WorldWideScience

Sample records for stress pathogen response

  1. Oxidative Stress Responses in the Human Fungal Pathogen, Candida albicans

    Science.gov (United States)

    da Silva Dantas, Alessandra; Day, Alison; Ikeh, Mélanie; Kos, Iaroslava; Achan, Beatrice; Quinn, Janet

    2015-01-01

    Candida albicans is a major fungal pathogen of humans, causing approximately 400,000 life-threatening systemic infections world-wide each year in severely immunocompromised patients. An important fungicidal mechanism employed by innate immune cells involves the generation of toxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Consequently, there is much interest in the strategies employed by C. albicans to evade the oxidative killing by macrophages and neutrophils. Our understanding of how C. albicans senses and responds to ROS has significantly increased in recent years. Key findings include the observations that hydrogen peroxide triggers the filamentation of this polymorphic fungus and that a superoxide dismutase enzyme with a novel mode of action is expressed at the cell surface of C. albicans. Furthermore, recent studies have indicated that combinations of the chemical stresses generated by phagocytes can actively prevent C. albicans oxidative stress responses through a mechanism termed the stress pathway interference. In this review, we present an up-date of our current understanding of the role and regulation of oxidative stress responses in this important human fungal pathogen. PMID:25723552

  2. Stress, and pathogen response gene expression in modeled microgravity

    Science.gov (United States)

    Sundaresan, Alamelu; Pellis, Neal R.

    2006-01-01

    Purpose: Immune suppression in microgravity has been well documented. With the advent of human exploration and long-term space travel, the immune system of the astronaut must be optimally maintained. It is important to investigate the expression patterns of cytokine genes, because they are directly related to immune response. Heat shock proteins (HSPs), also called stress proteins, are a group of proteins that are present in the cells of every life form. These proteins are induced when a cell responds to stressors such as heat, cold and oxygen deprivation. Microgravity is another stressor that may regulate HSPs. Heat shock proteins trigger immune response through activities that occur both inside the cell (intracellular) and outside the cell (extracellular). Knowledge about these two gene groups could lead to establishment of a blueprint of the immune response and adaptation-related genes in the microgravity environment. Methods: Human peripheral blood cells were cultured in 1g (T flask) and modeled microgravity (MMG, rotating-wall vessel) for 24 and 72 hours. Cell samples were collected and subjected to gene array analysis using the Affymetrix HG_U95 array. Data was collected and subjected to a two-way analysis of variance. The genes related to immune and stress responses were analyzed. Results and Conclusions: HSP70 was up-regulated by more than two fold in microgravity culture, while HSP90 was significantly down-regulated. HSP70 is not typically expressed in all kinds of cells, but it is expressed at high levels in stress conditions. HSP70 participates in translation, protein translocation, proteolysis and protein folding, suppressing aggregation and reactivating denatured proteins. Increased serum HSP70 levels correlate with a better outcome for heat-stroke or severe trauma patients. At the same time, elevated serum levels of HSP70 have been detected in patients with peripheral or renal vascular disease. HSP90 has been identified in the cytosol, nucleus and

  3. The exoribonuclease Polynucleotide Phosphorylase influences the virulence and stress responses of yersiniae and many other pathogens

    Directory of Open Access Journals (Sweden)

    Jason A. Rosenzweig

    2013-11-01

    Full Text Available Microbes are incessantly challenged by both biotic and abiotic stressors threatening their existence. Therefore, bacterial pathogens must possess mechanisms to successfully subvert host immune defenses as well as overcome the stress associated with host-cell encounters. To achieve this, bacterial pathogens typically experience a genetic re-programming whereby anti-host/stress factors become expressed and eventually translated into effector proteins. In that vein, the bacterial host-cell induced stress-response is similar to any other abiotic stress to which bacteria respond by up-regulating specific stress-responsive genes. Following the stress encounter, bacteria must degrade unnecessary stress responsive transcripts through RNA decay mechanisms. The 3 pathogenic yersiniae (Yersinia pestis, Y. pseudo-tuberculosis, and Y. enterocolitica are all psychrotropic bacteria capable of growth at 4˚C; however, cold growth is dependent on the presence of an exoribonuclease, polynucleotide phosphorylase (PNPase. PNPase has also been implicated as a virulence factor in several notable pathogens including the salmonellae, Helicobacter pylori, and the yersiniae (where it typically influences the type three secretion system. Further, PNPase has been shown to associate with ribonuclease E (endoribonuclease, RhlB (RNA helicase, and enolase (glycolytic enzyme in several Gram-negative bacteria forming a large, multi-protein complex known as the RNA degradosome. This review will highlight studies demonstrating the influence of PNPase on the virulence potentials and stress responses of various bacterial pathogens as well as focusing on the degradosome- dependent and -independent roles played by PNPase in yersiniae stress responses.

  4. ROS signaling and stomatal movement in plant responses to drought stress and pathogen attack.

    Science.gov (United States)

    Qi, Junsheng; Song, Chun-Peng; Wang, Baoshan; Zhou, Jianmin; Kangasjärvi, Jaakko; Zhu, Jian-Kang; Gong, Zhizhong

    2018-04-16

    Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO 2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors including water status, light, CO 2 levels and pathogen attack, as well as endogenous signals such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO 2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli. This article is protected by copyright. All rights reserved.

  5. Oxidative stress response to menadione and cumene hydroperoxide in the opportunistic fungal pathogen Candida glabrata

    Directory of Open Access Journals (Sweden)

    Mayra Cuéllar-Cruz

    2009-07-01

    Full Text Available Candida glabrata is an opportunistic fungal pathogen that can cause severe invasive infections and can evade phagocytic cell clearance. We are interested in understanding the virulence of this fungal pathogen, in particular its oxidative stress response. Here we investigated C. glabrata, Saccharomyces cerevisiae and Candida albicans responses to two different oxidants: menadione and cumene hydroperoxide (CHP. In log-phase, in the presence of menadione, C. glabrata requires Cta1p (catalase, while in a stationary phase (SP, Cta1p is dispensable. In addition, C. glabrata is less resistant to menadione than C. albicans in SP. The S. cerevisiae laboratory reference strain is less resistant to menadione than C. glabrata and C. albicans; however S. cerevisiaeclinical isolates (CIs are more resistant than the lab reference strain. Furthermore, S. cerevisiae CIs showed an increased catalase activity. Interestingly, in SP C. glabrata and S. cerevisiae are more resistant to CHP than C. albicans and Cta1p plays no apparent role in detoxifying this oxidant.

  6. The response of foodborne pathogens to osmotic and desiccation stresses in the food chain

    DEFF Research Database (Denmark)

    Burgess, Catherine M.; Gianotti, Andrea; Gruzdev, Nadia

    2016-01-01

    In combination with other strategies, hyperosmolarity and desiccation are frequently used by the food processing industry as a means to prevent bacterial proliferation, and particularly that of foodborne pathogens, in food products. However, it is increasingly observed that bacteria, including...... human pathogens, encode mechanisms to survive and withstand these stresses. This review provides an overview of the mechanisms employed by Salmonella spp., Shiga toxin producing E. coli, Cronobacter spp., Listeria monocytogenes and Campylobacter spp. to tolerate osmotic and desiccation stresses...... and identifies gaps in knowledge which need to be addressed to ensure the safety of low water activity and desiccated food products....

  7. Adaptive and Pathogenic Responses to Stress by Stem Cells during Development

    OpenAIRE

    Mansouri, Ladan; Xie, Yufen; Rappolee, Daniel A

    2012-01-01

    Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induce...

  8. Roles of Forkhead-box Transcription Factors in Controlling Development, Pathogenicity, and Stress Response in Magnaporthe oryzae

    Directory of Open Access Journals (Sweden)

    Jaejin Park

    2014-06-01

    Full Text Available Although multiple transcription factors (TFs have been characterized via mutagenesis to understand their roles in controlling pathogenicity and infection-related development in Magnaporthe oryzae, the causal agent of rice blast, if and how forkhead-box (FOX TFs contribute to these processes remain to be characterized. Four putative FOX TF genes were identified in the genome of M. oryzae, and phylogenetic analysis suggested that two of them (MoFKH1 and MoHCM1 correspond to Ascomycota-specific members of the FOX TF family while the others (MoFOX1 and MoFOX2 are Pezizomycotina-specific members. Deletion of MoFKH1 (ΔMofkh1 resulted in reduced mycelial growth and conidial germination, abnormal septation and stress response, and reduced virulence. Similarly, ΔMohcm1 exhibited reduced mycelial growth and conidial germination. Conidia of ΔMofkh1 and ΔMohcm1 were more sensitive to one or both of the cell cycle inhibitors hydroxyurea and benomyl, suggesting their role in cell cycle control. On the other hand, loss of MoFOX1 (ΔMofox1 did not show any noticeable changes in development, pathogenicity, and stress response. Deletion of MoFOX2 was not successful even after repeated attempts. Taken together, these results suggested that MoFKH1 and Mo-HCM1 are important in fungal development and that MoFKH1 is further implicated in pathogenicity and stress response in M. oryzae.

  9. Induction of Endoplasmic Reticulum Stress and Unfolded Protein Response Constitutes a Pathogenic Strategy of group A Streptococcus

    Directory of Open Access Journals (Sweden)

    Emanuel eHanski

    2014-08-01

    Full Text Available The connection between bacterial pathogens and unfolded protein response (UPR is poorly explored. In this review we highlight the evidence showing that group A streptococcus (GAS induces endoplasmic reticulum (ER stress and UPR through which it captures the amino acid asparagine (ASN from the host. GAS acts extracellularly and during adherence to host cells it delivers the hemolysin toxins; streptolysin O (SLO and streptolysin S (SLS. By poorly understood pathways, these toxins trigger UPR leading to the induction of the transcriptional regulator ATF4 and consequently to the upregulation of asparagine synthetase (ASNS transcription leading to production and release of ASN. GAS senses ASN and alters gene expression profile accordingly, and increases the rate of multiplication. We suggest that induction of UPR by GAS and by other bacterial pathogens represent means through which bacterial pathogens gain nutrients from the host, obviating the need to become internalized or inflict irreversible cell damage.

  10. Adaptive and Pathogenic Responses to Stress by Stem Cells during Development.

    Science.gov (United States)

    Mansouri, Ladan; Xie, Yufen; Rappolee, Daniel A

    2012-12-10

    Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induced differentiation which generates minimal necessary function by producing more differentiated product/cell. This compensatory differentiation is accompanied by a second strategy to insure organismal survival as multipotent and pluripotent stem cells differentiate into the lineages in their repertoire. During stressed differentiation, the first lineage in the repertoire is increased and later lineages are suppressed, thus prioritized differentiation occurs. Compensatory and prioritized differentiation is regulated by at least two types of stress enzymes. AMP-activated protein kinase (AMPK) which mediates loss of nuclear potency factors and stress-activated protein kinase (SAPK) that does not. SAPK mediates an increase in the first essential lineage and decreases in later lineages in placental stem cells. The clinical significance of compensatory and prioritized differentiation is that stem cell pools are depleted and imbalanced differentiation leads to gestational diseases and long term postnatal pathologies.

  11. Adaptive and Pathogenic Responses to Stress by Stem Cells during Development

    Directory of Open Access Journals (Sweden)

    Daniel A. Rappolee

    2012-12-01

    Full Text Available Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induced differentiation which generates minimal necessary function by producing more differentiated product/cell. This compensatory differentiation is accompanied by a second strategy to insure organismal survival as multipotent and pluripotent stem cells differentiate into the lineages in their repertoire. During stressed differentiation, the first lineage in the repertoire is increased and later lineages are suppressed, thus prioritized differentiation occurs. Compensatory and prioritized differentiation is regulated by at least two types of stress enzymes. AMP-activated protein kinase (AMPK which mediates loss of nuclear potency factors and stress-activated protein kinase (SAPK that does not. SAPK mediates an increase in the first essential lineage and decreases in later lineages in placental stem cells. The clinical significance of compensatory and prioritized differentiation is that stem cell pools are depleted and imbalanced differentiation leads to gestational diseases and long term postnatal pathologies.

  12. Plant response to biotic stress: Is there a common epigenetic response during plant-pathogenic and symbiotic interactions?

    Science.gov (United States)

    Zogli, Prince; Libault, Marc

    2017-10-01

    Plants constantly interact with pathogenic and symbiotic microorganisms. Recent studies have revealed several regulatory mechanisms controlling these interactions. Among them, the plant defense system is activated not only in response to pathogenic, but also in response to symbiotic microbes. Interestingly, shortly after symbiotic microbial recognition, the plant defense system is suppressed to promote plant infection by symbionts. Research studies have demonstrated the influence of the plant epigenome in modulating both pathogenic and symbiotic plant-microbe interactions, thereby influencing plant survival, adaptation and evolution of the plant response to microbial infections. It is however unclear if plant pathogenic and symbiotic responses share similar epigenomic profiles or if epigenomic changes differentially regulate plant-microbe symbiosis and pathogenesis. In this mini-review, we provide an update of the current knowledge of epigenomic control on plant immune responses and symbiosis, with a special attention being paid to knowledge gap and potential strategies to fill-in the missing links. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Combinatorial stresses kill pathogenic Candida species

    Science.gov (United States)

    Kaloriti, Despoina; Tillmann, Anna; Cook, Emily; Jacobsen, Mette; You, Tao; Lenardon, Megan; Ames, Lauren; Barahona, Mauricio; Chandrasekaran, Komelapriya; Coghill, George; Goodman, Daniel; Gow, Neil A. R.; Grebogi, Celso; Ho, Hsueh-Lui; Ingram, Piers; McDonagh, Andrew; De Moura, Alessandro P. S.; Pang, Wei; Puttnam, Melanie; Radmaneshfar, Elahe; Romano, Maria Carmen; Silk, Daniel; Stark, Jaroslav; Stumpf, Michael; Thiel, Marco; Thorne, Thomas; Usher, Jane; Yin, Zhikang; Haynes, Ken; Brown, Alistair J. P.

    2012-01-01

    Pathogenic microbes exist in dynamic niches and have evolved robust adaptive responses to promote survival in their hosts. The major fungal pathogens of humans, Candida albicans and Candida glabrata, are exposed to a range of environmental stresses in their hosts including osmotic, oxidative and nitrosative stresses. Significant efforts have been devoted to the characterization of the adaptive responses to each of these stresses. In the wild, cells are frequently exposed simultaneously to combinations of these stresses and yet the effects of such combinatorial stresses have not been explored. We have developed a common experimental platform to facilitate the comparison of combinatorial stress responses in C. glabrata and C. albicans. This platform is based on the growth of cells in buffered rich medium at 30°C, and was used to define relatively low, medium and high doses of osmotic (NaCl), oxidative (H 2O2) and nitrosative stresses (e.g., dipropylenetriamine (DPTA)-NONOate). The effects of combinatorial stresses were compared with the corresponding individual stresses under these growth conditions. We show for the first time that certain combinations of combinatorial stress are especially potent in terms of their ability to kill C. albicans and C. glabrata and/or inhibit their growth. This was the case for combinations of osmotic plus oxidative stress and for oxidative plus nitrosative stress. We predict that combinatorial stresses may be highly signif cant in host defences against these pathogenic yeasts. PMID:22463109

  14. Impact of the lectin chaperone calnexin on the stress response, virulence and proteolytic secretome of the fungal pathogen Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Margaret V Powers-Fletcher

    Full Text Available Calnexin is a membrane-bound lectin chaperone in the endoplasmic reticulum (ER that is part of a quality control system that promotes the accurate folding of glycoproteins entering the secretory pathway. We have previously shown that ER homeostasis is important for virulence of the human fungal pathogen Aspergillus fumigatus, but the contribution of calnexin has not been explored. Here, we determined the extent to which A. fumigatus relies on calnexin for growth under conditions of environmental stress and for virulence. The calnexin gene, clxA, was deleted from A. fumigatus and complemented by reconstitution with the wild type gene. Loss of clxA altered the proteolytic secretome of the fungus, but had no impact on growth rates in either minimal or complex media at 37°C. However, the ΔclxA mutant was growth impaired at temperatures above 42°C and was hypersensitive to acute ER stress caused by the reducing agent dithiothreitol. In contrast to wild type A. fumigatus, ΔclxA hyphae were unable to grow when transferred to starvation medium. In addition, depleting the medium of cations by chelation prevented ΔclxA from sustaining polarized hyphal growth, resulting in blunted hyphae with irregular morphology. Despite these abnormal stress responses, the ΔclxA mutant remained virulent in two immunologically distinct models of invasive aspergillosis. These findings demonstrate that calnexin functions are needed for growth under conditions of thermal, ER and nutrient stress, but are dispensable for surviving the stresses encountered in the host environment.

  15. A network of paralogous stress response transcription factors in the human pathogen Candida glabrata.

    Directory of Open Access Journals (Sweden)

    Jawad eMerhej

    2016-05-01

    Full Text Available The yeast Candida glabrata has become the second cause of systemic candidemia in humans. However, relatively few genome-wide studies have been conducted in this organism and our knowledge of its transcriptional regulatory network is quite limited. In the present work, we combined genome-wide chromatin immunoprecipitation (ChIP-seq, transcriptome analyses and DNA binding motif predictions to describe the regulatory interactions of the seven Yap (Yeast AP1 transcription factors of C. glabrata. We described a transcriptional network containing 255 regulatory interactions and 309 potential target genes. We predicted with high confidence the preferred DNA binding sites for 5 of the 7 CgYaps and showed a strong conservation of the Yap DNA binding properties between S. cerevisiae and C. glabrata. We provided reliable functional annotation for 3 of the 7 Yaps and identified for Yap1 and Yap5 a core regulon which is conserved in S. cerevisiae, C. glabrata and C. albicans. We uncovered new roles for CgYap7 in the regulation of iron-sulfur cluster biogenesis, for CgYap1 in the regulation of heme biosynthesis and for CgYap5 in the repression of GRX4 in response to iron starvation. These transcription factors define an interconnected transcriptional network at the cross-roads between redox homeostasis, oxygen consumption and iron metabolism.

  16. Comparative transcriptome and gene co-expression network analysis reveal genes and signaling pathways adaptively responsive to varied adverse stresses in the insect fungal pathogen, Beauveria bassiana.

    Science.gov (United States)

    He, Zhangjiang; Zhao, Xin; Lu, Zhuoyue; Wang, Huifang; Liu, Pengfei; Zeng, Fanqin; Zhang, Yongjun

    2018-01-01

    Sensing, responding, and adapting to the surrounding environment are crucial for all living organisms to survive, proliferate, and differentiate in their biological niches. Beauveria bassiana is an economically important insect-pathogenic fungus which is widely used as a biocontrol agent to control a variety of insect pests. The fungal pathogen unavoidably encounters a variety of adverse environmental stresses and defense response from the host insects during application of the fungal agents. However, few are known about the transcription response of the fungus to respond or adapt varied adverse stresses. Here, we comparatively analyzed the transcriptome of B. bassiana in globe genome under the varied stationary-phase stresses including osmotic agent (0.8 M NaCl), high temperature (32 °C), cell wall-perturbing agent (Congo red), and oxidative agents (H 2 O 2 or menadione). Total of 12,412 reads were obtained, and mapped to the 6767 genes of the B. bassiana. All of these stresses caused transcription responses involved in basal metabolism, cell wall construction, stress response or cell rescue/detoxification, signaling transduction and gene transcription regulation, and likely other cellular processes. An array of genes displayed similar transcription patterns in response to at least two of the five stresses, suggesting a shared transcription response to varied adverse stresses. Gene co-expression network analysis revealed that mTOR signaling pathway, but not HOG1 MAP kinase pathway, played a central role in regulation the varied adverse stress responses, which was verified by RNAi-mediated knockdown of TOR1. Our findings provided an insight of transcription response and gene co-expression network of B. bassiana in adaptation to varied environments. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Functional analysis of atfA gene to stress response in pathogenic thermal dimorphic fungus Penicillium marneffei.

    Directory of Open Access Journals (Sweden)

    Panjaphorn Nimmanee

    Full Text Available Penicillium marneffei, the pathogenic thermal dimorphic fungus is a causative agent of a fatal systemic disease, penicilliosis marneffei, in immunocompromised patients especially HIV patients. For growth and survival, this fungus has to adapt to environmental stresses outside and inside host cells and this adaptation requires stress signaling pathways and regulation of gene expression under various kinds of stresses. In this report, P. marneffei activating transcription factor (atfA gene encoding bZip-type transcription factor was characterized. To determine functions of this gene, atfA isogenic mutant strain was constructed using the modified split marker recombination method. The phenotypes and susceptibility to varieties of stresses including osmotic, oxidative, heat, UV, cell wall and cell membrane stresses of the mutant strain were compared with the wild type and the atfA complemented strains. Results demonstrated that the mRNA expression level of P. marneffei atfA gene increased under heat stress at 42°C. The atfA mutant was more sensitive to sodium dodecyl sulphate, amphotericin B and tert-butyl hydroperoxide than the wild type and complemented strains but not hydrogen peroxide, menadione, NaCl, sorbitol, calcofluor white, itraconazole, UV stresses and heat stress at 39°C. In addition, recovery of atfA mutant conidia after mouse and human macrophage infections was significantly decreased compared to those of wild type and complemented strains. These results indicated that the atfA gene was required by P. marneffei under specific stress conditions and might be necessary for fighting against host immune cells during the initiation of infection.

  18. SCF Ubiquitin Ligase F-box Protein Fbx15 Controls Nuclear Co-repressor Localization, Stress Response and Virulence of the Human Pathogen Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Bastian Jöhnk

    2016-09-01

    Full Text Available F-box proteins share the F-box domain to connect substrates of E3 SCF ubiquitin RING ligases through the adaptor Skp1/A to Cul1/A scaffolds. F-box protein Fbx15 is part of the general stress response of the human pathogenic mold Aspergillus fumigatus. Oxidative stress induces a transient peak of fbx15 expression, resulting in 3x elevated Fbx15 protein levels. During non-stress conditions Fbx15 is phosphorylated and F-box mediated interaction with SkpA preferentially happens in smaller subpopulations in the cytoplasm. The F-box of Fbx15 is required for an appropriate oxidative stress response, which results in rapid dephosphorylation of Fbx15 and a shift of the cellular interaction with SkpA to the nucleus. Fbx15 binds SsnF/Ssn6 as part of the RcoA/Tup1-SsnF/Ssn6 co-repressor and is required for its correct nuclear localization. Dephosphorylated Fbx15 prevents SsnF/Ssn6 nuclear localization and results in the derepression of gliotoxin gene expression. fbx15 deletion mutants are unable to infect immunocompromised mice in a model for invasive aspergillosis. Fbx15 has a novel dual molecular function by controlling transcriptional repression and being part of SCF E3 ubiquitin ligases, which is essential for stress response, gliotoxin production and virulence in the opportunistic human pathogen A. fumigatus.

  19. The immune strategy and stress response of the Mediterranean species of the Bemisia tabaci complex to an orally delivered bacterial pathogen.

    Directory of Open Access Journals (Sweden)

    Chang-Rong Zhang

    Full Text Available BACKGROUND: The whitefly, Bemisia tabaci, a notorious agricultural pest, has complex relationships with diverse microbes. The interactions of the whitefly with entomopathogens as well as its endosymbionts have received great attention, because of their potential importance in developing novel whitefly control technologies. To this end, a comprehensive understanding on the whitefly defense system is needed to further decipher those interactions. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a comprehensive investigation of the whitefly's defense responses to infection, via oral ingestion, of the pathogen, Pseudomonas aeruginosa, using RNA-seq technology. Compared to uninfected whiteflies, 6 and 24 hours post-infected whiteflies showed 1,348 and 1,888 differentially expressed genes, respectively. Functional analysis of the differentially expressed genes revealed that the mitogen associated protein kinase (MAPK pathway was activated after P. aeruginosa infection. Three knottin-like antimicrobial peptide genes and several components of the humoral and cellular immune responses were also activated, indicating that key immune elements recognized in other insect species are also important for the response of B. tabaci to pathogens. Our data also suggest that intestinal stem cell mediated epithelium renewal might be an important component of the whitefly's defense against oral bacterial infection. In addition, we show stress responses to be an essential component of the defense system. CONCLUSIONS/SIGNIFICANCE: We identified for the first time the key immune-response elements utilized by B. tabaci against bacterial infection. This study provides a framework for future research into the complex interactions between whiteflies and microbes.

  20. The MAP kinase-activated protein kinase Rck2p regulates cellular responses to cell wall stresses, filamentation and virulence in the human fungal pathogen Candida albicans.

    Science.gov (United States)

    Li, Xichuan; Du, Wei; Zhao, Jingwen; Zhang, Lilin; Zhu, Zhiyan; Jiang, Linghuo

    2010-06-01

    Rck2p is the Hog1p-MAP kinase-activated protein kinase required for the attenuation of protein synthesis in response to an osmotic challenge in Saccharomyces cerevisiae. Rck2p also regulates rapamycin sensitivity in both S. cerevisiae and Candida albicans. In this study, we demonstrate that the deletion of CaRCK2 renders C. albicans cells sensitive to, and CaRck2p translocates from the cytosol to the nucleus in response to, cell wall stresses caused by Congo red, Calcoflor White, elevated heat and zymolyase. However, the kinase activity of CaRck2p is not required for the cellular response to these cell wall stresses. Furthermore, transcripts of cell wall protein-encoding genes CaBGL2, CaHWP1 and CaXOG1 are reduced in C. albicans cells lacking CaRCK2. The deletion of CaRCK2 also reduces the in vitro filamentation of C. albicans and its virulence in a mouse model of systemic candidasis. The kinase activity of CaRck2p is required for the virulence, but not for the in vitro filamentation, in C. albicans. Therefore, Rck2p regulates cellular responses to cell wall stresses, filamentation and virulence in the human fungal pathogen C. albicans.

  1. Hydrophobins contribute to root colonization and stress responses in the rhizosphere-competent insect pathogenic fungus Beauveria bassiana.

    Science.gov (United States)

    Moonjely, Soumya; Keyhani, Nemat O; Bidochka, Michael J

    2018-04-01

    The hyd1/hyd2 hydrophobins are important constituents of the conidial cell wall of the insect pathogenic fungus Beauveria bassiana. This fungus can also form intimate associations with several plant species. Here, we show that inactivation of two Class I hydrophobin genes, hyd1 or hyd2, significantly decreases the interaction of B. bassiana with bean roots. Curiously, the ∆hyd1/∆hyd2 double mutant was less impaired in root association than Δhyd1 or Δhyd2. Loss of hyd genes affected growth rate, conidiation ability and oosporein production. Expression patterns for genes involved in conidiation, cell wall integrity, insect virulence, signal transduction, adhesion, hydrophobicity and oosporein production were screened in the deletion mutants grown in different conditions. Repression of the major MAP-Kinase signal transduction pathways (Slt2 MAPK pathway) was observed that was more pronounced in the single versus double hyd mutants under certain conditions. The ∆hyd1/∆hyd2 double mutant showed up-regulation of the Hog1 MAPK and the Msn2 transcription factor under certain conditions when compared to the wild-type or single hyd mutants. The expression of the bad2 adhesin and the oosporein polyketide synthase 9 gene was severely reduced in all of the mutants. On the other hand, fewer changes were observed in the expression of key conidiation and cell wall integrity genes in hyd mutants compared to wild-type. Taken together, the data from this study indicated pleiotropic consequences of deletion of hyd1 and hyd2 on signalling and stress pathways as well as the ability of the fungus to form stable associations with plant roots.

  2. The Vascular Pathogen Verticillium longisporum Does Not Affect Water Relations and Plant Responses to Drought Stress of Its Host, Brassica napus.

    Science.gov (United States)

    Lopisso, Daniel Teshome; Knüfer, Jessica; Koopmann, Birger; von Tiedemann, Andreas

    2017-04-01

    Verticillium longisporum is a host-specific vascular pathogen of oilseed rape (Brassica napus L.) that causes economic crop losses by impairing plant growth and inducing premature senescence. This study investigates whether plant damage through Verticillium stem striping is due to impaired plant water relations, whether V. longisporum affects responses of a susceptible B. napus variety to drought stress, and whether drought stress, in turn, affects plant responses to V. longisporum. Two-factorial experiments on a susceptible cultivar of B. napus infected or noninfected with V. longisporum and exposed to three watering levels (30, 60, and 100% field capacity) revealed that drought stress and V. longisporum impaired plant growth by entirely different mechanisms. Although both stresses similarly affected plant growth parameters (plant height, hypocotyl diameter, and shoot and root dry matter), infection of B. napus with V. longisporum did not affect any drought-related physiological or molecular genetic plant parameters, including transpiration rate, stomatal conductance, photosynthesis rate, water use efficiency, relative leaf water content, leaf proline content, or the expression of drought-responsive genes. Thus, this study provides comprehensive physiological and molecular genetic evidence explaining the lack of wilt symptoms in B. napus infected with V. longisporum. Likewise, drought tolerance of B. napus was unaffected by V. longisporum, as was the level of disease by drought conditions, thus excluding a concerted action of both stresses in the field. Although it is evident that drought and vascular infection with V. longisporum impair plant growth by different mechanisms, it remains to be determined by which other factors V. longisporum causes crop loss.

  3. Stress Responses in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Frees, Dorte; Ingmer, Hanne

    2016-01-01

    stress responses allowing it to sense and adapt to its very different niches. The stress responses often involve dramatic cellular reprogramming, and the technological advances provided by the access to whole genome sequences have let to an unprecedented insight into the global reorganization of gene...... and protein expression following stress-exposure. Characterization of global gene responses has been very helpful both in identifying regulators sensing specific environmental stress signals and overlaps between different stress responses. In this chapter we review the recent progress in our understanding...... of the specific and general S. aureusstress responses, with a special emphasis on how stress responses contribute to virulence and antibiotic resistance in this important human pathogen....

  4. The promoter of the pepper pathogen-induced membrane protein gene CaPIMP1 mediates environmental stress responses in plants.

    Science.gov (United States)

    Hong, Jeum Kyu; Hwang, Byung Kook

    2009-01-01

    The promoter of the pepper pathogen-induced membrane protein gene CaPIMP1 was analyzed by an Agrobacterium-mediated transient expression assay in tobacco leaves. Several stress-related cis-acting elements (GT-1, W-box and ABRE) are located within the CaPIMP1 promoter. In tobacco leaf tissues transiently transformed with a CaPIMP1 promoter-beta-glucuronidase (GUS) gene fusion, serially 5'-deleted CaPIMP1 promoters were differentially activated by Pseudomonas syringae pv. tabaci, ethylene, methyl jasmonate, abscisic acid, and nitric oxide. The -1,193 bp region of the CaPIMP1 gene promoter sequence exhibited full promoter activity. The -417- and -593 bp promoter regions were sufficient for GUS gene activation by ethylene and methyl jasmonate treatments, respectively. However, CaPIMP1 promoter sequences longer than -793 bp were required for promoter activation by abscisic acid and sodium nitroprusside treatments. CaPIMP1 expression was activated in pepper leaves by treatment with ethylene, methyl jasmonate, abscisic acid, beta-amino-n-butyric acid, NaCl, mechanical wounding, and low temperature, but not with salicylic acid. Overexpression of CaPIMP1 in Arabidopsis conferred hypersensitivity to mannitol, NaCl, and ABA during seed germination but not during seedling development. In contrast, transgenic plants overexpressing CaPIMP1 exhibited enhanced tolerance to oxidative stress induced by methyl viologen during germination and early seedling stages. These results suggest that CaPIMP1 expression may alter responsiveness to environmental stress, as well as to pathogen infection.

  5. Stress responses in pathogenic Yersinia enterocolitica with reference to the stability of the virulence plasmid in food

    Science.gov (United States)

    Yersinia enterocolitica has been associated with food-borne illness, most often due the ingestion of pork products. The pathogenic effects induced by a Y. enterocolitica infection are caused by the interplay of chromosomal genes and a virulence plasmid, pYV. Generally, the plasmid is lost during g...

  6. Histone H3 lysine 9 methyltransferase FvDim5 regulates fungal development, pathogenicity and osmotic stress responses in Fusarium verticillioides.

    Science.gov (United States)

    Gu, Qin; Ji, Tiantian; Sun, Xiao; Huang, Hai; Zhang, Hao; Lu, Xi; Wu, Liming; Huo, Rong; Wu, Huijun; Gao, Xuewen

    2017-10-16

    Histone methylation plays important biological roles in eukaryotic cells. Methylation of lysine 9 at histone H3 (H3K9me) is critical for regulating chromatin structure and gene transcription. Dim5 is a lysine histone methyltransferase (KHMTase) enzyme, which is responsible for the methylation of H3K9 in eukaryotes. In the current study, we identified a single ortholog of Neurospora crassa Dim5 in Fusarium verticillioides. In this study, we report that FvDim5 regulates the trimethylation of H3K9 (H3K9me3). The FvDIM5 deletion mutant (ΔFvDim5) showed significant defects in conidiation, perithecium production and fungal virulence. Unexpectedly, we found that deletion of FvDIM5 resulted in increased tolerance to osmotic stresses and upregulated FvHog1 phosphorylation. These results indicate the importance of FvDim5 for the regulation of fungal development, pathogenicity and osmotic stress responses in F. verticillioides. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Staphylococcal response to oxidative stress

    Directory of Open Access Journals (Sweden)

    Rosmarie eGaupp

    2012-03-01

    Full Text Available Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria’s interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host.

  8. The PacC transcription factor regulates secondary metabolite production and stress response, but has only minor effects on virulence in the insect pathogenic fungus Beauveria bassiana.

    Science.gov (United States)

    Luo, Zhibing; Ren, Hui; Mousa, Jarrod J; Rangel, Drauzio E N; Zhang, Yongjun; Bruner, Steven D; Keyhani, Nemat O

    2017-02-01

    The PacC transcription factor is an important component of the fungal ambient pH-responsive regulatory system. Loss of pacC in the insect pathogenic fungus Beauveria bassiana resulted in an alkaline pH-dependent decrease in growth and pH-dependent increased susceptibility to osmotic (salt, sorbitol) stress and SDS. Extreme susceptibility to Congo Red was noted irrespective of pH, and ΔBbpacC conidia showed subtle increases in UV susceptibility. The ΔBbPacC mutant showed a reduced ability to acidify media during growth due to failure to produce oxalic acid. The ΔBbPacC mutant also did not produce the insecticidal compound dipicolinic acid, however, production of a yellow-colored compound was noted. The compound, named bassianolone B, was purified and its structure determined. Despite defects in growth, stress resistance, and oxalate/insecticidal compound production, only a small decrease in virulence was seen for the ΔBbpacC strain in topical insect bioassays using larvae from the greater waxmoth, Galleria mellonella or adults of the beetle, Tenebrio molitor. However, slightly more pronounced decreases were seen in virulence via intrahemcoel injection assays (G. mellonella) and in assays using T. molitor larvae. These data suggest important roles for BbpacC in mediating growth at alkaline pH, regulating secondary metabolite production, and in targeting specific insect stages. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: Effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties.

    Science.gov (United States)

    Aoudia, Nabil; Rieu, Aurélie; Briandet, Romain; Deschamps, Julien; Chluba, Johanna; Jego, Gaëtan; Garrido, Carmen; Guzzo, Jean

    2016-02-01

    Few studies have extensively investigated probiotic functions associated with biofilms. Here, we show that strains of Lactobacillus plantarum and Lactobacillus fermentum are able to grow as biofilm on abiotic surfaces, but the biomass density differs between strains. We performed microtiter plate biofilm assays under growth conditions mimicking to the gastrointestinal environment. Osmolarity and low concentrations of bile significantly enhanced Lactobacillus spatial organization. Two L. plantarum strains were able to form biofilms under high concentrations of bile and mucus. We used the agar well-diffusion method to show that supernatants from all Lactobacillus except the NA4 isolate produced food pathogen inhibitory molecules in biofilm. Moreover, TNF-α production by LPS-activated human monocytoid cells was suppressed by supernatants from Lactobacillus cultivated as biofilms but not by planktonic culture supernatants. However, only L. fermentum NA4 showed anti-inflammatory effects in zebrafish embryos fed with probiotic bacteria, as assessed by cytokine transcript level (TNF-α, IL-1β and IL-10). We conclude that the biofilm mode of life is associated with beneficial probiotic properties of lactobacilli, in a strain dependent manner. Those results suggest that characterization of isolate phenotype in the biofilm state could be additional valuable information for the selection of probiotic strains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. ChLae1 and ChVel1 regulate T-toxin production, virulence, oxidative stress response, and development of the maize pathogen Cochliobolus heterostrophus.

    Directory of Open Access Journals (Sweden)

    Dongliang Wu

    2012-02-01

    Full Text Available LaeA and VeA coordinate secondary metabolism and differentiation in response to light signals in Aspergillus spp. Their orthologs, ChLae1 and ChVel1, were identified in the maize pathogen Cochliobolus heterostrophus, known to produce a wealth of secondary metabolites, including the host selective toxin, T-toxin. Produced by race T, T-toxin promotes high virulence to maize carrying Texas male sterile cytoplasm (T-cms. T-toxin production is significantly increased in the dark in wild type (WT, whereas Chvel1 and Chlae1 mutant toxin levels are much reduced in the dark compared to WT. Correspondingly, expression of T-toxin biosynthetic genes (Tox1 is up-regulated in the dark in WT, while dark-induced expression is much reduced/minimal in Chvel1 and Chlae1 mutants. Toxin production and Tox1 gene expression are increased in ChVEL1 overexpression (OE strains grown in the dark and in ChLAE1 strains grown in either light or dark, compared to WT. These observations establish ChLae1 and ChVel1 as the first factors known to regulate host selective toxin production. Virulence of Chlae1 and Chvel1 mutants and OE strains is altered on both T-cms and normal cytoplasm maize, indicating that both T-toxin mediated super virulence and basic pathogenic ability are affected. Deletion of ChLAE1 or ChVEL1 reduces tolerance to H(2O(2. Expression of CAT3, one of the three catalase genes, is reduced in the Chvel1 mutant. Chlae1 and Chvel1 mutants also show decreased aerial hyphal growth, increased asexual sporulation and female sterility. ChLAE1 OE strains are female sterile, while ChVEL1 OE strains are more fertile than WT. ChLae1 and ChVel1 repress expression of 1,8-dihydroxynaphthalene (DHN melanin biosynthesis genes, and, accordingly, melanization is enhanced in Chlae1 and Chvel1 mutants, and reduced in OE strains. Thus, ChLae1 and ChVel1 positively regulate T-toxin biosynthesis, pathogenicity and super virulence, oxidative stress responses, sexual development, and

  11. Genome Wide Identification of LIM Genes in Cicer arietinum and Response of Ca-2LIMs in Development, Hormone and Pathogenic Stress.

    Directory of Open Access Journals (Sweden)

    Vikas Srivastava

    Full Text Available The eukaryotic lineage-specific LIM protein (LIN11, ISL1, and MEC3 family play pivotal role in modulation of actin dynamics and transcriptional regulation. The systematic investigation of this family has not been carried in detail and rare in legumes. Current study involves the mining of Cicer arietinum genome for the genes coding for LIM domain proteins and displayed significant homology with LIM genes of other species. The analysis led to the identification of 15 members, which were positioned on chickpea chromosomes. The phylogenetic and motif analysis suggested their categorization into two sub-families i.e., Ca-2LIMs and Ca-DA1/DAR, which comprised of nine and six candidates, respectively. Further sub-categories of Ca-2LIMs were recognised as αLIM, βLIM, δLIM and γLIM. The LIM genes within their sub-families displayed conserved genomic and motif organization. The expression pattern of Ca-2LIMs across developmental and reproductive tissues demonstrated strong correlation with established consensus. The Ca-2LIM belongs to PLIM and GLIM (XLIM was found highly expressed in floral tissue. Others showed ubiquitous expression pattern with their dominance in stem. Under hormonal and pathogenic conditions these LIMs were found to up-regulate during salicylic acid, abscisic acid and Ascochyta rabiei treatment or infection; and down-regulated in response to jasmonic acid treatment. The findings of this work, particularly in terms of modulation of LIM genes under biotic stress will open up the way to further explore and establish the role of chickpea LIMs in plant defense response.

  12. Genome Wide Identification of LIM Genes in Cicer arietinum and Response of Ca-2LIMs in Development, Hormone and Pathogenic Stress

    Science.gov (United States)

    Srivastava, Vikas; Verma, Praveen Kumar

    2015-01-01

    The eukaryotic lineage-specific LIM protein (LIN11, ISL1, and MEC3) family play pivotal role in modulation of actin dynamics and transcriptional regulation. The systematic investigation of this family has not been carried in detail and rare in legumes. Current study involves the mining of Cicer arietinum genome for the genes coding for LIM domain proteins and displayed significant homology with LIM genes of other species. The analysis led to the identification of 15 members, which were positioned on chickpea chromosomes. The phylogenetic and motif analysis suggested their categorization into two sub-families i.e., Ca-2LIMs and Ca-DA1/DAR, which comprised of nine and six candidates, respectively. Further sub-categories of Ca-2LIMs were recognised as αLIM, βLIM, δLIM and γLIM. The LIM genes within their sub-families displayed conserved genomic and motif organization. The expression pattern of Ca-2LIMs across developmental and reproductive tissues demonstrated strong correlation with established consensus. The Ca-2LIM belongs to PLIM and GLIM (XLIM) was found highly expressed in floral tissue. Others showed ubiquitous expression pattern with their dominance in stem. Under hormonal and pathogenic conditions these LIMs were found to up-regulate during salicylic acid, abscisic acid and Ascochyta rabiei treatment or infection; and down-regulated in response to jasmonic acid treatment. The findings of this work, particularly in terms of modulation of LIM genes under biotic stress will open up the way to further explore and establish the role of chickpea LIMs in plant defense response. PMID:26418014

  13. Redox proteomics changes in the fungal pathogen Trichosporon asahii on arsenic exposure: identification of protein responses to metal-induced oxidative stress in an environmentally-sampled isolate.

    Directory of Open Access Journals (Sweden)

    Sidra Ilyas

    Full Text Available Trichosporon asahii is a yeast pathogen implicated in opportunistic infections. Cultures of an isolate collected from industrial wastewater were exposed for 2 days to 100 mg/L sodium arsenite (NaAsO2 and cadmium (CdCl2. Both metals reduced glutathione transferase (GST activity but had no effect on superoxide dismutase or catalase. NaAsO2 exposure increased glutathione reductase activity while CdCl2 had no effect. Protein thiols were labeled with 5-iodoacetamido fluorescein followed by one dimensional electrophoresis which revealed extensive protein thiol oxidation in response to CdCl2 treatment but thiol reduction in response to NaAsO2. Two dimensional electrophoresis analyses showed that the intensity of some protein spots was enhanced on treatment as judged by SameSpots image analysis software. In addition, some spots showed decreased IAF fluorescence suggesting thiol oxidation. Selected spots were excised and tryptic digested for identification by MALDI-TOF/TOF MS. Twenty unique T. asahii proteins were identified of which the following proteins were up-regulated in response to NaAsO2: 3-isopropylmalate dehydrogenase, phospholipase B, alanine-glyoxylate aminotransferase, ATP synthase alpha chain, 20S proteasome beta-type subunit Pre3p and the hypothetical proteins A1Q1_08001, A1Q2_03020, A1Q1_06950, A1Q1_06913. In addition, the following showed decreased thiol-associated fluorescence consistent with thiol oxidation; aconitase; aldehyde reductase I; phosphoglycerate kinase; translation elongation factor 2; heat shock protein 70 and hypothetical protein A1Q2_04745. Some proteins showed both increase in abundance coupled with decrease in IAF fluorescence; 3-hydroxyisobutyryl-CoA hydrolase; homoserine dehydrogenase Hom6 and hypothetical proteins A1Q2_03020 and A1Q1_00754. Targets implicated in redox response included 10 unique metabolic enzymes, heat shock proteins, a component of the 20S proteasome and translation elongation factor 2. These data

  14. Pathogen recognition in the innate immune response.

    Science.gov (United States)

    Kumar, Himanshu; Kawai, Taro; Akira, Shizuo

    2009-04-28

    Immunity against microbial pathogens primarily depends on the recognition of pathogen components by innate receptors expressed on immune and non-immune cells. Innate receptors are evolutionarily conserved germ-line-encoded proteins and include TLRs (Toll-like receptors), RLRs [RIG-I (retinoic acid-inducible gene-I)-like receptors] and NLRs (Nod-like receptors). These receptors recognize pathogens or pathogen-derived products in different cellular compartments, such as the plasma membrane, the endosomes or the cytoplasm, and induce the expression of cytokines, chemokines and co-stimulatory molecules to eliminate pathogens and instruct pathogen-specific adaptive immune responses. In the present review, we will discuss the recent progress in the study of pathogen recognition by TLRs, RLRs and NLRs and their signalling pathways.

  15. The importin α subunit PsIMPA1 mediates the oxidative stress response and is required for the pathogenicity of Phytophthora sojae.

    Science.gov (United States)

    Yang, Xinyu; Ding, Fa; Zhang, Lei; Sheng, Yuting; Zheng, Xiaobo; Wang, Yuanchao

    2015-09-01

    The sensing of extracellular signals and their transduction into an appropriate response are crucial for the survival and virulence of plant pathogens. Eukaryotic plant pathogens must overcome the obstacles posed by nuclear membranes to manipulate gene expression to adapt to the host challenge. A highly sophisticated mechanism is the use of importins to transport proteins into the nucleus. In this study, we identified a conserved importin α gene, PsIMPA1, in Phytophthora sojae that was differentially expressed during the life cycle of this soybean pathogen. PsIMPA1 expression was lowest in zoospores and cysts but relatively consistent during the other life cycle stages, except for a slight increase at 6h post infection. Silenced mutants Psimpa1 had a decreased growth rate, an aberrant mycelial morphology, and a severely impaired ability to form oospores and sporangia. In addition, the Psimpa1 mutants exhibited reduced pathogenicity compared to the wild type. 3,3-Diaminobenzidine (DAB) staining and in vitro hydrogen peroxide tolerance assays showed that the scavenging of reactive oxygen species by these mutants was significantly impaired. Taken together, these results indicate that PsIMPA1 regulates multiple processes during the life cycle of P. sojae. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Plant responses to water stress

    Science.gov (United States)

    Kar, Rup Kumar

    2011-01-01

    Terrestrial plants most often encounter drought stress because of erratic rainfall which has become compounded due to present climatic changes.Responses of plants to water stress may be assigned as either injurious change or tolerance index. One of the primary and cardinal changes in response to drought stress is the generation of reactive oxygen species (ROS), which is being considered as the cause of cellular damage. However, recently a signaling role of such ROS in triggering the ROS scavenging system that may confer protection or tolerance against stress is emerging. Such scavenging system consists of antioxidant enzymes like SOD, catalase and peroxidases, and antioxidant compounds like ascorbate, reduced glutathione; a balance between ROS generation and scavenging ultimately determines the oxidative load. As revealed in case of defence against pathogen, signaling via ROS is initiated by NADPH oxidase-catalyzed superoxide generation in the apoplastic space (cell wall) followed by conversion to hydrogen peroxide by the activity of cell wall-localized SOD. Wall peroxidase may also play role in ROS generation for signaling. Hydrogen peroxide may use Ca2+ and MAPK pathway as downstream signaling cascade. Plant hormones associated with stress responses like ABA and ethylene play their role possibly via a cross talk with ROS towards stress tolerance, thus projecting a dual role of ROS under drought stress. PMID:22057331

  17. FvBck1, a Component of Cell Wall Integrity MAP Kinase Pathway, is Required for Virulence and Oxidative Stress Response in Sugarcane Pokkah Boeng Pathogen

    Directory of Open Access Journals (Sweden)

    Chengkang eZhang

    2015-10-01

    Full Text Available Fusarium verticillioides (formerly F. moniliforme is suggested as one of the causal agents of Pokkah Boeng, a serious disease of sugarcane worldwide. Currently, detailed molecular and physiological mechanism of pathogenesis is unknown. In this study, we focused on cell wall integrity MAPK pathway as one of the potential signaling mechanisms associated with Pokkah Boeng pathogenesis. We identified FvBCK1 gene that encodes a MAP kinase kinase kinase homolog and determined that it is not only required for growth, micro- and macro-conidia production, and cell wall integrity but also for response to osmotic and oxidative stresses. The deletion of FvBCK1 caused a significant reduction in virulence and FB1 production, a carcinogenic mycotoxin produced by the fungus. Moreover, we found the expression levels of three genes, which are known to be involved in superoxide scavenging, were down regulated in the mutant. We hypothesized that the loss of superoxide scavenging capacity was one of the reasons for reduced virulence, but overexpression of catalase or peroxidase gene failed to restore the virulence defect in the deletion mutant. When we introduced Magnaporthe oryzae MCK1 into the FvBck1 deletion mutant, while certain phenotypes were restored, the complemented strain failed to gain full virulence. In summary, FvBck1 plays a diverse role in F. verticillioides, and detailed investigation of downstream signaling pathways will lead to a better understanding of how this MAPK pathway regulates Pokkah Boeng on sugarcane.

  18. An aldo-keto reductase, Bbakr1, is involved in stress response and detoxification of heavy metal chromium but not required for virulence in the insect fungal pathogen, Beauveria bassiana.

    Science.gov (United States)

    Wang, Huifang; He, Zhangjiang; Luo, Linli; Zhao, Xin; Lu, Zhuoyue; Luo, Tingying; Li, Min; Zhang, Yongjun

    2018-02-01

    The aldo-keto reductases (AKRs) belong to the NADP-dependent oxidoreductase superfamily, which play important roles in various physiological functions in prokaryotic and eukaryotic organisms. However, many AKR superfamily members remain uncharacterized. Here, a downstream target gene of the HOG1 MAPK pathways coding for an aldo-keto reductase, named Bbakr1, was characterized in the insect fungal pathogen, Beauveria bassiana. Bbakr1 expression increased in response to osmotic and salt stressors, and oxidative and heavy metal (chromium) stress. Deletion of Bbakr1 caused a reduction in conidiation, as well as delayed conidial germination. ΔBbakr1 displayed increased sensitivity to osmotic/high-salt stress with decreased compatible solute accumulation. In addition, the mutant was more sensitive to high concentrations of the heavy metal, chromium, and to oxidative stress than the wild type cells, with impaired ability to detoxify active aldehyde that might accumulate due to lipid peroxidation. However, over-expressing Bbakr1 in either the wild type strain or a ΔBbhog1 background did not cause any obvious changes in phenotypes as compared to their controls. Little effect on virulence was seen for either the ΔBbakr1 or overexpression strains in insect bioassays via cuticle infection or intrahemocoel injection assays, suggesting that Bbakr1 is not required for virulence. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Transgenerational plasticity following a dual pathogen and stress challenge in fruit flies.

    Science.gov (United States)

    Nystrand, M; Cassidy, E J; Dowling, D K

    2016-08-27

    Phenotypic plasticity operates across generations, when the parental environment affects phenotypic expression in the offspring. Recent studies in invertebrates have reported transgenerational plasticity in phenotypic responses of offspring when the mothers had been previously exposed to either live or heat-killed pathogens. Understanding whether this plasticity is adaptive requires a factorial design in which both mothers and their offspring are subjected to either the pathogen challenge or a control, in experimentally matched and mismatched combinations. Most prior studies exploring the capacity for pathogen-mediated transgenerational plasticity have, however, failed to adopt such a design. Furthermore, it is currently poorly understood whether the magnitude or direction of pathogen-mediated transgenerational responses will be sensitive to environmental heterogeneity. Here, we explored the transgenerational consequences of a dual pathogen and stress challenge administered in the maternal generation in the fruit fly, Drosophila melanogaster. Prospective mothers were assigned to a non-infectious pathogen treatment consisting of an injection with heat-killed bacteria or a procedural control, and a stress treatment consisting of sleep deprivation or control. Their daughters and sons were similarly assigned to the same pathogen treatment, prior to measurement of their reproductive success. We observed transgenerational interactions involving pathogen treatments of mothers and their offspring, on the reproductive success of daughters but not sons. These interactions were unaffected by sleep deprivation. The direction of the transgenerational effects was not consistent with that predicted under a scenario of adaptive transgenerational plasticity. Instead, they were indicative of expectations based on terminal investment.

  20. Bruxism affects stress responses in stressed rats.

    Science.gov (United States)

    Sato, Chikatoshi; Sato, Sadao; Takashina, Hirofumi; Ishii, Hidenori; Onozuka, Minoru; Sasaguri, Kenichi

    2010-04-01

    It has been proposed that suppression of stress-related emotional responses leads to the simultaneous activation of both sympathetic and parasympathetic divisions of the autonomic nervous system (ANS) and that the expression of these emotional states has a protective effect against ulcerogenesis. In the present study, we investigated whether stress-induced bruxism activity (SBA) has a physiological effect of on the stress-induced changes of the stomach, thymus, and spleen as well as blood leukocytes, cortisol, and adrenaline. This study demonstrated that SBA attenuated the stress-induced ulcer genesis as well as degenerative changes of thymus and spleen. SBA also attenuated increases of adrenaline, cortisol, and neutrophils in the blood. In conclusion, expression of aggression through SBA during stress exposure attenuates both stress-induced ANS response, including gastric ulcer formation.

  1. Stress response in medically important Mucorales.

    Science.gov (United States)

    Singh, Pankaj; Paul, Saikat; Shivaprakash, M Rudramurthy; Chakrabarti, Arunaloke; Ghosh, Anup K

    2016-10-01

    Mucorales are saprobes, ubiquitously distributed and able to infect a heterogeneous population of human hosts. The fungi require robust stress responses to survive in human host. We tested the growth of Mucorales in the presence of different abiotic stress. Eight pathogenic species of Mucorales, including Rhizopus arrhizus, Rhizopus microsporus, Rhizomucor pusillus, Apophysomyces elegans, Licthemia corymbifera, Cunninghamella bertholletiae, Syncephalastrum racemosum and Mucor racemosus, were exposed to different stress inducers: osmotic (sodium chloride and d-sorbitol), oxidative (hydrogen peroxide and menadione), pH, cell wall and metal ions (Cu, Zn, Fe and Mg). Wide variation in stress responses was noted: R. arrhizus showed maximum resistance to both osmotic and oxidative stresses, whereas R. pusillus and M. indicus were relatively sensitive. Rhizopus arrhizus and R. microsporus showed maximum resistance to alkaline pH, whereas C. bertholletiae, L. corymbifera, M. racemosus and A. elegans were resistant to acidic pH. Maximum tolerance was noted in R. microsporus to Cu, R. microsporus and R. arrhizus to Fe and C. bertholletiae to Zn. In contrast, L. corymbifera, A. elegans and M. indicus were sensitive to Cu, Zn and Fe respectively. In conclusion, R. arrhizus showed high stress tolerance in comparison to other species of Mucorales, and this could be the possible reason for high pathogenic potential of this fungi. © 2016 Blackwell Verlag GmbH.

  2. Global regulation of virulence and the stress response by CsrA in the highly adapted human gastric pathogen Helicobacter pylori

    DEFF Research Database (Denmark)

    Barnard, F.M.; Loughlin, M.F.; Fainberg, H.P.

    2004-01-01

    -induced transcriptional responses of napA and ahpC, the acid induction of napA, cagA, vacA, the urease operon, and fur, as well as the heat shock responses of napA, groESL and hspR. Although the level of napA transcript was higher in the csrA mutant, its stability was similar in the wild-type and mutant strains, and less...

  3. The Venturia Apple Pathosystem: Pathogenicity Mechanisms and Plant Defense Responses

    Directory of Open Access Journals (Sweden)

    Gopaljee Jha

    2009-01-01

    Full Text Available Venturia inaequalis is the causal agent of apple scab, a devastating disease of apple. We outline several unique features of this pathogen which are useful for molecular genetics studies intended to understand plant-pathogen interactions. The pathogenicity mechanisms of the pathogen and overview of apple defense responses, monogenic and polygenic resistance, and their utilization in scab resistance breeding programs are also reviewed.

  4. Interaction of the heterotrimeric G protein alpha subunit SSG-1 of Sporothrix schenckii with proteins related to stress response and fungal pathogenicity using a yeast two-hybrid assay

    Directory of Open Access Journals (Sweden)

    González-Méndez Ricardo

    2010-12-01

    Full Text Available Abstract Background Important biological processes require selective and orderly protein-protein interactions at every level of the signalling cascades. G proteins are a family of heterotrimeric GTPases that effect eukaryotic signal transduction through the coupling of cell surface receptors to cytoplasmic effector proteins. They have been associated with growth and pathogenicity in many fungi through gene knock-out studies. In Sporothrix schenckii, a pathogenic, dimorphic fungus, we previously identified a pertussis sensitive G alpha subunit, SSG-1. In this work we inquire into its interactions with other proteins. Results Using the yeast two-hybrid technique, we identified protein-protein interactions between SSG-1 and other important cellular proteins. The interactions were corroborated using co-immuneprecipitation. Using these techniques we identified a Fe/Mn superoxide dismutase (SOD, a glyceraldehyde-3-P dehydrogenase (GAPDH and two ion transport proteins, a siderophore-iron transporter belonging to the Major Facilitator Superfamily (MFS and a divalent-cation transporter of the Nramp (natural resistance-associated macrophage protein family as interacting with SSG-1. The cDNA's encoding these proteins were sequenced and bioinformatic macromolecular sequence analyses were used for the correct classification and functional assignment. Conclusions This study constitutes the first report of the interaction of a fungal G alpha inhibitory subunit with SOD, GAPDH, and two metal ion transporters. The identification of such important proteins as partners of a G alpha subunit in this fungus suggests possible mechanisms through which this G protein can affect pathogenicity and survival under conditions of environmental stress or inside the human host. The two ion transporters identified in this work are the first to be reported in S. schenckii and the first time they are identified as interacting with fungal G protein alpha subunits. The association

  5. Transposable elements as stress adaptive capacitors induce genomic instability in fungal pathogen Magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Sonia Chadha

    Full Text Available A fundamental problem in fungal pathogenesis is to elucidate the evolutionary forces responsible for genomic rearrangements leading to races with fitter genotypes. Understanding the adaptive evolutionary mechanisms requires identification of genomic components and environmental factors reshaping the genome of fungal pathogens to adapt. Herein, Magnaporthe oryzae, a model fungal plant pathogen is used to demonstrate the impact of environmental cues on transposable elements (TE based genome dynamics. For heat shock and copper stress exposed samples, eight TEs belonging to class I and II family were employed to obtain DNA profiles. Stress induced mutant bands showed a positive correlation with dose/duration of stress and provided evidences of TEs role in stress adaptiveness. Further, we demonstrate that genome dynamics differ for the type/family of TEs upon stress exposition and previous reports of stress induced MAGGY transposition has underestimated the role of TEs in M. oryzae. Here, we identified Pyret, MAGGY, Pot3, MINE, Mg-SINE, Grasshopper and MGLR3 as contributors of high genomic instability in M. oryzae in respective order. Sequencing of mutated bands led to the identification of LTR-retrotransposon sequences within regulatory regions of psuedogenes. DNA transposon Pot3 was identified in the coding regions of chromatin remodelling protein containing tyrosinase copper-binding and PWWP domains. LTR-retrotransposons Pyret and MAGGY are identified as key components responsible for the high genomic instability and perhaps these TEs are utilized by M. oryzae for its acclimatization to adverse environmental conditions. Our results demonstrate how common field stresses change genome dynamics of pathogen and provide perspective to explore the role of TEs in genome adaptability, signalling network and its impact on the virulence of fungal pathogens.

  6. Impartial institutions, pathogen stress and the expanding social network.

    Science.gov (United States)

    Hruschka, Daniel; Efferson, Charles; Jiang, Ting; Falletta-Cowden, Ashlan; Sigurdsson, Sveinn; McNamara, Rita; Sands, Madeline; Munira, Shirajum; Slingerland, Edward; Henrich, Joseph

    2014-12-01

    Anthropologists have documented substantial cross-society variation in people's willingness to treat strangers with impartial, universal norms versus favoring members of their local community. Researchers have proposed several adaptive accounts for these differences. One variant of the pathogen stress hypothesis predicts that people will be more likely to favor local in-group members when they are under greater infectious disease threat. The material security hypothesis instead proposes that institutions that permit people to meet their basic needs through impartial interactions with strangers reinforce a tendency toward impartiality, whereas people lacking such institutions must rely on local community members to meet their basic needs. Some studies have examined these hypotheses using self-reported preferences, but not with behavioral measures. We conducted behavioral experiments in eight diverse societies that measure individuals' willingness to favor in-group members by ignoring an impartial rule. Consistent with the material security hypothesis, members of societies enjoying better-quality government services and food security show a stronger preference for following an impartial rule over investing in their local in-group. Our data show no support for the pathogen stress hypothesis as applied to favoring in-groups and instead suggest that favoring in-group members more closely reflects a general adaptive fit with social institutions that have arisen in each society.

  7. Neuronal responses to physiological stress

    DEFF Research Database (Denmark)

    Kagias, Konstantinos; Nehammer, Camilla; Pocock, Roger David John

    2012-01-01

    damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses......Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged...... by changes in the environment. Fluctuations in oxygen levels, temperature, and redox state for example, trigger molecular events that enable an organism to adapt, survive, and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner...

  8. Individual heat stress response

    NARCIS (Netherlands)

    Havenith, G.

    1997-01-01

    In 5 experiments, heterogeneous subject groups (large variations in _VO2 max, regular daily activity level, mass, body surface area (AD), % body fat, and AD/mass ratio) were tested for their physiological response while exercising on a cycle ergometer at a relative (45% _VO2 max; REL) or an absolute

  9. Stress exacerbates infectivity and pathogenicity of Blastocystis hominis: in vitro and in vivo evidences.

    Directory of Open Access Journals (Sweden)

    Samudi Chandramathi

    Full Text Available BACKGROUND: Stress alters the oxidant-antioxidant state and immune cell responses which disrupts its function to combat infection. Blastocystis hominis, a common intestinal protozoan has been reported to be opportunistic in immunocompromised patients namely cancer. B. hominis infectivity in other altered immune system conditions especially stress is unknown. We aimed to demonstrate the stress effects towards the susceptibility and pathogenicity of B. hominis infection. METHODS/FINDINGS: Three-week-old Wistar rats were divided into four groups: (acontrol; (bstress-induced; (cB. hominis infected; (dstress-induced with B. hominis infection; (n = 20 respectively. Stress was induced for an hour daily (30 days using a Belly Dancer Shaker. Weight gain was monitored, stool samples were collected for B. hominis screening and blood for the determination of differential count, levels of immunoglobulin, oxidative damage, and peripheral blood mononuclear cell (PBMC proliferation upon induction with solubilized antigen of B. hominis (Blasto-Ag. Group (b exhibited the highest level of weight gain. Group (d had higher levels of parasite cyst count in stools, serum IgE, oxidized protein and lipid compared to the group (c. Levels of monocyte and antioxidant in group (d were decreased and their PBMCs showed highest inhibition of proliferation level when exposed to Blasto-Ag. Monocyte level in Group (b showed insignificant difference compared to group (a but was significantly lower compared to group (c. Antioxidant levels in group (c were generally lower compared to group (a and (b. Inhibition level exhibited by Blasto-Ag treated PBMCs of group (c was higher compared to group (a and (b. CONCLUSION: The pathogenicity and augmentation of B. hominis infection is enhanced when stress is present. Lifestyles today are becoming increasingly stressed and the present findings suggest that the parasite which has been reported to be one of the most common organisms seen in

  10. Roles of Arabidopsis WRKY3 and WRKY4 Transcription Factors in Plant Responses to Pathogens

    Directory of Open Access Journals (Sweden)

    Fan Baofang

    2008-06-01

    Full Text Available Abstract Background Plant WRKY DNA-binding transcription factors are involved in plant responses to biotic and abiotic responses. It has been previously shown that Arabidopsis WRKY3 and WRKY4, which encode two structurally similar WRKY transcription factors, are induced by pathogen infection and salicylic acid (SA. However, the role of the two WRKY transcription factors in plant disease resistance has not been directly analyzed. Results Both WRKY3 and WRKY4 are nuclear-localized and specifically recognize the TTGACC W-box sequences in vitro. Expression of WRKY3 and WRKY4 was induced rapidly by stress conditions generated by liquid infiltration or spraying. Stress-induced expression of WRKY4 was further elevated by pathogen infection and SA treatment. To determine directly their role in plant disease resistance, we have isolated T-DNA insertion mutants and generated transgenic overexpression lines for WRKY3 and WRKY4. Both the loss-of-function mutants and transgenic overexpression lines were examined for responses to the biotrophic bacterial pathogen Pseudomonas syringae and the necrotrophic fungal pathogen Botrytis cinerea. The wrky3 and wrky4 single and double mutants exhibited more severe disease symptoms and support higher fungal growth than wild-type plants after Botrytis infection. Although disruption of WRKY3 and WRKY4 did not have a major effect on plant response to P. syringae, overexpression of WRKY4 greatly enhanced plant susceptibility to the bacterial pathogen and suppressed pathogen-induced PR1 gene expression. Conclusion The nuclear localization and sequence-specific DNA-binding activity support that WRKY3 and WRKY4 function as transcription factors. Functional analysis based on T-DNA insertion mutants and transgenic overexpression lines indicates that WRKY3 and WRKY4 have a positive role in plant resistance to necrotrophic pathogens and WRKY4 has a negative effect on plant resistance to biotrophic pathogens.

  11. Abiotic stressors and stress responses

    DEFF Research Database (Denmark)

    Sulmon, Cecile; Van Baaren, Joan; Cabello-Hurtado, Francisco

    2015-01-01

    Abstract Organisms are regularly subjected to abiotic stressors related to increasing anthropogenic activities, including chemicals and climatic changes that induce major stresses. Based on various key taxa involved in ecosystem functioning (photosynthetic microorganisms, plants, invertebrates), we...... review how organisms respond and adapt to chemical- and temperature-induced stresses from molecular to population level. Using field-realistic studies, our integrative analysis aims to compare i) how molecular and physiological mechanisms related to protection, repair and energy allocation can impact...... life history traits of stressed organisms, and ii) to what extent trait responses influence individual and population responses. Common response mechanisms are evident at molecular and cellular scales but become rather difficult to define at higher levels due to evolutionary distance and environmental...

  12. Unraveling plant responses to bacterial pathogens through proteomics

    KAUST Repository

    Zimaro, Tamara

    2011-11-03

    Plant pathogenic bacteria cause diseases in important crops and seriously and negatively impact agricultural production. Therefore, an understanding of the mechanisms by which plants resist bacterial infection at the stage of the basal immune response or mount a successful specific R-dependent defense response is crucial since a better understanding of the biochemical and cellular mechanisms underlying these interactions will enable molecular and transgenic approaches to crops with increased biotic resistance. In recent years, proteomics has been used to gain in-depth understanding of many aspects of the host defense against pathogens and has allowed monitoring differences in abundance of proteins as well as posttranscriptional and posttranslational processes, protein activation/inactivation, and turnover. Proteomics also offers a window to study protein trafficking and routes of communication between organelles. Here, we summarize and discuss current progress in proteomics of the basal and specific host defense responses elicited by bacterial pathogens. Copyright 2011 Tamara Zimaro et al.

  13. Unraveling plant responses to bacterial pathogens through proteomics

    KAUST Repository

    Zimaro, Tamara; Gottig, Natalia; Garavaglia, Betiana S.; Gehring, Christoph A; Ottado, Jorgelina

    2011-01-01

    Plant pathogenic bacteria cause diseases in important crops and seriously and negatively impact agricultural production. Therefore, an understanding of the mechanisms by which plants resist bacterial infection at the stage of the basal immune response or mount a successful specific R-dependent defense response is crucial since a better understanding of the biochemical and cellular mechanisms underlying these interactions will enable molecular and transgenic approaches to crops with increased biotic resistance. In recent years, proteomics has been used to gain in-depth understanding of many aspects of the host defense against pathogens and has allowed monitoring differences in abundance of proteins as well as posttranscriptional and posttranslational processes, protein activation/inactivation, and turnover. Proteomics also offers a window to study protein trafficking and routes of communication between organelles. Here, we summarize and discuss current progress in proteomics of the basal and specific host defense responses elicited by bacterial pathogens. Copyright 2011 Tamara Zimaro et al.

