WorldWideScience

Sample records for stress pea dna

  1. Unwinding after high salinity stress: Pea DNA helicase 45 over- expression in tobacco confers high salinity tolerance without affecting yield (abstract)

    International Nuclear Information System (INIS)

    Tuteja, N.

    2005-01-01

    Soil salinity is an increasing threat for agriculture and is a major factor in reducing plant productivity; therefore, it is necessary to obtain salinity-tolerant varieties. A typical characteristic of soil salinity is the induction of multiple stress- inducible genes. Some of the genes encoding osmolytes, ion channels or enzymes are able to confer salinity-tolerant phenotypes when transferred to sensitive plants. As salinity stress affects the cellular gene-expression machinery, it is evident that molecules involved in nucleic acid processing including helicases, are likely to be affected as well. DNA helicases unwind duplex DNA and are involved in replication, repair, recombination and transcription while RNA helicases unfold the secondary structures in RNA and are involved in transcription, ribosome biogenesis and translation initiation. We have earlier reported the isolation of a pea DNA helicase 45 (PDH45) that exhibits striking homology with eIF-4A (Plant J. 24:219-230,2000). Here we report that PDH45 mRNA is induced in pea seedlings in response to high salt and its over- expression driven by a constitutive CAMV-355-promoter in tobacco plants confers salinity tolerance, thus suggesting a new pathway for manipulating stress tolerance in crop plants. The T0 transgenic plants showed high-levels of PDH45 protein in normal and stress conditions, as compared to wild type (WT) plants. The T0 transgenics also showed tolerance to high salinity as tested by a leaf disc senescence assay. The T1 transgenics were able to grow to maturity and set normal viable seeds under continuous salinity stress, without any reduction in plant yield, in terms of seed weight. Measurement of Na/sup +/ ions in different parts of the plant showed higher accumulation in the old leaves and negligible in seeds of T1 transgenic lines as compared with the WT plants. The possible mechanism of salinity tolerance will be discussed. Over-expression of PDH45 provides a possible example of the

  2. The effect of salinity and moisture stress on pea plant

    International Nuclear Information System (INIS)

    Abdalla, A.Abd-El Ghany

    1985-01-01

    Four experiments were carried out in the green house in Inchas, Atomic Energy Establishment, to study the effect os salinity and moisture stress on pea plants. Salinity experiments were conducted in 1981/1982, 1982/1983 and 1983/1984 seasons to study the effect of NaCl and/or CaC l 2 as single or mixed salts and radiation combined with salinity. Water stress studies were conducted in 1983/1984 growing season to investigate the effect of soil moisture stress on growth, yield and water use efficiency

  3. Pea p68, a DEAD-box helicase, provides salinity stress tolerance in transgenic tobacco by reducing oxidative stress and improving photosynthesis machinery.

    Science.gov (United States)

    Tuteja, Narendra; Banu, Mst Sufara Akhter; Huda, Kazi Md Kamrul; Gill, Sarvajeet Singh; Jain, Parul; Pham, Xuan Hoi; Tuteja, Renu

    2014-01-01

    The DEAD-box helicases are required mostly in all aspects of RNA and DNA metabolism and they play a significant role in various abiotic stresses, including salinity. The p68 is an important member of the DEAD-box proteins family and, in animal system, it is involved in RNA metabolism including pre-RNA processing and splicing. In plant system, it has not been well characterized. Here we report the cloning and characterization of p68 from pea (Pisum sativum) and its novel function in salinity stress tolerance in plant. The pea p68 protein self-interacts and is localized in the cytosol as well as the surrounding of cell nucleus. The transcript of pea p68 is upregulated in response to high salinity stress in pea. Overexpression of p68 driven by constitutive cauliflower mosaic virus-35S promoter in tobacco transgenic plants confers enhanced tolerances to salinity stress by improving the growth, photosynthesis and antioxidant machinery. Under stress treatment, pea p68 overexpressing tobacco accumulated higher K+ and lower Na+ level than the wild-type plants. Reactive oxygen species (ROS) accumulation was remarkably regulated by the overexpression of pea p68 under salinity stress conditions, as shown from TBARS content, electrolyte leakage, hydrogen peroxide accumulation and 8-OHdG content and antioxidant enzyme activities. To the best of our knowledge this is the first direct report, which provides the novel function of pea p68 helicase in salinity stress tolerance. The results suggest that p68 can also be exploited for engineering abiotic stress tolerance in crop plants of economic importance.

  4. Pea p68, a DEAD-box helicase, provides salinity stress tolerance in transgenic tobacco by reducing oxidative stress and improving photosynthesis machinery.

    Directory of Open Access Journals (Sweden)

    Narendra Tuteja

    Full Text Available The DEAD-box helicases are required mostly in all aspects of RNA and DNA metabolism and they play a significant role in various abiotic stresses, including salinity. The p68 is an important member of the DEAD-box proteins family and, in animal system, it is involved in RNA metabolism including pre-RNA processing and splicing. In plant system, it has not been well characterized. Here we report the cloning and characterization of p68 from pea (Pisum sativum and its novel function in salinity stress tolerance in plant.The pea p68 protein self-interacts and is localized in the cytosol as well as the surrounding of cell nucleus. The transcript of pea p68 is upregulated in response to high salinity stress in pea. Overexpression of p68 driven by constitutive cauliflower mosaic virus-35S promoter in tobacco transgenic plants confers enhanced tolerances to salinity stress by improving the growth, photosynthesis and antioxidant machinery. Under stress treatment, pea p68 overexpressing tobacco accumulated higher K+ and lower Na+ level than the wild-type plants. Reactive oxygen species (ROS accumulation was remarkably regulated by the overexpression of pea p68 under salinity stress conditions, as shown from TBARS content, electrolyte leakage, hydrogen peroxide accumulation and 8-OHdG content and antioxidant enzyme activities.To the best of our knowledge this is the first direct report, which provides the novel function of pea p68 helicase in salinity stress tolerance. The results suggest that p68 can also be exploited for engineering abiotic stress tolerance in crop plants of economic importance.

  5. Isolation and characterisation of the cDNA encoding a glycosylated accessory protein of pea chloroplast DNA polymerase.

    OpenAIRE

    Gaikwad, A; Tewari, K K; Kumar, D; Chen, W; Mukherjee, S K

    1999-01-01

    The cDNA encoding p43, a DNA binding protein from pea chloroplasts (ct) that binds to cognate DNA polymerase and stimulates the polymerase activity, has been cloned and characterised. The characteristic sequence motifs of hydroxyproline-rich glyco-proteins (HRGP) are present in the cDNA corres-ponding to the N-terminal domain of the mature p43. The protein was found to be highly O-arabinosylated. Chemically deglycosylated p43 (i.e. p29) retains its binding to both DNA and pea ct-DNA polymeras...

  6. Isolation and expression of a pea vicilin cDNA in the yeast Saccharomyces cerevisiae.

    OpenAIRE

    Watson, M D; Lambert, N; Delauney, A; Yarwood, J N; Croy, R R; Gatehouse, J A; Wright, D J; Boulter, D

    1988-01-01

    A cDNA clone containing the complete coding sequence for vicilin from pea (Pisum sativum L.) was isolated. It specifies a 50,000-Mr protein that in pea is neither post-translationally processed nor glycosylated. The cDNA clone was expressed in yeast from a 2 micron plasmid by using the yeast phosphoglycerate kinase promoter and initiator codon. The resultant fusion protein, which contains the first 16 amino acid residues of phosphoglycerate kinase in addition to the vicilin sequence, was puri...

  7. Pea DNA topoisomerase I is phosphorylated and stimulated by casein kinase 2 and protein kinase C.

    Science.gov (United States)

    Tuteja, Narendra; Reddy, Malireddy Kodandarami; Mudgil, Yashwanti; Yadav, Badam Singh; Chandok, Meena Rani; Sopory, Sudhir Kumar

    2003-08-01

    DNA topoisomerase I catalyzes the relaxation of superhelical DNA tension and is vital for DNA metabolism; therefore, it is essential for growth and development of plants. Here, we have studied the phosphorylation-dependent regulation of topoisomerase I from pea (Pisum sativum). The purified enzyme did not show autophosphorylation but was phosphorylated in an Mg(2+)-dependent manner by endogenous protein kinases present in pea nuclear extracts. This phosphorylation was abolished with calf intestinal alkaline phosphatase and lambda phosphatase. It was also phosphorylated by exogenous casein kinase 2 (CK2), protein kinase C (PKC; from animal sources), and an endogenous pea protein, which was purified using a novel phorbol myristate acetate affinity chromatography method. All of these phosphorylations were inhibited by heparin (inhibitor of CK2) and calphostin (inhibitor of PKC), suggesting that pea topoisomerase I is a bona fide substrate for these kinases. Spermine and spermidine had no effect on the CK2-mediated phosphorylation, suggesting that it is polyamine independent. Phospho-amino acid analysis showed that only serine residues were phosphorylated, which was further confirmed using antiphosphoserine antibody. The topoisomerase I activity increased after phosphorylation with exogenous CK2 and PKC. This study shows that these kinases may contribute to the physiological regulation of DNA topoisomerase I activity and overall DNA metabolism in plants.

  8. Effects of hormonal priming on seed germination of pigeon pea under cadmium stress

    Directory of Open Access Journals (Sweden)

    LARISSA C. SNEIDERIS

    2015-09-01

    Full Text Available In this work we investigated whether priming with auxin, cytokinin, gibberellin, abscisic acid and ethylene, alters the physiological responses of seeds of pigeon pea germinated under water and cadmium stress. Seeds treated with water or non-treated seeds were used as control. Although compared to non-treated seeds we found that the hormone treatments improve the germination of pigeon pea under cadmium stress, however, these treatments did not differ from water. However, we also observed a trend of tolerance to the effects of cadmium in the presence of ethylene, suggesting that the use of this hormone may be an efficient method to overcome seed germination under metal stress.

  9. The Response Strategy of Maize, Pea and Broad Bean Plants to Different Osmotic Potential Stress

    Directory of Open Access Journals (Sweden)

    Hamdia M. Abd El-Samad

    2013-08-01

    Full Text Available This investigation was conducted to study the tolerance strategy of maize, broad bean and pea plants to salinity stress with exogenous applications of proline or phenylalanine on seed germination and seedlings growth. From the results obtained, it can be observed that osmotic stress affected adversely the rate of germination in maize, broad bean and pea plants. The excessive inhibition was more prominent at higher concentration of NaCl. The seeds and grains tested were exhibited some differential responses to salinity, in a manner that the inhibitory effect of salinity on seed germination ran in the order, maize higher than broad bean and the later was higher than pea plant. Treatment with proline or phenylalanine (100 ppm significantly increased these seed germination and seedlings growth characteristics even at lowest salinity level tested.

  10. Comparative study of drought and salt stress effects on germination and seedling growth of pea

    Directory of Open Access Journals (Sweden)

    Petrović Gordana

    2016-01-01

    Full Text Available Seed germination is first critical and the most sensitive stage in the life cycle of plants compromise the seedlings establishment. Salt and drought tolerance testing in initial stages of plant development is of vital importance, because the seed with more rapid germination under salt or water deficit conditions may be expected to achieve a rapid seedling establishment, resulting in higher yields. The aim of this study was to determine whether the pea seed germination and seedling growth were inhibited by the salt toxicity and osmotic effect during the seedling development, and also identification of the sensitive seedling growth parameters in response to those stresses. Based on the obtained results, pea has been presented to be more tolerant to salt than water stress during germination and early embryo growth. Investigated cultivars showed greater susceptibility to both abiotic stresses when it comes growth parameters compared to seed germination. [Projekat Ministarstva nauke Republike Srbije, br. TR-31024 i br. TR-31022

  11. [Enhanced Resistance of Pea Plants to Oxidative: Stress Caused by Paraquat during Colonization by Aerobic Methylobacteria].

    Science.gov (United States)

    Agafonova, N V; Doronina, N Y; Trotsenko, Yu A

    2016-01-01

    The influence of colonization of the pea (Pisum sativum L.) by aerobic methylobacteria of five different species (Methylophilus flavus Ship, Methylobacterium extorquens G10, Methylobacillus arboreus Iva, Methylopila musalis MUSA, Methylopila turkiensis Sidel) on plant resistance to paraquat-induced stresses has been studied. The normal conditions of pea colonization by methylobacteria were characterized by a decrease in the activity of antioxidant enzymes (superoxide dismutase, catalase, and peroxidases) and in the concentrations of endogenous H2O2, proline, and malonic dialdehyde, which is a product of lipid peroxidation and indicator of damage to plant cell membranes, and an increase in the activity of the photosynthetic apparatus (the content of chlorophylls a, b and carotenoids). In the presence of paraquat, the colonized plants had higher activities of antioxidant enzymes, stable photosynthetic indices, and a less intensive accumulation of the products of lipid peroxidation as compared to noncolonized plants. Thus, colonization by methylobacteria considerably increased the adaptive protection of pea plants to the paraquat-induced oxidative stress.

  12. Optimization of Neutral Comet Assay for studying DNA double-strand breaks in pea and wheat

    Directory of Open Access Journals (Sweden)

    Ivelina Nikolova

    2013-01-01

    Full Text Available This study describes an adaptation of the Comet assay under neutral conditions for mono- and dicotyledonous plants pea (Pisum sativum L. and wheat (Triticum aestivum L.. Modifications concern lysis and electrophoresis steps, respectively. Electrophoresis was carried out varying the intensity of the electric field. A linear relationship between the percentages of DNA in the tail from control background with alteration of intensity was found. Trypan blue dye exclusion test was used in order to determine the intactness of nuclear membrane of the isolated nuclei from both plant model systems. Assessment was conducted on non-irradiated and irradiated nuclei on a monolayer with three doses of UVC. It was found that the share of intact nuclei (trypan blue negative ones is about 95% in controls. Gradual dose-related increase of damaged nuclei was observed in both species, reaching statistical significance only at the higher dose applied.

  13. S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress.

    Science.gov (United States)

    Ortega-Galisteo, Ana P; Rodríguez-Serrano, María; Pazmiño, Diana M; Gupta, Dharmendra K; Sandalio, Luisa M; Romero-Puertas, María C

    2012-03-01

    Peroxisomes, single-membrane-bounded organelles with essentially oxidative metabolism, are key in plant responses to abiotic and biotic stresses. Recently, the presence of nitric oxide (NO) described in peroxisomes opened the possibility of new cellular functions, as NO regulates diverse biological processes by directly modifying proteins. However, this mechanism has not yet been analysed in peroxisomes. This study assessed the presence of S-nitrosylation in pea-leaf peroxisomes, purified S-nitrosylated peroxisome proteins by immunoprecipitation, and identified the purified proteins by two different mass-spectrometry techniques (matrix-assisted laser desorption/ionization tandem time-of-flight and two-dimensional nano-liquid chromatography coupled to ion-trap tandem mass spectrometry). Six peroxisomal proteins were identified as putative targets of S-nitrosylation involved in photorespiration, β-oxidation, and reactive oxygen species detoxification. The activity of three of these proteins (catalase, glycolate oxidase, and malate dehydrogenase) is inhibited by NO donors. NO metabolism/S-nitrosylation and peroxisomes were analysed under two different types of abiotic stress, i.e. cadmium and 2,4-dichlorophenoxy acetic acid (2,4-D). Both types of stress reduced NO production in pea plants, and an increase in S-nitrosylation was observed in pea extracts under 2,4-D treatment while no total changes were observed in peroxisomes. However, the S-nitrosylation levels of catalase and glycolate oxidase changed under cadmium and 2,4-D treatments, suggesting that this post-translational modification could be involved in the regulation of H(2)O(2) level under abiotic stress.

  14. Heat stress differentially modifies ethylene biosynthesis and signaling in pea floral and fruit tissues.

    Science.gov (United States)

    Savada, Raghavendra P; Ozga, Jocelyn A; Jayasinghege, Charitha P A; Waduthanthri, Kosala D; Reinecke, Dennis M

    2017-10-01

    Ethylene biosynthesis is regulated in reproductive tissues in response to heat stress in a manner to optimize resource allocation to pollinated fruits with developing seeds. High temperatures during reproductive development are particularly detrimental to crop fruit/seed production. Ethylene plays vital roles in plant development and abiotic stress responses; however, little is known about ethylene's role in reproductive tissues during development under heat stress. We assessed ethylene biosynthesis and signaling regulation within the reproductive and associated tissues of pea during the developmental phase that sets the stage for fruit-set and seed development under normal and heat-stress conditions. The transcript abundance profiles of PsACS [encode enzymes that convert S-adenosyl-L-methionine to 1-aminocyclopropane-1-carboxylic acid (ACC)] and PsACO (encode enzymes that convert ACC to ethylene), and ethylene evolution were developmentally, environmentally, and tissue-specifically regulated in the floral/fruit/pedicel tissues of pea. Higher transcript abundance of PsACS and PsACO in the ovaries, and PsACO in the pedicels was correlated with higher ethylene evolution and ovary senescence and pedicel abscission in fruits that were not pollinated under control temperature conditions. Under heat-stress conditions, up-regulation of ethylene biosynthesis gene expression in pre-pollinated ovaries was also associated with higher ethylene evolution and lower retention of these fruits. Following successful pollination and ovule fertilization, heat-stress modified PsACS and PsACO transcript profiles in a manner that suppressed ovary ethylene evolution. The normal ethylene burst in the stigma/style and petals following pollination was also suppressed by heat-stress. Transcript abundance profiles of ethylene receptor and signaling-related genes acted as qualitative markers of tissue ethylene signaling events. These data support the hypothesis that ethylene biosynthesis is

  15. Effect Of Heavy Metals Stress On Enzyme Activities And Chlorophyll Content Of Pea (Pisum Sativum) And Tomato Plants

    International Nuclear Information System (INIS)

    Ahmed, B.M.; El Maghrabi, G.; Hashem, M.F.

    2013-01-01

    The effects of heavy metal stress on the chlorophyll in addition to catalase and peroxidase activities were studied in the leaves and roots of tomato and pea plants. Four groups were studied; the control group and other three groups treated with heavy metals. Group 1HM was treated with 1.0 mg CuSO 4 /l + 0.2 mg CdSO 4 /l + 0.1 mg ZnNO 3 /l every 10 days while in group 5 HM and group 10 HM, the doses were 5 and 10 folds the 1 HM, respectively. Leaves and roots of control and heavy metal-stressed plants were harvested after 10 weeks for chlorophyll determination. The chlorophyll content, especially chlo. b, was significantly decreased with the increase in heavy metals stress in both plants. In leaves of heavy metal-stressed plants, the peroxidase level in different stress levels was increased with increasing stress levels in tomato and pea while catalase was unchanged in leaves of tomato in comparison with the control. The activities of catalase and peroxidase in roots of heavy metal-stressed plants were increased in group 5 HM then decreased in case of group 10 HM. The increase in enzyme activities demonstrated that tomato is more tolerant to heavy metals than pea

  16. Changes in the protein patterns in pea (Pisum sativum L.) roots under the influence of long- and short-term chilling stress and post-stress recovery.

    Science.gov (United States)

    Badowiec, Anna; Swigonska, Sylwia; Weidner, Stanisław

    2013-10-01

    Amongst many factors restricting geographical distribution of plants and crop productivity, low temperature is one of the most important. To gain better understanding of the molecular response of germinating pea (Pisum sativum L.) to low temperature, we investigated the influence of long and short chilling stress as well as post-stress recovery on the alterations in the root proteomes. The impact of long stress was examined on the pea seeds germinating in the continuous chilling conditions of 10 °C for 8 days (LS). To examine the impact of short stress, pea seeds germinating for 72 h in the optimal temperature of 20 °C were subjected to 24-h chilling (SS). Additionally, both stress treatments were followed by 24 h of recovery in the optimal conditions (accordingly LSR and SR). Using the 2D gel electrophoresis and MALDI-TOF MS protein identification, it was revealed, that most of the proteins undergoing regulation under the applied conditions were implicated in metabolism, protection against stress, cell cycle regulation, cell structure maintenance and hormone synthesis, which altogether may influence root growth and development in the early stages of plant life. The obtained results have shown that most of detected alterations in the proteome patterns of pea roots are dependent on stress duration. However, there are some analogical response pathways which are triggered regardless of stress length. The functions of proteins which accumulation has been changed by chilling stress and post-stress recovery are discussed here in relation to their impact on pea roots development. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Accumulation and localization of extensin protein in apoplast of pea root nodule under aluminum stress.

    Science.gov (United States)

    Sujkowska-Rybkowska, Marzena; Borucki, Wojciech

    2014-12-01

    Cell wall components such as hydroxyproline-rich glycoproteins (HRGPs, extensins) have been proposed to be involved in aluminum (Al) resistance mechanisms in plants. We have characterized the distribution of extensin in pea (Pisum sativum L.) root nodules apoplast under short (for 2 and 24h) Al stress. Monoclonal antibodie LM1 have been used to locate extensin protein epitope by immunofluorescence and immunogold labeling. The nodules were shown to respond to Al stress by thickening of plant and infection thread (IT) walls and disturbances in threads growth and bacteria endocytosis. Immunoblot results indicated the presence of a 17-kDa band specific for LM1. Irrespective of the time of Al stress, extensin content increased in root nodules. Further observation utilizing fluorescence and transmission electron microscope showed that LM1 epitope was localized in walls and intercellular spaces of nodule cortex tissues and in the infection threads matrix. Al stress in nodules appears to be associated with higher extensin accumulation in matrix of enlarged thick-walled ITs. In addition to ITs, thickened walls and intercellular spaces of nodule cortex were also associated with intense extensin accumulation. These data suggest that Al-induced extensin accumulation in plant cell walls and ITs matrix may have influence on the process of IT growth and tissue and cell colonization by Rhizobium bacteria. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Peroxiredoxin 1 protects the pea aphid Acyrthosiphon pisum from oxidative stress induced by Micrococcus luteus infection.

    Science.gov (United States)

    Zhang, Yongdong; Lu, Zhiqiang

    2015-05-01

    Reactive oxygen species (ROSs) are generated in organisms in response to infections caused by invading microbes. However, excessive ROSs will inflict oxidative damage on the host. Peroxiredoxins (Prxs) are antioxidative enzymes that may eliminate ROSs efficiently. In this study, ApPrx1 from the pea aphid Acyrthosiphon pisum was cloned, and its function was investigated in vitro and in vivo. In the presence of DTT, recombinant ApPrx1 protein from Escherichia coli showed antioxidative activity by eliminating H2O2 effectively. The H2O2 levels were significantly higher in Micrococcus luteus-infected aphids than in uninfected aphids, and ApPrx1 expression was remarkably up-regulated when the aphids were infected with M. luteus or injected with H2O2. When ApPrx1 expression was reduced by dsRNA injection, the survival of the aphids decreased significantly after M. luteus infection. Knockdown of ApPrx1 decreased M. luteus loads inside the aphids 48h post-infection. While under infection conditions, the H2O2 levels were much higher in ApPrx1 knockdown aphids than in dsGFP-injected aphids, indicating that the decreased survival of the aphids was caused by increased oxidative stress. Taken together, our results reveal that ApPrx1 plays a protective role in oxidative stress caused by bacterial infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Germinated Pigeon Pea (Cajanus cajan): a novel diet for lowering oxidative stress and hyperglycemia.

    Science.gov (United States)

    Uchegbu, Nneka N; Ishiwu, Charles N

    2016-09-01

    This work studied the antioxidant activity of extract of germinated pigeon pea (Cajanus cajan) in alloxan-induced diabetic rats. Germination was carried out in a dark chamber under room temperature (28°C). The total phenolic, 1,1,diphenyl-2-picrylhy-drazyl free radical (DPPH) scavenging, the inhibition of α-amylase and α-glucosidase were done in vitro and blood glucose levels of the animal were investigated. Lipid peroxidation (LPO) and reduced glutathione (GSH) were analyzed spectrophotometrically. The total phenolic and DPPH scavenging activity increased by 30% and 63%, respectively, after germinating pigeon pea. Also after germination there was an increase in the inhibitory potential of pigeon pea extract against α-glucosidase compared with the nongerminated pigeon pea extract. There was a significant increase (P pigeon pea extract gave rise to a reduced fasting blood glucose level in diabetic rats. On administration of germinated pigeon pea extract, LPO reduced drastically but there was an increase in the level of GSH. This study concluded that intake of germinated pigeon pea is a good dietary supplement for controlling hyperglycemia and LPO.

  20. Cloning and characterization of a cDNA encoding topoisomerase II in pea and analysis of its expression in relation to cell proliferation.

    Science.gov (United States)

    Reddy, M K; Nair, S; Tewari, K K; Mudgil, Y; Yadav, B S; Sopory, S K

    1999-09-01

    We have isolated and sequenced four overlapping cDNA clones to identify the full-length cDNA for topoisomerase II (PsTopII) from pea. Using degenerate primers, based on the conserved amino acid sequences of other eukaryotic type II topoisomerases, a 680 bp fragment was PCR-amplified with pea cDNA as template. This fragment was used as a probe to screen an oligo-dT-primed pea cDNA library. A partial cDNA clone was isolated that was truncated at the 3' end. RACE-PCR was employed to isolate the remaining portion of the gene. The total size of PsTopII is 4639 bp with an open reading frame of 4392 bp. The deduced amino acid sequence shows a strong homology to other eukaryotic topoisomerase II (topo II) at the N-terminus end. The topo II transcript was abundant in proliferative tissues. We also show that the level of topo II transcripts could be stimulated by exogenous application of growth factors that induced proliferation in vitro cultures. Light irradiation to etiolated tissue strongly stimulated the expression of topo II. These results suggest that topo II gene expression is up-regulated in response to light and hormones and correlates with cell proliferation. Besides, we have also isolated and analysed the 5'-flanking region of the pea TopII gene. This is first report on the isolation of a putative promoter for topoisomerase II from plants.

  1. Membrane damage and solute leakage from germinating pea seed under cadmium stress

    Energy Technology Data Exchange (ETDEWEB)

    Rahoui, Sondes, E-mail: rahoui.sondes@yahoo.fr [Bio-Physiologie Cellulaires, Departement des Sciences de la Vie, Faculte des Sciences de Bizerte, 7021 Zarzouna (Tunisia); Chaoui, Abdelilah, E-mail: cabdelilah1@yahoo.fr [Bio-Physiologie Cellulaires, Departement des Sciences de la Vie, Faculte des Sciences de Bizerte, 7021 Zarzouna (Tunisia); El Ferjani, Ezzeddine, E-mail: ezzferjani2002@yahoo.fr [Bio-Physiologie Cellulaires, Departement des Sciences de la Vie, Faculte des Sciences de Bizerte, 7021 Zarzouna (Tunisia)

    2010-06-15

    Seed germination represents a limiting stage of plant life cycle under heavy metal stress situation. Delay in germination can be associated with disorders in the event chain of germinative metabolism which is a highly complex multistage process, but one of underlying metabolic activities following imbibition of seed is the storage mobilization. The influence of cadmium on carbohydrates and aminoacids export from cotyledon to embryonic axis during germination of pea seed was investigated. Compared to the control, Cd caused a restriction in reserve mobilization as evidenced by the pronounced increase in cotyledon/embryo ratios of total soluble sugars, glucose, fructose and aminoacids. Moreover, the nutrient concentrations, as well as the electrical conductivity of germination medium were determined to quantify the extent of solute leakage. Such nutrients were lost into the imbibition medium at the expense of suitable mobilization to the growing embryonic axis. This was concomitant with an over-accumulation of lipid peroxidation products in Cd-poisoned embryonic tissues. However, the impairment of membrane integrity cannot be due to a stimulation in lipoxygenase activity, since the later was markedly inhibited after Cd exposure.

  2. Membrane damage and solute leakage from germinating pea seed under cadmium stress

    International Nuclear Information System (INIS)

    Rahoui, Sondes; Chaoui, Abdelilah; El Ferjani, Ezzeddine

    2010-01-01

    Seed germination represents a limiting stage of plant life cycle under heavy metal stress situation. Delay in germination can be associated with disorders in the event chain of germinative metabolism which is a highly complex multistage process, but one of underlying metabolic activities following imbibition of seed is the storage mobilization. The influence of cadmium on carbohydrates and aminoacids export from cotyledon to embryonic axis during germination of pea seed was investigated. Compared to the control, Cd caused a restriction in reserve mobilization as evidenced by the pronounced increase in cotyledon/embryo ratios of total soluble sugars, glucose, fructose and aminoacids. Moreover, the nutrient concentrations, as well as the electrical conductivity of germination medium were determined to quantify the extent of solute leakage. Such nutrients were lost into the imbibition medium at the expense of suitable mobilization to the growing embryonic axis. This was concomitant with an over-accumulation of lipid peroxidation products in Cd-poisoned embryonic tissues. However, the impairment of membrane integrity cannot be due to a stimulation in lipoxygenase activity, since the later was markedly inhibited after Cd exposure.

  3. DNA replication stress restricts ribosomal DNA copy number

    Science.gov (United States)

    Salim, Devika; Bradford, William D.; Freeland, Amy; Cady, Gillian; Wang, Jianmin

    2017-01-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100–200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how “normal” copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a “normal” rDNA copy number. PMID:28915237

  4. DNA replication stress restricts ribosomal DNA copy number.

    Science.gov (United States)

    Salim, Devika; Bradford, William D; Freeland, Amy; Cady, Gillian; Wang, Jianmin; Pruitt, Steven C; Gerton, Jennifer L

    2017-09-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  5. DNA replication stress restricts ribosomal DNA copy number.

    Directory of Open Access Journals (Sweden)

    Devika Salim

    2017-09-01

    Full Text Available Ribosomal RNAs (rRNAs in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  6. On DNA synthesis during C14O2 assimilation by peas seedlings

    International Nuclear Information System (INIS)

    Karimov, Kh.Kh.; Nikolaeva, M.I.

    1976-01-01

    In this article authors try to determine how much p articipate t hephotosynthesis in the new formation of DNA seedlings, depends this processfrom the light and realize at this the synthesis DNA in chloroplasts

  7. Germinated Pigeon Pea (Cajanus cajan): a novel diet for lowering oxidative stress and hyperglycemia

    OpenAIRE

    Uchegbu, Nneka N.; Ishiwu, Charles N.

    2016-01-01

    Abstract This work studied the antioxidant activity of extract of germinated pigeon pea (Cajanus cajan) in alloxan?induced diabetic rats. Germination was carried out in a dark chamber under room temperature (28?C). The total phenolic, 1,1,diphenyl?2?picrylhy?drazyl free radical (DPPH) scavenging, the inhibition of ??amylase and ??glucosidase were done in vitro and blood glucose levels of the animal were investigated. Lipid peroxidation (LPO) and reduced glutathione (GSH) were analyzed spectro...

  8. Repetitive DNA in the pea (Pisum sativum L. genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Navrátilová Alice

    2007-11-01

    Full Text Available Abstract Background Extraordinary size variation of higher plant nuclear genomes is in large part caused by differences in accumulation of repetitive DNA. This makes repetitive DNA of great interest for studying the molecular mechanisms shaping architecture and function of complex plant genomes. However, due to methodological constraints of conventional cloning and sequencing, a global description of repeat composition is available for only a very limited number of higher plants. In order to provide further data required for investigating evolutionary patterns of repeated DNA within and between species, we used a novel approach based on massive parallel sequencing which allowed a comprehensive repeat characterization in our model species, garden pea (Pisum sativum. Results Analysis of 33.3 Mb sequence data resulted in quantification and partial sequence reconstruction of major repeat families occurring in the pea genome with at least thousands of copies. Our results showed that the pea genome is dominated by LTR-retrotransposons, estimated at 140,000 copies/1C. Ty3/gypsy elements are less diverse and accumulated to higher copy numbers than Ty1/copia. This is in part due to a large population of Ogre-like retrotransposons which alone make up over 20% of the genome. In addition to numerous types of mobile elements, we have discovered a set of novel satellite repeats and two additional variants of telomeric sequences. Comparative genome analysis revealed that there are only a few repeat sequences conserved between pea and soybean genomes. On the other hand, all major families of pea mobile elements are well represented in M. truncatula. Conclusion We have demonstrated that even in a species with a relatively large genome like pea, where a single 454-sequencing run provided only 0.77% coverage, the generated sequences were sufficient to reconstruct and analyze major repeat families corresponding to a total of 35–48% of the genome. These data

  9. Targeting DNA Replication Stress for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2016-08-01

    Full Text Available The human cellular genome is under constant stress from extrinsic and intrinsic factors, which can lead to DNA damage and defective replication. In normal cells, DNA damage response (DDR mediated by various checkpoints will either activate the DNA repair system or induce cellular apoptosis/senescence, therefore maintaining overall genomic integrity. Cancer cells, however, due to constitutive growth signaling and defective DDR, may exhibit “replication stress” —a phenomenon unique to cancer cells that is described as the perturbation of error-free DNA replication and slow-down of DNA synthesis. Although replication stress has been proven to induce genomic instability and tumorigenesis, recent studies have counterintuitively shown that enhancing replicative stress through further loosening of the remaining checkpoints in cancer cells to induce their catastrophic failure of proliferation may provide an alternative therapeutic approach. In this review, we discuss the rationale to enhance replicative stress in cancer cells, past approaches using traditional radiation and chemotherapy, and emerging approaches targeting the signaling cascades induced by DNA damage. We also summarize current clinical trials exploring these strategies and propose future research directions including the use of combination therapies, and the identification of potential new targets and biomarkers to track and predict treatment responses to targeting DNA replication stress.

  10. Characterization and expression of dehydrins in wild Egyptian pea ...

    African Journals Online (AJOL)

    Characterization and expression of dehydrins in wild Egyptian pea ( Pisum sativum L.) ... was isolated and characterized from wild Egyptian pea (Pisum sativum L.) ... DNA sequence indicated an open reading frame which predicts a protein ...

  11. Ectopic expression of phloem motor protein pea forisome PsSEO-F1 enhances salinity stress tolerance in tobacco.

    Science.gov (United States)

    Srivastava, Vineet Kumar; Raikwar, Shailendra; Tuteja, Renu; Tuteja, Narendra

    2016-05-01

    PsSEOF-1 binds to calcium and its expression is upregulated by salinity treatment. PsSEOF - 1 -overexpressing transgenic tobacco showed enhanced salinity stress tolerance by maintaining cellular ion homeostasis and modulating ROS-scavenging pathway. Calcium (Ca(2+)) plays important role in growth, development and stress tolerance in plants. Cellular Ca(2+) homeostasis is achieved by the collective action of channels, pumps, antiporters and by Ca(2+) chelators present in the cell like calcium-binding proteins. Forisomes are ATP-independent mechanically active motor proteins known to function in wound sealing of injured sieve elements of phloem tissue. The Ca(2+)-binding activity of forisome and its role in abiotic stress signaling were largely unknown. Here we report the Ca(2+)-binding activity of pea forisome (PsSEO-F1) and its novel function in promoting salinity tolerance in transgenic tobacco. Native PsSEO-F1 promoter positively responded in salinity stress as confirmed using GUS reporter. Overexpression of PsSEO-F1 tobacco plants confers salinity tolerance by alleviating ionic toxicity and increased ROS scavenging activity which probably results in reduced membrane damage and improved yield under salinity stress. Evaluation of several physiological indices shows an increase in relative water content, electrolyte leakage, proline accumulation and chlorophyll content in transgenic lines as compared with null-segregant control. Expression of several genes involved in cellular homeostasis is perturbed by PsSEO-F1 overexpression. These findings suggest that PsSEO-F1 provides salinity tolerance through cellular Ca(2+) homeostasis which in turn modulates ROS machinery providing indirect link between Ca(2+) and ROS signaling under salinity-induced perturbation. PsSEO-F1 most likely functions in salinity stress tolerance by improving antioxidant machinery and mitigating ion toxicity in transgenic lines. This finding should make an important contribution in our better

  12. Salt Stress Responses of Pigeon Pea (Cajanus Cajan) on Growth, Yield and Some Biochemical Attributes

    International Nuclear Information System (INIS)

    Tayyab, A.; Azeem, M.; Ahmad, N; Ahmad, R.; Qasim, M.

    2016-01-01

    Growth responses of leguminous plants to salinity vary considerably among species. Pigeon pea (Cajanus cajan (L.) Millsp.) is a sub-tropical crop, grown worldwide particularly in South Asia for edible and fodder purposes, while little is known about its salinity tolerance. In order to investigate the effect of salinity, plants were established at six different levels of sea salt concentrations i.e. 0.5, 1.6, 2.8, 3.5, 3.8 and 4.3 (EC/sub e/ dS.m/sup -1/). Plant growth was measured using vegetative (height, fresh and dry biomass, moisture, relative growth rate (RGR) and specific shoot length (SSL)), reproductive (number of flowers, pods, seeds and seed weight) and some biochemical parameters (chlorophylls, carotenoids, sugars and proteins). Pigeon pea showed a salt sensitive growth response, however, it survived up to 3.5 (EC/sub e/ dS.m/sup -1/) sea salt salinity. Plant height, biomass, SSL and RGR linearly decreased under saline conditions. Leaf pigments increased (chlorophylls) or maintained (carotenoids) at 1.6 dS.m/sup -1/ and subsequently decreased in higher salinity. Low moisture content and succulence along with more accumulation of soluble sugars and proteins may be attributed to leaf osmotic adjustments at low salinity. Salinity adversely affect reproductive growth of C. cajan where production of flowers, pods, number of seeds and seed weight were significantly reduced. Present study provides basic information related to plant growth, seed yield and some biochemical attributes, which suggest C. cajan as a salt sensitive leguminous crop. However, detailed information is required to understand the eco-physiological responses of this plant under field and green house conditions. (author)

  13. Evidence for carbon flux shortage and strong carbon/nitrogen interactions in pea nodules at early stages of water stress.

    Science.gov (United States)

    Gálvez, Loli; González, Esther M; Arrese-Igor, Cesar

    2005-09-01

    Symbiotic N2 fixation in legume nodules declines under a wide range of environmental stresses. A high correlation between N2 fixation decline and sucrose synthase (SS; EC 2.4.1.13) activity down-regulation has been reported, although it has still to be elucidated whether a causal relationship between SS activity down-regulation and N2 fixation decline can be established. In order to study the likely C/N interactions within nodules and the effects on N2 fixation, pea plants (Pisum sativum L. cv. Sugar snap) were subjected to progressive water stress by withholding irrigation. Under these conditions, nodule SS activity declined concomitantly with apparent nitrogenase activity. The levels of UDP-glucose, glucose-1-phosphate, glucose-6-phosphate, and fructose-6-phosphate decreased in water-stressed nodules compared with unstressed nodules. Drought also had a marked effect on nodule concentrations of malate, succinate, and alpha-ketoglutarate. Moreover, a general decline in nodule adenylate content was detected. NADP+-dependent isocitrate dehydrogenase (ICDH; EC 1.1.1.42) was the only enzyme whose activity increased as a result of water deficit, compensating for a possible C/N imbalance and/or supplying NADPH in circumstances that the pentose phosphate pathway was impaired, as suggested by the decline in glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) activity. The overall results show the occurrence of strong C/N interactions in nodules subjected to water stress and support a likely limitation of carbon flux that might be involved in the decline of N2 fixation under drought.

  14. Tobacco smoking and oxidative stress to DNA

    DEFF Research Database (Denmark)

    Ellegaard, Pernille Kempel; Poulsen, Henrik Enghusen

    2016-01-01

    Oxidative stress to DNA from smoking was investigated in one randomized smoking cessation study and in 36 cohort studies from excretion of urinary 8-oxo-7-hydrodeoxyguanosine (8-oxodG). Meta-analysis of the 36 cohort studies showed smoking associated with a 15.7% (95% CL 11.0:20.3, p < 0.0001) in...

  15. DNA replication stress and cancer chemotherapy.

    Science.gov (United States)

    Kitao, Hiroyuki; Iimori, Makoto; Kataoka, Yuki; Wakasa, Takeshi; Tokunaga, Eriko; Saeki, Hiroshi; Oki, Eiji; Maehara, Yoshihiko

    2018-02-01

    DNA replication is one of the fundamental biological processes in which dysregulation can cause genome instability. This instability is one of the hallmarks of cancer and confers genetic diversity during tumorigenesis. Numerous experimental and clinical studies have indicated that most tumors have experienced and overcome the stresses caused by the perturbation of DNA replication, which is also referred to as DNA replication stress (DRS). When we consider therapeutic approaches for tumors, it is important to exploit the differences in DRS between tumor and normal cells. In this review, we introduce the current understanding of DRS in tumors and discuss the underlying mechanism of cancer therapy from the aspect of DRS. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  16. The influence of water stress on biomass and N accumulation, N partitioning between above and below ground parts and on N rhizodeposition during reproductive growth of pea (Pisum sativum L.)

    DEFF Research Database (Denmark)

    Mahieu, S.; Germont, Florent; Aveline, A.

    2009-01-01

    are estimated. Moreover, grain legume crops are largely influenced by water stress while the world area exposed to drought periods may increase in the coming years due to global warming. This work aims to quantify biomass and N accumulation, N partitioning between above and below ground parts and N...... rhizodeposition by a pea (Pisum sativum L.) when influenced by water stress. In a controlled environment, pea plants were exposed to a severe drought or not stressed, either at flowering or during pod filling. N rhizodeposition was measured using the split root method and plants were harvested at the end...... of flowering (59 days after sowing, DAS 59), at the end of the drought period applied during pod filling (DAS 74) and at maturity (DAS 101). Water stress strongly affected pea dry weight and N accumulation. In both stressed treatments, nodule biomass and N content were reduced by about 65% in the absence...

  17. Genetic diversity of pigeon pea (Cajanus cajan (l.) Millsp.) based on molecular characterization using randomly amplified polymorphic DNA (RAPD) markers

    Science.gov (United States)

    Khoiriyah, N.; Yuniastuti, E.; Purnomo, D.

    2018-03-01

    Pigeon pea (Cajanus cajan (L.) Millsp.) is an annual leguminous crop (perennial) which has advantages over other local leguminous crops as drought resistant, hold collapsed and strong pods. The research on drought resistance plant is very important to adapt to climate change adverse impact to support food security. The potential of pigeon pie has not been supported by accurate data. To explore the potential of pigeon pea, it is necessary to record the important properties by characterization, one of which is molecular. Increasing genetic diversity can be done through mutation which widely used gamma ray for the induction. The purpose of this study was to identify the genetic diversity of pigeon pea of black, white and brown seeds type resulted by gamma-ray irradiation with a wavelength of 100, 200 and 300 grays by using RAPD method. The experiment resulted 14 bands, 12 of them are polymorphic bands and 2 of them are monomorphic with size varied from 300 bp to 1.3 kbp. The dendrogram showed from 30 accessions are divided into two main clusters, B shows clear genetical divergence from other clusters and some others split randomly. The range of similarity coefficient is from 0.43 to 1.00

  18. The Role of the Transcriptional Response to DNA Replication Stress.

    Science.gov (United States)

    Herlihy, Anna E; de Bruin, Robertus A M

    2017-03-02

    During DNA replication many factors can result in DNA replication stress. The DNA replication stress checkpoint prevents the accumulation of replication stress-induced DNA damage and the potential ensuing genome instability. A critical role for post-translational modifications, such as phosphorylation, in the replication stress checkpoint response has been well established. However, recent work has revealed an important role for transcription in the cellular response to DNA replication stress. In this review, we will provide an overview of current knowledge of the cellular response to DNA replication stress with a specific focus on the DNA replication stress checkpoint transcriptional response and its role in the prevention of replication stress-induced DNA damage.

  19. The Role of the Transcriptional Response to DNA Replication Stress

    Science.gov (United States)

    Herlihy, Anna E.; de Bruin, Robertus A.M.

    2017-01-01

    During DNA replication many factors can result in DNA replication stress. The DNA replication stress checkpoint prevents the accumulation of replication stress-induced DNA damage and the potential ensuing genome instability. A critical role for post-translational modifications, such as phosphorylation, in the replication stress checkpoint response has been well established. However, recent work has revealed an important role for transcription in the cellular response to DNA replication stress. In this review, we will provide an overview of current knowledge of the cellular response to DNA replication stress with a specific focus on the DNA replication stress checkpoint transcriptional response and its role in the prevention of replication stress-induced DNA damage. PMID:28257104

  20. MOLECULAR MARKERS FOR VEGETABLE PEA SAMPLES

    Directory of Open Access Journals (Sweden)

    V. S. Anokhina

    2014-01-01

    Full Text Available The paper presents the results of research on the presence in genomes of pea hybrid materials of the DNA regions complementary to the primers that are associated with the biochemical characteristics and resistance to powdery mildew.

  1. Variability within a pea core collection of LEAM and HSP22, two mitochondrial seed proteins involved in stress tolerance.

    Science.gov (United States)

    Avelange-Macherel, Marie-Hélène; Payet, Nicole; Lalanne, David; Neveu, Martine; Tolleter, Dimitri; Burstin, Judith; Macherel, David

    2015-07-01

    LEAM, a late embryogenesis abundant protein, and HSP22, a small heat shock protein, were shown to accumulate in the mitochondria during pea (Pisum sativum L.) seed development, where they are expected to contribute to desiccation tolerance. Here, their expression was examined in seeds of 89 pea genotypes by Western blot analysis. All genotypes expressed LEAM and HSP22 in similar amounts. In contrast with HSP22, LEAM displayed different isoforms according to apparent molecular mass. Each of the 89 genotypes harboured a single LEAM isoform. Genomic and RT-PCR analysis revealed four LEAM genes differing by a small variable indel in the coding region. These variations were consistent with the apparent molecular mass of each isoform. Indels, which occurred in repeated domains, did not alter the main properties of LEAM. Structural modelling indicated that the class A α-helix structure, which allows interactions with the mitochondrial inner membrane in the dry state, was preserved in all isoforms, suggesting functionality is maintained. The overall results point out the essential character of LEAM and HSP22 in pea seeds. LEAM variability is discussed in terms of pea breeding history as well as LEA gene evolution mechanisms. © 2014 John Wiley & Sons Ltd.

  2. A pea chloroplast translation elongation factor that is regulated by abiotic factors

    International Nuclear Information System (INIS)

    Singh, B.N.; Mishra, R.N.; Agarwal, Pradeep K.; Goswami, Mamta; Nair, Suresh; Sopory, S.K.; Reddy, M.K.

    2004-01-01

    We report the cloning and characterization of both the cDNA (tufA) and genomic clones encoding for a chloroplast translation elongation factor (EF-Tu) from pea. The analysis of the deduced amino acids of the cDNA clone reveals the presence of putative transit peptide sequence and four GTP binding domains and two EF-Tu signature motifs in the mature polypeptide region. Using in vivo immunostaining followed by confocal microscopy pea EF-Tu was localized to chloroplast. The steady state transcript level of pea tufA was high in leaves and not detectable in roots. The expression of this gene is stimulated by light. The differential expression of this gene in response to various abiotic stresses showed that it is down-regulated in response to salinity and ABA and up-regulated in response to low temperature and salicylic acid treatment. These results indicate that regulation of pea tufA may have an important role in plant adaptation to environmental stresses

  3. Oxidatively generated DNA/RNA damage in psychological stress states

    DEFF Research Database (Denmark)

    Jørgensen, Anders

    2013-01-01

    age-related somatic disorders. The overall aim of the PhD project was to investigate the relation between psychopathology, psychological stress, stress hormone secretion and oxidatively generated DNA and RNA damage, as measured by the urinary excretion of markers of whole-body DNA/RNA oxidation (8...... between the 24 h urinary cortisol excretion and the excretion of 8-oxodG/8-oxoGuo, determined in the same samples. Collectively, the studies could not confirm an association between psychological stress and oxidative stress on nucleic acids. Systemic oxidatively generated DNA/RNA damage was increased......Both non-pathological psychological stress states and mental disorders are associated with molecular, cellular and epidemiological signs of accelerated aging. Oxidative stress on nucleic acids is a critical component of cellular and organismal aging, and a suggested pathogenic mechanism in several...

  4. RAD52 Facilitates Mitotic DNA Synthesis Following Replication Stress

    DEFF Research Database (Denmark)

    Bhowmick, Rahul; Minocherhomji, Sheroy; Hickson, Ian D

    2016-01-01

    Homologous recombination (HR) is necessary to counteract DNA replication stress. Common fragile site (CFS) loci are particularly sensitive to replication stress and undergo pathological rearrangements in tumors. At these loci, replication stress frequently activates DNA repair synthesis in mitosis...... replication stress at CFS loci during S-phase. In contrast, MiDAS is RAD52 dependent, and RAD52 is required for the timely recruitment of MUS81 and POLD3 to CFSs in early mitosis. Our results provide further mechanistic insight into MiDAS and define a specific function for human RAD52. Furthermore, selective...

  5. Dynamic regulation of cerebral DNA repair genes by psychological stress

    DEFF Research Database (Denmark)

    Forsberg, Kristin; Aalling, Nadia; Wörtwein, Gitta

    2015-01-01

    Neuronal genotoxic insults from oxidative stress constitute a putative molecular link between stress and depression on the one hand, and cognitive dysfunction and dementia risk on the other. Oxidative modifications to DNA are repaired by specific enzymes; a process that plays a critical role...... restraint stress (6h/day) or daily handling (controls), and sacrificed after 1, 7 or 21 stress sessions. The mRNA expression of seven genes (Ogg1, Ape1, Ung1, Neil1, Xrcc1, Ercc1, Nudt1) involved in the repair of oxidatively damaged DNA was determined by quantitative real time polymerase chain reaction...

  6. Melatonin Improves the Photosynthetic Apparatus in Pea Leaves Stressed by Paraquat via Chlorophyll Breakdown Regulation and Its Accelerated de novo Synthesis

    Directory of Open Access Journals (Sweden)

    Katarzyna Szafrańska

    2017-05-01

    Full Text Available The positive effect of melatonin on the function of the photosynthetic apparatus is known, but little is known about the specific mechanisms of melatonin's action in plants. The influence of melatonin on chlorophyll metabolism of 24-day-old Pisum sativum L. seedlings during paraquat (PQ-induced oxidative stress was investigated in this study. Seeds were hydro-primed with water (H, 50 and 200 μM melatonin/water solutions (H-MEL50, H-MEL200, while non-primed seeds were used as controls (C. Increases in chlorophyllase activity (key enzyme in chlorophyll degradation and 5-aminolevulinic acid contents (the first compound in the porphyrin synthesis pathway were observed in H-MEL50 and H-MEL200 leaf disks. This suggests that melatonin may accelerate damaged chlorophyll breakdown and its de novo synthesis during the first hours of PQ treatment. Elevated level of pheophytin in control leaf disks following 24 h of PQ incubation probably was associated with an enhanced rate of chlorophyll degradation through formation of pheophytin as a chlorophyll derivative. This validates the hypothesis that chlorophyllide, considered for many years, as a first intermediate of chlorophyll breakdown is not. This is indicated by the almost unchanged chlorophyll to chlorophyllide ratio after 24 h of PQ treatment. However, prolonged effects of PQ-induced stress (48 h revealed extensive discolouration of control and water-treated leaf disks, while melatonin treatment alleviated PQ-induced photobleaching. Also the ratio of chlorophyll to chlorophyllide and porphyrin contents were significantly higher in plants treated with melatonin, which may indicate that this indoleamine both retards chlorophyll breakdown and stimulates its de novo synthesis during extended stress. We concluded that melatonin added into the seeds enhances the ability of pea seedlings to accelerate chlorophyll breakdown and its de novo synthesis before stress appeared and for several hours after, while

  7. Transport processes in pea seed coats

    NARCIS (Netherlands)

    Dongen, Joost Thomas van

    2001-01-01

    The research described in this thesis concerns transport processes in coats of developing pea seeds. The scope of the investigation ranges from seed coat anatomy, via transport studies to the cloning of cDNA encoding proteinaceous membrane pores, and the heterologous expression of these

  8. Genomic Tools in Pea Breeding Programs: Status and Perspectives

    Science.gov (United States)

    Tayeh, Nadim; Aubert, Grégoire; Pilet-Nayel, Marie-Laure; Lejeune-Hénaut, Isabelle; Warkentin, Thomas D.; Burstin, Judith

    2015-01-01

    Pea (Pisum sativum L.) is an annual cool-season legume and one of the oldest domesticated crops. Dry pea seeds contain 22–25% protein, complex starch and fiber constituents, and a rich array of vitamins, minerals, and phytochemicals which make them a valuable source for human consumption and livestock feed. Dry pea ranks third to common bean and chickpea as the most widely grown pulse in the world with more than 11 million tons produced in 2013. Pea breeding has achieved great success since the time of Mendel's experiments in the mid-1800s. However, several traits still require significant improvement for better yield stability in a larger growing area. Key breeding objectives in pea include improving biotic and abiotic stress resistance and enhancing yield components and seed quality. Taking advantage of the diversity present in the pea genepool, many mapping populations have been constructed in the last decades and efforts have been deployed to identify loci involved in the control of target traits and further introgress them into elite breeding materials. Pea now benefits from next-generation sequencing and high-throughput genotyping technologies that are paving the way for genome-wide association studies and genomic selection approaches. This review covers the significant development and deployment of genomic tools for pea breeding in recent years. Future prospects are discussed especially in light of current progress toward deciphering the pea genome. PMID:26640470

  9. Genomic tools in pea breeding programs: status and perspectives

    Directory of Open Access Journals (Sweden)

    Nadim eTAYEH

    2015-11-01

    Full Text Available Pea (Pisum sativum L. is an annual cool-season legume and one of the oldest domesticated crops. Dry pea seeds contain 22-25 percent protein, complex starch and fibre constituents and a rich array of vitamins, minerals, and phytochemicals which make them a valuable source for human consumption and livestock feed. Dry pea ranks third to common bean and chickpea as the most widely grown pulse in the world with more than 11 million tonnes produced in 2013. Pea breeding has achieved great success since the time of Mendel’s experiments in the mid-1800s. However, several traits still require significant improvement for better yield stability in a larger growing area. Key breeding objectives in pea include improving biotic and abiotic stress resistance and enhancing yield components and seed quality. Taking advantage of the diversity present in the pea genepool, many mapping populations have been constructed in the last decades and efforts have been deployed to identify loci involved in the control of target traits and further introgress them into elite breeding materials. Pea now benefits from next-generation sequencing and high-throughput genotyping technologies that are paving the way for genome-wide association studies and genomic selection approaches. This review covers the significant development and deployment of genomic tools for pea breeding in recent years. Future prospects are discussed especially in light of current progress towards deciphering the pea genome.

  10. Replication stress activates DNA repair synthesis in mitosis

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Ying, Songmin; Bjerregaard, Victoria A

    2015-01-01

    Oncogene-induced DNA replication stress has been implicated as a driver of tumorigenesis. Many chromosomal rearrangements characteristic of human cancers originate from specific regions of the genome called common fragile sites (CFSs). CFSs are difficult-to-replicate loci that manifest as gaps...... into mitotic prophase triggers the recruitment of MUS81 to CFSs. The nuclease activity of MUS81 then promotes POLD3-dependent DNA synthesis at CFSs, which serves to minimize chromosome mis-segregation and non-disjunction. We propose that the attempted condensation of incompletely duplicated loci in early...... mitosis serves as the trigger for completion of DNA replication at CFS loci in human cells. Given that this POLD3-dependent mitotic DNA synthesis is enhanced in aneuploid cancer cells that exhibit intrinsically high levels of chromosomal instability (CIN(+)) and replicative stress, we suggest...

  11. DNA damage by carbonyl stress in human skin cells

    International Nuclear Information System (INIS)

    Roberts, Michael J.; Wondrak, Georg T.; Laurean, Daniel Cervantes; Jacobson, Myron K.; Jacobson, Elaine L.

    2003-01-01

    Reactive carbonyl species (RCS) are potent mediators of cellular carbonyl stress originating from endogenous chemical processes such as lipid peroxidation and glycation. Skin deterioration as observed in photoaging and diabetes has been linked to accumulative protein damage from glycation, but the effects of carbonyl stress on skin cell genomic integrity are ill defined. In this study, the genotoxic effects of acute carbonyl stress on HaCaT keratinocytes and CF3 fibroblasts were assessed. Administration of the α-dicarbonyl compounds glyoxal and methylglyoxal as physiologically relevant RCS inhibited skin cell proliferation, led to intra-cellular protein glycation as evidenced by the accumulation of N ε -(carboxymethyl)-L-lysine (CML) in histones, and caused extensive DNA strand cleavage as assessed by the comet assay. These effects were prevented by treatment with the carbonyl scavenger D-penicillamine. Both glyoxal and methylglyoxal damaged DNA in intact cells. Glyoxal caused DNA strand breaks while methylglyoxal produced extensive DNA-protein cross-linking as evidenced by pronounced nuclear condensation and total suppression of comet formation. Glycation by glyoxal and methylglyoxal resulted in histone cross-linking in vitro and induced oxygen-dependent cleavage of plasmid DNA, which was partly suppressed by the hydroxyl scavenger mannitol. We suggest that a chemical mechanism of cellular DNA damage by carbonyl stress occurs in which histone glycoxidation is followed by reactive oxygen induced DNA stand breaks. The genotoxic potential of RCS in cultured skin cells and its suppression by a carbonyl scavenger as described in this study have implications for skin damage and carcinogenesis and its prevention by agents selective for carbonyl stress

  12. DNA damage by carbonyl stress in human skin cells

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Michael J.; Wondrak, Georg T.; Laurean, Daniel Cervantes; Jacobson, Myron K.; Jacobson, Elaine L

    2003-01-28

    Reactive carbonyl species (RCS) are potent mediators of cellular carbonyl stress originating from endogenous chemical processes such as lipid peroxidation and glycation. Skin deterioration as observed in photoaging and diabetes has been linked to accumulative protein damage from glycation, but the effects of carbonyl stress on skin cell genomic integrity are ill defined. In this study, the genotoxic effects of acute carbonyl stress on HaCaT keratinocytes and CF3 fibroblasts were assessed. Administration of the {alpha}-dicarbonyl compounds glyoxal and methylglyoxal as physiologically relevant RCS inhibited skin cell proliferation, led to intra-cellular protein glycation as evidenced by the accumulation of N{sup {epsilon}}-(carboxymethyl)-L-lysine (CML) in histones, and caused extensive DNA strand cleavage as assessed by the comet assay. These effects were prevented by treatment with the carbonyl scavenger D-penicillamine. Both glyoxal and methylglyoxal damaged DNA in intact cells. Glyoxal caused DNA strand breaks while methylglyoxal produced extensive DNA-protein cross-linking as evidenced by pronounced nuclear condensation and total suppression of comet formation. Glycation by glyoxal and methylglyoxal resulted in histone cross-linking in vitro and induced oxygen-dependent cleavage of plasmid DNA, which was partly suppressed by the hydroxyl scavenger mannitol. We suggest that a chemical mechanism of cellular DNA damage by carbonyl stress occurs in which histone glycoxidation is followed by reactive oxygen induced DNA stand breaks. The genotoxic potential of RCS in cultured skin cells and its suppression by a carbonyl scavenger as described in this study have implications for skin damage and carcinogenesis and its prevention by agents selective for carbonyl stress.

  13. Characterization of Erwinia amylovora strains from different host plants using repetitive-sequences PCR analysis, and restriction fragment length polymorphism and short-sequence DNA repeats of plasmid pEA29.

    Science.gov (United States)

    Barionovi, D; Giorgi, S; Stoeger, A R; Ruppitsch, W; Scortichini, M

    2006-05-01

    The three main aims of the study were the assessment of the genetic relationship between a deviating Erwinia amylovora strain isolated from Amelanchier sp. (Maloideae) grown in Canada and other strains from Maloideae and Rosoideae, the investigation of the variability of the PstI fragment of the pEA29 plasmid using restriction fragment length polymorphism (RFLP) analysis and the determination of the number of short-sequence DNA repeats (SSR) by DNA sequence analysis in representative strains. Ninety-three strains obtained from 12 plant genera and different geographical locations were examined by repetitive-sequences PCR using Enterobacterial Repetitive Intergenic Consensus, BOX and Repetitive Extragenic Palindromic primer sets. Upon the unweighted pair group method with arithmetic mean analysis, a deviating strain from Amelanchier sp. was analysed using amplified ribosomal DNA restriction analysis (ARDRA) analysis and the sequencing of the 16S rDNA gene. This strain showed 99% similarity to other E. amylovora strains in the 16S gene and the same banding pattern with ARDRA. The RFLP analysis of pEA29 plasmid using MspI and Sau3A restriction enzymes showed a higher variability than that previously observed and no clear-cut grouping of the strains was possible. The number of SSR units reiterated two to 12 times. The strains obtained from pear orchards showing for the first time symptoms of fire blight had a low number of SSR units. The strains from Maloideae exhibit a wider genetic variability than previously thought. The RFLP analysis of a fragment of the pEA29 plasmid would not seem a reliable method for typing E. amylovora strains. A low number of SSR units was observed with first epidemics of fire blight. The current detection techniques are mainly based on the genetic similarities observed within the strains from the cultivated tree-fruit crops. For a more reliable detection of the fire blight pathogen also in wild and ornamentals Rosaceous plants the genetic

  14. Mutation breeding in peas

    Energy Technology Data Exchange (ETDEWEB)

    Jaranowski, J [Institute of Genetics and Plant Breeding, Academy of Agriculture, Poznan (Poland); Micke, A [Joint FAO/IAEA Division of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development, International Atomic Energy Agency, Vienna (Austria)

    1985-02-01

    The pea as an ancient crop plant still today has wide uses and is an import source of food protein. It is also an important object for genetic studies and as such has been widely used in mutation induction experiments. However, in comparison with cereals this ancient crop plant (like several other grain legumes) has gained relatively little from advances in breeding. The review focuses on the prospects of genetic improvement of pea by induced mutations, discusses principles and gives methodological information. (author)

  15. Mutation breeding in peas

    International Nuclear Information System (INIS)

    Jaranowski, J.; Micke, A.

    1985-01-01

    The pea as an ancient crop plant still today has wide uses and is an import source of food protein. It is also an important object for genetic studies and as such has been widely used in mutation induction experiments. However, in comparison with cereals this ancient crop plant (like several other grain legumes) has gained relatively little from advances in breeding. The review focuses on the prospects of genetic improvement of pea by induced mutations, discusses principles and gives methodological information. (author)

  16. Potential biomarkers of DNA replication stress in cancer

    DEFF Research Database (Denmark)

    Ren, Liqun; Chen, Long; Wu, Wei

    2017-01-01

    Oncogene activation is an established driver of tumorigenesis. An apparently inevitable consequence of oncogene activation is the generation of DNA replication stress (RS), a feature common to most cancer cells. RS, in turn, is a causal factor in the development of chromosome instability (CIN...

  17. Altered DNA repair, oxidative stress and antioxidant status

    Indian Academy of Sciences (India)

    Coronary artery disease (CAD) is a multifactorial disease caused by the interplay of environmental risk factors with multiple predisposing genes. The present study was undertaken to evaluate the role of DNA repair efficiency and oxidative stress and antioxidant status in CAD patients. Malonaldehyde (MDA), which is an ...

  18. Oxidative Stress and DNA Methylation in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Krishna Vanaja Donkena

    2010-01-01

    Full Text Available The protective effects of fruits, vegetables, and other foods on prostate cancer may be due to their antioxidant properties. An imbalance in the oxidative stress/antioxidant status is observed in prostate cancer patients. Genome oxidative damage in prostate cancer patients is associated with higher lipid peroxidation and lower antioxidant levels. Oxygen radicals are associated with different steps of carcinogenesis, including structural DNA damage, epigenetic changes, and protein and lipid alterations. Epigenetics affects genetic regulation, cellular differentiation, embryology, aging, cancer, and other diseases. DNA methylation is perhaps the most extensively studied epigenetic modification, which plays an important role in the regulation of gene expression and chromatin architecture, in association with histone modification and other chromatin-associated proteins. This review will provide a broad overview of the interplay of oxidative stress and DNA methylation, DNA methylation changes in regulation of gene expression, lifestyle changes for prostate cancer prevention, DNA methylation as biomarkers for prostate cancer, methods for detection of methylation, and clinical application of DNA methylation inhibitors for epigenetic therapy.

  19. DNA replication stress as a hallmark of cancer.

    Science.gov (United States)

    Macheret, Morgane; Halazonetis, Thanos D

    2015-01-01

    Human cancers share properties referred to as hallmarks, among which sustained proliferation, escape from apoptosis, and genomic instability are the most pervasive. The sustained proliferation hallmark can be explained by mutations in oncogenes and tumor suppressors that regulate cell growth, whereas the escape from apoptosis hallmark can be explained by mutations in the TP53, ATM, or MDM2 genes. A model to explain the presence of the three hallmarks listed above, as well as the patterns of genomic instability observed in human cancers, proposes that the genes driving cell proliferation induce DNA replication stress, which, in turn, generates genomic instability and selects for escape from apoptosis. Here, we review the data that support this model, as well as the mechanisms by which oncogenes induce replication stress. Further, we argue that DNA replication stress should be considered as a hallmark of cancer because it likely drives cancer development and is very prevalent.

  20. The DNA Replication Stress Hypothesis of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Yuri B. Yurov

    2011-01-01

    Full Text Available A well-recognized theory of Alzheimer’s disease (AD pathogenesis suggests ectopic cell cycle events to mediate neurodegeneration. Vulnerable neurons of the AD brain exhibit biomarkers of cell cycle progression and DNA replication suggesting a reentry into the cell cycle. Chromosome reduplication without proper cell cycle completion and mitotic division probably causes neuronal cell dysfunction and death. However, this theory seems to require some inputs in accordance with the generally recognized amyloid cascade theory as well as to explain causes and consequences of genomic instability (aneuploidy in the AD brain. We propose that unscheduled and incomplete DNA replication (replication stress destabilizes (epigenomic landscape in the brain and leads to DNA replication “catastrophe” causing cell death during the S phase (replicative cell death. DNA replication stress can be a key element of the pathogenetic cascade explaining the interplay between ectopic cell cycle events and genetic instabilities in the AD brain. Abnormal cell cycle reentry and somatic genome variations can be used for updating the cell cycle theory introducing replication stress as a missing link between cell genetics and neurobiology of AD.

  1. Oxidative Stress, DNA Damage and DNA Repair in Female Patients with Diabetes Mellitus Type 2.

    Directory of Open Access Journals (Sweden)

    Annemarie Grindel

    Full Text Available Diabetes mellitus type 2 (T2DM is associated with oxidative stress which in turn can lead to DNA damage. The aim of the present study was to analyze oxidative stress, DNA damage and DNA repair in regard to hyperglycemic state and diabetes duration.Female T2DM patients (n = 146 were enrolled in the MIKRODIAB study and allocated in two groups regarding their glycated hemoglobin (HbA1c level (HbA1c≤7.5%, n = 74; HbA1c>7.5%, n = 72. In addition, tertiles according to diabetes duration (DD were created (DDI = 6.94±3.1 y, n = 49; DDII = 13.35±1.1 y, n = 48; DDIII = 22.90±7.3 y, n = 49. Oxidative stress parameters, including ferric reducing ability potential, malondialdehyde, oxidized and reduced glutathione, reduced thiols, oxidized LDL and F2-Isoprostane as well as the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase were measured. Damage to DNA was analyzed in peripheral blood mononuclear cells and whole blood with single cell gel electrophoresis. DNA base excision repair capacity was tested with the modified comet repair assay. Additionally, mRNA expressions of nine genes related to base excision repair were analyzed in a subset of 46 matched individuals.No significant differences in oxidative stress parameters, antioxidant enzyme activities, damage to DNA and base excision repair capacity, neither between a HbA1c cut off />7.5%, nor between diabetes duration was found. A significant up-regulation in mRNA expression was found for APEX1, LIG3 and XRCC1 in patients with >7.5% HbA1c. Additionally, we observed higher total cholesterol, LDL-cholesterol, LDL/HDL-cholesterol, triglycerides, Framingham risk score, systolic blood pressure, BMI and lower HDL-cholesterol in the hyperglycemic group.BMI, blood pressure and blood lipid status were worse in hyperglycemic individuals. However, no major disparities regarding oxidative stress, damage to DNA and DNA repair were present which might be due to good medical

  2. Large-scale evaluation of pea (Pisum sativum L.) germplasm for cold tolerance in the open field during winter in Qingdao.

    Science.gov (United States)

    As a cool season crop, pea (Pisum sativum L.) can tolerate frost at the vegetative stage but has yield loss when freezing stress occurs at reproductive stage. Cold tolerance improvement of pea varieties is important for the stable yield and the expansion of winter pea planting area. Under the natura...

  3. ( Voandze subterranean ) and pigeon pea

    African Journals Online (AJOL)

    Formulation and evaluation of complementary food based on bambara nut ( Voandze subterranean ) and pigeon pea ( Cajanus cajan ) ... Nigerian Journal of Nutritional Sciences ... Objectives: The study formulated and evaluated complementary food made from composites of maize, bambara nut and pigeon pea. Materials ...

  4. Knockdown of RMI1 impairs DNA repair under DNA replication stress.

    Science.gov (United States)

    Xu, Chang; Fang, Lianying; Kong, Yangyang; Xiao, Changyan; Yang, Mengmeng; Du, Li-Qing; Liu, Qiang

    2017-12-09

    RMI1 (RecQ-mediated genome instability protein 1) forms a conserved BTR complex with BLM, Topo IIIα, and RMI2, and its absence causes genome instability. It has been revealed that RMI1 localizes to nuclear foci with BLM and Topo IIIα in response to replication stress, and that RMI1 functions downstream of BLM in promoting replication elongation. However, the precise functions of RMI1 during replication stress are not completely understood. Here we report that RMI1 knockdown cells are hypersensitive to hydroxyurea (HU). Using comet assay, we show that RMI1 knockdown cells exhibit accumulation of broken DNAs after being released from HU treatment. Moreover, we demonstrate that RMI1 facilitates the recovery from activated checkpoint and resuming the cell cycle after replicative stress. Surprisingly, loss of RMI1 results in a failure of RAD51 loading onto DNA damage sites. These findings reveal the importance of RMI1 in response to replication stress, which could explain the molecular basis for its function in maintaining genome integrity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Self-Assembly of 3D DNA Crystals Containing a Torsionally Stressed Component.

    Science.gov (United States)

    Hernandez, Carina; Birktoft, Jens J; Ohayon, Yoel P; Chandrasekaran, Arun Richard; Abdallah, Hatem; Sha, Ruojie; Stojanoff, Vivian; Mao, Chengde; Seeman, Nadrian C

    2017-11-16

    There is an increasing appreciation for structural diversity of DNA that is of interest to both DNA nanotechnology and basic biology. Here, we have explored how DNA responds to torsional stress by building on a previously reported two-turn DNA tensegrity triangle and demonstrating that we could introduce an extra nucleotide pair (np) into the original sequence without affecting assembly and crystallization. The extra np imposes a significant torsional stress, which is accommodated by global changes throughout the B-DNA duplex and the DNA lattice. The work reveals a near-atomic structure of naked DNA under a torsional stress of approximately 14%, and thus provides an example of DNA distortions that occur without a requirement for either an external energy source or the free energy available from protein or drug binding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. DNA replication stress: from molecular mechanisms to human disease.

    Science.gov (United States)

    Muñoz, Sergio; Méndez, Juan

    2017-02-01

    The genome of proliferating cells must be precisely duplicated in each cell division cycle. Chromosomal replication entails risks such as the possibility of introducing breaks and/or mutations in the genome. Hence, DNA replication requires the coordinated action of multiple proteins and regulatory factors, whose deregulation causes severe developmental diseases and predisposes to cancer. In recent years, the concept of "replicative stress" (RS) has attracted much attention as it impinges directly on genomic stability and offers a promising new avenue to design anticancer therapies. In this review, we summarize recent progress in three areas: (1) endogenous and exogenous factors that contribute to RS, (2) molecular mechanisms that mediate the cellular responses to RS, and (3) the large list of diseases that are directly or indirectly linked to RS.

  7. Pre-fractionation strategies to resolve pea (Pisum sativum sub-proteomes

    Directory of Open Access Journals (Sweden)

    Claudia Nicole Meisrimler

    2015-10-01

    Full Text Available Legumes are important crop plants and pea (Pisum sativum L. has been investigated as a model with respect to several physiological aspects. The sequencing of the pea genome has not been completed. Therefore, proteomic approaches are currently limited. Nevertheless, the increasing numbers of available EST-databases as well as the high homology of the pea and medicago genome (Medicago truncatula G. allow the successful identification of proteins. Due to the un-sequenced pea genome, pre-fractionation approaches have been used in pea proteomic surveys in the past. Aside from a number of selective proteome studies on crude extracts and the chloroplast, few studies have targeted other components such as the pea secretome, an important sub-proteome of interest due to its role in abiotic and biotic stress processes. The secretome itself can be further divided into different sub-proteomes (plasma membrane, apoplast, cell wall proteins. Cell fractionation in combination with different gel-electrophoresis, chromatography methods and protein identification by mass spectrometry are important partners to gain insight into pea sub-proteomes, post-translational modifications and protein functions. Overall, pea proteomics needs to link numerous existing physiological and biochemical data to gain further insight into adaptation processes, which play important roles in field applications. Future developments and directions in pea proteomics are discussed.

