Sample records for stress measurement system

  1. A Hydraulic Stress Measurement System for Deep Borehole Investigations

    Ask, Maria; Ask, Daniel; Cornet, Francois; Nilsson, Tommy


    Luleå University of Technology (LTU) is developing and building a wire-line system for hydraulic rock stress measurements, with funding from the Swedish Research Council and Luleå University of Technology. In this project, LTU is collaborating with University of Strasbourg and Geosigma AB. The stress state influences drilling and drillability, as well as rock mass stability and permeability. Therefore, knowledge about the state of in-situ stress (stress magnitudes, and orientations) and its spatial variation with depth is essential for many underground rock engineering projects, for example for underground storage of hazardous material (e.g. nuclear waste, carbon dioxide), deep geothermal exploration, and underground infrastructure (e.g. tunneling, hydropower dams). The system is designed to conduct hydraulic stress testing in slim boreholes. There are three types of test methods: (1) hydraulic fracturing, (2) sleeve fracturing and (3) hydraulic testing of pre-existing fractures. These are robust methods for determining in situ stresses from boreholes. Integration of the three methods allows determination of the three-dimensional stress tensor and its spatial variation with depth in a scientific unambiguously way. The stress system is composed of a downhole and a surface unit. The downhole unit consists of hydraulic fracturing equipment (straddle packers and downhole imaging tool) and their associated data acquisition systems. The testing system is state of the art in several aspects including: (1) Large depth range (3 km), (2) Ability to test three borehole dimensions (N=76 mm, H=96 mm, and P=122 mm), (3) Resistivity imager maps the orientation of tested fracture; (4) Highly stiff and resistive to corrosion downhole testing equipment; and (5) Very detailed control on the injection flow rate and cumulative volume is obtained by a hydraulic injection pump with variable piston rate, and a highly sensitive flow-meter. At EGU General Assembly 2017, we would like to

  2. Comet assay as an indirect measure of systemic oxidative stress.

    Fang, Lei; Neutzner, Albert; Turtschi, Stephanie; Flammer, Josef; Mozaffarieh, Maneli


    Higher eukaryotic organisms cannot live without oxygen; yet, paradoxically, oxygen can be harmful to them. The oxygen molecule is chemically relatively inert because it has two unpaired electrons located in different pi * anti-bonding orbitals. These two electrons have parallel spins, meaning they rotate in the same direction about their own axes. This is why the oxygen molecule is not very reactive. Activation of oxygen may occur by two different mechanisms; either through reduction via one electron at a time (monovalent reduction), or through the absorption of sufficient energy to reverse the spin of one of the unpaired electrons. This results in the production of reactive oxidative species (ROS). There are a number of ways in which the human body eliminates ROS in its physiological state. If ROS production exceeds the repair capacity, oxidative stress results and damages different molecules. There are many different methods by which oxidative stress can be measured. This manuscript focuses on one of the methods named cell gel electrophoresis, also known as "comet assay" which allows measurement of DNA breaks. If all factors known to cause DNA damage, other than oxidative stress are kept constant, the amount of DNA damage measured by comet assay is a good parameter of oxidative stress. The principle is simple and relies upon the fact that DNA molecules are negatively charged. An intact DNA molecule has such a large size that it does not migrate during electrophoresis. DNA breaks, however, if present result in smaller fragments which move in the electrical field towards the anode. Smaller fragments migrate faster. As the fragments have different sizes the final result of the electrophoresis is not a distinct line but rather a continuum with the shape of a comet. The system allows a quantification of the resulting "comet" and thus of the DNA breaks in the cell.

  3. A photoelastic measurement system for residual stress analysis in scintillating crystals by conoscopic imaging.

    Montalto, L; Paone, N; Scalise, L; Rinaldi, D


    The assessment of the stress state of scintillating crystals is an important issue for producers as well as users of such materials, because residual stress may arise during growth process. In this paper, a measurement system, based on the use of a photoelastic, conoscopic optical setup, is proposed for the assessment of stress state in scintillating crystals. Local stress values can be measured on the crystal in order to observe their spatial distribution. With the proposed system, it is possible to vary the dimensions of the inspected measurement volume. It has been validated with reference to a known stress state induced in a birefringent crystal sample and it has been tested for the case of loaded and unloaded samples, showing sub-millimetric spatial resolution and stress uncertainty ≤0.25 MPa. The proposed measurement system is a valid method for the inspection of scintillating crystals required by producers and users of such materials.