  14. Inflammasome/IL-1β Responses to Streptococcal Pathogens

    Directory of Open Access Journals (Sweden)

    Christopher N. LaRock

    2015-10-01

    Full Text Available Inflammation mediated by the inflammasome and the cytokine IL-1β are some of the earliest and most important alarms to infection. These pathways are responsive to the virulence factors that pathogens use to subvert immune processes, and thus are typically activated only by microbes with potential to cause severe disease. Among the most serious human infections are those caused by the pathogenic streptococci, in part because these species numerous strategies for immune evasion. Since the virulence factor armament of each pathogen is unique, the role of IL-1β and the pathways leading to its activation varies for each infection. This review summarizes the role of IL-1β during infections caused by streptococcal pathogens, with emphasis on emergent mechanisms and concepts countering paradigms determined for other organisms.

  15. Immunoglobulin gene usage in the human anti-pathogen response.

    Science.gov (United States)

    Newkirk, M M; Rioux, J D

    1995-09-01

    The human antibody response to foreign pathogens is generated to a relatively small number of target surface proteins and carbohydrates that nonetheless have an extensive array of epitopes. The study of human monoclonal antibodies to different pathogens shows that there are a diversity of mechanisms used to generate a sufficient repertoire of antibodies to combat the invading pathogens. Although many different immunoglobulin gene elements are used to construct the anti-pathogen response, some elements are used more often than would be expected if all elements were used randomly. For example, the immune response to Haemophilus influenzae polysaccharide appears to be quite narrow, being restricted primarily to a specific heavy-chain gene, 3-15, and a lambda light-chain family II member, 4A. In contrast, for the immune response to cytomegalovirus proteins, a wider group of gene elements is needed. It is also surprising that despite an investigator bias for IgG- rather than IgM-secreting immortal B cells (because of their high affinity and neutralizing abilities), 26% of light chains and 13% of heavy chains showed a very low level of somatic mutation, equivalent to an IgM molecule that has not undergone affinity maturation. Although some highly mutated IgG molecules are present in the anti-pathogen response, most of the monoclonal antibodies specific for viruses or bacteria have a level of somatic hypermutation similar to that of the adult IgM repertoire. A number of studies have shown that there are similarities in the antibody responses to pathogens and to self (autoantibodies).(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Plant Responses to Nanoparticle Stress

    Directory of Open Access Journals (Sweden)

    Zahed Hossain

    2015-11-01

    Full Text Available With the rapid advancement in nanotechnology, release of nanoscale materials into the environment is inevitable. Such contamination may negatively influence the functioning of the ecosystems. Many manufactured nanoparticles (NPs contain heavy metals, which can cause soil and water contamination. Proteomic techniques have contributed substantially in understanding the molecular mechanisms of plant responses against various stresses by providing a link between gene expression and cell metabolism. As the coding regions of genome are responsible for plant adaptation to adverse conditions, protein signatures provide insights into the phytotoxicity of NPs at proteome level. This review summarizes the recent contributions of plant proteomic research to elaborate the complex molecular pathways of plant response to NPs stress.

  17. The varieties of immunological experience: of pathogens, stress, and dendritic cells.

    Science.gov (United States)

    Pulendran, Bali

    2015-01-01

    In the 40 years since their discovery, dendritic cells (DCs) have been recognized as central players in immune regulation. DCs sense microbial stimuli through pathogen-recognition receptors (PRRs) and decode, integrate, and present information derived from such stimuli to T cells, thus stimulating immune responses. DCs can also regulate the quality of immune responses. Several functionally specialized subsets of DCs exist, but DCs also display functional plasticity in response to diverse stimuli. In addition to sensing pathogens via PRRs, emerging evidence suggests that DCs can also sense stress signals, such as amino acid starvation, through ancient stress and nutrient sensing pathways, to stimulate adaptive immunity. Here, I discuss these exciting advances in the context of a historic perspective on the discovery of DCs and their role in immune regulation. I conclude with a discussion of emerging areas in DC biology in the systems immunology era and suggest that the impact of DCs on immunity can be usefully contextualized in a hierarchy-of-organization model in which DCs, their receptors and signaling networks, cell-cell interactions, tissue microenvironment, and the host macroenvironment represent different levels of the hierarchy. Immunity or tolerance can then be represented as a complex function of each of these hierarchies.

  18. Transcriptional 'memory' of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes.

    Science.gov (United States)

    Avramova, Zoya

    2015-07-01

    Drought, salinity, extreme temperature variations, pathogen and herbivory attacks are recurring environmental stresses experienced by plants throughout their life. To survive repeated stresses, plants provide responses that may be different from their response during the first encounter with the stress. A different response to a similar stress represents the concept of 'stress memory'. A coordinated reaction at the organismal, cellular and gene/genome levels is thought to increase survival chances by improving the plant's tolerance/avoidance abilities. Ultimately, stress memory may provide a mechanism for acclimation and adaptation. At the molecular level, the concept of stress memory indicates that the mechanisms responsible for memory-type transcription during repeated stresses are not based on repetitive activation of the same response pathways activated by the first stress. Some recent advances in the search for transcription 'memory factors' are discussed with an emphasis on super-induced dehydration stress memory response genes in Arabidopsis. © 2015 The Author The Plant Journal © 2015 John Wiley & Sons Ltd.

  19. Plant Responses to Pathogen Attack: Small RNAs in Focus.

    Science.gov (United States)

    Islam, Waqar; Noman, Ali; Qasim, Muhammad; Wang, Liande

    2018-02-08

    Small RNAs (sRNA) are a significant group of gene expression regulators for multiple biological processes in eukaryotes. In plants, many sRNA silencing pathways produce extensive array of sRNAs with specialized roles. The evidence on record advocates for the functions of sRNAs during plant microbe interactions. Host sRNAs are reckoned as mandatory elements of plant defense. sRNAs involved in plant defense processes via different pathways include both short interfering RNA (siRNA) and microRNA (miRNA) that actively regulate immunity in response to pathogenic attack via tackling pathogen-associated molecular patterns (PAMPs) and other effectors. In response to pathogen attack, plants protect themselves with the help of sRNA-dependent immune systems. That sRNA-mediated plant defense responses play a role during infections is an established fact. However, the regulations of several sRNAs still need extensive research. In this review, we discussed the topical advancements and findings relevant to pathogen attack and plant defense mediated by sRNAs. We attempted to point out diverse sRNAs as key defenders in plant systems. It is hoped that sRNAs would be exploited as a mainstream player to achieve food security by tackling different plant diseases.

  20. Pathogen-induced Caenorhabditis elegans developmental plasticity has a hormetic effect on the resistance to biotic and abiotic stresses

    Directory of Open Access Journals (Sweden)

    Leroy Magali

    2012-09-01

    Full Text Available Abstract Background Phenotypic plasticity, i.e. the capacity to change the phenotype in response to changes in the environment without alteration of the genotype, is important for coping with unstable environments. In spite of the ample evidence that microorganisms are a major environmental component playing a significant role in eukaryotic organisms health and disease, there is not much information about the effect of microorganism-induced developmental phenotypic plasticity on adult animals’ stress resistance and longevity. Results We examined the consequences of development of Caenorhabditis elegans larvae fed with different bacterial strains on stress resistance and lifespan of adult nematodes. Bacterial strains used in this study were either pathogenic or innocuous to nematodes. Exposure to the pathogen during development did not affect larval survival. However, the development of nematodes on the pathogenic bacterial strains increased lifespan of adult nematodes exposed to the same or a different pathogen. A longer nematode lifespan, developed on pathogens and exposed to pathogens as adults, did not result from an enhanced capacity to kill bacteria, but is likely due to an increased tolerance to the damage inflicted by the pathogenic bacteria. We observed that adult nematodes developed on a pathogen induce higher level of expression of the hsp-16.2 gene and have higher resistance to heat shock than nematodes developed on an innocuous strain. Therefore, the increased resistance to pathogens could be, at least partially, due to the early induction of the heat shock response in nematodes developed on pathogens. The lifespan increase is controlled by the DBL-1 transforming growth factor beta-like, DAF-2/DAF-16 insulin-like, and p38 MAP kinase pathways. Therefore, the observed modulation of adult nematode lifespans by developmental exposure to a pathogen is likely a genetically controlled response. Conclusions Our study shows that development

  1. STRESS RESPONSE STUDIES USING ANIMAL MODELS

    Science.gov (United States)

    This presentation will provide the evidence that ozone exposure in animal models induce neuroendocrine stress response and this stress response modulates lung injury and inflammation through adrenergic and glucocorticoid receptors.

  2. Cellular responses in sea fan corals: granular amoebocytes react to pathogen and climate stressors.

    Directory of Open Access Journals (Sweden)

    Laura D Mydlarz

    Full Text Available BACKGROUND: Climate warming is causing environmental change making both marine and terrestrial organisms, and even humans, more susceptible to emerging diseases. Coral reefs are among the most impacted ecosystems by climate stress, and immunity of corals, the most ancient of metazoans, is poorly known. Although coral mortality due to infectious diseases and temperature-related stress is on the rise, the immune effector mechanisms that contribute to the resistance of corals to such events remain elusive. In the Caribbean sea fan corals (Anthozoa, Alcyonacea: Gorgoniidae, the cell-based immune defenses are granular acidophilic amoebocytes, which are known to be involved in wound repair and histocompatibility. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate for the first time in corals that these cells are involved in the organismal response to pathogenic and temperature stress. In sea fans with both naturally occurring infections and experimental inoculations with the fungal pathogen Aspergillus sydowii, an inflammatory response, characterized by a massive increase of amoebocytes, was evident near infections. Melanosomes were detected in amoebocytes adjacent to protective melanin bands in infected sea fans; neither was present in uninfected fans. In naturally infected sea fans a concurrent increase in prophenoloxidase activity was detected in infected tissues with dense amoebocytes. Sea fans sampled in the field during the 2005 Caribbean Bleaching Event (a once-in-hundred-year climate event responded to heat stress with a systemic increase in amoebocytes and amoebocyte densities were also increased by elevated temperature stress in lab experiments. CONCLUSIONS/SIGNIFICANCE: The observed amoebocyte responses indicate that sea fan corals use cellular defenses to combat fungal infection and temperature stress. The ability to mount an inflammatory response may be a contributing factor that allowed the survival of even infected sea fan corals during a

  3. Immune responses of Helicoverpa armigera to different kinds of pathogens

    Directory of Open Access Journals (Sweden)

    Zhao Xiao-Fan

    2010-03-01

    Full Text Available Abstract Background Insects react against pathogens through innate immunity. The cotton bollworm Helicoverpa armigera (H. armigera is an important defoliator and an extremely destructive pest insect of many crops. The elucidation of the mechanism of the immune response of H. armigera to various pathogens can provide a theoretical basis for new approaches to biologically control this pest. Results Four kinds of pathogens Bacillus thuringiensis, Klebsiella pneumoniae, Candida albicans, and Autographa californica multiple nucleocapsid nucleopolyhedrovirus harbored green fluorescence protein and polyhedron (AcMNPV-GFP were used to challenge the insect. The cellular and humoral immune responses to the pathogens were analyzed in the challenged H. armigera. The results show that in the five kinds of haemocytes, only granulocytes phagocytized the Gram-negative and Gram-positive bacteria and fungi. All haemocytes can be infected by AcMNPV. Fourteen immune-related genes including pattern recognition receptors (PRRs such as peptidoglycan recognition proteins (HaPGRP and HaPGRP C and Gram-Negative Bacteria-Binding Protein (HaGNBP, and antimicrobial peptides (AMPs such as cecropin-1, 2 and 3 (HaCec-1, 2 and 3, lysozyme (HaLys, attacin (HaAtt, gallerimycin-like (HaGall, gloverin-like (HaGlo, moricin-like (HaMor, cobatoxin-like (HaCob, galiomicin-like (HaGali, and immune inducible protein (HaIip appeared in different expression profiles to different pathogen infections. The transcripts of 13 immune related genes (except HaPGRPC are obviously up-regulated by Gram-positive bacteria. HaCec-1 and 3, HaMor, HaAtt, HaLys, HaIip, HaPGRP and HaGNBP are greatly up-regulated after fungal infection. HaGNBP, HaCec-2, HaGall, HaGlo, HaMor, HaCob, HaGali obviously increased in Gram-negative bacterial infection. Only five genes, HaGNBP, HaCec-1, HaGali, HaGlo, and HaLys, are weakly up-regulated after viral infection. The AMP transcripts had higher expression levels than the

  4. The Role of Stress and Stress Adaptations in Determining the Fate of the Bacterial Pathogen Listeria monocytogenes in the Food Chain

    Science.gov (United States)

    NicAogáin, Kerrie; O’Byrne, Conor P.

    2016-01-01

    The foodborne pathogen Listeria monocytogenes is a highly adaptable organism that can persist in a wide range of environmental and food-related niches. The consumption of contaminated ready-to-eat foods can cause infections, termed listeriosis, in vulnerable humans, particularly those with weakened immune systems. Although these infections are comparatively rare they are associated with high mortality rates and therefore this pathogen has a significant impact on food safety. L. monocytogenes can adapt to and survive a wide range of stress conditions including low pH, low water activity, and low temperature, which makes it problematic for food producers who rely on these stresses for preservation. Stress tolerance in L. monocytogenes can be explained partially by the presence of the general stress response (GSR), a transcriptional response under the control of the alternative sigma factor sigma B (σB) that reconfigures gene transcription to provide homeostatic and protective functions to cope with the stress. Within the host σB also plays a key role in surviving the harsh conditions found in the gastrointestinal tract. As the infection progresses beyond the GI tract L. monocytogenes uses an intracellular infectious cycle to propagate, spread and remain protected from the host’s humoral immunity. Many of the virulence genes that facilitate this infectious cycle are under the control of a master transcriptional regulator called PrfA. In this review we consider the environmental reservoirs that enable L. monocytogenes to gain access to the food chain and discuss the stresses that the pathogen must overcome to survive and grow in these environments. The overlap that exists between stress tolerance and virulence is described. We review the principal measures that are used to control the pathogen and point to exciting new approaches that might provide improved means of control in the future. PMID:27933042

  5. The Role of Stress and Stress Adaptations in Determining the Fate of the Bacterial Pathogen Listeria monocytogenes in the Food Chain.

    Science.gov (United States)

    NicAogáin, Kerrie; O'Byrne, Conor P

    2016-01-01

    The foodborne pathogen Listeria monocytogenes is a highly adaptable organism that can persist in a wide range of environmental and food-related niches. The consumption of contaminated ready-to-eat foods can cause infections, termed listeriosis, in vulnerable humans, particularly those with weakened immune systems. Although these infections are comparatively rare they are associated with high mortality rates and therefore this pathogen has a significant impact on food safety. L. monocytogenes can adapt to and survive a wide range of stress conditions including low pH, low water activity, and low temperature, which makes it problematic for food producers who rely on these stresses for preservation. Stress tolerance in L. monocytogenes can be explained partially by the presence of the general stress response (GSR), a transcriptional response under the control of the alternative sigma factor sigma B (σ B ) that reconfigures gene transcription to provide homeostatic and protective functions to cope with the stress. Within the host σ B also plays a key role in surviving the harsh conditions found in the gastrointestinal tract. As the infection progresses beyond the GI tract L. monocytogenes uses an intracellular infectious cycle to propagate, spread and remain protected from the host's humoral immunity. Many of the virulence genes that facilitate this infectious cycle are under the control of a master transcriptional regulator called PrfA. In this review we consider the environmental reservoirs that enable L. monocytogenes to gain access to the food chain and discuss the stresses that the pathogen must overcome to survive and grow in these environments. The overlap that exists between stress tolerance and virulence is described. We review the principal measures that are used to control the pathogen and point to exciting new approaches that might provide improved means of control in the future.

  6. Longevity and the stress response in Drosophila

    DEFF Research Database (Denmark)

    Vermeulen, Corneel J.; Loeschcke, Volker

    2007-01-01

    briefly review the state of the art of research on ageing and longevity in the model organism Drosophila, with focus on the role of the general stress response. We will conclude by contemplating some of the implications of the findings in this research and will suggest several directions for future...... research. Keywords: Ageing; Stress response; Hsp; Drosophila; Stress......The concept that lifespan is a function of the capacity to withstand extrinsic stress is very old. In concordance with this, long-lived individuals often have increased resistance against a variety of stresses throughout life. Genes underlying the stress response may therefore have the ability...

  7. Proteomic analyses of host and pathogen responses during bovine mastitis.

    Science.gov (United States)

    Boehmer, Jamie L

    2011-12-01

    The pursuit of biomarkers for use as clinical screening tools, measures for early detection, disease monitoring, and as a means for assessing therapeutic responses has steadily evolved in human and veterinary medicine over the past two decades. Concurrently, advances in mass spectrometry have markedly expanded proteomic capabilities for biomarker discovery. While initial mass spectrometric biomarker discovery endeavors focused primarily on the detection of modulated proteins in human tissues and fluids, recent efforts have shifted to include proteomic analyses of biological samples from food animal species. Mastitis continues to garner attention in veterinary research due mainly to affiliated financial losses and food safety concerns over antimicrobial use, but also because there are only a limited number of efficacious mastitis treatment options. Accordingly, comparative proteomic analyses of bovine milk have emerged in recent years. Efforts to prevent agricultural-related food-borne illness have likewise fueled an interest in the proteomic evaluation of several prominent strains of bacteria, including common mastitis pathogens. The interest in establishing biomarkers of the host and pathogen responses during bovine mastitis stems largely from the need to better characterize mechanisms of the disease, to identify reliable biomarkers for use as measures of early detection and drug efficacy, and to uncover potentially novel targets for the development of alternative therapeutics. The following review focuses primarily on comparative proteomic analyses conducted on healthy versus mastitic bovine milk. However, a comparison of the host defense proteome of human and bovine milk and the proteomic analysis of common veterinary pathogens are likewise introduced.

  8. The Yeast Environmental Stress Response Regulates Mutagenesis Induced by Proteotoxic Stress

    Science.gov (United States)

    Shor, Erika; Fox, Catherine A.; Broach, James R.

    2013-01-01

    Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR) in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors. PMID:23935537

  9. Temperature and Oxidative Stress as Triggers for Virulence Gene Expression in Pathogenic Leptospira spp.

    Directory of Open Access Journals (Sweden)

    Tricia Fraser

    2017-05-01

    Full Text Available Leptospirosis is a zooanthroponosis aetiologically caused by pathogenic bacteria belonging to the genus, Leptospira. Environmental signals such as increases in temperatures or oxidative stress can trigger response regulatory modes of virulence genes during infection. This study sought to determine the effect of temperature and oxidative stress on virulence associated genes in highly passaged Leptospira borgpeterseneii Jules and L. interrogans Portlandvere. Bacteria were grown in EMJH at 30°C, 37°C, or at 30°C before being transferred to 37°C. A total of 14 virulence-associated genes (fliY, invA, lenA, ligB, lipL32, lipL36, lipL41, lipL45, loa22, lsa21, mce, ompL1, sph2, and tlyC were assessed using endpoint PCR. Transcriptional analyses of lenA, lipL32, lipL41, loa22, sph2 were assessed by quantitative real-time RT-PCR at the temperature conditions. To assess oxidative stress, bacteria were exposed to H2O2 for 30 and 60 min with or without the temperature stress. All genes except ligB (for Portlandvere and ligB and mce (for Jules were detectable in the strains. Quantitatively, temperature stress resulted in significant changes in gene expression within species or between species. Temperature changes were more influential in gene expression for Jules, particularly at 30°C and upshift conditions; at 37°C, expression levels were higher for Portlandvere. However, compared to Jules, where temperature was influential in two of five genes, temperature was an essential element in four of five genes in Portlandvere exposed to oxidative stress. At both low and high oxidative stress levels, the interplay between genetic predisposition (larger genome size and temperature was biased towards Portlandvere particularly at 30°C and upshift conditions. While it is clear that expression of many virulence genes in highly passaged strains of Leptospira are attenuated or lost, genetic predisposition, changes in growth temperature and/or oxidative intensity and

  10. Agreeableness, Extraversion, Stressor and Physiological Stress Response

    OpenAIRE

    Xiaoyuan Chu; Zhentao Ma; Yuan Li; Jing Han

    2015-01-01

    Based on the theoretical analysis, with first-hand data collection and using multiple regression models, this study explored the relationship between agreeableness, extraversion, stressor and stress response and figured out interactive effect of agreeableness, extraversion, and stressor on stress response. We draw on the following conclusions: (1) the interaction term of stressor (work) and agreeableness can negatively predict physiological stress response; (2) the interaction term of stresso...

  11. Impact of thermal stress on evolutionary trajectories of pathogen resistance in three-spined stickleback (Gasterosteus aculeatus).

    Science.gov (United States)

    Schade, Franziska M; Shama, Lisa N S; Wegner, K Mathias

    2014-07-26

    Pathogens are a major regulatory force for host populations, especially under stressful conditions. Elevated temperatures may enhance the development of pathogens, increase the number of transmission stages, and can negatively influence host susceptibility depending on host thermal tolerance. As a net result, this can lead to a higher prevalence of epidemics during summer months. These conditions also apply to marine ecosystems, where possible ecological impacts and the population-specific potential for evolutionary responses to changing environments and increasing disease prevalence are, however, less known. Therefore, we investigated the influence of thermal stress on the evolutionary trajectories of disease resistance in three marine populations of three-spined sticklebacks Gasterosteus aculeatus by combining the effects of elevated temperature and infection with a bacterial strain of Vibrio sp. using a common garden experiment. We found that thermal stress had an impact on fish weight and especially on survival after infection after only short periods of thermal acclimation. Environmental stress reduced genetic differentiation (QST) between populations by releasing cryptic within-population variation. While life history traits displayed positive genetic correlations across environments with relatively weak genotype by environment interactions (GxE), environmental stress led to negative genetic correlations across environments in pathogen resistance. This reversal of genetic effects governing resistance is probably attributable to changing environment-dependent virulence mechanisms of the pathogen interacting differently with host genotypes, i.e. GPathogenxGHostxE or (GPathogenxE)x(GHostxE) interactions, rather than to pure host genetic effects, i.e. GHostxE interactions. To cope with climatic changes and the associated increase in pathogen virulence, host species require wide thermal tolerances and pathogen-resistant genotypes. The higher resistance we found

  12. Tonic immobility differentiates stress responses in PTSD

    NARCIS (Netherlands)

    Fragkaki, I; Stins, J.F.; Roelofs, K.; Jongedijk, R.A.; Hagenaars, M.A.

    2016-01-01

    Background: Tonic immobility (TI) is a state of physical immobility associated with extreme stress and the development of posttraumatic stress disorder (PTSD). However, it is unknown whether TI is associated with a distinct actual stress response, i.e., objective immobility measured by a

  13. AsrR is an oxidative stress sensing regulator modulating Enterococcus faecium opportunistic traits, antimicrobial resistance, and pathogenicity.

    Directory of Open Access Journals (Sweden)

    François Lebreton

    Full Text Available Oxidative stress serves as an important host/environmental signal that triggers a wide range of responses in microorganisms. Here, we identified an oxidative stress sensor and response regulator in the important multidrug-resistant nosocomial pathogen Enterococcus faecium belonging to the MarR family and called AsrR (antibiotic and stress response regulator. The AsrR regulator used cysteine oxidation to sense the hydrogen peroxide which results in its dissociation to promoter DNA. Transcriptome analysis showed that the AsrR regulon was composed of 181 genes, including representing functionally diverse groups involved in pathogenesis, antibiotic and antimicrobial peptide resistance, oxidative stress, and adaptive responses. Consistent with the upregulated expression of the pbp5 gene, encoding a low-affinity penicillin-binding protein, the asrR null mutant was found to be more resistant to β-lactam antibiotics. Deletion of asrR markedly decreased the bactericidal activity of ampicillin and vancomycin, which are both commonly used to treat infections due to enterococci, and also led to over-expression of two major adhesins, acm and ecbA, which resulted in enhanced in vitro adhesion to human intestinal cells. Additional pathogenic traits were also reinforced in the asrR null mutant including greater capacity than the parental strain to form biofilm in vitro and greater persistance in Galleria mellonella colonization and mouse systemic infection models. Despite overexpression of oxidative stress-response genes, deletion of asrR was associated with a decreased oxidative stress resistance in vitro, which correlated with a reduced resistance to phagocytic killing by murine macrophages. Interestingly, both strains showed similar amounts of intracellular reactive oxygen species. Finally, we observed a mutator phenotype and enhanced DNA transfer frequencies in the asrR deleted strain. These data indicate that AsrR plays a major role in antimicrobial

  14. Physcomitrella patens Activates Defense Responses against the Pathogen Colletotrichum gloeosporioides

    Directory of Open Access Journals (Sweden)

    Guillermo Reboledo

    2015-09-01

    Full Text Available The moss Physcomitrella patens is a suitable model plant to analyze the activation of defense mechanisms after pathogen assault. In this study, we show that Colletotrichum gloeosporioides isolated from symptomatic citrus fruit infects P. patens and cause disease symptoms evidenced by browning and maceration of tissues. After C. gloeosporioides infection, P. patens reinforces the cell wall by the incorporation of phenolic compounds and induces the expression of a Dirigent-protein-like encoding gene that could lead to the formation of lignin-like polymers. C. gloeosporioides-inoculated protonemal cells show cytoplasmic collapse, browning of chloroplasts and modifications of the cell wall. Chloroplasts relocate in cells of infected tissues toward the initially infected C. gloeosporioides cells. P. patens also induces the expression of the defense genes PAL and CHS after fungal colonization. P. patens reporter lines harboring the auxin-inducible promoter from soybean (GmGH3 fused to β-glucuronidase revealed an auxin response in protonemal tissues, cauloids and leaves of C. gloeosporioides-infected moss tissues, indicating the activation of auxin signaling. Thus, P. patens is an interesting plant to gain insight into defense mechanisms that have evolved in primitive land plants to cope with microbial pathogens.

  15. General Stress Responses in the Honey Bee

    Directory of Open Access Journals (Sweden)

    Naïla Even

    2012-12-01

    Full Text Available The biological concept of stress originated in mammals, where a “General Adaptation Syndrome” describes a set of common integrated physiological responses to diverse noxious agents. Physiological mechanisms of stress in mammals have been extensively investigated through diverse behavioral and physiological studies. One of the main elements of the stress response pathway is the endocrine hypothalamo-pituitary-adrenal (HPA axis, which underlies the “fight-or-flight” response via a hormonal cascade of catecholamines and corticoid hormones. Physiological responses to stress have been studied more recently in insects: they involve biogenic amines (octopamine, dopamine, neuropeptides (allatostatin, corazonin and metabolic hormones (adipokinetic hormone, diuretic hormone. Here, we review elements of the physiological stress response that are or may be specific to honey bees, given the economical and ecological impact of this species. This review proposes a hypothetical integrated honey bee stress pathway somewhat analogous to the mammalian HPA, involving the brain and, particularly, the neurohemal organ corpora cardiaca and peripheral targets, including energy storage organs (fat body and crop. We discuss how this system can organize rapid coordinated changes in metabolic activity and arousal, in response to adverse environmental stimuli. We highlight physiological elements of the general stress responses that are specific to honey bees, and the areas in which we lack information to stimulate more research into how this fascinating and vital insect responds to stress.

  16. Tailoring the Immune Response via Customization of Pathogen Gene Expression.

    Science.gov (United States)

    Runco, Lisa M; Stauft, Charles B; Coleman, J Robert

    2014-01-01

    The majority of studies focused on the construction and reengineering of bacterial pathogens have mainly relied on the knocking out of virulence factors or deletion/mutation of amino acid residues to then observe the microbe's phenotype and the resulting effect on the host immune response. These knockout bacterial strains have also been proposed as vaccines to combat bacterial disease. Theoretically, knockout strains would be unable to cause disease since their virulence factors have been removed, yet they could induce a protective memory response. While knockout strains have been valuable tools to discern the role of virulence factors in host immunity and bacterial pathogenesis, they have been unable to yield clinically relevant vaccines. The advent of synthetic biology and enhanced user-directed gene customization has altered this binary process of knockout, followed by observation. Recent studies have shown that a researcher can now tailor and customize a given microbe's gene expression to produce a desired immune response. In this commentary, we highlight these studies as a new avenue for controlling the inflammatory response as well as vaccine development.

  17. Transcriptional plant responses critical for resistance towards necrotrophic pathogens

    Directory of Open Access Journals (Sweden)

    Rainer P. Birkenbihl

    2011-11-01

    Full Text Available Plant defenses aimed at necrotrophic pathogens appear to be genetically complex. Despite the apparent lack of a specific recognition of such necrotrophs by products of major R genes, biochemical, molecular, and genetic studies, in particular using the model plant Arabidopsis, have uncovered numerous host components critical for the outcome of such interactions. Although the JA signaling pathway plays a central role in plant defense towards necrotrophs additional signaling pathways contribute to the plant response network. Transcriptional reprogramming is a vital part of the host defense machinery and several key regulators have recently been identified. Some of these transcription factors positively affect plant resistance whereas others play a role in enhancing host susceptibility towards these phytopathogens.

  18. Alternative Splicing Control of Abiotic Stress Responses.

    Science.gov (United States)

    Laloum, Tom; Martín, Guiomar; Duque, Paula

    2018-02-01

    Alternative splicing, which generates multiple transcripts from the same gene, is an important modulator of gene expression that can increase proteome diversity and regulate mRNA levels. In plants, this post-transcriptional mechanism is markedly induced in response to environmental stress, and recent studies have identified alternative splicing events that allow rapid adjustment of the abundance and function of key stress-response components. In agreement, plant mutants defective in splicing factors are severely impaired in their response to abiotic stress. Notably, mounting evidence indicates that alternative splicing regulates stress responses largely by targeting the abscisic acid (ABA) pathway. We review here current understanding of post-transcriptional control of plant stress tolerance via alternative splicing and discuss research challenges for the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. New Pathogenic Concepts and Therapeutic Approaches to Oxidative Stress in Chronic Kidney Disease

    DEFF Research Database (Denmark)

    Pedraza-Chaverri, José; Sánchez-Lozada, Laura G; Osorio-Alonso, Horacio

    2016-01-01

    In chronic kidney disease inflammatory processes and stimulation of immune cells result in overproduction of free radicals. In combination with a reduced antioxidant capacity this causes oxidative stress. This review focuses on current pathogenic concepts of oxidative stress for the decline...... and pharmacologic therapies for hyperuricemia are discussed. Finally, we review some new therapy options in diabetic nephropathy including antidiabetic agents (noninsulin dependent), plant antioxidants, and food components as alternative antioxidant therapies....

  20. Immune and stress responses in oysters with insights on adaptation.

    Science.gov (United States)

    Guo, Ximing; He, Yan; Zhang, Linlin; Lelong, Christophe; Jouaux, Aude

    2015-09-01

    Oysters are representative bivalve molluscs that are widely distributed in world oceans. As successful colonizers of estuaries and intertidal zones, oysters are remarkably resilient against harsh environmental conditions including wide fluctuations in temperature and salinity as well as prolonged air exposure. Oysters have no adaptive immunity but can thrive in microbe-rich estuaries as filter-feeders. These unique adaptations make oysters interesting models to study the evolution of host-defense systems. Recent advances in genomic studies including sequencing of the oyster genome have provided insights into oyster's immune and stress responses underlying their amazing resilience. Studies show that the oyster genomes are highly polymorphic and complex, which may be key to their resilience. The oyster genome has a large gene repertoire that is enriched for immune and stress response genes. Thousands of genes are involved in oyster's immune and stress responses, through complex interactions, with many gene families expanded showing high sequence, structural and functional diversity. The high diversity of immune receptors and effectors may provide oysters with enhanced specificity in immune recognition and response to cope with diverse pathogens in the absence of adaptive immunity. Some members of expanded immune gene families have diverged to function at different temperatures and salinities or assumed new roles in abiotic stress response. Most canonical innate immunity pathways are conserved in oysters and supported by a large number of diverse and often novel genes. The great diversity in immune and stress response genes exhibited by expanded gene families as well as high sequence and structural polymorphisms may be central to oyster's adaptation to highly stressful and widely changing environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The endoplasmic reticulum stress response in disease ...

    African Journals Online (AJOL)

    Rafael Vincent M. Manalo

    2017-07-12

    Jul 12, 2017 ... Review. The endoplasmic reticulum stress response in disease pathogenesis and pathophysiology .... This is an open access article under the CC BY-NC-ND license ... chain binding protein (BIP); however, ER stress permits the release, .... drugs designed to alleviate it often cause more harm long-term.

  2. Molecular characterization of the sweet potato peroxidase SWPA4 promoter which responds to abiotic stresses and pathogen infection.

    Science.gov (United States)

    Ryu, Sun-Hwa; Kim, Yun-Hee; Kim, Cha Young; Park, Soo-Young; Kwon, Suk-Yoon; Lee, Haeng-Soon; Kwak, Sang-Soo

    2009-04-01

    Previously, the swpa4 peroxidase gene has been shown to be inducible by a variety of abiotic stresses and pathogenic infections in sweet potato (Ipomoea batatas). To elucidate its regulatory mechanism at the transcriptional level under various stress conditions, we isolated and characterized the promoter region (2374 bp) of swpa4 (referred to as SWPA4). We performed a transient expression assay in tobacco protoplasts with deletions from the 5'-end of SWPA4 promoter fused to the beta-glucuronidase (GUS) reporter gene. The -1408 and -374 bp deletions relative to the transcription start site (+1) showed 8 and 4.5 times higher GUS expression than the cauliflower mosaic virus 35S promoter, respectively. In addition, transgenic tobacco plants expressing GUS under the control of -2374, -1408 or -374 bp region of SWPA4 promoter were generated and studied in various tissues under abiotic stresses and pathogen infection. Gel mobility shift assays revealed that nuclear proteins from sweet potato cultured cells specifically interacted with 60-bp fragment (-178/-118) in -374 bp promoter region. In silico analysis indicated that four kinds of cis-acting regulatory sequences, reactive oxygen species-related element activator protein 1 (AP1), CCAAT/enhancer-binding protein alpha element, ethylene-responsive element (ERE) and heat-shock element, are present in the -60 bp region (-178/-118), suggesting that the -60 bp region might be associated with stress inducibility of the SWPA4 promoter.

  3. Identification and Characterization of Pathogen-Response Genes (repat) in Spodoptera frugiperda (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Machado, Vilmar; Serrano, Jose; Galián, Jose

    2016-01-01

    The fall armyworm (Spodoptera frugiperda, Noctuidae, Lepidoptera) is one of the most important crop pests in the Americas, causing significant damage to maize, rice and sorghum. The mechanisms that determine its defences against pathogens are particularly relevant for the development of management and control strategies. We used an in silico approach to identify and characterize pathogen response genes (repat) present in different tissue libraries of S. fugiperda. The analyses revealed complete cDNA for nine repat genes; of these, repat15 and repat39 were found in libraries from a specific tissue--the midgut of larvae fed with xenobiotic substances. High expression levels of some genes were found in different libraries: 39 hits in repat30 in challenged hemocytes, 16 hits in repat31 in fat body, 10 hits in repat32 in fat body and 10 in challenged hemocytes, and 10 hits in repat38 in midgut of non-treated larvae and midgut of larvae fed with natural and xenobiotic substances. The genes corresponded to two ontology categories, stress response and immune response, and their phylogenetic relationships, nucleotide similarity, number of amino acid residues and molecular weights agree with what has been described for repat genes. It is noteworthy that proteins encoded by the repat genes of S. frugiperda have important defence functions in other tissues beyond midgut and that their functional categories are likely diverse, as they are related to cell envelope structure, energy metabolism, transport and binding.

  4. Mechanisms governing the responses to anthracnose pathogen in Juglans spp.

    Science.gov (United States)

    Pollegioni, P; Van der Linden, G; Belisario, A; Gras, M; Anselmi, N; Olimpieri, I; Luongo, L; Santini, A; Turco, E; Scarascia Mugnozza, G; Malvolti, M E

    2012-06-30

    Juglans nigra and Juglans regia are two highly economically important species for wood and fruit production that are susceptible to anthracnose caused by Gnomonia leptostyla. The identification of genotypes resistant to anthracnose could represent a valid alternative to agronomic and chemical management. In this study, we analyzed 72 walnut genotypes that showed a variety of resistance phenotypes in response to natural infection. According to the disease severity rating and microsatellite fingerprinting analysis, these genotypes were divided into three main groups: (40) J. nigra resistant, (1) J. nigra susceptible, and (31) J. regia susceptible. Data on leaf emergence rates and analysis of in vivo pathogenicity indicated that the incidence of anthracnose disease in the field might be partially conditioned by two key factors: the age and/or availability of susceptible leaves during the primary infection of fungus (avoidance by late flushing) and partial host resistance. NBS profiling approach, based on PCR amplification with an adapter primer for an adapter matching a restriction enzyme site and a degenerate primer targeting the conserved motifs present in the NBS domain of NBS-LRR genes, was applied. The results revealed the presence of a candidate marker that correlated to a reduction in anthracnose incidence in 72 walnut genotypes. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Yeast signaling pathways in the oxidative stress response

    Energy Technology Data Exchange (ETDEWEB)

    Ikner, Aminah [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States); Shiozaki, Kazuhiro [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States)]. E-mail: kshiozaki@ucdavis.edu

    2005-01-06

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed.

  6. Yeast signaling pathways in the oxidative stress response

    International Nuclear Information System (INIS)

    Ikner, Aminah; Shiozaki, Kazuhiro

    2005-01-01

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed

  7. Transgenerational plasticity following a dual pathogen and stress challenge in fruit flies

    OpenAIRE

    Nystrand, M.; Cassidy, E. J.; Dowling, D. K.

    2016-01-01

    Background Phenotypic plasticity operates across generations, when the parental environment affects phenotypic expression in the offspring. Recent studies in invertebrates have reported transgenerational plasticity in phenotypic responses of offspring when the mothers had been previously exposed to either live or heat-killed pathogens. Understanding whether this plasticity is adaptive requires a factorial design in which both mothers and their offspring are subjected to either the pathogen ch...

  8. Stress proteins and the immune response.

    Science.gov (United States)

    Moseley, P

    2000-07-25

    The heat shock or stress response is one of the most highly conserved adaptive responses in nature. In single cell organisms, the stress response confers tolerance to a variety of stresses including hyperthermia, hyperoxia, hypoxia, and other perturbations, which alter protein synthesis. This tolerance phenomenon is also extremely important in the multicellular organism, resulting in not only thermal tolerance, but also resistance to stresses of the whole organism such as ischemia-reperfusion injury. Moreover, recent data indicates that these stress proteins have the ability to modulate the cellular immune response. Although the terms heat shock proteins (HSPs) and stress proteins are often used interchangeably, the term stress proteins includes the HSPs, the glucose-regulated proteins (GRPs) and ubiquitin. The stress proteins may be grouped by molecular weight ranging from the large 110 kDa HSP110 to ubiquitin at 8 kDa. These proteins serve as cellular chaperones, participating in protein synthesis and transport through the various cellular compartments. Because these proteins have unique cellular localizations, the chaperone function of the stress proteins often involves a transfer of peptides between stress proteins as the peptide is moved between cellular compartments. For example, HSP70 is a cytosolic and nuclear chaperone, which is critical for the transfer of cellular peptides in the mitochondrion through a hand-off that involves mitochondrial HSP60 at the inner mitochondrial membrane. Similarly, cytosolic proteins are transferred from HSP70 to gp96 as they move into the endoplasmic reticulum. The central role of the stress proteins in the transfer of peptides through the cell may be responsible for the recently recognized importance of the stress proteins in the modulation of the immune system [Feder, M.E., Hofmann, G.E., 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61

  9. Response of Desulfovibrio vulgaris to Alkaline Stress

    Energy Technology Data Exchange (ETDEWEB)

    Stolyar, S.; He, Q.; He, Z.; Yang, Z.; Borglin, S.E.; Joyner, D.; Huang, K.; Alm, E.; Hazen, T.C.; Zhou, J.; Wall, J.D.; Arkin, A.P.; Stahl, D.A.

    2007-11-30

    The response of exponentially growing Desulfovibrio vulgarisHildenborough to pH 10 stress was studied using oligonucleotidemicroarrays and a study set of mutants with genes suggested by microarraydata to be involved in the alkaline stress response deleted. The datashowed that the response of D. vulgaris to increased pH is generallysimilar to that of Escherichia coli but is apparently controlled byunique regulatory circuits since the alternative sigma factors (sigma Sand sigma E) contributing to this stress response in E. coli appear to beabsent in D. vulgaris. Genes previously reported to be up-regulated in E.coli were up-regulated in D. vulgaris; these genes included three ATPasegenes and a tryptophan synthase gene. Transcription of chaperone andprotease genes (encoding ATP-dependent Clp and La proteases and DnaK) wasalso elevated in D. vulgaris. As in E. coli, genes involved in flagellumsynthesis were down-regulated. The transcriptional data also identifiedregulators, distinct from sigma S and sigma E, that are likely part of aD. vulgaris Hildenborough-specific stress response system.Characterization of a study set of mutants with genes implicated inalkaline stress response deleted confirmed that there was protectiveinvolvement of the sodium/proton antiporter NhaC-2, tryptophanase A, andtwo putative regulators/histidine kinases (DVU0331 andDVU2580).

  10. Adaptive Responses to Thermal Stress in Mammals

    Directory of Open Access Journals (Sweden)

    Yasser Lenis Sanin

    2015-12-01

    Full Text Available The environment animals have to cope with is a combination of natural factors such as temperature. Extreme changes in these factors can alter homeostasis, which can lead to thermal stress. This stress can be due to either high temperatures or low temperatures. Energy transference for thermoregulation in homoeothermic animals occurs through several mechanisms: conduction, convection, radiation and evaporation. When animals are subjected to thermal stress, physiological mechanisms are activated which may include endocrine, neuroendocrine and behavioral responses. Activation of the neuroendocrine system affects the secretion of hormones and neurotransmitters which act collectively as response mechanisms that allow them to adapt to stress. Mechanisms which have developed through evolution to allow animals to adapt to high environmental temperatures and to achieve thermo tolerance include physiological and physical changes in order to reduce food intake and metabolic heat production, to increase surface area of skin to dissipate heat, to increase blood flow to take heat from the body core to the skin and extremities to dissipate the heat, to increase numbers and activity of sweat glands, panting, water intake and color adaptation of integument system to reflect heat. Chronic exposure to thermal stress can cause disease, reduce growth, decrease productive and reproductive performance and, in extreme cases, lead to death. This paper aims to briefly explain the physical and physiological responses of mammals to thermal stress, like a tool for biological environment adaptation, emphasizing knowledge gaps and offering some recommendations to stress control for the animal production system.

  11. Stress Tolerance-Related Genetic Traits of Fish Pathogen Flavobacterium psychrophilum in a Mature Biofilm

    Directory of Open Access Journals (Sweden)

    Héctor A. Levipan

    2018-01-01

    Full Text Available Flavobacterium psychrophilum is the causative agent of bacterial cold-water disease and rainbow trout fry syndrome, and hence this bacterium is placed among the most important salmonid pathogens in the freshwater aquaculture industry. Since bacteria in biofilms differ substantially from free-living counterparts, this study sought to find the main differences in gene expression between sessile and planktonic states of F. psychrophilum LM-02-Fp and NCMB1947T, with focus on stress-related changes in gene expression occurring during biofilm formation. To this end, biofilm and planktonic samples were analyzed by RNA sequencing to detect differentially expressed candidate genes (DECGs between the two growth states, and decreasing the effects of interstrain variation by considering only genes with log2-fold changes ≤ −2 and ≥ 2 at Padj-values ≤ 0.001 as DECGs. Overall, 349 genes accounting for ~15% of total number of genes expressed in transcriptomes of F. psychrophilum LM-02-Fp and NCMB1947T (n = 2327 were DECGs between biofilm and planktonic states. Approximately 83 and 81% of all up- and down-regulated candidate genes in mature biofilms, respectively, were assigned to at least one gene ontology term; these were primarily associated with the molecular function term “catalytic activity.” We detected a potential stress response in mature biofilms, characterized by a generalized down-regulation of DECGs with roles in the protein synthesis machinery (n = 63, primarily ribosomal proteins and energy conservation (seven ATP synthase subunit genes, as well as an up-regulation of DECGs involved in DNA repair (ruvC, recO, phrB1, smf, and dnaQ and oxidative stress response (cytochrome C peroxidase, probable peroxiredoxin, and a probable thioredoxin. These results support the idea of a strategic trade-off between growth-related processes and cell homeostasis to preserve biofilm structure and metabolic functioning. In addition, LDH-based cytotoxicity

  12. Tonic immobility differentiates stress responses in PTSD.

    Science.gov (United States)

    Fragkaki, Iro; Stins, John; Roelofs, Karin; Jongedijk, Ruud A; Hagenaars, Muriel A

    2016-11-01

    Tonic immobility (TI) is a state of physical immobility associated with extreme stress and the development of posttraumatic stress disorder (PTSD). However, it is unknown whether TI is associated with a distinct actual stress response, i.e., objective immobility measured by a stabilometric platform. This study made a first step in exploring this as well as differences in body sway responses between PTSD patients and healthy controls. We hypothesized that PTSD would be related to increased body sway under stress, whereas TI would be related to decreased body sway under stress. Eye closure was selected as a PTSD-relevant stress induction procedure. Body sway and heart rate (HR) were measured in 12 PTSD patients and 12 healthy controls in four conditions: (1) maintaining a stable stance with eyes open, (2) with eyes closed, (3) during a mental arithmetic task with eyes open, and (4) with eyes closed. As predicted, PTSD patients showed increased body sway from eyes open to eyes closed compared to controls and this effect was eliminated by executing the arithmetic task. Most importantly, retrospective self-reported TI was associated with lower body sway increases in PTSD and higher body sway decreases in controls from eyes-open to eyes-closed conditions. These preliminary findings suggest that eye closure has a different effect on PTSD patients than controls and that high self-reported TI might indicate a distinct stress response pattern, i.e., a proneness for immobility. It may be relevant to take such individual differences in stress-response into account in PTSD treatment.

  13. Parasite stress and pathogen avoidance relate to distinct dimensions of political ideology across 30 nations

    Science.gov (United States)

    Tybur, Joshua M.; Inbar, Yoel; Aarøe, Lene; Barclay, Pat; Barlow, Fiona Kate; de Barra, Mícheál; Becker, D. Vaughn; Borovoi, Leah; Choi, Incheol; Choi, Jong An; Consedine, Nathan S.; Conway, Alan; Conway, Jane Rebecca; Conway, Paul; Adoric, Vera Cubela; Demirci, Dilara Ekin; Fernández, Ana María; Ferreira, Diogo Conque Seco; Ishii, Keiko; Jakšić, Ivana; Ji, Tingting; van Leeuwen, Florian; Lewis, David M. G.; Li, Norman P.; McIntyre, Jason C.; Mukherjee, Sumitava; Park, Justin H.; Pawlowski, Boguslaw; Petersen, Michael Bang; Pizarro, David; Prodromitis, Gerasimos; Prokop, Pavol; Rantala, Markus J.; Reynolds, Lisa M.; Sandin, Bonifacio; Sevi, Bariş; De Smet, Delphine; Srinivasan, Narayanan; Tewari, Shruti; Wilson, Cameron; Yong, Jose C.; Žeželj, Iris

    2016-01-01

    People who are more avoidant of pathogens are more politically conservative, as are nations with greater parasite stress. In the current research, we test two prominent hypotheses that have been proposed as explanations for these relationships. The first, which is an intragroup account, holds that these relationships between pathogens and politics are based on motivations to adhere to local norms, which are sometimes shaped by cultural evolution to have pathogen-neutralizing properties. The second, which is an intergroup account, holds that these same relationships are based on motivations to avoid contact with outgroups, who might pose greater infectious disease threats than ingroup members. Results from a study surveying 11,501 participants across 30 nations are more consistent with the intragroup account than with the intergroup account. National parasite stress relates to traditionalism (an aspect of conservatism especially related to adherence to group norms) but not to social dominance orientation (SDO; an aspect of conservatism especially related to endorsements of intergroup barriers and negativity toward ethnic and racial outgroups). Further, individual differences in pathogen-avoidance motives (i.e., disgust sensitivity) relate more strongly to traditionalism than to SDO within the 30 nations. PMID:27791090

  14. Parasite stress and pathogen avoidance relate to distinct dimensions of political ideology across 30 nations.

    Science.gov (United States)

    Tybur, Joshua M; Inbar, Yoel; Aarøe, Lene; Barclay, Pat; Barlow, Fiona Kate; de Barra, Mícheál; Becker, D Vaughn; Borovoi, Leah; Choi, Incheol; Choi, Jong An; Consedine, Nathan S; Conway, Alan; Conway, Jane Rebecca; Conway, Paul; Adoric, Vera Cubela; Demirci, Dilara Ekin; Fernández, Ana María; Ferreira, Diogo Conque Seco; Ishii, Keiko; Jakšić, Ivana; Ji, Tingting; van Leeuwen, Florian; Lewis, David M G; Li, Norman P; McIntyre, Jason C; Mukherjee, Sumitava; Park, Justin H; Pawlowski, Boguslaw; Petersen, Michael Bang; Pizarro, David; Prodromitis, Gerasimos; Prokop, Pavol; Rantala, Markus J; Reynolds, Lisa M; Sandin, Bonifacio; Sevi, Bariş; De Smet, Delphine; Srinivasan, Narayanan; Tewari, Shruti; Wilson, Cameron; Yong, Jose C; Žeželj, Iris

    2016-11-01

    People who are more avoidant of pathogens are more politically conservative, as are nations with greater parasite stress. In the current research, we test two prominent hypotheses that have been proposed as explanations for these relationships. The first, which is an intragroup account, holds that these relationships between pathogens and politics are based on motivations to adhere to local norms, which are sometimes shaped by cultural evolution to have pathogen-neutralizing properties. The second, which is an intergroup account, holds that these same relationships are based on motivations to avoid contact with outgroups, who might pose greater infectious disease threats than ingroup members. Results from a study surveying 11,501 participants across 30 nations are more consistent with the intragroup account than with the intergroup account. National parasite stress relates to traditionalism (an aspect of conservatism especially related to adherence to group norms) but not to social dominance orientation (SDO; an aspect of conservatism especially related to endorsements of intergroup barriers and negativity toward ethnic and racial outgroups). Further, individual differences in pathogen-avoidance motives (i.e., disgust sensitivity) relate more strongly to traditionalism than to SDO within the 30 nations.

  15. The War Fighter's Stress Response: Telemetric and Noninvasive Assessment

    National Research Council Canada - National Science Library

    O'Donnell, Amanda

    2003-01-01

    ... and biological responses to stress. Specifically, stress-hardy individuals retain mental focus and clarity of memory under stress, commit fewer errors during stress, experience less burnout, demonstrate better navigational skills...

  16. Responsiveness to acidity via metal ion regulators mediates virulence in the gastric pathogen Helicobacter pylori.

    Science.gov (United States)

    Bury-Moné, Stéphanie; Thiberge, Jean-Michel; Contreras, Monica; Maitournam, Aboubakar; Labigne, Agnès; De Reuse, Hilde

    2004-07-01

    The virulence of pathogenic bacteria is dependent on their adaptation to and survival in the stressful conditions encountered in their hosts. Helicobacter pylori exclusively colonizes the acid stomach of primates, making it an ideal study model. Little is known about how H. pylori responds to the moderately acidic conditions encountered at its colonization site, the gastric mucus layer. Thus, we compared gene expression profiles of H. pylori 26695 grown at neutral and acidic pH, and validated the data for a selection of genes by real-time polymerase chain reaction, dot-blots or enzymatic assays. During growth in acidic conditions, 56 genes were upregulated and 45 genes downregulated. We found that acidity is a signal modulating the expression of several virulence factors. Regulation of genes related to metal ion homeostasis suggests protective mechanisms involving diminished transport and enhanced storage. Genes encoding subunits of the F0F1 ATPase and of a newly identified Na+/H+ antiporter (NhaC-HP0946) were downregulated, revealing that this bacterium uses original mechanisms to control proton entry. Five of the upregulated genes encoded proteins controlling intracellular ammonia synthesis, including urease, amidase and formamidase, underlining the major role of this buffering compound in the protection against acidity in H. pylori. Regulatory networks and transcriptome analysis as well as enzymatic assays implicated two metal-responsive transcriptional regulators (NikR and Fur) and an essential two-component response regulator (HP0166, OmpR-like) as effectors of the H. pylori acid response. Finally, a nikR-fur mutant is attenuated in the mouse model, emphasizing the link between response to acidity, metal metabolism and virulence in this gastric pathogen.

  17. Dysfunctional stress responses in chronic pain.

    Science.gov (United States)

    Woda, Alain; Picard, Pascale; Dutheil, Frédéric

    2016-09-01

    Many dysfunctional and chronic pain conditions overlap. This review describes the different modes of chronic deregulation of the adaptive response to stress which may be a common factor for these conditions. Several types of dysfunction can be identified within the hypothalamo-pituitary-adrenal axis: basal hypercortisolism, hyper-reactivity, basal hypocortisolism and hypo-reactivity. Neuroactive steroid synthesis is another component of the adaptive response to stress. Dehydroepiandrosterone (DHEA) and its sulfated form DHEA-S, and progesterone and its derivatives are synthetized in cutaneous, nervous, and adipose cells. They are neuroactive factors that act locally. They may have a role in the localization of the symptoms and their levels can vary both in the central nervous system and in the periphery. Persistent changes in neuroactive steroid levels or precursors can induce localized neurodegeneration. The autonomic nervous system is another component of the stress response. Its dysfunction in chronic stress responses can be expressed by decreased basal parasympathethic activity, increased basal sympathetic activity or sympathetic hyporeactivity to a stressful stimulus. The immune and genetic systems also participate. The helper-T cells Th1 secrete pro-inflammatory cytokines such as IL-1-β, IL-2, IL-6, IL-8, IL-12, IFN-γ, and TNF-α, whereas Th2 secrete anti-inflammatory cytokines: IL-4, IL-10, IGF-10, IL-13. Chronic deregulation of the Th1/Th2 balance can occur in favor of anti- or pro-inflammatory direction, locally or systemically. Individual vulnerability to stress can be due to environmental factors but can also be genetically influenced. Genetic polymorphisms and epigenetics are the main keys to understanding the influence of genetics on the response of individuals to constraints. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Auxin Response Factors (ARFs are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Sarah Bouzroud

    Full Text Available Survival biomass production and crop yield are heavily constrained by a wide range of environmental stresses. Several phytohormones among which abscisic acid (ABA, ethylene and salicylic acid (SA are known to mediate plant responses to these stresses. By contrast, the role of the plant hormone auxin in stress responses remains so far poorly studied. Auxin controls many aspects of plant growth and development, and Auxin Response Factors play a key role in the transcriptional activation or repression of auxin-responsive genes through direct binding to their promoters. As a mean to gain more insight on auxin involvement in a set of biotic and abiotic stress responses in tomato, the present study uncovers the expression pattern of SlARF genes in tomato plants subjected to biotic and abiotic stresses. In silico mining of the RNAseq data available through the public TomExpress web platform, identified several SlARFs as responsive to various pathogen infections induced by bacteria and viruses. Accordingly, sequence analysis revealed that 5' regulatory regions of these SlARFs are enriched in biotic and abiotic stress-responsive cis-elements. Moreover, quantitative qPCR expression analysis revealed that many SlARFs were differentially expressed in tomato leaves and roots under salt, drought and flooding stress conditions. Further pointing to the putative role of SlARFs in stress responses, quantitative qPCR expression studies identified some miRNA precursors as potentially involved in the regulation of their SlARF target genes in roots exposed to salt and drought stresses. These data suggest an active regulation of SlARFs at the post-transcriptional level under stress conditions. Based on the substantial change in the transcript accumulation of several SlARF genes, the data presented in this work strongly support the involvement of auxin in stress responses thus enabling to identify a set of candidate SlARFs as potential mediators of biotic and abiotic

  19. Sympathoneural and Adrenomedullary Responses to Mental Stress

    Science.gov (United States)

    Carter, Jason R.; Goldstein, David S.

    2017-01-01

    This concept-based review provides historical perspectives and updates about sympathetic noradrenergic and sympathetic adrenergic responses to mental stress. The topic of this review has incited perennial debate, because of disagreements over definitions, controversial inferences, and limited availability of relevant measurement tools. The discussion begins appropriately with Cannon's "homeostasis" and his pioneering work in the area. This is followed by mental stress as a scientific idea and the relatively new notions of allostasis and allostatic load. Experimental models of mental stress in rodents and humans are discussed, with particular attention to ethical constraints in humans. Sections follow on sympathoneural to mental stress, reactivity of catecholamine systems, clinical pathophysiologic states, and the cardiovascular reactivity hypothesis. Future advancement of the field will require integrative approaches and coordinated efforts between physiologists and psychologists on this interdisciplinary topic. PMID:25589266

  20. Anion channels: master switches of stress responses.

    Science.gov (United States)

    Roelfsema, M Rob G; Hedrich, Rainer; Geiger, Dietmar

    2012-04-01

    During stress, plant cells activate anion channels and trigger the release of anions across the plasma membrane. Recently, two new gene families have been identified that encode major groups of anion channels. The SLAC/SLAH channels are characterized by slow voltage-dependent activation (S-type), whereas ALMT genes encode rapid-activating channels (R-type). Both S- and R-type channels are stimulated in guard cells by the stress hormone ABA, which leads to stomatal closure. Besides their role in ABA-dependent stomatal movement, anion channels are also activated by biotic stress factors such as microbe-associated molecular patterns (MAMPs). Given that anion channels occur throughout the plant kingdom, they are likely to serve a general function as master switches of stress responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses.

    Science.gov (United States)

    Ohbayashi, Iwai; Sugiyama, Munetaka

    2017-01-01

    The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized pathway of this stress response involves p53 and MDM2 as key players. p53 is a crucial transcription factor that functions in response to not only nucleolar stress but also other cellular stresses such as DNA damage stress. These cellular stresses release p53 from the inhibition by MDM2, an E3 ubiquitin ligase targeting p53, in various ways, which leads to p53-dependent activation of a set of genes. In plants, genetic impairments of ribosome biogenesis factors or ribosome components have been shown to cause characteristic phenotypes, including a narrow and pointed leaf shape, implying a common signaling pathway connecting ribosomal perturbations and certain aspects of growth and development. Unlike animals, however, plants have neither p53 nor MDM2 family proteins. Then the question arises whether plant cells have a nucleolar stress response pathway. In recent years, it has been reported that several members of the plant-specific transcription factor family NAC play critical roles in the pathways responsive to various cellular stresses. In this mini review, we outline the plant cellular stress response pathways involving NAC transcription factors with reference to the p53-MDM2-dependent pathways of animal cells, and discuss the possible involvement of a plant-unique, NAC-mediated pathway in the nucleolar stress response in plants.

  2. Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses

    Directory of Open Access Journals (Sweden)

    Iwai Ohbayashi

    2018-01-01

    Full Text Available The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized pathway of this stress response involves p53 and MDM2 as key players. p53 is a crucial transcription factor that functions in response to not only nucleolar stress but also other cellular stresses such as DNA damage stress. These cellular stresses release p53 from the inhibition by MDM2, an E3 ubiquitin ligase targeting p53, in various ways, which leads to p53-dependent activation of a set of genes. In plants, genetic impairments of ribosome biogenesis factors or ribosome components have been shown to cause characteristic phenotypes, including a narrow and pointed leaf shape, implying a common signaling pathway connecting ribosomal perturbations and certain aspects of growth and development. Unlike animals, however, plants have neither p53 nor MDM2 family proteins. Then the question arises whether plant cells have a nucleolar stress response pathway. In recent years, it has been reported that several members of the plant-specific transcription factor family NAC play critical roles in the pathways responsive to various cellular stresses. In this mini review, we outline the plant cellular stress response pathways involving NAC transcription factors with reference to the p53-MDM2-dependent pathways of animal cells, and discuss the possible involvement of a plant-unique, NAC-mediated pathway in the nucleolar stress response in plants.

  3. Molecular mimicry modulates plant host responses to pathogens.

    Science.gov (United States)

    Ronald, Pamela; Joe, Anna

    2018-01-25

    Pathogens often secrete molecules that mimic those present in the plant host. Recent studies indicate that some of these molecules mimic plant hormones required for development and immunity. This Viewpoint reviews the literature on microbial molecules produced by plant pathogens that functionally mimic molecules present in the plant host. This article includes examples from nematodes, bacteria and fungi with emphasis on RaxX, a microbial protein produced by the bacterial pathogen Xanthomonas oryzae pv. oryzae. RaxX mimics a plant peptide hormone, PSY (plant peptide containing sulphated tyrosine). The rice immune receptor XA21 detects sulphated RaxX but not the endogenous peptide PSY. Studies of the RaxX/XA21 system have provided insight into both host and pathogen biology and offered a framework for future work directed at understanding how XA21 and the PSY receptor(s) can be differentially activated by RaxX and endogenous PSY peptides. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. The endoplasmic reticulum stress response in disease ...

    African Journals Online (AJOL)

    These proteins are essential for cell survival, and intuitively the ER must activate stress responses to evade immediate cell dysfunction as the cell processes lag behind. This review will discuss mainly the ER and its role in the pathogenesis and pathophysiology of epidemiologically-relevant diseases, as well as updates on ...

  5. Proteomic profile of the plant-pathogenic oomycete Phytophthora capsici in response to the fungicide pyrimorph.

    Science.gov (United States)

    Pang, Zhili; Chen, Lei; Miao, Jianqiang; Wang, Zhiwen; Bulone, Vincent; Liu, Xili

    2015-09-01

    Pyrimorph is a novel fungicide from the carboxylic acid amide (CAA) family used to control plant-pathogenic oomycetes such as Phytophthora capsici. The proteomic response of P. capsici to pyrimorph was investigated using the iTRAQ technology to determine the target site of the fungicide and potential biomarker candidates of drug efficacy. A total of 1336 unique proteins were identified from the mycelium of wild-type P. capsici isolate (Hd3) and two pyrimorph-resistant mutants (R3-1 and R3-2) grown in the presence or absence of pyrimorph. Comparative analysis revealed that the three P. capsici isolates Hd3, R3-1, and R3-2 produced 163, 77, and 13 unique proteins, respectively, which exhibited altered levels of abundance in response to the pyrimorph treatment. Further investigations, using Cluster of Orthologous Groups of Proteins (COG) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified 35 proteins related to the mode of action of pyrimorph against P. capsici and 62 proteins involved in the stress response of P. capsici to pyrimorph. Many of the proteins with altered expression were associated with glucose and energy metabolism. Biochemical analysis using d-[U-(14) C]glucose verified the proteomics data, suggesting that the major mode of action of pyrimorph in P. capsici is the inhibition of cell wall biosynthesis. These results also illustrate that proteomics approaches are useful tools for determining the pathways targeted by novel fungicides as well as for evaluating the tolerance of plant pathogens to environmental challenges, such as the presence of fungicides. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Transcriptomic responses to biotic stresses in Malus x domestica: a meta-analysis study

    OpenAIRE

    Balan, Bipin; Marra, Francesco Paolo; Caruso, Tiziano; Martinelli, Federico

    2018-01-01

    RNA-Seq analysis is a strong tool to gain insight into the molecular responses to biotic stresses in plants. The objective of this work is to identify specific and common molecular responses between different transcriptomic data related to fungi, virus and bacteria attacks in Malus x domestica. We analyzed seven transcriptomic datasets in Malus x domestica divided in responses to fungal pathogens, virus (Apple Stem Grooving Virus) and bacteria (Erwinia amylovora). Data were dissected using an...

  7. Children with asthma by school age display aberrant immune responses to pathogenic airway bacteria as infants

    DEFF Research Database (Denmark)

    Larsen, Jeppe Madura; Pedersen, Susanne Brix; Thysen, Anna Hammerich

    2014-01-01

    childhood asthma. We hypothesized that children with asthma have an abnormal immune response to pathogenic bacteria in infancy. ObjectiveWe aimed to assess the bacterial immune response in asymptomatic infants and the association with later development of asthma by age 7 years. MethodsThe Copenhagen...... was assessed based on the pattern of cytokines produced and T-cell activation. ResultsThe immune response to pathogenic bacteria was different in infants with asthma by 7 years of age (P = .0007). In particular, prospective asthmatic subjects had aberrant production of IL-5 (P = .008), IL-13 (P = .057), IL-17...... (P = .001), and IL-10 (P = .028), whereas there were no differences in T-cell activation or peripheral T-cell composition. ConclusionsChildren with asthma by school age exhibited an aberrant immune response to pathogenic bacteria in infancy. We propose that an abnormal immune response to pathogenic...

  8. Plant responses to environmental stresses-from gene to biotechnology.

    Science.gov (United States)

    Ahanger, Mohammad Abass; Akram, Nudrat Aisha; Ashraf, Muhammad; Alyemeni, Mohammed Nasser; Wijaya, Leonard; Ahmad, Parvaiz

    2017-07-01

    Increasing global population, urbanization and industrialization are increasing the rate of conversion of arable land into wasteland. Supplying food to an ever-increasing population is one of the biggest challenges that agriculturalists and plant scientists are currently confronting. Environmental stresses make this situation even graver. Despite the induction of several tolerance mechanisms, sensitive plants often fail to survive under environmental extremes. New technological approaches are imperative. Conventional breeding methods have a limited potential to improve plant genomes against environmental stress. Recently, genetic engineering has contributed enormously to the development of genetically modified varieties of different crops such as cotton, maize, rice, canola and soybean. The identification of stress-responsive genes and their subsequent introgression or overexpression within sensitive crop species are now being widely carried out by plant scientists. Engineering of important tolerance pathways, like antioxidant enzymes, osmolyte accumulation, membrane-localized transporters for efficient compartmentation of deleterious ions and accumulation of essential elements and resistance against pests or pathogens is also an area that has been intensively researched. In this review, the role of biotechnology and its successes, prospects and challenges in developing stress-tolerant crop cultivars are discussed.

  9. Work stress and innate immune response.

    Science.gov (United States)

    Boscolo, P; Di Gioacchino, M; Reale, M; Muraro, R; Di Giampaolo, L

    2011-01-01

    Several reports highlight the relationship between blood NK cytotoxic activity and life style. Easy life style, including physical activity, healthy dietary habits as well as good mental health are characterized by an efficient immune response. Life style is related to the type of occupational activity since work has a central part in life either as source of income or contributing to represent the social identity. Not only occupational stress, but also job loss or insecurity are thus considered serious stressful situations, inducing emotional disorders which may affect both neuroendocrine and immune systems; reduced reactivity to mitogens and/or decreased blood NK cytotoxic activity was reported in unemployed workers or in those with a high perception of job insecurity and/or job stress. Although genetic factors have a key role in the pathogenesis of autoimmune disorders, occupational stress (as in night shifts) was reported associated to an increased incidence of autoimmune disorders. Monitoring blood NK response may thus be included in the health programs as an indirect index of stressful job and/or poor lifestyle.

  10. Impact of Pathogen Population Heterogeneity and Stress-Resistant Variants on Food Safety.

    Science.gov (United States)

    Abee, T; Koomen, J; Metselaar, K I; Zwietering, M H; den Besten, H M W

    2016-01-01

    This review elucidates the state-of-the-art knowledge about pathogen population heterogeneity and describes the genotypic and phenotypic analyses of persister subpopulations and stress-resistant variants. The molecular mechanisms underlying the generation of persister phenotypes and genetic variants are identified. Zooming in on Listeria monocytogenes, a comparative whole-genome sequence analysis of wild types and variants that enabled the identification of mutations in variants obtained after a single exposure to lethal food-relevant stresses is described. Genotypic and phenotypic features are compared to those for persistent strains isolated from food processing environments. Inactivation kinetics, models used for fitting, and the concept of kinetic modeling-based schemes for detection of variants are presented. Furthermore, robustness and fitness parameters of L. monocytogenes wild type and variants are used to model their performance in food chains. Finally, the impact of stress-resistant variants and persistence in food processing environments on food safety is discussed.