  8. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula

    Czech Academy of Sciences Publication Activity Database

    Macas, Jiří; Neumann, Pavel; Navrátilová, Alice

    2007-01-01

    Roč. 8, č. 1 (2007), s. 427 ISSN 1471-2164 R&D Projects: GA AV ČR IAA500960702; GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50510513 Keywords : DNA * Pisum sativum L. Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.180, year: 2007

  9. Interação da deficiência hídrica e da toxicidade do alumínio em guandu cultivado em hidroponia Interaction of water stress and aluminum toxicity in pigeon pea cultivated in hydroponics

    Directory of Open Access Journals (Sweden)

    Adão Marin

    2008-10-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito da interação da deficiência hídrica e da toxicidade do alumínio no crescimento inicial e teores de prolina livre em duas cultivares de guandu, IAPAR 43-Aratã e IAC Fava Larga, cultivadas em hidroponia. As plântulas foram submetidas aos estresses em solução nutritiva (pH 3,8, nos potenciais osmóticos de 0, -0,004, -0,006, -0,008 e -0,010 MPa, com 0, 0,25, 0,50, 0,75 e 1 mmol dm-3 de Al3+. O experimento foi conduzido em sala de crescimento, sob luminária com irradiância média de 190 mmol m-2 s-1 , fotoperíodo de 12 horas e temperatura de 25+1ºC. O delineamento experimental foi inteiramente casualizado, em arranjo fatorial 2x5x5 (duas cultivares de guandu, cinco potenciais osmóticos e cinco níveis de alumínio, com quatro repetições. Os dados foram submetidos às análises de regressão polinomial, agrupamento e componentes principais. A deficiência hídrica causa redução do crescimento da parte aérea do guandu, e a toxicidade do alumínio provoca diminuição do crescimento radicular. Houve aumento nos teores de prolina livre nas duas cultivares sob deficiência hídrica, e apenas na IAC Fava Larga sob toxicidade de alumínio. Na análise multivariada, foi observada alta correlação no crescimento e no acúmulo de prolina na cultivar IAC Fava Larga, o que evidencia provável tolerância aos estresses associados.The objective of this work was to evaluate the interaction effect of water stress and aluminum toxicity on the initial growth and free proline contents in two cultivars of pigeon pea, IAPAR 43-Aratã and IAC Fava Larga, cultivated in hydroponics. The seedlings were submitted to stresses in nutritive solution (pH 3.8, osmotic potentials 0, -0.004, -0.006, -0.008 and -0.010 MPa, with 0, 0.25, 0.50, 0.75 and 1 mmol dm-3 Al3+ . The experiment was carried out in a plant growth room, under a luminary unit of average irradiance 190 mmol m-2 s-1 , 12-hour photoperiod and 25+1º

  10. Deletion of PEA-15 in mice is associated with specific impairments of spatial learning abilities

    Directory of Open Access Journals (Sweden)

    Hale Gregory

    2009-11-01

    Full Text Available Abstract Background PEA-15 is a phosphoprotein that binds and regulates ERK MAP kinase and RSK2 and is highly expressed throughout the brain. PEA-15 alters c-Fos and CREB-mediated transcription as a result of these interactions. To determine if PEA-15 contributes to the function of the nervous system we tested mice lacking PEA-15 in a series of experiments designed to measure learning, sensory/motor function, and stress reactivity. Results We report that PEA-15 null mice exhibited impaired learning in three distinct spatial tasks, while they exhibited normal fear conditioning, passive avoidance, egocentric navigation, and odor discrimination. PEA-15 null mice also had deficient forepaw strength and in limited instances, heightened stress reactivity and/or anxiety. However, these non-cognitive variables did not appear to account for the observed spatial learning impairments. The null mice maintained normal weight, pain sensitivity, and coordination when compared to wild type controls. Conclusion We found that PEA-15 null mice have spatial learning disabilities that are similar to those of mice where ERK or RSK2 function is impaired. We suggest PEA-15 may be an essential regulator of ERK-dependent spatial learning.

  11. GC-Rich Extracellular DNA Induces Oxidative Stress, Double-Strand DNA Breaks, and DNA Damage Response in Human Adipose-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Kostyuk, Svetlana; Smirnova, Tatiana; Kameneva, Larisa; Porokhovnik, Lev; Speranskij, Anatolij; Ershova, Elizaveta; Stukalov, Sergey; Izevskaya, Vera; Veiko, Natalia

    2015-01-01

    Cell free DNA (cfDNA) circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA) and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci). As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR), PCNA (FACS)) and antiapoptotic genes (BCL2 (RT-PCR and FACS), BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR)). Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs). Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR), in the level of fatty acid binding protein FABP4 (FACS analysis) and in the level of fat (Oil Red O). GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose-derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis.

  12. The early nodulin transcript ENOD2 is located in the nodule parenchyma (inner cortex) of pea and soybean root nodules.

    NARCIS (Netherlands)

    Wiel, van de C.; Scheres, B.; Franssen, H.J.; Lierop, van M.J.; Lammeren, van A.; Kammen, van A.; Bisseling, T.

    1990-01-01

    A pea cDNA clone homologous to the soybean early nodulin clone pGmENOD2 that most probably encodes a cell wall protein was isolated. The derived amino acid sequence of the pea ENOD2 protein shows that it contains the same repeating pentapeptides, ProProHisGluLys and ProProGluTyrGln, as the soybean

  13. The early nodulin transcript ENOD2 is located in the nodule parenchyma (inner cortex) of pea and soybean root nodules

    NARCIS (Netherlands)

    Wiel, C. van de; Scheres, B.J.G.; Franssen, H.; Lierop, M.-J.; Lammeren, A. van; Kammen, A. van; Bisseling, T.

    1990-01-01

    A pea cDNA clone homologous to the soybean early nodulin clone pGmENOD2 that most probably encodes a cell wall protein was isolated. The derived amino acid sequence of the pea ENOD2 protein shows that it contains the same repeating pentapeptides, ProProHisGluLys and ProProGluTyrGln, as the soybean

  14. Study of Pea Accessions for Development of an Oilseed Pea

    Directory of Open Access Journals (Sweden)

    Ehsan Khodapanahi

    2012-09-01

    Full Text Available Global interest in stable energy resources coupled with growing demand for bio-oils in various conventional and arising industries has renewed the importance of vegetable oil production. To address this global interest, oilseed production has been increased in recent decades by different approaches, such as extending the cultivation area of oil crops, or breeding and growing genetically modified plants. In this study, pea (Pisum sativum L. accessions were screened for lipid content using a rapid extraction method. This method quantifies lipid concentration in pea seeds and was developed by assessing and comparing the results of existing extraction methods used for canola and soybean, the top two Canadian oilseeds. Seeds of 151 field pea accessions were grown to maturity in 2009 and 2010 at McGill University (Quebec, Canada. Overall, lipid concentration in pea seeds ranged from 0.9 to 5.0%. Among several seed characteristics, only seed shape (wrinkled verses round had a significant effect on the total lipid production in the seeds. Peas are a valuable source of protein and starch, but the lipid concentration in their seeds has been undervalued. This research supports the idea of developing a novel dual-purpose oilseed pea that emulates the protein and oil production in soybean seeds while being conveniently adapted to a colder climate.

  15. DNA alkylation damage as a sensor of nitrosative stress in Mycobacterium tuberculosis

    OpenAIRE

    Durbach, S I; Springer, B; Machowski, E E; North, R J; Papavinasasundaram, K G; Colston, M J; Böttger, E C; Mizrahi, V

    2003-01-01

    One of the cellular consequences of nitrosative stress is alkylation damage to DNA. To assess whether nitrosative stress is registered on the genome of Mycobacterium tuberculosis, mutants lacking an alkylation damage repair and reversal operon were constructed. Although hypersensitive to the genotoxic effects of N-methyl-N′-nitro-N-nitrosoguanidine in vitro, the mutants displayed no phenotype in vivo, suggesting that permeation of nitrosative stress to the level of cytotoxic DNA damage is res...

  16. The stress granule component G3BP is a novel interaction partner for the nuclear shuttle proteins of the nanovirus pea necrotic yellow dwarf virus and geminivirus abutilon mosaic virus.

    Science.gov (United States)

    Krapp, Susanna; Greiner, Eva; Amin, Bushra; Sonnewald, Uwe; Krenz, Björn

    2017-01-02

    Stress granules (SGs) are structures within cells that regulate gene expression during stress response, e.g. viral infection. In mammalian cells assembly of SGs is dependent on the Ras-GAP SH3-domain-binding protein (G3BP). The C-terminal domain of the viral nonstructural protein 3 (nsP3) of Semliki Forest virus (SFV) forms a complex with mammalian G3BP and sequesters it into viral RNA replication complexes in a manner that inhibits the formation of SGs. The binding domain of nsP3 to HsG3BP was mapped to two tandem 'FGDF' repeat motifs close to the C-terminus of the viral proteins. It was speculated that plant viruses employ a similar strategy to inhibit SG function. This study identifies an Arabidopsis thaliana NTF2-RRM domain-containing protein as a G3BP-like protein (AtG3BP), which localizes to plant SGs. Moreover, the nuclear shuttle protein (NSP) of the begomovirus abutilon mosaic virus (AbMV), which harbors a 'FVSF'-motif at its C-terminal end, interacts with the AtG3BP-like protein, as does the 'FNGSF'-motif containing NSP of pea necrotic yellow dwarf virus (PNYDV), a member of the Nanoviridae family. We therefore propose that SG formation upon stress is conserved between mammalian and plant cells and that plant viruses may follow a similar strategy to inhibit plant SG function as it has been shown for their mammalian counterparts. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Lymphocyte DNA damage and oxidative stress in patients with iron deficiency anemia.

    Science.gov (United States)

    Aslan, Mehmet; Horoz, Mehmet; Kocyigit, Abdurrahim; Ozgonül, Saadet; Celik, Hakim; Celik, Metin; Erel, Ozcan

    2006-10-10

    Oxidant stress has been shown to play an important role in the pathogenesis of iron deficiency anemia. The aim of this study was to investigate the association between lymphocyte DNA damage, total antioxidant capacity and the degree of anemia in patients with iron deficiency anemia. Twenty-two female with iron deficiency anemia and 22 healthy females were enrolled in the study. Peripheral DNA damage was assessed using alkaline comet assay and plasma total antioxidant capacity was determined using an automated measurement method. Lymphocyte DNA damage of patients with iron deficiency anemia was significantly higher than controls (ptotal antioxidant capacity was significantly lower (ptotal antioxidant capacity and hemoglobin levels (r=0.706, ptotal antioxidant capacity and hemoglobin levels were negatively correlated with DNA damage (r=-0.330, p<0.05 and r=-0.323, p<0.05, respectively). In conclusion, both oxidative stress and DNA damage are increased in IDA patients. Increased oxidative stress seems as an important factor that inducing DNA damage in those IDA patients. The relationships of oxidative stress and DNA damage with the severity of anemia suggest that both oxidative stress and DNA damage may, in part, have a role in the pathogenesis of IDA.

  18. Maternal Stress, Preterm Birth, and DNA Methylation at Imprint Regulatory Sequences in Humans

    Directory of Open Access Journals (Sweden)

    Adriana C. Vidal

    2014-01-01

    Full Text Available In infants exposed to maternal stress in utero, phenotypic plasticity through epigenetic events may mechanistically explain increased risk of preterm birth (PTB, which confers increased risk for neurodevelopmental disorders, cardiovascular disease, and cancers in adulthood. We examined associations between prenatal maternal stress and PTB, evaluating the role of DNA methylation at imprint regulatory regions. We enrolled women from prenatal clinics in Durham, NC. Stress was measured in 537 women at 12 weeks of gestation using the Perceived Stress Scale. DNA methylation at differentially methylated regions (DMRs associated with H19, IGF2, MEG3, MEST, SGCE/PEG10, PEG3, NNAT , and PLAGL1 was measured from peripheral and cord blood using bisulfite pyrosequencing in a sub-sample of 79 mother–-infant pairs. We examined associations between PTB and stress and evaluated differences in DNA methylation at each DMR by stress. Maternal stress was not associated with PTB (OR = 0.98; 95% CI, 0.40–-2.40; P = 0.96, after adjustment for maternal body mass index (BMI, income, and raised blood pressure. However, elevated stress was associated with higher infant DNA methylation at the MEST DMR (2.8% difference, P < 0.01 after adjusting for PTB. Maternal stress may be associated with epigenetic changes at MEST , a gene relevant to maternal care and obesity. Reduced prenatal stress may support the epigenomic profile of a healthy infant.

  19. DNA damage and oxidative stress in marine gastropod Morula granulata exposed to phenanthrene

    Digital Repository Service at National Institute of Oceanography (India)

    Bhagat, J.; Sarkar, A.; Ingole, B.S.

    oxidative stress was assessed using a battery of biomarkers such as glutathione-S-transferase (GST), catalase (CAT), and lipid peroxidation (LPO). Our data showed concentration-dependent increase in percentage DNA in tail (TDNA), LPO, and GST activity...

  20. DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis.

    Science.gov (United States)

    Le, Tuan-Ngoc; Schumann, Ulrike; Smith, Neil A; Tiwari, Sameer; Au, Phil Chi Khang; Zhu, Qian-Hao; Taylor, Jennifer M; Kazan, Kemal; Llewellyn, Danny J; Zhang, Ren; Dennis, Elizabeth S; Wang, Ming-Bo

    2014-09-17

    DNA demethylases regulate DNA methylation levels in eukaryotes. Arabidopsis encodes four DNA demethylases, DEMETER (DME), REPRESSOR OF SILENCING 1 (ROS1), DEMETER-LIKE 2 (DML2), and DML3. While DME is involved in maternal specific gene expression during seed development, the biological function of the remaining DNA demethylases remains unclear. We show that ROS1, DML2, and DML3 play a role in fungal disease resistance in Arabidopsis. A triple DNA demethylase mutant, rdd (ros1 dml2 dml3), shows increased susceptibility to the fungal pathogen Fusarium oxysporum. We identify 348 genes differentially expressed in rdd relative to wild type, and a significant proportion of these genes are downregulated in rdd and have functions in stress response, suggesting that DNA demethylases maintain or positively regulate the expression of stress response genes required for F. oxysporum resistance. The rdd-downregulated stress response genes are enriched for short transposable element sequences in their promoters. Many of these transposable elements and their surrounding sequences show localized DNA methylation changes in rdd, and a general reduction in CHH methylation, suggesting that RNA-directed DNA methylation (RdDM), responsible for CHH methylation, may participate in DNA demethylase-mediated regulation of stress response genes. Many of the rdd-downregulated stress response genes are downregulated in the RdDM mutants nrpd1 and nrpe1, and the RdDM mutants nrpe1 and ago4 show enhanced susceptibility to F. oxysporum infection. Our results suggest that a primary function of DNA demethylases in plants is to regulate the expression of stress response genes by targeting promoter transposable element sequences.

  1. GC-Rich Extracellular DNA Induces Oxidative Stress, Double-Strand DNA Breaks, and DNA Damage Response in Human Adipose-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Svetlana Kostyuk

    2015-01-01

    Full Text Available Background. Cell free DNA (cfDNA circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. Principal Findings. Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci. As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR, PCNA (FACS and antiapoptotic genes (BCL2 (RT-PCR and FACS, BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR. Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs. Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR, in the level of fatty acid binding protein FABP4 (FACS analysis and in the level of fat (Oil Red O. Conclusions. GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose—derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis.

  2. Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair

    DEFF Research Database (Denmark)

    Akbari, Mansour; Keijzers, Guido; Maynard, Scott

    2014-01-01

    slower than the preceding mitochondrial BER steps. Overexpression of DNA ligase III in mitochondria improved the rate of overall BER, increased cell survival after menadione induced oxidative stress and reduced autophagy following the inhibition of the mitochondrial electron transport chain complex I...

  3. Modulation of immune response to rDNA hepatitis B vaccination by psychological stress

    NARCIS (Netherlands)

    L. Jabaaij (Lea); J. van Hattum (Jan); A.J.J.M. Vingerhoets (Ad); F.G. Oostveen (Frank); H.J. Duivenvoorden (Hugo); R.E. Ballieux (Rudy)

    1996-01-01

    textabstractIn a previous study it was shown that antibody formation after vaccination with a low-dose recombinant DNA (rDNA) hepatitis B vaccine was negatively influenced by psychological stress. The present study was designed to assess whether the same inverse relation between HBs-antibody levels

  4. Stress-induced DNA methylation changes and their heritability in asexual dandelions

    NARCIS (Netherlands)

    Verhoeven, K.J.F.; Jansen, J.J.; Van Dijk, P.J.; Biere, A.

    2010-01-01

    DNA methylation can cause heritable phenotypic modifications in the absence of changes in DNA sequence. Environmental stresses can trigger methylation changes and this may have evolutionary consequences, even in the absence of sequence variation. However, it remains largely unknown to what extent

  5. Stress-induced DNA methylation changes and their heritability in asexual dandelions

    NARCIS (Netherlands)

    Verhoeven, K.J.F.; Jansen, J.J.; Dijk, P.J.; Biere, A.

    2010-01-01

    DNA methylation can cause heritable phenotypic modifications in the absence of changes in DNA sequence. Environmental stresses can trigger methylation changes and this may have evolutionary consequences, even in the absence of sequence variation. However, it remains largely unknown to what extent

  6. DNA-methylation changes induced by salt stress in wheat Triticum ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-16

    Nov 16, 2009 ... soil roots are the primary point of contact with ionic toxicity and osmotic stress. One of .... liquid nitrogen with mortar and pestle. Then 10 ml of ... room temperature and the crude DNA extract was mixed with 10 ml of chloroform: ..... induces DNA hypomethylation, as reviewed by Cerda and. Weitzman (1997).

  7. Biomarkers of oxidative stress and DNA damage in agricultural workers: A pilot study

    International Nuclear Information System (INIS)

    Muniz, Juan F.; McCauley, Linda; Scherer, J.; Lasarev, M.; Koshy, M.; Kow, Y.W.; Nazar-Stewart, Valle; Kisby, G.E.

    2008-01-01

    Oxidative stress and DNA damage have been proposed as mechanisms linking pesticide exposure to health effects such as cancer and neurological diseases. A study of pesticide applicators and farmworkers was conducted to examine the relationship between organophosphate pesticide exposure and biomarkers of oxidative stress and DNA damage. Urine samples were analyzed for OP metabolites and 8-hydroxy-2'-deoxyguanosine (8-OH-dG). Lymphocytes were analyzed for oxidative DNA repair activity and DNA damage (Comet assay), and serum was analyzed for lipid peroxides (i.e., malondialdehyde, MDA). Cellular damage in agricultural workers was validated using lymphocyte cell cultures. Urinary OP metabolites were significantly higher in farmworkers and applicators (p < 0.001) when compared to controls. 8-OH-dG levels were 8.5 times and 2.3 times higher in farmworkers or applicators (respectively) than in controls. Serum MDA levels were 4.9 times and 24 times higher in farmworkers or applicators (respectively) than in controls. DNA damage (Comet assay) and oxidative DNA repair were significantly greater in lymphocytes from applicators and farmworkers when compared with controls. Markers of oxidative stress (i.e., increased reactive oxygen species and reduced glutathione levels) and DNA damage were also observed in lymphocyte cell cultures treated with an OP. The findings from these in vivo and in vitro studies indicate that organophosphate pesticides induce oxidative stress and DNA damage in agricultural workers. These biomarkers may be useful for increasing our understanding of the link between pesticides and a number of health effects

  8. Checkpoint Kinase Rad53 Couples Leading- and Lagging-Strand DNA Synthesis under Replication Stress.

    Science.gov (United States)

    Gan, Haiyun; Yu, Chuanhe; Devbhandari, Sujan; Sharma, Sushma; Han, Junhong; Chabes, Andrei; Remus, Dirk; Zhang, Zhiguo

    2017-10-19

    The checkpoint kinase Rad53 is activated during replication stress to prevent fork collapse, an essential but poorly understood process. Here we show that Rad53 couples leading- and lagging-strand synthesis under replication stress. In rad53-1 cells stressed by dNTP depletion, the replicative DNA helicase, MCM, and the leading-strand DNA polymerase, Pol ε, move beyond the site of DNA synthesis, likely unwinding template DNA. Remarkably, DNA synthesis progresses further along the lagging strand than the leading strand, resulting in the exposure of long stretches of single-stranded leading-strand template. The asymmetric DNA synthesis in rad53-1 cells is suppressed by elevated levels of dNTPs in vivo, and the activity of Pol ε is compromised more than lagging-strand polymerase Pol δ at low dNTP concentrations in vitro. Therefore, we propose that Rad53 prevents the generation of excessive ssDNA under replication stress by coordinating DNA unwinding with synthesis of both strands. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. P-body proteins regulate transcriptional rewiring to promote DNA replication stress resistance.

    Science.gov (United States)

    Loll-Krippleber, Raphael; Brown, Grant W

    2017-09-15

    mRNA-processing (P-) bodies are cytoplasmic granules that form in eukaryotic cells in response to numerous stresses to serve as sites of degradation and storage of mRNAs. Functional P-bodies are critical for the DNA replication stress response in yeast, yet the repertoire of P-body targets and the mechanisms by which P-bodies promote replication stress resistance are unknown. In this study we identify the complete complement of mRNA targets of P-bodies during replication stress induced by hydroxyurea treatment. The key P-body protein Lsm1 controls the abundance of HHT1, ACF4, ARL3, TMA16, RRS1 and YOX1 mRNAs to prevent their toxic accumulation during replication stress. Accumulation of YOX1 mRNA causes aberrant downregulation of a network of genes critical for DNA replication stress resistance and leads to toxic acetaldehyde accumulation. Our data reveal the scope and the targets of regulation by P-body proteins during the DNA replication stress response.P-bodies form in response to stress and act as sites of mRNA storage and degradation. Here the authors identify the mRNA targets of P-bodies during DNA replication stress, and show that P-body proteins act to prevent toxic accumulation of these target transcripts.

  10. Sequence-dependent response of DNA to torsional stress: a potential biological regulation mechanism.

    Science.gov (United States)

    Reymer, Anna; Zakrzewska, Krystyna; Lavery, Richard

    2018-02-28

    Torsional restraints on DNA change in time and space during the life of the cell and are an integral part of processes such as gene expression, DNA repair and packaging. The mechanical behavior of DNA under torsional stress has been studied on a mesoscopic scale, but little is known concerning its response at the level of individual base pairs and the effects of base pair composition. To answer this question, we have developed a geometrical restraint that can accurately control the total twist of a DNA segment during all-atom molecular dynamics simulations. By applying this restraint to four different DNA oligomers, we are able to show that DNA responds to both under- and overtwisting in a very heterogeneous manner. Certain base pair steps, in specific sequence environments, are able to absorb most of the torsional stress, leaving other steps close to their relaxed conformation. This heterogeneity also affects the local torsional modulus of DNA. These findings suggest that modifying torsional stress on DNA could act as a modulator for protein binding via the heterogeneous changes in local DNA structure.

  11. Inhibition of DNA2 nuclease as a therapeutic strategy targeting replication stress in cancer cells.

    Science.gov (United States)

    Kumar, S; Peng, X; Daley, J; Yang, L; Shen, J; Nguyen, N; Bae, G; Niu, H; Peng, Y; Hsieh, H-J; Wang, L; Rao, C; Stephan, C C; Sung, P; Ira, G; Peng, G

    2017-04-17

    Replication stress is a characteristic feature of cancer cells, which is resulted from sustained proliferative signaling induced by activation of oncogenes or loss of tumor suppressors. In cancer cells, oncogene-induced replication stress manifests as replication-associated lesions, predominantly double-strand DNA breaks (DSBs). An essential mechanism utilized by cells to repair replication-associated DSBs is homologous recombination (HR). In order to overcome replication stress and survive, cancer cells often require enhanced HR repair capacity. Therefore, the key link between HR repair and cellular tolerance to replication-associated DSBs provides us with a mechanistic rationale for exploiting synthetic lethality between HR repair inhibition and replication stress. DNA2 nuclease is an evolutionarily conserved essential enzyme in replication and HR repair. Here we demonstrate that DNA2 is overexpressed in pancreatic cancers, one of the deadliest and more aggressive forms of human cancers, where mutations in the KRAS are present in 90-95% of cases. In addition, depletion of DNA2 significantly reduces pancreatic cancer cell survival and xenograft tumor growth, suggesting the therapeutic potential of DNA2 inhibition. Finally, we develop a robust high-throughput biochemistry assay to screen for inhibitors of the DNA2 nuclease activity. The top inhibitors were shown to be efficacious against both yeast Dna2 and human DNA2. Treatment of cancer cells with DNA2 inhibitors recapitulates phenotypes observed upon DNA2 depletion, including decreased DNA double strand break end resection and attenuation of HR repair. Similar to genetic ablation of DNA2, chemical inhibition of DNA2 selectively attenuates the growth of various cancer cells with oncogene-induced replication stress. Taken together, our findings open a new avenue to develop a new class of anticancer drugs by targeting druggable nuclease DNA2. We propose DNA2 inhibition as new strategy in cancer therapy by targeting

  12. Managing Single-Stranded DNA during Replication Stress in Fission Yeast

    Directory of Open Access Journals (Sweden)

    Sarah A. Sabatinos

    2015-09-01

    Full Text Available Replication fork stalling generates a variety of responses, most of which cause an increase in single-stranded DNA. ssDNA is a primary signal of replication distress that activates cellular checkpoints. It is also a potential source of genome instability and a substrate for mutation and recombination. Therefore, managing ssDNA levels is crucial to chromosome integrity. Limited ssDNA accumulation occurs in wild-type cells under stress. In contrast, cells lacking the replication checkpoint cannot arrest forks properly and accumulate large amounts of ssDNA. This likely occurs when the replication fork polymerase and helicase units are uncoupled. Some cells with mutations in the replication helicase (mcm-ts mimic checkpoint-deficient cells, and accumulate extensive areas of ssDNA to trigger the G2-checkpoint. Another category of helicase mutant (mcm4-degron causes fork stalling in early S-phase due to immediate loss of helicase function. Intriguingly, cells realize that ssDNA is present, but fail to detect that they accumulate ssDNA, and continue to divide. Thus, the cellular response to replication stalling depends on checkpoint activity and the time that replication stress occurs in S-phase. In this review we describe the signs, signals, and symptoms of replication arrest from an ssDNA perspective. We explore the possible mechanisms for these effects. We also advise the need for caution when detecting and interpreting data related to the accumulation of ssDNA.

  13. Effect of surgical stress on nuclear and mitochondrial DNA

    Indian Academy of Sciences (India)

    Surgical resection at any location in the body leads to stress response with cellular and subcellular change, leading to tissue damage. The intestine is extremely sensitive to surgical stress with consequent postoperative complications. It has been suggested that the increase of reactive oxygen species as subcellular ...

  14. Studies on the susceptibility of peas and field peas cultivars to Ascochyta pisi (Lib.

    Directory of Open Access Journals (Sweden)

    Helena Furgał-Węgrzycka

    2013-12-01

    Full Text Available The aim of the work was to find the plants resistant to Ascochyta pisi causing leaf and spot-pot of peas and field peas. Fourty five cultivars of peas and field peas and 6 breeding materials were tested in field in the period 1975-1978. Cultivars: Bartel, Birte, Borek, Cebeco, Finale and Paloma were to be less susceptible. In laboratory and greenhouse conditions peas and field peas cultivares were examined for susceptible to pathotypes 2 and 4 of Ascochyta pisi. The results obtained proved that cultivars: Borel, cebeco, Finale and Paloma were to be less susceptible to two pathotypes of Ascochyta pisi.

  15. Mutant genes in pea breeding

    International Nuclear Information System (INIS)

    Swiecicki, W.K.

    1990-01-01

    Full text: Mutations of genes Dpo (dehiscing pods) and A (anthocyanin synthesis) played a role in pea domestication. A number of other genes were important in cultivar development for 3 types of usage (dry seeds, green vegetable types, fodder), e.g. fn, fna, le, p, v, fas and af. New genes (induced and spontaneous), are important for present ideotypes and are registered by the Pisum Genetics Association (PGA). Comparison of a pea variety ideotype with the variation available in gene banks shows that breeders need 'new' features. In mutation induction experiments, genotype, mutagen and method of treatment (e.g. combined or fractionated doses) are varied for broadening the mutation spectrum and selecting more genes of agronomic value. New genes are genetically analysed. In Poland, some mutant varieties with the gene afila were registered, controlling lodging by a shorter stem and a higher number of internodes. Really non-lodging pea varieties could strongly increase seed yield. But the probability of detecting a major gene for lodging resistance is low. Therefore, mutant genes with smaller influence on plant architecture are sought, to combine their effect by crossing. Promising seem to be the genes rogue, reductus and arthritic as well as a number of mutant genes not yet genetically identified. The gene det for terminal inflorescence - similarly to Vicia faba - changes plant development. Utilisation of assimilates and ripening should be better. Improvement of harvest index should give higher seed yield. A number of genes controlling disease resistance are well known (eg. Fw, Fnw, En, mo and sbm). Important in mass screening of resistance are closely linked gene markers. Pea gene banks collect respective lines, but mutants induced in highly productive cultivars would be better. Inducing gene markers sometimes seems to be easier than transfer by crossing. Mutation induction in pea breeding is probably more important because a high number of monogenic features are

  16. Stress and DNA repair biology of the Fanconi anemia pathway

    Science.gov (United States)

    Longerich, Simonne; Li, Jian; Xiong, Yong; Sung, Patrick

    2014-01-01

    Fanconi anemia (FA) represents a paradigm of rare genetic diseases, where the quest for cause and cure has led to seminal discoveries in cancer biology. Although a total of 16 FA genes have been identified thus far, the biochemical function of many of the FA proteins remains to be elucidated. FA is rare, yet the fact that 5 FA genes are in fact familial breast cancer genes and FA gene mutations are found frequently in sporadic cancers suggest wider applicability in hematopoiesis and oncology. Establishing the interaction network involving the FA proteins and their associated partners has revealed an intersection of FA with several DNA repair pathways, including homologous recombination, DNA mismatch repair, nucleotide excision repair, and translesion DNA synthesis. Importantly, recent studies have shown a major involvement of the FA pathway in the tolerance of reactive aldehydes. Moreover, despite improved outcomes in stem cell transplantation in the treatment of FA, many challenges remain in patient care. PMID:25237197

  17. Influence of Heavy Metal Stress on Antioxidant Status and DNA Damage in Urtica dioica

    Directory of Open Access Journals (Sweden)

    Darinka Gjorgieva

    2013-01-01

    Full Text Available Heavy metals have the potential to interact and induce several stress responses in the plants; thus, effects of heavy metal stress on DNA damages and total antioxidants level in Urtica dioica leaves and stems were investigated. The samples are sampled from areas with different metal exposition. Metal content was analyzed by Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES, for total antioxidants level assessment the Ferric-Reducing Antioxidant Power (FRAP assay was used, and genomic DNA isolation from frozen plant samples was performed to obtain DNA fingerprints of investigated plant. It was found that heavy metal contents in stems generally changed synchronously with those in leaves of the plant, and extraneous metals led to imbalance of mineral nutrient elements. DNA damages were investigated by Random Amplified Polymorphic DNA (RAPD technique, and the results demonstrated that the samples exposed to metals yielded a large number of new fragments (total 12 in comparison with the control sample. This study showed that DNA stability is highly affected by metal pollution which was identified by RAPD markers. Results suggested that heavy metal stress influences antioxidant status and also induces DNA damages in U. dioica which may help to understand the mechanisms of metals genotoxicity.

  18. Influence of heavy metal stress on antioxidant status and DNA damage in Urtica dioica.

    Science.gov (United States)

    Gjorgieva, Darinka; Kadifkova Panovska, Tatjana; Ruskovska, Tatjana; Bačeva, Katerina; Stafilov, Trajče

    2013-01-01

    Heavy metals have the potential to interact and induce several stress responses in the plants; thus, effects of heavy metal stress on DNA damages and total antioxidants level in Urtica dioica leaves and stems were investigated. The samples are sampled from areas with different metal exposition. Metal content was analyzed by Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES), for total antioxidants level assessment the Ferric-Reducing Antioxidant Power (FRAP) assay was used, and genomic DNA isolation from frozen plant samples was performed to obtain DNA fingerprints of investigated plant. It was found that heavy metal contents in stems generally changed synchronously with those in leaves of the plant, and extraneous metals led to imbalance of mineral nutrient elements. DNA damages were investigated by Random Amplified Polymorphic DNA (RAPD) technique, and the results demonstrated that the samples exposed to metals yielded a large number of new fragments (total 12) in comparison with the control sample. This study showed that DNA stability is highly affected by metal pollution which was identified by RAPD markers. Results suggested that heavy metal stress influences antioxidant status and also induces DNA damages in U. dioica which may help to understand the mechanisms of metals genotoxicity.

  19. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas

    DEFF Research Database (Denmark)

    Bartkova, J; Hamerlik, P; Stockhausen, Marie

    2010-01-01

    brain and grade II astrocytomas, despite the degree of DDR activation was higher in grade II tumors. Markers indicative of ongoing DNA replication stress (Chk1 activation, Rad17 phosphorylation, replication protein A foci and single-stranded DNA) were present in GBM cells under high- or low...... and indicate that replication stress, rather than oxidative stress, fuels the DNA damage signalling in early stages of astrocytoma development.......Malignant gliomas, the deadliest of brain neoplasms, show rampant genetic instability and resistance to genotoxic therapies, implicating potentially aberrant DNA damage response (DDR) in glioma pathogenesis and treatment failure. Here, we report on gross, aberrant constitutive activation of DNA...

  20. Replication stress, DNA damage signalling, and cytomegalovirus infection in human medulloblastomas

    DEFF Research Database (Denmark)

    Bartek, Jiri; Fornara, Olesja; Merchut-Maya, Joanna Maria

    2017-01-01

    suppressor activation, across our medulloblastoma cohort. Most tumours showed high proliferation (Ki67 marker), variable oxidative DNA damage (8-oxoguanine lesions) and formation of 53BP1 nuclear 'bodies', the latter indicating (along with ATR-Chk1 signalling) endogenous replication stress. The bulk...... cell replication stress and DNA repair. Collectively, the scenario we report here likely fuels genomic instability and evolution of medulloblastoma resistance to standard-of-care genotoxic treatments....... eight established immunohistochemical markers to assess the status of the DDR machinery, we found pronounced endogenous DNA damage signalling (γH2AX marker) and robust constitutive activation of both the ATM-Chk2 and ATR-Chk1 DNA damage checkpoint kinase cascades, yet unexpectedly modest p53 tumour...

  1. Immunohistochemical analysis of oxidative stress and DNA repair proteins in normal mammary and breast cancer tissues

    International Nuclear Information System (INIS)

    Curtis, Carol D; Thorngren, Daniel L; Nardulli, Ann M

    2010-01-01

    During the course of normal cellular metabolism, oxygen is consumed and reactive oxygen species (ROS) are produced. If not effectively dissipated, ROS can accumulate and damage resident proteins, lipids, and DNA. Enzymes involved in redox regulation and DNA repair dissipate ROS and repair the resulting damage in order to preserve a functional cellular environment. Because increased ROS accumulation and/or unrepaired DNA damage can lead to initiation and progression of cancer and we had identified a number of oxidative stress and DNA repair proteins that influence estrogen responsiveness of MCF-7 breast cancer cells, it seemed possible that these proteins might be differentially expressed in normal mammary tissue, benign hyperplasia (BH), ductal carcinoma in situ (DCIS) and invasive breast cancer (IBC). Immunohistochemistry was used to examine the expression of a number of oxidative stress proteins, DNA repair proteins, and damage markers in 60 human mammary tissues which were classified as BH, DCIS or IBC. The relative mean intensity was determined for each tissue section and ANOVA was used to detect statistical differences in the relative expression of BH, DCIS and IBC compared to normal mammary tissue. We found that a number of these proteins were overexpressed and that the cellular localization was altered in human breast cancer tissue. Our studies suggest that oxidative stress and DNA repair proteins not only protect normal cells from the damaging effects of ROS, but may also promote survival of mammary tumor cells

  2. Traumatic stress and accelerated DNA methylation age: A meta-analysis.

    Science.gov (United States)

    Wolf, Erika J; Maniates, Hannah; Nugent, Nicole; Maihofer, Adam X; Armstrong, Don; Ratanatharathorn, Andrew; Ashley-Koch, Allison E; Garrett, Melanie; Kimbrel, Nathan A; Lori, Adriana; Va Mid-Atlantic Mirecc Workgroup; Aiello, Allison E; Baker, Dewleen G; Beckham, Jean C; Boks, Marco P; Galea, Sandro; Geuze, Elbert; Hauser, Michael A; Kessler, Ronald C; Koenen, Karestan C; Miller, Mark W; Ressler, Kerry J; Risbrough, Victoria; Rutten, Bart P F; Stein, Murray B; Ursano, Robert J; Vermetten, Eric; Vinkers, Christiaan H; Uddin, Monica; Smith, Alicia K; Nievergelt, Caroline M; Logue, Mark W

    2018-06-01

    Recent studies examining the association between posttraumatic stress disorder (PTSD) and accelerated aging, as defined by DNA methylation-based estimates of cellular age that exceed chronological age, have yielded mixed results. We conducted a meta-analysis of trauma exposure and PTSD diagnosis and symptom severity in association with accelerated DNA methylation age using data from 9 cohorts contributing to the Psychiatric Genomics Consortium PTSD Epigenetics Workgroup (combined N = 2186). Associations between demographic and cellular variables and accelerated DNA methylation age were also examined, as was the moderating influence of demographic variables. Meta-analysis of regression coefficients from contributing cohorts revealed that childhood trauma exposure (when measured with the Childhood Trauma Questionnaire) and lifetime PTSD severity evidenced significant, albeit small, meta-analytic associations with accelerated DNA methylation age (ps = 0.028 and 0.016, respectively). Sex, CD4T cell proportions, and natural killer cell proportions were also significantly associated with accelerated DNA methylation age (all ps age. There was no evidence of moderation of the trauma or PTSD variables by demographic factors. Results suggest that traumatic stress is associated with advanced epigenetic age and raise the possibility that cells integral to immune system maintenance and responsivity play a role in this. This study highlights the need for additional research into the biological mechanisms linking traumatic stress to accelerated DNA methylation age and the importance of furthering our understanding of the neurobiological and health consequences of PTSD. Published by Elsevier Ltd.

  3. DNA methyltransferase 3A gene polymorphism contributes to daily life stress susceptibility

    Directory of Open Access Journals (Sweden)

    Barliana MI

    2017-12-01

    Full Text Available Melisa I Barliana,1,2 Shintya N Amalya,1 Ivan S Pradipta,3 Sofa D Alfian,3 Arif SW Kusuma,1,2 Tiana Milanda,1,4 Rizky Abdulah3,4 1Department of Biological Pharmacy, Biotechnology Pharmacy Laboratory, 2Pharmacy Services Development Research Center, 3Department of Pharmacology and Clinical Pharmacy, Clinical Pharmacy Laboratory, 4Center for Drug Discovery and Product Development, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, West Java, Indonesia Abstract: Daily life stress markedly affects the response toward stressful stimuli. DNA methy­lation is one of the factors that regulate this response, and is a normal mechanism of somatic cell growth, but its regulatory gene variations may cause alterations in the stress response. The aim of the present study was to investigate genotypic variants of the DNA methyltransferase 3A (DNMT3A gene in 129 healthy subjects and evaluate its association with daily life stress. Blood samples were collected, and genomic DNA was isolated. DNA was amplified using specific tetra primers for DNMT3A (C/T rs11683424 and visualized following 2% agarose gel electrophoresis. The association of DNMT3A genetic variants with daily life stress was analyzed using the Kessler Psychological Distress Scale (K10. We observed that the distribution of subjects with genotype CC (wild type, CT (heteromutant, and TT (homomutant was 13.95%, 81.4%, and 4.65%, respectively. Genetic variations significantly affected the daily life stress condition (p=0.04 in Indonesian healthy subjects, but most of the subjects with the CT phenotype were classified in a stress condition. Keywords: daily life stressor, DNA methylation, epigenetic, Kessler Psychological Distress Scale (K10, rs11683424, DNMT3A

  4. Oxidative stress generated damage to DNA by gastrointestinal exposure to insoluble particles

    DEFF Research Database (Denmark)

    Møller, Peter; Folkmann, J K; Danielsen, P H

    2012-01-01

    that gastrointestinal exposure to single-walled carbon nanotubes (SWCNT), fullerenes C60, carbon black, titanium dioxide and diesel exhaust particles generates oxidized DNA base lesions in organs such as the bone marrow, liver and lung. Oral exposure to nanosized carbon black has also been associated with increased...... level of lipid peroxidation derived exocyclic DNA adducts in the liver, suggesting multiple pathways of oxidative stress for particle-generated damage to DNA. At equal dose, diesel exhaust particles (SRM2975) generated larger levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine in rat liver than carbon black...

  5. Environmental stress speeds up DNA replication in Pseudomonas putida in chemostat cultivations.

    Science.gov (United States)

    Lieder, Sarah; Jahn, Michael; Koepff, Joachim; Müller, Susann; Takors, Ralf

    2016-01-01

    Cellular response to different types of stress is the hallmark of the cell's strategy for survival. How organisms adjust their cell cycle dynamics to compensate for changes in environmental conditions is an important unanswered question in bacterial physiology. A cell using binary fission for reproduction passes through three stages during its cell cycle: a stage from cell birth to initiation of replication, a DNA replication phase and a period of cell division. We present a detailed analysis of durations of cell cycle phases, investigating their dynamics under environmental stress conditions. Applying continuous steady state cultivations (chemostats), the DNA content of a Pseudomonas putida KT2440 population was quantified with flow cytometry at distinct growth rates. Data-driven modeling revealed that under stress conditions, such as oxygen deprivation, solvent exposure and decreased iron availability, DNA replication was accelerated correlated to the severity of the imposed stress (up to 1.9-fold). Cells maintained constant growth rates by balancing the shortened replication phase with extended cell cycle phases before and after replication. Transcriptome data underpin the transcriptional upregulation of crucial genes of the replication machinery. Hence adaption of DNA replication speed appears to be an important strategy to withstand environmental stress. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Role of oxidative stress and DNA hydroxymethylation in the neurotoxicity of fine particulate matter

    International Nuclear Information System (INIS)

    Wei, Hongying; Feng, Yan; Liang, Fan; Cheng, Wei; Wu, Xiaomeng; Zhou, Ren; Wang, Yan

    2017-01-01

    Highlights: • Oxidative stress-mediated neurocytotoxicity and DNA hydroxymethylation abnormalities involved in neuronal pathology of PM 2.5 . • PM 2.5 particles and toxic compounds adsorbed on the particle caused different types of neurocytotoxicity. • DNA hydroxymethylation abnormalities participated in PM 2.5 -induced impairments in neurite outgrowth and synapse formation. - Abstract: Epidemiological studies have implicated fine particulate matter (PM 2.5 ) as a risk factor for neurodegenerative diseases and neurodevelopmental disorders. However, the underlying molecular mechanisms and the influences of different components remain largely elusive. Here, we extended our previous work to investigate the role of oxidative stress and DNA hydroxymethylation in neuronal pathology of PM 2.5 . We found PM 2.5 and its extracts (water-soluble extracts, organic extracts and carbon core component) differentially caused cell cycle arrest, cell apoptosis and the cell proliferation inhibition in neuronal cells. These effects were mechanistically related to each other and oxidative stress, suggesting PM 2.5 and toxic compounds adsorbed on the particles may cause different types of brain damages. In addition, PM 2.5 and its organic extracts increased global DNA hydroxymethylation and gene-specific DNA hydroxymethylation of neuronal genes, and subsequently interfered with their mRNA expression. The impairments in neuronal progression characterized with decreased length of neurite and reduced mRNA expression of neuronal markers and synaptic markers. The blocking effects of antioxidants demonstrated the involvement of oxidative stress-mediated hydroxymethylation abnormalities in PM 2.5 -induced defects in neurite outgrowth and synapse formation. Our results first revealed the role of oxidative stress-mediated abnormal DNA hydroxymethylation in neuronal impairments of PM 2.5 , and thoroughly evaluated the neurocytotoxicity of different components.

  7. Oxidative stress and alterations in DNA methylation: two sides of the same coin in reproduction.

    Science.gov (United States)

    Menezo, Yves J R; Silvestris, Erica; Dale, Brian; Elder, Kay

    2016-12-01

    The negative effect of oxidative stress on the human reproductive process is no longer a matter for debate. Oxidative stress affects female and male gametes and the developmental capacity of embryos. Its effect can continue through late stages of pregnancy. Metabolic disorders and psychiatric problems can also be caued by DNA methylation and epigenetic errors. Age has a negative effect on oxidative stress and DNA methylation, and recent observations suggest that older men are at risk of transmitting epigenetic disorders to their offspring. Environmental endocrine disruptors can also increase oxidative stress and methylation errors. Oxidative stress and DNA methylation feature a common denominator: the one carbon cycle. This important metabolic pathway stimulates glutathione synthesis and recycles homocysteine, a molecule that interferes with the process of methylation. Glutathione plays a pivotal role during oocyte activation, protecting against reactive oxygen species. Assisted reproductive techniques may exacerbate defects in methylation and epigenesis. Antioxidant supplements are proposed to reduce the risk of potentially harmful effects, but their use has failed to prevent problems and may sometimes be detrimental. New concepts reveal a significant correlation between oxidative stress, methylation processes and epigenesis, and have led to changes in media composition with positive preliminary clinical consequences. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  8. DNA lesions induced by replication stress trigger mitotic aberration and tetraploidy development.

    Directory of Open Access Journals (Sweden)

    Yosuke Ichijima

    Full Text Available During tumorigenesis, cells acquire immortality in association with the development of genomic instability. However, it is still elusive how genomic instability spontaneously generates during the process of tumorigenesis. Here, we show that precancerous DNA lesions induced by oncogene acceleration, which induce situations identical to the initial stages of cancer development, trigger tetraploidy/aneuploidy generation in association with mitotic aberration. Although oncogene acceleration primarily induces DNA replication stress and the resulting lesions in the S phase, these lesions are carried over into the M phase and cause cytokinesis failure and genomic instability. Unlike directly induced DNA double-strand breaks, DNA replication stress-associated lesions are cryptogenic and pass through cell-cycle checkpoints due to limited and ineffective activation of checkpoint factors. Furthermore, since damaged M-phase cells still progress in mitotic steps, these cells result in chromosomal mis-segregation, cytokinesis failure and the resulting tetraploidy generation. Thus, our results reveal a process of genomic instability generation triggered by precancerous DNA replication stress.

  9. Salivary DNA and markers of oxidative stress in patients with chronic periodontitis.

    Science.gov (United States)

    Baňasová, Lenka; Kamodyová, Natália; Janšáková, Katarína; Tóthová, Ľubomíra; Stanko, Peter; Turňa, Ján; Celec, Peter

    2015-03-01

    Previous observational studies have shown that periodontal status is associated with salivary markers of oxidative damage. A direct comparison of periodontitis patients and controls using a wide palette of salivary markers of oxidative stress is lacking. Characteristics of salivary DNA in periodontitis are unknown. The aim of this study was to compare the salivary markers of oxidative stress and characteristics of salivary DNA between patients with chronic periodontitis and periodontitis-free controls. Saliva was collected from 23 patients with chronic periodontitis and 19 periodontitis-free controls. All participants underwent a clinical periodontal examination. Markers of oxidative and carbonyl stress were measured in saliva. Human and bacterial DNA was quantified, and human DNA integrity was assessed. Salivary thiobarbituric acid-reacting substances were higher in patients than in controls; at least in men, the difference was significant (p periodontitis patients. The results confirmed the association of salivary thiobarbituric acid-reacting substances with periodontitis. Lipid peroxidation in periodontitis seems to be caused by increased production of reactive oxygen species in men and by decreased antioxidant status in women. Whether lower salivary DNA integrity is involved in the pathogenesis of periodontitis remains to be elucidated. Salivary thiobarbituric acid-reacting substances are associated with periodontitis at least on a population level. Sex-specific causes of lipid peroxidation might point towards different pathogenic mechanisms.

  10. Oxidative DNA damage is instrumental in hyperreplication stress-induced inviability of Escherichia coli

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Bjørn, Louise; Mendoza-Chamizo, Belén

    2014-01-01

    In Escherichia coli, an increase in the ATP bound form of the DnaA initiator protein results in hyperinitiation and inviability. Here, we show that such replication stress is tolerated during anaerobic growth. In hyperinitiating cells, a shift from anaerobic to aerobic growth resulted in appearance...

  11. Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress.

    Science.gov (United States)

    Macheret, Morgane; Halazonetis, Thanos D

    2018-03-01

    Oncogene-induced DNA replication stress contributes critically to the genomic instability that is present in cancer. However, elucidating how oncogenes deregulate DNA replication has been impeded by difficulty in mapping replication initiation sites on the human genome. Here, using a sensitive assay to monitor nascent DNA synthesis in early S phase, we identified thousands of replication initiation sites in cells before and after induction of the oncogenes CCNE1 and MYC. Remarkably, both oncogenes induced firing of a novel set of DNA replication origins that mapped within highly transcribed genes. These ectopic origins were normally suppressed by transcription during G1, but precocious entry into S phase, before all genic regions had been transcribed, allowed firing of origins within genes in cells with activated oncogenes. Forks from oncogene-induced origins were prone to collapse, as a result of conflicts between replication and transcription, and were associated with DNA double-stranded break formation and chromosomal rearrangement breakpoints both in our experimental system and in a large cohort of human cancers. Thus, firing of intragenic origins caused by premature S phase entry represents a mechanism of oncogene-induced DNA replication stress that is relevant for genomic instability in human cancer.

  12. Marker-trait association analysis of frost tolerance of 672 worldwide pea (Pisum sativum L.) collections.

    Science.gov (United States)

    Liu, Rong; Fang, Li; Yang, Tao; Zhang, Xiaoyan; Hu, Jinguo; Zhang, Hongyan; Han, Wenliang; Hua, Zeke; Hao, Junjie; Zong, Xuxiao

    2017-07-19

    Frost stress is one of the major abiotic stresses causing seedling death and yield reduction in winter pea. To improve the frost tolerance of pea, field evaluation of frost tolerance was conducted on 672 diverse pea accessions at three locations in Northern China in three growing seasons from 2013 to 2016 and marker-trait association analysis of frost tolerance were performed with 267 informative SSR markers in this study. Sixteen accessions were identified as the most winter-hardy for their ability to survive in all nine field experiments with a mean survival rate of 0.57, ranging from 0.41 to 0.75. Population structure analysis revealed a structured population of two sub-populations plus some admixtures in the 672 accessions. Association analysis detected seven markers that repeatedly had associations with frost tolerance in at least two different environments with two different statistical models. One of the markers is the functional marker EST1109 on LG VI which was predicted to co-localize with a gene involved in the metabolism of glycoproteins in response to chilling stress and may provide a novel mechanism of frost tolerance in pea. These winter-hardy germplasms and frost tolerance associated markers will play a vital role in marker-assisted breeding for winter-hardy pea cultivar.

  13. The effect of obstructive sleep apnea on DNA damage and oxidative stress.

    Science.gov (United States)

    Kang, Il Gyu; Jung, Joo Hyun; Kim, Seon Tae

    2013-06-01

    Obstructive sleep apnea syndrome (OSAS) is associated with repeated hypoxia and re-oxygenation. This characteristic of OSAS may cause oxidative stress and DNA damage. However, the link of OSAS with oxidative stress and DNA damage is still controversial. In the current study, we investigated whether OSAS causes DNA damage using alkaline single-cell gel electrophoresis (comet assay) and measuring oxidative stress by monitoring serum malondialdehyde (MDA) levels. From March 2009 to August 2010, 51 patients who underwent polysomnography (PSG) during the night were enrolled in this study. We obtained serum from the patients at 6 AM. DNA damage and oxidative stress were evaluated using a comet assay and measuring serum MDA, respectively. We divided the patients into two groups according to the existence of comets appearing in the comet assay. Group 1 included 44 patients with negative assay results and group 2 consisted of seven patients with positive comet assay findings. We compared the age, gender proportion, PSG data (respiratory disturbance index [RDI], lowest O2 saturation level, and arousal index [AI]), time of disease onset, smoking habits, and serum MDA levels between the two groups. The average age and gender proportion of the two groups were not statistically different (P>0.05). The average of RDI for group 1 was 30.4±18.4 and 8.0±7.7 (P0.05). No relationship between positive comet assay results and OSAS severity was identified. Results of the current study showed that OSAS was not associated with DNA damage as measured by comet assays or oxidative stress according to serum MDA levels.

  14. Model system evaluation of the effects of pea and pH on the emulsion properties of beef

    OpenAIRE

    Kurt, Ş.; Ceylan, H. G.

    2018-01-01

    The effects of dried ground pea (0 - 1%) and pH (4.80 - 7.20) on the emulsion properties of beef were investigated using the model system. The study was designed according to the central composite rotatable design using the Response Surface Methodology. Pea had significant effects on emulsion activity and stability. The effects of pH on emulsion capacity, stability, activity, density, viscosity and apparent yield stress were significant. In addition, the interaction of both factors (pea and p...

  15. Understanding DNA Under Oxidative Stress and Sensitization: The Role of Molecular Modeling

    Directory of Open Access Journals (Sweden)

    Antonio eMonari

    2015-07-01

    Full Text Available DNA is constantly exposed to damaging threats coming from oxidative stress, i.e. from the presence of free radicals and reactive oxygen species. Sensitization from exogenous and endogenous compounds that strongly enhance the frequency of light-induced lesions also plays an important role. The experimental determination of DNA lesions, though a difficult subject, is somehow well established and allows to elucidate even extremely rare DNA lesions. In parallel, molecular modeling has become fundamental to clearly understand the fine mechanisms related to DNA defects induction. Indeed, it offers an unprecedented possibility to get access to an atomistic or even electronic resolution. Ab initio molecular dynamics may also describe the time-evolution of the molecular system and its reactivity. Yet the modeling of DNA (photo-reactions does necessitate elaborate multi-scale methodologies to tackle a damage induction reactivity that takes place in a complex environment. The double-stranded DNA environment is first characterized by a very high flexibility, that dynamical effects are to be taken into account, but also a strongly inhomogeneous electrostatic embedding. Additionally, one aims at capturing more subtle effects, such as the sequence selectivity which is of critical important for DNA damage. The structure and dynamics of the DNA/sensitizers complexes, as well as the photo-induced electron- and energy-transfer phenomena taking place upon sensitization, should be carefully modeled. Finally the factors inducing different repair ratios for different lesions should also be rationalized.In this review we will critically analyze the different computational strategies used to model DNA lesions. A clear picture of the complex interplay between reactivity and structural factors will be sketched. The use of proper multi-scale modeling leads to the in-depth comprehension of DNA lesions mechanism and also to the rational design of new chemo-therapeutic agents.

  16. Stress, burnout and depression: A systematic review on DNA methylation mechanisms.

    Science.gov (United States)

    Bakusic, Jelena; Schaufeli, Wilmar; Claes, Stephan; Godderis, Lode

    2017-01-01

    Despite that burnout presents a serious burden for modern society, there are no diagnostic criteria. Additional difficulty is the differential diagnosis with depression. Consequently, there is a need to dispose of a burnout biomarker. Epigenetic studies suggest that DNA methylation is a possible mediator linking individual response to stress and psychopathology and could be considered as a potential biomarker of stress-related mental disorders. Thus, the aim of this review is to provide an overview of DNA methylation mechanisms in stress, burnout and depression. In addition to state-of-the-art overview, the goal of this review is to provide a scientific base for burnout biomarker research. We performed a systematic literature search and identified 25 pertinent articles. Among these, 15 focused on depression, 7 on chronic stress and only 3 on work stress/burnout. Three epigenome-wide studies were identified and the majority of studies used the candidate-gene approach, assessing 12 different genes. The glucocorticoid receptor gene (NR3C1) displayed different methylation patterns in chronic stress and depression. The serotonin transporter gene (SLC6A4) methylation was similarly affected in stress, depression and burnout. Work-related stress and depressive symptoms were associated with different methylation patterns of the brain derived neurotrophic factor gene (BDNF) in the same human sample. The tyrosine hydroxylase (TH) methylation was correlated with work stress in a single study. Additional, thoroughly designed longitudinal studies are necessary for revealing the cause-effect relationship of work stress, epigenetics and burnout, including its overlap with depression. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Deficit irrigation and organic compost improve growth and yield of quinoa and pea

    DEFF Research Database (Denmark)

    Hirich, A.; Choukr-Allah, R.; Jacobsen, Sven-Erik

    2014-01-01

    Supplying organic matter under deficit irrigation conditions could be a practical solution to compensate the negative effect of water stress. For this purpose, studies in pea as a legume and quinoa as a new drought-tolerant crop were conducted in the south of Morocco between October 2011 and March...... significantly (P ≤ 0.05) increased seed yield by 18 and 11% under stress conditions and by 13 and 3% under full irrigation for quinoa and by 24 and 11% under full irrigation and by 41 and 25% under water-deficit irrigation for pea. It can be concluded that organic amendment improved significantly yield...... harvested yield was affected significantly (P seed yields (3.3 t ha-1 for quinoa and 5.6 t ha-1 for pea) were recorded under full irrigation and 10 t ha-1 of compost. Results indicated that organic amendment of 10 t ha-1 and 5 t ha-1...

  18. Relationships between yield and some yield components in Pea ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-03

    Dec 3, 2008 ... canned food. Sugar rate of pea grains is high. Dry pea grains are broken and used to make soup. On the other hand, the pea grains are used in animal feed. Some pea varieties are used for the purpose of green forage production, dry forage and green manure produc- tion. These varieties are called 'feed ...

  19. Development of Pea (Pisum sativum L.) and Chickpea (Cicer ...

    African Journals Online (AJOL)

    The research objectives were: to evaluate the quality of a pea snack prepared using four different methods of cooking, namely, frying, baking, steaming and microwave; to determine the effect of blending dried green pea with chickpea dhal on the quality of a fried pea snack. Green pea and chickpea snacks were prepared ...

  20. JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks

    Directory of Open Access Journals (Sweden)

    Michael Van Meter

    2016-09-01

    Full Text Available The accumulation of damage caused by oxidative stress has been linked to aging and to the etiology of numerous age-related diseases. The longevity gene, sirtuin 6 (SIRT6, promotes genome stability by facilitating DNA repair, especially under oxidative stress conditions. Here we uncover the mechanism by which SIRT6 is activated by oxidative stress to promote DNA double-strand break (DSB repair. We show that the stress-activated protein kinase, c-Jun N-terminal kinase (JNK, phosphorylates SIRT6 on serine 10 in response to oxidative stress. This post-translational modification facilitates the mobilization of SIRT6 to DNA damage sites and is required for efficient recruitment of poly (ADP-ribose polymerase 1 (PARP1 to DNA break sites and for efficient repair of DSBs. Our results demonstrate a post-translational mechanism regulating SIRT6, and they provide the link between oxidative stress signaling and DNA repair pathways that may be critical for hormetic response and longevity assurance.

  1. Paternal stress prior to conception alters DNA methylation and behaviour of developing rat offspring.

    Science.gov (United States)

    Mychasiuk, R; Harker, A; Ilnytskyy, S; Gibb, R

    2013-06-25

    Although there has been an abundance of research focused on offspring outcomes associated with maternal experiences, there has been limited examination of the relationship between paternal experiences and offspring brain development. As spermatogenesis is a continuous process, experiences that have the ability to alter epigenetic regulation in fathers may actually change developmental trajectories of offspring. The purpose of this study was to examine the effects of paternal stress prior to conception on behaviour and the epigenome of both male and female developing rat offspring. Male Long-Evans rats were stressed for 27 consecutive days and then mated with control female rats. Early behaviour was tested in offspring using the negative geotaxis task and the open field. At P21 offspring were sacrificed and global DNA methylation levels in the hippocampus and frontal cortex were analysed. Paternal stress prior to conception altered behaviour of all offspring on the negative geotaxis task, delaying acquisition of the task. In addition, male offspring demonstrated a reduction in stress reactivity in the open field paradigm spending more time than expected in the centre of the open field. Paternal stress also altered DNA methylation patterns in offspring at P21, global methylation was reduced in the frontal cortex of female offspring, but increased in the hippocampus of both male and female offspring. The results from this study clearly demonstrate that paternal stress during spermatogenesis can influence offspring behaviour and DNA methylation patterns, and these affects occur in a sex-dependent manner. Development takes place in the centre of a complex interaction between maternal, paternal, and environmental influences, which combine to produce the various phenotypes and individual differences that we perceive. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Exact method for numerically analyzing a model of local denaturation in superhelically stressed DNA

    International Nuclear Information System (INIS)

    Fye, R.M.; Benham, C.J.

    1999-01-01

    Local denaturation, the separation at specific sites of the two strands comprising the DNA double helix, is one of the most fundamental processes in biology, required to allow the base sequence to be read both in DNA transcription and in replication. In living organisms this process can be mediated by enzymes which regulate the amount of superhelical stress imposed on the DNA. We present a numerically exact technique for analyzing a model of denaturation in superhelically stressed DNA. This approach is capable of predicting the locations and extents of transition in circular superhelical DNA molecules of kilobase lengths and specified base pair sequences. It can also be used for closed loops of DNA which are typically found in vivo to be kilobases long. The analytic method consists of an integration over the DNA twist degrees of freedom followed by the introduction of auxiliary variables to decouple the remaining degrees of freedom, which allows the use of the transfer matrix method. The algorithm implementing our technique requires O(N 2 ) operations and O(N) memory to analyze a DNA domain containing N base pairs. However, to analyze kilobase length DNA molecules it must be implemented in high precision floating point arithmetic. An accelerated algorithm is constructed by imposing an upper bound M on the number of base pairs that can simultaneously denature in a state. This accelerated algorithm requires O(MN) operations, and has an analytically bounded error. Sample calculations show that it achieves high accuracy (greater than 15 decimal digits) with relatively small values of M (M<0.05N) for kilobase length molecules under physiologically relevant conditions. Calculations are performed on the superhelical pBR322 DNA sequence to test the accuracy of the method. With no free parameters in the model, the locations and extents of local denaturation predicted by this analysis are in quantitatively precise agreement with in vitro experimental measurements

  3. Evaluation of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage

    Directory of Open Access Journals (Sweden)

    R Sunil Kumar

    2017-01-01

    Full Text Available Objective: The present study aims to evaluate antioxidants and protective role of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage. Materials and Methods: The total and profiles of flavonoids were identified and quantified through reversed-phase high-performance liquid chromatography. In vitro antioxidant activity was determined using standard antioxidant assays. The protective role of C. tora extracts against oxidative stress-induced DNA and cell membrane damage was examined by electrophoretic and scanning electron microscopic studies, respectively. Results: The total flavonoid content of CtEA was 106.8 ± 2.8 mg/g d.w.QE, CtME was 72.4 ± 1.12 mg/g d.w.QE, and CtWE was 30.4 ± 0.8 mg/g d.w.QE. The concentration of flavonoids present in CtEA in decreasing order: quercetin >kaempferol >epicatechin; in CtME: quercetin >rutin >kaempferol; whereas, in CtWE: quercetin >rutin >kaempferol. The CtEA inhibited free radical-induced red blood cell hemolysis and cell membrane morphology better than CtME as confirmed by a scanning electron micrograph. CtEA also showed better protection than CtME and CtWE against free radical-induced DNA damage as confirmed by electrophoresis. Conclusion: C. tora contains flavonoids and inhibits oxidative stress and can be used for many health benefits and pharmacotherapy.

  4. Set2 Methyltransferase Facilitates DNA Replication and Promotes Genotoxic Stress Responses through MBF-Dependent Transcription.

    Science.gov (United States)

    Pai, Chen-Chun; Kishkevich, Anastasiya; Deegan, Rachel S; Keszthelyi, Andrea; Folkes, Lisa; Kearsey, Stephen E; De León, Nagore; Soriano, Ignacio; de Bruin, Robertus Antonius Maria; Carr, Antony M; Humphrey, Timothy C

    2017-09-12

    Chromatin modification through histone H3 lysine 36 methylation by the SETD2 tumor suppressor plays a key role in maintaining genome stability. Here, we describe a role for Set2-dependent H3K36 methylation in facilitating DNA replication and the transcriptional responses to both replication stress and DNA damage through promoting MluI cell-cycle box (MCB) binding factor (MBF)-complex-dependent transcription in fission yeast. Set2 loss leads to reduced MBF-dependent ribonucleotide reductase (RNR) expression, reduced deoxyribonucleoside triphosphate (dNTP) synthesis, altered replication origin firing, and a checkpoint-dependent S-phase delay. Accordingly, prolonged S phase in the absence of Set2 is suppressed by increasing dNTP synthesis. Furthermore, H3K36 is di- and tri-methylated at these MBF gene promoters, and Set2 loss leads to reduced MBF binding and transcription in response to genotoxic stress. Together, these findings provide new insights into how H3K36 methylation facilitates DNA replication and promotes genotoxic stress responses in fission yeast. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Set2 Methyltransferase Facilitates DNA Replication and Promotes Genotoxic Stress Responses through MBF-Dependent Transcription

    Directory of Open Access Journals (Sweden)

    Chen-Chun Pai

    2017-09-01

    Full Text Available Chromatin modification through histone H3 lysine 36 methylation by the SETD2 tumor suppressor plays a key role in maintaining genome stability. Here, we describe a role for Set2-dependent H3K36 methylation in facilitating DNA replication and the transcriptional responses to both replication stress and DNA damage through promoting MluI cell-cycle box (MCB binding factor (MBF-complex-dependent transcription in fission yeast. Set2 loss leads to reduced MBF-dependent ribonucleotide reductase (RNR expression, reduced deoxyribonucleoside triphosphate (dNTP synthesis, altered replication origin firing, and a checkpoint-dependent S-phase delay. Accordingly, prolonged S phase in the absence of Set2 is suppressed by increasing dNTP synthesis. Furthermore, H3K36 is di- and tri-methylated at these MBF gene promoters, and Set2 loss leads to reduced MBF binding and transcription in response to genotoxic stress. Together, these findings provide new insights into how H3K36 methylation facilitates DNA replication and promotes genotoxic stress responses in fission yeast.

  6. Exacerbation of N-nitrosodiethylamine Induced Hepatotoxicity and DNA Damage in Mice Exposed to Chronic Unpredictable Stress

    Directory of Open Access Journals (Sweden)

    Nayeem Bilal

    2017-06-01

    Full Text Available Psychological stress contributes to increased susceptibility to a number of diseases including cancer. The present study was designed to assess the effect of chronic unpredictable stress on N-nitrosodiethylamine induced liver toxicity in terms of in vivo antioxidant status and DNA damage in Swiss albino mice. The animals used in this study were randomized into different groups based on the treatment with N-nitrosodiethylamine or chronic unpredictable stress alone and post-stress administration of N-nitrosodiethylamine. The mice were sacrificed after 12 weeks of treatment, and the status of major enzymatic and non-enzymatic antioxidants, liver function markers, lipid peroxidation and the extent of DNA damage were determined in circulation and liver tissues of all the groups. The N-nitrosodiethylamine treated group showed significantly compromised levels of the antioxidant enzymes, lipid peroxidation, and the liver function markers with enhanced DNA damage as compared to chronic unpredictable stress or control groups. A similar but less typical pattern observed in the chronic unpredictable stress treated mice. All the measured biochemical parameters were significantly altered in the group treated with the combination of chronic unpredictable stress and N-nitrosodiethylamine when compared to controls, or chronic unpredictable stress alone and/or N-nitrosodiethylamine alone treated groups. Thus, exposure to continuous, unpredictable stress conditions even in general life may significantly enhance the hepatotoxic potential of N-nitrosodiethylamine through an increase in the oxidative stress and DNA damage.

  7. PED/PEA-15 inhibits hydrogen peroxide-induced apoptosis in Ins-1E pancreatic beta-cells via PLD-1.

    Directory of Open Access Journals (Sweden)

    Francesca Fiory

    Full Text Available The small scaffold protein PED/PEA-15 is involved in several different physiologic and pathologic processes, such as cell proliferation and survival, diabetes and cancer. PED/PEA-15 exerts an anti-apoptotic function due to its ability to interfere with both extrinsic and intrinsic apoptotic pathways in different cell types. Recent evidence shows that mice overexpressing PED/PEA-15 present larger pancreatic islets and increased beta-cells mass. In the present work we investigated PED/PEA-15 role in hydrogen peroxide-induced apoptosis in Ins-1E beta-cells. In pancreatic islets isolated from Tg(PED/PEA-15 mice hydrogen peroxide-induced DNA fragmentation was lower compared to WT islets. TUNEL analysis showed that PED/PEA-15 overexpression increases the viability of Ins-1E beta-cells and enhances their resistance to apoptosis induced by hydrogen peroxide exposure. The activity of caspase-3 and the cleavage of PARP-1 were markedly reduced in Ins-1E cells overexpressing PED/PEA-15 (Ins-1E(PED/PEA-15. In parallel, we observed a decrease of the mRNA levels of pro-apoptotic genes Bcl-xS and Bad. In contrast, the expression of the anti-apoptotic gene Bcl-xL was enhanced. Accordingly, DNA fragmentation was higher in control cells compared to Ins-1E(PED/PEA-15 cells. Interestingly, the preincubation with propranolol, an inhibitor of the pathway of PLD-1, a known interactor of PED/PEA-15, responsible for its deleterious effects on glucose tolerance, abolishes the antiapoptotic effects of PED/PEA-15 overexpression in Ins-1E beta-cells. The same results have been obtained by inhibiting PED/PEA-15 interaction with PLD-1 in Ins-1E(PED/PEA-15. These results show that PED/PEA-15 overexpression is sufficient to block hydrogen peroxide-induced apoptosis in Ins-1E cells through a PLD-1 mediated mechanism.

  8. Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells.

    Science.gov (United States)

    Bursomanno, Sara; Beli, Petra; Khan, Asif M; Minocherhomji, Sheroy; Wagner, Sebastian A; Bekker-Jensen, Simon; Mailand, Niels; Choudhary, Chunaram; Hickson, Ian D; Liu, Ying

    2015-01-01

    SUMOylation is a form of post-translational modification involving covalent attachment of SUMO (Small Ubiquitin-like Modifier) polypeptides to specific lysine residues in the target protein. In human cells, there are four SUMO proteins, SUMO1-4, with SUMO2 and SUMO3 forming a closely related subfamily. SUMO2/3, in contrast to SUMO1, are predominantly involved in the cellular response to certain stresses, including heat shock. Substantial evidence from studies in yeast has shown that SUMOylation plays an important role in the regulation of DNA replication and repair. Here, we report a proteomic analysis of proteins modified by SUMO2 in response to DNA replication stress in S phase in human cells. We have identified a panel of 22 SUMO2 targets with increased SUMOylation during DNA replication stress, many of which play key functions within the DNA replication machinery and/or in the cellular response to DNA damage. Interestingly, POLD3 was found modified most significantly in response to a low dose aphidicolin treatment protocol that promotes common fragile site (CFS) breakage. POLD3 is the human ortholog of POL32 in budding yeast, and has been shown to act during break-induced recombinational repair. We have also shown that deficiency of POLD3 leads to an increase in RPA-bound ssDNA when cells are under replication stress, suggesting that POLD3 plays a role in the cellular response to DNA replication stress. Considering that DNA replication stress is a source of genome instability, and that excessive replication stress is a hallmark of pre-neoplastic and tumor cells, our characterization of SUMO2 targets during a perturbed S-phase should provide a valuable resource for future functional studies in the fields of DNA metabolism and cancer biology. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA.

    Science.gov (United States)

    Gao, Qiuqiang; Liou, Liang-Chun; Ren, Qun; Bao, Xiaoming; Zhang, Zhaojie

    2014-03-03

    The yeast cell wall plays an important role in maintaining cell morphology, cell integrity and response to environmental stresses. Here, we report that salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA (ρ 0 ). Upon salt treatment, the cell wall is thickened, broken and becomes more sensitive to the cell wall-perturbing agent sodium dodecyl sulfate (SDS). Also, SCW11 mRNA levels are elevated in ρ 0 cells. Deletion of SCW11 significantly decreases the sensitivity of ρ 0 cells to SDS after salt treatment, while overexpression of SCW11 results in higher sensitivity. In addition, salt stress in ρ 0 cells induces high levels of reactive oxygen species (ROS), which further damages the cell wall, causing cells to become more sensitive towards the cell wall-perturbing agent.

  10. Cadmium Chloride Induces DNA Damage and Apoptosis of Human Liver Carcinoma Cells via Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Anthony Skipper

    2016-01-01

    Full Text Available Cadmium is a heavy metal that has been shown to cause its toxicity in humans and animals. Many documented studies have shown that cadmium produces various genotoxic effects such as DNA damage and chromosomal aberrations. Ailments such as bone disease, renal damage, and several forms of cancer are attributed to overexposure to cadmium.  Although there have been numerous studies examining the effects of cadmium in animal models and a few case studies involving communities where cadmium contamination has occurred, its molecular mechanisms of action are not fully elucidated. In this research, we hypothesized that oxidative stress plays a key role in cadmium chloride-induced toxicity, DNA damage, and apoptosis of human liver carcinoma (HepG2 cells. To test our hypothesis, cell viability was determined by MTT assay. Lipid hydroperoxide content stress was estimated by lipid peroxidation assay. Genotoxic damage was tested by the means of alkaline single cell gel electrophoresis (Comet assay. Cell apoptosis was measured by flow cytometry assessment (Annexin-V/PI assay. The result of MTT assay indicated that cadmium chloride induces toxicity to HepG2 cells in a concentration-dependent manner, showing a 48 hr-LD50 of 3.6 µg/mL. Data generated from lipid peroxidation assay resulted in a significant (p < 0.05 increase of hydroperoxide production, specifically at the highest concentration tested. Data obtained from the Comet assay indicated that cadmium chloride causes DNA damage in HepG2 cells in a concentration-dependent manner. A strong concentration-response relationship (p < 0.05 was recorded between annexin V positive cells and cadmium chloride exposure. In summary, these in vitro studies provide clear evidence that cadmium chloride induces oxidative stress, DNA damage, and programmed cell death in human liver carcinoma (HepG2 cells.