    Traditional methods of residual stress measurement are generally destructive or semi-destructive, as well as expensive, time-consuming and complex to implement. With the new development of welded structure, traditional methods can not satisfy the need of full life task management. So the acoustical theory is introduced, since the ultrasonic technique provides a useful nondestructive tool in the evaluation of stresses. In this study an ultrasonic stress measurement experimental installation is established, which consists of a special transducer, a signal emission unit and a signal recipient processing unit. Longitudinal critically refracted wave is selected as the measurement wave mode. The supporting software is programmed by Labview software. The longitudinal residual stress and transverse residual stress of twin wire welded plate are measured by this installment, in which the measuring process is real-time, quick and nondestructive. The experiment results indicate that the system can satisfy the need of life evaluation for welded structure. The system is light and portable.

  5. Research on a system and method of automated whole-field measurement of optical glass stress

    Zhang, Li-jun; Tang, Yi; Bai, Ting-zhu


    On the basis of the principle of single quarter wave plate method, a model of automatic whole-field measuring optical glass stress is presented, which is called "4+1steps phase shifting method" including the model for the isoclinic parameter and the stress birefringence. According to this model, an automatic whole-field measuring system is established. The correctness of the model was testified by numeric emulation experiments under the preset conditions of isoclinic angle and stress birefringence. Practical measurement obtained a result coincident with the actual distribution of the isoclinic angle and the birefringence. The automatic whole-field measuring model and system can achieve the whole process intelligently and automatically, and dispose the disadvantages of tradition method about interpreting the stress level by subjective judging birefringence of some selected spots.

  6. Self-oscillation acoustic system destined to measurement of stresses in mass rocks

    Kwasniewski, Janusz; Dominik, Ireneusz; Dorobczynski, Lech


    The paper presents an electronic self-oscillation acoustic system (SAS) destined to measure of stresses variations in the elastic media. The system consists of piezoelectric detector, amplifier-limiter, pass-band filter, piezoelectric exciter and the frequency meter. The mass rock plays a role of delaying element, in which variations in stresses causing the variations of acoustic wave velocity of propagation, and successive variation in frequency of oscillations generated by system. The laboratory test permitted to estimate variations in frequency caused by variations in stresses of elastic medium. The principles of selection of frequency and other parameters of the electronic system in application to stresses measurement in condition of the mine were presented.

  7. A system for remote measurements of the wind stress over the ocean

    Large, William G.; Businger, J. A.


    The DISSTRESS system for remote measurements of the surface wind stress over the ocean from ships and buoys is described. It is fully digital, utilizing the inertial dissipation technique. Parallel processing allows anemometer data to be filtered in natural frequency space; that is, the filter cutoffs shift linearly with the mean wind speed of the data to be filtered. The construction of the digital Butterworth bandpass filters is presented in detail. The performance of the system is evaluated by analyzing the results from 28 days of operation during the Frontal Air-Sea Interaction Experiment. The mean wind speed is checked, the anemometer response function is established, and drag coefficients are compared to previous studies. The capability of the system is demonstrated by continuous time series of the friction velocity computed every 20 min. The conclusion is that the surface wind stress can be measured more reliably and accurately (20 percent) with this system than from anemometer wind speeds and a bulk formula.

  8. Towards an automatic early stress recognition system for office environments based on multimodal measurements: A review.

    Alberdi, Ane; Aztiria, Asier; Basarab, Adrian


    Stress is a major problem of our society, as it is the cause of many health problems and huge economic losses in companies. Continuous high mental workloads and non-stop technological development, which leads to constant change and need for adaptation, makes the problem increasingly serious for office workers. To prevent stress from becoming chronic and provoking irreversible damages, it is necessary to detect it in its early stages. Unfortunately, an automatic, continuous and unobtrusive early stress detection method does not exist yet. The multimodal nature of stress and the research conducted in this area suggest that the developed method will depend on several modalities. Thus, this work reviews and brings together the recent works carried out in the automatic stress detection looking over the measurements executed along the three main modalities, namely, psychological, physiological and behavioural modalities, along with contextual measurements, in order to give hints about the most appropriate techniques to be used and thereby, to facilitate the development of such a holistic system.

  9. [Changes in Kinetics of Chemiluminescence of Plasma as a Measure of Systemic Oxidative Stress in Humans].

