins of this behavior are not well understood. In this work, the authors consider the correlation between the residual stress behavior and the depth dependence of impurities in thin (2.5 nm--150 nm) sputtered Mo and Ta films. They also consider the effects of phase transformations and microstructural changes on the stress behavior. Films were deposited onto Si substrates with native oxide. The residual stress observed in the Mo films varied from highly compressive at 2.5 nm film thickness to ∼0 at 10 nm thickness. Ta films also exhibited a high compressive stress, which relaxed from highly compressive to tensile between 10 nm and 50 nm film thickness. Impurities in the films may originate from the sputtering targets, the background gases, and the substrate surfaces. Auger Electron Spectroscopy (AES) results showed the presence of O and C contamination near the film/Si interface; these impurities contributed to the compressive stresses in the thinner films. As anticipated, both Mo and Ta films exhibited grain growth as a function of film thickness, which may have contributed to the relaxation in the compressive stress. The Mo films were entirely bcc. The Ta films showed a transformation from the amorphous phase to the β crystalline phase between 2.5 nm and 20 nm film thickness, which contributed to the relaxation in stress observed in that thickness regime

  11. Imaging of soft and hard materials using a Boersch phase plate in a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Alloyeau, D., E-mail: alloyeau.damien@gmail.com [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS/72, Berkeley, CA 94720 (United States); Hsieh, W.K. [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS/72, Berkeley, CA 94720 (United States); Anderson, E.H.; Hilken, L. [Center for X-ray Optics, Lawrence Berkeley National Laboratory, Berkeley CA 94720 (United States); Benner, G. [Carl Zeiss NTS GmbH, Oberkochen 73447 (Germany); Meng, X. [Electrical Engineering and Computer Sciences, UC Berkeley, Berkeley, CA 94720-1770 (United States); Chen, F.R. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan (China); Kisielowski, C. [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS/72, Berkeley, CA 94720 (United States)

    2010-04-15

    Using two levels of electron beam lithography, vapor phase deposition techniques, and FIB etching, we have fabricated an electrostatic Boersch phase plate for contrast enhancement of weak phase objects in a transmission electron microscope. The phase plate has suitable dimensions for the imaging of small biological samples without compromising the high-resolution capabilities of the microscope. A micro-structured electrode allows for phase tuning of the unscattered electron beam, which enables the recording of contrast enhanced in-focus images and in-line holograms. We have demonstrated experimentally that our phase plate improves the contrast of carbon nanotubes while maintaining high-resolution imaging performance, which is demonstrated for the case of an AlGaAs heterostructure. The development opens a new way to study interfaces between soft and hard materials.

  12. Image grating metrology using phase-stepping interferometry in scanning beam interference lithography

    Science.gov (United States)

    Li, Minkang; Zhou, Changhe; Wei, Chunlong; Jia, Wei; Lu, Yancong; Xiang, Changcheng; Xiang, XianSong

    2016-10-01

    Large-sized gratings are essential optical elements in laser fusion and space astronomy facilities. Scanning beam interference lithography is an effective method to fabricate large-sized gratings. To minimize the nonlinear phase written into the photo-resist, the image grating must be measured to adjust the left and right beams to interfere at their waists. In this paper, we propose a new method to conduct wavefront metrology based on phase-stepping interferometry. Firstly, a transmission grating is used to combine the two beams to form an interferogram which is recorded by a charge coupled device(CCD). Phase steps are introduced by moving the grating with a linear stage monitored by a laser interferometer. A series of interferograms are recorded as the displacement is measured by the laser interferometer. Secondly, to eliminate the tilt and piston error during the phase stepping, the iterative least square phase shift method is implemented to obtain the wrapped phase. Thirdly, we use the discrete cosine transform least square method to unwrap the phase map. Experiment results indicate that the measured wavefront has a nonlinear phase around 0.05 λ@404.7nm. Finally, as the image grating is acquired, we simulate the print-error written into the photo-resist.

  13. Medial tibial plateau morphology and stress fracture location: A magnetic resonance imaging study

    OpenAIRE

    Yukata, Kiminori; Yamanaka, Issei; Ueda, Yuzuru; Nakai, Sho; Ogasa, Hiroyoshi; Oishi, Yosuke; Hamawaki, Jun-ichi

    2017-01-01

    AIM To determine the location of medial tibial plateau stress fractures and its relationship with tibial plateau morphology using magnetic resonance imaging (MRI). METHODS A retrospective review of patients with a diagnosis of stress fracture of the medial tibial plateau was performed for a 5-year period. Fourteen patients [three female and 11 male, with an average age of 36.4 years (range, 15-50 years)], who underwent knee MRI, were included. The appearance of the tibial plateau stress fract...

  14. The second-order differential phase contrast and its retrieval for imaging with x-ray Talbot interferometry

    International Nuclear Information System (INIS)

    Yang Yi; Tang Xiangyang

    2012-01-01

    Purpose: The x-ray differential phase contrast imaging implemented with the Talbot interferometry has recently been reported to be capable of providing tomographic images corresponding to attenuation-contrast, phase-contrast, and dark-field contrast, simultaneously, from a single set of projection data. The authors believe that, along with small-angle x-ray scattering, the second-order phase derivative Φ ″ s (x) plays a role in the generation of dark-field contrast. In this paper, the authors derive the analytic formulae to characterize the contribution made by the second-order phase derivative to the dark-field contrast (namely, second-order differential phase contrast) and validate them via computer simulation study. By proposing a practical retrieval method, the authors investigate the potential of second-order differential phase contrast imaging for extensive applications. Methods: The theoretical derivation starts at assuming that the refractive index decrement of an object can be decomposed into δ=δ s +δ f , where δ f corresponds to the object's fine structures and manifests itself in the dark-field contrast via small-angle scattering. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the contribution made by δ s , which corresponds to the object's smooth structures, to the dark-field contrast are derived. Through computer simulation with specially designed numerical phantoms, an x-ray differential phase contrast imaging system implemented with the Talbot interferometry is utilized to evaluate and validate the derived formulae. The same imaging system is also utilized to evaluate and verify the capability of the proposed method to retrieve the second-order differential phase contrast for imaging, as well as its robustness over the dimension of detector cell and the number of steps in grating shifting. Results: Both analytic formulae and computer simulations show that, in addition to small-angle scattering, the

  15. Emission computed tomography using rotating gamma cameras for stress 201Tl myocardial imaging

    International Nuclear Information System (INIS)

    Takeda, Kan; Maeda, Hisato; Nakagawa, Tsuyoshi; Yamaguchi, Nobuo; Taguchi, Mitsuo

    1983-01-01

    The purpose of this study is to evaluate the efficacy of emission computed tomography (ECT) for stress 201 Tl myocardial imaging to localize coronary artery disease (CAD) in comparison with planar (PL) images. In a series of 14 normal subjects and 53 patients with CAD proved coronary arteriography, ECT and PL imaging were performed successively. ECT data were collected for 90 projections in a 64 x 64 matrix form with a total aquisition time of 6 munutes over 180 0 of opposed dual cameras ratation and tomographic sections oriented perpendicular and parallel to the long axis of left ventricle were reconstructed. PL images were obtained for left lateral, left anterior oblique (30 0 and 45 0 ) and anterior projections. Both ECT and PL myocardial images were divided into 8 segments and segmental analysis was performed by visual interpretation. The ECT images remarkably increased sensitivity over the PL images in left anterior descending (LAD) artery (from 56% to 76%), right coronary artery (RCA) (from 50% to 96%), and circumflex artery (CX) (from 56% to 69%) lesions. The specificity for ECT images, as compared with PL images, was higher in LAD (88% against 85%) but slightly lower in RCA (70% ag ainst 72%) and CX (84% against 88%). Overall accuracy, therefore, was improved in LAD (from 67% to 81%) and RCA (from 64% to 79%) but equal in CX (81%). We conclude that stress 201 Tl ECT imaging result in a remarkable improvement in the localization of CAD, especially in patients with RCA lesions and multi-vessel disease. (author)

  16. Infrared birefringence imaging of residual stress and bulk defects in multicrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ganapati, Vidya; Schoenfelder, Stephan; Castellanos, Sergio; Oener, Sebastian; Koepge, Ringo; Sampson, Aaron; Marcus, Matthew A.; Lai, Barry; Morhenn, Humphrey; Hahn, Giso; Bagdahn, Joerg; Buonassisi1, Tonio

    2010-05-05

    This manuscript concerns the application of infrared birefringence imaging (IBI) to quantify macroscopic and microscopic internal stresses in multicrystalline silicon (mc-Si) solar cell materials. We review progress to date, and advance four closely related topics. (1) We present a method to decouple macroscopic thermally-induced residual stresses and microscopic bulk defect related stresses. In contrast to previous reports, thermally-induced residual stresses in wafer-sized samples are generally found to be less than 5 MPa, while defect-related stresses can be several times larger. (2) We describe the unique IR birefringence signatures, including stress magnitudes and directions, of common microdefects in mc-Si solar cell materials including: {beta}-SiC and {beta}-Si{sub 3}N{sub 4} microdefects, twin bands, nontwin grain boundaries, and dislocation bands. In certain defects, local stresses up to 40 MPa can be present. (3) We relate observed stresses to other topics of interest in solar cell manufacturing, including transition metal precipitation, wafer mechanical strength, and minority carrier lifetime. (4) We discuss the potential of IBI as a quality-control technique in industrial solar cell manufacturing.

  17. Determining the von Mises stress power spectral density for frequency domain fatigue analysis including out-of-phase stress components

    NARCIS (Netherlands)

    Bonte, M.H.A.; de Boer, Andries; Liebregts, R.

    This paper provides a new formula to take into account phase differences in the determination of an equivalent von Mises stress power spectral density (PSD) from multiple random inputs. The obtained von Mises PSD can subsequently be used for fatigue analysis. The formula was derived for use in the

  18. Response of rice plants to heat stress during initiation of panicle primordia or grain-filling phases

    Directory of Open Access Journals (Sweden)

    Hermann Restrepo-Diaz

    2013-08-01

    Full Text Available Leaf photosynthesis, a major determinant for yield sustainability in rice, is greatly conditioned by high temperature stress during growth. The effect of short-term high temperatures on leaf photosynthesis, stomatal conductance, Fv/Fm, SPAD readings and yield characteristics was studied in two Colombian rice cultivars. Two genotypes, cv. Fedearroz 50 (F50 and cv. Fedearroz 733 (F733 were used in pot experiments with heat stress treatment (Plants were exposed to 40°C for two and half hours for five consecutive days and natural temperature (control treatment. Heat treatments were carried out at the initiation of panicle primordial (IP or grain-filling (GF phases. The results showed that short-term high temperature stress produced a reduction on the photosynthesis rate in both cultivars either IP or GF phases. Similar trends were found on stomatal conductance in all cases due to high temperatures. Although Fv/Fm and SPAD readings were not affected by high temperatures, these variables diminished significantly among phenological phases. 'F733' rice plants showed higher number spikelet sterility due to heat stress treatments. These results seem to indicate that heat-tolerant cultivars of rice is associated with high levels of photosynthesis rate in leaves.

  19. Imaging of surface plasmon polariton interference using phase-sensitive scanning tunneling microscope

    NARCIS (Netherlands)

    Jose, J.; Segerink, Franciscus B.; Korterik, Jeroen P.; Herek, Jennifer Lynn; Offerhaus, Herman L.

    2011-01-01

    We report the surface plasmon polariton interference, generated via a ‘buried’ gold grating, and imaged using a phase-sensitive Photon Scanning Tunneling Microscope (PSTM). The phase-resolved PSTM measurement unravels the complex surface plasmon polariton interference fields at the gold-air

  20. High resolution MR imaging of the hip using pelvic phased-array coil

    Energy Technology Data Exchange (ETDEWEB)

    Niitsu, Mamoru; Mishima, Hajime; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine

    1997-01-01

    A pelvic phased-array coil was applied to obtain high resolution MR images of the hip. Three-mm-thick fast spin-echo images were obtained in seven hips. Images with a pelvic coil enhanced delineation of acetabular labrum and articular cartilage more clearly than those with a body coil or flexible-surface coil. The use of a pelvic coil in imaging of the hip may be of diagnostic value because of its superior delineation. (author)

  1. Acute social stress before the planning phase improves memory performance in a complex real life-related prospective memory task.

    Science.gov (United States)

    Glienke, Katharina; Piefke, Martina

    2016-09-01

    Successful execution of intentions, but also the failure to recall are common phenomena in everyday life. The planning, retention, and realization of intentions are often framed as the scientific concept of prospective memory. The current study aimed to examine the influence of acute stress on key dimensions of complex "real life" prospective memory. To this end, we applied a prospective memory task that involved the planning, retention, and performance of intentions during a fictional holiday week. Forty healthy males participated in the study. Half of the subjects were stressed with the Socially Evaluated Cold Pressor Test (SECPT) before the planning of intentions, and the other half of the participants underwent a control procedure at the same time. Salivary cortisol was used to measure the effectiveness of the SECPT stress induction. Stressed participants did not differ from controls in planning accuracy. However, when we compared stressed participants with controls during prospective memory retrieval, we found statistically significant differences in PM across the performance phase. Participants treated with the SECPT procedure before the planning phase showed improved prospective memory retrieval over time, while performance of controls declined. Particularly, there was a significant difference between the stress and control group for the last two days of the holiday week. Interestingly, control participants showed significantly better performance for early than later learned items, which could be an indicator of a primacy effect. This differential effect of stress on performance was also found in time- and event-dependent prospective memory. Our results demonstrate for the first time, that acute stress induced before the planning phase may improve prospective memory over the time course of the performance phase in time- and event-dependent prospective memory. Our data thus indicate that prospective memory can be enhanced by acute stress. Copyright © 2016

  2. Determination of the Critical Stress Associated with Dynamic Phase Transformation in Steels by Means of Free Energy Method

    Directory of Open Access Journals (Sweden)

    Clodualdo Aranas

    2018-05-01

    Full Text Available The double differentiation method overestimates the critical stress associated with the initiation of dynamic transformation (DT because significant amounts of the dynamic phase must be present in order for its effect on the work hardening rate to be detectable. In this work, an alternative method (referred to here as the free energy method is presented based on the thermodynamic condition that the driving force is equal to the total energy obstacle during the exact moment of transformation. The driving force is defined as the difference between the DT critical stress (measured in the single-phase austenite region and the yield stress of the fresh ferrite that takes its place. On the other hand, the energy obstacle consists of the free energy difference between austenite and ferrite, and the work of shear accommodation and dilatation associated with the phase transformation. Here, the DT critical stresses in a C-Mn steel were calculated using the free energy method at temperatures ranging from 870 °C to 1070 °C. The results show that the calculated critical stress using the present approach appears to be more accurate than the values measured by the double differentiation method.

  3. On image pre-processing for PIV of sinlge- and two-phase flows over reflecting objects

    NARCIS (Netherlands)

    Deen, N.G.; Willems, P.; van Sint Annaland, M.; Kuipers, J.A.M.; Lammertink, Rob G.H.; Kemperman, Antonius J.B.; Wessling, Matthias; van der Meer, Walterus Gijsbertus Joseph

    2010-01-01

    A novel image pre-processing scheme for PIV of single- and two-phase flows over reflecting objects which does not require the use of additional hardware is discussed. The approach for single-phase flow consists of image normalization and intensity stretching followed by background subtraction. For

  4. Simultaneous optical image compression and encryption using error-reduction phase retrieval algorithm

    International Nuclear Information System (INIS)

    Liu, Wei; Liu, Shutian; Liu, Zhengjun

    2015-01-01

    We report a simultaneous image compression and encryption scheme based on solving a typical optical inverse problem. The secret images to be processed are multiplexed as the input intensities of a cascaded diffractive optical system. At the output plane, a compressed complex-valued data with a lot fewer measurements can be obtained by utilizing error-reduction phase retrieval algorithm. The magnitude of the output image can serve as the final ciphertext while its phase serves as the decryption key. Therefore the compression and encryption are simultaneously completed without additional encoding and filtering operations. The proposed strategy can be straightforwardly applied to the existing optical security systems that involve diffraction and interference. Numerical simulations are performed to demonstrate the validity and security of the proposal. (paper)

  5. Influence of gating phase selection on the image quality of coronary arteries in multidetector row computed tomography

    International Nuclear Information System (INIS)

    Laskowska, K.; Marzec, M.; Serafin, Z.; Nawrocka, E.; Lasek, W.; WWisniewska-Szmyt, J.; Kubica, J.

    2005-01-01

    Motion artifacts caused by cardiac movement disturb the imaging of coronary arteries with multidetector-row spiral computed tomography. The aim of this study was to determine the phase of the heart rate which provides the best quality of coronary artery imaging in retrospective ECG-gated CT. Although 75% is usually the best reconstruction phase, the optimal phase should be established individually for the patient, artery, segment, and type of tomograph for the best imaging quality. Forty-five cardiac CT angiograms of 26 patients were retrospectively evaluated. The examinations were performed with a 4-detector-row tomograph. ECG-gated retrospective reconstructions were relatively delayed at 0%, 12.5%, 25%, 37.5%, 50%, 62.5%, 75%, and 87.5% of the cardiac cycle. Selected coronary arteries of the highest diagnostic quality were estimated in the eight phases of the cardiac cycle. Only arteries of very high image quality were selected for analysis: left coronary artery trunks (44 cases, incl. 37 stented), anterior interventricular branches (36, incl. 3 stented), circumflex branches (16), right coronary rtery branches (23), and posterior interventricular branches (4). The reconstruction phase had a statistically significant impact on the quality of imaging (p < 0.0003). Depending on the case, optimal imaging was noted in various phases, except in the 12.5 % phase. The 75% phase appeared to be the best of all those examined (p < 0.05), both in the group of arteries without stents (p < 0.0006) and in those stented (p < 0.05). In some cases of repeated examinations the best phases differed within the same patient. (author)

  6. X-ray diffraction study of thermally and stress-induced phase transformations in single crystalline Ni-Mn-Ga alloys

    International Nuclear Information System (INIS)

    Martynov, V.V.

    1995-01-01

    Using in-situ single crystal X-ray diffraction methods, thermally- and stress-induced crystal structure evolution was investigated in two Ni-Mn-Ga Heusler-type alloys. For the 51at.%Ni-24at.%Mn-25at.%Ga alloy it was found that application of external stress in a temperature range ∼20 C above the M s at first causes intensity changes of X-ray diffuse scattering peaks in β-phase. Further stressing results in stress-induced phase transformations and under the appropriate conditions three successive martensitic transformations (one is parent-to-martensite and two are martensite-to-martensite transformations) can be stress induced. Of these only the parent-to-martensite transformation can be thermally-induced. Two successive structural transformations (thermally-induced parent-to-martensite and stress-induced martensite-to-martensite transformations) were found in 52at.%Ni-25at.%Mn-23at.%Ga alloy. Crystal structure, lattice parameters, type of modulation, and the length of modulation period for all martensites were identified. (orig.)

  7. Should single-phase radionuclide bone imaging be used in suspected osteomyelitis

    International Nuclear Information System (INIS)

    Fihn, S.D.; Larson, E.B.; Nelp, W.B.; Rudd, T.G.; Gerber, F.H.