  11. Genotoxicological Evaluation of NUTRALYS Pea Protein Isolate

    OpenAIRE

    Aouatif, Chentouf; Looten, Ph.; Parvathi, M. V. S.; Raja Ganesh, S.; Paranthaman, V.

    2013-01-01

    NUTRALYS Pea Protein Isolate, a protein supplement, is a high-quality source of protein which is primarily emulsifying functional protein. We evaluated the genotoxic potential of NUTRALYS isolated from dry yellow pea, using three established genotoxicity tests (AMES test in vitro chromosomal aberration test, and in vivo micronucleus test) employing OECD guidelines under GLP conditions. In the bacterial reverse mutation test, NUTRALYS did not show positive responses in strains detecting point ...

  12. Polyamine Spermine Protects Young Pea Plants Against Ultraviolet-C Radiation

    International Nuclear Information System (INIS)

    Todorovska, D.; Katerova, Z.; Shopova, E.; Nikolova, A.; Georgieva, N.; Sergiev, I.

    2013-01-01

    The effects of ultraviolet-C - UV-C irradiation and polyamine spermine on the content of some stress marker and non-enzymatic antioxidants in leaves of young pea plants were investigated. UV-C irradiation led to a decrease in pea fresh weight, the content of leaf pigments and free proline, accompanied with an increase in malondialdehyde. The initial augmentation in the free thiol levels was transient in UV-C treated plants and finally a substantial decrease was found. Spermine led to a significant augmentation of free thiols and proline content along with a decline in total phenols, but these alterations diminished during the experimental period. Based on comparative analyses of the results obtained for plants treated with UV-C and polyamine, it could be concluded that preliminary application of spermine protects pea plants against irradiation, by maintaining normal plant growth, stabilizing cell membranes and activating non-enzymatic antioxidants

  13. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain.

    Science.gov (United States)

    Megha, Kanu; Deshmukh, Pravin Suryakantrao; Banerjee, Basu Dev; Tripathi, Ashok Kumar; Ahmed, Rafat; Abegaonkar, Mahesh Pandurang

    2015-12-01

    Over the past decade people have been constantly exposed to microwave radiation mainly from wireless communication devices used in day to day life. Therefore, the concerns over potential adverse effects of microwave radiation on human health are increasing. Until now no study has been proposed to investigate the underlying causes of genotoxic effects induced by low intensity microwave exposure. Thus, the present study was undertaken to determine the influence of low intensity microwave radiation on oxidative stress, inflammatory response and DNA damage in rat brain. The study was carried out on 24 male Fischer 344 rats, randomly divided into four groups (n=6 in each group): group I consisted of sham exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation at frequencies 900, 1800 and 2450 MHz, specific absorption rates (SARs) 0.59, 0.58 and 0.66 mW/kg, respectively in gigahertz transverse electromagnetic (GTEM) cell for 60 days (2h/day, 5 days/week). Rats were sacrificed and decapitated to isolate hippocampus at the end of the exposure duration. Low intensity microwave exposure resulted in a frequency dependent significant increase in oxidative stress markers viz. malondialdehyde (MDA), protein carbonyl (PCO) and catalase (CAT) in microwave exposed groups in comparison to sham exposed group (pmicrowave exposed groups (pmicrowave exposed animal (pmicrowave exposed groups as compared to their corresponding values in sham exposed group (pmicrowave radiation induces oxidative stress, inflammatory response and DNA damage in brain by exerting a frequency dependent effect. The study also indicates that increased oxidative stress and inflammatory response might be the factors involved in DNA damage following low intensity microwave exposure. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Oxidative DNA damage and oxidative stress in lead-exposed workers.

    Science.gov (United States)

    Dobrakowski, M; Pawlas, N; Kasperczyk, A; Kozłowska, A; Olewińska, E; Machoń-Grecka, A; Kasperczyk, S

    2017-07-01

    There are many discrepancies among the results of studies on the genotoxicity of lead. The aim of the study was to explore lead-induced DNA damage, including oxidative damage, in relation to oxidative stress intensity parameters and the antioxidant defense system in human leukocytes. The study population consisted of 100 male workers exposed to lead. According to the blood lead (PbB) levels, they were divided into the following three subgroups: a group with PbB of 20-35 μg/dL (low exposure to lead (LE) group), a group with a PbB of 35-50 µg/dL (medium exposure to lead (ME) group), and a group with a PbB of >50 μg/dL (high exposure to lead (HE) group). The control group consisted of 42 healthy males environmentally exposed to lead (PbB lead exposure induces DNA damage, including oxidative damage, in human leukocytes. The increase in DNA damage was accompanied by an elevated intensity of oxidative stress.

  15. 78 FR 63160 - United States Standards for Feed Peas, Split Peas, and Lentils

    Science.gov (United States)

    2013-10-23

    ... Standards for Feed Peas, Split Peas, and Lentils under the Agriculture Marketing Act (AMA) of 1946. To... meeting the needs in today's marketing environment. DATES: GIPSA will consider comments received by..., DC, 20250-3604. Email comments to: [email protected] Fax: (202) 690-2173. Internet: Go to http...

  16. Effects of a concentrate of pea antinutritional factors on pea protein digestibility in piglets

    NARCIS (Netherlands)

    Guen, M.P. Le; Huisman, J.; Guéguen, J.; Beelen, G.; Verstegen, M.W.A.

    1995-01-01

    Four experiments were designed to investigate the apparent ileal digestibility of raw pea (Pisum sativum) and two of its components - an isolate of its proteins and a concentrate of its proteinaceous antinutritional factors (ANFs). Three varieties of peas were used: spring varieties Finale and

  17. Is There Still Any Role for Oxidative Stress in Mitochondrial DNA-Dependent Aging?

    Directory of Open Access Journals (Sweden)

    Gábor Zsurka

    2018-03-01

    Full Text Available Recent deep sequencing data has provided compelling evidence that the spectrum of somatic point mutations in mitochondrial DNA (mtDNA in aging tissues lacks G > T transversion mutations. This fact cannot, however, be used as an argument for the missing contribution of reactive oxygen species (ROS to mitochondria-related aging because it is probably caused by the nucleotide selectivity of mitochondrial DNA polymerase γ (POLG. In contrast to point mutations, the age-dependent accumulation of mitochondrial DNA deletions is, in light of recent experimental data, still explainable by the segregation of mutant molecules generated by the direct mutagenic effects of ROS (in particular, of HO· radicals formed from H2O2 by a Fenton reaction. The source of ROS remains controversial, because the mitochondrial contribution to tissue ROS production is probably lower than previously thought. Importantly, in the discussion about the potential role of oxidative stress in mitochondria-dependent aging, ROS generated by inflammation-linked processes and the distribution of free iron also require careful consideration.

  18. Global DNA methylation and oxidative stress biomarkers in workers exposed to metal oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liou, Saou-Hsing; Wu, Wei-Te; Liao, Hui-Yi [National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan (China); Chen, Chao-Yu; Tsai, Cheng-Yen; Jung, Wei-Ting [Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan (China); Lee, Hui-Ling, E-mail: huilinglee3573@gmail.com [Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan (China)

    2017-06-05

    Highlights: • Global methylation and oxidative DNA damage levels in nanomaterial handling workers were assessed. • 8-isoprostane in exhaled breath condensate of workers exposed to nanoparticles was higher. • 8-OHdG was negatively correlated with global methylation. • Exposure to metal oxide nanoparticles may lead to global methylation and DNA oxidative damage. - Abstract: This is the first study to assess global methylation, oxidative DNA damage, and lipid peroxidation in workers with occupational exposure to metal oxide nanomaterials (NMs). Urinary and white blood cell (WBC) 8-hydroxydeoxyguanosine (8-OHdG), and exhaled breath condensate (EBC) 8-isoprostane were measured as oxidative stress biomarkers. WBC global methylation was measured as an epigenetic alteration. Exposure to TiO{sub 2}, SiO{sub 2,} and indium tin oxide (ITO) resulted in significantly higher oxidative biomarkers such as urinary 8-OHdG and EBC 8-isoprostane. However, significantly higher WBC 8-OHdG and lower global methylation were only observed in ITO handling workers. Significant positive correlations were noted between WBC and urinary 8-OHdG (Spearman correlation r = 0.256, p = 0.003). Furthermore, a significant negative correlation was found between WBC 8-OHdG and global methylation (r = −0.272, p = 0.002). These results suggest that exposure to metal oxide NMs may lead to global methylation, DNA oxidative damage, and lipid peroxidation.

  19. Consequences of low birthweight on urinary excretion of DNA markers of oxidative stress in young men

    DEFF Research Database (Denmark)

    Hillestrøm, P R; Weimann, A; Jensen, C B

    2006-01-01

    OBJECTIVE: Low birthweight (LBW) has been associated with an increased risk of development of type 2 diabetes in adult life. Both type 1 and type 2 diabetes mellitus are characterized by increased oxidative stress. The purpose of this study was to investigate whether young healthy adults born...... with LBW showed differences in oxidative stress under normal conditions and during the added challenge of a physiological Intralipid infusion. MATERIAL AND METHODS: Urinary excretion of DNA markers of oxidative stress were analyzed by LC-MS/MS in 19 men (aged 19 years) with LBW and in 19 age matched...... with LBW and NBW (66.9 versus 73.9 nmol/15 h, 17.8 versus 18.5 nmol/15 h, 11.9 versus 14.4 nmol/15 h and 44.0 versus 43.2 pmol/15 h, respectively). Furthermore, Intralipid infusion did not affect excretion of DNA adducts in LBW or NBW subjects. Statistically significant correlations were found between body...

  20. Age-dependent oxidative stress-induced DNA damage in Down's lymphocytes

    International Nuclear Information System (INIS)

    Zana, Marianna; Szecsenyi, Anita; Czibula, Agnes; Bjelik, Annamaria; Juhasz, Anna; Rimanoczy, Agnes; Szabo, Krisztina; Vetro, Agnes; Szucs, Peter; Varkonyi, Agnes; Pakaski, Magdolna; Boda, Krisztina; Rasko, Istvan; Janka, Zoltan; Kalman, Janos

    2006-01-01

    The aim of the present study was to investigate the oxidative status of lymphocytes from children (n = 7) and adults (n = 18) with Down's syndrome (DS). The basal oxidative condition, the vulnerability to in vitro hydrogen peroxide exposure, and the repair capacity were measured by means of the damage-specific alkaline comet assay. Significantly and age-independently elevated numbers of single strand breaks and oxidized bases (pyrimidines and purines) were found in the nuclear DNA of the lymphocytes in the DS group in the basal condition. These results may support the role of an increased level of endogenous oxidative stress in DS and are similar to those previously demonstrated in Alzheimer's disease. In the in vitro oxidative stress-induced state, a markedly higher extent of DNA damage was observed in DS children as compared with age- and gender-matched healthy controls, suggesting that young trisomic lymphocytes are more sensitive to oxidative stress than normal ones. However, the repair ability itself was not found to be deteriorated in either DS children or DS adults

  1. [Occupational hazards, DNA damage, and oxidative stress on exposure to waste anesthetic gases].

    Science.gov (United States)

    Lucio, Lorena M C; Braz, Mariana G; do Nascimento Junior, Paulo; Braz, José Reinaldo C; Braz, Leandro G

    The waste anesthetic gases (WAGs) present in the ambient air of operating rooms (OR), are associated with various occupational hazards. This paper intends to discuss occupational exposure to WAGs and its impact on exposed professionals, with emphasis on genetic damage and oxidative stress. Despite the emergence of safer inhaled anesthetics, occupational exposure to WAGs remains a current concern. Factors related to anesthetic techniques and anesthesia workstations, in addition to the absence of a scavenging system in the OR, contribute to anesthetic pollution. In order to minimize the health risks of exposed professionals, several countries have recommended legislation with maximum exposure limits. However, developing countries still require measurement of WAGs and regulation for occupational exposure to WAGs. WAGs are capable of inducing damage to the genetic material, such as DNA damage assessed using the comet assay and increased frequency of micronucleus in professionals with long-term exposure. Oxidative stress is also associated with WAGs exposure, as it induces lipid peroxidation, oxidative damage in DNA, and impairment of the antioxidant defense system in exposed professionals. The occupational hazards related to WAGs including genotoxicity, mutagenicity and oxidative stress, stand as a public health issue and must be acknowledged by exposed personnel and responsible authorities, especially in developing countries. Thus, it is urgent to stablish maximum safe limits of concentration of WAGs in ORs and educational practices and protocols for exposed professionals. Copyright © 2017 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  2. Assessment of DNA damage and oxidative stress induced by radiation in Eisenia fetida

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Tae Ho; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2012-04-15

    Exposure of eukaryotic cells to ionizing radiation results in the immediate formation of free radicals and the occurrence of oxidative cell damage. Recently International Commission on Radiological Protection (ICRP) requires the effect data of ionizing radiation on non-human biota for the radiological protection of the environment. Based on their radioecological properties and their important role in the soil ecosystem, earthworms have been identified by the ICRP as one of the reference animals and plants (RAPs) to be used in environmental radiation protection. The investigation shows that oxidative stress is closely related to the exposed dose of radiation in the environment. To evaluate oxidative stress by ionizing radiation in the earthworm, we performed several experiments. The comet assay is known as a measurement which is one of the best techniques in assessing the DNA damage by oxidative stress. The SOD is a key enzyme in protecting cells against oxidative stress. An increase in the level of antioxidant enzyme such as SOD indicated that the exposure to radiation caused stress responses. Glutathione oxidation is considered as a maker for detection of reactive oxygen species (ROS). The GSSG levels increased progressively with increased exposure dose of ionizing radiation, which suggested a dose-dependent ROS generation.

  3. The Fanconi Anemia Pathway in Replication Stress and DNA Crosslink Repair

    Science.gov (United States)

    Jones, Mathew JK.; Huang, Tony T.

    2013-01-01

    Interstand crosslinks (ICLs) are DNA lesions where the bases of opposing DNA strands are covalently linked, inhibiting critical cellular processes such as transcription and replication. Chemical agents that generate ICLs cause chromosomal abnormalities including breaks, deletions and rearrangements, making them highly genotoxic compounds. This toxicity has proven useful for chemotherapeutic treatment against a wide variety of cancer types. The majority of our understanding of ICL repair in humans has been uncovered thorough analysis of the rare genetic disorder Fanconi anemia, in which patients are extremely sensitive to crosslinking agents. Here, we discuss recent insights into ICL repair gained through new ICL repair assays and highlight the role of the Fanconi Anemia repair pathway during replication stress. PMID:22744751

  4. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles

    DEFF Research Database (Denmark)

    Møller, Peter; Danielsen, Pernille Høgh; Karottki, Dorina Gabriela

    2014-01-01

    at different locations (spatial variability), times (temporal variability) or particle size fraction across different experimental systems of acellular conditions, cultured cells, animals and humans. Nevertheless, there is substantial variation in the genotoxic, inflammation and oxidative stress potential......Generation of oxidatively damaged DNA by particulate matter (PM) is hypothesized to occur via production of reactive oxygen species (ROS) and inflammation. We investigated this hypothesis by comparing ROS production, inflammation and oxidatively damaged DNA in different experimental systems...... investigating air pollution particles. There is substantial evidence indicating that exposure to air pollution particles was associated with elevated levels of oxidatively damaged nucleobases in circulating blood cells and urine from humans, which is supported by observations of elevated levels of genotoxicity...

  5. DNA methylation changes detected by methylation-sensitive amplified polymorphism in two contrasting rice genotypes under salt stress.

    Science.gov (United States)

    Wang, Wensheng; Zhao, Xiuqin; Pan, Yajiao; Zhu, Linghua; Fu, Binying; Li, Zhikang

    2011-09-20

    DNA methylation, one of the most important epigenetic phenomena, plays a vital role in tuning gene expression during plant development as well as in response to environmental stimuli. In the present study, a methylation-sensitive amplified polymorphism (MSAP) analysis was performed to profile DNA methylation changes in two contrasting rice genotypes under salt stress. Consistent with visibly different phenotypes in response to salt stress, epigenetic markers classified as stable inter-cultivar DNA methylation differences were determined between salt-tolerant FL478 and salt-sensitive IR29. In addition, most tissue-specific DNA methylation loci were conserved, while many of the growth stage-dependent DNA methylation loci were dynamic between the two genotypes. Strikingly, salt stress induced a decrease in DNA methylation specifically in roots at the seedling stage that was more profound in IR29 than in the FL478. This result may indicate that demethylation of genes is an active epigenetic response to salt stress in roots at the seedling stage, and helps to further elucidate the implications of DNA methylation in crop growth and development. Copyright © 2011. Published by Elsevier Ltd.

  6. Oxidative Stress Induced Lipid Peroxidation And DNA Adduct Formation In The Pathogenesis Of Multiple Myeloma And Lymphoma

    Directory of Open Access Journals (Sweden)

    Tandon, Ravi

    2013-02-01

    Full Text Available Objective: To access the oxidative stress status by quantification of byproducts generated during lipid peroxidation and DNA breakdown products generated during DNA damage in the blood serum of multiple myeloma and lymphoma patients.Material & Methods: Case control study comprised of 40 patients of multiple myeloma and 20 patients of lymphoma along with 20 age and sex-matched healthy subjects as controls. Levels of Malondialdehyde and 8-hydroxy-2-deoxy-Guanosine were measured to study the oxidative stress status in the study subjects.Results: The level of markers of DNA damage and lipid peroxidation were found to be raised significantly in the study subjects in comparison to healthy controls. The results indicate oxidative stress and DNA damage activity increase progressively with the progression of disease.Conclusion: Oxidative stress causes DNA damage and Lipid peroxidation which results in the formation of DNA adducts leading to mutations thereby indicate the role of oxidative stress in the pathogenesis of multiple myeloma and lymphoma.

  7. Effect of Pigeon pea and Cow pea on the performance and gut immunity of broiler chicks

    International Nuclear Information System (INIS)

    Yagoub, Yagoub Magboul

    1998-03-01

    two experiments were conducted to examine the effect of pigeon pea and cow pea on the performance and gut immunity of broiler chicks. In experiment 1, 3 experimental diets were formulated containing graded levels of cow pea were maintained. Diets were prepared containing 18.21, 18.25 and 18.25% crude protein and 3076.41, 3062 Kel/Kg metabolizable energy for experiment 1, while diets of experiment 11 were prepared containing 18.21, 18.22, and 18.22% crude protein and 3076.41, 3080.5 and 3055.89 KEl/Kg metabolized energy. 120 Loghmann broiler chicks were equally allocated into 15 pens (8 chicks/pen). Then the experimental diets were randomly assigned to the pens. feed and water were provided ad libitum in both experiments. In experiment 1, the results showed no significant difference were found in chick performance at day 45. The feed conversation ratio increased with the level of pigeon pea used. The pancreas mass was increased as the level of pigeon pea increase. In experiment 2 the results showed significant decrease in the body weight and feed intake at day 45, while the pancreas mass tend to increase with increasing level of cow pea in the diet. Histological examination of small intestine slides showed no histopathological differences between the control and chicks fed cow pea and/or pigeon pea. Immunological test of the serum and mucous samples using ELISA techniques revealed no significant difference between the control and chicks given cow pea and / or pigeon pea

  8. DNA repair and cell cycle biomarkers of radiation exposure and inflammation stress in human blood.

    Directory of Open Access Journals (Sweden)

    Helen Budworth

    Full Text Available DNA damage and repair are hallmarks of cellular responses to ionizing radiation. We hypothesized that monitoring the expression of DNA repair-associated genes would enhance the detection of individuals exposed to radiation versus other forms of physiological stress. We employed the human blood ex vivo radiation model to investigate the expression responses of DNA repair genes in repeated blood samples from healthy, non-smoking men and women exposed to 2 Gy of X-rays in the context of inflammation stress mimicked by the bacterial endotoxin lipopolysaccharide (LPS. Radiation exposure significantly modulated the transcript expression of 12 genes of 40 tested (2.2E-06DNA repair gene expression may be helpful to identify biodosimeters of exposure to radiation, especially within high-complexity exposure scenarios.

  9. Strigolactones positively regulate chilling tolerance in pea and in Arabidopsis.

    Science.gov (United States)

    Cooper, James W; Hu, Yan; Beyyoudh, Leila; Yildiz Dasgan, H; Kunert, Karl; Beveridge, Christine A; Foyer, Christine H

    2018-01-17

    Strigolactones (SL) fulfil important roles in plant development and stress tolerance. Here we characterised the role of SL in the dark chilling tolerance of pea and Arabidopsis by analysis of mutants that are defective in either SL synthesis or signalling. Pea mutants (rms3, rms4, rms5) had significantly greater shoot branching with higher leaf chlorophyll a/b ratios and carotenoid contents than the wild type. Exposure to dark chilling significantly decreased shoot fresh weights but increased leaf numbers in all lines. However, dark chilling treatments decreased biomass (dry weight) accumulation only in rms3 and rms5 shoots. Unlike the wild type plants, chilling-induced inhibition of photosynthetic carbon assimilation was observed in the rms lines and also in max3-9, max4-1, max2-1 mutants that are defective in SL synthesis or signalling. When grown on agar plates the max mutant rosettes accumulated less biomass than the wild type. The synthetic SL, GR24 decreased leaf area in the wild type, max3-9 and max4-1 mutants but not in max2-1 in the absence of stress. Moreover, a chilling-induced decrease in leaf area was observed in all the lines in the presence of GR24. We conclude that SL plays an important role in the control of dark chilling tolerance. This article is protected by copyright. All rights reserved.

  10. Electronic cigarette aerosols and copper nanoparticles induce mitochondrial stress and promote DNA fragmentation in lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Lerner, Chad A.; Rutagarama, Pierrot; Ahmad, Tanveer; Sundar, Isaac K.; Elder, Alison; Rahman, Irfan, E-mail: irfan_rahman@urmc.rochester.edu

    2016-09-02

    Oxidants or nanoparticles have recently been identified as constituents of aerosols released from various styles of electronic cigarettes (E-cigs). Cells in the lung may be directly exposed to these constituents and harbor reactive properties capable of incurring acute cell injury. Our results show mitochondria are sensitive to both E-cig aerosols and aerosol containing copper nanoparticles when exposed to human lung fibroblasts (HFL-1) using an Air-Liquid Interface culture system, evident by elevated levels of mitochondrial ROS (mtROS). Increased mtROS after aerosol exposure is associated with reduced stability of OxPhos electron transport chain (ETC) complex IV subunit and nuclear DNA fragmentation. Increased levels of IL-8 and IL-6 in HFL-1 conditioned media were also observed. These findings reveal both mitochondrial, genotoxic, and inflammatory stresses are features of direct cell exposure to E-cig aerosols which are ensued by inflammatory duress, raising a concern on deleterious effect of vaping. - Graphical abstract: Oxidants and possibly reactive properties of metal particles in E-cig aerosols impart mitochondrial oxidative stress and DNA damage. These biological effects accompany inflammatory response which may raise concern regarding long term E-cig use. Mitochondria may be particularly sensitive to reactive properties of E-cig aerosols in addition to the potential for them to induce genotoxic stress by generating increased ROS. - Highlights: • Mitochondria are sensitive to both E-cig aerosols and metal nanoparticles. • Increased mtROS by E-cig aerosol is associated with disrupted mitochondrial energy. • E-cig causes nuclear DNA fragmentation. • E-cig aerosols induce pro-inflammatory response in human fibroblasts.

  11. Electronic cigarette aerosols and copper nanoparticles induce mitochondrial stress and promote DNA fragmentation in lung fibroblasts

    International Nuclear Information System (INIS)

    Lerner, Chad A.; Rutagarama, Pierrot; Ahmad, Tanveer; Sundar, Isaac K.; Elder, Alison; Rahman, Irfan

    2016-01-01

    Oxidants or nanoparticles have recently been identified as constituents of aerosols released from various styles of electronic cigarettes (E-cigs). Cells in the lung may be directly exposed to these constituents and harbor reactive properties capable of incurring acute cell injury. Our results show mitochondria are sensitive to both E-cig aerosols and aerosol containing copper nanoparticles when exposed to human lung fibroblasts (HFL-1) using an Air-Liquid Interface culture system, evident by elevated levels of mitochondrial ROS (mtROS). Increased mtROS after aerosol exposure is associated with reduced stability of OxPhos electron transport chain (ETC) complex IV subunit and nuclear DNA fragmentation. Increased levels of IL-8 and IL-6 in HFL-1 conditioned media were also observed. These findings reveal both mitochondrial, genotoxic, and inflammatory stresses are features of direct cell exposure to E-cig aerosols which are ensued by inflammatory duress, raising a concern on deleterious effect of vaping. - Graphical abstract: Oxidants and possibly reactive properties of metal particles in E-cig aerosols impart mitochondrial oxidative stress and DNA damage. These biological effects accompany inflammatory response which may raise concern regarding long term E-cig use. Mitochondria may be particularly sensitive to reactive properties of E-cig aerosols in addition to the potential for them to induce genotoxic stress by generating increased ROS. - Highlights: • Mitochondria are sensitive to both E-cig aerosols and metal nanoparticles. • Increased mtROS by E-cig aerosol is associated with disrupted mitochondrial energy. • E-cig causes nuclear DNA fragmentation. • E-cig aerosols induce pro-inflammatory response in human fibroblasts.

  12. Thinner inhalation effects on oxidative stress and DNA repair in a rat model of abuse.

    Science.gov (United States)

    Martínez-Alfaro, Minerva; Cárabez-Trejo, Alfonso; Gallegos-Corona, Marco-Antonio; Pedraza-Aboytes, Gustavo; Hernández-Chan, Nancy Georgina; Leo-Amador, Guillermo Enrique

    2010-04-01

    Humans can come into contact with thinner by occupational exposure or by intentional inhalation abuse. Numerous studies of workers for genotoxic effects of thinner exposure have yielded conflicting results, perhaps because co-exposure to variable other compounds cannot be avoided in workplace exposure studies. In contrast, there is no data concerning the genotoxic effects of intentional inhalation abuse. The aim of this project was to examine the genotoxic effects of thinner inhalation in an animal model of thinner abuse (rats exposed to 3000 ppm toluene, a high solvent concentration over a very short, 15 min time period, twice a day for 6 weeks). The data presented here provides evidence that thinner inhalation in our experimental conditions is able to induce weight loss, lung abnormalities and oxidative stress. This oxidative stress induces oxidative DNA damage that is not a characteristic feature of genotoxic damage. No significant difference in DNA damage and DNA repair (biomarkers of genotoxicity) in lymphocytes from thinner-treated and control rats was found. Lead treatment was used as a positive control in these assays. Finally, bone marrow was evaluated as a biomarker of cellular alteration associated with thinner inhalation. The observed absence of hemopoietic and genetic toxicity could be explained in part by the absence of benzene, the only carcinogenic component of thinner; however, benzene is no longer a common component of thinner. In conclusion, thinner did not cause genotoxic effects in an experimental model of intentional abuse despite the fact that thinner inhalation induces oxidative stress. (c) 2009 John Wiley & Sons, Ltd.

  13. DNA damage and defence gene expression after oxidative stress induced by x-rays and diesel exhaust particles

    International Nuclear Information System (INIS)

    Risom, Lotte

    2004-01-01

    Particulate air pollution is one the most important environmental health factors for people living in cities. Especially the exhaust particles from traffic are possible causes for cancer and cardiopulmonary diseases. The aim of this thesis was to characterize the health effects of diesel exhaust particles (DEP) by inducing oxidative stress and analyse the underlying mechanisms. Methods for determining oxidative stress, DNA damage, and gene expression were validated and calibrated in lung tissue by studying the dose response relations after ionizing radiation. The study showed the feasibility of partial-body x-ray irradiation as an in vivo model for induction and repair of oxidative DNA damage, of DNA repair enzymes expression, and antioxidant defense genes. A 'nose-only' mouse model for inhalation of ultra-fine particles showed that particles induce oxidative DNA damage in lung tissue and in bronchoalveolar lavage cells. The exposure increased the expression of HO-1 mRNA and oxoguanine DNA glycosylase OGG1 mRNA. The levels of 8-oxodG and OGG1 mRNA were mirror images. Colon and liver were analysed after administration of DEP in the diet with or without increasing doses of sucrose. This study indicated that DEP induces DNA adducts and oxidative stress through formation of DNA strand breaks, DNA repair enzyme expression, apoptosis, and protein oxidisation in colon and liver at relatively low exposure doses. The thesis is based on four published journal articles. (ln)

  14. DNA damage and defence gene expression after oxidative stress induced by x-rays and diesel exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Risom, Lotte

    2004-07-01

    Particulate air pollution is one the most important environmental health factors for people living in cities. Especially the exhaust particles from traffic are possible causes for cancer and cardiopulmonary diseases. The aim of this thesis was to characterize the health effects of diesel exhaust particles (DEP) by inducing oxidative stress and analyse the underlying mechanisms. Methods for determining oxidative stress, DNA damage, and gene expression were validated and calibrated in lung tissue by studying the dose response relations after ionizing radiation. The study showed the feasibility of partial-body x-ray irradiation as an in vivo model for induction and repair of oxidative DNA damage, of DNA repair enzymes expression, and antioxidant defense genes. A 'nose-only' mouse model for inhalation of ultra-fine particles showed that particles induce oxidative DNA damage in lung tissue and in bronchoalveolar lavage cells. The exposure increased the expression of HO-1 mRNA and oxoguanine DNA glycosylase OGG1 mRNA. The levels of 8-oxodG and OGG1 mRNA were mirror images. Colon and liver were analysed after administration of DEP in the diet with or without increasing doses of sucrose. This study indicated that DEP induces DNA adducts and oxidative stress through formation of DNA strand breaks, DNA repair enzyme expression, apoptosis, and protein oxidisation in colon and liver at relatively low exposure doses. The thesis is based on four published journal articles. (ln)

  15. Gibberellin (GA3) enhances cell wall invertase activity and mRNA levels in elongating dwarf pea (Pisum sativum) shoots

    Science.gov (United States)

    Wu, L. L.; Mitchell, J. P.; Cohn, N. S.; Kaufman, P. B.

    1993-01-01

    The invertase (EC 3.2.1.26) purified from cell walls of dwarf pea stems to homogeneity has a molecular mass of 64 kilodaltons (kD). Poly(A)+RNA was isolated from shoots of dwarf pea plants, and a cDNA library was constructed using lambda gt11 as an expression vector. The expression cDNA library was screened with polyclonal antibodies against pea cell wall invertase. One invertase cDNA clone was characterized as a full-length cDNA with 1,863 base pairs. Compared with other known invertases, one homologous region in the amino acid sequence was found. The conserved motif, Asn-Asp-Pro-Asn-Gly, is located near the N-terminal end of invertase. Northern blot analysis showed that the amount of invertase mRNA (1.86 kb) was rapidly induced to a maximal level 4 h after GA3 treatment, then gradually decreased to the control level. The mRNA level at 4 h in GA3-treated peas was fivefold higher than that of the control group. The maximal increase in activity of pea cell wall invertase elicited by GA3 occcured at 8 h after GA3 treatment. This invertase isoform was shown immunocytochemically to be localized in the cell walls, where a 10-fold higher accumulation occurred in GA3-treated tissue compared with control tissue. This study indicates that the expression of the pea shoot cell-wall invertase gene could be regulated by GA3 at transcriptional and/or translational levels.

  16. Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.).

    Science.gov (United States)

    Ou, Xiufang; Zhang, Yunhong; Xu, Chunming; Lin, Xiuyun; Zang, Qi; Zhuang, Tingting; Jiang, Lili; von Wettstein, Diter; Liu, Bao

    2012-01-01

    DNA methylation is sensitive and responsive to stressful environmental conditions. Nonetheless, the extent to which condition-induced somatic methylation modifications can impose transgenerational effects remains to be fully understood. Even less is known about the biological relevance of the induced epigenetic changes for potentially altered well-being of the organismal progenies regarding adaptation to the specific condition their progenitors experienced. We analyzed DNA methylation pattern by gel-blotting at genomic loci representing transposable elements and protein-coding genes in leaf-tissue of heavy metal-treated rice (Oryza sativa) plants (S0), and its three successive organismal generations. We assessed expression of putative genes involved in establishing and/or maintaining DNA methylation patterns by reverse transcription (RT)-PCR. We measured growth of the stressed plants and their unstressed progenies vs. the control plants. We found (1) relative to control, DNA methylation patterns were modified in leaf-tissue of the immediately treated plants, and the modifications were exclusively confined to CHG hypomethylation; (2) the CHG-demethylated states were heritable via both maternal and paternal germline, albeit often accompanying further hypomethylation; (3) altered expression of genes encoding for DNA methyltransferases, DNA glycosylase and SWI/SNF chromatin remodeling factor (DDM1) were induced by the stress; (4) progenies of the stressed plants exhibited enhanced tolerance to the same stress their progenitor experienced, and this transgenerational inheritance of the effect of condition accompanying heritability of modified methylation patterns. Our findings suggest that stressful environmental condition can produce transgenerational epigenetic modifications. Progenies of stressed plants may develop enhanced adaptability to the condition, and this acquired trait is inheritable and accord with transmission of the epigenetic modifications. We suggest

  17. Protein methylation in pea chloroplasts

    International Nuclear Information System (INIS)

    Niemi, K.J.; Adler, J.; Selman, B.R.

    1990-01-01

    The methylation of chloroplast proteins has been investigated by incubating intact pea (Pisum sativum) chloroplasts with [ 3 H-methyl]-S-adenosylmethionine. Incubation in the light increases the amount of methylation in both the thylakoid and stromal fractions. Numerous thylakoid proteins serve as substrates for the methyltransfer reactions. Three of these thylakoid proteins are methylated to a significantly greater extent in the light than in the dark. The primary stromal polypeptide methylated is the large subunit of ribulose bisphosphate carboxylase/oxygenase. One other stromal polypeptide is also methylated much more in the light than in the dark. Two distinct types of protein methylation occur. One methylinkage is stable to basic conditions whereas a second type is base labile. The base-stable linkage is indicative of N-methylation of amino acid residues while base-lability is suggestive of carboxymethylation of amino acid residues. Labeling in the light increases the percentage of methylation that is base labile in the thylakoid fraction while no difference is observed in the amount of base-labile methylations in light-labeled and dark-labeled stromal proteins. Also suggestive of carboxymethylation is the detection of volatile [ 3 H]methyl radioactivity which increases during the labeling period and is greater in chloroplasts labeled in the light as opposed to being labeled in the dark; this implies in vivo turnover of the [ 3 H]methyl group

  18. faba bean and field pea seed proportion for intercropping system

    African Journals Online (AJOL)

    Administrator

    reduced with increase in the seeding rate of field pea. ... productivity of the Faba bean/field pea was obtained from intercropping system. Growing Faba bean both as a ..... Management: Proceedings of the First and ... Population, time and crop.

  19. Immunofluorescence detection of pea protein in meat products.

    Science.gov (United States)

    Petrášová, Michaela; Pospiech, Matej; Tremlová, Bohuslava; Javůrková, Zdeňka

    2016-08-01

    In this study we developed an immunofluorescence method to detect pea protein in meat products. Pea protein has a high nutritional value but in sensitive individuals it may be responsible for causing allergic reactions. We produced model meat products with various additions of pea protein and flour; the detection limit (LOD) of the method for pea flour was 0.5% addition, and for pea protein it was 0.001% addition. The repeatabilities and reproducibilities for samples both positive and negative for pea protein were all 100%. In a blind test with model products and commercial samples, there was no statistically significant difference (p > 0.05) between the declared concentrations of pea protein and flour and the immunofluorescence method results. Sensitivity was 1.06 and specificity was 1.00. These results show that the immunofluorescence method is suitable for the detection of pea protein in meat products.

  20. Transgenerational variations in DNA methylation induced by drought stress in two rice varieties with distinguished difference to drought resistance.

    Directory of Open Access Journals (Sweden)

    Xiaoguo Zheng

    Full Text Available Adverse environmental conditions have large impacts on plant growth and crop production. One of the crucial mechanisms that plants use in variable and stressful natural environments is gene expression modulation through epigenetic modification. In this study, two rice varieties with different drought resistance levels were cultivated under drought stress from tilling stage to seed filling stage for six successive generations. The variations in DNA methylation of the original generation (G0 and the sixth generation (G6 of these two varieties in normal condition (CK and under drought stress (DT at seedling stage were assessed by using Methylation Sensitive Amplification Polymorphism (MSAP method. The results revealed that drought stress had a cumulative effect on the DNA methylation pattern of both varieties, but these two varieties had different responses to drought stress in DNA methylation. The DNA methylation levels of II-32B (sensitive and Huhan-3 (resistant were around 39% and 32%, respectively. Genome-wide DNA methylation variations among generations or treatments accounted for around 13.1% of total MSAP loci in II-32B, but was only approximately 1.3% in Huhan-3. In II-32B, 27.6% of total differentially methylated loci (DML were directly induced by drought stress and 3.2% of total DML stably transmitted their changed DNA methylation status to the next generation. In Huhan-3, the numbers were 48.8% and 29.8%, respectively. Therefore, entrainment had greater effect on Huhan-3 than on II-32B. Sequence analysis revealed that the DML were widely distributed on all 12 rice chromosomes and that it mainly occurred on the gene's promoter and exon region. Some genes with DML respond to environmental stresses. The inheritance of epigenetic variations induced by drought stress may provide a new way to develop drought resistant rice varieties.

  1. Susceptibility patterns and the role of extracellular DNA in Staphylococcus epidermidis biofilm resistance to physico-chemical stress exposure.

    Science.gov (United States)

    Olwal, Charles Ochieng'; Ang'ienda, Paul Oyieng'; Onyango, David Miruka; Ochiel, Daniel Otieno

    2018-05-02

    Over 65% of human infections are ascribed to bacterial biofilms that are often highly resistant to antibiotics and host immunity. Staphylococcus epidermidis is the predominant cause of recurrent nosocomial and biofilm-related infections. However, the susceptibility patterns of S. epidermidis biofilms to physico-chemical stress induced by commonly recommended disinfectants [(heat, sodium chloride (NaCl), sodium hypochlorite (NaOCl) and hydrogen peroxide (H 2 O 2 )] in domestic and human healthcare settings remains largely unknown. Further, the molecular mechanisms of bacterial biofilms resistance to the physico-chemical stresses remain unclear. Growing evidence demonstrates that extracellular DNA (eDNA) protects bacterial biofilms against antibiotics. However, the role of eDNA as a potential mechanism underlying S. epidermidis biofilms resistance to physico-chemical stress exposure is yet to be understood. Therefore, this study aimed to evaluate the susceptibility patterns of and eDNA release by S. epidermidis biofilm and planktonic cells to physico-chemical stress exposure. S. epidermidis biofilms exposed to physico-chemical stress conditions commonly recommended for disinfection [heat (60 °C), 1.72 M NaCl, solution containing 150 μL of waterguard (0.178 M NaOCl) in 1 L of water or 1.77 M H 2 O 2 ] for 30 and 60 min exhibited lower log reductions of CFU/mL than the corresponding planktonic cells (p chemical stress induced by the four commonly recommended disinfectants than the analogous planktonic cells. Further, S. epidermidis biofilms enhanced eDNA release in response to the sub-lethal heat and oxidative stress exposure than the corresponding planktonic cells suggesting a role of eDNA in biofilms resistance to the physico-chemical stresses.

  2. Pulmonary dysfunctions, oxidative stress and DNA damage in brick kiln workers.

    Science.gov (United States)

    Kaushik, R; Khaliq, F; Subramaneyaan, M; Ahmed, R S

    2012-11-01

    Brick kilns in the suburban areas in developing countries pose a big threat to the environment and hence the health of their workers and people residing around them. The present study was planned to assess the lung functions, oxidative stress parameters and DNA damage in brick kiln workers. A total of 31 male subjects working in brick kiln, and 32 age, sex and socioeconomic status matched controls were included in the study. The lung volumes, capacities and flow rates, namely, forced expiratory volume in first second (FEV(1)), forced vital capacity (FVC), FEV(1)/FVC, expiratory reserve volume, inspiratory capacity (IC), maximal expiratory flow when 50% of FVC is remaining to be expired, maximum voluntary ventilation, peak expiratory flow rate and vital capacity were significantly decreased in the brick kiln workers. Increased oxidative stress as evidenced by increased malonedialdehyde levels and reduced glutathione content, glutathione S-transferase activity and ferric reducing ability of plasma were observed in the study group when compared with controls. Our results indicate a significant correlation between oxidative stress parameters and pulmonary dysfunction, which may be due to silica-induced oxidative stress and resulting lung damage.

  3. Pea weevil damage and chemical characteristics of pea cultivars determining their resistance to Bruchus pisorum L.

    Science.gov (United States)

    Nikolova, I

    2016-04-01

    Bruchus pisorum (L.) is one of the most intractable pest problems of cultivated pea in Europe. Development of resistant cultivars is very important to environmental protection and would solve this problem to a great extent. Therefore, the resistance of five spring pea cultivars was studied to B. pisorum: Glyans, Modus; Kamerton and Svit and Pleven 4 based on the weevil damage and chemical composition of seeds. The seeds were classified as three types: healthy seeds (type one), damaged seeds with parasitoid emergence holes (type two) and damaged seeds with bruchid emergence holes (type three). From visibly damaged pea seeds by pea weevil B. pisorum was isolated the parasitoid Triaspis thoracica Curtis (Hymenoptera, Braconidae). Modus, followed by Glyans was outlined as resistant cultivars against the pea weevil. They had the lowest total damaged seed degree, loss in weight of damaged seeds (type two and type three) and values of susceptibility coefficients. A strong negative relationship (r = -0.838) between the weight of type one seeds and the proportion of type three seeds was found. Cultivars with lower protein and phosphorus (P) content had a lower level of damage. The crude protein, crude fiber and P content in damaged seeds significantly or no significantly were increased as compared with the healthy seeds due to weevil damage. The P content had the highest significant influence on pea weevil infestation. Use of chemical markers for resistance to the creation of new pea cultivars can be effective method for defense and control against B. pisorum.

  4. Development of an efficient retrotransposon-based fingerprinting method for rapid pea variety identification.

    Science.gov (United States)

    Smýkal, Petr

    2006-01-01

    Fast and efficient DNA fingerprinting of crop cultivars and individuals is frequently used in both theoretical population genetics and in practical breeding. Numerous DNA marker technologies exist and the ratio of speed, cost and accuracy are of importance. Therefore even in species where highly accurate and polymorphic marker systems are available, such as microsatellite SSR (simple sequence repeats), also alternative methods may be of interest. Thanks to their high abundance and ubiquity, temporary mobile retrotransposable elements come into recent focus. Their properties, such as genome wide distribution and well-defined origin of individual insertions by descent, predetermine them for use as molecular markers. In this study, several Ty3-gypsy type retrotransposons have been developed and adopted for the inter-retrotransposon amplified polymorphism (IRAP) method, which is suitable for fast and efficient pea cultivar fingerprinting. The method can easily distinguish even between genetically closely related pea cultivars and provide high polymorphic information content (PIC) in a single PCR analysis.

  5. Bisphenol A induces oxidative stress and DNA damage in hepatic tissue of female rat offspring

    Directory of Open Access Journals (Sweden)

    Jehane I. Eid

    2015-08-01

    Full Text Available Bisphenol A (BPA is an endocrine disrupting compound widely spread in our living environment. It is a contaminant with increasing exposure to it and exerts both toxic and estrogenic effects on mammalian cells. Due to the limited information concerning the effect of BPA on the liver, the present study was designed to assess hepatic tissue injury induced by early life exposure to BPA in female rat offspring. Rat dams (n = 9 were gavaged with 0.5 and 50 mg of BPA/kg b.w./day throughout lactation until weaning. The sham group received olive oil for the same duration while the control group did not receive any injection. The liver tissue was collected from female pups at different pubertal periods (PND50, 90 and 110 to evaluate oxidative stress biomarkers, extent of DNA damage and histopathological changes. Our results indicated that early life exposure to BPA significantly increased oxidative/nitrosative stress, decreased antioxidant enzyme activities, induced DNA damage and chronic severe inflammation in the hepatic tissue in a time dependent manner. These data suggested that BPA causes long-term adverse effects on the liver, which leads to deleterious effects in the liver of female rat offspring.

  6. Reversible Modulation of DNA-Based Hydrogel Shapes by Internal Stress Interactions.

    Science.gov (United States)

    Hu, Yuwei; Kahn, Jason S; Guo, Weiwei; Huang, Fujian; Fadeev, Michael; Harries, Daniel; Willner, Itamar

    2016-12-14

    We present the assembly of asymmetric two-layer hybrid DNA-based hydrogels revealing stimuli-triggered reversibly modulated shape transitions. Asymmetric, linear hydrogels that include layer-selective switchable stimuli-responsive elements that control the hydrogel stiffness are designed. Trigger-induced stress in one of the layers results in the bending of the linear hybrid structure, thereby minimizing the elastic free energy of the systems. The removal of the stress by a counter-trigger restores the original linear bilayer hydrogel. The stiffness of the DNA hydrogel layers is controlled by thermal, pH (i-motif), K + ion/crown ether (G-quadruplexes), chemical (pH-doped polyaniline), or biocatalytic (glucose oxidase/urease) triggers. A theoretical model relating the experimental bending radius of curvatures of the hydrogels with the Young's moduli and geometrical parameters of the hydrogels is provided. Promising applications of shape-regulated stimuli-responsive asymmetric hydrogels include their use as valves, actuators, sensors, and drug delivery devices.

  7. Possible causes of dry pea synergy to corn

    Science.gov (United States)

    Dry pea improves corn yield and tolerance to weed interference compared with soybean, spring wheat, or canola as preceding crops. To understand this synergy between dry pea and corn, we examined growth and nutrient concentration of corn following dry pea or soybean in sequence. Each corn plot was ...

  8. Number and Effectiveness of Pea Rhizobia in Danish Soils

    DEFF Research Database (Denmark)

    Engvild, K.C.

    1989-01-01

    Most of 44 Danish soils tested contain between 1000 and 10 000 pea rhizobia (Rhizobium leguminosarum biovar viceae) per gram. Pea rhizobia were not detected in acid moor and forest soils. Only one case of failed nodulation in peas in the field has been noted, in spots in a reclaimed sandy heath m...

  9. Oxidative stress and DNA damage induced by imidacloprid in zebrafish (Danio rerio).

    Science.gov (United States)

    Ge, Weili; Yan, Saihong; Wang, Jinhua; Zhu, Lusheng; Chen, Aimei; Wang, Jun

    2015-02-18

    Imidacloprid is a neonicotinoid insecticide that can have negative effects on nontarget animals. The present study was conducted to assess the toxicity of various imidacloprid doses (0.3, 1.25, and 5 mg/mL) on zebrafish sampled after 7, 14, 21, and 28 days of exposure. The levels of catalase (CAT), superoxide dismutase (SOD), reactive oxygen species (ROS), glutathione-S-transferase (GST), and malondialdehyde (MDA) and the extent of DNA damage were measured to evaluate the toxicity of imidacloprid on zebrafish. SOD and GST activities were noticeably increased during early exposure but were inhibited toward the end of the exposure period. In addition, the CAT levels decreased to the control level following their elevation during early exposure. High concentrations of imidacloprid (1.25 and 5 mg/L) induced excessive ROS production and markedly increased MDA content on the 21st day of exposure. DNA damage was dose- and time-dependent. In conclusion, the present study showed that imidacloprid can induce oxidative stress and DNA damage in zebrafish.

  10. Nitrogen gas plasma treatment of bacterial spores induces oxidative stress that damages the genomic DNA.

    Science.gov (United States)

    Sakudo, Akikazu; Toyokawa, Yoichi; Nakamura, Tetsuji; Yagyu, Yoshihito; Imanishi, Yuichiro

    2017-01-01

    Gas plasma, produced by a short high‑voltage pulse generated from a static induction thyristor power supply [1.5 kilo pulse/sec (kpps)], was demonstrated to inactivate Geobacillus stearothermophilus spores (decimal reduction time at 15 min, 2.48 min). Quantitative polymerase chain reaction and enzyme‑linked immunosorbent assays further indicated that nitrogen gas plasma treatment for 15 min decreased the level of intact genomic DNA and increased the level of 8-hydroxy-2'-deoxyguanosine, a major product of DNA oxidation. Three potential inactivation factors were generated during operation of the gas plasma instrument: Heat, longwave ultraviolet-A and oxidative stress (production of hydrogen peroxide, nitrite and nitrate). Treatment of the spores with hydrogen peroxide (3x2‑4%) effectively inactivated the bacteria, whereas heat treatment (100˚C), exposure to UV-A (75‑142 mJ/cm2) and 4.92 mM peroxynitrite (•ONOO‑), which is decomposed into nitrite and nitrate, did not. The results of the present study suggest the gas plasma treatment inactivates bacterial spores primarily by generating hydrogen peroxide, which contributes to the oxidation of the host genomic DNA.

  11. Grape (Vitis vinifera) extracts protect against radiation-induced oxidative stress and DNA damage

    International Nuclear Information System (INIS)

    Singha, Indrani; Das, Subir Kumar; Saxena, S.; Gautam, S.

    2016-01-01

    Ionizing radiation (IR) causes oxidative stress through the overwhelming generation of reactive oxygen species (ROS) in the living cells leading further to the oxidative damage to biomolecules. Grapes (Vitis vinifera) contain several bioactive phytochemicals and are the richest source of antioxidant. In this study, we investigated and compared in vitro antioxidant activity and DNA damage protective property of the grape extracts of four different cultivars, including the Thompson seedless, Flame seedless, Kishmish chorni and Red globe. The activities of ascorbic acid oxidase and catalase significantly (p<0.01) differed among extracts within the same cultivar, while that of peroxidase and polyphenol oxidase did not differ significantly among extracts of any cultivar. In vitro antioxidant activities were assessed by ferric-reducing antioxidant power (FRAP) assay and ABTS. The superoxide radical-scavenging activity was higher in the seed as compared to the skin or pulp of the same cultivar. DNA damage was evaluated in acellular system using pBR322 plasmid relaxation. Grape extract was able to effectively scavenge free radicals in vitro. It could significantly prevent radiation-induced DNA damage. Furthermore, the protective action of grape depends on the source of extract and type of the cultivars. (author)

  12. Utilization of exogenous ethanol by pea seedlings in an oxygen-free environment

    International Nuclear Information System (INIS)

    Ivanov, B.F.; Zemlyanukhin, A.A.; Salam, A.M.M.

    1991-01-01

    The authors investigated the metabolism of exogenous [2- 14 C]-ethanol in pea seedlings (Pisum sativum L.) exposed to different gaseous media, viz.,air, helium, or CO 2 . The 14 C label from ethanol most actively entered amino acids (glutamic and aspartic acids, alanine, glycine, and serine) and organic acids (citrate, malate, succinate, and malonate). Conversion of ethanol to organic acids and separate amino acids (gamma-aminobutyric acid and valine) was intensified under conditions of oxygen stress. A high concentration of CO 2 stimulated transformations of ethanol into these two amino acids, but sharply inhibited overall entry of the label from exogenous ethanol into metabolites of the seedlings. Lengthening the time of exposure lowered this inhibition. Exogenous ethanol did not take part in stress accumulation of alanine in seedlings deprived of oxygen. It is concluded that ethanol participates actively in the metabolic response of pea plants to oxygen stress, and that CO 2 exerts strong modifying action on this response

  13. Autophagy and senescence, stress responses induced by the DNA-damaging mycotoxin alternariol

    International Nuclear Information System (INIS)

    Solhaug, A.; Torgersen, M.L.; Holme, J.A.; Lagadic-Gossmann, D.; Eriksen, G.S.

    2014-01-01

    Highlights: • AOH induces autophagy, lamellar bodies and senescence in RAW264.7 macrophages. • DNA damage is suggested as a triggering signal. • The Sestrin2-AMPK-mTOR-S6K pathway is proposed to link DNA damage to autophagy. - Abstract: The mycotoxin alternariol (AOH), a frequent contaminant in fruit and grain, is known to induce cellular stress responses such as reactive oxygen production, DNA damage and cell cycle arrest. Cellular stress is often connected to autophagy, and we employed the RAW264.7 macrophage model to test the hypothesis that AOH induces autophagy. Indeed, AOH treatment led to a massive increase in acidic vacuoles often observed upon autophagy induction. Moreover, expression of the autophagy marker LC3 was markedly increased and there was a strong accumulation of LC3-positive puncta. Increased autophagic activity was verified biochemically by measuring the degradation rate of long-lived proteins. Furthermore, AOH induced expression of Sestrin2 and phosphorylation of AMPK as well as reduced phosphorylation of mTOR and S6 kinase, common mediators of signaling pathways involved in autophagy. Transmission electron microscopy analyzes of AOH treated cells not only clearly displayed structures associated with autophagy such as autophagosomes and autolysosomes, but also the appearance of lamellar bodies. Prolonged AOH treatment resulted in changed cell morphology from round into more star-shaped as well as increased β-galactosidase activity. This suggests that the cells eventually entered senescence. In conclusion, our data identify here AOH as an inducer of both autophagy and senescence. These effects are suggested to be to be linked to AOH-induced DSB (via a reported effect on topoisomerase activity), resulting in an activation of p53 and the Sestrin2-AMPK-mTOR-S6K signaling pathway

  14. Adenoviral gene transfer of PLD1-D4 enhances insulin sensitivity in mice by disrupting phospholipase D1 interaction with PED/PEA-15.

    Directory of Open Access Journals (Sweden)

    Angela Cassese

    Full Text Available Over-expression of phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (PED/PEA-15 causes insulin resistance by interacting with the D4 domain of phospholipase D1 (PLD1. Indeed, the disruption of this association restores insulin sensitivity in cultured cells over-expressing PED/PEA-15. Whether the displacement of PLD1 from PED/PEA-15 improves insulin sensitivity in vivo has not been explored yet. In this work we show that treatment with a recombinant adenoviral vector containing the human D4 cDNA (Ad-D4 restores normal glucose homeostasis in transgenic mice overexpressing PED/PEA-15 (Tg ped/pea-15 by improving both insulin sensitivity and secretion. In skeletal muscle of these mice, D4 over-expression inhibited PED/PEA-15-PLD1 interaction, decreased Protein Kinase C alpha activation and restored insulin induced Protein Kinase C zeta activation, leading to amelioration of insulin-dependent glucose uptake. Interestingly, Ad-D4 administration improved insulin sensitivity also in high-fat diet treated obese C57Bl/6 mice. We conclude that PED/PEA-15-PLD1 interaction may represent a novel target for interventions aiming at improving glucose tolerance.

  15. London's historic ''pea-soupers''

    International Nuclear Information System (INIS)

    Urbinato, D.

    1994-01-01

    Americans may think smog was invented in Los Angeles. Not so. In fact, a Londoner coined the term ''smog'' in 1905 to describe the city's insidious combination of natural fog and coal smoke. By then, the phenomenon was part of London history, and dirty, acrid smoke-filled ''pea-soupers'' were as familiar to Londoners as Big Ben and Westminster Abby. Smog in London predates Shakespeare by four centuries. Until the 12th century, most Londoners burned wood for fuel. But as the city grew and the forests shrank, wood became scarce and increasingly expensive. Large deposits of ''sea-coal'' off the northeast coast provided a cheap alternative. Soon, Londoners were burning the soft, bituminous coal to heat their homes and fuel their factories. Sea-coal was plentiful, but it didn't burn efficiently. A lot of its energy was spent making smoke, not heat. Coal smoke drifting through thousands of London chimneys combined with clean natural fog to make smog. If the weather conditions were right, it would last for days. Early on, no one had the scientific tools to correlate smog with adverse health effects, but complaints about the smoky air as an annoyance date back to at least 1272, when King Edward I, on the urging of important noblemen and clerics, banned the burning of sea-coal. Anyone caught burning or selling the stuff was to be tortured or executed. The first offender caught was summarily put to death. This deterred nobody. Of necessity, citizens continued to burn sea-coal in violation of the law, which required the burning of wood few could afford

  16. New insight into multifunctional role of peroxiredoxin family protein: Determination of DNA protection properties of bacterioferritin comigratory protein under hyperthermal and oxidative stresses

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangmin, E-mail: taeinlee2011@kangwon.ac.kr [Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea (Korea, Republic of); Chung, Jeong Min [Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea (Korea, Republic of); Yun, Hyung Joong; Won, Jonghan [Advanced Nano Surface Research Group, Korea Basic Science Institute, 169-148 Gwahak-ro, Daejeon, 305-333 (Korea, Republic of); Jung, Hyun Suk, E-mail: hsjung@kangwon.ac.kr [Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea (Korea, Republic of)

    2016-01-22

    Bacterioferritin comigratory protein (BCP) is a monomeric conformer acting as a putative thiol-dependent bacterial peroxidase, however molecular basis of DNA-protection via DNA-binding has not been clearly understood. In this study, we characterized the DNA binding properties of BCP using various lengths and differently shaped architectures of DNA. An electrophoretic mobility shift assay and electron microscopy analysis showed that recombinant TkBCP bound to DNA of a circular shape (double-stranded DNA and single-stranded DNA) and a linear shape (16–1000 bp) as well as various architectures of DNA. In addition, DNA protection experiments indicated that TkBCP can protect DNA against hyperthermal and oxidative stress by removing highly reactive oxygen species (ROS) or by protecting DNA from thermal degradation. Based on these results, we suggest that TkBCP is a multi-functional DNA-binding protein which has DNA chaperon and antioxidant functions. - Highlights: • Bacterioferritin comigratory protein (BCP) protects DNA from oxidative stress by reducing ROS. • TkBCP does not only scavenge ROS, but also protect DNA from hyperthermal stress. • BCP potentially adopts the multi-functional role in DNA binding activities and anti-oxidant functions.

  17. New insight into multifunctional role of peroxiredoxin family protein: Determination of DNA protection properties of bacterioferritin comigratory protein under hyperthermal and oxidative stresses

    International Nuclear Information System (INIS)

    Lee, Sangmin; Chung, Jeong Min; Yun, Hyung Joong; Won, Jonghan; Jung, Hyun Suk

    2016-01-01

    Bacterioferritin comigratory protein (BCP) is a monomeric conformer acting as a putative thiol-dependent bacterial peroxidase, however molecular basis of DNA-protection via DNA-binding has not been clearly understood. In this study, we characterized the DNA binding properties of BCP using various lengths and differently shaped architectures of DNA. An electrophoretic mobility shift assay and electron microscopy analysis showed that recombinant TkBCP bound to DNA of a circular shape (double-stranded DNA and single-stranded DNA) and a linear shape (16–1000 bp) as well as various architectures of DNA. In addition, DNA protection experiments indicated that TkBCP can protect DNA against hyperthermal and oxidative stress by removing highly reactive oxygen species (ROS) or by protecting DNA from thermal degradation. Based on these results, we suggest that TkBCP is a multi-functional DNA-binding protein which has DNA chaperon and antioxidant functions. - Highlights: • Bacterioferritin comigratory protein (BCP) protects DNA from oxidative stress by reducing ROS. • TkBCP does not only scavenge ROS, but also protect DNA from hyperthermal stress. • BCP potentially adopts the multi-functional role in DNA binding activities and anti-oxidant functions.

  18. Glutathionylation of the Bacterial Hsp70 Chaperone DnaK Provides a Link between Oxidative Stress and the Heat Shock Response.

    Science.gov (United States)

    Zhang, Hong; Yang, Jie; Wu, Si; Gong, Weibin; Chen, Chang; Perrett, Sarah

    2016-03-25

    DnaK is the major bacterial Hsp70, participating in DNA replication, protein folding, and the stress response. DnaK cooperates with the Hsp40 co-chaperone DnaJ and the nucleotide exchange factor GrpE. Under non-stress conditions, DnaK binds to the heat shock transcription factor σ(32)and facilitates its degradation. Oxidative stress results in temporary inactivation of DnaK due to depletion of cellular ATP and thiol modifications such as glutathionylation until normal cellular ATP levels and a reducing environment are restored. However, the biological significance of DnaK glutathionylation remains unknown, and the mechanisms by which glutathionylation may regulate the activity of DnaK are also unclear. We investigated the conditions under which Escherichia coli DnaK undergoesS-glutathionylation. We observed glutathionylation of DnaK in lysates of E. coli cells that had been subjected to oxidative stress. We also obtained homogeneously glutathionylated DnaK using purified DnaK in the apo state. We found that glutathionylation of DnaK reversibly changes the secondary structure and tertiary conformation, leading to reduced nucleotide and peptide binding ability. The chaperone activity of DnaK was reversibly down-regulated by glutathionylation, accompanying the structural changes. We found that interaction of DnaK with DnaJ, GrpE, or σ(32)becomes weaker when DnaK is glutathionylated, and the interaction is restored upon deglutathionylation. This study confirms that glutathionylation down-regulates the functions of DnaK under oxidizing conditions, and this down-regulation may facilitate release of σ(32)from its interaction with DnaK, thus triggering the heat shock response. Such a mechanism provides a link between oxidative stress and the heat shock response in bacteria. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Pea yield and its components in different crop rotations

    OpenAIRE

    Seibutis, Vytautas; Deveikytė, Irena

    2006-01-01

    The effects of the crop rotations (2-4 course) differing in duration on the formation of pea productivity elements and the yield were investigated in stationary field experiments in Dotnuva during 1997-2004. Averaged experimental data showed that the highest pea yield (3.70 t ha-1) was recorded in the three-course crop rotation (sugar beet-spring barley-pea), in the four-course (pea-winter wheat-sugar beet-spring barley) and two-course (pea-winter wheat) crop rotations the grain yield consist...

  20. Association of mitochondrial DNA in peripheral blood with depression, anxiety and stress- and adjustment disorders in primary health care patients.

    Science.gov (United States)

    Wang, Xiao; Sundquist, Kristina; Rastkhani, Hamideh; Palmér, Karolina; Memon, Ashfaque A; Sundquist, Jan

    2017-08-01

    Mitochondrial dysfunction may result in a variety of diseases. The objectives here were to examine possible differences in mtDNA copy number between healthy controls and patients with depression, anxiety or stress- and adjustment disorders; the association between mtDNA copy number and disease severity at baseline; and the association between mtDNA copy number and response after an 8-week treatment (mindfulness, cognitive based therapy). A total of 179 patients in primary health care (age 20-64 years) with depression, anxiety and stress- and adjustment disorders, and 320 healthy controls (aged 19-70 years) were included in the study. Relative mtDNA copy number was measured using quantitative real-time PCR on peripheral blood samples. We found that the mean mtDNA copy number was significantly higher in patients compared to controls (84.9 vs 75.9, pAnxiety and Depression Scale (HADS-D) and PHQ-9 scores (ß=1.00, p=0.03 and ß=0.65, p=0.04, respectively), after controlling for baseline scores, age, sex, BMI, smoking status, alcohol drinking and medication. Our findings show that mtDNA copy number is associated with symptoms of depression, anxiety and stress- and adjustment disorders and treatment response in these disorders. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  1. Molecular cloning of isoflavone reductase from pea (Pisum sativum L.): evidence for a 3R-isoflavanone intermediate in (+)-pisatin biosynthesis.

    Science.gov (United States)

    Paiva, N L; Sun, Y; Dixon, R A; VanEtten, H D; Hrazdina, G

    1994-08-01

    Isoflavone reductase (IFR) reduces achiral isoflavones to chiral isoflavanones during the biosynthesis of chiral pterocarpan phytoalexins. A cDNA clone for IFR from pea (Pisum sativum) was isolated using the polymerase chain reaction and expressed in Escherichia coli. Analysis of circular dichroism (CD) spectra of the reduction product sophorol obtained using the recombinant enzyme indicated that the isoflavanone possessed the 3R stereochemistry, in contrast to previous reports indicating a 3S-isoflavanone as the product of the pea IFR. Analysis of CD spectra of sophorol produced using enzyme extracts of CuCl2-treated pea seedlings confirmed the 3R stereochemistry. Thus, the stereochemistry of the isoflavanone intermediate in (+)-pisatin biosynthesis in pea is the same as that in (-)-medicarpin biosynthesis in alfalfa, although the final pterocarpans have the opposite stereochemistry. At the amino acid level the pea IFR cDNA was 91.8 and 85.2% identical to the IFRs from alfalfa and chickpea, respectively. IFR appears to be encoded by a single gene in pea. Its transcripts are highly induced in CuCl2-treated seedlings, consistent with the appearance of IFR enzyme activity and pisatin accumulation.

  2. Review of the health benefits of peas (Pisum sativum L.).

    Science.gov (United States)

    Dahl, Wendy J; Foster, Lauren M; Tyler, Robert T

    2012-08-01

    Pulses, including peas, have long been important components of the human diet due to their content of starch, protein and other nutrients. More recently, the health benefits other than nutrition associated with pulse consumption have attracted much interest. The focus of the present review paper is the demonstrated and potential health benefits associated with the consumption of peas, Pisum sativum L., specifically green and yellow cotyledon dry peas, also known as smooth peas or field peas. These health benefits derive mainly from the concentration and properties of starch, protein, fibre, vitamins, minerals and phytochemicals in peas. Fibre from the seed coat and the cell walls of the cotyledon contributes to gastrointestinal function and health, and reduces the digestibility of starch in peas. The intermediate amylose content of pea starch also contributes to its lower glycaemic index and reduced starch digestibility. Pea protein, when hydrolysed, may yield peptides with bioactivities, including angiotensin I-converting enzyme inhibitor activity and antioxidant activity. The vitamin and mineral contents of peas may play important roles in the prevention of deficiency-related diseases, specifically those related to deficiencies of Se or folate. Peas contain a variety of phytochemicals once thought of only as antinutritive factors. These include polyphenolics, in coloured seed coat types in particular, which may have antioxidant and anticarcinogenic activity, saponins which may exhibit hypocholesterolaemic and anticarcinogenic activity, and galactose oligosaccharides which may exert beneficial prebiotic effects in the large intestine.

  3. Epigenetic modification of hippocampal Bdnf DNA in adult rats in an animal model of post-traumatic stress disorder.

    Science.gov (United States)

    Roth, Tania L; Zoladz, Phillip R; Sweatt, J David; Diamond, David M

    2011-07-01

    Epigenetic alterations of the brain-derived neurotrophic factor (Bdnf) gene have been linked with memory, stress, and neuropsychiatric disorders. Here we examined whether there was a link between an established rat model of post-traumatic stress disorder (PTSD) and Bdnf DNA methylation. Adult male Sprague-Dawley rats were given psychosocial stress composed of two acute cat exposures in conjunction with 31 days of daily social instability. These manipulations have been shown previously to produce physiological and behavioral sequelae in rats that are comparable to symptoms observed in traumatized people with PTSD. We then assessed Bdnf DNA methylation patterns (at exon IV) and gene expression. We have found here that the psychosocial stress regimen significantly increased Bdnf DNA methylation in the dorsal hippocampus, with the most robust hypermethylation detected in the dorsal CA1 subregion. Conversely, the psychosocial stress regimen significantly decreased methylation in the ventral hippocampus (CA3). No changes in Bdnf DNA methylation were detected in the medial prefrontal cortex or basolateral amygdala. In addition, there were decreased levels of Bdnf mRNA in both the dorsal and ventral CA1. These results provide evidence that traumatic stress occurring in adulthood can induce CNS gene methylation, and specifically, support the hypothesis that epigenetic marking of the Bdnf gene may underlie hippocampal dysfunction in response to traumatic stress. Furthermore, this work provides support for the speculative notion that altered hippocampal Bdnf DNA methylation is a cellular mechanism underlying the persistent cognitive deficits which are prominent features of the pathophysiology of PTSD. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. The Tyrosyl-DNA Phosphodiesterase 1β (Tdp1β Gene Discloses an Early Response to Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Maria Elisa Sabatini

    2017-11-01

    Full Text Available Tyrosyl-DNA phosphodiesterase 1 (Tdp1 is involved in DNA repair pathways as it mends the topoisomerase I—DNA covalent complexes. In plants, a small Tdp1 gene family, composed by Tdp1α and Tdp1β genes, was identified, but the roles of these genes in abiotic stress responses are not fully understood. To investigate their specific stress response patterns, the present study made use of bioinformatic and molecular tools to look into the Tdp1β gene function, so far described only in the plant kingdom, and compare it with Tdp1α gene coding for the canonical, highly conserved α isoform. The expression profiles of Tdp1α and Tdp1β genes were examined under abiotic stress conditions (cold, heat, high osmolarity, salt, and UV-B in two model species, Arabidopsis thaliana and Medicago truncatula. The two isoforms of topoisomerase I (TOP1α and TOP1β were also taken into consideration in view of their known roles in DNA metabolism and cell proliferation. Data relative to gene expression in Arabidopsis were retrieved from the AtGenExpress microarray dataset, while quantitative Real-Time PCR was carried out to evaluate the stress response in M. truncatula cell cultures. These analyses revealed that Tdp1β gene expression was enhanced during the first hour of treatment, whereas Tdp1α enhanced expression succeeded at subsequent timepoints. In agreement with the gene-specific responses to abiotic stress conditions, the promoter regions of Tdp1α and Tdp1β genes are well equipped with stress-related cis-elements. An in-depth bioinformatic characterization of the HIRAN motif, a distinctive feature of the Tdp1β protein, showed its wide distribution in chromatin remodeling and DNA repair proteins. The reported data suggests that Tdp1β functions in the early response to abiotic stresses.

  5. Pea and pea-grain mixtures as whole crop protein silage for dairy cows

    OpenAIRE

    Rondahl, Tomas

    2004-01-01

    In this review the use of pea and pea/grain mixtures as whole crop protein silage for dairy cows is discussed. An introductory discussion concerns the ensilage process and protein degradation and effects of different silage additives. To minimise protein loss, prewilting time should be kept short. An acid additive will reduce respiration and thereby reduce protein degradation. The main part of the review discusses nutritional and botanical changes during development as well as results from bo...

  6. Influences of pea morphology and interacting factors on pea aphid (Homoptera: Aphididae) reproduction.

    Science.gov (United States)

    Buchman, N; Cuddington, K

    2009-08-01

    It has been claimed that plant architecture can alter aphid reproductive rates, but the mechanism driving this effect has not been identified. We studied interactions between plant architecture, aphid density, environmental conditions, and nutrient availability on the reproduction of pea aphids [Acyrthosiphon pisum (Harris)] using four near-isogenic peas (Pisum sativum L.) that differ in morphology. Manipulations of aphid density (1, 5, and 10 adults per plant) allowed us to examine any effects of plant morphology on crowding and consequently reproduction. Pea morphology per se did not alter pea aphid crowding, as measured by mean nearest neighbor distance, and there was no effect on reproduction. In addition, reproduction increased with increasing adult density, indicating positive density dependence. In a separate experiment, peas were fertilized to determine whether differences between nutrient availability of the four different morphologies might drive any observed differences in aphid reproduction. Although plant nitrogen content was altered by fertilization treatments, this did not have an impact on aphid reproduction. Greenhouse experiments, however, suggested that pea morphology can interact with environmental conditions to reduce aphid reproduction under some conditions. We conclude that plant morphology only influences aphid reproduction when environmental conditions are less than optimal.

  7. Studies on antioxidative enzymes induced by cadmium in pea plants (Pisum sativum).

    Science.gov (United States)

    Pandey, Nalini; Singh, Gaurav Kumar

    2012-03-01

    Pea plants (Pisum sativum cv. Swati) exposed to different concentration of cadmium (50,100, 200 microM Cd) under controlled glass house conditions were quantified for different physiological parameters and antioxidative enzymes. In pea plants, Cd produced a significant inhibition of growth and induced chlorosis, marginal yellowing and necrosis in young leaves, the effect being most pronounced at 200 microM Cd supply. An alteration in the activated oxygen metabolism of pea plants were also detected as evidenced by an increase in concentration of H2O2 and TBARS along with decrease in the chlorophyll and carotenoid concentration in leaves. Cadmium toxicity induced an increase in non-protein thiol, ascorbate, proline and cysteine concentration. A significant increment in the activity of SOD, APX and GR, and a decrease in CAT was observed as a result of Cd treatment. The enhanced activity of SOD and inhibition of CAT and POD produces a high build up of H2O2 which appears to be the main cause of oxidative stress due to Cd toxicity in pea plants.

  8. Blood glucose response to pea fiber

    DEFF Research Database (Denmark)

    Hamberg, O; Rumessen, J J; Gudmand-Høyer, E

    1989-01-01

    Two new fiber types, pea fiber (PF) and sugar beet fiber (BF), were compared with wheat bran (WB) to investigate the effect on postprandial blood glucose and serum insulin responses in normal subjects. The control meal consisted of 150 g ground beef mixed with 50 g glucose and 20 g lactulose. Onl...

  9. Pea Streak Virus Recorded in Europe

    Czech Academy of Sciences Publication Activity Database

    Sarkisova, Tatiana; Bečková, M.; Fránová, Jana; Petrzik, Karel

    2016-01-01

    Roč. 52, č. 3 (2016), s. 164-166 ISSN 1212-2580 R&D Projects: GA MZe QH71145 Institutional support: RVO:60077344 Keywords : Pea streak virus * alfalfa * carlavirus * partial sequence Subject RIV: EE - Microbiology, Virology Impact factor: 0.742, year: 2016

  10. Pea disease diagnostic series - Powdery Mildew

    Science.gov (United States)

    Powdery mildew is a serious disease of pea worldwide, and it could be caused by two fungal species Erysiphe pisi and E. trifolii. White powdery patches on leaves, stems and pods are characteristics of the disease. The pathogen may form black fruiting bodies called chasmothecia near the end of the gr...