    Sozarukova, M M; Polimova, A M; Proskurnina, E V; Vladimirov, Yu A


    Oxidative stress is a pathogenetic factor of many diseases. The control of its level is important for early diagnosis and therapy adjustment. In this work, antioxidant status was estimated in blood plasma. In the system of 2,2'-azo-bis(2-amidinopropane)dihydrochloride-luminol a set of chemiluminescence kinetic curve parameters is proposed for oxidative stress level estimation (the latent period τ(lat) and the increasing of analytical signal ΔI(CL)). Uric acid and albumin were shown as the main components that responsible for changes in chemiluminescence kinetic curve of plasma. Serum albumin undergoes oxidative modification in dose-depend manner under the action of UV irradiation, it causes the enhancement of antioxidant properties. Changes in plasma chemiluminescence kinetics are proposed as a measure of oxidative stress in human body.

  10. Wearable Biomedical Measurement Systems for Assessment of Mental Stress of Combatants in Real Time

    Fernando Seoane


    Full Text Available The Spanish Ministry of Defense, through its Future Combatant program, has sought to develop technology aids with the aim of extending combatants’ operational capabilities. Within this framework the ATREC project funded by the “Coincidente” program aims at analyzing diverse biometrics to assess by real time monitoring the stress levels of combatants. This project combines multidisciplinary disciplines and fields, including wearable instrumentation, textile technology, signal processing, pattern recognition and psychological analysis of the obtained information. In this work the ATREC project is described, including the different execution phases, the wearable biomedical measurement systems, the experimental setup, the biomedical signal analysis and speech processing performed. The preliminary results obtained from the data analysis collected during the first phase of the project are presented, indicating the good classification performance exhibited when using features obtained from electrocardiographic recordings and electrical bioimpedance measurements from the thorax. These results suggest that cardiac and respiration activity offer better biomarkers for assessment of stress than speech, galvanic skin response or skin temperature when recorded with wearable biomedical measurement systems.


    D. A. Stepanenko


    Full Text Available Problems of design, fabrication and application of sensors for measurement of mechanical stresses in ultrasonic waveguide systems based on Villari effect and providing spatial resolution of measurements are considered. Results of experimental studies of spatial distribution of vibration parameters in waveguide systems for ultrasonic thrombolysis are presented. Technique of calibration and potential applications of the sensors are described.

  12. An automated system for the measurement of magnetostriction in electrical steel sheet under applied stress

    Anderson, P I; Stanbury, H J


    The design of an automated system for the rapid assessment of the AC magnetostriction in electrical steel sheet under linear applied stress in the range +-10 MPa is described in detail. Typical results are presented showing the effect of induction on the unstressed material together with plots of the harmonics of magnetostriction and specific total loss versus applied stress.

  13. Residual-stress measurements

    Ezeilo, A.N.; Webster, G.A. [Imperial College, London (United Kingdom); Webster, P.J. [Salford Univ. (United Kingdom)


    Because neutrons can penetrate distances of up to 50 mm in most engineering materials, this makes them unique for establishing residual-stress distributions non-destructively. D1A is particularly suited for through-surface measurements as it does not suffer from instrumental surface aberrations commonly found on multidetector instruments, while D20 is best for fast internal-strain scanning. Two examples for residual-stress measurements in a shot-peened material, and in a weld are presented to demonstrate the attractive features of both instruments. (author).

  14. Stresses and residual stresses optical measurements systems evaluation; Avaliacao de sistemas opticos de medicao de tensoes e tensoes residuais em dutos

    Peixoto Filho, Flavio Tito; Goncalves Junior, Armando Albertazzi [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Lab. de Metrologia e Automatizacao (LABMETRO)


    There is always a constant concern about the pipelines' integrity. An important control parameter is the level of total mechanical stresses acting over the pipeline. However, the loading and residual stresses acting on a pipeline are not measured in the field as much as necessary. Technical difficulties and the high cost of the nowadays techniques and the hostile measurement conditions are the main reason for that. An alternative method has been developed at the Universidade Federal de Santa Catarina (UFSC) since 1992. A new optical measurement device is used to measure strains, mechanical stresses and residual stresses acting over the structure. A metrological and functional evaluation of this system is the main focus of this paper. (author)