    1984-01-01

    The records of 69 patients who had 86 delayed, static radionuclide bone images for suspected osteomyelitis were studied to determine the effects of this procedure on diagnosis and treatment. Sensitivity, specificity, and positive predictive value were lower than reported in several other studies. When osteomyelitis was unlikely, imaging was either negative or falsely positive and rarely affected treatment. In 46 cases where osteomyelitis was more likely, imaging potentially changed therapy in 19 but was unhelpful or misleading in 15. Static-phase images with ''definite'' interpretations, particularly when negative, are specific, but ''equivocal'' studies may lead to diagnostic and therapeutic errors. When ostemyelitis is improbable, imaging rarely changes diagnosis or therapy

  8. Investigations of environmental induced effects on AlQ3 thin films by AFM phase imaging

    International Nuclear Information System (INIS)

    Shukla, Vivek Kumar; Kumar, Satyendra

    2007-01-01

    Tris(8-hydroxyquinoline) metal complex (AlQ 3 ) is a widely used light-emitting material in organic light emitting devices (OLEDs). The environmental stability is still a major problem with OLEDs and needs further improvement. In this report, an additional feature of Atomic Force Microscopy (AFM) was exploited with the aim to understand the environmental induced effects and physical phenomenon involved on AlQ 3 thin films. We have used phase imaging to identify the presence of other aggregation phases formed after annealing the thin film in different ambient and after white light exposure. An enhanced photoluminescence intensity is observed for the samples annealed in oxygen near 100 deg. C. The enhanced photoluminescence is understood in terms of formation of a new aggregation phase. The phase change and the fraction of new phase is estimated by phase images taken by atomic force microscopy (AFM). Light induced effects on AlQ 3 films exposed to white light in air and vacuum are characterized by atomic force microscopy (AFM) for surface morphology and phases present. The AFM images indicate enhanced crystallinity for the vacuum exposed samples. The phase with increased lifetime and hence enhanced crystallinity for vacuum exposed films has also been found by time correlated single photon counting (TCSPC) measurements. To the best of our knowledge, this study is applied for the first time on this material with the combination of topography and phase imaging in atomic force microscopy (AFM). The major aim was to take advantage of the additional feature of AFM-mode over the conventionally used

  9. Effect of Cold Stress on Fruiting Body Production by Medicinal Basidiomycetes in Submerged and Solid-phase Culture

    Directory of Open Access Journals (Sweden)

    E.P. Vetchinkina

    2017-05-01

    Full Text Available The ability of the medicinal xylotrophic basidiomycetes Lentinus edodes, Pleurotus ostreatus, Ganoderma lucidum and Grifola frondosa to produce typical and atypical fruiting bodies with viable basidiospores in submerged and solid-phase culture under stationary conditions in a beer wort-containing medium under cold stress was shown. The examined mushrooms, when not exposed to temperature stress, did not form fruiting bodies. In solid-phase culture in an agarized medium after cold treatment, the basidiome formation period was shortened by 1.5–2 times. Furthermore, the use of a mycelium subjected to temperature stress for inoculation induced and accelerated the formation of fruiting bodies on an industrial wood substrate, which is of great biotechnological importance.

  10. In vivo x-ray phase contrast analyzer-based imaging for longitudinal osteoarthritis studies in guinea pigs

    Energy Technology Data Exchange (ETDEWEB)

    Coan, Paola [Faculty of Medicine and Institute of Clinical Radiology, Ludwig-Maximilians University, Munich (Germany); Wagner, Andreas; Mollenhauer, Juergen [Department of Orthopaedics of the University of Jena, Rudolf-Elle-Hospital Eisenberg (Germany); Bravin, Alberto; Diemoz, Paul C; Keyrilaeinen, Jani, E-mail: Paola.Coan@physik.uni-muenchen.d [European Synchrotron Radiation Facility (ESRF), Grenoble (France)

    2010-12-21

    Over the last two decades phase contrast x-ray imaging techniques have been extensively studied for applications in the biomedical field. Published results demonstrate the high capability of these imaging modalities of improving the image contrast of biological samples with respect to standard absorption-based radiography and routinely used clinical imaging techniques. A clear depiction of the anatomic structures and a more accurate disease diagnosis may be provided by using radiation doses comparable to or lower than those used in current clinical methods. In the literature many works show images of phantoms and excised biological samples proving the high sensitivity of the phase contrast imaging methods for in vitro investigations. In this scenario, the applications of the so-called analyzer-based x-ray imaging (ABI) phase contrast technique are particularly noteworthy. The objective of this work is to demonstrate the feasibility of in vivo x-ray ABI phase contrast imaging for biomedical applications and in particular with respect to joint anatomic depiction and osteoarthritis detection. ABI in planar and tomographic modes was performed in vivo on articular joints of guinea pigs in order to investigate the animals with respect to osteoarthritis by using highly monochromatic x-rays of 52 keV and a low noise detector with a pixel size of 47 x 47 {mu}m{sup 2}. Images give strong evidence of the ability of ABI in depicting both anatomic structures in complex systems as living organisms and all known signs of osteoarthritis with high contrast, high spatial resolution and with an acceptable radiation dose. This paper presents the first proof of principle study of in vivo application of ABI. The technical challenges encountered when imaging an animal in vivo are discussed. This experimental study is an important step toward the study of clinical applications of phase contrast x-ray imaging techniques.

  11. Imaging of metastatic lymph nodes by X-ray phase-contrast micro-tomography

    DEFF Research Database (Denmark)

    Jensen, Torben Haugaard; Bech, Martin; Binderup, Tina

    2013-01-01

    -contrast tomography. Ten lymph nodes had metastatic deposits and 7 were benign. The phase-contrast images were analyzed according to standards for conventional CT images looking for characteristics usually only visible by pathological examinations. Histopathology was used as reference. The result of this study...

  12. Imaging Nanometer Phase Coexistence at Defects During the Insulator-Metal Phase Transformation in VO2 Thin Films by Resonant Soft X-ray Holography.

    Science.gov (United States)

    Vidas, Luciana; Günther, Christian M; Miller, Timothy A; Pfau, Bastian; Perez-Salinas, Daniel; Martínez, Elías; Schneider, Michael; Gührs, Erik; Gargiani, Pierluigi; Valvidares, Manuel; Marvel, Robert E; Hallman, Kent A; Haglund, Richard F; Eisebitt, Stefan; Wall, Simon

    2018-05-18

    We use resonant soft X-ray holography to image the insulator-metal phase transition in vanadium dioxide with element and polarization specificity and nanometer spatial resolution. We observe that nanoscale inhomogeneity in the film results in spatial-dependent transition pathways between the insulating and metallic states. Additional nanoscale phases form in the vicinity of defects which are not apparent in the initial or final states of the system, which would be missed in area-integrated X-ray absorption measurements. These intermediate phases are vital to understand the phase transition in VO 2 , and our results demonstrate how resonant imaging can be used to understand the electronic properties of phase-separated correlated materials obtained by X-ray absorption.

  13. Review on improved seismic imaging with closure phase

    KAUST Repository

    Schuster, Gerard T.

    2014-08-13

    The timing and amplitudes of arrivals recorded in seismic traces are influenced by velocity variations all along the associated raypaths. Consequently, velocity errors far from the target can lead to blurred imaging of the target body. To partly remedy this problem, we comprehensively reviewed inverting differential traveltimes that satisfied the closure-phase condition. The result is that the source and receiver statics are completely eliminated in the data and velocities far from the target do not need to be known. We successfully used the phase closure equation for traveltime tomography, refraction statics, migration, refraction tomography, and earthquake location, all of which demonstrated the higher resolution achievable by processing data with differential traveltimes rather than absolute traveltimes. More generally, the stationary version of the closure-phase equation is equivalent to Fermat’s principle and can be derived from the equations of seismic interferometry. In summary, the general closure-phase equation is the mathematical foundation for approximately redatuming sources and/or receivers to the target of interest without the need to accurately know the statics or the velocity model away from the target.

  14. X-ray phase-contrast tomography for high-spatial-resolution zebrafish muscle imaging

    Science.gov (United States)

    Vågberg, William; Larsson, Daniel H.; Li, Mei; Arner, Anders; Hertz, Hans M.

    2015-11-01

    Imaging of muscular structure with cellular or subcellular detail in whole-body animal models is of key importance for understanding muscular disease and assessing interventions. Classical histological methods for high-resolution imaging methods require excision, fixation and staining. Here we show that the three-dimensional muscular structure of unstained whole zebrafish can be imaged with sub-5 μm detail with X-ray phase-contrast tomography. Our method relies on a laboratory propagation-based phase-contrast system tailored for detection of low-contrast 4-6 μm subcellular myofibrils. The method is demonstrated on 20 days post fertilization zebrafish larvae and comparative histology confirms that we resolve individual myofibrils in the whole-body animal. X-ray imaging of healthy zebrafish show the expected structured muscle pattern while specimen with a dystrophin deficiency (sapje) displays an unstructured pattern, typical of Duchenne muscular dystrophy. The method opens up for whole-body imaging with sub-cellular detail also of other types of soft tissue and in different animal models.

  15. Aliasless fresnel transform image reconstruction in phase scrambling fourier transform technique by data interpolation

    International Nuclear Information System (INIS)

    Yamada, Yoshifumi; Liu, Na; Ito, Satoshi

    2006-01-01

    The signal in the Fresnel transform technique corresponds to a blurred one of the spin density image. Because the amplitudes of adjacent sampled signals have a high interrelation, the signal amplitude at a point between sampled points can be estimated with a high degree of accuracy even if the sampling is so coarse as to generate aliasing in the reconstructed images. In this report, we describe a new aliasless image reconstruction technique in the phase scrambling Fourier transform (PSFT) imaging technique in which the PSFT signals are converted to Fresnel transform signals by multiplying them by a quadratic phase term and are then interpolated using polynomial expressions to generate fully encoded signals. Numerical simulation using MR images showed that almost completely aliasless images are reconstructed by this technique. Experiments using ultra-low-field PSFT MRI were conducted, and aliasless images were reconstructed from coarsely sampled PSFT signals. (author)

  16. Phase contrast enhanced high resolution X-ray imaging and tomography of soft tissue

    International Nuclear Information System (INIS)

    Jakubek, Jan; Granja, Carlos; Dammer, Jiri; Hanus, Robert; Holy, Tomas; Pospisil, Stanislav; Tykva, Richard; Uher, Josef; Vykydal, Zdenek

    2007-01-01

    A tabletop system for digital high resolution and high sensitivity X-ray micro-radiography has been developed for small-animal and soft-tissue imaging. The system is based on a micro-focus X-ray tube and the semiconductor hybrid position sensitive Medipix2 pixel detector. Transmission radiography imaging, conventionally based only on absorption, is enhanced by exploiting phase-shift effects induced in the X-ray beam traversing the sample. Phase contrast imaging is realized by object edge enhancement. DAQ is done by a novel fully integrated USB-based readout with online image generation. Improved signal reconstruction techniques make use of advanced statistical data analysis, enhanced beam hardening correction and direct thickness calibration of individual pixels. 2D and 3D micro-tomography images of several biological samples demonstrate the applicability of the system for biological and medical purposes including in-vivo and time dependent physiological studies in the life sciences

  17. Sex differences in the tracer distribution on stress thallium-201 imaging, (1)

    International Nuclear Information System (INIS)

    Tamaki, Nagara; Koda, Hideki; Adachi, Yukihide; Sugihara, Takao; Kato, Mihoko; Tanaka, Nobuyuki; Tamari, Kimimasa.

    1988-01-01

    To determine the sex differences in the tracer distribution on stress thallium-201 imaging, the studies of 18 normal males and 18 normal females were subjected to quantitative circumferential profile analysis in each projection image. Although the exercise duration was shorter in females (11±3 min) than in males (14±3 min) (p<0.01), the peak heart rate, peak systolic pressure and the lung-to-myocardial count ratio were similar between them. The averaged profile curves in female showed a significant reduction in tracer uptake in anterior and upper septal regions, particularly in the study of lateral view, which may be attributed to breast attenuation. In addition, the percent washout of thallium in 3 hours was higher in females (48±8%) than in males (43±7%) (p<0.01), particularly in the study of anterior view. We conclude that important differences in the pattern of thallium uptake and washout between males and females should be considered for interpretation of stress thallium imaging. (author)

  18. Evaluating the effect of PTCA by exercise stress myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Lin Jinghui

    1992-01-01

    In this study, 44 patients after successful percutaneous transluminal coronary angioplasty (PTCA) were followed up by exercise stress myocardial perfusion imaging. In 28 patients with myocardial ischemia after PTCA, myocardial imaging of 75.0% patients reverted to normal or approximately normal. In 16 patients of myocardial infarction with ischemia after PTCA, myocardial imaging of only 37.5% patients reverted to normal or approximately normal, significantly less than myocardial ischemia. But the general efficacious incidence was similar in both groups. Most of 77 myocardial segments with complete or obvious redistribution returned to normal imaging after PTCA. During the follow-up coronary artery restenosis occurred in 6 cases, 5 of which were confirmed by coronary arteriography. Restenosis may be discovered as soon as possible, if a patient was reexamined by myocardial imaging 2-6 months after PTCA. The results of this study indicated that myocardial imaging is a noninvasive and reliable method for the assessment of PTCA therapeutic effect and follow up studies

  19. Dual-polarization interference microscopy for advanced quantification of phase associated with the image field.

    Science.gov (United States)

    Bouchal, Petr; Chmelík, Radim; Bouchal, Zdeněk

    2018-02-01

    A new concept of dual-polarization spatial light interference microscopy (DPSLIM) is proposed and demonstrated experimentally. The method works with two orthogonally polarized modes in which signal and reference waves are combined to realize the polarization-sensitive phase-shifting, thus allowing advanced reconstruction of the phase associated with the image field. The image phase is reconstructed directly from four polarization encoded interference records by a single step processing. This is a progress compared with common methods, in which the phase of the image field is reconstructed using the optical path difference and the amplitudes of interfering waves, which are calculated in multiple-step processing of the records. The DPSLIM is implemented in a common-path configuration using a spatial light modulator, which is connected to a commercial microscope Nikon E200. The optical performance of the method is demonstrated in experiments using both polystyrene microspheres and live LW13K2 cells.

  20. The influence of peak shock stress on the high pressure phase transformation in Zr

    International Nuclear Information System (INIS)

    Cerreta, E K; Addessio, F L; Bronkhorst, C A; Brown, D W; Escobedo, J P; Fensin, S J; Gray, G T III; Lookman, T; Rigg, P A; Trujillo, C P

    2014-01-01

    At high pressures zirconium is known to undergo a phase transformation from the hexagonal close packed (HCP) alpha phase to the simple hexagonal omega phase. Under conditions of shock loading, a significant volume fraction of high-pressure omega phase is retained upon release. However, the hysteresis in this transformation is not well represented by equilibrium phase diagrams and the multi-phase plasticity under shock conditions is not well understood. For these reasons, the influence of peak shock stress and temperature on the retention of omega phase in Zr has been explored. VISAR and PDV measurements along with post-mortem metallographic and neutron diffraction characterization of soft recovered specimens have been utilized to quantify the volume fraction of retained omega phase and qualitatively understand the kinetics of this transformation. In turn, soft recovered specimens with varying volume fractions of retained omega phase have been utilized to understand the contribution of omega and alpha phases to strength in shock loaded Zr.

  1. High-fat diet with stress impaired islets' insulin secretion by reducing plasma estradiol and pancreatic GLUT2 protein levels in rats' proestrus phase.

    Science.gov (United States)

    Salimi, M; Zardooz, H; Khodagholi, F; Rostamkhani, F; Shaerzadeh, F

    2016-10-01

    This study was conducted to determine whether two estrus phases (proestrus and diestrus) in female rats may influence the metabolic response to a high-fat diet and/or stress, focusing on pancreatic insulin secretion and content. Animals were divided into high-fat and normal diet groups, then each group was subdivided into stress and non-stress groups, and finally, each one of these was divided into proestrus and diestrus subgroups. At the end of high-fat diet treatment, foot-shock stress was applied to the animals. Then, blood samples were taken to measure plasma factors. Finally, the pancreas was removed for determination of glucose transporter 2 (GLUT2) protein levels and assessment of insulin content and secretion of the isolated islets. In the normal and high-fat diet groups, stress increased plasma corticosterone concentration in both phases. In both study phases, high-fat diet consumption decreased estradiol and increased leptin plasma levels. In the high-fat diet group in response to high glucose concentration, a reduction in insulin secretion was observed in the proestrus phase compared with the same phase in the normal diet group in the presence and absence of stress. Also, high-fat diet decreased the insulin content of islets in the proestrus phase compared with the normal diet. High-fat diet and/or stress caused a reduction in islet GLUT2 protein levels in both phases. In conclusion, it seems possible that high-fat diet alone or combined with foot-shock, predispose female rats to impaired insulin secretion, at least in part, by interfering with estradiol levels in the proestrus phase and decreasing pancreatic GLUT2 protein levels.

  2. Evaluation of the prevalence of stress and its phases in acute myocardial infarction in patients active in the labor market

    Directory of Open Access Journals (Sweden)

    Luciane Boreki Lucinda

    2015-02-01

    Full Text Available Introduction: Acute myocardial infarction is a social health problem of epidemiological relevance, with high levels of morbidity and mortality. Stress is one of the modifiable risk factors that triggers acute myocardial infarction. Stress is a result of a set of physiological reactions, which when exaggerated in intensity or duration can lead to imbalances in one's organism, resulting in vulnerability to diseases. Objective: To identify the presence of stress and its phases in hospitalized and active labor market patients with unstable myocardial infarction and observe its correlation with the life of this population with stress. Methods: The methodology used was a quantitative, descriptive and transversal research approach conducted with a total of 43 patients, who were still active in the labor market, presenting or not morbidities. Data collection occurred on the fourth day of their hospitalization and patients responded to Lipp's Stress Symptom Inventory for adults. Results: Thirty-one patients (72.1% presented stress and twelve (27.8% did not. In patients with stress, the identified phases were: alert - one patient (3.2%; resistance -twenty-two patients (71.0%; quasi-exhaustion - six patients (19.4% and exhaustion - two patients (6.5%. All women researched presented stress. Conclusion: The results suggest a high level of stress, especially in the resistance phase, in the male infarcted population, hospitalized and active in the labor market.

  3. Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds

    Science.gov (United States)

    Jia, Yali; Bagnaninchi, Pierre O.; Yang, Ying; Haj, Alicia El; Hinds, Monica T.; Kirkpatrick, Sean J.; Wang, Ruikang K.

    2009-05-01

    Establishing a relationship between perfusion rate and fluid shear stress in a 3D cell culture environment is an ongoing and challenging task faced by tissue engineers. We explore Doppler optical coherence tomography (DOCT) as a potential imaging tool for in situ monitoring of local fluid flow profiles inside porous chitosan scaffolds. From the measured fluid flow profiles, the fluid shear stresses are evaluated. We examine the localized fluid flow and shear stress within low- and high-porosity chitosan scaffolds, which are subjected to a constant input flow rate of 0.5 ml.min-1. The DOCT results show that the behavior of the fluid flow and shear stress in micropores is strongly dependent on the micropore interconnectivity, porosity, and size of pores within the scaffold. For low-porosity and high-porosity chitosan scaffolds examined, the measured local fluid flow and shear stress varied from micropore to micropore, with a mean shear stress of 0.49+/-0.3 dyn.cm-2 and 0.38+/-0.2 dyn.cm-2, respectively. In addition, we show that the scaffold's porosity and interconnectivity can be quantified by combining analyses of the 3D structural and flow images obtained from DOCT.

  4. Led induced chlorophyll fluorescence transient imager for measurements of health and stress status of whole plants

    NARCIS (Netherlands)

    Jalink, H.; Schoor, van der R.

    2011-01-01

    We have developed LED (light emitting diode) induced fluorescence transient imaging instrumentation to image the plant health/stress status by calculation of two images: Fv/Fm (variable fluorescence over saturation level of fluorescence) and the time response, tTR, of the fluorescence time curve.

  5. Phase-processing as a tool for speckle reduction in pulse-echo images

    DEFF Research Database (Denmark)

    Healey, AJ; Leeman, S; Forsberg, F

    1991-01-01

    . Traditional speckle reduction procedures regard speckle correction as a stochastic process and trade image smoothing (resolution loss) for speckle reduction. Recently, a new phase acknowledging technique has been proposed that is unique in its ability to correct for speckle interference with no image......Due to the coherent nature of conventional ultrasound medical imaging systems interference artefacts occur in pulse echo images. These artefacts are generically termed 'speckle'. The phenomenon may severely limit low contrast resolution with clinically relevant information being obscured...

  6. Renal cell carcinoma metastases to the pancreas - Value of arterial phase imaging at MDCT

    International Nuclear Information System (INIS)

    Corwin, Michael T.; Lamba, Ramit; McGahan, John P.; Wilson, Machelle

    2013-01-01

    Background: The pancreas is an increasingly recognized site of renal cell carcinoma metastases. It is important to determine the optimal MDCT protocol to best detect RCC metastases to the pancreas. Purpose: To compare the rate of detection of renal cell carcinoma metastases to the pancreas between arterial and portal venous phase MDCT. Material and Methods: A retrospective review of CTs of the abdomen yielded six patients with metastatic RCC to the pancreas. Five of six patients had pathologically proven clear cell RCC. Two blinded reviewers independently reported the number of pancreatic lesions seen in arterial and venous phases. Each lesion was graded as definite or possible. The number of lesions was determined by consensus review of both phases. Attenuation values were obtained for metastatic lesions and adjacent normal pancreas in both phases. Results: There were a total of 24 metastatic lesions to the pancreas. Reviewer 1 identified 20/24 (83.3%) lesions on the arterial phase images and 13/24 (54.2%) lesions on the venous phase. Seventeen of 20 (85.0%) arterial lesions were deemed definite and 9/13 (69.2%) venous lesions were definite. Reviewer 2 identified 19/24 (79.2%) lesions on the arterial phase and 14/24 (58.3%) on the venous phase. Seventeen of 19 (89.5%) arterial lesions were definite and 7/14 (50%) venous lesions were definite. Mean attenuation differential between lesion and pancreas was 114 HU and 39 HU for arterial and venous phases, respectively (P<0.0001). Conclusion: Detection of RCC metastases to the pancreas at MDCT is improved using arterial phase imaging compared to portal venous phase imaging

  7. T2-weighted four dimensional magnetic resonance imaging with result-driven phase sorting

    International Nuclear Information System (INIS)

    Liu, Yilin; Yin, Fang-Fang; Cai, Jing; Czito, Brian G.; Bashir, Mustafa R.