  11. CEI-PEA Alert, Summer 2006

    Science.gov (United States)

    Center for Educational Innovation - Public Education Association, 2006

    2006-01-01

    The "CEI-PEA Alert" is an advocacy newsletter that deals with topics of interest to all concerned with the New York City public schools. This issue includes: (1) Practical Skills & High Academic Standards: Career Technical Education; (2) Parents: Help Your Children Gain "Soft Skills" for the Workforce; (3) Culinary Arts…

  12. 21 CFR 158.170 - Frozen peas.

    Science.gov (United States)

    2010-04-01

    ... CONSUMPTION FROZEN VEGETABLES Requirements for Specific Standardized Frozen Vegetables § 158.170 Frozen peas... two or more, of the following safe and suitable optional ingredients: (i) Natural and artificial... “early June” shall precede or follow the name in the case of smooth-skin or substantially smooth-skin...

  13. Structural modelling and molecular dynamics of a multi-stress responsive WRKY TF-DNA complex towards elucidating its role in stress signalling mechanisms in chickpea.

    Science.gov (United States)

    Konda, Aravind Kumar; Farmer, Rohit; Soren, Khela Ram; P S, Shanmugavadivel; Setti, Aravind

    2017-07-28

    Chickpea is a premier food legume crop with high nutritional quality and attains prime importance in the current era of 795 million people being undernourished worldwide. Chickpea production encounters setbacks due to various stresses and understanding the role of key transcription factors (TFs) involved in multiple stresses becomes inevitable. We have recently identified a multi-stress responsive WRKY TF in chickpea. The present study was conducted to predict the structure of WRKY TF to identify the DNA-interacting residues and decipher DNA-protein interactions. Comparative modelling approach produced 3D model of the WRKY TF with good stereochemistry, local/global quality and further revealed W19, R20, K21, and Y22 motifs within a vicinity of 5 Å to the DNA amongst R18, G23, Q24, K25, Y36, Y37, R38 and K47 and these positions were equivalent to the 2LEX WRKY domain of Arabidopsis. Molecular simulations analysis of reference protein -PDB ID 2LEX, along with Car-WRKY TF modelled structure with the DNA coordinates derived from PDB ID 2LEX and docked using HADDOCK were executed. Root Mean Square (RMS) Deviation and RMS Fluctuation values yielded consistently stable trajectories over 50 ns simulation. Strengthening the obtained results, neither radius of gyration, distance and total energy showed any signs of DNA-WRKY complex falling apart nor any significant dissociation event over 50 ns run. Therefore, the study provides first insights into the structural properties of multi-stress responsive WRKY TF-DNA complex in chickpea, enabling genome wide identification of TF binding sites and thereby deciphers their gene regulatory networks.

  14. RPA-Binding Protein ETAA1 Is an ATR Activator Involved in DNA Replication Stress Response.

    Science.gov (United States)

    Lee, Yuan-Cho; Zhou, Qing; Chen, Junjie; Yuan, Jingsong

    2016-12-19

    ETAA1 (Ewing tumor-associated antigen 1), also known as ETAA16, was identified as a tumor-specific antigen in the Ewing family of tumors. However, the biological function of this protein remains unknown. Here, we report the identification of ETAA1 as a DNA replication stress response protein. ETAA1 specifically interacts with RPA (Replication protein A) via two conserved RPA-binding domains and is therefore recruited to stalled replication forks. Interestingly, further analysis of ETAA1 function revealed that ETAA1 participates in the activation of ATR signaling pathway via a conserved ATR-activating domain (AAD) located near its N terminus. Importantly, we demonstrate that both RPA binding and ATR activation are required for ETAA1 function at stalled replication forks to maintain genome stability. Therefore, our data suggest that ETAA1 is a new ATR activator involved in replication checkpoint control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. DNA and Flavonoids Leach out from Active Nuclei of Taxus and Tsuga after Extreme Climate Stresses

    Directory of Open Access Journals (Sweden)

    Walter Feucht

    2015-09-01

    Full Text Available Severe over-stresses of climate caused dramatic changes in the intracellular distribution of the flavonoids. This was studied in needles from the current year’s growth of the following species and varieties: Tsuga canadensis, Taxus baccata, T. aurea, T. repens, T. nana, and T. compacta. The mode of steady changes in flavonoids was evaluated by microscopic techniques. Most of the flavonoids stain visibly yellow by themselves. The colorless flavanol subgroup can be stained blue by the DMACA reagent. In mid-summer 2013, outstanding high temperatures and intense photo-oxidative irradiation caused in a free-standing tree of Taxus baccata dramatic heat damage in a limited number of cells of the palisade layers. In these cells, the cytoplasm was burned brown. However, the nucleus maintained its healthy “blue” colored appearance which apparently was a result of antioxidant barrier effects by these flavanols. In late May 2014, excessive rainfall greatly affected all study trees. Collectively, in all study trees, a limited number of the mesophyll nuclei from the needless grown in 2013 and 2014 became overly turgid, enlarged in size and the flavanols leached outward through the damaged nuclear membranes. This diffusive stress event was followed one to three days later by a similar efflux of DNA. Such a complete dissolution of the nuclei in young tissues was the most spectacular phenomenon of the present study. As a common feature, leaching of both flavanols and DNA was markedly enhanced with increasing size and age of the cells. There is evidence that signalling flavonoids are sensitized to provide in nuclei and cytoplasm multiple mutual protective mechanisms. However, this well-orchestrated flavonoid system is broken down by extreme climate events.

  16. Analysis of DNA Methylation in Young People: Limited Evidence for an Association Between Victimization Stress and Epigenetic Variation in Blood.

    Science.gov (United States)

    Marzi, Sarah J; Sugden, Karen; Arseneault, Louise; Belsky, Daniel W; Burrage, Joe; Corcoran, David L; Danese, Andrea; Fisher, Helen L; Hannon, Eilis; Moffitt, Terrie E; Odgers, Candice L; Pariante, Carmine; Poulton, Richie; Williams, Benjamin S; Wong, Chloe C Y; Mill, Jonathan; Caspi, Avshalom

    2018-01-12

    DNA methylation has been proposed as an epigenetic mechanism by which early-life experiences become "embedded" in the genome and alter transcriptional processes to compromise health. The authors sought to investigate whether early-life victimization stress is associated with genome-wide DNA methylation. The authors tested the hypothesis that victimization is associated with DNA methylation in the Environmental Risk (E-Risk) Longitudinal Study, a nationally representative 1994-1995 birth cohort of 2,232 twins born in England and Wales and assessed at ages 5, 7, 10, 12, and 18 years. Multiple forms of victimization were ascertained in childhood and adolescence (including physical, sexual, and emotional abuse; neglect; exposure to intimate-partner violence; bullying; cyber-victimization; and crime). Epigenome-wide analyses of polyvictimization across childhood and adolescence revealed few significant associations with DNA methylation in peripheral blood at age 18, but these analyses were confounded by tobacco smoking and/or did not survive co-twin control tests. Secondary analyses of specific forms of victimization revealed sparse associations with DNA methylation that did not replicate across different operationalizations of the same putative victimization experience. Hypothesis-driven analyses of six candidate genes in the stress response (NR3C1, FKBP5, BDNF, AVP, CRHR1, SLC6A4) did not reveal predicted associations with DNA methylation in probes annotated to these genes. Findings from this epidemiological analysis of the epigenetic effects of early-life stress do not support the hypothesis of robust changes in DNA methylation in victimized young people. We need to come to terms with the possibility that epigenetic epidemiology is not yet well matched to experimental, nonhuman models in uncovering the biological embedding of stress.

  17. Oxidative Stress Measures of Lipid and DNA Damage in Human Tears.

    Science.gov (United States)

    Haworth, Kristina M; Chandler, Heather L

    2017-05-01

    We evaluate feasibility and repeatability of measures for lipid peroxidation and DNA oxidation in human tears, as well as relationships between outcome variables, and compared our findings to previously reported methods of evaluation for ocular sun exposure. A total of 50 volunteers were seen for 2 visits 14 ± 2 days apart. Tear samples were collected from the inferior tear meniscus using a glass microcapillary tube. Oxidative stress biomarkers were quantified using enzyme-linked immunosorbent assay (ELISA): lipid peroxidation by measurement of hexanoyl-lysine (HEL) expression; DNA oxidation by measurement of 8-oxo-2'-deoxyguinosone (8OHdG) expression. Descriptive statistics were generated. Repeatability estimates were made using Bland-Altman plots with mean differences and 95% limits of agreement were calculated. Linear regression was conducted to evaluate relationships between measures. Mean (±SD) values for tear HEL and 8OHdG expression were 17368.02 (±9878.42) nmol/L and 66.13 (±19.99) ng/mL, respectively. Repeatability was found to be acceptable for both HEL and 8OHdG expression. Univariate linear regression supported tear 8OHdG expression and spring season of collection to be predictors of higher tear HEL expression; tear HEL expression was confirmed as a predictor of higher tear 8OHdG expression. We demonstrate feasibility and repeatability of estimating previously unreported tear 8OHdG expression. Seasonal temperature variation and other factors may influence tear lipid peroxidation. Support is demonstrated to suggest lipid damage and DNA damage occur concurrently on the human ocular surface.

  18. Role of DNA Repair Factor Xeroderma Pigmentosum Protein Group C in Response to Replication Stress As Revealed by DNA Fragile Site Affinity Chromatography and Quantitative Proteomics.

    Science.gov (United States)

    Beresova, Lucie; Vesela, Eva; Chamrad, Ivo; Voller, Jiri; Yamada, Masayuki; Furst, Tomas; Lenobel, Rene; Chroma, Katarina; Gursky, Jan; Krizova, Katerina; Mistrik, Martin; Bartek, Jiri

    2016-12-02

    Replication stress (RS) fuels genomic instability and cancer development and may contribute to aging, raising the need to identify factors involved in cellular responses to such stress. Here, we present a strategy for identification of factors affecting the maintenance of common fragile sites (CFSs), which are genomic loci that are particularly sensitive to RS and suffer from increased breakage and rearrangements in tumors. A DNA probe designed to match the high flexibility island sequence typical for the commonly expressed CFS (FRA16D) was used as specific DNA affinity bait. Proteins significantly enriched at the FRA16D fragment under normal and replication stress conditions were identified using stable isotope labeling of amino acids in cell culture-based quantitative mass spectrometry. The identified proteins interacting with the FRA16D fragment included some known CFS stabilizers, thereby validating this screening approach. Among the hits from our screen so far not implicated in CFS maintenance, we chose Xeroderma pigmentosum protein group C (XPC) for further characterization. XPC is a key factor in the DNA repair pathway known as global genomic nucleotide excision repair (GG-NER), a mechanism whose several components were enriched at the FRA16D fragment in our screen. Functional experiments revealed defective checkpoint signaling and escape of DNA replication intermediates into mitosis and the next generation of XPC-depleted cells exposed to RS. Overall, our results provide insights into an unexpected biological role of XPC in response to replication stress and document the power of proteomics-based screening strategies to elucidate mechanisms of pathophysiological significance.

  19. Intrauterine Exposure to Maternal Stress Alters Bdnf IV DNA Methylation and Telomere Length in the Brain of Adult Rat Offspring

    Science.gov (United States)

    Blaze, Jennifer; Asok, Arun; Borrelli, Kristyn; Tulbert, Christine; Bollinger, Justin; Ronca Finco, April E.; Roth, Tania L.

    2017-01-01

    DNA methylation (addition of methyl groups to cytosines which normally represses gene transcription) and changes in telomere length (TTAGGG repeats on the ends of chromosomes) are two molecular modifications that result from stress and could contribute to the long-term effects of intrauterine exposure to maternal stress on offspring behavioral outcomes. Here, we measured methylation of Brain-derived neurotrophic factor (Bdnf), a gene important in development and plasticity, and telomere length in the brains of adult rat male and female offspring whose mothers were exposed to unpredictable and variable stressors throughout gestation. Males exposed to prenatal stress had greater methylation (Bdnf IV) in the medial prefrontal cortex (mPFC) compared to non-stressed controls. Further, prenatally-stressed males had shorter telomeres than controls in the mPFC. This study provides the first evidence in a rodent model of an association between prenatal stress exposure and subsequent shorter brain telomere length. Together findings indicate a long-term impact of prenatal stress on DNA methylation and telomere biology with relevance for behavioral and health outcomes, and contribute to a growing literature linking stress to intergenerational epigenetic alterations and changes in telomere length.

  20. Three job stress models/concepts and oxidative DNA damage in a sample of workers in Japan.

    Science.gov (United States)

    Inoue, Akiomi; Kawakami, Norito; Ishizaki, Masao; Tabata, Masaji; Tsuchiya, Masao; Akiyama, Miki; Kitazume, Akiko; Kuroda, Mitsuyo; Shimazu, Akihito

    2009-04-01

    Three job stress models/concepts (the job demands-control [DC] model, the effort-reward imbalance [ERI] model, and organizational justice) have been linked to coronary heart disease (CHD) at work. In recent years, oxidative DNA damage has been identified as a new risk factor for CHD. However, evidence for the association between these job stressors and oxidative DNA damage is limited. The present cross-sectional study investigated the association between these job stress models/concepts and oxidative DNA damage as a possible mediator of the adverse health effects of job stress. A total of 166 male and 51 female workers of a manufacturing factory in Japan were surveyed using a mailed questionnaire regarding job stressors and demographic, occupational, and lifestyle variables. Urinary concentrations of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of oxidative DNA damage, were also measured. In male subjects, the urinary concentrations of 8-OHdG were significantly higher among the group with lower interactional justice, one of the two components of organizational justice; however, no association was observed with the DC model or the ERI model. In female subjects, high job demands/control ratio was significantly and positively associated with the urinary concentrations of 8-OHdG. Interactional justice among male workers and the DC model-based strain among female workers may be associated with increased urinary concentrations of 8-OHdG which possibly reflects oxidative DNA damage.

  1. DNA protective effects of melatonin on oxidative stress in streptozotocin - induced diabetic rats.

    Directory of Open Access Journals (Sweden)

    Selim Sekkin

    2015-05-01

    the antioxidant system, MEL regulates the expression of several genes such as those of superoxide dismutase (SOD and glutathione peroxidase (2-4. The aim of this study was to research the effects of MEL on oxidative stress and DNA protective effects in streptozotocin-induced diabetic rats. A total of 32 rats were equally divided into 4 experimental groups as Control, Melatonin, Diabetic, and Diabetic + Melatonin. A pancreatic beta-cell cytotoxic agent, single dose streptozotocin (60 mg/kg was given by intraperitoneal route to induce experimental diabetes in rats. Rats with ≥200mg/dL blood glucose level were established as Diabetic and Diabetic + Melatonin groups. MEL (10 mg/kg per day and sodium citrate solution were administrated to rats by intraperitoneal route for 6 weeks. With the termination of the experiment, tissue and blood samples were obtained for further analysis. SOD, catalase (CAT, reduced glutathione (GSH and malondialdehyde (MDA were evaluated in rat liver, renal, brain and pancreas tissues. Body weight, plasma glucose, and %HbA1c levels were studied. DNA damage was analyzed with the comet assay in rat lymphocytes; %Tail DNA and Mean Tail Moment parameters were evaluated (5. Antioxidant and oxidant enzyme levels were similar in the Control and Melatonin groups, although there were significant differences between the Diabetic and Diabetic + Melatonin groups. SOD levels in brain and liver tissues were higher (P<0,001, and CAT activities in renal tissue (P<0,001, GSH levels in pancreas tissue (P<0,01 as well as MDA levels in liver (P<0,001, renal (P<0,001 and brain (P<0,01 tissues were higher in the Diabetic + Melatonin group compared with the Diabetic group. Body weight changes and blood glucose levels of the rats were evaluated during the 6 weeks. The effect of MEL on the body weights of Control and Melatonin as well as Diabetic and Diabetic + Melatonin group rats were similar. MEL had no effect on body weight and the diabetic rats were lighter (P<0

  2. Genetic polymorphisms in DNA repair and oxidative stress pathways may modify the association between body size and postmenopausal breast cancer

    Czech Academy of Sciences Publication Activity Database

    McCullough, L. E.; Eng, S. M.; Bradshaw, P. T.; Cleveland, R. J.; Steck, S. E.; Terry, M. B.; Shen, J.; Crew, K.D.; Rössner ml., Pavel; Ahn, J.; Ambrosone, Ch.B.; Teitelbaum, S. L.; Neugut, A. I.; Santella, R. M.; Gammon, M. D.

    2015-01-01

    Roč. 25, č. 4 (2015), s. 263-269 ISSN 1047-2797 Institutional support: RVO:68378041 Keywords : breast cancer * body mass index * oxidative stress * DNA repair * Epidemiology Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.335, year: 2015

  3. Tissue-specific and cation/anion-specific DNA methylation variations occurred in C. virgata in response to salinity stress.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available Salinity is a widespread environmental problem limiting productivity and growth of plants. Halophytes which can adapt and resist certain salt stress have various mechanisms to defend the higher salinity and alkalinity, and epigenetic mechanisms especially DNA methylation may play important roles in plant adaptability and plasticity. In this study, we aimed to investigate the different influences of various single salts (NaCl, Na2SO4, NaHCO3, Na2CO3 and their mixed salts on halophyte Chloris. virgata from the DNA methylation prospective, and discover the underlying relationships between specific DNA methylation variations and specific cations/anions through the methylation-sensitive amplification polymorphism analysis. The results showed that the effects on DNA methylation variations of single salts were ranked as follows: Na2CO3> NaHCO3> Na2SO4> NaCl, and their mixed salts exerted tissue-specific effects on C. virgata seedlings. Eight types of DNA methylation variations were detected and defined in C. virgata according to the specific cations/anions existed in stressful solutions; in addition, mix-specific and higher pH-specific bands were the main type in leaves and roots independently. These findings suggested that mixed salts were not the simple combination of single salts. Furthermore, not only single salts but also mixed salts showed tissue-specific and cations/anions-specific DNA methylation variations.

  4. Tissue-specific and cation/anion-specific DNA methylation variations occurred in C. virgata in response to salinity stress.

    Science.gov (United States)

    Gao, Xiang; Cao, Donghui; Liu, Jie; Wang, Xiaoping; Geng, Shujuan; Liu, Bao; Shi, Decheng

    2013-01-01

    Salinity is a widespread environmental problem limiting productivity and growth of plants. Halophytes which can adapt and resist certain salt stress have various mechanisms to defend the higher salinity and alkalinity, and epigenetic mechanisms especially DNA methylation may play important roles in plant adaptability and plasticity. In this study, we aimed to investigate the different influences of various single salts (NaCl, Na2SO4, NaHCO3, Na2CO3) and their mixed salts on halophyte Chloris. virgata from the DNA methylation prospective, and discover the underlying relationships between specific DNA methylation variations and specific cations/anions through the methylation-sensitive amplification polymorphism analysis. The results showed that the effects on DNA methylation variations of single salts were ranked as follows: Na2CO3> NaHCO3> Na2SO4> NaCl, and their mixed salts exerted tissue-specific effects on C. virgata seedlings. Eight types of DNA methylation variations were detected and defined in C. virgata according to the specific cations/anions existed in stressful solutions; in addition, mix-specific and higher pH-specific bands were the main type in leaves and roots independently. These findings suggested that mixed salts were not the simple combination of single salts. Furthermore, not only single salts but also mixed salts showed tissue-specific and cations/anions-specific DNA methylation variations.

  5. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas

    DEFF Research Database (Denmark)

    Bartkova, J; Hamerlik, P; Stockhausen, Marie

    2010-01-01

    damage signalling in low- and high-grade human gliomas, and analyze the sources of such endogenous genotoxic stress. Based on analyses of human glioblastoma multiforme (GBM) cell lines, normal astrocytes and clinical specimens from grade II astrocytomas (n=41) and grade IV GBM (n=60), we conclude...... that the DDR machinery is constitutively activated in gliomas, as documented by phosphorylated histone H2AX (gammaH2AX), activation of the ATM-Chk2-p53 pathway, 53BP1 foci and other markers. Oxidative DNA damage (8-oxoguanine) was high in some GBM cell lines and many GBM tumors, while it was low in normal...... brain and grade II astrocytomas, despite the degree of DDR activation was higher in grade II tumors. Markers indicative of ongoing DNA replication stress (Chk1 activation, Rad17 phosphorylation, replication protein A foci and single-stranded DNA) were present in GBM cells under high- or low...

  6. Mitochondrial nucleoid clusters protect newly synthesized mtDNA during Doxorubicin- and Ethidium Bromide-induced mitochondrial stress

    Energy Technology Data Exchange (ETDEWEB)

    Alán, Lukáš, E-mail: lukas.alan@fgu.cas.cz; Špaček, Tomáš; Pajuelo Reguera, David; Jabůrek, Martin; Ježek, Petr

    2016-07-01

    Mitochondrial DNA (mtDNA) is compacted in ribonucleoprotein complexes called nucleoids, which can divide or move within the mitochondrial network. Mitochondrial nucleoids are able to aggregate into clusters upon reaction with intercalators such as the mtDNA depletion agent Ethidium Bromide (EB) or anticancer drug Doxorobicin (DXR). However, the exact mechanism of nucleoid clusters formation remains unknown. Resolving these processes may help to elucidate the mechanisms of DXR-induced cardiotoxicity. Therefore, we addressed the role of two key nucleoid proteins; mitochondrial transcription factor A (TFAM) and mitochondrial single-stranded binding protein (mtSSB); in the formation of mitochondrial nucleoid clusters during the action of intercalators. We found that both intercalators cause numerous aberrations due to perturbing their native status. By blocking mtDNA replication, both agents also prevented mtDNA association with TFAM, consequently causing nucleoid aggregation into large nucleoid clusters enriched with TFAM, co-existing with the normal nucleoid population. In the later stages of intercalation (> 48 h), TFAM levels were reduced to 25%. In contrast, mtSSB was released from mtDNA and freely distributed within the mitochondrial network. Nucleoid clusters mostly contained nucleoids with newly replicated mtDNA, however the nucleoid population which was not in replication mode remained outside the clusters. Moreover, the nucleoid clusters were enriched with p53, an anti-oncogenic gatekeeper. We suggest that mitochondrial nucleoid clustering is a mechanism for protecting nucleoids with newly replicated DNA against intercalators mediating genotoxic stress. These results provide new insight into the common mitochondrial response to mtDNA stress and can be implied also on DXR-induced mitochondrial cytotoxicity. - Highlights: • The mechanism for mitochondrial nucleoid clustering is proposed. • DNA intercalators (Doxorubicin or Ethidium Bromide) prevent TFAM

  7. Monitoring expression profiles of rice (Oryza sativa L.) genes under abiotic stresses using cDNA Microarray Analysis (abstract)

    International Nuclear Information System (INIS)

    Rabbani, M.A.

    2005-01-01

    Transcript regulation in response to cold, drought, high salinity and ABA application was investigated in rice (Oryza sativa L., Nipponbare) with microarray analysis including approx. 1700 independent DNA elements derived from three cDNA libraries constructed from 15-day old rice seedlings stressed with drought, cold and high salinity. A total of 141 non-redundant genes were identified, whose expression ratios were more than three-fold compared with the control genes for at least one of stress treatments in microarray analysis. However, after RNA gel blot analysis, a total of 73 genes were identified, among them the transcripts of 36, 62, 57 and 43 genes were found increased after cold, drought, high salinity and ABA application, respectively. Sixteen of these identified genes have been reported previously to be stress inducible in rice, while 57 of which are novel that have not been reported earlier as stress responsive in rice. We observed a strong association in the expression patterns of stress responsive genes and found 15 stress inducible genes that responded to all four treatments. Based on Venn diagram analysis, 56 genes were induced by both drought and high salinity, whereas 22 genes were upregulated by both cold and high salinity stress. Similarly 43 genes were induced by both drought stress and ABA application, while only 17 genes were identified as cold and ABA inducible genes. These results indicated the existence of greater cross talk between drought, ABA and high salinity stress signaling processes than those between cold and ABA, and cold and high salinity stress signaling pathways. The cold, drought, high salinity and ABA inducible genes were classified into four gene groups from their expression profiles. Analysis of data enabled us to identify a number of promoters and possible cis-acting DNA elements of several genes induced by a variety of abiotic stresses by combining expression data with genomic sequence data of rice. Comparative analysis of

  8. Placental oxidative stress and decreased global DNA methylation are corrected by copper in the Cohen diabetic rat

    Energy Technology Data Exchange (ETDEWEB)

    Ergaz, Zivanit, E-mail: zivanit@hadassah.org.il [Hebrew University Hadassah Medical School, Jerusalem (Israel); Guillemin, Claire [Department of Pharmacology and Therapeutics, McGill University, Montreal (Canada); Neeman-azulay, Meytal; Weinstein-Fudim, Liza [Hebrew University Hadassah Medical School, Jerusalem (Israel); Stodgell, Christopher J.; Miller, Richard K. [Department of Obstetrics and Gynecology, University of Rochester, Rochester (United States); Szyf, Moshe [Department of Pharmacology and Therapeutics, McGill University, Montreal (Canada); Ornoy, Asher [Hebrew University Hadassah Medical School, Jerusalem (Israel)

    2014-05-01

    Fetal Growth Restriction (FGR) is a leading cause for long term morbidity. The Cohen diabetic sensitive rats (CDs), originating from Wistar, develop overt diabetes when fed high sucrose low copper diet (HSD) while the original outbred Sabra strain do not. HSD induced FGR and fetal oxidative stress, more prominent in the CDs, that was alleviated more effectively by copper than by the anti-oxidant vitamins C and E. Our aim was to evaluate the impact of copper or the anti-oxidant Tempol on placental size, protein content, oxidative stress, apoptosis and total DNA methylation. Animals were mated following one month of HSD or regular chow diet and supplemented throughout pregnancy with either 0, 1 or 2 ppm of copper sulfate or Tempol in their drinking water. Placental weight on the 21st day of pregnancy decreased in dams fed HSD and improved upon copper supplementation. Placental/fetal weight ratio increased among the CDs. Protein content decreased in Sabra but increased in CDs fed HSD. Oxidative stress biochemical markers improved upon copper supplementation; immunohistochemistry for oxidative stress markers was similar between strains and diets. Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. Placental global DNA methylation was decreased only among the CDs dams fed HSD. We conclude that FGR in this model is associated with smaller placentae, reduced DNA placental methylation, and increased oxidative stress that normalized with copper supplementation. DNA hypomethylation makes our model a unique method for investigating genes associated with growth, oxidative stress, hypoxia and copper. - Highlights: • Sensitive Cohen diabetic rats (CDs) had small placentae and growth restricted fetuses. • CDs dams fed high sucrose low copper diet had placental global DNA hypomethylation. • Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. • Oxidative stress parameters improved by Tempol and resolved by copper

  9. Placental oxidative stress and decreased global DNA methylation are corrected by copper in the Cohen diabetic rat

    International Nuclear Information System (INIS)

    Ergaz, Zivanit; Guillemin, Claire; Neeman-azulay, Meytal; Weinstein-Fudim, Liza; Stodgell, Christopher J.; Miller, Richard K.; Szyf, Moshe; Ornoy, Asher

    2014-01-01

    Fetal Growth Restriction (FGR) is a leading cause for long term morbidity. The Cohen diabetic sensitive rats (CDs), originating from Wistar, develop overt diabetes when fed high sucrose low copper diet (HSD) while the original outbred Sabra strain do not. HSD induced FGR and fetal oxidative stress, more prominent in the CDs, that was alleviated more effectively by copper than by the anti-oxidant vitamins C and E. Our aim was to evaluate the impact of copper or the anti-oxidant Tempol on placental size, protein content, oxidative stress, apoptosis and total DNA methylation. Animals were mated following one month of HSD or regular chow diet and supplemented throughout pregnancy with either 0, 1 or 2 ppm of copper sulfate or Tempol in their drinking water. Placental weight on the 21st day of pregnancy decreased in dams fed HSD and improved upon copper supplementation. Placental/fetal weight ratio increased among the CDs. Protein content decreased in Sabra but increased in CDs fed HSD. Oxidative stress biochemical markers improved upon copper supplementation; immunohistochemistry for oxidative stress markers was similar between strains and diets. Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. Placental global DNA methylation was decreased only among the CDs dams fed HSD. We conclude that FGR in this model is associated with smaller placentae, reduced DNA placental methylation, and increased oxidative stress that normalized with copper supplementation. DNA hypomethylation makes our model a unique method for investigating genes associated with growth, oxidative stress, hypoxia and copper. - Highlights: • Sensitive Cohen diabetic rats (CDs) had small placentae and growth restricted fetuses. • CDs dams fed high sucrose low copper diet had placental global DNA hypomethylation. • Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. • Oxidative stress parameters improved by Tempol and resolved by copper

  10. Growth regulators, DNA content and anatomy in vitro -cultivated ...

    African Journals Online (AJOL)

    Growth regulators, DNA content and anatomy in vitro -cultivated Curcuma longa ... Shoots were inoculated in MS culture medium with the addition of 30 g/L of sucrose ... flow cytometry, utilizing two reference standards, green pea, and tomato.

  11. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    Energy Technology Data Exchange (ETDEWEB)

    Kiran, Shashi; Oddi, Vineesha [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Ramakrishna, Gayatri, E-mail: gayatrirama1@gmail.com [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Laboratory of Cancer Cell Biology, Department of Research, Institute of Liver and Biliary Sciences, Delhi 110070 (India)

    2015-02-01

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  12. HARDNESS PHENOMENON IN BEACH PEA (Lethyrus maritimus L.)

    OpenAIRE

    U.D. Chavan; R. Amarowicz; F. Shahidi

    2013-01-01

    Beach pea is mostly grown on seashores and it contains higher amount of protein than other legumes. However, the pea has several undesirable  attributes, such as long cooking time and hard to germinate (imbibitions) that limited its use as food. The present investigation aimed to study the physico-chemical properties, cooking characteristics and hull crude fibre structure of beach pea as compare to other similar legumes. Standard methods of processing pulses were used for present study. Beach...

  13. Protein import into isolated pea root leucoplasts

    OpenAIRE

    Chu, Chiung-Chih; Li, Hsou-min

    2015-01-01

    Leucoplasts are important organelles for the synthesis and storage of starch, lipids and proteins. However, molecular mechanism of protein import into leucoplasts and how it differs from that of import into chloroplasts remain unknown. We used pea seedlings for both chloroplast and leucoplast isolations to compare within the same species. We further optimized the isolation and import conditions to improve import efficiency and to permit a quantitative comparison between the two plastid types....

  14. A method for diagnosis of plant environmental stresses by gene expression profiling using a cDNA macroarray

    International Nuclear Information System (INIS)

    Tamaoki, Masanori; Matsuyama, Takashi; Nakajima, Nobuyoshi; Aono, Mitsuko; Kubo, Akihiro; Saji, Hikaru

    2004-01-01

    Plants in the field are subjected to numerous environmental stresses. Lengthy continuation of such environmental stresses or a rapid increase in their intensity is harmful to vegetation. Assessments of the phytotoxicity of various stresses have been performed in many countries, although they have largely been based on estimates of leaf injury. We developed a novel method of detecting plant stresses that is more sensitive and specific than those previously available. This method is based on the detection of mRNA expression changes in 205 ozone-responsive Arabidopsis expressed sequence tags (ESTs) by cDNA macroarray analysis. By using this method, we illustrated shifts in gene expression in response to stressors such as drought, salinity, UV-B, low temperature, high temperature, and acid rain, as distinct from those in response to ozone. We also made a mini-scale macroarray with 12 ESTs for diagnosis of the above environmental stresses in plants. These results illustrate the potential of our cDNA macroarray for diagnosis of various stresses in plants

  15. Modulation of proteostasis counteracts oxidative stress and affects DNA base excision repair capacity in ATM-deficient cells.

    Science.gov (United States)

    Poletto, Mattia; Yang, Di; Fletcher, Sally C; Vendrell, Iolanda; Fischer, Roman; Legrand, Arnaud J; Dianov, Grigory L

    2017-09-29

    Ataxia telangiectasia (A-T) is a syndrome associated with loss of ATM protein function. Neurodegeneration and cancer predisposition, both hallmarks of A-T, are likely to emerge as a consequence of the persistent oxidative stress and DNA damage observed in this disease. Surprisingly however, despite these severe features, a lack of functional ATM is still compatible with early life, suggesting that adaptation mechanisms contributing to cell survival must be in place. Here we address this gap in our knowledge by analysing the process of human fibroblast adaptation to the lack of ATM. We identify profound rearrangement in cellular proteostasis occurring very early on after loss of ATM in order to counter protein damage originating from oxidative stress. Change in proteostasis, however, is not without repercussions. Modulating protein turnover in ATM-depleted cells also has an adverse effect on the DNA base excision repair pathway, the major DNA repair system that deals with oxidative DNA damage. As a consequence, the burden of unrepaired endogenous DNA lesions intensifies, progressively leading to genomic instability. Our study provides a glimpse at the cellular consequences of loss of ATM and highlights a previously overlooked role for proteostasis in maintaining cell survival in the absence of ATM function. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Use of MSAP markers to analyse the effects of salt stress on DNA methylation in rapeseed (Brassica napus var. oleifera.

    Directory of Open Access Journals (Sweden)

    Gianpiero Marconi

    Full Text Available Excessive soil salinity is a major ecological and agronomical problem, the adverse effects of which are becoming a serious issue in regions where saline water is used for irrigation. Plants can employ regulatory strategies, such as DNA methylation, to enable relatively rapid adaptation to new conditions. In this regard, cytosine methylation might play an integral role in the regulation of gene expression at both the transcriptional and post-transcriptional levels. Rapeseed, which is the most important oilseed crop in Europe, is classified as being tolerant of salinity, although cultivars can vary substantially in their levels of tolerance. In this study, the Methylation Sensitive Amplified Polymorphism (MSAP approach was used to assess the extent of cytosine methylation under salinity stress in salinity-tolerant (Exagone and salinity-sensitive (Toccata rapeseed cultivars. Our data show that salinity affected the level of DNA methylation. In particular methylation decreased in Exagone and increased in Toccata. Nineteen DNA fragments showing polymorphisms related to differences in methylation were sequenced. In particular, two of these were highly similar to genes involved in stress responses (Lacerata and trehalose-6-phosphatase synthase S4 and were chosen to further characterization. Bisulfite sequencing and quantitative RT-PCR analysis of selected MSAP loci showed that cytosine methylation changes under salinity as well as gene expression varied. In particular, our data show that salinity stress influences the expression of the two stress-related genes. Moreover, we quantified the level of trehalose in Exagone shoots and found that it was correlated to TPS4 expression and, therefore, to DNA methylation. In conclusion, we found that salinity could induce genome-wide changes in DNA methylation status, and that these changes, when averaged across different genotypes and developmental stages, accounted for 16.8% of the total site

  17. Accumulation of defence-related transcripts and cloning of a chitinase mRNA from pea leaves (Pisum sativum L.) inoculated with Ascochyta pisi Lib

    DEFF Research Database (Denmark)

    Vad, Knud; de Neergaard, Eigil; Madriz-Ordeñana, Kenneth

    1993-01-01

    The race specific resistance of pea to Ascochyta pisi Lib. was shown to be exhibited as a hypersensitive response associated with the production of polyphenolic substances in epidermal and mesophyll cells. The levels of transcripts representing a pathogenesis-related (PR) protein (chitinase......) and an enzyme of phytoalexin biosynthesis (chalcone synthase) were shown to accumulate more rapidly during the hypersensitive response than during lesion development in the compatible interaction. A full-length (1143 bp) cDNA sequence of a pea chitinase (EC 3.2.1.14) (coding for an approx. 34 500 Da protein......) was deduced by combining the overlapping sequences of three clones obtained following PCR amplification of cDNA prepared from mRNA isolated 24 h after inoculation of pea leaves with Ascochyta pisi. The combined sequences were identified as a class I chitinase corresponding to the basic A1-chitinase enzyme...

  18. DNA Damage Response Resulting from Replication Stress Induced by Synchronization of Cells by Inhibitors of DNA Replication: Analysis by Flow Cytometry.

    Science.gov (United States)

    Halicka, Dorota; Zhao, Hong; Li, Jiangwei; Garcia, Jorge; Podhorecka, Monika; Darzynkiewicz, Zbigniew

    2017-01-01

    Cell synchronization is often achieved by transient inhibition of DNA replication. When cultured in the presence of such inhibitors as hydroxyurea, aphidicolin or excess of thymidine the cells that become arrested at the entrance to S-phase upon release from the block initiate progression through S then G 2 and M. However, exposure to these inhibitors at concentrations commonly used to synchronize cells leads to activation of ATR and ATM protein kinases as well as phosphorylation of Ser139 of histone H2AX. This observation of DNA damage signaling implies that synchronization of cells by these inhibitors is inducing replication stress. Thus, a caution should be exercised while interpreting data obtained with use of cells synchronized this way since they do not represent unperturbed cell populations in a natural metabolic state. This chapter critically outlines virtues and vices of most cell synchronization methods. It also presents the protocol describing an assessment of phosphorylation of Ser139 on H2AX and activation of ATM in cells treated with aphidicolin, as a demonstrative of one of several DNA replication inhibitors that are being used for cell synchronization. Phosphorylation of Ser139H2AX and Ser1981ATM in individual cells is detected immunocytochemically with phospho-specific Abs and intensity of immunofluorescence is measured by flow cytometry. Concurrent measurement of cellular DNA content followed by multiparameter analysis allows one to correlate the extent of phosphorylation of these proteins in response to aphidicolin with the cell cycle phase.

  19. Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress

    Czech Academy of Sciences Publication Activity Database

    Maya-Mendoza, A.; Ostrakova, J.; Košař, Martin; Hall, A.; Duskova, P.; Mistrik, M.; Merchut-Maya, J.M.; Hodný, Zdeněk; Bartkova, J.; Christensen, C.; Bartek, Jiří

    2015-01-01

    Roč. 9, č. 3 (2015), s. 601-616 ISSN 1574-7891 R&D Projects: GA ČR GA13-17555S; GA MŠk(CZ) LO1304 Grant - others:Danish Council for Independent Research(DK) DFF- 1331-00262; Lundbeck Foundation(DK) R93-A8990 Institutional support: RVO:68378050 Keywords : Myc * Ras * Replication stress * DNA fork progression * Energy metabolism * DNA damage response Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.367, year: 2015

  20. Effects of Unpredictable Variable Prenatal Stress (UVPS) on Bdnf DNA Methylation and Telomere Length in the Adult Rat Brain

    Science.gov (United States)

    Blaze, Jennifer; Asok, A.; Moyer, E. L.; Roth, T. L.; Ronca, A. E.

    2015-01-01

    In utero exposure to stress can shape neurobiological and behavioral outcomes in offspring, producing vulnerability to psychopathology later in life. Animal models of prenatal stress likewise have demonstrated long-­-term alterations in brain function and behavioral deficits in offspring. For example, using a rodent model of unpredictable variable prenatal stress (UVPS), in which dams are exposed to unpredictable, variable stress across pregnancy, we have found increased body weight and anxiety-­-like behavior in adult male, but not female, offspring. DNA methylation (addition of methyl groups to cytosines which normally represses gene transcription) and changes in telomere length (TTAGGG repeats on the ends of chromosomes) are two molecular modifications that result from stress and could be responsible for the long-­-term effects of UVPS. Here, we measured methylation of brain-­-derived neurotrophic factor (bdnf), a gene important in development and plasticity, and telomere length in the brains of adult offspring from the UVPS model. Results indicate that prenatally stressed adult males have greater methylation in the medial prefrontal cortex (mPFC) compared to non-­-stressed controls, while females have greater methylation in the ventral hippocampus compared to controls. Further, prenatally stressed males had shorter telomeres than controls in the mPFC. These findings demonstrate the ability of UVPS to produce epigenetic alterations and changes in telomere length across behaviorally-­-relevant brain regions, which may have linkages to the phenotypic outcomes.

  1. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells

    Directory of Open Access Journals (Sweden)

    Schins Roel PF

    2009-06-01

    Full Text Available Abstract Titanium dioxide (TiO2, also known as titanium (IV oxide or anatase, is the naturally occurring oxide of titanium. It is also one of the most commercially used form. To date, no parameter has been set for the average ambient air concentration of TiO2 nanoparticles (NP by any regulatory agency. Previously conducted studies had established these nanoparticles to be mainly non-cyto- and -genotoxic, although they had been found to generate free radicals both acellularly (specially through photocatalytic activity and intracellularly. The present study determines the role of TiO2-NP (anatase, ∅ in vitro. For comparison, iron containing nanoparticles (hematite, Fe2O3, ∅ 2-NP did not induce DNA-breakage measured by the Comet-assay in both cell types. Generation of reactive oxygen species (ROS was measured acellularly (without any photocatalytic activity as well as intracellularly for both types of particles, however, the iron-containing NP needed special reducing conditions before pronounced radical generation. A high level of DNA adduct formation (8-OHdG was observed in IMR-90 cells exposed to TiO2-NP, but not in cells exposed to hematite NP. Our study demonstrates different modes of action for TiO2- and Fe2O3-NP. Whereas TiO2-NP were able to generate elevated amounts of free radicals, which induced indirect genotoxicity mainly by DNA-adduct formation, Fe2O3-NP were clastogenic (induction of DNA-breakage and required reducing conditions for radical formation.

  2. RPA mediates recombination repair during replication stress and is displaced from DNA by checkpoint signalling in human cells

    DEFF Research Database (Denmark)

    Sleeth, Kate M; Sørensen, Claus Storgaard; Issaeva, Natalia

    2007-01-01

    The replication protein A (RPA) is involved in most, if not all, nuclear metabolism involving single-stranded DNA. Here, we show that RPA is involved in genome maintenance at stalled replication forks by the homologous recombination repair system in humans. Depletion of the RPA protein inhibited...... the formation of RAD51 nuclear foci after hydroxyurea-induced replication stalling leading to persistent unrepaired DNA double-strand breaks (DSBs). We demonstrate a direct role of RPA in homology directed recombination repair. We find that RPA is dispensable for checkpoint kinase 1 (Chk1) activation...... and that RPA directly binds RAD52 upon replication stress, suggesting a direct role in recombination repair. In addition we show that inhibition of Chk1 with UCN-01 decreases dissociation of RPA from the chromatin and inhibits association of RAD51 and RAD52 with DNA. Altogether, our data suggest a direct role...

  3. 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress

    DEFF Research Database (Denmark)

    Lukas, Claudia; Savic, Velibor; Bekker-Jensen, Simon

    2011-01-01

    stress increases the frequency of chromosomal lesions that are transmitted to daughter cells. Throughout G1, these lesions are sequestered in nuclear compartments marked by p53-binding protein 1 (53BP1) and other chromatin-associated genome caretakers. We show that the number of such 53BP1 nuclear bodies...... increases after genetic ablation of BLM, a DNA helicase associated with dissolution of entangled DNA. Conversely, 53BP1 nuclear bodies are partially suppressed by knocking down SMC2, a condensin subunit required for mechanical stability of mitotic chromosomes. Finally, we provide evidence that 53BP1 nuclear...... bodies shield chromosomal fragile sites sequestered in these compartments against erosion. Together, these data indicate that restoration of DNA or chromatin integrity at loci prone to replication problems requires mitotic transmission to the next cell generations....

  4. Mitochondrial nucleoid clusters protect newly synthesized mtDNA during Doxorubicin- and Ethidium Bromide-induced mitochondrial stress

    Czech Academy of Sciences Publication Activity Database

    Alán, Lukáš; Špaček, Tomáš; Pajuelo-Reguera, David; Jabůrek, Martin; Ježek, Petr

    2016-01-01

    Roč. 302, Jul 1 (2016), s. 31-40 ISSN 0041-008X R&D Projects: GA ČR(CZ) GAP305/12/1247; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : Doxorubicin * Ethidium Bromide * nucleoid clusters * mitochondrial DNA stress * mitochondrial transcription factor A Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.791, year: 2016

  5. Radiation interception and use, and spectral reflectance of contrasting canopies of autumn sown faba beans and semi-leafless peas

    International Nuclear Information System (INIS)

    Ridao, E.; Oliveira, C.F.; Conde, J.R.; Minguez, M.I.

    1996-01-01

    Water deficits in faba bean produced a change in leaf angle that lowered the fraction of photosynthetically active radiation intercepted (R pi ) by the canopy, when compared to irrigated faba beans. This response was not found in a semi-leafless pea crop for its canopy structure was maintained rigid by tendrils. These contrasting behaviours were quantified by changes in photosynthetically active radiation (R p ) extinction coefficients (K). For irrigated faba beans, an average value for K of 0.78 is proposed for R p interception modelling. In the case of water stressed faba beans, the possibility of using a water stress dependent K is raised. The canopy architecture of semi-leafless peas may allow the use of one K (0.50) for the two water regimes. Radiation use efficiency (RUE) showed a two phase behaviour: before (RUEbg) and after (RUEag) the beginning of grain filling. In addition, changes in RUE were also due to water supply and affected RUEag values, although in a different way in peas than in faba beans. The reflectance properties of these canopies allowed for an evaluation of crop biomass and also enhanced their contrasting characteristics. The Soil Adjusted Vegetation Index (SAVI2) was used here as a means to estimate R pi . The relationships between SAVI2 and R pi were near-linear in faba beans and linear in peas. Crop biomass was then estimated with these relationships and with the acquired information on the two phase RUE of each species and water regime. (author)

  6. Acid or erythromycin stress significantly improves transformation efficiency through regulating expression of DNA binding proteins in Lactococcus lactis F44.

    Science.gov (United States)

    Wang, Binbin; Zhang, Huawei; Liang, Dongmei; Hao, Panlong; Li, Yanni; Qiao, Jianjun

    2017-12-01

    Lactococcus lactis is a gram-positive bacterium used extensively in the dairy industry and food fermentation, and its biological characteristics are usually improved through genetic manipulation. However, poor transformation efficiency was the main restriction factor for the construction of engineered strains. In this study, the transformation efficiency of L. lactis F44 showed a 56.1-fold increase in acid condition (pH 5.0); meanwhile, erythromycin stress (0.04 μg/mL) promoted the transformation efficiency more significantly (76.9-fold). Notably, the transformation efficiency of F44e (L. lactis F44 harboring empty pLEB124) increased up to 149.1-fold under the synergistic stresses of acid and erythromycin. In addition, the gene expression of some DNA binding proteins (DprA, RadA, RadC, RecA, RecQ, and SsbA) changed correspondingly. Especially for radA, 25.1-fold improvement was detected when F44e was exposed to pH 5.0. Overexpression of some DNA binding proteins could improve the transformation efficiency. The results suggested that acid or erythromycin stress could improve the transformation efficiency of L. lactis through regulating gene expression of DNA binding proteins. We have proposed a simple but promising strategy for improving the transformation efficiency of L. lactis and other hard-transformed microorganisms. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Functional properties of processed pigeon pea ( Cajanus cajan ) flour

    African Journals Online (AJOL)

    Germination increased water absorption capacity, bulk density, oil absorption capacity, foaming capacity, foaming stability, emulsion activity, nitrogen solubility and decreased gelatin and wetability of the pigeon pea flour. Germinated pigeon pea flour has great potentials in food prperations that require hydration to improve ...

  8. Substitution Value of toasted Pigeon pea ( Cajanus cajan ) seed ...

    African Journals Online (AJOL)

    One hundred and eighty 7-day old broilers were used in a 28-day feeding trial to determine the substitution value of toasted pigeon pea seeds meal (TPSM) for soybean meal and maize in boiler starter diet. The brown coat coloured pigeon pea seeds were toasted at 100oC for 15minutes and milled. The inclusion levels of ...

  9. Functional analysis of mildly refined fractions from yellow pea

    NARCIS (Netherlands)

    Pelgrom, P.J.M.; Boom, R.M.; Schutyser, M.A.I.

    2015-01-01

    Dry fractionation offers an attractive route to sustainably produce protein-enriched plant-based ingredients. For example, fine milling of peas followed by air classification separates starch granules from the protein matrix. Unlike conventional wet isolates, dry-enriched pea fractions consist of a

  10. Fibril Formation from Pea Protein and Sesequent Gel Formation

    NARCIS (Netherlands)

    Munialo, C.D.; Martin, A.H.; Linden, van der E.; Jongh, de H.H.J.

    2014-01-01

    The objective of this study was to characterize fibrillar aggregates made using pea proteins, to assemble formed fibrils into protein-based gels, and to study the rheological behavior of these gels. Micrometer-long fibrillar aggregates were observed after pea protein solutions had been heated for 20

  11. Fibril formation from pea protein and subsequent gel formation.

    Science.gov (United States)

    Munialo, Claire Darizu; Martin, Anneke H; van der Linden, Erik; de Jongh, Harmen H J

    2014-03-19

    The objective of this study was to characterize fibrillar aggregates made using pea proteins, to assemble formed fibrils into protein-based gels, and to study the rheological behavior of these gels. Micrometer-long fibrillar aggregates were observed after pea protein solutions had been heated for 20 h at pH 2.0. Following heating of pea proteins, it was observed that all of the proteins were hydrolyzed into peptides and that 50% of these peptides were assembled into fibrils. Changes on a structural level in pea proteins were studied using circular dichroism, transmission electron microscopy, and particle size analysis. During the fibril assembly process, an increase in aggregate size was observed, which coincided with an increase in thioflavin T binding, indicating the presence of β-sheet aggregates. Fibrils made using pea proteins were more branched and curly. Gel formation of preformed fibrils was induced by slow acidification from pH 7.0 to a final pH of around pH 5.0. The ability of pea protein-based fibrillar gels to fracture during an amplitude sweep was comparable to those of soy protein and whey protein-based fibrillar gels, although gels prepared from fibrils made using pea protein and soy protein were weaker than those of whey protein. The findings show that fibrils can be prepared from pea protein, which can be incorporated into protein-based fibrillar gels.

  12. Fibril Formation from Pea Protein and Subsequent Gel Formation

    NARCIS (Netherlands)

    Munialo, XC.D.; Martin, A.H.; Linden, E. van der; Jongh, H.H.J de

    2014-01-01

    The objective of this study was to characterize fibrillar aggregates made using pea proteins, to assemble formed fibrils into protein-based gels, and to study the rheological behavior of these gels. Micrometer-long fibrillar aggregates were observed after pea protein solutions had been heated for 20

  13. Dry fractionation for production of functional pea protein concentrates

    NARCIS (Netherlands)

    Pelgrom, P.J.M.; Vissers, A.M.; Boom, R.M.; Schutyser, M.A.I.

    2013-01-01

    Dry milling in combination with air classification was evaluated as an alternative to conventional wet extraction of protein from yellow field peas (Pisum sativum). Major advantages of dry fractionation are retention of native functionality of proteins and its lower energy and water use. Peas were

  14. The Pisum Genus: Getting out of Pea Soup!

    Science.gov (United States)

    Pea (Pisum sativum L.) has long been a model for plant genetics and is a widely grown pulse crop producing protein-rich seeds in a sustainable manner. However, many questions remain open about (sub)species relationships in the Pisumgenus. The ongoing pea genome sequencing project and the recent geno...

  15. KASP assays for powdery mildew resistance breeding in pea

    Science.gov (United States)

    Powdery mildew of pea, caused by Erysiphe pisi DC, is a serious production constraint to pea (Pisum sativum L.) production in the U.S. and elsewhere. Utilization of genetic resistance to powdery mildew using er1 has been an effective strategy to manage this disease. This gene, er1, conferring powde...

  16. Revoluntionary Faith and Religious Disillusionment in Enrico Pea's ...

    African Journals Online (AJOL)

    Questa tragedia segna anche un momento cruciale di transizione nella produzione letteraria di Pea e, pur mostrando chiaramente l'influenza delle sue precedenti affinità con il Marxismo e con il movimento anarchico, guarda già in avanti con il profondo interesse e rispetto di Pea per le proprie radici cattoliche che si ...

  17. 78 FR 68410 - United States Standards for Whole Dry Peas

    Science.gov (United States)

    2013-11-14

    ... available for public inspection in the above office during regular business hours (7 CFR 1.27(b)). Please... the fundamental starting point to define commodity quality in the domestic and global marketplace... for whole dry peas, split peas, and lentils in today's marketing environment. According to information...

  18. Yield advantage and water saving in maize/pea intercrop

    NARCIS (Netherlands)

    Mao, L.; Zhang, L.; Li, W.; Werf, van der W.; Sun, J.; Spiertz, J.H.J.; Li, L.

    2012-01-01

    Intercropping is a well-established strategy for maximization of yield from limited land, but mixed results have been obtained as to its performance in terms of water use efficiency. Here, two maize/pea intercrop layouts were studied in comparison to sole maize and sole pea with and without plastic

  19. Effective management of pigeon pea ( Cajanus cajan ) in a crop ...

    African Journals Online (AJOL)

    Effective management of pigeon pea ( Cajanus cajan ) in a crop/livestock integrated farming system in northern Ghana. ... Ghana Journal of Agricultural Science ... Pigeon pea plots with row lengths averaging 11 m and a planting geometry of 80 cm W 50 cm, were either pruned at 60 or 100 cm above ground level or not ...

  20. A 200 bp region of the pea ENOD12 promoter is sufficient for nodule-specific and nod factor induced expression

    DEFF Research Database (Denmark)

    Vijn, I; Christiansen, H; Lauridsen, P

    1995-01-01

    ENOD12 is one of the first nodulin genes expressed upon inoculation with Rhizobium and also purified Nod factors are able to induce ENOD12 expression. The ENOD12 gene family in pea (Pisum sativum) has two members. A cDNA clone representing PsENOD12A [26] and a PsENOD12B genomic clone [7] have been...

  1. The effect of Orobanche crenata infection severity in faba bean, field pea, and grass pea productivity.

    Directory of Open Access Journals (Sweden)

    Monica Fernandez-Aparicio

    2016-09-01

    Full Text Available Broomrape weeds (Orobanche and Phelipanche spp. are root holoparasites that feed off a wide range of important crops. Among them, Orobanche crenata attacks legumes complicating their inclusion in cropping systems along the Mediterranean area and West Asia. The detrimental effect of broomrape parasitism in crop yield can reach up to 100% depending on infection severity and the broomrape-crop association. This work provides field data of the consequences of O. crenata infection severity in three legume crops i.e. faba bean, field pea and grass pea. Regression functions modelled productivity losses and revealed trends in dry matter allocation in relation to infection severity. The host species differentially limits parasitic sink strength indicating different levels of broomrape tolerance at equivalent infection severities. Reductions in host aboveground biomass were observed starting at low infection severity and half maximal inhibitory performance was predicted as 4.5, 8.2 and 1.5 parasites per faba bean, field pea and grass pea plant, respectively. Reductions in host biomass occurred in both vegetative and reproductive organs, the latter resulting more affected. The proportion of resources allocated within the parasite was concomitant to reduction of host seed yield indicating that parasite growth and host reproduction compete directly for resources within a host plant. However, the parasitic sink activity does not fully explain the total host biomass reduction because combined biomass of host-parasite complex was lower than the biomass of uninfected plants. In grass pea, the seed yield was negligible at severities higher than 4 parasites per plant. In contrast, faba bean and field pea sustained low but significant seed production at the highest infection severity. Data on seed yield and seed number indicated that the sensitivity of field pea to O. crenata limited the production of grain yield by reducing seed number but maintaining seed size

  2. The Effect of Orobanche crenata Infection Severity in Faba Bean, Field Pea, and Grass Pea Productivity.

    Science.gov (United States)

    Fernández-Aparicio, Mónica; Flores, Fernando; Rubiales, Diego

    2016-01-01

    Broomrape weeds ( Orobanche and Phelipanche spp.) are root holoparasites that feed off a wide range of important crops. Among them, Orobanche crenata attacks legumes complicating their inclusion in cropping systems along the Mediterranean area and West Asia. The detrimental effect of broomrape parasitism in crop yield can reach up to 100% depending on infection severity and the broomrape-crop association. This work provides field data of the consequences of O. crenata infection severity in three legume crops, i.e., faba bean, field pea, and grass pea. Regression functions modeled productivity losses and revealed trends in dry matter allocation in relation to infection severity. The host species differentially limits parasitic sink strength indicating different levels of broomrape tolerance at equivalent infection severities. Reductions in host aboveground biomass were observed starting at low infection severity and half maximal inhibitory performance was predicted as 4.5, 8.2, and 1.5 parasites per faba bean, field pea, and grass pea plant, respectively. Reductions in host biomass occurred in both vegetative and reproductive organs, the latter resulting more affected. The increase of resources allocated within the parasite was concomitant to reduction of host seed yield indicating that parasite growth and host reproduction compete directly for resources within a host plant. However, the parasitic sink activity does not fully explain the total host biomass reduction because combined biomass of host-parasite complex was lower than the biomass of uninfected plants. In grass pea, the seed yield was negligible at severities higher than four parasites per plant. In contrast, faba bean and field pea sustained low but significant seed production at the highest infection severity. Data on seed yield and seed number indicated that the sensitivity of field pea to O. crenata limited the production of grain yield by reducing seed number but maintaining seed size. In contrast

  3. DNA methyltransferases and stress-related genes expression in zebrafish larvae after exposure to heat and copper during reprogramming of DNA methylation.

    Science.gov (United States)

    Dorts, Jennifer; Falisse, Elodie; Schoofs, Emilie; Flamion, Enora; Kestemont, Patrick; Silvestre, Frédéric

    2016-10-12

    DNA methylation, a well-studied epigenetic mark, is important for gene regulation in adulthood and for development. Using genetic and epigenetic approaches, the present study aimed at evaluating the effects of heat stress and copper exposure during zebrafish early embryogenesis when patterns of DNA methylation are being established, a process called reprogramming. Embryos were exposed to 325 μg Cu/L from fertilization (<1 h post fertilization - hpf) to 4 hpf at either 26.5 °C or 34 °C, followed by incubation in clean water at 26.5 °C till 96 hpf. Significant increased mortality rates and delayed hatching were observed following exposure to combined high temperature and Cu. Secondly, both stressors, alone or in combination, significantly upregulated the expression of de novo DNA methyltransferase genes (dnmt3) along with no differences in global cytosine methylation level. Finally, Cu exposure significantly increased the expression of metallothionein (mt2) and heat shock protein (hsp70), the latter being also increased following exposure to high temperature. These results highlighted the sensitivity of early embryogenesis and more precisely of the reprogramming period to environmental challenges, in a realistic situation of combined stressors.

  4. Domestication of Pea (Pisum sativum L.): The Case of the Abyssinian Pea

    Science.gov (United States)

    Weeden, Norman F.

    2018-01-01

    Phylogenetic relationships of the Abyssinian pea (Pisum sativum ssp. abyssinicum) to other subspecies and species in the genus were investigated to test between different hypotheses regarding its origin and domestication. An extensive sample of the Pisum sativum ssp. sativum germplasm was investigated, including groups a-1, a-2, b, c, and d as identified by Kwon et al. (2012). A broad sample of P. fulvum but relatively few P. s. ssp. elatius accessions were analyzed. Partial sequences of 18 genes were compared and these results combined with comparisons of additional genes done by others and available in the literature. In total, 54 genes or gene fragment sequences were involved in the study. The observed affinities between alleles in P. ssp. sativum, P. s. ssp. abyssinicum, P. s. ssp. elatius, and P. fulvum clearly demonstrated a close relationship among the three P. sativum subspecies and rejected the hypothesis that the Abyssinian pea was formed by hybridization between one of the P. sativum subspecies and P. fulvum. If hybridization were involved in the generation of the Abyssinian pea, it must have been between P. s. ssp. sativum and P. s. ssp. elatius, although the Abyssinian pea possesses a considerable number of highly unique alleles, implying that the actual P. s. ssp. elatius germplasm involved in such a hybridization has yet to be tested or that the hybridization occurred much longer ago than the postulated 4000 years bp. Analysis of the P. s. ssp. abyssinicum alleles in genomic regions thought to contain genes critical for domestication indicated that the indehiscent pod trait was independently developed in the Abyssinian pea, whereas the loss of seed dormancy was either derived from P. s. ssp. sativum or at least partially developed before the P. s. ssp. abyssinicum lineage diverged from that leading to P. s. ssp. sativum. PMID:29720994

  5. Involvement of DNA methylation in the control of cell growth during heat stress in tobacco BY-2 cells.

    Science.gov (United States)

    Centomani, Isabella; Sgobba, Alessandra; D'Addabbo, Pietro; Dipierro, Nunzio; Paradiso, Annalisa; De Gara, Laura; Dipierro, Silvio; Viggiano, Luigi; de Pinto, Maria Concetta

    2015-11-01

    The alteration of growth patterns, through the adjustment of cell division and expansion, is a characteristic response of plants to environmental stress. In order to study this response in more depth, the effect of heat stress on growth was investigated in tobacco BY-2 cells. The results indicate that heat stress inhibited cell division, by slowing cell cycle progression. Cells were stopped in the pre-mitotic phases, as shown by the increased expression of CycD3-1 and by the decrease in the NtCycA13, NtCyc29 and CDKB1-1 transcripts. The decrease in cell length and the reduced expression of Nt-EXPA5 indicated that cell expansion was also inhibited. Since DNA methylation plays a key role in controlling gene expression, the possibility that the altered expression of genes involved in the control of cell growth, observed during heat stress, could be due to changes in the methylation state of their promoters was investigated. The results show that the altered expression of CycD3-1 and Nt-EXPA5 was consistent with changes in the methylation state of the upstream region of these genes. These results suggest that DNA methylation, controlling the expression of genes involved in plant development, contributes to growth alteration occurring in response to environmental changes.

  6. Characterization of DNA-binding proteins from pea mitochondria

    DEFF Research Database (Denmark)

    Hatzack, F.A.; Dombrowski, S.; Brennicke, A.

    1998-01-01

    We studied transcription initiation in the mitochondria of higher plants, with particular respect to promoter structures. Conserved elements of these promoters have been successfully identified by in vitro transcription systems in different species, whereas the involved protein components are still...

  7. DNA methylation and transcriptomic changes in response to different lights and stresses in 7B-1 male-sterile tomato.

    Directory of Open Access Journals (Sweden)

    Vahid Omidvar

    Full Text Available We reported earlier that 7B-1 mutant in tomato (Solanum lycopersicum L., cv. Rutgers, an ABA overproducer, is defective in blue light (B signaling leading to B-specific resistance to abiotic and biotic stresses. Using a methylation-sensitive amplified polymorphism (MSAP assay, a number of genes were identified, which were differentially methylated between 7B-1 and its wild type (WT seedlings in white (W, blue (B, red (R lights and dark (D or in response to exogenous ABA and mannitol-induced stresses. The genomic methylation level was almost similar in different lights between 7B-1 and WT seedlings, while significant differences were observed in response to stresses in D, but not B. Using a cDNA-AFLP assay, several transcripts were identified, which were differentially regulated between 7B-1 and WT by B or D or in response to stresses. Blue light receptors cryptochrome 1 and 2 (CRY1 and CRY2 and phototropin 1 and 2 (PHOT1 and PHOT2 were not affected by the 7B-1 mutation at the transcriptional level, instead the mutation had likely affected downstream components of the light signaling pathway. 5-azacytidine (5-azaC induced DNA hypomethylation, inhibited stem elongation and differentially regulated the expression of a number of genes in 7B-1. In addition, it was shown that mir167 and mir390 were tightly linked to auxin signaling pathway in 5-azaC-treated 7B-1 seedlings via the regulation of auxin-response factor (ARF transcripts. Our data showed that DNA methylation remodeling is an active epigenetic response to different lights and stresses in 7B-1 and WT, and highlighted the differences in epigenetic and transcriptional regulation of light and stress responses between 7B-1 and WT. Furthermore, it shed lights on the crosstalk between DNA hypomethylation and miRNA regulation of ARFs expression. This information could also be used as a benchmark for future studies of male-sterility in other crops.

  8. Bioassay-guided fractionation of a hepatoprotective and antioxidant extract of pea by-product.

    Science.gov (United States)

    Seida, Ahmed A; El Tanbouly, Nebal D; Islam, Wafaa T; Eid, Hanaa H; El Maraghy, Shohda A; El Senousy, Amira S

    2015-01-01

    The hepatoprotective and antioxidant activities of the hydroalcoholic extract (PE) of pea (Pisum sativum L.) by-product were evaluated, using CCl4-induced oxidative stress and hepatic damage in rats. These activities were assessed via measuring alanine aminotransferase (ALT), aspartate aminotransferase (AST), total protein and albumin, malondialdehyde (MDA), reduced glutathione (GSH), protein thiols (PSH), nitrite/nitrate levels, glutathione-peroxidase (GSH-Px), glutathione-S-transferase (GST) activities, as well as, histopathological evaluation. PE revealed significant hepatoprotective and antioxidant activities mostly found in n-butanol fraction. Chromatographic fractionation of this active fraction led to the isolation of five flavonoid glycosides namely, quercetin-3-O-sophorotrioside (1), quercetin-3-O-rutinoside (2), quercetin-3-O-(6″″-O-E sinapoyl)-sophorotrioside (3), quercetin-3-O-(6″″-O-E feruloyl)-sophorotrioside (4) and quercetin-3-O-β-D-glucopyranoside (5). The isolated compounds were quantified in PE, using a validated HPLC method and the nutritional composition of pea by-product was also investigated. Our results suggest that pea by-product contained biologically active constituents which can be utilised to obtain high value added products for nutraceutical use.

  9. Prenatal stress, fearfulness, and the epigenome: Exploratory analysis of sex differences in DNA methylation of the glucocorticoid receptor gene.

    Directory of Open Access Journals (Sweden)

    Brendan Dale Ostlund

    2016-07-01

    Full Text Available Exposure to stress in utero is a risk factor for the development of problem behavior in the offspring, though precise pathways are unknown. We examined whether DNA methylation of the glucocorticoid receptor gene, NR3C1, was associated with experiences of stress by an expectant mother and fearfulness in her infant. Mothers reported on prenatal stress and infant temperament when infants were 5 months old (n = 68. Buccal cells for methylation analysis were collected from each infant. Prenatal stress was not related to infant fearfulness or NR3C1 methylation in the sample as a whole. Exploratory sex-specific analysis revealed a trend-level association between prenatal stress and increased methylation of NR3C1 exon 1F for female, but not male, infants. In addition, increased methylation was significantly associated with greater fearfulness for females. Results suggest an experience-dependent pathway to fearfulness for female infants via epigenetic modification of the glucocorticoid receptor gene. Future studies should examine prenatal stress in a comprehensive fashion while considering sex differences in epigenetic processes underlying infant temperament.

  10. Repetitive stress leads to impaired cognitive function that is associated with DNA hypomethylation, reduced BDNF and a dysregulated HPA axis.

    Science.gov (United States)

    Makhathini, Khayelihle B; Abboussi, Oualid; Stein, Dan J; Mabandla, Musa V; Daniels, William M U

    2017-08-01

    Exposure to repetitive stress has a negative influence on cognitive-affective functioning, with growing evidence that these effects may be mediated by a dysregulated hypothalamic-pituitary-adrenal (HPA) axis, abnormal neurotrophic factor levels and its subsequent impact on hippocampal function. However, there are few data about the effect of repetitive stressors on epigenetic changes in the hippocampus. In the present study, we examine how repetitive restrain stress (RRS) affects cognitive-affective functioning, HPA axis regulation, brain-derived neurotrophic factor (BDNF) levels, and global hippocampal DNA methylation. RRS was induced in rats by restraining the animals for 6h per day for 28 days. The novel object recognition test (NORT) was used to assess cognitive functioning and the open field test (OFT) was performed to assess anxiety-like behavior during the last week of stress. Hippocampal BDNF levels, glucocorticoid (GR) and mineralocorticoid (MR) receptor mRNA were assessed using real-time PCR and confirmed with Western blot, while ELISAs were used to determine plasma corticosterone levels and the global methylation status of the hippocampus. Animals exposed to repetitive stress demonstrated significant alterations in the NORT and OFT, had significantly increased plasma corticosterone and significantly decreased hippocampal BDNF concentrations. The expression levels of GR and MR mRNA and protein levels of these genes were significantly decreased in the stressed group compared to control animals. The global DNA methylation of the hippocampal genome of stressed animals was also significantly decreased compared to controls. The data here are consistent with previous work emphasizing the role of the HPA axis and neurotrophic factors in mediating cognitive-affective changes after exposure to repetitive stressors. Our findings, however, extend the literature by indicating that epigenetic alterations in the hippocampal genome may also play an important role in the

  11. Neighborhood characteristics influence DNA methylation of genes involved in stress response and inflammation: The Multi-Ethnic Study of Atherosclerosis.

    Science.gov (United States)

    Smith, Jennifer A; Zhao, Wei; Wang, Xu; Ratliff, Scott M; Mukherjee, Bhramar; Kardia, Sharon L R; Liu, Yongmei; Roux, Ava V Diez; Needham, Belinda L

    2017-08-01

    Living in a disadvantaged neighborhood is associated with poor health outcomes even after accounting for individual-level socioeconomic factors. The chronic stress of unfavorable neighborhood conditions may lead to dysregulation of the stress reactivity and inflammatory pathways, potentially mediated through epigenetic mechanisms such as DNA methylation. We used multi-level models to examine the relationship between 2 neighborhood conditions and methylation levels of 18 genes related to stress reactivity and inflammation in purified monocytes from 1,226 participants of the Multi-Ethnic Study of Atherosclerosis (MESA), a population-based sample of US adults. Neighborhood socioeconomic disadvantage, a summary of 16 census-based metrics, was associated with DNA methylation [False discovery rate (FDR) q-value ≤ 0.1] in 2 out of 7 stress-related genes evaluated (CRF, SLC6A4) and 2 out of 11 inflammation-related genes (F8, TLR1). Neighborhood social environment, a summary measure of aesthetic quality, safety, and social cohesion, was associated with methylation in 4 of the 7 stress-related genes (AVP, BDNF, FKBP5, SLC6A4) and 7 of the 11 inflammation-related genes (CCL1, CD1D, F8, KLRG1, NLRP12, SLAMF7, TLR1). High socioeconomic disadvantage and worse social environment were primarily associated with increased methylation. In 5 genes with significant associations between neighborhood and methylation (FKBP5, CD1D, F8, KLRG1, NLRP12), methylation was associated with gene expression of at least one transcript. These results demonstrate that multiple dimensions of neighborhood context may influence methylation levels and subsequent gene expression of stress- and inflammation-related genes, even after accounting for individual socioeconomic factors. Further elucidating the molecular mechanisms underlying these relationships will be important for understanding the etiology of health disparities.

  12. Soluble histone H2AX is induced by DNA replication stress and sensitizes cells to undergo apoptosis

    Directory of Open Access Journals (Sweden)

    Duensing Stefan

    2008-07-01

    Full Text Available Abstract Background Chromatin-associated histone H2AX is a key regulator of the cellular responses to DNA damage. However, non-nucleosomal functions of histone H2AX are poorly characterized. We have recently shown that soluble H2AX can trigger apoptosis but the mechanisms leading to non-chromatin-associated H2AX are unclear. Here, we tested whether stalling of DNA replication, a common event in cancer cells and the underlying mechanism of various chemotherapeutic agents, can trigger increased soluble H2AX. Results Transient overexpression of H2AX was found to lead to a detectable fraction of soluble H2AX and was associated with increased apoptosis. This effect was enhanced by the induction of DNA replication stress using the DNA polymerase α inhibitor aphidicolin. Cells manipulated to stably express H2AX did not contain soluble H2AX, however, short-term treatment with aphidicolin (1 h resulted in detectable amounts of H2AX in the soluble nuclear fraction and enhanced apoptosis. Similarly, soluble endogenous H2AX was detected under these conditions. We found that excessive soluble H2AX causes chromatin aggregation and inhibition of ongoing gene transcription as evidenced by the redistribution and/or loss of active RNA polymerase II as well as the transcriptional co-activators CBP and p300. Conclusion Taken together, these results show that DNA replication stress rapidly leads to increased soluble H2AX and that non-chromatin-associated H2AX can sensitize cells to undergo apoptosis. Our findings encourage further studies to explore H2AX and the cellular pathways that control its expression as anti-cancer drug targets.