  11. Respiratory Pathogens Adopt a Chronic Lifestyle in Response to Bile

    Science.gov (United States)

    Reen, F. Jerry; Woods, David F.; Mooij, Marlies J.; Adams, Claire; O'Gara, Fergal

    2012-01-01

    Chronic respiratory infections are a major cause of morbidity and mortality, most particularly in Cystic Fibrosis (CF) patients. The recent finding that gastro-esophageal reflux (GER) frequently occurs in CF patients led us to investigate the impact of bile on the behaviour of Pseudomonas aeruginosa and other CF-associated respiratory pathogens. Bile increased biofilm formation, Type Six Secretion, and quorum sensing in P. aeruginosa, all of which are associated with the switch from acute to persistent infection. Furthermore, bile negatively influenced Type Three Secretion and swarming motility in P. aeruginosa, phenotypes associated with acute infection. Bile also modulated biofilm formation in a range of other CF-associated respiratory pathogens, including Burkholderia cepacia and Staphylococcus aureus. Therefore, our results suggest that GER-derived bile may be a host determinant contributing to chronic respiratory infection. PMID:23049911

  12. Smoking and periodontal disease: discrimination of antibody responses to pathogenic and commensal oral bacteria.

    Science.gov (United States)

    Hayman, L; Steffen, M J; Stevens, J; Badger, E; Tempro, P; Fuller, B; McGuire, A; Al-Sabbagh, Mohanad; Thomas, M V; Ebersole, J L

    2011-04-01

    Smoking is an independent risk factor for the initiation, extent and severity of periodontal disease. This study examined the ability of the host immune system to discriminate commensal oral bacteria from pathogens at mucosal surfaces, i.e. oral cavity. Serum immunoglobulin (Ig)G antibody reactive with three pathogenic and five commensal oral bacteria in 301 current smokers (age range 21-66 years) were examined by enzyme-linked immunosorbent assay. Clinical features of periodontal health were used as measures of periodontitis. Antibody to the pathogens and salivary cotinine levels were related positively to disease severity; however, the antibody levels were best described by the clinical disease unrelated to the amount of smoking. The data showed a greater immune response to pathogens than commensals that was related specifically to disease extent, and most noted in black males. Significant correlations in individual patient responses to the pathogens and commensals were lost with an increasing extent of periodontitis and serum antibody to the pathogens. Antibody to Porphyromonas gingivalis was particularly distinct with respect to the discriminatory nature of the immune responses in recognizing the pathogens. Antibody responses to selected pathogenic and commensal oral microorganisms differed among racial groups and genders. The antibody response to the pathogens was related to disease severity. The level of antibody to the pathogens, and in particular P. gingivalis, was correlated with disease severity in black and male subsets of patients. The amount of smoking did not appear to impact directly serum antibody levels to these oral bacteria. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.

  13. Comparative genomic analysis of pathogenic and probiotic Enterococcus faecalis isolates, and their transcriptional responses to growth in human urine.

    Directory of Open Access Journals (Sweden)

    Heidi C Vebø

    Full Text Available Urinary tract infection (UTI is the most common infection caused by enterococci, and Enterococcus faecalis accounts for the majority of enterococcal infections. Although a number of virulence related traits have been established, no comprehensive genomic or transcriptomic studies have been conducted to investigate how to distinguish pathogenic from non-pathogenic E. faecalis in their ability to cause UTI. In order to identify potential genetic traits or gene regulatory features that distinguish pathogenic from non-pathogenic E. faecalis with respect to UTI, we have performed comparative genomic analysis, and investigated growth capacity and transcriptome profiling in human urine in vitro. Six strains of different origins were cultivated and all grew readily in human urine. The three strains chosen for transcriptional analysis showed an overall similar response with respect to energy and nitrogen metabolism, stress mechanism, cell envelope modifications, and trace metal acquisition. Our results suggest that citrate and aspartate are significant for growth of E. faecalis in human urine, and manganese appear to be a limiting factor. The majority of virulence factors were either not differentially regulated or down-regulated. Notably, a significant up-regulation of genes involved in biofilm formation was observed. Strains from different origins have similar capacity to grow in human urine. The overall similar transcriptional responses between the two pathogenic and the probiotic strain suggest that the pathogenic potential of a certain E. faecalis strain may to a great extent be determined by presence of fitness and virulence factors, rather than the level of expression of such traits.

  14. Transcriptional Profiling of the Oral Pathogen Streptococcus mutans in Response to Competence Signaling Peptide XIP.

    Science.gov (United States)

    Wenderska, Iwona B; Latos, Andrew; Pruitt, Benjamin; Palmer, Sara; Spatafora, Grace; Senadheera, Dilani B; Cvitkovitch, Dennis G

    2017-01-01

    In the cariogenic Streptococcus mutans , competence development is regulated by the ComRS signaling system comprised of the ComR regulator and the ComS prepeptide to the competence signaling peptide XIP (ComX-inducing peptide). Aside from competence development, XIP signaling has been demonstrated to regulate cell lysis, and recently, the expression of bacteriocins, small antimicrobial peptides used by bacteria to inhibit closely related species. Our study further explores the effect of XIP signaling on the S. mutans transcriptome. RNA sequencing revealed that XIP induction resulted in a global change in gene expression that was consistent with a stress response. An increase in several membrane-bound regulators, including HdrRM and BrsRM, involved in bacteriocin production, and the VicRKX system, involved in acid tolerance and biofilm formation, was observed. Furthermore, global changes in gene expression corresponded to changes observed during the stringent response to amino acid starvation. Effects were also observed on genes involved in sugar transport and carbon catabolite repression and included the levQRST and levDEFG operons. Finally, our work identified a novel heat shock-responsive intergenic region, encoding a small RNA, with a potential role in competence shutoff. IMPORTANCE Genetic competence provides bacteria with an opportunity to increase genetic diversity or acquire novel traits conferring a survival advantage. In the cariogenic pathogen Streptococcus mutans , DNA transformation is regulated by the competence stimulating peptide XIP (ComX-inducing peptide). The present study utilizes high-throughput RNA sequencing (RNAseq) to provide a greater understanding of how global gene expression patterns change in response to XIP. Overall, our work demonstrates that in S. mutans , XIP signaling induces a response that resembles the stringent response to amino acid starvation. We further identify a novel heat shock-responsive intergenic region with a

  15. Physiological Responses to Thermal Stress and Exercise

    Science.gov (United States)

    Iyota, Hiroyuki; Ohya, Akira; Yamagata, Junko; Suzuki, Takashi; Miyagawa, Toshiaki; Kawabata, Takashi

    The simple and noninvasive measuring methods of bioinstrumentation in humans is required for optimization of air conditioning and management of thermal environments, taking into consideration the individual specificity of the human body as well as the stress conditions affecting each. Changes in human blood circulation were induced with environmental factors such as heat, cold, exercise, mental stress, and so on. In this study, the physiological responses of human body to heat stress and exercise were investigated in the initial phase of the developmental research. We measured the body core and skin temperatures, skin blood flow, and pulse wave as the indices of the adaptation of the cardiovascular system. A laser Doppler skin blood flowmetry using an optical-sensor with a small portable data logger was employed for the measurement. These results reveal the heat-stress and exercise-induced circulatory responses, which are under the control of the sympathetic nerve system. Furthermore, it was suggested that the activity of the sympathetic nervous system could be evaluated from the signals of the pulse wave included in the signals derived from skin blood flow by means of heart rate variability assessments and detecting peak heights of velocity-plethysmogram.

  16. Three Fusarium oxysporum mitogen-activated protein kinases (MAPKs) have distinct and complementary roles in stress adaptation and cross-kingdom pathogenicity.

    Science.gov (United States)

    Segorbe, David; Di Pietro, Antonio; Pérez-Nadales, Elena; Turrà, David

    2017-09-01

    Mitogen-activated protein kinase (MAPK) cascades mediate cellular responses to environmental signals. Previous studies in the fungal pathogen Fusarium oxysporum have revealed a crucial role of Fmk1, the MAPK orthologous to Saccharomyces cerevisiae Fus3/Kss1, in vegetative hyphal fusion and plant infection. Here, we genetically dissected the individual and combined contributions of the three MAPKs Fmk1, Mpk1 and Hog1 in the regulation of development, stress response and virulence of F. oxysporum on plant and animal hosts. Mutants lacking Fmk1 or Mpk1 were affected in reactive oxygen species (ROS) homeostasis and impaired in hyphal fusion and aggregation. Loss of Mpk1 also led to increased sensitivity to cell wall and heat stress, which was exacerbated by simultaneous inactivation of Fmk1, suggesting that both MAPKs contribute to cellular adaptation to high temperature, a prerequisite for mammalian pathogens. Deletion of Hog1 caused increased sensitivity to hyperosmotic stress and resulted in partial rescue of the restricted colony growth phenotype of the mpk1Δ mutant. Infection assays on tomato plants and the invertebrate animal host Galleria mellonella revealed distinct and additive contributions of the different MAPKs to virulence. Our results indicate that positive and negative cross-talk between the three MAPK pathways regulates stress adaptation, development and virulence in the cross-kingdom pathogen F. oxysporum. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  17. Everyday stress response targets in the science of behavior change.

    Science.gov (United States)

    Smyth, Joshua M; Sliwinski, Martin J; Zawadzki, Matthew J; Scott, Stacey B; Conroy, David E; Lanza, Stephanie T; Marcusson-Clavertz, David; Kim, Jinhyuk; Stawski, Robert S; Stoney, Catherine M; Buxton, Orfeu M; Sciamanna, Christopher N; Green, Paige M; Almeida, David M

    2018-02-01

    Stress is an established risk factor for negative health outcomes, and responses to everyday stress can interfere with health behaviors such as exercise and sleep. In accordance with the Science of Behavior Change (SOBC) program, we apply an experimental medicine approach to identifying stress response targets, developing stress response assays, intervening upon these targets, and testing intervention effectiveness. We evaluate an ecologically valid, within-person approach to measuring the deleterious effects of everyday stress on physical activity and sleep patterns, examining multiple stress response components (i.e., stress reactivity, stress recovery, and stress pile-up) as indexed by two key response indicators (negative affect and perseverative cognition). Our everyday stress response assay thus measures multiple malleable stress response targets that putatively shape daily health behaviors (physical activity and sleep). We hypothesize that larger reactivity, incomplete recovery, and more frequent stress responses (pile-up) will negatively impact health behavior enactment in daily life. We will identify stress-related reactivity, recovery, and response in the indicators using coordinated analyses across multiple naturalistic studies. These results are the basis for developing a new stress assay and replicating the initial findings in a new sample. This approach will advance our understanding of how specific aspects of everyday stress responses influence health behaviors, and can be used to develop and test an innovative ambulatory intervention for stress reduction in daily life to enhance health behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Listeria monocytogenes response regulators important for stress tolerance and pathogenesis

    DEFF Research Database (Denmark)

    Kallipolitis, B H; Ingmer, H

    2001-01-01

    Environmental sensing by two-component signal transduction systems is likely to play a role for growth and survival of Listeria monocytogenes both during transmission in food products and within a host organism. Two-component systems typically consist of a membrane-associated sensor histidine...... kinase and a gene regulatory protein, the response regulator (RR). We have identified seven putative RR genes in L. monocytogenes LO28 by PCR using degenerate oligonucleotide primers. By insertional inactivation we obtained data suggesting that three of the putative RRs contribute to the pathogenicity...... of L. monocytogenes in mice. Strikingly, the mutants that were attenuated in virulence also had a decreased ability to grow in the presence of various stress conditions potentially encountered in an infection process. Thus, our data point to a connection between the ability of the putative two...

  19. Piecewise linear approximations to model the dynamics of adaptation to osmotic stress by food-borne pathogens.

    Science.gov (United States)

    Métris, Aline; George, Susie M; Ropers, Delphine

    2017-01-02

    Addition of salt to food is one of the most ancient and most common methods of food preservation. However, little is known of how bacterial cells adapt to such conditions. We propose to use piecewise linear approximations to model the regulatory adaptation of Escherichiacoli to osmotic stress. We apply the method to eight selected genes representing the functions known to be at play during osmotic adaptation. The network is centred on the general stress response factor, sigma S, and also includes a module representing the catabolic repressor CRP-cAMP. Glutamate, potassium and supercoiling are combined to represent the intracellular regulatory signal during osmotic stress induced by salt. The output is a module where growth is represented by the concentration of stable RNAs and the transcription of the osmotic gene osmY. The time course of gene expression of transport of osmoprotectant represented by the symporter proP and of the osmY is successfully reproduced by the network. The behaviour of the rpoS mutant predicted by the model is in agreement with experimental data. We discuss the application of the model to food-borne pathogens such as Salmonella; although the genes considered have orthologs, it seems that supercoiling is not regulated in the same way. The model is limited to a few selected genes, but the regulatory interactions are numerous and span different time scales. In addition, they seem to be condition specific: the links that are important during the transition from exponential to stationary phase are not all needed during osmotic stress. This model is one of the first steps towards modelling adaptation to stress in food safety and has scope to be extended to other genes and pathways, other stresses relevant to the food industry, and food-borne pathogens. The method offers a good compromise between systems of ordinary differential equations, which would be unmanageable because of the size of the system and for which insufficient data are available

  20. Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defence responses.

    Science.gov (United States)

    de Torres Zabala, Marta; Bennett, Mark H; Truman, William H; Grant, Murray R

    2009-08-01

    The importance of phytohormone balance is increasingly recognized as central to the outcome of plant-pathogen interactions. Recently it has been demonstrated that abscisic acid signalling pathways are utilized by the bacterial phytopathogen Pseudomonas syringae to promote pathogenesis. In this study, we examined the dynamics, inter-relationship and impact of three key acidic phytohormones, salicylic acid, abscisic acid and jasmonic acid, and the bacterial virulence factor, coronatine, during progression of P. syringae infection of Arabidopsis thaliana. We show that levels of SA and ABA, but not JA, appear to play important early roles in determining the outcome of the infection process. SA is required in order to mount a full innate immune responses, while bacterial effectors act rapidly to activate ABA biosynthesis. ABA suppresses inducible innate immune responses by down-regulating SA biosynthesis and SA-mediated defences. Mutant analyses indicated that endogenous ABA levels represent an important reservoir that is necessary for effector suppression of plant-inducible innate defence responses and SA synthesis prior to subsequent pathogen-induced increases in ABA. Enhanced susceptibility due to loss of SA-mediated basal resistance is epistatically dominant over acquired resistance due to ABA deficiency, although ABA also contributes to symptom development. We conclude that pathogen-modulated ABA signalling rapidly antagonizes SA-mediated defences. We predict that hormonal perturbations, either induced or as a result of environmental stress, have a marked impact on pathological outcomes, and we provide a mechanistic basis for understanding priming events in plant defence.

  1. Identifying salt stress-responsive transcripts from Roselle ( Hibiscus ...

    African Journals Online (AJOL)

    Hibiscus sabdariffa L.). Identifying the potentially novel transcripts responsible for salt stress tolerance in roselle will increase knowledge of the molecular mechanism underlying salt stress responses. In this study, differential display reverse ...

  2. Growth and physiological responses to water and nutrient stress in ...

    African Journals Online (AJOL)

    Growth and physiological responses to water and nutrient stress in oil palm. ... changes in growth, physiology and nutrient concentration in response to two watering regimes (well-watered and water-stress conditions) and ... from 32 Countries:.

  3. Transcriptomic responses to biotic stresses in Malus x domestica: a meta-analysis study.

    Science.gov (United States)

    Balan, Bipin; Marra, Francesco Paolo; Caruso, Tiziano; Martinelli, Federico

    2018-01-31

    RNA-Seq analysis is a strong tool to gain insight into the molecular responses to biotic stresses in plants. The objective of this work is to identify specific and common molecular responses between different transcriptomic data related to fungi, virus and bacteria attacks in Malus x domestica. We analyzed seven transcriptomic datasets in Malus x domestica divided in responses to fungal pathogens, virus (Apple Stem Grooving Virus) and bacteria (Erwinia amylovora). Data were dissected using an integrated approach of pathway- and gene- set enrichment analysis, Mapman visualization tool, gene ontology analysis and inferred protein-protein interaction network. Our meta-analysis revealed that the bacterial infection enhanced specifically genes involved in sugar alcohol metabolism. Brassinosteroids were upregulated by fungal pathogens while ethylene was highly affected by Erwinia amylovora. Gibberellins and jasmonates were strongly repressed by fungal and viral infections. The protein-protein interaction network highlighted the role of WRKYs in responses to the studied pathogens. In summary, our meta-analysis provides a better understanding of the Malus X domestica transcriptome responses to different biotic stress conditions; we anticipate that these insights will assist in the development of genetic resistance and acute therapeutic strategies. This work would be an example for next meta-analysis works aiming at identifying specific common molecular features linked with biotic stress responses in other specialty crops.

  4. ETHYLENE RESPONSE FACTOR 96 positively regulates Arabidopsis resistance to necrotrophic pathogens by direct binding to GCC elements of jasmonate - and ethylene-responsive defence genes.

    Science.gov (United States)

    Catinot, Jérémy; Huang, Jing-Bo; Huang, Pin-Yao; Tseng, Min-Yuan; Chen, Ying-Lan; Gu, Shin-Yuan; Lo, Wan-Sheng; Wang, Long-Chi; Chen, Yet-Ran; Zimmerli, Laurent

    2015-12-01

    The ERF (ethylene responsive factor) family is composed of transcription factors (TFs) that are critical for appropriate Arabidopsis thaliana responses to biotic and abiotic stresses. Here we identified and characterized a member of the ERF TF group IX, namely ERF96, that when overexpressed enhances Arabidopsis resistance to necrotrophic pathogens such as the fungus Botrytis cinerea and the bacterium Pectobacterium carotovorum. ERF96 is jasmonate (JA) and ethylene (ET) responsive and ERF96 transcripts accumulation was abolished in JA-insensitive coi1-16 and in ET-insensitive ein2-1 mutants. Protoplast transactivation and electrophoresis mobility shift analyses revealed that ERF96 is an activator of transcription that binds to GCC elements. In addition, ERF96 mainly localized to the nucleus. Microarray analysis coupled to chromatin immunoprecipitation-PCR of Arabidopsis overexpressing ERF96 revealed that ERF96 enhances the expression of the JA/ET defence genes PDF1.2a, PR-3 and PR-4 as well as the TF ORA59 by direct binding to GCC elements present in their promoters. While ERF96-RNAi plants demonstrated wild-type resistance to necrotrophic pathogens, basal PDF1.2 expression levels were reduced in ERF96-silenced plants. This work revealed ERF96 as a key player of the ERF network that positively regulates the Arabidopsis resistance response to necrotrophic pathogens. © 2015 John Wiley & Sons Ltd.

  5. Oxidative Stress: A Pathogenic Mechanism for Niemann-Pick Type C Disease

    Directory of Open Access Journals (Sweden)

    Mary Carmen Vázquez

    2012-01-01

    Full Text Available Niemann-Pick type C (NPC disease is a neurovisceral atypical lipid storage disorder involving the accumulation of cholesterol and other lipids in the late endocytic pathway. The pathogenic mechanism that links the accumulation of intracellular cholesterol with cell death in NPC disease in both the CNS and the liver is currently unknown. Oxidative stress has been observed in the livers and brains of NPC mice and in different NPC cellular models. Moreover, there is evidence of an elevation of oxidative stress markers in the serumof NPC patients. Recent evidence strongly suggests that mitochondrial dysfunction plays an important role in NPC pathogenesis and that mitochondria could be a significant source of oxidative stress in this disease. In this context, the accumulation of vitamin E in the late endosomal/lysosomal compartments in NPC could lead to a potential decrease of its bioavailability and could be another possible cause of oxidative damage. Another possible source of reactive species in NPC is the diminished activity of different antioxidant enzymes. Moreover, because NPC is mainly caused by the accumulation of free cholesterol, oxidized cholesterol derivatives produced by oxidative stress may contribute to the pathogenesis of the disease.

  6. USGS role and response to highly pathogenic avian influenza

    Science.gov (United States)

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-09-09

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  7. HvPap-1 C1A Protease Participates Differentially in the Barley Response to a Pathogen and an Herbivore

    Directory of Open Access Journals (Sweden)

    Mercedes Diaz-Mendoza

    2017-09-01

    Full Text Available Co-evolutionary processes in plant–pathogen/herbivore systems indicate that protease inhibitors have a particular value in biotic interactions. However, little is known about the defensive role of their targets, the plant proteases. C1A cysteine proteases are the most abundant enzymes responsible for the proteolytic activity during different processes like germination, development and senescence in plants. To identify and characterize C1A cysteine proteases of barley with a potential role in defense, mRNA and protein expression patterns were analyzed in response to biotics stresses. A barley cysteine protease, HvPap-1, previously related to abiotic stresses and grain germination, was particularly induced by flagellin or chitosan elicitation, and biotic stresses such as the phytopathogenic fungus Magnaporthe oryzae or the phytophagous mite Tetranychus urticae. To elucidate the in vivo participation of this enzyme in defense, transformed barley plants overexpressing or silencing HvPap-1 encoding gene were subjected to M. oryzae infection or T. urticae infestation. Whereas overexpressing plants were less susceptible to the fungus than silencing plants, the opposite behavior occurred to the mite. This unexpected result highlights the complexity of the regulatory events leading to the response to a particular biotic stress.

  8. Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses

    OpenAIRE

    Iwai Ohbayashi; Munetaka Sugiyama

    2018-01-01

    The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized p...

  9. Innate scavenger receptor-A regulates adaptive T helper cell responses to pathogen infection

    Science.gov (United States)

    Xu, Zhipeng; Xu, Lei; Li, Wei; Jin, Xin; Song, Xian; Chen, Xiaojun; Zhu, Jifeng; Zhou, Sha; Li, Yong; Zhang, Weiwei; Dong, Xiaoxiao; Yang, Xiaowei; Liu, Feng; Bai, Hui; Chen, Qi; Su, Chuan

    2017-01-01

    The pattern recognition receptor (PRR) scavenger receptor class A (SR-A) has an important function in the pathogenesis of non-infectious diseases and in innate immune responses to pathogen infections. However, little is known about the role of SR-A in the host adaptive immune responses to pathogen infection. Here we show with mouse models of helminth Schistosoma japonicum infection and heat-inactivated Mycobacterium tuberculosis stimulation that SR-A is regulated by pathogens and suppresses IRF5 nuclear translocation by direct interaction. Reduced abundance of nuclear IRF5 shifts macrophage polarization from M1 towards M2, which subsequently switches T-helper responses from type 1 to type 2. Our study identifies a role for SR-A as an innate PRR in regulating adaptive immune responses. PMID:28695899

  10. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways

    Science.gov (United States)

    Bergsma, Alexis L.; Senchuk, Megan M.; Van Raamsdonk, Jeremy M.

    2016-01-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage. PMID:27053445

  11. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways.

    Science.gov (United States)

    Dues, Dylan J; Andrews, Emily K; Schaar, Claire E; Bergsma, Alexis L; Senchuk, Megan M; Van Raamsdonk, Jeremy M

    2016-04-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage.

  12. Genetics of mechanisms controlling responses to two major pathogens in broiler and layer chickens

    DEFF Research Database (Denmark)

    Hamzic, Edin

    The objective of this thesis was to improve the understanding of molecular mechanisms controlling the response to two major pathogens, Eimeria maxima (coccidiosis) and infectious bronchitis virus (IBV), in broiler and layer chickens, respectively. Breeding for the improved response to the two...

  13. Opposite Effects of Stress on Pain Modulation Depend on the Magnitude of Individual Stress Response.

    Science.gov (United States)

    Geva, Nirit; Defrin, Ruth

    2018-04-01

    The effect of acute stress on pain threshold and intolerance threshold are reported as producing either hypoalgesia or hyperalgesia. Yet, the contribution of individual stress reactivity in this respect has not been established. The aim was to test 2 pain modulation paradigms under acute stress manipulation, to our knowledge, for the first time, to study whether stress differentially affects pain modulation, and whether the effect is related to individual stress response. Participants were 31 healthy subjects. Conditioned pain modulation (CPM) and pain adaptation were measured before and after inducing an acute stress response using the Montreal Imaging Stress Task. Subjects' stress response was evaluated according to salivary cortisol, autonomic function, and perceived stress and anxiety. The Montreal Imaging Stress Task induced a validated stress response. On a group level, stress induced reduction in CPM magnitude and increase in pain adaptation compared with baseline. These responses correlated with stress reactivity. When the group was subdivided according to stress reactivity, only high stress responders exhibited reduced CPM whereas only low stress responders exhibited increased pain adaptation. The results suggest that acute stress may induce opposite effects on pain modulation, depending on individual stress reactivity magnitude, with an advantage to low stress responders. This study evaluated the effect of acute stress on pain modulation. Pain modulation under stress is affected by individual stress responsiveness; decreased CPM occurs in high stress responders whereas increased pain adaptation occurs in low stress responders. Identification of high stress responders may promote better pain management. Copyright © 2017 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  14. Molecular and cellular responses of the pathogenic fungus Lomentospora prolificans to the antifungal drug voriconazole.

    Directory of Open Access Journals (Sweden)

    Aize Pellon

    Full Text Available The filamentous fungus Lomentospora (Scedosporium prolificans is an emerging opportunistic pathogen associated with fatal infections in patients with disturbed immune function. Unfortunately, conventional therapies are hardly of any use against this fungus due to its intrinsic resistance. Therefore, we performed an integrated study of the L. prolificans responses to the first option to treat these mycoses, namely voriconazole, with the aim of unveiling mechanisms involved in the resistance to this compound. To do that, we used a wide range of techniques, including fluorescence and electron microscopy to study morphological alterations, ion chromatography to measure changes in cell-wall carbohydrate composition, and proteomics-based techniques to identify the proteins differentially expressed under the presence of the drug. Significantly, we showed drastic changes occurring in cell shape after voriconazole exposure, L. prolificans hyphae being shorter and wider than under control conditions. Interestingly, we proved that the architecture and carbohydrate composition of the cell wall had been modified in the presence of the drug. Specifically, L. prolificans constructed a more complex organelle with a higher presence of glucans and mannans. In addition to this, we identified several differentially expressed proteins, including Srp1 and heat shock protein 70 (Hsp70, as the most overexpressed under voriconazole-induced stress conditions. The mechanisms described in this study, which may be directly related to L. prolificans antifungal resistance or tolerance, could be used as targets to improve existing therapies or to develop new ones in order to successfully eliminate these mycoses.

  15. Molecular and cellular responses of the pathogenic fungus Lomentospora prolificans to the antifungal drug voriconazole.

    Science.gov (United States)

    Pellon, Aize; Ramirez-Garcia, Andoni; Buldain, Idoia; Antoran, Aitziber; Rementeria, Aitor; Hernando, Fernando L

    2017-01-01

    The filamentous fungus Lomentospora (Scedosporium) prolificans is an emerging opportunistic pathogen associated with fatal infections in patients with disturbed immune function. Unfortunately, conventional therapies are hardly of any use against this fungus due to its intrinsic resistance. Therefore, we performed an integrated study of the L. prolificans responses to the first option to treat these mycoses, namely voriconazole, with the aim of unveiling mechanisms involved in the resistance to this compound. To do that, we used a wide range of techniques, including fluorescence and electron microscopy to study morphological alterations, ion chromatography to measure changes in cell-wall carbohydrate composition, and proteomics-based techniques to identify the proteins differentially expressed under the presence of the drug. Significantly, we showed drastic changes occurring in cell shape after voriconazole exposure, L. prolificans hyphae being shorter and wider than under control conditions. Interestingly, we proved that the architecture and carbohydrate composition of the cell wall had been modified in the presence of the drug. Specifically, L. prolificans constructed a more complex organelle with a higher presence of glucans and mannans. In addition to this, we identified several differentially expressed proteins, including Srp1 and heat shock protein 70 (Hsp70), as the most overexpressed under voriconazole-induced stress conditions. The mechanisms described in this study, which may be directly related to L. prolificans antifungal resistance or tolerance, could be used as targets to improve existing therapies or to develop new ones in order to successfully eliminate these mycoses.

  16. Trachoma: protective and pathogenic ocular immune responses to Chlamydia trachomatis.

    Directory of Open Access Journals (Sweden)

    Victor H Hu

    Full Text Available Trachoma, caused by Chlamydia trachomatis (Ct, is the leading infectious blinding disease worldwide. Chronic conjunctival inflammation develops in childhood and leads to eyelid scarring and blindness in adulthood. The immune response to Ct provides only partial protection against re-infection, which can be frequent. Moreover, the immune response is central to the development of scarring pathology, leading to loss of vision. Here we review the current literature on both protective and pathological immune responses in trachoma. The resolution of Ct infection in animal models is IFNγ-dependent, involving Th1 cells, but whether this is the case in human ocular infection still needs to be confirmed. An increasing number of studies indicate that innate immune responses arising from the epithelium and other innate immune cells, along with changes in matrix metalloproteinase activity, are important in the development of tissue damage and scarring. Current trachoma control measures, which are centred on repeated mass antibiotic treatment of populations, are logistically challenging and have the potential to drive antimicrobial resistance. A trachoma vaccine would offer significant advantages. However, limited understanding of the mechanisms of both protective immunity and immunopathology to Ct remain barriers to vaccine development.

  17. Endoplasmic Reticulum Stress Caused by Lipoprotein Accumulation Suppresses Immunity against Bacterial Pathogens and Contributes to Immunosenescence

    Directory of Open Access Journals (Sweden)

    Jogender Singh

    2017-05-01

    Full Text Available The unfolded protein response (UPR is a stress response pathway that is activated upon increased unfolded and/or misfolded proteins in the endoplasmic reticulum (ER, and enhanced ER stress response prolongs life span and improves immunity. However, the mechanism by which ER stress affects immunity remains poorly understood. Using the nematode Caenorhabditis elegans, we show that mutations in the lipoproteins vitellogenins, which are homologs of human apolipoprotein B-100, resulted in upregulation of the UPR. Lipoprotein accumulation in the intestine adversely affects the immune response and the life span of the organism, suggesting that it could be a contributing factor to immunosenescence. We show that lipoprotein accumulation inhibited the expression of several immune genes encoding proteins secreted by the intestinal cells in an IRE-1-independent manner. Our studies provide a mechanistic explanation for adverse effects caused by protein aggregation and ER stress on immunity and highlight the role of an IRE-1-independent pathway in the suppression of the expression of genes encoding secreted proteins.

  18. Acid Stress Response Mechanisms of Group B Streptococci

    Directory of Open Access Journals (Sweden)

    Sarah Shabayek

    2017-09-01

    Full Text Available Group B streptococcus (GBS is a leading cause of neonatal mortality and morbidity in the United States and Europe. It is part of the vaginal microbiota in up to 30% of pregnant women and can be passed on to the newborn through perinatal transmission. GBS has the ability to survive in multiple different host niches. The pathophysiology of this bacterium reveals an outstanding ability to withstand varying pH fluctuations of the surrounding environments inside the human host. GBS host pathogen interations include colonization of the acidic vaginal mucosa, invasion of the neutral human blood or amniotic fluid, breaching of the blood brain barrier as well as survival within the acidic phagolysosomal compartment of macrophages. However, investigations on GBS responses to acid stress are limited. Technologies, such as whole genome sequencing, genome-wide transcription and proteome mapping facilitate large scale identification of genes and proteins. Mechanisms enabling GBS to cope with acid stress have mainly been studied through these techniques and are summarized in the current review

  19. Linalool-induced oxidative stress processes in the human pathogen Candida albicans.

    Science.gov (United States)

    Máté, Gábor; Kovács, Dominika; Gazdag, Zoltán; Pesti, Miklós; Szántó, Árpád

    2017-06-01

    The present study investigated the linalool (Lol)-induced effects in acute toxicity tests in the human pathogen Candida albicans (C. albicans). Lol treatments induced reduced germ tube formation of the pathogen, which plays a crucial role in the virulence. In comparison with the untreated control, the exposure of 107 cells ml -1 to 0.7 mM or 1.4 mM Lol for one hour induced 20% and 30% decrements, respectively, in the colony-forming ability. At the same time, these treatments caused dose-dependent decrease in the levels of superoxide anion radical and total reactive oxygen species, while there was 1.5 and 1.8-fold increases in the concentrations of peroxides and lipid peroxides, respectively, indicating oxidative stress induction in the presence of Lol. Lol treatments resulted in different adaptive modifications of the antioxidant system. In 0.7 mM-treated cells, decreased specific activities of superoxide dismutase and catalase were detected, while exposure to 1.4 mM Lol resulted in the up-regulation of catalase, glutathione reductase and glutathione peroxidases.

  20. Personality traits modulate emotional and physiological responses to stress.

    Science.gov (United States)

    Childs, Emma; White, Tara L; de Wit, Harriet

    2014-09-01

    An individual's susceptibility to psychological and physical disorders associated with chronic stress exposure, for example, cardiovascular and infectious disease, may also be predicted by their reactivity to acute stress. One factor associated with both stress resilience and health outcomes is personality. An understanding of how personality influences responses to acute stress may shed light upon individual differences in susceptibility to chronic stress-linked disease. This study examined the relationships between personality and acute responses to stress in 125 healthy adults, using hierarchical linear regression. We assessed personality traits using the Multidimensional Personality Questionnaire (MPQ-BF), and responses to acute stress (cortisol, heart rate, blood pressure, mood) using a standardized laboratory psychosocial stress task, the Trier Social Stress Test. Individuals with high Negative Emotionality exhibited greater emotional distress and lower blood pressure responses to the Trier Social Stress Test. Individuals with high agentic Positive Emotionality exhibited prolonged heart rate responses to stress, whereas those with high communal Positive Emotionality exhibited smaller cortisol and blood pressure responses. Separate personality traits differentially predicted emotional, cardiovascular, and cortisol responses to a psychosocial stressor in healthy volunteers. Future research investigating the association of personality with chronic stress-related disease may provide further clues to the relationship between acute stress reactivity and susceptibility to disease.

  1. Pathogen-induced maternal effects result in enhanced immune responsiveness across generations.

    Science.gov (United States)

    Rosengaus, Rebeca B; Hays, Nicole; Biro, Colette; Kemos, James; Zaman, Muizz; Murray, Joseph; Gezahegn, Bruck; Smith, Wendy

    2017-05-01

    Parental investment theory postulates that adults can accurately perceive cues from their surroundings, anticipate the needs of future offspring based on those cues, and selectively allocate nongenetic resources to their progeny. Such context-dependent parental contributions can result in phenotypically variable offspring. Consistent with these predictions, we show that bacterially exposed Manduca sexta mothers oviposited significantly more variable embryos (as measured by mass, volume, hatching time, and hatching success) relative to naïve and control mothers. By using an in vivo "clearance of infection" assay, we also show that challenged larvae born to heat-killed- or live- Serratia -injected mothers, supported lower microbial loads and cleared the infection faster than progeny of control mothers. Our data support the notion that mothers can anticipate the future pathogenic risks and immunological needs of their unborn offspring, providing progeny with enhanced immune protection likely through transgenerational immune priming. Although the inclusion of live Serratia into oocytes does not appear to be the mechanism by which mothers confer protection to their young, other mechanisms, including epigenetic modifications in the progeny due to maternal pathogenic stress, may be at play. The adaptive nature of maternal effects in the face of pathogenic stress provides insights into parental investment, resource allocation, and life-history theories and highlights the significant role that pathogen-induced maternal effects play as generators and modulators of evolutionary change.

  2. Persistent response of Fanconi anemia haematopoietic stem and progenitor cells to oxidative stress.

    Science.gov (United States)

    Li, Yibo; Amarachintha, Surya; Wilson, Andrew F; Li, Xue; Du, Wei

    2017-06-18

    Oxidative stress is considered as an important pathogenic factor in many human diseases including Fanconi anemia (FA), an inherited bone marrow failure syndrome with extremely high risk of leukemic transformation. Members of the FA protein family are involved in DNA damage and other cellular stress responses. Loss of FA proteins renders cells hypersensitive to oxidative stress and cancer transformation. However, how FA cells respond to oxidative DNA damage remains unclear. By using an in vivo stress-response mouse strain expressing the Gadd45β-luciferase transgene, we show here that haematopoietic stem and progenitor cells (HSPCs) from mice deficient for the FA gene Fanca or Fancc persistently responded to oxidative stress. Mechanistically, we demonstrated that accumulation of unrepaired DNA damage, particularly in oxidative damage-sensitive genes, was responsible for the long-lasting response in FA HSPCs. Furthermore, genetic correction of Fanca deficiency almost completely abolished the persistent oxidative stress-induced G 2 /M arrest and DNA damage response in vivo. Our study suggests that FA pathway is an integral part of a versatile cellular mechanism by which HSPCs respond to oxidative stress.

  3. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways

    OpenAIRE

    Dues, Dylan J.; Andrews, Emily K.; Schaar, Claire E.; Bergsma, Alexis L.; Senchuk, Megan M.; Van Raamsdonk, Jeremy M.

    2016-01-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxi...

  4. Stress responses in probiotic Lactobacillus casei.

    Science.gov (United States)

    Hosseini Nezhad, Marzieh; Hussain, Malik Altaf; Britz, Margaret Lorraine

    2015-01-01

    Survival in harsh environments is critical to both the industrial performance of lactic acid bacteria (LAB) and their competitiveness in complex microbial ecologies. Among the LAB, members of the Lactobacillus casei group have industrial applications as acid-producing starter cultures for milk fermentations and as specialty cultures for the intensification and acceleration of flavor development in certain bacterial-ripened cheese varieties. They are amongst the most common organisms in the gastrointestinal (GI) tract of humans and other animals, and have the potential to function as probiotics. Whether used in industrial or probiotic applications, environmental stresses will affect the physiological status and properties of cells, including altering their functionality and biochemistry. Understanding the mechanisms of how LAB cope with different environments is of great biotechnological importance, from both a fundamental and applied perspective: hence, interaction between these strains and their environment has gained increased interest in recent years. This paper presents an overview of the important features of stress responses in Lb. casei, and related proteomic or gene expression patterns that may improve their use as starter cultures and probiotics.

  5. Children with asthma by school age display aberrant immune responses to pathogenic airway bacteria as infants.

    Science.gov (United States)

    Larsen, Jeppe Madura; Brix, Susanne; Thysen, Anna Hammerich; Birch, Sune; Rasmussen, Morten Arendt; Bisgaard, Hans

    2014-04-01

    Asthma is a highly prevalent chronic lung disease that commonly originates in early childhood. Colonization of neonatal airways with the pathogenic bacterial strains Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae is associated with increased risk of later childhood asthma. We hypothesized that children with asthma have an abnormal immune response to pathogenic bacteria in infancy. We aimed to assess the bacterial immune response in asymptomatic infants and the association with later development of asthma by age 7 years. The Copenhagen Prospective Studies on Asthma in Childhood birth cohort was followed prospectively, and asthma was diagnosed at age 7 years. The immune response to H influenzae, M catarrhalis, and S pneumoniae was analyzed in 292 infants using PBMCs isolated and stored since the age of 6 months. The immune response was assessed based on the pattern of cytokines produced and T-cell activation. The immune response to pathogenic bacteria was different in infants with asthma by 7 years of age (P = .0007). In particular, prospective asthmatic subjects had aberrant production of IL-5 (P = .008), IL-13 (P = .057), IL-17 (P = .001), and IL-10 (P = .028), whereas there were no differences in T-cell activation or peripheral T-cell composition. Children with asthma by school age exhibited an aberrant immune response to pathogenic bacteria in infancy. We propose that an abnormal immune response to pathogenic bacteria colonizing the airways in early life might lead to chronic airway inflammation and childhood asthma. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  6. The Role of the Transcriptional Response to DNA Replication Stress.

    Science.gov (United States)

    Herlihy, Anna E; de Bruin, Robertus A M

    2017-03-02

    During DNA replication many factors can result in DNA replication stress. The DNA replication stress checkpoint prevents the accumulation of replication stress-induced DNA damage and the potential ensuing genome instability. A critical role for post-translational modifications, such as phosphorylation, in the replication stress checkpoint response has been well established. However, recent work has revealed an important role for transcription in the cellular response to DNA replication stress. In this review, we will provide an overview of current knowledge of the cellular response to DNA replication stress with a specific focus on the DNA replication stress checkpoint transcriptional response and its role in the prevention of replication stress-induced DNA damage.

  7. The Role of the Transcriptional Response to DNA Replication Stress

    Science.gov (United States)

    Herlihy, Anna E.; de Bruin, Robertus A.M.

    2017-01-01

    During DNA replication many factors can result in DNA replication stress. The DNA replication stress checkpoint prevents the accumulation of replication stress-induced DNA damage and the potential ensuing genome instability. A critical role for post-translational modifications, such as phosphorylation, in the replication stress checkpoint response has been well established. However, recent work has revealed an important role for transcription in the cellular response to DNA replication stress. In this review, we will provide an overview of current knowledge of the cellular response to DNA replication stress with a specific focus on the DNA replication stress checkpoint transcriptional response and its role in the prevention of replication stress-induced DNA damage. PMID:28257104

  8. Stress- and glucocorticoid-induced priming of neuroinflammatory responses: potential mechanisms of stress-induced vulnerability to drugs of abuse.

    Science.gov (United States)

    Frank, Matthew G; Watkins, Linda R; Maier, Steven F

    2011-06-01

    Stress and stress-induced glucocorticoids (GCs) sensitize drug abuse behavior as well as the neuroinflammatory response to a subsequent pro-inflammatory challenge. Stress also predisposes or sensitizes individuals to develop substance abuse. There is an emerging evidence that glia and glia-derived neuroinflammatory mediators play key roles in the development of drug abuse. Drugs of abuse such as opioids, psychostimulants, and alcohol induce neuroinflammatory mediators such as pro-inflammatory cytokines (e.g. interleukin (IL)-1β), which modulate drug reward, dependence, and tolerance as well as analgesic properties. Drugs of abuse may directly activate microglial and astroglial cells via ligation of Toll-like receptors (TLRs), which mediate the innate immune response to pathogens as well as xenobiotic agents (e.g. drugs of abuse). The present review focuses on understanding the immunologic mechanism(s) whereby stress primes or sensitizes the neuroinflammatory response to drugs of abuse and explores whether stress- and GC-induced sensitization of neuroimmune processes predisposes individuals to drug abuse liability and the role of neuroinflammatory mediators in the development of drug addiction. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Metabolic Reprogramming During Purine Stress in the Protozoan Pathogen Leishmania donovani

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jessica L.; Yates, Phillip A.; Soysa, Radika; Alfaro, Joshua F.; Yang, Feng; Burnum-Johnson, Kristin E.; Petyuk, Vladislav A.; Weitz, Karl K.; Camp, David G.; Smith, Richard D.; Wilmarth, Phillip A.; David, Larry L.; Ramasamy, Gowthaman; Myler, Peter J.; Carter, Nicola S.

    2014-02-27

    The ability of Leishmania to survive in their insect or mammalian host is dependent upon an ability to sense and adapt to changes in the microenvironment. However, little is known about the molecular mechanisms underlying the parasite response to environmental changes, such as nutrient availability. To elucidate nutrient stress response pathways in Leishmania donovani, we have used purine starvation as the paradigm. The salvage of purines from the host milieu is obligatory for parasite replication; nevertheless, purine-starved parasites can persist in culture without supplementary purine for over 3 months, indicating that the response to purine starvation is robust and engenders parasite survival under conditions of extreme scarcity. To understand metabolic reprogramming during purine starvation we have employed global approaches. Whole proteome comparisons between purine-starved and purine-replete parasites over a 6-48 h span have revealed a temporal and coordinated response to purine starvation. Purine transporters and enzymes involved in acquisition at the cell surface are upregulated within a few hours of purine removal from the media, while other key purine salvage components are upregulated later in the time-course and more modestly. After 48 h, the proteome of purine-starved parasites is extensively remodeled and adaptations to purine stress appear tailored to deal with both purine deprivation and general stress. To probe the molecular mechanisms affecting proteome remodeling in response to purine starvation, comparative RNA-seq analyses, qRT-PCR, and luciferase reporter assays were performed on purine-starved versus purine-replete parasites. While the regulation of a minority of proteins tracked with changes at the mRNA level, for many regulated proteins it appears that proteome remodeling during purine stress occurs primarily via translational and/or post-translational mechanisms.

  10. How age, sex and genotype shape the stress response.

    Science.gov (United States)

    Novais, Ashley; Monteiro, Susana; Roque, Susana; Correia-Neves, Margarida; Sousa, Nuno

    2017-02-01

    Exposure to chronic stress is a leading pre-disposing factor for several neuropsychiatric disorders as it often leads to maladaptive responses. The response to stressful events is heterogeneous, underpinning a wide spectrum of distinct changes amongst stress-exposed individuals'. Several factors can underlie a different perception to stressors and the setting of distinct coping strategies that will lead to individual differences on the susceptibility/resistance to stress. Beyond the factors related to the stressor itself, such as intensity, duration or predictability, there are factors intrinsic to the individuals that are relevant to shape the stress response, such as age, sex and genetics. In this review, we examine the contribution of such intrinsic factors to the modulation of the stress response based on experimental rodent models of response to stress and discuss to what extent that knowledge can be potentially translated to humans.

  11. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework

    International Nuclear Information System (INIS)

    Calabrese, Edward J.; Bachmann, Kenneth A.; Bailer, A. John; Bolger, P. Michael; Borak, Jonathan; Cai, Lu; Cedergreen, Nina; Cherian, M. George; Chiueh, Chuang C.; Clarkson, Thomas W.; Cook, Ralph R.; Diamond, David M.; Doolittle, David J.; Dorato, Michael A.; Duke, Stephen O.; Feinendegen, Ludwig; Gardner, Donald E.; Hart, Ronald W.; Hastings, Kenneth L.; Hayes, A. Wallace; Hoffmann, George R.; Ives, John A.; Jaworowski, Zbigniew; Johnson, Thomas E.; Jonas, Wayne B.; Kaminski, Norbert E.; Keller, John G.; Klaunig, James E.; Knudsen, Thomas B.; Kozumbo, Walter J.; Lettieri, Teresa; Liu, Shu-Zheng; Maisseu, Andre; Maynard, Kenneth I.; Masoro, Edward J.; McClellan, Roger O.; Mehendale, Harihara M.; Mothersill, Carmel; Newlin, David B.; Nigg, Herbert N.; Oehme, Frederick W.; Phalen, Robert F.; Philbert, Martin A.; Rattan, Suresh I.S.; Riviere, Jim E.; Rodricks, Joseph; Sapolsky, Robert M.; Scott, Bobby R.; Seymour, Colin; Sinclair, David A.; Smith-Sonneborn, Joan; Snow, Elizabeth T.; Spear, Linda; Stevenson, Donald E.; Thomas, Yolene; Tubiana, Maurice; Williams, Gary M.; Mattson, Mark P.

    2007-01-01

    Many biological subdisciplines that regularly assess dose-response relationships have identified an evolutionarily conserved process in which a low dose of a stressful stimulus activates an adaptive response that increases the resistance of the cell or organism to a moderate to severe level of stress. Due to a lack of frequent interaction among scientists in these many areas, there has emerged a broad range of terms that describe such dose-response relationships. This situation has become problematic because the different terms describe a family of similar biological responses (e.g., adaptive response, preconditioning, hormesis), adversely affecting interdisciplinary communication, and possibly even obscuring generalizable features and central biological concepts. With support from scientists in a broad range of disciplines, this article offers a set of recommendations we believe can achieve greater conceptual harmony in dose-response terminology, as well as better understanding and communication across the broad spectrum of biological disciplines

  12. Psychophysiological responses to stress after stress management training in patients with rheumatoid arthritis.

    NARCIS (Netherlands)

    Brouwer, S.J.M. de; Kraaimaat, F.W.; Sweep, F.C.; Donders, A.R.T.; Eijsbouts, A.; Koulil, S. van; Riel, P.L.C.M. van; Evers, A.W.M.

    2011-01-01

    BACKGROUND: Stress management interventions may prove useful in preventing the detrimental effects of stress on health. This study assessed the effects of a stress management intervention on the psychophysiological response to stress in patients with rheumatoid arthritis (RA). METHODS: Seventy-four

  13. Regulation of water, salinity, and cold stress responses by salicylic acid

    Directory of Open Access Journals (Sweden)

    Kenji eMiura

    2014-01-01

    Full Text Available Salicylic acid (SA is a naturally occurring phenolic compound. SA plays an important role in the regulation of plant growth, development, ripening, and defense responses. The role of SA in the plant-pathogen relationship has been extensively investigated. In addition to defense responses, SA plays an important role in the response to abiotic stresses, including drought, low temperature, and salinity stresses. It has been suggested that SA has great agronomic potential to improve the stress tolerance of agriculturally important crops. However, the utility of SA is dependent on the concentration of the applied SA, the mode of application, and the state of the plants (e.g., developmental stage and acclimation. Generally, low concentrations of applied SA alleviate the sensitivity to abiotic stresses, and high concentrations of applied induce high levels of oxidative stress, leading to a decreased tolerance to abiotic stresses. In this chapter, the effects of SA on the water stress responses and regulation of stomatal closure are reviewed.

  14. Extraversion and cardiovascular responses to recurrent social stress: Effect of stress intensity.

    Science.gov (United States)

    Lü, Wei; Xing, Wanying; Hughes, Brian M; Wang, Zhenhong

    2017-10-28

    The present study sought to establish whether the effects of extraversion on cardiovascular responses to recurrent social stress are contingent on stress intensity. A 2×5×1 mixed-factorial experiment was conducted, with social stress intensity as a between-subject variable, study phase as a within-subject variable, extraversion as a continuous independent variable, and cardiovascular parameter (HR, SBP, DBP, or RSA) as a dependent variable. Extraversion (NEO-FFI), subjective stress, and physiological stress were measured in 166 undergraduate students randomly assigned to undergo moderate (n=82) or high-intensity (n=84) social stress (a public speaking task with different levels of social evaluation). All participants underwent continuous physiological monitoring while facing two consecutive stress exposures distributed across five laboratory phases: baseline, stress exposure 1, post-stress 1, stress exposure 2, post-stress 2. Results indicated that under moderate-intensity social stress, participants higher on extraversion exhibited lesser HR reactivity to stress than participants lower on extraversion, while under high-intensity social stress, they exhibited greater HR, SBP, DBP and RSA reactivity. Under both moderate- and high-intensity social stress, participants higher on extraversion exhibited pronounced SBP and DBP response adaptation to repeated stress, and showed either better degree of HR recovery or greater amount of SBP and DBP recovery after stress. These findings suggest that individuals higher on extraversion exhibit physiological flexibility to cope with social challenges and benefit from adaptive cardiovascular responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Generalized Unsafety Theory of Stress: Unsafe Environments and Conditions, and the Default Stress Response

    Directory of Open Access Journals (Sweden)

    Jos F. Brosschot

    2018-03-01

    Full Text Available Prolonged physiological stress responses form an important risk factor for disease. According to neurobiological and evolution-theoretical insights the stress response is a default response that is always “on” but inhibited by the prefrontal cortex when safety is perceived. Based on these insights the Generalized Unsafety Theory of Stress (GUTS states that prolonged stress responses are due to generalized and largely unconsciously perceived unsafety rather than stressors. This novel perspective necessitates a reconstruction of current stress theory, which we address in this paper. We discuss a variety of very common situations without stressors but with prolonged stress responses, that are not, or not likely to be caused by stressors, including loneliness, low social status, adult life after prenatal or early life adversity, lack of a natural environment, and less fit bodily states such as obesity or fatigue. We argue that in these situations the default stress response may be chronically disinhibited due to unconsciously perceived generalized unsafety. Also, in chronic stress situations such as work stress, the prolonged stress response may be mainly caused by perceived unsafety in stressor-free contexts. Thus, GUTS identifies and explains far more stress-related physiological activity that is responsible for disease and mortality than current stress theories.

  16. Generalized Unsafety Theory of Stress: Unsafe Environments and Conditions, and the Default Stress Response.

    Science.gov (United States)

    Brosschot, Jos F; Verkuil, Bart; Thayer, Julian F

    2018-03-07

    Prolonged physiological stress responses form an important risk factor for disease. According to neurobiological and evolution-theoretical insights the stress response is a default response that is always "on" but inhibited by the prefrontal cortex when safety is perceived. Based on these insights the Generalized Unsafety Theory of Stress (GUTS) states that prolonged stress responses are due to generalized and largely unconsciously perceived unsafety rather than stressors. This novel perspective necessitates a reconstruction of current stress theory, which we address in this paper. We discuss a variety of very common situations without stressors but with prolonged stress responses, that are not, or not likely to be caused by stressors, including loneliness, low social status, adult life after prenatal or early life adversity, lack of a natural environment, and less fit bodily states such as obesity or fatigue. We argue that in these situations the default stress response may be chronically disinhibited due to unconsciously perceived generalized unsafety. Also, in chronic stress situations such as work stress, the prolonged stress response may be mainly caused by perceived unsafety in stressor-free contexts. Thus, GUTS identifies and explains far more stress-related physiological activity that is responsible for disease and mortality than current stress theories.

  17. On the influence of abiotic stress conditions on growth of barley and bean and their predisposition for pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Oerke, E.C.; Schoenbeck, F.

    1986-01-01

    Shorttime changes of environmental conditions stressed barley and bean and affected plant growth and their predisposition for various pathogens. Moderate stress intensities as low or high temperatures, water or light deficits, increased the susceptibility to Erysiphe graminis var. hordei or Uromyces phaseoli and reduced disease level of spot blotch caused by Cochliobolus sativus, respectively. There was only little effect on plant growth in that case. Intensive stress as a result of combinations of unfavorable environmental conditions or longtime continuance of moderate stress reduced the plant growth and turned the predisposing effect to the opposite: after the treatment, plants were more resistent to diseases caused by biotrophic fungi, whereas there was increased susceptibility to the perthotrophic fungus. High intensities of fertilization acted as an additional stress and intensified the plant reaction to environmental alterations. The variation of the predisposition is discussed in relation to stress intensity.

  18. Interactome of Obesity: Obesidome : Genetic Obesity, Stress Induced Obesity, Pathogenic Obesity Interaction.

    Science.gov (United States)

    Geronikolou, Styliani A; Pavlopoulou, Athanasia; Cokkinos, Dennis; Chrousos, George

    2017-01-01

    Obesity is a chronic disease of increasing prevalence reaching epidemic proportions. Genetic defects as well as epigenetic effects contribute to the obesity phenotype. Investigating gene (e.g. MC4R defects)-environment (behavior, infectious agents, stress) interactions is a relative new field of great research interest. In this study, we have made an effort to create an interactome (henceforth referred to as "obesidome"), where extrinsic stressors response, intrinsic predisposition, immunity response to inflammation and autonomous nervous system implications are integrated. These pathways are presented in one interactome network for the first time. In our study, obesity-related genes/gene products were found to form a complex interactions network.

  19. DPAGT1-CDG: Functional analysis of disease-causing pathogenic mutations and role of endoplasmic reticulum stress.

    Directory of Open Access Journals (Sweden)

    Patricia Yuste-Checa

    Full Text Available Pathogenic mutations in DPAGT1 are manifested as two possible phenotypes: congenital disorder of glycosylation DPAGT1-CDG (also known as CDG-Ij, and limb-girdle congenital myasthenic syndrome (CMS with tubular aggregates. UDP-N-acetylglucosamine-dolichyl-phosphate N-acetylglucosamine phosphotransferase (GPT, the protein encoded by DPAGT1, is an endoplasmic reticulum (ER-resident protein involved in an initial step in the N-glycosylation pathway. The aim of the present study was to examine the effect of six variants in DPAGT1 detected in patients with DPAGT1-CDG, and the role of endoplasmic reticulum stress, as part of the search for therapeutic strategies to use against DPAGT1-CDG. The effect of the six mutations, i.e., c.358C>A (p.Leu120Met, c.791T>G (p.Val264Gly, c.901C>T (p.Arg301Cys, c.902G>A (p.Arg301His, c.1154T>G (p.Leu385Arg, and of the novel mutation c.329T>C (p.Phe110Ser, were examined via the analysis of DPAGT1 transcriptional profiles and GTP levels in patient-derived fibroblasts. In addition, the transient expression of different mutations was analysed in COS-7 cells. The results obtained, together with those of bioinformatic studies, revealed these mutations to affect the splicing process, the stability of GTP, or the ability of this protein to correctly localise in the ER membrane. The unfolded protein response (UPR; the response to ER stress was found not to be active in patient-derived fibroblasts, unlike that seen in cells from patients with PMM2-CDG or DPM1-CDG. Even so, the fibroblasts of patients with DPAGT1-CDG seemed to be more sensitive to the stressor tunicamycin. The present work improves our knowledge of DPAGT1-CDG and provides bases for developing tailored splicing and folding therapies.

  20. Stress responses in flavivirus-infected cells: activation of unfolded protein response and autophagy

    Directory of Open Access Journals (Sweden)

    Ana-Belén eBlázquez

    2014-06-01

    Full Text Available The Flavivirus is a genus of RNA viruses that includes multiple long known human, animal and zoonotic pathogens such as Dengue virus, yellow fever virus, West Nile virus or Japanese encephalitis virus, as well as other less known viruses that represent potential threats for human and animal health such as Usutu or Zika viruses. Flavivirus replication is based on endoplasmic reticulum-derived structures. Membrane remodeling and accumulation of viral factors induce endoplasmic reticulum stress that results in activation of a cellular signaling response termed unfolded protein response (UPR, which can be modulated by the viruses for their own benefit. Concomitant with the activation of the UPR, an upregulation of the autophagic pathway in cells infected with different flaviviruses has also been described. This review addresses the current knowledge of the relationship between endoplasmic reticulum stress, UPR and autophagy in flavivirus-infected cells and the growing evidences for an involvement of these cellular pathways in the replication and pathogenesis of these viruses.

  1. The relationship between beginning teachers' stress causes, stress responses, teaching behaviour and attrition

    NARCIS (Netherlands)

    Harmsen, Ruth; Lorenz, Michelle; Maulana, Ridwan; van Veen, Klaas

    2018-01-01

    In this study, the relationships between beginning teachers’ perceived stress causes, stress responses, observed teaching behaviour and attrition is investigated employing structural equation modelling (SEM). A total of 143 BTs were surveyed using the Questionnaire on the Experience and Evaluation

  2. Stress

    Science.gov (United States)

    ... can be life-saving. But chronic stress can cause both physical and mental harm. There are at least three different types of stress: Routine stress related to the pressures of work, family, and other daily responsibilities Stress brought about ...

  3. Early immune response patterns to pathogenic bacteria are associated to increased risk of lower respiratory infections in children

    DEFF Research Database (Denmark)

    Vissing, N. H.; Larsen, Jeppe Madura; Rasmussen, Mette Annelie

    2014-01-01

    Neonatal colonisation of the airways with respiratory pathogens is associated with increased risk of lower respiratory infections (LRI) in early childhood (1). Therefore, we hypothesized that children developing LRI have an abnormal immune response to pathogenic bacteria in infancy. We aimed...... to characterise the systemic immune response to pathogenic bacteria at the age of 6 months and study the association with incidence of LRI during the first 3 years of life....

  4. Autophagy response: manipulating the mTOR-controlled machinery by amino acids and pathogens.

    Science.gov (United States)

    Fader, Claudio Marcelo; Aguilera, Milton Osmar; Colombo, María Isabel

    2015-10-01

    Macroautophagy is a self-degradative process that normally maintains cellular homeostasis via a lysosomal pathway. It is induced by different stress signals, including nutrients and growth factors' restriction as well as pathogen invasions. These stimuli are modulated by the serine/threonine protein kinase mammalian target of rapamycin (mTOR) which control not only autophagy but also protein translation and gene expression. This review focuses on the important role of mTOR as a master regulator of cell growth and the autophagy pathway. Here, we have discussed the role of intracellular amino acid availability and intracellular pH in the redistribution of autophagic structures, which may contribute to mammalian target of rapamycin complex 1 (mTORC1) activity regulation. We have also discussed that mTORC1 complex and components of the autophagy machinery are localized at the lysosomal surface, representing a fascinating mechanism to control the metabolism, cellular clearance and also to restrain invading intracellular pathogens.

  5. Proteomic analysis of cold stress responses in tobacco seedlings ...

    African Journals Online (AJOL)

    Cold stress is one of the major abiotic stresses limiting the productivity and the geographical distribution of many important crops. To gain a better understanding of cold stress responses in tobacco (Nicotiana tabacum), we carried out a comparative proteomic analysis. Five-week-old tobacco seedlings were treated at 4°C ...

  6. gender and school types as factors responsible for job stress

    African Journals Online (AJOL)

    Emeka Egbochuku

    public Universities should be looked into so that all factors responsible for stress might be .... universities in Malaysia, university academic staffs faced more problems .... adjustment with different coping styles. .... in college students: The role of rumination and stress. ... International Journal of Stress Management, 8, 285–29.

  7. Associations between circadian and stress response cortisol in children.

    Science.gov (United States)

    Simons, Sterre S H; Cillessen, Antonius H N; de Weerth, Carolina

    2017-01-01

    Hypothalamic-pituitary-adrenal (HPA) axis functioning is characterized by the baseline production of cortisol following a circadian rhythm, as well as by the superimposed production of cortisol in response to a stressor. However, it is relatively unknown whether the basal cortisol circadian rhythm is associated with the cortisol stress response in children. Since alterations in cortisol stress responses have been associated with mental and physical health, this study investigated whether the cortisol circadian rhythm is associated with cortisol stress responses in 6-year-old children. To this end, 149 normally developing children (M age  = 6.09 years; 70 girls) participated in an innovative social evaluative stress test that effectively provoked increases in cortisol. To determine the cortisol stress response, six cortisol saliva samples were collected and two cortisol stress response indices were calculated: total stress cortisol and cortisol stress reactivity. To determine children's cortisol circadian rhythm eight cortisol circadian samples were collected during two days. Total diurnal cortisol and diurnal cortisol decline scores were calculated as indices of the cortisol circadian rhythm. Hierarchical regression analyses indicated that higher total diurnal cortisol as well as a smaller diurnal cortisol decline, were both uniquely associated with higher total stress cortisol. No associations were found between the cortisol circadian rhythm indices and cortisol stress reactivity. Possible explanations for the patterns found are links with children's self-regulatory capacities and parenting quality.

  8. Approaches to modeling the development of physiological stress responsivity.

    Science.gov (United States)

    Hinnant, J Benjamin; Philbrook, Lauren E; Erath, Stephen A; El-Sheikh, Mona

    2018-05-01

    Influential biopsychosocial theories have proposed that some developmental periods in the lifespan are potential pivot points or opportunities for recalibration of stress response systems. To date, however, there have been few longitudinal studies of physiological stress responsivity and no studies comparing change in physiological stress responsivity across developmental periods. Our goals were to (a) address conceptual and methodological issues in studying the development of physiological stress responsivity within and between individuals, and (b) provide an exemplar for evaluating development of responsivity to stress in the parasympathetic nervous system, comparing respiratory sinus arrhythmia (RSA) responsivity from middle to late childhood with middle to late adolescence. We propose the use of latent growth modeling of stress responsivity that includes time-varying covariates to account for conceptual and methodological issues in the measurement of physiological stress responsivity. Such models allow researchers to address key aspects of developmental sensitivity including within-individual variability, mean level change over time, and between-individual variability over time. In an empirical example, we found significant between-individual variability over time in RSA responsivity to stress during middle to late childhood but not during middle to late adolescence, suggesting that childhood may be a period of greater developmental sensitivity at the between-individual level. © 2017 Society for Psychophysiological Research.

  9. Seaweed Polysaccharides and Derived Oligosaccharides Stimulate Defense Responses and Protection Against Pathogens in Plants

    Directory of Open Access Journals (Sweden)

    Alejandra Moenne

    2011-11-01

    Full Text Available Plants interact with the environment by sensing “non-self” molecules called elicitors derived from pathogens or other sources. These molecules bind to specific receptors located in the plasma membrane and trigger defense responses leading to protection against pathogens. In particular, it has been shown that cell wall and storage polysaccharides from green, brown and red seaweeds (marine macroalgae corresponding to ulvans, alginates, fucans, laminarin and carrageenans can trigger defense responses in plants enhancing protection against pathogens. In addition, oligosaccharides obtained by depolymerization of seaweed polysaccharides also induce protection against viral, fungal and bacterial infections in plants. In particular, most seaweed polysaccharides and derived oligosaccharides trigger an initial oxidative burst at local level and the activation of salicylic (SA, jasmonic acid (JA and/or ethylene signaling pathways at systemic level. The activation of these signaling pathways leads to an increased expression of genes encoding: (i Pathogenesis-Related (PR proteins with antifungal and antibacterial activities; (ii defense enzymes such as pheylalanine ammonia lyase (PAL and lipoxygenase (LOX which determine accumulation of phenylpropanoid compounds (PPCs and oxylipins with antiviral, antifugal and antibacterial activities and iii enzymes involved in synthesis of terpenes, terpenoids and/or alkaloids having antimicrobial activities. Thus, seaweed polysaccharides and their derived oligosaccharides induced the accumulation of proteins and compounds with antimicrobial activities that determine, at least in part, the enhanced protection against pathogens in plants.

  10. TcNPR3 from Theobroma cacao functions as a repressor of the pathogen defense response.

    Science.gov (United States)

    Shi, Zi; Zhang, Yufan; Maximova, Siela N; Guiltinan, Mark J

    2013-12-06

    Arabidopsis thaliana (Arabidopsis) NON-EXPRESSOR OF PR1 (NPR1) is a transcription coactivator that plays a central role in regulating the transcriptional response to plant pathogens. Developing flowers of homozygous npr3 mutants are dramatically more resistant to infection by the pathogenic bacterium Pseudomonas syringae, suggesting a role of NPR3 as a repressor of NPR1-mediated defense response with a novel role in flower development. We report here the characterization of a putative NPR3 gene from the tropical tree species Theobroma cacao (TcNPR3). Like in Arabidopsis, TcNPR3 was constitutively expressed across a wide range of tissue types and developmental stages but with some differences in relative levels compared to Arabidopsis. To test the function of TcNPR3, we performed transgenic complementation analysis by introducing a constitutively expressing putative TcNPR3 transgene into an Arabidopsis npr3 mutant. TcNPR3 expressing Arabidopsis plants were partially restored to the WT pathogen phenotype (immature flowers susceptible to bacterial infection). To test TcNPR3 function directly in cacao tissues, a synthetic microRNA targeting TcNPR3 mRNA was transiently expressed in cacao leaves using an Agrobacterium-infiltration method. TcNPR3 knock down leaf tissues were dramatically more resistance to infection with Phytophthora capsici in a leaf bioassay, showing smaller lesion sizes and reduced pathogen replication. We conclude that TcNPR3 functions similar to the Arabidopsis NPR3 gene in the regulation of the cacao defense response. Since TcNPR3 did not show a perfect complementation of the Arabidopsis NPR3 mutation, the possibility remains that other functions of TcNPR3 remain to be found. This novel knowledge can contribute to the breeding of resistant cacao varieties against pathogens through molecular markers based approaches or biotechnological strategies.

  11. The stress response system of proteins: Implications for bioreactor scaleup

    Science.gov (United States)

    Goochee, Charles F.

    1988-01-01

    Animal cells face a variety of environmental stresses in large scale bioreactors, including periodic variations in shear stress and dissolved oxygen concentration. Diagnostic techniques were developed for identifying the particular sources of environmental stresses for animal cells in a given bioreactor configuration. The mechanisms by which cells cope with such stresses was examined. The individual concentrations and synthesis rates of hundreds of intracellular proteins are affected by the extracellular environment (medium composition, dissolved oxygen concentration, ph, and level of surface shear stress). Techniques are currently being developed for quantifying the synthesis rates and concentrations of the intracellular proteins which are most sensitive to environmental stress. Previous research has demonstrated that a particular set of stress response proteins are synthesized by mammalian cells in response to temperature fluctuations, dissolved oxygen deprivation, and glucose deprivation. Recently, it was demonstrated that exposure of human kidney cells to high shear stress results in expression of a completely distinct set of intracellular proteins.

  12. Adaptive Responses to Thermal Stress in Mammals

    OpenAIRE

    Yasser Lenis Sanin; Angélica María Zuluaga Cabrera; Ariel Marcel Tarazona Morales

    2015-01-01

    The environment animals have to cope with is a combination of natural factors such as temperature. Extreme changes in these factors can alter homeostasis, which can lead to thermal stress. This stress can be due to either high temperatures or low temperatures. Energy transference for thermoregulation in homoeothermic animals occurs through several mechanisms: conduction, convection, radiation and evaporation. When animals are subjected to thermal stress, physiological mechanisms are activated...

  13. Proteomic studies of drought stress response in Fabaceae

    Directory of Open Access Journals (Sweden)

    Tanja ZADRAŽNIK

    2015-11-01

    Full Text Available Drought stress is a serious threat to crop production that influences plant growth and development and subsequently causes reduced quantity and quality of the yield. Plant stress induces changes in cell metabolism, which includes differential expression of proteins. Proteomics offer a powerful approach to analyse proteins involved in drought stress response of plants. Analyses of changes in protein abundance of legumes under drought stress are very important, as legumes play an important role in human and animal diet and are often exposed to drought. The presented results of proteomic studies of selected legumes enable better understanding of molecular mechanisms of drought stress response. The study of drought stress response of plants with proteomic approach may contribute to the development of potential drought-response markers and to the development of drought-tolerant cultivars of different legume crop species.