    2015-01-01

    Purpose: T2-weighted MRI provides excellent tumor-to-tissue contrast for target volume delineation in radiation therapy treatment planning. This study aims at developing a novel T2-weighted retrospective four dimensional magnetic resonance imaging (4D-MRI) phase sorting technique for imaging organ/tumor respiratory motion. Methods: A 2D fast T2-weighted half-Fourier acquisition single-shot turbo spin-echo MR sequence was used for image acquisition of 4D-MRI, with a frame rate of 2–3 frames/s. Respiratory motion was measured using an external breathing monitoring device. A phase sorting method was developed to sort the images by their corresponding respiratory phases. Besides, a result-driven strategy was applied to effectively utilize redundant images in the case when multiple images were allocated to a bin. This strategy, selecting the image with minimal amplitude error, will generate the most representative 4D-MRI. Since we are using a different image acquisition mode for 4D imaging (the sequential image acquisition scheme) with the conventionally used cine or helical image acquisition scheme, the 4D dataset sufficient condition was not obviously and directly predictable. An important challenge of the proposed technique was to determine the number of repeated scans (N_R) required to obtain sufficient phase information at each slice position. To tackle this challenge, the authors first conducted computer simulations using real-time position management respiratory signals of the 29 cancer patients under an IRB-approved retrospective study to derive the relationships between N_R and the following factors: number of slices (N_S), number of 4D-MRI respiratory bins (N_B), and starting phase at image acquisition (P_0). To validate the authors’ technique, 4D-MRI acquisition and reconstruction were simulated on a 4D digital extended cardiac-torso (XCAT) human phantom using simulation derived parameters. Twelve healthy volunteers were involved in an IRB-approved study

  8. Sampling phased array a new technique for signal processing and ultrasonic imaging

    OpenAIRE

    Bulavinov, A.; Joneit, D.; Kröning, M.; Bernus, L.; Dalichow, M.H.; Reddy, K.M.

    2006-01-01

    Different signal processing and image reconstruction techniques are applied in ultrasonic non-destructive material evaluation. In recent years, rapid development in the fields of microelectronics and computer engineering lead to wide application of phased array systems. A new phased array technique, called "Sampling Phased Array" has been developed in Fraunhofer Institute for non-destructive testing. It realizes unique approach of measurement and processing of ultrasonic signals. The sampling...

  9. Diagnostic value of stress-rest myocardial perfusion imaging in detection of coronary disease in elderly patients

    International Nuclear Information System (INIS)

    Han Pingping; Tian Yueqin; Fang Wei; Shen Rui; Yang Minfu; Wei Hongxing; Guo Xinhua; He Zuoxiang

    2009-01-01

    Objective: Coronary artery disease is one of the most common causes of death in elderly people. Yet, definite diagnosis is a dilemma due to the variety of symptoms and signs. The aim of this study was to evaluate the diagnostic value of nuclear stress-rest myocardial perfusion imaging(MPI) in detection of coronary disease in the elderly. Methods: Two hundred and five elderly subjects (≥60 years old, average of 67 ± 5) who were suspected to have coronary disease, underwent both stress-rest myocardial perfusion imaging (185 with exercise stress and 20 with adenosine stress) and coronary angiography (CAG). All had no pereutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG). Coronary angiography was used as a 'golden standard' to evaluate the sensitivity, specificity and accuracy of the stress-rest myocardial perfusion imaging. χ 2 -test was used in data analysis with SPSS 15.0. Results: Among 205 patients. there were 57 patients with an abnormal CAG result and 148 patients with a normal result. Of the 57 patients, there were 30 one-, 19 two-, and 8 three-vessel stenosis. Fifteen were mild-, 17 were moderate-, 17 were severe stenosis, and 8 were totally occluded.About 63% (36/57) had positive stress-rest MPI. Of the 148 subjects who had a normal CAG, 135 had negative MPL. The sensitivity.specificity and accuracy of stress MPI were 63% (36/57), 91% (135/148) and 83% (171/205) in patient level.respectively. The di-agnostic sensitivities of stress-rest MPI for detection of one-, two-, and three-vessel stenosis were 57%(17/30), 58% (11/19) and 8/8, respectively. All 185 patients who underwent exemise stress MPI were divided into 2 groups according to whether the patients reached the target heart rate or not at the peak of the test. And 53 patients (29%) were group 1 (reached the target heart rate)and 132 patients (71%) were group 2 (did not reach the target heart rate). The sensitivity of group 1 wag higher than that of group 2, but with no

  10. Rapid Measurement and Correction of Phase Errors from B0 Eddy Currents: Impact on Image Quality for Non-Cartesian Imaging

    Science.gov (United States)

    Brodsky, Ethan K.; Klaers, Jessica L.; Samsonov, Alexey A.; Kijowski, Richard; Block, Walter F.

    2014-01-01

    Non-Cartesian imaging sequences and navigational methods can be more sensitive to scanner imperfections that have little impact on conventional clinical sequences, an issue which has repeatedly complicated the commercialization of these techniques by frustrating transitions to multi-center evaluations. One such imperfection is phase errors caused by resonant frequency shifts from eddy currents induced in the cryostat by time-varying gradients, a phenomemon known as B0 eddy currents. These phase errors can have a substantial impact on sequences that use ramp sampling, bipolar gradients, and readouts at varying azimuthal angles. We present a method for measuring and correcting phase errors from B0 eddy currents and examine the results on two different scanner models. This technique yields significant improvements in image quality for high-resolution joint imaging on certain scanners. The results suggest that correction of short time B0 eddy currents in manufacturer provided service routines would simplify adoption of non-Cartesian sampling methods. PMID:22488532

  11. Baseline job satisfaction and stress among pharmacists and pharmacy technicians participating in the Fleetwood Phase III Study.

    Science.gov (United States)

    Lapane, Kate L; Hughes, Carmel M

    2004-11-01

    To provide baseline levels of job satisfaction and stress among members of the long-term care pharmacy team participating in the Fleetwood Phase III evaluation. Cross-sectional design; long-term care pharmacy provider in North Carolina (the implementation site of the large-scale Fleetwood Phase III study). All current pharmacy employees as of May/June 2002. None. Health Professional Stress Inventory and job satisfaction. Ninety-four percent (16/17) of consultant pharmacists were satisfied with their job, with 89% reporting they would definitely choose to be a pharmacist again. Seventy-five percent both of dispensing pharmacists and pharmacy technicians reported overall job satisfaction. Forty-one reported that they would not choose to be a pharmacist (pharmacy technician) again. The most frequently reported sources of stress among the dispensing pharmacists and pharmacy technicians were conflicts with non-work obligations (i.e., family, personal life) and the ability to perform duties with short staffing. In addition, inadequate pay and few opportunities for job advancement were often/frequent sources of stress among pharmacy technicians. More than one third of dispensing pharmacists also reported stress frequently because of fears of mistakes in patient treatment. Overall, consultants are very satisfied with their positions, although dispensing pharmacists and pharmacy technicians are less satisfied with their work. The reasons may be because of the different nature of each job, as well as staffing shortages. The extent to which the Fleetwood Model can improve job satisfaction and impact on stress will be evaluated once we resurvey the pharmacy team after the intervention period of the Fleetwood Phase III study.

  12. Effects of a School-Based Stress Prevention Programme on Adolescents in Different Phases of Behavioural Change

    Science.gov (United States)

    Vierhaus, Marc; Maass, Asja; Fridrici, Mirko; Lohaus, Arnold

    2010-01-01

    This study examines whether the assumptions of the Transtheoretical Model (TTM) are useful to evaluate the effectiveness of a school-based stress prevention programme in adolescence to promote appropriate coping behaviour. The TTM assumes three consecutive phases in the adoption of behavioural patterns. Progress throughout the phases is promoted…

  13. Differentiation of osteoporotic and neoplastic vertebral fractures by chemical shift {l_brace}in-phase and out-of phase{r_brace} MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ragab, Yasser [Radiology Department, Faculty of Medicine, Cairo University (Egypt); Radiology Department, Dr Erfan and Bagedo General Hospital (Saudi Arabia)], E-mail: yragab61@hotmail.com; Emad, Yasser [Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University (Egypt); Rheumatology and Rehabilitation Department, Dr Erfan and Bagedo General Hospital (Saudi Arabia)], E-mail: yasseremad68@yahoo.com; Gheita, Tamer [Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University (Egypt)], E-mail: gheitamer@yahoo.com; Mansour, Maged [Oncology Department, Faculty of Medicine, Cairo University (Egypt); Oncology Department, Dr Erfan and Bagedo General Hospital (Saudi Arabia)], E-mail: magedmansour@yahoo.com; Abou-Zeid, A. [Public Health Department, Faculty of Medicine, Cairo University, Cairo (Egypt)], E-mail: alaabouzeid@yahoo.com; Ferrari, Serge [Division of Bone Diseases, Department of Rehabilitation and Geriatrics, and WHO, Collaborating Center for Osteoporosis Prevention, Geneva University Hospital (Switzerland)], E-mail: serge.ferrari@medecine.unige.ch; Rasker, Johannes J. [Rheumatologist University of Twente, Enschede (Netherlands)], E-mail: j.j.rasker@utwente.nl

    2009-10-15

    Objective: The objective of this study was to establish the cut-off value of the signal intensity drop on chemical shift magnetic resonance imaging (MRI) with appropriate sensitivity and specificity to differentiate osteoporotic from neoplastic wedging of the spine. Patients and methods: All patients with wedging of vertebral bodies were included consecutively between February 2006 and January 2007. A chemical shift MRI was performed and signal intensity after (in-phase and out-phase) images were obtained. A DXA was performed in all. Results: A total of 40 patients were included, 20 with osteoporotic wedging (group 1) and 20 neoplastic (group 2). They were 21 males and 19 females. Acute vertebral collapse was observed in 15 patients in group 1 and subacute collapse in another 5 patients, while in group 2, 11 patients showed acute collapse and 9 patients (45%) showed subacute vertebral collapse. On the chemical shift MRI a substantial reduction in signal intensity was found in all lesions in both groups. The proportional changes observed in signal intensity of bone marrow lesions on in-phase compared with out-of-phase images showed significant differences in both groups (P < 0.05). At a cut-off value of 35%, the observed sensitivity of out-of-phase images was 95%, specificity was 100%, positive predictive value was 100% and negative predictive value was 95.2%. Conclusion: A chemical shift MRI is useful in order to differentiate patients with vertebral collapse due to underlying osteoporosis or neoplastic process.

  14. Noise analysis of grating-based x-ray differential phase-contrast imaging with angular signal radiography

    International Nuclear Information System (INIS)

    Faiz, Wali; Gao Kun; Wu Zhao; Wei Chen-Xi; Zan Gui-Bin; Tian Yang-Chao; Bao Yuan; Zhu Pei-Ping

    2017-01-01

    X-ray phase-contrast imaging is one of the novel techniques, and has potential to enhance image quality and provide the details of inner structures nondestructively. In this work, we investigate quantitatively signal-to-noise ratio (SNR) of grating-based x-ray phase contrast imaging (GBPCI) system by employing angular signal radiography (ASR). Moreover, photon statistics and mechanical error that is a major source of noise are investigated in detail. Results show the dependence of SNR on the system parameters and the effects on the extracted absorption, refraction and scattering images. Our conclusions can be used to optimize the system design for upcoming practical applications in the areas such as material science and biomedical imaging. (paper)

  15. Wide-Field Vibrational Phase Contrast Imaging Based on Coherent Anti-Stokes Raman Scattering Holography

    International Nuclear Information System (INIS)

    Lv Yong-Gang; Ji Zi-Heng; Dong Da-Shan; Gong Qi-Huang; Shi Ke-Bin

    2015-01-01

    We propose and implement a wide-field vibrational phase contrast detection to obtain imaging of imaginary components of third-order nonlinear susceptibility in a coherent anti-Stokes Raman scattering (CARS) microscope with full suppression of the non-resonant background. This technique is based on the unique ability of recovering the phase of the generated CARS signal based on holographic recording. By capturing the phase distributions of the generated CARS field from the sample and from the environment under resonant illumination, we demonstrate the retrieval of imaginary components in the CARS microscope and achieve background free coherent Raman imaging. (paper)

  16. Assessment of various systolic phase indexes for the detection of coronary artery disease by multi-gated blood pool imaging at rest

    International Nuclear Information System (INIS)

    Narita, Michihiro; Kurihara, Tadashi; Murano, Kenichi; Usami, Masahisa; Honda, Minoru; Kanao, Keisuke

    1982-01-01

    After Tc-99m was labeled with red blood cells in vivo, multi-gated blood pool imaging (MGBPI) was obtained at anterior and 40-degree left anterior oblique (LAO) position at rest. In addition to left ventricular (LV) ejection fraction (EF) and wall motion (WM) abnormality, first-third EF, mean normalized systolic ejection rate, SdV/dt/EDV (LV peak ejection rate normalized by end-diastolic volume) and SdV/dt/V (peak ejection rate normalized by LV volume at the peak ejection) were calculated. Patients were divided into 3 groups; Normal (n = 14), coronary artery disease (CAD) with normal EF (> = 55%) and normal WM (Group I, n = 16), and CAD with abnormal EF and/or WM abnormality (Group II, n = 31). In all subjects of Normal and 13 patients of Group I, graded supine exercise stress MGBPI was performed at LAO position by using bicycle ergometer. All systolic phase indexes were correlated well with EF (r > = 0.77, p - 1 , p - 1 as a criteria of CAD, sensitivity of this index was 91% (100% in Group II and 75% in Group I). This sensitivity in Group I was identical with that of exercise stress MGBPI. Specificity of SdV/dt/V (86%) was a little inferior to that of exercise stress MGBPI (93%), but it was not statistically significant. In conclusion, SdV/dt/V is a useful systolic phase index to detect CAD. (J.P.N.)

  17. Liquid-liquid phase separation in aerosol particles: Imaging at the Nanometer Scale

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Rachel; Wang, Bingbing; Kelly, Stephen T.; Lundt, Nils; You, Yuan; Bertram, Allan K.; Leone, Stephen R.; Laskin, Alexander; Gilles, Mary K.

    2015-04-21

    Atmospheric aerosols can undergo phase transitions including liquid-liquid phase separation (LLPS) while responding to changes in the ambient relative humidity (RH). Here, we report results of chemical imaging experiments using environmental scanning electron microscopy (ESEM) and scanning transmission x-ray microscopy (STXM) to investigate the LLPS of micron sized particles undergoing a full hydration-dehydration cycle. Internally mixed particles composed of ammonium sulfate (AS) and either: limonene secondary organic carbon (LSOC), a, 4-dihydroxy-3-methoxybenzeneaceticacid (HMMA), or polyethylene glycol (PEG-400) were studied. Events of LLPS with apparent core-shell particle morphology were observed for all samples with both techniques. Chemical imaging with STXM showed that both LSOC/AS and HMMA/AS particles were never homogeneously mixed for all measured RH’s above the deliquescence point and that the majority of the organic component was located in the shell. The shell composition was estimated as 65:35 organic: inorganic in LSOC/AS and as 50:50 organic: inorganic for HMMA/AS. PEG-400/AS particles showed fully homogeneous mixtures at high RH and phase separated below 89-92% RH with an estimated 50:50% organic to inorganic mix in the shell. These two chemical imaging techniques are well suited for in-situ analysis of the hygroscopic behavior, phase separation, and surface composition of collected ambient aerosol particles.

  18. Automated high resolution full-field spatial coherence tomography for quantitative phase imaging of human red blood cells

    Science.gov (United States)

    Singla, Neeru; Dubey, Kavita; Srivastava, Vishal; Ahmad, Azeem; Mehta, D. S.

    2018-02-01

    We developed an automated high-resolution full-field spatial coherence tomography (FF-SCT) microscope for quantitative phase imaging that is based on the spatial, rather than the temporal, coherence gating. The Red and Green color laser light was used for finding the quantitative phase images of unstained human red blood cells (RBCs). This study uses morphological parameters of unstained RBCs phase images to distinguish between normal and infected cells. We recorded the single interferogram by a FF-SCT microscope for red and green color wavelength and average the two phase images to further reduced the noise artifacts. In order to characterize anemia infected from normal cells different morphological features were extracted and these features were used to train machine learning ensemble model to classify RBCs with high accuracy.

  19. In-situ characterization of transformation plasticity during an isothermal austenite-to-bainite phase transformation

    International Nuclear Information System (INIS)

    Holzweissig, M.J.; Canadinc, D.; Maier, H.J.

    2012-01-01

    This paper elucidates the stress-induced variant selection process during the isothermal austenite-to-bainite phase transformation in a tool steel. Specifically, a thorough set of experiments combining electron backscatter diffraction and in-situ digital image correlation (DIC) was carried out to establish the role of superimposed stress level on the evolution of transformation plasticity (TP) strains. The important finding is that TP increases concomitant with the superimposed stress level, and strain localization accompanies phase transformation at all stress levels considered. Furthermore, TP strain distribution within the whole material becomes more homogeneous with increasing stress, such that fewer bainitic variants are selected to grow under higher stresses, yielding a more homogeneous strain distribution. In particular, the bainitic variants oriented along [101] and [201] directions are favored to grow parallel to the loading axis and are associated with large TP strains. Overall, this very first in-situ DIC investigation of the austenite-to-bainite phase transformation in steels evidences the clear relationship between the superimposed stress level, variant selection, and evolution of TP strains. - Highlights: ► Local variations of strain were observed by DIC throughout the phase transformation. ► The study clearly established the role of the stress-induced variant selection. ► Variant selection is a key parameter that governs distortion.

  20. Manganese-enhanced magnetic resonance imaging (MEMRI) reveals brain circuitry involved in responding to an acute novel stress in rats with a history of repeated social stress.

    Science.gov (United States)

    Bangasser, Debra A; Lee, Catherine S; Cook, Philip A; Gee, James C; Bhatnagar, Seema; Valentino, Rita J

    2013-10-02

    Responses to acute stressors are determined in part by stress history. For example, a history of chronic stress results in facilitated responses to a novel stressor and this facilitation is considered to be adaptive. We previously demonstrated that repeated exposure of rats to the resident-intruder model of social stress results in the emergence of two subpopulations that are characterized by different coping responses to stress. The submissive subpopulation failed to show facilitation to a novel stressor and developed a passive strategy in the Porsolt forced swim test. Because a passive stress coping response has been implicated in the propensity to develop certain psychiatric disorders, understanding the unique circuitry engaged by exposure to a novel stressor in these subpopulations would advance our understanding of the etiology of stress-related pathology. An ex vivo functional imaging technique, manganese-enhanced magnetic resonance imaging (MEMRI), was used to identify and distinguish brain regions that are differentially activated by an acute swim stress (15 min) in rats with a history of social stress compared to controls. Specifically, Mn(2+) was administered intracerebroventricularly prior to swim stress and brains were later imaged ex vivo to reveal activated structures. When compared to controls, all rats with a history of social stress showed greater activation in specific striatal, hippocampal, hypothalamic, and midbrain regions. The submissive subpopulation of rats was further distinguished by significantly greater activation in amygdala, bed nucleus of the stria terminalis, and septum, suggesting that these regions may form a circuit mediating responses to novel stress in individuals that adopt passive coping strategies. The finding that different circuits are engaged by a novel stressor in the two subpopulations of rats exposed to social stress implicates a role for these circuits in determining individual strategies for responding to stressors

  1. Self-interference fluorescence microscopy with three-phase detection for depth-resolved confocal epi-fluorescence imaging.