  13. Phorate-induced oxidative stress, DNA damage and transcriptional activation of p53 and caspase genes in male Wistar rats

    International Nuclear Information System (INIS)

    Saquib, Quaiser; Attia, Sabry M.; Siddiqui, Maqsood A.; Aboul-Soud, Mourad A.M.; Al-Khedhairy, Abdulaziz A.; Giesy, John P.; Musarrat, Javed

    2012-01-01

    Male Wistar rats exposed to a systemic organophosphorus insecticide, phorate [O,O-diethyl S-[(ethylthio) methyl] phosphorothioate] at varying oral doses of 0.046, 0.092 or 0.184 mg phorate/kg bw for 14 days, exhibited substantial oxidative stress, cellular DNA damage and activation of apoptosis-related p53, caspase 3 and 9 genes. The histopathological changes including the pyknotic nuclei, inflammatory leukocyte infiltrations, renal necrosis, and cardiac myofiber degeneration were observed in the liver, kidney and heart tissues. Biochemical analysis of catalase and glutathione revealed significantly lesser activities of antioxidative enzymes and lipid peroxidation in tissues of phorate exposed rats. Furthermore, generation of intracellular reactive oxygen species and reduced mitochondrial membrane potential in bone marrow cells confirmed phorate-induced oxidative stress. Significant DNA damage was measured through comet assay in terms of the Olive tail moment in bone marrow cells of treated animals as compared to control. Cell cycle analysis also demonstrated the G 2 /M arrest and appearance of a distinctive SubG 1 peak, which signified induction of apoptosis. Up-regulation of tumor suppressor p53 and caspase 3 and 9 genes, determined by quantitative real-time PCR and enzyme-linked immunosorbent assay, elucidated the activation of intrinsic apoptotic pathways in response to cellular stress. Overall, the results suggest that phorate induces genetic alterations and cellular toxicity, which can adversely affect the normal cellular functioning in rats. -- Highlights: ► This is the first report on molecular toxicity of phorate in an in vivo test system. ► Phorate induces biochemical and histological changes in liver, kidney and heart. ► Rats treated with phorate exhibited DNA damage in bone marrow cells. ► Phorate induces apoptosis, oxidative stress and alters mitochondrial fluorescence. ► Phorate induces transcriptional changes and enhanced activities of

  14. Phorate-induced oxidative stress, DNA damage and transcriptional activation of p53 and caspase genes in male Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Saquib, Quaiser [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Attia, Sabry M. [Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh (Saudi Arabia); Siddiqui, Maqsood A. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Aboul-Soud, Mourad A.M. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Biochemistry Department, Faculty of Agriculture, Cairo University, 12613 Giza (Egypt); Al-Khedhairy, Abdulaziz A. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Giesy, John P. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Department of Biomedical and Veterinary Biosciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Canada S7N 5B3 (Canada); Zoology Department and Center for Integrative Toxicology, Michigan State University, East Lansing 48824 (United States); Musarrat, Javed, E-mail: musarratj1@yahoo.com [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Department of Microbiology, Faculty of Agricultural Sciences, AMU, Aligarh (India)

    2012-02-15

    Male Wistar rats exposed to a systemic organophosphorus insecticide, phorate [O,O-diethyl S-[(ethylthio) methyl] phosphorothioate] at varying oral doses of 0.046, 0.092 or 0.184 mg phorate/kg bw for 14 days, exhibited substantial oxidative stress, cellular DNA damage and activation of apoptosis-related p53, caspase 3 and 9 genes. The histopathological changes including the pyknotic nuclei, inflammatory leukocyte infiltrations, renal necrosis, and cardiac myofiber degeneration were observed in the liver, kidney and heart tissues. Biochemical analysis of catalase and glutathione revealed significantly lesser activities of antioxidative enzymes and lipid peroxidation in tissues of phorate exposed rats. Furthermore, generation of intracellular reactive oxygen species and reduced mitochondrial membrane potential in bone marrow cells confirmed phorate-induced oxidative stress. Significant DNA damage was measured through comet assay in terms of the Olive tail moment in bone marrow cells of treated animals as compared to control. Cell cycle analysis also demonstrated the G{sub 2}/M arrest and appearance of a distinctive SubG{sub 1} peak, which signified induction of apoptosis. Up-regulation of tumor suppressor p53 and caspase 3 and 9 genes, determined by quantitative real-time PCR and enzyme-linked immunosorbent assay, elucidated the activation of intrinsic apoptotic pathways in response to cellular stress. Overall, the results suggest that phorate induces genetic alterations and cellular toxicity, which can adversely affect the normal cellular functioning in rats. -- Highlights: ► This is the first report on molecular toxicity of phorate in an in vivo test system. ► Phorate induces biochemical and histological changes in liver, kidney and heart. ► Rats treated with phorate exhibited DNA damage in bone marrow cells. ► Phorate induces apoptosis, oxidative stress and alters mitochondrial fluorescence. ► Phorate induces transcriptional changes and enhanced

  15. Cloning and expression of a nuclear encoded plastid specific 33 kDa ribonucleoprotein gene (33RNP) from pea that is light stimulated.

    Science.gov (United States)

    Reddy, M K; Nair, S; Singh, B N; Mudgil, Y; Tewari, K K; Sopory, S K

    2001-01-24

    We report the cloning and sequencing of both cDNA and genomic DNA of a 33 kDa chloroplast ribonucleoprotein (33RNP) from pea. The analysis of the predicted amino acid sequence of the cDNA clone revealed that the encoded protein contains two RNA binding domains, including the conserved consensus ribonucleoprotein sequences CS-RNP1 and CS-RNP2, on the C-terminus half and the presence of a putative transit peptide sequence in the N-terminus region. The phylogenetic and multiple sequence alignment analysis of pea chloroplast RNP along with RNPs reported from the other plant sources revealed that the pea 33RNP is very closely related to Nicotiana sylvestris 31RNP and 28RNP and also to 31RNP and 28RNP of Arabidopsis and spinach, respectively. The pea 33RNP was expressed in Escherichia coli and purified to homogeneity. The in vitro import of precursor protein into chloroplasts confirmed that the N-terminus putative transit peptide is a bona fide transit peptide and 33RNP is localized in the chloroplast. The nucleic acid-binding properties of the recombinant protein, as revealed by South-Western analysis, showed that 33RNP has higher binding affinity for poly (U) and oligo dT than for ssDNA and dsDNA. The steady state transcript level was higher in leaves than in roots and the expression of this gene is light stimulated. Sequence analysis of the genomic clone revealed that the gene contains four exons and three introns. We have also isolated and analyzed the 5' flanking region of the pea 33RNP gene.

  16. Pea Marker Database (PMD) - A new online database combining known pea (Pisum sativum L.) gene-based markers.

    Science.gov (United States)

    Kulaeva, Olga A; Zhernakov, Aleksandr I; Afonin, Alexey M; Boikov, Sergei S; Sulima, Anton S; Tikhonovich, Igor A; Zhukov, Vladimir A

    2017-01-01

    Pea (Pisum sativum L.) is the oldest model object of plant genetics and one of the most agriculturally important legumes in the world. Since the pea genome has not been sequenced yet, identification of genes responsible for mutant phenotypes or desirable agricultural traits is usually performed via genetic mapping followed by candidate gene search. Such mapping is best carried out using gene-based molecular markers, as it opens the possibility for exploiting genome synteny between pea and its close relative Medicago truncatula Gaertn., possessing sequenced and annotated genome. In the last 5 years, a large number of pea gene-based molecular markers have been designed and mapped owing to the rapid evolution of "next-generation sequencing" technologies. However, the access to the complete set of markers designed worldwide is limited because the data are not uniformed and therefore hard to use. The Pea Marker Database was designed to combine the information about pea markers in a form of user-friendly and practical online tool. Version 1 (PMD1) comprises information about 2484 genic markers, including their locations in linkage groups, the sequences of corresponding pea transcripts and the names of related genes in M. truncatula. Version 2 (PMD2) is an updated version comprising 15944 pea markers in the same format with several advanced features. To test the performance of the PMD, fine mapping of pea symbiotic genes Sym13 and Sym27 in linkage groups VII and V, respectively, was carried out. The results of mapping allowed us to propose the Sen1 gene (a homologue of SEN1 gene of Lotus japonicus (Regel) K. Larsen) as the best candidate gene for Sym13, and to narrow the list of possible candidate genes for Sym27 to ten, thus proving PMD to be useful for pea gene mapping and cloning. All information contained in PMD1 and PMD2 is available at www.peamarker.arriam.ru.

  17. DNA Oncogenic Virus-Induced Oxidative Stress, Genomic Damage, and Aberrant Epigenetic Alterations

    Directory of Open Access Journals (Sweden)

    Mankgopo Magdeline Kgatle

    2017-01-01

    Full Text Available Approximately 20% of human cancers is attributable to DNA oncogenic viruses such as human papillomavirus (HPV, hepatitis B virus (HBV, and Epstein-Barr virus (EBV. Unrepaired DNA damage is the most common and overlapping feature of these DNA oncogenic viruses and a source of genomic instability and tumour development. Sustained DNA damage results from unceasing production of reactive oxygen species and activation of inflammasome cascades that trigger genomic changes and increased propensity of epigenetic alterations. Accumulation of epigenetic alterations may interfere with genome-wide cellular signalling machineries and promote malignant transformation leading to cancer development. Untangling and understanding the underlying mechanisms that promote these detrimental effects remain the major objectives for ongoing research and hope for effective virus-induced cancer therapy. Here, we review current literature with an emphasis on how DNA damage influences HPV, HVB, and EBV replication and epigenetic alterations that are associated with carcinogenesis.

  18. Uses Of Gamma Rays In Peas Breeding

    International Nuclear Information System (INIS)

    Ghunim, A.; Mobakher, H.; Salman, S.

    2004-01-01

    Most of peas varieties grown in Syria are introduced and they have variable characteristics and unstable in the productivity. Therefore this study aims to utilize physical mutagens as the developed technology in plant breeding to obtain high, stable productivity and suitable for human consumption and processing. Two green peas vars (onward, local homsi) were used in this study, and their dry seeds were subjected to different doses of Gamma rays (5.0,7.5,10.0) KR and planted conventional used methods at AL Taibba searching station (20 Km from Damascus) in 1985/1986 season. Individual selection from M2 was practiced based on yield traits. Starting from 1991/1992 season the best selected mutants were used in yield trials to be compared with the best common cultivars. After/3/years of yield trials, the advanced lines were incorporated into field test trials. Some morphological and phonological scores, i.e. green pods yield, dry seeds yield per area were achieved in addition to lab tests. Some strains have advanced in yield of green pods and dry seeds per area compared with the local check. Some other strains. Showed an increase in earliness, length of pods, number of seeds per pod, and number of pods per plant than the local check. Therefore these can be called promising strains and as nucleus for new vars. will be used into verifiable fields, and in large-scale cultivation in order to be released. (Authors)

  19. Analyses of pea necrotic yellow dwarf virus-encoded proteins.

    Science.gov (United States)

    Krenz, Björn; Schießl, Ingrid; Greiner, Eva; Krapp, Susanna

    2017-06-01

    Pea necrotic yellow dwarf virus (PNYDV) is a multipartite, circular, single-stranded DNA plant virus. PNYDV encodes eight proteins and the function of three of which remains unknown-U1, U2, and U4. PNYDV proteins cellular localization was analyzed by GFP tagging and bimolecular fluorescence complementation (BiFC) studies. The interactions of all eight PNYDV proteins were tested pairwise in planta (36 combinations in total). Seven interactions were identified and two (M-Rep with CP and MP with U4) were characterized further. MP and U4 complexes appeared as vesicle-like spots and were localized at the nuclear envelope and cell periphery. These vesicle-like spots were associated with the endoplasmatic reticulum. In addition, a nuclear localization signal (NLS) was mapped for U1, and a mutated U1 with NLS disrupted localized at plasmodesmata and therefore might also have a role in movement. Taken together, this study provides evidence for previously undescribed nanovirus protein-protein interactions and their cellular localization with novel findings not only for those proteins with unknown function, but also for characterized proteins such as the CP.

  20. The Degree of Radiation-Induced DNA Strand Breaks Is Altered by Acute Sleep Deprivation and Psychological Stress and Is Associated with Cognitive Performance in Humans.

    Science.gov (United States)

    Moreno-Villanueva, Maria; von Scheven, Gudrun; Feiveson, Alan; Bürkle, Alexander; Wu, Honglu; Goel, Namni

    2018-03-27

    Sleep deprivation is associated with impaired immune responses, cancer, and morbidity and mortality, and can degrade cognitive performance, although individual differences exist in such responses. Sleep deprivation induces DNA strand breaks and DNA base oxidation in animals, and psychological stress is associated with increased DNA damage in humans. It remains unknown whether sleep deprivation or psychological stress in humans affects DNA damage response from environmental stressors, and whether these responses predict cognitive performance during sleep deprivation. Sixteen healthy adults (ages 29-52;mean age±SD, 36.4±7.1 years;7 women) participated in a 5-day experiment involving two 8 hour time-in-bed [TIB] baseline nights, followed by 39 hours total sleep deprivation (TSD), and two 8-10 hour TIB recovery nights. A modified Trier Social Stress Test was conducted on the day after TSD. Psychomotor Vigilance Tests measured behavioral attention. DNA damage was assessed in blood cells collected at 5 time points, and blood cells were irradiated ex-vivo. TSD, alone or in combination with psychological stress, did not induce significant increases in DNA damage. By contrast, radiation-induced DNA damage decreased significantly in response to TSD, but increased back to baseline when combined with psychological stress. Cognitively-vulnerable individuals had more radiation-induced DNA strand breaks before TSD, indicating their greater sensitivity to DNA damage from environmental stressors. Our results provide novel insights into the molecular consequences of sleep deprivation, psychological stress, and performance vulnerability. They are important for situations involving sleep loss, radiation exposure and cognitive deficits, including cancer therapy, environmental toxicology, and space medicine.

  1. APE2 Zf-GRF facilitates 3'-5' resection of DNA damage following oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Bret D.; Berman, Zachary; Mueller, Geoffrey A.; Lin, Yunfeng; Chang, Timothy; Andres, Sara N.; Wojtaszek, Jessica L.; DeRose, Eugene F.; Appel, C. Denise; London, Robert E.; Yan, Shan; Williams, R. Scott

    2016-12-27

    The Xenopus laevis APE2 (apurinic/apyrimidinic endonuclease 2) nuclease participates in 3'-5' nucleolytic resection of oxidative DNA damage and activation of the ATR-Chk1 DNA damage response (DDR) pathway via ill-defined mechanisms. Here we report that APE2 resection activity is regulated by DNA interactions in its Zf-GRF domain, a region sharing high homology with DDR proteins Topoisomerase 3α (TOP3α) and NEIL3 (Nei-like DNA glycosylase 3), as well as transcription and RNA regulatory proteins, such as TTF2 (transcription termination factor 2), TFIIS, and RPB9. Biochemical and NMR results establish the nucleic acid-binding activity of the Zf-GRF domain. Moreover, an APE2 Zf-GRF X-ray structure and small-angle X-ray scattering analyses show that the Zf-GRF fold is typified by a crescent-shaped ssDNA binding claw that is flexibly appended to an APE2 endonuclease/exonuclease/phosphatase (EEP) catalytic core. Structure-guided Zf-GRF mutations impact APE2 DNA binding and 3'-5' exonuclease processing, and also prevent efficient APE2-dependent RPA recruitment to damaged chromatin and activation of the ATR-Chk1 DDR pathway in response to oxidative stress in Xenopus egg extracts. Collectively, our data unveil the APE2 Zf-GRF domain as a nucleic acid interaction module in the regulation of a key single-strand break resection function of APE2, and also reveal topologic similarity of the Zf-GRF to the zinc ribbon domains of TFIIS and RPB9.

  2. DNA methyltransferases contribute to the fungal development, stress tolerance and virulence of the entomopathogenic fungus Metarhizium robertsii.

    Science.gov (United States)

    Wang, Yulong; Wang, Tiantian; Qiao, Lintao; Zhu, Jianyu; Fan, Jinrui; Zhang, Tingting; Wang, Zhang-Xun; Li, Wanzhen; Chen, Anhui; Huang, Bo

    2017-05-01

    DNA methylation is an important epigenetic mark in mammals, plants, and fungi and depends on multiple genetic pathways involving de novo and maintenance DNA methyltransferases (DNMTases). Metarhizium robertsii, a model system for investigating insect-fungus interactions, has been used as an environmentally friendly alternative to chemical insecticides. However, little is known concerning the molecular basis for DNA methylation. Here, we report on the roles of two DNMTases (MrRID and MrDIM-2) by characterizing ΔMrRID, ΔMrDIM-2, and ΔRID/ΔDIM-2 mutants. The results showed that approximately 71, 10, and 8% of m C sites remained in the ΔMrRID, ΔMrDIM-2, and ΔRID/ΔDIM-2 strains, respectively, compared with the wild-type (WT) strain. Further analysis showed that MrRID regulates the specificity of DNA methylation and MrDIM-2 is responsible for most DNA methylation, implying an interaction or cooperation between MrRID and MrDIM-2 for DNA methylation. Moreover, the ΔMrDIM-2 and ΔRID/ΔDIM-2 strains showed more defects in radial growth and conidial production compared to the WT. Under ultraviolet (UV) irradiation or heat stress, an obvious reduction in spore viability was observed for all the mutant strains compared to the WT. The spore median lethal times (LT 50 s) for the ΔMrDIM-2 and ΔRID/ΔDIM-2 strains in the greater wax moth, Galleria mellonella, were decreased by 47.7 and 65.9%, respectively, which showed that MrDIM-2 is required for full fungal virulence. Our data advances the understanding of the function of DNMTase in entomopathogenic fungi, which should contribute to future epigenetic investigations in fungi.

  3. Stress-induced gene expression and behavior are controlled by DNA methylation and methyl donor availability in the dentate gyrus

    Science.gov (United States)

    Saunderson, Emily A.; Spiers, Helen; Gutierrez-Mecinas, Maria; Trollope, Alexandra F.; Shaikh, Abeera; Mill, Jonathan; Reul, Johannes M. H. M.

    2016-01-01

    Stressful events evoke long-term changes in behavioral responses; however, the underlying mechanisms in the brain are not well understood. Previous work has shown that epigenetic changes and immediate-early gene (IEG) induction in stress-activated dentate gyrus (DG) granule neurons play a crucial role in these behavioral responses. Here, we show that an acute stressful challenge [i.e., forced swimming (FS)] results in DNA demethylation at specific CpG (5′-cytosine–phosphate–guanine-3′) sites close to the c-Fos (FBJ murine osteosarcoma viral oncogene homolog) transcriptional start site and within the gene promoter region of Egr-1 (early growth response protein 1) specifically in the DG. Administration of the (endogenous) methyl donor S-adenosyl methionine (SAM) did not affect CpG methylation and IEG gene expression at baseline. However, administration of SAM before the FS challenge resulted in an enhanced CpG methylation at the IEG loci and suppression of IEG induction specifically in the DG and an impaired behavioral immobility response 24 h later. The stressor also specifically increased the expression of the de novo DNA methyltransferase Dnmt3a [DNA (cytosine-5-)-methyltransferase 3 alpha] in this hippocampus region. Moreover, stress resulted in an increased association of Dnmt3a enzyme with the affected CpG loci within the IEG genes. No effects of SAM were observed on stress-evoked histone modifications, including H3S10p-K14ac (histone H3, phosphorylated serine 10 and acetylated lysine-14), H3K4me3 (histone H3, trimethylated lysine-4), H3K9me3 (histone H3, trimethylated lysine-9), and H3K27me3 (histone H3, trimethylated lysine-27). We conclude that the DNA methylation status of IEGs plays a crucial role in FS-induced IEG induction in DG granule neurons and associated behavioral responses. In addition, the concentration of available methyl donor, possibly in conjunction with Dnmt3a, is critical for the responsiveness of dentate neurons to environmental

  4. Photorepair of UV damage to DNA: purification and properties of DNA photolyase (the DNA-photoreactivating enzyme). Progress report, August 1, 1975--July 31, 1976

    International Nuclear Information System (INIS)

    Werbin, H.

    1976-01-01

    Progress is reported on the following research projects: separation of photolyase subunits by sucrose gradient sedimentation; determination of whether fluorescent material is the chromophore for photolyase; studies on tryptophane and lysine residues to determine whether these are involved in the binding and photolytic steps; nmr spectrum of activator of photolyase; damage to pea chromatin by solar near uv and repair of damage; tryptophan residues in yeast DNA photolyase; photolyase in pea seedlings; and nuclear magnetic resonance spectra of purified activator

  5. Rheological and qualitative characteristics of pea flour incorporated cracker biscuits

    Directory of Open Access Journals (Sweden)

    Jolana Karovičová

    2013-01-01

    Full Text Available The suitability of pea flour for cracker biscuits production was investigated in this study. Pea flour was characterised by high protein (21.46 % and ash (3.11 % content and exhibited relatively high emulsifying (37.50 ml/100 ml and foaming (53.50 ml/100 ml capacity. The effect of pea flour incorporation to wheat dough (substitution levels 0, 10, 20 and 30 % on the rheological properties, physical characteristics and sensory parameters of cracker biscuits were also evaluated. Farinographic measurements showed that pea flour addition resulted in increasing of water absorption (from 58.90 to 61.80 % and dough development time (from 3.55 to 4.50 min, whereas dough stability was decreased (from 6.69 to 3.50 min. It was also found that incorporation of pea flour to cracker biscuits modified physical properties of final products by different ways (decreasing of volume index, width and spread ratio, increasing of thickness. From the sensory evaluation revealed that cracker biscuits prepared from blend flour contained 10 % pea flour showed no significant differences from wheat cracker biscuits. Higher levels of pea flour in the products adversely affected the odour, taste, firmness, colour and overall acceptance of final products.

  6. Low-dose carbon ion irradiation effects on DNA damage and oxidative stress in the mouse testis

    Science.gov (United States)

    Liu, Yang; Long, Jing; Zhang, Luwei; Zhang, Hong; Liu, Bin; Zhao, Weiping; Wu, Zhehua

    2011-01-01

    To investigate the effects of low-dose carbon ion irradiation on reproductive system of mice, the testes of outbred Kunming strain mice were whole-body irradiated with 0, 0.05, 0.1, 0.5 and 1 Gy, respectively. We measured DNA double-strand breaks (DNA DSBs) and oxidative stress parameters including malondialdehyde (MDA) content, superoxide dismutase (SOD) activity, and testis weight and sperm count at 12 h, 21 d and 35 d after irradiation in mouse testis. At 12 h postirradiation, a significant increase in DNA DSB level but no pronounced alterations in MDA content or SOD activity were observed in 0.5 and 1 Gy groups compared with the control group. At 21 d postirradiation, there was a significant reduction in sperm count and distinct enhancements of DSB level and MDA content in 0.5 and 1 Gy groups in comparison with control. At 35 d postirradiation, the levels of DNA DSBs and MDA, and SOD activity returned to the baseline except for the MDA content in 1 Gy (P sperm count were still observed in 0.5 (P sperm count. Furthermore, these data suggest that the deleterious effects may be chronic or delayed in reproductive system after whole-body exposure to acute high-dose carbon ions.

  7. Liposome-based DNA carriers may induce cellular stress response and change gene expression pattern in transfected cells

    Science.gov (United States)

    2011-01-01

    Background During functional studies on the rat stress-inducible Hspa1b (hsp70.1) gene we noticed that some liposome-based DNA carriers, which are used for transfection, induce its promoter activity. This observation concerned commercial liposome formulations (LA), Lipofectin and Lipofectamine 2000. This work was aimed to understand better the mechanism of this phenomenon and its potential biological and practical consequences. Results We found that a reporter gene driven by Hspa1b promoter is activated both in the case of transient transfections and in the stably transfected cells treated with LA. Using several deletion clones containing different fragments of Hspa1b promoter, we found that the regulatory elements responsible for most efficient LA-driven inducibility were located between nucleotides -269 and +85, relative to the transcription start site. Further studies showed that the induction mechanism was independent of the classical HSE-HSF interaction that is responsible for gene activation during heat stress. Using DNA microarrays we also detected significant activation of the endogenous Hspa1b gene in cells treated with Lipofectamine 2000. Several other stress genes were also induced, along with numerous genes involved in cellular metabolism, cell cycle control and pro-apoptotic pathways. Conclusions Our observations suggest that i) some cationic liposomes may not be suitable for functional studies on hsp promoters, ii) lipofection may cause unintended changes in global gene expression in the transfected cells. PMID:21663599

  8. Liposome-based DNA carriers may induce cellular stress response and change gene expression pattern in transfected cells

    Directory of Open Access Journals (Sweden)

    Lisowska Katarzyna Marta

    2011-06-01

    Full Text Available Abstract Background During functional studies on the rat stress-inducible Hspa1b (hsp70.1 gene we noticed that some liposome-based DNA carriers, which are used for transfection, induce its promoter activity. This observation concerned commercial liposome formulations (LA, Lipofectin and Lipofectamine 2000. This work was aimed to understand better the mechanism of this phenomenon and its potential biological and practical consequences. Results We found that a reporter gene driven by Hspa1b promoter is activated both in the case of transient transfections and in the stably transfected cells treated with LA. Using several deletion clones containing different fragments of Hspa1b promoter, we found that the regulatory elements responsible for most efficient LA-driven inducibility were located between nucleotides -269 and +85, relative to the transcription start site. Further studies showed that the induction mechanism was independent of the classical HSE-HSF interaction that is responsible for gene activation during heat stress. Using DNA microarrays we also detected significant activation of the endogenous Hspa1b gene in cells treated with Lipofectamine 2000. Several other stress genes were also induced, along with numerous genes involved in cellular metabolism, cell cycle control and pro-apoptotic pathways. Conclusions Our observations suggest that i some cationic liposomes may not be suitable for functional studies on hsp promoters, ii lipofection may cause unintended changes in global gene expression in the transfected cells.

  9. ISOLATION OF MESOPHYLL PROTOPLASTS FROM MEDITERRANEAN WOODY PLANTS FOR THE STUDY OF DNA INTEGRITY UNDER ABIOTIC STRESS

    Directory of Open Access Journals (Sweden)

    Elena Kuzminsky

    2016-08-01

    Full Text Available Abiotic stresses have considerable negative impact on Mediterranean plant ecosystems and better comprehension of the genetic control of response and adaptation of trees to global changes is urgently needed. The Single Cell Gel Electrophoresis assay could be considered a good estimator of DNA damage in an individual eukaryotic cell. This method has been mainly employed in animal tissues, because the plant cell wall represents an obstacle for the extraction of nuclei; moreover, in Mediterranean woody species, especially in the sclerophyll plants, this procedure can be quite difficult because of the presence of sclerenchyma and hardened cells. On the other hand, these plants represent an interesting material to be studied because of the ability of these plants to tolerate abiotic stress. For instance, holm oak (Quercus ilex L. has been selected as the model plant to identify critical levels of O3 for Southern European forests. Consequently, a quantitative method for the evaluation of cell injury of leaf tissues of this species is required. Optimal conditions for high-yield nuclei isolation were obtained by using protoplast technology and a detailed description of the method is provided and discussed. White poplar (Populus alba L. was used as an internal control for protoplast isolation. Such a method has not been previously reported in newly fully developed leaves of holm oak. This method combined with Single Cell Gel Electrophoresis assay represents a new tool for testing the DNA integrity of leaf tissues in higher plants under stress conditions.

  10. Symbiotic nitrogen fixation and nitrate uptake by the pea crop

    International Nuclear Information System (INIS)

    Jensen, E.S.

    1986-08-01

    Symbiotic nitrogen fixation and nitrate uptake by pea plants (Pisum sativum L.) were studied in field and pot experiments using the 15 N isotope dilution technique and spring barley as a non-fixing reference crop. Barley, although not ideal, seemed to be a suitable reference for pea in the 15 N-technique. Maximum N 2 fixation activity of 10 kg N fixed per ha per day was reached around the flat pod growth stage, and the activity decreased rapidly during pod-filling. The pea crop fixed between 100 and 250 kg N ha -1 , corresponding to from 45 to 80 per cent of total crop N. The amount of symbiotically fixed N 2 depended on the climatic conditions in the experimental year, the level of soil mineral N and the pea cultivar. Field-grown pea took up 60 to 70 per cent of the N-fertilizer supplied. The supply of 50 kg NO 3 -N ha -1 inhibited the N 2 fixation approximately 15 per cent. Small amounts of fertilizer N, supplied at sowing (starter-N), slightly stimulated the vegetative growth of pea, but the yields of seed dry matter and protein were not significantly influenced. In the present field experiments the environmental conditions, especially the distribution of rainfall during the growth season, seemed to be more important in determining the protein and dry matter yield of the dry pea crop, than the ability of pea to fix nitrogen symbiotically. However, fertilizer N supplied to pot-grown pea plants at the flat pod growth stage or as split applications significantly increased the yield of seed dry matter and protein. (author)

  11. Lead-induced DNA damage in Vicia faba root cells: Potential involvement of oxidative stress

    OpenAIRE

    Pourrut, Bertrand; Jean, Séverine; Silvestre, Jérôme; Pinelli, Eric

    2011-01-01

    Genotoxic effects of lead (0–20 µM) were investigated in whole-plant roots of Vicia faba L., grown hydroponically under controlled conditions. Lead-induced DNA damage in V. faba roots was evaluated by use of the comet assay, which allowed the detection of DNA strand-breakage and with the V. faba micronucleus test, which revealed chromosome aberrations. The results clearly indicate that lead induced DNA fragmentation in a dose-dependant manner with a maximum effect at 10 µM. In addition, at th...

  12. Exposure to Ultrafine Particles from Ambient Air and Oxidative Stress-Induced DNA Damage

    DEFF Research Database (Denmark)

    Bräuner, Elvira Vaclavik; Forchhammer, Lykke; Møller, Peter

    2007-01-01

    mononuclear cells (PBMCs) during controlled exposure to urban air particles with assignment of number concentration (NC) to four size modes with average diameters of 12, 23, 57, and 212 nm. DESIGN. Twenty-nine healthy adults participated in a randomized, two-factor cross-over study with or without biking...... exercise for 180 min and with exposure to particles (NC 6169-15362/cm3) or filtered air (NC 91-542/cm3) for 24 hr. METHODS: The levels of DNA strand breaks (SBs), oxidized purines as formamidopyrimidine DNA glycolase (FPG) sites, and activity of 7,8-dihydro-8-oxoguanine-DNA glycosylase (OGG1) in PBMCs were...

  13. Cellular Dynamics of Rad51 and Rad54 in Response to Postreplicative Stress and DNA Damage in HeLa Cells.

    Science.gov (United States)

    Choi, Eui-Hwan; Yoon, Seobin; Hahn, Yoonsoo; Kim, Keun P

    2017-02-01

    Homologous recombination (HR) is necessary for maintenance of genomic integrity and prevention of various mutations in tumor suppressor genes and proto-oncogenes. Rad51 and Rad54 are key HR factors that cope with replication stress and DNA breaks in eukaryotes. Rad51 binds to single-stranded DNA (ssDNA) to form the presynaptic filament that promotes a homology search and DNA strand exchange, and Rad54 stimulates the strand-pairing function of Rad51. Here, we studied the molecular dynamics of Rad51 and Rad54 during the cell cycle of HeLa cells. These cells constitutively express Rad51 and Rad54 throughout the entire cell cycle, and the formation of foci immediately increased in response to various types of DNA damage and replication stress, except for caffeine, which suppressed the Rad51-dependent HR pathway. Depletion of Rad51 caused severe defects in response to postreplicative stress. Accordingly, HeLa cells were arrested at the G2-M transition although a small amount of Rad51 was steadily maintained in HeLa cells. Our results suggest that cell cycle progression and proliferation of HeLa cells can be tightly controlled by the abundance of HR proteins, which are essential for the rapid response to postreplicative stress and DNA damage stress.

  14. Functions of Ubiquitin and SUMO in DNA Replication and Replication Stress

    Science.gov (United States)

    García-Rodríguez, Néstor; Wong, Ronald P.; Ulrich, Helle D.

    2016-01-01

    Complete and faithful duplication of its entire genetic material is one of the essential prerequisites for a proliferating cell to maintain genome stability. Yet, during replication DNA is particularly vulnerable to insults. On the one hand, lesions in replicating DNA frequently cause a stalling of the replication machinery, as most DNA polymerases cannot cope with defective templates. This situation is aggravated by the fact that strand separation in preparation for DNA synthesis prevents common repair mechanisms relying on strand complementarity, such as base and nucleotide excision repair, from working properly. On the other hand, the replication process itself subjects the DNA to a series of hazardous transformations, ranging from the exposure of single-stranded DNA to topological contortions and the generation of nicks and fragments, which all bear the risk of inducing genomic instability. Dealing with these problems requires rapid and flexible responses, for which posttranslational protein modifications that act independently of protein synthesis are particularly well suited. Hence, it is not surprising that members of the ubiquitin family, particularly ubiquitin itself and SUMO, feature prominently in controlling many of the defensive and restorative measures involved in the protection of DNA during replication. In this review we will discuss the contributions of ubiquitin and SUMO to genome maintenance specifically as they relate to DNA replication. We will consider cases where the modifiers act during regular, i.e., unperturbed stages of replication, such as initiation, fork progression, and termination, but also give an account of their functions in dealing with lesions, replication stalling and fork collapse. PMID:27242895

  15. Vitamin C deficiency in weanling guinea pigs: differential expression of oxidative stress and DNA repair in liver and brain

    DEFF Research Database (Denmark)

    Lykkesfeldt, Jens; Trueba, Gilberto Perez; Poulsen, Henrik E

    2007-01-01

    Neonates are particularly susceptible to malnutrition due to their limited reserves of micronutrients and their rapid growth. In the present study, we examined the effect of vitamin C deficiency on markers of oxidative stress in plasma, liver and brain of weanling guinea pigs. Vitamin C deficiency...... incision repair (P = 0.014) were all increased, while protein oxidation decreased (P = 0.003). The results show that the selective preservation of brain ascorbate and induction of DNA repair in vitamin C-deficient weanling guinea pigs is not sufficient to prevent oxidative damage. Vitamin C deficiency may...

  16. Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells

    DEFF Research Database (Denmark)

    Bursomanno, Sara; Beli, Petra; Khan, Asif M

    2015-01-01

    SUMOylation is a form of post-translational modification involving covalent attachment of SUMO (Small Ubiquitin-like Modifier) polypeptides to specific lysine residues in the target protein. In human cells, there are four SUMO proteins, SUMO1-4, with SUMO2 and SUMO3 forming a closely related subf......, and that excessive replication stress is a hallmark of pre-neoplastic and tumor cells, our characterization of SUMO2 targets during a perturbed S-phase should provide a valuable resource for future functional studies in the fields of DNA metabolism and cancer biology....

  17. The role of mitochondrial DNA damage at skeletal muscle oxidative stress on the development of type 2 diabetes.

    Science.gov (United States)

    Dos Santos, Julia Matzenbacher; de Oliveira, Denise Silva; Moreli, Marcos Lazaro; Benite-Ribeiro, Sandra Aparecida

    2018-04-20

    Reduced cellular response to insulin in skeletal muscle is one of the major components of the development of type 2 diabetes (T2D). Mitochondrial dysfunction involves in the accumulation of toxic reactive oxygen species (ROS) that leads to insulin resistance. The aim of this study was to verify the involvement of mitochondrial DNA damage at ROS generation in skeletal muscle during development of T2D. Wistar rats were fed a diet containing 60% fat over 8 weeks and at day 14 a single injection of STZ (25 mg/kg) was administered (T2D-induced). Control rats received standard food and an injection of citrate buffer. Blood and soleus muscle were collected. Abdominal fat was quantified as well as glucose, triglyceride, LDL, HDL, and total cholesterol in plasma and mtDNA copy number, cytochrome b (cytb) mRNA, 8-hydroxyguanosine, and 8-isoprostane (a marker of ROS) in soleus muscle. T2D-induced animal presented similar characteristics to humans that develop T2D such as changes in blood glucose, abdominal fat, LDL, HDL and cholesterol total. In soleus muscle 8-isoprostane, mtDNA copy number and 8-hydroxyguanosine were increased, while cytb mRNA was decreased in T2D. Our results suggest that in the development of T2D, when risks factors of T2D are present, intracellular oxidative stress increases in skeletal muscle and is associated with a decrease in cytb transcription. To overcome this process mtDNA increased but due to the proximity of ROS generation, mtDNA remains damaged by oxidation leading to an increase in ROS in a vicious cycle accounting to the development of insulin resistance and further T2D.

  18. Protein methylation reactions in intact pea chloroplasts

    International Nuclear Information System (INIS)

    Niemi, K.J.

    1989-01-01

    Post-translational protein methylation was investigated in Pisum sativum chloroplasts. Intact pea chloroplasts were incubated with ( 3 H-methyl)-S-adenosylmethionine under various conditions. The chloroplasts were then separated into stromal and thylakoid fractions and analyzed for radioactivity transferred to protein. Light enhanced the magnitude of labeling in both fractions. One thylakoid polypeptide with an apparent molecular mass of 43 kDa was labeled only in the light. Several other thylakoid and stromal proteins were labeled in both light and dark-labeling conditions. Both base-labile methylation, carboxy-methylesters and base-stable groups, N-methylations were found. Further characterization of the methyl-transfer reactions will be presented

  19. Lodging resistant pea line derived after mutagenic treatment

    International Nuclear Information System (INIS)

    Naidenova, N.; Vassilevska-Ivanova, R.

    2006-01-01

    Line 1/502 is a new lodging resistant pea ( Pisum sativum L.) developed for the Bulgarian field pea industry. This line is a direct chlorophyll mutant, which originates after treatment of the initial line, cultivar Auralia, with 150 Gy 60 Co γ - radiation. In regional evaluation trials conducted in Sofia over seven successive seasons 1/502 has revealed improved standing ability that most probably is a result from modification of the architecture of the plants appearing in reduction of plant height. The agronomic and morphological characteristics of the mutant line were reported. The upright plant habit and resistance to lodging is especially beneficial for production of high quality peas because pods are held above the soil surface during crop development and during maturity which aids in keeping the peas clean and free of pathogens that can cause discoloration and rotting. (authors)

  20. Effect of Pigeon Pea Hedgerow Alley Management on the Growth ...

    African Journals Online (AJOL)

    year (2010 and 2011 cropping seasons) field investigation conducted at the National Root Crops Research Institute, Umudike, South Eastern Nigeria. Treatments comprised three pigeon pea hedgerow alley populations of 20,000, 33,333 and ...

  1. Induced mutants in beans and peas resistant to rust

    International Nuclear Information System (INIS)

    Fadl, F.A.M.

    1983-01-01

    Beans (Phaseolus vulgaris) and peas (Pisum sativum) are important leguminous vegetable crops in Egypt. The area planted with beans is about 40,000 acres and peas 22,000 acres. These crops suffer from several diseases, particularly rusts, (Uromyces phaseoli/Uromyces pisi), which are mainly spread in northern Egypt. In our mutation induction programme we used 60 Co gamma rays and ethyl methane sulphonate (EMS). Bean and pea seeds were soaked in water for two hours before exposure to 8, 10 and 12 krad. For chemical treatments, bean and pea seeds were soaked in water for eight hours and then treated with 0.5 and 1.5% EMS for four hours. The M 1 was cultivated in 1978

  2. Pea (Pisum sativum L.) in the Genomic Era

    Czech Academy of Sciences Publication Activity Database

    Smýkal, P.; Aubert, G.; Burstin, J.; Coyne, C.J.; Ellis, N.T.H.; Flavell, A.J.; Ford, R.; Hýbl, M.; Macas, Jiří; Neumann, Pavel; McPhee, K.E.; Redden, R.J.; Rubiales, D.; Weller, J.L.; Warkentin, T.D.

    2012-01-01

    Roč. 2, č. 2 (2012), s. 74-115 ISSN 2073-4395 Institutional research plan: CEZ:AV0Z50510513 Institutional support: RVO:60077344 Keywords : breeding * germplasm * genetic diversity * pea Subject RIV: EB - Genetics ; Molecular Biology

  3. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.).

    Science.gov (United States)

    Jayaraman, Ananthi; Puranik, Swati; Rai, Neeraj Kumar; Vidapu, Sudhakar; Sahu, Pranav Pankaj; Lata, Charu; Prasad, Manoj

    2008-11-01

    Plant growth and productivity are affected by various abiotic stresses such as heat, drought, cold, salinity, etc. The mechanism of salt tolerance is one of the most important subjects in plant science as salt stress decreases worldwide agricultural production. In our present study we used cDNA-AFLP technique to compare gene expression profiles of a salt tolerant and a salt-sensitive cultivar of foxtail millet (Seteria italica) in response to salt stress to identify early responsive differentially expressed transcripts accumulated upon salt stress and validate the obtained result through quantitative real-time PCR (qRT-PCR). The expression profile was compared between a salt tolerant (Prasad) and susceptible variety (Lepakshi) of foxtail millet in both control condition (L0 and P0) and after 1 h (L1 and P1) of salt stress. We identified 90 transcript-derived fragments (TDFs) that are differentially expressed, out of which 86 TDFs were classified on the basis of their either complete presence or absence (qualitative variants) and 4 on differential expression pattern levels (quantitative variants) in the two varieties. Finally, we identified 27 non-redundant differentially expressed cDNAs that are unique to salt tolerant variety which represent different groups of genes involved in metabolism, cellular transport, cell signaling, transcriptional regulation, mRNA splicing, seed development and storage, etc. The expression patterns of seven out of nine such genes showed a significant increase of differential expression in tolerant variety after 1 h of salt stress in comparison to salt-sensitive variety as analyzed by qRT-PCR. The direct and indirect relationship of identified TDFs with salinity tolerance mechanism is discussed.

  4. Pea (Pisum sativum L. in the Genomic Era

    Directory of Open Access Journals (Sweden)

    Robert J. Redden

    2012-04-01

    Full Text Available Pea (Pisum sativum L. was the original model organism used in Mendel’s discovery (1866 of the laws of inheritance, making it the foundation of modern plant genetics. However, subsequent progress in pea genomics has lagged behind many other plant species. Although the size and repetitive nature of the pea genome has so far restricted its sequencing, comprehensive genomic and post genomic resources already exist. These include BAC libraries, several types of molecular marker sets, both transcriptome and proteome datasets and mutant populations for reverse genetics. The availability of the full genome sequences of three legume species has offered significant opportunities for genome wide comparison revealing synteny and co-linearity to pea. A combination of a candidate gene and colinearity approach has successfully led to the identification of genes underlying agronomically important traits including virus resistances and plant architecture. Some of this knowledge has already been applied to marker assisted selection (MAS programs, increasing precision and shortening the breeding cycle. Yet, complete translation of marker discovery to pea breeding is still to be achieved. Molecular analysis of pea collections has shown that although substantial variation is present within the cultivated genepool, wild material offers the possibility to incorporate novel traits that may have been inadvertently eliminated. Association mapping analysis of diverse pea germplasm promises to identify genetic variation related to desirable agronomic traits, which are historically difficult to breed for in a traditional manner. The availability of high throughput ‘omics’ methodologies offers great promise for the development of novel, highly accurate selective breeding tools for improved pea genotypes that are sustainable under current and future climates and farming systems.

  5. Ly α and UV Sizes of Green Pea Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huan; Wang, Junxian [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China (China); Malhotra, Sangeeta; Rhoads, James E.; Jiang, Tianxing [Arizona State University, School of Earth and Space Exploration (United States); Leitherer, Claus [Space Telescope Science Institute, 3700 San Martin Dr, Baltimore, MD 21218 (United States); Wofford, Aida, E-mail: huan.y@asu.edu [National Autonomous University of Mexico, Institute of Astronomy (Mexico)

    2017-03-20

    Green Peas are nearby analogs of high-redshift Ly α -emitting galaxies (LAEs). To probe their Ly α escape, we study the spatial profiles of Ly α and UV continuum emission of 24 Green Pea galaxies using the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope . We extract the spatial profiles of Ly α emission from their 2D COS spectra, and of the UV continuum from both 2D spectra and NUV images. The Ly α emission shows more extended spatial profiles than the UV continuum, in most Green Peas. The deconvolved full width at half maximum of the Ly α spatial profile is about 2–4 times that of the UV continuum, in most cases. Because Green Peas are analogs of high z LAEs, our results suggest that most high- z LAEs probably have larger Ly α sizes than UV sizes. We also compare the spatial profiles of Ly α photons at blueshifted and redshifted velocities in eight Green Peas with sufficient data quality, and find that the blue wing of the Ly α line has a larger spatial extent than the red wing in four Green Peas with comparatively weak blue Ly α line wings. We show that Green Peas and MUSE z = 3–6 LAEs have similar Ly α and UV continuum sizes, which probably suggests that starbursts in both low- z and high- z LAEs drive similar gas outflows illuminated by Ly α light. Five Lyman continuum (LyC) leakers in this sample have similar Ly α to UV continuum size ratios (∼1.4–4.3) to the other Green Peas, indicating that their LyC emissions escape through ionized holes in the interstellar medium.

  6. PEA: an integrated R toolkit for plant epitranscriptome analysis.

    Science.gov (United States)

    Zhai, Jingjing; Song, Jie; Cheng, Qian; Tang, Yunjia; Ma, Chuang

    2018-05-29

    The epitranscriptome, also known as chemical modifications of RNA (CMRs), is a newly discovered layer of gene regulation, the biological importance of which emerged through analysis of only a small fraction of CMRs detected by high-throughput sequencing technologies. Understanding of the epitranscriptome is hampered by the absence of computational tools for the systematic analysis of epitranscriptome sequencing data. In addition, no tools have yet been designed for accurate prediction of CMRs in plants, or to extend epitranscriptome analysis from a fraction of the transcriptome to its entirety. Here, we introduce PEA, an integrated R toolkit to facilitate the analysis of plant epitranscriptome data. The PEA toolkit contains a comprehensive collection of functions required for read mapping, CMR calling, motif scanning and discovery, and gene functional enrichment analysis. PEA also takes advantage of machine learning technologies for transcriptome-scale CMR prediction, with high prediction accuracy, using the Positive Samples Only Learning algorithm, which addresses the two-class classification problem by using only positive samples (CMRs), in the absence of negative samples (non-CMRs). Hence PEA is a versatile epitranscriptome analysis pipeline covering CMR calling, prediction, and annotation, and we describe its application to predict N6-methyladenosine (m6A) modifications in Arabidopsis thaliana. Experimental results demonstrate that the toolkit achieved 71.6% sensitivity and 73.7% specificity, which is superior to existing m6A predictors. PEA is potentially broadly applicable to the in-depth study of epitranscriptomics. PEA Docker image is available at https://hub.docker.com/r/malab/pea, source codes and user manual are available at https://github.com/cma2015/PEA. chuangma2006@gmail.com. Supplementary data are available at Bioinformatics online.

  7. Long-term iron deficiency: Tracing changes in the proteome of different pea (Pisum sativum L.) cultivars.

    Science.gov (United States)

    Meisrimler, Claudia-Nicole; Wienkoop, Stefanie; Lyon, David; Geilfus, Christoph-Martin; Lüthje, Sabine

    2016-05-17

    Iron deficiency (-Fe) is one of the major problems in crop production. Dicots, like pea (Pisum sativum L.), are Strategy I plants, which induce a group of specific enzymes such as Fe(III)-chelate reductase (FRO), Fe responsive transporter (IRT) and H(+)-ATPase (HA) at the root plasma membrane under -Fe. Different species and cultivars have been shown to react diversely to -Fe. Furthermore, different kinds of experimental set-ups for -Fe have to be distinguished: i) short-term vs. long-term, ii) constant vs. acute alteration and iii) buffered vs. unbuffered systems. The presented work compares the effects of constant long-term -Fe in an unbuffered system on roots of four different pea cultivars in a timely manner (12, 19 and 25days). To differentiate the effects of -Fe and plant development, control plants (+Fe) were analyzed in comparison to -Fe plants. Besides physiological measurements, an integrative study was conducted using a comprehensive proteome analysis. Proteins, related to stress adaptation (e.g. HSP), reactive oxygen species related proteins and proteins of the mitochondrial electron transport were identified to be changed in their abundance. Regulations and possible functions of identified proteins are discussed. Pea (Pisum sativum L.) belongs to the legume family (Fabaceae) and is an important crop plant due to high Fe, starch and protein contents. According to FAOSTAT data (September 2015), world production of the garden pea quadrupled from 1970 to 2012. Since the initial studies by Gregor Mendel, the garden pea became the most-characterized legume and has been used in numerous investigations in plant biochemistry and physiology, but is not well represented in the "omics"-related fields. A major limitation in pea production is the Fe availability from soils. Adaption mechanisms to Fe deficiency vary between species, and even cultivars have been shown to react diversely. A label-free proteomic approach, in combination with physiological measurements

  8. Peroxisomal monodehydroascorbate reductase. Genomic clone characterization and functional analysis under environmental stress conditions.

    Science.gov (United States)

    Leterrier, Marina; Corpas, Francisco J; Barroso, Juan B; Sandalio, Luisa M; del Río, Luis A

    2005-08-01

    In plant cells, ascorbate is a major antioxidant that is involved in the ascorbate-glutathione cycle. Monodehydroascorbate reductase (MDAR) is the enzymatic component of this cycle involved in the regeneration of reduced ascorbate. The identification of the intron-exon organization and the promoter region of the pea (Pisum sativum) MDAR 1 gene was achieved in pea leaves using the method of walking polymerase chain reaction on genomic DNA. The nuclear gene of MDAR 1 comprises nine exons and eight introns, giving a total length of 3,770 bp. The sequence of 544 bp upstream of the initiation codon, which contains the promoter and 5' untranslated region, and 190 bp downstream of the stop codon were also determined. The presence of different regulatory motifs in the promoter region of the gene might indicate distinct responses to various conditions. The expression analysis in different plant organs by northern blots showed that fruits had the highest level of MDAR. Confocal laser scanning microscopy analysis of pea leaves transformed with Agrobacterium tumefaciens having the binary vectors pGD, which contain the autofluorescent proteins enhanced green fluorescent protein and enhanced yellow fluorescent protein with the full-length cDNA for MDAR 1 and catalase, indicated that the MDAR 1 encoded the peroxisomal isoform. The functional analysis of MDAR by activity and protein expression was studied in pea plants grown under eight stress conditions, including continuous light, high light intensity, continuous dark, mechanical wounding, low and high temperature, cadmium, and the herbicide 2,4-dichlorophenoxyacetic acid. This functional analysis is representative of all the MDAR isoforms present in the different cell compartments. Results obtained showed a significant induction by high light intensity and cadmium. On the other hand, expression studies, performed by semiquantitative reverse transcription-polymerase chain reaction demonstrated differential expression patterns of

  9. Induced mutations in beans and peas for resistance to rust

    International Nuclear Information System (INIS)

    Fadl, F.A.M.

    1983-01-01

    Gamma rays and ethyl methanesulphonate (EMS) were applied in a mutation-induction programme for rust resistance in bean and pea. Bean and pea seeds were pre-soaked 2 hours before irradiation with 9, 10 and 12 krad. For chemical mutagen treatments bean and pea seeds were pre-soaked for 8 hours and treated with 0.5 and 1.5% EMS for four hours. M 2 seeds of beans and peas were planted in 1979. Resistant M 2 plants were selected for their rust resistance and other morphological characters. M 3 seeds of selected plants were planted in 1980. In 1980 more seeds of the same varieties of beans and peas were treated with 0.1 and 0.3% EMS with the aim to produce rust-resistant mutants. Seed germination was reduced by gamma rays or EMS. Dwarf, malformed and abnormal plants were noticed. Some resistant M 2 plants selected gave high grain yields. Some were different in morphological characters. In the M 3 of selected plants various other mutant characters appeared, such as different height of plants, early and late flowering, resistance to powdery mildew in peas, altered grain yield, thickness of stem, pod shape and flower colour. (author)

  10. Analysis of DNA Methylation of Gracilariopsis lemaneiformis Under Temperature Stress Using the Methylation Sensitive Amplification Polymorphism (MSAP) Technique

    Science.gov (United States)

    Peng, Chong; Sui, Zhenghong; Zhou, Wei; Hu, Yiyi; Mi, Ping; Jiang, Minjie; Li, Xiaodong; Ruan, Xudong

    2018-06-01

    Gracilariopsis lemaneiformis is an economically important agarophyte, which contains high quality gel and shows a high growth rate. Wild population of G. lemaneiformis displayed resident divergence, though with a low genetic diversity as was revealed by amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) analyses. In addition, different strains of G. lemaneiformis are diverse in morphology. The highly inconsistence between genetic background and physiological characteristics recommends strongly to the regulation at epigenetic level. In this study, the DNA methylation change in G. lemaneiformis among different generation branches and under different temperature stresses was assessed using methylation sensitive amplified polymorphism (MSAP) technique. It was shown that DNA methylation level among different generation branches was diverse. The full and total methylated DNA level was the lowest in the second generation branch and the highest in the third generation. The total methylation level was 61.11%, 60.88% and 64.12% at 15°C, 22°C and 26°C, respectively. Compared with the control group (22°C), the fully methylated and totally methylated ratios were increased in both experiment groups (15°C and 26°C). All of the cytosine methylation/demethylation transform (CMDT) was further analyzed. High temperature treatment could induce more CMDT than low temperature treatment did.

  11. DNA damage and oxidative stress induced by imidacloprid exposure in the earthworm Eisenia fetida.

    Science.gov (United States)

    Wang, Juan; Wang, Jinhua; Wang, Guangchi; Zhu, Lusheng; Wang, Jun

    2016-02-01

    To investigate the soil ecological effect of imidacloprid, earthworm Eisenia fetida was exposed to various concentrations of imidacloprid (0.10, 0.50, and 1.00 mg kg(-1) soil) respectively after 7, 14, 21, and 28 d. The effect of imidacloprid on reactive oxygen species (ROS) generation, antioxidant enzymes activity [superoxide dismutase (SOD) and catalase (CAT), glutathione S-transferase enzyme (GST)], malondialdehyde (MDA) content and DNA damage of the E. fetida was investigated. Significant increase of the ROS level was observed. The SOD and GST activity were significantly induced at most exposure intervals. CAT activity was inhibited and reflected a dose-dependent relationship on days 7, 14 and 21. High MDA levels were observed and the olive tail moment (OTM) as well as the percentage of DNA in the comet tail (tail DNA%) in comet assay declined with increasing concentrations and exposure time after 7 d. Our results suggested that the sub-chronic exposure of imidacloprid caused DNA damage and lipid peroxidation (LPO) leading to antioxidant responses in earthworm E. fetida. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Stress, burnout and depression : A systematic review on DNA methylation mechanisms

    NARCIS (Netherlands)

    Bakusic, Jelena; Schaufeli, Wilmar; Claes, Stephan; Godderis, Lode

    2017-01-01

    Despite that burnout presents a serious burden for modern society, there are no diagnostic criteria. Additional difficulty is the differential diagnosis with depression. Consequently, there is a need to dispose of a burnout biomarker. Epigenetic studies suggest that DNA methylation is a possible

  13. Oxidative Stress, Inflammation, and DNA Damage Responses Elicited by Silver, Titanium Dioxide, and Cerium Oxide Nanomaterials

    Science.gov (United States)

    Previous literature on the biological effects of engineered nanomaterials has focused largely on oxidative stress and inflammation endpoints without further investigating potential pathways. Here we examine time-sensitive biological response pathways affected by engineered nanoma...

  14. Functional analyses of PtRDM1 gene overexpression in poplars and evaluation of its effect on DNA methylation and response to salt stress.

    Science.gov (United States)

    Movahedi, Ali; Zhang, Jiaxin; Sun, Weibo; Mohammadi, Kourosh; Almasi Zadeh Yaghuti, Amir; Wei, Hui; Wu, Xiaolong; Yin, Tongming; Zhuge, Qiang

    2018-06-01

    Epigenetic modification by DNA methylation is necessary for all cellular processes, including genetic expression events, DNA repair, genomic imprinting and regulation of tissue development. It occurs almost exclusively at the C5 position of symmetric CpG and asymmetric CpHpG and CpHpH sites in genomic DNA. The RNA-directed DNA methylation (RDM1) gene is crucial for heterochromatin and DNA methylation. We overexpressed PtRDM1 gene from Populus trichocarpa to amplify transcripts of orthologous RDM1 in 'Nanlin895' (P. deltoides × P. euramericana 'Nanlin895'). This overexpression resulted in increasing RDM1 transcript levels: by ∼150% at 0 mM NaCl treatment and by ∼300% at 60 mM NaCl treatment compared to WT (control) poplars. Genomic cytosine methylation was monitored within 5.8S rDNA and histone H3 loci by bisulfite sequencing. In total, transgenic poplars revealed more DNA methylation than WT plants. In our results, roots revealed more methylated CG contexts than stems and leaves whereas, histone H3 presented more DNA methylation than 5.8S rDNA in both WT and transgenic poplars. The NaCl stresses enhanced more DNA methylation in transgenic poplars than WT plants through histone H3 and 5.8 rDNA loci. Also, the overexpression of PtRDM1 resulted in hyper-methylation, which affected plant phenotype. Transgenic poplars revealed significantly more regeneration of roots than WT poplars via NaCl treatments. Our results proved that RDM1 protein enhanced the DNA methylation by chromatin remodeling (e.g. histone H3) more than repetitive DNA sequences (e.g. 5.8S rDNA). Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Stress

    Science.gov (United States)

    ... can be life-saving. But chronic stress can cause both physical and mental harm. There are at least three different types of stress: Routine stress related to the pressures of work, family, and other daily responsibilities Stress brought about ...

  16. FBH1 co-operates with MUS81 in inducing DNA double-strand breaks and cell death following replication stress

    DEFF Research Database (Denmark)

    Fugger, Kasper; Chu, Wai Kit; Haahr, Peter

    2013-01-01

    The molecular events occurring following the disruption of DNA replication forks are poorly characterized, despite extensive use of replication inhibitors such as hydroxyurea in the treatment of malignancies. Here, we identify a key role for the FBH1 helicase in mediating DNA double-strand break...... formation following replication inhibition. We show that FBH1-deficient cells are resistant to killing by hydroxyurea, and exhibit impaired activation of the pro-apoptotic factor p53, consistent with decreased DNA double-strand break formation. Similar findings were obtained in murine ES cells carrying...... of replication stress. Our data suggest that FBH1 helicase activity is required to eliminate cells with excessive replication stress through the generation of MUS81-induced DNA double-strand breaks....

  17. Chronic restraint stress in rats causes sustained increase in urinary corticosterone excretion without affecting cerebral or systemic oxidatively generated DNA/RNA damage

    DEFF Research Database (Denmark)

    Jorgensen, Anders; Maigaard, Katrine; Wörtwein, Gitta

    2013-01-01

    acids, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo), respectively, in rats subjected to chronic restraint stress. To reliably collect 24h urine samples, the full 3-week restraint stress paradigm was performed in metabolism cages. We further determined frontal...... and Tnf). The metabolism cage housing in itself did not significantly influence a range of biological stress markers. In the restraint stress group, there was a sustained 2.5 fold increase in 24h corticosterone excretion from day 2 after stress initiation. However, neither whole-body nor cerebral measures......Increased oxidatively generated damage to nucleic acids (DNA/RNA) may be a common mechanism underlying accelerated aging in psychological stress states and mental disorders. In the present study, we measured the urinary excretion of corticosterone and markers of systemic oxidative stress on nucleic...

  18. Stress induced by premature chromatin condensation triggers chromosome shattering and chromothripsis at DNA sites still replicating in micronuclei or multinucleate cells when primary nuclei enter mitosis.

    Science.gov (United States)

    Terzoudi, Georgia I; Karakosta, Maria; Pantelias, Antonio; Hatzi, Vasiliki I; Karachristou, Ioanna; Pantelias, Gabriel

    2015-11-01

    Combination of next-generation DNA sequencing, single nucleotide polymorphism array analyses and bioinformatics has revealed the striking phenomenon of chromothripsis, described as complex genomic rearrangements acquired in a single catastrophic event affecting one or a few chromosomes. Via an unproven mechanism, it is postulated that mechanical stress causes chromosome shattering into small lengths of DNA, which are then randomly reassembled by DNA repair machinery. Chromothripsis is currently examined as an alternative mechanism of oncogenesis, in contrast to the present paradigm that considers a stepwise development of cancer. While evidence for the mechanism(s) underlying chromosome shattering during cancer development remains elusive, a number of hypotheses have been proposed to explain chromothripsis, including ionizing radiation, DNA replication stress, breakage-fusion-bridge cycles, micronuclei formation and premature chromosome compaction. In the present work, we provide experimental evidence on the mechanistic basis of chromothripsis and on how chromosomes can get locally shattered in a single catastrophic event. Considering the dynamic nature of chromatin nucleoprotein complex, capable of rapid unfolding, disassembling, assembling and refolding, we first show that chromatin condensation at repairing or replicating DNA sites induces the mechanical stress needed for chromosome shattering to ensue. Premature chromosome condensation is then used to visualize the dynamic nature of interphase chromatin and demonstrate that such mechanical stress and chromosome shattering can also occur in chromosomes within micronuclei or asynchronous multinucleate cells when primary nuclei enter mitosis. Following an aberrant mitosis, chromosomes could find themselves in the wrong place at the wrong time so that they may undergo massive DNA breakage and rearrangement in a single catastrophic event. Specifically, our results support the hypothesis that premature chromosome

  19. DNA stress and strain, in silico, in vitro and in vivo

    International Nuclear Information System (INIS)

    Levens, David; Benham, Craig J

    2011-01-01

    A vast literature has explored the genetic interactions among the cellular components regulating gene expression in many organisms. Early on, in the absence of any biochemical definition, regulatory modules were conceived using the strict formalism of genetics to designate the modifiers of phenotype as either cis- or trans-acting depending on whether the relevant genes were embedded in the same or separate DNA molecules. This formalism distilled gene regulation down to its essence in much the same way that consideration of an ideal gas reveals essential thermodynamic and kinetic principles. Yet just as the anomalous behavior of materials may thwart an engineer who ignores their non-ideal properties, schemes to control and manipulate the genetic and epigenetic programs of cells may falter without a fuller and more quantitative elucidation of the physical and chemical characteristics of DNA and chromatin in vivo

  20. DNA methylation and temperature stress in an Antarctic polychaete, Spiophanes tcherniai.

    Science.gov (United States)

    Marsh, Adam G; Pasqualone, Annamarie A

    2014-01-01

    Epigenetic modifications of DNA and histones are a primary mechanism by which gene expression activities may be modified in response to environmental stimuli. Here we characterize patterns of methyl-cytosine composition in the marine polychaete Spiophanes tcherniai from McMurdo Sound, Antarctica. We cultured adult worms at two temperatures, -1.5°C (ambient control) and +4°C (warm treatment), for 4 weeks. We observed a rapid capacity for S. tcherniai organismal respiration rates and underlying catalytic rates of citrate synthase at +4°C to return to control levels in less than 4 weeks. We profiled changes in the methylation states of CpG sites in these treatments using an NGS strategy to computationally reconstruct and quantify methylation status across the genome. In our analysis we recovered 120,000 CpG sites in assembled contigs from both treatments. Of those, we were able to align 28,000 CpG sites in common between the two sample groups. In comparing these aligned sites between treatments, only 3000 (11%) evidenced a change in methylation state, but over 85% of changes involved a gain of a 5-methyl group on a CpG site (net increase in methyation). The ability to score CpG sites as partially methylated among gDNA copies in a sample opens up a new avenue for assessing DNA methylation responses to changing environments. By quantitatively distinguishing a "mixed" population of copies of one CpG site, we can begin to identify dynamic, non-binary, continuous-response reactions in DNA methylation intensity or density that previously may have been overlooked as noise.

  1. DNA Methylation and Temperature Stress in an Antarctic Polychaete, Spiophanes tcherniai

    Directory of Open Access Journals (Sweden)

    Adam G. Marsh

    2014-05-01

    Full Text Available Epigenetic modifications of DNA and histones are a primary mechanism by which gene expression activities may be modified in response to environmental stimuli. Here we characterize patterns of methyl-cytosine composition in the marine polychaete emph{Spiophanes tcherniai} from McMurdo Sound, Antarctica. We cultured adult worms at two temperatures, -1.5 C (ambient control and +4 C (warm treatment, for four weeks. We observed a rapid capacity for emph{S. tcherniai} organismal respiration rates and underlying catalytic rates of citrate synthase to acclimate at +4 C and return to control levels. We profiled changes in the methylation states of CpG sites in these treatments using an NGS strategy to computationally reconstruct and quantify methylation status across the genome. In our analysis we recovered 120,000 CpG sites in assembled contigs from both treatments. Of those, we were able to align 28,000 CpG sites in common between the two sample groups. In comparing these aligned sites between treatments, only 3,000 (11% evidenced a change in methylation state, but over 85% of changes involved a gain of a 5-methyl group on a CpG site (net increase in methyation. The ability to score CpG sites as partially methylated among gDNA copies in a sample opens up a new avenue for assessing DNA methylation responses to changing environments. By quantitatively distinguishing a ``mixed'' population of copies of one CpG site, we can begin to identify dynamic, non-binary, continuous-response reactions in DNA methylation intensity or density that previously may have been overlooked as noise.

  2. A novel er1 allele and the development and validation of its functional marker for breeding pea (Pisum sativum L.) resistance to powdery mildew.

    Science.gov (United States)

    Sun, Suli; Deng, Dong; Wang, Zhongyi; Duan, Canxing; Wu, Xiaofei; Wang, Xiaoming; Zong, Xuxiao; Zhu, Zhendong

    2016-05-01

    A novel er1 allele, er1 -7, conferring pea powdery mildew resistance was characterized by a 10-bp deletion in PsMLO1 cDNA, and its functional marker was developed and validated in pea germplasms. Pea powdery mildew caused by Erysiphe pisi DC is a major disease worldwide. Pea cultivar 'DDR-11' is an elite germplasm resistant to E. pisi. To identify the gene conferring resistance in DDR-11, the susceptible Bawan 6 and resistant DDR-11 cultivars were crossed to produce F1, F2, and F(2:3) populations. The phenotypic segregation patterns in the F2 and F(2:3) populations fit the 3:1 (susceptible:resistant) and 1:2:1 (susceptible homozygotes:heterozygotes:resistant homozygotes) ratios, respectively, indicating that resistance was controlled by a single recessive gene. Analysis of er1-linked markers in the F2 population suggested that the recessive resistance gene in DDR-11 was an er1 allele, which was mapped between markers ScOPE16-1600 and c5DNAmet. To further characterize er1 allele, the cDNA sequences of PsMLO1 from the parents were obtained and a novel er1 allele in DDR-11 was identified and designated as er1-7, which has a 10-bp deletion in position 111-120. The er1-7 allele caused a frame-shift mutation, resulting in a premature termination of translation of PsMLO1 protein. A co-dominant functional marker specific for er1-7 was developed, InDel111-120, which co-segregated with E. pisi resistance in the mapping population. The marker was able to distinguish between pea germplasms with and without the er1-7. Of 161 pea germplasms tested by InDel111-120, seven were detected containing resistance allele er1-7, which was verified by sequencing their PsMLO1 cDNA. Here, a novel er1 allele was characterized and its an ideal functional marker was validated, providing valuable genetic information and a powerful tool for breeding pea resistance to powdery mildew.

  3. The DNA damage checkpoint precedes activation of ARF in response to escalating oncogenic stress during tumorigenesis

    DEFF Research Database (Denmark)

    Evangelou, K.; Bartkova, J.; Kotsinas, A.

    2013-01-01

    oncogenes showed that the delayed upregulation of ARF reflected a requirement for a higher, transcriptionally based threshold of oncogenic stress, elicited by at least two oncogenic 'hits', compared with lower activation threshold for DDR. We propose that relative to DDR activation, ARF provides...

  4. Geographical gradient of the eIF4E alleles conferring resistance to potyviruses in pea (Pisum) germplasm.

    Science.gov (United States)

    Konečná, Eva; Šafářová, Dana; Navrátil, Milan; Hanáček, Pavel; Coyne, Clarice; Flavell, Andrew; Vishnyakova, Margarita; Ambrose, Mike; Redden, Robert; Smýkal, Petr

    2014-01-01

    The eukaryotic translation initiation factor 4E was shown to be involved in resistance against several potyviruses in plants, including pea. We combined our knowledge of pea germplasm diversity with that of the eIF4E gene to identify novel genetic diversity. Germplasm of 2803 pea accessions was screened for eIF4E intron 3 length polymorphism, resulting in the detection of four eIF4E(A-B-C-S) variants, whose distribution was geographically structured. The eIF4E(A) variant conferring resistance to the P1 PSbMV pathotype was found in 53 accessions (1.9%), of which 15 were landraces from India, Afghanistan, Nepal, and 7 were from Ethiopia. A newly discovered variant, eIF4E(B), was present in 328 accessions (11.7%) from Ethiopia (29%), Afghanistan (23%), India (20%), Israel (25%) and China (39%). The eIF4E(C) variant was detected in 91 accessions (3.2% of total) from India (20%), Afghanistan (33%), the Iberian Peninsula (22%) and the Balkans (9.3%). The eIF4E(S) variant for susceptibility predominated as the wild type. Sequencing of 73 samples, identified 34 alleles at the whole gene, 26 at cDNA and 19 protein variants, respectively. Fifteen alleles were virologically tested and 9 alleles (eIF4E(A-1-2-3-4-5-6-7), eIF4E(B-1), eIF4E(C-2)) conferred resistance to the P1 PSbMV pathotype. This work identified novel eIF4E alleles within geographically structured pea germplasm and indicated their independent evolution from the susceptible eIF4E(S1) allele. Despite high variation present in wild Pisum accessions, none of them possessed resistance alleles, supporting a hypothesis of distinct mode of evolution of resistance in wild as opposed to crop species. The Highlands of Central Asia, the northern regions of the Indian subcontinent, Eastern Africa and China were identified as important centers of pea diversity that correspond with the diversity of the pathogen. The series of alleles identified in this study provides the basis to study the co-evolution of potyviruses and the

  5. Fatty acid biosynthesis in pea root plastids

    International Nuclear Information System (INIS)

    Stahl, R.J.; Sparace, S.A.

    1989-01-01

    Fatty acid biosynthesis from [1- 14 C]acetate was optimized in plastids isolated from primary root tips of 7-day-old germinating pea seeds. Fatty acid synthesis was maximum at approximately 80 nmoles/hr/mg protein in the presence of 200 μM acetate, 0.5 mM each of NADH, NADPH and CoA, 6 mM each of ATP and MgCl 2 , 1 mM each of the MnCl 2 and glycerol-3-phosphate, 15 mM KHCO 3 , and 0.1M Bis-tris-propane, pH 8.0 incubated at 35C. At the standard incubation temperature of 25C, fatty acid synthesis was linear from up to 6 hours with 80 to 100 μg/mL plastid protein. ATP and CoA were absolute requirements, whereas KHCO 3 , divalent cations and reduced nucleotides all improved activity by 80 to 85%. Mg 2+ and NADH were the preferred cation and nucleotide, respectively. Dithiothreitol and detergents were generally inhibitory. The radioactive products of fatty acid biosynthesis were approximately 33% 16:0, 10% 18:0 and 56% 18:1 and generally did not vary with increasing concentrations of each cofactor

  6. Protein import into isolated pea root leucoplasts

    Directory of Open Access Journals (Sweden)

    Chiung-Chih eChu

    2015-09-01

    Full Text Available Leucoplasts are important organelles for the synthesis and storage of starch, lipids and proteins. However, molecular mechanism of protein import into leucoplasts and how it differs from that of import into chloroplasts remain unknown. We used pea seedlings for both chloroplast and leucoplast isolations to compare within the same species. We further optimized the isolation and import conditions to improve import efficiency and to permit a quantitative comparison between the two plastid types. The authenticity of the import was verified using a mitochondrial precursor protein. Our results show that, when normalized to Toc75, most translocon proteins are less abundant in leucoplasts than in chloroplasts. A precursor shown to prefer the receptor Toc132 indeed had relatively more similar import efficiencies between chloroplasts and leucoplasts compared to precursors that preferred Toc159. Furthermore we found two precursors that exhibited very high import efficiency into leucoplasts. Their transit peptides may be candidates for delivering transgenic proteins into leucoplasts and for analyzing motifs important for leucoplast import.

  7. Tissue-selective effects of nucleolar stress and rDNA damage in developmental disorders.

    Science.gov (United States)

    Calo, Eliezer; Gu, Bo; Bowen, Margot E; Aryan, Fardin; Zalc, Antoine; Liang, Jialiang; Flynn, Ryan A; Swigut, Tomek; Chang, Howard Y; Attardi, Laura D; Wysocka, Joanna

    2018-02-01

    Many craniofacial disorders are caused by heterozygous mutations in general regulators of housekeeping cellular functions such as transcription or ribosome biogenesis. Although it is understood that many of these malformations are a consequence of defects in cranial neural crest cells, a cell type that gives rise to most of the facial structures during embryogenesis, the mechanism underlying cell-type selectivity of these defects remains largely unknown. By exploring molecular functions of DDX21, a DEAD-box RNA helicase involved in control of both RNA polymerase (Pol) I- and II-dependent transcriptional arms of ribosome biogenesis, we uncovered a previously unappreciated mechanism linking nucleolar dysfunction, ribosomal DNA (rDNA) damage, and craniofacial malformations. Here we demonstrate that genetic perturbations associated with Treacher Collins syndrome, a craniofacial disorder caused by heterozygous mutations in components of the Pol I transcriptional machinery or its cofactor TCOF1 (ref. 1), lead to relocalization of DDX21 from the nucleolus to the nucleoplasm, its loss from the chromatin targets, as well as inhibition of rRNA processing and downregulation of ribosomal protein gene transcription. These effects are cell-type-selective, cell-autonomous, and involve activation of p53 tumour-suppressor protein. We further show that cranial neural crest cells are sensitized to p53-mediated apoptosis, but blocking DDX21 loss from the nucleolus and chromatin rescues both the susceptibility to apoptosis and the craniofacial phenotypes associated with Treacher Collins syndrome. This mechanism is not restricted to cranial neural crest cells, as blood formation is also hypersensitive to loss of DDX21 functions. Accordingly, ribosomal gene perturbations associated with Diamond-Blackfan anaemia disrupt DDX21 localization. At the molecular level, we demonstrate that impaired rRNA synthesis elicits a DNA damage response, and that rDNA damage results in tissue-selective and

  8. Oxidative stress, telomere shortening, and DNA methylation in relation to low-to-moderate occupational exposure to welding fumes.

    Science.gov (United States)

    Li, Huiqi; Hedmer, Maria; Wojdacz, Tomasz; Hossain, Mohammad Bakhtiar; Lindh, Christian H; Tinnerberg, Håkan; Albin, Maria; Broberg, Karin

    2015-10-01

    Evidence suggests that exposure to welding fumes is a risk factor for lung cancer. We examined relationships between low-to-moderate occupational exposure to particles from welding fumes and cancer-related biomarkers for oxidative stress, changes in telomere length, and alterations in DNA methylation. We enrolled 101 welders and 127 controls (all currently nonsmoking men) from southern Sweden. We performed personal sampling of respirable dust and measured 8-oxodG concentrations in urine using a simplified liquid chromatography tandem mass spectrometry method. Telomere length in peripheral blood was measured by quantitative polymerase chain reaction. Methylation status of 10 tumor suppressor genes was determined by methylation-sensitive high-resolution melting analysis. All analyses were adjusted for age, body mass index, previous smoking, passive smoking, current residence, and wood burning stove/boiler at home. Welders were exposed to respirable dust at 1.2 mg/m(3) (standard deviation, 3.3 mg/m(3); range, 0.1-19.3), whereas control exposures did not exceed 0.1 mg/m(3) (P < 0.001). Welders and controls did not differ in 8-oxodG levels (β = 1.2, P = 0.17) or relative telomere length (β = -0.053, P = 0.083) in adjusted models. Welders showed higher probability of adenomatous polyposis coli (APC) methylation in the unadjusted model (odds ratio = 14, P = 0.014), but this was not significant in the fully adjusted model (P = 0.052). Every working year as a welder was associated with 0.0066 units shorter telomeres (95% confidence interval -0.013 to -0.00053, P = 0.033). Although there were no clear associations between concentrations of respirable dust and the biomarkers, there were modest signs of associations between oxidative stress, telomere alterations, DNA methylation, and occupational exposure to low-to-moderate levels of particles. © 2015 Wiley Periodicals, Inc.