  14. The modular nature of dendritic cell responses to commensal and pathogenic fungi.

    Directory of Open Access Journals (Sweden)

    Lisa Rizzetto

    Full Text Available The type of adaptive immune response following host-fungi interaction is largely determined at the level of the antigen-presenting cells, and in particular by dendritic cells (DCs. The extent to which transcriptional regulatory events determine the decision making process in DCs is still an open question. By applying the highly structured DC-ATLAS pathways to analyze DC responses, we classified the various stimuli by revealing the modular nature of the different transcriptional programs governing the recognition of either pathogenic or commensal fungi. Through comparison of the network parts affected by DC stimulation with fungal cells and purified single agonists, we could determine the contribution of each receptor during the recognition process. We observed that initial recognition of a fungus creates a temporal window during which the simultaneous recruitment of cell surface receptors can intensify, complement and sustain the DC activation process. The breakdown of the response to whole live cells, through the purified components, showed how the response to invading fungi uses a set of specific modules. We find that at the start of fungal recognition, DCs rapidly initiate the activation process. Ligand recognition is further enhanced by over-expression of the receptor genes, with a significant correspondence between gene expression and protein levels and function. Then a marked decrease in the receptor levels follows, suggesting that at this moment the DC commits to a specific fate. Overall our pathway based studies show that the temporal window of the fungal recognition process depends on the availability of ligands and is different for pathogens and commensals. Modular analysis of receptor and signalling-adaptor expression changes, in the early phase of pathogen recognition, is a valuable tool for rapid and efficient dissection of the pathogen derived components that determine the phenotype of the DC and thereby the type of immune response

  15. Psychophysiological responses to stress after stress management training in patients with rheumatoid arthritis.

    Directory of Open Access Journals (Sweden)

    Sabine J M de Brouwer

    Full Text Available BACKGROUND: Stress management interventions may prove useful in preventing the detrimental effects of stress on health. This study assessed the effects of a stress management intervention on the psychophysiological response to stress in patients with rheumatoid arthritis (RA. METHODS: Seventy-four patients with RA, who were randomly assigned to either a control group or a group that received short-term stress management training, performed a standardized psychosocial stress task (Trier Social Stress Test; TSST 1 week after the stress management training and at a 9-week follow-up. Psychological and physical functioning, and the acute psychophysiological response to the stress test were assessed. RESULTS: Patients in the intervention group showed significantly lower psychological distress levels of anxiety after the training than did the controls. While there were no between-group differences in stress-induced tension levels, and autonomic (α-amylase or endocrine (cortisol responses to the stress test 1 week after the intervention, levels of stress-induced tension and cortisol were significantly lower in the intervention group at the 9-week follow-up. Overall, the response to the intervention was particularly evident in a subgroup of patients with a psychological risk profile. CONCLUSION: A relatively short stress management intervention can improve psychological functioning and influences the psychophysiological response to stress in patients with RA, particularly those psychologically at risk. These findings might help understand how stress can affect health and the role of individual differences in stress responsiveness. TRIAL REGISTRATION: TrialRegister.nl NTR1193.

  16. Transcriptome Responses to Combinations of Stresses in Arabidopsis

    DEFF Research Database (Denmark)

    Rasmussen, Simon; Barah, Pankaj; Suarez-Rodriguez, Maria Cristina

    2013-01-01

    In Arabidopsis, the response of the majority of the genes cannot be predicted from single stress experiments and only a small fraction of the genes have potential antagonistic responses, indicating that plants have evolved to cope with combinations of stresses and therefore may be bred to endure...

  17. Perceived stress at work is associated with attenuated DHEA-S response during acute psychosocial stress.

    Science.gov (United States)

    Lennartsson, Anna-Karin; Theorell, Töres; Kushnir, Mark M; Bergquist, Jonas; Jonsdottir, Ingibjörg H

    2013-09-01

    Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEA-S) have been suggested to play a protective role during acute psychosocial stress, because they act as antagonists to the effects of the stress hormone cortisol. This study aims to investigate whether prolonged psychosocial stress, measured as perceived stress at work during the past week, is related to the capacity to produce DHEA and DHEA-S during acute psychosocial stress. It also aims to investigate whether prolonged perceived stress affects the balance between production of cortisol and DHEA-S during acute psychosocial stress. Thirty-six healthy subjects (19 men and 17 women, mean age 37 years, SD 5 years), were included. Perceived stress at work during the past week was measured by using the Stress-Energy (SE) Questionnaire. The participants were divided into three groups based on their mean scores; Low stress, Medium stress and High stress. The participants underwent the Trier Social Stress Test (TSST) and blood samples were collected before, directly after the stress test, and after 30 min of recovery. General Linear Models were used to investigate if the Medium stress group and the High stress group differ regarding stress response compared to the Low stress group. Higher perceived stress at work was associated with attenuated DHEA-S response during acute psychosocial stress. Furthermore, the ratio between the cortisol production and the DHEA-S production during the acute stress test were higher in individuals reporting higher perceived stress at work compared to individuals reporting low perceived stress at work. There was no statistical difference in DHEA response between the groups. This study shows that prolonged stress, measured as perceived stress at work during the past week, seems to negatively affect the capacity to produce DHEA-S during acute stress. Given the protective functions of DHEA-S, attenuated DHEA-S production during acute stress may lead to higher risk for adverse

  18. The temporal dynamics of the stress response

    NARCIS (Netherlands)

    Koolhaas, J.M.; Meerlo, P; de Boer, S.F.; Strubbe, J.H.; Bohus, B.G J

    1997-01-01

    This paper summarises the available evidence that failure of defense mechanisms in (semi)-natural social groups of animals may lead to serious forms of stress pathology. Hence the study of social stress may provide animal models with a high face validity. However, most of the animal models of human

  19. Psychological and hormonal stress response patterns during a blood donation.

    Science.gov (United States)

    Hoogerwerf, M D; Veldhuizen, I J T; Merz, E-M; de Kort, W L A M; Frings-Dresen, M H W; Sluiter, J K

    2017-11-01

    Donating blood has been associated with increased stress responses, with scarce evidence indicating that levels of psychological and hormonal stress are higher pre-donation than post-donation. We investigated whether a blood donation induces psychological and/or hormonal stress during the course of a blood donation, and whether responses differed between men and women, first-time and experienced donors and donors with high or low non-acute stress. In 363 donors, psychological (donation-stress and arousal) and hormonal (cortisol) stress were measured by questionnaire and salivary sample at seven key moments during a routine donation. Non-acute stress was assessed by a questionnaire. Repeated measurement analyses were performed, using the last measurement (leaving the donation center) as reference value. Levels of donation-stress, arousal and cortisol were significantly higher during donation than when leaving the donation center. When compared with men, women reported higher levels of donation-stress and cortisol in the first part of the visit. When compared with first-time donors, experienced donors reported lower levels of donation-stress during the first part of the visit, and higher levels of arousal but less reactivity throughout the visit. When compared to donors high on non-acute stress, donors low on non-acute stress reported lower levels of donation-stress during the first part of the visit, and showed less cortisol reactivity throughout the visit. Donating blood influences psychological and hormonal stress response patterns. The response patterns differ between women and men, first-time and experienced donors and between donors high and low on non-acute stress. © 2017 International Society of Blood Transfusion.

  20. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota; Julkowska, Magdalena; Montero Sommerfeld, Hector; Horst, Anneliek ter; Haring, Michel A; Testerink, Christa

    2016-01-01

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  1. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota

    2016-05-20

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  2. In vitro cytokine responses to periodontal pathogens: generalized aggressive periodontitis is associated with increased IL-6 response to Porphyromonas gingivalis

    DEFF Research Database (Denmark)

    Borch, T S; Holmstrup, Palle; Bendtzen, K

    2010-01-01

    with GAgP and 10 controls stimulated with periodontal pathogens or a control antigen, tetanus toxoid (TT) in the presence of autologous serum. The pathogens used were Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum, either as type strains or bacteria isolated from...... the participants' inherent oral flora. The P. gingivalis -induced production of IL-6 was approximately 2.5-fold higher in patients with GAgP than in healthy controls (P gingivalis, as all cytokine...... responses induced by Pr. intermedia, F. nucleatum and TT was similar in the two groups. A reduced IL-12p70 response to Pr. intermedia and F. nucleatum was observed in smokers compared to non-smoking patients (P gingivalis, MNC...

  3. Macropinocytosis is responsible for the uptake of pathogenic and non-pathogenic mycobacteria by B lymphocytes (Raji cells

    Directory of Open Access Journals (Sweden)

    García-Pérez Blanca Estela

    2012-10-01

    Full Text Available Abstract Background The classical roles of B cells include the production of antibodies and cytokines and the generation of immunological memory, these being key factors in the adaptive immune response. However, their role in innate immunity is currently being recognised. Traditionally, B cells have been considered non-phagocytic cells; therefore, the uptake of bacteria by B cells is not extensively documented. In this study, we analysed some of the features of non-specific bacterial uptake by B lymphocytes from the Raji cell line. In our model, B cells were infected with Mycobacterium tuberculosis (MTB, Mycobacterium smegmatis (MSM, and Salmonella typhimurium (ST. Results Our observations revealed that the Raji B cells were readily infected by the three bacteria that were studied. All of the infections induced changes in the cellular membrane during bacterial internalisation. M. smegmatis and S. typhimurium were able to induce important membrane changes that were characterised by abundant filopodia and lamellipodia formation. These membrane changes were driven by actin cytoskeletal rearrangements. The intracellular growth of these bacteria was also controlled by B cells. M. tuberculosis infection also induced actin rearrangement-driven membrane changes; however, the B cells were not able to control this infection. The phorbol 12-myristate 13-acetate (PMA treatment of B cells induced filopodia and lamellipodia formation, the production of spacious vacuoles (macropinosomes, and the fluid-phase uptake that is characteristic of macropinocytosis. S. typhimurium infection induced the highest fluid-phase uptake, although both mycobacteria also induced fluid uptake. A macropinocytosis inhibitor such as amiloride was used and abolished the bacterial uptake and the fluid-phase uptake that is triggered during the bacterial infection. Conclusions Raji B cells can internalise S. typhimurium and mycobacteria through an active process, such as

  4. Response inhibition and cognitive appraisal in clients with acute stress disorder and posttraumatic stress disorder.

    Science.gov (United States)

    Abolghasemi, Abass; Bakhshian, Fereshteh; Narimani, Mohammad

    2013-08-01

    The purpose of the present study was to compare response inhibition and cognitive appraisal in clients with acute stress disorder, clients with posttraumatic stress disorder, and normal individuals. This was a comparative study. The sample consisted of 40 clients with acute stress disorder, 40 patients with posttraumatic stress disorder, and 40 normal individuals from Mazandaran province selected through convenience sampling method. Data were collected using Composite International Diagnostic Interview, Stroop Color-Word Test, Posttraumatic Cognitions Inventory, and the Impact of Event Scale. Results showed that individuals with acute stress disorder are less able to inhibit inappropriate responses and have more impaired cognitive appraisals compared to those with posttraumatic stress disorder. Moreover, results showed that response inhibition and cognitive appraisal explain 75% of the variance in posttraumatic stress disorder symptoms and 38% of the variance in posttraumatic stress disorder symptoms. The findings suggest that response inhibition and cognitive appraisal are two variables that influence the severity of posttraumatic stress disorder and acute stress disorder symptoms. Also, these results have important implications for pathology, prevention, and treatment of posttraumatic stress disorder and acute stress disorder.

  5. Response Inhibition and Cognitive Appraisal in Clients with Acute Stress Disorder and Posttraumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    Abass Abolghasemi

    2013-09-01

    Full Text Available Objective: The purpose of the present study was to compare response inhibition and cognitive appraisal in clients with acute stress disorder, clients with posttraumatic stress disorder, and normal individuals .Method:This was a comparative study. The sample consisted of 40 clients with acute stress disorder, 40 patients with posttraumatic stress disorder, and 40 normal individuals from Mazandaran province selected through convenience sampling method. Data were collected using Composite International Diagnostic Interview, Stroop Color-Word Test, Posttraumatic Cognitions Inventory, and the Impact of Event Scale. Results:Results showed that individuals with acute stress disorder are less able to inhibit inappropriate responses and have more impaired cognitive appraisals compared to those with posttraumatic stress disorder. Moreover, results showed that response inhibition and cognitive appraisal explain 75% of the variance in posttraumatic stress disorder symptoms and 38% of the variance in posttraumatic stress disorder symptoms .Conclusion:The findings suggest that response inhibition and cognitive appraisal are two variables that influence the severity of posttraumatic stress disorder and acute stress disorder symptoms. Also, these results have important implications for pathology, prevention, and treatment of posttraumatic stress disorder and acute stress disorder

  6. WRKY proteins: signaling and regulation of expression during abiotic stress responses.

    Science.gov (United States)

    Banerjee, Aditya; Roychoudhury, Aryadeep

    2015-01-01

    WRKY proteins are emerging players in plant signaling and have been thoroughly reported to play important roles in plants under biotic stress like pathogen attack. However, recent advances in this field do reveal the enormous significance of these proteins in eliciting responses induced by abiotic stresses. WRKY proteins act as major transcription factors, either as positive or negative regulators. Specific WRKY factors which help in the expression of a cluster of stress-responsive genes are being targeted and genetically modified to induce improved abiotic stress tolerance in plants. The knowledge regarding the signaling cascade leading to the activation of the WRKY proteins, their interaction with other proteins of the signaling pathway, and the downstream genes activated by them are altogether vital for justified targeting of the WRKY genes. WRKY proteins have also been considered to generate tolerance against multiple abiotic stresses with possible roles in mediating a cross talk between abiotic and biotic stress responses. In this review, we have reckoned the diverse signaling pattern and biological functions of WRKY proteins throughout the plant kingdom along with the growing prospects in this field of research.

  7. Comparative transcriptional analysis of clinically relevant heat stress response in Clostridium difficile strain 630.

    Directory of Open Access Journals (Sweden)

    Nigel G Ternan

    Full Text Available Clostridium difficile is considered to be one of the most important causes of health care-associated infections worldwide. In order to understand more fully the adaptive response of the organism to stressful conditions, we examined transcriptional changes resulting from a clinically relevant heat stress (41 °C versus 37 °C in C. difficile strain 630 and identified 341 differentially expressed genes encompassing multiple cellular functional categories. While the transcriptome was relatively resilient to the applied heat stress, we noted upregulation of classical heat shock genes including the groEL and dnaK operons in addition to other stress-responsive genes. Interestingly, the flagellin gene (fliC was downregulated, yet genes encoding the cell-wall associated flagellar components were upregulated suggesting that while motility may be reduced, adherence--to mucus or epithelial cells--could be enhanced during infection. We also observed that a number of phage associated genes were downregulated, as were genes associated with the conjugative transposon Tn5397 including a group II intron, thus highlighting a potential decrease in retromobility during heat stress. These data suggest that maintenance of lysogeny and genome wide stabilisation of mobile elements could be a global response to heat stress in this pathogen.

  8. Cytokine responses to two common respiratory pathogens in children are dependent on interleukin-1β

    Directory of Open Access Journals (Sweden)

    Alice C-H. Chen

    2017-10-01

    Full Text Available Protracted bacterial bronchitis (PBB in young children is a common cause of prolonged wet cough and may be a precursor to bronchiectasis in some children. Although PBB and bronchiectasis are both characterised by neutrophilic airway inflammation and a prominent interleukin (IL-1β signature, the contribution of the IL-1β pathway to host defence is not clear. This study aimed to compare systemic immune responses against common pathogens in children with PBB, bronchiectasis and control children and to determine the importance of the IL-1β pathway. Non-typeable Haemophilus influenzae (NTHi stimulation of peripheral blood mononuclear cells (PBMCs from control subjects (n=20, those with recurrent PBB (n=20 and bronchiectasis (n=20 induced high concentrations of IL-1β, IL-6, interferon (IFN-γ and IL-10. Blocking with an IL-1 receptor antagonist (IL-1Ra modified the cellular response to pathogens, inhibiting cytokine synthesis by NTHi-stimulated PBMCs and rhinovirus-stimulated PBMCs (in a separate PBB cohort. Inhibition of IFN-γ production by IL-1Ra was observed across multiple cell types, including CD3+ T cells and CD56+ NK cells. Our findings highlight the extent to which IL-1β regulates the cellular immune response against two common respiratory pathogens. While blocking the IL-1β pathway has the potential to reduce inflammation, this may come at the cost of protective immunity against NTHi and rhinovirus.

  9. Immune Response in Head Kidney of Rainbow Trout Fry Following Stress and Infection with Flavobacterium Psychrophilum

    DEFF Research Database (Denmark)

    Henriksen, Maya Maria Mihályi; Kania, P. W.; Madsen, Lone

    response in rainbow trout against F. psychrophilum in order to create preventive measures against RTFS. A limited number of studies have been carried out so far and have relied on samples from either naturally infected or injection-challenged fish. The use of naturally infected fish introduces many...... before pathogen exposure to elevate mortality. The model was used to examine the immune response to infection in rainbow trout fry (≈1 g); both with and without preceding H2O2 treatment. Samples from the head kidney were taken before pathogen exposure and 4 hours, 48 hours, 125 hours and 192 hours after...... exposure. The regulation of several immune relevant genes was examined and the relative bacterial load was assessed. Although it is not determined how H2O2 increases mortality, it is assumed to be due to stress. Exposure to H2O2 prior to infection altered the regulation of several genes, and several...

  10. Stretching the Stress Boundary: Linking Air Pollution Health Effects to a Neurohormonal Stress Response

    Science.gov (United States)

    Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer’s and diabetes. A neurohormonal stress response (referred here as a systemic response produced by activation ...

  11. Network Analysis Reveals a Common Host–Pathogen Interaction Pattern in Arabidopsis Immune Responses

    Directory of Open Access Journals (Sweden)

    Hong Li

    2017-05-01

    Full Text Available Many plant pathogens secrete virulence effectors into host cells to target important proteins in host cellular network. However, the dynamic interactions between effectors and host cellular network have not been fully understood. Here, an integrative network analysis was conducted by combining Arabidopsis thaliana protein–protein interaction network, known targets of Pseudomonas syringae and Hyaloperonospora arabidopsidis effectors, and gene expression profiles in the immune response. In particular, we focused on the characteristic network topology of the effector targets and differentially expressed genes (DEGs. We found that effectors tended to manipulate key network positions with higher betweenness centrality. The effector targets, especially those that are common targets of an individual effector, tended to be clustered together in the network. Moreover, the distances between the effector targets and DEGs increased over time during infection. In line with this observation, pathogen-susceptible mutants tended to have more DEGs surrounding the effector targets compared with resistant mutants. Our results suggest a common plant–pathogen interaction pattern at the cellular network level, where pathogens employ potent local impact mode to interfere with key positions in the host network, and plant organizes an in-depth defense by sequentially activating genes distal to the effector targets.

  12. Molecular characterization of an adaptive response to alkylating agents in the opportunistic pathogen Aspergillus fumigatus.

    Science.gov (United States)

    O'Hanlon, Karen A; Margison, Geoffrey P; Hatch, Amy; Fitzpatrick, David A; Owens, Rebecca A; Doyle, Sean; Jones, Gary W

    2012-09-01

    An adaptive response to alkylating agents based upon the conformational change of a methylphosphotriester (MPT) DNA repair protein to a transcriptional activator has been demonstrated in a number of bacterial species, but this mechanism appears largely absent from eukaryotes. Here, we demonstrate that the human pathogen Aspergillus fumigatus elicits an adaptive response to sub-lethal doses of the mono-functional alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). We have identified genes that encode MPT and O(6)-alkylguanine DNA alkyltransferase (AGT) DNA repair proteins; deletions of either of these genes abolish the adaptive response and sensitize the organism to MNNG. In vitro DNA repair assays confirm the ability of MPT and AGT to repair methylphosphotriester and O(6)-methylguanine lesions respectively. In eukaryotes, the MPT protein is confined to a select group of fungal species, some of which are major mammalian and plant pathogens. The evolutionary origin of the adaptive response is bacterial and rooted within the Firmicutes phylum. Inter-kingdom horizontal gene transfer between Firmicutes and Ascomycete ancestors introduced the adaptive response into the Fungal kingdom. Our data constitute the first detailed characterization of the molecular mechanism of the adaptive response in a lower eukaryote and has applications for development of novel fungal therapeutics targeting this DNA repair system.

  13. Molecular characterization of an adaptive response to alkylating agents in the opportunistic pathogen Aspergillus fumigatus

    Science.gov (United States)

    O’Hanlon, Karen A.; Margison, Geoffrey P.; Hatch, Amy; Fitzpatrick, David A.; Owens, Rebecca A.; Doyle, Sean; Jones, Gary W.

    2012-01-01

    An adaptive response to alkylating agents based upon the conformational change of a methylphosphotriester (MPT) DNA repair protein to a transcriptional activator has been demonstrated in a number of bacterial species, but this mechanism appears largely absent from eukaryotes. Here, we demonstrate that the human pathogen Aspergillus fumigatus elicits an adaptive response to sub-lethal doses of the mono-functional alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). We have identified genes that encode MPT and O6-alkylguanine DNA alkyltransferase (AGT) DNA repair proteins; deletions of either of these genes abolish the adaptive response and sensitize the organism to MNNG. In vitro DNA repair assays confirm the ability of MPT and AGT to repair methylphosphotriester and O6-methylguanine lesions respectively. In eukaryotes, the MPT protein is confined to a select group of fungal species, some of which are major mammalian and plant pathogens. The evolutionary origin of the adaptive response is bacterial and rooted within the Firmicutes phylum. Inter-kingdom horizontal gene transfer between Firmicutes and Ascomycete ancestors introduced the adaptive response into the Fungal kingdom. Our data constitute the first detailed characterization of the molecular mechanism of the adaptive response in a lower eukaryote and has applications for development of novel fungal therapeutics targeting this DNA repair system. PMID:22669901

  14. Transcriptional response of Nautella italica R11 towards its macroalgal host uncovers new mechanisms of host-pathogen interaction.

    Science.gov (United States)

    Hudson, Jennifer; Gardiner, Melissa; Deshpande, Nandan; Egan, Suhelen

    2018-04-01

    Macroalgae (seaweeds) are essential for the functioning of temperate marine ecosystems, but there is increasing evidence to suggest that their survival is under threat from anthropogenic stressors and disease. Nautella italica R11 is recognized as an aetiological agent of bleaching disease in the red alga, Delisea pulchra. Yet, there is a lack of knowledge surrounding the molecular mechanisms involved in this model host-pathogen interaction. Here we report that mutations in the gene encoding for a LuxR-type quorum sensing transcriptional regulator, RaiR, render N. italica R11 avirulent, suggesting this gene is important for regulating the expression of virulence phenotypes. Using an RNA sequencing approach, we observed a strong transcriptional response of N. italica R11 towards the presence of D. pulchra. In particular, genes involved in oxidative stress resistance, carbohydrate and central metabolism were upregulated in the presence of the host, suggesting a role for these functions in the opportunistic pathogenicity of N. italica R11. Furthermore, we show that RaiR regulates a subset of genes in N. italica R11, including those involved in metabolism and the expression of phage-related proteins. The outcome of this research reveals new functions important for virulence of N. italica R11 and contributes to our greater understanding of the complex factors mitigating microbial diseases in macroalgae. © 2017 John Wiley & Sons Ltd.

  15. Response of rocks to large stresses

    International Nuclear Information System (INIS)

    Schock, R.N.

    1976-01-01

    To predict the dimensions and characteristics of impact- and explosion-induced craters, one must know the equation of state of the rocks in which the crater is formed. Recent experimental data shed light upon inelastic processes that influence the stress/strain behavior of rocks. We examine these data with a view to developing models that could be used in predicting cratering phenomena. New data is presented on the volume behavior of two dissimilar rocks subjected to tensile stresses

  16. Ecological Origins of Freedom: Pathogens, Heat Stress, and Frontier Topography Predict More Vertical but Less Horizontal Governmental Restriction.

    Science.gov (United States)

    Conway, Lucian Gideon; Bongard, Kate; Plaut, Victoria; Gornick, Laura Janelle; Dodds, Daniel P; Giresi, Thomas; Tweed, Roger G; Repke, Meredith A; Houck, Shannon C

    2017-10-01

    What kinds of physical environments make for free societies? The present research investigates the effect of three different types of ecological stressors (climate stress, pathogen stress, and frontier topography) on two measurements of governmental restriction: Vertical restriction involves select persons imposing asymmetrical laws on others, while horizontal restriction involves laws that restrict most members of a society equally. Investigation 1 validates our measurements of vertical and horizontal restriction. Investigation 2 demonstrates that, across both U.S. states and a sample of nations, ecological stressors tend to cause more vertically restrictive societies but less horizontally restrictive societies. Investigation 3 demonstrates that assortative sociality partially mediates ecological stress→restriction relationships across nations, but not in U.S. states. Although some stressor-specific effects emerged (most notably, cold stress consistently showed effects in the opposite direction), these results in the main suggest that ecological stress simultaneously creates opposing pressures that push freedom in two different directions.

  17. The significance of translation regulation in the stress response

    OpenAIRE

    Picard, Flora; Loubière, Pascal; Girbal, Laurence; Bousquet, Muriel

    2013-01-01

    Background: The stress response in bacteria involves the multistage control of gene expression but is not entirely understood. To identify the translational response of bacteria in stress conditions and assess its contribution to the regulation of gene expression, the translational states of all mRNAs were compared under optimal growth condition and during nutrient (isoleucine) starvation. Results: A genome-scale study of the translational response to nutritional limitation was performed in t...

  18. Associations between circadian and stress response cortisol in children

    OpenAIRE

    Simons, S.S.H.; Cillessen, A.H.N.; Weerth, C. de

    2017-01-01

    Hypothalamic-pituitary-adrenal (HPA) axis functioning is characterized by the baseline production of cortisol following a circadian rhythm, as well as by the superimposed production of cortisol in response to a stressor. However, it is relatively unknown whether the basal cortisol circadian rhythm is associated with the cortisol stress response in children. Since alterations in cortisol stress responses have been associated with mental and physical health, this study investigated whether the ...

  19. Calcineurin orchestrates dimorphic transitions, antifungal drug responses and host-pathogen interactions of the pathogenic mucoralean fungus Mucor circinelloides.

    Science.gov (United States)

    Lee, Soo Chan; Li, Alicia; Calo, Silvia; Inoue, Makoto; Tonthat, Nam K; Bain, Judith M; Louw, Johanna; Shinohara, Mari L; Erwig, Lars P; Schumacher, Maria A; Ko, Dennis C; Heitman, Joseph

    2015-09-01

    Calcineurin plays essential roles in virulence and growth of pathogenic fungi and is a target of the natural products FK506 and Cyclosporine A. In the pathogenic mucoralean fungus Mucor circinelloides, calcineurin mutation or inhibition confers a yeast-locked phenotype indicating that calcineurin governs the dimorphic transition. Genetic analysis in this study reveals that two calcineurin A catalytic subunits (out of three) are functionally diverged. Homology modeling illustrates modes of resistance resulting from amino substitutions in the interface between each calcineurin subunit and the inhibitory drugs. In addition, we show how the dimorphic transition orchestrated by calcineurin programs different outcomes during host-pathogen interactions. For example, when macrophages phagocytose Mucor yeast, subsequent phagosomal maturation occurs, indicating host cells respond appropriately to control the pathogen. On the other hand, upon phagocytosis of spores, macrophages fail to form mature phagosomes. Cytokine production from immune cells differs following exposure to yeast versus spores (which germinate into hyphae). Thus, the morphogenic transition can be targeted as an efficient treatment option against Mucor infection. In addition, genetic analysis (including gene disruption and mutational studies) further strengthens the understanding of calcineurin and provides a foundation to develop antifungal agents targeting calcineurin to deploy against Mucor and other pathogenic fungi. © 2015 John Wiley & Sons Ltd.

  20. Predictors of responses to stress among families coping with poverty-related stress.

    Science.gov (United States)

    Santiago, Catherine DeCarlo; Etter, Erica Moran; Wadsworth, Martha E; Raviv, Tali

    2012-05-01

    This study tested how poverty-related stress (PRS), psychological distress, and responses to stress predicted future effortful coping and involuntary stress responses one year later. In addition, we explored age, sex, ethnicity, and parental influences on responses to stress over time. Hierarchical linear modeling analyses conducted with 98 low-income families (300 family members: 136 adults, 82 school-aged children, 82 adolescents) revealed that primary control coping, secondary control coping, disengagement, involuntary engagement, and involuntary disengagement each significantly predicted future use of that response. Primary and secondary control coping also predicted less maladaptive future responses to stress, while involuntary responses to stress undermined the development of adaptive responding. Age, sex, and interactions among PRS and prior coping were also found to predict certain responses to stress. In addition, child subgroup analyses demonstrate the importance of parental modeling of coping and involuntary stress responses, and warmth/nurturance and monitoring practices. Results are discussed with regard to the implications for preventive interventions with families in poverty.

  1. Early Lotus japonicus root transcriptomic responses to symbiotic and pathogenic fungal exudates

    Directory of Open Access Journals (Sweden)

    Marco eGiovannetti

    2015-06-01

    Full Text Available The objective of this study is to evaluate Lotus japonicus transcriptomic responses to arbuscular mycorrhizal (AM germinated spore exudates (GSE, responsible for activating nuclear Ca2+ spiking in plant root epidermis. A microarray experiment was performed comparing gene expression in Lotus rootlets treated with GSE or water after 24 h and 48 h. The transcriptional pattern of selected genes that resulted to be regulated in the array was further evaluated upon different treatments and timings. In particular, Lotus rootlets were treated with: GSE from the pathogenic fungus Colletotrichum trifolii; short chitin oligomers (acknowledged AM fungal signals and long chitin oligomers (as activators of pathogenic responses. This experimental set up has revealed that AM GSE generates a strong transcriptomic response in Lotus roots with an extensive defense-related response after 24 hours and a subsequent downregulation after 48 hours. A similar subset of defense-related genes resulted to be upregulated also upon treatment with C. trifolii GSE, although with an opposite trend. Surprisingly, long chitin oligomers activated both defense-like and symbiosis-related genes. Among the genes regulated in the microarray, promoter-GUS assay showed that LjMATE1 activates in epidermal cells and root hairs.

  2. Pathogens Inactivated by Low-Energy-Electron Irradiation Maintain Antigenic Properties and Induce Protective Immune Responses

    Science.gov (United States)

    Fertey, Jasmin; Bayer, Lea; Grunwald, Thomas; Pohl, Alexandra; Beckmann, Jana; Gotzmann, Gaby; Casado, Javier Portillo; Schönfelder, Jessy; Rögner, Frank-Holm; Wetzel, Christiane; Thoma, Martin; Bailer, Susanne M.; Hiller, Ekkehard; Rupp, Steffen; Ulbert, Sebastian

    2016-01-01

    Inactivated vaccines are commonly produced by incubating pathogens with chemicals such as formaldehyde or β-propiolactone. This is a time-consuming process, the inactivation efficiency displays high variability and extensive downstream procedures are often required. Moreover, application of chemicals alters the antigenic components of the viruses or bacteria, resulting in reduced antibody specificity and therefore stimulation of a less effective immune response. An alternative method for inactivation of pathogens is ionizing radiation. It acts very fast and predominantly damages nucleic acids, conserving most of the antigenic structures. However, currently used irradiation technologies (mostly gamma-rays and high energy electrons) require large and complex shielding constructions to protect the environment from radioactivity or X-rays generated during the process. This excludes them from direct integration into biological production facilities. Here, low-energy electron irradiation (LEEI) is presented as an alternative inactivation method for pathogens in liquid solutions. LEEI can be used in normal laboratories, including good manufacturing practice (GMP)- or high biosafety level (BSL)-environments, as only minor shielding is necessary. We show that LEEI efficiently inactivates different viruses (influenza A (H3N8), porcine reproductive and respiratory syndrome virus (PRRSV), equine herpesvirus 1 (EHV-1)) and bacteria (Escherichia coli) and maintains their antigenicity. Moreover, LEEI-inactivated influenza A viruses elicit protective immune responses in animals, as analyzed by virus neutralization assays and viral load determination upon challenge. These results have implications for novel ways of developing and manufacturing inactivated vaccines with improved efficacy. PMID:27886076

  3. Altered T-cell responses by the periodontal pathogen Porphyromonas gingivalis.

    Directory of Open Access Journals (Sweden)

    Hazem Khalaf

    Full Text Available Several studies support an association between the chronic inflammatory diseases periodontitis and atherosclerosis with a crucial role for the periodontal pathogen Porphyromonas gingivalis. However, the interplay between this pathogen and the adaptive immune system, including T-cells, is sparsely investigated. Here we used Jurkat T-cells to determine the effects of P. gingivalis on T-cell-mediated adaptive immune responses. We show that viable P. gingivalis targets IL-2 expression at the protein level. Initial cellular events, including ROS production and [Ca(2+](i, were elevated in response to P. gingivalis, but AP-1 and NF-κB activity dropped below basal levels and T-cells were unable to sustain stable IL-2 accumulation. IL-2 was partially restored by Leupeptin, but not by Cathepsin B Inhibitor, indicating an involvement of Rgp proteinases in the suppression of IL-2 accumulation. This was further confirmed by purified Rgp that caused a dose-dependent decrease in IL-2 levels. These results provide new insights of how this periodontal pathogen evades the host adaptive immune system by inhibiting IL-2 accumulation and thus attenuating T-cell proliferation and cellular communication.

  4. Hormonal modulation of the heat shock response: insights from fish with divergent cortisol stress responses

    DEFF Research Database (Denmark)

    LeBlanc, Sacha; Höglund, Erik; Gilmour, Kathleen M.

    2012-01-01

    shock response, we capitalized on two lines of rainbow trout specifically bred for their high (HR) and low (LR) cortisol response to stress. We predicted that LR fish, with a low cortisol but high catecholamine response to stress, would induce higher levels of HSPs after acute heat stress than HR trout....... We found that HR fish have significantly higher increases in both catecholamines and cortisol compared with LR fish, and LR fish had no appreciable stress hormone response to heat shock. This unexpected finding prevented further interpretation of the hormonal modulation of the heat shock response...

  5. DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis.

    Science.gov (United States)

    Le, Tuan-Ngoc; Schumann, Ulrike; Smith, Neil A; Tiwari, Sameer; Au, Phil Chi Khang; Zhu, Qian-Hao; Taylor, Jennifer M; Kazan, Kemal; Llewellyn, Danny J; Zhang, Ren; Dennis, Elizabeth S; Wang, Ming-Bo

    2014-09-17

    DNA demethylases regulate DNA methylation levels in eukaryotes. Arabidopsis encodes four DNA demethylases, DEMETER (DME), REPRESSOR OF SILENCING 1 (ROS1), DEMETER-LIKE 2 (DML2), and DML3. While DME is involved in maternal specific gene expression during seed development, the biological function of the remaining DNA demethylases remains unclear. We show that ROS1, DML2, and DML3 play a role in fungal disease resistance in Arabidopsis. A triple DNA demethylase mutant, rdd (ros1 dml2 dml3), shows increased susceptibility to the fungal pathogen Fusarium oxysporum. We identify 348 genes differentially expressed in rdd relative to wild type, and a significant proportion of these genes are downregulated in rdd and have functions in stress response, suggesting that DNA demethylases maintain or positively regulate the expression of stress response genes required for F. oxysporum resistance. The rdd-downregulated stress response genes are enriched for short transposable element sequences in their promoters. Many of these transposable elements and their surrounding sequences show localized DNA methylation changes in rdd, and a general reduction in CHH methylation, suggesting that RNA-directed DNA methylation (RdDM), responsible for CHH methylation, may participate in DNA demethylase-mediated regulation of stress response genes. Many of the rdd-downregulated stress response genes are downregulated in the RdDM mutants nrpd1 and nrpe1, and the RdDM mutants nrpe1 and ago4 show enhanced susceptibility to F. oxysporum infection. Our results suggest that a primary function of DNA demethylases in plants is to regulate the expression of stress response genes by targeting promoter transposable element sequences.

  6. Plant Core Environmental Stress Response Genes Are Systemically Coordinated during Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Kenneth W. Berendzen

    2013-04-01

    Full Text Available Studying plant stress responses is an important issue in a world threatened by global warming. Unfortunately, comparative analyses are hampered by varying experimental setups. In contrast, the AtGenExpress abiotic stress experiment displays intercomparability. Importantly, six of the nine stresses (wounding, genotoxic, oxidative, UV-B light, osmotic and salt can be examined for their capacity to generate systemic signals between the shoot and root, which might be essential to regain homeostasis in Arabidopsis thaliana. We classified the systemic responses into two groups: genes that are regulated in the non-treated tissue only are defined as type I responsive and, accordingly, genes that react in both tissues are termed type II responsive. Analysis of type I and II systemic responses suggest distinct functionalities, but also significant overlap between different stresses. Comparison with salicylic acid (SA and methyl-jasmonate (MeJA responsive genes implies that MeJA is involved in the systemic stress response. Certain genes are predominantly responding in only one of the categories, e.g., WRKY genes respond mainly non-systemically. Instead, genes of the plant core environmental stress response (PCESR, e.g., ZAT10, ZAT12, ERD9 or MES9, are part of different response types. Moreover, several PCESR genes switch between the categories in a stress-specific manner.

  7. Local induction of IgT responses to pathogens and microbiota in the gill of rainbow trout

    DEFF Research Database (Denmark)

    Xu, Zhen; Parra, David; Takizawa, Fumio

    Gas exchange structures are critical for acquiring oxygen, but hey also represent portals for pathogen entry. Local mucosal immunoglobulin (Ig) responses against pathogens in specialized respiratory organshave only been described in tetrapods. We have previously shown that IgT is an Ig specialize...

  8. Linking ecology and epidemiology to understand predictors of multi-host responses to an emerging pathogen, the amphibian chytrid fungus

    Science.gov (United States)

    Stephanie S. Gervasi; Patrick R. Stephens; Jessica Hua; Catherine L. Searle; Gisselle Yang Xie; Jenny Urbina; Deanna H. Olson; Betsy A. Bancroft; Virginia Weis; John I. Hammond; Rick A. Relyea; Andrew R. Blaustein; Stefan Lötters

    2017-01-01

    Variation in host responses to pathogens can have cascading effects on populations and communities when some individuals or groups of individuals display disproportionate vulnerability to infection or differ in their competence to transmit infection. The fungal pathogen, Batrachochytrium dendrobatidis (Bd) has been detected in almost 700 different...

  9. Stress Generation and Adolescent Depression: Contribution of Interpersonal Stress Responses

    Science.gov (United States)

    Flynn, Megan; Rudolph, Karen D.

    2011-01-01

    This research examined the proposal that ineffective responses to common interpersonal problems disrupt youths' relationships, which, in turn, contributes to depression during adolescence. Youth (86 girls, 81 boys; M age = 12.41, SD = 1.19) and their primary female caregivers participated in a three-wave longitudinal study. Youth completed a…

  10. Oxidative stress response after laparoscopic versus conventional sigmoid resection

    DEFF Research Database (Denmark)

    Madsen, Michael Tvilling; Kücükakin, Bülent; Lykkesfeldt, Jens

    2012-01-01

    Surgery is accompanied by a surgical stress response, which results in increased morbidity and mortality. Oxidative stress is a part of the surgical stress response. Minimally invasive laparoscopic surgery may result in reduced oxidative stress compared with open surgery. Nineteen patients...... scheduled for sigmoid resection were randomly allocated to open or laparoscopic sigmoid resection in a double-blind, prospective clinical trial. Three biochemical markers of oxidative stress (malondialdehyde, ascorbic acid, and dehydroascorbic acid) were measured at 6 different time points (preoperatively......, 1 h, 6 h, 24 h, 48 h, and 72 h postoperatively). There were no statistical significant differences between laparoscopic and open surgery for any of the 3 oxidative stress parameters. Malondialdehyde was reduced 1 hour postoperatively (P...

  11. Utilization of Different Omic Approaches to Unravel Stress Response Mechanisms in the Parasite Entamoeba histolytica

    Directory of Open Access Journals (Sweden)

    Shruti Nagaraja

    2018-02-01

    Full Text Available During its life cycle, the unicellular parasite Entamoeba histolytica is challenged by a wide variety of environmental stresses, such as fluctuation in glucose concentration, changes in gut microbiota composition, and the release of oxidative and nitrosative species from neutrophils and macrophages. The best mode of survival for this parasite is to continuously adapt itself to the dynamic environment of the host. Our ability to study the stress-induced responses and adaptive mechanisms of this parasite has been transformed through the development of genomics, proteomics or metabolomics (omics sciences. These studies provide insights into different facets of the parasite's behavior in the host. However, there is a dire need for multi-omics data integration to better understand its pathogenic nature, ultimately paving the way to identify new chemotherapeutic targets against amebiasis. This review provides an integration of the most relevant omics information on the mechanisms that are used by E. histolytica to resist environmental stresses.

  12. Plant transcriptomics and responses to environmental stress

    Indian Academy of Sciences (India)

    Atta-ur-Rehman School of Applied Biosciences, National University of Sciences and Technology, H-12 Campus, Islamabad 25000, Pakistan; Stress Physiology Lab Department of Botany, Jiwaji University, Gwalior 474 011, India; Centre for Environmental Research, Near East University, 33010, Lefkosha, Turkish Republic ...

  13. ANALYSIS OF IMMUNE RESPONSES ON TRANSGENIC TIGER SHRIMP (Penaeus monodon AGAINST PATHOGENIC BACTERIUM Vibrio harveyi

    Directory of Open Access Journals (Sweden)

    Andi Parenrengi

    2014-06-01

    Full Text Available Vibriosis is one of main diseases of the black tiger shrimp Penaeus monodon infected by pathogenic bioluminous bacterium Vibrio harveyi that can cause mass mortalities in shrimp culture. The bacteria can also trigger the disease white spot syndrome virus (WSSV. An effort to produce shrimp disease-resistant strains has been done through transgenesis technology with antiviral gene transfection. By this technology, it is expected an increase in the immune response of shrimp in a variety of diseasecausing pathogens. This study aimed to determine the immune responses (total haemocytes, haemocyte differentiation, and phenoloxydase activity of transgenic tiger shrimp against pathogenic bacterium V. harveyi. Research using completely randomized design, which consists of two treatments and three replications. Test animals being used were transgenic and non-transgenic shrimp with size, weight 3.93±1.25 g and a total length of 7.59±0.87 cm. Treatments being tested were the injection of bacterium V. harveyi (density of 5x106 cfu/mL of 0.1 mL/individual on transgenic (A and non-transgenic shrimp (B. Immune response parameters such as total haemocytes, haemocyte differentiation, and phenoloxydase activity were observed on day 1, 3, and 6 days after challenging. Data were analyzed using t-test by SPSS software. The results showed that the total haemocyte of transgenic shrimp was not significantly different (P>0.05 from non-transgenic shrimp, but haemocyte differentiation and phenoloxydase activity were significantly different (P<0.05 especially on sixth days after being exposed to the bioluminescent bacteria. The study results implied that transgenic shrimp has a better immune response compared than non-transgenic shrimp.

  14. Incorporating risk communication into highly pathogenic avian influenza preparedness and response efforts.

    Science.gov (United States)

    Voss, Shauna J; Malladi, Sasidhar; Sampedro, Fernando; Snider, Tim; Goldsmith, Timothy; Hueston, William D; Lauer, Dale C; Halvorson, David A

    2012-12-01

    A highly pathogenic avian influenza (HPAI) outbreak in the United States will initiate a federal emergency response effort that will consist of disease control and eradication efforts, including quarantine and movement control measures. These movement control measures will not only apply to live animals but also to animal products. However, with current egg industry "just-in-time" production practices, limited storage is available to hold eggs. As a result, stop movement orders can have significant unintended negative consequences, including severe disruptions to the food supply chain. Because stakeholders' perceptions of risk vary, waiting to initiate communication efforts until an HPAI event occurs can hinder disease control efforts, including the willingness of producers to comply with the response, and also can affect consumers' demand for the product. A public-private-academic partnership was formed to assess actual risks involved in the movement of egg industry products during an HPAI event through product specific, proactive risk assessments. The risk analysis process engaged a broad representation of stakeholders and promoted effective risk management and communication strategies before an HPAI outbreak event. This multidisciplinary team used the risk assessments in the development of the United States Department of Agriculture, Highly Pathogenic Avian Influenza Secure Egg Supply Plan, a comprehensive response plan that strives to maintain continuity of business. The collaborative approach that was used demonstrates how a proactive risk communication strategy that involves many different stakeholders can be valuable in the development of a foreign animal disease response plan and build working relationships, trust, and understanding.

  15. TLR-dependent human mucosal epithelial cell responses to microbial pathogens.

    Directory of Open Access Journals (Sweden)

    Paola eMassari

    2014-08-01

    Full Text Available AbstractToll-Like Receptor (TLR signaling represents one of the best studied pathways to implement defense mechanisms against invading microbes in humans as well as in animals. TLRs respond to specific microbial ligands and to danger signals produced by the host during infection, and initiate downstream cascades that activate both innate and adaptive immunity. TLRs are expressed by professional immune cells and by the large majority of non-hematopoietic cells, including epithelial cells. In epithelial tissues, TLR functions are particularly important because these sites are constantly exposed to microorganisms, due to their location at the host interface with the environment. While at these sites, specific defense mechanisms and inflammatory responses are initiated via TLR signaling against pathogens, suppression or lack of TLR activation is also observed in response to the commensal microbiota. The mechanisms by which TLR signaling is regulated in mucosal epithelial cells include differential expression and levels of TLRs (and their signaling partners, their cellular localization and positioning within the tissue in a fashion that favors responses to pathogens while dampening responses to commensals and maintaining tissue homeostasis in physiologic conditions. In this review, the expression and activation of TLRs in mucosal epithelial cells of several sites of the human body are examined. Specifically, the oral cavity, the ear canal and eye, the airways, the gut and the reproductive tract are discussed, along with how site-specific host defense mechanisms are implemented via TLR signaling.

  16. Conserved Responses in a War of Small Molecules between a Plant-Pathogenic Bacterium and Fungi.

    Science.gov (United States)

    Spraker, Joseph E; Wiemann, Philipp; Baccile, Joshua A; Venkatesh, Nandhitha; Schumacher, Julia; Schroeder, Frank C; Sanchez, Laura M; Keller, Nancy P

    2018-05-22

    Small-molecule signaling is one major mode of communication within the polymicrobial consortium of soil and rhizosphere. While microbial secondary metabolite (SM) production and responses of individual species have been studied extensively, little is known about potentially conserved roles of SM signals in multilayered symbiotic or antagonistic relationships. Here, we characterize the SM-mediated interaction between the plant-pathogenic bacterium Ralstonia solanacearum and the two plant-pathogenic fungi Fusarium fujikuroi and Botrytis cinerea We show that cellular differentiation and SM biosynthesis in F. fujikuroi are induced by the bacterially produced lipopeptide ralsolamycin (synonym ralstonin A). In particular, fungal bikaverin production is induced and preferentially accumulates in fungal survival spores (chlamydospores) only when exposed to supernatants of ralsolamycin-producing strains of R. solanacearum Although inactivation of bikaverin biosynthesis moderately increases chlamydospore invasion by R. solanacearum , we show that other metabolites such as beauvericin are also induced by ralsolamycin and contribute to suppression of R. solanacearum growth in vitro Based on our findings that bikaverin antagonizes R. solanacearum and that ralsolamycin induces bikaverin biosynthesis in F. fujikuroi , we asked whether other bikaverin-producing fungi show similar responses to ralsolamycin. Examining a strain of B. cinerea that horizontally acquired the bikaverin gene cluster from Fusarium , we found that ralsolamycin induced bikaverin biosynthesis in this fungus. Our results suggest that conservation of microbial SM responses across distantly related fungi may arise from horizontal transfer of protective gene clusters that are activated by conserved regulatory cues, e.g., a bacterial lipopeptide, providing consistent fitness advantages in dynamic polymicrobial networks. IMPORTANCE Bacteria and fungi are ubiquitous neighbors in many environments, including

  17. The relationship between personality and the response to acute psychological stress

    NARCIS (Netherlands)

    Xin, Yuanyuan; Wu, Jianhui; Yao, Zhuxi; Guan, Qing; Aleman, Andre; Luo, Yuejia

    2017-01-01

    The present study examined the relationship between personality traits and the response to acute psychological stress induced by a standardized laboratory stress induction procedure (the Trier Social Stress Test, TSST). The stress response was measured with a combination of cardiovascular

  18. Cell Wall Metabolism in Response to Abiotic Stress

    Science.gov (United States)

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  19. Effects of co-occurring Wolbachia and Spiroplasma endosymbionts on the Drosophila immune response against insect pathogenic and non-pathogenic bacteria.

    Science.gov (United States)

    Shokal, Upasana; Yadav, Shruti; Atri, Jaishri; Accetta, Julia; Kenney, Eric; Banks, Katherine; Katakam, Akash; Jaenike, John; Eleftherianos, Ioannis

    2016-02-09

    Symbiotic interactions between microbes and animals are common in nature. Symbiotic organisms are particularly common in insects and, in some cases, they may protect their hosts from pathogenic infections. Wolbachia and Spiroplasma endosymbionts naturally inhabit various insects including Drosophila melanogaster fruit flies. Therefore, this symbiotic association is considered an excellent model to investigate whether endosymbiotic bacteria participate in host immune processes against certain pathogens. Here we have investigated whether the presence of Wolbachia alone or together with Spiroplasma endosymbionts in D. melanogaster adult flies affects the immune response against the virulent insect pathogen Photorhabdus luminescens and against non-pathogenic Escherichia coli bacteria. We found that D. melanogaster flies carrying no endosymbionts, those carrying both Wolbachia and Spiroplasma, and those containing Wolbachia only had similar survival rates after infection with P. luminescens or Escherichia coli bacteria. However, flies carrying both endosymbionts or Wolbachia only contained higher numbers of E. coli cells at early time-points post infection than flies without endosymbiotic bacteria. Interestingly, flies containing Wolbachia only had lower titers of this endosymbiont upon infection with the pathogen P. luminescens than uninfected flies of the same strain. We further found that the presence of Wolbachia and Spiroplasma in D. melanogaster up-regulated certain immune-related genes upon infection with P. luminescens or E. coli bacteria, but it failed to alter the phagocytic ability of the flies toward E. coli inactive bioparticles. Our results suggest that the presence of Wolbachia and Spiroplasma in D. melanogaster can modulate immune signaling against infection by certain insect pathogenic and non-pathogenic bacteria. Results from such studies are important for understanding the molecular basis of the interactions between endosymbiotic bacteria of insects

  20. Review of Signal Crosstalk in Plant Stress Responses

    Science.gov (United States)

    This book was prepared to summarize the current understanding of the dynamics of plant response to biotic and abiotic stresses. The preface of the book sets the stage for the contents of the different chapters by outlining that plants defend themselves from various environmental stresses through a v...

  1. Cellular stress responses for monitoring and modulating ageing

    DEFF Research Database (Denmark)

    Demirovic, Dino; Schnebert, Sylvianne; Nizard, Carine

    2013-01-01

    biochemical methods, detecting one or more proteins exclusively involved in the specific stress response pathways. The results indicate that the ageing phenotype is a result of an ineffective probability for cells to respond to stress. http://dx.doi.org/10.1016/j.freeradbiomed.2013.08.023...

  2. Personality, Stressful Life Events, and Treatment Response in Major Depression

    Science.gov (United States)

    Bulmash, Eric; Harkness, Kate L.; Stewart, Jeremy G.; Bagby, R. Michael

    2009-01-01

    The current study examined whether the personality traits of self-criticism or dependency moderated the effect of stressful life events on treatment response. Depressed outpatients (N = 113) were randomized to 16 weeks of cognitive-behavioral therapy, interpersonal psychotherapy, or antidepressant medication (ADM). Stressful life events were…

  3. Psychological and hormonal stress response patterns during a blood donation

    NARCIS (Netherlands)

    Hoogerwerf, M. D.; Veldhuizen, I. J. T.; Merz, E.-M.; de Kort, W. L. A. M.; Frings-Dresen, M. H. W.; Sluiter, J. K.

    2017-01-01

    Background and ObjectivesDonating blood has been associated with increased stress responses, with scarce evidence indicating that levels of psychological and hormonal stress are higher pre-donation than post-donation. We investigated whether a blood donation induces psychological and/or hormonal

  4. Differentiating anticipatory from reactive cortisol responses to psychosocial stress

    NARCIS (Netherlands)

    Engert, V.; Efanov, S.I.; Duchesne, A.; Vogel, S.; Corbo, V.; Pruessner, J.C.

    2013-01-01

    Most psychosocial stress studies assess the overall cortisol response without further identifying the temporal dynamics within hormone levels. It has been shown, however, that the amplitude of anticipatory cortisol stress levels has a unique predictive value for psychological health. So far, no

  5. The Impact of Phaeomoniella chlamydospora Infection on the Grapevine's Physiological Response to Water Stress - Part 2 : Cabernet Sauvignon and Chardonnay

    Directory of Open Access Journals (Sweden)

    J. Edwards

    2007-04-01

    Full Text Available Phaeomoniella chlamydospora is a vascular pathogen that colonises the xylem tissues of the grapevine. It is associated with the diseases, esca and Petri disease, often considered to be ‘stress-related’ diseases. In glasshouse experiments using Cabernet Sauvignon and Chardonnay, stomatal conductance was higher in infected plants, implying that infection interferes with stomatal control. In Cabernet Sauvignon, leaf water potentials were lower in infected plants subjected to water stress, indicating that infection made it more difficult for the vine to get water to the leaf. This was less apparent in Chardonnay. Clearly, infection alters the grapevine response to water stress and some cultivars are affected more than others.

  6. Plant responsiveness to root-root communication of stress cues.

    Science.gov (United States)

    Falik, Omer; Mordoch, Yonat; Ben-Natan, Daniel; Vanunu, Miriam; Goldstein, Oron; Novoplansky, Ariel

    2012-07-01

    Phenotypic plasticity is based on the organism's ability to perceive, integrate and respond to multiple signals and cues informative of environmental opportunities and perils. A growing body of evidence demonstrates that plants are able to adapt to imminent threats by perceiving cues emitted from their damaged neighbours. Here, the hypothesis was tested that unstressed plants are able to perceive and respond to stress cues emitted from their drought- and osmotically stressed neighbours and to induce stress responses in additional unstressed plants. Split-root Pisum sativum, Cynodon dactylon, Digitaria sanguinalis and Stenotaphrum secundatum plants were subjected to osmotic stress or drought while sharing one of their rooting volumes with an unstressed neighbour, which in turn shared its other rooting volume with additional unstressed neighbours. Following the kinetics of stomatal aperture allowed testing for stress responses in both the stressed plants and their unstressed neighbours. In both P. sativum plants and the three wild clonal grasses, infliction of osmotic stress or drought caused stomatal closure in both the stressed plants and in their unstressed neighbours. While both continuous osmotic stress and drought induced prolonged stomatal closure and limited acclimation in stressed plants, their unstressed neighbours habituated to the stress cues and opened their stomata 3-24 h after the beginning of stress induction. The results demonstrate a novel type of plant communication, by which plants might be able to increase their readiness to probable future osmotic and drought stresses. Further work is underway to decipher the identity and mode of operation of the involved communication vectors and to assess the potential ecological costs and benefits of emitting and perceiving drought and osmotic stress cues under various ecological scenarios.

  7. Survival after pathogen exposure in group-living insects: don't forget the stress of social isolation!

    Science.gov (United States)

    Kohlmeier, P; Holländer, K; Meunier, J

    2016-09-01

    A major cost of group-living is its inherent risk of pathogen infection. To limit this risk, many group-living animals have developed the capability to prophylactically boost their immune system in the presence of group members and/or to mount collective defences against pathogens. These two phenomena, called density-dependent prophylaxis and social immunity, respectively, are often used to explain why, in group-living species, individuals survive better in groups than in isolation. However, this survival difference may also reflect an alternative and often overlooked process: a cost of social isolation on individuals' capability to fight against infections. Here, we disentangled the effects of density-dependent prophylaxis, social immunity and stress of social isolation on the survival after pathogen exposure in group-living adults of the European earwig Forficula auricularia. By manipulating the presence of group members both before and after pathogen exposure, we demonstrated that the cost of being isolated after infection, but not the benefits of social immunity or density-dependent prophylaxis, explained the survival of females. Specifically, females kept constantly in groups or constantly isolated had higher survival rates than females that were first in groups and then isolated after infection. Our results also showed that this cost of social isolation was absent in males and that social isolation did not reduce the survival of noninfected individuals. Overall, this study gives a new perspective on the role of pathogens in social evolution, as it suggests that an apparently nonadaptive, personal immune process may promote the maintenance of group-living under pathogenic environments. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  8. Understanding the Posttranscriptional Regulation of Plant Responses to Abiotic Stress

    KAUST Repository

    Alshareef, Sahar

    2017-01-01

    Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and biotic and abiotic stresses

  9. Psychological distress, cortisol stress response and subclinical coronary calcification

    NARCIS (Netherlands)

    Seldenrijk, A.; Hamer, M.; Lahiri, A.; Penninx, B.W.J.H.; Steptoe, A.

    2012-01-01

    Objectives: Poor mental health has been associated with coronary heart disease (CHD). One hypothesized underlying mechanism is hypothalamus pituitary adrenal axis dysfunction. We examined the associations between psychological distress, cortisol response to laboratory-induced mental stress and

  10. Plant natriuretic peptides are apoplastic and paracrine stress response molecules

    KAUST Repository

    Wang, Yuhua; Gehring, Christoph A; Irving, Helen R.

    2011-01-01

    plant stress responses and that, much like in animals, peptide signaling molecules can create diverse and modular signals essential for growth, development and defense under rapidly changing environmental conditions. © 2011 The Author.

  11. Stress responses during ageing: molecular pathways regulating protein homeostasis.

    Science.gov (United States)

    Kyriakakis, Emmanouil; Princz, Andrea; Tavernarakis, Nektarios

    2015-01-01

    The ageing process is characterized by deterioration of physiological function accompanied by frailty and ageing-associated diseases. The most broadly and well-studied pathways influencing ageing are the insulin/insulin-like growth factor 1 signaling pathway and the dietary restriction pathway. Recent studies in diverse organisms have also delineated emerging pathways, which collectively or independently contribute to ageing. Among them the proteostatic-stress-response networks, inextricably affect normal ageing by maintaining or restoring protein homeostasis to preserve proper cellular and organismal function. In this chapter, we survey the involvement of heat stress and endoplasmic reticulum stress responses in the regulation of longevity, placing emphasis on the cross talk between different response mechanisms and their systemic effects. We further discuss novel insights relevant to the molecular pathways mediating these stress responses that may facilitate the development of innovative interventions targeting age-related pathologies such as diabetes, cancer, cardiovascular and neurodegenerative diseases.

  12. Herboxidiene triggers splicing repression and abiotic stress responses in plants

    KAUST Repository

    Alshareef, Sahar; Ling, Yu; Butt, Haroon; Mariappan, Kiruthiga G.; Benhamed, Moussa; Mahfouz, Magdy M.

    2017-01-01

    Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and stresses. Small

  13. ABA signaling in stress-response and seed development.

    Science.gov (United States)

    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2013-07-01

    KEY MESSAGE : We review the recent progress on ABA signaling, especially ABA signaling for ABA-dependent gene expression, including the AREB/ABF regulon, SnRK2 protein kinase, 2C-type protein phosphatases and ABA receptors. Drought negatively impacts plant growth and the productivity of crops. Drought causes osmotic stress to organisms, and the osmotic stress causes dehydration in plant cells. Abscisic acid (ABA) is produced under osmotic stress conditions, and it plays an important role in the stress response and tolerance of plants. ABA regulates many genes under osmotic stress conditions. It also regulates gene expression during seed development and germination. The ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. ABRE-binding protein (AREB)/ABRE-binding factor (ABF) transcription factors (TFs) regulate ABRE-dependent gene expression. Other TFs are also involved in ABA-responsive gene expression. SNF1-related protein kinases 2 are the key regulators of ABA signaling including the AREB/ABF regulon. Recently, ABA receptors and group A 2C-type protein phosphatases were shown to govern the ABA signaling pathway. Moreover, recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress-response and seed development. The control of the expression of ABA signaling factors may improve tolerance to environmental stresses.

  14. Insights into resistome and stress responses genes in Bubalus bubalis rumen through metagenomic analysis.

    Science.gov (United States)

    Reddy, Bhaskar; Singh, Krishna M; Patel, Amrutlal K; Antony, Ancy; Panchasara, Harshad J; Joshi, Chaitanya G

    2014-10-01

    Buffalo rumen microbiota experience variety of diets and represents a huge reservoir of mobilome, resistome and stress responses. However, knowledge of metagenomic responses to such conditions is still rudimentary. We analyzed the metagenomes of buffalo rumen in the liquid and solid phase of the rumen biomaterial from river buffalo adapted to varying proportion of concentrate to green or dry roughages, using high-throughput sequencing to know the occurrence of antibiotics resistance genes, genetic exchange between bacterial population and environmental reservoirs. A total of 3914.94 MB data were generated from all three treatments group. The data were analysed with Metagenome rapid annotation system tools. At phyla level, Bacteroidetes were dominant in all the treatments followed by Firmicutes. Genes coding for functional responses to stress (oxidative stress and heat shock proteins) and resistome genes (resistance to antibiotics and toxic compounds, phages, transposable elements and pathogenicity islands) were prevalent in similar proportion in liquid and solid fraction of rumen metagenomes. The fluoroquinolone resistance, MDR efflux pumps and Methicillin resistance genes were broadly distributed across 11, 9, and 14 bacterial classes, respectively. Bacteria responsible for phages replication and prophages and phage packaging and rlt-like streptococcal phage genes were mostly assigned to phyla Bacteroides, Firmicutes and proteaobacteria. Also, more reads matching the sigma B genes were identified in the buffalo rumen. This study underscores the presence of diverse mechanisms of adaptation to different diet, antibiotics and other stresses in buffalo rumen, reflecting the proportional representation of major bacterial groups.

  15. Comparative transcriptome profiling of chilling stress responsiveness in grafted watermelon seedlings.

    Science.gov (United States)

    Xu, Jinhua; Zhang, Man; Liu, Guang; Yang, Xingping; Hou, Xilin

    2016-12-01

    Rootstock grafting may improve the resistance of watermelon plants to low temperatures. However, information regarding the molecular responses of rootstock grafted plants to chilling stress is limited. To elucidate the molecular mechanisms of chilling tolerance in grafted plants, the transcriptomic responses of grafted watermelon under chilling stress were analyzed using RNA-seq analysis. Sequencing data were used for digital gene expression (DGE) analysis to characterize the transcriptomic responses in grafted watermelon seedlings. A total of 702 differentially-expressed genes (DEGs) were found in rootstock grafted (RG) watermelon relative to self-grafted (SG) watermelon; among these genes, 522 genes were up-regulated and 180 were down-regulated. Additionally, 164 and 953 genes were found to specifically expressed in RG and SG seedlings under chilling stress, respectively. Functional annotations revealed that up-regulated DEGs are involved in protein processing, plant-pathogen interaction and the spliceosome, whereas down-regulated DEGs are associated with photosynthesis. Moreover, 13 DEGs were randomly selected for quantitative real time PCR (qRT-PCR) analysis. The expression profiles of these 13 DEGs were consistent with those detected by the DGE analysis, supporting the reliability of the DGE data. This work provides additional insight into the molecular basis of grafted watermelon responses to chilling stress. Copyright © 2016. Published by Elsevier Masson SAS.

  16. Plant Responses to Abiotic Stress Regulated by Histone Deacetylases

    Directory of Open Access Journals (Sweden)

    Ming Luo

    2017-12-01

    Full Text Available In eukaryotic cells, histone acetylation and deacetylation play an important role in the regulation of gene expression. Histone acetylation levels are modulated by histone acetyltransferases and histone deacetylases (HDACs. Recent studies indicate that HDACs play essential roles in the regulation of gene expression in plant response to environmental stress. In this review, we discussed the recent advance regarding the plant HDACs and their functions in the regulation of abiotic stress responses. The role of HDACs in autophagy was also discussed.

  17. Stress Response and Artemisinin Resistance in Malaria Parasite

    Science.gov (United States)

    2017-07-01

    AWARD NUMBER: W81XWH-16-1-0241 TITLE: Stress Response and Artemisinin Resistance in Malaria Parasite PRINCIPAL INVESTIGATOR: Juan C. Pizarro...SUBTITLE Stress Response and Artemisinin Resistance in Malaria Parasite 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0241 5c. PROGRAM ELEMENT...13. SUPPLEMENTARY NOTES 14. ABSTRACT In malaria , drug resistance is a major treat to disease control efforts. Unfortunately, there is a significant

  18. In silico analysis of cacao (Theobroma cacao L.) genes that involved in pathogen and disease responses

    Science.gov (United States)

    Agung, Muhammad Budi; Budiarsa, I. Made; Suwastika, I. Nengah

    2017-02-01

    Cocoa bean is one of the main commodities from Indonesia for the world, which still have problem regarding yield degradation due to pathogens and disease attack. Developing robust cacao plant that genetically resistant to pathogen and disease attack is an ideal solution in over taking on this problem. The aim of this study was to identify Theobroma cacao genes on database of cacao genome that homolog to response genes of pathogen and disease attack in other plant, through in silico analysis. Basic information survey and gene identification were performed in GenBank and The Arabidopsis Information Resource database. The In silico analysis contains protein BLAST, homology test of each gene's protein candidates, and identification of homologue gene in Cacao Genome Database using data source "Theobroma cacao cv. Matina 1-6 v1.1" genome. Identification found that Thecc1EG011959t1 (EDS1), Thecc1EG006803t1 (EDS5), Thecc1EG013842t1 (ICS1), and Thecc1EG015614t1 (BG_PPAP) gene of Cacao Genome Database were Theobroma cacao genes that homolog to plant's resistance genes which highly possible to have similar functions of each gene's homologue gene.

  19. When does stress help or harm? The effects of stress controllability and subjective stress response on stroop performance.

    Science.gov (United States)

    Henderson, Roselinde K; Snyder, Hannah R; Gupta, Tina; Banich, Marie T

    2012-01-01

    The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, research suggests that the impact of stress on cognitive functioning depends on an individual's response to stressors: moderate responses to stress can lead to improved performance while extreme (high or low) responses can lead to impaired performance. The present studies tested the hypothesis that (1) learning to behaviorally control stressors leads to improved performance on a test of general executive functioning, the color-word Stroop, and that (2) this improvement emerges specifically for people who report moderate (subjective) responses to stress. Experiment 1: Stroop performance, measured before and after a stress manipulation, was compared across groups of undergraduate participants (n = 109). People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest reduction in Stroop interference. In contrast, in the group exposed to uncontrollable events, self-reported stress failed to predict performance. Experiment 2: In a second sample (n = 90), we specifically investigated the role of controllability by keeping the rate of failure feedback constant across groups. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest Stroop

  20. Context and strain-dependent behavioral response to stress

    Directory of Open Access Journals (Sweden)

    Baum Amber E

    2008-06-01

    Full Text Available Abstract Background This study posed the question whether strain differences in stress-reactivity lead to differential behavioral responses in two different tests of anxiety. Strain differences in anxiety-measures are known, but strain differences in the behavioral responses to acute prior stress are not well characterized. Methods We studied male Fisher 344 (F344 and Wistar Kyoto (WKY rats basally and immediately after one hour restraint stress. To distinguish between the effects of novelty and prior stress, we also investigated behavior after repeated exposure to the test chamber. Two behavioral tests were explored; the elevated plus maze (EPM and the open field (OFT, both of which are thought to measure activity, exploration and anxiety-like behaviors. Additionally, rearing, a voluntary behavior, and grooming, a relatively automatic, stress-responsive stereotyped behavior were measured in both tests. Results Prior exposure to the test environment increased anxiety-related measures regardless of prior stress, reflecting context-dependent learning process in both tests and strains. Activity decreased in response to repeated testing in both tests and both strains, but prior stress decreased activity only in the OFT which was reversed by repeated testing. Prior stress decreased anxiety-related measures in the EPM, only in F344s, while in the OFT, stress led to increased freezing mainly in WKYs. Conclusion Data suggest that differences in stressfulness of these tests predict the behavior of the two strains of animals according to their stress-reactivity and coping style, but that repeated testing can overcome some of these differences.