  15. An accelerometer based system to measure myocardial performance index during stress testing.

    Anh Dinh; Bui, Francis M; Tam Nguyen


    Stress testing is used to measure the performance of the heart in an elevated stress state, in order to monitor or diagnose certain heart problems. Many measurements can be used to determine the performance of the heart, with the Tei index being the measurement of interest in this work. The Tei index has been used as a reliable method to evaluate systolic and diastolic performance, as it overcomes some limitations of the classical echocardiographic indices. It is calculated based on the time intervals derived from echocardiography. This paper presents an exploratory study, which uses an accelerometer to record mechanical events occurring in each cardiac cycle, also known as the seismocardiogram (SCG). From timing measurements corresponding to various events in the heart, a metric for myocardial performance is calculated based on the Tei index. The use of SCG in addition to ECG has the potential to provide further insights about the heart during stress testing, since the SCG quantifies mechanical actions of the heart.

  16. Influence of acoustoelastic coefficient on wave time of flight in stress measurement in piezoelectric self-excited system

    Kwaśniewki, Janusz; Dominik, Ireneusz; Lalik, Krzysztof; Holewa, Karolina


    This paper presents the Self-excited Acoustical System (SAS) in elastic construction stress change measurement. The system is based on the acoustical autoresonance phenomena and enables an indirect measurement of the construction effort level. The essence of the SAS system is to use a piezoelectric vibration emitter and a piezoelectric vibration receiver placed at a distance, which are coupled with a proper power amplifier, and which are operating in a closed loop with a positive feedback. This causes the excitation of the system. The change of the velocity of wave propagation, which is associated with the change of the resonance frequency in the system is caused by the stress change in the examined material. A variable, which determines the change of the acoustic wave velocity, is called an acoustoelastic coefficient β. Such a coefficient allows to determine the absolute stress value in the tested material.

  17. Measuring stress and cognitive load effects on the perceived quality of a multimodal dialogue system

    Niculescu, A.I.; van Dijk, Elisabeth M.A.G.; Cao, Y.; Nijholt, Antinus; Spink, A.J.; Grieco, F; Krips, O.E.; Loyens, L.W.S.; Noldus, L.P.J.J.; Zimmerman, P.H.


    In this paper we present the results of a pilot study investigating the impact of stress and cognitive load on the perceived interaction quality of a multimodal dialogue system for crisis management. Four test subjects interacted with the system in four differently configured trials aiming to induce

  18. Measuring stress and cognitive load effects on the perceived quality of a multimodal dialogue system

    Niculescu, Andreea; Dijk, van Betsy; Cao, Yujia; Nijholt, Anton; Spink, A.J.; Grieco, F.; Krips, O.E.; Loyens, L.W.S.; Noldus, L.P.J.J.; Zimmerman, P.H.


    In this paper we present the results of a pilot study investigating the impact of stress and cognitive load on the perceived interaction quality of a multimodal dialogue system for crisis management. Four test subjects interacted with the system in four differently configured trials aiming to induce

  19. Bioimpedance-Based Wearable Measurement Instrumentation for Studying the Autonomic Nerve System Response to Stressful Working Conditions

    Ferreira, J.; Álvarez, L.; Buendía, R.; Ayllón, D.; Llerena, C.; Gil-Pita, R.; Seoane, F.


    The assessment of mental stress on workers under hard and stressful conditions is critical to identify which workers are not ready to undertake a mission that might put in risk their own life and the life of others. The ATREC project aims to enable Real Time Assessment of Mental Stress of the Spanish Armed Forces during military activities. Integrating sensors with garments and using wearable measurement devices, the following physiological measurements were recorded: heart and respiration rate, skin galvanic response as well as peripheral temperature. The measuring garments are the following: a sensorized glove, an upper-arm strap and a repositionable textrode chest strap system with 6 textrodes. The implemented textile-enabled instrumentation contains: one skin galvanometer, two temperature sensors, for skin and environmental, and an Impedance Cardiographer/Pneumographer containing a 1 channel ECG amplifier to record cardiogenic biopotentials. The implemented wearable systems operated accordingly to the specifications and are ready to be used for the mental stress experiments that will be executed in the coming phases of the project in healthy volunteers.

  20. Interferometric Measurement Of Residual Stress

    Danyluk, Steven; Andonian, A. T.


    Stress averaged through thickness of plate measured nondestructively. Theory of elasticity combined with laser interferometric technique into technique for measurement of residual stresses in solid objects - usually in thin, nominally-flat plates. Measurements particularly useful in inspection of wafers of single-crystal silicon for making solar cells or integrated circuits, because stresses remaining after crystal-growing process cause buckling or fracture. Used to predict deflections of plates caused by known applied loads under specified boundary condition, or to infer applied loads that cause known deflections. Also used to relate known deflections to residual stresses equivalent to stresses produced by fictitious applied loads.