    Science.gov (United States)

    Braaf, Boy; de Boer, Johannes F

    2017-03-20

    Three-dimensional confocal fluorescence imaging of in vivo tissues is challenging due to sample motion and limited imaging speeds. In this paper a novel method is therefore presented for scanning confocal epi-fluorescence microscopy with instantaneous depth-sensing based on self-interference fluorescence microscopy (SIFM). A tabletop epi-fluorescence SIFM setup was constructed with an annular phase plate in the emission path to create a spectral self-interference signal that is phase-dependent on the axial position of a fluorescent sample. A Mach-Zehnder interferometer based on a 3 × 3 fiber-coupler was developed for a sensitive phase analysis of the SIFM signal with three photon-counter detectors instead of a spectrometer. The Mach-Zehnder interferometer created three intensity signals that alternately oscillated as a function of the SIFM spectral phase and therefore encoded directly for the axial sample position. Controlled axial translation of fluorescent microsphere layers showed a linear dependence of the SIFM spectral phase with sample depth over axial image ranges of 500 µm and 80 µm (3.9 × Rayleigh range) for 4 × and 10 × microscope objectives respectively. In addition, SIFM was in good agreement with optical coherence tomography depth measurements on a sample with indocyanine green dye filled capillaries placed at multiple depths. High-resolution SIFM imaging applications are demonstrated for fluorescence angiography on a dye-filled capillary blood vessel phantom and for autofluorescence imaging on an ex vivo fly eye.

  2. Compassion satisfaction, compassion fatigue, anxiety, depression and stress in registered nurses in Australia: phase 2 results.

    Science.gov (United States)

    Drury, Vicki; Craigie, Mark; Francis, Karen; Aoun, Samar; Hegney, Desley G

    2014-05-01

    This is the first two-phase Australian study to explore the factors impacting upon compassion satisfaction, compassion fatigue, anxiety, depression and stress and to describe the strategies nurses use to build compassion satisfaction into their working lives. Compassion fatigue has been found to impact on job satisfaction, the quality of patient care and retention within nursing. This study provides new knowledge on the influences of anxiety, stress and depression and how they relate to compassion satisfaction and compassion fatigue. In Phase 2 of the study, 10 nurses from Phase 1 of the study participated in individual interviews and a focus group. A semi-structured interview schedule guided the conversations with the participants. Data analysis resulted in seven main themes: social networks and support;infrastructure and support; environment and lifestyle; learning; leadership; stress; and suggestions to build psychological wellness in nurses. Findings suggest that a nurse’s capacity to cope is enhanced through strong social and collegial support, infrastructure that supports the provision of quality nursing care and positive affirmation. These concepts are strongly linked to personal resilience. for nursing management These findings support the need for management to develop appropriate interventions to build resilience in nurses.

  3. Time-resolved imaging refractometry of microbicidal films using quantitative phase microscopy.

    Science.gov (United States)

    Rinehart, Matthew T; Drake, Tyler K; Robles, Francisco E; Rohan, Lisa C; Katz, David; Wax, Adam

    2011-12-01

    Quantitative phase microscopy is applied to image temporal changes in the refractive index (RI) distributions of solutions created by microbicidal films undergoing hydration. We present a novel method of using an engineered polydimethylsiloxane structure as a static phase reference to facilitate calibration of the absolute RI across the entire field. We present a study of dynamic structural changes in microbicidal films during hydration and subsequent dissolution. With assumptions about the smoothness of the phase changes induced by these films, we calculate absolute changes in the percentage of film in regions across the field of view.

  4. Magnetic resonance visualization of conductive structures by sequence-triggered direct currents and spin-echo phase imaging

    Energy Technology Data Exchange (ETDEWEB)

    Eibofner, Frank; Wojtczyk, Hanne; Graf, Hansjörg, E-mail: hansjoerg.graf@med.uni-tuebingen.de, E-mail: drGraf@t-online.de [Section on Experimental Radiology, University Hospital Tübingen, Tübingen D-72076 (Germany); Clasen, Stephan [Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen D-72076 (Germany)

    2014-06-15

    Purpose: Instrument visualization in interventional magnetic resonance imaging (MRI) is commonly performed via susceptibility artifacts. Unfortunately, this approach suffers from limited conspicuity in inhomogeneous tissue and disturbed spatial encoding. Also, susceptibility artifacts are controllable only by sequence parameters. This work presents the basics of a new visualization method overcoming such problems by applying sequence-triggered direct current (DC) pulses in spin-echo (SE) imaging. SE phase images allow for background free current path localization. Methods: Application of a sequence-triggered DC pulse in SE imaging, e.g., during a time period between radiofrequency excitation and refocusing, results in transient field inhomogeneities. Dependent on the additional z-magnetic field from the DC, a phase offset results despite the refocusing pulse. False spatial encoding is avoided by DC application during periods when read-out or slice-encoding gradients are inactive. A water phantom containing a brass conductor (water equivalent susceptibility) and a titanium needle (serving as susceptibility source) was used to demonstrate the feasibility. Artifact dependence on current strength and orientation was examined. Results: Without DC, the brass conductor was only visible due to its water displacement. The titanium needle showed typical susceptibility artifacts. Applying triggered DC pulses, the phase offset of spins near the conductor appeared. Because SE phase images are homogenous also in regions of persistent field inhomogeneities, the position of the conductor could be determined with high reliability. Artifact characteristic could be easily controlled by amperage leaving sequence parameters unchanged. For an angle of 30° between current and static field visualization was still possible. Conclusions: SE phase images display the position of a conductor carrying pulsed DC free from artifacts caused by persistent field inhomogeneities. Magnitude and phase

  5. Visualization and quantitative research of stress corrosion cracking using the three-dimensional phased array ultrasonic technique

    International Nuclear Information System (INIS)

    Kitazawa, So; Kono, Naoyuki; Kudo, Takeshi; Isaka, Katsumi

    2013-01-01

    The three-dimensional phased-array (3D-PA) ultrasonic technique has been applied to a stress corrosion cracking (SCC) in base metal, and its results for sizing have been quantitatively evaluated. The 3D-PA allows operators to scan objects volumetrically and to display results as 3D images facilitating evaluation processes considerably. The scanning pattern used is called the moving rotational sectorial-scan (MRS-scan) and it is composed of many sectors of different azimuth angles as moving the probe linearly. The MRS-scan significantly improves the inspection of flaws without skillful searching motion of the probe, because the flaws are stereoscopically insonified by a number of ultrasonic beams coming from various directions. The SCC was evaluated by the MRS-scan with a matrix array probe. Not only the deepest tip but also all parts of the crack were able to be successfully visualized and sized with an accuracy of the root mean square error of 0.9 mm. (author)

  6. Bandwidth Controllable Tunable Filter for Hyper-/Multi-Spectral Imager, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal introduces a fast speed bandwidth controllable tunable filter for hyper-/multi-spectral (HS/MS) imagers. It dynamically passes a variable...

  7. Label-free imaging of developing vasculature in zebrafish with phase variance optical coherence microscopy

    Science.gov (United States)

    Chen, Yu; Fingler, Jeff; Trinh, Le A.; Fraser, Scott E.

    2016-03-01

    A phase variance optical coherence microscope (pvOCM) has been created to visualize blood flow in the vasculature of zebrafish embryos, without using exogenous labels. The pvOCM imaging system has axial and lateral resolutions of 2 μm in tissue, and imaging depth of more than 100 μm. Imaging of 2-5 days post-fertilization zebrafish embryos identified the detailed structures of somites, spinal cord, gut and notochord based on intensity contrast. Visualization of the blood flow in the aorta, veins and intersegmental vessels was achieved with phase variance contrast. The pvOCM vasculature images were confirmed with corresponding fluorescence microscopy of a zebrafish transgene that labels the vasculature with green fluorescent protein. The pvOCM images also revealed functional information of the blood flow activities that is crucial for the study of vascular development.

  8. Devil’s Vortex Phase Structure as Frequency Plane Mask for Image Encryption Using the Fractional Mellin Transform

    Directory of Open Access Journals (Sweden)

    Sunanda Vashisth

    2014-01-01

    Full Text Available A frequency plane phase mask based on Devil’s vortex structure has been used for image encryption using the fractional Mellin transform. The phase key for decryption is obtained by an iterative phase retrieval algorithm. The proposed scheme has been validated for grayscale secret target images, by numerical simulation. The efficacy of the scheme has been evaluated by computing mean-squared-error between the secret target image and the decrypted image. Sensitivity analysis of the decryption process to variations in various encryption parameters has been carried out. The proposed encryption scheme has been seen to exhibit reasonable robustness against occlusion attack.

  9. Modelling of stresses generated in steels by phase transformations; Modelowanie naprezen wywolanych przemianami fazowymi w stalach

    Energy Technology Data Exchange (ETDEWEB)

    Dudek, K; Glowacki, M; Pietrzyk, M [Akademia Gorniczo-Hutnicza, Cracow (Poland)

    1999-07-01

    Numerical model describing stresses arising during phase transformations in steels products is presented. The full model consists of three components. The first component uses finite element solution of Fourier equation for an evaluation of the temperature field inside the sample. The second component predicts kinetics of phase transformation occurring during cooling of steel products. Coupling of these two components allows prediction of structure and properties of final products at room temperature. The third component uses elastic-plastic finite element model for prediction of stresses caused by non-uniform temperatures and by changes of volume during transformations. Typical results of simulations performed for cooling of rails after hot rolling are presented. (author)

  10. RESTORATION OF WEAK PHASE-CONTRAST IMAGES RECORDED WITH A HIGH DEGREE OF DEFOCUS: THE"TWIN IMAGE" PROBLEM ASSOCIATED WITH CTF CORRECTION

    Energy Technology Data Exchange (ETDEWEB)

    Downing, Kenneth H.; Glaeser, Robert M.

    2008-03-28

    Relatively large values of objective-lens defocus must normally be used to produce detectable levels of image contrast for unstained biological specimens, which are generally weak phase objects. As a result, a subsequent restoration operation must be used to correct for oscillations in the contrast transfer function (CTF) at higher resolution. Currently used methods of CTF-correction assume the ideal case in which Friedel mates in the scattered wave have contributed pairs of Fourier components that overlap with one another in the image plane. This"ideal" situation may be only poorly satisfied, or not satisfied at all, as the particle size gets smaller, the defocus value gets larger, and the resolution gets higher. We have therefore investigated whether currently used methods of CTF correction are also effective in restoring the single-sideband image information that becomes displaced (delocalized) by half (or more) the diameter of a particle of finite size. Computer simulations are used to show that restoration either by"phase flipping" or by multiplying by the CTF recovers only about half of the delocalized information. The other half of the delocalized information goes into a doubly defocused"twin" image of the type produced during optical reconstruction of an in-line hologram. Restoration with a Wiener filter is effective in recovering the delocalized information only when the signal-to-noise ratio (S/N) is orders of magnitude higher than that which exists in low-dose images of biological specimens, in which case the Wiener filter approaches division by the CTF (i.e. the formal inverse). For realistic values of the S/N, however, the"twin image" problem seenwith a Wiener filter is very similar to that seen when either phase flipping or multiplying by the CTF are used for restoration. The results of these simulations suggest that CTF correction is a poor alternative to using a Zernike-type phase plate when imaging biological specimens, in which case the images can

  11. Safety of adenosine stress myocardial perfusion imaging by a one-route infusion protocol

    International Nuclear Information System (INIS)

    Kawai, Yuko; Kishino, Koh

    2006-01-01

    When adenosine stress testing is performed, a vein is generally accessed in each arm. To determine whether the one-route infusion protocol, that is, infusion via one upper arm vein, is safe, myocardial perfusion imaging was performed during adenosine stress testing in patients with angina pectoris. Sixty-six consecutive patients (43 men, 68±11 years of age) with suspected coronary artery disease were enrolled in this study. For the stress test, adenosine was injected at 120 μg/kg/min for 6 minutes. Systolic blood pressure, diastolic blood pressure, and heart rate did not show any significant changes after injection of the adenosine and radioisotope (RI) tracer. Adverse events during infusion of the adenosine were seen in 42 (64%) patients and included chest discomfort/oppression in 17 (26%) and dyspnea/throat discomfort in 15 (23%). On the other hand, adverse events just after infusion of the RI tracer occurred in 5 (8%) patients and included chest oppression in 2 (3%) and dyspnea in 1 (2%). Almost all adverse events disappeared quickly without treatment. Therefore, we concluded that adenosine stress myocardial perfusion imaging using a one-route infusion protocol is safe and useful to do for patients unable to secure veins in both arms. (author)

  12. X-ray phase contrast imaging of the bone-cartilage interface

    International Nuclear Information System (INIS)

    Ismail, E.C.; Kaabar, W.; Garrity, D.; Gundogdu, O.; Bradley, D.A.; Bunk, O.; Pfeiffer, F.; Farquharson, M.J.

    2008-01-01

    Full text: Synovial joints articulate in a lubricating environment, the system providing for smooth articulation. The articular cartilage overlying the bone consists of a network of collagen fibres. This network is essential to cartilage integrity, suffering damage in degenerative joint disease such as osteoarthritis. At Surrey and also in work conducted by this group at the Paul Scherrer Institute (PSI) synchrotron site we have been applying a number of techniques in studying the bone-cartilage interface and of changes occurring in this with disease. One technique attracting particular interest is X-ray phase contrast imaging, yielding information on anatomical features that manifest from the large scale organisation of collagen and the mineralised phase contained within the collagen fibres in the deep cartilage zone. This work will briefly review some of the basic supporting physics and then shows some of the images and other results that we have obtained to-date

  13. Nonlinear approaches for phase retrieval in the Fresnel region for hard X-ray imaging

    International Nuclear Information System (INIS)

    Davidoiu, Valentina

    2013-01-01

    The development of highly coherent X-ray sources offers new possibilities to image biological structures at different scales exploiting the refraction of X-rays. The coherence properties of the third-generation synchrotron radiation sources enables efficient implementations of phase contrast techniques. One of the first measurements of the intensity variations due to phase contrast has been reported in 1995 at the European Synchrotron Radiation Facility (ESRF). Phase imaging coupled to tomography acquisition allows three dimensional imaging with an increased sensitivity compared to absorption CT. This technique is particularly attractive to image samples with low absorption constituents. Phase contrast has many applications, ranging from material science, paleontology, bone research to medicine and biology. Several methods to achieve X-ray phase contrast have been proposed during the last years. In propagation based phase contrast, the measurements are made at different sample-to-detector distances. While the intensity data can be acquired and recorded, the phase information of the signal has to be 'retrieved' from the modulus data only. Phase retrieval is thus an ill-posed nonlinear problem and regularization techniques including a priori knowledge are necessary to obtain stable solutions. Several phase recovery methods have been developed in recent years. These approaches generally formulate the phase retrieval problem as a linear one. Nonlinear treatments have not been much investigated. The main purpose of this work was to propose and evaluate new algorithms, in particularly taking into account the nonlinearity of the direct problem. In the first part of this work, we present a Landweber type nonlinear iterative scheme to solve the propagation based phase retrieval problem. This approach uses the analytic expression of the Frechet derivative of the phase-intensity relationship and of its adjoint, which are presented in detail. We also study the effect of

  14. Changes in phase composition and stress state of surface layers of VK20 hard alloy after ion bombardment

    International Nuclear Information System (INIS)

    Platonov, G.L.; Leonov, E.Yu.; Anikin, V.N.; Anikeev, A.I.

    1988-01-01

    Titanium ion bombardment of the surface of the hard VK20 alloy is studied for its effect on variations in the phase and chemical composition of its surface layers. It is stated that ion treatment results in the appearance of the η-phase of Co 6 W 6 C composition in the surface layer of the VK20 alloy, in the increase of distortions and decrease of coherent scattering blocks of the hard alloy carbide phase. Such a bombardment is found to provoke a transition of the plane-stressed state of the hard alloy surface into the volume-stressed state. It is established that ion treatment does not cause an allotropic transition of the cobalt phase α-modification, formed during grinding of the hard alloy, into the β-modification

  15. Pore-scale Simulation and Imaging of Multi-phase Flow and Transport in Porous Media (Invited)

    Science.gov (United States)

    Crawshaw, J.; Welch, N.; Daher, I.; Yang, J.; Shah, S.; Grey, F.; Boek, E.

    2013-12-01

    We combine multi-scale imaging and computer simulation of multi-phase flow and reactive transport in rock samples to enhance our fundamental understanding of long term CO2 storage in rock formations. The imaging techniques include Confocal Laser Scanning Microscopy (CLSM), micro-CT and medical CT scanning, with spatial resolutions ranging from sub-micron to mm respectively. First, we report a new sample preparation technique to study micro-porosity in carbonates using CLSM in 3 dimensions. Second, we use micro-CT scanning to generate high resolution 3D pore space images of carbonate and cap rock samples. In addition, we employ micro-CT to image the processes of evaporation in fractures and cap rock degradation due to exposure to CO2 flow. Third, we use medical CT scanning to image spontaneous imbibition in carbonate rock samples. Our imaging studies are complemented by computer simulations of multi-phase flow and transport, using the 3D pore space images obtained from the scanning experiments. We have developed a massively parallel lattice-Boltzmann (LB) code to calculate the single phase flow field in these pore space images. The resulting flow fields are then used to calculate hydrodynamic dispersion using a novel scheme to predict probability distributions for molecular displacements using the LB method and a streamline algorithm, modified for optimal solid boundary conditions. We calculate solute transport on pore-space images of rock cores with increasing degree of heterogeneity: a bead pack, Bentheimer sandstone and Portland carbonate. We observe that for homogeneous rock samples, such as bead packs, the displacement distribution remains Gaussian with time increasing. In the more heterogeneous rocks, on the other hand, the displacement distribution develops a stagnant part. We observe that the fraction of trapped solute increases from the beadpack (0 %) to Bentheimer sandstone (1.5 %) to Portland carbonate (8.1 %), in excellent agreement with PFG

  16. High energy X-ray phase and dark-field imaging using a random absorption mask.

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-07-28

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science.

  17. Magnetic resonance velocity imaging of liquid and gas two-phase flow in packed beds.

    Science.gov (United States)

    Sankey, M H; Holland, D J; Sederman, A J; Gladden, L F

    2009-02-01

    Single-phase liquid flow in porous media such as bead packs and model fixed bed reactors has been well studied by MRI. To some extent this early work represents the necessary preliminary research to address the more challenging problem of two-phase flow of gas and liquid within these systems. In this paper, we present images of both the gas and liquid velocities during stable liquid-gas flow of water and SF(6) within a packing of 5mm spheres contained within columns of diameter 40 and 27 mm; images being acquired using (1)H and (19)F observation for the water and SF(6), respectively. Liquid and gas flow rates calculated from the velocity images are in agreement with macroscopic flow rate measurements to within 7% and 5%, respectively. In addition to the information obtained directly from these images, the ability to measure liquid and gas flow fields within the same sample environment will enable us to explore the validity of assumptions used in numerical modelling of two-phase flows.

  18. QR code-based non-linear image encryption using Shearlet transform and spiral phase transform

    Science.gov (United States)

    Kumar, Ravi; Bhaduri, Basanta; Hennelly, Bryan

    2018-02-01

    In this paper, we propose a new quick response (QR) code-based non-linear technique for image encryption using Shearlet transform (ST) and spiral phase transform. The input image is first converted into a QR code and then scrambled using the Arnold transform. The scrambled image is then decomposed into five coefficients using the ST and the first Shearlet coefficient, C1 is interchanged with a security key before performing the inverse ST. The output after inverse ST is then modulated with a random phase mask and further spiral phase transformed to get the final encrypted image. The first coefficient, C1 is used as a private key for decryption. The sensitivity of the security keys is analysed in terms of correlation coefficient and peak signal-to noise ratio. The robustness of the scheme is also checked against various attacks such as noise, occlusion and special attacks. Numerical simulation results are shown in support of the proposed technique and an optoelectronic set-up for encryption is also proposed.

  19. The stress-reducing effects of art in pediatric health care: art preferences of healthy children and hospitalized children.

    Science.gov (United States)

    Eisen, Sarajane L; Ulrich, Roger S; Shepley, Mardelle M; Varni, James W; Sherman, Sandra

    2008-09-01

    Art is assumed to possess therapeutic benefits of healing for children, as part of patient-focused design in health care. Since the psychological and physiological well-being of children in health care settings is extremely important in contributing to the healing process, it is vitally important to identify what type of art supports stress reduction. Based on adult studies, nature art was anticipated to be the most preferred and to have stress-reducing effects on pediatric patients. Nature art refers to art images dominated by natural vegetation, flowers or water. The objective of this study was to investigate what type of art image children prefer, and what type of art image has potentially stress-reducing effects on children in hospitals. This study used a three-phase, multi-method approach with children aged 5-17 years: a focus group study (129 participants), a randomized study (48 participants), and a quasi-experimental study design (48 participants). Findings were evaluated from three phases.