  1. Responses to Fiscal Stress: A Comparative Analysis

    Science.gov (United States)

    2013-12-01

    of “a significant decline in market share by the middle of the 20th century as travelers and shippers turned increasingly to airlines, trucks, and...1995). Intercity passenger rail: Financial and operating conditions threaten Amtrak’s long-term viability (GAO-95-71). Washington, DC: U.S...I. (1980). Retrenchment and flexibility in public organizations. Fiscal Stress and Public Policy, 159–178. Scheinberg, P. F. (1998). Intercity

  2. Cortisol responsiveness to stress in channel catfish influences susceptibility to Edwardsiella ictaluri

    Science.gov (United States)

    Stress is unavoidable in aquaculture and hence strains of fish that are resilient and adaptable to stress need to be developed. Past studies have demonstrated that fish subjected to handling stress or poor water quality had reduced ability to resist pathogens. Cortisol is the primary stress hormone...

  3. Stress and Bronchodilator Response in Children with Asthma.

    Science.gov (United States)

    Brehm, John M; Ramratnam, Sima K; Tse, Sze Man; Croteau-Chonka, Damien C; Pino-Yanes, Maria; Rosas-Salazar, Christian; Litonjua, Augusto A; Raby, Benjamin A; Boutaoui, Nadia; Han, Yueh-Ying; Chen, Wei; Forno, Erick; Marsland, Anna L; Nugent, Nicole R; Eng, Celeste; Colón-Semidey, Angel; Alvarez, María; Acosta-Pérez, Edna; Spear, Melissa L; Martinez, Fernando D; Avila, Lydiana; Weiss, Scott T; Soto-Quiros, Manuel; Ober, Carole; Nicolae, Dan L; Barnes, Kathleen C; Lemanske, Robert F; Strunk, Robert C; Liu, Andrew; London, Stephanie J; Gilliland, Frank; Sleiman, Patrick; March, Michael; Hakonarson, Hakon; Duan, Qing Ling; Kolls, Jay K; Fritz, Gregory K; Hu, Donglei; Fani, Negar; Stevens, Jennifer S; Almli, Lynn M; Burchard, Esteban G; Shin, Jaemin; McQuaid, Elizabeth L; Ressler, Kerry; Canino, Glorisa; Celedón, Juan C

    2015-07-01

    Stress is associated with asthma morbidity in Puerto Ricans (PRs), who have reduced bronchodilator response (BDR). To examine whether stress and/or a gene regulating anxiety (ADCYAP1R1) is associated with BDR in PR and non-PR children with asthma. This was a cross-sectional study of stress and BDR (percent change in FEV1 after BD) in 234 PRs ages 9-14 years with asthma. We assessed child stress using the Checklist of Children's Distress Symptoms, and maternal stress using the Perceived Stress Scale. Replication analyses were conducted in two cohorts. Polymorphisms in ADCYAP1R1 were genotyped in our study and six replication studies. Multivariable models of stress and BDR were adjusted for age, sex, income, environmental tobacco smoke, and use of inhaled corticosteroids. High child stress was associated with reduced BDR in three cohorts. PR children who were highly stressed (upper quartile, Checklist of Children's Distress Symptoms) and whose mothers had high stress (upper quartile, Perceived Stress Scale) had a BDR that was 10.2% (95% confidence interval, 6.1-14.2%) lower than children who had neither high stress nor a highly stressed mother. A polymorphism in ADCYAP1R1 (rs34548976) was associated with reduced BDR. This single-nucleotide polymorphism is associated with reduced expression of the gene for the β2-adrenergic receptor (ADRB2) in CD4(+) lymphocytes of subjects with asthma, and it affects brain connectivity of the amygdala and the insula (a biomarker of anxiety). High child stress and an ADCYAP1R1 single-nucleotide polymorphism are associated with reduced BDR in children with asthma. This is likely caused by down-regulation of ADRB2 in highly stressed children.

  4. A rice gene of de novo origin negatively regulates pathogen-induced defense response.

    Directory of Open Access Journals (Sweden)

    Wenfei Xiao

    Full Text Available How defense genes originated with the evolution of their specific pathogen-responsive traits remains an important problem. It is generally known that a form of duplication can generate new genes, suggesting that a new gene usually evolves from an ancestral gene. However, we show that a new defense gene in plants may evolve by de novo origination, resulting in sophisticated disease-resistant functions in rice. Analyses of gene evolution showed that this new gene, OsDR10, had homologs only in the closest relative, Leersia genus, but not other subfamilies of the grass family; therefore, it is a rice tribe-specific gene that may have originated de novo in the tribe. We further show that this gene may evolve a highly conservative rice-specific function that contributes to the regulation difference between rice and other plant species in response to pathogen infections. Biologic analyses including gene silencing, pathologic analysis, and mutant characterization by transformation showed that the OsDR10-suppressed plants enhanced resistance to a broad spectrum of Xanthomonas oryzae pv. oryzae strains, which cause bacterial blight disease. This enhanced disease resistance was accompanied by increased accumulation of endogenous salicylic acid (SA and suppressed accumulation of endogenous jasmonic acid (JA as well as modified expression of a subset of defense-responsive genes functioning both upstream and downstream of SA and JA. These data and analyses provide fresh insights into the new biologic and evolutionary processes of a de novo gene recruited rapidly.

  5. Immune response in the lungs following oral immunization with bacterial lysates of respiratory pathogens.

    OpenAIRE

    Ruedl, C; Frühwirth, M; Wick, G; Wolf, H

    1994-01-01

    We have investigated the local immune response of the BALB/c mouse respiratory tract after oral immunization with a bacterial lysate of seven common respiratory pathogens. After two immunization on five consecutive days, we examined the immunoglobulin (immunoglobulin G [IgG], IgM, and IgA) secretion rates of cells isolated from the lungs and compared them with those of spleen cells of orally immunized and nonimmunized animals by using a new test system based on time-resolved fluorescence. The...

  6. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Cláudia Regina Batista de Souza

    2012-07-01

    Full Text Available Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops.

  7. Heart rate variability response to mental arithmetic stress in patients with schizophrenia Autonomic response to stress in schizophrenia

    NARCIS (Netherlands)

    Castro, Mariana N.; Vigo, Daniel E.; Weidema, Hylke; Fahrer, Rodolfo D.; Chu, Elvina M.; De Achaval, Delfina; Nogues, Martin; Leiguarda, Ramon C.; Cardinali, Daniel P.; Guinjoan, Salvador N.

    Background: The vulnerability-stress hypothesis is an established model of schizophrenia symptom formation. We sought to characterise the pattern of the cardiac autonomic response to mental arithmetic stress in patients with stable schizophrenia. Methods: We performed heart rate variability (HRV)

  8. A role for antioxidants in acclimation of marine derived pathogenic fungus (NIOCC 1) to salt stress

    Digital Repository Service at National Institute of Oceanography (India)

    Ravindran, C.; Varatharajan, G.R.; Rajasabapathy, R.; Vijayakanth, S.; HarishKumar, A.; Meena, R.M.

    stresses were analyzed and discussed for their possible role in the stress mechanism. The marine derived fungus was identified as Phialosimplex genus, which is associated with infections in dogs. Thus the present study elucidates that the scavenging...

  9. Comfort food is comforting to those most stressed: evidence of the chronic stress response network in high stress women.

    Science.gov (United States)

    Tomiyama, A Janet; Dallman, Mary F; Epel, Elissa S

    2011-11-01

    Chronically stressed rodents who are allowed to eat calorie-dense "comfort" food develop greater mesenteric fat, which in turn dampens hypothalamic-pituitary-adrenocortical (HPA) axis activity. We tested whether similar relations exist in humans, at least cross-sectionally. Fifty-nine healthy premenopausal women were exposed to a standard laboratory stressor to examine HPA response to acute stress and underwent diurnal saliva sampling for basal cortisol and response to dexamethasone administration. Based on perceived stress scores, women were divided into extreme quartiles of low versus high stress categories. We found as hypothesized that the high stress group had significantly greater BMI and sagittal diameter, and reported greater emotional eating. In response to acute lab stressor, the high stress group showed a blunted cortisol response, lower diurnal cortisol levels, and greater suppression in response to dexamethasone. These cross-sectional findings support the animal model, which suggests that long-term adaptation to chronic stress in the face of dense calories result in greater visceral fat accumulation (via ingestion of calorie-dense food), which in turn modulates HPA axis response, resulting in lower cortisol levels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Modulation of immune responses in stress by Yoga

    Directory of Open Access Journals (Sweden)

    Arora Sarika

    2008-01-01

    Full Text Available Stress is a constant factor in today′s fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary system. Various neurotransmitters, neuropeptides, hormones, and cytokines mediate these complex bidirectional interactions between the central nervous system (CNS and the immune system. The effects of stress on the immune responses result in alterations in the number of immune cells and cytokine dysregulation. Various stress management strategies such as meditation, yoga, hypnosis, and muscle relaxation have been shown to reduce the psychological and physiological effects of stress in cancers and HIV infection. This review aims to discuss the effect of stress on the immune system and examine how relaxation techniques such as Yoga and meditation could regulate the cytokine levels and hence, the immune responses during stress.

  11. Sex differences in the stress response in SD rats.

    Science.gov (United States)

    Lu, Jing; Wu, Xue-Yan; Zhu, Qiong-Bin; Li, Jia; Shi, Li-Gen; Wu, Juan-Li; Zhang, Qi-Jun; Huang, Man-Li; Bao, Ai-Min

    2015-05-01

    Sex differences play an important role in depression, the basis of which is an excessive stress response. We aimed at revealing the neurobiological sex differences in the same study in acute- and chronically-stressed rats. Female Sprague-Dawley (SD) rats were randomly divided into 6 groups: chronic unpredictable mild stress (CUMS), acute foot shock (FS) and controls, animals in all 3 groups were sacrificed in proestrus or diestrus. Male SD rats were randomly divided into 3 groups: CUMS, FS and controls. Comparisons were made of behavioral changes in CUMS and control rats, plasma levels of corticosterone (CORT), testosterone (T) and estradiol (E2), and of the hypothalamic mRNA-expression of stress-related molecules, i.e. estrogen receptor α and β, androgen receptor, aromatase, mineralocorticoid receptor, glucocorticoid receptor, corticotropin-releasing hormone, arginine vasopressin and oxytocin. CUMS resulted in disordered estrus cycles, more behavioral and hypothalamic stress-related molecules changes and a stronger CORT response in female rats compared with male rats. Female rats also showed decreased E2 and T levels after FS and CUMS, while male FS rats showed increased E2 and male CUMS rats showed decreased T levels. Stress affects the behavioral, endocrine and the molecular response of the stress systems in the hypothalamus of SD rats in a clear sexual dimorphic way, which has parallels in human data on stress and depression. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Physiological stress response patterns during a blood donation.

    Science.gov (United States)

    Hoogerwerf, M D; Veldhuizen, I J T; Tarvainen, M P; Merz, E-M; Huis In 't Veld, E M J; de Kort, W L A M; Sluiter, J K; Frings-Dresen, M H W

    2018-03-24

    Donating blood is associated with increased psychological stress. This study investigates whether a blood donation induces physiological stress and if response patterns differ by gender, donation experience and non-acute stress. In 372 donors, physiological stress [blood pressure, pulse rate, pulse rate variability (PRV)] was measured at seven moments during routine donation. PRV was assessed using time domain [root mean square of successive differences (RMSSD)] and frequency domain [high frequency (HF) and low frequency (LF) power] parameters. Non-acute stress was assessed by questionnaire. Shape and significance of time course patterns were assessed by fitting multilevel models for each stress measure and comparing men and women, first-time and experienced donors, and donors with high and low levels of non-acute stress. Significant response patterns were found for all stress measures, where levels of systolic blood pressure (F(1,1315) = 24·2, P blood pressure (F(1,1326) = 50·9, P blood pressure/pulse rate in women; higher pulse rate in first-time donors; higher RMSSD at arrival and from screening until leaving in first-time donors; and higher LF and HF in first-time donors. This study shows an increase in physiological stress related to needle insertion, followed by a decrease when leaving the donation centre. Some group effects were also found. © 2018 International Society of Blood Transfusion.

  13. When does stress help or harm? The effects of stress controllability and subjective stress response on Stroop performance.

    Directory of Open Access Journals (Sweden)

    Roselinde Kaiser Henderson

    2012-06-01

    Full Text Available The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing to clinical therapy. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, research suggests that the impact of stress on cognitive functioning depends on an individual’s response to stressors: moderate responses to stress can lead to improved performance while extreme (high or low responses can lead to impaired performance. The present studies tested the hypothesis that 1 learning to behaviorally control stressors leads to improved performance on a test of general executive functioning, the color-word Stroop, and that 2 this improvement emerges specifically for people who report moderate (subjective responses to stress. Experiment 1: Stroop performance, measured before and after a stress manipulation, was compared across groups of undergraduate participants (n=109. People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest reduction in Stroop interference. In contrast, in the group exposed to uncontrollable events, self-reported stress failed to predict performance. Experiment 2: In a second sample (n=90, we specifically investigated the role of controllability by keeping the rate of failure feedback constant across groups. In the group who learned behavioral control, those who reported moderate levels of stress

  14. Critical-like features of stress response in frictional packings

    International Nuclear Information System (INIS)

    Cakir, Abdullah; Silbert, Leonardo E

    2015-01-01

    The mechanical response of static, unconfined, overcompressed face centred cubic, granular arrays is studied using large-scale, discrete element method simulations. Specifically, the stress response due to the application of a localised force perturbation—the Green function technique—is obtained in granular packings generated over several orders of magnitude in both the particle friction coefficient and the applied forcing. We observe crossover behaviour in the mechanical state of the system characterised by the changing nature of the resulting stress response. The transition between anisotropic and isotropic stress response exhibits critical-like features through the identification of a diverging length scale that distinguishes the spatial extent of anisotropic regions from those that display isotropic behaviour. A multidimensional phase diagram is constructed that parameterises the response of the system due to changing friction and force perturbations. (paper)

  15. Characterizing the proteome and oxi-proteome of apple in response to a host (Penicillium expansum) and a non-host (Penicillium digitatum) pathogen.

    Science.gov (United States)

    Buron-Moles, Gemma; Wisniewski, Michael; Viñas, Inmaculada; Teixidó, Neus; Usall, Josep; Droby, Samir; Torres, Rosario

    2015-01-30

    Apples are subjected to both abiotic and biotic stresses during the postharvest period, which lead to large economic losses worldwide. To obtain biochemical insights into apple defense response, we monitored the protein abundance changes (proteome), as well as the protein carbonyls (oxi-proteome) formed by reactive oxygen species (ROS) in 'Golden Smoothee' apple in response to wounding, Penicillium expansum (host) and Penicillium digitatum (non-host) pathogens with select transcriptional studies. To examine the biological relevance of the results, we described quantitative and oxidative protein changes into the gene ontology functional categories, as well as into de KEGG pathways. We identified 26 proteins that differentially changed in abundance in response to wounding, P. expansum or P. digitatum infection. While these changes showed some similarities between the apple responses and abiotic and biotic stresses, Mal d 1.03A case, other proteins as Mal d 1.03E and EF-Tu were specifically induced in response to P. digitatum infection. Using a protein carbonyl detection method based on fluorescent Bodipy, we detected and identified 27 oxidized proteins as sensitive ROS targets. These ROS target proteins were related to metabolism processes, suggesting that this process plays a leading role in apple fruit defense response against abiotic and biotic stresses. ACC oxidase and two glutamine synthetases showed the highest protein oxidation level in response to P. digitatum infection. Documenting changes in the proteome and, specifically in oxi-proteome of apple can provide information that can be used to better understand how impaired protein functions may affect apple defense mechanisms. Possible mechanisms by which these modified proteins are involved in fruit defense response are discussed. Mechanical damage in apple fruits is linked annually to large economic losses due to opportunistic infection by postharvest pathogens, such as P. expansum. Despite the current use

  16. Lipolysis Response to Endoplasmic Reticulum Stress in Adipose Cells*

    Science.gov (United States)

    Deng, Jingna; Liu, Shangxin; Zou, Liangqiang; Xu, Chong; Geng, Bin; Xu, Guoheng

    2012-01-01

    In obesity and diabetes, adipocytes show significant endoplasmic reticulum (ER) stress, which triggers a series of responses. This study aimed to investigate the lipolysis response to ER stress in rat adipocytes. Thapsigargin, tunicamycin, and brefeldin A, which induce ER stress through different pathways, efficiently activated a time-dependent lipolytic reaction. The lipolytic effect of ER stress occurred with elevated cAMP production and protein kinase A (PKA) activity. Inhibition of PKA reduced PKA phosphosubstrates and attenuated the lipolysis. Although both ERK1/2 and JNK are activated during ER stress, lipolysis is partially suppressed by inhibiting ERK1/2 but not JNK and p38 MAPK and PKC. Thus, ER stress induces lipolysis by activating cAMP/PKA and ERK1/2. In the downstream lipolytic cascade, phosphorylation of lipid droplet-associated protein perilipin was significantly promoted during ER stress but attenuated on PKA inhibition. Furthermore, ER stress stimuli did not alter the levels of hormone-sensitive lipase and adipose triglyceride lipase but caused Ser-563 and Ser-660 phosphorylation of hormone-sensitive lipase and moderately elevated its translocation from the cytosol to lipid droplets. Accompanying these changes, total activity of cellular lipases was promoted to confer the lipolysis. These findings suggest a novel pathway of the lipolysis response to ER stress in adipocytes. This lipolytic activation may be an adaptive response that regulates energy homeostasis but with sustained ER stress challenge could contribute to lipotoxicity, dyslipidemia, and insulin resistance because of persistently accelerated free fatty acid efflux from adipocytes to the bloodstream and other tissues. PMID:22223650

  17. Hypothalamic oxytocin mediates social buffering of the stress response.

    Science.gov (United States)

    Smith, Adam S; Wang, Zuoxin

    2014-08-15

    While stressful life events can enhance the risk of mental disorders, positive social interactions can propagate good mental health and normal behavioral routines. Still, the neural systems that promote these benefits are undetermined. Oxytocin is a hormone involved in social behavior and stress; thus, we focus on the impact that social buffering has on the stress response and the governing effects of oxytocin. Female prairie voles (Microtus ochrogaster) were exposed to 1 hour immobilization stress and then recovered alone or with their male partner to characterize the effect of social contact on the behavioral, physiological, and neuroendocrine stress response. In addition, we treated immobilized female voles recovering alone with oxytocin or vehicle and female voles recovering with their male partner with a selective oxytocin receptor antagonist or vehicle. Group sizes varied from 6 to 8 voles (N = 98 total). We found that 1 hour immobilization increased anxiety-like behaviors and circulating levels of corticosterone, a stress hormone, in female prairie voles recovering alone but not the female prairie voles recovering with their male partner. This social buffering by the male partner on biobehavioral responses to stress was accompanied by increased oxytocin release in the paraventricular nucleus of the hypothalamus. Intra-paraventricular nucleus oxytocin injections reduced behavioral and corticosterone responses to immobilization, whereas injections of an oxytocin receptor antagonist blocked the effects of the social buffering. Together, our data demonstrate that paraventricular nucleus oxytocin mediates the social buffering effects on the stress response and thus may be a target for treatment of stress-related disorders. Published by Society of Biological Psychiatry on behalf of Society of Biological Psychiatry.

  18. The surgical stress response: should it be prevented?

    DEFF Research Database (Denmark)

    Kehlet, H

    1991-01-01

    clinical trials have demonstrated a reduction in various aspects of postoperative morbidity by such a nociceptive blockade. Although a causal relationship has still to be demonstrated, these findings strongly argue the concept of "stress-free anesthesia and surgery" as an important instrument in improving......Postoperative complications such as myocardial infarction, pulmonary infection, thromboembolism and fatigue are probably related to increased demands, hypermetabolism, catabolism and other physiologic changes included in the global "surgical stress response." Strategies have been developed...... to suppress the detrimental components of the stress response so as to improve postoperative outcome. Of the various techniques to reduce the surgical stress response, afferent neural blockade with regional anesthesia to relieve pain is the most effective, although not optimal. Data from numerous controlled...

  19. Mini-review: Biofilm responses to oxidative stress.

    Science.gov (United States)

    Gambino, Michela; Cappitelli, Francesca

    2016-01-01

    Biofilms constitute the predominant microbial style of life in natural and engineered ecosystems. Facing harsh environmental conditions, microorganisms accumulate reactive oxygen species (ROS), potentially encountering a dangerous condition called oxidative stress. While high levels of oxidative stress are toxic, low levels act as a cue, triggering bacteria to activate effective scavenging mechanisms or to shift metabolic pathways. Although a complex and fragmentary picture results from current knowledge of the pathways activated in response to oxidative stress, three main responses are shown to be central: the existence of common regulators, the production of extracellular polymeric substances, and biofilm heterogeneity. An investigation into the mechanisms activated by biofilms in response to different oxidative stress levels could have important consequences from ecological and economic points of view, and could be exploited to propose alternative strategies to control microbial virulence and deterioration.

  20. Proteomic Characterization of Armillaria mellea Reveals Oxidative Stress Response Mechanisms and Altered Secondary Metabolism Profiles

    Directory of Open Access Journals (Sweden)

    Cassandra Collins

    2017-09-01

    Full Text Available Armillaria mellea is a major plant pathogen. Yet, the strategies the organism uses to infect susceptible species, degrade lignocellulose and other plant material and protect itself against plant defences and its own glycodegradative arsenal are largely unknown. Here, we use a combination of gel and MS-based proteomics to profile A. mellea under conditions of oxidative stress and changes in growth matrix. 2-DE and LC-MS/MS were used to investigate the response of A. mellea to H2O2 and menadione/FeCl3 exposure, respectively. Several proteins were detected with altered abundance in response to H2O2, but not menadione/FeCl3 (i.e., valosin-containing protein, indicating distinct responses to these different forms of oxidative stress. One protein, cobalamin-independent methionine synthase, demonstrated a common response in both conditions, which may be a marker for a more general stress response mechanism. Further changes to the A. mellea proteome were investigated using MS-based proteomics, which identified changes to putative secondary metabolism (SM enzymes upon growth in agar compared to liquid cultures. Metabolomic analyses revealed distinct profiles, highlighting the effect of growth matrix on SM production. This establishes robust methods by which to utilize comparative proteomics to characterize this important phytopathogen.

  1. Functional Genomic Screening Reveals Core Modulators of Echinocandin Stress Responses in Candida albicans

    Directory of Open Access Journals (Sweden)

    Tavia Caplan

    2018-05-01

    Full Text Available Summary: Candida albicans is a leading cause of death due to fungal infection. Treatment of systemic candidiasis often relies on echinocandins, which disrupt cell wall synthesis. Resistance is readily acquired via mutations in the drug target gene, FKS1. Both basal tolerance and resistance to echinocandins require cellular stress responses. We performed a systematic analysis of 3,030 C. albicans mutants to define circuitry governing cellular responses to echinocandins. We identified 16 genes for which deletion or transcriptional repression enhanced echinocandin susceptibility, including components of the Pkc1-MAPK signaling cascade. We discovered that the molecular chaperone Hsp90 is required for the stability of Pkc1 and Bck1, establishing key mechanisms through which Hsp90 mediates echinocandin resistance. We also discovered that perturbation of the CCT chaperonin complex causes enhanced echinocandin sensitivity, altered cell wall architecture, and aberrant septin localization. Thus, we provide insights into the mechanisms by which cellular chaperones enable crucial responses to echinocandin-induced stress. : Caplan et al. screen 3,030 Candida albicans mutants to define circuitry governing cellular responses to echinocandins, the first-line therapy for systemic candidiasis. They reveal that the molecular chaperone Hsp90 is required for stability of Pkc1 and Bck1 and that the CCT chaperonin complex is a key modulator of echinocandin susceptibility. Keywords: fungal pathogen, Candida albicans, echinocandins, Hsp90, Pkc1, CCT complex, client protein, stress response, functional genomic screen, drug resistance

  2. Energetic stress: The reciprocal relationship between energy availability and the stress response.

    Science.gov (United States)

    Harrell, C S; Gillespie, C F; Neigh, G N

    2016-11-01

    The worldwide epidemic of metabolic syndromes and the recognized burden of mental health disorders have driven increased research into the relationship between the two. A maladaptive stress response is implicated in both mental health disorders and metabolic disorders, implicating the hypothalamic-pituitary-adrenal (HPA) axis as a key mediator of this relationship. This review explores how an altered energetic state, such as hyper- or hypoglycemia, as may be manifested in obesity or diabetes, affects the stress response and the HPA axis in particular. We propose that changes in energetic state or energetic demands can result in "energetic stress" that can, if prolonged, lead to a dysfunctional stress response. In this review, we summarize the role of the hypothalamus in modulating energy homeostasis and then briefly discuss the relationship between metabolism and stress-induced activation of the HPA axis. Next, we examine seven mechanisms whereby energetic stress interacts with neuroendocrine stress response systems, including by glucocorticoid signaling both within and beyond the HPA axis; by nutrient-induced changes in glucocorticoid signaling; by impacting the sympathetic nervous system; through changes in other neuroendocrine factors; by inducing inflammatory changes; and by altering the gut-brain axis. Recognizing these effects of energetic stress can drive novel therapies and prevention strategies for mental health disorders, including dietary intervention, probiotics, and even fecal transplant. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Chronic stress affects immunologic but not cardiovascular responsiveness to acute psychological stress in humans

    NARCIS (Netherlands)

    Benschop, R. J.; Brosschot, J. F.; Godaert, G. L.; de Smet, M. B.; Geenen, R.; Olff, M.; Heijnen, C. J.; Ballieux, R. E.

    1994-01-01

    This study deals with the effect of chronic stress on physiological responsiveness to an acute psychological stressor in male high school teachers. Chronic stress was operationalized as the self-reported number of everyday problems. Twenty-seven subjects reporting extremely low or high numbers of

  4. A Unique Fungal Two-Component System Regulates Stress Responses, Drug Sensitivity, Sexual Development, and Virulence of Cryptococcus neoformans

    Science.gov (United States)

    Bahn, Yong-Sun; Kojima, Kaihei; Cox, Gary M.

    2006-01-01

    The stress-activated mitogen-activated protein kinase (MAPK) pathway is widely used by eukaryotic organisms as a central conduit via which cellular responses to the environment effect growth and differentiation. The basidiomycetous human fungal pathogen Cryptococcus neoformans uniquely uses the stress-activated Pbs2-Hog1 MAPK system to govern a plethora of cellular events, including stress responses, drug sensitivity, sexual reproduction, and virulence. Here, we characterized a fungal “two-component” system that controls these fundamental cellular functions via the Pbs2-Hog1 MAPK cascade. A typical response regulator, Ssk1, modulated all Hog1-dependent phenotypes by controlling Hog1 phosphorylation, indicating that Ssk1 is the major upstream signaling component of the Pbs2-Hog1 pathway. A second response regulator, Skn7, governs sensitivity to Na+ ions and the antifungal agent fludioxonil, negatively controls melanin production, and functions independently of Hog1 regulation. To control these response regulators, C. neoformans uses multiple sensor kinases, including two-component–like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. Our findings highlight unique adaptations of this global two-component MAPK signaling cascade in a ubiquitous human fungal pathogen. PMID:16672377

  5. Unusual adaptive, cross protection responses and growth phase resistance against peroxide killing in a bacterial shrimp pathogen, Vibrio harveyi.

    Science.gov (United States)

    Vattanaviboon, P; Mongkolsuk, S

    2001-06-12

    Oxidant induced protection against peroxide killing was investigated in a prawn bacterial pathogen, Vibrio harveyi. Exposure to 250 microM H(2)O(2) induced adaptive protection against subsequent exposure to killing concentrations of H(2)O(2). In addition, 200 microM t-butyl hydroperoxide (tBOOH) induced cross protection to H(2)O(2) killing. On the other hand, peroxide pretreatment did not induce protection against tBOOH killing. Peroxide induced adaptive and cross protection responses required new protein synthesis and were abolished by addition of a protein synthesis inhibitor. Pretreatments of V. harveyi with 250 microM H(2)O(2) and 200 microM tBOOH induced an increase in peroxide scavenging enzymes, catalase and alkyl hydroperoxide reductase subunit C. In addition, stationary phase cells of V. harveyi were more resistant to H(2)O(2) and iodoacetamide killing but highly susceptible to tBOOH killing compared to exponential phase cells. Many aspects of the oxidative stress response of V. harveyi are different from those of other bacteria and these factors may be important for bacterial survival in the environment and during interactions with host shrimp.

  6. Differential expression of calcium/calmodulin-regulated SlSRs in response to abiotic and biotic stresses in tomato fruit.

    Science.gov (United States)

    Yang, Tianbao; Peng, Hui; Whitaker, Bruce D; Jurick, Wayne M

    2013-07-01

    Calcium has been shown to enhance stress tolerance, maintain firmness and reduce decay in fruits. Previously we reported that seven tomato SlSRs encode calcium/calmodulin-regulated proteins, and that their expressions are developmentally regulated during fruit development and ripening, and are also responsive to ethylene. To study their expressions in response to stresses encountered during postharvest handling, tomato fruit at the mature-green stage was subjected to chilling and wounding injuries, infected with Botrytis cinerea and treated with salicylic acid or methyl jasmonate. Gene expression studies revealed that the seven SlSRs differentially respond to different stress signals. SlSR2 was the only gene upregulated by all the treatments. SlSR4 acted as a late pathogen-induced gene; it was upregulated by salicylic acid and methyl jasmonate, but downregulated by cold treatment. SlSR3L was cold- and wound-responsive and was also induced by salicylic acid. SlSR1 and SlSR1L were repressed by cold, wounding and pathogen infection, but were upregulated by salicylic acid and methyl jasmonate. Overall, results of these expression studies indicate that individual SlSRs have distinct roles in responses to the specific stress signals, and SlSRs may act as a coordinator(s) connecting calcium-mediated signaling with other stress signal transduction pathways during fruit ripening and storage. © 2013 Scandinavian Plant Physiology Society.

  7. Extracellular adenosine generation in the regulation of pro-inflammatory responses and pathogen colonization.

    Science.gov (United States)

    Alam, M Samiul; Costales, Matthew G; Cavanaugh, Christopher; Williams, Kristina

    2015-05-05

    Adenosine, an immunomodulatory biomolecule, is produced by the ecto-enzymes CD39 (nucleoside triphosphate dephosphorylase) and CD73 (ecto-5'-nucleotidase) by dephosphorylation of extracellular ATP. CD73 is expressed by many cell types during injury, infection and during steady-state conditions. Besides host cells, many bacteria also have CD39-CD73-like machinery, which helps the pathogen subvert the host inflammatory response. The major function for adenosine is anti-inflammatory, and most recent research has focused on adenosine's control of inflammatory mechanisms underlying various autoimmune diseases (e.g., colitis, arthritis). Although adenosine generated through CD73 provides a feedback to control tissue damage mediated by a host immune response, it can also contribute to immunosuppression. Thus, inflammation can be a double-edged sword: it may harm the host but eventually helps by killing the invading pathogen. The role of adenosine in dampening inflammation has been an area of active research, but the relevance of the CD39/CD73-axis and adenosine receptor signaling in host defense against infection has received less attention. Here, we review our recent knowledge regarding CD73 expression during murine Salmonellosis and Helicobacter-induced gastric infection and its role in disease pathogenesis and bacterial persistence. We also explored a possible role for the CD73/adenosine pathway in regulating innate host defense function during infection.

  8. Interferon production and immune response induction in pathogenic rabies virus-infected mice

    Energy Technology Data Exchange (ETDEWEB)

    Marcovistz, R; Leal, E C; De Souza Matos, D C [Departamento de Immunologia, Instituto Oswaldo Cruz, Caixa Postal 926, 21045 Rio de Janeiro (Brazil); Tsiang, H [Service Rage, Istitut Pasteur, Paris (France)

    1994-08-01

    Pathogenic parental rabies virus strain CVS (challenge virus standard) and its apathogenic variant RV194-2 were shown to differ in their ability to induce interferon (IFN) and immune response of the host. After intracerebral inoculation. IFN and antibody production was higher in the RV194-2 virus-infected mice than in the CVS infection. The enhancement of 2-5A synthetase activity, an IFN-mediated enzyme marker, showed biochemical evidence that IFN is active in both apathogenic and pathogenic infections. On the other hand, spontaneous proliferation in vitro of thymocytes and splenocytes from CVS virus-infected mice was strongly inhibited in contrast to the RV194-2 infection. In the CVS infection, the thymocyte proliferation However, in the RV194-2 infection, the thymocyte proliferation was higher than of the splenocytes. These results suggest a better performance of T-cell response to the RV194-2 infection. This fact can be critical for an enhancement of antibody production in the apathogenic infection and subsequent virus clearance from the brain of RV194-2 virus-infected mice. (author) 1 fig., 3 tabs., 32 refs.

  9. Stress response and virulence in Vibrio anguillarum

    OpenAIRE

    Weber, Barbara

    2010-01-01

    Bacteria use quorum sensing, a cell to cell signaling mechanism mediated by small molecules that are produced by specific signal molecule synthases, to regulate gene expression in response to population density. In Vibrio anguillarum, the quorum-sensing phosphorelay channels information from three hybrid sensor kinases VanN, VanQ, CqsS that sense signal molecules produced by the synthases VanM, VanS and CqsA, onto the phosphotransferase VanU, to regulate activity of the response regulator Van...

  10. WRKY transcription factors in plant responses to stresses.

    Science.gov (United States)

    Jiang, Jingjing; Ma, Shenghui; Ye, Nenghui; Jiang, Ming; Cao, Jiashu; Zhang, Jianhua

    2017-02-01

    The WRKY gene family is among the largest families of transcription factors (TFs) in higher plants. By regulating the plant hormone signal transduction pathway, these TFs play critical roles in some plant processes in response to biotic and abiotic stress. Various bodies of research have demonstrated the important biological functions of WRKY TFs in plant response to different kinds of biotic and abiotic stresses and working mechanisms. However, very little summarization has been done to review their research progress. Not just important TFs function in plant response to biotic and abiotic stresses, WRKY also participates in carbohydrate synthesis, senescence, development, and secondary metabolites synthesis. WRKY proteins can bind to W-box (TGACC (A/T)) in the promoter of its target genes and activate or repress the expression of downstream genes to regulate their stress response. Moreover, WRKY proteins can interact with other TFs to regulate plant defensive responses. In the present review, we focus on the structural characteristics of WRKY TFs and the research progress on their functions in plant responses to a variety of stresses. © 2016 Institute of Botany, Chinese Academy of Sciences.

  11. Responses of neurons to extreme osmomechanical stress.

    Science.gov (United States)

    Wan, X; Harris, J A; Morris, C E

    1995-05-01

    Neurons are often regarded as fragile cells, easily destroyed by mechanical and osmotic insult. The results presented here demonstrate that this perception needs revision. Using extreme osmotic swelling, we show that molluscan neurons are astonishingly robust. In distilled water, a heterogeneous population of Lymnaea stagnalis CNS neurons swelled to several times their initial volume, yet had a ST50 (survival time for 50% of cells) > 60 min. Cells that were initially bigger survived longer. On return to normal medium, survivors were able, over the next 24 hr, to rearborize. Reversible membrane capacitance changes corresponding to about 0.7 muF/cm2 of apparent surface area accompanied neuronal swelling and shrinking in hypo- and hyperosmotic solutions; reversible changes in cell surface area evidently contributed to the neurons' ability to accommodate hydrostatic pressures then recover. The reversible membrane area/capacitance changes were not dependent on extracellular Ca2+. Neurons were monitored for potassium currents during direct mechanical inflation and during osmotically driven inflation. The latter but not the former stimulus routinely elicited small potassium currents, suggesting that tension increases activate the currents only if additional disruption of the cortex has occurred. Under stress in distilled water, a third of the neurons displayed a quite unexpected behavior: prolonged writhing of peripheral regions of the soma. This suggested that a plasma membrane-linked contractile machinery (presumably actomyosin) might contribute to the neurons' mechano-osmotic robustness by restricting water influx. Consistent with this possibility, 1 mM N-ethyl-maleimide, which inhibits myosin ATPase, decreased the ST50 to 18 min, rendered the survival time independent of initial size, and abolished writhing activity. For neurons, active mechanical resistance of the submembranous cortex, along with the mechanical compliance supplied by insertion or eversion of membrane

  12. Systems responses to progressive water stress in durum wheat.

    Directory of Open Access Journals (Sweden)

    Dimah Z Habash

    Full Text Available Durum wheat is susceptible to terminal drought which can greatly decrease grain yield. Breeding to improve crop yield is hampered by inadequate knowledge of how the physiological and metabolic changes caused by drought are related to gene expression. To gain better insight into mechanisms defining resistance to water stress we studied the physiological and transcriptome responses of three durum breeding lines varying for yield stability under drought. Parents of a mapping population (Lahn x Cham1 and a recombinant inbred line (RIL2219 showed lowered flag leaf relative water content, water potential and photosynthesis when subjected to controlled water stress time transient experiments over a six-day period. RIL2219 lost less water and showed constitutively higher stomatal conductance, photosynthesis, transpiration, abscisic acid content and enhanced osmotic adjustment at equivalent leaf water compared to parents, thus defining a physiological strategy for high yield stability under water stress. Parallel analysis of the flag leaf transcriptome under stress uncovered global trends of early changes in regulatory pathways, reconfiguration of primary and secondary metabolism and lowered expression of transcripts in photosynthesis in all three lines. Differences in the number of genes, magnitude and profile of their expression response were also established amongst the lines with a high number belonging to regulatory pathways. In addition, we documented a large number of genes showing constitutive differences in leaf transcript expression between the genotypes at control non-stress conditions. Principal Coordinates Analysis uncovered a high level of structure in the transcriptome response to water stress in each wheat line suggesting genome-wide co-ordination of transcription. Utilising a systems-based approach of analysing the integrated wheat's response to water stress, in terms of biological robustness theory, the findings suggest that each durum

  13. The Effect of Music on the Human Stress Response

    Science.gov (United States)

    Thoma, Myriam V.; La Marca, Roberto; Brönnimann, Rebecca; Finkel, Linda; Ehlert, Ulrike; Nater, Urs M.

    2013-01-01

    Background Music listening has been suggested to beneficially impact health via stress-reducing effects. However, the existing literature presents itself with a limited number of investigations and with discrepancies in reported findings that may result from methodological shortcomings (e.g. small sample size, no valid stressor). It was the aim of the current study to address this gap in knowledge and overcome previous shortcomings by thoroughly examining music effects across endocrine, autonomic, cognitive, and emotional domains of the human stress response. Methods Sixty healthy female volunteers (mean age = 25 years) were exposed to a standardized psychosocial stress test after having been randomly assigned to one of three different conditions prior to the stress test: 1) relaxing music (‘Miserere’, Allegri) (RM), 2) sound of rippling water (SW), and 3) rest without acoustic stimulation (R). Salivary cortisol and salivary alpha-amylase (sAA), heart rate (HR), respiratory sinus arrhythmia (RSA), subjective stress perception and anxiety were repeatedly assessed in all subjects. We hypothesized that listening to RM prior to the stress test, compared to SW or R would result in a decreased stress response across all measured parameters. Results The three conditions significantly differed regarding cortisol response (p = 0.025) to the stressor, with highest concentrations in the RM and lowest in the SW condition. After the stressor, sAA (p=0.026) baseline values were reached considerably faster in the RM group than in the R group. HR and psychological measures did not significantly differ between groups. Conclusion Our findings indicate that music listening impacted the psychobiological stress system. Listening to music prior to a standardized stressor predominantly affected the autonomic nervous system (in terms of a faster recovery), and to a lesser degree the endocrine and psychological stress response. These findings may help better understanding the

  14. Stress-related cortisol responsivity modulates prospective memory.

    Science.gov (United States)

    Glienke, K; Piefke, M

    2017-12-01

    It is known that there is inter-individual variation in behavioural and physiological stress reactions to the same stressor. The present study aimed to examine the impact of cortisol responsivity on performance in a complex real life-like prospective memory (PM) paradigm by a re-analysis of data published previously, with a focus on the taxonomy of cognitive dimensions of PM. Twenty-one male subjects were stressed with the Socially Evaluated Cold Pressor Test (SECPT) before the planning of intentions. Another group of 20 males underwent a control procedure. Salivary cortisol was measured to assess the intensity of the biological stress response. Additionally, participants rated the subjective experience of stress on a 5-point rating scale. Stressed participants were post-hoc differentiated in high (n = 11) and low cortisol responders (n = 10). Cortisol niveau differed significantly between the two groups, whereas subjective stress ratings did not. PM performance of low cortisol responders was stable across time and the PM performance of controls declined. High cortisol responders showed a nominally weaker PM retrieval across the early trails and significantly improved only on the last trial. The data demonstrate for the first time that participants with a low cortisol responsivity may benefit from stress exposure before the planning phase of PM. PM performance of high cortisol responders shows a more inconsistent pattern, which may be interpreted in the sense of a recency effect in PM retrieval. Alternatively, high cortisol responses may have a deteriorating effect on PM retrieval, which disappeared on the last trials of the task as a result of the decrease of cortisol levels across time. Importantly, the data also demonstrate that the intensity of cortisol responses does not necessarily correspond to the intensity of the mental experience of stress. © 2017 British Society for Neuroendocrinology.

  15. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    Directory of Open Access Journals (Sweden)

    Alexandra Avloniti

    2017-01-01

    Full Text Available Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty.

  16. Oxidative stress impairs the heat stress response and delays unfolded protein recovery.

    Directory of Open Access Journals (Sweden)

    Masaaki Adachi

    2009-11-01

    Full Text Available Environmental changes, air pollution and ozone depletion are increasing oxidative stress, and global warming threatens health by heat stress. We now face a high risk of simultaneous exposure to heat and oxidative stress. However, there have been few studies investigating their combined adverse effects on cell viability.Pretreatment of hydrogen peroxide (H(2O(2 specifically and highly sensitized cells to heat stress, and enhanced loss of mitochondrial membrane potential. H(2O(2 exposure impaired the HSP40/HSP70 induction as heat shock response (HSR and the unfolded protein recovery, and enhanced eIF2alpha phosphorylation and/or XBP1 splicing, land marks of ER stress. These H(2O(2-mediated effects mimicked enhanced heat sensitivity in HSF1 knockdown or knockout cells. Importantly, thermal preconditioning blocked H(2O(2-mediated inhibitory effects on refolding activity and rescued HSF1 +/+ MEFs, but neither blocked the effects nor rescued HSF1 -/- MEFs. These data strongly suggest that inhibition of HSR and refolding activity is crucial for H(2O(2-mediated enhanced heat sensitivity.H(2O(2 blocks HSR and refolding activity under heat stress, thereby leading to insufficient quality control and enhancing ER stress. These uncontrolled stress responses may enhance cell death. Our data thus highlight oxidative stress as a crucial factor affecting heat tolerance.

  17. The COP9 signalosome controls jasmonic acid synthesis and plant responses to herbivory and pathogens.

    Science.gov (United States)

    Hind, Sarah R; Pulliam, Sarah E; Veronese, Paola; Shantharaj, Deepak; Nazir, Azka; Jacobs, Nekaiya S; Stratmann, Johannes W

    2011-02-01

    The COP9 signalosome (CSN) is a multi-protein complex that regulates the activities of cullin-RING E3 ubiquitin ligases (CRLs). CRLs ubiquitinate proteins in order to target them for proteasomal degradation. The CSN is required for proper plant development. Here we show that the CSN also has a profound effect on plant defense responses. Silencing of genes for CSN subunits in tomato plants resulted in a mild morphological phenotype and reduced expression of wound-responsive genes in response to mechanical wounding, attack by Manduca sexta larvae, and Prosystemin over-expression. In contrast, expression of pathogenesis-related genes was increased in a stimulus-independent manner in these plants. The reduced wound response in CSN-silenced plants corresponded with reduced synthesis of jasmonic acid (JA), but levels of salicylic acid (SA) were unaltered. As a consequence, these plants exhibited reduced resistance against herbivorous M. sexta larvae and the necrotrophic fungal pathogen Botrytis cinerea. In contrast, susceptibility to tobacco mosaic virus (TMV) was not altered in CSN-silenced plants. These data demonstrate that the CSN orchestrates not only plant development but also JA-dependent plant defense responses. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  18. Reproduction elevates the corticosterone stress response in common fruit bats.

    Science.gov (United States)

    Klose, Stefan M; Smith, Carolynn L; Denzel, Andrea J; Kalko, Elisabeth K V

    2006-04-01

    Changes in reproductive state or the environment may affect the sensitivity of the hypothalamic-pituitary-andrenal (HPA) axis. However, little is known about the dynamics of the resulting corticosteroid stress response, in particular in tropical mammals. In this study, we address the modulation of corticosterone release in response to different reproductive conditions and seasonality in 326 free-living common fruit-eating bats (Artibeus jamaicensis) on Barro Colorado Island in Panama during dry and wet seasons. We present strong evidence that stress sensitivity is primarily modulated by reproductive condition. In reproductively active females, corticosterone increases were more rapid and reached higher levels, but also decreased significantly faster than in inactive females. The corticosterone response was weaker in reproducing males than in females and delayed compared to non-reproductive males. Testes volume in reproductively active males was negatively correlated with corticosterone concentrations. Our findings suggest differentiated dynamics in the corticosterone stress response between sexes, potentially reflecting conflicting ecological demands. In females, a strong acute corticosterone response may represent high stress- and risk-sensitivity that facilitates escape and thus helps to protect reproduction. In males, suppression during reproductive activity could reflect lowered stress sensitivity to avoid chronically elevated corticosterone levels in times of frequent aggressive and therefore costly inter-male encounters.

  19. A role for SR proteins in plant stress responses.

    Science.gov (United States)

    Duque, Paula

    2011-01-01

    Members of the SR (serine/arginine-rich) protein gene family are key players in the regulation of alternative splicing, an important means of generating proteome diversity and regulating gene expression. In plants, marked changes in alternative splicing are induced by a wide variety of abiotic stresses, suggesting a role for this highly versatile gene regulation mechanism in the response to environmental cues. In support of this notion, the expression of plant SR proteins is stress-regulated at multiple levels, with environmental signals controlling their own alternative splicing patterns, phosphorylation status and subcellular distribution. Most importantly, functional links between these RNA-binding proteins and plant stress tolerance are beginning to emerge, including a role in the regulation of abscisic acid (ABA) signaling. Future identification of the physiological mRNA targets of plant SR proteins holds much promise for the elucidation of the molecular mechanisms underlying their role in the response to abiotic stress.

  20. Proteomics analysis of alfalfa response to heat stress.

    Directory of Open Access Journals (Sweden)

    Weimin Li

    Full Text Available The proteome responses to heat stress have not been well understood. In this study, alfalfa (Medicago sativa L. cv. Huaiyin seedlings were exposed to 25 °C (control and 40 °C (heat stress in growth chambers, and leaves were collected at 24, 48 and 72 h after treatment, respectively. The morphological, physiological and proteomic processes were negatively affected under heat stress. Proteins were extracted and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE, and differentially expressed protein spots were identified by mass spectrometry (MS. Totally, 81 differentially expressed proteins were identified successfully by MALDI-TOF/TOF. These proteins were categorized into nine classes: including metabolism, energy, protein synthesis, protein destination/storage, transporters, intracellular traffic, cell structure, signal transduction and disease/defence. Five proteins were further analyzed for mRNA levels. The results of the proteomics analyses provide a better understanding of the molecular basis of heat-stress responses in alfalfa.

  1. Regulation of cellulose synthesis in response to stress.

    Science.gov (United States)

    Kesten, Christopher; Menna, Alexandra; Sánchez-Rodríguez, Clara

    2017-12-01

    The cell wall is a complex polysaccharide network that provides stability and protection to the plant and is one of the first layers of biotic and abiotic stimuli perception. A controlled remodeling of the primary cell wall is essential for the plant to adapt its growth to environmental stresses. Cellulose, the main component of plant cell walls is synthesized by plasma membrane-localized cellulose synthases moving along cortical microtubule tracks. Recent advancements demonstrate a tight regulation of cellulose synthesis at the primary cell wall by phytohormone networks. Stress-induced perturbations at the cell wall that modify cellulose synthesis and microtubule arrangement activate similar phytohormone-based stress response pathways. The integration of stress perception at the primary cell wall and downstream responses are likely to be tightly regulated by phytohormone signaling pathways in the context of cellulose synthesis and microtubule arrangement. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Stress and fear responses in the teleost pallium

    DEFF Research Database (Denmark)

    Silva, Patricia Isabel da Mota E.; Martins, C.I.M.; Khan, Uniza Wahid

    2015-01-01

    Evolution has resulted in behavioural responses to threat which show extensive similarities between different animal species. The reaction to predator cues is one example of such prevailing responses, and functional homologies to mammalian limbic regions involved in threat-sensitive behaviour hav...... to chemical alarm cues, but this effect did not reach the level of statistical significance. Hence, limbic responses to stress and fear, akin to those seen in extant mammals, are also present in the teleost lineage...

  3. Hormonal contraception use alters stress responses and emotional memory

    OpenAIRE

    Nielsen, Shawn E.; Segal, Sabrina K.; Worden, Ian V.; Yim, Ilona S.; Cahill, Larry

    2012-01-01

    Emotionally arousing material is typically better remembered than neutral material. Since norepinephrine and cortisol interact to modulate emotional memory, sex-related influences on stress responses may be related to sex differences in emotional memory. Two groups of healthy women – one naturally cycling (NC women, N = 42) and one using hormonal contraceptives (HC women, N = 36) – viewed emotionally arousing and neutral images. Immediately after, they were assigned to Cold Pressor Stress (CP...

  4. Pathogenic mutations in TULP1 responsible for retinitis pigmentosa identified in consanguineous familial cases

    Science.gov (United States)

    Ullah, Inayat; Kabir, Firoz; Iqbal, Muhammad; Gottsch, Clare Brooks S.; Naeem, Muhammad Asif; Assir, Muhammad Zaman; Khan, Shaheen N.; Akram, Javed; Riazuddin, Sheikh; Ayyagari, Radha; Hejtmancik, J. Fielding

    2016-01-01

    Purpose To identify pathogenic mutations responsible for autosomal recessive retinitis pigmentosa (arRP) in consanguineous familial cases. Methods Seven large familial cases with multiple individuals diagnosed with retinitis pigmentosa were included in the study. Affected individuals in these families underwent ophthalmic examinations to document the symptoms and confirm the initial diagnosis. Blood samples were collected from all participating members, and genomic DNA was extracted. An exclusion analysis with microsatellite markers spanning the TULP1 locus on chromosome 6p was performed, and two-point logarithm of odds (LOD) scores were calculated. All coding exons along with the exon–intron boundaries of TULP1 were sequenced bidirectionally. We constructed a single nucleotide polymorphism (SNP) haplotype for the four familial cases harboring the K489R allele and estimated the likelihood of a founder effect. Results The ophthalmic examinations of the affected individuals in these familial cases were suggestive of RP. Exclusion analyses confirmed linkage to chromosome 6p harboring TULP1 with positive two-point LOD scores. Subsequent Sanger sequencing identified the single base pair substitution in exon14, c.1466A>G (p.K489R), in four families. Additionally, we identified a two-base deletion in exon 4, c.286_287delGA (p.E96Gfs77*); a homozygous splice site variant in intron 14, c.1495+4A>C; and a novel missense variation in exon 15, c.1561C>T (p.P521S). All mutations segregated with the disease phenotype in the respective families and were absent in ethnically matched control chromosomes. Haplotype analysis suggested (p<10−6) that affected individuals inherited the causal mutation from a common ancestor. Conclusions Pathogenic mutations in TULP1 are responsible for the RP phenotype in seven familial cases with a common ancestral mutation responsible for the disease phenotype in four of the seven families. PMID:27440997

  5. IFN-γ fails to overcome inhibition of selected macrophage activation events in response to pathogenic mycobacteria.

    Directory of Open Access Journals (Sweden)

    Shyamala Thirunavukkarasu

    Full Text Available According to most models of mycobacterial infection, inhibition of the pro-inflammatory macrophage immune responses contributes to the persistence of bacteria. Mycobacterium avium subsp. paratuberculosis (MAP is a highly successful pathogen in cattle and sheep and is also implicated as the causative agent of Crohn's disease in humans. Pathogenic mycobacteria such as MAP have developed multiple strategies to evade host defence mechanisms including interfering with the macrophages' capacity to respond to IFN-γ, a feature which might be lacking in non-pathogenic mycobacteria such as M. smegmatis. We hypothesized that pre-sensitisation of macrophages with the pro-inflammatory cytokine IFN-γ would help in overcoming the inhibitory effect of MAP or its antigens on macrophage inflammatory responses. Herein we have compared a series of macrophage activation parameters in response to MAP and M. smegmatis as well as mycobacterial antigens. While IFN-γ did overcome the inhibition in immune suppressive mechanisms in response to MAP antigen as well as M. smegmatis, we could not find a clear role for IFN-γ in overcoming the inhibition of macrophage inflammatory responses to the pathogenic mycobacterium, MAP. We demonstrate that suppression of macrophage defence mechanisms by pathogenic mycobacteria is unlikely to be overcome by prior sensitization with IFN-γ alone. This indicates that IFN-γ signaling pathway-independent mechanisms may exist for overcoming inhibition of macrophage effector functions in response to pathogenic mycobacteria. These findings have important implications in understanding the survival mechanisms of pathogenic mycobacteria directed towards finding better therapeutics and vaccination strategies.

  6. Sex differences in chronic stress responses and Alzheimer's disease.

    Science.gov (United States)

    Yan, Yan; Dominguez, Sky; Fisher, Daniel W; Dong, Hongxin

    2018-02-01

    Clinical studies indicate that Alzheimer's disease (AD) disproportionately affects women in both disease prevalence and severity, but the mechanisms underlying this sex divergence are unknown. Though some have suggested this difference in risk is a reflection of known differences in longevity between men and women, mounting clinical and preclinical evidence supports women also having intrinsic susceptibilities towards the disease. While a number of potential risk factors have been hypothesized to affect these differences in risks, none have been definitively verified. In this review, we discuss a novel hypothesis whereby women's susceptibility to chronic stress also mediates increased risk for AD. As stress is a risk factor for AD, and women are twice as likely to develop mood disorders where stress is a major etiology, it is possible that sex dimorphisms in stress responses contribute to the increase in women with AD. In line with this, sex divergence in biochemical responses to stress have been noted along the hypothalamic-pituitary-adrenal (HPA) axis and among known molecular effectors of AD, with crosstalk between these processes also being likely. In addition, activation of the cortical corticotrophin-releasing factor receptor 1 (CRF1) signaling pathway leads to distinct female-biased increases in molecules associated with AD pathogenesis. Therefore, the different biochemical responses to stress between women and men may represent an intrinsic, sex-dependent risk factor for AD.

  7. PKA/KIN-1 mediates innate immune responses to bacterial pathogens in Caenorhabditis elegans.

    Science.gov (United States)

    Xiao, Yi; Liu, Fang; Zhao, Pei-Ji; Zou, Cheng-Gang; Zhang, Ke-Qin

    2017-11-01

    The genetically tractable organism Caenorhabditis elegans is a powerful model animal for the study of host innate immunity. Although the intestine and the epidermis of C. elegans that is in contact with pathogens are likely to function as sites for the immune function, recent studies indicate that the nervous system could control innate immunity in C. elegans. In this report, we demonstrated that protein kinase A (PKA)/KIN-1 in the neurons contributes to resistance against Salmonella enterica infection in C. elegans. Microarray analysis revealed that PKA/KIN-1 regulates the expression of a set of antimicrobial effectors in the non-neuron tissues, which are required for innate immune responses to S. enterica. Furthermore, PKA/KIN-1 regulated the expression of lysosomal genes during S. enterica infection. Our results suggest that the lysosomal signaling molecules are involved in autophagy by controlling autophagic flux, rather than formation of autophagosomes. As autophagy is crucial for host defense against S. enterica infection in a metazoan, the lysosomal pathway also acts as a downstream effector of the PKA/KIN-1 signaling for innate immunity. Our data indicate that the PKA pathway contributes to innate immunity in C. elegans by signaling from the nervous system to periphery tissues to protect the host against pathogens.

  8. [Effect of vitamine A on mice immune response induced by specific periodontal pathogenic bacteria-immunization].

    Science.gov (United States)

    Lin, Xiao-Ping; Zhou, Xiao-Jia; Liu, Hong-Li; DU, Li-Li; Toshihisa, Kawai

    2010-12-01

    The aim of this study was to investigate the effect of vitamine-A deficiency on the induction of specific periodontal pathogenic bacteria A. actinomycetetemcomitans(Aa) immunization. BALB/c mice were fed with vitamine A-depleted diet or control regular diet throughout the whole experiment period. After 2 weeks, immunized formalin-killed Aa to build immunized models, 6 weeks later, sacrificed to determine specific antibody-IgG, IgM and sub-class IgG antibody titers in serum, and concentration of IL-10, IFN-γ, TNF-α and RANKL in T cell supernatant were measured by ELISA and T cell proliferation was measured by cintilography. SPSS 11.5 software package was used for statistical analysis. The levels of whole IgG and IgM antibody which were immunized by Aa significantly elevated, non-immune group was unable to produce any antibody. Compared with Aa immunized+RD group, the level of whole IgG in Aa immunized+VAD group was significantly higher (Pvitamin-A diet can increase the immunized mice's susceptibility to periodontal pathogenic bacteria and trigger or aggravate immune inflammatory response. Adequate vitamin A is an important factor in maintaining body health. Supported by Natural Science Foundation of Liaoning Province (Grant No.20092139) and Science and Technology Program of Shenyang Municipality (Grant No.F10-149-9-32).

  9. Hormonal contraception use alters stress responses and emotional memory.

    Science.gov (United States)

    Nielsen, Shawn E; Segal, Sabrina K; Worden, Ian V; Yim, Ilona S; Cahill, Larry

    2013-02-01

    Emotionally arousing material is typically better remembered than neutral material. Since norepinephrine and cortisol interact to modulate emotional memory, sex-related influences on stress responses may be related to sex differences in emotional memory. Two groups of healthy women - one naturally cycling (NC women, n=42) and one using hormonal contraceptives (HC women, n=36) - viewed emotionally arousing and neutral images. Immediately after, they were assigned to Cold Pressor Stress (CPS) or a control procedure. One week later, participants received a surprise free recall test. Saliva samples were collected and later assayed for salivary alpha-amylase (biomarker for norepinephrine) and cortisol. Compared to NC women, HC women exhibited significantly blunted stress hormone responses to the images and CPS. Recall of emotional images differed between HC and NC women depending on noradrenergic and cortisol responses. These findings may have important implications for understanding the neurobiology of emotional memory disorders, especially those that disproportionately affect women. Published by Elsevier B.V.

  10. Transcriptional responses of resistant and susceptible fish clones to the bacterial pathogen Flavobacterium psychrophilum.

    Directory of Open Access Journals (Sweden)

    Christelle Langevin

    Full Text Available Flavobacterium psychrophilum is a bacterial species that represents one of the most important pathogens for aquaculture worldwide, especially for salmonids. To gain insights into the genetic basis of the natural resistance to F. psychrophilum, we selected homozygous clones of rainbow trout with contrasted susceptibility to the infection. We compared the transcriptional response to the bacteria in the pronephros of a susceptible and a resistant line by micro-array analysis five days after infection. While the basal transcriptome of healthy fish was significantly different in the resistant and susceptible lines, the transcriptome modifications induced by the bacteria involved essentially the same genes and pathways. The response to F. psychrophilum involved antimicrobial peptides, complement, and a number of enzymes and chemokines. The matrix metalloproteases mmp9 and mmp13 were among the most highly induced genes in both genetic backgrounds. Key genes of both pro- and anti-inflammatory response such as IL1 and IL10, were up-regulated with a greater magnitude in susceptible animals where the bacterial load was also much higher. While higher resistance to F. psychrophilum does not seem to be based on extensive differences in the orientation of the immune response, several genes including complement C3 showed stronger induction in the resistant fish. They may be important for the variation of susceptibility to the infection.

  11. Thymus transcriptome reveals novel pathways in response to avian pathogenic Escherichia coli infection.

    Science.gov (United States)

    Sun, H; Liu, P; Nolan, L K; Lamont, S J

    2016-12-01

    Avian pathogenic Escherichia coli (APEC) can cause significant morbidity in chickens. The thymus provides the essential environment for T cell development; however, the thymus transcriptome has not been examined for gene expression in response to APEC infection. An improved understanding of the host genomic response to APEC infection could inform future breeding programs for disease resistance and APEC control. We therefore analyzed the transcriptome of the thymus of birds challenged with APEC, contrasting susceptible and resistant phenotypes. Thousands of genes were differentially expressed in birds of the 5-day post infection (dpi) challenged-susceptible group vs. 5 dpi non-challenged, in 5 dpi challenged-susceptible vs. 5 dpi challenged-resistant birds, as well as in 5 dpi vs. one dpi challenged-susceptible birds. The Toll-like receptor signaling pathway was the major innate immune response for birds to respond to APEC infection. Moreover, lysosome and cell adhesion molecules pathways were common mechanisms for chicken response to APEC infection. The T-cell receptor signaling pathway, cell cycle, and p53 signaling pathways were significantly activated in resistant birds to resist APEC infection. These results provide a comprehensive assessment of global gene networks and biological functionalities of differentially expressed genes in the thymus under APEC infection. These findings provide novel insights into key molecular genetic mechanisms that differentiate host resistance from susceptibility in this primary lymphoid tissue, the thymus. © The Author 2016. Published by Oxford University Press on behalf of Poultry Science Association.

  12. Coping as a mediator of the relationship between stress mindset and psychological stress response: a pilot study.

    Science.gov (United States)

    Horiuchi, Satoshi; Tsuda, Akira; Aoki, Shuntaro; Yoneda, Kenichiro; Sawaguchi, Yusuke

    2018-01-01

    Coping, the cognitive and behavioral effort required to manage the effects of stressors, is important in determining psychological stress responses (ie, the emotional, behavioral, and cognitive responses to stressors). Coping was classified into categories of emotional expression (eg, negative feelings and thoughts), emotional support seeking (eg, approaching loved ones to request encouragement), cognitive reinterpretation (eg, reframing a problem positively), and problem solving (eg, working to solve the problem). Stress mindset refers to the belief that stress has enhancing (stress-is-enhancing mindset) or debilitating consequences (stress-is-debilitating mindset). This study examined whether coping mediated the relationship between stress mindset and psychological stress responses. Psychological stress responses were conceptualized as depression-anxiety, irritability-anger, and helplessness. The following two hypotheses were tested: 1) a stronger stress-is-enhancing mindset is associated with less frequent use of emotional expression, emotional support seeking, and problem solving, which in turn is associated with lower levels of depression-anxiety, irritability-anger, and helplessness; 2) a stronger stress-is-debilitating mindset is associated with more frequent use of these coping strategies, which in turn is associated with higher levels of these psychological stress responses. The participants were 30 male and 94 female undergraduate and graduate students (mean age =20.4 years). Stress mindset, coping, and psychological stress responses were measured using self-report questionnaires. Six mediation analyses were performed with stress-is-enhancing mindset or stress-is-debilitating mindset as the independent variable, one of the psychological stress responses as the dependent variable, and the four coping strategies as mediators. Emotional expression partially mediated the relationship between a strong stress-is-debilitating mindset and higher irritability

  13. Stress, Nutrition, and Intestinal Immune Responses in Pigs — A Review

    Directory of Open Access Journals (Sweden)

    In Kyu Lee

    2016-08-01

    Full Text Available Modern livestock production became highly intensive and large scaled to increase production efficiency. This production environment could add stressors affecting the health and growth of animals. Major stressors can include environment (air quality and temperature, nutrition, and infection. These stressors can reduce growth performance and alter immune systems at systemic and local levels including the gastrointestinal tract. Heat stress increases the permeability, oxidative stress, and inflammatory responses in the gut. Nutritional stress from fasting, antinutritional compounds, and toxins induces the leakage and destruction of the tight junction proteins in the gut. Fasting is shown to suppress pro-inflammatory cytokines, whereas deoxynivalenol increases the recruitment of intestinal pro-inflammatory cytokines and the level of lymphocytes in the gut. Pathogenic and viral infections such as Enterotoxigenic E. coli (ETEC and porcine epidemic diarrhea virus can lead to loosening the intestinal epithelial barrier. On the other hand, supplementation of Lactobacillus or Saccharaomyces reduced infectious stress by ETEC. It was noted that major stressors altered the permeability of intestinal barriers and profiles of genes and proteins of pro-inflammatory cytokines and chemokines in mucosal system in pigs. However, it is not sufficient to fully explain the mechanism of the gut immune system in pigs under stress conditions. Correlation and interaction of gut and systemic immune system under major stressors should be better defined to overcome aforementioned obstacles.

  14. Transcriptional responses of Arabidopsis thaliana plants to As (V stress

    Directory of Open Access Journals (Sweden)

    Yuan Joshua S

    2008-08-01

    Full Text Available Abstract Background Arsenic is toxic to plants and a common environmental pollutant. There is a strong chemical similarity between arsenate [As (V] and phosphate (Pi. Whole genome oligonucleotide microarrays were employed to investigate the transcriptional responses of Arabidopsis thaliana plants to As (V stress. Results Antioxidant-related genes (i.e. coding for superoxide dismutases and peroxidases play prominent roles in response to arsenate. The microarray experiment revealed induction of chloroplast Cu/Zn superoxide dismutase (SOD (at2g28190, Cu/Zn SOD (at1g08830, as well as an SOD copper chaperone (at1g12520. On the other hand, Fe SODs were strongly repressed in response to As (V stress. Non-parametric rank product statistics were used to detect differentially expressed genes. Arsenate stress resulted in the repression of numerous genes known to be induced by phosphate starvation. These observations were confirmed with qRT-PCR and SOD activity assays. Conclusion Microarray data suggest that As (V induces genes involved in response to oxidative stress and represses transcription of genes induced by phosphate starvation. This study implicates As (V as a phosphate mimic in the cell by repressing genes normally induced when available phosphate is scarce. Most importantly, these data reveal that arsenate stress affects the expression of several genes with little or unknown biological functions, thereby providing new putative gene targets for future research.

  15. Effect of childhood physical abuse on cortisol stress response.

    Science.gov (United States)

    Carpenter, Linda L; Shattuck, Thaddeus T; Tyrka, Audrey R; Geracioti, Thomas D; Price, Lawrence H

    2011-03-01

    Abuse and neglect are highly prevalent in children and have enduring neurobiological effects. Stressful early life environments perturb the hypothalamic-pituitary-adrenal (HPA) axis, which in turn may predispose to psychiatric disorders in adulthood. However, studies of childhood maltreatment and adult HPA function have not yet rigorously investigated the differential effects of maltreatment subtypes, including physical abuse. In this study, we sought to replicate our previous finding that childhood maltreatment was associated with attenuated cortisol responses to stress and determine whether the type of maltreatment was a determinant of the stress response. Salivary cortisol response to the Trier Social Stress Test (TSST) was examined in a non-clinical sample of women (n = 110). Subjects had no acute medical problems and were not seeking psychiatric treatment. Effects of five maltreatment types, as measured by the Childhood Trauma Questionnaire, on cortisol response to the TSST were investigated. To further examine the significant (p < 0.005) effect of one maltreatment type, women with childhood physical abuse (PA) (n = 20) were compared to those without past PA (n = 90). Women reporting childhood PA displayed a significantly blunted cortisol response to the TSST compared with subjects without PA, after controlling for estrogen use, age, other forms of maltreatment, and other potential confounds. There were no differences between PA and control groups with regard to physiological arousal during the stress challenge. In a non-clinical sample of women with minimal or no current psychopathology, physical abuse is associated with a blunted cortisol response to a psychosocial stress task.

  16. The cAMP-PKA Signaling Pathway Regulates Pathogenicity, Hyphal Growth, Appressorial Formation, Conidiation, and Stress Tolerance in Colletotrichum higginsianum.