  9. Characterization of pea (Pisum sativum) seed protein fractions.

    Science.gov (United States)

    Rubio, Luis A; Pérez, Alicia; Ruiz, Raquel; Guzmán, M Ángeles; Aranda-Olmedo, Isabel; Clemente, Alfonso

    2014-01-30

    Legume seed proteins have to be chemically characterized in order to properly link their nutritional effects with their chemical structure. Vicilin and albumin fractions devoid of cross-contamination, as assessed by mass peptide fingerprinting analysis, were obtained from defatted pea (Pisum sativum cv. Bilbo) meal. The extracted protein fractions contained 56.7-67.7 g non-starch polysaccharides kg⁻¹. The vicilin fraction was higher than legumins in arginine, isoleucine, leucine, phenylalanine and lysine. The most abundant amino acids in the albumin fraction were aspartic acid, glutamic acid, lysine and arginine, and the amounts of methionine were more than double than those in legumins and vicilins. The pea albumin fraction showed a clear enrichment of protease inhibitory activity when compared with the seed meal. In vitro digestibility values for pea proteins were 0.63 ±  0.04, 0.88 ±  0.04 and 0.41 ±  0.23 for legumins, vicilins and albumins respectively. Vicilin and albumin fractions devoid of cross-contamination with other proteins were obtained from pea seed meal. The vicilin fraction also contained low amounts of soluble non-starch polysaccharides and was enriched in isoleucine, leucine, phenylalanine and lysine. In vitro digestibility values for pea proteins were similar or even numerically higher than those for control proteins. © 2013 Society of Chemical Industry.

  10. [Analysis of genomic DNA methylation level in radish under cadmium stress by methylation-sensitive amplified polymorphism technique].

    Science.gov (United States)

    Yang, Jin-Lan; Liu, Li-Wang; Gong, Yi-Qin; Huang, Dan-Qiong; Wang, Feng; He, Ling-Li

    2007-06-01

    The level of cytosine methylation induced by cadmium in radish (Raphanus sativus L.) genome was analysed using the technique of methylation-sensitive amplified polymorphism (MSAP). The MSAP ratios in radish seedling exposed to cadmium chloride at the concentration of 50, 250 and 500 mg/L were 37%, 43% and 51%, respectively, and the control was 34%; the full methylation levels (C(m)CGG in double strands) were at 23%, 25% and 27%, respectively, while the control was 22%. The level of increase in MSAP and full methylation indicated that de novo methylation occurred in some 5'-CCGG sites under Cd stress. There was significant positive correlation between increase of total DNA methylation level and CdCl(2) concentration. Four types of MSAP patterns: de novo methylation, de-methylation, atypical pattern and no changes of methylation pattern were identified among CdCl(2) treatments and the control. DNA methylation alteration in plants treated with CdCl(2) was mainly through de novo methylation.

  11. Cytoprotective effect against UV-induced DNA damage and oxidative stress: role of new biological UV filter.

    Science.gov (United States)

    Said, T; Dutot, M; Martin, C; Beaudeux, J-L; Boucher, C; Enee, E; Baudouin, C; Warnet, J-M; Rat, P

    2007-03-01

    The majority of chemical solar filters are cytotoxic, particularly on sensitive ocular cells (corneal and conjunctival cells). Consequently, a non-cytotoxic UV filter would be interesting in dermatology, but more especially in ophthalmology. In fact, light damage to the eye can be avoided thanks to a very efficient ocular antioxidant system; indeed, the chromophores absorb light and dissipate its energy. After middle age, a decrease in the production of antioxidants and antioxidative enzymes appears with accumulation of endogenous molecules that are phototoxic. UV radiations can induce reactive oxygen species formation, leading to various ocular diseases. Because most UV filters are cytotoxic for the eye, we investigated the anti-UV properties of Calophyllum inophyllum oil in order to propose it as a potential vehicle, free of toxicity, with a natural UV filter action in ophthalmic formulation. Calophyllum inophyllum oil, even at low concentration (1/10,000, v/v), exhibited significant UV absorption properties (maximum at 300nm) and was associated with an important sun protection factor (18-22). Oil concentrations up to 1% were not cytotoxic on human conjunctival epithelial cells, and Calophyllum inophyllum oil appeared to act as a cytoprotective agent against oxidative stress and DNA damage (85% of the DNA damage induced by UV radiations were inhibited with 1% Calophyllum oil) and did not induce in vivo ocular irritation (Draize test on New Zealand rabbits). Calophyllum inophyllum oil thus exhibited antioxidant and cytoprotective properties, and therefore might serve, for the first time, as a natural UV filter in ophthalmic preparations.

  12. Lung Oxidative Stress, DNA Damage, Apoptosis, and Fibrosis in Adenine-Induced Chronic Kidney Disease in Mice

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    2017-11-01

    Full Text Available It is well-established that there is a crosstalk between the lung and the kidney, and several studies have reported association between chronic kidney disease (CKD and pulmonary pathophysiological changes. Experimentally, CKD can be caused in mice by dietary intake of adenine. Nevertheless, the consequence of such intervention on the lung received only scant attention. Here, we assessed the pulmonary effects of adenine (0.2% w/w in feed for 4 weeks-induced CKD in mice by assessing various physiological histological and biochemical endpoints. Adenine treatment induced a significant increase in urine output, urea and creatinine concentrations, and it decreased the body weight and creatinine clearance. It also increased proteinuria and the urinary levels of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. Compared with control group, the histopathological evaluation of lungs from adenine-treated mice showed polymorphonuclear leukocytes infiltration in alveolar and bronchial walls, injury, and fibrosis. Moreover, adenine caused a significant increase in lung lipid peroxidation and reactive oxygen species and decreased the antioxidant catalase. Adenine also induced DNA damage assessed by COMET assay. Similarly, adenine caused apoptosis in the lung characterized by a significant increase of cleaved caspase-3. Moreover, adenine induced a significant increase in the expression of nuclear factor erythroid 2–related factor 2 (Nrf2 in the lung. We conclude that administration of adenine in mice induced CKD is accompanied by lung oxidative stress, DNA damage, apoptosis, and Nrf2 expression and fibrosis.

  13. PEA3activates CXCL12transcription in MCF-7breast cancer cells%PEA3 activates CXCL12 transcription in MCF-7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Li; CHEN Bo-bin; LI Jun-jie; JIN Wei; SHAO Zhi-min

    2011-01-01

    Objective To explore the activity of PEA3 ( polyomavirus enhancer activator 3 ) on CXCL12 (Chemokine CXC motif ligand 12) transcription and to reveal the role of PEA3 involved in CXCL12-mediated metastasis and angiogenesis in breast cancer. Methods Methods such as cell transfection, ChIP assay (chromatin immunoprecipitation ), and siRNA (small interfering RNA) were applied to demonstrate and confirm the interaction between PEA3 and CXCL12. Results Over-expression of PEA3 could increase the CXCL12 mRNA level and the CXCL12 promoter activity in human MCF-7 breast cancer cells. ChIP assay demonstrated that PEA3 could bind to the CXCL12 promoter in the cells transfected with PEA3 expression vector. PEA3 siRNA decreased CXCL12 promoter activity and the binding of PEA3 to the CXCL12 promoter in MCF-7 cells. Conclusions PEA3 could activate CXCL12 promoter transcription. It may be a potential mechanism of tumor angiogenesis and metastasis regarding of PEA3 and CXCL12.

  14. Protein nativity explains emulsifying properties of aqueous extracted protein components from yellow pea

    NARCIS (Netherlands)

    Geerts, Marlies E.J.; Nikiforidis, Constantinos V.; Goot, van der Atze Jan; Padt, van der Albert

    2017-01-01

    In this paper, the emulsifying properties of a protein-enriched fraction from pea are unravelled. The emulsifying properties of mildly fractionated protein fractions from yellow pea and compared to those of commercial pea protein isolate. The emulsion stability of an oil-in-water emulsions were

  15. Discrete forms of amylose are synthesized by isoforms of GBSSI in pea

    NARCIS (Netherlands)

    Edwards, A.; Vincken, J.P.; Suurs, L.C.J.M.; Visser, R.G.F.; Zeeman, S.; Smith, A.; Martin, C.

    2002-01-01

    Amyloses with distinct molecular masses are found in the starch of pea embryos compared with the starch of pea leaves. In pea embryos, a granule-bound starch synthase protein (GBSSIa) is required for the synthesis of a significant portion of the amylose. However, this protein seems to be

  16. Internalization of Staphylococcus aureus in Lymphocytes Induces Oxidative Stress and DNA Fragmentation: Possible Ameliorative Role of Nanoconjugated Vancomycin

    Directory of Open Access Journals (Sweden)

    Subhankari Prasad Chakraborty

    2011-01-01

    Full Text Available Staphylococcus aureus is the most frequently isolated pathogen causing bloodstream infections, skin and soft tissue infections and pneumonia. Lymphocyte is an important immune cell. The aim of the present paper was to test the ameliorative role of nanoconjugated vancomycin against Vancomycin-sensitive Staphylococcus aureus (VSSA and vancomycin-resistant Staphylococcus aureus (VRSA infection-induced oxidative stress in lymphocytes. VSSA and VRSA infections were developed in Swiss mice by intraperitoneal injection of 5×106 CFU/mL bacterial solutions. Nanoconjugated vancomycin was adminstrated to VSSA- and VRSA-infected mice at its effective dose for 10 days. Vancomycin was adminstrated to VSSA- and VRSA-infected mice at a similar dose, respectively, for 10 days. Vancomycin and nanoconjugated vancomycin were adminstrated to normal mice at their effective doses for 10 days. The result of this study reveals that in vivo VSSA and VRSA infection significantly increases the level of lipid peroxidation, protein oxidation, oxidized glutathione level, nitrite generation, nitrite release, and DNA damage and decreases the level of reduced glutathione, antioxidant enzyme status, and glutathione-dependent enzymes as compared to control group, which were increased or decreased significantly near to normal in nanoconjugated vancomycin-treated group. These findings suggest the potential use and beneficial role of nanoconjugated vancomycin against VSSA and VRSA infection-induced oxidative stress in lymphocytes.

  17. Ameliorative effect of riboflavin on hyperglycemia, oxidative stress and DNA damage in type-2 diabetic mice: Mechanistic and therapeutic strategies.

    Science.gov (United States)

    Alam, Md Maroof; Iqbal, Sarah; Naseem, Imrana

    2015-10-15

    Increasing evidence in both experimental and clinical studies suggests that oxidative stress play a major role in the pathogenesis of type-2 diabetes mellitus (T2DM). Abnormally high levels of free radicals and the simultaneous decline of antioxidant defence mechanisms can lead to damage of cellular organelles and enzymes. Riboflavin constitutes an essential nutrient for humans and is also an important food additive for animals. It is a precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) which serves as a coenzyme for several enzymes. The aim of this study was to observe the effects of illuminated and non-illuminated riboflavin in a diabetic mice model. The protocol included treatment of diabetic mice with illuminated RF and a control set without light. To our surprise, group receiving RF without light gave better results in a dose dependent manner. Significant amelioration of oxidative stress was observed with an increased glucose uptake in skeletal muscles and white adipose tissue. Histological studies showed recovery in the liver and kidney tissue injury. Cellular DNA damage was also recovered. Therefore, it is suggested that supplementation with dietary riboflavin might help in the reduction of diabetic complications. A possible mechanism of action is also proposed. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Copy number variations of genes involved in stress responses reflect the redox state and DNA damage in brewing yeasts.

    Science.gov (United States)

    Adamczyk, Jagoda; Deregowska, Anna; Skoneczny, Marek; Skoneczna, Adrianna; Natkanska, Urszula; Kwiatkowska, Aleksandra; Rawska, Ewa; Potocki, Leszek; Kuna, Ewelina; Panek, Anita; Lewinska, Anna; Wnuk, Maciej

    2016-09-01

    The yeast strains of the Saccharomyces sensu stricto complex involved in beer production are a heterogeneous group whose genetic and genomic features are not adequately determined. Thus, the aim of the present study was to provide a genetic characterization of selected group of commercially available brewing yeasts both ale top-fermenting and lager bottom-fermenting strains. Molecular karyotyping revealed that the diversity of chromosome patterns and four strains with the most accented genetic variabilities were selected and subjected to genome-wide array-based comparative genomic hybridization (array-CGH) analysis. The differences in the gene copy number were found in five functional gene categories: (1) maltose metabolism and transport, (2) response to toxin, (3) siderophore transport, (4) cellular aldehyde metabolic process, and (5) L-iditol 2-dehydrogenase activity (p < 0.05). In the Saflager W-34/70 strain (Fermentis) with the most affected array-CGH profile, loss of aryl-alcohol dehydrogenase (AAD) gene dosage correlated with an imbalanced redox state, oxidative DNA damage and breaks, lower levels of nucleolar proteins Nop1 and Fob1, and diminished tolerance to fermentation-associated stress stimuli compared to other strains. We suggest that compromised stress response may not only promote oxidant-based changes in the nucleolus state that may affect fermentation performance but also provide novel directions for future strain improvement.

  19. Learning tasks as a possible treatment for DNA lesions induced by oxidative stress in hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    DragoCrneci; Radu Silaghi-Dumitrescu

    2013-01-01

    Reactive oxygen species have been implicated in conditions ranging from cardiovascular dysfunc-tion, arthritis, cancer, to aging and age-related disorders. The organism developed several path-ways to counteract these effects, with base excision repair being responsible for repairing one of the major base lesions (8-oxoG) in al organisms. Epidemiological evidence suggests that cognitive stimulation makes the brain more resilient to damage or degeneration. Recent studies have linked enriched environment to reduction of oxidative stressin neurons of mice with Alzheimer’s dis-ease-like disease, but given its complexity it is not clear what specific aspect of enriched environ-ment has therapeutic effects. Studies from molecular biology have shown that the protein p300, which is a transcription co-activator required for consolidation of memories during specific learning tasks, is at the same time involved in DNA replication and repair, playing a central role in the long-patch pathway of base excision repair. Based on the evidence, we propose that learning tasks such as novel object recognition could be tested as possible methods of base excision repair faci-litation, hence inducing DNA repair in the hippocampal neurons. If this method proves to be effective, it could be the start for designing similar tasks for humans, as a behavioral therapeutic complement to the classical drug-based therapy in treating neurodegenerative disorders. This review presents the current status of therapeutic methods used in treating neurodegenerative diseases induced by reactive oxygen species and proposes a new approach based on existing data.

  20. Differentially expressed genes in Populus simonii x P. nigra in respnse to NaCl stress using cDNA-AFLP

    Science.gov (United States)

    Salinity is an important environmental factor limiting growth and productivity of plants, and affects almost every aspect of the plant physiology and biochemistry. The objective of this study was to apply cDNA-AFLP and to identify differentially expressed genes in response to NaCl stress vs. no-stre...

  1. The SOS and RpoS Regulons Contribute to Bacterial Cell Robustness to Genotoxic Stress by Synergistically Regulating DNA Polymerase Pol II.

    Science.gov (United States)

    Dapa, Tanja; Fleurier, Sébastien; Bredeche, Marie-Florence; Matic, Ivan

    2017-07-01

    Mitomycin C (MMC) is a genotoxic agent that induces DNA cross-links, DNA alkylation, and the production of reactive oxygen species (ROS). MMC induces the SOS response and RpoS regulons in Escherichia coli SOS-encoded functions are required for DNA repair, whereas the RpoS regulon is typically induced by metabolic stresses that slow growth. Thus, induction of the RpoS regulon by MMC may be coincidental, because DNA damage slows growth; alternatively, the RpoS regulon may be an adaptive response contributing to cell survival. In this study, we show that the RpoS regulon is primarily induced by MMC-induced ROS production. We also show that RpoS regulon induction is required for the survival of MMC-treated growing cells. The major contributor to RpoS-dependent resistance to MMC treatment is DNA polymerase Pol II, which is encoded by the polB gene belonging to the SOS regulon. The observation that polB gene expression is controlled by the two major stress response regulons that are required to maximize survival and fitness further emphasizes the key role of this DNA polymerase as an important factor in genome stability. Copyright © 2017 by the Genetics Society of America.

  2. Tar DNA binding protein-43 (TDP-43 associates with stress granules: analysis of cultured cells and pathological brain tissue.

    Directory of Open Access Journals (Sweden)

    Liqun Liu-Yesucevitz

    2010-10-01

    Full Text Available Tar DNA Binding Protein-43 (TDP-43 is a principle component of inclusions in many cases of frontotemporal lobar degeneration (FTLD-U and amyotrophic lateral sclerosis (ALS. TDP-43 resides predominantly in the nucleus, but in affected areas of ALS and FTLD-U central nervous system, TDP-43 is aberrantly processed and forms cytoplasmic inclusions. The mechanisms governing TDP-43 inclusion formation are poorly understood. Increasing evidence indicates that TDP-43 regulates mRNA metabolism by interacting with mRNA binding proteins that are known to associate with RNA granules. Here we show that TDP-43 can be induced to form inclusions in cell culture and that most TDP-43 inclusions co-localize with SGs. SGs are cytoplasmic RNA granules that consist of mixed protein-RNA complexes. Under stressful conditions SGs are generated by the reversible aggregation of prion-like proteins, such as TIA-1, to regulate mRNA metabolism and protein translation. We also show that disease-linked mutations in TDP-43 increased TDP-43 inclusion formation in response to stressful stimuli. Biochemical studies demonstrated that the increased TDP-43 inclusion formation is associated with accumulation of TDP-43 detergent insoluble complexes. TDP-43 associates with SG by interacting with SG proteins, such as TIA-1, via direct protein-protein interactions, as well as RNA-dependent interactions. The signaling pathway that regulates SGs formation also modulates TDP-43 inclusion formation. We observed that inclusion formation mediated by WT or mutant TDP-43 can be suppressed by treatment with translational inhibitors that suppress or reverse SG formation. Finally, using Sudan black to quench endogenous autofluorescence, we also demonstrate that TDP-43 positive-inclusions in pathological CNS tissue co-localize with multiple protein markers of stress granules, including TIA-1 and eIF3. These data provide support for accumulating evidence that TDP-43 participates in the SG pathway.

  3. Comparison of gamma- and beta radiation stress responses on anti-oxidative defense system and DNA modifications in Lemna minor

    Energy Technology Data Exchange (ETDEWEB)

    Van Hoeck, Arne [SCK.CEN, Boeretang 200 2400 Mol (Belgium); University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen (Belgium); Horemans, Nele; Van Hees, May; Nauts, Robin; Vandenhove, Hildegarde [SCK.CEN, Boeretang 200 2400 Mol (Belgium); Knapen, Dries; Blust, Ronny [University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen (Belgium)

    2014-07-01

    The biological effects and interactions of different radiation types in plants are still far from understood. Additional knowledge on the impact of various kinds of ionizing radiation in plants on individual, biochemical and molecular level is needed to unravel and compare the toxic mode of action. Among different radiation types, external gamma radiation treatments have been mostly studied both in lab and field studies to derive the biological impact of radiation toxicity in organisms. However, environmental relevant studies on chronic low-dose gamma exposures are scarce. The radio-ecologically relevant radionuclide {sup 90}Sr is a pure beta emitting isotope and originates from nuclear activities and accidents. Although this radionuclide is not essential for plant metabolism, it bears a chemical analogy with the essential plant macro-nutrient Ca{sup 2+} thereby taking advantage of Ca{sup 2+} transport systems to contaminate plant organs and tissues. Ones plants are exposed to radiation stress, ionization events can cause an increase in reactive oxygen species (ROS) and can induce damage to biological material like DNA, lipids and structural proteins. The following work aimed at evaluating individual, biochemical and molecular endpoints to understand and to compare the mode of action of gamma- and beta radiation stress in plants. Having an equal relative biological effectiveness to non-human biota, it is still not clear in how plants differ or overlap in sensing and interpreting highly penetrating electromagnetic radiation with short-range particle radiation. The floating plant Lemna minor was chosen as model system. Following the OECD guidelines Lemna plants were being exposed separately to an external gamma radiation source or to a {sup 90}Sr-contaminated growth medium to obtain single-dose response curves for each type of radiation. In order to acquire accurate dose rate quantifications for beta radiation exposures, {sup 90}Sr uptake and accumulation of root and

  4. Continuous in vitro exposure of intestinal epithelial cells to E171 food additive causes oxidative stress, inducing oxidation of DNA bases but no endoplasmic reticulum stress.

    Science.gov (United States)

    Dorier, Marie; Béal, David; Marie-Desvergne, Caroline; Dubosson, Muriel; Barreau, Frédérick; Houdeau, Eric; Herlin-Boime, Nathalie; Carriere, Marie

    2017-08-01

    The whitening and opacifying properties of titanium dioxide (TiO 2 ) are commonly exploited when it is used as a food additive (E171). However, the safety of this additive can be questioned as TiO 2 nanoparticles (TiO 2 -NPs) have been classed at potentially toxic. This study aimed to shed some light on the mechanisms behind the potential toxicity of E171 on epithelial intestinal cells, using two in vitro models: (i) a monoculture of differentiated Caco-2 cells and (ii) a coculture of Caco-2 with HT29-MTX mucus-secreting cells. Cells were exposed to E171 and two different types of TiO 2 -NPs, either acutely (6-48 h) or repeatedly (three times a week for 3 weeks). Our results confirm that E171 damaged these cells, and that the main mechanism of toxicity was oxidation effects. Responses of the two models to E171 were similar, with a moderate, but significant, accumulation of reactive oxygen species, and concomitant downregulation of the expression of the antioxidant enzymes catalase, superoxide dismutase and glutathione reductase. Oxidative damage to DNA was detected in exposed cells, proving that E171 effectively induces oxidative stress; however, no endoplasmic reticulum stress was detected. E171 effects were less intense after acute exposure compared to repeated exposure, which correlated with higher Ti accumulation. The effects were also more intense in cells exposed to E171 than in cells exposed to TiO 2 -NPs. Taken together, these data show that E171 induces only moderate toxicity in epithelial intestinal cells, via oxidation.

  5. Physiological Studies on Pea Tendrils. IV. Flavonoids and Contact Coiling

    Science.gov (United States)

    Jaffe, M. J.; Galston, A. W.

    1967-01-01

    Pea tendrils contain high concentrations of flavonoids, mainly quercetin-triglucosyl-p-coumarate (QGC). QGC is most abundant near the highly responsive apex of the tendril, and least abundant at the base. After mechanical stimulation, and during coiling of the tendril, the QGC titer drops to about 30% of its original value. The kinetics of flavonoid disappearance are significantly correlated with the kinetics of coiling. Aqueous extracts of unstimulated pea tendrils or 10 μm QGC inhibit contact coiling of excised tendrils. Extracts of coiled tendrils do not. The evidence indicates a possible regulatory role for flavonoids in contact coiling. PMID:16656581

  6. Comparative transcriptomic analyses of vegetable and grain pea (Pisum sativum L. seed development

    Directory of Open Access Journals (Sweden)

    Na eLiu

    2015-11-01

    Full Text Available Understanding the molecular mechanisms regulating pea seed developmental process is extremely important for pea breeding. In this study, we used high-throughput RNA-Seq and bioinformatics analyses to examine the changes in gene expression during seed development in vegetable pea and grain pea, and compare the gene expression profiles of these two pea types. RNA-Seq generated 18.7 G of raw data, which were then de novo assembled into 77,273 unigenes with a mean length of 930 bp. Our results illustrate that transcriptional control during pea seed development is a highly coordinated process. There were 459 and 801 genes differentially expressed at early and late seed maturation stages between vegetable pea and grain pea, respectively. Soluble sugar and starch metabolism related genes were significantly activated during the development of pea seeds coinciding with the onset of accumulation of sugar and starch in the seeds. A comparative analysis of genes involved in sugar and starch biosynthesis in vegetable pea (high seed soluble sugar and low starch and grain pea (high seed starch and low soluble sugar revealed that differential expression of related genes at late development stages results in a negative correlation between soluble sugar and starch biosynthetic flux in vegetable and grain pea seeds. RNA-Seq data was validated by using real-time quantitative RT-PCR analysis for 30 randomly selected genes. To our knowledge, this work represents the first report of seed development transcriptomics in pea. The obtained results provide a foundation to support future efforts to unravel the underlying mechanisms that control the developmental biology of pea seeds, and serve as a valuable resource for improving pea breeding.

  7. Oxidative stress induction by T-2 toxin causes DNA damage and triggers apoptosis via caspase pathway in human cervical cancer cells

    International Nuclear Information System (INIS)

    Chaudhari, Manjari; Jayaraj, R.; Bhaskar, A.S.B.; Lakshmana Rao, P.V.

    2009-01-01

    T-2 toxin is the most toxic trichothecene and both humans and animals suffer from several pathological conditions after consumption of foodstuffs contaminated with trichothecenes. We investigated the molecular mechanism of T-2 toxin induced cytotoxicity and cell death in HeLa cells. T-2 toxin at LC50 of 10 ng/ml caused time dependent increase in cytotoxicity as assessed by dye uptake, lactatedehydrogenase leakage and MTT assay. The toxin caused generation of reactive oxygen species as early as 30 min followed by significant depletion of glutathione levels and increased lipid peroxidation. The results indicate oxidative stress as underlying mechanism of cytotoxicity. Single stranded DNA damage after T-2 treatment was observed as early as 2 and 4 h by DNA diffusion assay. The cells exhibited apoptotic morphology like condensed chromatin and nuclear fragmentation after 4 h of treatment. Downstream of T-2 induced oxidative stress and DNA damage a time dependent increase in expression level of p53 protein was observed. The increase in Bax/Bcl2 ratio indicated shift in response, in favour of apoptotic process in T-2 toxin treated cells. Western blot analysis showed increase in levels of mitochondrial apoptogenic factors Bax, Bcl-2, cytochrome-c followed by activation of caspases-9, -3 and -7 leading to DNA fragmentation and apoptosis. In addition to caspase-dependent pathway, our results showed involvement of caspase-independent AIF pathway in T-2 induced apoptosis. Broad spectrum caspase inhibitor z-VAD-fmk could partially protect the cells from DNA damage but could not inhibit AIF induced oligonucleosomal DNA fragmentation beyond 4 h. Results of the study clearly show that oxidative stress is the underlying mechanism by which T-2 toxin causes DNA damage and apoptosis.

  8. ATM-dependent E2F1 accumulation in the nucleolus is an indicator of ribosomal stress in early response to DNA damage.

    Science.gov (United States)

    Jin, Ya-Qiong; An, Guo-Shun; Ni, Ju-Hua; Li, Shu-Yan; Jia, Hong-Ti

    2014-01-01

    The nucleolus plays a major role in ribosome biogenesis. Most genotoxic agents disrupt nucleolar structure and function, which results in the stabilization/activation of p53, inducing cell cycle arrest or apoptosis. Likewise, transcription factor E2F1 as a DNA damage responsive protein also plays roles in cell cycle arrest, DNA repair, or apoptosis in response to DNA damage through transcriptional response and protein-protein interaction. Furthermore, E2F1 is known to be involved in regulating rRNA transcription. However, how E2F1 displays in coordinating DNA damage and nucleolar stress is unclear. In this study, we demonstrate that ATM-dependent E2F1 accumulation in the nucleolus is a characteristic feature of nucleolar stress in early response to DNA damage. We found that at the early stage of DNA damage, E2F1 accumulation in the nucleolus was an ATM-dependent and a common event in p53-suficient and -deficient cells. Increased nucleolar E2F1 was sequestered by the nucleolar protein p14ARF, which repressed E2F1-dependent rRNA transcription initiation, and was coupled with S phase. Our data indicate that early accumulation of E2F1 in the nucleolus is an indicator for nucleolar stress and a component of ATM pathway, which presumably buffers elevation of E2F1 in the nucleoplasm and coordinates the diversifying mechanisms of E2F1 acts in cell cycle progression and apoptosis in early response to DNA damage.

  9. The Aurora-B-dependent NoCut checkpoint prevents damage of anaphase bridges after DNA replication stress.

    Science.gov (United States)

    Amaral, Nuno; Vendrell, Alexandre; Funaya, Charlotta; Idrissi, Fatima-Zahra; Maier, Michael; Kumar, Arun; Neurohr, Gabriel; Colomina, Neus; Torres-Rosell, Jordi; Geli, María-Isabel; Mendoza, Manuel

    2016-05-01

    Anaphase chromatin bridges can lead to chromosome breakage if not properly resolved before completion of cytokinesis. The NoCut checkpoint, which depends on Aurora B at the spindle midzone, delays abscission in response to chromosome segregation defects in yeast and animal cells. How chromatin bridges are detected, and whether abscission inhibition prevents their damage, remain key unresolved questions. We find that bridges induced by DNA replication stress and by condensation or decatenation defects, but not dicentric chromosomes, delay abscission in a NoCut-dependent manner. Decatenation and condensation defects lead to spindle stabilization during cytokinesis, allowing bridge detection by Aurora B. NoCut does not prevent DNA damage following condensin or topoisomerase II inactivation; however, it protects anaphase bridges and promotes cellular viability after replication stress. Therefore, the molecular origin of chromatin bridges is critical for activation of NoCut, which plays a key role in the maintenance of genome stability after replicative stress.

  10. Physicochemical and sensory characteristics of soy sauce substituted with pigeon pea (Cajanus cajan (Linn.))

    Science.gov (United States)

    Retnaningsih, C.; Sumardi; Meiliana; Surya, A.

    2018-01-01

    The objective of this study wasto investigate the physicochemical and sensory properties of the soy sauce substituted with pigeon pea. Soybean was substituted by 20%, 50%, 75%, and 100% of pigeon pea. The observation included viscosity, total solids, protein levels, antioxidant activity, and sensory characteristics. The results showed that the more substitution of pigeon pea, the less the protein content of soy sauce and the more the antioxidant activity as well as total solids. The most favored group was 25% pigeon pea substitution. It is suggested that soy sauce could be prepared using 25% to 75% pigeon pea substitution.

  11. Protein Kinase B/Akt Binds and Phosphorylates PED/PEA-15, Stabilizing Its Antiapoptotic Action

    OpenAIRE

    Trencia, Alessandra; Perfetti, Anna; Cassese, Angela; Vigliotta, Giovanni; Miele, Claudia; Oriente, Francesco; Santopietro, Stefania; Giacco, Ferdinando; Condorelli, Gerolama; Formisano, Pietro; Beguinot, Francesco

    2003-01-01

    The antiapoptotic protein PED/PEA-15 features an Akt phosphorylation motif upstream from Ser116. In vitro, recombinant PED/PEA-15 was phosphorylated by Akt with a stoichiometry close to 1. Based on Western blotting with specific phospho-Ser116 PED/PEA-15 antibodies, Akt phosphorylation of PED/PEA-15 occurred mainly at Ser116. In addition, a mutant of PED/PEA-15 featuring the substitution of Ser116→Gly (PEDS116→G) showed 10-fold-decreased phosphorylation by Akt. In intact 293 cells, Akt also i...

  12. Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis

    Directory of Open Access Journals (Sweden)

    Paniego Norma

    2008-01-01

    Full Text Available Abstract Background Considering that sunflower production is expanding to arid regions, tolerance to abiotic stresses as drought, low temperatures and salinity arises as one of the main constrains nowadays. Differential organ-specific sunflower ESTs (expressed sequence tags were previously generated by a subtractive hybridization method that included a considerable number of putative abiotic stress associated sequences. The objective of this work is to analyze concerted gene expression profiles of organ-specific ESTs by fluorescence microarray assay, in response to high sodium chloride concentration and chilling treatments with the aim to identify and follow up candidate genes for early responses to abiotic stress in sunflower. Results Abiotic-related expressed genes were the target of this characterization through a gene expression analysis using an organ-specific cDNA fluorescence microarray approach in response to high salinity and low temperatures. The experiment included three independent replicates from leaf samples. We analyzed 317 unigenes previously isolated from differential organ-specific cDNA libraries from leaf, stem and flower at R1 and R4 developmental stage. A statistical analysis based on mean comparison by ANOVA and ordination by Principal Component Analysis allowed the detection of 80 candidate genes for either salinity and/or chilling stresses. Out of them, 50 genes were up or down regulated under both stresses, supporting common regulatory mechanisms and general responses to chilling and salinity. Interestingly 15 and 12 sequences were up regulated or down regulated specifically in one stress but not in the other, respectively. These genes are potentially involved in different regulatory mechanisms including transcription/translation/protein degradation/protein folding/ROS production or ROS-scavenging. Differential gene expression patterns were confirmed by qRT-PCR for 12.5% of the microarray candidate sequences. Conclusion

  13. Silver nanoparticle induced cytotoxicity, oxidative stress, and DNA damage in CHO cells

    Energy Technology Data Exchange (ETDEWEB)

    Awasthi, Kumud Kant [University of Rajasthan, Department of Zoology (India); Awasthi, Anjali; Kumar, Narender; Roy, Partha [Indian Institute of Technology Roorkee, Department of Biotechnology (India); Awasthi, Kamlendra, E-mail: kamlendra.awasthi@gmail.com [Malaviya National Institute of Technology, Department of Physics (India); John, P. J., E-mail: placheriljohn@yahoo.com [University of Rajasthan, Department of Zoology (India)

    2013-09-15

    Silver nanoparticles (Ag NPs) are being used increasingly in wound dressings, catheters, and in various household products due to their antimicrobial activity. The present study reports the toxicity evaluation of synthesized and well characterized Ag NPs using Chinese hamster ovary (CHO) cells. The UV-Vis spectroscopy reveals the formation of silver nanoparticles by exhibiting the typical surface plasmon absorption maxima at 408-410 nm. Transmission electron microscopy (TEM) reveals that the average diameter of silver nanoparticles is about 5.0 {+-} 1.0 nm and that they have spherical shape. Cell visibility and cell viability percentage show dose-dependent cellular toxicity of Ag NPs. The half maximal inhibitory concentration (IC{sub 50}) for CHO cells is 68.0 {+-} 2.65 {mu}g/ml after 24 h Ag NPs exposure. Toxicity evaluations, including cellular morphology, mitochondrial function (MTT assay), reactive oxygen species (ROS), and DNA fragmentation assay (Ladder pattern) were assessed in unexposed CHO cells (control) and the cells exposed to Ag NPs concentrations of 15, 30, and 60 {mu}g/ml for 24 h. The findings may assist in the designing of Ag NPs for various applications and provide insights into their toxicity.

  14. Mercury induced oxidative stress, DNA damage, and activation of antioxidative system and Hsp70 induction in duckweed (Lemna minor).

    Science.gov (United States)

    Zhang, Tingting; Lu, Qianqian; Su, Chunlei; Yang, Yaru; Hu, Dan; Xu, Qinsong

    2017-09-01

    Mercury uptake and its effects on physiology, biochemistry and genomic stability were investigated in Lemna minor after 2 and 6d of exposure to 0-30μM Hg. The accumulation of Hg increased in a concentration- and duration-dependent manner, and was positively correlated with the leaf damage. Oxidative stress after Hg exposure was evidenced in L. minor by a significant decrease in photosynthetic pigments, an increase in malondialdehyde and lipoxygenase activities (total enzyme activity and isoenzymes activity). Fronds of L. minor exposed to Hg showed an induction of peroxidase, catalase, and ascorbate peroxidase activities (total enzyme activity and some isoenzymes activities). Exposure of L. minor to Hg reduced the activity (total enzyme activity and some isoenzymes activities) of glutathione reductase, and superoxide dismutase. Exposure to Hg produced a transient increase in the content of glutathione and ascorbic acid. The content of dehydroascorbate and oxidized glutathione in L. minor were high during the entire exposure period. Exposure of L. minor to Hg also caused the accumulation of proline and soluble sugars. The amplification of new bands and the absence of normal DNA amplicons in treated plants in the random amplified polymorphic DNA (RAPD) profile indicated that genomic template stability (GTS) was affected by Hg treatment. The accumulation of Hsp70 indicated the occurrence of a heat shock response at all Hg concentrations. These results suggest that L. minor plants were able to cope with Hg toxicity through the activation of various mechanisms involving enzymatic and non-enzymatic antioxidants, up-regulation of proline, and induction of Hsp70. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The effects of lycopene on DNA damage and oxidative stress on indomethacin-induced gastric ulcer in rats.

    Science.gov (United States)

    Boyacioglu, Murat; Kum, Cavit; Sekkin, Selim; Yalinkilinc, Hande Sultan; Avci, Hamdi; Epikmen, Erkmen Tugrul; Karademir, Umit

    2016-04-01

    Lycopene, the main antioxidant compound present in tomatoes, has high singlet oxygen- and peroxyl radicals-quenching ability, resulting in protection against oxidative damage in aerobic cell. Indomethacin is a nonsteroidal anti-inflammatory drug, and can promote oxidative damage in gastric tissue. The aim of this study was to investigate the protective effects of lycopene on an indomethacin-induced gastric ulcer model. A total of 42 adult male Wistar rats were divided into six groups of seven animals as follows: control, indomethacin, lansoprazole, lycopene 10 mg/kg, lycopene 50 mg/kg and lycopene 100 mg/kg. Gastric ulcers were induced by oral administration of indomethacin, after which the differing doses of lycopene were administered by oral gavage. The efficacy of lycopene was compared with lansoprazole. DNA damage of lymphocytes was measured by comet assay. Activities of superoxide dismutase, catalase and myeloperoxidase, as well as malondialdehyde and glutathione levels were determined in stomach tissue. This tissue was also taken for pathological investigations. The TUNEL method was used to detect apoptotic cells in paraffin sections. The results showed that 100 mg/kg lycopene administration significantly decreased % Tail DNA and Mean Tail Moment in the gastric ulcer group, compared with the other treatment groups. This same dose of lycopene also significantly decreased high malondialdehyde level and myeloperoxidase activity, and increased the activity of antioxidant enzymes (with the exception of catalase) in tissue. Apoptosis rates in the stomachs of the rats correlated with the biochemical and histopathological findings. These results indicated that lycopene might have a protective effect against indomethacin-induced gastric ulcer and oxidative stress in rats. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  16. A brief review on the early distribution of pea (Pisum sativum L. in Europe

    Directory of Open Access Journals (Sweden)

    Ljuština Marija

    2010-01-01

    Full Text Available Pea was a part of the everyday diet of the European hunter-gatherers at the end of the last Ice Age. The major criteria to determine the domestication in pea are non-dehiscent pods, larger seed size and smooth seed testa. Pea seeds were found among the earliest findings of cultivated crops at the site of Tell El-Kerkh, Syria, from 10th millennium BP. Along with cereals and lentil, pea has definitely become associated with the start of the 'agricultural revolution' in the Old World. Pea entered Europe in its southeast regions and progressed into its interior via Danube. Its distribution was rapid, since the available evidence reveals its presence in remote places at similar periods. The linguistic evidence supports the fact that pea had been present in nearly all regions of Europe. Most of European peoples have their own words denoting pea, meaning that it preceded the diversification of their own proto-languages.

  17. Seasonal variability of oxidative stress markers in city bus drivers. Part I. Oxidative damage to DNA.

    Science.gov (United States)

    Rossner, Pavel; Svecova, Vlasta; Milcova, Alena; Lnenickova, Zdena; Solansky, Ivo; Sram, Radim J

    2008-07-03

    We investigated the seasonal variability of 8-oxodeoxyguanosine (8-oxodG), a marker of oxidative damage to DNA, in urine of 50 bus drivers and 50 controls in Prague, Czech Republic, in three seasons with different levels of air pollution: winter 2005, summer 2006 and winter 2006. The exposure to environmental pollutants (carcinogenic polycyclic aromatic hydrocarbons, c-PAHs, particulate matter (PM), and volatile organic compounds (VOC)) was monitored by personal and/or stationary monitors. For the analysis of 8-oxodG levels, the ELISA technique was used. Bus drivers were exposed to significantly higher levels of c-PAHs in winter 2006, while in the other two seasons the exposure of controls was unexpectedly higher than that of bus drivers. We did not see any difference in VOC exposure between both groups in summer 2006 and in winter 2006; VOC were not monitored in winter 2005. 8-OxodG levels were higher in bus drivers than in controls in all seasons. The median levels of 8-oxodG (nmol/mmol creatinine) in bus drivers vs. controls were as follows: winter 2005: 7.79 vs. 6.12 (p=0.01); summer 2006: 6.91 vs. 5.11 (p<0.01); winter 2006: 5.73 vs. 3.94 (p<0.001). Multivariate logistic regression analysis identified PM2.5 and PM10 levels, measured by stationary monitors during a 3-day period before urine collection, as the only factors significantly affecting 8-oxodG levels, while the levels of c-PAHs had no significant influence.

  18. Gamma rays induce DNA damage and oxidative stress associated with impaired growth and reproduction in the copepod Tigriopus japonicus

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeonghoon; Won, Eun-Ji; Lee, Bo-Young [Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Hwang, Un-Ki [Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Fisheries Research and Development Institute, Incheon 400-420 (Korea, Republic of); Kim, Il-Chan; Yim, Joung Han [Division of Life Sciences, Korea Polar Research Institute, Incheon 406-840 (Korea, Republic of); Leung, Kenneth Mei Yee [School of Biological Sciences and the Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Lee, Yong Sung [Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Jae-Seong, E-mail: jslee2@skku.edu [Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-07-01

    irradiation. Additionally, antioxidant genes, phase II enzyme (e.g. GSTs), and cellular chaperone genes (e.g. Hsps) that are involved in cellular defense mechanisms also showed the same expression patterns for sublethal doses of gamma irradiation (50–200 Gy). These findings indicate that sublethal doses of gamma radiation can induce oxidative stress-mediated DNA damage and increase the expression of antioxidant enzymes and proteins with chaperone-related functions, thereby significantly affecting life history parameters such as fecundity and molting in the copepod T. japonicus.

  19. Gamma rays induce DNA damage and oxidative stress associated with impaired growth and reproduction in the copepod Tigriopus japonicus

    International Nuclear Information System (INIS)

    Han, Jeonghoon; Won, Eun-Ji; Lee, Bo-Young; Hwang, Un-Ki; Kim, Il-Chan; Yim, Joung Han; Leung, Kenneth Mei Yee; Lee, Yong Sung; Lee, Jae-Seong

    2014-01-01

    irradiation. Additionally, antioxidant genes, phase II enzyme (e.g. GSTs), and cellular chaperone genes (e.g. Hsps) that are involved in cellular defense mechanisms also showed the same expression patterns for sublethal doses of gamma irradiation (50–200 Gy). These findings indicate that sublethal doses of gamma radiation can induce oxidative stress-mediated DNA damage and increase the expression of antioxidant enzymes and proteins with chaperone-related functions, thereby significantly affecting life history parameters such as fecundity and molting in the copepod T. japonicus

  20. Cyclic AMP Regulates Bacterial Persistence through Repression of the Oxidative Stress Response and SOS-Dependent DNA Repair in Uropathogenic Escherichia coli.

    Science.gov (United States)

    Molina-Quiroz, Roberto C; Silva-Valenzuela, Cecilia; Brewster, Jennifer; Castro-Nallar, Eduardo; Levy, Stuart B; Camilli, Andrew

    2018-01-09

    Bacterial persistence is a transient, nonheritable physiological state that provides tolerance to bactericidal antibiotics. The stringent response, toxin-antitoxin modules, and stochastic processes, among other mechanisms, play roles in this phenomenon. How persistence is regulated is relatively ill defined. Here we show that cyclic AMP, a global regulator of carbon catabolism and other core processes, is a negative regulator of bacterial persistence in uropathogenic Escherichia coli , as measured by survival after exposure to a β-lactam antibiotic. This phenotype is regulated by a set of genes leading to an oxidative stress response and SOS-dependent DNA repair. Thus, persister cells tolerant to cell wall-acting antibiotics must cope with oxidative stress and DNA damage and these processes are regulated by cyclic AMP in uropathogenic E. coli IMPORTANCE Bacterial persister cells are important in relapsing infections in patients treated with antibiotics and also in the emergence of antibiotic resistance. Our results show that in uropathogenic E. coli , the second messenger cyclic AMP negatively regulates persister cell formation, since in its absence much more persister cells form that are tolerant to β-lactams antibiotics. We reveal the mechanism to be decreased levels of reactive oxygen species, specifically hydroxyl radicals, and SOS-dependent DNA repair. Our findings suggest that the oxidative stress response and DNA repair are relevant pathways to target in the design of persister-specific antibiotic compounds. Copyright © 2018 Molina-Quiroz et al.

  1. Performance of fourteen improved pea lines (Pisum sativum L. in Challapata zone, Oruro

    Directory of Open Access Journals (Sweden)

    Maiza Benedicto

    2015-02-01

    Full Text Available In Challapata zone, cultivated pea varieties are low yielding and long cycle. The research objective was to determine the performance of fourteen pea lines developed by “Pairumani Fitoecogenetics Investigation Center” (CIFP in Challapata zone (Oruro. The 14 pea lines with local pea variety, were planted in row and column generalized experimental design with four replications in tree location randomly selection in Challapata zone (Oruro, between October 2011 and April 2012. The results indicate, that, in general, all the improved lines were superior in green pod yield to the local pea variety (3.69 t.ha-1, between 6.13 and 16.58 t.ha-1, (65.9 and 349.3% respectively. among the improved lines, Pea5_102-1, Pea5_102-6, Pea5_102-5, Pea5_102-2, Pea5_102-3 and Pea5_102-4, with high green pod yield (13.05 and 16.58 t.ha-1, large pod (8.49 to 9.25 cm, mayor number of grains for pod (5.27 to 7.20 grains and intermediate cycle (85 days to the floración, are the superior performance. The lines Pea5_102-14, Pea5_102-10 (Pairumani 3 and Pea5_102-13, because of their characteristics of high green pod yield, the longest pod, the mayor number of grains for pod, early maturity, preference and wide adaptability, and according to the farmer’s criteria, are the most recommend for their use in Challapata zone (Oruro.

  2. A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation.

    Science.gov (United States)

    Ponder, Rebecca G; Fonville, Natalie C; Rosenberg, Susan M

    2005-09-16

    Special mechanisms of mutation are induced in microbes under growth-limiting stress causing genetic instability, including occasional adaptive mutations that may speed evolution. Both the mutation mechanisms and their control by stress have remained elusive. We provide evidence that the molecular basis for stress-induced mutagenesis in an E. coli model is error-prone DNA double-strand break repair (DSBR). I-SceI-endonuclease-induced DSBs strongly activate stress-induced mutations near the DSB, but not globally. The same proteins are required as for cells without induced DSBs: DSBR proteins, DinB-error-prone polymerase, and the RpoS starvation-stress-response regulator. Mutation is promoted by homology between cut and uncut DNA molecules, supporting a homology-mediated DSBR mechanism. DSBs also promote gene amplification. Finally, DSBs activate mutation only during stationary phase/starvation but will during exponential growth if RpoS is expressed. Our findings reveal an RpoS-controlled switch from high-fidelity to mutagenic DSBR under stress. This limits genetic instability both in time and to localized genome regions, potentially important evolutionary strategies.

  3. The results of the lipids peroxidation products on the DNA bases as biological markers of the oxidative stress

    International Nuclear Information System (INIS)

    Falletti, O.

    2007-10-01

    Different ways of DNA damages have been studied, among these ones the direct way of DNA damages formation by the reactive oxygen species (R.O.S.). This way leads to the formation of oxidative DNA damages. In 1990, works have suggested an indirect way of DNA damages formation, the lipids peroxidation. Instead of oxidizing directly DNA, the R.O.S. oxide the lipids present in the cells and their membranes; The products coming from this degradation are able to provoke DNA damages. This way has not been studied very much. The work of this thesis is axed on this DNA theme and lipids peroxidation. In the first chapter, we begin by presenting DNA and the direct way of oxidative damages formation by the R.O.S.Then, we speak about the cell lipids suffering oxidation reactions and the different ways of lipids oxidation. Then, we present how the lipid peroxidation is a source of damages for DNA. (N.C.)

  4. Strategic nutrient management of field pea in southwestern Uganda ...

    African Journals Online (AJOL)

    Strategic nutrient management of field pea in southwestern Uganda. ... African Journal of Food, Agriculture, Nutrition and Development ... Strategic nutrient management requires that the most limiting nutrient is known in order to provide a foundation for designing effective and sustainable soil fertility management ...

  5. The rhizobium-pea symbiosis as affected by high temperatures

    NARCIS (Netherlands)

    Frings, J.F.J.

    1976-01-01

    A study has been made concerning the effect of high temperatures on the symbiosis of Rhizobium leguminosarum and pea plants (Pisum sativum). At 30°C, no nodules were found on the roots of plants growing in nutrient solution after inoculation with

  6. Determination of mycoflora of pea (Pisum sativum) seeds and the ...

    African Journals Online (AJOL)

    Jane

    2011-07-06

    Jul 6, 2011 ... Mycoflora of pea seeds and the effectiveness of Rhizobium leguminosarum on important seed-borne pathogens ... seed germination and promoted the plants growth under controlled and ..... 27. Table 3. Summary of fungal inoculation test. .... and lettuce by phosphate-solubilizing Rhizobium leguminosarum.

  7. Faba beans and peas in poultry feed: economic assessment.

    Science.gov (United States)

    Proskina, Liga; Cerina, Sallija

    2017-10-01

    Broiler diets mainly consist of cereals and protein-rich feed sources; in the EU-27, poultry farming consumes 24% of the total amount of protein-rich feedstuffs. Since the EU produces only 30% of the total quantity of protein crops used for feed, it is necessary to promote the use of traditional European protein crops (beans, peas) for feed in livestock farming. The research aim is to identify economic gains from the production of broiler chicken meat, replacing soybean meal with domestic faba beans and field peas in broiler chicken diets. Adding field peas and faba beans to the broiler feed ration resulted in a significant live weight increase (5.74-11.95%) at the selling age, a decrease in the feed conversion ratio by 0.61-6.06%, and decrease in the product unit cost (15.34-37.06%) as well as an increase in the production efficiency factor (8.70-48.54), compared with the control group. The optimum kind of legume species used in the broiler diet was peas, which were added in the amount of 200 g kg -1 , resulting in live weight gain, a decrease in the feed conversion ratio and an increase in the production efficiency factor. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Modeling growth of Clostridium perfringens in pea soup during cooling

    NARCIS (Netherlands)

    Jong, de A.E.I.; Beumer, R.R.; Zwietering, M.H.

    2005-01-01

    Clostridium perfringens is a pathogen that mainly causes food poisoning outbreaks when large quantities of food are prepared. Therefore, a model was developed to predict the effect of different cooling procedures on the growth of this pathogen during cooling of food: Dutch pea soup. First, a growth

  9. Effect of cooling on Clostridium perfringens in pea soup

    NARCIS (Netherlands)

    Jong, de A.E.I.; Rombouts, F.M.; Beumer, R.R.

    2004-01-01

    Foods associated with Clostridium perfringens outbreaks are usually abused after cooking. Because of their short generation times, C. perfringens spores and cells can grow out to high levels during improper cooling. Therefore, the potential of C. perfringens to multiply in Dutch pea soup during

  10. Bitterness of saponins and their content in dry peas

    NARCIS (Netherlands)

    Heng, L.; Vincken, J.P.; Koningsveld, van G.A.; Legger, A.; Gruppen, H.; Boekel, van M.A.J.S.; Roozen, J.; Voragen, A.G.J.

    2006-01-01

    The bitterness of a saponin mixture (containing saponin B and DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one) saponin in a ratio of 1:4) and saponin B obtained from dry peas were established by a trained panel using line scaling. Both saponins were found to be bitter. However, the saponin

  11. CHARACTERISTICS OF CHAIN OF PEA VARIETIES FOR VEGQ ETABLE CANNING

    Directory of Open Access Journals (Sweden)

    N. A. Samarin

    2013-01-01

    Full Text Available The characteristics of seven pea varieties of different groups of ripening are described. These cultivars provide the sustainable row material input in canning factories of Krasnodar region. In bogharic agriculture it takes 24,26 days. When using the irrigation system and different time of sowing it takes 35,40 days.

  12. Symbiotic effectiveness of pea-rhizobia associations and the ...

    African Journals Online (AJOL)

    Selected strains were isolated from the root nodules of pea (Pisum sativum L.), broad bean (Vicia faba L.) and lentil (Lens culinaris L.) plants in the Loess Plateau of China. Analyses focused on the nodule number, nodule dry weight, plant dry weight, nitrogenase activity, total N accumulation of per plant and seed yield.

  13. 21 CFR 155.172 - Canned dry peas.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Canned dry peas. 155.172 Section 155.172 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CANNED VEGETABLES Requirements for Specific Standardized Canned Vegetables § 155.172 Canned dry...

  14. Short Communication: Occurrence of the pea aphid, Acyrthosiphon ...

    African Journals Online (AJOL)

    The occurrence of pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae), on wild annual and perennial leguminous plants was studied at two locations (Adet and Wondata) in West Gojam, Ethiopia in 1999/2000 seasons. Annual and perennial leguminous wild or volunteer plants encountered in the study areas ...

  15. Cell survival after UV radiation stress in the unicellular chlorophyte Dunaliella tertiolecta is mediated by DNA repair and MAPK phosphorylation.

    Science.gov (United States)

    García-Gómez, Candela; Parages, María L; Jiménez, Carlos; Palma, Armando; Mata, M Teresa; Segovia, María

    2012-09-01

    Ultraviolet radiation (UVR) induces damage in a variety of organisms, and cells may adapt by developing repair or tolerance mechanisms to counteract such damage; otherwise, the cellular fate is cell death. Here, the effect of UVR-induced cell damage and the associated signalling and repair mechanisms by which cells are able to survive was studied in Dunaliella tertiolecta. UVR did not cause cell death, as shown by the absence of SYTOX Green-positive labelling cells. Ultrastructure analysis by transmission electron microscopy demonstrated that the cells were alive but were subjected to morphological changes such as starch accumulation, chromatin disaggregation, and chloroplast degradation. This behaviour paralleled a decrease in F(v)/F(m) and the formation of cyclobutane-pyrimidine dimers, showing a 10-fold increase at the end of the time course. There was a high accumulation of the repressor of transcriptional gene silencing (ROS1), as well as the cell proliferation nuclear antigen (PCNA) in UVR-treated cells, revealing activation of DNA repair mechanisms. The degree of phosphorylation of c-Jun N-terminal kinase (JNK) and p38-like mitogen-activated protein kinases was higher in UVR-exposed cells; however, the opposite occurred with the phosphorylated extracellular signal-regulated kinase (ERK). This confirmed that both JNK and p38 need to be phosphorylated to trigger the stress response, as well as the fact that cell division is arrested when an ERK is dephosphorylated. In parallel, both DEVDase and WEHDase caspase-like enzymatic activities were active even though the cells were not dead, suggesting that these proteases must be considered within a wider frame of stress proteins, rather than specifically being involved in cell death in these organisms.

  16. Breeding of a protein pea ideotype for Finnish conditions

    Directory of Open Access Journals (Sweden)

    Simo Hovinen

    1988-01-01

    Full Text Available The characteristics of protein pea (Pisum sativum L. adapted to cultivation in Finnish conditions were specified. Ideotypes for pure and mixed stands were defined separately. Factors affecting seed yield, protein yield and protein content were determined. Efficiency of biological nitrogen fixation in the varieties was evaluated at two nitrogen application levels, 16 and 80 kg/ha. Selection methods for increasing protein content were discussed. The commercial varieties bred during the programme were presented. The effect of the gene af on different characteristics of the pea was the central object of the studies. The ideotype of peas for cultivation in Finland has to be of the afila-type. This concerns cultivation in both pure and mixed stands. Afila-peas gave seed yields and protein yields as high as the leafed ones. The lodging of afila-peas throughout the generative growth phase was less than that of the conventional leaf types. In mixed cropping the most suitable afila-peas generally formed almost completely unlodged stands together with cereals. The best seed yields were given by the varieties with a stem height of 61 to 94 cm. Due to competition, the corresponding height in mixed stands ranged from 80 to 100 cm. For the same reason, varieties to be used in mixed stands must possess a fairly large seed size and fast growth rate after emergence. The optimum flowering period lasted from 19 to 28 days. The varieties must be early, with a growing time from 91 to 101 days. Late varieties are not adapted to northern conditions, giving low yields and poor quality. The mean yield of the varieties was 4500 kg/ha in pure stands. The high nitrogen application level of 80 kg/ha did not increase pea yield in comparison with the 16 kg/ha level. In contrast, it enhanced the protein content by 1 % and the protein yield slightly. In mixed stands the mean total yield was 4700kg/ha. The hectare yields of crude protein reached levels of 990 and 900 kg

  17. Stress

    Science.gov (United States)

    ... taking care of an aging parent. With mental stress, the body pumps out hormones to no avail. Neither fighting ... with type 1 diabetes. This difference makes sense. Stress blocks the body from releasing insulin in people with type 2 ...

  18. Discovery of a Novel er1 Allele Conferring Powdery Mildew Resistance in Chinese Pea (Pisum sativum L.) Landraces

    Science.gov (United States)

    Sun, Suli; Fu, Haining; Wang, Zhongyi; Duan, Canxing; Zong, Xuxiao; Zhu, Zhendong

    2016-01-01

    Pea powdery mildew, caused by Erysiphe pisi D.C., is an important disease worldwide. Deployment of resistant varieties is the main way to control this disease. This study aimed to screen Chinese pea (Pisum sativum L.) landraces resistant to E. pisi, and to characterize the resistance gene(s) at the er1 locus in the resistant landraces, and to develop functional marker(s) specific to the novel er1 allele. The 322 landraces showed different resistance levels. Among them, 12 (3.73%), 4 (1.24%) and 17 (5.28%) landraces showed immunity, high resistance and resistance to E. pisi, respectively. The other landraces appeared susceptible or highly susceptible to E. pisi. Most of the immune and highly resistant landraces were collected from Yunnan province. To characterize the resistance gene at the er1 locus, cDNA sequences of PsMLO1 gene were determined in 12 immune and four highly resistant accessions. The cDNAs of PsMLO1 from the immune landrace G0005576 produced three distinct transcripts, characterized by a 129-bp deletion, and 155-bp and 220-bp insertions, which were consistent with those of er1-2 allele. The PsMLO1 cDNAs in the other 15 resistant landraces produced identical transcripts, which had a new point mutation (T→C) at position 1121 of PsMLO1, indicating a novel er1 allele, designated as er1-6. This mutation caused a leucine to proline change in the amino acid sequence. Subsequently, the resistance allele er1-6 in landrace G0001778 was confirmed by resistance inheritance analysis and genetic mapping on the region of the er1 locus using populations derived from G0001778 × Bawan 6. Finally, a functional marker specific to er1-6, SNP1121, was developed using the high-resolution melting technique, which could be used in pea breeding via marker-assisted selection. The results described here provide valuable genetic information for Chinese pea landraces and a powerful tool for pea breeders. PMID:26809053

  19. Glutamine acts as a neuroprotectant against DNA damage, beta-amyloid and H2O2-induced stress.

    Directory of Open Access Journals (Sweden)

    Jianmin Chen

    Full Text Available Glutamine is the most abundant free amino acid in the human blood stream and is 'conditionally essential' to cells. Its intracellular levels are regulated both by the uptake of extracellular glutamine via specific transport systems and by its intracellular synthesis by glutamine synthetase (GS. Adding to the regulatory complexity, when extracellular glutamine is reduced GS protein levels rise. Unfortunately, this excess GS can be maladaptive. GS overexpression is neurotoxic especially if the cells are in a low-glutamine medium. Similarly, in low glutamine, the levels of multiple stress response proteins are reduced rendering cells hypersensitive to H(2O(2, zinc salts and DNA damage. These altered responses may have particular relevance to neurodegenerative diseases of aging. GS activity and glutamine levels are lower in the Alzheimer's disease (AD brain, and a fraction of AD hippocampal neurons have dramatically increased GS levels compared with control subjects. We validated the importance of these observations by showing that raising glutamine levels in the medium protects cultured neuronal cells against the amyloid peptide, Aβ. Further, a 10-day course of dietary glutamine supplementation reduced inflammation-induced neuronal cell cycle activation, tau phosphorylation and ATM-activation in two different mouse models of familial AD while raising the levels of two synaptic proteins, VAMP2 and synaptophysin. Together, our observations suggest that healthy neuronal cells require both intracellular and extracellular glutamine, and that the neuroprotective effects of glutamine supplementation may prove beneficial in the treatment of AD.

  20. Effect of pea, pea hulls, faba beans and faba bean hulls on the ileal microbial composition in weaned piglets

    NARCIS (Netherlands)

    Meulen, van der J.; Panneman, H.; Jansman, A.J.M.

    2010-01-01

    Grain legumes produced in Europe such as pea, faba beans and lupins are alternative vegetable protein sources for imported soy protein in animal feeds. These legume seeds contain constituents that are not digested and may act as a substrate for microbial fermentation in the gastrointestinal tract,

  1. Replication stress-induced chromosome breakage is correlated with replication fork progression and is preceded by single-stranded DNA formation.

    Science.gov (United States)

    Feng, Wenyi; Di Rienzi, Sara C; Raghuraman, M K; Brewer, Bonita J

    2011-10-01

    Chromosome breakage as a result of replication stress has been hypothesized to be the direct consequence of defective replication fork progression, or "collapsed" replication forks. However, direct and genome-wide evidence that collapsed replication forks give rise to chromosome breakage is still lacking. Previously we showed that a yeast replication checkpoint mutant mec1-1, after transient exposure to replication impediment imposed by hydroxyurea (HU), failed to complete DNA replication, accumulated single-stranded DNA (ssDNA) at the replication forks, and fragmented its chromosomes. In this study, by following replication fork progression genome-wide via ssDNA detection and by direct mapping of chromosome breakage after HU exposure, we have tested the hypothesis that the chromosome breakage in mec1 cells occurs at collapsed replication forks. We demonstrate that sites of chromosome breakage indeed correlate with replication fork locations. Moreover, ssDNA can be detected prior to chromosome breakage, suggesting that ssDNA accumulation is the common precursor to double strand breaks at collapsed replication forks.

  2. Expression of small heat shock proteins from pea seedlings under gravity altered conditions

    Science.gov (United States)

    Talalaev, Alexandr S.

    2005-08-01

    A goal of our study was to evaluate the stress gene expression in Pisum sativum seedlings exposed to altered gravity and temperature elevation. We investigate message for the two inducible forms of the cytosolic small heat shock proteins (sHsp), sHsp 17.7 and sHsp 18.1. Both proteins are able to enhance the refolding of chemically denatured proteins in an ATP- independent manner, in other words they can function as molecular chaperones. We studied sHsps expression in pea seedlings cells by Western blotting. Temperature elevation, as the positive control, significantly increased PsHsp 17.7 and PsHsp 18.1 expression. Expression of the housekeeping protein, actin was constant and comparable to unstressed controls for all treatments. We concluded that gravitational perturbations incurred by clinorotation did not change sHsp genes expression.

  3. Effect of pea intercropping on biological efficiencies and economics of some non-legume winter vegetables

    International Nuclear Information System (INIS)

    Qasim, S.A.; Anjum, M.A.; Hussain, S.; Ahmad, S.

    2013-01-01

    Intercropping with legumes makes effective use of land and other resources and results in reduced cost of production. Increased agricultural production through intercropping with minimal cost is need of time to feed increasing population. The reported work evaluates the biological efficiencies and economics of pea, garlic, turnip and cauliflower grown as sole crops and when pea intercropped in garlic, turnip and cauliflower during 2010-12. All the vegetables generally yielded more when grown as single crop compared with when pea was intercropped in these vegetables. In peas in garlic intercropping, pea yield was not significantly affected; however, garlic yield was significantly reduced (65.8%). Pea intercropping in turnip or cauliflower resulted in significantly lower yields of both crops (29.1 and 28.0%, respectively) as compared with their sole cropping. All other characteristics (plant growth and yield components) of all the four crops which indicate biological efficiency generally were greater when grown as single crops and decreased in intercropping combinations. Analysis of intercropping treatments revealed that pea intercropping in turnip resulted in the highest marginal rate of return (8,875%), followed by pea intercropping in cauliflower (6,977%), due to lower input costs incurred per hectare. However, net benefit to the growers was higher (Rs. 327,925) in case of pea intercropping in cauliflower, followed by pea intercropping in garlic (Rs. 213,425). (author)

  4. Effect of hot aqueous ethanol treatment on anti-nutritional factors, protein denaturation and functional properties in raw pea and pea protein isolate

    NARCIS (Netherlands)

    Tolman, G.H.

    1995-01-01

    The effect of hot aqueous ethanol treatment on several nutritionally relevant mainly protein-related parameters in raw peas (var. Solara) and ultra-filtrated pea protein isolate was examined. Of all test samples, water absorptive capacity (WAC), weight loss and protein loss owing to the processing

  5. Photosynthetic alterations of pea leaves infected systemically by pea enation mosaic virus: A coordinated decrease in efficiencies of CO(2) assimilation and photosystem II photochemistry

    Czech Academy of Sciences Publication Activity Database

    Kyseláková, H.; Prokopová, J.; Nauš, J.; Novák, Ondřej; Navrátil, M.; Šafářová, D.; Špundová, M.; Ilík, P.

    2011-01-01

    Roč. 49, č. 11 (2011), s. 1279-1289 ISSN 0981-9428 R&D Projects: GA ČR GA301/08/1649; GA MŠk ED0007/01/01 Keywords : Chlorophyll fluorescence * Pea enation mosaic virus * Pea * Photosynthesis * Photosystem II * Senescence Subject RIV: EF - Botanics Impact factor: 2.838, year: 2011

  6. 8-oxo-7,8-dihydroguanine level - the DNA oxidative stress marker - recognized by fluorescence image analysis in sporadic uterine adenocarcinomas in women.

    Science.gov (United States)

    Postawski, Krzysztof; Przadka-Rabaniuk, Dorota; Piersiak, Tomasz

    2013-01-01

    In the case of carcinogenesis in human endometrium no information exists on tissue concentration of 8-oxo-7,8-dihydroguanine, the DNA oxidative stress marker This was the main reason to undertake the investigation of this DNA modification in human uterine estrogen-dependent tissue cancers. In order to estimate the level of oxidative damage, 8-oxo-7,8-dihydroguanine was determined directly in cells of tissue microscope slides using OxyDNA Assay Kit, Fluorometric. Cells were investigated under confocal microscope. Images of individual cells were captured by computer-interfaced digital photography and analyzed for fluorescence intensities (continuous inverted 8-bit gray-scale = 0 [black]-255 [white]). Fluorescence scores were calculated for each of 13 normal endometrial samples and 31 uterine adenocarcinoma specimens. Finally the level of the oxidative stress marker was also analyzed according to histological and clinical features of the neoplasms. The obtained data revealed that: 8-oxo-7,8-dihydroguanine levels were higher in uterine adenocarcinomas than in normal endometrial samples (48,32 vs. 38,64; p<0,001); in contrast to normal endometrium there was no correlation between age and DNA oxidative modification content in uterine cancer; highest mean fluorescence intensity was recognized in G2 endometrial adenocarcinomas; level of 8-oxo-7,8-dihydroguanine does not depend on Body Mass Index (BMI) and cancer uterine wall infiltration or tumor FIGO stage. Our study indicates that accumulation of the oxidized DNA base may contribute to the development of endometrial neoplasia, however oxidative DNA damage does not seem to increase with tumor progression.

  7. Effect of Hypergravity on the Level of Heat Shock Proteins 70 and 90 in Pea Seedlings

    Science.gov (United States)

    Kozeko, Liudmyla; Kordyum, Elizabeth

    2009-01-01

    Exposure to hypergravity induces significant changes in gene expression of plants which are indicative of stress conditions. A substantial part of the general stress response is up-regulation of heat shock proteins (Hsp) which function as molecular chaperones. The objective of this research was to test the possible changes in the Hsp70 and Hsp90 level in response to short-term hypergravity exposure. In this study 5-day-old etiolated pea seedlings were exposed to centrifuge-induced hypergravity (3-14 g) for 15 min and 1 h and a part of the seedlings was sampled at 1.5 and 24 h after the exposures. Western blot analysis showed time-dependent changes in Hsp70 and Hsp90 levels: an increase under hypergravity and a tendency towards recovery of the normal content during re-adaptation. The quantity and time of their expression was correlated with the g-force level. These data suggest that short-term hypergravity acts as a stress which could increase the risk of protein denaturation and aggregation. Molecular chaperons induced during the stress may have an essential role in counteracting this risk.

  8. Sodium phenylbutyrate ameliorates focal cerebral ischemic/reperfusion injury associated with comorbid type 2 diabetes by reducing endoplasmic reticulum stress and DNA fragmentation.

    Science.gov (United States)

    Srinivasan, Krishnamoorthy; Sharma, Shyam S

    2011-11-20

    Endoplasmic reticulum (ER) stress has been postulated to play a crucial role in the pathophysiology of cerebral ischemic/reperfusion (I/R) injury and diabetes. Diabetes is a major risk factor and also common amongst the people who suffer from stroke. In this study, we have investigated the neuroprotective potential of sodium 4-phenylbutyrate (SPB; 30-300mg/kg), a chemical chaperone by targeting ER stress in a rat model of transient focal cerebral ischemia associated with comorbid type 2 diabetes. Intraperitoneal treatment with SPB (100 and 300mg/kg) significantly ameliorated brain I/R damage as evidenced by reduction in cerebral infarct and edema volume. It also significantly improved the functional recovery of various neurobehavioral impairments (neurological deficit score, grip strength and rota rod) evoked by I/R compared with vehicle-treatment. Further, SPB (100mg/kg) significantly reduced the DNA fragmentation as shown by prominent reduction in terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells. This effect was observed concomitantly with significant attenuation in upregulation of 78kDa glucose regulated protein (GRP78), CCAAT/enhancer binding protein homologous protein or growth arrest DNA damage-inducible gene 153 (CHOP/GADD153) and activation of caspase-12, specific markers of ER stress/apoptosis. The neuroprotection observed with SPB was independent of its effect on cerebral blood flow and blood glucose. In conclusion, this study demonstrates the neuroprotective effect of SPB owing to amelioration of ER stress and DNA fragmentation. It also suggest that targeting ER stress might offer a promising therapeutic approach and benefits against ischemic stroke associated with comorbid type 2 diabetes. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Evaluation of Pigeon Pea Lines for Biological Soil Decompaction

    Directory of Open Access Journals (Sweden)

    Rodolfo Godoy

    2009-01-01

    Full Text Available Soil decompaction is generally achieved through mechanical cultivation practices; however biological processes can significantly add to this process through root growth, development, and later senescence. This study was carried out in Piracicaba, SP, Brazil and had the purpose of selecting, among forty one pure pigeon pea lines, the most efficient genotypes that promote soil decompaction by roots penetrating compacted soil layers. Utilizing artificially compacted 30 mm high soil blocks, in a series of experiments, these lines were compared to the cultivar Fava Larga taken as a standard. Three lines were preliminarily selected out of the initial group, and afterwards, in more detailed screenings by monitoring soil resistance to penetration and also evaluating the behavior of Tanzania grass plants seeded after pigeon pea, two of them, g5-94 and g8-95, were selected as possessing the most fit root system to penetrate compacted soil layers.

  10. PIGEON PEA (Cajanus cajan AN ALTERNATIVE IN THE FOOD INDUSTRY

    Directory of Open Access Journals (Sweden)

    Carmen Lucia Navarro V

    2014-12-01

    Full Text Available Due to the current situation of inadequate nutrition in the population of many countries, including Colombia. Search sources rich in proteins and low-cost alternatives. The pigeon pea (Cajanus cajan is an important legume that contain a mo derate amount of protein, calories, vitamins and minerals, its use in foods is limited by the presence of anti-nutritional factors, which can be reduced or eliminated through the use of treatments. The proteins have functional properties that can be take advantage in meat, dairy and bakery products. The purpose of this review is to present an overview of the skills nutritional and functional properties of pigeon pea application opportunities in various applications in the food industry.

  11. Achievements of nuclear applications in chick-pea breeding

    International Nuclear Information System (INIS)

    Kharwal, M.C.

    1994-01-01

    Due to narrow and limited genetic variability available in chick-pea, this crop is ideally suited for genetic improvement through mutation breeding. Thus, the use of nuclear tools for regenerating some of the lost useful variability in this crop particularly for an improved plant type of increased yield and disease resistance appears to offer greater scope and promise. Practical results already achieved through the use of nuclear tools which fulfill these expectations to a large extent are confirmed by the extensive studies on mutation breeding in chick-pea crop carried out at the Indian Agricultural Research Institute, New Delhi; at the Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan and at the Bangladesh Institute of Nuclear Agriculture, Mymensingh, Bangladesh

  12. Developmental differences in posttranslational calmodulin methylation in pea plants

    International Nuclear Information System (INIS)

    Oh, Sukheung; Roberts, D.M.