  1. Investigation of Bucket Wheel Excavator Lattice Structure Internal Stress in Harsh Environment through a Remote Measurement System

    Risteiu, M.; Dobra, R.; Andras, I.; Roventa, M.; Lorincz, A.


    The paper shows the results of a lab model for strain gauges based measuring system for multiple measuring heads of the mechanical stress in lattice structures of the bucket wheel excavator for open pit mines-harsh environment. The system is designed around a microcontroller system. Because of specific working conditions, the measuring system sends data to a processing system (a PC with Matlab software), we have implemented a secure communication solution based on ISM standard, by using NRF24L01 module. The transceiver contains a fully integrated frequency synthesizer based on crystal oscillator, and a Enhanced ShockBurst™ protocol engine. The proposed solution has a current consumption around 9.0 mA at an output power of -6dBm and 12.3mA in RX mode. Built-in Power Down and Standby modes makes power saving easily realizable for our solution battery powered. The stress from structures is taken by specific strain gauges adapted to low frequency vibrations. We are using a precision 24-bit analog-to-digital converter (ADC) designed for weigh scales and industrial control applications to interface directly with a bridge sensor-instrumentation device, with low drift voltage, low noise, common mode rejection signal, frequency and temperature stability. As backup implementation for measurements a high speed storage implementation is used.

  2. Electromechanical Apparatus Measures Residual Stress

    Chern, Engmin J.; Flom, Yury


    Nondestructive test exploits relationship between stress and eddy-current-probe resistance. Yields data on residual stress or strain in metal tension/compression specimen (stress or strain remaining in specimen when no stress applied from without). Apparatus is assembly of commercial equipment: tension-or-compression testing machine, eddy-current probe, impedance gain-and-phase analyzer measuring impedance of probe coil, and desktop computer, which controls other equipment and processes data received from impedance gain-and-phase analyzer.

  3. A pressure and shear sensor system for stress measurement at lower limb residuum/socket interface.

    Laszczak, P; McGrath, M; Tang, J; Gao, J; Jiang, L; Bader, D L; Moser, D; Zahedi, S


    A sensor system for measurement of pressure and shear at the lower limb residuum/socket interface is described. The system comprises of a flexible sensor unit and a data acquisition unit with wireless data transmission capability. Static and dynamic performance of the sensor system was characterised using a mechanical test machine. The static calibration results suggest that the developed sensor system presents high linearity (linearity error ≤ 3.8%) and resolution (0.9 kPa for pressure and 0.2 kPa for shear). Dynamic characterisation of the sensor system shows hysteresis error of approximately 15% for pressure and 8% for shear. Subsequently, a pilot amputee walking test was conducted. Three sensors were placed at the residuum/socket interface of a knee disarticulation amputee and simultaneous measurements were obtained during pilot amputee walking test. The pressure and shear peak values as well as their temporal profiles are presented and discussed. In particular, peak pressure and shear of approximately 58 kPa and 27 kPa, respectively, were recorded. Their temporal profiles also provide dynamic coupling information at this critical residuum/socket interface. These preliminary amputee test results suggest strong potential of the developed sensor system for exploitation as an assistive technology to facilitate socket design, socket fit and effective monitoring of lower limb residuum health.

  4. Systemic risk measures

    Guerra, Solange Maria; Silva, Thiago Christiano; Tabak, Benjamin Miranda; de Souza Penaloza, Rodrigo Andrés; de Castro Miranda, Rodrigo César


    In this paper we present systemic risk measures based on contingent claims approach and banking sector multivariate density. We also apply network measures to analyze bank common risk exposure. The proposed measures aim to capture credit risk stress and its potential to become systemic. These indicators capture not only individual bank vulnerability, but also the stress dependency structure between them. Furthermore, these measures can be quite useful for identifying systemically important banks. The empirical results show that these indicators capture with considerable fidelity the moments of increasing systemic risk in the Brazilian banking sector in recent years.