    Science.gov (United States)

    Zhu, Wenjun; Zhou, Man; Xiong, Zeyang; Peng, Fang; Wei, Wei

    2017-01-01

    Colletotrichum higginsianum is an economically important pathogen that causes anthracnose disease in a wide range of cruciferous crops. Understanding the mechanisms of the cruciferous plant- C. higginsianum interactions will be important in facilitating efficient control of anthracnose diseases. The cAMP-PKA signaling pathway plays important roles in diverse physiological processes of multiple pathogens. C. higginsianum contains two genes, ChPKA1 and ChPKA2 , that encode the catalytic subunits of cyclic AMP (cAMP)-dependent protein kinase A (PKA). To analyze the role of cAMP signaling pathway in pathogenicity and development in C. higginsianum , we characterized ChPKA1 and ChPKA2 genes, and adenylate cyclase ( ChAC ) gene. The ChPKA1 and ChAC deletion mutants were unable to cause disease and significantly reduced in hyphal growth, tolerance to cell wall inhibitors, conidiation, and appressorial formation with abnormal germ tubes, but they had an increased tolerance to elevated temperatures and exogenous H 2 O 2 . In contrast, the ChPKA2 mutant had no detectable alteration of phenotypes, suggesting that ChPKA1 contributes mainly to PKA activities in C. higginsianum . Moreover, we failed to generate Δ ChPKA1ChPKA2 double mutant, indicating that deletion of both PKA catalytic subunits is lethal in C. higginsianum and the two catalytic subunits possibly have overlapping functions. These results indicated that ChPKA1 is the major PKA catalytic subunit in cAMP-PKA signaling pathway and plays significant roles in hyphal growth, pathogenicity, appressorial formation, conidiation, and stress tolerance in C. higginsianum .

  17. The cAMP-PKA Signaling Pathway Regulates Pathogenicity, Hyphal Growth, Appressorial Formation, Conidiation, and Stress Tolerance in Colletotrichum higginsianum

    Directory of Open Access Journals (Sweden)

    Wenjun Zhu

    2017-07-01

    Full Text Available Colletotrichum higginsianum is an economically important pathogen that causes anthracnose disease in a wide range of cruciferous crops. Understanding the mechanisms of the cruciferous plant–C. higginsianum interactions will be important in facilitating efficient control of anthracnose diseases. The cAMP-PKA signaling pathway plays important roles in diverse physiological processes of multiple pathogens. C. higginsianum contains two genes, ChPKA1 and ChPKA2, that encode the catalytic subunits of cyclic AMP (cAMP-dependent protein kinase A (PKA. To analyze the role of cAMP signaling pathway in pathogenicity and development in C. higginsianum, we characterized ChPKA1 and ChPKA2 genes, and adenylate cyclase (ChAC gene. The ChPKA1 and ChAC deletion mutants were unable to cause disease and significantly reduced in hyphal growth, tolerance to cell wall inhibitors, conidiation, and appressorial formation with abnormal germ tubes, but they had an increased tolerance to elevated temperatures and exogenous H2O2. In contrast, the ChPKA2 mutant had no detectable alteration of phenotypes, suggesting that ChPKA1 contributes mainly to PKA activities in C. higginsianum. Moreover, we failed to generate ΔChPKA1ChPKA2 double mutant, indicating that deletion of both PKA catalytic subunits is lethal in C. higginsianum and the two catalytic subunits possibly have overlapping functions. These results indicated that ChPKA1 is the major PKA catalytic subunit in cAMP-PKA signaling pathway and plays significant roles in hyphal growth, pathogenicity, appressorial formation, conidiation, and stress tolerance in C. higginsianum.

  18. Oxidative stress protection and glutathione metabolism in response to hydrogen peroxide and menadione in riboflavinogenic fungus Ashbya gossypii.

    Science.gov (United States)

    Kavitha, S; Chandra, T S

    2014-11-01

    Ashbya gossypii is a plant pathogen and a natural overproducer of riboflavin and is used for industrial riboflavin production. A few literature reports depict a link between riboflavin overproduction and stress in this fungus. However, the stress protection mechanisms and glutathione metabolism are not much explored in A. gossypii. In the present study, an increase in the activity of catalase and superoxide dismutase was observed in response to hydrogen peroxide and menadione. The lipid peroxide and membrane lipid peroxide levels were increased by H2O2 and menadione, indicating oxidative damage. The glutathione metabolism was altered with a significant increase in oxidized glutathione (GSSG), glutathione peroxidase (GPX), glutathione S transferase (GST), and glutathione reductase (GR) and a decrease in reduced glutathione (GSH) levels in the presence of H2O2 and menadione. Expression of the genes involved in stress mechanism was analyzed in response to the stressors by semiquantitative RT-PCR. The messenger RNA (mRNA) levels of CTT1, SOD1, GSH1, YAP1, and RIB3 were increased by H2O2 and menadione, indicating the effect of stress at the transcriptional level. A preliminary bioinformatics study for the presence of stress response elements (STRE)/Yap response elements (YRE) depicted that the glutathione metabolic genes, stress genes, and the RIB genes hosted either STRE/YRE, which may enable induction of these genes during stress.

  19. Plasma cortisol stress response in channel catfish, Ictalurus punctatus influences susceptibility to Edwardeseilla ictaluri

    Science.gov (United States)

    Cortisol is a primary stress hormone in fish as its plasma variations correlate with the occurrence of various stressful situations. Past studies have demonstrated that fish subjected to handling stress or poor water quality had a reduced ability to resist pathogens. Channel catfish fingerlings th...

  20. Transcriptome analysis of hexaploid hulless oat in response to salinity stress.

    Directory of Open Access Journals (Sweden)

    Bin Wu

    Full Text Available Oat is a cereal crop of global importance used for food, feed, and forage. Understanding salinity stress tolerance mechanisms in plants is an important step towards generating crop varieties that can cope with environmental stresses. To date, little is known about the salt tolerance of oat at the molecular level. To better understand the molecular mechanisms underlying salt tolerance in oat, we investigated the transcriptomes of control and salt-treated oat using RNA-Seq.Using Illumina HiSeq 4000 platform, we generated 72,291,032 and 356,891,432 reads from non-stressed control and salt-stressed oat, respectively. Assembly of 64 Gb raw sequence data yielded 128,414 putative unique transcripts with an average length of 1,189 bp. Analysis of the assembled unigenes from the salt stressed and control libraries indicated that about 65,000 unigenes were differentially expressed at different stages. Functional annotation showed that ABC transporters, plant hormone signal transduction, plant-pathogen interactions, starch and sucrose metabolism, arginine and proline metabolism, and other secondary metabolite pathways were enriched under salt stress. Based on the RPKM values of assembled unigenes, 24 differentially expressed genes under salt stress were selected for quantitative RT-PCR validation, which successfully confirmed the results of RNA-Seq. Furthermore, we identified 18,039 simple sequence repeats, which may help further elucidate salt tolerance mechanisms in oat.Our global survey of transcriptome profiles of oat plants in response to salt stress provides useful insights into the molecular mechanisms underlying salt tolerance in this crop. These findings also represent a rich resource for further analysis of salt tolerance and for breeding oat with improved salt tolerance through the use of salt-related genes.

  1. Social stress response in adolescents with bipolar disorder.

    Science.gov (United States)

    Casement, Melynda D; Goldstein, Tina R; Gratzmiller, Sarah M; Franzen, Peter L

    2018-05-01

    Theoretical models posit that stressors contribute to the onset and maintenance of bipolar disorder in adolescence through disruptions in stress physiology, but physiological response to stressors has not been evaluated in adolescents with bipolar illness. The present study tests the hypothesis that adolescents with bipolar disorder will have greater reactivity to a laboratory social stress task than healthy adolescents. Adolescents with bipolar illness (n = 27) and healthy adolescents (n = 28) completed a modified version of the Trier Social Stress Task. Stress response was assessed using high frequency heart rate variability (HF-HRV), heart rate (HR), mean arterial blood pressure (MAP), salivary cortisol, and subjective stress. Multilevel models were used to test for group differences in resting-state physiology, and stress reactivity and recovery. Adolescents with bipolar disorder had greater reactivity in HF-HRV (z = 3.32), but blunted reactivity in MAP (z = -3.08) and cortisol (z = -2.60), during the stressor compared to healthy adolescents. They also had lower resting HF-HRV (z = -3.49) and cortisol (z = -2.86), and higher resting HR (z = 3.56), than healthy adolescents. These results indicate that bipolar disorder is associated with disruptions in autonomic and endocrine response to stress during adolescence, including greater HF-HRV reactivity. Further research should evaluate whether these individual differences in stress physiology precede and predict the onset of mood episodes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Role of glycogen synthase kinase-3 beta in the inflammatory response caused by bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Cortés-Vieyra Ricarda

    2012-06-01

    Full Text Available Abstract Glycogen synthase kinase 3β (GSK3β plays a fundamental role during the inflammatory response induced by bacteria. Depending on the pathogen and its virulence factors, the type of cell and probably the context in which the interaction between host cells and bacteria takes place, GSK3β may promote or inhibit inflammation. The goal of this review is to discuss recent findings on the role of the inhibition or activation of GSK3β and its modulation of the inflammatory signaling in monocytes/macrophages and epithelial cells at the transcriptional level, mainly through the regulation of nuclear factor-kappaB (NF-κB activity. Also included is a brief overview on the importance of GSK3 in non-inflammatory processes during bacterial infection.

  3. Role of glycogen synthase kinase-3 beta in the inflammatory response caused by bacterial pathogens.

    Science.gov (United States)

    Cortés-Vieyra, Ricarda; Bravo-Patiño, Alejandro; Valdez-Alarcón, Juan J; Juárez, Marcos Cajero; Finlay, B Brett; Baizabal-Aguirre, Víctor M

    2012-06-12

    Glycogen synthase kinase 3β (GSK3β) plays a fundamental role during the inflammatory response induced by bacteria. Depending on the pathogen and its virulence factors, the type of cell and probably the context in which the interaction between host cells and bacteria takes place, GSK3β may promote or inhibit inflammation. The goal of this review is to discuss recent findings on the role of the inhibition or activation of GSK3β and its modulation of the inflammatory signaling in monocytes/macrophages and epithelial cells at the transcriptional level, mainly through the regulation of nuclear factor-kappaB (NF-κB) activity. Also included is a brief overview on the importance of GSK3 in non-inflammatory processes during bacterial infection.

  4. Eccentric-exercise induced inflammation attenuates the vascular responses to mental stress

    NARCIS (Netherlands)

    Paine, N.J.; Ring, C.; Aldred, S.; Bosch, J.A.; Wadley, A.J.; Veldhuijzen van Zanten, J.J.C.S.

    2013-01-01

    Mental stress has been identified as a trigger of myocardial infarction (MI), with inflammation and vascular responses to mental stress independently implicated as contributing factors. This study examined whether inflammation moderates the vascular responses to mental stress. Eighteen healthy male

  5. Respiratory Effects and Systemic Stress Response Following ...

    Science.gov (United States)

    Previous studies have demonstrated that exposure to the pulmonary irritant ozone causes myriad systemic metabolic and pulmonary effects attributed to sympathetic and hypothalamus-pituitary-adrenal (HPA) axis activation, which are exacerbated in metabolically impaired models. We examined respiratory and systemic effects following exposure to a sensory irritant acrolein to elucidate the systemic and pulmonary consequences in healthy and diabetic rat models. Male Wistar and Goto Kakizaki (GK) rats, a nonobese type II diabetic Wistar-derived model, were exposed by inhalation to 0, 2, or 4 ppm acrolein, 4 h/d for 1 or 2 days. Exposure at 4 ppm significantly increased pulmonary and nasal inflammation in both strains with vascular protein leakage occurring only in the nose. Acrolein exposure (4 ppm) also caused metabolic impairment by inducing hyperglycemia and glucose intolerance (GK > Wistar). Serum total cholesterol (GKs only), low-density lipoprotein (LDL) cholesterol (both strains), and free fatty acids (GK > Wistar) levels increased; however, no acrolein-induced changes were noted in branched-chain amino acid or insulin levels. These responses corresponded with a significant increase in corticosterone and modest but insignificant increases in adrenaline in both strains, suggesting activation of the HPA axis. Collectively, these data demonstrate that acrolein exposure has a profound effect on nasal and pulmonary inflammation, as well as glucose and lipid metabolis

  6. Response of Saccharomyces cerevisiae to cadmium stress

    International Nuclear Information System (INIS)

    Moreira, Luciana Mara Costa; Ribeiro, Frederico Haddad; Neves, Maria Jose; Porto, Barbara Abranches Araujo; Amaral, Angela M.; Menezes, Maria Angela B.C.; Rosa, Carlos Augusto

    2009-01-01

    The intensification of industrial activity has been greatly contributing with the increase of heavy metals in the environment. Among these heavy metals, cadmium becomes a serious pervasive environmental pollutant. The cadmium is a heavy metal with no biological function, very toxic and carcinogenic at low concentrations. The toxicity of cadmium and several other metals can be mainly attributed to the multiplicity of coordination complexes and clusters that they can form. Some aspects of the cellular response to cadmium were extensively investigated in the yeast Saccharomyces cerevisiae. The primary site of interaction between many toxic metals and microbial cells is the plasma membrane. Plasma-membrane permeabilisation has been reported in a variety of microorganisms following cadmium exposure, and is considered one mechanism of cadmium toxicity in the yeast. In this work, using the yeast strain S. cerevisiae W303-WT, we have investigated the relationships between Cd uptake and release of cellular metal ions (K + and Na + ) using neutron activation technique. The neutron activation was an easy, rapid and suitable technique for doing these metal determinations on yeast cells; was observed the change in morphology of the strains during the process of Cd accumulation, these alterations were observed by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) during incorporation of cadmium. (author)

  7. Response of Saccharomyces cerevisiae to cadmium stress

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Luciana Mara Costa; Ribeiro, Frederico Haddad; Neves, Maria Jose [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia], e-mail: luamatu@uol.com.br; Porto, Barbara Abranches Araujo; Amaral, Angela M.; Menezes, Maria Angela B.C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Lab. de Ativacao Neutronica], e-mail: menezes@cdtn.br; Rosa, Carlos Augusto [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail: carlrosa@icb.ufmg

    2009-07-01

    The intensification of industrial activity has been greatly contributing with the increase of heavy metals in the environment. Among these heavy metals, cadmium becomes a serious pervasive environmental pollutant. The cadmium is a heavy metal with no biological function, very toxic and carcinogenic at low concentrations. The toxicity of cadmium and several other metals can be mainly attributed to the multiplicity of coordination complexes and clusters that they can form. Some aspects of the cellular response to cadmium were extensively investigated in the yeast Saccharomyces cerevisiae. The primary site of interaction between many toxic metals and microbial cells is the plasma membrane. Plasma-membrane permeabilisation has been reported in a variety of microorganisms following cadmium exposure, and is considered one mechanism of cadmium toxicity in the yeast. In this work, using the yeast strain S. cerevisiae W303-WT, we have investigated the relationships between Cd uptake and release of cellular metal ions (K{sup +} and Na{sup +}) using neutron activation technique. The neutron activation was an easy, rapid and suitable technique for doing these metal determinations on yeast cells; was observed the change in morphology of the strains during the process of Cd accumulation, these alterations were observed by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) during incorporation of cadmium. (author)

  8. Psychological stress during exercise: immunoendocrine and oxidative responses.

    Science.gov (United States)

    Huang, Chun-Jung; Webb, Heather E; Evans, Ronald K; McCleod, Kelly A; Tangsilsat, Supatchara E; Kamimori, Gary H; Acevedo, Edmund O

    2010-12-01

    The purpose of this study was to examine the changes in catecholamines (epinephrine [EPI] and norepinephrine [NE]), interleukin-2 (IL-2) and a biomarker of oxidative stress (8-isoprostane) in healthy individuals who were exposed to a dual challenge (physical and psychological stress). Furthermore, this study also examined the possible relationships between catecholamines (NE and EPI) and 8-isoprostane and between IL-2 and 8-isoprostane following a combined physical and psychological challenge. Seven healthy male subjects completed two experimental conditions. The exercise-alone condition (EAC) consisted of cycling at 60% VO(2max) for 37 min, while the dual-stress condition (DSC) included 20 min of a mental challenge while cycling. DSC showed greater EPI and 8-isoprostane levels (significant condition by time interaction). NE and IL-2 revealed significant change across time in both conditions. In addition, following dual stress, EPI area-under-the-curve (AUC) demonstrated a positive correlation with NE AUC and IL-2 AUC. NE AUC was positively correlated with IL-2 AUC and peak 8-isoprostane, and peak IL-2 was positively correlated with peak 8-isoprostane in response to a dual stress. The potential explanation for elevated oxidative stress during dual stress may be through the effects of the release of catecholamines and IL-2. These findings may further provide the potential explanation that dual stress alters physiological homeostasis in many occupations including firefighting, military operations and law enforcement. A greater understanding of these responses to stress can assist in finding strategies (e.g. exercise training) to overcome the inherent psychobiological challenges associated with physically and mentally demanding professions.

  9. Suppressiveness of 18 composts against 7 pathosystems: Variability in pathogen response

    NARCIS (Netherlands)

    Termorshuizen, A.J.; Rijn, van E.; Gaag, van der D.J.; Alabouvette, C.; Chen, Y.; Lagerlöf, J.; Malandrakis, A.A.; Paplomatas, E.J.; Rämert, B.; Ryckeboer, J.; Steinberg, C.; Zmora-Nahum, S.

    2006-01-01

    Compost is often reported as a substrate that is able to suppress soilborne plant pathogens, but suppression varies according to the type of compost and pathosystem. Reports often deal with a single pathogen while in reality crops are attacked by multiple plant pathogens. The goal of the present

  10. Defense mechanisms of Solanum tuberosum L. in response to attack by plant-pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    VERA A D POIATTI

    2009-01-01

    Full Text Available The natural resistance of plants to disease is based not only on preformed mechanisms, but also on induced mechanisms. The defense mechanisms present in resistant plants may also be found in susceptible ones. This study attempted to analyze the metabolic alterations in plants of the potato Solanum tuberosum L. cv. Agata that were inoculated with the incompatible plant-pathogenic bacteria X. axonopodis and R. solanacearum, and the compatible bacterium E. carotovora. Levels of total phenolic compounds, including the flavonoid group, and the activities of polyphenol oxidase (PPO and peroxidase (POX were evaluated. Bacteria compatibility was evaluated by means of infiltration of tubers. The defense response was evaluated in the leaves of the potato plants. Leaves were inoculated depending on their number and location on the stem. Multiple-leaf inoculation was carried out on basal, intermediate, and apical leaves, and single inoculations on intermediate leaves. Leaves inoculated with X. axonopodis and with R. solanacearum showed hypersensitive responses within 24 hours post-inoculation, whereas leaves inoculated with E. carotovora showed disease symptoms. Therefore, the R. solanacearum isolate used in the experiments did not exhibit virulence to this potato cultivar. Regardless of the bacterial treatments, the basal leaves showed higher PPO and POX activities and lower levels of total phenolic compounds and flavonoids, compared to the apical leaves. However, basal and intermediate leaves inoculated with R. solanacearum and X. axonopodis showed increases in total phenolic compounds and flavonoid levels. In general, multiple-leaf inoculation showed the highest levels of total phenolics and flavonoids, whereas the single inoculations resulted in the highest increase in PPO activity. The POX activity showed no significant difference between single- and multiple-leaf inoculations. Plants inoculated with E. carotovora showed no significant increase in

  11. Transcriptome analysis of Pseudostellaria heterophylla in response to the infection of pathogenic Fusarium oxysporum.

    Science.gov (United States)

    Qin, Xianjin; Wu, Hongmiao; Chen, Jun; Wu, Linkun; Lin, Sheng; Khan, Muhammad Umar; Boorboori, Mohammad Reza; Lin, Wenxiong

    2017-09-18

    Pseudostellaria heterophylla (P. heterophylla), a herbaceous perennial, belongs to Caryophyllaceae family and is one of the Chinese herbal medicine with high pharmacodynamic value. It can be used to treat the spleen deficiency, anorexia, weakness after illness and spontaneous perspiration symptoms. Our previous study found that consecutive monoculture of Pseudostellaria heterophylla could lead to the deterioration of the rhizosphere microenvironment. The specialized forms of pathogenic fungus Fusarium oxysporum f.Sp. heterophylla (F. oxysporum) in rhizosphere soils of P. heterophylla plays an important role in the consecutive monoculture of P. heterophylla. In this study, F. oxysporum was used to infect the tissue culture plantlets of P. heterophylla to study the responding process at three different infection stages by using RNA-sequencing. We obtained 127,725 transcripts and 47,655 distinct unigenes by de novo assembly and obtained annotated information in details for 25,882 unigenes. The Kyoto Encyclopedia of Genes and Genomes pathway analysis and the real-time quantitative PCR results suggest that the calcium signal system and WRKY transcription factor in the plant-pathogen interaction pathway may play an important role in the response process, and all of the WRKY transcription factor genes were divided into three different types. Moreover, we also found that the stimulation of F. oxysporum may result in the accumulation of some phenolics in the plantlets and the programmed cell death of the plantlets. This study has partly revealed the possible molecular mechanism of the population explosion of F. oxysporum in rhizosphere soils and signal response process, which can be helpful in unraveling the role of F. oxysporum in consecutive monoculture problems of P. heterophylla.

  12. Interplay of Pathogen-Induced Defense Responses and Symbiotic Establishment in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2017-05-01

    Full Text Available Suppression of host innate immunity appears to be required for the establishment of symbiosis between rhizobia and host plants. In this study, we established a system that included a host plant, a bacterial pathogen and a symbiotic rhizobium to study the role of innate immunity during symbiotic interactions. A pathogenic bacterium, Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000, was shown to cause chlorosis in Medicago truncatula A17. Sinorhizobium meliloti strain Sm2011 (Sm2011 and Pst DC3000 strain alone induced similar defense responses in M. truncatula. However, when co-inoculated, Sm2011 specifically suppressed the defense responses induced by Pst DC3000, such as MAPK activation and ROS production. Inoculation with Sm2011 suppressed the transcription of defense-related genes triggered by Pst DC3000 infection, including the receptor of bacterial flagellin (FLS2, pathogenesis-related protein 10 (PR10, and the transcription factor WRKY33. Interestingly, inoculation with Pst DC3000 specifically inhibited the expression of the symbiosis marker genes nodule inception and nodulation pectate lyase and reduced the numbers of infection threads and nodules on M. truncatula A17 roots, indicating that Pst DC3000 inhibits the establishment of symbiosis in M. truncatula. In addition, defense-related genes, such as MAPK3/6, RbohC, and WRKY33, exhibited a transient increase in their expression in the early stage of symbiosis with Sm2011, but the expression dropped down to normal levels at later symbiotic stages. Our results suggest that plant innate immunity plays an antagonistic role in symbiosis by directly reducing the numbers of infection threads and nodules.

  13. Disturbed hypoxic responses as a pathogenic mechanism of diabetic foot ulcers.

    Science.gov (United States)

    Catrina, Sergiu-Bogdan; Zheng, Xiaowei

    2016-01-01

    Diabetic foot ulceration (DFU) is a chronic complication of diabetes that is characterized by impaired wound healing in the lower extremities. DFU remains a major clinical challenge because of poor understanding of its pathogenic mechanisms. Impaired wound healing in diabetes is characterized by decreased angiogenesis, reduced bone marrow-derived endothelial progenitor cell (EPC) recruitment, and decreased fibroblast and keratinocyte proliferation and migration. Recently, increasing evidence has suggested that increased hypoxic conditions and impaired cellular responses to hypoxia are essential pathogenic factors of delayed wound healing in DFU. Hypoxia-inducible factor-1 (HIF-1, a heterodimer of HIF-1α and HIF-1β) is a master regulator of oxygen homeostasis that mediates the adaptive cellular responses to hypoxia by regulating the expression of genes involved in angiogenesis, metabolic changes, proliferation, migration, and cell survival. However, HIF-1 signalling is inhibited in diabetes as a result of hyperglycaemia-induced HIF-1α destabilization and functional repression. Increasing HIF-1α expression and activity using various approaches promotes angiogenesis, EPC recruitment, and granulation, thereby improving wound healing in experimental diabetes. The mechanisms underlying HIF-1α regulation in diabetes and the therapeutic strategies targeting HIF-1 signalling for the treatment of diabetic wounds are discussed in this review. Further investigations of the pathways involved in HIF-1α regulation in diabetes are required to advance our understanding of the mechanisms underlying impaired wound healing in diabetes and to provide a foundation for developing novel therapeutic approaches to treat DFU. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Stretching the stress boundary: Linking air pollution health effects to a neurohormonal stress response.

    Science.gov (United States)

    Kodavanti, Urmila P

    2016-12-01

    Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer's and diabetes. A neurohormonal stress response (referred to here as a systemic response produced by activation of the sympathetic nervous system and hypothalamus-pituitary-adrenal (HPA)-axis) has been implicated in a variety of psychological and physical stresses, which involves immune and metabolic homeostatic mechanisms affecting all organs in the body. In this review, we provide new evidence for the involvement of this well-characterized neurohormonal stress response in mediating systemic and pulmonary effects of a prototypic air pollutant - ozone. A plethora of systemic metabolic and immune effects are induced in animals exposed to inhaled pollutants, which could result from increased circulating stress hormones. The release of adrenal-derived stress hormones in response to ozone exposure not only mediates systemic immune and metabolic responses, but by doing so, also modulates pulmonary injury and inflammation. With recurring pollutant exposures, these effects can contribute to multi-organ chronic conditions associated with air pollution. This review will cover, 1) the potential mechanisms by which air pollutants can initiate the relay of signals from respiratory tract to brain through trigeminal and vagus nerves, and activate stress responsive regions including hypothalamus; and 2) the contribution of sympathetic and HPA-axis activation in mediating systemic homeostatic metabolic and immune effects of ozone in various organs. The potential contribution of chronic environmental stress in cardiovascular, neurological, reproductive and metabolic diseases, and the knowledge gaps are also discussed. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu. Published by Elsevier B.V.

  15. The Multiple Functions of the Nucleolus in Plant Development, Disease and Stress Responses

    Directory of Open Access Journals (Sweden)

    Natalia O. Kalinina

    2018-02-01

    Full Text Available The nucleolus is the most conspicuous domain in the eukaryotic cell nucleus, whose main function is ribosomal RNA (rRNA synthesis and ribosome biogenesis. However, there is growing evidence that the nucleolus is also implicated in many other aspects of cell biology, such as regulation of cell cycle, growth and development, senescence, telomerase activity, gene silencing, responses to biotic and abiotic stresses. In the first part of the review, we briefly assess the traditional roles of the plant nucleolus in rRNA synthesis and ribosome biogenesis as well as possible functions in other RNA regulatory pathways such as splicing, nonsense-mediated mRNA decay and RNA silencing. In the second part of the review we summarize recent progress and discuss already known and new hypothetical roles of the nucleolus in plant growth and development. In addition, this part will highlight studies showing new nucleolar functions involved in responses to pathogen attack and abiotic stress. Cross-talk between the nucleolus and Cajal bodies is also discussed in the context of their association with poly(ADP ribosepolymerase (PARP, which is known to play a crucial role in various physiological processes including growth, development and responses to biotic and abiotic stresses.

  16. The Multiple Functions of the Nucleolus in Plant Development, Disease and Stress Responses

    Science.gov (United States)

    Kalinina, Natalia O.; Makarova, Svetlana; Makhotenko, Antonida; Love, Andrew J.; Taliansky, Michael

    2018-01-01

    The nucleolus is the most conspicuous domain in the eukaryotic cell nucleus, whose main function is ribosomal RNA (rRNA) synthesis and ribosome biogenesis. However, there is growing evidence that the nucleolus is also implicated in many other aspects of cell biology, such as regulation of cell cycle, growth and development, senescence, telomerase activity, gene silencing, responses to biotic and abiotic stresses. In the first part of the review, we briefly assess the traditional roles of the plant nucleolus in rRNA synthesis and ribosome biogenesis as well as possible functions in other RNA regulatory pathways such as splicing, nonsense-mediated mRNA decay and RNA silencing. In the second part of the review we summarize recent progress and discuss already known and new hypothetical roles of the nucleolus in plant growth and development. In addition, this part will highlight studies showing new nucleolar functions involved in responses to pathogen attack and abiotic stress. Cross-talk between the nucleolus and Cajal bodies is also discussed in the context of their association with poly(ADP ribose)polymerase (PARP), which is known to play a crucial role in various physiological processes including growth, development and responses to biotic and abiotic stresses. PMID:29479362

  17. Response to stress in Drosophila is mediated by gender, age and stress paradigm.

    Science.gov (United States)

    Neckameyer, Wendi S; Nieto-Romero, Andres R

    2015-01-01

    All living organisms must maintain equilibrium in response to internal and external challenges within their environment. Changes in neural plasticity (alterations in neuronal populations, dendritic remodeling, and synaptic turnover) are critical components of the homeostatic response to stress, which has been strongly implicated in the onset of affective disorders. However, stress is differentially perceived depending on the type of stress and its context, as well as genetic background, age and sex; therefore, an individual's maintenance of neuronal homeostasis must differ depending upon these variables. We established Drosophila as a model to analyze homeostatic responses to stress. Sexually immature and mature females and males from an isogenic wild-type strain raised under controlled environmental conditions were exposed to four reproducible and high-throughput translatable stressors to facilitate the analysis of a large number of animals for direct comparisons. These animals were assessed in an open-field arena, in a light-dark box, and in a forced swim test, as well as for sensitivity to the sedative effects of ethanol. These studies establish that immature and mature females and males represent behaviorally distinct populations under control conditions as well as after exposure to different stressors. Therefore, the neural substrates mediating the stress response must be differentially expressed depending upon the hormonal status of the brain. In addition, an adaptive response to a given stressor in one paradigm was not predictive for outcomes in other paradigms.

  18. Stress effects on mood, HPA axis, and autonomic response: comparison of three psychosocial stress paradigms.

    Directory of Open Access Journals (Sweden)

    Grace E Giles

    Full Text Available Extensive experimental psychology research has attempted to parse the complex relationship between psychosocial stress, mood, cognitive performance, and physiological changes. To do so, it is necessary to have effective, validated methods to experimentally induce psychosocial stress. The Trier Social Stress Test (TSST is the most commonly used method of experimentally inducing psychosocial stress, but it is resource intensive. Less resource intense psychosocial stress tasks include the Socially Evaluative Cold Pressor Task (SECPT and a computerized mental arithmetic task (MAT. These tasks effectively produce a physiological and psychological stress response and have the benefits of requiring fewer experimenters and affording data collection from multiple participants simultaneously. The objective of this study was to compare the magnitude and duration of these three experimental psychosocial stress induction paradigms. On each of four separate days, participants completed either a control non-stressful task or one of the three experimental stressors: the TSST, SECPT, or MAT. We measured mood, working memory performance, salivary cortisol and alpha-amylase (AA, and heart rate. The TSST and SECPT exerted the most robust effects on mood and physiological measures. TSST effects were generally evident immediately post-stress as well as 10- and 20-minutes after stress cessation, whereas SECPT effects were generally limited to the duration of the stressor. The stress duration is a key determinant when planning a study that utilizes an experimental stressor, as researchers may be interested in collecting dependent measures prior to stress cessation. In this way, the TSST would allow the investigator a longer window to administer tasks of interest.

  19. Physiological responses of genotypes soybean to simulated drought stress

    Directory of Open Access Journals (Sweden)

    Eleonóra Krivosudská

    2016-12-01

    Full Text Available The objective of this research was to investigate possible genetic variation in the sensitivity of soybean cultivars for nitrogen fixation rates in response to soil drying. The work confirmed that the selected physiological characteristics (RWC, osmotic potential, stress index and created nodules on roots are good evaluating parameters for the determination of water stress in plant. In the floricultural year 2014 an experiment with four genetic resources of soybean was launched. Sowing of Maverick (USA, Drina (HRV, Nigra (SVK and Polanka (CZK genotypes was carried out in the containers of 15 l capacity. This stress had a negative impact on the physiological parameters. By comparing the RWC values, the decrease was more significant at the end of dehydration, which was monitored in Maverick and Drina genotypes using the Nitrazon inoculants and water stress effect. Inoculated stressed Nigra and Polanka genotypes have kept higher water content till the end of dehydration period. Also the proline accumulation was monitored during the water stress, whilst higher content of free proline reached of Maverick. More remarkable decrease of osmotic potential was again registered in a foreign Drina and Maverick genotypes in the inoculated variations. Nigra and Polanka genotypes responses not so significant in the given conditions.

  20. Drought Stress Responses of Sunflower Germplasm Developed after Wide Hybridization

    Directory of Open Access Journals (Sweden)

    Roumiana Dimova Vassilevska-Ivanova

    2016-10-01

    Full Text Available Response of sunflower germplasms viz. cultivated sunflower H. annuus and two breeding lines H. annuus x T. rotundifolia and H. annuus x V. encelioides developed after wide hybridization were used for identification of drought tolerant sunflower genotypes at the seedling growth stage. Three water stress levels of zero (control, -0.4, and -0.8 MPa were developed using polyethyleneglycol-6000 (PEG-6000. Physiological and biochemical stress determining parameters such as root and shoots length, fresh weight, antioxidant enzyme activities (superoxide dismutase (SOD, catalase (CAT, guaiacol peroxidase (GPO, ascorbate peroxidase (APX and antioxidant metabolite content (total antioxidant capacity, total phenols and total flavonoids content were compared between seedlings of all three genotypes. Results revealed that sunflower genotypes have similar responses at two osmotic potentials for shoot and root length and fresh weight. The data also showed that drought stresss could induce oxidative stress, as indicated by the increase level of ascorbate peroxidase and guaiacol peroxidase at -04 MPa in H. annuus cv 1114. Although the activity of ascorbate peroxidase and guaiacol peroxidase was differentially influenced by drought, the changes of antioxidant enzyme activities such as catalase, superoxide dismutase, guaiacol peroxidase, and ascorbate peroxidase subjected to drought stress follow a similar pattern in both breeding lines, indicating that similar defense systems might be involved in the oxidative stress injury in sunflowers. Increase in content of phenols and flavonoids were detected for all three genotypes under stress, which showed that these were major antioxidant metabolites in scavenging cellular H2O2.

  1. The Cell Wall of the Human Fungal Pathogen Aspergillus fumigatus: Biosynthesis, Organization, Immune Response, and Virulence.

    Science.gov (United States)

    Latgé, Jean-Paul; Beauvais, Anne; Chamilos, Georgios

    2017-09-08

    More than 90% of the cell wall of the filamentous fungus Aspergillus fumigatus comprises polysaccharides. Biosynthesis of the cell wall polysaccharides is under the control of three types of enzymes: transmembrane synthases, which are anchored to the plasma membrane and use nucleotide sugars as substrates, and cell wall-associated transglycosidases and glycosyl hydrolases, which are responsible for remodeling the de novo synthesized polysaccharides and establishing the three-dimensional structure of the cell wall. For years, the cell wall was considered an inert exoskeleton of the fungal cell. The cell wall is now recognized as a living organelle, since the composition and cellular localization of the different constitutive cell wall components (especially of the outer layers) vary when the fungus senses changes in the external environment. The cell wall plays a major role during infection. The recognition of the fungal cell wall by the host is essential in the initiation of the immune response. The interactions between the different pattern-recognition receptors (PRRs) and cell wall pathogen-associated molecular patterns (PAMPs) orientate the host response toward either fungal death or growth, which would then lead to disease development. Understanding the molecular determinants of the interplay between the cell wall and host immunity is fundamental to combatting Aspergillus diseases.

  2. Cortisol stress response in post-traumatic stress disorder, panic disorder, and major depressive disorder patients.

    Science.gov (United States)

    Wichmann, Susann; Kirschbaum, Clemens; Böhme, Carsten; Petrowski, Katja

    2017-09-01

    Previous research has focussed extensively on the distinction of HPA-axis functioning between patient groups and healthy volunteers, with relatively little emphasis on a direct comparison of patient groups. The current study's aim was to analyse differences in the cortisol stress response as a function of primary diagnosis of panic disorder (PD), post-traumatic stress disorder (PTSD), and major depressive disorder (MDD). A total of n=30 PD (mean age±SD: 36.07±12.56), n=23 PTSD (41.22±10.17), n=18 MDD patients (39.00±14.93) and n=47 healthy control (HC) individuals (35.51±13.15) participated in this study. All the study participants were female. The Trier Social Stress Test (TSST) was used for reliable laboratory stress induction. Blood sampling accompanied the TSST for cortisol and ACTH assessment. Panic-related, PTSD-specific questionnaires and the Beck Depression Inventory II were handed out for the characterisation of the study groups. Repeated measure ANCOVAs were conducted to test for main effects of time or group and for interaction effects. Regression analyses were conducted to take comorbid depression into account. 26.7% of the PD patients, 43.5% of the PTSD patients, 72.2% of the MDD patients and 80.6% of the HC participants showed a cortisol stress response upon the TSST. ANCOVA revealed a cortisol hypo-responsiveness both in PD and PTSD patients, while no significant group differences were seen in the ACTH concentrations. Additional analyses showed no impact of comorbid depressiveness on the cortisol stress response. MDD patients did not differ in the hormonal stress response neither compared to the HC participants nor to the PD and PTSD patients. Our main findings provide evidence of a dissociation between the cortisol and ACTH concentrations in response to the TSST in PTSD and in PD patients, independent of comorbid depression. Our results further support overall research findings of a cortisol hypo-responsiveness in PD patients. A hypo-response

  3. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Christen, Verena [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Capelle, Martinus [Crucell, P.O. Box 2048, NL-2301 Leiden (Netherlands); Fent, Karl, E-mail: karl.fent@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology Zürich, Department of Environmental Systems Science, CH-8092 Zürich (Switzerland)

    2013-10-15

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes.

  4. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    International Nuclear Information System (INIS)

    Christen, Verena; Capelle, Martinus; Fent, Karl

    2013-01-01

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes

  5. Erythropoietin Action in Stress Response, Tissue Maintenance and Metabolism

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhang

    2014-06-01

    Full Text Available Erythropoietin (EPO regulation of red blood cell production and its induction at reduced oxygen tension provides for the important erythropoietic response to ischemic stress. The cloning and production of recombinant human EPO has led to its clinical use in patients with anemia for two and half decades and has facilitated studies of EPO action. Reports of animal and cell models of ischemic stress in vitro and injury suggest potential EPO benefit beyond red blood cell production including vascular endothelial response to increase nitric oxide production, which facilitates oxygen delivery to brain, heart and other non-hematopoietic tissues. This review discusses these and other reports of EPO action beyond red blood cell production, including EPO response affecting metabolism and obesity in animal models. Observations of EPO activity in cell and animal model systems, including mice with tissue specific deletion of EPO receptor (EpoR, suggest the potential for EPO response in metabolism and disease.

  6. Cotton proteomics for deciphering the mechanism of environment stress response and fiber development.

    Science.gov (United States)

    Zhou, Meiliang; Sun, Guoqing; Sun, Zhanmin; Tang, Yixiong; Wu, Yanmin

    2014-06-13

    Cotton fiber is considered as the backbone of the textile industry. The productivity of cotton crop is severely hampered by the occurrence of pathogens, pests, and various environmental factors. Nevertheless, cotton plant has developed sophisticated mechanisms to respond to environment stresses to avoid detrimental effects on its growth and development. Therefore, understanding the mechanisms of cotton fiber development and environment stress response is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in cotton fiber development and abiotic/biotic stress tolerance has increased dramatically in the last 5years as evidenced by the large amount of publications in this area. This review summarizes the work which has been reported for cotton proteomics and evaluates the findings in context of the approaches that are widely employed with the aim to generate novel insight useful for cotton improvement. Cotton (Gossypium spp.) is considered as the foremost commercially important fiber crop grown all over the world and is deemed as the backbone of the textile industry. Cotton is also an important source of edible oil seed and a nutrient-rich food crop as cottonseed contains high-quality protein and oil. The growth and productivity of cotton crop are often hampered by various biotic stress factors, such as insect pests and pathogens. In addition, cotton plants are frequently subjected to unavoidable environmental factors that cause abiotic stress, such as salt, heat and drought. Proteomic techniques provide one of the best options for understanding the gene function and phenotypic changes during cotton fiber development and stress response. This review first summarizes the work which has been reported for cotton proteomics about cotton fiber development and abiotic/biotic stress tolerance, and also evaluates the findings in context of the approaches

  7. Patterns of Sympathetic Responses Induced by Different Stress Tasks

    Science.gov (United States)

    Fechir, M; Schlereth, T; Purat, T; Kritzmann, S; Geber, C; Eberle, T; Gamer, M; Birklein, F

    2008-01-01

    Stress tasks are used to induce sympathetic nervous system (SNS) arousal. However, the efficacy and the patterns of SNS activation have not been systematically compared between different tasks. Therefore, we analyzed SNS activation during the following stress tasks: Presentation of negative, positive, and – as a control – neutral affective pictures, Color-Word interference test (CWT), mental arithmetic under time limit, singing a song aloud, and giving a spontaneous talk. We examined 11 healthy subjects and recorded the following SNS parameters: Activation of emotional sweating by quantitative sudometry, skin vasoconstriction by laser-Doppler flowmetry, heart rate by ECG, blood pressure by determination of pulse wave transit time (PWTT), and electromyographic (EMG) activity of the trapezius muscle. Moreover, subjective stress ratings were acquired for each task using a visual analog scale. All tasks were felt significantly stressful when compared to viewing neutral pictures. However, SNS activation was not reliable: Affective pictures did not induce a significant SNS response; singing, giving a talk and mental arithmetic selectively increased heart rate and emotional sweating. Only the CWT globally activated the SNS. Regarding all tasks, induction of emotional sweating, increase of heart rate and blood pressure significantly correlated with subjective stress ratings, in contrast to EMG and skin vasoconstriction. Our results show that the activation of the SNS widely varies depending on the stress task. Different stress tasks differently activate the SNS, which is an important finding when considering sympathetic reactions - in clinical situations and in research. PMID:19018304

  8. Pathogenic Leptospires Modulate Protein Expression and Post-translational Modifications in Response to Mammalian Host Signals.

    Science.gov (United States)

    Nally, Jarlath E; Grassmann, Andre A; Planchon, Sébastien; Sergeant, Kjell; Renaut, Jenny; Seshu, Janakiram; McBride, Alan J; Caimano, Melissa J

    2017-01-01

    Pathogenic species of Leptospira cause leptospirosis, a bacterial zoonotic disease with a global distribution affecting over one million people annually. Reservoir hosts of leptospirosis, including rodents, dogs, and cattle, exhibit little to no signs of disease but shed large numbers of organisms in their urine. Transmission occurs when mucosal surfaces or abraded skin come into contact with infected urine or urine-contaminated water or soil. Whilst little is known about how Leptospira adapt to and persist within a reservoir host, in vitro studies suggest that leptospires alter their transcriptomic and proteomic profiles in response to environmental signals encountered during mammalian infection. We applied the dialysis membrane chamber (DMC) peritoneal implant model to compare the whole cell proteome of in vivo derived leptospires with that of leptospires cultivated in vitro at 30°C and 37°C by 2-dimensional difference in-gel electrophoresis (2-D DIGE). Of 1,735 protein spots aligned across 9 2-D DIGE gels, 202 protein spots were differentially expressed ( p 1.25 or expressed proteins were excised for identification by mass spectrometry. Data are available via ProteomeXchange with identifier PXD006995. The greatest differences were detected when DMC-cultivated leptospires were compared with IV30- or IV37-cultivated leptospires, including the increased expression of multiple isoforms of Loa22, a known virulence factor. Unexpectedly, 20 protein isoforms of LipL32 and 7 isoforms of LipL41 were uniformly identified by DIGE as differentially expressed, suggesting that unique post-translational modifications (PTMs) are operative in response to mammalian host conditions. To test this hypothesis, a rat model of persistent renal colonization was used to isolate leptospires directly from the urine of experimentally infected rats. Comparison of urinary derived leptospires to IV30 leptospires by 2-D immunoblotting confirmed that modification of proteins with

  9. Pathogenic Leptospires Modulate Protein Expression and Post-translational Modifications in Response to Mammalian Host Signals

    Directory of Open Access Journals (Sweden)

    Jarlath E. Nally

    2017-08-01

    Full Text Available Pathogenic species of Leptospira cause leptospirosis, a bacterial zoonotic disease with a global distribution affecting over one million people annually. Reservoir hosts of leptospirosis, including rodents, dogs, and cattle, exhibit little to no signs of disease but shed large numbers of organisms in their urine. Transmission occurs when mucosal surfaces or abraded skin come into contact with infected urine or urine-contaminated water or soil. Whilst little is known about how Leptospira adapt to and persist within a reservoir host, in vitro studies suggest that leptospires alter their transcriptomic and proteomic profiles in response to environmental signals encountered during mammalian infection. We applied the dialysis membrane chamber (DMC peritoneal implant model to compare the whole cell proteome of in vivo derived leptospires with that of leptospires cultivated in vitro at 30°C and 37°C by 2-dimensional difference in-gel electrophoresis (2-D DIGE. Of 1,735 protein spots aligned across 9 2-D DIGE gels, 202 protein spots were differentially expressed (p < 0.05, fold change >1.25 or < −1.25 across all three conditions. Differentially expressed proteins were excised for identification by mass spectrometry. Data are available via ProteomeXchange with identifier PXD006995. The greatest differences were detected when DMC-cultivated leptospires were compared with IV30- or IV37-cultivated leptospires, including the increased expression of multiple isoforms of Loa22, a known virulence factor. Unexpectedly, 20 protein isoforms of LipL32 and 7 isoforms of LipL41 were uniformly identified by DIGE as differentially expressed, suggesting that unique post-translational modifications (PTMs are operative in response to mammalian host conditions. To test this hypothesis, a rat model of persistent renal colonization was used to isolate leptospires directly from the urine of experimentally infected rats. Comparison of urinary derived leptospires to IV30

  10. The innate immune and systemic response in honey bees to a bacterial pathogen, Paenibacillus larvae

    Directory of Open Access Journals (Sweden)

    Foster Leonard J

    2009-08-01

    Full Text Available Abstract Background There is a major paradox in our understanding of honey bee immunity: the high population density in a bee colony implies a high rate of disease transmission among individuals, yet bees are predicted to express only two-thirds as many immunity genes as solitary insects, e.g., mosquito or fruit fly. This suggests that the immune response in bees is subdued in favor of social immunity, yet some specific immune factors are up-regulated in response to infection. To explore the response to infection more broadly, we employ mass spectrometry-based proteomics in a quantitative analysis of honey bee larvae infected with the bacterium Paenibacillus larvae. Newly-eclosed bee larvae, in the second stage of their life cycle, are susceptible to this infection, but become progressively more resistant with age. We used this host-pathogen system to probe not only the role of the immune system in responding to a highly evolved infection, but also what other mechanisms might be employed in response to infection. Results Using quantitative proteomics, we compared the hemolymph (insect blood of five-day old healthy and infected honey bee larvae and found a strong up-regulation of some metabolic enzymes and chaperones, while royal jelly (food and energy storage proteins were down-regulated. We also observed increased levels of the immune factors prophenoloxidase (proPO, lysozyme and the antimicrobial peptide hymenoptaecin. Furthermore, mass spectrometry evidence suggests that healthy larvae have significant levels of catalytically inactive proPO in the hemolymph that is proteolytically activated upon infection. Phenoloxidase (PO enzyme activity was undetectable in one or two-day-old larvae and increased dramatically thereafter, paralleling very closely the age-related ability of larvae to resist infection. Conclusion We propose a model for the host response to infection where energy stores and metabolic enzymes are regulated in concert with direct

  11. Enterovirus Control of Translation and RNA Granule Stress Responses.

    Science.gov (United States)

    Lloyd, Richard E

    2016-03-30

    Enteroviruses such as poliovirus (PV) and coxsackievirus B3 (CVB3) have evolved several parallel strategies to regulate cellular gene expression and stress responses to ensure efficient expression of the viral genome. Enteroviruses utilize their encoded proteinases to take over the cellular translation apparatus and direct ribosomes to viral mRNAs. In addition, viral proteinases are used to control and repress the two main types of cytoplasmic RNA granules, stress granules (SGs) and processing bodies (P-bodies, PBs), which are stress-responsive dynamic structures involved in repression of gene expression. This review discusses these processes and the current understanding of the underlying mechanisms with respect to enterovirus infections. In addition, the review discusses accumulating data suggesting linkage exists between RNA granule formation and innate immune sensing and activation.

  12. Eye surface temperature detects stress response in budgerigars (Melopsittacus undulatus).

    Science.gov (United States)

    Ikkatai, Yuko; Watanabe, Shigeru

    2015-08-05

    Previous studies have suggested that stressors not only increase body core temperature but also body surface temperature in many animals. However, it remains unclear whether surface temperature could be used as an alternative to directly measure body core temperature, particularly in birds. We investigated whether surface temperature is perceived as a stress response in budgerigars. Budgerigars have been used as popular animal models to investigate various neural mechanisms such as visual perception, vocal learning, and imitation. Developing a new technique to understand the basic physiological mechanism would help neuroscience researchers. First, we found that cloacal temperature correlated with eye surface temperature. Second, eye surface temperature increased after handling stress. Our findings suggest that eye surface temperature is closely related to cloacal temperature and that the stress response can be measured by eye surface temperature in budgerigars.

  13. [Regulation of heat shock gene expression in response to stress].

    Science.gov (United States)

    Garbuz, D G

    2017-01-01

    Heat shock (HS) genes, or stress genes, code for a number of proteins that collectively form the most ancient and universal stress defense system. The system determines the cell capability of adaptation to various adverse factors and performs a variety of auxiliary functions in normal physiological conditions. Common stress factors, such as higher temperatures, hypoxia, heavy metals, and others, suppress transcription and translation for the majority of genes, while HS genes are upregulated. Transcription of HS genes is controlled by transcription factors of the HS factor (HSF) family. Certain HSFs are activated on exposure to higher temperatures or other adverse factors to ensure stress-induced HS gene expression, while other HSFs are specifically activated at particular developmental stages. The regulation of the main mammalian stress-inducible factor HSF1 and Drosophila melanogaster HSF includes many components, such as a variety of early warning signals indicative of abnormal cell activity (e.g., increases in intracellular ceramide, cytosolic calcium ions, or partly denatured proteins); protein kinases, which phosphorylate HSFs at various Ser residues; acetyltransferases; and regulatory proteins, such as SUMO and HSBP1. Transcription factors other than HSFs are also involved in activating HS gene transcription; the set includes D. melanogaster GAF, mammalian Sp1 and NF-Y, and other factors. Transcription of several stress genes coding for molecular chaperones of the glucose-regulated protein (GRP) family is predominantly regulated by another stress-detecting system, which is known as the unfolded protein response (UPR) system and is activated in response to massive protein misfolding in the endoplasmic reticulum and mitochondrial matrix. A translational fine tuning of HS protein expression occurs via changing the phosphorylation status of several proteins involved in translation initiation. In addition, specific signal sequences in the 5'-UTRs of some HS

  14. CENTRAL AMYGDALOID INVOLVEMENT IN NEUROENDOCRINE CORRELATES OF CONDITIONED STRESS RESPONSES

    NARCIS (Netherlands)

    ROOZENDAAL, B; KOOLHAAS, JM; BOHUS, B

    The purpose of this study was to examine the effects of bilateral electrolytic lesions of the central nucleus of the amygdala (CEA) in comparison with sham lesions on neuroendocrine responses during conditioned emotional stress in male Wistar rats. Lesions in the CEA, made either before or after the

  15. Physiological response of heat stressed broiler chickens to ...

    African Journals Online (AJOL)

    Effect of supplementing the drinking water of broilers reared under natural heat stress with ammonium chloride (NH4Cl), sodium bicarbonate (NaHCO3), calcium chloride (CaCl2) and ascorbic acid (AA) on physiological response was investigated. A 200, one-day Arbor acre chicks were randomly allotted to five treatments in ...

  16. Oxidative stress response pathways: Fission yeast as archetype

    DEFF Research Database (Denmark)

    Papadakis, Manos A.; Workman, Christopher

    2015-01-01

    Schizosaccharomyces pombe is a popular model eukaryotic organism to study diverse aspects of mammalian biology, including responses to cellular stress triggered by redox imbalances within its compartments. The review considers the current knowledge on the signaling pathways that govern the transc...

  17. Physiological responses of food animals to road transportation stress

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-29

    Dec 29, 2009 ... transportation are numerous and the responses of the animal to them are complex, non-specific and ..... at 3 h after a 6 h journey in male Japanese goats. During ..... animals are subjected to concomitant action of transport- tation and heat stress .... those measured in moving vehicles (Warriss et al., 1993).

  18. Variability salt stress response analysis of Tunisian natural ...

    African Journals Online (AJOL)

    We evaluated the responses to salt stress of 106 Medicago truncatula lines from 11 Tunisian natural populations collected from areas that varied in soil composition, salinity and water availability. Five references lines were also included in this study. Plants were cultivated in two treatments (0 and 50 mM of NaCl) during a ...

  19. Long-term salt stress responsive growth, carbohydrate metabolism ...

    African Journals Online (AJOL)

    We investigated the long-term responses of tobacco tissues to salt stress, with a particular interest for growth parameters, proline (Pro) accumulation, and carbohydrate metabolism. Exposure of 17-day-old tobacco plants to 0.2 M NaCl was followed by a higher decrease in dry matter in roots than shoots with a decrease of ...

  20. Differential response to water deficit stress in alfalfa ( Medicago ...

    African Journals Online (AJOL)

    The present study was fixed as objective to compare the response to water deficit (33% of field capacity, FC) stress of eight cultivars of Medicago sativa, originating from the Mediterranean basin. Comparison was performed on some key parameters such as growth, relative water content, leaf water potential, MDA tissue ...

  1. Modulation of the immune response by emotional stress

    NARCIS (Netherlands)

    Croiset, G; Heijnen, C J; Veldhuis, H D; de Wied, D; Ballieux, R E

    1987-01-01

    The influence of mild, emotional stress was investigated for its effect on the immune system by subjecting rats to the one-trial-learning passive avoidance test. The reactivity of the immune system was tested by determining the proliferative response after mitogenic stimulation in vitro as well as

  2. Association between neuroticism and amygdala responsivity emerges under stressful conditions

    NARCIS (Netherlands)

    Everaerd, Daphne; Klumpers, Floris; van Wingen, Guido; Tendolkar, Indira; Fernández, Guillén

    2015-01-01

    Increased amygdala reactivity in response to salient stimuli is seen in patients with affective disorders, in healthy subjects at risk for these disorders, and in stressed individuals, making it a prime target for mechanistic studies into the pathophysiology of affective disorders. However, whereas

  3. Carica Papaya Seed Extract Enhances Cellular Response to Stress ...

    African Journals Online (AJOL)

    Therefore, the present study was carried out to investigate the role of Carica papaya seed (CPS) extract that contains, Benzyl Isothiocyanates, one of the inducers of phase II enzymes in the regulation of cellular stress. The cellular responses were observed in U937 cells (human monocyte/macrophage cell line) at the ...

  4. Physiological and biochemical responses to low temperature stress ...

    African Journals Online (AJOL)

    Cuttings of three hybrid clones of P. ussuriensis × P. deltoides were exposed to different low temperatures (cold and freezing) for 24 h, or consecutive low temperatures (5°C, 0 to 120 h), to determine physiological and biochemical responses to cold stress in these woody plants. Soluble sugar and protein contents increased ...

  5. Cyclooxygenase inhibitors and the exercise-induced stress response

    African Journals Online (AJOL)

    steroidal anti-inflammatory drug (NSAID) naproxen, and of the coxib, rofecoxib, on the exercise-induced stress response. Design. Eight subjects (age 20.9 ± 1.1 years, weight 70.4 ± 3.9 kg, height 170.9 ± 6.7 cm, body surface area 1.82 ± 0.09 m2, ...

  6. Flow stress asymmetry and cyclic stress--strain response in a BCC Ti--V alloy

    International Nuclear Information System (INIS)

    Koss, D.A.; Wojcik, C.C.

    1976-01-01

    The cyclic stress-strain response of relatively stable bcc β-phase Ti--40 percent V alloy single crystals was studied. Flow stress asymmetry found in the alloy is attributed to the fact that screw dislocations, when gliding on a (211) plane, are more mobile in the twinning direction than in the antitwinning direction. Thus the flow stress of the crystal is greater when it is sheared in the antitwinning direction than in the twinning direction (the latter case results when crystals of the 100 orientation are stressed in tension and those of the 110 orientation are stressed in compression). Such behavior can be a result of the core of a screw dislocation being asymmetric under stress which causes the flow stress asymmetry observed. It should be noted that screw dislocations dominate the low temperature deformation structure of Ti-40V, which strongly suggests deformation is controlled by screw dislocation motion. The observation in Mo that the microyield stress is independent of crystal orientation could be a result of edge dislocation motion controlling microyield in that instance and this observation would not be inconsistent with screw dislocation motion controlling the macroscopic (epsilon/sub p/ greater than 0.05 percent) deformation measured here

  7. Moving through the Stressed Genome: Emerging Regulatory Roles for Transposons in Plant Stress Response.

    Science.gov (United States)

    Negi, Pooja; Rai, Archana N; Suprasanna, Penna

    2016-01-01

    The recognition of a positive correlation between organism genome size with its transposable element (TE) content, represents a key discovery of the field of genome biology. Considerable evidence accumulated since then suggests the involvement of TEs in genome structure, evolution and function. The global genome reorganization brought about by transposon activity might play an adaptive/regulatory role in the host response to environmental challenges, reminiscent of McClintock's original 'Controlling Element' hypothesis. This regulatory aspect of TEs is also garnering support in light of the recent evidences, which project TEs as "distributed genomic control modules." According to this view, TEs are capable of actively reprogramming host genes circuits and ultimately fine-tuning the host response to specific environmental stimuli. Moreover, the stress-induced changes in epigenetic status of TE activity may allow TEs to propagate their stress responsive elements to host genes; the resulting genome fluidity can permit phenotypic plasticity and adaptation to stress. Given their predominating presence in the plant genomes, nested organization in the genic regions and potential regulatory role in stress response, TEs hold unexplored potential for crop improvement programs. This review intends to present the current information about the roles played by TEs in plant genome organization, evolution, and function and highlight the regulatory mechanisms in plant stress responses. We will also briefly discuss the connection between TE activity, host epigenetic response and phenotypic plasticity as a critical link for traversing the translational bridge from a purely basic study of TEs, to the applied field of stress adaptation and crop improvement.

  8. Moving through the Stressed Genome: Emerging Regulatory Roles for Transposons in Plant Stress Response

    Science.gov (United States)

    Negi, Pooja; Rai, Archana N.; Suprasanna, Penna

    2016-01-01

    The recognition of a positive correlation between organism genome size with its transposable element (TE) content, represents a key discovery of the field of genome biology. Considerable evidence accumulated since then suggests the involvement of TEs in genome structure, evolution and function. The global genome reorganization brought about by transposon activity might play an adaptive/regulatory role in the host response to environmental challenges, reminiscent of McClintock's original ‘Controlling Element’ hypothesis. This regulatory aspect of TEs is also garnering support in light of the recent evidences, which project TEs as “distributed genomic control modules.” According to this view, TEs are capable of actively reprogramming host genes circuits and ultimately fine-tuning the host response to specific environmental stimuli. Moreover, the stress-induced changes in epigenetic status of TE activity may allow TEs to propagate their stress responsive elements to host genes; the resulting genome fluidity can permit phenotypic plasticity and adaptation to stress. Given their predominating presence in the plant genomes, nested organization in the genic regions and potential regulatory role in stress response, TEs hold unexplored potential for crop improvement programs. This review intends to present the current information about the roles played by TEs in plant genome organization, evolution, and function and highlight the regulatory mechanisms in plant stress responses. We will also briefly discuss the connection between TE activity, host epigenetic response and phenotypic plasticity as a critical link for traversing the translational bridge from a purely basic study of TEs, to the applied field of stress adaptation and crop improvement. PMID:27777577

  9. Role of RpoS in virulence and stress tolerance of the plant pathogen Erwinia carotovora subsp. carotovora.

    Science.gov (United States)

    Andersson, R A; Kõiv, V; Norman-Setterblad, C; Pirhonen, M

    1999-12-01

    The plant-pathogenic bacterium Erwinia carotovora subsp. carotovora causes plant disease mainly through a number of extracellular plant-cell-wall-degrading enzymes. In this study, the ability of an rpoS mutant of the Er. carotovora subsp. carotovora strain SCC3193 to infect plants and withstand environmental stress was characterized. This mutant was found to be sensitive to osmotic and oxidative stresses in vitro and to be deficient in glycogen accumulation. The production of extracellular enzymes in vitro was similar in the mutant and in the wild-type strains. However, the rpoS mutant caused more severe symptoms than the wild-type strain on tobacco plants and also produced more extracellular enzymes in planta, but did not grow to higher cell density in planta compared to the wild-type strain. When tested on plants with reduced catalase activities, which show higher levels of reactive oxygen species, the rpoS mutant was found to cause lower symptom levels and to have impaired growth. In addition, the mutant was unable to compete with the wild-type strain in planta and in vitro. These results suggest that a functional rpoS gene is needed mainly for survival in a competitive environment and during stress conditions, and not for effective infection of plants.

  10. Signaling network of dendritic cells in response to pathogens: a community-input supported knowledgebase

    Directory of Open Access Journals (Sweden)

    Nudelman Irina

    2010-10-01

    Full Text Available Abstract Background Dendritic cells are antigen-presenting cells that play an essential role in linking the innate and adaptive immune systems. Much research has focused on the signaling pathways triggered upon infection of dendritic cells by various pathogens. The high level of activity in the field makes it desirable to have a pathway-based resource to access the information in the literature. Current pathway diagrams lack either comprehensiveness, or an open-access editorial interface. Hence, there is a need for a dependable, expertly curated knowledgebase that integrates this information into a map of signaling networks. Description We have built a detailed diagram of the dendritic cell signaling network, with the goal of providing researchers with a valuable resource and a facile method for community input. Network construction has relied on comprehensive review of the literature and regular updates. The diagram includes detailed depictions of pathways activated downstream of different pathogen recognition receptors such as Toll-like receptors, retinoic acid-inducible gene-I-like receptors, C-type lectin receptors and nucleotide-binding oligomerization domain-like receptors. Initially assembled using CellDesigner software, it provides an annotated graphical representation of interactions stored in Systems Biology Mark-up Language. The network, which comprises 249 nodes and 213 edges, has been web-published through the Biological Pathway Publisher software suite. Nodes are annotated with PubMed references and gene-related information, and linked to a public wiki, providing a discussion forum for updates and corrections. To gain more insight into regulatory patterns of dendritic cell signaling, we analyzed the network using graph-theory methods: bifan, feedforward and multi-input convergence motifs were enriched. This emphasis on activating control mechanisms is consonant with a network that subserves persistent and coordinated responses to

  11. Signaling network of dendritic cells in response to pathogens: a community-input supported knowledgebase.

    Science.gov (United States)

    Patil, Sonali; Pincas, Hanna; Seto, Jeremy; Nudelman, German; Nudelman, Irina; Sealfon, Stuart C

    2010-10-07

    Dendritic cells are antigen-presenting cells that play an essential role in linking the innate and adaptive immune systems. Much research has focused on the signaling pathways triggered upon infection of dendritic cells by various pathogens. The high level of activity in the field makes it desirable to have a pathway-based resource to access the information in the literature. Current pathway diagrams lack either comprehensiveness, or an open-access editorial interface. Hence, there is a need for a dependable, expertly curated knowledgebase that integrates this information into a map of signaling networks. We have built a detailed diagram of the dendritic cell signaling network, with the goal of providing researchers with a valuable resource and a facile method for community input. Network construction has relied on comprehensive review of the literature and regular updates. The diagram includes detailed depictions of pathways activated downstream of different pathogen recognition receptors such as Toll-like receptors, retinoic acid-inducible gene-I-like receptors, C-type lectin receptors and nucleotide-binding oligomerization domain-like receptors. Initially assembled using CellDesigner software, it provides an annotated graphical representation of interactions stored in Systems Biology Mark-up Language. The network, which comprises 249 nodes and 213 edges, has been web-published through the Biological Pathway Publisher software suite. Nodes are annotated with PubMed references and gene-related information, and linked to a public wiki, providing a discussion forum for updates and corrections. To gain more insight into regulatory patterns of dendritic cell signaling, we analyzed the network using graph-theory methods: bifan, feedforward and multi-input convergence motifs were enriched. This emphasis on activating control mechanisms is consonant with a network that subserves persistent and coordinated responses to pathogen detection. This map represents a navigable

  12. Associations Between Paternal Responsiveness and Stress Responsiveness in the Biparental California Mouse, Peromyscus californicus

    OpenAIRE

    Chauke, Miyetani

    2012-01-01

    The mechanistic basis of paternal behavior in mammals is poorly understood. Assuming there are parallels between the factors mediating maternal and paternal behavior, it can be expected that the onset of paternal behavior is facilitated by reductions in stress responsiveness, as occurs in females of several mammalian species. This dissertation describes studies investigating the role of stress responsiveness in the expression of paternal behavior in biparental, monogamous California mice (Per...

  13. Early life adversity influences stress response association with smoking relapse.

    Science.gov (United States)

    al'Absi, Mustafa; Lemieux, Andrine; Westra, Ruth; Allen, Sharon

    2017-11-01

    We examined the hypothesis that stress-related blunting of cortisol in smokers is particularly pronounced in those with a history of severe life adversity. The two aims of this study were first to examine hormonal, craving, and withdrawal symptoms during ad libitum smoking and after the first 24 h of abstinence in smokers who experienced high or low levels of adversity. Second, we sought to examine the relationship between adversity and hypothalamic-pituitary-adrenal (HPA) hormones to predict relapse during the first month of a smoking cessation attempt. Hormonal and self-report measures were collected from 103 smokers (49 women) during ad libitum smoking and after the first 24 h of abstinence. HPA hormones were measured during baseline rest and in response to acute stress in both conditions. All smokers were interested in smoking cessation, and we prospectively used stress response measures to predict relapse during the first 4 weeks of the smoking cessation attempt. The results showed that high adversity was associated with higher distress and smoking withdrawal symptoms. High level of early life adversity was associated with elevated HPA activity, which was found in both salivary and plasma cortisol. Enhanced adrenocorticotropic hormone (ACTH) stress response was evident in high-adversity but not in low-adversity relapsers. This study demonstrated that early life adversity is associated with stress-related HPA responses. The study also demonstrated that, among smokers who experienced a high level of life adversity, heightened ACTH and cortisol responses were linked with increased risk for smoking relapse.

  14. Stress, Roles and Responsibilities of Single Mothers in Malaysia

    Directory of Open Access Journals (Sweden)

    Mohd Hashim Intan Hashimah

    2015-01-01

    Full Text Available Life as a single mother is often associated with great demands and many challenges. This study examines how a group of single mothers in Malaysia views sources of stress and challenges in their lives. It also investigates perceived roles and responsibilities of single mothers. Three hundred single mothers from all over Malaysia were interviewed in this study. Single mothers reported relatively low level of stress that was mostly related to financial (insufficient pay and day-to-day living. They had fairly low stress on issues related to romantic partner and romantic relationships. They however reported extensive roles and responsibilities. Single mothers reported feeling responsible across various domains of life including for their own health and well-being and also for the health and wellbeing of their family and friends. They reported high level of coping and particularly oriented towards solving the problems. They also reported general satisfaction over life. Correlation analysis indicated significant positive relationships between roles and responsibilities and life satisfaction and coping in which coping was associated with higher level of roles and responsibilities and life satisfaction. There was also a negative correlation between stress and life satisfaction in which more stress was associated with lower life satisfaction. Findings indicated a substantial nurturing role of single mothers and provided important policy and practice implications that highlights the important to study and continuously improve quality of life for these women. Finally, this study highlights the important to continuously study and support, important but marginalized groups in society such as single mothers.