  20. In Situ Environmental TEM in Imaging Gas and Liquid Phase Chemical Reactions for Materials Research.

    Science.gov (United States)

    Wu, Jianbo; Shan, Hao; Chen, Wenlong; Gu, Xin; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao

    2016-11-01

    Gas and liquid phase chemical reactions cover a broad range of research areas in materials science and engineering, including the synthesis of nanomaterials and application of nanomaterials, for example, in the areas of sensing, energy storage and conversion, catalysis, and bio-related applications. Environmental transmission electron microscopy (ETEM) provides a unique opportunity for monitoring gas and liquid phase reactions because it enables the observation of those reactions at the ultra-high spatial resolution, which is not achievable through other techniques. Here, the fundamental science and technology developments of gas and liquid phase TEM that facilitate the mechanistic study of the gas and liquid phase chemical reactions are discussed. Combined with other characterization tools integrated in TEM, unprecedented material behaviors and reaction mechanisms are observed through the use of the in situ gas and liquid phase TEM. These observations and also the recent applications in this emerging area are described. The current challenges in the imaging process are also discussed, including the imaging speed, imaging resolution, and data management. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Optimization of in-line phase contrast particle image velocimetry using a laboratory x-ray source

    International Nuclear Information System (INIS)

    Ng, I.; Fouras, A.; Paganin, D. M.

    2012-01-01

    Phase contrast particle image velocimetry (PIV) using a laboratory x-ray microfocus source is investigated using a numerical model. Phase contrast images of 75 μm air bubbles, embedded within water exhibiting steady-state vortical flow, are generated under the paraxial approximation using a tungsten x-ray spectrum at 30 kVp. Propagation-based x-ray phase-contrast speckle images at a range of source-object and object-detector distances are generated, and used as input into a simulated PIV measurement. The effects of source-size-induced penumbral blurring, together with the finite dynamic range of the detector, are accounted for in the simulation. The PIV measurement procedure involves using the cross-correlation between temporally sequential speckle images to estimate the transverse displacement field for the fluid. The global error in the PIV reconstruction, for the set of simulations that was performed, suggests that geometric magnification is the key parameter for designing a laboratory-based x-ray phase-contrast PIV system. For the modeled system, x-ray phase-contrast PIV data measurement can be optimized to obtain low error ( 15 μm) of the detector, high geometric magnification (>2.5) is desired, while for large source size system (FWHM > 30 μm), low magnification (<1.5) would be suggested instead. The methods developed in this paper can be applied to optimizing phase-contrast velocimetry using a variety of laboratory x-ray sources.

  2. Role of T2 weighted magnetic resonance image in chronic phase of head injured patients

    International Nuclear Information System (INIS)

    Uzura, Masahiko; Taguchi, Yoshio; Watanabe, Hiroyuki; Chiba, Syunmei; Matsuzawa, Motoshi

    2002-01-01

    In neuroimaging studies of head injury, addition of echo planar imaging (EPI) T2-weighted images (WI) to routine MR images has been useful in demonstrating small hemorrhagic lesions as magnetic susceptibility artifacts (MSAs). MSAs are often found in the acute or subacute phases of head injured patients with diffuse axonal injury. We studied MSAs in follow-up MR images of patients with diffuse brain injury and discuss the role of EPI T2-WI in patients with chronic phase of head injured patients. This series consisted of 20 patients with diffuse brain injury diagnosed clinically. Their head CT findings were classified into Diffuse Injury I or II according to the CT classification of Marshall et al. All patients underwent long-term follow-up MR examinations. MR findings in chronic phase were divided into three categories in terms of MSAs: group A, MSAs remaining even after disappearance of small traumatic lesions in both T2-WI and fluid attenuated inversion recovery (FLAIR) images (11 cases); group B, MSA (s) that disappeared in association with disappearance of small traumatic lesions (4 cases); and group C, MSAs that remained but could not be differentiated from non-traumatic lesions such as hemorrhagic lacunae or cavernoma (5 cases). Adding EPI T2-WI to routine MR images can provide useful information in visualizing old traumatic lesions of the brain in patients with diffuse brain injury even if no neuroimaging studies in acute or subacute phase. (author)

  3. Enhanced renal image contrast by ethanol fixation in phase-contrast X-ray computed tomography.

    Science.gov (United States)

    Shirai, Ryota; Kunii, Takuya; Yoneyama, Akio; Ooizumi, Takahito; Maruyama, Hiroko; Lwin, Thet Thet; Hyodo, Kazuyuki; Takeda, Tohoru

    2014-07-01

    Phase-contrast X-ray imaging using a crystal X-ray interferometer can depict the fine structures of biological objects without the use of a contrast agent. To obtain higher image contrast, fixation techniques have been examined with 100% ethanol and the commonly used 10% formalin, since ethanol causes increased density differences against background due to its physical properties and greater dehydration of soft tissue. Histological comparison was also performed. A phase-contrast X-ray system was used, fitted with a two-crystal X-ray interferometer at 35 keV X-ray energy. Fine structures, including cortex, tubules in the medulla, and the vessels of ethanol-fixed kidney could be visualized more clearly than that of formalin-fixed tissues. In the optical microscopic images, shrinkage of soft tissue and decreased luminal space were observed in ethanol-fixed kidney; and this change was significantly shown in the cortex and outer stripe of the outer medulla. The ethanol fixation technique enhances image contrast by approximately 2.7-3.2 times in the cortex and the outer stripe of the outer medulla; the effect of shrinkage and the physical effect of ethanol cause an increment of approximately 78% and 22%, respectively. Thus, the ethanol-fixation technique enables the image contrast to be enhanced in phase-contrast X-ray imaging.

  4. Multidetector-row computed tomography coronary angiography. Optimization of image reconstruction phase according to the heart rate

    International Nuclear Information System (INIS)

    Nagatani, Yukihiro; Takahashi, Masashi; Takazakura, Ryutaro; Nitta, Norihisa; Murata, Kiyoshi; Ushio, Noritoshi; Matsuo, Shinro; Yamamoto, Takashi; Horie, Minoru

    2007-01-01

    The purpose of this study was to optimize the image reconstruction phase of multidetector-row computed tomography (MDCT) coronary angiography according to the heart rate is crucial. Scan data were reconstructed for 10 different phases in 58 sequential patients who under went 8-row cardiac MDCT. The obtained images were scored and compared in terms of motion artifacts and visibility of the vessels, and moreover, electrocardiogram (ECG) record-based evaluations were added for clarification of the temporal relationships among these 10 phases. In the cases with lower heart rates ( 65 beats/mm), they were obtained in the late systolic period. As the heart rate increased, the optimal image reconstruction phase changed from mid diastole to late systole. However, it is recommended to try to decrease the heart rate of patients before data acquisition. (author)

  5. Improved detection of chronic myocardial infarction with Fourier amplitude and phase imaging in two projections

    International Nuclear Information System (INIS)

    Akins, E.W.; Scott, E.A.; Williams, C.M.

    1987-01-01

    Twenty-seven patients with 33 chronic myocaridal infarctions underwent MR imaging and radionuclide ventriculography at rest. The radionuclide ventriculographs, in left anterior oblique (LAO) and left posterior oblique (LPO) projections, were analyzed by two independent observers by visual inspection and combined Fourier-transformed amplitude and phase imaging. Only 15 (45%) of the 33 infarctions were detected by visual inspection, but 21 (64%) were detected on the LAO Fourier-transformed images along. Thirty (91%) were detected by using both LAO and LPO Fourier-transformed images. On MR imaging, 28 (85%) of the myocardial infarctions appeared as areas of focal wall thinning. Combined Fourier-transformed amplitude and phase imaging in both LAO and LPO views discloses more myocardial infarctions than visual inspection or LAO Fourier-transformed images alone because inferior infarctions, which are frequently missed in the LAO view, are easily seen in the LPO view

  6. Phase space imaging of a beam of charged particles by frictional forces

    International Nuclear Information System (INIS)

    Daniel, H.

    1977-01-01

    In the case of frictional forces, defined by always acting opposite to the particle motion, Liouville's theorem does not apply. The effect of such forces on a beam of charged particles is calculated in closed form. Emphasis is given to the phase space imaging by a moderator. Conditions for an increase in phase space density are discussed. (Auth.)

  7. Novel image reconstruction algorithm for multi-phase flow tomography system using γ ray method

    International Nuclear Information System (INIS)

    Hao Kuihong; Wang Huaxiang; Gao Mei

    2007-01-01

    After analyzing the reason of image reconstructed algorithm by using the conventional back projection (IBP) is prone to produce spurious line, and considering the characteristic of multi-phase flow tomography, a novel image reconstruction algorithm is proposed, which carries out the intersection calculation using back projection data. This algorithm can obtain a perfect system point spread function, and can eliminate spurious line better. Simulating results show that the algorithm is effective for identifying multi-phase flow pattern. (authors)

  8. Phase coexistence in ferroelectric solid solutions: Formation of monoclinic phase with enhanced piezoelectricity

    Directory of Open Access Journals (Sweden)

    Xiaoyan Lu

    2016-10-01

    Full Text Available Phase morphology and corresponding piezoelectricity in ferroelectric solid solutions were studied by using a phenomenological theory with the consideration of phase coexistence. Results have shown that phases with similar energy potentials can coexist, thus induce interfacial stresses which lead to the formation of adaptive monoclinic phases. A new tetragonal-like monoclinic to rhombohedral-like monoclinic phase transition was predicted in a shear stress state. Enhanced piezoelectricity can be achieved by manipulating the stress state close to a critical stress field. Phase coexistence is universal in ferroelectric solid solutions and may provide a way to optimize ultra-fine structures and proper stress states to achieve ultrahigh piezoelectricity.

  9. MR phase imaging and cerebrospinal fluid flow in the head and spine

    International Nuclear Information System (INIS)

    Levy, L.M.; Di Chiro, G.

    1990-01-01

    Motion of the cerebrospinal fluid (CSF) in and around the brain spinal cord was examined in healthy subjects and in a number of patients with abnormalities of the CSF circulation. The pulsatile motion of the CSF was determined by spin echo phase (velocity) imaging, sometimes in combination with gradient echo phase contrast cine. Differences in flow patterns across CSF spaces were observed: Flow reversal in the cerebellomedullary cistern and lumbar area relative to cervical CSF, and in the posterior versus the anterior subarachnoid space in the spinal canal. Flow communication was demonstrated in known communicating cysts or cavities. Differences in flow were also noted across spinal narrowing or block, and across the walls of a variety of cystic lesions in the brain and spinal cord. MR phase imaging of CSF flow provides pathophysiological information of potential clinical importance for the assessment of diseases affecting the CSF circulation. (orig.)

  10. ISAR Imaging of Ship Targets Based on an Integrated Cubic Phase Bilinear Autocorrelation Function

    Directory of Open Access Journals (Sweden)

    Jibin Zheng

    2017-03-01

    Full Text Available For inverse synthetic aperture radar (ISAR imaging of a ship target moving with ocean waves, the image constructed with the standard range-Doppler (RD technique is blurred and the range-instantaneous-Doppler (RID technique has to be used to improve the image quality. In this paper, azimuth echoes in a range cell of the ship target are modeled as noisy multicomponent cubic phase signals (CPSs after the motion compensation and a RID ISAR imaging algorithm is proposed based on the integrated cubic phase bilinear autocorrelation function (ICPBAF. The ICPBAF is bilinear and based on the two-dimensionally coherent energy accumulation. Compared to five other estimation algorithms, the ICPBAF can acquire higher cross term suppression and anti-noise performance with a reasonable computational cost. Through simulations and analyses with the synthetic model and real radar data, we verify the effectiveness of the ICPBAF and corresponding RID ISAR imaging algorithm.

  11. Evaluation of stress-induced martensite phase in ferromagnetic shape memory alloy Fe-30.2at%Pd by non-destructive Barkhausen noise

    Science.gov (United States)

    Furuya, Yasubumi; Okazaki, Teiko; Ueno, Takasi; Spearing, Mark; Wutting, Manfred

    2005-05-01

    Barkhausen noise (BHN) method seems a useful tecnique to non-destructive evaluation of martensite phase transformation of ferromagnetic shape memory alloy, which is used as the filler of our proposing "Smart Composite Board". The concept of design for "Smart Composite Board" which can combine the non-destructive magnetic inspection and shape recovery function in the material itself was formerly proposed. In the present study, we survey the possibility of Barkhausen noise (BHN) method to detect the transformation of microscopic martensite phase caused by stress-loading in Fe-30.2at%Pd thin foil, which has a stable austenite phase (fcc structure) at room temperature. The BHN voltage was measured at loading stress up to 100 MPa in temperature range of 300K to 373K. Stress-induced martensite twin was observed by laser microscope above loading stress of 25 MPa. A phase transformation caused by loading stress were analyzed also by X-ray diffraction. The signals of BHN are analyzed by the time of magnetization and the noise frequency. BHN caused by grain boundaries appears in the lower frequency range (1kHz-3kHz) and BHN by martensite twin in the higher frequency range (8kHz-10kHz). The envelope of the BHN voltage as a function of time of magnetization shows a peak due to austenite phase at weak magnetic field. The BHN envelope due to martensite twins creates additional two peaks at intermediate magnetic field. BHN method turns out to be a powerful technique for non-destructive evaluation of the phase transformation of ferromagnetic shape memory alloy.

  12. MEASUREMENTS OF STRAIN FIELDS DUE TO NANOSCALE PRECIPITATES USING THE PHASE IMAGE METHOD

    Directory of Open Access Journals (Sweden)

    Patricia Donnadieu

    2011-05-01

    Full Text Available Owing the phase image method (Hytch, 1998, strain fields can be derived from HREM images. The method is here applied to the nanoscale precipitates responsible for hardening in Aluminum alloys. Since the method is a very sensitive one, we have examined the impact of several aspects of the image quality (noise, fluctuations, distortion. The strain field information derived from the HREM image analysis is further introduced in a simulation of the dislocation motion in the matrix.

  13. Gadobenate dimeglumine-enhanced MR of VX2 carcinoma in rabbit liver: usefulness of the delayed phase imaging and optimal pulse sequence

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seung Il; Lee, Jeong Min; Kim, Young Kon; Kim, Chong Soo [College of Medicine, Chonbuk National Univ., Chonju (Korea, Republic of)

    2002-07-01

    To assess the diagnostic value of delayed imaging using gadobenate dimeglumine (MultiHance) and to determine the optimal pulse sequence for the detection of VX2 carcinoma lesions in the rabbit. Twelve VX2 carcinomas implanted in the livers of eleven New Zealand rabbits were studied. All patients underwent an MR protocal consisting of precontrast T2-and T1-weighted sequences, followed by repetition of the T1-weighted sequence at 0 to 30 (arterial phase). 31-60 (portal phase), and 40 minutes (delayed phase) after the intravenous administration of 0.1 mmol/kg of gadobenate dimeglumine. The signal-to-noise ratio (SNR) of the liver and VX2 tumor, and the lesion-to-liver contrast-to-noise ratio (CNR) of precontrast and postcontrast MR images were quantitatively analyzed, and two experienced radiologists evaluated image quality in terms of lesion conspicuity, artifact, mass delineation, and vascular anatomy. Liver SNR was significantly higher at delayed imaging than at precontrast, arterial, and portal imaging (p<0.05), while lesion SNR was significantly higher at delayed imaging than at precontrast imaging (p<0.05). Lesion CNR was higher at delayed imaging than at precontrast and portal phase imaging (p<0.05), but there was no difference between arterial and delayed imaging. The latter provided better mass delineation than precontrast, arterial and portal phase imaging (p<0.05). While in terms of lesion conspicuity and vascular anatomy, the delayed phase was better than the arterial phase (p<0.05) but similar to the precontrast and portal phase. During the delayed phase, the gradient-echo sequence showed better results than the spin-echo in terms of liver SNR, and lesion SNR and CNR (p<0.05). Because it provides better lesion conspicuity and mass delineation by improving liver SNR and lesion-to-liver CNR, the addition of the delayed phase to a dynamic MRI sequence after gadobenate dimeglumine adminstration facilitates lesion detection. For delayed-phase imaging, the

  14. Gadobenate dimeglumine-enhanced MR of VX2 carcinoma in rabbit liver: usefulness of the delayed phase imaging and optimal pulse sequence

    International Nuclear Information System (INIS)

    Cho, Seung Il; Lee, Jeong Min; Kim, Young Kon; Kim, Chong Soo

    2002-01-01

    To assess the diagnostic value of delayed imaging using gadobenate dimeglumine (MultiHance) and to determine the optimal pulse sequence for the detection of VX2 carcinoma lesions in the rabbit. Twelve VX2 carcinomas implanted in the livers of eleven New Zealand rabbits were studied. All patients underwent an MR protocal consisting of precontrast T2-and T1-weighted sequences, followed by repetition of the T1-weighted sequence at 0 to 30 (arterial phase). 31-60 (portal phase), and 40 minutes (delayed phase) after the intravenous administration of 0.1 mmol/kg of gadobenate dimeglumine. The signal-to-noise ratio (SNR) of the liver and VX2 tumor, and the lesion-to-liver contrast-to-noise ratio (CNR) of precontrast and postcontrast MR images were quantitatively analyzed, and two experienced radiologists evaluated image quality in terms of lesion conspicuity, artifact, mass delineation, and vascular anatomy. Liver SNR was significantly higher at delayed imaging than at precontrast, arterial, and portal imaging (p<0.05), while lesion SNR was significantly higher at delayed imaging than at precontrast imaging (p<0.05). Lesion CNR was higher at delayed imaging than at precontrast and portal phase imaging (p<0.05), but there was no difference between arterial and delayed imaging. The latter provided better mass delineation than precontrast, arterial and portal phase imaging (p<0.05). While in terms of lesion conspicuity and vascular anatomy, the delayed phase was better than the arterial phase (p<0.05) but similar to the precontrast and portal phase. During the delayed phase, the gradient-echo sequence showed better results than the spin-echo in terms of liver SNR, and lesion SNR and CNR (p<0.05). Because it provides better lesion conspicuity and mass delineation by improving liver SNR and lesion-to-liver CNR, the addition of the delayed phase to a dynamic MRI sequence after gadobenate dimeglumine adminstration facilitates lesion detection. For delayed-phase imaging, the

  15. MR imaging of the prostate at 3 Tesla: comparison of an external phased-array coil to imaging with an endorectal coil at 1.5 Tesla.

    Science.gov (United States)

    Sosna, Jacob; Pedrosa, Ivan; Dewolf, William C; Mahallati, Houman; Lenkinski, Robert E; Rofsky, Neil M

    2004-08-01

    To qualitatively compare the image quality of torso phased-array 3-Tesla (3T) imaging of the prostate with that of endorectal 1.5-Tesla imaging. Twenty cases of torso phased-array prostate imaging performed at 3-Tesla with FSE T2 weighted images were evaluated by two readers independently for visualization of the posterior border (PB), seminal vesicles (SV), neurovascular bundles (NVB), and image quality rating (IQR). Studies were performed at large fields of view(FOV) (25 cm) (14 cases) (3TL) and smaller FOV (14 cm) (19 cases) (3TS). A comparison was made to 20 consecutive cases of 1.5-T endorectal evaluation performed during the same time period.Results. 3TL produced a significantly better image quality compared with the small FOV for PB (P = .0001), SV (P =.0001), and IQR (P = .0001). There was a marginally significant difference within the NVB category (P = .0535). 3TL produced an image of similar quality to image quality at 1.5 T for PB (P = .3893), SV (P = .8680), NB (P = .2684), and IQR (P = .8599). Prostate image quality at 3T with a torso phased-array coil can be comparable with that of endorectal 1.5-T imaging. These findings suggest that additional options are now available for magnetic resonance imaging of the prostate gland.

  16. Aetiology, imaging and treatment of medial tibial stress syndrome

    OpenAIRE

    Moen, M.H.

    2012-01-01

    The work contained is this thesis discusses aetiology, imaging and treatment of a common leg injury: medial tibial stress syndrome (MTSS). Although a common injury, the number of scientific articles on this topic is relatively low as is explained in chapter 1. This chapter also highlights that the most probable cause of MTSS is bone overload and not traction induced periostitis. In chapter 2 a review of the literature on MTSS is provided until 2009. Chapters 3 and 4 discuss different common a...

  17. Changing stress levels through gaining information on stress

    Directory of Open Access Journals (Sweden)

    S.N. Madu

    2002-09-01

    Full Text Available Objective: The aim of this research was to find out the effect of the Information Phase of a Stress Management Program (SMP on the perceptions of participants about their stress levels. Method: A total sample of 100 workers (nursing staff, private business men and women, laboratory assistants, the protective services [foreman and security staff], as well as people in human resources departments took part in this study. All the participants were from the Northern and Gauteng Provinces in South Africa. The Combined Hassles and Uplifts Scale (Folkman & Lazarus, 1989 was used as an instrument to measure the perceived stress level of participants in a SMP. Result: A significant reduction in stress levels was achieved among those who received the Information Phase of the SMP only, as well as those who received the whole stress management techniques. There was no significant difference between the amount of reduction in perceived stress-levels achieved among those that received the Information Phase of the SMP only, compared to that of those who received the whole techniques. Conclusion: The authors conclude that where the resources are limited, only the information phase of a SMP may be given to desiring clients. That should help to save time and money spent on participating in SMPs. This should however not discourage the use of the whole SPM, where affordable. Keywords: Stress Management Programs, Information Phase, Perception, Stress Level.