  5. Experimental Measurement of In Situ Stress

    Tibbo, Maria; Milkereit, Bernd; Nasseri, Farzine; Schmitt, Douglas; Young, Paul


    The World Stress Map data is determined by stress indicators including earthquake focal mechanisms, in situ measurement in mining, oil and gas boreholes as well as the borehole cores, and geologic data. Unfortunately, these measurements are not only infrequent but sometimes infeasible, and do not provide nearly enough data points with high accuracy to correctly infer stress fields in deep mines around the world. Improvements in stress measurements of Earth's crust is fundamental to several industries such as oil and gas, mining, nuclear waste management, and enhanced geothermal systems. Quantifying the state of stress and the geophysical properties of different rock types is a major complication in geophysical monitoring of deep mines. Most stress measurement techniques involve either the boreholes or their cores, however these measurements usually only give stress along one axis, not the complete stress tensor. The goal of this project is to investigate a new method of acquiring a complete stress tensor of the in situ stress in the Earth's crust. This project is part of a comprehensive, exploration geophysical study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, and focuses on two boreholes located in this mine. These boreholes are approximately 400 m long with NQ diameters and are located at depths of about 1300 - 1600 m and 1700 - 2000 m. Two borehole logging surveys were performed on both boreholes, October 2013 and July 2015, in order to perform a time-lapse analysis of the geophysical changes in the mine. These multi-parameter surveys include caliper, full waveform sonic, televiewer, chargeability (IP), and resistivity. Laboratory experiments have been performed on borehole core samples of varying geologies from each borehole. These experiments have measured the geophysical properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. The apparatus' used for this project are geophysical imaging cells capable

  6. environmental stress indicators system


    Therefore, if proper measures are not adopted in time, the current weak sustainability will lead ... land area as a transit basis for the carrying capacity of productivity and ..... results we know that environmental stress grew synchronously with ...

  7. Towards ambulatory mental stress measurement from physiological parameters

    Wijsman, J.L.P; Vullers, Ruud; Polito, Salvatore; Agell, Carlos; Penders, Julien; Hermens, Hermanus J.

    Ambulatory mental stress monitoring requires longterm physiological measurements. This paper presents a data collection protocol for ambulatory recording of physiological parameters for stress measurement purposes. We present a wearable sensor system for ambulatory recording of ECG, EMG, respiration

  8. Towards ambulatory mental stress measurement from physiological parameters

    Wijsman, Jacqueline; Vullers, Ruud; Polito, Salvatore; Agell, Carlos; Penders, Julien; Hermens, Hermie


    Ambulatory mental stress monitoring requires longterm physiological measurements. This paper presents a data collection protocol for ambulatory recording of physiological parameters for stress measurement purposes. We present a wearable sensor system for ambulatory recording of ECG, EMG, respiration

  9. Supervising System Stress in Multiple Markets

    Mikhail V. Oet


    Full Text Available This paper develops an extended financial stress measure that considers the supervisory objective of identifying risks to the stability of the financial system. The measure provides a continuous and bounded signal of financial stress using daily public market data. Broad coverage of material financial system markets over time is achieved by leveraging dynamic credit weights. We consider how this measure can be used to monitor, analyze, and alert financial system stress.

  10. Simple measuring and simulating system to determine stress from work in the cold

    Kleinoeder, R.; Mueller, T.; Kirstein, U.


    With a view to the analysis, assessment and design of work-places carrying a 'cold factor', a system for data acquisition, descriptive and statistical analysis, and for the simulation of informatory work was developed. Applications are demonstrated taking as an example the study of the dynamic properties of active skin temperature probes and taking also as an example the development of statistical models for heart frequency time series from investigations on the superposition of informatory and climatic demands.

  11. Neutron residual stress measurements in linepipe

    Law, Michael [ANTSO, PMB1 Menai, NSW, 2234 (Australia)]. E-mail:; Gnaepel-Herold, Thomas [Department of Materials Science and Engineering, NCNR and University of Maryland (United States); Luzin, Vladimir [Department of Materials Science and Engineering, NCNR and University of Maryland (United States); Bowie, Graham [cNCNR and State University of New York at Stoneybrook (United States): Blue Scope Steel (Australia)


    Residual stresses in gas pipelines are generated by manufacturing and construction processes and may affect the subsequent pipe integrity. In the present work, the residual stresses in eight samples of linepipe were measured by neutron diffraction. Residual stresses changed with some coating processes. This has special implications in understanding and mitigating stress corrosion cracking, a major safety and economic problem in some gas pipelines.

  12. Monitoring of elastic stresses with optical system for measuring the substrate curvature in growth of III-N heterostructures by molecular-beam epitaxy

    Zolotukhin, D. S.; Nechaev, D. V.; Ivanov, S. V.; Zhmerik, V. N.