  15. Potent innate immune response to pathogenic leptospira in human whole blood.

    Directory of Open Access Journals (Sweden)

    Marga G A Goris

    Full Text Available BACKGROUND: Leptospirosis is caused by pathogenic spirochetes of the genus Leptospira. The bacteria enter the human body via abraded skin or mucous membranes and may disseminate throughout. In general the clinical picture is mild but some patients develop rapidly progressive, severe disease with a high case fatality rate. Not much is known about the innate immune response to leptospires during haematogenous dissemination. Previous work showed that a human THP-1 cell line recognized heat-killed leptospires and leptospiral LPS through TLR2 instead of TLR4. The LPS of virulent leptospires displayed a lower potency to trigger TNF production by THP-1 cells compared to LPS of non-virulent leptospires. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the host response and killing of virulent and non-virulent Leptospira of different serovars by human THP-1 cells, human PBMC's and human whole blood. Virulence of each leptospiral strain was tested in a well accepted standard guinea pig model. Virulent leptospires displayed complement resistance in human serum and whole blood while in-vitro attenuated non-virulent leptospires were rapidly killed in a complement dependent manner. In vitro stimulation of THP-1 and PBMC's with heat-killed and living leptospires showed differential serovar and cell type dependence of cytokine induction. However, at low, physiological, leptospiral dose, living virulent complement resistant strains were consistently more potent in whole blood stimulations than the corresponding non-virulent complement sensitive strains. At higher dose living virulent and non-virulent leptospires were equipotent in whole blood. Inhibition of different TLRs indicated that both TLR2 and TLR4 as well as TLR5 play a role in the whole blood cytokine response to living leptospires. CONCLUSIONS/SIGNIFICANCE: Thus, in a minimally altered system as human whole blood, highly virulent Leptospira are potent inducers of the cytokine response.

  16. The Immune Response against Acinetobacter baumannii, an Emerging Pathogen in Nosocomial Infections

    Science.gov (United States)

    García-Patiño, María Guadalupe; García-Contreras, Rodolfo; Licona-Limón, Paula

    2017-01-01

    Acinetobacter baumannii is the etiologic agent of a wide range of nosocomial infections, including pneumonia, bacteremia, and skin infections. Over the last 45 years, an alarming increase in the antibiotic resistance of this opportunistic microorganism has been reported, a situation that hinders effective treatments. In order to develop effective therapies against A. baumannii it is crucial to understand the basis of host–bacterium interactions, especially those concerning the immune response of the host. Different innate immune cells such as monocytes, macrophages, dendritic cells, and natural killer cells have been identified as important effectors in the defense against A. baumannii; among them, neutrophils represent a key immune cell indispensable for the control of the infection. Several immune strategies to combat A. baumannii have been identified such as recognition of the bacteria by immune cells through pattern recognition receptors, specifically toll-like receptors, which trigger bactericidal mechanisms including oxidative burst and cytokine and chemokine production to amplify the immune response against the pathogen. However, a complete picture of the protective immune strategies activated by this bacteria and its potential therapeutic use remains to be determined and explored. PMID:28446911

  17. Immune response in the lungs following oral immunization with bacterial lysates of respiratory pathogens.

    Science.gov (United States)

    Ruedl, C; Frühwirth, M; Wick, G; Wolf, H

    1994-03-01

    We have investigated the local immune response of the BALB/c mouse respiratory tract after oral immunization with a bacterial lysate of seven common respiratory pathogens. After two immunization on five consecutive days, we examined the immunoglobulin (immunoglobulin G [IgG], IgM, and IgA) secretion rates of cells isolated from the lungs and compared them with those of spleen cells of orally immunized and nonimmunized animals by using a new test system based on time-resolved fluorescence. The procedure followed the principle of the classical ELISPOT test with nitrocellulose-bottomed microtiter plates, but europium (Eu3+)-linked streptavidin rather than enzyme-conjugated streptavidin was used, with the advantage of quantifying secreted immunoglobulins instead of detecting single antibody-secreting cells. Lymphocytes isolated from the lungs of treated animals revealed significant increases in total and antigen-specific IgA synthesis compared with the rates of the controls, whereas IgG and IgM production rates showed no remarkable differences. In addition, the sera of treated mice revealed higher antigen-specific IgA titers but not increased IgM and IgG levels. We conclude that priming the gut-associated lymphoid tissue with bacterial antigens of pneumotropic microorganisms can elicit an enhanced IgA response in a distant mucosal effector site, such as the respiratory tract, according to the concept of a common mucosa-associated immune system.

  18. Understanding the Posttranscriptional Regulation of Plant Responses to Abiotic Stress

    KAUST Repository

    AlShareef, Sahar A.

    2017-06-01

    Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and biotic and abiotic stresses. Recent work showed that AS is pervasive across plant species, with more than 60% of intron-containing genes producing different isoforms. Mammalian cell-based assays have discovered various AS small-molecule inhibitors that perturb splicing and thereby provide invaluable tools for use as chemical probes to uncover the molecular underpinnings of splicing regulation and as potential anticancer compounds. Here, I show that the macrolide Pladienolide B (PB) and herboxidiene (GEX1A) inhibits both constitutive and alternative splicing, mimics an abiotic stress signal, and activates the abscisic acid (ABA) pathway in plants. Moreover, PB and GEX1A activate genome-wide transcriptional patterns involved in abiotic stress responses in plants. PB and GEX1A treatment triggered the ABA signaling pathway, activated ABA-inducible promoters, and led to stomatal closure. Interestingly, PB and GEX1A elicited similar cellular changes, including alterations in the patterns of transcription and splicing, suggesting that these compounds might target the same spliceosome complex in plant cells. This work establishes PB and GEX1A as potent splicing inhibitors in plants that can be used to probe the assembly, dynamics, and molecular functions of the spliceosome and to study the interplay between splicing stress and abiotic stresses, as well as having potential biotechnological applications.

  19. Transactional Associations between Youths' Responses to Peer Stress and Depression: The Moderating Roles of Sex and Stress Exposure

    Science.gov (United States)

    Agoston, Anna M.; Rudolph, Karen D.

    2011-01-01

    This study examined transactional associations between responses to peer stress and depression in youth. Specifically, it tested the hypotheses that (a) depression would predict fewer effortful responses and more involuntary, dysregulated responses to peer stress over time; and (b) fewer adaptive and more maladaptive responses would predict…

  20. Aging augments renal vasoconstrictor response to orthostatic stress in humans.

    Science.gov (United States)

    Clark, Christine M; Monahan, Kevin D; Drew, Rachel C

    2015-12-15

    The ability of the human body to maintain arterial blood pressure (BP) during orthostatic stress is determined by several reflex neural mechanisms. Renal vasoconstriction progressively increases during graded elevations in lower body negative pressure (LBNP). This sympathetically mediated response redistributes blood flow to the systemic circulation to maintain BP. However, how healthy aging affects the renal vasoconstrictor response to LBNP is unknown. Therefore, 10 young (25 ± 1 yr; means ± SE) and 10 older (66 ± 2 yr) subjects underwent graded LBNP (-15 and -30 mmHg) while beat-to-beat renal blood flow velocity (RBFV; Doppler ultrasound), arterial BP (Finometer), and heart rate (HR; electrocardiogram) were recorded. Renal vascular resistance (RVR), an index of renal vasoconstriction, was calculated as mean BP/RBFV. All baseline cardiovascular variables were similar between groups, except diastolic BP was higher in older subjects (P aging augments the renal vasoconstrictor response to orthostatic stress in humans. Copyright © 2015 the American Physiological Society.

  1. Transgenerational stress memory is not a general response in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ales Pecinka

    Full Text Available Adverse conditions can trigger DNA damage as well as DNA repair responses in plants. A variety of stress factors are known to stimulate homologous recombination, the most accurate repair pathway, by increasing the concentration of necessary enzymatic components and the frequency of events. This effect has been reported to last into subsequent generations not exposed to the stress. To establish a basis for a genetic analysis of this transgenerational stress memory, a broad range of treatments was tested for quantitative effects on homologous recombination in the progeny. Several Arabidopsis lines, transgenic for well-established recombination traps, were exposed to 10 different physical and chemical stress treatments, and scored for the number of somatic homologous recombination (SHR events in the treated generation as well as in the two subsequent generations that were not treated. These numbers were related to the expression level of genes involved in homologous recombination and repair. SHR was enhanced after the majority of treatments, confirming previous data and adding new effective stress types, especially interference with chromatin. Compounds that directly modify DNA stimulated SHR to values exceeding previously described induction rates, concomitant with an induction of genes involved in SHR. In spite of the significant stimulation in the stressed generations, the two subsequent non-treated generations only showed a low and stochastic increase in SHR that did not correlate with the degree of stimulation in the parental plants. Transcripts coding for SHR enzymes generally returned to pre-treatment levels in the progeny. Thus, transgenerational effects on SHR frequency are not a general response to abiotic stress in Arabidopsis and may require special conditions.

  2. The relationship between personality and the response to acute psychological stress.

    Science.gov (United States)

    Xin, Yuanyuan; Wu, Jianhui; Yao, Zhuxi; Guan, Qing; Aleman, André; Luo, Yuejia

    2017-12-04

    The present study examined the relationship between personality traits and the response to acute psychological stress induced by a standardized laboratory stress induction procedure (the Trier Social Stress Test, TSST). The stress response was measured with a combination of cardiovascular reactivity, hypothalamic-pituitary-adrenal axis reactivity, and subjective affect (including positive affect, negative affect and subjective controllability) in healthy individuals. The Generalized Estimating Equations (GEE) approach was applied to account for the relationship between personality traits and stress responses. Results suggested that higher neuroticism predicted lower heart rate stress reactivity, lower cortisol stress response, more decline of positive affect and lower subjective controllability. Individuals higher in extraversion showed smaller cortisol activation to stress and less increase of negative affect. In addition, higher openness score was associated with lower cortisol stress response. These findings elucidate that neuroticism, extraversion and openness are important variables associated with the stress response and different dimensions of personality trait are associated with different aspects of the stress response.

  3. The CWI Pathway: Regulation of the Transcriptional Adaptive Response to Cell Wall Stress in Yeast

    Directory of Open Access Journals (Sweden)

    Ana Belén Sanz

    2017-12-01

    Full Text Available Fungi are surrounded by an essential structure, the cell wall, which not only confers cell shape but also protects cells from environmental stress. As a consequence, yeast cells growing under cell wall damage conditions elicit rescue mechanisms to provide maintenance of cellular integrity and fungal survival. Through transcriptional reprogramming, yeast modulate the expression of genes important for cell wall biogenesis and remodeling, metabolism and energy generation, morphogenesis, signal transduction and stress. The yeast cell wall integrity (CWI pathway, which is very well conserved in other fungi, is the key pathway for the regulation of this adaptive response. In this review, we summarize the current knowledge of the yeast transcriptional program elicited to counterbalance cell wall stress situations, the role of the CWI pathway in the regulation of this program and the importance of the transcriptional input received by other pathways. Modulation of this adaptive response through the CWI pathway by positive and negative transcriptional feedbacks is also discussed. Since all these regulatory mechanisms are well conserved in pathogenic fungi, improving our knowledge about them will have an impact in the developing of new antifungal therapies.

  4. Children developing asthma by school-age display aberrant immune responses to pathogenic airway bacteria as infants

    DEFF Research Database (Denmark)

    Larsen, Jeppe Madura; Pedersen, Susanne Brix; Thysen, Anna Hammerich

    2014-01-01

    Asthma is a highly prevalent chronic lung disease that commonly originates in early childhood. Colonisation of neonatal airways with the pathogenic bacterial strains H. influenzae, M. catarrhalis and S. pneumoniae is associated with increased risk of later childhood asthma. We hypothesized that c...... that children developing asthma have an abnormal immune response to pathogenic bacteria in infancy. We aimed to assess the bacterial immune response in asymptomatic infants and the association with later development of asthma by age 7 years.......Asthma is a highly prevalent chronic lung disease that commonly originates in early childhood. Colonisation of neonatal airways with the pathogenic bacterial strains H. influenzae, M. catarrhalis and S. pneumoniae is associated with increased risk of later childhood asthma. We hypothesized...

  5. Protein extraction and gel-based separation methods to analyze responses to pathogens in carnation (Dianthus caryophyllus L).

    Science.gov (United States)

    Ardila, Harold Duban; Fernández, Raquel González; Higuera, Blanca Ligia; Redondo, Inmaculada; Martínez, Sixta Tulia

    2014-01-01

    We are currently using a 2-DE-based proteomics approach to study plant responses to pathogenic fungi by using the carnation (Dianthus caryophyllus L)-Fusarium oxysporum f. sp. dianthi pathosystem. It is clear that the protocols for the first stages of a standard proteomics workflow must be optimized to each biological system and objectives of the research. The optimization procedure for the extraction and separation of proteins by 1-DE and 2-DE in the indicated system is reported. This strategy can be extrapolated to other plant-pathogen interaction systems in order to perform an evaluation of the changes in the host protein profile caused by the pathogen and to identify proteins which, at early stages, are involved or implicated in the plant defense response.

  6. The Transcriptomic Responses of Pinus massoniana to Drought Stress

    Directory of Open Access Journals (Sweden)

    Mingfeng Du

    2018-06-01

    Full Text Available Masson pine (Pinus massoniana is a major fast-growing timber species planted in southern China, a region of seasonal drought. Using a drought-tolerance genotype of Masson pine, we conducted large-scale transcriptome sequencing using Illumina technology. This work aimed to evaluate the transcriptomic responses of Masson pine to different levels of drought stress. First, 3397, 1695 and 1550 unigenes with differential expression were identified by comparing plants subjected to light, moderate or severe drought with control plants. Second, several gene ontology (GO categories (oxidation-reduction and metabolism and Kyoto Encyclopedia of Genes and Genomes (KEGG pathways (plant hormone signal transduction and metabolic pathways were enriched, indicating that the expression levels of some genes in these enriched GO terms and pathways were altered under drought stress. Third, several transcription factors (TFs associated with circadian rhythms (HY5 and LHY, signal transduction (ERF, and defense responses (WRKY were identified, and these TFs may play key roles in adapting to drought stress. Drought also caused significant changes in the expression of certain functional genes linked to osmotic adjustment (P5CS, abscisic acid (ABA responses (NCED, PYL, PP2C and SnRK, and reactive oxygen species (ROS scavenging (GPX, GST and GSR. These transcriptomic results provide insight into the molecular mechanisms of drought stress adaptation in Masson pine.

  7. Cytokinin Cross-talking During Biotic and Abiotic Stress Responses

    Directory of Open Access Journals (Sweden)

    Jose Antonio O'Brien

    2013-11-01

    Full Text Available As sessile organisms, plants have to be able to adapt to a continuously changing environment. Plants that perceive some of these changes as stress signals activate signaling pathways to modulate their development and to enable them to survive. The complex responses to environmental cues are to a large extent mediated by plant hormones that together orchestrate the final plant response. The phytohormone cytokinin is involved in many plant developmental processes. Recently, it has been established that cytokinin plays an important role in stress responses, but does not act alone. Indeed, the hormonal control of plant development and stress adaptation is the outcome of a complex network of multiple synergistic and antagonistic interactions between various hormones. Here, we review the recent findings on the cytokinin function as part of this hormonal network. We focus on the importance of the crosstalk between cytokinin and other hormones, such as abscisic acid, jasmonate, salicylic acid, ethylene, and auxin in the modulation of plant development and stress adaptation. Finally, the impact of the current research in the biotechnological industry will be discussed.

  8. Psychological stress during exercise: cardiorespiratory and hormonal responses.

    Science.gov (United States)

    Webb, Heather E; Weldy, Michael L; Fabianke-Kadue, Emily C; Orndorff, G R; Kamimori, Gary H; Acevedo, Edmund O

    2008-12-01

    The purpose of this study was to examine the cardiorespiratory (CR) and stress hormone responses to a combined physical and mental stress. Eight participants (VO2(max) = 41.24 +/- 6.20 ml kg(-1) min(-1)) completed two experimental conditions, a treatment condition including a 37 min ride at 60% of VO2(max) with participants responding to a computerized mental challenge dual stress condition (DSC) and a control condition of the same duration and intensity without the mental challenge exercise alone condition (EAC). Significant interactions across time were found for CR responses, with heart rate, ventilation, and respiration rate demonstrating higher increases in the DSC. Additionally, norepinephrine was significantly greater in the DSC at the end of the combined challenge. Furthermore, cortisol area-under-the-curve (AUC) was also significantly elevated during the DSC. These results demonstrate that a mental challenge during exercise can exacerbate the stress response, including the release of hormones that have been linked to negative health consequences (cardiovascular, metabolic, autoimmune illnesses).

  9. Differential lung NK cell responses in avian influenza virus infected chickens correlate with pathogenicity

    OpenAIRE

    Jansen, C.A.; de Geus, E.D.; van Haarlem, D.A.; van de Haar, P.M.; Löndt, B.Z; Graham, S.P.; Göbel, T.W.; van Eden, W.; Brookes, S.M.; Vervelde, L.

    2013-01-01

    Infection of chickens with low pathogenicity avian influenza (LPAI) virus results in mild clinical signs while infection with highly pathogenic avian influenza (HPAI) viruses causes death of the birds within 36–48 hours. Since natural killer (NK) cells have been shown to play an important role in influenza-specific immunity, we hypothesise that NK cells are involved in this difference in pathogenicity. To investigate this, the role of chicken NK-cells in LPAI virus infection was studied. Next...

  10. Pathogenic ability and saline stress tolerance of two Fusarium isolates from Odontesthes bonariensis eggs.

    Science.gov (United States)

    Pacheco Marino, Suani G; Cabello, Marta N; Dinolfo, María I; Stenglein, Sebastián A; Saparrat, Mario C N; Salibián, Alfredo

    2016-01-01

    Several fungal species represent a potential risk to embryos of Odontesthes bonariensis (Cuvier and Valenciennes, 1835), a euryhaline freshwater fish that lives in the Pampean inland waters and has potential economic relevance. To identify two fungi isolated from O. bonariensis eggs exposed to saline conditions and to characterize their pathogenicity and tolerance to sodium chloride solutions. The isolates were identified by morphological features, and a preliminar phylogenetic analysis using sequences of translation elongation factor 1-alpha (EF-1α) and calmodulin (CAM) was performed. Koch's postulates were tested to identify the causative agent of fungal infection. The influence of NaCl on the fungal growth was evaluated in in vitro assays. The isolates LPSC 1001 and 1002 were identified as representatives of the genus Fusarium, and belonging to the Fusarium incarnatum-Fusarium equiseti species complex (FIESC) and the Fusarium solani species complex (FSSC), respectively. Histological observations on eggs exposed in vitro to both isolates in infectivity assays confirmed the ability of the fungal isolates to penetrate to egg's chorionic membrane, leading to the death of embryos. Increasing NaCl concentration in the culture medium reduced the growth of the isolates LPSC 1001 and 1002, being completely inhibited at 160 and 120g/l NaCl respectively. The isolates LPSC 1001 (FIESC) and 1002 (FSSC) were identified as fungal pathogens to O. bonariensis eggs. The use of NaCl solutions as antifungal treatment was not effective to control the infection with these strains. Copyright © 2014 Asociación Española de Micología. Published by Elsevier Espana. All rights reserved.

  11. Molecular Responses of Groundnut (Arachis hypogea L. to Zinc Stress

    Directory of Open Access Journals (Sweden)

    A. John De Britto

    2013-08-01

    Full Text Available Heavy metals are important environmental pollutants and their toxicity is a problem of increasing significance for ecological, evolutionary and environmental reasons. The interference of germination related proteins by heavy metals has not been well documented at the proteomic and genomic level. In the current study, molecular responses of germinating groundnut seeds were investigated under Zinc stress. The SDS-PAGE showed the preliminary changes in the polypeptides patterns under Zinc stress. Restriction digestion banding pattern of EcoRI and Hind III enzymes showed distinct banding pattern in the treated plants.

  12. Electrical response of relaxing dielectrics compressed by arbitrary stress pulses

    International Nuclear Information System (INIS)

    Lysne, P.C.

    1983-01-01

    The theoretical problem of the electric response of biased dielectrics and piezoelectrics subjected to planar stress pulse loading is considered. The materials are taken to exhibit dielectric relaxation in the sense that changes in the polarization induced by electric fields do not occur instantaneously with changes in the fields. While this paper considers arbitrary stress pulse loading of the specimen, examples that are amenable to projectile impact techniques are considered in detail. They are shock reverberation, thin pulse, and ramp loading experiments. It is anticipated that these experiments will play a role in investigations of dielectric relaxation caused by shock induced damage in insulators

  13. Surgical stress response: does endoscopic surgery confer an advantage?

    DEFF Research Database (Denmark)

    Kehlet, H

    1999-01-01

    of postoperative pulmonary function and less hypoxemia with endoscopic operation. The slight modification of surgical stress responses by endoscopic surgery is in contrast to the common, though not universal, demonstration of less pain, shorter hospital stay, and less morbidity after endoscopic surgery...... operations where differences are more likely to be found. The clinical consequences of these findings in relation to all over surgical outcome remain to be defined, but effective pain treatment, stress reduction by other techniques, and provision of an active rehabilitation program with early mobilization...

  14. Transcriptomic analysis of salt stress responsive genes in Rhazya stricta.

    Directory of Open Access Journals (Sweden)

    Nahid H Hajrah

    Full Text Available Rhazya stricta is an evergreen shrub that is widely distributed across Western and South Asia, and like many other members of the Apocynaceae produces monoterpene indole alkaloids that have anti-cancer properties. This species is adapted to very harsh desert conditions making it an excellent system for studying tolerance to high temperatures and salinity. RNA-Seq analysis was performed on R. stricta exposed to severe salt stress (500 mM NaCl across four time intervals (0, 2, 12 and 24 h to examine mechanisms of salt tolerance. A large number of transcripts including genes encoding tetrapyrroles and pentatricopeptide repeat (PPR proteins were regulated only after 12 h of stress of seedlings grown in controlled greenhouse conditions. Mechanisms of salt tolerance in R. stricta may involve the upregulation of genes encoding chaperone protein Dnaj6, UDP-glucosyl transferase 85a2, protein transparent testa 12 and respiratory burst oxidase homolog protein b. Many of the highly-expressed genes act on protecting protein folding during salt stress and the production of flavonoids, key secondary metabolites in stress tolerance. Other regulated genes encode enzymes in the porphyrin and chlorophyll metabolic pathway with important roles during plant growth, photosynthesis, hormone signaling and abiotic responses. Heme biosynthesis in R. stricta leaves might add to the level of salt stress tolerance by maintaining appropriate levels of photosynthesis and normal plant growth as well as by the participation in reactive oxygen species (ROS production under stress. We speculate that the high expression levels of PPR genes may be dependent on expression levels of their targeted editing genes. Although the results of PPR gene family indicated regulation of a large number of transcripts under salt stress, PPR actions were independent of the salt stress because their RNA editing patterns were unchanged.

  15. Coping as a mediator of the relationship between stress mindset and psychological stress response: a pilot study

    Directory of Open Access Journals (Sweden)

    Horiuchi S

    2018-03-01

    Full Text Available Satoshi Horiuchi,1 Akira Tsuda,2 Shuntaro Aoki,3,4 Kenichiro Yoneda,5 Yusuke Sawaguchi6 1Faculty of Social Welfare, Iwate Prefectural University, Iwate, 2Department of Psychology, Kurume University, Fukuoka, 3Research Fellow of Japan Society for the Promotion of Science, Tokyo, 4Graduate School of Psychological Science, Health Sciences University of Hokkaido, Hokkaido, 5Graduate School of Psychology, Kurume University, Fukuoka, 6Graduate School of Social Welfare, Iwate Prefectural University, Iwate, Japan Background: Coping, the cognitive and behavioral effort required to manage the effects of stressors, is important in determining psychological stress responses (ie, the emotional, behavioral, and cognitive responses to stressors. Coping was classified into categories of emotional expression (eg, negative feelings and thoughts, emotional support seeking (eg, approaching loved ones to request encouragement, cognitive reinterpretation (eg, reframing a problem positively, and problem solving (eg, working to solve the problem. Stress mindset refers to the belief that stress has enhancing (stress-is-enhancing mindset or debilitating consequences (stress-is-debilitating mindset. This study examined whether coping mediated the relationship between stress mindset and psychological stress responses. Psychological stress responses were conceptualized as depression-anxiety, irritability-anger, and helplessness. The following two hypotheses were tested: 1 a stronger stress-is-enhancing mindset is associated with less frequent use of emotional expression, emotional support seeking, and problem solving, which in turn is associated with lower levels of depression-anxiety, irritability-anger, and helplessness; 2 a stronger stress-is-debilitating mindset is associated with more frequent use of these coping strategies, which in turn is associated with higher levels of these psychological stress responses. Materials and methods: The participants were 30 male and

  16. Transcriptome Analysis of Spartina pectinata in Response to Freezing Stress.

    Directory of Open Access Journals (Sweden)

    Gyoungju Nah

    Full Text Available Prairie cordgrass (Spartina pectinata, a perennial C4 grass native to the North American prairie, has several distinctive characteristics that potentially make it a model crop for production in stressful environments. However, little is known about the transcriptome dynamics of prairie cordgrass despite its unique freezing stress tolerance. Therefore, the purpose of this work was to explore the transcriptome dynamics of prairie cordgrass in response to freezing stress at -5°C for 5 min and 30 min. We used a RNA-sequencing method to assemble the S. pectinata leaf transcriptome and performed gene-expression profiling of the transcripts under freezing treatment. Six differentially expressed gene (DEG groups were categorized from the profiling. In addition, two major consecutive orders of gene expression were observed in response to freezing; the first being the acute up-regulation of genes involved in plasma membrane modification, calcium-mediated signaling, proteasome-related proteins, and transcription regulators (e.g., MYB and WRKY. The follow-up and second response was of genes involved in encoding the putative anti-freezing protein and the previously known DNA and cell-damage-repair proteins. Moreover, we identified the genes involved in epigenetic regulation and circadian-clock expression. Our results indicate that freezing response in S. pectinata reflects dynamic changes in rapid-time duration, as well as in metabolic, transcriptional, post-translational, and epigenetic regulation.

  17. Allelopathic Responses of Rice Seedlings under Some Different Stresses

    Directory of Open Access Journals (Sweden)

    Tran Dang Khanh

    2018-05-01

    Full Text Available The objective of this study was to evaluate the allelopathic responses of rice seedlings under submergence stress at different temperatures (10, 25, 32, and 37 °C. The results showed that a wide range of allelopathic responses of rice seedlings depended on varieties and stress conditions, with temperature was being a key factor. It showed that the extracts of rice seedlings induced significant suppression on lettuce and radish seedling germination, but had negligible allelopathic effects on growth of barnyardgrass, whilst the emergence and growth of natural weeds was stimulated. In contrast, the root exudates of Koshihikari rice seedlings (K32 at 32 °C reduced the number of total weeds by ≈60.0% and the total dry weight of weeds by 93.0%; i.e., to a greater extent than other root exudates. Among the 13 identified phenolic acids, p-hydroxybenzoic, vanillic, syringic, sinapic and benzoic acids—at concentrations of 0.360, 0.045, 3.052, 1.309 and 5.543 μg/mL might be involved in allelopathic responses of K32, inhibiting the growth of barnyardgrass and natural weeds. Findings of the present study may provide useful information on allelopathic responses of rice under environmental stresses and thus further understand of the competitive relationships between rice and weeds under natural conditions.

  18. Dissection of Ire1 functions reveals stress response mechanisms uniquely evolved in Candida glabrata.

    Directory of Open Access Journals (Sweden)

    Taiga Miyazaki

    2013-01-01

    Full Text Available Proper protein folding in the endoplasmic reticulum (ER is vital in all eukaryotes. When misfolded proteins accumulate in the ER lumen, the transmembrane kinase/endoribonuclease Ire1 initiates splicing of HAC1 mRNA to generate the bZIP transcription factor Hac1, which subsequently activates its target genes to increase the protein-folding capacity of the ER. This cellular machinery, called the unfolded protein response (UPR, is believed to be an evolutionarily conserved mechanism in eukaryotes. In this study, we comprehensively characterized mutant phenotypes of IRE1 and other related genes in the human fungal pathogen Candida glabrata. Unexpectedly, Ire1 was required for the ER stress response independently of Hac1 in this fungus. C. glabrata Ire1 did not cleave mRNAs encoding Hac1 and other bZIP transcription factors identified in the C. glabrata genome. Microarray analysis revealed that the transcriptional response to ER stress is not mediated by Ire1, but instead is dependent largely on calcineurin signaling and partially on the Slt2 MAPK pathway. The loss of Ire1 alone did not confer increased antifungal susceptibility in C. glabrata contrary to UPR-defective mutants in other fungi. Taken together, our results suggest that the canonical Ire1-Hac1 UPR is not conserved in C. glabrata. It is known in metazoans that active Ire1 nonspecifically cleaves and degrades a subset of ER-localized mRNAs to reduce the ER load. Intriguingly, this cellular response could occur in an Ire1 nuclease-dependent fashion in C. glabrata. We also uncovered the attenuated virulence of the C. glabrata Δire1 mutant in a mouse model of disseminated candidiasis. This study has unveiled the unique evolution of ER stress response mechanisms in C. glabrata.

  19. Deciphering hepatocellular responses to metabolic and oncogenic stress

    Directory of Open Access Journals (Sweden)

    Kathrina L. Marcelo

    2015-08-01

    Full Text Available Each cell type responds uniquely to stress and fractionally contributes to global and tissue-specific stress responses. Hepatocytes, liver macrophages (MΦ, and sinusoidal endothelial cells (SEC play functionally important and interdependent roles in adaptive processes such as obesity and tumor growth. Although these cell types demonstrate significant phenotypic and functional heterogeneity, their distinctions enabling disease-specific responses remain understudied. We developed a strategy for the simultaneous isolation and quantification of these liver cell types based on antigenic cell surface marker expression. To demonstrate the utility and applicability of this technique, we quantified liver cell-specific responses to high-fat diet (HFD or diethylnitrosamine (DEN, a liver-specific carcinogen, and found that while there was only a marginal increase in hepatocyte number, MΦ and SEC populations were quantitatively increased. Global gene expression profiling of hepatocytes, MΦ and SEC identified characteristic gene signatures that define each cell type in their distinct physiological or pathological states. Integration of hepatic gene signatures with available human obesity and liver cancer microarray data provides further insight into the cell-specific responses to metabolic or oncogenic stress. Our data reveal unique gene expression patterns that serve as molecular “fingerprints” for the cell-centric responses to pathologic stimuli in the distinct microenvironment of the liver. The technical advance highlighted in this study provides an essential resource for assessing hepatic cell-specific contributions to metabolic and oncogenic stress, information that could unveil previously unappreciated molecular mechanisms for the cellular crosstalk that underlies the continuum from metabolic disruption to obesity and ultimately hepatic cancer.

  20. Evasion of Apoptosis as a Cellular Stress Response in Cancer

    Directory of Open Access Journals (Sweden)

    Simone Fulda

    2010-01-01

    Full Text Available One of the hallmarks of human cancers is the intrinsic or acquired resistance to apoptosis. Evasion of apoptosis can be part of a cellular stress response to ensure the cell's survival upon exposure to stressful stimuli. Apoptosis resistance may contribute to carcinogenesis, tumor progression, and also treatment resistance, since most current anticancer therapies including chemotherapy as well as radio- and immunotherapies primarily act by activating cell death pathways including apoptosis in cancer cells. Hence, a better understanding of the molecular mechanisms regarding how cellular stress stimuli trigger antiapoptotic mechanisms and how this contributes to tumor resistance to apoptotic cell death is expected to provide the basis for a rational approach to overcome apoptosis resistance mechanisms in cancers.

  1. Stress response in female veterans: an allostatic perspective.

    Science.gov (United States)

    Groër, Maureen Wimberly; Burns, Candace

    2009-01-01

    Women serving in the military face many sources of stress, such as separation from home and family, sexual harassment and assault, and deployment to traumatic war zones. Some women are vulnerable to the effects of these stressors, resulting in deleterious mental and physical health outcomes. Understanding these risks through the theoretical model of allostasis can help identify those who will be most vulnerable and help healthcare providers prevent some negative outcomes and improve rehabilitation for some women when they return stateside. Women may be more likely than men to present with mental health problems such as posttraumatic stress disorder and depression after military service. They also may be at increased risk, based on their war-zone stress response, for disparate illness such as medically unexplained illness, cancer, and heart disease. The need for care for these women is expected to increase as more women are deployed to conflicts.

  2. The role of stress mindset in shaping cognitive, emotional, and physiological responses to challenging and threatening stress.

    Science.gov (United States)

    Crum, Alia J; Akinola, Modupe; Martin, Ashley; Fath, Sean

    2017-07-01

    Prior research suggests that altering situation-specific evaluations of stress as challenging versus threatening can improve responses to stress. The aim of the current study was to explore whether cognitive, physiological and affective stress responses can be altered independent of situation-specific evaluations by changing individuals' mindsets about the nature of stress in general. Using a 2 × 2 design, we experimentally manipulated stress mindset using multi-media film clips orienting participants (N = 113) to either the enhancing or debilitating nature of stress. We also manipulated challenge and threat evaluations by providing positive or negative feedback to participants during a social stress test. Results revealed that under both threat and challenge stress evaluations, a stress-is-enhancing mindset produced sharper increases in anabolic ("growth") hormones relative to a stress-is-debilitating mindset. Furthermore, when the stress was evaluated as a challenge, a stress-is-enhancing mindset produced sharper increases in positive affect, heightened attentional bias towards positive stimuli, and greater cognitive flexibility, whereas a stress-is-debilitating mindset produced worse cognitive and affective outcomes. These findings advance stress management theory and practice by demonstrating that a short manipulation designed to generate a stress-is-enhancing mindset can improve responses to both challenging and threatening stress.

  3. The Arabidopsis Rho of Plants GTPase AtROP6 Functions in Developmental and Pathogen Response Pathways1[C][W][OA

    Science.gov (United States)

    Poraty-Gavra, Limor; Zimmermann, Philip; Haigis, Sabine; Bednarek, Paweł; Hazak, Ora; Stelmakh, Oksana Rogovoy; Sadot, Einat; Schulze-Lefert, Paul; Gruissem, Wilhelm; Yalovsky, Shaul

    2013-01-01

    How plants coordinate developmental processes and environmental stress responses is a pressing question. Here, we show that Arabidopsis (Arabidopsis thaliana) Rho of Plants6 (AtROP6) integrates developmental and pathogen response signaling. AtROP6 expression is induced by auxin and detected in the root meristem, lateral root initials, and leaf hydathodes. Plants expressing a dominant negative AtROP6 (rop6DN) under the regulation of its endogenous promoter are small and have multiple inflorescence stems, twisted leaves, deformed leaf epidermis pavement cells, and differentially organized cytoskeleton. Microarray analyses of rop6DN plants revealed that major changes in gene expression are associated with constitutive salicylic acid (SA)-mediated defense responses. In agreement, their free and total SA levels resembled those of wild-type plants inoculated with a virulent powdery mildew pathogen. The constitutive SA-associated response in rop6DN was suppressed in mutant backgrounds defective in SA signaling (nonexpresser of PR genes1 [npr1]) or biosynthesis (salicylic acid induction deficient2 [sid2]). However, the rop6DN npr1 and rop6DN sid2 double mutants retained the aberrant developmental phenotypes, indicating that the constitutive SA response can be uncoupled from ROP function(s) in development. rop6DN plants exhibited enhanced preinvasive defense responses to a host-adapted virulent powdery mildew fungus but were impaired in preinvasive defenses upon inoculation with a nonadapted powdery mildew. The host-adapted powdery mildew had a reduced reproductive fitness on rop6DN plants, which was retained in mutant backgrounds defective in SA biosynthesis or signaling. Our findings indicate that both the morphological aberrations and altered sensitivity to powdery mildews of rop6DN plants result from perturbations that are independent from the SA-associated response. These perturbations uncouple SA-dependent defense signaling from disease resistance execution. PMID

  4. In response to community violence: coping strategies and involuntary stress responses among Latino adolescents.

    Science.gov (United States)

    Epstein-Ngo, Quyen; Maurizi, Laura K; Bregman, Allyson; Ceballo, Rosario

    2013-01-01

    Among poor, urban adolescents, high rates of community violence are a pressing public health concern. This study relies on a contextual framework of stress and coping to investigate how coping strategies and involuntary stress responses may both mediate and moderate the relation between exposure to community violence and psychological well-being. Our sample consists of 223 ninth grade Latino adolescents from poor, urban families. In response to community violence, these adolescents reported using an array of coping strategies as well as experiencing a number of involuntary stress responses; the most frequent coping responses were turning to religion and seeking social support. Hierarchical regression analyses demonstrated that involuntary stress responses mediated the relations between both witnessing or being victimized by violence and poorer psychological functioning, while coping strategies moderated these relations. These findings suggest that the negative psychological effects of exposure to community violence may, in part, be explained by involuntary stress responses, while religious-based coping may serve as a protective factor.

  5. Bacterial Nitric Oxide Synthase Is Required for the Staphylococcus aureus Response to Heme Stress.

    Science.gov (United States)

    Surdel, Matthew C; Dutter, Brendan F; Sulikowski, Gary A; Skaar, Eric P

    2016-08-12

    Staphylococcus aureus is a pathogen that causes significant morbidity and mortality worldwide. Within the vertebrate host, S. aureus requires heme as a nutrient iron source and as a cofactor for multiple cellular processes. Although required for pathogenesis, excess heme is toxic. S. aureus employs a two-component system, the heme sensor system (HssRS), to sense and protect against heme toxicity. Upon activation, HssRS induces the expression of the heme-regulated transporter (HrtAB), an efflux pump that alleviates heme toxicity. The ability to sense and respond to heme is critical for the pathogenesis of numerous Gram-positive organisms, yet the mechanism of heme sensing remains unknown. Compound '3981 was identified in a high-throughput screen as an activator of staphylococcal HssRS that triggers HssRS independently of heme accumulation. '3981 is toxic to S. aureus; however, derivatives of '3981 were synthesized that lack toxicity while retaining HssRS activation, enabling the interrogation of the heme stress response without confounding toxic effects of the parent molecule. Using '3981 derivatives as probes of the heme stress response, numerous genes required for '3981-induced activation of HssRS were uncovered. Specifically, multiple genes involved in the production of nitric oxide were identified, including the gene encoding bacterial nitric oxide synthase (bNOS). bNOS protects S. aureus from oxidative stress imposed by heme. Taken together, this work identifies bNOS as crucial for the S. aureus heme stress response, providing evidence that nitric oxide synthesis and heme sensing are intertwined.

  6. Children's biological responsivity to acute stress predicts concurrent cognitive performance.

    Science.gov (United States)

    Roos, Leslie E; Beauchamp, Kathryn G; Giuliano, Ryan; Zalewski, Maureen; Kim, Hyoun K; Fisher, Philip A

    2018-04-10

    Although prior research has characterized stress system reactivity (i.e. hypothalamic-pituitary-adrenal axis, HPAA; autonomic nervous system, ANS) in children, it has yet to examine the extent to which biological reactivity predicts concurrent goal-directed behavior. Here, we employed a stressor paradigm that allowed concurrent assessment of both stress system reactivity and performance on a speeded-response task to investigate the links between biological reactivity and cognitive function under stress. We further investigated gender as a moderator given previous research suggesting that the ANS may be particularly predictive of behavior in males due to gender differences in socialization. In a sociodemographically diverse sample of young children (N = 58, M age = 5.38 yrs; 44% male), individual differences in sociodemographic covariates (age, household income), HPAA (i.e. cortisol), and ANS (i.e. respiratory sinus arrhythmia, RSA, indexing the parasympathetic branch; pre-ejection period, PEP, indexing the sympathetic branch) function were assessed as predictors of cognitive performance under stress. We hypothesized that higher income, older age, and greater cortisol reactivity would be associated with better performance overall, and flexible ANS responsivity (i.e. RSA withdrawal, PEP shortening) would be predictive of performance for males. Overall, females performed better than males. Two-group SEM analyses suggest that, for males, greater RSA withdrawal to the stressor was associated with better performance, while for females, older age, higher income, and greater cortisol reactivity were associated with better performance. Results highlight the relevance of stress system reactivity to cognitive performance under stress. Future research is needed to further elucidate for whom and in what situations biological reactivity predicts goal-directed behavior.

  7. Secretome of fungus-infected aphids documents high pathogen activity and weak host response

    DEFF Research Database (Denmark)

    Grell, Morten Nedergaard; Jensen, Annette Bruun; Olsen, Peter B.

    2011-01-01

    Discovery of novel secretome proteins contributes to the understanding of host-pathogen interactions. Here we report a rich diversity of secreted proteins from the interaction between grain aphids (host, insect order Hemiptera) and fungi of the order Entomophthorales (insect pathogens), made...

  8. Role of the Talaromyces marneffei (Penicillium marneffei) sakA gene in nitrosative stress response, conidiation and red pigment production.

    Science.gov (United States)

    Nimmanee, Panjaphorn; Tam, Emily W T; Woo, Patrick C Y; Vanittanakom, Pramote; Vanittanakom, Nongnuch

    2017-04-01

    Stress-activated MAPK pathways are systems used to regulate the stress adaptation of most fungi. It has been shown that in Talaromyces marneffei (Penicillium marneffei), a pathogenic dimorphic fungus, the sakA gene is involved, not only in tolerance against oxidative and heat stresses, but also in playing a role in asexual development, yeast cell generation in vitro and survival inside macrophage cell lines. In this study, the role of the T. marneffei sakA gene on the nitrosative stress response and the regulation of gene expression were investigated. The susceptibility of the sakA mutant to NaNO2 was investigated using drop dilution assay and the expression of genes of interest were determined by RT-PCR, comparing them to the wild-type and complemented strains. The results demonstrated that the T. marneffei sakA gene played a role in the stress response to NaNO2, the expression of genes functioning in conidial development (brlA, abaA and wetA) and red pigment biosynthesis (pks3, rp1, rp2 and rp3). These findings suggest that T. marneffei sakA is broadly involved in a wide variety of cell activities, including stress response, cell morphogenesis, asexual development and pigmentation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Importance of stress-response genes to the survival of airborne Escherichia coli under different levels of relative humidity.

    Science.gov (United States)

    Ng, Tsz Wai; Chan, Wing Lam; Lai, Ka Man

    2017-12-01

    Other than the needs for infection control to investigate the survival and inactivation of airborne bacterial pathogens, there has been a growing interest in exploring bacterial communities in the air and the effect of environmental variables on them. However, the innate biological mechanism influencing the bacterial viability is still unclear. In this study, a mutant-based approach, using Escherichia coli as a model, was used to prove the concept that common stress-response genes are important for airborne survival of bacteria. Mutants with a single gene knockout that are known to respond to general stress (rpoS) and oxidative stress (oxyR, soxR) were selected in the study. Low relative humidity (RH), 30-40% was more detrimental to the bacteria than high RH, >90%. The log reduction of ∆rpoS was always higher than that of the parental strain at all RH levels but the ∆oxyR had a higher log reduction than the parental strain at intermediate RH only. ∆soxR had the same viability compared to the parental strain at all RH levels. The results hint that although different types and levels of stress are produced under different RH conditions, stress-response genes always play a role in the bacterial viability. This study is the first reporting the association between stress-response genes and viability of airborne bacteria.

  10. Short-term spatial memory responses in aged Japanese quail selected for divergent adrenocortical stress responsiveness.

    Science.gov (United States)

    Suhr, C L; Schmidt, J B; Treese, S T; Satterlee, D G

    2010-04-01

    Stress-induced glucocorticoids can dampen learning and spatial memory via neuronal damage to the hippocampus. Cognition losses can be transient (associated with acute stress episodes) or permanent as in aged individuals who show chronic glucocorticoid-induced accelerated brain aging and neurodegeneration (dementia). Thus, chronic versus acute stress effects on spatial memory responses of quail selected for reduced (low stress, LS) or exaggerated (high stress, HS) plasma corticosterone (B) response to brief restraint were assessed. Aged food-motivated male LS and HS quail were tested for 10 min in a feed-baited 8-arm radial arm maze (RAM) 1) at 255 d of age (quail who had experienced lifelong management stressors but who were otherwise never intentionally stressed; that is, chronically stressed birds), 2) on the next day post-acute stressor treatment (5 min of restraint), and 3) on the next day without treatment (acute stress recovery). The RAM tests used the win-shift procedure in which visited arms were not rebaited. Radial arm maze performance was measured by determination of the total number of arm choices made, the number of correct entries made into baited arms out of the first 8 choices, the time required to make a choice, and the number of pellets eaten. Line effects (P LS), and number of pellets eaten (HS RAM testing nor its interaction with line further influenced these variables. Thus, although selection for divergent plasma B responsiveness to an acute stressor was found to be associated with severe impairment of spatial memory in aged male HS compared with LS quail, the observed spatial memory impairments (HS > LS) could not be further altered by acute stressor treatment. Line differences in cognition may reflect lifelong management-induced stress episodes that periodically produce higher plasma B responses in HS than LS quail, which underlie HS quail memory deficits, or other etiologies, or both.

  11. Pathogenic and immunogenic responses in turkeys following in ovo exposure to avian metapneumovirus subtype C.

    Science.gov (United States)

    Cha, Ra Mi; Khatri, Mahesh; Mutnal, Manohar; Sharma, Jagdev M

    2011-03-15

    Commercial turkey eggs, free of antibodies to avian metapneumovirus subtype C (aMPV/C), were inoculated with aMPV/C at embryonation day (ED) 24. There was no detectable effect of virus inoculation on the hatchability of eggs. At 4 days post inoculation (DPI) (the day of hatch (ED 28)) and 9 DPI (5 days after hatch), virus replication was detected by quantitative RT-PCR in the turbinate, trachea and lung but not in the thymus or spleen. Mild histological lesions characterized by lymphoid cell infiltration were evident in the turbinate mucosa. Virus exposure inhibited the mitogenic response of splenocytes and thymocytes and upregulated gene expression of IFN-γ and IL-10 in the turbinate tissue. Turkeys hatching from virus-exposed eggs had aMPV/C-specific IgG in the serum and the lachrymal fluid. At 3 week of age, in ovo immunized turkeys were protected against a challenge with pathogenic aMPV/C. Published by Elsevier B.V.

  12. The Candida albicans Ddr48 protein is essential for filamentation, stress response, and confers partial antifungal drug resistance.

    Science.gov (United States)

    Dib, Leila; Hayek, Peter; Sadek, Helen; Beyrouthy, Berna; Khalaf, Roy A

    2008-06-01

    Candida albicans is a dimorphic pathogenic fungus that causes mucosal and systemic infections. C. albicans pathogenicity is attributed to its ability to exist in different morphologic states and to respond to stress by up regulating several key genes. DDR48 is a stress-associated gene involved in DNA repair and in response to antifungal drug exposure. One allele of DDR48 was knocked out by homologous recombination that inserted a marker cassette in its position. Furthermore, reintroducing DDR48 on a plasmid created a revertant strain. Strains were grown on filamentation inducing and noninducing media, subjected to an oxidative stress challenge, injected into mice to assess virulence, and assayed for antifungal susceptibility by the E-test method. DDR48 was found to be haploid insufficient and possibly essential, since only a heterozygote, but not a homozygous, null mutant was generated. The mutant was filamentation defective on all hyphal media tested including serum and corn meal agar. Discrepancies in drug resistance profiles also were present: compared with the parental strain, DDR48/ddr48 heterozygote strain was susceptible in a dose-dependent manner to itraconazole and fluconazole and susceptible to ketoconazole. The mutant also appeared to be hypersensitive to a potentially lethal hydrogen peroxide challenge. However, no reduction in virulence of the mutant was observed. The present findings provide evidence that DDR48 is essential for filamentation, stress response, and possibly viability of C. albicans, making it a prime target for antifungal drug design.

  13. Gene Expression Dynamics Accompanying the Sponge Thermal Stress Response.

    Science.gov (United States)

    Guzman, Christine; Conaco, Cecilia

    2016-01-01

    Marine sponges are important members of coral reef ecosystems. Thus, their responses to changes in ocean chemistry and environmental conditions, particularly to higher seawater temperatures, will have potential impacts on the future of these reefs. To better understand the sponge thermal stress response, we investigated gene expression dynamics in the shallow water sponge, Haliclona tubifera (order Haplosclerida, class Demospongiae), subjected to elevated temperature. Using high-throughput transcriptome sequencing, we show that these conditions result in the activation of various processes that interact to maintain cellular homeostasis. Short-term thermal stress resulted in the induction of heat shock proteins, antioxidants, and genes involved in signal transduction and innate immunity pathways. Prolonged exposure to thermal stress affected the expression of genes involved in cellular damage repair, apoptosis, signaling and transcription. Interestingly, exposure to sublethal temperatures may improve the ability of the sponge to mitigate cellular damage under more extreme stress conditions. These insights into the potential mechanisms of adaptation and resilience of sponges contribute to a better understanding of sponge conservation status and the prediction of ecosystem trajectories under future climate conditions.

  14. Herboxidiene triggers splicing repression and abiotic stress responses in plants

    KAUST Repository

    Alshareef, Sahar

    2017-03-27

    Background Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and stresses. Small-molecule inhibitors that perturb splicing provide invaluable tools for use as chemical probes to uncover the molecular underpinnings of splicing regulation and as potential anticancer compounds. Results Here, we show that herboxidiene (GEX1A) inhibits both constitutive and alternative splicing. Moreover, GEX1A activates genome-wide transcriptional patterns involved in abiotic stress responses in plants. GEX1A treatment -activated ABA-inducible promoters, and led to stomatal closure. Interestingly, GEX1A and pladienolide B (PB) elicited similar cellular changes, including alterations in the patterns of transcription and splicing, suggesting that these compounds might target the same spliceosome complex in plant cells. Conclusions Our study establishes GEX1A as a potent splicing inhibitor in plants that can be used to probe the assembly, dynamics, and molecular functions of the spliceosome and to study the interplay between splicing stress and abiotic stresses, as well as having potential biotechnological applications.

  15. Osmotic stress response in the wine yeast Dekkera bruxellensis.

    Science.gov (United States)

    Galafassi, Silvia; Toscano, Marco; Vigentini, Ileana; Piškur, Jure; Compagno, Concetta

    2013-12-01

    Dekkera bruxellensis is mainly associated with lambic beer fermentation and wine production and may contribute in a positive or negative manner to the flavor development. This yeast is able to produce phenolic compounds, such as 4-ethylguaiacol and 4-ethylphenol which could spoil the wine, depending on their concentration. In this work we have investigated how this yeast responds when exposed to conditions causing osmotic stress, as high sorbitol or salt concentrations. We observed that osmotic stress determined the production and accumulation of intracellular glycerol, and the expression of NADH-dependent glycerol-3-phosphate dehydrogenase (GPD) activity was elevated. The involvement of the HOG MAPK pathway in response to this stress condition was also investigated. We show that in D. bruxellensis Hog1 protein is activated by phosphorylation under hyperosmotic conditions, highlighting the conserved role of HOG MAP kinase signaling pathway in the osmotic stress response. Gene Accession numbers in GenBank: DbHOG1: JX65361, DbSTL1: JX965362. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Hypothalamic and pituitary clusterin modulates neurohormonal responses to stress.

    Science.gov (United States)

    Shin, Mi-Seon; Chang, Hyukki; Namkoong, Churl; Kang, Gil Myoung; Kim, Hyun-Kyong; Gil, So Young; Yu, Ji Hee; Park, Kyeong Han; Kim, Min-Seon

    2013-01-01

    Clusterin is a sulfated glycoprotein abundantly expressed in the pituitary gland and hypothalamus of mammals. However, its physiological role in neuroendocrine function is largely unknown. In the present study, we investigated the effects of intracerebroventricular (ICV) administration of clusterin on plasma pituitary hormone levels in normal rats. Single ICV injection of clusterin provoked neurohormonal changes seen under acute stress condition: increased plasma adrenocorticotropic hormone (ACTH), corticosterone, GH and prolactin levels and decreased LH and FSH levels. Consistently, hypothalamic and pituitary clusterin expression levels were upregulated following a restraint stress, suggesting an involvement of endogenous clusterin in stress-induced neurohormonal changes. In the pituitary intermediate lobe, clusterin was coexpressed with proopiomelanocortin (POMC), a precursor of ACTH. Treatment of clusterin in POMC expressing AtT-20 pituitary cells increased basal and corticotropin-releasing hormone (CRH)-stimulated POMC promoter activities and intracellular cAMP levels. Furthermore, clusterin treatment triggered ACTH secretion from AtT-20 cells in a CRH-dependent manner, indicating that increased clusterin under stressful conditions may augment CRH-stimulated ACTH production and release. In summary, hypothalamic and pituitary clusterin may function as a modulator of neurohormonal responses under stressful conditions. © 2013 S. Karger AG, Basel.

  17. Behaviour and stress responses in horses with gastric ulceration

    DEFF Research Database (Denmark)

    Malmkvist, Jens; Poulsen, Janne Møller; Luthersson, Nanna

    2012-01-01

    Only little is known about behaviour and stress responses in horses with gastric ulceration, despite the high prevalence of this condition. Our objectives in the present study was to (i) describe the severity of gastric ulceration in horses, housed under relatively standardised conditions, and (ii......) to investigate whether horses with severe glandular gastric ulceration have increased baseline and response concentration of stress hormones and behave differently than control horses. We investigated stomachs of 96 horses at one stud, and compared an ulcer group (n = 30; with severe lesions in the glandular...... conclude that the prevalence of gastric ulcers was high, and our results suggest different factors affecting ulceration in the glandular versus the nonglandular region of the horse stomach. Obvious external signs (e.g. poor body condition) identifying ulcer horses were absent. Horses with severe glandular...

  18. Pathogenic strains of Acanthamoeba are recognized by TLR4 and initiated inflammatory responses in the cornea.

    Directory of Open Access Journals (Sweden)

    Hassan Alizadeh

    Full Text Available Free-living amoebae of the Acanthamoeba species are the causative agent of Acanthamoeba keratitis (AK, a sight-threatening corneal infection that causes severe pain and a characteristic ring-shaped corneal infiltrate. Innate immune responses play an important role in resistance against AK. The aim of this study is to determine if Toll-like receptors (TLRs on corneal epithelial cells are activated by Acanthamoeba, leading to initiation of inflammatory responses in the cornea. Human corneal epithelial (HCE cells constitutively expressed TLR1, TLR2, TLR3, TLR4, and TLR9 mRNA, and A. castellanii upregulated TLR4 transcription. Expression of TLR1, TLR2, TLR3, and TLR9 was unchanged when HCE cells were exposed to A. castellanii. IL-8 mRNA expression was upregulated in HCE cells exposed to A. castellanii. A. castellanii and lipopolysaccharide (LPS induced significant IL-8 production by HCE cells as measured by ELISA. The percentage of total cells positive for TLR4 was higher in A. castellanii stimulated HCE cells compared to unstimulated HCE cells. A. castellanii induced upregulation of IL-8 in TLR4 expressing human embryonic kidney (HEK-293 cells, but not TLR3 expressing HEK-293 cells. TLR4 neutralizing antibody inhibited A. castellanii-induced IL-8 by HCE and HEK-293 cells. Clinical strains but not soil strains of Acanthamoeba activated TLR4 expression in Chinese hamster corneas in vivo and in vitro. Clinical isolates but not soil isolates of Acanthamoeba induced significant (P< 0.05 CXCL2 production in Chinese hamster corneas 3 and 7 days after infection, which coincided with increased inflammatory cells in the corneas. Results suggest that pathogenic species of Acanthamoeba activate TLR4 and induce production of CXCL2 in the Chinese hamster model of AK. TLR4 may be a potential target in the development of novel treatment strategies in Acanthamoeba and other microbial infections that activate TLR4 in corneal cells.

  19. Compensatory responses induced by oxidative stress in Alzheimer disease

    Directory of Open Access Journals (Sweden)

    PAULA I MOREIRA

    2006-01-01

    Full Text Available Oxidative stress occurs early in the progression of Alzheimer disease, significantly before the development of the pathologic hallmarks, neurofibrillary tangles and senile plaques. In the first stage of development of the disease, amyloid-β deposition and hyperphosphorylated tau function as compensatory responses and downstream adaptations to ensure that neuronal cells do not succumb to oxidative damage. These findings suggest that Alzheimer disease is associated with a novel balance in oxidant homeostasis.

  20. A Unique ISR Program Determines Cellular Responses to Chronic Stress

    Czech Academy of Sciences Publication Activity Database

    Guan, B.J.; van Hoef, V.; Jobava, R.; Elroy-Stein, O.; Valášek, Leoš Shivaya; Cargnello, M.; Gao, X.H.; Krokowski, D.; Merrick, W.C.; Kimball, S.R.; Komar, A.A.; Koromilas, A.E.; Wynshaw-Boris, A.; Topisirovic, I.; Larsson, O.; Hatzoglou, M.

    2017-01-01

    Roč. 68, č. 5 (2017), s. 885-900 ISSN 1097-2765 R&D Projects: GA ČR(CZ) GA17-06238S EU Projects: Wellcome Trust(GB) 090812/B/09/A Institutional support: RVO:61388971 Keywords : UNFOLDED PROTEIN RESPONSE * EUKARYOTIC TRANSLATION INITIATION * ENDOPLASMIC-RETICULUM STRESS Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 14.714, year: 2016

  1. Identification and characterization of sigma, a novel component of the Staphylococcus aureus stress and virulence responses.

    Directory of Open Access Journals (Sweden)

    Lindsey N Shaw

    Full Text Available S. aureus is a highly successful pathogen that is speculated to be the most common cause of human disease. The progression of disease in S. aureus is subject to multi-factorial regulation, in response to the environments encountered during growth. This adaptive nature is thought to be central to pathogenesis, and is the result of multiple regulatory mechanisms employed in gene regulation. In this work we describe the existence of a novel S. aureus regulator, an as yet uncharacterized ECF-sigma factor (sigma(S, that appears to be an important component of the stress and pathogenic responses of this organism. Using biochemical approaches we have shown that sigma(S is able to associates with core-RNAP, and initiate transcription from its own coding region. Using a mutant strain we determined that sigma(S is important for S. aureus survival during starvation, extended exposure to elevated growth temperatures, and Triton X-100 induced lysis. Coculture studies reveal that a sigma(S mutant is significantly outcompeted by its parental strain, which is only exacerbated during prolonged growth (7 days, or in the presence of stressor compounds. Interestingly, transcriptional analysis determined that under standard conditions, S. aureus SH1000 does not initiate expression of sigS. Assays performed hourly for 72 h revealed expression in typically background ranges. Analysis of a potential anti-sigma factor, encoded downstream of sigS, revealed it to have no obvious role in the upregulation of sigS expression. Using a murine model of septic arthritis, sigS-mutant infected animals lost significantly less weight, developed septic arthritis at significantly lower levels, and had increased survival rates. Studies of mounted immune responses reveal that sigS-mutant infected animals had significantly lower levels of IL-6, indicating only a weak immunological response. Finally, strains of S. aureus lacking sigS were far less able to undergo systemic dissemination

  2. Epidermal stem cells response to radiative genotoxic stress

    International Nuclear Information System (INIS)

    Marie, Melanie

    2013-01-01

    Human skin is the first organ exposed to various environmental stresses, which requires the development by skin stem cells of specific mechanisms to protect themselves and to ensure tissue homeostasis. As stem cells are responsible for the maintenance of epidermis during individual lifetime, the preservation of genomic integrity in these cells is essential. My PhD aimed at exploring the mechanisms set up by epidermal stem cells in order to protect themselves from two genotoxic stresses, ionizing radiation (Gamma Rays) and ultraviolet radiation (UVB). To begin my PhD, I have taken part of the demonstration of protective mechanisms used by keratinocyte stem cells after ionizing radiation. It has been shown that these cells are able to rapidly repair most types of radiation-induced DNA damage. Furthermore, we demonstrated that this repair is activated by the fibroblast growth factor 2 (FGF2). In order to know if this protective mechanism is also operating in cutaneous carcinoma stem cells, we investigated the response to gamma Rays of carcinoma stem cells isolated from a human carcinoma cell line. As in normal keratinocyte stem cells, we demonstrated that cancer stem cells could rapidly repair radio-induced DNA damage. Furthermore, fibroblast growth factor 2 also mediates this repair, notably thanks to its nuclear isoforms. The second project of my PhD was to study human epidermal stem cells and progenitors responses to UVB radiation. Once cytometry and irradiation conditions were set up, the toxicity of UVB radiation has been evaluate in the primary cell model. We then characterized UVB photons effects on cell viability, proliferation and repair of DNA damage. This study allowed us to bring out that responses of stem cells and their progeny to UVB are different, notably at the level of part of their repair activity of DNA damage. Moreover, progenitors and stem cells transcriptomic responses after UVB irradiation have been study in order to analyze the global

  3. Immune response of macrophages from young and aged mice to the oral pathogenic bacterium Porphyromonas gingivalis

    Directory of Open Access Journals (Sweden)

    Gibson Frank C

    2010-11-01

    Full Text Available Abstract Periodontal disease is a chronic inflammatory gum disease that in severe cases leads to tooth loss. Porphyromonas gingivalis (Pg is a bacterium closely associated with generalized forms of periodontal disease. Clinical onset of generalized periodontal disease commonly presents in individuals over the age of 40. Little is known regarding the effect of aging on inflammation associated with periodontal disease. In the present study we examined the immune response of bone marrow derived macrophages (BMM from young (2-months and aged (1-year and 2-years mice to Pg strain 381. Pg induced robust expression of cytokines; tumor necrosis factor (TNF-α, interleukin (IL-6, and IL-10, chemokines; neutrophil chemoattractant protein (KC, macrophage colony stimulating factor (MCP-1, macrophage inflammatory protein (MIP-1α and regulated upon activation normal T cell expressed and secreted (RANTES, as well as nitric oxide (NO, measured as nitrite, and prostaglandin E2 (PGE2 from BMM of young mice. BMM from the 2-year age group produced significantly less TNF-α, IL-6 and NO in response to Pg as compared with BMM from 2-months and 1-year of age. We did not observe any difference in the levels of IL-1β, IL-10 and PGE2 produced by BMM in response to Pg. BMM from 2-months and 1-year of age produced similar levels of all chemokines measured with the exception of MCP-1, which was reduced in BMM from 1-year of age. BMM from the 2-year group produced significantly less MCP-1 and MIP-1α compared with 2-months and 1-year age groups. No difference in RANTES production was observed between age groups. Employing a Pg attenuated mutant, deficient in major fimbriae (Pg DPG3, we observed reduced ability of the mutant to stimulate inflammatory mediator expression from BMMs as compared to Pg 381, irrespective of age. Taken together these results support senescence as an important facet of the reduced immunological response observed by BMM of aged host to the

  4. Evolution and Stress Responses of Gossypium hirsutum SWEET Genes.

    Science.gov (United States)

    Li, Wei; Ren, Zhongying; Wang, Zhenyu; Sun, Kuan; Pei, Xiaoyu; Liu, Yangai; He, Kunlun; Zhang, Fei; Song, Chengxiang; Zhou, Xiaojian; Zhang, Wensheng; Ma, Xiongfeng; Yang, Daigang

    2018-03-08

    The SWEET (sugars will eventually be exported transporters) proteins are sugar efflux transporters containing the MtN3_saliva domain, which affects plant development as well as responses to biotic and abiotic stresses. These proteins have not been functionally characterized in the tetraploid cotton, Gossypium hirsutum , which is a widely cultivated cotton species. In this study, we comprehensively analyzed the cotton SWEET gene family. A total of 55 putative G. hirsutum SWEET genes were identified. The GhSWEET genes were classified into four clades based on a phylogenetic analysis and on the examination of gene structural features. Moreover, chromosomal localization and an analysis of homologous genes in Gossypium arboreum , Gossypium raimondii , and G. hirsutum suggested that a whole-genome duplication, several tandem duplications, and a polyploidy event contributed to the expansion of the cotton SWEET gene family, especially in Clade III and IV. Analyses of cis -acting regulatory elements in the promoter regions, expression profiles, and artificial selection revealed that the GhSWEET genes were likely involved in cotton developmental processes and responses to diverse stresses. These findings may clarify the evolution of G. hirsutum SWEET gene family and may provide a foundation for future functional studies of SWEET proteins regarding cotton development and responses to abiotic stresses.

  5. Leptin regulates dopamine responses to sustained stress in humans.

    Science.gov (United States)

    Burghardt, Paul R; Love, Tiffany M; Stohler, Christian S; Hodgkinson, Colin; Shen, Pei-Hong; Enoch, Mary-Anne; Goldman, David; Zubieta, Jon-Kar

    2012-10-31

    Neural systems that identify and respond to salient stimuli are critical for survival in a complex and changing environment. In addition, interindividual differences, including genetic variation and hormonal and metabolic status likely influence the behavioral strategies and neuronal responses to environmental challenges. Here, we examined the relationship between leptin allelic variation and plasma leptin levels with DAD2/3R availability in vivo as measured with [(11)C]raclopride PET at baseline and during a standardized pain stress challenge. Allelic variation in the leptin gene was associated with varying levels of dopamine release in response to the pain stressor, but not with baseline D2/3 receptor availability. Circulating leptin was also positively associated with stress-induced dopamine release. These results show that leptin serves as a regulator of neuronal function in humans and provides an etiological mechanism for differences in dopamine neurotransmission in response to salient stimuli as related to metabolic function. The capacity for leptin to influence stress-induced dopaminergic function is of importance for pathological states where dopamine is thought to play an integral role, such as mood, substance-use disorders, eating disorders, and obesity.

  6. Stress Transmission in Granular Packings: Localization and Cooperative Response

    Science.gov (United States)

    Ramola, Kabir

    We develop a framework for stress transmission in two dimensional granular media that respects vector force balance at the microscopic level. For a packing of grains interacting via pairwise contact forces, we introduce local gauge degrees of freedom that determine the response of the system to external perturbations. This allows us to construct unique force-balanced solutions that determine the change in contact forces as a response to external stress. By mapping this response to diffusion in the underlying contact network, we show that this naturally leads to spatial localization of forces. We present numerical evidence for stress localization using exact diagonalization studies of network Laplacians associated with soft disk packings. We use this formalism to characterize the deviation from elastic behaviour as the amount of disorder in the underlying network is varied. We discuss generalizations to systems with large friction between grains and other networks that display topological disorder. This work has been supported by NSF-DMR 1409093 and the W. M. Keck Foundation.

  7. Sex and stress: Men and women show different cortisol responses to psychological stress induced by the Trier social stress test and the Iowa singing social stress test.

    Science.gov (United States)

    Reschke-Hernández, Alaine E; Okerstrom, Katrina L; Bowles Edwards, Angela; Tranel, Daniel

    2017-01-02

    Acute psychological stress affects each of us in our daily lives and is increasingly a topic of discussion for its role in mental illness, aging, cognition, and overall health. A better understanding of how such stress affects the body and mind could contribute to the development of more effective clinical interventions and prevention practices. Over the past 3 decades, the Trier Social Stress Test (TSST) has been widely used to induce acute stress in a laboratory setting based on the principles of social evaluative threat, namely, a judged speech-making task. A comparable alternative task may expand options for examining acute stress in a controlled laboratory setting. This study uses a within-subjects design to examine healthy adult participants' (n = 20 men, n = 20 women) subjective stress and salivary cortisol responses to the standard TSST (involving public speaking and math) and the newly created Iowa Singing Social Stress Test (I-SSST). The I-SSST is similar to the TSST but with a new twist: public singing. Results indicated that men and women reported similarly high levels of subjective stress in response to both tasks. However, men and women demonstrated different cortisol responses; men showed a robust response to both tasks, and women displayed a lesser response. These findings are in line with previous literature and further underscore the importance of examining possible sex differences throughout various phases of research, including design, analysis, and interpretation of results. Furthermore, this nascent examination of the I-SSST suggests a possible alternative for inducing stress in the laboratory. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Cortisol responses to naturalistic and laboratory stress in student teachers: comparison with a non-stress control day.

    Science.gov (United States)

    Wolfram, Maren; Bellingrath, Silja; Feuerhahn, Nicolas; Kudielka, Brigitte M

    2013-04-01

    Ambulatory assessments of hypothalamus-pituitary-adrenal axis responses to acute natural stressors yield evidence on stress regulation with high ecological validity. Sampling of salivary cortisol is a standard technique in this field. In 21 healthy student teachers, we assessed cortisol responses to a demonstration lesson. On a control day, sampling was repeated at analogous times. Additionally, the cortisol awakening response (CAR) was assessed on both days. Participants were also exposed to a laboratory stressor, the Trier Social Stress Test, and rated their individual levels of chronic work stress. In pre-to-post-stress assessment, cortisol levels declined after the lesson. However, post-stress cortisol levels were significantly higher compared with those on the control day. Also, the Trier Social Stress Test yielded higher cortisol responses when using the control day as reference baseline. Associations between the CAR and chronic stress measures were observed solely on the control day. There were no significant associations between cortisol responses to the natural and laboratory stressors. Our results indicate that a control day might be an important complement in laboratory but especially in ambulatory stress research. Furthermore, associations between chronic stress measures and the CAR might be obscured by acute stress exposure. Finally, responses to the laboratory stressor do not seem to mirror natural stress responses. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Lifelong Aerobic Exercise Reduces the Stress Response in Rats.