  18. Sequential SPECT/CT imaging starting with stress SPECT in patients with left bundle branch block suspected for coronary artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Engbers, Elsemiek M.; Mouden, Mohamed [Isala, Department of Cardiology, Zwolle (Netherlands); Isala, Department of Nuclear Medicine, Zwolle (Netherlands); Timmer, Jorik R.; Ottervanger, Jan Paul [Isala, Department of Cardiology, Zwolle (Netherlands); Knollema, Siert; Jager, Pieter L. [Isala, Department of Nuclear Medicine, Zwolle (Netherlands)

    2017-01-15

    To investigate the impact of left bundle branch block (LBBB) on sequential single photon emission computed tomography (SPECT)/ CT imaging starting with stress-first SPECT. Consecutive symptomatic low- to intermediate-risk patients without a history of coronary artery disease (CAD) referred for SPECT/CT were included from an observational registry. If stress SPECT was abnormal, additional rest SPECT and, if feasible, coronary CT angiography (CCTA) were acquired. Of the 5,018 patients, 218 (4.3 %) demonstrated LBBB. Patients with LBBB were slightly older than patients without LBBB (65±12 vs. 61±11 years, p<0.001). Stress SPECT was more frequently abnormal in patients with LBBB (82 % vs. 46 %, p<0.001). After reviewing stress and rest images, SPECT was normal in 43 % of the patients with LBBB, compared to 77 % of the patients without LBBB (p<0.001). Sixty-four of the 124 patients with LBBB and abnormal stress-rest SPECT underwent CCTA (52 %), which could exclude obstructive CAD in 46 of the patients (72 %). Sequential SPECT/CT imaging starting with stress SPECT is not the optimal imaging protocol in patients with LBBB, as the majority of these patients have potentially false-positive stress SPECT. First-line testing using CCTA may be more appropriate in low- to intermediate-risk patients with LBBB. (orig.)

  19. The structure of dodecagonal (Ta,V){sub 1.6}Te imaged by phase-contrast scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krumeich, F., E-mail: krumeich@inorg.chem.ethz.ch [Laboratory of Inorganic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich (Switzerland); Mueller, E.; Wepf, R.A. [Electron Microscopy ETH Zurich (EMEZ), Wolfgang-Pauli-Strasse 16, 8093 Zurich (Switzerland); Conrad, M.; Reich, C.; Harbrecht, B. [Department of Chemistry and Centre of Materials Science, Philipps-Universitaet, Hans-Meerwein-Strasse, 35032 Marburg (Germany); Nesper, R. [Laboratory of Inorganic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich (Switzerland)

    2012-10-15

    While HRTEM is the well-established method to characterize the structure of dodecagonal tantalum (vanadium) telluride quasicrystals and their periodic approximants, phase-contrast imaging performed on an aberration-corrected scanning transmission electron microscope (STEM) represents a favorable alternative. The (Ta,V){sub 151}Te{sub 74} clusters, the basic structural unit in all these phases, can be visualized with high resolution. A dependence of the image contrast on defocus and specimen thickness has been observed. In thin areas, the projected crystal potential is basically imaged with either dark or bright contrast at two defocus values close to Scherzer defocus as confirmed by image simulations utilizing the principle of reciprocity. Models for square-triangle tilings describing the arrangement of the basic clusters can be derived from such images. - Graphical abstract: PC-STEM image of a (Ta,V){sub 151}Te{sub 74} cluster. Highlights: Black-Right-Pointing-Pointer C{sub s}-corrected STEM is applied for the characterization of dodecagonal quasicrystals. Black-Right-Pointing-Pointer The projected potential of the structure is mirrored in the images. Black-Right-Pointing-Pointer Phase-contrast STEM imaging depends on defocus and thickness. Black-Right-Pointing-Pointer For simulations of phase-contrast STEM images, the reciprocity theorem is applicable.

  20. Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress.

    Science.gov (United States)

    Macheret, Morgane; Halazonetis, Thanos D

    2018-03-01

    Oncogene-induced DNA replication stress contributes critically to the genomic instability that is present in cancer. However, elucidating how oncogenes deregulate DNA replication has been impeded by difficulty in mapping replication initiation sites on the human genome. Here, using a sensitive assay to monitor nascent DNA synthesis in early S phase, we identified thousands of replication initiation sites in cells before and after induction of the oncogenes CCNE1 and MYC. Remarkably, both oncogenes induced firing of a novel set of DNA replication origins that mapped within highly transcribed genes. These ectopic origins were normally suppressed by transcription during G1, but precocious entry into S phase, before all genic regions had been transcribed, allowed firing of origins within genes in cells with activated oncogenes. Forks from oncogene-induced origins were prone to collapse, as a result of conflicts between replication and transcription, and were associated with DNA double-stranded break formation and chromosomal rearrangement breakpoints both in our experimental system and in a large cohort of human cancers. Thus, firing of intragenic origins caused by premature S phase entry represents a mechanism of oncogene-induced DNA replication stress that is relevant for genomic instability in human cancer.

  1. Prospective evaluation of a new protocol for the provisional use of perfusion imaging with exercise stress testing

    Energy Technology Data Exchange (ETDEWEB)

    Duvall, W.L. [Hartford Hospital, Division of Cardiology (Henry Low Heart Center), Hartford, CT (United States); Mount Sinai Medical Center, Division of Cardiology (Mount Sinai Heart), New York, NY (United States); Savino, John A.; Levine, Elliot J.; Croft, Lori B.; Henzlova, Milena J. [Mount Sinai Medical Center, Division of Cardiology (Mount Sinai Heart), New York, NY (United States); Hermann, Luke K. [Mount Sinai Medical Center, Department of Emergency Medicine, New York, NY (United States)

    2014-11-04

    Previous literature suggests that myocardial perfusion imaging (MPI) adds little to the prognosis of patients who exercise >10 metabolic equivalents (METs) during stress testing. With this in mind, we prospectively tested a provisional injection protocol in emergency department (ED) patients presenting for the evaluation of chest pain in which a patient would not receive an injection of radioisotope if adequate exercise was achieved without symptoms and a negative ECG response. All patients who presented to the ED over a 5-year period who were referred for stress testing as part of their ED evaluation were included. Patients considered for a provisional protocol were: exercise stress, age <65 years, no known coronary artery disease, and an interpretable rest ECG. Criteria for not injecting included a maximal predicted heart rate ≥85 %, ≥10 METs of exercise, no anginal symptoms during stress, and no ECG changes. Groups were compared based on stress test results, all-cause and cardiac mortality, follow-up cardiac testing, subsequent revascularization, and cost. A total of 965 patients were eligible with 192 undergoing exercise-only and 773 having perfusion imaging. After 41.6 ± 19.6 months of follow-up, all-cause mortality was similar in the exercise-only versus the exercise plus imaging group (2.6 % vs. 2.1 %, p = 0.59). There were no cardiac deaths in the exercise-only group. At 1 year there was no difference in the number of repeat functional stress tests (1.6 % vs. 2.1 %, p = 0.43), fewer angiograms (0 % vs. 4.0 %, p = 0.002), and a significantly lower cost (65 ± 332 vs 506 ± 1,991, p = 0.002; values are in US dollars) in the exercise-only group. The radiation exposure in the exercise plus imaging group was 8.4 ± 2.1 mSv. A provisional injection protocol has a very low mortality, few follow-up diagnostic tests, and lower cost compared to standard imaging protocols. If adopted it would decrease radiation exposure, save time and decrease health-care costs

  2. Prospective evaluation of a new protocol for the provisional use of perfusion imaging with exercise stress testing.

    Science.gov (United States)

    Duvall, W Lane; Savino, John A; Levine, Elliot J; Hermann, Luke K; Croft, Lori B; Henzlova, Milena J

    2015-02-01

    Previous literature suggests that myocardial perfusion imaging (MPI) adds little to the prognosis of patients who exercise >10 metabolic equivalents (METs) during stress testing. With this in mind, we prospectively tested a provisional injection protocol in emergency department (ED) patients presenting for the evaluation of chest pain in which a patient would not receive an injection of radioisotope if adequate exercise was achieved without symptoms and a negative ECG response. All patients who presented to the ED over a 5-year period who were referred for stress testing as part of their ED evaluation were included. Patients considered for a provisional protocol were: exercise stress, age heart rate ≥85%, ≥10 METs of exercise, no anginal symptoms during stress, and no ECG changes. Groups were compared based on stress test results, all-cause and cardiac mortality, follow-up cardiac testing, subsequent revascularization, and cost. A total of 965 patients were eligible with 192 undergoing exercise-only and 773 having perfusion imaging. After 41.6 ± 19.6 months of follow-up, all-cause mortality was similar in the exercise-only versus the exercise plus imaging group (2.6% vs. 2.1%, p = 0.59). There were no cardiac deaths in the exercise-only group. At 1 year there was no difference in the number of repeat functional stress tests (1.6% vs. 2.1%, p = 0.43), fewer angiograms (0% vs. 4.0%, p = 0.002), and a significantly lower cost ($65 ± $332 vs $506 ± $1,991, p = 0.002; values are in US dollars) in the exercise-only group. The radiation exposure in the exercise plus imaging group was 8.4 ± 2.1 mSv. A provisional injection protocol has a very low mortality, few follow-up diagnostic tests, and lower cost compared to standard imaging protocols. If adopted it would decrease radiation exposure, save time and decrease health-care costs without jeopardizing prognosis.

  3. Prospective evaluation of a new protocol for the provisional use of perfusion imaging with exercise stress testing

    International Nuclear Information System (INIS)

    Duvall, W.L.; Savino, John A.; Levine, Elliot J.; Croft, Lori B.; Henzlova, Milena J.; Hermann, Luke K.

    2015-01-01

    Previous literature suggests that myocardial perfusion imaging (MPI) adds little to the prognosis of patients who exercise >10 metabolic equivalents (METs) during stress testing. With this in mind, we prospectively tested a provisional injection protocol in emergency department (ED) patients presenting for the evaluation of chest pain in which a patient would not receive an injection of radioisotope if adequate exercise was achieved without symptoms and a negative ECG response. All patients who presented to the ED over a 5-year period who were referred for stress testing as part of their ED evaluation were included. Patients considered for a provisional protocol were: exercise stress, age <65 years, no known coronary artery disease, and an interpretable rest ECG. Criteria for not injecting included a maximal predicted heart rate ≥85 %, ≥10 METs of exercise, no anginal symptoms during stress, and no ECG changes. Groups were compared based on stress test results, all-cause and cardiac mortality, follow-up cardiac testing, subsequent revascularization, and cost. A total of 965 patients were eligible with 192 undergoing exercise-only and 773 having perfusion imaging. After 41.6 ± 19.6 months of follow-up, all-cause mortality was similar in the exercise-only versus the exercise plus imaging group (2.6 % vs. 2.1 %, p = 0.59). There were no cardiac deaths in the exercise-only group. At 1 year there was no difference in the number of repeat functional stress tests (1.6 % vs. 2.1 %, p = 0.43), fewer angiograms (0 % vs. 4.0 %, p = 0.002), and a significantly lower cost (65 ± 332 vs 506 ± 1,991, p = 0.002; values are in US dollars) in the exercise-only group. The radiation exposure in the exercise plus imaging group was 8.4 ± 2.1 mSv. A provisional injection protocol has a very low mortality, few follow-up diagnostic tests, and lower cost compared to standard imaging protocols. If adopted it would decrease radiation exposure, save time and decrease health-care costs

  4. A novel attack method about double-random-phase-encoding-based image hiding method

    Science.gov (United States)

    Xu, Hongsheng; Xiao, Zhijun; Zhu, Xianchen

    2018-03-01

    By using optical image processing techniques, a novel text encryption and hiding method applied by double-random phase-encoding technique is proposed in the paper. The first step is that the secret message is transformed into a 2-dimension array. The higher bits of the elements in the array are used to fill with the bit stream of the secret text, while the lower bits are stored specific values. Then, the transformed array is encoded by double random phase encoding technique. Last, the encoded array is embedded on a public host image to obtain the image embedded with hidden text. The performance of the proposed technique is tested via analytical modeling and test data stream. Experimental results show that the secret text can be recovered either accurately or almost accurately, while maintaining the quality of the host image embedded with hidden data by properly selecting the method of transforming the secret text into an array and the superimposition coefficient.

  5. Phase-and-amplitude recovery from a single phase-contrast image using partially spatially coherent x-ray radiation

    Science.gov (United States)

    Beltran, Mario A.; Paganin, David M.; Pelliccia, Daniele

    2018-05-01

    A simple method of phase-and-amplitude extraction is derived that corrects for image blurring induced by partially spatially coherent incident illumination using only a single intensity image as input. The method is based on Fresnel diffraction theory for the case of high Fresnel number, merged with the space-frequency description formalism used to quantify partially coherent fields and assumes the object under study is composed of a single-material. A priori knowledge of the object’s complex refractive index and information obtained by characterizing the spatial coherence of the source is required. The algorithm was applied to propagation-based phase-contrast data measured with a laboratory-based micro-focus x-ray source. The blurring due to the finite spatial extent of the source is embedded within the algorithm as a simple correction term to the so-called Paganin algorithm and is also numerically stable in the presence of noise.

  6. 256-Slice coronary computed tomographic angiography in patients with atrial fibrillation: optimal reconstruction phase and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Seitaro; Yuki, Hideaki; Kidoh, Masafumi; Utsunomiya, Daisuke; Nakaura, Takeshi; Namimoto, Tomohiro; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Faculty of Life Sciences, Chuou-ku, Kumamoto (Japan); Honda, Keiichi; Yoshimura, Akira; Katahira, Kazuhiro [Kumamoto Chuo Hospital, Department of Diagnostic Radiology, Minami-ku, Kumamoto (Japan); Noda, Katsuo; Oshima, Shuichi [Kumamoto Chuo Hospital, Department of Cardiology, Minami-ku, Kumamoto (Japan)

    2016-01-15

    To assess the optimal reconstruction phase and the image quality of coronary computed tomographic angiography (CCTA) in patients with atrial fibrillation (AF). We performed CCTA in 60 patients with AF and 60 controls with sinus rhythm. The images were reconstructed in multiple phases in all parts of the cardiac cycle, and the optimal reconstruction phase with the fewest motion artefacts was identified. The coronary artery segments were visually evaluated to investigate their assessability. In 46 (76.7 %) patients, the optimal reconstruction phase was end-diastole, whereas in 6 (10.0 %) patients it was end-systole or mid-diastole, and in 2 (3.3 %) patients it was another cardiac phase. In 53 (88.3 %) of the controls, the optimal reconstruction phase was mid-diastole, whereas it was end-systole in 4 (6.7 %), and in 3 (5.0 %) it was another cardiac phase. There was a significant difference between patients with AF and the controls in the optimal phase (p < 0.01) but not in the visual image quality score (p = 0.06). The optimal reconstruction phase in most patients with AF was the end-diastolic phase. The end-systolic phase tended to be optimal in AF patients with higher average heart rates. (orig.)

  7. Comparative study of quantitative phase imaging techniques for refractometry of optical fibers

    Science.gov (United States)

    de Dorlodot, Bertrand; Bélanger, Erik; Bérubé, Jean-Philippe; Vallée, Réal; Marquet, Pierre

    2018-02-01

    The refractive index difference profile of optical fibers is the key design parameter because it determines, among other properties, the insertion losses and propagating modes. Therefore, an accurate refractive index profiling method is of paramount importance to their development and optimization. Quantitative phase imaging (QPI) is one of the available tools to retrieve structural characteristics of optical fibers, including the refractive index difference profile. Having the advantage of being non-destructive, several different QPI methods have been developed over the last decades. Here, we present a comparative study of three different available QPI techniques, namely the transport-of-intensity equation, quadriwave lateral shearing interferometry and digital holographic microscopy. To assess the accuracy and precision of those QPI techniques, quantitative phase images of the core of a well-characterized optical fiber have been retrieved for each of them and a robust image processing procedure has been applied in order to retrieve their refractive index difference profiles. As a result, even if the raw images for all the three QPI methods were suffering from different shortcomings, our robust automated image-processing pipeline successfully corrected these. After this treatment, all three QPI techniques yielded accurate, reliable and mutually consistent refractive index difference profiles in agreement with the accuracy and precision of the refracted near-field benchmark measurement.

  8. Experimental and theoretical contributions to X-ray phase-contrast techniques for medical imaging

    International Nuclear Information System (INIS)

    Diemoz, P.C.

    2011-01-01

    Several X-ray phase-contrast techniques have recently been developed. Unlike conventional X-ray methods, which measure the absorption properties of the tissues, these techniques derive contrast also from the modulation of the phase produced by the sample. Since the phase shift can be significant even for small details characterized by weak or absent absorption, the achievable image contrast can be greatly increased, notably for the soft biological tissues. These methods are therefore very promising for applications in the medical domain. The aim of this work is to contribute to a deeper understanding of these techniques, in particular propagation-based imaging (PBI), analyzer-based imaging (ABI) and grating interferometry (GIFM), and to study their potential and the best practical implementation for medical imaging applications. An important part of this work is dedicated to the use of mathematical algorithms for the extraction, from the acquired images, of quantitative sample information (the absorption, refraction and scattering sample properties). In particular, five among the most known algorithms based on the geometrical optics approximation have been theoretically analysed and experimentally compared, in planar and tomographic modalities, by using geometrical phantoms and human bone-cartilage and breast samples. A semi-quantitative method for the acquisition and reconstruction of tomographic images in the ABI and GIFM techniques has also been proposed. The validity conditions are analyzed in detail and the method, enabling a considerable simplification of the imaging procedure, has been experimentally checked on phantoms and human samples. Finally, a theoretical and experimental comparison of the PBI, ABI and GIFM techniques is presented. The advantages and drawbacks of each of these techniques are discussed. The results obtained from this analysis can be very useful for determining the most adapted technique for a given application. (author)

  9. Phase identification and internal stress analysis of steamside oxides on superheater tubes by means of X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Pantleon, Karen; Montgomery, Melanie [Technical Univ. of Denmark, Lyngby (Denmark). Inst. of Manufacturing Engineering and Management

    2005-05-01

    For superheater tubes, the adherence of the inner steamside oxide is especially important as spallation of this oxide results in a) blockage of loops which cause insufficient steam flow through the superheaters and subsequently overheating and tube failure and b) spalled oxide can cause erosion of turbine blades. Oxide spallation is a serious problem for austenitic steels where the significant differences of the thermal expansion coefficients of steel and oxide cause relatively high thermal stresses. Usually, various oxides layered within the scale are suggested from microscopical observations of the morphology and/or topography of the oxide scale accompanied by the analysis of chemical elements present. Reports about the application of X-ray diffraction on the study of steamside oxide formation are very scarce in literature. If applied at all, XRD-studies are restricted to ideally flat samples oxidized under laboratory conditions, but relation to real operating conditions and the effect of the real sample geometry is missing. Within the frame of the project, steamside oxides on plant exposed components of ferritic/ martensitic X20CrMoV12-1 as well as fine- and coarse-grained austenitic TP347H were studied by means of X-ray diffraction. Depth dependent phase analysis on sample segments cut from the tubes was carried out by means of grazing incidence diffraction and, in order to obtain information from a larger depth, conventional XRD was combination with stepwise mechanical removal of the steamside oxides. After each removal step phase analysis was performed both on the segments and on the removed powders. Phase specific stress analysis was carried out on rings cut from the tube. Results show that steamside oxides on X20CrMoV12-1 consist of pure Hematite at the surface followed by a relatively thick layer of pure Magnetite. Both phases are under relatively high tensile stresses. While the phase composition of the Hematite layer appears to be the same for all

  10. Clinical evaluation of phased array multicoil for spine MR imaging

    International Nuclear Information System (INIS)

    Miller, G.M.; Forbes, G.S.; Onofrio, B.M.; Rasmusson, J.J.