    1990-01-01

    A calmodulin-N-methyltransferase was used to analyze the degree of lysine-115 methylation of pea calmodulin. Calmodulin was isolated from segments of developing roots of young etiolated and green pea plants and was tested for its ability to be methylated by the calmodulin methyltransferase in the presence of 3 H-methyl-S-adenosylmethionine. Calmodulin methylation levels were lower in apical root segments and in the young lateral roots compared with the mature, differentiated root tissues. The methylation of these calmodulin samples occurs specifically at lysine 115 since site-directed mutants of calmodulin with substitutions at this position were not methylated and competitively inhibited methylation. The present findings, combined with previous data showing differences in NAD kinase activation by methylated and unmethylated calmodulins, raise the possibility that posttranslational methylation could affect calmodulin action

  13. Uptake and distribution of 232U in peas and barley

    International Nuclear Information System (INIS)

    Schreckhise, R.G.; Cline, J.F.

    1980-01-01

    The uptake of 232 U from soil and its distribution in peas and barley were examined under conditions which isolated root uptake from deposition on aboveground plant parts. Aboveground plant parts were harvested at maturity and analyzed for 232 U content by alpha-energy-analysis. The ratio of concentration (CR) of 232 U in the dry barley seeds to dry soil was 1.6 x 10 -4 while the CR values of the stem/leaf to dry soil fraction was 3.6 x 10 -3 . The Cr values for the pea seed, stem/pod and leaf components were 5.4 x 10 -4 , 3.3 x 10 -3 and 1.7 x 10 -2 , respectively. This indicates that the CR values used in certain radiological dose-assessment models may be high by about a factor of 100 when evaluating the consumption of seeds of legumes or cereal grains by man. (author)

  14. Intercropping of wheat and pea as influenced by nitrogen fertilization

    DEFF Research Database (Denmark)

    Ghaley, B.B.; Hauggaard-Nielsen, Henrik; Jensen, Henning Høgh

    2005-01-01

    The effect of sole and intercropping of field pea (Pisum sativum L.) and spring wheat (Triticum aestivum L.) on crop yield, fertilizer and soil nitrogen (N) use was tested on a sandy loam soil at three levels of urea fertilizer N (0, 4 and 8 g N m−2) applied at sowing. The 15N enrichment and natu...... with lower soil N levels, and vice versa for wheat, paving way for future option to reduce N inputs and negative environmental impacts of agricultural crop production......., grain N concentration, the proportion of N derived from symbiotic N2 fixation, and soil N accumulation. With increasing fertilizer N supply, intercropped and sole cropped wheat responded with increased yield, grain N yield and soil N accumulation, whereas the opposite was the case for pea. Fertilizer N...

  15. The influence of feeding GMO-peas on growth of animal models

    Directory of Open Access Journals (Sweden)

    Petr Mares

    2014-02-01

    Full Text Available Introduction of genetically modified (GM food or feed into the commercial sale represents a very complicated process. One of the most important steps in approval process is the evaluation of all risks on the health status of people and animal models. Within our project the genetically modified peas was breeded that showed significant resistance against Pea seed-borne mosaic virus and Pea enation mosaic virus. Preclinical studies have been conducted to found out the effect of GMO peas on animals - rats of outbreeding line Wistar. In a total, 24 male, specific pathogen free Wistar rats were used in the experiment. At the beginning of the experiment, the animals were 28 days old. The three experimental groups with 8 individuals were created. The first group of rats was fed with GMO peas, the second group of rats consumed mix of pea cultivar Raman and the third group was control without pea addition (wheat and soya were used instead of pea. In the present study we focused our attention on health, growth and utility features of rats fed with GM pea. All characteristic were observed during the experiment lasting 35 days. Consumed feed was weighted daily and the weight of the animals was measured every seven days. The average values were compared within the groups. The aim of the experiment was to verify if resistant lines of pea influence the weight growth of animal models. The results of our experiment showed that even a high concentration (30% of GM pea did not influence growth rate of rats to compare with both rats fed with pea of Raman cultivar and control group. We did not observe any health problems of animal models during the experiment.

  16. Effect of isolation techniques on the characteristics of pigeon pea (Cajanus cajan) protein isolates

    OpenAIRE

    Adenekan, Monilola K.; Fadimu, Gbemisola J.; Odunmbaku, Lukumon A.; Oke, Emmanuel K.

    2017-01-01

    Abstract In this study, the effect of different isolation techniques on the isolated proteins from pigeon pea was investigated. Water, methanol, ammonium sulfate, and acetone were used for the precipitation of proteins from pigeon pea. Proximate composition, and antinutritional and functional properties of the pigeon pea flour and the isolated proteins were measured. Data generated were statistically analyzed. The proximate composition of the water‐extracted protein isolate was moisture 8.30%...

  17. Different organization of base excision repair of uracil in DNA in nuclei and mitochondria and selective upregulation of mitochondrial uracil-DNA glycosylase after oxidative stress

    DEFF Research Database (Denmark)

    Akbari, M; Otterlei, M; Pena Diaz, Javier

    2007-01-01

    , indicating regulatory effects of oxidative stress on mitochondrial BER. To examine the overall organization of uracil-BER in nuclei and mitochondria, we constructed cell lines expressing EYFP (enhanced yellow fluorescent protein) fused to UNG1 or UNG2. These were used to investigate the possible presence...... BER processes are differently organized. Furthermore, the upregulation of mRNA for mitochondrial UNG1 after oxidative stress indicates that it may have an important role in repair of oxidized pyrimidines....

  18. Obtaining of interspecific hybrids for pea introgressive breeding

    Directory of Open Access Journals (Sweden)

    Sergey Vasilevich Bobkov

    2015-09-01

    Full Text Available Background. Overcoming of reproductive isolation, identification and transfer of agronomic value genes from wild relatives into cultivated pea genomes is an important task for pea introgressive breeding. Materials and methods. Reciprocal hybridization of cultivated pea with wide set of P. fulvum accessions was conducted. Identification of hybrids was carried out with use of biochemical and morphological markers. Identification of unique protein was conducted with use of electrophoretic spectra of mature seeds. Results. Pea interspecific hybrids were obtained in two reciprocal directions of crosses. Cross efficiency in Р. sativum × P. fulvum and P. fulvum × Р. sativum combinations was 36 % and 7 %, respectively. All tested seeds in crosses Р. sativum × P. fulvum were hybrids. Crosses in direction P. fulvum × Р. sativum led to formation of puny seeds restricted in embryo growth. Protein markers of one seed derived in cross P. fulvum × Р. sativum proved its hybrid nature. Morphological markers demonstrated that plant derived from another cross was also a hybrid. Culture of immature embryos was developed for recovering plants in interspecific crosses. Morphogenic calli and regenerated plants were obtained in culture of immature embryos P. fulvum (И592589 × Р. sativum (Aest. Identification of unique protein 7 of P. fulvum was conducted. Inheritance of that protein was proved as monogenic dominant. Conclusion. Efficiency of hybridization in combination P. fulvum × Р. sativum was significantly less in compare to reciprocal one. All products of that cross combination were tested as hybrids. Unique protein 7 of P. fulvum was revealed as a result of mature seed electrophoretic spectra analysis. Inheritance of that protein was determined as monogenic dominant.

  19. Investigation of pea seeds treated by 137Cs

    International Nuclear Information System (INIS)

    Lepold, J.; Soos, T.

    1979-01-01

    Two types of pea seeds were treated by 137 Cs. Radiation doses of 10 and 15 gray, resp. were applied at a dose rate of 480 gray per hour. Both the rate of sprouting and the number of plants per m 2 of the irradiated seeds exceeded the corresponding parameters of the control. The total quantity of the crop and its content of protein and water were higher, too. (L.E.)

  20. Eesti ei pea ümberasujatele midagi tagastama / Helle Kalda

    Index Scriptorium Estoniae

    Kalda, Helle, 1950-

    2006-01-01

    Omandireformi aluste seaduse 7 paragrahvi lõikest 3 ja varade tagastamisest nn. järelümberasunutele. Sama ka Meie Maa 12. jaan. 2006, lk. 2 ; Vooremaa 17. jaan. 2006, lk. 2 ; Virumaa Teataja 2. veeb. 2006, lk. 11 ; Pärnu Postimees 9. veeb. 2006, lk. 15 ; Pärnu Postimees 9. veeb. 2006, lk. 15, pealkiri kujul : Ümberasujatele ei pea midagi tagastama

  1. Effective stabilization of CLA by microencapsulation in pea protein.

    Science.gov (United States)

    Costa, A M M; Nunes, J C; Lima, B N B; Pedrosa, C; Calado, V; Torres, A G; Pierucci, A P T R

    2015-02-01

    CLA was microencapsulated by spray drying in ten varied wall systems (WS) consisting of pea protein isolate or pea protein concentrate (PPC) alone at varied core:WS ratios (1:2; 1:3 and 1:4), or blended with maltodextrin (M) and carboxymethylcellulose at a pea protein:carbohydrate ratio of 3:1. The physical-chemical properties of the CLA microparticles were characterised by core retention, microencapsulation efficiency (ME), particle size and moisture. CLA:M:PPC (1:1:3) showed the most promising results, thus we evaluated the effect of M addition in the WS on other physical-chemical characteristics and oxidative stability (CLA isomer profile, quantification of CLA and volatile compounds by SPME coupled with CG-MS) during two months of storage at room temperature, CLA:PPC (1:4) was selected for comparisons. CLA:M:PPC (1:1:3) microparticles demonstrated better morphology, solubility, dispersibility and higher glass-transition temperature values. M addition did not influence the oxidative stability of CLA, however its presence improved physical-chemical characteristics necessary for food applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. OPPORTUNITIES TO USE PEA - WHEAT MIXES IN ORGANIC FARMING

    Directory of Open Access Journals (Sweden)

    Grigori Ivanov

    2015-12-01

    Full Text Available This article presented the results of productivity and quality of the green mass of pea-wheat mixes grown in conditions of organic farming. Are explored 5 wheat varieties - Sadovo 1, Geia 1, Guinness, Farmer, Liusil and 4 varieties of winter peas -Mir, Vesela, №11, L12AB, at different ratio between them - 50:50 and 30:70%. The selection of varieties is made based on previous studies of their complex characteristics – ripening, yield, chemistry (Angelova S., T.Georgieva, M.Sabeva, 2011. Setting up and raising the experimental mixture of seeds has been made in a medium free of organic and mineral fertilizers. We have studied the changes in green mass yield and the biochemistry of surface biomass. The cultivation of pea–wheat mixtures under conditions of organic farming leads to increased yields of green mass in comparison with the self-seeding of wheat and peas. According to the results obtained at early ripening and the highest crude protein content average of three years is the mixture Sadovo1–Mir 30:70%. The most productive is the mixture Sadovo1-Mir 50-50%.

  3. Selenium and phosphorus interaction in pea (pisum sativum L.)

    International Nuclear Information System (INIS)

    Singh, Mahendra; Bhandari, D.K.

    1975-01-01

    The interaction of selenium and phosphorus on the dry matter yield and concentration and uptake of phosphorus, sulfur and selenium was studied in pea (Pisum sativnum) var. T 163. The fertilizer was tagged with P 32 . It was observed that increased concentration of applied selenium in soil decreased the dry matter yield and increased the concentration and uptake of total P, soil P and selenium in pea plants. Increased concentration of P alone increased dry matter yield, concentration and uptake of total, soil and fertilizer P and selenium which was beyond safe limits, and decreased concentration and uptake of sulphur. Selenium and phosphorus showed strong synergetic relationship by increasing the concentration of each other in plants while both showed antagonistic effect on the concentration of sulphur. Phosphorus compensated the toxic effect of selenium and improved the growth and dry matter yield of pea plants. The highest selenium concentration of 22.4 ppm was observed in 100 ppm phosphorus with 5 ppm selenium treated pots while lowest (0.10 ppm) in control. (author)

  4. Performance of Garden Pea Genotypes in Eastern Hills of Nepal

    Directory of Open Access Journals (Sweden)

    Krishna Poudel

    2017-05-01

    Full Text Available Garden pea (Pisum sativum L is an important winter legume used as fresh vegetables and other drier food products. Despite of its importance as cash crop in many parts of Nepal, much study on various aspects for enhancing production and productivity has yet to be done. Therefore, to evaluate the production performance different genotypes of garden pea in eastern hills agro-ecological conditions present experiments were carried out consecutively for two years (2015 and 2016 at Agricultural Research Station, Pakhribas. The experiment comprised of 11 different genotypes of garden pea including a check variety Arkel. The production performance was evaluated in a completely randomized block design with three replications. The seeds were sown at 50 × 10 cm spacing during first week of October for two years. The result showed that DGP-05 genotype had earliest 104 days after sowing. The DGP-08 genotype showed 13 which were the maximum numbers of pods per plant (13, while DGP-01 showed 8 numbers of seeds as the maximum per pod. The DGP-03 genotype had the longest pod of 9.78 cm among others. The highest fresh pod yield of 18.14 t/ha was achieved from genotype DGP-09 followed by Arkel with (16.32 t/ha.

  5. Relating physico-chemical properties of frozen green peas (Pisum sativum L.) to sensory quality.

    Science.gov (United States)

    Nleya, Kathleen M; Minnaar, Amanda; de Kock, Henriëtte L

    2014-03-30

    The acceptability of frozen green peas depends on their sensory quality. There is a need to relate physico-chemical parameters to sensory quality. In this research, six brands of frozen green peas representing product sold for retail and caterer's markets were purchased and subjected to descriptive sensory evaluation and physico-chemical analyses (including dry matter content, alcohol insoluble solids content, starch content, °Brix, residual peroxidase activity, size sorting, hardness using texture analysis and colour measurements) to assess and explain product quality. The sensory quality of frozen green peas, particularly texture properties, were well explained using physico-chemical methods of analysis notably alcohol insoluble solids, starch content, hardness and °Brix. Generally, retail class peas were of superior sensory quality to caterer's class peas although one caterer's brand was comparable to the retail brands. Retail class peas were sweeter, smaller, greener, more moist and more tender than the caterer's peas. Retail class peas also had higher °Brix, a(*) , hue and chroma values; lower starch, alcohol insoluble solids, dry matter content and hardness measured. The sensory quality of frozen green peas can be partially predicted by measuring physico-chemical parameters particularly °Brix and to a lesser extent hardness by texture analyser, alcohol insoluble solids, dry matter and starch content. © 2013 Society of Chemical Industry.

  6. Addition of sucralose enhances the release of satiety hormones in combination with pea protein.

    Science.gov (United States)

    Geraedts, Maartje C P; Troost, Freddy J; Saris, Wim H M

    2012-03-01

    Exposing the intestine to proteins or tastants, particularly sweet, affects satiety hormone release. There are indications that each sweetener has different effects on this release, and that combining sweeteners with other nutrients might exert synergistic effects on hormone release. STC-1 cells were incubated with acesulfame-K, aspartame, saccharine, sucralose, sucrose, pea, and pea with each sweetener. After a 2-h incubation period, cholecystokinin(CCK) and glucagon-like peptide 1 (GLP-1) concentrations were measured. Using Ussing chamber technology, the mucosal side of human duodenal biopsies was exposed to sucrose, sucralose, pea, and pea with each sweetener. CCK and GLP-1 levels were measured in basolateral secretions. In STC-1 cells, exposure to aspartame, sucralose, sucrose, pea, and pea with sucralose increased CCK levels, whereas GLP-1 levels increased after addition of all test products. Addition of sucrose and sucralose to human duodenal biopsies did not affect CCK and GLP-1 release; addition of pea stimulated CCK and GLP-1 secretion. Combining pea with sucrose and sucralose induced even higher levels of CCK and GLP-1. Synchronous addition of pea and sucralose to enteroendocrine cells induced higher levels of CCK and GLP-1 than addition of each compound alone. This study shows that combinations of dietary compounds synergize to enhance satiety hormone release. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The effect of Normast (PEA) in neuropathic pain in spinal cord injury

    DEFF Research Database (Denmark)

    Andresen, Sven Robert; Bing, Jette; Hansen, Rikke Bod Middelhede

    2015-01-01

    Introduction: Neuropathic pain and spasticity after spinal cord injury represent significant problems. Palmitoylethanolamide (PEA) is a fatty acid that is produced in many cells in the body, and it is thought to potentiate the body's own cannabis-like substances (endocannabinoids). PEA is suggested...... to reduce pain and inflammation but randomized controlled trials are lacking. Normast is a medical supplement which contains (PEA) approved for use in Denmark. The primary aim is to investigate the effect of Normast (PEA) on neuropathic pain, and secondary to study the effect of Normast on spasticity...

  8. Oxidative stress and DNA damage caused by the urban air pollutant 3-NBA and its isomer 2-NBA in human lung cells analyzed with three independent methods.

    Science.gov (United States)

    Nagy, Eszter; Johansson, Clara; Zeisig, Magnus; Möller, Lennart

    2005-11-15

    The air pollutant 3-nitrobenzanthrone (3-NBA), emitted in diesel exhaust, is a potent mutagen and genotoxin. 3-NBA can isomerise to 2-nitrobenzanthrone (2-NBA), which can become more than 70-fold higher in concentration in ambient air. In this study, three independent methods have been employed to evaluate the oxidative stress and genotoxicity of 2-NBA compared to 3-NBA in the human A549 lung cell line. HPLC-EC/UV was applied for measurements of oxidative damage in the form of 8-oxo-2'-deoxyguanosine (8-oxodG), (32)P-HPLC for measurements of lipophilic DNA-adducts, and the Comet assay to measure a variety of DNA lesions, including oxidative stress. No significant oxidative damage from either isomer was found regarding formation of 8-oxodG analysed using HPLC-EC/UV. However, the Comet assay (with FPG-treatment), which is more sensitive and detects more types of damages compared to HPLC-EC/UV, showed a significant effect from both 3-NBA and 2-NBA. (32)P-HPLC revealed a strong DNA-adduct formation from both 3-NBA and 2-NBA, and also a significant difference between both isomers compared to negative control. These results clearly show that 2-NBA has a genotoxic potential. Even if the DNA-adduct forming capacity and the amount of DNA lesions measured with the (32)P-HPLC and Comet assay is about one third of 3-NBA, the high abundance of 2-NBA in ambient air calls for further investigation and evaluation of its health hazard.

  9. Analysis of DNA methylation level by methylation-sensitive amplification polymorphism in half smooth tongue sole ( Cynoglossus semilaevis) subjected to salinity stress

    Science.gov (United States)

    Li, Siping; He, Feng; Wen, Haishen; Li, Jifang; Si, Yufeng; Liu, Mingyuan; He, Huiwen; Huang, Zhengju

    2017-04-01

    Increasingly arisen environmental constraints may contribute to heritable phenotypic variation including methylation changes, which can help the animals with development, growth and survival. In this study, we assessed the DNA methylation levels in three tissues (gonad, kidney and gill) of half smooth tongue sole under the salinity stress. The methylation-sensitive amplification polymorphism (MSAP) technique was applied to illustrate the regulation of epigenetic mechanism in environmental stimuli. Fish were subjected to 15 salinity treatment for 7 and 60 days, respectively. A total of 11259 fragments were amplified with 8 pairs of selective primers. The levels of methylated DNA in different tissues of females and males without salinity stress were analyzed, which were 32.76% and 47.32% in gonad; 38.13% and 37.69% in kidney; 37.58% and 34.96% in gill, respectively. In addition, the significant difference was observed in gonad between females and males, indicating that discrepant regulation in gonadal development and differentiation may involve sex-related genes. Further analysis showed that total and hemi-methylation were significantly decreased under 15 salinity for 7 days, probably resulting in up-regulating salt-tolerance genes expression to adjust salt changing. With the adjustment for 60 days, total and hemi-methylation prominently went back to its normal levels to obtain equilibrium. Particularly, full methylation levels were steady along with salinity stress to maintain the stability of gene expression. Additionally, the data showed that gonads in females and gills in males were superior in adaptability. As a result, DNA methylation regulates tissue- specific epiloci, and may respond to salinity stress by regulating gene expression to maintain animal survival and activity.

  10. Quercetin suppresses DNA double-strand break repair and enhances the radiosensitivity of human ovarian cancer cells via p53-dependent endoplasmic reticulum stress pathway

    Directory of Open Access Journals (Sweden)

    Gong C

    2017-12-01

    Full Text Available Cheng Gong,1 Zongyuan Yang,1 Lingyun Zhang,2 Yuehua Wang,2 Wei Gong,2 Yi Liu3 1Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 2Department of Oncology, XiangYang Central Hospital, Hubei University of Arts and Science, XiangYang, 3Department of Medicinal Chemistry, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China Abstract: Quercetin is proven to have anticancer effects for many cancers. However, the role of tumor suppressor p53 on quercetin’s radiosensitization and regulation of endoplasmic reticulum (ER stress response in this process remains obscure. Here, quercetin exposure resulted in ER stress, prolonged DNA repair, and the expression of p53 protein; phosphorylation on serine 15 and 20 increased in combination with X-irradiation. Quercetin pretreatment could potentiate radiation-induced cell death. The combination of irradiation and quercetin treatment aggravated DNA damages and caused typical apoptotic cell death; as well the expression of Bax and p21 elevated and the expression of Bcl-2 decreased. Knocking down of p53 could reverse all the above effects under quercetin in combination with radiation. In addition, quercetin-induced radiosensitization was through stimulation of ATM phosphorylation. In human ovarian cancer xenograft model, combined treatment of quercetin and radiation significantly restrained the growth of tumors, accompanied with the activation of p53, CCAAT/enhancer-binding protein homologous protein, and γ-H2AX. Overall, these results indicated that quercetin acted as a promising radiosensitizer through p53-dependent ER stress signals. Keywords: quercetin, p53, endoplasmic reticulum stress, DNA double-strand breaks, eIF-2α (eukaryotic initiation factor 2α, ATM kinase

  11. The impact of partial manganese superoxide dismutase (SOD2)-deficiency on mitochondrial oxidant stress, DNA fragmentation and liver injury during acetaminophen hepatotoxicity

    International Nuclear Information System (INIS)

    Ramachandran, Anup; Lebofsky, Margitta; Weinman, Steven A.; Jaeschke, Hartmut

    2011-01-01

    Acetaminophen (APAP) hepatotoxicity is the most frequent cause of acute liver failure in many countries. The mechanism of cell death is initiated by formation of a reactive metabolite that binds to mitochondrial proteins and promotes mitochondrial dysfunction and oxidant stress. Manganese superoxide dismutase (SOD2) is a critical defense enzyme located in the mitochondrial matrix. The objective of this investigation was to evaluate the functional consequences of partial SOD2-deficiency (SOD2+/-) on intracellular signaling mechanisms of necrotic cell death after APAP overdose. Treatment of C57Bl/6J wild type animals with 200 mg/kg APAP resulted in liver injury as indicated by elevated plasma alanine aminotransferase activities (2870 ± 180 U/L) and centrilobular necrosis at 6 h. In addition, increased tissue glutathione disulfide (GSSG) levels and GSSG-to-GSH ratios, delayed mitochondrial GSH recovery, and increased mitochondrial protein carbonyls and nitrotyrosine protein adducts indicated mitochondrial oxidant stress. In addition, nuclear DNA fragmentation (TUNEL assay) correlated with translocation of Bax to the mitochondria and release of apoptosis-inducing factor (AIF). Furthermore, activation of c-jun-N-terminal kinase (JNK) was documented by the mitochondrial translocation of phospho-JNK. SOD2+/- mice showed 4-fold higher ALT activities and necrosis, an enhancement of all parameters of the mitochondrial oxidant stress, more AIF release and more extensive DNA fragmentation and more prolonged JNK activation. Conclusions: the impaired defense against mitochondrial superoxide formation in SOD2+/- mice prolongs JNK activation after APAP overdose and consequently further enhances the mitochondrial oxidant stress leading to exaggerated mitochondrial dysfunction, release of intermembrane proteins with nuclear DNA fragmentation and more necrosis.

  12. Environmental stress affects DNA methylation of a CpG rich promoter region of serotonin transporter gene in a nurse cohort.

    Directory of Open Access Journals (Sweden)

    Jukka S Alasaari

    Full Text Available Shift-working nurses are exposed to a stressful work environment, which puts them at an increased risk for burnout and depression. We explored the effect of environmental stress on serotonin transporter gene (SLC6A4 promoter methylation among nurses from high and low work stress environments.Using bisulfite sequencing, we investigated the methylation status of five CpG residues of a CpG-rich region in the promoter of SLC6A4 by comparing female shift working nurses from a high work stress environment (n = 24 to low work stress environment (n = 25. We also analyzed the association of 5-HTTLPR polymorphism at 5' end of SLC6A4. Work stress was assessed by the Karasek's Model and possible signs of burnout or depression were measured by the Maslach Burnout Index General Survey and Beck Depression Index. Methylation levels were assessed by bisulfite sequencing of DNA extracted from peripheral blood leucocytes. Restriction enzyme treatment followed by standard PCR was used to identify 5-HTTLPR genotypes.We found that nurses in the high stress environment had significantly lower promoter methylation levels at all five CpG residues compared to nurses in the low stress environment (p<0.01. There was no significant interaction of 5-HTTLPR genotype and work stress with methylation (p = 0.58. In unadjusted (bivariate analysis, burnout was not significantly associated to methylation levels. However, when mutually adjusted for both, burnout and work stress were significant contributors (p = 0.038 and p<0.0001 respectively to methylation levels.Our findings show that environmental stress is concurrent with decreased methylation of the SLC6A4 promoter. This may lead to increased transcriptional activity of the gene, increased reuptake of serotonin from synaptic clefts, and termination of the activity of serotonin. This could present a possible coping mechanism for environmental stress in humans that could eventually increase risk for disturbed functional

  13. Stress

    DEFF Research Database (Denmark)

    Keller, Hanne Dauer

    2015-01-01

    Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....

  14. Stress !!!

    OpenAIRE

    Fledderus, M.

    2012-01-01

    Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten. Opvallend is dat mannelijke studenten uit Twente zich veel minder druk lijken te maken over hun studie. Onder vrouwen ligt de stress juist erg hoog ten opzichte van het landelijk gemiddelde.

  15. A peptide that binds the pea aphid gut impedes entry of Pea enation mosaic virus into the aphid hemocoel

    International Nuclear Information System (INIS)

    Liu Sijun; Sivakumar, S.; Sparks, Wendy O.; Miller, W. Allen; Bonning, Bryony C.

    2010-01-01

    Development of ways to block virus transmission by aphids could lead to novel and broad-spectrum means of controlling plant viruses. Viruses in the Luteoviridae enhanced are obligately transmitted by aphids in a persistent manner that requires virion accumulation in the aphid hemocoel. To enter the hemocoel, the virion must bind and traverse the aphid gut epithelium. By screening a phage display library, we identified a 12-residue gut binding peptide (GBP3.1) that binds to the midgut and hindgut of the pea aphid Acyrthosiphon pisum. Binding was confirmed by labeling the aphid gut with a GBP3.1-green fluorescent protein fusion. GBP3.1 reduced uptake of Pea enation mosaic virus (Luteoviridae) from the pea aphid gut into the hemocoel. GBP3.1 also bound to the gut epithelia of the green peach aphid and the soybean aphid. These results suggest a novel strategy for inhibiting plant virus transmission by at least three major aphid pest species.

  16. High Glucose-Induced Oxidative Stress Increases the Copy Number of Mitochondrial DNA in Human Mesangial Cells

    Directory of Open Access Journals (Sweden)

    Ghada Al-Kafaji

    2013-01-01

    Full Text Available Oxidative damage to mitochondrial DNA (mtDNA has been linked to the pathogenicity of diabetic nephropathy. We tested the hypothesis that mtDNA copy number may be increased in human mesangial cells in response to high glucose-induced reactive oxygen species (ROS to compensate for damaged mtDNA. The effect of manganese superoxide dismutase mimetic (MnTBAP on glucose-induced mtDNA copy number was also examined. The copy number of mtDNA was determined by real-time PCR in human mesangial cells cultured in 5 mM glucose, 25 mM glucose, and mannitol (osmotic control, as well as in cells cultured in 25 mM glucose in the presence and absence of 200 μM MnTBAP. Intracellular ROS was assessed by confocal microscopy and flow cytometry in human mesangial cells. The copy number of mtDNA was significantly increased when human mesangial cells were incubated with 25 mM glucose compared to 5 mM glucose and mannitol. In addition, 25 mM glucose rapidly generated ROS in the cells, which was not detected in 5 mM glucose. Furthermore, mtDNA copy number was significantly decreased and maintained to normal following treatment of cells with 25 mM glucose and MnTBAP compared to 25 mM glucose alone. Inclusion of MnTBAP during 25 mM glucose incubation inhibited mitochondrial superoxide in human mesangial cells. Increased mtDNA copy number in human mesangial cells by high glucose could contribute to increased mitochondrial superoxide, and prevention of mtDNA copy number could have potential in retarding the development of diabetic nephropathy.

  17. A change in the composition of supramolecular DNA-bound phospholipids in thymus and liver of gamma-irradiated rats

    International Nuclear Information System (INIS)

    Krasichkova, Z.I.; Strazhevskaya, N.B.

    1984-01-01

    The composition of supramolecular DNA (SM DNA)-bound phospholipids (PL) of thymus and liver of intact rats and those 2 min, 2, 6 and 24 h after γ-irradiation (9.7 Gy) was studied. In norm, supramolecular DNA of the thymus was shown to contain 6.7 μg PL/mg DNA, and that of the liver, 6.1 μg PL/mg DNA, the main components of PL being cardiolipin (CL) and phosphatidylethanolamine (PEA). Substantial changes were detected in the PL composition of SM DNA of γ,irradiated rat organs. During the postirradiation period the concentration of PEA and CL in thymus SM DNA changed symbatically and irreversibly decAeased to traces; whereas in SM DNA of the liver, their concentrations changed antibatically and decreased only to a definite level thus maintaining the necessary ''lipid volume''. It was shown that PL were not restored in SM DNA of the radiopesistant liver

  18. Green Synthesized Zinc Oxide (ZnO Nanoparticles Induce Oxidative Stress and DNA Damage in Lathyrus sativus L. Root Bioassay System

    Directory of Open Access Journals (Sweden)

    Kamal K. Panda

    2017-05-01

    Full Text Available Zinc oxide nanoparticles (ZnONP-GS were synthesised from the precursor zinc acetate (Zn(CH3COO2 through the green route using the milky latex from milk weed (Calotropis gigantea L. R. Br by alkaline precipitation. Formation of the ZnONP-GS was monitored by UV-visible spectroscopy followed by characterization and confirmation by energy-dispersive X-ray spectroscopy (EDX, transmission electron microscopy (TEM, and X-ray diffraction (XRD. Both the ZnONP-GS and the commercially available ZnONP-S (Sigma-Aldrich and cationic Zn2+ from Zn(CH3COO2 were tested in a dose range of 0–100 mg·L−1 for their potency (i to induce oxidative stress as measured by the generation reactive oxygen species (ROS: O2•−, H2O2 and •OH, cell death, and lipid peroxidation; (ii to modulate the activities of antioxidant enzymes: catalase (CAT, superoxide dismutase (SOD, guaiacol peroxidase (GPX, and ascorbate peroxidase (APX; and (iii to cause DNA damage as determined by Comet assay in Lathyrus sativus L. root bioassay system. Antioxidants such as Tiron and dimethylthiourea significantly attenuated the ZnONP-induced oxidative and DNA damage, suggesting the involvement of ROS therein. Our study demonstrated that both ZnONP-GS and ZnONP-S induced oxidative stress and DNA damage to a similar extent but were significantly less potent than Zn2+ alone.

  19. Green Synthesized Zinc Oxide (ZnO) Nanoparticles Induce Oxidative Stress and DNA Damage in Lathyrus sativus L. Root Bioassay System.

    Science.gov (United States)

    Panda, Kamal K; Golari, Dambaru; Venugopal, A; Achary, V Mohan M; Phaomei, Ganngam; Parinandi, Narasimham L; Sahu, Hrushi K; Panda, Brahma B

    2017-05-18

    Zinc oxide nanoparticles (ZnONP-GS) were synthesised from the precursor zinc acetate (Zn(CH₃COO)₂) through the green route using the milky latex from milk weed ( Calotropis gigantea L. R. Br) by alkaline precipitation. Formation of the ZnONP-GS was monitored by UV-visible spectroscopy followed by characterization and confirmation by energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Both the ZnONP-GS and the commercially available ZnONP-S (Sigma-Aldrich) and cationic Zn 2+ from Zn(CH₃COO)₂ were tested in a dose range of 0-100 mg·L -1 for their potency (i) to induce oxidative stress as measured by the generation reactive oxygen species (ROS: O₂ •- , H₂O₂ and • OH), cell death, and lipid peroxidation; (ii) to modulate the activities of antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), guaiacol peroxidase (GPX), and ascorbate peroxidase (APX); and (iii) to cause DNA damage as determined by Comet assay in Lathyrus sativus L. root bioassay system. Antioxidants such as Tiron and dimethylthiourea significantly attenuated the ZnONP-induced oxidative and DNA damage, suggesting the involvement of ROS therein. Our study demonstrated that both ZnONP-GS and ZnONP-S induced oxidative stress and DNA damage to a similar extent but were significantly less potent than Zn 2+ alone.

  20. Relative contribution of homologous recombination and non-homologous end-joining to DNA double-strand break repair after oxidative stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Letavayová, Lucia; Marková, Eva; Hermanská, Katarína; Vlcková, Viera; Vlasáková, Danusa; Chovanec, Miroslav; Brozmanová, Jela

    2006-05-10

    Oxidative damage to DNA seems to be an important factor in developing many human diseases including cancer. It involves base and sugar damage, base-free sites, DNA-protein cross-links and DNA single-strand (SSB) and double-strand (DSB) breaks. Oxidative DSB can be formed in various ways such as their direct induction by the drug or their generation either through attempted and aborted repair of primary DNA lesions or through DNA replication-dependent conversion of SSB. In general, two main pathways are responsible for repairing DSB, homologous recombination (HR) and non-homologous end-joining (NHEJ), with both of them being potential candidates for the repair of oxidative DSB. We have examined relative contribution of HR and NHEJ to cellular response after oxidative stress in Saccharomyces cerevisiae. Therefore, cell survival, mutagenesis and DSB induction and repair in the rad52, yku70 and rad52 yku70 mutants after hydrogen peroxide (H(2)O(2)), menadione (MD) or bleomycin (BLM) exposure were compared to those obtained for the corresponding wild type. We show that MD exposure does not lead to observable DSB induction in yeast, suggesting that the toxic effects of this agent are mediated by other types of DNA damage. Although H(2)O(2) treatment generates some DSB, their yield is relatively low and hence DSB may only partially be responsible for toxicity of H(2)O(2), particularly at high doses of the agent. On the other hand, the basis of the BLM toxicity resides primarily in DSB induction. Both HR and NHEJ act on BLM-induced DSB, although their relative participation in the process is not equal. Based on our results we suggest that the complexity and/or the quality of the BLM-induced DSB might represent an obstacle for the NHEJ pathway.

  1. Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria.

    Science.gov (United States)

    Aitken, R John; De Iuliis, Geoffry N; Finnie, Jane M; Hedges, Andrew; McLachlan, Robert I

    2010-10-01

    DNA damage in human spermatozoa is known to be associated with a variety of adverse clinical outcomes affecting both reproductive efficiency and the health and wellbeing of the offspring. However, the origin of this damage, its biochemical nature and strategies for its amelioration, still await resolution. Using novel methods to simultaneously assess DNA fragmentation (modified TUNEL assay), DNA-base adduct formation (8-hydroxy-2'-deoxyguanosine [8OHdG]) and cell vitality, spermatozoa from a cohort of 50 assisted conception patients were examined and compared with a group of donors. Receiver operating characteristic (ROC) curve analysis was then used to examine the frequency distribution of the data and to determine optimized thresholds for identifying patients exhibiting abnormally high levels of DNA damage. 8OHdG formation and DNA fragmentation were highly correlated with each other and frequently associated with cell death. Percoll centrifugation improved sperm quality but, unexpectedly, increased 8OHdG formation in live cells, as did sperm fractionation using Puresperm gradients. ROC analysis indicated that the frequency distribution of 8OHdG and DNA fragmentation data were significantly different between patients and donors (P live cells. However, the development of novel methods and optimized thresholds for diagnosing oxidative DNA damage in human spermatozoa should assist in the clinical management of this pathology.

  2. Transcriptional upregulation of p19INK4d upon diverse genotoxic stress is critical for optimal DNA damage response.

    Science.gov (United States)

    Ceruti, Julieta M; Scassa, María E; Marazita, Mariela C; Carcagno, Abel C; Sirkin, Pablo F; Cánepa, Eduardo T

    2009-06-01

    p19INK4d promotes survival of several cell lines after UV irradiation due to enhanced DNA repair, independently of CDK4 inhibition. To further understand the action of p19INK4d in the cellular response to DNA damage, we aimed to elucidate whether this novel regulator plays a role only in mechanisms triggered by UV or participates in diverse mechanisms initiated by different genotoxics. We found that p19INK4d is induced in cells injured with cisplatin or beta-amyloid peptide as robustly as with UV. The mentioned genotoxics transcriptionally activate p19INK4d expression as demonstrated by run-on assay without influencing its mRNA stability and with partial requirement of protein synthesis. It is not currently known whether DNA damage-inducible genes are turned on by the DNA damage itself or by the consequences of that damage. Experiments carried out in cells transfected with distinct damaged DNA structures revealed that the damage itself is not responsible for the observed up-regulation. It is also not known whether the increased expression of DNA-damage-inducible genes is related to immediate protective responses such as DNA repair or to more delayed responses such as cell cycle arrest or apoptosis. We found that ectopic expression of p19INK4d improves DNA repair ability and protects neuroblastoma cells from apoptosis caused by cisplatin or beta-amyloid peptide. Using clonal cell lines where p19INK4d levels can be modified at will, we show that p19INK4d expression correlates with increased survival and clonogenicity. The results presented here, prompted us to suggest that p19INK4d displays an important role in an early stage of cellular DNA damage response.

  3. Evaluation of chlorpyrifos effects, alone and combined with lipopolysaccharide stress, on DNA integrity and immune responses of the three-spined stickleback, Gasterosteus aculeatus.

    Science.gov (United States)

    Marchand, Adrien; Porcher, Jean-Marc; Turies, Cyril; Chadili, Edith; Palluel, Olivier; Baudoin, Patrick; Betoulle, Stéphane; Bado-Nilles, Anne

    2017-11-01

    Organism immune defences might be weakened by pollutants, largely detected in aquatic ecosystems, leading to the facilitation for opportunistic pathogens to infect organisms. In this context, destabilization of fish non-specific immune parameters and erythrocyte DNA integrity was tested, on a model fish species, the three-spined stickleback (Gasterosteus aculeatus), after exposure to chlorpyrifos (CPF). Alone, pesticide exposure induced a genotoxic potential (chlorpyrifos at 1.75 and 0.88µg/L) in addition to a decrease in phagocytosis capacity and a stimulation of respiratory burst. Then, to mimic pathogenic infection, fish exposure to chlorpyrifos was combined with lipopolysaccharides (LPS) stress. In this second experiment, an increase of DNA damage was observed in fish exposed to a lower concentration of chlorpyrifos and LPS. Moreover, at the higher concentration of chlorpyrifos, an early destabilization of innate immunity was observed as suggested by the absence of an increase of lysosomal presence in fish injected with LPS. This study highlighted the usefulness of stress on stress responses to better understand the impact of contaminants on the organism's health. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Expression and biological activity of the cystine knot bioinsecticide PA1b (Pea Albumin 1 Subunit b.

    Directory of Open Access Journals (Sweden)

    Vanessa Eyraud

    Full Text Available The PA1b (Pea Albumin 1, subunit b peptide is an entomotoxin extract from Legume seeds with lethal activity on several insect pests, such as mosquitoes, some aphids and cereal weevils. This 37 amino-acid cysteine-rich peptide has been, until now, obtained by biochemical purification or chemical synthesis. In this paper, we present our results for the transient production of the peptide in Nicotiana benthamiana by agro-infiltration, with a yield of about 35 µg/g of fresh leaves and maximum production 8 days after infiltration. PA1b is part of the PA1 gene which, after post-translational modifications, encodes two peptides (PA1b and PA1a. We show that transforming tobacco with the PA1b cDNA alone does not result in production of the toxin and, in fact, the entire cDNA is necessary, raising the question of the role of PA1a. We constructed a PA1-cassette, allowing for the quick "cut/paste" of different PA1b mutants within a conserved PA1 cDNA. This cassette enabled us to produce the six isoforms of PA1b which exist in pea seeds. Biological tests revealed that all the isoforms display similar activity, with the exception of one which is inactive. The lack of activity in this isoform led us to conclude that the amphiphilic nature of the peptide is necessary for activity. The possible applications of this expression system for other cysteine-rich biomolecules are discussed.

  5. The dynamics of histone H2A ubiquitination in HeLa cells exposed to rapamycin, ethanol, hydroxyurea, ER stress, heat shock and DNA damage.

    Science.gov (United States)

    Nakata, Shiori; Watanabe, Tadashi; Nakagawa, Koji; Takeda, Hiroshi; Ito, Akihiro; Fujimuro, Masahiro

    2016-03-25

    Polyubiquitination plays key roles in proteasome-dependent and independent cellular events, whereas monoubiquitination is involved in gene expression, DNA repair, protein-protein interaction, and protein trafficking. We previously developed an FK2 antibody, which specifically recognizes poly-Ub moieties but not free Ub. To elucidate the role of Ub conjugation in response to cellular stress, we used FK2 to investigate whether chemical stress (rapamycin, ethanol, or hydroxyurea), ER stress (thapsigargin or tunicamycin), heat shock or DNA damage (H2O2 or methyl methanesulfonate) affect the formation of Ub conjugates including histone H2A (hH2A) ubiquitination. First, we found that all forms of stress tested increased poly-ubiquitinated proteins in HeLa cells. Furthermore, rapamycin and hydroxyurea treatment, and ER stress increased ubiquitination of hH2A, while methyl methanesulfonate (MMS) treatment induced deubiquitination of hH2A. The ethanol and H2O2 treatments, and heat shock transiently induced hH2A de-ubiquitination, although deubiquitinated hH2A were ubiquitinated again by subsequent cultivation. We also revealed that FK2 reacts with not only polyubiquitinated proteins but also mono-ubiquitinated hH2A. With the exception of MMS, all forms of stress tested increased the acetylation of K5-hH2A, K9-hH3 and K8-hH4 in addition to ubiquitination. K118 and K119 of hH2A were ubiquitinated in cells under normal conditions, and K119 was the major ubiquitination site. The MMS-treatment and heat shock induced the deubiquitination of both K118 and K119-histone H2A. Interestingly, MMS treatment did not affect cell HeLa cell viability expressing double-mutant hH2A (KK118,119AA-hH2A), while heat shock slightly but significantly decreased viability of double-mutant hH2A expressing cells, indicating that ubiquitination of both sites associates with recovery from heat shock but not MMS treatment. Thus, we characterized FK2 reactivity and demonstrated that various stresses alter

  6. GSTP1 Loss results in accumulation of oxidative DNA base damage and promotes prostate cancer cell survival following exposure to protracted oxidative stress.

    Science.gov (United States)

    Mian, Omar Y; Khattab, Mohamed H; Hedayati, Mohammad; Coulter, Jonathan; Abubaker-Sharif, Budri; Schwaninger, Julie M; Veeraswamy, Ravi K; Brooks, James D; Hopkins, Lisa; Shinohara, Debika Biswal; Cornblatt, Brian; Nelson, William G; Yegnasubramanian, Srinivasan; DeWeese, Theodore L

    2016-02-01

    Epigenetic silencing of glutathione S-transferase π (GSTP1) is a hallmark of transformation from normal prostatic epithelium to adenocarcinoma of the prostate. The functional significance of this loss is incompletely understood. The present study explores the effects of restored GSTP1 expression on glutathione levels, accumulation of oxidative DNA damage, and prostate cancer cell survival following oxidative stress induced by protracted, low dose rate ionizing radiation (LDR). GSTP1 protein expression was stably restored in LNCaP prostate cancer cells. The effect of GSTP1 restoration on protracted LDR-induced oxidative DNA damage was measured by GC-MS quantitation of modified bases. Reduced and oxidized glutathione levels were measured in control and GSTP1 expressing populations. Clonogenic survival studies of GSTP1- transfected LNCaP cells after exposure to protracted LDR were performed. Global gene expression profiling and pathway analysis were performed. GSTP1 expressing cells accumulated less oxidized DNA base damage and exhibited decreased survival compared to control LNCaP-Neo cells following oxidative injury induced by protracted LDR. Restoration of GSTP1 expression resulted in changes in modified glutathione levels that correlated with GSTP1 protein levels in response to protracted LDR-induced oxidative stress. Survival differences were not attributable to depletion of cellular glutathione stores. Gene expression profiling and pathway analysis following GSTP1 restoration suggests this protein plays a key role in regulating prostate cancer cell survival. The ubiquitous epigenetic silencing of GSTP1 in prostate cancer results in enhanced survival and accumulation of potentially promutagenic DNA adducts following exposure of cells to protracted oxidative injury suggesting a protective, anti-neoplastic function of GSTP1. The present work provides mechanistic backing to the tumor suppressor function of GSTP1 and its role in prostate carcinogenesis. © 2015

  7. Chemoprotective Effect of Taurine on Potassium Bromate-Induced DNA Damage, DNA-Protein Cross-Linking and Oxidative Stress in Rat Intestine

    Science.gov (United States)

    Ahmad, Mir Kaisar; Khan, Aijaz Ahmed; Ali, Shaikh Nisar; Mahmood, Riaz

    2015-01-01

    Potassium bromate (KBrO3) is widely used as a food additive and is a major water disinfection by-product. It induces multiple organ toxicity in humans and experimental animals and is a probable human carcinogen. The present study reports the protective effect of dietary antioxidant taurine on KBrO3-induced damage to the rat intestine. Animals were randomly divided into four groups: control, KBrO3 alone, taurine alone and taurine+ KBrO3. Administration of KBrO3 alone led to decrease in the activities of intestinal brush border membrane enzymes while those of antioxidant defence and carbohydrate metabolism were also severely altered. There was increase in DNA damage and DNA-protein cross-linking. Treatment with taurine, prior to administration of KBrO3, resulted in significant attenuation in all these parameters but the administration of taurine alone had no effect. Histological studies supported these biochemical results showing extensive intestinal damage in KBrO3-treated animals and greatly reduced tissue injury in the taurine+ KBrO3 group. These results show that taurine ameliorates bromate induced tissue toxicity and oxidative damage by improving the antioxidant defence, tissue integrity and energy metabolism. Taurine can, therefore, be potentially used as a therapeutic/protective agent against toxicity of KBrO3 and related compounds. PMID:25748174

  8. Stress !!!

    NARCIS (Netherlands)

    Fledderus, M.

    2012-01-01

    Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten.

  9. Doing the Basics Better in Africa: How School Support, Autonomy, and Accountability Improved Outcomes for Girls in PEAS Schools

    Science.gov (United States)

    Hills, Libby

    2017-01-01

    Promoting Equality in African Schools (PEAS) seeks to expand access to sustainably delivered, quality secondary education in Africa. PEAS builds and runs chains of not-for-profit, low-cost private schools in public-private partnership with governments. External evaluation data show that PEAS schools in Uganda are delivering higher quality…

  10. 7 CFR 201.56-6 - Legume or pea family, Fabaceae (Leguminosae).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Legume or pea family, Fabaceae (Leguminosae). 201.56-6 Section 201.56-6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL...-6 Legume or pea family, Fabaceae (Leguminosae). Kinds of seed: Alfalfa, alyceclover, asparagusbean...

  11. Genetic Diversity of Chinese and Global Pea (Pisum sativum L.) Collections.

    Science.gov (United States)

    Pea (Pisum sativum L.) is an important food and feed legume grown across many temperate regions of the world, especially from Asia to Europe and North America. The goal of this study was to use 30 informative pea microsatellite markers to compare genetic diversity in a global core from the USDA and ...

  12. Vooruit met de geit. Marktkansen voor Geitenvlees! Een duik in de keten van The Green Peas

    NARCIS (Netherlands)

    Livestock Research,

    2012-01-01

    De geitensector loopt tegen verschillende problemen aan. The Green Peas is gevraagd door Wageningen UR Livestock Research (WUR) om onderzoek te doen naar het verwaarden van duurzaam, Nederlands geitenvlees. The Green Peas is gevraagd vanwege haar expertise op het gebied van duurzaam voedselonderzoek

  13. In situ localization of chalcone synthase mRNA in pea root nodule development.

    NARCIS (Netherlands)

    Yang, W.C.; Canter Cremers, H.C.J.; Hogendijk, P.; Katinakis, P.; Wijffelman, C.A.; Franssen, H.J.; Kammen, van A.; Bisseling, T.

    1992-01-01

    In this paper studies on the role of flavonoids in pea root nodule development are reported. Flavonoid synthesis was followed by localizing chalcone synthase (CHS) mRNA in infected pea roots and in root nodules. In a nodule primordium, CHS mRNA is present in all cells of the primordium. Therefore it

  14. Microsynteny between pea and Medicago truncatula in the SYM2 region

    NARCIS (Netherlands)

    Gualtieri, G.; Kulikova, O.; Limpens, E.; Kim, D.J.; Cook, D.R.; Bisseling, T.; Geurts, R.

    2002-01-01

    The crop legume pea (Pisum sativum) is genetically well characterized. However, due to its large genome it is not amenable to efficient positional cloning strategies. The purpose of this study was to determine if the model legume Medicago truncatula, which is a close relative of pea, could be used

  15. Effect of gamma irradiation on pollen and seed fertility in pigeon pea

    International Nuclear Information System (INIS)

    Ahmed John, S.

    1997-01-01

    A study was undertaken in pigeon pea parents and their F 1 hybrid to analyse the pollen and seed fertility following gamma irradiation. It is found that the reduction of pollen and seed fertility in pigeon pea was lesser over those of black gram and cowpea. 5 refs., 1 tab

  16. Use of Cowpea and Pigeon pea as Nutritional Ingredients in Culture ...

    African Journals Online (AJOL)

    Use of Cowpea and Pigeon pea as Nutritional Ingredients in Culture Media. ... Sudan Journal of Medical Sciences ... Cheap, locally available plant seeds such as cowpea (Vigna unguiculata) and pigeon pea (Cajanus cajan) could be used in the design and formulation of microbial culture media in order to reduce the cost.

  17. Effect of enzyme treatment on pea starch physicomechanical properties of biofilms

    OpenAIRE

    A. Sh. Zakirova; T. N. Manahova; A. V. Kanarskiy; Z. A. Kanarskaya

    2013-01-01

    The regularities of change in physical and mechanical properties of biofilms based on pea starch treated with pullulanase enzyme preparation were obtained. The possibility of formation of linear pea starch amylopectin polymers, which contribute to improvement of the mechanical and rheological properties of biofilms was identified.

  18. Effect of enzyme treatment on pea starch physicomechanical properties of biofilms

    Directory of Open Access Journals (Sweden)

    A. Sh. Zakirova

    2013-01-01

    Full Text Available The regularities of change in physical and mechanical properties of biofilms based on pea starch treated with pullulanase enzyme preparation were obtained. The possibility of formation of linear pea starch amylopectin polymers, which contribute to improvement of the mechanical and rheological properties of biofilms was identified.

  19. Exploring variation in pea protein composition by natural selection and genetic transformation

    NARCIS (Netherlands)

    Tzitzikas, E.

    2005-01-01

    Pea (Pisumsativum L.) seeds are a rich and valuable source of proteins, which can have potential for food industrial applications. Pea storage proteins are classified into two major classes: the salt-soluble globulins, and the water-soluble

  20. DNA damage in the gill cells of the marine scallop Mizuhopecten yessoensis during anoxic stress and aerobic recovery

    Science.gov (United States)

    Slobodskova, Valentina V.; Zhukovskaya, Avianna F.; Chelomin, Victor P.

    2012-06-01

    Anoxia-induced DNA damage in the gill cells of the marine scallop Mizuhopecten yessoensis was assessed with the alkaline comet assay (single-cell gel electrophoresis). The alkaline comet assay method for detecting DNA strand breaks and alkali labile sites in individual cells. DNA damage was determened in the scallops ( M. yessoensis) gill cells. The scallops were exposed to air for 8 h showing a clear increase in the levels of DNA damage. After the air exposure, M. yessoensis were re-submersed for a period of 12 h, leading values to return to a pre-aerial exposure level. Control animals were kept immersed during the whole period. The resulting data demonstrate that natural influences, such as oxygen depletion (anoxia) in seawater, can be responsible for the induction of DNA damage. If the scallops were re-immersed in oxic conditions, the anoxically induced breaks were repaired. The main mechanisms influencing the integrity of the DNA structure are discussed in this paper.

  1. Effect of Gamma Radiation and temperature on storage quality of Pea (Pisum sativum L)

    International Nuclear Information System (INIS)

    Islam, M.S.; Hossain, M. M.; Hossain, M. A.; Alam, M. K.; Sarder, A. H.

    2004-01-01

    Effect of radiation, storage temperature and storage period of pea was investigated. During the entire storage period of 12 months, no major changes occurred in weight loss, insect infestation, moisture content, water activity (a w ) and protein content of the pea stored at room temperature (RT) and at 4 0 C. Reconstitution properties and tenderness after cooking were affected at room temperature storage. Both reconstitution properties and tenderness gradually decreased with the increase of storage period when pea was stored at RT. The initial reconstitution properties (94%) decreased to 77% at the end of 12 months and the initial tenderness (97%) decreased to 13% when pea was stored at room temperature. On the other hand the reconstitution properties and tenderness were found 92% and 83% respectively in pea stored at 4 0 C.(author)

  2. The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barley

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, H.; Ambus, P.; Jensen, E.S.

    2003-01-01

    The effect of sole and intercropping of field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) and of crop residue management on crop yield, NO3- leaching and N balance in the cropping system was tested in a 2-year lysimeter experiment on a temperate sandy loam soil. The crop rotation...... cropping. Crops received no fertilizer in the experimental period. Natural N-15 abundance techniques were used to determine pea N-2 fixation. The pea-barley intercrop yielded 4.0 Mg grain ha(-1), which was about 0.5 Mg lower than the yields of sole cropped pea but about 1.5 Mg greater than harvested...... was pea and barley sole and intercrops followed by winter-rye and a fallow period. The Land Equivalent Ratio (LER), which is defined as the relative land area under sole crops that is required to produce the yields achieved in intercropping, was used to compare intercropping performance relative to sole...

  3. Barley uptake of N deposited in the rhizosphere of associated field pea

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1996-01-01

    N deposited in the rhizosphere of a legume may contribute to the N-nutrition of an intercropped non-legume. The process of deposition and subsequent uptake by a neighbouring plant is often termed N-transfer. The N-transfer from field pea (Pisum sativum L.) to associated spring barley (Hordeum...... debris. Separating the root systems reduced the barley recovery of pea-derived N to about half the amount recovered in the association where root systems grew in the same compartment. The death of pea, caused by spraying with a herbicide, increased the amount of N recovered in barley, whereas shading...... the pea plant had no effect on the amount of pea-derived N taken up in barley. The N deposited up to 45 days of growth contributed

  4. Changes in DNA Methylation Pattern at Two Seedling Stages in Water Saving and Drought-Resistant Rice Variety after Drought Stress Domestication

    Directory of Open Access Journals (Sweden)

    Xiao-guo ZHENG

    2014-09-01

    Full Text Available Recent studies revealed that DNA methylation plays an important role in plant growth and development. In this study, a water-saving and drought-resistant rice variety Huhan 3 was subjected to drought stress from tillering to grain-filling stages in six successive growth cycles. The variations in DNA methylation pattern between the original generation (G0 and the sixth generation (G6 were analyzed by using methylation sensitive amplification polymorphism method. The results revealed that the methylated loci accounted for 34.3% to 34.8% of the total loci. Among these methylated loci, 83.1% to 84.8% were full- and hyper-methylated and 15.2% to 16.9% were hemi-methylated. The DNA methylation level decreased from the three-leaf to four-leaf stages in Huhan 3. Differentially methylated loci (DML between generations or/and between different developmental stages accounted for 4.0% of the total loci, most of which were only related to plant development (57.9%. Compared to G0, the DNA methylation pattern of G6 changed after drought domestication, at the three-leaf stage, de-methylation accounting for 59.1%, while at the four-leaf stage, re-methylation for 47.9%. Genome-wide alternations of DNA methylation were observed between the two seedling stages, and DML mainly occurred on the gene's promoter and exon region. The genes related to DML involved in a wide range of functional biology and participated in many important biological processes.

  5. Wide range of interacting partners of pea Gβ subunit of G-proteins suggests its multiple functions in cell signalling.

    Science.gov (United States)

    Bhardwaj, Deepak; Lakhanpaul, Suman; Tuteja, Narendra

    2012-09-01

    Climate change is a major concern especially in view of the increasing global population and food security. Plant scientists need to look for genetic tools whose appropriate usage can contribute to sustainable food availability. G-proteins have been identified as some of the potential genetic tools that could be useful for protecting plants from various stresses. Heterotrimeric G-proteins consisting of three subunits Gα, Gβ and Gγ are important components of a number of signalling pathways. Their structure and functions are already well studied in animals but their potential in plants is now gaining attention for their role in stress tolerance. Earlier we have reported that over expressing pea Gβ conferred heat tolerance in tobacco plants. Here we report the interacting partners (proteins) of Gβ subunit of Pisum sativum and their putative role in stress and development. Out of 90 transformants isolated from the yeast-two-hybrid (Y2H) screening, seven were chosen for further investigation due to their recurrence in multiple experiments. These interacting partners were confirmed using β-galactosidase colony filter lift and ONPG (O-nitrophenyl-β-D-galactopyranoside) assays. These partners include thioredoxin H, histidine-containing phosphotransfer protein 5-like, pathogenesis-related protein, glucan endo-beta-1, 3-glucosidase (acidic isoform), glycine rich RNA binding protein, cold and drought-regulated protein (corA gene) and soluble inorganic pyrophosphatase 1. This study suggests the role of pea Gβ subunit in stress signal transduction and development pathways owing to its capability to interact with a wide range of proteins of multiple functions. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  6. GREEN PEA GALAXIES REVEAL SECRETS OF Lyα ESCAPE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huan; Wang, Junxian [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China (China); Malhotra, Sangeeta; Rhoads, James E. [Arizona State University, School of Earth and Space Exploration (United States); Gronke, Max; Dijkstra, Mark [Institute of Theoretical Astrophysics, University of Oslo (Norway); Jaskot, Anne [Smith College, Northampton, MA (United States); Zheng, Zhenya, E-mail: yanghuan@mail.ustc.edu.cn, E-mail: huan.y@asu.edu, E-mail: Sangeeta.Malhotra@asu.edu, E-mail: James.Rhoads@asu.edu [Pontificia Universidad Católica de Chile, Santiago (Chile)

    2016-04-01

    We analyze archival Lyα spectra of 12 “Green Pea” galaxies observed with the Hubble Space Telescope, model their Lyα profiles with radiative transfer models, and explore the dependence of the Lyα escape fraction on various properties. Green Pea galaxies are nearby compact starburst galaxies with [O iii] λ5007 equivalent widths (EWs) of hundreds of Å. All 12 Green Pea galaxies in our sample show Lyα lines in emission, with an Lyα EW distribution similar to high-redshift Lyα emitters. Combining the optical and UV spectra of Green Pea galaxies, we estimate their Lyα escape fractions and find correlations between Lyα escape fraction and kinematic features of Lyα profiles. The escape fraction of Lyα in these galaxies ranges from 1.4% to 67%. We also find that the Lyα escape fraction depends strongly on metallicity and moderately on dust extinction. We compare their high-quality Lyα profiles with single H i shell radiative transfer models and find that the Lyα escape fraction anticorrelates with the derived H i column densities. Single-shell models fit most Lyα profiles well, but not the ones with the highest escape fractions of Lyα. Our results suggest that low H i column density and low metallicity are essential for Lyα escape and make a galaxy an Lyα emitter.

  7. MAP kinase-signaling controls nuclear translocation of tripeptidyl-peptidase II in response to DNA damage and oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Preta, Giulio; Klark, Rainier de; Chakraborti, Shankhamala [Center for Molecular Medicine (CMM), Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm (Sweden); Glas, Rickard, E-mail: rickard.glas@ki.se [Center for Molecular Medicine (CMM), Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm (Sweden)

    2010-08-27

    Research highlights: {yields} Nuclear translocation of TPPII occurs in response to different DNA damage inducers. {yields} Nuclear accumulation of TPPII is linked to ROS and anti-oxidant enzyme levels. {yields} MAPKs control nuclear accumulation of TPPII. {yields} Inhibited nuclear accumulation of TPPII decreases DNA damage-induced {gamma}-H2AX expression. -- Abstract: Reactive oxygen species (ROS) are a continuous hazard in eukaroytic cells by their ability to cause damage to biomolecules, in particular to DNA. Previous data indicated that the cytosolic serine peptidase tripeptidyl-peptidase II (TPPII) translocates into the nucleus of most tumor cell lines in response to {gamma}-irradiation and ROS production; an event that promoted p53 expression as well as caspase-activation. We here observed that nuclear translocation of TPPII was dependent on signaling by MAP kinases, including p38MAPK. Further, this was caused by several types of DNA-damaging drugs, a DNA cross-linker (cisplatinum), an inhibitor of topoisomerase II (etoposide), and to some extent also by nucleoside-analogues (5-fluorouracil, hydroxyurea). In the minority of tumor cell lines where TPPII was not translocated into the nucleus in response to DNA damage we observed reduced intracellular ROS levels, and the expression levels of redox defense systems were increased. Further, treatment with the ROS-inducer {gamma}-hexa-chloro-cyclohexane ({gamma}-HCH, lindane), an inhibitor of GAP junctions, restored nuclear translocation of TPPII in these cell lines upon {gamma}-irradiation. Moreover, blocking nuclear translocation of TPPII in etoposide-treated cells, by using a peptide-derived inhibitor (Z-Gly-Leu-Ala-OH), attenuated expression of {gamma}-H2AX in {gamma}-irradiated melanoma cells. Our results indicated a role for TPPII in MAPK-dependent DNA damage signaling.

  8. PDH45 overexpressing transgenic tobacco and rice plants provide salinity stress tolerance via less sodium accumulation.

    Science.gov (United States)

    Nath, Manoj; Garg, Bharti; Sahoo, Ranjan Kumar; Tuteja, Narendra

    2015-01-01

    Salinity stress negatively affects the crop productivity worldwide, including that of rice. Coping with these losses is a major concern for all countries. The pea DNA helicase, PDH45 is a unique member of helicase family involved in the salinity stress tolerance. However, the exact mechanism of the PDH45 in salinity stress tolerance is yet to be established. Therefore, the present study was conducted to investigate the mechanism of PDH45-mediated salinity stress tolerance in transgenic tobacco and rice lines along with wild type (WT) plants using CoroNa Green dye based sodium localization in root and shoot sections. The results showed that under salinity stress root and shoot of PDH45 overexpressing transgenic tobacco and rice accumulated less sodium (Na(+)) as compared to their respective WT. The present study also reports salinity tolerant (FL478) and salinity susceptible (Pusa-44) varieties of rice accumulated lowest and highest Na(+) level, respectively. All the varieties and transgenic lines of rice accumulate differential Na(+) ions in root and shoot. However, roots accumulate high Na(+) as compared to the shoots in both tobacco and rice transgenic lines suggesting that the Na(+) transport in shoot is somehow inhibited. It is proposed that the PDH45 is probably involved in the deposition of apoplastic hydrophobic barriers and consequently inhibit Na(+) transport to shoot and therefore confers salinity stress tolerance to PDH45 overexpressing transgenic lines. This study concludes that tobacco (dicot) and rice (monocot) transgenic plants probably share common salinity tolerance mechanism mediated by PDH45 gene.

  9. Stamina pistilloida: a new mutation induced in pea.

    Science.gov (United States)

    Monti, L M; Devreux, M

    1969-01-01

    After diethylsulphate treatment of seeds of the pea variety 'Parvus', a new floral mutation was isolated in the second generation. This mutation, named stamina pistilloida, is characterized by a partial fusion of the androecium with the gynoecium; the two marginal stamens of the staminal column are transformed in rudimentary carpels more or less differentiated according to ecoclimatic conditions. The genetic analysis has shown the monogenic and recessive behaviour of the mutation (gene proposed stp) and its linkage with the gene oh in the chromosome II.

  10. Mutation studies in gamma-ray treated peas

    Energy Technology Data Exchange (ETDEWEB)

    Narsinghani, V G; Kumar, S [Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur (India). Dept. of Plant Breeding

    1976-01-01

    Pea Seeds (Pisum Sativum L. 2n=14) irradiated with four doses of gamma rays viz, 10, 15, 20 and 25 kR revealed a reduction in seedling height, survival percentage, pods and seed yield and pollen fertility during X/sub 1/ and X/sub 2/ generations. Chlorophyll and leaf mutations were noted. The mitotic cells indicated chromosomal aberrations which were dose dependent. In meiosis, translocated rings and chains of 4,6 and 8 chromosomes; paracentric and pericentric inversions, fragments, laggards and unequal distribution of chromosomes were observed. Besides, the frequency of aberrations were lower during X/sub 2/ as compared to X/sub 1/.

  11. Biomass production and nitrogen accumulation in pea, oat, and vetch green manure mixtures

    International Nuclear Information System (INIS)

    Jannink, J.L.; Liebman, M.; Merrick, L.C.

    1996-01-01

    Interest in the use of green manures has revived because of their role in improving soil quality and their beneficial N and non-N rotation effects. This study evaluated biomass production, N content, radiation interception (RI), and radiation use efficiency (RUE) of pea (Pisum sativum L.), oat (Avena sativa L.), and hairy vetch (Vicia villosa Roth) mixtures. Treatments were a three-way factorial of pea genotype ('Century' vs 'Tipu'), pea planting density (90 vs 224 kg ha -1 ), and cropping mixture (solecropped pea vs pea planted with a mixture of oat and hairy vetch). A mixture of oat and vetch without pea was also planted. Treatments were planted in early June on a Caribou gravelly loam (coarse-loamy, mixed, frigid Typic Haplorthods) in Presque Isle, ME, in 1993 and 1994. Biomass production and radiation interception were measured by repeated sampling. Mixture biomass was affected by a year x pea density interaction: respective yields for mixtures containing low-density and high-density pea were 770 and 880 g m -2 in 1993 vs 820 and 730 g m -2 in 1994. Mixture N content paralleled biomass production and averaged 209 g m -2 across all treatments. While pea sole crops did not consistently produce biomass or N equal to three-species mixtures the two-species mixture of oat and vetch did, yielding 820 g m -2 of biomass and 21.7 g m -2 of N, averaged over the 2 yr. Multiple regression showed that 61% of the variability in mixture biomass production was accounted for by a combination of early-season pea RI and midseason total mixture RUE. Economic analyses showed that rotation including these green manures may be economically competitive with a conventional rotation of barley (Hordeum vulgare L.) undersown with clover (Trifolium spp.) in a potato (Solanum tuberosum L.) production system

  12. Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis

    DEFF Research Database (Denmark)

    Kilstrup, Mogens; Jacobsen, Susanne; Hammer, Karin

    1997-01-01

    The bacterium Lactococcus lactis has become a model organism in studies of growth physiology and membrane transport, as a result of its simple fermentative metabolism. It is also used as a model for studying the importance of specific genes and functions during lie in excess nutrients, by compari...... the timing during heat stress although at a lower induction level. These data indicate an overlap between the heat shock and salt stress responses in L. lactis......., by comparison of prototrophic wild-type strains and auxotrophic domesticated (daily) strains. In a study of the capacity of domesticated strains to perform directed responses toward various stress conditions, we have analyzed the heat and salt stress response in the established L,. lactis subsp. cremoris...... laboratory strain MG1363, which was originally derived from a dairy strain, After two-dimensional separation of proteins, the DnaK, GroEL, and GroES heat shock proteins, the HrcA (Orf1) heat shack repressor, and the glycolytic enzymes pyruvate kinase, glyceral-dehyde-3-phosphate dehydrogenase...

  13. Comparative proteomic analysis in pea treated with microbial consortia of beneficial microbes reveals changes in the protein network to enhance resistance against Sclerotinia sclerotiorum.

    Science.gov (United States)

    Jain, Akansha; Singh, Akanksha; Singh, Surendra; Singh, Vinay; Singh, Harikesh Bahadur

    2015-06-15

    Microbial consortia may provide protection against pathogenic ingress via enhancing plant defense responses. Pseudomonas aeruginosa PJHU15, Trichoderma harzianum TNHU27 and Bacillus subtilis BHHU100 were used either singly or in consortia in the pea rhizosphere to observe proteome level changes upon Sclerotinia sclerotiorum challenge. Thirty proteins were found to increase or decrease differentially in 2-DE gels of pea leaves, out of which 25 were identified by MALDI-TOF MS or MS/MS. These proteins were classified into several functional categories including photosynthesis, respiration, phenylpropanoid metabolism, protein synthesis, stress regulation, carbohydrate and nitrogen metabolism and disease/defense-related processes. The respective homologue of each protein identified was trapped in Pisum sativum and a phylogenetic tree was constructed to check the ancestry. The proteomic view of the defense response to S. sclerotiorum in pea, in the presence of beneficial microbes, highlights the enhanced protection that can be provided by these microbes in challenged plants. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Effects of ambient ozone on reactive oxygen species and antioxidant metabolites in leaves of pea (pisum sativum l.) plants

    International Nuclear Information System (INIS)

    Hassan, I.A.; Almeelbi, T.; Basahi, J.M.

    2017-01-01

    The differential response of two pea plants (Pisum sativum L. cultivars Little Marvel and Victory) to ambient O3 grown under open top chambers (OTCs) was analyzed and compared. Reactive oxygen species (ROS) generation, antioxidant metabolites such as ascorbate/glutathione as well as a series of enzymes for scavenging ROS were analyzed, all aiming to reveal the differential behavior of two closely related plants when exposed to ambient O3.Antioxidant levels and activities of related enzymes in response to ambient were noticeably different among Little Marvel and Victory plants. However, the response was cultivar-specific. There was higher accumulation of ROS and relatively lower induction of antioxidants and more inhibition in photosynthetic rates in Victory than Little Marvel. There was a good correlation between tolerance to O3 and high endogenous levels of antioxidant metabolites such as ascorbate (As), glutathione reductase (GR), superoxide dismutase (SOD), reduced (GSH) and oxidized glutathione (GSSG) in pea plants. These portrays a higher sensitivity of Victory to ambient O3.To the best of our knowledge, this is one of the very few studies attempted to describe the changes in contents of antioxidants and activities of related enzymes in leaves of two closely related cultivars to further ourunderstanding on the defense mechanism and strategies under ambient O3. The results highlighted the possible roles of antioxidants in O3 detoxification through activation an adaptive survival mechanism allowing the plant to complete its life cycle even under oxidative stressful conditions. (author)

  15. Rapid activation of catalase followed by citrate efflux effectively improves aluminum tolerance in the roots of chick pea (Cicer arietinum).

    Science.gov (United States)

    Sharma, Manorma; Sharma, Vinay; Tripathi, Bhumi Nath

    2016-05-01

    The present study demonstrates the comparative response of two contrasting genotypes (aluminum (Al) tolerant and Al sensitive) of chick pea (Cicer arietinum) against Al stress. The Al-tolerant genotype (RSG 974) showed lesser inhibition of root growth as well as lower oxidative damages, measured in terms of the accumulation of H2O2 and lipid peroxidation compared to the Al-sensitive genotype (RSG 945). The accumulation of Al by roots of both genotypes was almost equal at 96 and 144 h after Al treatment; however, it was higher in Al-tolerant than Al-sensitive genotype at 48 h after Al treatment. Further, the Al-mediated induction of superoxide dismutase (SOD) activity was significantly higher in Al-tolerant than Al-sensitive genotype. Ascorbate peroxidase (APX) activity was almost similar in both genotypes. Al treatment promptly activated catalase activity in Al-tolerant genotype, and it was remarkably higher than that of Al-sensitive genotype. As another important Al detoxification mechanism, citrate efflux was almost equal in both genotypes except at 1000 μM Al treatment for 96 and 144 h. Further, citrate carrier and anion channel inhibitor experiment confirmed the contribution of citrate efflux in conferring Al tolerance in Al-tolerant genotype. Based on the available data, the present study concludes that rapid activation of catalase (also SOD) activity followed by citrate efflux effectively improves Al tolerance in chick pea.

  16. Relationships of solar radiation and vapour pressure deficit with photosynthesis and water relations in dry-land pigeon pea

    International Nuclear Information System (INIS)

    Subramanian, V.B.; Venkateswarlu, S.; Maheswari, M.; Sankar, G.R.M.

    1994-01-01

    A study was undertaken to compare the relationships of photosynthetically active radiation (PAR) and vapour pressure deficit (VPD) with carbon assimilation and water relations of dry-land pigeon pea at the vegetative and reproductive phases. Photosynthetic rate (Pn), transpiration rate (T), leaf water potential (wL), and stomatal conductance (gs) were measured at 7- to 10-day intervals from 1 month after seedling until a fortnight before harvest during two seasons. Generally, Pn, T, and gs were higher and wL was lower during the reproductive than during the vegetative phase. At high PAR and VPD, Pn, T, wL, and gs decreased. The decrease in the T at high PAR was smaller during the reproductive phase. Growth of dry-land pigeon pea was affected not only during periods of water stress which was associated with high PAR and high VPD but also under conditions of favourable plant water status which were associated with less than optimal levels of PAR. It also showed transpiration efficiency (TE) was lower during the pod-filling than during the vegetative phase, when PAR was optimum

  17. Nitrogen acquisition by pea and barley and the effect of their crop residues on available nitrogen for subsequent crops

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1996-01-01

    Nitrogen acquisition by field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) grown on a sandy loam soil and availability of N in three subsequent sequences of a cropping system were studied in an outdoor pot experiment. The effect of crop residues on the N availability was evaluated....... The dry matter production and total N uptake of a spring barley crop following pea or barley, with a period of unplanted soil in the autumn/winter, were significantly higher after pea than after barley. The barley crop following pea and barley recovered 11% of the pea and 8% of the barley residue N...