    Science.gov (United States)

    Pietrelli, A; Di Nardo, M; Masucci, A; Brusco, A; Basso, N; Matkovic, L

    2018-04-15

    The aim of this study was to analyze the effects of lifelong aerobic exercise (AE) on the adaptive response of the stress system in rats. It is well known that hypothalamic-pituitary-adrenal axis (HPA) activity differs when triggered by voluntary or forced exercise models. Male Wistar rats belonging to exercise (E) or control (C) groups were subjected to chronic AE, and two cutoff points were established at 8 (middle age) and 18 months (old age). Behavioral, biochemical and histopathological studies were performed on the main components/targets of the stress system. AE increased adrenal sensitivity (AS), brain corticosterone (CORT) and corticotropin-releasing factor (CRF), but had no effect on the thymus, adrenal glands (AGs) weight or plasma CORT. In addition, AE exerted no effect on the sympathetic tone, but significantly reduced anxiety-related behavior and emotionality. Aging decreased AS and deregulated neuroendocrine feedback, leading to an anxiogenic state which was mitigated by AE. Histopathological and morphometric analysis of AGs showed no alterations in middle-aged rats but adrenal vacuolization in approximately 20% old rats. In conclusion, lifelong AE did not produce adverse effects related to a chronic stress state. On the contrary, while AE upregulated some components of the HPA axis, it generated an adaptive response to cumulative changes, possibly through different compensatory and/or super compensatory mechanisms, modulated by age. The long-term practice of AE had a strong positive impact on stress resilience so that it could be recommended as a complementary therapy in stress and depression disease. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. USING OF MOUSE MODEL TO ANALYZE IMMUNE RESPONSE TO INFECTIOUS PATHOGENS BY THE METHODS OF CLASSICAL GENETICS

    Directory of Open Access Journals (Sweden)

    A. Poltorak

    2011-01-01

    Full Text Available Abstract. Identification and studying of numerous functions of all genes of the human beings is one of the main objects of modern biological science. Due to high level of homology between mouse and human genomes the important role to reach above mentioned goal belongs to the mouse model which using in the classical genetics increase in connection with appearance of different inbred mouse lines. For instance, the differences in immune response to infectious pathogens in various mouse lines were used many times to determine immunologically competent genes. That is why the contribution of mouse model in understanding of the mechanisms of immune response to infectious pathogens is difficult to overestimate. In the current review some of the most successful and well known examples of mouse using in studies of anti-infectious response are described.

  11. Dose response relationship in anti-stress gene regulatory networks.

    Science.gov (United States)

    Zhang, Qiang; Andersen, Melvin E

    2007-03-02

    To maintain a stable intracellular environment, cells utilize complex and specialized defense systems against a variety of external perturbations, such as electrophilic stress, heat shock, and hypoxia, etc. Irrespective of the type of stress, many adaptive mechanisms contributing to cellular homeostasis appear to operate through gene regulatory networks that are organized into negative feedback loops. In general, the degree of deviation of the controlled variables, such as electrophiles, misfolded proteins, and O2, is first detected by specialized sensor molecules, then the signal is transduced to specific transcription factors. Transcription factors can regulate the expression of a suite of anti-stress genes, many of which encode enzymes functioning to counteract the perturbed variables. The objective of this study was to explore, using control theory and computational approaches, the theoretical basis that underlies the steady-state dose response relationship between cellular stressors and intracellular biochemical species (controlled variables, transcription factors, and gene products) in these gene regulatory networks. Our work indicated that the shape of dose response curves (linear, superlinear, or sublinear) depends on changes in the specific values of local response coefficients (gains) distributed in the feedback loop. Multimerization of anti-stress enzymes and transcription factors into homodimers, homotrimers, or even higher-order multimers, play a significant role in maintaining robust homeostasis. Moreover, our simulation noted that dose response curves for the controlled variables can transition sequentially through four distinct phases as stressor level increases: initial superlinear with lesser control, superlinear more highly controlled, linear uncontrolled, and sublinear catastrophic. Each phase relies on specific gain-changing events that come into play as stressor level increases. The low-dose region is intrinsically nonlinear, and depending on

  12. Dose response relationship in anti-stress gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2007-03-01

    Full Text Available To maintain a stable intracellular environment, cells utilize complex and specialized defense systems against a variety of external perturbations, such as electrophilic stress, heat shock, and hypoxia, etc. Irrespective of the type of stress, many adaptive mechanisms contributing to cellular homeostasis appear to operate through gene regulatory networks that are organized into negative feedback loops. In general, the degree of deviation of the controlled variables, such as electrophiles, misfolded proteins, and O2, is first detected by specialized sensor molecules, then the signal is transduced to specific transcription factors. Transcription factors can regulate the expression of a suite of anti-stress genes, many of which encode enzymes functioning to counteract the perturbed variables. The objective of this study was to explore, using control theory and computational approaches, the theoretical basis that underlies the steady-state dose response relationship between cellular stressors and intracellular biochemical species (controlled variables, transcription factors, and gene products in these gene regulatory networks. Our work indicated that the shape of dose response curves (linear, superlinear, or sublinear depends on changes in the specific values of local response coefficients (gains distributed in the feedback loop. Multimerization of anti-stress enzymes and transcription factors into homodimers, homotrimers, or even higher-order multimers, play a significant role in maintaining robust homeostasis. Moreover, our simulation noted that dose response curves for the controlled variables can transition sequentially through four distinct phases as stressor level increases: initial superlinear with lesser control, superlinear more highly controlled, linear uncontrolled, and sublinear catastrophic. Each phase relies on specific gain-changing events that come into play as stressor level increases. The low-dose region is intrinsically nonlinear

  13. The defense-responsive genes showing enhanced and repressed expression after pathogen infection in rice (Oryza sativa L.)

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Bin(周斌); PENG; Kaiman(彭开蔓); CHU; Zhaohui(储昭晖); WANG; Shiping(王石平); ZHANG; Qifa(张启发)

    2002-01-01

    Despite large numbers of studies about defense response, processes involved in the resistance of plants to incompatible pathogens are still largely uncharacterized. The objective of this study was to identify genes involved in defense response by cDNA array analysis and to gain knowledge about the functions of the genes involved in defense response. Approximately 20000 rice cDNA clones were arrayed on nylon filters. RNA samples isolated from different rice lines after infection with incompatible strains or isolates of Xanthomonas oryzae pv. oryzae or Pyricularia grisea, respectively, were used to synthesize cDNA as probes for screening the cDNA arrays. A total of 100 differentially expressed unique sequences were identified from 5 pathogen-host combinations. Fifty-three sequences were detected as showing enhanced expression and 47 sequences were detected as showing repressed expression after pathogen infection. Sequence analysis revealed that most of the 100 sequences had various degrees of homology with genes in databases which encode or putatively encode transcription regulating proteins, translation regulating proteins, transport proteins, kinases, metabolic enzymes, and proteins involved in other functions. Most of the genes have not been previously reported as being involved in the disease resistance response in rice. The results from cDNA arrays, reverse transcription-polymerase chain reaction, and RNA gel blot analysis suggest that activation or repression of most of these genes might occur commonly in the defense response.

  14. Responses to reductive stress in the cardiovascular system.

    Science.gov (United States)

    Handy, Diane E; Loscalzo, Joseph

    2017-08-01

    There is a growing appreciation that reductive stress represents a disturbance in the redox state that is harmful to biological systems. On a cellular level, the presence of increased reducing equivalents and the lack of beneficial fluxes of reactive oxygen species can prevent growth factor-mediated signaling, promote mitochondrial dysfunction, increase apoptosis, and decrease cell survival. In this review, we highlight the importance of redox balance in maintaining cardiovascular homeostasis and consider the tenuous balance between oxidative and reductive stress. We explain the role of reductive stress in models of protein aggregation-induced cardiomyopathies, such as those caused by mutations in αB-crystallin. In addition, we discuss the role of NADPH oxidases in models of heart failure and ischemia-reperfusion to illustrate how oxidants may mediate the adaptive responses to injury. NADPH oxidase 4, a hydrogen peroxide generator, also has a major role in promoting vascular homeostasis through its regulation of vascular tone, angiogenic responses, and effects on atherogenesis. In contrast, the lack of antioxidant enzymes that reduce hydrogen peroxide, such as glutathione peroxidase 1, promotes vascular remodeling and is deleterious to endothelial function. Thus, we consider the role of oxidants as necessary signals to promote adaptive responses, such as the activation of Nrf2 and eNOS, and the stabilization of Hif1. In addition, we discuss the adaptive metabolic reprogramming in hypoxia that lead to a reductive state, and the subsequent cellular redistribution of reducing equivalents from NADH to other metabolites. Finally, we discuss the paradoxical ability of excess reducing equivalents to stimulate oxidative stress and promote injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Susceptibility to Lower Respiratory Infections in Childhood is Associated with Perturbation of the Cytokine Response to Pathogenic Airway Bacteria.

    Science.gov (United States)

    Vissing, Nadja Hawwa; Larsen, Jeppe Madura; Rasmussen, Morten Arendt; Chawes, Bo Lund Krogsgaard; Thysen, Anna Hammerich; Bønnelykke, Klaus; Brix, Susanne; Bisgaard, Hans

    2016-05-01

    Neonatal colonization of the airways with respiratory pathogens is associated with increased risk of lower respiratory infections (LRI) in early childhood. Therefore, we hypothesized that children developing LRI have an aberrant immune response to pathogenic bacteria in infancy. The objective was to characterize in vitro the early life systemic immune response to pathogenic bacteria and study the possible association with incidence of LRI during the first 3 years of life. The Copenhagen Prospective Studies on Asthma in Childhood2000 (COPSAC2000) is a clinical birth cohort study of 411 children born of mothers with asthma. LRI incidence was prospectively captured from 6-monthly planned visits and visits at acute respiratory episodes. The in vitro systemic immune response to Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae was characterized by the production of TNF-α, IFN-γ, IL-2, IL-5, IL-10, IL-13 and IL-17 in peripheral blood mononuclear cells isolated at age 6 months from 291 infants. Data were analyzed by Poisson regression against incidence of LRI in infancy. A multivariable model including all cytokine responses from the 3 different bacterial stimulations significantly identified children at risk of LRI (P = 0.006). The immune response pattern associated with LRI was characterized by perturbed production of several cytokines rather than production of one specific cytokine, and was independent of concurrent asthma. TNF-α and IL-5 were key drivers but did not explain the entire variation in LRI susceptibility. Children at risk of future LRI present a perturbed systemic immune response upon exposure to common airway pathogens in early life.

  16. Targeting the oxidative stress response system of fungi with safe, redox-potent chemosensitizing agents

    Directory of Open Access Journals (Sweden)

    Jong H. eKim

    2012-03-01

    Full Text Available The cellular antioxidation system is a target in the antifungal action of amphotericin B (AMB and itraconazole (ITZ, in filamentous fungi. The sakAΔ mutant of Aspergillus fumigatus, a mitogen-activated protein kinase (MAPK gene deletion mutant in the antioxidation system, was found to be more sensitive to AMB or ITZ than other A. fumigatus strains, a wild type and a mpkCΔ mutant (MAPK gene deletion mutant in polyalcohol sugar utilization system. The sakAΔ mutant showed no growth at 0.5 μg mL-1 of ITZ or reduced growth at 1.0 to 2.0 μg mL-1 of AMB, while the other strains exhibited robust growth. Complete fungal kill (≥ 99.9% by ITZ or AMB was achieved by much lower dosages for the sakAΔ mutant than for the other strains. SakA and MpkC appear to have overlapping roles in marshalling the oxidative stress response under treatment by an organic peroxide, tert-butyl hydroperoxide (t-BuOOH, or hydrogen peroxide (H2O2. The SakA signalling pathway was found to be responsible for fungal tolerance to AMB or ITZ toxicity. It appears msnA, an Aspergillus ortholog to Saccharomyces cerevisiae MSN2 (encoding a stress-responsive C2H2-type zinc-finger regulator and sakA and/or mpkC (upstream MAPKs are in the same stress response network under t-BuOOH-, H2O2- or AMB-triggered toxicity. Of note is that ITZ-sensitive yeast pathogens (Candida krusei and Cryptococcus neoformans were also sensitive to t-BuOOH, showing a connection between ITZ toxicity and oxidative stress response. This was shown by enhanced antifungal activity of AMB or ITZ when co-applied with redox-potent natural compounds, 2,3-dihydroxybenzaldehyde, thymol or salicylaldehyde, as chemosensitizing agents. Hence, redox compounds, which target the antioxidation system in fungi, possess a potent chemosensitizing capacity to enhance efficacy of conventional drugs inducing oxidative stress. Such chemosensitization can reduce costs and alleviate negative side effects associated with current

  17. Transcriptome analysis of Crossostephium chinensis provides insight into the molecular basis of salinity stress responses.

    Directory of Open Access Journals (Sweden)

    Haiyan Yang

    Full Text Available Soil salinization is becoming a limitation to the utilization of ornamental plants worldwide. Crossostephium chinensis (Linnaeus Makino is often cultivated along the southeast coast of China for its desirable ornamental qualities and high salt tolerance. However, little is known about the genomic background of the salt tolerance mechanism in C. chinensis. In the present study, we used Illumina paired-end sequencing to systematically investigate leaf transcriptomes derived from C. chinensis seedlings grown under normal conditions and under salt stress. A total of 105,473,004 bp of reads were assembled into 163,046 unigenes, of which 65,839 (40.38% of the total and 54,342 (33.32% of the total were aligned in Swiss-Prot and Nr protein, respectively. A total of 11,331 (6.95% differentially expressed genes (DEGs were identified among three comparisons, including 2,239 in 'ST3 vs ST0', 5,880 in 'ST9 vs ST3' and 9,718 in 'ST9 vs ST0', and they were generally classified into 26 Gene Ontology terms and 58 Kyoto Encyclopedia of Genes and Genomes (KEGG pathway terms. Many genes encoding important transcription factors (e.g., WRKY, MYB, and AP2/EREBP and proteins involved in starch and sucrose metabolism, arginine and proline metabolism, plant hormone signal transduction, amino acid biosynthesis, plant-pathogen interactions and carbohydrate metabolism, among others, were substantially up-regulated under salt stress. These genes represent important candidates for studying the salt-response mechanism and molecular biology of C. chinensis and its relatives. Our findings provide a genomic sequence resource for functional genetic assignments in C. chinensis. These transcriptome datasets will help elucidate the molecular mechanisms responsible for salt-stress tolerance in C. chinensis and facilitate the breeding of new stress-tolerant cultivars for high-saline areas using this valuable genetic resource.

  18. GigA and GigB are Master Regulators of Antibiotic Resistance, Stress Responses, and Virulence in Acinetobacter baumannii.

    Science.gov (United States)

    Gebhardt, Michael J; Shuman, Howard A

    2017-05-15

    A critical component of bacterial pathogenesis is the ability of an invading organism to sense and adapt to the harsh environment imposed by the host's immune system. This is especially important for opportunistic pathogens, such as Acinetobacter baumannii , a nutritionally versatile environmental organism that has recently gained attention as a life-threatening human pathogen. The emergence of A. baumannii is closely linked to antibiotic resistance, and many contemporary isolates are multidrug resistant (MDR). Unlike many other MDR pathogens, the molecular mechanisms underlying A. baumannii pathogenesis remain largely unknown. We report here the characterization of two recently identified virulence determinants, GigA and GigB, which comprise a signal transduction pathway required for surviving environmental stresses, causing infection and antibiotic resistance. Through transcriptome analysis, we show that GigA and GigB coordinately regulate the expression of many genes and are required for generating an appropriate transcriptional response during antibiotic exposure. Genetic and biochemical data demonstrate a direct link between GigA and GigB and the nitrogen phosphotransferase system (PTS Ntr ), establishing a novel connection between a novel stress response module and a well-conserved metabolic-sensing pathway. Based on the results presented here, we propose that GigA and GigB are master regulators of a global stress response in A. baumannii , and coupling this pathway with the PTS Ntr allows A. baumannii to integrate cellular metabolic status with external environmental cues. IMPORTANCE Opportunistic pathogens, including Acinetobacter baumannii , encounter many harsh environments during the infection cycle, including antibiotic exposure and the hostile environment within a host. While the development of antibiotic resistance in A. baumannii has been well studied, how this organism senses and responds to environmental cues remain largely unknown. Herein, we

  19. Variety of immune responses to chronic stress in rats male

    Directory of Open Access Journals (Sweden)

    Іlona S Polovynko

    2016-12-01

    Full Text Available Background. Previously we have been carry out integrated quantitative estimation of neuroendocrine and immune responses to chronic restraint stress in male rats. Revealed that the value of canonical discriminant roots rats subjected to chronic stress different not only on the values of intact animals (by definition, but also among themselves. So we set a goal retrospectively divided stressed rats into three homogeneous groups. Material and methods. The experiment is at 50 white male rats. Of these 10 animals not subjected to any influences and 40 within 7 days subjected to moderate stress by daily 30-minute immobilization. The day after the completion of stressing in portion of the blood immunological parameters were determined by tests I and II levels of WHO. The spleen and thymus did smears for counting spleno- and thymocytograms. Results. The method of cluster analysis (k-means clustering formed three groups-clusters. For further analysis selected 18 parameters that members of each cluster differing minimum and maximum are different from members of other clusters (η2=0,73÷0,15; F=49,0÷3,26; p=10-6÷0,05. We stated that in 16 rats from cluster III the deviation 16 parameters in either side of the average norm almost identical and are in an acceptable range of ±0,5σ. Thus, the immune status of 40% of the rats subjected to moderate chronic stress was resistant to its factors. For the immune status of the 15 (37,5% rats cluster II typical moderate inhibition microphage, killer and T-cellular links in combination with a strong activation macrophage link. Poststressory changes in immunity in 9 rats (22,5% from cluster I differ from those in cluster II both qualitatively and quantitatively. In particular, the rats in this cluster were found no deviations from the norm or reaction blast transformation T-cells nor NK-lymphocytes levels. However, other parameters of T-link and microhage link suppressed more and settings macrophage link appeared

  20. Responses of a bacterial pathogen to phosphorus limitation of its aquatic invertebrate host

    OpenAIRE

    Frost, P. C.; Ebert, D.; Smith, V. H.

    2008-01-01

    Host nutrition is thought to affect the establishment, persistence, and severity of pathogenic infections. Nutrient-deficient foods possibly benefit pathogens by constraining host immune function or benefit hosts by limiting parasite growth and reproduction. However, the effects of poor elemental food quality on a host's susceptibility to infection and disease have received little study. Here we show that the bacterial microparasite Pasteuria ramosa is affected by the elemental nutrition of i...

  1. Transcriptome response mediated by cold stress in Lotus japonicus

    Directory of Open Access Journals (Sweden)

    Pablo Ignacio Calzadilla

    2016-03-01

    Full Text Available Members of the Lotus genus are important as agricultural forage sources under marginal environmental conditions given their high nutritional value and tolerance of various abiotic stresses. However, their dry matter production is drastically reduced in cooler seasons, while their response to such conditions is not well studied. This paper analyzes cold acclimation of the genus by studying Lotus japonicus over a stress period of 24 h. High-throughput RNA sequencing was used to identify and classify 1077 differentially expressed genes, of which 713 were up-regulated and 364 were down-regulated. Up-regulated genes were principally related to lipid, cell wall, phenylpropanoid, sugar, and proline regulation, while down-regulated genes affected the photosynthetic process and chloroplast development. Together, a total of 41 cold-inducible transcription factors were identified, including members of the AP2/ERF, NAC, MYB, and WRKY families; two of them were described as putative novel transcription factors. Finally, DREB1/CBFs were described with respect to their cold stress expression profiles. This is the first transcriptome profiling of the model legume L. japonicus under cold stress. Data obtained may be useful in identifying candidate genes for breeding modified species of forage legumes that more readily acclimate to low temperatures

  2. Endoplasmic Reticulum Stress, Unfolded Protein Response, and Cancer Cell Fate

    Directory of Open Access Journals (Sweden)

    Marco Corazzari

    2017-04-01

    Full Text Available Perturbation of endoplasmic reticulum (ER homeostasis results in a stress condition termed “ER stress” determining the activation of a finely regulated program defined as unfolded protein response (UPR and whose primary aim is to restore this organelle’s physiological activity. Several physiological and pathological stimuli deregulate normal ER activity causing UPR activation, such as hypoxia, glucose shortage, genome instability, and cytotoxic compounds administration. Some of these stimuli are frequently observed during uncontrolled proliferation of transformed cells, resulting in tumor core formation and stage progression. Therefore, it is not surprising that ER stress is usually induced during solid tumor development and stage progression, becoming an hallmark of such malignancies. Several UPR components are in fact deregulated in different tumor types, and accumulating data indicate their active involvement in tumor development/progression. However, although the UPR program is primarily a pro-survival process, sustained and/or prolonged stress may result in cell death induction. Therefore, understanding the mechanism(s regulating the cell survival/death decision under ER stress condition may be crucial in order to specifically target tumor cells and possibly circumvent or overcome tumor resistance to therapies. In this review, we discuss the role played by the UPR program in tumor initiation, progression and resistance to therapy, highlighting the recent advances that have improved our understanding of the molecular mechanisms that regulate the survival/death switch.

  3. Oxidative stress mediates the pathogenic effect of different Alzheimer's disease risk factors

    Directory of Open Access Journals (Sweden)

    Michela Guglielmotto

    2010-02-01

    Full Text Available Alzheimer’s disease (AD is a progressive neurodegenerative disorder affecting the elderly population. Mechanistically, the major cause of the disease bases on the altered processing of the amyloid-β (Aβ precursor protein (APP, resulting in the accumulation and aggregation of neurotoxic forms of Aβ. Aβ derives from the sequential proteolytic cleavage of the β- and γ-secretases on APP. The causes of Aβ accumulation in the common sporadic form of Alzheimer’s disease are not completely known, but they are likely to include oxidative stress (OS. OS and Aβ are linked to each other since Aβ aggregation induces OS in vivo and in vitro, and oxidant agents increase the production of Aβ. Moreover, OS produces several effects that may contribute to synaptic function and cell death in AD. We and others have shown that the expression and activity of β-secretase (named BACE1; β-site APP cleaving enzyme is increased by oxidant agents and by lipid peroxidation product 4-hydroxynonenal and that there is a significant correlation between BACE1 activity and oxidative markers in sporadic AD. OS results from several cellular insults such as aging, hyperglycaemia, hypoxic insults that are all well known risk factors for AD development. Thus, our data strengthen the hypothesis that OS is a basic common pathway of Aβ accumulation, common to different AD risk factors.

  4. Reconstructing a Network of Stress-Response Regulators via Dynamic System Modeling of Gene Regulation

    Directory of Open Access Journals (Sweden)

    Wei-Sheng Wu

    2008-01-01

    Full Text Available Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene’s expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specifi c stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably suffi cient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  5. Pairing of heterochromatin in response to cellular stress

    International Nuclear Information System (INIS)

    Abdel-Halim, H.I.; Mullenders, L.H.F.; Boei, J.J.W.A.

    2006-01-01

    We previously reported that exposure of human cells to DNA-damaging agents (X-rays and mitomycin C (MMC)) induces pairing of the homologous paracentromeric heterochromatin of chromosome 9 (9q12-13). Here, we show that UV irradiation and also heat shock treatment of human cells lead to similar effects. Since the various agents induce very different types and frequencies of damage to cellular constituents, the data suggest a general stress response as the underlying mechanism. Moreover, local UV irradiation experiments revealed that pairing of heterochromatin is an event that can be triggered without induction of DNA damage in the heterochromatic sequences. The repair deficient xeroderma pigmentosum cells (group F) previously shown to fail pairing after MMC displayed elevated pairing after heat shock treatment but not after UV exposure. Taken together, the present results indicate that pairing of heterochromatin following exposure to DNA-damaging agents is initiated by a general stress response and that the sensing of stress or the maintenance of the paired status of the heterochromatin might be dependent on DNA repair

  6. Mcm2 phosphorylation and the response to replicative stress

    Directory of Open Access Journals (Sweden)

    Stead Brent E

    2012-05-01

    Full Text Available Abstract Background The replicative helicase in eukaryotic cells is comprised of minichromosome maintenance (Mcm proteins 2 through 7 (Mcm2-7 and is a key target for regulation of cell proliferation. In addition, it is regulated in response to replicative stress. One of the protein kinases that targets Mcm2-7 is the Dbf4-dependent kinase Cdc7 (DDK. In a previous study, we showed that alanine mutations of the DDK phosphorylation sites at S164 and S170 in Saccharomyces cerevisiae Mcm2 result in sensitivity to caffeine and methyl methanesulfonate (MMS leading us to suggest that DDK phosphorylation of Mcm2 is required in response to replicative stress. Results We show here that a strain with the mcm2 allele lacking DDK phosphorylation sites (mcm2AA is also sensitive to the ribonucleotide reductase inhibitor, hydroxyurea (HU and to the base analogue 5-fluorouracil (5-FU but not the radiomimetic drug, phleomycin. We screened the budding yeast non-essential deletion collection for synthetic lethal interactions with mcm2AA and isolated deletions that include genes involved in the control of genome integrity and oxidative stress. In addition, the spontaneous mutation rate, as measured by mutations in CAN1, was increased in the mcm2AA strain compared to wild type, whereas with a phosphomimetic allele (mcm2EE the mutation rate was decreased. These results led to the idea that the mcm2AA strain is unable to respond properly to DNA damage. We examined this by screening the deletion collection for suppressors of the caffeine sensitivity of mcm2AA. Deletions that decrease spontaneous DNA damage, increase homologous recombination or slow replication forks were isolated. Many of the suppressors of caffeine sensitivity suppressed other phenotypes of mcm2AA including sensitivity to genotoxic drugs, the increased frequency of cells with RPA foci and the increased mutation rate. Conclusions Together these observations point to a role for DDK-mediated phosphorylation

  7. Plant natriuretic peptides are apoplastic and paracrine stress response molecules

    KAUST Repository

    Wang, Yuhua

    2011-04-07

    Higher plants contain biologically active proteins that are recognized by antibodies against human atrial natriuretic peptide (ANP). We identified and isolated two Arabidopsis thaliana immunoreactive plant natriuretic peptide (PNP)-encoding genes, AtPNP-A and AtPNP-B, which are distantly related members of the expansin superfamily and have a role in the regulation of homeostasis in abiotic and biotic stresses, and have shown that AtPNP-A modulates the effects of ABA on stomata. Arabidopsis PNP (PNP-A) is mainly expressed in leaf mesophyll cells, and in protoplast assays we demonstrate that it is secreted using AtPNP-A:green fluorescent protein (GFP) reporter constructs and flow cytometry. Transient reporter assays provide evidence that AtPNP-A expression is enhanced by heat, osmotica and salt, and that AtPNP-A itself can enhance its own expression, thereby generating a response signature diagnostic for paracrine action and potentially also autocrine effects. Expression of native AtPNP-A is enhanced by osmotica and transiently by salt. Although AtPNP-A expression is induced by salt and osmotica, ABA does not significantly modulate AtPNP-A levels nor does recombinant AtPNP-A affect reporter expression of the ABA-responsive RD29A gene. Together, these results provide experimental evidence that AtPNP-A is stress responsive, secreted into the apoplastic space and can enhance its own expression. Furthermore, our findings support the idea that AtPNP-A, together with ABA, is an important component in complex plant stress responses and that, much like in animals, peptide signaling molecules can create diverse and modular signals essential for growth, development and defense under rapidly changing environmental conditions. © 2011 The Author.

  8. Plant natriuretic peptides induce proteins diagnostic for an adaptive response to stress

    KAUST Repository

    Turek, Ilona; Marondedze, Claudius; Wheeler, Janet I.; Gehring, Christoph A; Irving, Helen R.

    2014-01-01

    In plants, structural and physiological evidence has suggested the presence of biologically active natriuretic peptides (PNPs). PNPs are secreted into the apoplast, are systemically mobile and elicit a range of responses signaling via cGMP. The PNP-dependent responses include tissue specific modifications of cation transport and changes in stomatal conductance and the photosynthetic rate. PNP also has a critical role in host defense responses. Surprisingly, PNP-homologs are produced by several plant pathogens during host colonization suppressing host defense responses. Here we show that a synthetic peptide representing the biologically active fragment of the Arabidopsis thaliana PNP (AtPNP-A) induces the production of reactive oxygen species in suspension-cultured A. thaliana (Col-0) cells. To identify proteins whose expression changes in an AtPNP-A dependent manner, we undertook a quantitative proteomic approach, employing tandem mass tag (TMT) labeling, to reveal temporal responses of suspension-cultured cells to 1 nM and 10 pM PNP at two different time-points post-treatment. Both concentrations yield a distinct differential proteome signature. Since only the higher (1 nM) concentration induces a ROS response, we conclude that the proteome response at the lower concentration reflects a ROS independent response. Furthermore, treatment with 1 nM PNP results in an over-representation of the gene ontology (GO) terms “oxidation-reduction process,” “translation” and “response to salt stress” and this is consistent with a role of AtPNP-A in the adaptation to environmental stress conditions.

  9. Plant natriuretic peptides induce proteins diagnostic for an adaptive response to stress

    KAUST Repository

    Turek, Ilona

    2014-11-26

    In plants, structural and physiological evidence has suggested the presence of biologically active natriuretic peptides (PNPs). PNPs are secreted into the apoplast, are systemically mobile and elicit a range of responses signaling via cGMP. The PNP-dependent responses include tissue specific modifications of cation transport and changes in stomatal conductance and the photosynthetic rate. PNP also has a critical role in host defense responses. Surprisingly, PNP-homologs are produced by several plant pathogens during host colonization suppressing host defense responses. Here we show that a synthetic peptide representing the biologically active fragment of the Arabidopsis thaliana PNP (AtPNP-A) induces the production of reactive oxygen species in suspension-cultured A. thaliana (Col-0) cells. To identify proteins whose expression changes in an AtPNP-A dependent manner, we undertook a quantitative proteomic approach, employing tandem mass tag (TMT) labeling, to reveal temporal responses of suspension-cultured cells to 1 nM and 10 pM PNP at two different time-points post-treatment. Both concentrations yield a distinct differential proteome signature. Since only the higher (1 nM) concentration induces a ROS response, we conclude that the proteome response at the lower concentration reflects a ROS independent response. Furthermore, treatment with 1 nM PNP results in an over-representation of the gene ontology (GO) terms “oxidation-reduction process,” “translation” and “response to salt stress” and this is consistent with a role of AtPNP-A in the adaptation to environmental stress conditions.

  10. Transcriptomic analysis of the stress response to weaning at housing in bovine leukocytes using RNA-seq technology

    Directory of Open Access Journals (Sweden)

    O’Loughlin Aran

    2012-06-01

    Full Text Available Abstract Background Weaning of beef calves is a necessary husbandry practice and involves separating the calf from its mother, resulting in numerous stressful events including dietary change, social reorganisation and the cessation of the maternal-offspring bond and is often accompanied by housing. While much recent research has focused on the physiological response of the bovine immune system to stress in recent years, little is known about the molecular mechanisms modulating the immune response. Therefore, the objective of this study was to provide new insights into the molecular mechanisms underlying the physiological response to weaning at housing in beef calves using Illumina RNA-seq. Results The leukocyte transcriptome was significantly altered for at least 7 days following either housing or weaning at housing. Analysis of differentially expressed genes revealed that four main pathways, cytokine signalling, transmembrane transport, haemostasis and G-protein-coupled receptor (GPRC signalling were differentially regulated between control and weaned calves and underwent significant transcriptomic alterations in response to weaning stress on day 1, 2 and 7. Of particular note, chemokines, cytokines and integrins were consistently found to be up-regulated on each day following weaning. Evidence for alternative splicing of genes was also detected, indicating a number of genes involved in the innate and adaptive immune response may be alternatively transcribed, including those responsible for toll receptor cascades and T cell receptor signalling. Conclusions This study represents the first application of RNA-Seq technology for genomic studies in bovine leukocytes in response to weaning stress. Weaning stress induces the activation of a number of cytokine, chemokine and integrin transcripts and may alter the immune system whereby the ability of a number of cells of the innate and adaptive immune system to locate and destroy pathogens is

  11. Iron is a signal for Stenotrophomonas maltophilia biofilm formation, oxidative stress response, OMPs expression and virulence

    Directory of Open Access Journals (Sweden)

    Carlos Adrian Garcia

    2015-09-01

    Full Text Available Stenotrophomonas maltophilia is an emerging nosocomial pathogen. In many bacteria iron availability regulates, trough the Fur system, not only iron homeostasis but also virulence. The aim of this work was to assess the role of iron on S. maltophilia biofilm formation, EPS production, oxidative stress response, OMPs regulation, quorum sensing (QS, and virulence. Studies were done on K279 and its isogenic fur mutant F60 cultured in the presence or absence of dipyridyl. This is the first report of spontaneous fur mutants obtained in S. maltophilia. F60 produced higher amounts of biofilms than K279a and CLSM analysis demonstrated improved adherence and biofilm organization. Under iron restricted conditions, K279a produced biofilms with more biomass and enhanced thickness. In addition, F60 produced higher amounts of EPS than K279a but with a similar composition, as revealed by ATR-FTIR spectroscopy. With respect to the oxidative stress response, MnSOD was the only SOD isoenzyme detected in K279a. F60 presented higher SOD activity than the wt strain in planktonic and biofilm cultures, and iron deprivation increased K279a SOD activity. Under iron starvation, SDS-PAGE profile from K279a presented two iron-repressed proteins. Mass spectrometry analysis revealed homology with FepA and another putative TonB-dependent siderophore receptor of K279a. In silico analysis allowed the detection of potential Fur boxes in the respective coding genes. K279a encodes the QS diffusible signal factor (DSF. Under iron restriction K279a produced higher amounts of DSF than under iron rich condition. Finally, F60 was more virulent than K279a in the Galleria mellonella killing assay. These results put in evidence that iron levels regulate, likely through the Fur system, S. maltophilia biofilm formation, oxidative stress response, OMPs expression, DSF production and virulence.

  12. Does spending time outdoors reduce stress? A review of real-time stress response to outdoor environments

    Science.gov (United States)

    Michelle C. Kondo; Sara F. Jacoby; Eugenia C. South

    2018-01-01

    Everyday environmental conditions impact human health. One mechanism underlying this relationship is the experience of stress. Through systematic review of published literature, we explore how stress has been measured in real-time non-laboratory studies of stress responses to deliberate exposure to outdoor environments. The types of exposures evaluated in this review...

  13. Measuring general and specific stress causes and stress responses among beginning secondary school teachers in the Netherlands

    NARCIS (Netherlands)

    Harmsen, R; Helms-Lorenz, M.; Maulana, R; van Veen, K; van Veldhoven, M.J.P.M.

    2018-01-01

    The main aim of this study was to adjust the Questionnaire on the Experience and Evaluation of Work (QEEW) in order to measure stress causes and stress responses of beginning secondary school teachers in the Netherlands. First, the suitability of the original QEEW stress scales for use in the

  14. Adrenal cortical response to stress at Three Mile Island.

    Science.gov (United States)

    Schaeffer, M A; Baum, A

    1984-01-01

    The present study examined the relationship between biochemical, psychologic, and behavioral components of chronic stress associated with living near the damaged nuclear power plant at Three Mile Island (TMI). Relative to control subjects, TMI subjects had higher levels of urinary cortisol, which correlated significantly with urinary catecholamines, self-report of physical and mental symptoms, and decrements in task performance. Further, it was found that males had higher urinary cortisol levels than females at TMI, while at the control sites, levels of cortisol were comparable between males and females. Finally, no significant relationship between coping style and urinary cortisol was detected. Levels of stress response among TMI are residents, though significantly greater than control subjects, were within normal ranges and thus should be considered subclinical in intensity. Their persistence over 17 months, however, suggests some cause for concern.

  15. Microtubules self-repair in response to mechanical stress

    Science.gov (United States)

    Schaedel, Laura; John, Karin; Gaillard, Jérémie; Nachury, Maxence V.; Blanchoin, Laurent; Théry, Manuel

    2015-11-01

    Microtubules--which define the shape of axons, cilia and flagella, and provide tracks for intracellular transport--can be highly bent by intracellular forces, and microtubule structure and stiffness are thought to be affected by physical constraints. Yet how microtubules tolerate the vast forces exerted on them remains unknown. Here, by using a microfluidic device, we show that microtubule stiffness decreases incrementally with each cycle of bending and release. Similar to other cases of material fatigue, the concentration of mechanical stresses on pre-existing defects in the microtubule lattice is responsible for the generation of more extensive damage, which further decreases microtubule stiffness. Strikingly, damaged microtubules were able to incorporate new tubulin dimers into their lattice and recover their initial stiffness. Our findings demonstrate that microtubules are ductile materials with self-healing properties, that their dynamics does not exclusively occur at their ends, and that their lattice plasticity enables the microtubules' adaptation to mechanical stresses.

  16. Adrenal cortical response to stress at Three Mile Island

    International Nuclear Information System (INIS)

    Schaeffer, M.A.; Baum, A.

    1984-01-01

    The present study examined the relationship between biochemical, psychologic, and behavioral components of chronic stress associated with living near the damaged nuclear power plant at Three Mile Island (TMI). Relative to control subjects, TMI subjects had higher levels of urinary cortisol, which correlated significantly with urinary catecholamines, self-report of physical and mental symptoms, and decrements in task performance. Further, it was found that males had higher urinary cortisol levels than females at TMI, while at the control sites, levels of cortisol were comparable between males and females. Finally, no significant relationship between coping style and urinary cortisol was detected. Levels of stress response among TMI are residents, though significantly greater than control subjects, were within normal ranges and thus should be considered subclinical in intensity. Their persistence over 17 months, however, suggests some cause for concern

  17. The role of oxidative stress and inflammatory response in the pathogenesis of mastitis in dairy cows

    Directory of Open Access Journals (Sweden)

    Romana Turk

    2017-04-01

    Full Text Available Mastitis is one of the most frequent diseases of dairy cows throughout the world, therefore it causes the greatest economic losses in dairy cattle industry. These losses are reflected through: reduced milk production, increased costs of medication and the other animal health services, reduced fertility, early culling of animals and the value of discarded milk. Mastitis is also important from the aspects of public health, milk processing and animal welfare. In the pathogenesis of mastitis the key role plays the innate immune response which is the first line of defence against the pathogen invasion of the udder. The innate immune response generates an inflammatory reaction which is the elementary response of an organism to the tissue trauma induced by any physical, chemical or biological causative agent, but primarily it is the protective mechanism of a vital significance which includes increased phagocytic activity, secretion of antimicrobial substances, fibrosis as well as the alterations in tissue structure of affected organ or body cavity. The release of a number of inflammatory mediators as well as reactive oxygen species (ROS is an important part of inflammatory response. In dairy cows, the metabolic challenge that occurred during the transition from dry period to early lactation may additionally increase the release of ROS which may contribute to development of oxidative stress and inflammatory response. Oxidative stress is defined as a shift in the balance from cellular oxidation-reduction reactions towards oxidation, i.e. to the state of excessive release of oxidants when their removal by antioxidants is impaired and even insufficient. During peripartum period antioxidantive status of dairy cows is seriously impaired and consequently both the oxidative stress and inflammatory response may present the predisposing factors to their higher susceptibility to intramammary infections (IMI and mastitis. This association between oxidative stress

  18. The role of oxidative stress and inflammatory response in the pathogenesis of mastitis in dairy cows

    Directory of Open Access Journals (Sweden)

    Nino Maćešić

    2017-01-01

    Full Text Available Mastitis is one of the most frequent diseases of dairy cows throughout the world, therefore it causes the greatest economic losses in dairy cattle industry. These losses are reflected through: reduced milk production, increased costs of medication and the other animal health services, reduced fertility, early culling of animals and the value of discarded milk. Mastitis is also important from the aspects of public health, milk processing and animal welfare. In the pathogenesis of mastitis the key role plays the innate immune response which is the first line of defence against the pathogen invasion of the udder. The innate immune response generates an inflammatory reaction which is the elementary response of an organism to the tissue trauma induced by any physical, chemical or biological causative agent, but primarily it is the protective mechanism of a vital significance which includes increased phagocytic activity, secretion of antimicrobial substances, fibrosis as well as the alterations in tissue structure of affected organ or body cavity. The release of a number of inflammatory mediators as well as reactive oxygen species (ROS is an important part of inflammatory response. In dairy cows, the metabolic challenge that occurred during the transition from dry period to early lactation may additionally increase the release of ROS which may contribute to development of oxidative stress and inflammatory response. Oxidative stress is defined as a shift in the balance from cellular oxidation-reduction reactions towards oxidation, i.e. to the state of excessive release of oxidants when their removal by antioxidants is impaired and even insufficient. During peripartum period antioxidantive status of dairy cows is seriously impaired and consequently both the oxidative stress and inflammatory response may present the predisposing factors to their higher susceptibility to intramammary infections (IMI and mastitis. This association between oxidative stress

  19. Responsiveness of entomopathogenic fungi to menadione-induced oxidative stress.

    Science.gov (United States)

    Azevedo, Rosana F F; Souza, Roberta K F; Braga, Gilberto U L; Rangel, Drauzio E N

    2014-12-01

    Entomopathogenic fungi are predisposed to ROS induced by heat and UV-A radiation when outside the insect host. When inside the host, they are subject to phagocytic cells that generate ROS to eliminate invading pathogens. The oxidative stress tolerance of the entomopathogenic fungi Aschersonia aleyrodis (ARSEF 430 and 10276), Aschersonia placenta (ARSEF 7637), Beauveria bassiana (ARSEF 252), Isaria fumosorosea (ARSEF 3889), Lecanicillium aphanocladii (ARSEF 6433), Metarhizium acridum (ARSEF 324), Metarhizium anisopliae (ARSEF 5749), Metarhizium brunneum (ARSEF 1187 and ARSEF 5626), Metarhizium robertsii (ARSEF 2575), Tolypocladium cylindrosporum (ARSEF 3392), Tolypocladium inflatum (ARSEF 4877), and Simplicillium lanosoniveum (ARSEF 6430 and ARSEF 6651) was studied based on conidial germination on a medium supplemented with menadione. Conidial germination was evaluated 24 h after inoculation on potato dextrose agar (PDA) (control) or PDA supplemented with menadione. The two Aschersonia species (ARSEF 430, 7637, and 10276) were the most susceptible fungi, followed by the two Tolypocladium species (ARSEF 3392 and 4877) and the M. acridum (ARSEF 324). Metarhizium brunneum (ARSEF 5626) and M. anisopliae (ARSEF 5749) were the most tolerant isolates with MIC 0.28 mM. All fungal isolates, except ARSEF 5626 and ARSEF 5749, were not able to germinate at 0.20 mM. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  20. Genomic counter-stress changes induced by the relaxation response.

    Directory of Open Access Journals (Sweden)

    Jeffery A Dusek

    2008-07-01

    Full Text Available Mind-body practices that elicit the relaxation response (RR have been used worldwide for millennia to prevent and treat disease. The RR is characterized by decreased oxygen consumption, increased exhaled nitric oxide, and reduced psychological distress. It is believed to be the counterpart of the stress response that exhibits a distinct pattern of physiology and transcriptional profile. We hypothesized that RR elicitation results in characteristic gene expression changes that can be used to measure physiological responses elicited by the RR in an unbiased fashion.We assessed whole blood transcriptional profiles in 19 healthy, long-term practitioners of daily RR practice (group M, 19 healthy controls (group N(1, and 20 N(1 individuals who completed 8 weeks of RR training (group N(2. 2209 genes were differentially expressed in group M relative to group N(1 (p<0.05 and 1561 genes in group N(2 compared to group N(1 (p<0.05. Importantly, 433 (p<10(-10 of 2209 and 1561 differentially expressed genes were shared among long-term (M and short-term practitioners (N(2. Gene ontology and gene set enrichment analyses revealed significant alterations in cellular metabolism, oxidative phosphorylation, generation of reactive oxygen species and response to oxidative stress in long-term and short-term practitioners of daily RR practice that may counteract cellular damage related to chronic psychological stress. A significant number of genes and pathways were confirmed in an independent validation set containing 5 N(1 controls, 5 N(2 short-term and 6 M long-term practitioners.This study provides the first compelling evidence that the RR elicits specific gene expression changes in short-term and long-term practitioners. Our results suggest consistent and constitutive changes in gene expression resulting from RR may relate to long term physiological effects. Our study may stimulate new investigations into applying transcriptional profiling for accurately measuring

  1. The significance of translation regulation in the stress response

    Science.gov (United States)

    2013-01-01

    Background The stress response in bacteria involves the multistage control of gene expression but is not entirely understood. To identify the translational response of bacteria in stress conditions and assess its contribution to the regulation of gene expression, the translational states of all mRNAs were compared under optimal growth condition and during nutrient (isoleucine) starvation. Results A genome-scale study of the translational response to nutritional limitation was performed in the model bacterium Lactococcus lactis. Two measures were used to assess the translational status of each individual mRNA: the fraction engaged in translation (ribosome occupancy) and ribosome density (number of ribosomes per 100 nucleotides). Under isoleucine starvation, half of the mRNAs considered were translationally down-regulated mainly due to decreased ribosome density. This pattern concerned genes involved in growth-related functions such as translation, transcription, and the metabolism of fatty acids, phospholipids and bases, contributing to the slowdown of growth. Only 4% of the mRNAs were translationally up-regulated, mostly related to prophagic expression in response to stress. The remaining genes exhibited antagonistic regulations of the two markers of translation. Ribosome occupancy increased significantly for all the genes involved in the biosynthesis of isoleucine, although their ribosome density had decreased. The results revealed complex translational regulation of this pathway, essential to cope with isoleucine starvation. To elucidate the regulation of global gene expression more generally, translational regulation was compared to transcriptional regulation under isoleucine starvation and to other post-transcriptional regulations related to mRNA degradation and mRNA dilution by growth. Translational regulation appeared to accentuate the effects of transcriptional changes for down-regulated growth-related functions under isoleucine starvation although m

  2. Glucosinolate-derived isothiocyanates impact mitochondrial function in fungal cells and elicit an oxidative stress response necessary for growth recovery

    Directory of Open Access Journals (Sweden)

    Benoit eCalmes

    2015-06-01

    Full Text Available Glucosinolates are brassicaceous secondary metabolites that have long been considered as chemical shields against pathogen invasion. Isothiocyanates, are glucosinolate-breakdown products that have negative effects on the growth of various fungal species. We explored the mechanism by which isothiocyanates could cause fungal cell death using Alternaria brassicicola, a specialist Brassica pathogens, as model organism. Exposure of the fungus to isothiocyanates led to a decreased oxygen consumption rate, intracellular accumulation of reactive oxygen species and mitochondrial-membrane depolarization. We also found that two major regulators of the response to oxidative stress, i.e. the MAP kinase AbHog1 and the transcription factor AbAP1, were activated in the presence of isothiocyanates. Once activated by isothiocyanate-derived reactive oxygen species, AbAP1 was found to promote the expression of different oxidative-response genes. This response might play a significant role in the protection of the fungus against isothiocyanates as mutants deficient in AbHog1 or AbAP1 were found to be hypersensitive to these metabolites. Moreover, the loss of these genes was accompanied by a significant decrease in aggressiveness on Brassica. We suggest that the robust protection response against isothiocyanate-derived oxidative stress might be a key adaptation mechanism for successful infection of host plants by Brassicaceae-specialist necrotrophs like A. brassicicola.

  3. Mitochondria, Energetics, Epigenetics, and Cellular Responses to Stress

    Science.gov (United States)

    McAllister, Kimberly; Worth, Leroy; Haugen, Astrid C.; Meyer, Joel N.; Domann, Frederick E.; Van Houten, Bennett; Mostoslavsky, Raul; Bultman, Scott J.; Baccarelli, Andrea A.; Begley, Thomas J.; Sobol, Robert W.; Hirschey, Matthew D.; Ideker, Trey; Santos, Janine H.; Copeland, William C.; Tice, Raymond R.; Balshaw, David M.; Tyson, Frederick L.

    2014-01-01

    Background: Cells respond to environmental stressors through several key pathways, including response to reactive oxygen species (ROS), nutrient and ATP sensing, DNA damage response (DDR), and epigenetic alterations. Mitochondria play a central role in these pathways not only through energetics and ATP production but also through metabolites generated in the tricarboxylic acid cycle, as well as mitochondria–nuclear signaling related to mitochondria morphology, biogenesis, fission/fusion, mitophagy, apoptosis, and epigenetic regulation. Objectives: We investigated the concept of bidirectional interactions between mitochondria and cellular pathways in response to environmental stress with a focus on epigenetic regulation, and we examined DNA repair and DDR pathways as examples of biological processes that respond to exogenous insults through changes in homeostasis and altered mitochondrial function. Methods: The National Institute of Environmental Health Sciences sponsored the Workshop on Mitochondria, Energetics, Epigenetics, Environment, and DNA Damage Response on 25–26 March 2013. Here, we summarize key points and ideas emerging from this meeting. Discussion: A more comprehensive understanding of signaling mechanisms (cross-talk) between the mitochondria and nucleus is central to elucidating the integration of mitochondrial functions with other cellular response pathways in modulating the effects of environmental agents. Recent studies have highlighted the importance of mitochondrial functions in epigenetic regulation and DDR with environmental stress. Development and application of novel technologies, enhanced experimental models, and a systems-type research approach will help to discern how environmentally induced mitochondrial dysfunction affects key mechanistic pathways. Conclusions: Understanding mitochondria–cell signaling will provide insight into individual responses to environmental hazards, improving prediction of hazard and susceptibility to

  4. Dehydrin-like proteins in the necrotrophic fungus Alternaria brassicicola have a role in plant pathogenesis and stress response.

    Directory of Open Access Journals (Sweden)

    Stéphanie Pochon

    Full Text Available In this study, the roles of fungal dehydrin-like proteins in pathogenicity and protection against environmental stresses were investigated in the necrotrophic seed-borne fungus Alternaria brassicicola. Three proteins (called AbDhn1, AbDhn2 and AbDhn3, harbouring the asparagine-proline-arginine (DPR signature pattern and sharing the characteristic features of fungal dehydrin-like proteins, were identified in the A. brassicicola genome. The expression of these genes was induced in response to various stresses and found to be regulated by the AbHog1 mitogen-activated protein kinase (MAPK pathway. A knock-out approach showed that dehydrin-like proteins have an impact mainly on oxidative stress tolerance and on conidial survival upon exposure to high and freezing temperatures. The subcellular localization revealed that AbDhn1 and AbDhn2 were associated with peroxisomes, which is consistent with a possible perturbation of protective mechanisms to counteract oxidative stress and maintain the redox balance in AbDhn mutants. Finally, we show that the double deletion mutant ΔΔabdhn1-abdhn2 was highly compromised in its pathogenicity. By comparison to the wild-type, this mutant exhibited lower aggressiveness on B. oleracea leaves and a reduced capacity to be transmitted to Arabidopsis seeds via siliques. The double mutant was also affected with respect to conidiation, another crucial step in the epidemiology of the disease.

  5. Exercise-induced stress responses of amenorrheic and eumenorrheic runners.

    Science.gov (United States)

    Loucks, A B; Horvath, S M

    1984-12-01

    The role of stress in exercise-associated amenorrhea was investigated. Sex hormones [FSH, LH, androstenedione (A), testosterone, estrone, and 17 beta-estradiol (E2)], stress hormones [dehydroepiandrosterone, cortisol (F), PRL, norepinephrine, and epinephrine] and psychological status (Profile of Mood States and State-Trait Anxiety Inventory) were measured at rest and in response to a 40-min 80% of maximal aerobic power (VO2max) run in highly trained eumenorrheic (n = 8) and amenorrheic (n = 7) women runners matched for fatness [eumenorrheic, 16.5 +/- 2.3% (+/- SD); amenorrheic, 14.9 +/- 4.8] and maximal aerobic power (eumenorrheic, 58.9 +/- 5.7 ml/kg X min; amenorrheic, 59.8 +/- 4.6). Eumenorrheic runners were tested between days 3 and 8 of the follicular phase. At rest, decreased plasma FSH, LH, and E2 concentrations were found in amenorrheic women [eumenorrheic FSH, 10.5 +/- 4.1 mIU/ml; amenorrheic FSH, 4.9 +/- 1.6 (P less than 0.01); eumenorrheic LH, 14.1 +/- 6.1 mIU/ml; amenorrheic LH, 5.1 +/- 1.7 (P less than 0.01); eumenorrheic E2, 20 +/- 9 pg/ml; amenorrheic E2, 7 +/- 6 (P less than 0.05)]. Other sex and stress hormones and psychological measurements were similar in the two groups and were within the normal range. Ventilatory, cardiovascular, thermoregulatory, and psychological responses to the submaximal run were identical. Among eumenorrheic women, all stress hormones and A increased after exercise, but PRL, F, and A were unchanged among amenorrheic women. Estrone, E2, and testosterone did not change in either group. These observations are inconsistent with a general stress hypothesis of exercise-associated amenorrhea as well as with more specific hyperprolactinemic and hyperandrogenic hypotheses. In amenorrheic women, failure of PRL to increase in response to exercise may be due to their lack of E2, while failure of F and A to increase may indicate reduced adrenal 3 beta-hydroxysteroid dehydrogenase/isomerase activity.

  6. Neonatal stress tempers vulnerability of acute stress response in adult socially isolated rats

    Directory of Open Access Journals (Sweden)

    Mariangela Serra

    2014-06-01

    Full Text Available Adverse experiences occurred in early life and especially during childhood and adolescence can have negative impact on behavior later in life and the quality of maternal care is considered a critical moment that can considerably influence the development and the stress responsiveness in offspring. This review will assess how the association between neonatal and adolescence stressful experiences such as maternal separation and social isolation, at weaning, may influence the stress responsiveness and brain plasticity in adult rats. Three hours of separation from the pups (3-14 postnatal days significantly increased frequencies of maternal arched-back nursing and licking-grooming by dams across the first 14 days postpartum and induced a long-lasting increase in their blood levels of corticosterone. Maternal separation, which per sedid not modified brain and plasma allopregnanolone and corticosterone levels in adult rats, significantly reduced social isolation-induced decrease of the levels of these hormones. Moreover, the enhancement of corticosterone and allopregnanolone levels induced by foot shock stress in socially isolated animals that were exposed to maternal separation was markedly reduced respect to that observed in socially isolated animals. Our results suggest that in rats a daily brief separation from the mother during the first weeks of life, which per se did not substantially alter adult function and reactivity of hypothalamic-pituitary-adrenal (HPA axis, elicited a significant protection versus the subsequent long-term stressful experience such that induced by social isolation from weaning. Proceedings of the 10th International Workshop on Neonatology · Cagliari (Italy · October 22nd-25th, 2014 · The last ten years, the next ten years in NeonatologyGuest Editors: Vassilios Fanos, Michele Mussap, Gavino Faa, Apostolos Papageorgiou

  7. Oxidative and nitrosative stress in trichloroethene-mediated autoimmune response

    International Nuclear Information System (INIS)

    Wang Gangduo; Cai Ping; Ansari, G.A.S.; Khan, M. Firoze

    2007-01-01

    Reactive oxygen and nitrogen species (RONS) are implicated in the pathogenesis of several autoimmune diseases. Also, increased lipid peroxidation and protein nitration are reported in systemic autoimmune diseases. Lipid peroxidation-derived aldehydes (LPDAs) such as malondialdehyde (MDA) and 4-hydroxynonenal (HNE) are highly reactive and bind proteins covalently, but their potential to elicit an autoimmune response and contribution to disease pathogenesis remain unclear. Similarly, nitration of protein could also contribute to disease pathogenesis. To assess the status of lipid peroxidation and/or RONS, autoimmune-prone female MRL+/+ mice (5-week old) were treated with trichloroethene (TCE), an environmental contaminant known to induce autoimmune response, for 48 weeks (0.5 mg/ml via drinking water), and formation of antibodies to LPDA-protein adducts was followed in the sera of control and TCE-treated mice. TCE treatment led to greater formation of both anti-MDA- and -HNE-protein adduct antibodies and higher serum iNOS and nitrotyrosine levels. The increase in TCE-induced oxidative stress was associated with increases in anti-nuclear-, anti-ssDNA- and anti-dsDNA-antibodies. These findings suggest that TCE exposure not only leads to oxidative/nitrosative stress, but is also associated with induction/exacerbation of autoimmune response in MRL+/+ mice. Further interventional studies are needed to establish a causal role of RONS in TCE-mediated autoimmunity

  8. Exploring the Response of Plants Grown under Uranium Stress

    Energy Technology Data Exchange (ETDEWEB)

    Doustaly, Fany; Berthet, Serge; Bourguignon, Jacques [CEA, iRTSV, Laboratoire de Physiologie Cellulaire Vegetale, UMR 5168 CEA-CNRS-INRA-Univ. Grenoble Alpes (France); Combes, Florence; Vandenbrouck, Yves [CEA, iRTSV, Laboratoire de Biologie a Grande Echelle, EDyP, CEA-Grenoble (France); Carriere, Marie [CEA, INAC, LAN, UMR E3 CEA-Universite Joseph Fourier, Grenoble (France); Vavasseur, Alain [CEA, IBEB, LBDP, Saint Paul lez Durance, CEA Cadarache (France)

    2014-07-01

    Uranium is a natural element which is mainly redistributed in the environment due to human activity, including accidents and spillages. Plants may be useful in cleaning up after incidents, although little is yet known about the relationship between uranium speciation and plant response. We analyzed the impact of different uranium (U) treatments on three plant species namely sunflower, oilseed rape and wheat. Using inductively coupled plasma mass spectrometry elemental analysis, together with a panel of imaging techniques including scanning electron microscopy coupled with energy dispersive spectroscopy, transmission electron microscopy and particle-induced X-ray emission spectroscopy, we have recently shown how chemical speciation greatly influences the accumulation and distribution of U in plants. Uranyl (UO{sub 2}{sup 2+} free ion) is the predominant mobile form in soil surface at low pH in absence of ligands. With the aim to characterize the early plant response to U exposure, complete Arabidopsis transcriptome microarray experiments were conducted on plants exposed to 50 μM uranyl nitrate for 2, 6 and 30 h and highlighted a set of 111 genes with modified expression at these three time points. Quantitative real-time RT-PCR experiments confirmed and completed CATMA micro-arrays results allowing the characterization of biological processes perturbed by U. Functional categorization of deregulated genes emphasizes oxidative stress, cell wall biosynthesis and hormone biosynthesis and signaling. We showed that U stress is perceived by plant cells like a phosphate starvation stress since several phosphate deprivation marker genes were deregulated by U and also highlighted perturbation of iron homeostasis by U. Hypotheses are presented to explain how U perturbs the iron uptake and signaling response. These results give preliminary insights into the pathways affected by uranyl uptake, which will be of interest for engineering plants to help clean areas contaminated with

  9. Proceedings of DAE-BRNS life sciences symposium 2011 on advances in molecular and cell biology of stress response

    International Nuclear Information System (INIS)

    2011-01-01

    This series of symposia in life sciences was initiated for the purpose of facilitating strong interactions among the national research fraternity working in the areas of bio-medical and agricultural sciences of relevance and interest for the Department of Atomic Energy, Government of India. Dedicated research efforts in the Bhabha Atomic Research Centre and other DAE institutions for nearly four decades have not only resulted in the development of technologies and products to improve the quality of human life, but have made impactful contributions in several contemporary areas in basic biological sciences. It is natural that keep visiting certain themes more than once. Biology of stress response is one such theme. The first symposium in the series was devoted to this field. And six years is long enough a time for catching up with the new developments. Stress to a system at equilibrium induces homeostatic mechanisms that ameliorate the stress. Entire living world, from microbes to man, have evolved such response mechanisms. Often a given battery of responsive genes may take care of more than one stresses and there may also be some redundancy in signalling or effector pathways to a response. Oxidative stress in one of the most common stresses that most living systems have to endure. Such a stress could be induced by a wide variety of insults including ionizing radiation, visible light, antibiotics, xenobiotics, metal ions, environmental pollutants, carcinogens, infectious agents etc. It may contribute to some inflammatory and autoimmune diseases. It also plays an important role in killing of intracellular pathogens. In recent years mechanistic details of body's antioxidant defences are being increasingly revealed. Even more interesting are the new findings that suggest that prooxidants may induce an adaptive response to help cells survive against death induced by higher levels of reactive oxygen species (ROS). The role of prosurvival transcription factors like NRF-2

  10. Theobroma cacao L. pathogenesis-related gene tandem array members show diverse expression dynamics in response to pathogen colonization.

    Science.gov (United States)

    Fister, Andrew S; Mejia, Luis C; Zhang, Yufan; Herre, Edward Allen; Maximova, Siela N; Guiltinan, Mark J

    2016-05-17

    The pathogenesis-related (PR) group of proteins are operationally defined as polypeptides that increase in concentration in plant tissues upon contact with a pathogen. To date, 17 classes of highly divergent proteins have been described that act through multiple mechanisms of pathogen resistance. Characterizing these families in cacao, an economically important tree crop, and comparing the families to those in other species, is an important step in understanding cacao's immune response. Using publically available resources, all members of the 17 recognized pathogenesis-related gene families in the genome of Theobroma cacao were identified and annotated resulting in a set of ~350 members in both published cacao genomes. Approximately 50 % of these genes are organized in tandem arrays scattered throughout the genome. This feature was observed in five additional plant taxa (three dicots and two monocots), suggesting that tandem duplication has played an important role in the evolution of the PR genes in higher plants. Expression profiling captured the dynamics and complexity of PR genes expression at basal levels and after induction by two cacao pathogens (the oomycete, Phytophthora palmivora, and the fungus, Colletotrichum theobromicola), identifying specific genes within families that are more responsive to pathogen challenge. Subsequent qRT-PCR validated the induction of several PR-1, PR-3, PR-4, and PR-10 family members, with greater than 1000 fold induction detected for specific genes. We describe candidate genes that are likely to be involved in cacao's defense against Phytophthora and Colletotrichum infection and could be potentially useful for marker-assisted selection for breeding of disease resistant cacao varieties. The data presented here, along with existing cacao-omics resources, will enable targeted functional genetic screening of defense genes likely to play critical functions in cacao's defense against its pathogens.

  11. Identification and expression of the WRKY transcription factors of Carica papaya in response to abiotic and biotic stresses.

    Science.gov (United States)

    Pan, Lin-Jie; Jiang, Ling

    2014-03-01

    The WRKY transcription factor (TF) plays a very important role in the response of plants to various abiotic and biotic stresses. A local papaya database was built according to the GenBank expressed sequence tag database using the BioEdit software. Fifty-two coding sequences of Carica papaya WRKY TFs were predicted using the tBLASTn tool. The phylogenetic tree of the WRKY proteins was classified. The expression profiles of 13 selected C. papaya WRKY TF genes under stress induction were constructed by quantitative real-time polymerase chain reaction. The expression levels of these WRKY genes in response to 3 abiotic and 2 biotic stresses were evaluated. TF807.3 and TF72.14 are upregulated by low temperature; TF807.3, TF43.76, TF12.199 and TF12.62 are involved in the response to drought stress; TF9.35, TF18.51, TF72.14 and TF12.199 is involved in response to wound; TF12.199, TF807.3, TF21.156 and TF18.51 was induced by PRSV pathogen; TF72.14 and TF43.76 are upregulated by SA. The regulated expression levels of above eight genes normalized against housekeeping gene actin were significant at probability of 0.01 levels. These WRKY TFs could be related to corresponding stress resistance and selected as the candidate genes, especially, the two genes TF807.3 and TF12.199, which were regulated notably by four stresses respectively. This study may provide useful information and candidate genes for the development of transgenic stress tolerant papaya varieties.

  12. Regulation of abiotic and biotic stress responses by plant hormones

    DEFF Research Database (Denmark)

    Grosskinsky, Dominik Kilian; van der Graaff, Eric; Roitsch, Thomas Georg

    2016-01-01

    Plant hormones (phytohormones) are signal molecules produced within the plant, and occur in very low concentrations. In the present chapter, the current knowledge on the regulation of biotic and biotic stress responses by plant hormones is summarized with special focus on the novel insights...... into the complex hormonal crosstalk of classical growth stimulating plant hormones within the naturally occurring biotic and abiotic multistress environment of higher plants. The MAPK- and phytohormone-cascades which comprise a multitude of single molecules on different signalling levels, as well as interactions...

  13. Agent-based dynamic knowledge representation of Pseudomonas aeruginosa virulence activation in the stressed gut: Towards characterizing host-pathogen interactions in gut-derived sepsis.

    Science.gov (United States)

    Seal, John B; Alverdy, John C; Zaborina, Olga; An, Gary

    2011-09-19

    There is a growing realization that alterations in host-pathogen interactions (HPI) can generate disease phenotypes without pathogen invasion. The gut represents a prime region where such HPI can arise and manifest. Under normal conditions intestinal microbial communities maintain a stable, mutually beneficial ecosystem. However, host stress can lead to changes in environmental conditions that shift the nature of the host-microbe dialogue, resulting in escalation of virulence expression, immune activation and ultimately systemic disease. Effective modulation of these dynamics requires the ability to characterize the complexity of the HPI, and dynamic computational modeling can aid in this task. Agent-based modeling is a computational method that is suited to representing spatially diverse, dynamical systems. We propose that dynamic knowledge representation of gut HPI with agent-based modeling will aid in the investigation of the pathogenesis of gut-derived sepsis. An agent-based model (ABM) of virulence regulation in Pseudomonas aeruginosa was developed by translating bacterial and host cell sense-and-response mechanisms into behavioral rules for computational agents and integrated into a virtual environment representing the host-microbe interface in the gut. The resulting gut milieu ABM (GMABM) was used to: 1) investigate a potential clinically relevant laboratory experimental condition not yet developed--i.e. non-lethal transient segmental intestinal ischemia, 2) examine the sufficiency of existing hypotheses to explain experimental data--i.e. lethality in a model of major surgical insult and stress, and 3) produce behavior to potentially guide future experimental design--i.e. suggested sample points for a potential laboratory model of non-lethal transient intestinal ischemia. Furthermore, hypotheses were generated to explain certain discrepancies between the behaviors of the GMABM and biological experiments, and new investigatory avenues proposed to test those

  14. Agent-based dynamic knowledge representation of Pseudomonas aeruginosa virulence activation in the stressed gut: Towards characterizing host-pathogen interactions in gut-derived sepsis

    Directory of Open Access Journals (Sweden)

    Zaborina Olga

    2011-09-01

    Full Text Available Abstract Background There is a growing realization that alterations in host-pathogen interactions (HPI can generate disease phenotypes without pathogen invasion. The gut represents a prime region where such HPI can arise and manifest. Under normal conditions intestinal microbial communities maintain a stable, mutually beneficial ecosystem. However, host stress can lead to changes in environmental conditions that shift the nature of the host-microbe dialogue, resulting in escalation of virulence expression, immune activation and ultimately systemic disease. Effective modulation of these dynamics requires the ability to characterize the complexity of the HPI, and dynamic computational modeling can aid in this task. Agent-based modeling is a computational method that is suited to representing spatially diverse, dynamical systems. We propose that dynamic knowledge representation of gut HPI with agent-based modeling will aid in the investigation of the pathogenesis of gut-derived sepsis. Methodology/Principal Findings An agent-based model (ABM of virulence regulation in Pseudomonas aeruginosa was developed by translating bacterial and host cell sense-and-response mechanisms into behavioral rules for computational agents and integrated into a virtual environment representing the host-microbe interface in the gut. The resulting gut milieu ABM (GMABM was used to: 1 investigate a potential clinically relevant laboratory experimental condition not yet developed - i.e. non-lethal transient segmental intestinal ischemia, 2 examine the sufficiency of existing hypotheses to explain experimental data - i.e. lethality in a model of major surgical insult and stress, and 3 produce behavior to potentially guide future experimental design - i.e. suggested sample points for a potential laboratory model of non-lethal transient intestinal ischemia. Furthermore, hypotheses were generated to explain certain discrepancies between the behaviors of the GMABM and biological

  15. Genome-Wide Host-Pathogen Interaction Unveiled by Transcriptomic Response of Diamondback Moth to Fungal Infection.

    Directory of Open Access Journals (Sweden)

    Zhen-Jian Chu

    Full Text Available Genome-wide insight into insect pest response