    1990-01-01

    Often, it is necessary to image the entire spinal canal or cord. Current surface coil technology necessitates a small field of view (FOV) and multiple coil placements, prolonging the examination. The Phased Array Multicoil (General Electric, Milwaukee, Wis) allows for high-resolution imaging of a larger segment of the spinal axis (48 cm), negating the need for multiple coil placements. The purpose of this paper is to determine whether, this technology can produce higher-quality images with equal or better expediency in a high-volume clinical practice. The studies were performed with a modified 1.5-T system (General Electric, Milwaukee, Wis). Multiple small surface coils are electronically linked so that each coil images only a small segment of the spinal column. The individual images are then fused to display one high-resolution 512-matrix image with up to a 48-cm FOV. A variety of four coil arrays were tested, including a 24-cm FOV dedicated cervical coil, 48-cm FOV shaped cervical/thoracic and straight thoracic/lumbar coils, and a six-coil array 75-cm entire spine coil. The images were then evaluated for overall quality, resolution, signal-to-noise ratio, and area of coverage

  11. Tensile Residual Stress Mitigation Using Low Temperature Phase Transformation Filler Wire in Welded Armor Plates

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhili [ORNL; Bunn, Jeffrey R [ORNL; Tzelepis, Demetrios A [ORNL; Payzant, E Andrew [ORNL; Yu, Xinghua [ORNL

    2016-01-01

    Hydrogen induced cracking (HIC) has been a persistent issue in welding of high-strength steels. Mitigating residual stresses is one of the most efficient ways to control HIC. The current study develops a proactive in-process weld residual stress mitigation technique, which manipulates the thermal expansion and contraction sequence in the weldments during welding process. When the steel weld is cooled after welding, martensitic transformation will occur at a temperature below 400 C. Volume expansion in the weld due to the martensitic transformation will reduce tensile stresses in the weld and heat affected zone and in some cases produce compressive residual stresses in the weld. Based on this concept, a customized filler wire which undergoes a martensitic phase transformation during cooling was developed. The new filler wire shows significant improvement in terms of reducing the tendency of HIC in high strength steels. Bulk residual stress mapping using neutron diffraction revealed reduced tensile and compressive residual stresses in the welds made by the new filler wire.

  12. A phase contrast imaging system for TEXT-U

    International Nuclear Information System (INIS)

    Chatterjee, R.; Hallock, G.A.; Gartman, M.L.

    1994-01-01

    A diagnostic to study plasma density fluctuations, Phase Contrast Imaging (PCI) has been developed for the Texas Experimental Tokamak-Upgrade. The diagnostic has a sensitivity of about 10 -4 n e0 and is capable of detecting a wide range of wavenumbers (0.5 cm -1 - 12 cm -1 ) with a bandwidth of 500 Khz. The design of the diagnostic, some results of acoustic calibration tests and preliminary results of simulation of expected spectra are presented

  13. Small average differences in attenuation corrected images between men and women in myocardial perfusion scintigraphy: a novel normal stress database

    International Nuclear Information System (INIS)

    Trägårdh, Elin; Sjöstrand, Karl; Jakobsson, David; Edenbrandt, Lars

    2011-01-01

    The American Society of Nuclear Cardiology and the Society of Nuclear Medicine state that incorporation of attenuation-corrected (AC) images in myocardial perfusion scintigraphy (MPS) will improve image quality, interpretive certainty, and diagnostic accuracy. However, commonly used software packages for MPS usually include normal stress databases for non-attenuation corrected (NC) images but not for attenuation-corrected (AC) images. The aim of the study was to develop and compare different normal stress databases for MPS in relation to NC vs. AC images, male vs. female gender, and presence vs. absence of obesity. The principal hypothesis was that differences in mean count values between men and women would be smaller with AC than NC images, thereby allowing for construction and use of gender-independent AC stress database. Normal stress perfusion databases were developed with data from 126 male and 205 female patients with normal MPS. The following comparisons were performed for all patients and separately for normal weight vs. obese patients: men vs. women for AC; men vs. women for NC; AC vs. NC for men; and AC vs. NC for women. When comparing AC for men vs. women, only minor differences in mean count values were observed, and there were no differences for normal weight vs. obese patients. For all other analyses major differences were found, particularly for the inferior wall. The results support the hypothesis that it is possible to use not only gender independent but also weight independent AC stress databases

  14. Multiplexed phase-space imaging for 3D fluorescence microscopy.

    Science.gov (United States)

    Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura

    2017-06-26

    Optical phase-space functions describe spatial and angular information simultaneously; examples of optical phase-space functions include light fields in ray optics and Wigner functions in wave optics. Measurement of phase-space enables digital refocusing, aberration removal and 3D reconstruction. High-resolution capture of 4D phase-space datasets is, however, challenging. Previous scanning approaches are slow, light inefficient and do not achieve diffraction-limited resolution. Here, we propose a multiplexed method that solves these problems. We use a spatial light modulator (SLM) in the pupil plane of a microscope in order to sequentially pattern multiplexed coded apertures while capturing images in real space. Then, we reconstruct the 3D fluorescence distribution of our sample by solving an inverse problem via regularized least squares with a proximal accelerated gradient descent solver. We experimentally reconstruct a 101 Megavoxel 3D volume (1010×510×500µm with NA 0.4), demonstrating improved acquisition time, light throughput and resolution compared to scanning aperture methods. Our flexible patterning scheme further allows sparsity in the sample to be exploited for reduced data capture.

  15. Rest-Stress Limb Perfusion Imaging in Humans with Contrast Ultrasound Using Intermediate-Power Imaging and Microbubbles Resistant to Inertial Cavitation.

    Science.gov (United States)

    Davidson, Brian P; Hodovan, James; Belcik, J Todd; Moccetti, Federico; Xie, Aris; Ammi, Azzdine Y; Lindner, Jonathan R

    2017-05-01

    Contrast-enhanced ultrasound (CEU) limb perfusion imaging is a promising approach for evaluating peripheral artery disease (PAD). However, low signal enhancement in skeletal muscle has necessitated high-power intermittent imaging algorithms, which are not clinically feasible. We hypothesized that CEU using a combination of intermediate power and a contrast agent resistant to inertial cavitation would allow real-time limb stress perfusion imaging. In normal volunteers, CEU of the calf skeletal muscle was performed on separate days with Sonazoid, Optison, or Definity. Progressive reduction in the ultrasound pulsing interval was used to assess the balance between signal enhancement and agent destruction at escalating mechanical indices (MI, 0.1-0.4). Real-time perfusion imaging at MI 0.1-0.4 using postdestructive replenishment kinetics was performed at rest and during 25 W plantar flexion contractile exercise. For Optison, limb perfusion imaging was unreliable at rest due to very low signal enhancement generated at all MIs and was possible during exercise-induced hyperemia only at MI 0.1 due to agent destruction at higher MIs. For Definity, signal intensity progressively increased with MI but was offset by microbubble destruction, which resulted in modest signal enhancement during CEU perfusion imaging and distortion of replenishment curves at MI ≥ 0.2. For Sonazoid, there strong signal enhancement at MI ≥ 0.2, with little destruction detected only at MI 0.4. Accordingly, high signal intensity and nondistorted perfusion imaging was possible at MI 0.2-0.3 and detected an 8.0- ± 5.7-fold flow reserve. Rest-stress limb perfusion imaging in humans with real-time CEU, which requires only seconds to perform, is possible using microbubbles with viscoelastic properties that produce strong nonlinear signal generation without destruction at intermediate acoustic pressures. Copyright © 2016 American Society of Echocardiography. All rights reserved.

  16. Electrical Resistance Imaging of Bubble Boundary in Annular Two-Phase Flows Using Unscented Kalman Filter

    International Nuclear Information System (INIS)

    Lee, Jeong Seong; Chung, Soon Il; Ljaz, Umer Zeeshan; Khambampati, Anil Kumar; Kim, Kyung Youn; Kim, Sin Kim

    2007-01-01

    For the visualization of the phase boundary in annular two-phase flows, the electrical resistance tomography (ERT) technique is introduced. In ERT, a set of predetermined electrical currents is injected trough the electrodes placed on the boundary of the flow passage and the induced electrical potentials are measured on the electrode. With the relationship between the injected currents and the induced voltages, the electrical conductivity distribution across the flow domain is estimated through the image reconstruction algorithm. In this, the conductivity distribution corresponds to the phase distribution. In the application of ERT to two-phase flows where there are only two conductivity values, the conductivity distribution estimation problem can be transformed into the boundary estimation problem. This paper considers a bubble boundary estimation with ERT in annular two-phase flows. As the image reconstruction algorithm, the unscented Kalman filter (UKF) is adopted since from the control theory it is reported that the UKF shows better performance than the extended Kalman filter (EKF) that has been commonly used. We formulated the UKF algorithm to be incorporate into the image reconstruction algorithm for the present problem. Also, phantom experiments have been conducted to evaluate the improvement by UKF

  17. Subset geometric phase analysis method for deformation evaluation of HRTEM images

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongye [School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China); Liu, Zhanwei, E-mail: liuzw@bit.edu.cn [School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China); Wen, Huihui [School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China); Xie, Huimin, E-mail: xiehm@mail.tsinghua.edu.cn [AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Liu, Chao [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2016-12-15

    Geometrical phase analysis (GPA) is typically a powerful tool to investigate the deformation in high resolution transmission electron microscopy images and has been used in various fields. The traditional GPA method using the fast Fourier transform, referred to as global-GPA (G-GPA) here, is based on the relationship between the displacement and the phase difference. In this paper, a subset-GPA (S-GPA) is introduced for further improvement. The S-GPA performs the windowed Fourier transform block by block in the image. The maximum strain measurement scale of the GPA method is theoretically analyzed on the basic of the phase spectrum extraction process. The upper limit is one third of the atomic spacing. The results of various numerical simulations verified that the S-GPA method performs better than the traditional G-GPA method in both the homogeneous and inhomogeneous deformation conditions, with the evaluation parameter of calculation reliability of S-GPA 10% higher than G-GPA. Specifically, the measurement accuracy of S-GPA is about three times higher than the G-GPA when calculating small strain (less than 2000με). For the large strain (greater than 150000με), the measurement accuracy of S-GPA is about 50% higher than that of the G-GPA. Besides, the S-GPA method can significantly eliminate the phase filling effect, while the G-GPA cannot. The S-GPA method has been successfully applied to analyze the strain field distribution in an lnGaAs/InAlAs supperlattice heterostructure. - Highlights: • A subset-GPA method, performing the windowed Fourier transform block by block in HRTEM image, is systematically introduced. • According to the theoretical analysis, the upper limit of absolute maximum strain of GPA method is 1/3. • The measurement accuracy of S-GPA is about three times higher than that of the G-GPA when calculating small strain. • The measurement capability of S-GPA is about 50 percent higher than that of the G-GPA when calculating large strain.

  18. In-situ characterization of transformation plasticity during an isothermal austenite-to-bainite phase transformation

    Energy Technology Data Exchange (ETDEWEB)

    Holzweissig, M.J., E-mail: martinh@mail.upb.de [University of Paderborn, Lehrstuhl fuer Werkstoffkunde (Materials Science), 33095 Paderborn (Germany); Canadinc, D., E-mail: dcanadinc@ku.edu.tr [Koc University, Advanced Materials Group, Department of Mechanical Engineering, 34450 Istanbul (Turkey); Maier, H.J., E-mail: hmaier@mail.upb.de [University of Paderborn, Lehrstuhl fuer Werkstoffkunde (Materials Science), 33095 Paderborn (Germany)

    2012-03-15

    This paper elucidates the stress-induced variant selection process during the isothermal austenite-to-bainite phase transformation in a tool steel. Specifically, a thorough set of experiments combining electron backscatter diffraction and in-situ digital image correlation (DIC) was carried out to establish the role of superimposed stress level on the evolution of transformation plasticity (TP) strains. The important finding is that TP increases concomitant with the superimposed stress level, and strain localization accompanies phase transformation at all stress levels considered. Furthermore, TP strain distribution within the whole material becomes more homogeneous with increasing stress, such that fewer bainitic variants are selected to grow under higher stresses, yielding a more homogeneous strain distribution. In particular, the bainitic variants oriented along [101] and [201] directions are favored to grow parallel to the loading axis and are associated with large TP strains. Overall, this very first in-situ DIC investigation of the austenite-to-bainite phase transformation in steels evidences the clear relationship between the superimposed stress level, variant selection, and evolution of TP strains. - Highlights: Black-Right-Pointing-Pointer Local variations of strain were observed by DIC throughout the phase transformation. Black-Right-Pointing-Pointer The study clearly established the role of the stress-induced variant selection. Black-Right-Pointing-Pointer Variant selection is a key parameter that governs distortion.

  19. Value of stress ultrasound for the diagnosis of chronic ankle instability compared to manual anterior drawer test, stress radiography, magnetic resonance imaging, and arthroscopy.

    Science.gov (United States)

    Cho, Jae Ho; Lee, Doo Hyung; Song, Hyung Keun; Bang, Joon Young; Lee, Kyung Tai; Park, Young Uk

    2016-04-01

    Clinicians frequently diagnose chronic ankle instability using the manual anterior drawer test and stress radiography. However, both examinations can yield incorrect results and do not reveal the extent of ankle instability. Stress ultrasound has been reported to be a new diagnostic tool for the diagnosis of chronic ankle instability. The purpose of this study was to assess the diagnostic value of stress ultrasound for chronic ankle instability compared to the manual anterior drawer test, stress radiography, magnetic resonance imaging (MRI), and arthroscopy. Twenty-eight consecutive patients who underwent ankle arthroscopy and subsequent modified Broström repair for treatment of chronic ankle instability were included. The arthroscopic findings were used as the reference standard. A standardized physical examination (manual anterior drawer test), stress radiography, MRI, and stress ultrasound were performed to assess the anterior talofibular ligament (ATFL) prior to operation. Ultrasound images were taken in the resting position and the maximal anterior drawer position. Grade 3 lateral instability was verified arthroscopically in all 28 cases with a clinical diagnosis (100%). Twenty-two cases showed grade III instability on the manual anterior drawer test (78.6%). Twenty-four cases displayed anterior translation exceeding 5 mm on stress radiography (86%), and talar tilt angle exceeded 15° in three cases (11 %). Nineteen cases displayed a partial chronic tear (change in thickness or signal intensity), and nine cases displayed complete tear on MRI (100%). Lax and wavy ATFL was evident on stress ultrasound in all cases (100 %). The mean value of the ATFL length was 2.8 ± 0.3 cm for the stressed condition and 2.1 ± 0.2 cm for the resting condition (p radiography. III.

  20. Two-phase velocity measurements around cylinders using particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Y.A.; Philip, O.G.; Schmidl, W.D. [Texas A& M Univ., College Station, TX (United States)] [and others

    1995-09-01

    The particle Image Velocimetry flow measurement technique was used to study both single-phase flow and two-phase flow across a cylindrical rod inserted in a channel. First, a flow consisting of only a single-phase fluid was studied. The experiment consisted of running a laminar flow over four rods inserted in a channel. The water flow rate was 126 cm{sup 3}/s. Then a two-phase flow was studied. A mixture of water and small air bubbles was used. The water flow rate was 378 cm{sup 3}/s and the air flow rate was approximately 30 cm{sup 3}/s. The data are analyzed to obtain the velocity fields for both experiments. After interpretation of the velocity data, forces acting on a bubble entrained by the vortex were calculated successfully. The lift and drag coefficients were calculated using the velocity measurements and the force data.

  1. Disorder–order phase transformation in a fluorite-related oxide thin film: In-situ X-ray diffraction and modelling of the residual stress effects

    International Nuclear Information System (INIS)

    Gaboriaud, R.J.; Paumier, F.; Lacroix, B.

    2016-01-01

    This work is focused on the transformation of the disordered fluorite cubic-F phase to the ordered cubic-C bixbyite phase, induced by isothermal annealing as a function of the residual stresses resulting from different concentrations of microstructural defects in the yttrium oxide, Y_2O_3. This transformation was studied using in-situ X-ray diffraction and was modelled using Kolmogorov–Johnson–Mehl–Avrami (KJMA) analysis. The degree of the disorder of the oxygen network was associated with the residual stress, which was a key parameter for the stability and the kinetics of the transition of the different phases that were present in the thin oxide film. When the degree of disorder/residual stress level is high, this transition, which occurs at a rather low temperature (300 °C), is interpreted as a transformation of phases that occurs by a complete recrystallization via the nucleation and growth of a new cubic-C structure. Using the KJMA model, we determined the activation energy of the transformation process, which indicates that this transition occurs via a one-dimensional diffusion process. Thus, we present the analysis and modelling of the stress state. When the disorder/residual stress level was low, a transition to the quasi-perfect ordered cubic-C structure of the yttrium oxide appeared at a rather high temperature (800 °C), which is interpreted as a classic recovery mechanism of the cubic-C structure. - Highlights: • Rare earth oxide thin films • XRD analysis • Phase transformation modelling • Residual stress effects • Crystallographic phase stability

  2. Disorder–order phase transformation in a fluorite-related oxide thin film: In-situ X-ray diffraction and modelling of the residual stress effects

    Energy Technology Data Exchange (ETDEWEB)

    Gaboriaud, R.J.; Paumier, F. [Institut Pprime, Department of Material Sciences, CNRS-University of Poitiers SP2MI-BP 30179, 86962 Futuroscope-Chasseneuil cedex (France); Lacroix, B. [CSIC, Institut de Ciencia de Materiales, University of Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla (Spain)

    2016-02-29

    This work is focused on the transformation of the disordered fluorite cubic-F phase to the ordered cubic-C bixbyite phase, induced by isothermal annealing as a function of the residual stresses resulting from different concentrations of microstructural defects in the yttrium oxide, Y{sub 2}O{sub 3}. This transformation was studied using in-situ X-ray diffraction and was modelled using Kolmogorov–Johnson–Mehl–Avrami (KJMA) analysis. The degree of the disorder of the oxygen network was associated with the residual stress, which was a key parameter for the stability and the kinetics of the transition of the different phases that were present in the thin oxide film. When the degree of disorder/residual stress level is high, this transition, which occurs at a rather low temperature (300 °C), is interpreted as a transformation of phases that occurs by a complete recrystallization via the nucleation and growth of a new cubic-C structure. Using the KJMA model, we determined the activation energy of the transformation process, which indicates that this transition occurs via a one-dimensional diffusion process. Thus, we present the analysis and modelling of the stress state. When the disorder/residual stress level was low, a transition to the quasi-perfect ordered cubic-C structure of the yttrium oxide appeared at a rather high temperature (800 °C), which is interpreted as a classic recovery mechanism of the cubic-C structure. - Highlights: • Rare earth oxide thin films • XRD analysis • Phase transformation modelling • Residual stress effects • Crystallographic phase stability.

  3. Restoration of strength despite low stress and abnormal imaging after Achilles injury.

    Science.gov (United States)

    Trudel, Guy; Doherty, Geoffrey P; Koike, Yoichi; Ramachandran, Nanthan; Lecompte, Martin; Dinh, Laurent; Uhthoff, Hans K

    2009-11-01

    To determine the usefulness of clinical imaging in predicting the mechanical properties of rabbit Achilles tendons after acute injury. We created a 2 x 7-mm full-thickness central tendon defect in one Achilles tendon of healthy rabbits. Rabbits in groups of 10 were killed immediately and 4 and 8 wk after surgery (n = 30). We then performed magnetic resonance (MR) imaging, ultrasonography (US), bone mineral densitometry (BMD), and mechanical testing to failure using a dual-cryofixation assembly on experimental and contralateral tendons. The main outcome measures included tendon dimensions, optical density (OD) of T1-weighted, proton density (PD), and T2-weighted MR sequences, US focal abnormalities, BMD of the calcaneus, and stress and peak load to failure. On MR imaging and US, all dimensions of the injured tendons after 2 wk and more were greater than those of the contralateral tendons (P tendons at both 4 wk (39 +/- 9 vs 77 +/- 16 N x mm(-2)) and 8 wk (58 +/- 6 vs 94 +/- 26 N x mm(-2); P tendons, higher T1-weighted OD correlated with lower peak load (r = -0.46; P tendon of lower stress. These findings support progressive physical loading 4 wk after an Achilles tendon injury. T1-weighted OD constituted a marker of tendon mechanical recovery.

  4. Invited Review Article: Methods for imaging weak-phase objects in electron microscopy

    International Nuclear Information System (INIS)

    Glaeser, Robert M.