  18. A fully validated bioanalytical method using an UHPLC-MS/MS system for quantification of DNA and RNA oxidative stress biomarkers.

    Science.gov (United States)

    Cervinkova, Barbora; Krcmova, Lenka Kujovska; Sestakova, Veronika; Solichova, Dagmar; Solich, Petr

    2017-05-01

    A new, rapid and effective ultra-high-performance liquid chromatography method with mass spectrometry detection is described for the separation and quantification of 8-hydroxy-2-deoxyguanosine, 8-hydroxyguanosine and creatinine in human urine. The present study uses an isotope-labelled internal standard ([ 15 N] 5 -8-hydroxy-2-deoxyguanosine), a BIO core-shell stationary phase and an isocratic elution of methanol and water. Sample preparation of human urine was performed by solid-phase extraction (SPE) on Oasis HLB cartridges with methanol/water 50:50 (v/v) elution. Extraction recoveries ranged from 98.1% to 109.2%. Biological extracts showed high short-term stability. Several aspects of this procedure make it suitable for both clinical and research purposes: a short elution time of less than 3.2 min, an intra-day precision of 2.5-8.9%, an inter-day precision of 3.4-8.7% and low limits of quantification (27.7 nM for 8-hydroxyguanosine, 6.0 nM for 8-hydroxy-2-deoxyguanosine). Finally, simultaneous analysis of DNA and RNA oxidative stress biomarkers is a useful tool for monitoring disease progression in neurodegenerative disorders and cancer. Graphical abstract UHPLC-MS/MS analysis of DNA and RNA oxidative stress biomarkers.

  19. Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism.

    Science.gov (United States)

    Tan, Ming-pu

    2010-01-01

    Water stress is known to alter cytosine methylation, which generally represses transcription. However, little is known about the role of methylation alteration in maize under osmotic stress. Here, methylation-sensitive amplified polymorphism (MSAP) was used to screen PEG- or NaCl-induced methylation alteration in maize seedlings. The sequences of 25 differentially amplified fragments relevant to stress were successfully obtained. Two stress-specific fragments from leaves, LP166 and LPS911, shown to be homologous to retrotransposon Gag-Pol protein genes, suggested that osmotic stress-induced methylation of retrotransposons. Three MSAP fragments, representing drought-induced or salt-induced methylation in leaves, were homologous to a maize aluminum-induced transporter. Besides these, heat shock protein HSP82, Poly [ADP-ribose] polymerase 2, Lipoxygenase, casein kinase (CK2), and dehydration-responsive element-binding (DREB) factor were also homologs of MSAP sequences from salt-treated roots. One MSAP fragment amplified from salt-treated roots, designated RS39, was homologous to the first intron of maize protein phosphatase 2C (zmPP2C), whereas - LS103, absent from salt-treated leaves, was homologous to maize glutathione S-transferases (zmGST). Expression analysis showed that salt-induced intron methylation of root zmPP2C significantly downregulated its expression, while salt-induced demethylation of leaf zmGST weakly upregulated its expression. The results suggested that salinity-induced methylation downregulated zmPP2C expression, a negative regulator of the stress response, while salinity-induced demethylation upregulated zmGST expression, a positive effecter of the stress response. Altered methylation, in response to stress, might also be involved in stress acclimation. Copyright 2009 Elsevier Masson SAS. All rights reserved.

  20. Changes in markers of oxidative stress and DNA damage in human visceral adipose tissue from subjects with obesity and type 2 diabetes.

    Science.gov (United States)

    Jones, D A; Prior, S L; Barry, J D; Caplin, S; Baxter, J N; Stephens, J W

    2014-12-01

    In the past 30 years, prevalence of obesity has almost trebled resulting in an increased incidence of type 2 diabetes mellitus and other co-morbidities. Visceral adipose tissue is believed to play a vital role, but underlying mechanisms remain unclear. Our aim was to investigate changes in markers of oxidative damage in human visceral adipose tissue to determine levels of oxidative burden that may be attributed to obesity and/or diabetes. Visceral adipose tissue samples from 61 subjects undergoing abdominal surgery grouped as lean, obese and obese with type 2 diabetes mellitus, were examined using 3 different markers of oxidative stress. Malondialdehyde (MDA) concentration was measured as a marker of lipid peroxidation, telomere length and Comet assay as markers of oxidative DNA damage. No significant difference in MDA concentration, telomere length and DNA damage was observed between groups, although longer telomere lengths were seen in the obese with diabetes group compared to the obese group (Pstress and DNA damage was observed in samples from subjects with type 2 diabetes mellitus. Further work is required to investigate this further, however this phenomenon may be due to an up regulation of antioxidant defences in adipose tissue. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Fluidity of pea root plasma membranes under altered gravity

    Science.gov (United States)

    Klymchuk, D. O.; Baranenko, V. V.; Vorobyova, T. V.; Dubovoy, V. D.

    This investigation aims to determine whether clinorotation 2 rev min of pea Pisum sativum L seedlings induces the alterations in the physical-chemical properties of cellular membranes including the plasma membrane fluidity The last is an important regulator of functional activity of membrane enzymes The plasma membranes were isolated by aqueous two-phase partitioning from roots of 6-day old pea seedlings The membrane fluidity was examined by fluorescence spectroscopy using pyrene probe The plasma membrane vesicles with known protein concentration were added to the incubation buffer to a final concentration of 50 mu g of protein per ml A small amount by 1 mu l of pyrene solution in 2-propanol was added to the incubation mixture to a final probe concentration 5 mu M at constant mixing Fluorescence spectra were measured using a Perkin-Elmer LS-50 spectrofluorometer Perkin-Elmer England Pyrene was excited at 337 nm and fluorescence intensity of monomers I M and excimers I E were measured at 393 and 470 nm respectively The I E I M ratios were 0 081 pm 0 003 and 0 072 pm 0 004 in preparations obtained from clinorotated and the control seedlings respectively This fact indicates that rotation on the clinostat increases the membrane fluidity Compared with controls clinorotated seedlings have also showed a reduced growth and a higher level of total unsaturated fatty acids determined by gas chromatography The factors that influence on the fluidity of membrane lipids in bilayer appear to be the

  2. Methionine metabolism and ethylene formation in etiolated pea stem sections

    International Nuclear Information System (INIS)

    Schilling, N.; Kende, H.

    1979-01-01

    Stem sections of etiolated pea seedlings (Pisum sativum L. cv. Alaska) were incubated overnight on tracer amounts of L-[U- 14 C]methionine and, on the following morning, on 0.1 millimolar indoleacetic acid to induce ethylene formation. Following the overnight incubation, over 70% of the radioactivity in the soluble fraction was shown to be associated with S-methylmethionine (SMM). The specific radioactivity of the ethylene evolved closely paralleled that of carbon atoms 3 and 4 of methionine extracted from the tissue and was always higher than that determined for carbon atoms 3 and 4 of extracted SMM. Overnight incubation of pea stem sections on 1 millimolar methionine enhanced indoleacetic acid-induced ethylene formation by 5 to 10%. Under the same conditions, 1 millimolar homocysteine thiolactone increased ethylene synthesis by 20 to 25%, while SMM within a concentration range of 0.1 to 10 millimolar did not influence ethylene production. When unlabeled methionine or homocysteine thiolactone was applied to stem sections which had been incubated overnight in L-[U- 14 C]methionine, the specific radioactivity of the ethylene evolved was considerably lowered. Application of unlabeled SMM reduced the specific radioactivity of ethylene only slightly

  3. Ecdysone signaling underlies the pea aphid transgenerational wing polyphenism.

    Science.gov (United States)

    Vellichirammal, Neetha Nanoth; Gupta, Purba; Hall, Tannice A; Brisson, Jennifer A

    2017-02-07

    The wing polyphenism of pea aphids is a compelling laboratory model with which to study the molecular mechanisms underlying phenotypic plasticity. In this polyphenism, environmental stressors such as high aphid density cause asexual, viviparous adult female aphids to alter the developmental fate of their embryos from wingless to winged morphs. This polyphenism is transgenerational, in that the pea aphid mother experiences the environmental signals, but it is her offspring that are affected. Previous research suggested that the steroid hormone ecdysone may play a role in this polyphenism. Here, we analyzed ecdysone-related gene expression patterns and found that they were consistent with a down-regulation of the ecdysone pathway being involved in the production of winged offspring. We therefore predicted that reduced ecdysone signaling would result in more winged offspring. Experimental injections of ecdysone or its analog resulted in a decreased production of winged offspring. Conversely, interfering with ecdysone signaling using an ecdysone receptor antagonist or knocking down the ecdysone receptor gene with RNAi resulted in an increased production of winged offspring. Our results are therefore consistent with the idea that ecdysone plays a causative role in the regulation of the proportion of winged offspring produced in response to crowding in this polyphenism. Our results also show that an environmentally regulated maternal hormone can mediate phenotype production in the next generation, as well as provide significant insight into the molecular mechanisms underlying the functioning of transgenerational phenotypic plasticity.

  4. Atomic force microscopy of pea starch: origins of image contrast.

    Science.gov (United States)

    Ridout, Michael J; Parker, Mary L; Hedley, Cliff L; Bogracheva, Tatiana Y; Morris, Victor J

    2004-01-01

    Atomic force microscopy (AFM) has been used to image the internal structure of pea starch granules. Starch granules were encased in a nonpenetrating matrix of rapid-set Araldite. Images were obtained of the internal structure of starch exposed by cutting the face of the block and of starch in sections collected on water. These images have been obtained without staining, or either chemical or enzymatic treatment of the granule. It has been demonstrated that contrast in the AFM images is due to localized absorption of water within specific regions of the exposed fragments of the starch granules. These regions swell, becoming "softer" and higher than surrounding regions. The images obtained confirm the "blocklet model" of starch granule architecture. By using topographic, error signal and force modulation imaging modes on samples of the wild-type pea starch and the high amylose r near-isogenic mutant, it has been possible to demonstrate differing structures within granules of different origin. These architectural changes provide a basis for explaining the changed appearance and functionality of the r mutant. The growth-ring structure of the granule is suggested to arise from localized "defects" in blocklet distribution within the granule. It is proposed that these defects are partially crystalline regions devoid of amylose.

  5. Comparison between micro- and nanosized copper oxide and water soluble copper chloride: interrelationship between intracellular copper concentrations, oxidative stress and DNA damage response in human lung cells.

    Science.gov (United States)

    Strauch, Bettina Maria; Niemand, Rebecca Katharina; Winkelbeiner, Nicola Lisa; Hartwig, Andrea

    2017-08-01

    Nano- and microscale copper oxide particles (CuO NP, CuO MP) are applied for manifold purposes, enhancing exposure and thus the potential risk of adverse health effects. Based on the pronounced in vitro cytotoxicity of CuO NP, systematic investigations on the mode of action are required. Therefore, the impact of CuO NP, CuO MP and CuCl 2 on the DNA damage response on transcriptional level was investigated by quantitative gene expression profiling via high-throughput RT-qPCR. Cytotoxicity, copper uptake and the impact on the oxidative stress response, cell cycle regulation and apoptosis were further analysed on the functional level. Cytotoxicity of CuO NP was more pronounced when compared to CuO MP and CuCl 2 in human bronchial epithelial BEAS-2B cells. Uptake studies revealed an intracellular copper overload in the soluble fractions of both cytoplasm and nucleus, reaching up to millimolar concentrations in case of CuO NP and considerably lower levels in case of CuO MP and CuCl 2 . Moreover, CuCl 2 caused copper accumulation in the nucleus only at cytotoxic concentrations. Gene expression analysis in BEAS-2B and A549 cells revealed a strong induction of uptake-related metallothionein genes, oxidative stress-sensitive and pro-inflammatory genes, anti-oxidative defense-associated genes as well as those coding for the cell cycle inhibitor p21 and the pro-apoptotic Noxa and DR5. While DNA damage inducible genes were activated, genes coding for distinct DNA repair factors were down-regulated. Modulation of gene expression was most pronounced in case of CuO NP as compared to CuO MP and CuCl 2 and more distinct in BEAS-2B cells. GSH depletion and activation of Nrf2 in HeLa S3 cells confirmed oxidative stress induction, mainly restricted to CuO NP. Also, cell cycle arrest and apoptosis induction were most distinct for CuO NP. The high cytotoxicity and marked impact on gene expression by CuO NP can be ascribed to the strong intracellular copper ion release, with subsequent

  6. From the peas of Gregor Mendel to the human genome and beyond

    CERN Document Server

    Paces, V

    2008-01-01

    In the middle of the 19th century, Gregor Mendel conducted his experiments with peas. This took place in the Augustinian monastery in Brno (now the Czech Republic), where he was the abbot. These experiments laid the foundations of modern genetics. At around the same time Charles Darwin formulated his theory of evolution. Through their work, these two men inaugurated the age of modern biology. The next most important step came in 1953 when James Watson and Francis Crick solved the elusive DNA structure. Since then methods for ‘reading’ genetic information have developed quickly, and genomes of many organisms have been analysed, including our own. The human genome consists of 3 billion letters (nucleotides) and it comprises approximately 25,000 genes. The smallest natural genome is the genome of Mycoplasma genitalium. It consists of a mere 500,000 nucleotides and is composed of 500 genes. Yet, mycoplasma is capable of a completely independent life. It would appear from this fact that basic life itself is no...

  7. Low-dose DNA damage and replication stress responses quantified by optimized automated single-cell image analysis

    DEFF Research Database (Denmark)

    Mistrik, Martin; Oplustilova, Lenka; Lukas, Jiri

    2009-01-01

    sensitive, quantitative, rapid and simple fluorescence image analysis in thousands of adherent cells per day. Sensitive DNA breakage estimation through analysis of phosphorylated histone H2AX (gamma-H2AX), and homologous recombination (HR) assessed by a new RPA/Rad51 dual-marker approach illustrate...

  8. Condensin II Alleviates DNA Damage and Is Essential for Tolerance of Boron Overload Stress in Arabidopsis[W

    Science.gov (United States)

    Sakamoto, Takuya; Inui, Yayoi Tsujimoto; Uraguchi, Shimpei; Yoshizumi, Takeshi; Matsunaga, Sachihiro; Mastui, Minami; Umeda, Masaaki; Fukui, Kiichi; Fujiwara, Toru

    2011-01-01

    Although excess boron (B) is known to negatively affect plant growth, its molecular mechanism of toxicity is unknown. We previously isolated two Arabidopsis thaliana mutants, hypersensitive to excess B (heb1-1 and heb2-1). In this study, we found that HEB1 and HEB2 encode the CAP-G2 and CAP-H2 subunits, respectively, of the condensin II protein complex, which functions in the maintenance of chromosome structure. Growth of Arabidopsis seedlings in medium containing excess B induced expression of condensin II subunit genes. Simultaneous treatment with zeocin, which induces DNA double-strand breaks (DSBs), and aphidicolin, which blocks DNA replication, mimicked the effect of excess B on root growth in the heb mutants. Both excess B and the heb mutations upregulated DSBs and DSB-inducible gene transcription, suggesting that DSBs are a cause of B toxicity and that condensin II reduces the incidence of DSBs. The Arabidopsis T-DNA insertion mutant atr-2, which is sensitive to replication-blocking reagents, was also sensitive to excess B. Taken together, these data suggest that the B toxicity mechanism in plants involves DSBs and possibly replication blocks and that plant condensin II plays a role in DNA damage repair or in protecting the genome from certain genotoxic stressors, particularly excess B. PMID:21917552

  9. Protective role of quercetin against copper(II)-induced oxidative stress: A spectroscopic, theoretical and DNA damage study.

    Science.gov (United States)

    Jomova, Klaudia; Lawson, Michael; Drostinova, Lenka; Lauro, Peter; Poprac, Patrik; Brezova, Vlasta; Michalik, Martin; Lukes, Vladimir; Valko, Marian

    2017-12-01

    The radical scavenging and metal chelating properties of flavonoids indicate that they may play a protective role in diseases with perturbed metal homeostasis such as Alzheimer's disease. In this work we investigated the effect of the coordination of quercetin to copper(II) in view of the formation of ROS in Cu-catalyzed Fenton reaction. ABTS and DPPH assays confirmed that the copper(II)-quercetin complex exhibits a stronger radical scavenging activity than does quercetin alone. EPR spin trapping experiments have shown that chelation of quercetin to copper significantly suppressed the formation of hydroxyl radicals in the Cu(II)-Fenton reaction. DNA damage experiments revealed a protective effect for quercetin, but only at higher stoichiometric ratios of quercetin relative to copper. DNA protective effect of quercetin against ROS attack was described by two mechanisms. The first mechanism lies in suppressed formation of ROS due to the decreased catalytic action of copper in the Fenton reaction, as a consequence of its chelation and direct scavenging of ROS by free quercetin. Since the Cu-quercetin complex intercalates into DNA, the second mechanism was attributed to a suppressed intercalating ability of the Cu-quercetin complex due to the mildly intercalating free quercetin into DNA, thus creating a protective wall against stronger intercalators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Stress.

    Science.gov (United States)

    Chambers, David W

    2008-01-01

    We all experience stress as a regular, and sometimes damaging and sometimes useful, part of our daily lives. In our normal ups and downs, we have our share of exhaustion, despondency, and outrage--matched with their corresponding positive moods. But burnout and workaholism are different. They are chronic, dysfunctional, self-reinforcing, life-shortening habits. Dentists, nurses, teachers, ministers, social workers, and entertainers are especially susceptible to burnout; not because they are hard-working professionals (they tend to be), but because they are caring perfectionists who share control for the success of what they do with others and perform under the scrutiny of their colleagues (they tend to). Workaholics are also trapped in self-sealing cycles, but the elements are ever-receding visions of control and using constant activity as a barrier against facing reality. This essay explores the symptoms, mechanisms, causes, and successful coping strategies for burnout and workaholism. It also takes a look at the general stress response on the physiological level and at some of the damage American society inflicts on itself.

  11. Mechanisms of protection of pea plants by polysaccharides extracted from a strain of Rhizobium against Orobanche crenata

    International Nuclear Information System (INIS)

    Khairi, Hanene; Temani, Randa

    2009-01-01

    The Broomrape causes notable damage on the leguminous crops and became major factor limiting production of pea in the Mediterranean region. The effect of the polysaccharides extracted from P.SOM Rhizobium strain on the development of Orobanche crenata on pea was studied. The results showed that the lipopolysaccharides significantly reduce the infestation of pea by O. crenata. This limitation of infestation results from the reduction of seeds germination rates of the parasite resulting in reduction of the tubercles number on pea roots. Moreover, necrosis of orobanche before or after attachment on pea roots treated by LPS can explain this reduction of parasitism. A correlation was observed between the reduction of pea infection by the broomrape and the activation phenolic compounds pathway. This activation resulted to increase of two enzymes (peroxidase and polyphenoloxidase) activities these enzymes are implicated in plant defense. The results of our study showed that the LPS seem implied in the induction of pea resistance against the broomrape.

  12. PEA3 activates CXCR4 transcription in MDA-MB-231 and MCF7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Shengmei Gu; Li Chen; Qi Hong; Tingting Yan; Zhigang Zhuang; Qiaoqiao wang; Wei Jin; Hua Zhu; Jiong Wu

    2011-01-01

    CXC chemokine receptor 4 (CXCR4) is a cell surface receptor that has been shown to mediate the metastasis of many solid tumors including lung,breast,kidney,and prostate tumors.In this study,we found that overexpression of ets variant gene 4 (PEA3) could elevate CXCR4 mRNA level and CXCR4 promoter activity in human MDA-MB-231 and MCF-7 breast cancer cells.PEA3 promoted CXCR4 expression and breast cancer metastasis.Chromatin immunoprecipitation assay demonstrated that PEA3 could bind to the CXCR4 promoter in the cells transfected with PEA3 expression vector.PEA3 siRNA attenuated CXCR4 promoter activity and the binding of PEA3 to the CXCR4 promoter in MDA-MB-231 and MCF-7 cells.These results indicated that PEA3 could activate CXCR4 promoter transcription and promote breast cancer metastasis.

  13. Angiotensin II type 1a receptor-deficient mice develop angiotensin II-induced oxidative stress and DNA damage without blood pressure increase.

    Science.gov (United States)

    Zimnol, Anna; Amann, Kerstin; Mandel, Philipp; Hartmann, Christina; Schupp, Nicole

    2017-12-01

    Hypertensive patients have an increased risk of developing kidney cancer. We have shown in vivo that besides elevating blood pressure, angiotensin II causes DNA damage dose dependently. Here, the role of blood pressure in the formation of DNA damage is studied. Mice lacking one of the two murine angiotensin II type 1 receptor (AT1R) subtypes, AT1aR, were equipped with osmotic minipumps, delivering angiotensin II during 28 days. Parameters of oxidative stress and DNA damage of kidneys and hearts of AT1aR-knockout mice were compared with wild-type (C57BL/6) mice receiving angiotensin II, and additionally, with wild-type mice treated with candesartan, an antagonist of both AT1R subtypes. In wild-type mice, angiotensin II induced hypertension, reduced kidney function, and led to a significant formation of reactive oxygen species (ROS). Furthermore, genomic damage was markedly increased in this group. All these responses to angiotensin II could be attenuated by concurrent administration of candesartan. In AT1aR-deficient mice treated with angiotensin II, systolic pressure was not increased, and renal function was not affected. However, angiotensin II still led to an increase of ROS in kidneys and hearts of these animals. Additionally, genomic damage in the form of double-strand breaks was significantly induced in kidneys of AT1aR-deficient mice. Our results show that angiotensin II induced ROS production and DNA damage even without the presence of AT1aR and independently of blood pressure changes. Copyright © 2017 the American Physiological Society.

  14. Hypolipidemic effect of dietary pea proteins: Impact on genes regulating hepatic lipid metabolism.

    Science.gov (United States)

    Rigamonti, Elena; Parolini, Cinzia; Marchesi, Marta; Diani, Erika; Brambilla, Stefano; Sirtori, Cesare R; Chiesa, Giulia

    2010-05-01

    Controversial data on the lipid-lowering effect of dietary pea proteins have been provided and the mechanisms behind this effect are not completely understood. The aim of the study was to evaluate a possible hypolipidemic activity of a pea protein isolate and to determine whether pea proteins could affect the hepatic lipid metabolism through regulation of genes involved in cholesterol and fatty acid homeostasis. Rats were fed Nath's hypercholesterolemic diets for 28 days, the protein sources being casein or a pea protein isolate from Pisum sativum. After 14 and 28 days of dietary treatment, rats fed pea proteins had markedly lower plasma cholesterol and triglyceride levels than rats fed casein (pPea protein-fed rats displayed higher hepatic mRNA levels of LDL receptor versus those fed casein (ppea protein-fed rats than in rats fed casein (ppea proteins in rats. Moreover, pea proteins appear to affect cellular lipid homeostasis by upregulating genes involved in hepatic cholesterol uptake and by downregulating fatty acid synthesis genes.

  15. De Novo Assembly of the Pea (Pisum sativum L. Nodule Transcriptome

    Directory of Open Access Journals (Sweden)

    Vladimir A. Zhukov

    2015-01-01

    Full Text Available The large size and complexity of the garden pea (Pisum sativum L. genome hamper its sequencing and the discovery of pea gene resources. Although transcriptome sequencing provides extensive information about expressed genes, some tissue-specific transcripts can only be identified from particular organs under appropriate conditions. In this study, we performed RNA sequencing of polyadenylated transcripts from young pea nodules and root tips on an Illumina GAIIx system, followed by de novo transcriptome assembly using the Trinity program. We obtained more than 58,000 and 37,000 contigs from “Nodules” and “Root Tips” assemblies, respectively. The quality of the assemblies was assessed by comparison with pea expressed sequence tags and transcriptome sequencing project data available from NCBI website. The “Nodules” assembly was compared with the “Root Tips” assembly and with pea transcriptome sequencing data from projects indicating tissue specificity. As a result, approximately 13,000 nodule-specific contigs were found and annotated by alignment to known plant protein-coding sequences and by Gene Ontology searching. Of these, 581 sequences were found to possess full CDSs and could thus be considered as novel nodule-specific transcripts of pea. The information about pea nodule-specific gene sequences can be applied for gene-based markers creation, polymorphism studies, and real-time PCR.

  16. The occurrence of gibberellin-binding protein(s) in pea

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.H.

    1988-01-01

    In vitro gibberellin (GA) binding properties of a cytosol fraction from epicotyls of dwarf pea (Pisum sativum L. cv. Progress No. 9) and tall pea (Pisum sativum L. cv. Alaska) were investigated using ({sup 3}H)GA{sub 4} in a DEAE filter paper assay at 0-3 C. The binding obtained is saturable, reversible, and temperature labile in dwarf pea, and has a half-life of dissociation of 5-6 min. By varying the concentration of ({sup 3}H)GA{sub 4} in the incubation medium the Kd was estimated to be 120-140 nM in dwarf pea and 70 nM in tall pea. The number of binding sites (n) was estimated to be 0.66 and 0.43 pmole mg{sup {minus}1} soluble protein in dwarf pea and in tall pea, respectively. In competition binding assays, biologically active GAs, such as GA{sub 3} and GA{sub 4} could reduce the level of ({sup 3}H)GA{sub 4} binding much more than the biologically inactive GA{sub 4} methyl ester and epi-GA{sub 4}. Changes in gibberellin-binding protein(s) were studied during seed germination. While the Kd of the binding protein(s) for ({sup 3}H)GA{sub 4} remained the same, there was a marked increase in the number of binding sites from 24 h soaked seed to 8-day old seedlings. Also, the Kd and the number of binding sites in the GA-responsive apical part and in the nonresponsive basal part in the epicotyl were similar. The effect of light on gibberellin-binding protein in dwarf pea was also studied. The GA-binding protein in dwarf pea was partially purified by gel filtration and ion exchange chromatography.

  17. Importance of new winter pea genotyp in production of the milk on family farms

    Directory of Open Access Journals (Sweden)

    Gordana Županac

    2009-12-01

    Full Text Available Forage pea (Pisum sativum L. is becoming more represented gorage leguminoza on the fields Republic of Croatia. Three year field trials (2003-2005 were carried out to determine the effect of seed winter pea inoculation and nitrogen top-dressing on productivity of new winter pea genotype G3 in production of milk on family farms. Just before sowing the inoculation of pea seed was performed by the variety of Rhizobium leguminosarum bv. viciae 1001 which is part of the microbiological collection of the Department of Microbiology at the Faculty of Agriculture University of Zagreb. The results of the research showed that the highest total nodule number on pea root (39.7 nodule/plant as well as nodule dry matter weight (0.203 g/plant was determined on the inoculated variant. Average highest yield of winter pea dry matter was, once more, determined on the inoculated variant (4.33 t ha-1. Total dry matter yield of winter pea and wheat mixture were ranging from 8.92 t ha-1 (control up to 10.64 t ha-1 (nitrogen top-dressing. Average highest yield of winter pea crude protein was, once more, determined on the inoculated variant (266 kg ha-1 in 2003, (672 kg ha-1 in 2004 and (853 kg ha-1 in 2005. The conclusion of this research is that the highest dry matter yield (4.33 t ha-1 and crude protein yield was obtained with the inoculation of new genotype winter pea G3.

  18. Influence of the inclusion of cooked cereals and pea starch in diets based on soy or pea protein concentrate on nutrient digestibility and performance of young pigs.

    Science.gov (United States)

    Parera, N; Lázaro, R P; Serrano, M P; Valencia, D G; Mateos, G G

    2010-02-01

    An experiment was conducted to compare different dietary vegetable sources of starch and protein on the coefficient of apparent total tract digestibility (CATTD) of energy and nutrients and performance of piglets from 29 to 60 d of age. The experiment was completely randomized with 6 treatments arranged factorially with 3 sources of starch (cooked-flaked corn, cooked-flaked rice, and pea starch) and 2 sources of protein [soy protein concentrate (SPC) and pea protein concentrate (PPC)]. The pea starch and the PPC used were obtained by dehulling and grinding pea seeds to a mean particle size of 30 microm. Each treatment was replicated 6 times (6 pigs per pen). For the entire experiment, piglets fed cooked rice had greater ADG than piglets fed pea starch with piglets fed cooked corn being intermediate (471, 403, and 430 g/d, respectively; P Protein source did not have any effect on piglet performance. The CATTD of DM, OM, and GE were greater (P pea starch being intermediate. Crude protein digestibility was not affected by source of starch but was greater for the diets based on SPC than for diets based on PPC (0.836 vs. 0.821; P Protein source did not affect the digestibility of any of the other dietary components. It is concluded that cooked rice is an energy source of choice in diets for young pigs. The inclusion of PPC in the diet reduced protein digestibility but had no effects on energy digestibility or piglet performance. Therefore, the finely ground starch and protein fractions of peas can be used in substitution of cooked corn or SPC, respectively, in diets for young pigs.

  19. Ursolic Acid-Regulated Energy Metabolism—Reliever or Propeller of Ultraviolet-Induced Oxidative Stress and DNA Damage?

    Directory of Open Access Journals (Sweden)

    Yuan-Hao Lee

    2014-08-01

    Full Text Available Ultraviolet (UV light is a leading cause of diseases, such as skin cancers and cataracts. A main process mediating UV-induced pathogenesis is the production of reactive oxygen species (ROS. Excessive ROS levels induce the formation of DNA adducts (e.g., pyrimidine dimers and result in stalled DNA replication forks. In addition, ROS promotes phosphorylation of tyrosine kinase-coupled hormone receptors and alters downstream energy metabolism. With respect to the risk of UV-induced photocarcinogenesis and photodamage, the antitumoral and antioxidant functions of natural compounds become important for reducing UV-induced adverse effects. One important question in the field is what determines the differential sensitivity of various types of cells to UV light and how exogenous molecules, such as phytochemicals, protect normal cells from UV-inflicted damage while potentiating tumor cell death, presumably via interaction with intracellular target molecules and signaling pathways. Several endogenous molecules have emerged as possible players mediating UV-triggered DNA damage responses. Specifically, UV activates the PIKK (phosphatidylinositol 3-kinase-related kinase family members, which include DNA-PKcs, ATM (ataxia telangiectasia mutated and mTOR (mammalian target of rapamycin, whose signaling can be affected by energy metabolism; however, it remains unclear to what extent the activation of hormone receptors regulates PIKKs and whether this crosstalk occurs in all types of cells in response to UV. This review focuses on proteomic descriptions of the relationships between cellular photosensitivity and the phenotypic expression of the insulin/insulin-like growth receptor. It covers the cAMP-dependent pathways, which have recently been shown to regulate the DNA repair machinery through interactions with the PIKK family members. Finally, this review provides a strategic illustration of how UV-induced mitogenic activity is modulated by the insulin

  20. Role of Growth Arrest and DNA Damage–inducible α in Akt Phosphorylation and Ubiquitination after Mechanical Stress-induced Vascular Injury

    Science.gov (United States)

    Mitra, Sumegha; Sammani, Saad; Wang, Ting; Boone, David L.; Meyer, Nuala J.; Dudek, Steven M.; Moreno-Vinasco, Liliana; Garcia, Joe G. N.

    2011-01-01

    Rationale: The stress-induced growth arrest and DNA damage–inducible α (GADD45a) gene is up-regulated by mechanical stress with GADD45a knockout (GADD45a−/−) mice demonstrating both increased susceptibility to ventilator-induced lung injury (VILI) and reduced levels of the cell survival and vascular permeability signaling effector (Akt). However, the functional role of GADD45a in the pathogenesis of VILI is unknown. Objectives: We sought to define the role of GADD45a in the regulation of Akt activation induced by mechanical stress. Methods: VILI-challenged GADD45a−/− mice were administered a constitutively active Akt1 vector and injury was assessed by bronchoalveolar lavage cell counts and protein levels. Human pulmonary artery endothelial cells (EC) were exposed to 18% cyclic stretch (CS) under conditions of GADD45a silencing and used for immunoprecipitation, Western blotting or immunofluoresence. EC were also transfected with mutant ubiquitin vectors to characterize site-specific Akt ubiquitination. DNA methylation was measured using methyl-specific polymerase chain reaction assay. Measurements and Main Results: Studies exploring the linkage of GADD45a with mechanical stress and Akt regulation revealed VILI-challenged GADD45a−/− mice to have significantly reduced lung injury on overexpression of Akt1 transgene. Increased mechanical stress with 18% CS in EC induced Akt phosphorylation via E3 ligase tumor necrosis factor receptor–associated factor 6 (TRAF6)–mediated Akt K63 ubiquitination resulting in Akt trafficking and activation at the membrane. GADD45a is essential to this process because GADD45a-silenced endothelial cells and GADD45a−/− mice exhibited increased Akt K48 ubiquitination leading to proteasomal degradation. These events involve loss of ubiquitin carboxyl terminal hydrolase 1 (UCHL1), a deubiquitinating enzyme that normally removes K48 polyubiquitin chains bound to Akt thus promoting Akt K63 ubiquitination. Loss of GADD45a

  1. Functional and DNA-protein binding studies of WRKY transcription factors and their expression analysis in response to biotic and abiotic stress in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Satapathy, Lopamudra; Kumar, Dhananjay; Kumar, Manish; Mukhopadhyay, Kunal

    2018-01-01

    WRKY, a plant-specific transcription factor family, plays vital roles in pathogen defense, abiotic stress, and phytohormone signalling. Little is known about the roles and function of WRKY transcription factors in response to rust diseases in wheat. In the present study, three TaWRKY genes encoding complete protein sequences were cloned. They belonged to class II and III WRKY based on the number of WRKY domains and the pattern of zinc finger structures. Twenty-two DNA-protein binding docking complexes predicted stable interactions of WRKY domain with W-box. Quantitative real-time-PCR using wheat near-isogenic lines with or without Lr28 gene revealed differential up- or down-regulation in response to biotic and abiotic stress treatments which could be responsible for their functional divergence in wheat. TaWRKY62 was found to be induced upon treatment with JA, MJ, and SA and reduced after ABA treatments. Maximum induction of six out of seven genes occurred at 48 h post inoculation due to pathogen inoculation. Hence, TaWRKY (49, 50 , 52 , 55 , 57, and 62 ) can be considered as potential candidate genes for further functional validation as well as for crop improvement programs for stress resistance. The results of the present study will enhance knowledge towards understanding the molecular basis of mode of action of WRKY transcription factor genes in wheat and their role during leaf rust pathogenesis in particular.

  2. Resilience of Soil Microbial Communities to Metals and Additional Stressors: DNA-Based Approaches for Assessing “Stress-on-Stress” Responses

    Directory of Open Access Journals (Sweden)

    Hamed Azarbad

    2016-06-01

    Full Text Available Many microbial ecology studies have demonstrated profound changes in community composition caused by environmental pollution, as well as adaptation processes allowing survival of microbes in polluted ecosystems. Soil microbial communities in polluted areas with a long-term history of contamination have been shown to maintain their function by developing metal-tolerance mechanisms. In the present work, we review recent experiments, with specific emphasis on studies that have been conducted in polluted areas with a long-term history of contamination that also applied DNA-based approaches. We evaluate how the “costs” of adaptation to metals affect the responses of metal-tolerant communities to other stress factors (“stress-on-stress”. We discuss recent studies on the stability of microbial communities, in terms of resistance and resilience to additional stressors, focusing on metal pollution as the initial stress, and discuss possible factors influencing the functional and structural stability of microbial communities towards secondary stressors. There is increasing evidence that the history of environmental conditions and disturbance regimes play central roles in responses of microbial communities towards secondary stressors.

  3. DNA Damage-Inducible Transcript 4 Is an Innate Surveillant of Hair Follicular Stress in Vitamin D Receptor Knockout Mice and a Regulator of Wound Re-Epithelialization

    Directory of Open Access Journals (Sweden)

    Hengguang Zhao

    2016-11-01

    Full Text Available Mice and human patients with impaired vitamin D receptor (VDR signaling have normal developmental hair growth but display aberrant post-morphogenic hair cycle progression associated with alopecia. In addition, VDR–/– mice exhibit impaired cutaneous wound healing. We undertook experiments to determine whether the stress-inducible regulator of energy homeostasis, DNA damage-inducible transcript 4 (Ddit4, is involved in these processes. By analyzing hair cycle activation in vivo, we show that VDR−/− mice at day 14 exhibit increased Ddit4 expression within follicular stress compartments. At day 29, degenerating VDR−/− follicular keratinocytes, but not bulge stem cells, continue to exhibit an increase in Ddit4 expression. At day 47, when normal follicles and epidermis are quiescent and enriched for Ddit4, VDR−/− skin lacks Ddit4 expression. In a skin wound healing assay, the re-epithelialized epidermis in wildtype (WT but not VDR−/− animals harbor a population of Ddit4- and Krt10-positive cells. Our study suggests that VDR regulates Ddit4 expression during epidermal homeostasis and the wound healing process, while elevated Ddit4 represents an early growth-arresting stress response within VDR−/− follicles.

  4. DNA damage and oxidative stress in human liver cell L-02 caused by surface water extracts during drinking water treatment in a waterworks in China.

    Science.gov (United States)

    Xie, Shao-Hua; Liu, Ai-Lin; Chen, Yan-Yan; Zhang, Li; Zhang, Hui-Juan; Jin, Bang-Xiong; Lu, Wen-Hong; Li, Xiao-Yan; Lu, Wen-Qing

    2010-04-01

    Because of the daily and life-long exposure to disinfection by-products formed during drinking water treatment, potential adverse human health risk of drinking water disinfection is of great concern. Toxicological studies have shown that drinking water treatment increases the genotoxicity of surface water. Drinking water treatment is comprised of different potabilization steps, which greatly influence the levels of genotoxic products in the surface water and thus may alter the toxicity and genotoxicity of surface water. The aim of the present study was to understand the influence of specific steps on toxicity and genotoxicity during the treatment of surface water in a water treatment plant using liquid chlorine as the disinfectant in China. An integrated approach of the comet and oxidative stress assays was used in the study, and the results showed that both the prechlorination and postchlorination steps increased DNA damage and oxidative stress caused by water extracts in human derived L-02 cells while the tube settling and filtration steps had the opposite effect. This research also highlighted the usefulness of an integrated approach of the comet and oxidative stress assays in evaluating the genotoxicity of surface water during drinking water treatment. Copyright 2009 Wiley-Liss, Inc.

  5. DNA Damage-Inducible Transcript 4 Is an Innate Surveillant of Hair Follicular Stress in Vitamin D Receptor Knockout Mice and a Regulator of Wound Re-Epithelialization.

    Science.gov (United States)

    Zhao, Hengguang; Rieger, Sandra; Abe, Koichiro; Hewison, Martin; Lisse, Thomas S

    2016-11-26

    Mice and human patients with impaired vitamin D receptor (VDR) signaling have normal developmental hair growth but display aberrant post-morphogenic hair cycle progression associated with alopecia. In addition, VDR -/- mice exhibit impaired cutaneous wound healing. We undertook experiments to determine whether the stress-inducible regulator of energy homeostasis, DNA damage-inducible transcript 4 (Ddit4), is involved in these processes. By analyzing hair cycle activation in vivo, we show that VDR -/- mice at day 14 exhibit increased Ddit4 expression within follicular stress compartments. At day 29, degenerating VDR -/- follicular keratinocytes, but not bulge stem cells, continue to exhibit an increase in Ddit4 expression. At day 47, when normal follicles and epidermis are quiescent and enriched for Ddit4, VDR -/- skin lacks Ddit4 expression. In a skin wound healing assay, the re-epithelialized epidermis in wildtype (WT) but not VDR -/- animals harbor a population of Ddit4- and Krt10-positive cells. Our study suggests that VDR regulates Ddit4 expression during epidermal homeostasis and the wound healing process, while elevated Ddit4 represents an early growth-arresting stress response within VDR -/- follicles.

  6. PEA-15 Induces Autophagy in Human Ovarian Cancer Cells and is Associated with Prolonged Overall Survival

    OpenAIRE

    Bartholomeusz, Chandra; Rosen, Daniel; Wei, Caimiao; Kazansky, Anna; Yamasaki, Fumiyuki; Takahashi, Takeshi; Itamochi, Hiroaki; Kondo, Seiji; Liu, Jinsong; Ueno, Naoto T.

    2008-01-01

    Phospho-enriched protein in astrocytes (PEA-15) is a 15-kDa phosphoprotein that slows cell proliferation by binding to and sequestering extracellular signal-regulated kinase (ERK) in the cytoplasm, thereby inhibiting ERK-dependent transcription and proliferation. In previous studies of E1A human gene therapy for ovarian cancer, we discovered that PEA-15 induced the antitumor effect of E1A by sequestering activated ERK in the cytoplasm of cancer cells. Here, we investigated the role of PEA-15 ...

  7. Ileal digestibility of sunfl ower meal, pea, rapeseed cake, and lupine in pigs

    DEFF Research Database (Denmark)

    Nørgaard, Jan Værum; Fernández, José Adalberto; Jørgensen, Henry

    2012-01-01

    .05) for soybean meal and pea compared to sunfl ower meal, rapeseed cake, and lupine. The SID of Lys and His were lowest (P pea to be a high-digestible protein source relative to sunfl ower......The standardized ileal digestibility (SID) of CP and AA was evaluated in soybean (Glycine max) meal, sunfl ower (Helianthus annuus) meal, rapeseed cake, and fi eld pea (Pisum sativum) using 10 pigs and in lupine (Lupinus angustifolius) using 7 pigs. Pigs were fi tted with either a T...

  8. Pea-barley intercropping and short-term subsequent crop effects across European organic cropping conditions

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Gooding, M.; Ambus, Per

    2009-01-01

    . In the replacement design the total relative plant density is kept constant, while the additive design uses the optimal sole crop density for pea supplementing with ‘extra’ barley plants. The pea and barley crops were followed by winter wheat with and without N application. Additional experiments in Denmark......) to grain N yield with 25–30% using the Land Equivalent ratio. In terms of absolute quantities, sole cropped pea accumulated more N in the grains as compared to the additive design followed by the replacement design and then sole cropped barley. The post harvest soil mineral N content was unaffected...

  9. Resistance to rusts (uromyces pisi and u. viciae-fabae) in pea

    OpenAIRE

    Barilli, Eleonora; Sillero, Josefina C.; Prats, Elena; Rubiales, Diego

    2014-01-01

    Pea is the second most important food legume crop in the world. Rust is a pea disease widely distributed, particularly in regions with warm, humid weather. Pea rust can be incited by Uromyces viciae-fabae and by U. pisi. U. viciae-fabae prevails in tropical and subtropical regions such as India and China, while U. pisi prevails in temperate regions. Chemical control of rust is possible, but the use of host plant resistance is the most desired means of rust control. In this paper we revise and...

  10. A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties.

    Science.gov (United States)

    Bogdanov, Ivan V; Shenkarev, Zakhar O; Finkina, Ekaterina I; Melnikova, Daria N; Rumynskiy, Eugene I; Arseniev, Alexander S; Ovchinnikova, Tatiana V

    2016-04-30

    Plant lipid transfer proteins (LTPs) assemble a family of small (7-9 kDa) ubiquitous cationic proteins with an ability to bind and transport lipids as well as participate in various physiological processes including defense against phytopathogens. They also form one of the most clinically relevant classes of plant allergens. Nothing is known to date about correlation between lipid-binding and IgE-binding properties of LTPs. The garden pea Pisum sativum is widely consumed crop and important allergenic specie of the legume family. This work is aimed at isolation of a novel LTP from pea seeds and characterization of its structural, functional, and allergenic properties. Three novel lipid transfer proteins, designated as Ps-LTP1-3, were found in the garden pea Pisum sativum, their cDNA sequences were determined, and mRNA expression levels of all the three proteins were measured at different pea organs. Ps-LTP1 was isolated for the first time from the pea seeds, and its complete amino acid sequence was determined. The protein exhibits antifungal activity and is a membrane-active compound that causes a leakage from artificial liposomes. The protein binds various lipids including bioactive jasmonic acid. Spatial structure of the recombinant uniformly (13)C,(15)N-labelled Ps-LTP1 was solved by heteronuclear NMR spectroscopy. In solution the unliganded protein represents the mixture of two conformers (relative populations ~ 85:15) which are interconnected by exchange process with characteristic time ~ 100 ms. Hydrophobic residues of major conformer form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ~1000 Å(3)). The minor conformer probably corresponds to the protein with the partially collapsed internal cavity. For the first time conformational heterogeneity in solution was shown for an unliganded plant lipid transfer protein. Heat denaturation profile and simulated gastrointestinal digestion assay showed that Ps

  11. Lead induced changes in phosphorylation of PSII proteins in low light grown pea plants.

    Science.gov (United States)

    Wioleta, Wasilewska; Anna, Drożak; Ilona, Bacławska; Kamila, Kąkol; Elżbieta, Romanowska

    2015-02-01

    Light-intensity and redox-state induced thylakoid proteins phosphorylation involved in structural changes and in regulation of protein turnover. The presence of heavy metal ions triggers a wide range of cellular responses including changes in plant growth and photosynthesis. Plants have evolved a number of mechanisms to protect photosynthetic apparatus. We have characterized the effect of lead on PSII protein phosphorylation in pea (Pisum sativum L.) plants grown in low light conditions. Pb ions affected only slightly photochemical efficiency of PSII and had no effect on organization of thylakoid complexes. Lead activated strongly phosphorylation of PSII core D1 protein and dephosphorylation of this protein did not proceed in far red light. D1 protein was also not degraded in this conditions. However, phosphorylation of LHCII proteins was not affected by lead. These results indicate that Pb(2+) stimulate the phosphorylation of PSII core proteins and by disturbing the disassembly of supercomplexes play a role in PSII repair mechanism. LHCII phosphorylation could control the distribution of energy between the photosystems in low light conditions. This demonstrates that plants may respond to heavy metals by induction different pathways responsible for protein protection under stress conditions.

  12. Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea.

    Science.gov (United States)

    Foo, Eloise; McAdam, Erin L; Weller, James L; Reid, James B

    2016-04-01

    The regulation of arbuscular mycorrhizal development and nodulation involves complex interactions between the plant and its microbial symbionts. In this study, we use the recently identified ethylene-insensitive ein2 mutant in pea (Pisum sativum L.) to explore the role of ethylene in the development of these symbioses. We show that ethylene acts as a strong negative regulator of nodulation, confirming reports in other legumes. Minor changes in gibberellin1 and indole-3-acetic acid levels in ein2 roots appear insufficient to explain the differences in nodulation. Double mutants produced by crosses between ein2 and the severely gibberellin-deficient na and brassinosteroid-deficient lk mutants showed increased nodule numbers and reduced nodule spacing compared with the na and lk single mutants, but nodule numbers and spacing were typical of ein2 plants, suggesting that the reduced number of nodules innaandlkplants is largely due to the elevated ethylene levels previously reported in these mutants. We show that ethylene can also negatively regulate mycorrhizae development when ethylene levels are elevated above basal levels, consistent with a role for ethylene in reducing symbiotic development under stressful conditions. In contrast to the hormone interactions in nodulation, ein2 does not override the effect of lk or na on the development of arbuscular mycorrhizae, suggesting that brassinosteroids and gibberellins influence this process largely independently of ethylene. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Orally Delivered Scorpion Antimicrobial Peptides Exhibit Activity against Pea Aphid (Acyrthosiphon pisum) and Its Bacterial Symbionts.

    Science.gov (United States)

    Luna-Ramirez, Karen; Skaljac, Marisa; Grotmann, Jens; Kirfel, Phillipp; Vilcinskas, Andreas

    2017-08-24

    Aphids are severe agricultural pests that damage crops by feeding on phloem sap and vectoring plant pathogens. Chemical insecticides provide an important aphid control strategy, but alternative and sustainable control measures are required to avoid rapidly emerging resistance, environmental contamination, and the risk to humans and beneficial organisms. Aphids are dependent on bacterial symbionts, which enable them to survive on phloem sap lacking essential nutrients, as well as conferring environmental stress tolerance and resistance to parasites. The evolution of aphids has been accompanied by the loss of many immunity-related genes, such as those encoding antibacterial peptides, which are prevalent in other insects, probably because any harm to the bacterial symbionts would inevitably affect the aphids themselves. This suggests that antimicrobial peptides (AMPs) could replace or at least complement conventional insecticides for aphid control. We fed the pea aphids ( Acyrthosiphon pisum ) with AMPs from the venom glands of scorpions. The AMPs reduced aphid survival, delayed their reproduction, displayed in vitro activity against aphid bacterial symbionts, and reduced the number of symbionts in vivo. Remarkably, we found that some of the scorpion AMPs compromised the aphid bacteriome, a specialized organ that harbours bacterial symbionts. Our data suggest that scorpion AMPs holds the potential to be developed as bio-insecticides, and are promising candidates for the engineering of aphid-resistant crops.

  14. Orally Delivered Scorpion Antimicrobial Peptides Exhibit Activity against Pea Aphid (Acyrthosiphon pisum and Its Bacterial Symbionts

    Directory of Open Access Journals (Sweden)

    Karen Luna-Ramirez

    2017-08-01

    Full Text Available Aphids are severe agricultural pests that damage crops by feeding on phloem sap and vectoring plant pathogens. Chemical insecticides provide an important aphid control strategy, but alternative and sustainable control measures are required to avoid rapidly emerging resistance, environmental contamination, and the risk to humans and beneficial organisms. Aphids are dependent on bacterial symbionts, which enable them to survive on phloem sap lacking essential nutrients, as well as conferring environmental stress tolerance and resistance to parasites. The evolution of aphids has been accompanied by the loss of many immunity-related genes, such as those encoding antibacterial peptides, which are prevalent in other insects, probably because any harm to the bacterial symbionts would inevitably affect the aphids themselves. This suggests that antimicrobial peptides (AMPs could replace or at least complement conventional insecticides for aphid control. We fed the pea aphids (Acyrthosiphon pisum with AMPs from the venom glands of scorpions. The AMPs reduced aphid survival, delayed their reproduction, displayed in vitro activity against aphid bacterial symbionts, and reduced the number of symbionts in vivo. Remarkably, we found that some of the scorpion AMPs compromised the aphid bacteriome, a specialized organ that harbours bacterial symbionts. Our data suggest that scorpion AMPs holds the potential to be developed as bio-insecticides, and are promising candidates for the engineering of aphid-resistant crops.

  15. Comparative proteomics of oxidative stress response of Lactobacillus acidophilus NCFM reveals effects on DNA repair and cysteine de novo synthesis

    DEFF Research Database (Denmark)

    Calderini, Elia; Celebioglu, Hasan Ufuk; Villarroel, Julia

    2017-01-01

    acidophilus NCFM to H2O2, simulating an oxidative environment. Bacterial growth was monitored by BioScreen and batch cultures were harvested at exponential phase for protein profiling of stress responses by 2D gel-based comparative proteomics. Proteins identified in 19 of 21 spots changing in abundance due...

  16. Seasonal variability of oxidative stress markers in city bus drivers – Part I: Oxidative damage to DNA

    Czech Academy of Sciences Publication Activity Database

    Rössner ml., Pavel; Švecová, Vlasta; Milcová, Alena; Lněničková, Zdena; Solanský, I.; Šrám, Radim

    2008-01-01

    Roč. 642, 1-2 (2008), s. 14-20 ISSN 0027-5107 R&D Projects: GA MŽP SL/5/160/05 Institutional research plan: CEZ:AV0Z50390512 Keywords : Aair pollution * Bus drivers * Oxidative stress Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.198, year: 2008

  17. Development of pea protein-based bioplastics with antimicrobial properties.

    Science.gov (United States)

    Perez-Puyana, Víctor; Felix, Manuel; Romero, Alberto; Guerrero, Antonio

    2017-06-01

    In the present work, bioplastics from renewable polymers were studied in order to reduce the huge generation of plastic wastes, causing an environmental problem that continues owing to the increasing demand for plastic products. Bioplastics with much better antimicrobial properties, in particular against Gram-positive bacteria, were obtained with the addition of nisin to the initial protein/plasticizer mixture. However, the addition of nisin produces more rigid but less deformable bioplastics (higher Young's modulus but lower strain at break). The results obtained are useful to demonstrate the antimicrobial properties of pea protein-based bioplastics by adding nisin and make them suitable as potential candidates to replace conventional plastics in food packaging. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Coupling of solute transport and cell expansion in pea stems

    Science.gov (United States)

    Schmalstig, J. G.; Cosgrove, D. J.

    1990-01-01

    As cells expand and are displaced through the elongation zone of the epicotyl of etiolated pea (Pisum sativum L. var Alaska) seedlings, there is little net dilution of the cell sap, implying a coordination between cell expansion and solute uptake from the phloem. Using [14C] sucrose as a phloem tracer (applied to the hypogeous cotyledons), the pattern of label accumulation along the stem closely matched the growth rate pattern: high accumulation in the growing zone, little accumulation in nongrowing regions. Several results suggest that a major portion of phloem contents enters elongating cells through the symplast. We propose that the coordination between phloem transport and cell expansion is accomplished via regulatory pathways affecting both plasmodesmata conductivity and cell expansion.

  19. Phloem unloading and cell expansion in pea stems

    International Nuclear Information System (INIS)

    Schmalstig, J.G.; Cosgrove, D.J.

    1989-01-01

    Phloem unloading into elongating stems of dark-grown pea seedlings was greater in regions with higher relative growth rates. Phloem transport was monitored over 1 h by measuring accumulation of radiolabel from 14 C-sucrose added between the cotyledons. The apical hook and plumule and 8 mm of the growing region of an intact plant were sealed in a pressure chamber and the pressure was raised to stop elongation. Phloem unloading was inhibited in the pressurized zone of elongation and accelerated in the apical hook and plumule, with the result that the magnitude of phloem transport into the stem was unchanged. The results demonstrate a coupling between cell expansion and phloem unloading

  20. Induction of mutation in peas (Pisum sativum) in Peru

    International Nuclear Information System (INIS)

    Gomez Pando, L.; Torres Aranda, M.; Romero Loli, M.

    1984-01-01

    The production of peas, a staple food in Peru, can be increased by crop rotation with cereals in high lands (3000 m and above). Cultivation in high lands not only gives cultivar of higher proteic content but also improves the fertility of the soils. However, the low temperature (in the freezing region) in the high lands and the associated plant diseases are the major problems for this kind of cultivation. The present report describes the development of freezing and disease resistant mutants through mutagenesis with gamma radiation. Two varieties, Alderman and Amarilla, which had been adopted to high lands are selected for the present study. Two doses were used, 14 and 18 Krad, employing 4600 seeds/dose for the Alderman variety and 3600 seeds/dose for Amarilla. Preliminary results are presented

  1. Macromolecular organization of xyloglucan and cellulose in pea epicotyls

    International Nuclear Information System (INIS)

    Hayashi, T.; Maclachlan, G.

    1984-01-01

    Xyloglucan is known to occur widely in the primary cell walls of higher plants. This polysaccharide in most dicots possesses a cellulose-like main chain with three of every four consecutive residues substituted with xylose and minor addition of other sugars. Xyloglucan and cellulose metabolism is regulated by different processes; since different enzyme systems are probably required for the synthesis of their 1,4-β-linkages. A macromolecular complex composed of xyloglucan and cellulose only was obtained from elongating regions of etiolated pea stems. It was examined by light microscopy using iodine staining, by radioautography after labeling with [ 3 H]fructose, by fluorescence microscopy using a fluorescein-lectin (fructose-binding) as probe, and by electron microscopy after shadowing. The techniques all demonstrated that the macromolecule was present in files of cell shapes, referred to here as cell-wall ghosts, in which xyloglucan was localized both on and between the cellulose microfibrils

  2. Nitrosative stress induces DNA strand breaks but not caspase mediated apoptosis in a lung cancer cell line

    Directory of Open Access Journals (Sweden)

    Bentz Brandon G

    2004-12-01

    Full Text Available Abstract Background Key steps crucial to the process of tumor progression are genomic instability and escape from apoptosis. Nitric oxide and its interrelated reactive intermediates (collectively denoted as NOX have been implicated in DNA damage and mutational events leading to cancer development, while also being implicated in the inhibition of apoptosis through S-nitrosation of key apoptotic enzymes. The purpose of this study was to explore the interrelationship between NOX-mediated DNA strand breaks (DSBs and apoptosis in cultured tumor cell lines. Methods Two well-characterized cell lines were exposed to increasing concentrations of exogenous NOX via donor compounds. Production of NOX was quantified by the Greiss reaction and spectrophotometery, and confirmed by nitrotyrosine immunostaining. DSBs were measured by the alkaline single-cell gel electrophoresis assay (the COMET assay, and correlated with cell viability by the MTT assay. Apoptosis was analyzed both by TUNEL staining and Annexin V/propidium iodine FACS. Finally, caspase enzymatic activity was measured using an in-vitro fluorogenic caspase assay. Results Increases in DNA strand breaks in our tumor cells, but not in control fibroblasts, correlated with the concentration as well as rate of release of exogenously administered NOX. This increase in DSBs did not correlate with an increase in cell death or apoptosis in our tumor cell line. Finally, this lack of apoptosis was found to correlate with inhibition of caspase activity upon exposure to thiol- but not NONOate-based NOX donor compounds. Conclusions Genotoxicity appears to be highly interrelated with both the concentration and kinetic delivery of NOX. Moreover, alterations in cell apoptosis can be seen as a consequence of the explicit mechanisms of NOX delivery. These findings lend credence to the hypothesis that NOX may play an important role in tumor progression, and underscores potential pitfalls which should be considered when

  3. DNA replication and cancer

    DEFF Research Database (Denmark)

    Boyer, Anne-Sophie; Walter, David; Sørensen, Claus Storgaard

    2016-01-01

    A dividing cell has to duplicate its DNA precisely once during the cell cycle to preserve genome integrity avoiding the accumulation of genetic aberrations that promote diseases such as cancer. A large number of endogenous impacts can challenge DNA replication and cells harbor a battery of pathways...... causing DNA replication stress and genome instability. Further, we describe cellular and systemic responses to these insults with a focus on DNA replication restart pathways. Finally, we discuss the therapeutic potential of exploiting intrinsic replicative stress in cancer cells for targeted therapy....

  4. Xyloglucan galactosyl- and fucosyltransferase activity from pea epicotyl microsomes

    International Nuclear Information System (INIS)

    Faik, A.; Chileshe, C.; Sterling, J.; Maclachlan, G.

    1997-01-01

    Microsomal membranes from growing tissue of pea (Pisum sativum L.) epicotyls were incubated with the substrate UDP-[14C]galactose (Gal) with or without tamarind seed xyloglucan (XG) as a potential galactosyl acceptor. Added tamarind seed XG enhanced incorporation of [14C]Gal into high-molecular-weight products (eluted from columns of Sepharose CL-6B in the void volume) that were trichloroacetic acid-soluble but insoluble in 67% ethanol. These products were hydrolyzed by cellulase to fragments comparable in size to XG subunit oligosaccharides. XG-dependent galactosyltransferase activity could be solubilized, along with XG fucosyltransferase, by the detergent 3-[(3-cholamidopropyl)-dimethylammonio]-1 propanesulfonate. When this enzyme was incubated with tamarind (Tamarindus indica L.) seed XG or nasturtium (Tropaeolum majus L.) seed XG that had been partially degalactosylated with an XG-specific beta-galactosidase, the rates of Gal transfer increased and fucose transfer decreased compared with controls with native XG. The reaction products were hydrolyzed by cellulase to 14C fragments that were analyzed by gel-filtration and high-performance liquid chromatography fractionation with pulsed amperometric detection. The major components were XG subunits, namely one of the two possible monogalactosyl octasaccharides (-XXLG-) and digalactosyl nonasaccharide (-XLLG-), whether the predominant octasaccharide in the acceptor was XXLG (as in tamarind seed XG) or XLXG (as in nasturtium seed XG). It is concluded that the first xylosylglucose from the reducing end of the subunits was the Gal acceptor locus preferred by the solubilized pea transferase. These observations are incorporated into a model for the biosynthesis of cell wall XGs

  5. Physiological responses of PEA (Pisum sativum cv. meteor) to irrigation salinity

    International Nuclear Information System (INIS)

    Shahid, M.A.; Pervez, M.A.; Balal, R.M.; Azhar, N.; Shahzad, J.; Ubaidullah

    2008-01-01

    The effects of irrigation water or soil salinity on physiological aspects of pea (Pisum sativum cv.Meteor) were contrived. Ten weeks old pea plants were treated with NaCl at 0, 40, 90 and 140 mM in nutrient solution Plants were grown in controlled environment and harvested at each 3 days interval for decisiveness 0 physiological parameters. Photosynthetic rate, relative water content, stomatal conductance and chlorophyll contents reduced by increasing the NaCI concentration while CO/sub 2/ concentration and free proline content intensified. By experiment it was adumbrated that high salinity level along with prolonged accentuate duration is more drastic to pea plants physiology. Results also exhibited that pea plants could indulge 40 and 90 mM NaCl but are sensitive to 140 mM. (author)

  6. Effect of Root-Zone Moisture Variations on Growth of Lettuce and Pea Plants

    Science.gov (United States)

    Ilieva, Iliana; Ivanova, Tania

    2008-06-01

    Variations in substrate moisture lead to changes in water and oxygen availability to plant roots. Ground experiments were carried out in the laboratory prototype of SVET-2 Space Greenhouse to study the effect of variation of root-zone moisture conditions on growth of lettuce and pea plants. The effect of transient increase (for 1 day) and drastic increase (waterlogging for 10 days) of substrate moisture was studied with 16-day old pea and 21-day old lettuce plants respectively. Pea height and fresh biomass accumulation were not affected by transient substrate moisture increase. Net photosynthetic rate (Pn) of pea plants showed fast response to substrate moisture variation, while chlorophyll content did not change. Drastic change of substrate moisture suppressed lettuce Pn, chlorophyll biosynthesis and plant growth. These parameters slowly recovered after termination of waterlogging treatment but lettuce yield was greatly affected. The results showed that the most sensitive physiological parameter to substrate moisture variations is photosynthesis.

  7. Effect of cadmium on growth, protein content and peroxidase activity in pea plants

    International Nuclear Information System (INIS)

    Bavi, K.; Kholdebarin, B.

    2011-01-01

    n this study the effects of different cadmium chloride concentrations (5, 10, 20, 50, and 100 mu M) on some physiological and biochemical processes including seed germination, root and shoot fresh and dry weight, protein content and peroxidase activity in peas (Cicer arietinum cv. pars) were investigated. Cadmium did not have any significant effect on the rate of pea seed germination. However, it affected the subsequent growth rate in these plants. Higher cadmium concentrations specially at 50 and 100 mu M reduced plant growth significantly. Leaf chlorosis, wilting and leaf abscission were observed in plants treated with cadmium. Protein content in pea roots reduced significantly in the presence of high cadmium concentrations. Low concentrations of CdCl/sub 2/ resulted in higher peroxidase activity both in roots and shoots of pea plants. (author)

  8. Competition for and utilisation of sulfur in sole and intercrops of pea and barley

    DEFF Research Database (Denmark)

    Andersen, Mette Klindt; Hauggaard-Nielsen, Henrik; Jensen, Henning Høgh

    2007-01-01

    gave barley a growth and nutrient use advantage compared to pea (REIc values importance of initial size differences decreased relative to the effect of species identity in determining the competitive strength of the two species and by the end...

  9. Effect of gamma irradiation on physicochemical properties of stored pigeon pea (Cajanus cajan) flour.

    Science.gov (United States)

    Bamidele, Oluwaseun P; Akanbi, Charles T

    2013-09-01

    The effect of gamma irradiation at various doses (5, 10, 15, 20 kGy) was observed on pigeon pea flour stored for 3 months on proximate composition, functional properties, and peroxide value. Sensory evaluation was also carried out on bean cake (moinmoin) made from nonirradiated and irradiated pigeon pea flour. The results showed that stored gamma-irradiated samples had significantly lower (P flours showed slight increase in water absorption capacity, swelling capacity and bulk density. The peroxide value of crude oil increased significantly with dose increases for the period of storage. The sensory evaluation of moinmoin samples prepared from irradiated pigeon pea flour showed no significant difference from the moinmoin sample prepared from nonirradiated flour. It can be concluded that gamma irradiation can extend the shelf life of pigeon pea flour.

  10. Nitrogen immobilization and mineralization during initial decomposition of 15N-labelled pea and barley residues

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1997-01-01

    The immobilization and mineralization of N following plant residue incorporation were studied in a sandy loam soil using N-15-labelled field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) straw. Both crop residues caused a net immobilization of soil-derived inorganic N during...... the complete incubation period of 84 days. The maximum rate of N immobilization was found to 12 and 18 mg soil-derived N g(-1) added C after incorporation of pea and barley residues, respectively. After 7 days of incubation, 21% of the pea and 17% of the barley residue N were assimilated by the soil microbial...... the decomposition of the barley residue. The net mineralization of residue-derived N was 2% in the barley and 22% in the pea residue treatment after 84 days of incubation. The results demonstrated that even if crop residues have a relative low C/N ratio (15), transient immobilization of soil N in the microbial...

  11. Breeding high yielding varieties of pigeon pea, mungbean and black gram using induced mutations

    International Nuclear Information System (INIS)

    Pawar, S.E.; Wanjari, K.B.

    1994-01-01

    The present communication emphasis the developing of high yielding varieties of pigeon pea, mungbean and black gram using induced mutation with disease resistance in these crops. This would help in stabilisation of the higher yield potential

  12. Reduction of the DNA damages, Hepatoprotective Effect and Antioxidant Potential of the Coconut Water, ascorbic and Caffeic Acids in Oxidative Stress Mediated by Ethanol

    Directory of Open Access Journals (Sweden)

    VANDERSON S. BISPO

    Full Text Available ABSTRACT Hepatic disorders such as steatosis and alcoholic steatohepatitis are common diseases that affect thousands of people around the globe. This study aims to identify the main phenol compounds using a new HPLC-ESI+-MS/MS method, to evaluate some oxidative stress parameters and the hepatoprotective action of green dwarf coconut water, caffeic and ascorbic acids on the liver and serum of rats treated with ethanol. The results showed five polyphenols in the lyophilized coconut water spiked with standards: chlorogenic acid (0.18 µM, caffeic acid (1.1 µM, methyl caffeate (0.03 µM, quercetin (0.08 µM and ferulic acid (0.02 µM isomers. In the animals, the activity of the serum γ-glutamyltranspeptidase (γ-GT was reduced to 1.8 I.U/L in the coconut water group, 3.6 I.U/L in the ascorbic acid group and 2.9 I.U/L in the caffeic acid groups, when compared with the ethanol group (5.1 I.U/L, p<0.05. Still in liver, the DNA analysis demonstrated a decrease of oxidized bases compared to ethanol group of 36.2% and 48.0% for pretreated and post treated coconut water group respectively, 42.5% for the caffeic acid group, and 34.5% for the ascorbic acid group. The ascorbic acid was efficient in inhibiting the thiobarbituric acid reactive substances (TBARS in the liver by 16.5% in comparison with the ethanol group. These data indicate that the green dwarf coconut water, caffeic and ascorbic acids have antioxidant, hepatoprotective and reduced DNA damage properties, thus decreasing the oxidative stress induced by ethanol metabolism.

  13. Association of oxidative stress and DNA damage with grafting time in patients with multiple myeloma and lymphoma submitted to autologous hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Thayna Nogueira dos Santos

    Full Text Available ABSTRACT The aim of the study was to investigate the association between oxidative stress and DNA damage with grafting time in patients submitted to autologous hematopoietic stem-cell transplantation (HSCT. The study included 37 patients submitted to autologous HSCT diagnosed with Multiple Myeloma (MM and lymphoma (Hodgkin’s and non-Hodgkin’s. Biomarkers of oxidative stress and DNA damage index (DI were performed at baseline (pre-CR of the disease and during the conditioning regimen (CR, one day after the HSCT, ten days after HSCT and twenty days after HSCT, as well as in the control group consisting of 30 healthy individuals. The outcomes showed that both groups of patients had an hyperoxidative state with high DI when compared to baseline and to the control group and that the CR exacerbated this condition. However, after the follow-up period of the study, this picture was re-established to the baseline levels of each pathology. The study patients with MM showed a mean grafting time of 10.75 days (8 to 13 days, with 10.15 days (8 to 15 days for the lymphoma patients. In patients with MM, there was a negative correlation between the grafting time and the basal levels of GPx (r = -0.54; p = 0.034, indicating that lower levels of this important enzyme are associated with a longer grafting time. For the DI, the correlation was a positive one (r = 0.529; p = 0.030. In the group with lymphoma, it was observed that the basal levels of NOx were positively correlated with grafting time (r = 0.4664, p = 0.032. The data indicate the potential of these biomarkers as predictors of toxicity and grafting time in patients with MM and Lymphomas submitted to autologous HSCT.

  14. Chronic DNA Replication Stress Reduces Replicative Lifespan of Cells by TRP53-Dependent, microRNA-Assisted MCM2-7 Downregulation.

    Directory of Open Access Journals (Sweden)

    Gongshi Bai

    2016-01-01

    Full Text Available Circumstances that compromise efficient DNA replication, such as disruptions to replication fork progression, cause a state known as DNA replication stress (RS. Whereas normally proliferating cells experience low levels of RS, excessive RS from intrinsic or extrinsic sources can trigger cell cycle arrest and senescence. Here, we report that a key driver of RS-induced senescence is active downregulation of the Minichromosome Maintenance 2-7 (MCM2-7 factors that are essential for replication origin licensing and which constitute the replicative helicase core. Proliferating cells produce high levels of MCM2-7 that enable formation of dormant origins that can be activated in response to acute, experimentally-induced RS. However, little is known about how physiological RS levels impact MCM2-7 regulation. We found that chronic exposure of primary mouse embryonic fibroblasts (MEFs to either genetically-encoded or environmentally-induced RS triggered gradual MCM2-7 repression, followed by inhibition of replication and senescence that could be accelerated by MCM hemizygosity. The MCM2-7 reduction in response to RS is TRP53-dependent, and involves a group of Trp53-dependent miRNAs, including the miR-34 family, that repress MCM expression in replication-stressed cells before they undergo terminal cell cycle arrest. miR-34 ablation partially rescued MCM2-7 downregulation and genomic instability in mice with endogenous RS. Together, these data demonstrate that active MCM2-7 repression is a physiologically important mechanism for RS-induced cell cycle arrest and genome maintenance on an organismal level.

  15. Heavy metals in wild house mice from coal-mining areas of Colombia and expression of genes related to oxidative stress, DNA damage and exposure to metals.

    Science.gov (United States)

    Guerrero-Castilla, Angélica; Olivero-Verbel, Jesús; Marrugo-Negrete, José

    2014-03-01

    Coal mining is a source of pollutants that impact on environmental and human health. This study examined the metal content and the transcriptional status of gene markers associated with oxidative stress, metal transport and DNA damage in livers of feral mice collected near coal-mining operations, in comparison with mice obtained from a reference site. Mus musculus specimens were caught from La Loma and La Jagua, two coal-mining sites in the north of Colombia, as well as from Valledupar (Cesar Department), a city located 100km north of the mines. Concentrations in liver tissue of Hg, Zn, Pb, Cd, Cu and As were determined by differential stripping voltammetry, and real-time PCR was used to measure gene expression. Compared with the reference group (Valledupar), hepatic concentrations of Cd, Cu and Zn were significantly higher in animals living near mining areas. In exposed animals, the mRNA expression of NQ01, MT1, SOD1, MT2, and DDIT3 was 4.2-, 7.3-, 2.5-, 4.6- and 3.4-fold greater in coal mining sites, respectively, than in animals from the reference site (pmining may generate pollutants that could affect the biota, inducing the transcription of biochemical markers related to oxidative stress, metal exposure, and DNA damage. These changes may be in part linked to metal toxicity, and could have implications for the development of chronic disease. Therefore, it is essential to implement preventive measures to minimize the effects of coal mining on its nearby environment, in order to protect human health. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Zebrafish ( Danio rerio) as a model for investigating the safety of GM feed ingredients (soya and maize); performance, stress response and uptake of dietary DNA sequences.

    Science.gov (United States)

    Sissener, Nini H; Johannessen, Lene E; Hevrøy, Ernst M; Wiik-Nielsen, Christer R; Berdal, Knut G; Nordgreen, Andreas; Hemre, Gro-Ingunn

    2010-01-01

    A 20-d zebrafish (Danio rerio) feeding trial, in which a near doubling of fish weight was achieved, was conducted with GM feed ingredients to evaluate feed intake, growth, stress response and uptake of dietary DNA. A partial aim of the study was to assess zebrafish as a model organism in GM safety assessments. Roundup Ready soya (RRS), YieldGard Bt maize (MON810) and their non-modified, maternal, near-isogenic lines were used in a 2 x 2 factorial design. Soya variety and maize variety were the main factors, both with two levels; non-GM and GM. Compared with fish fed non-GM maize, those fed GM maize exhibited significantly better growth, had lower mRNA transcription levels of superoxide dismutase (SOD)-1 and a tendency (non-significant) towards lower transcription of heat shock protein 70 in liver. Sex of the fish and soya variety had significant interaction effects on total RNA yield from the whole liver and transcription of SOD-1, suggesting that some diet component affecting males and females differently was present in different levels in the GM and the non-GM soya used in the present study. Dietary DNA sequences were detected in al