    An original optical system for measuring substrate curvature (OSMSC) is described. The system enables a high-precision analysis of the processes of generation and relaxation of elastic stresses in growth of heterostructures (HSs) based on nitride compounds III-N by plasma-assisted molecular-beam epitaxy (PA-MBE). The application of OSMSC to analyze the growth of GaN/AlN/Si(111) HSs made it possible not only to observe in detail the variation dynamics of elastic stresses in this structure in its metal-enriched growth by low-temperature PA-MBE, but also to develop an HS design eliminating the effect of layer cracking by controlling the compressive stresses.

  13. Measurement of the forming limit stress curve using a multi-axial tube expansion test with a digital image correlation system

    Hakoyama, Tomoyuki; Kuwabara, Toshihiko


    A servo-controlled tension-internal pressure testing machine with an optical 3D deformation analysis system (ARAMIS) was used to measure the multi-axial plastic deformation behavior of a high-strength steel sheet for a range of strain from initial yield to fracture. The testing machine is capable of applying arbitrary principal stress or strain paths to a tubular specimen using an electrical, closed-loop servo-control system for axial force and internal pressure. Tubular specimens with an inner diameter of 44.6 mm were fabricated from a high-strength steel sheet with a tensile strength of 590 MPa and a thickness of 1.2 mm by roller bending and laser welding. Several linear and non-linear stress paths in the first quadrant of the stress space were applied to the tubular specimens in order to measure the forming limit curve (FLC) and forming limit stress curve (FLSC) of the as-received test material, in addition to the contours of plastic work and the directions of plastic strain rates. The contours of plastic work and the directions of plastic strain rates measured for the linear stress path experiments were compared with those calculated using selected yield functions in order to identify the most appropriate yield function for the test material. Moreover, a Marciniak-Kuczyński type (M-K) forming limit analysis was performed using the most appropriate yield function. The calculated and measured FLC and FLSC were compared in order to validate the M-K approach. The path-dependence of the FLC and FLSC was also investigated.

  14. Residual stress measurements in carbon steel

    Heyman, J. S.; Min, N.


    External dc magnetic field-induced changes in natural velocity of Rayleigh surface waves were measured in steel specimens under various stress conditions. The low field slopes of curves representing the fractional changes of natural velocity were proved to provide correct stress information in steels with different metallurgical properties. The slopes of curves under uniaxial compression, exceeding about one third of the yield stress, fell below zero in all the specimens when magnetized along the stress axis. The slopes under tension varied among different steels but remained positive in any circumstances. The stress effect was observed for both applied and residual stress. A physical interpretation of these results is given based on the stress-induced domain structure changes and the delta epsilon effect. Most importantly, it is found that the influence of detailed metallurgical properties cause only secondary effects on the obtained stress information.

  15. Measuring Systemic Risk

    Heje Pedersen, Lasse

    We present a simple model of systemic risk and we show that each financial institution’s contribution to systemic risk can be measured as its systemic expected shortfall (SES), i.e., its propensity to be undercapitalized when the system as a whole is undercapitalized. SES increases...... with the institution’s leverage and with its expected loss in the tail of the system’s loss distribution. Institutions internalize their externality if they are “taxed” based on their SES. We demonstrate empirically the ability of SES to predict emerging risks during the financial crisis of 2007-2009, in particular......, (i) the outcome of stress tests performed by regulators; (ii) the decline in equity valuations of large financial firms in the crisis; and, (iii) the widening of their credit default swap spreads....

  16. Evaluation of corn genotypes for drought and heat stress tolerance using physiological measurements and a microcontroller-based monitoring system

    Moisture deficit accompanied by high temperature are major abiotic stress factors that affect corn production in the southern United States, particularly during the reproductive stage of the plant. In evaluating plants for environmental stress tolerance, it is important to monitor changes in their ...