    2013-01-01

    Contrast has traditionally been produced in electron-microscopy of weak phase objects by simply defocusing the objective lens. There now is renewed interest, however, in using devices that apply a uniform quarter-wave phase shift to the scattered electrons relative to the unscattered beam, or that generate in-focus image contrast in some other way. Renewed activity in making an electron-optical equivalent of the familiar “phase-contrast” light microscope is based in part on the improved possibilities that are now available for device microfabrication. There is also a better understanding that it is important to take full advantage of contrast that can be had at low spatial frequency when imaging large, macromolecular objects. In addition, a number of conceptually new phase-plate designs have been proposed, thus increasing the number of options that are available for development. The advantages, disadvantages, and current status of each of these options is now compared and contrasted. Experimental results that are, indeed, superior to what can be accomplished with defocus-based phase contrast have been obtained recently with two different designs of phase-contrast aperture. Nevertheless, extensive work also has shown that fabrication of such devices is inconsistent, and that their working lifetime is short. The main limitation, in fact, appears to be electrostatic charging of any device that is placed into the electron diffraction pattern. The challenge in fabricating phase plates that are practical to use for routine work in electron microscopy thus may be more in the area of materials science than in the area of electron optics

  5. Visualization and quantitative analysis of the CSF pulsatile flow with cine MR phase imaging

    International Nuclear Information System (INIS)

    Katayama, Shinji; Itoh, Takahiko; Kinugasa, Kazushi; Asari, Shoji; Nishimoto, Akira; Tsuchida, Shohei; Ono, Atsushi; Ikezaki, Yoshikazu; Yoshitome, Eiji.

    1991-01-01

    The visualization and the quantitative analysis of the CSF pulsatile flow were performed on ten healthy volunteers with cine MR phase imaging, a combination of the phase-contrast technique and the cardiac-gating technique. The velocities appropriate for the visualization and the quantitative analysis of the CSF pulsatile flow were from 6.0 cm/sec to 15.0 cm/sec. The applicability of this method for the quantitative analysis was proven with a steady-flow phantom. Phase images clearly demonstrated a to-and-fro motion of the CSF flow in the anterior subarachnoid space and in the posterior subarachnoid space. The flow pattern of CSF on healthy volunteers depends on the cardiac cycle. In the anterior subarachnoid space, the cephalic CSF flow continued until a 70-msec delay after the R-wave of the ECG and then reversed to caudal. At 130-190 msec, the caudal CSF flow reached its maximum velocity; thereafter it reversed again to cephalic. The same turn appeared following the phase, but then the amplitude decreased. The cephalic peaked at 370-430 msec, while the caudal peaked at 490-550 msec. The flow pattern of the CSF flow in the posterior subarachnoid space was almost identical to that in the anterior subarachnoid space. Cine MR phase imaging is thus useful for the visualization and the quantitative analysis of the CSF pulsative flow. (author)

  6. Three-dimensional phase-contrast X-ray microtomography with scanning–imaging X-ray microscope optics

    International Nuclear Information System (INIS)

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2013-01-01

    A novel three-dimensional X-ray microtomographic micro-imaging system which enables simultaneous measurement of differential phase contrast and absorption contrast has been developed. The optical system consists of a scanning microscope with one-dimensional focusing device and an imaging microscope with one-dimensional objective. A three-dimensional (3D) X-ray tomographic micro-imaging system has been developed. The optical system is based on a scanning–imaging X-ray microscope (SIXM) optics, which is a hybrid system consisting of a scanning microscope optics with a one-dimensional (1D) focusing (line-focusing) device and an imaging microscope optics with a 1D objective. In the SIXM system, each 1D dataset of a two-dimensional (2D) image is recorded independently. An object is illuminated with a line-focused beam. Positional information of the region illuminated by the line-focused beam is recorded with the 1D imaging microscope optics as line-profile data. By scanning the object with the line focus, 2D image data are obtained. In the same manner as for a scanning microscope optics with a multi-pixel detector, imaging modes such as phase contrast and absorption contrast can be arbitrarily configured after the image data acquisition. By combining a tomographic scan method and the SIXM system, quantitative 3D imaging is performed. Results of a feasibility study of the SIXM for 3D imaging are shown

  7. Optical Spectroscopy and Imaging of Correlated Spin Orbit Phases

    Science.gov (United States)

    2016-06-14

    Unlimited UU UU UU UU 14-06-2016 15-Mar-2013 14-Mar-2016 Final Report: Optical Spectroscopy and Imaging of Correlated Spin-Orbit Phases The views...Box 12211 Research Triangle Park, NC 27709-2211 Ultrafast optical spectroscopy , nonlinear optical spectroscopy , iridates, cuprates REPORT...California Blvd. Pasadena, CA 91125 -0001 ABSTRACT Number of Papers published in peer-reviewed journals: Final Report: Optical Spectroscopy and

  8. Adenosine stress and exercise 99Tcm-MIBI myocardial perfusion imaging in the diagnosis and risk stratification of patients with unstable angina

    International Nuclear Information System (INIS)

    Jia Peng; Guo Wanhua; Xu Shoulin; Feng Xuefeng

    2008-01-01

    Objective: The aim of this study was to evaluate the clinical value of adenosine stress or exercise 99 Tc m -methoxyisobutylisonitrile (MIBI) myocardial perfusion imaging in the diagnosis and risk stratification of patients with unstable angina. Methods: Eighty-seven hospitalized patients with unstable angina [54 men and 33 women, aged of (56.5±12.5) years] underwent adenosine stress or exercise myocardial perfusion imaging and coronary angiography. Patients were followed up. Results: Fifty-seven patients had abnormal myocardial perfusion imaging and significant coronary artery stenosis. Ten patients had abnormal myocardial perfusion imaging but normal coronary angiography. Eight patients had normal myocardial perfusion imaging but significant coronary artery stenosis. Twelve patients had normal myocardial perfusion imaging and normal coronary angiography. Patients with abnormal myocardial perfusion imaging had worse prognosis. There was relationship between cardiac events and the extent and severity of myocardial ischemia. Conclusion: Adenosine stress and exercise myocardial perfusion imaging is of important clinical value in the diagnosis and risk stratification of patients with unstable angina. (authors)

  9. Phase-contrast X-ray CT imaging of the kidney. Differences between ethanol fixation and formalin fixation

    International Nuclear Information System (INIS)

    Shirai, Ryota; Kunii, Takuya; Maruyama, Hiroko; Takeda, Tohoru; Yoneyama, Akio; Lwin, Thet Thet

    2012-01-01

    A phase-contrast X-ray imaging technique using an X-ray interferometer that provides approximately 1000 times higher sensitivity than the conventional X-ray imaging method for low-atomic number elements based on the difference in the mass attenuation coefficient has recently been developed. In the present study, we compared rat kidneys fixed in 100% ethanol and in 10% formalin to evaluate the effects of ethanol in enhancing image contrast in phase-contrast imaging because ethanol causes significant dehydration of tissues and enhances density differences between tissue components. The experiments were conducted at the Photon Factory in Tsukuba, and the X-ray energy was set at 35 keV. Fine anatomical structures in the kidney such as the glomeruli, tubules, and vessels were observed. Particularly clear renal images were obtained with ethanol fixation. The pixel value ratio between the cortex and medulla was about 43% in ethanol-fixed kidneys and 21% in formalin-fixed kidneys. In other words, the contrast in ethanol-fixed kidneys was about two times higher than that in formalin-fixed kidneys. Histological examination showed significantly condensed features in the cortex. The results of this study suggest that the ethanol fixation technique may be useful for enhancing the image contrast of renal structures in the phase-contrast X-ray imaging technique. (author)

  10. New developments in simulating X-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Peterzol, A.; Berthier, J.; Duvauchelle, P.; Babot, D.; Ferrero, C.

    2007-01-01

    A deterministic algorithm simulating phase contrast (PC) x-ray images for complex 3- dimensional (3D) objects is presented. This algorithm has been implemented in a simulation code named VXI (Virtual X-ray Imaging). The physical model chosen to account for PC technique is based on the Fresnel-Kirchhoff diffraction theory. The algorithm consists mainly of two parts. The first one exploits the VXI ray-tracing approach to compute the object transmission function. The second part simulates the PC image due to the wave front distortion introduced by the sample. In the first part, the use of computer-aided drawing (CAD) models enables simulations to be carried out with complex 3D objects. Differently from the VXI original version, which makes use of an object description via triangular facets, the new code requires a more 'sophisticated' object representation based on Non-Uniform Rational B-Splines (NURBS). As a first step we produce a spatial high resolution image by using a point and monochromatic source and an ideal detector. To simulate the polychromatic case, the intensity image is integrated over the considered x-ray energy spectrum. Then, in order to account for the system spatial resolution properties, the high spatial resolution image (mono or polychromatic) is convolved with the total point spread function of the imaging system under consideration. The results supplied by the presented algorithm are examined with the help of some relevant examples. (authors)

  11. Myocardial perfusion SPECT imaging in patients with myocardial bridging

    International Nuclear Information System (INIS)

    Fang Wei; Qiu Hong; Yang Weixian; Wang Feng; He Zuoxiang

    2008-01-01

    Objective: Stress myocardial perfusion SPECT imaging was used to assess myocardial ischemia in patients with myocardial bridging. Methods: Ninety-six patients with myocardial bridging of the left anterior descending artery documented by coronary angiography were included in this study. All under- went exercise or pharmacological stress myocardial perfusion SPECT assessing myocardial ischemia. None had prior myocardial infarction. One year follow-up by telephone interview was performed in all patients. Results The mean stenotic severity of systolic phase on angiography was (65 ± 19)%. In the SPECT study, 20 of 96 (20.8%) patients showed abnormal perfusion. This percentage was significantly higher than that of stress electrocardiogram (ECG). The higher positive rate of SPECT perfusion images was showed in the group of patients with severe systolic narrowing (≥75%) than that with mild-to-moderate systolic narrowing (50% vs 6.3%, P<0.001). The prevalence of abnormal image was significantly higher in ELDERLY PEOPLE; patients with STT change on rest ECG than in those with normal rest ECG (54.2% vs 9.7%, P<0.001). During follow-up, one patient with abnormal SPECT perfusion image sustained angina and accepted percutaneous coronary intervention, and no cardiac event occurred in patients with normal images. Conclusions: Stress myocardial perfusion SPECT imaging can be used effectively for assessing myocardial ischemia and has potential prognostic value for patients with myocardial bridging. (authors)

  12. Genetic and Computational Approaches for Studying Plant Development and Abiotic Stress Responses Using Image-Based Phenotyping

    Science.gov (United States)

    Campbell, M. T.; Walia, H.; Grondin, A.; Knecht, A.

    2017-12-01

    The development of abiotic stress tolerant crops (i.e. drought, salinity, or heat stress) requires the discovery of DNA sequence variants associated with stress tolerance-related traits. However, many traits underlying adaptation to abiotic stress involve a suite of physiological pathways that may be induced at different times throughout the duration of stress. Conventional single-point phenotyping approaches fail to fully capture these temporal responses, and thus downstream genetic analysis may only identify a subset of the genetic variants that are important for adaptation to sub-optimal environments. Although genomic resources for crops have advanced tremendously, the collection of phenotypic data for morphological and physiological traits is laborious and remains a significant bottleneck in bridging the phenotype-genotype gap. In recent years, the availability of automated, image-based phenotyping platforms has provided researchers with an opportunity to collect morphological and physiological traits non-destructively in a highly controlled environment. Moreover, these platforms allow abiotic stress responses to be recorded throughout the duration of the experiment, and have facilitated the use of function-valued traits for genetic analyses in major crops. We will present our approaches for addressing abiotic stress tolerance in cereals. This talk will focus on novel open-source software to process and extract biological meaningful data from images generated from these phenomics platforms. In addition, we will discuss the statistical approaches to model longitudinal phenotypes and dissect the genetic basis of dynamic responses to these abiotic stresses throughout development.

  13. Color image encryption using random transforms, phase retrieval, chaotic maps, and diffusion

    Science.gov (United States)

    Annaby, M. H.; Rushdi, M. A.; Nehary, E. A.

    2018-04-01

    The recent tremendous proliferation of color imaging applications has been accompanied by growing research in data encryption to secure color images against adversary attacks. While recent color image encryption techniques perform reasonably well, they still exhibit vulnerabilities and deficiencies in terms of statistical security measures due to image data redundancy and inherent weaknesses. This paper proposes two encryption algorithms that largely treat these deficiencies and boost the security strength through novel integration of the random fractional Fourier transforms, phase retrieval algorithms, as well as chaotic scrambling and diffusion. We show through detailed experiments and statistical analysis that the proposed enhancements significantly improve security measures and immunity to attacks.

  14. Implementation of a Computerized Order Entry Tool to Reduce the Inappropriate and Unnecessary Use of Cardiac Stress Tests With Imaging in Hospitalized Patients.

    Science.gov (United States)

    Gertz, Zachary M; O'Donnell, William; Raina, Amresh; Balderston, Jessica R; Litwack, Andrew J; Goldberg, Lee R

    2016-10-15

    The rising use of imaging cardiac stress tests has led to potentially unnecessary testing. Interventions designed to reduce inappropriate stress testing have focused on the ambulatory setting. We developed a computerized order entry tool intended to reduce the use of imaging cardiac stress tests and improve appropriate use in hospitalized patients. The tool was evaluated using preimplementation and postimplementation cohorts at a single urban academic teaching hospital. All hospitalized patients referred for testing were included. The co-primary outcomes were the use of imaging stress tests as a percentage of all stress tests and the percentage of inappropriate tests, compared between the 2 cohorts. There were 478 patients in the precohort and 463 in the postcohort. The indication was chest pain in 66% and preoperative in 18% and was not significantly different between groups. The use of nonimaging stress tests increased from 4% in the pregroup to 15% in the postgroup (p nonimaging stress tests increased from 7% to 25% (p nonimaging cardiac stress tests and reduced the use of imaging tests yet was not able to reduce inappropriate use. Our study highlights the differences in cardiac stress testing between hospitalized and ambulatory patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Simulation investigation of thermal phase transformation and residual stress in single pulse EDM of Ti-6Al-4V

    Science.gov (United States)

    Tang, Jiajing; Yang, Xiaodong

    2018-04-01

    The thermal phase transformation and residual stress are ineluctable in the electrical discharge machining (EDM) process, and they will greatly affect the working performances of the machined surface. This paper presents a simulation study on the thermal phase transformation and residual stress in single-pulse EDM of Ti-6Al-4V, which is the most popular titanium alloy in fields such as aircraft engine and some other leading industries. A multi-physics model including thermal, hydraulic, metallography and structural mechanics was developed. Based on the proposed model, the thickness and metallographic structure of the recast layer and heat affected layer (HAZ) were investigated. The distribution and characteristics of residual stress around the discharge crater were obtained. The recast layer and HAZ at the center of crater are found to be the thinnest, and their thicknesses gradually increase approaching the periphery of the crater. The recast layer undergoes a complete α‧ (martensitic) transformation, while the HAZ is mainly composed by the α  +  β  +  α‧ three-phase microstructure. Along the depth direction of crater, the Von Mises stress increases first and then decreases, reaching its maximal value near the interface of recast layer and HAZ. In the recast layer, both compressive stress component and tensile stress component are observed. ANOVA results showed that the influence of discharge current on maximal tensile stress is more significant than that of pulse duration, while the pulse duration has more significant influence on average thickness of the recast layer and the depth location of the maximal tensile stress. The works conducted in this study will help to evaluate the quality and integrity of EDMed surface, especially when the non-destructive testing is difficult to achieve.

  16. Preliminary results for X-ray phase contrast micro-tomography on the biomedical imaging beamline at SSRF

    International Nuclear Information System (INIS)

    Chen Rongchang; Du Guohao; Xie Honglan; Deng Biao; Tong Yajun; Hu Wen; Xue Yanling; Chen Can; Ren Yuqi; Zhou Guangzhao; Wang Yudan; Xiao Tiqiao; Xu Hongjie; Zhu Peiping

    2009-01-01

    With X-ray phase contrast micro-tomography(CT), one is able to obtain edge-enhanced image of internal structure of the samples. This allows visualization of the fine internal features for biology tissues, which is not able to resolve by conventional absorption CT. After preliminary modulation, monochromatic X-rays (8-72.5 keV) are available for experiments on the experimental station of the biomedical imaging beamline at Shanghai Synchrotron Radiation Facility(SSRF). In this paper, we report the in line phase contrast micro-tomography(IL-XPCT) of biology sample (locust) on the beamline. The reconstruct slice images and three dimensional rendering images of the locust were obtained, with clearly visible images of locus's wing, surface texture and internal tissue distribution. (authors)

  17. Equivalence of electronic and mechanical stresses in structural phase stabilization: A case study of indium wires on Si(111)

    Science.gov (United States)

    Kim, Sun-Woo; Kim, Hyun-Jung; Ming, Fangfei; Jia, Yu; Zeng, Changgan; Cho, Jun-Hyung; Zhang, Zhenyu

    2015-05-01

    It was recently proposed that the stress state of a material can also be altered via electron or hole doping, a concept termed electronic stress (ES), which is different from the traditional mechanical stress (MS) due to lattice contraction or expansion. Here we demonstrate the equivalence of ES and MS in structural stabilization, using In wires on Si(111) as a prototypical example. Our systematic density-functional theory calculations reveal that, first, for the same degrees of carrier doping into the In wires, the ES of the high-temperature metallic 4 ×1 structure is only slightly compressive, while that of the low-temperature insulating 8 ×2 structure is much larger and highly anisotropic. As a consequence, the intrinsic energy difference between the two phases is significantly reduced towards electronically phase-separated ground states. Our calculations further demonstrate quantitatively that such intriguing phase tunabilities can be achieved equivalently via lattice-contraction induced MS in the absence of charge doping. We also validate the equivalence through our detailed scanning tunneling microscopy experiments. The present findings have important implications for understanding the underlying driving forces involved in various phase transitions of simple and complex systems alike.

  18. Determining the von Mises stress power spectral density for frequency domain fatigue analysis including out-of-phase stress components

    Science.gov (United States)

    Bonte, M. H. A.; de Boer, A.; Liebregts, R.

    2007-04-01

    This paper provides a new formula to take into account phase differences in the determination of an equivalent von Mises stress power spectral density (PSD) from multiple random inputs. The obtained von Mises PSD can subsequently be used for fatigue analysis. The formula was derived for use in the commercial vehicle business and was implemented in combination with Finite Element software to predict and analyse fatigue failure in the frequency domain.

  19. Ascorbic Acid Alleviates Damage from Heat Stress in the Photosystem II of Tall Fescue in Both the Photochemical and Thermal Phases

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2017-08-01

    Full Text Available L-Ascorbate (Asc plays important roles in plant development, hormone signaling, the cell cycle and cellular redox system, etc. The higher content of Asc in plant chloroplasts indicates its important role in the photosystem. The objective of this study was to study the roles of Asc in tall fescue leaves against heat stress. After a heat stress treatment, we observed a lower value of the maximum quantum yield for primary photochemistry (φPo, which reflects the inhibited activity of the photochemical phase of photosystem II (PSII. Moreover, we observed a higher value of efficiency of electron transfer from QB to photosystem I acceptors (δR0, which reflects elevated activity of the thermal phase of the photosystem of the tall fescue. The addition of Asc facilitate the behavior of the photochemical phase of the PSII by lowering the ROS content as well as that of the alternative electron donor to provide electron to the tyrosine residue of the D1 protein. Additionally, exogenous Asc reduces the activity of the thermal phase of the photosystem, which could contribute to the limitation of energy input into the photosystem in tall fescue against heat stress. Synthesis of the Asc increased under heat stress treatment. However, under heat stress this regulation does not occur at the transcription level and requires further study.

  20. Ultrasonic sectional imaging for crack identification. Part 1. Confirmation test of essential factors for ultrasonic imaging

    International Nuclear Information System (INIS)

    Sasahara, Toshihiko

    2008-01-01

    Since the first reports of inter-granular stress corrosion crack (IGSCC) in boiling water reactor (BWR) pipe in the 1970s, nuclear power industry has focused considerable attention on service induced crack detection and sizing using ultrasonic examination. In recent years, phased array systems, those reconstruct high quality flaw images at real time are getting to apply for crack detection and sizing. But because the price of phased array systems are expensive for inspection vendors, field application of phased array systems are limited and reliable ultrasonic imaging systems with reasonable price are expected. This paper will discuss cost effective ultrasonic equipment with sectional image (B-scan) presentation as the simplified imaging system for assisting ultrasonic examination personnel. To develop the simplified B-scan imaging system, the frequency characteristics of IGSCC echoes and neighboring geometry echoes such as base-metal to weld interface and inner surface of a pipe are studied. The experimental study confirmed the reflectors have different frequency characteristics and 2MHz is suitable to visualize IGSCC and 5MHz and higher frequency are suitable to reconstruct geometry images. The other study is the amplifier selection for the imaging system. To reconstruct images of IGSCC and geometry echoes, the ultrasonic imaging instrument with linear amplifier has to adjust gain setting to the target. On the other hand, the ultrasonic imaging instrument with logarithmic amplifier can collect and display wider dynamic range on a screen and this wider dynamic range are effective to visualize IGSCC and geometry echoes on a B-scan presentation at a time. (author)