  17. Measuring Interlayer Shear Stress in Bilayer Graphene

    Wang, Guorui; Dai, Zhaohe; Wang, Yanlei; Tan, PingHeng; Liu, Luqi; Xu, Zhiping; Wei, Yueguang; Huang, Rui; Zhang, Zhong


    Monolayer two-dimensional (2D) crystals exhibit a host of intriguing properties, but the most exciting applications may come from stacking them into multilayer structures. Interlayer and interfacial shear interactions could play a crucial role in the performance and reliability of these applications, but little is known about the key parameters controlling shear deformation across the layers and interfaces between 2D materials. Herein, we report the first measurement of the interlayer shear stress of bilayer graphene based on pressurized microscale bubble loading devices. We demonstrate continuous growth of an interlayer shear zone outside the bubble edge and extract an interlayer shear stress of 40 kPa based on a membrane analysis for bilayer graphene bubbles. Meanwhile, a much higher interfacial shear stress of 1.64 MPa was determined for monolayer graphene on a silicon oxide substrate. Our results not only provide insights into the interfacial shear responses of the thinnest structures possible, but also establish an experimental method for characterizing the fundamental interlayer shear properties of the emerging 2D materials for potential applications in multilayer systems.

  18. Measurements for stresses in machine components

    Yakovlev, V F


    Measurements for Stresses in Machine Components focuses on the state of stress and strain of components and members, which determines the service life and strength of machines and structures. This book is divided into four chapters. Chapter I describes the physical basis of several methods of measuring strains, which includes strain gauges, photoelasticity, X-ray diffraction, brittle coatings, and dividing grids. The basic concepts of the electric strain gauge method for measuring stresses inside machine components are covered in Chapter II. Chapter III elaborates on the results of experim

  19. Simultaneous imaging and measurement of tensile stress on cornea by using a common-path optical coherence tomography system with an external contact reference

    Utkarsh Sharma; Jin U. Kang


    The objective of this study is to demonstrate that tensile stress resulting due to applied force on cornea can be accurately measured by using a time-domain common-path optical coherence tomography (OCT) system with an external contact reference. The unique design of the common-path OCT is utilized to set up an imaging system in which a chicken eye is placed adjacent to a glass plate serving as the external reference plane for the imaging system. As the force is applied to the chicken eye, it presses against the reference glass plate. The modified OCT image obtained is used to calculate the size of contact area, which is then used to derive the tensile stress on the cornea. The drop in signal levels upon contact of reference glass plate with the tissue are extremely sharp because of the sharp decline in reference power levels itself, thus providing us with an accurate measurement of contact area. The experimental results were in good agreement with the numerical predictions. The results of this study might be useful in providing new insights and ideas to improve the precision and safety of currently used ophthalmic surgical techniques. This research outlines a method which could be used to provide high resolution OCT images and a precise feedback of the forces applied to the cornea simultaneously.

  20. Bottom stress measurements on the inner shelf

    Sherwood, Christopher R.; Scully, Malcolm; Trowbridge, John


    Bottom stress shapes the mean circulation patterns, controls sediment transport, and influences benthic habitat in the coastal ocean. Accurate and precise measurements of bottom stress have proved elusive, in part because of the difficulty in separating the turbulent eddies that transport momentum from inviscid wave-induced motions. Direct covariance measurements from a pair of acoustic Doppler velocimeters has proved capable of providing robust estimates, so we designed a mobile platform coined the NIMBBLE for these measurements, and deployed two of them and two more conventional quadpods at seven sites on the inner shelf over a period of seven months. The resulting covariance estimates of stress and bottom roughness were lower than log-fit estimates, especially during calmer periods. Analyses of these data suggest the NIMBBLEs may provide an accurate and practical method for measuring bottom stress.

  1. Measuring the Quality of Care for Psychological Health Conditions in the Military Health System: Candidate Quality Measures for Posttraumatic Stress Disorder and Major Depressive Disorder


    and Statistical Manual of Mental Disorders, 4th ed., Axis I Disorders SDS Sheehan Disability Scale SI suicide ideation SIT Stress Inoculation Training...depression, behavioral health, mental health, MDD, PTSD, suicide , post-traumatic stress disorder, post- traumatic stress disorder, trauma, traumatic...gender, family history of suicide , same-sex orientation) and modifiable risk factors (e.g., unstable housing, financial problems, psychiatric disorders

  2. 基于LABVIEW的球磨机筒体应力测试系统%Stress measuring system for barrels of ball mills based on LABVIEW

    李斌; 董为民


    研究开发了基于LABVIEW平台的球磨机测试系统,结合有限元分析结果,在球磨机筒体关键处进行了应力测量与分析,为提高筒体设计效率和寿命提供了试验依据.%The paper develops a measuring system for ball mills based on LABVIEW, and carries out stress measurement and analysis at key points of the barrel of a ball mill in combination with the finite element analysis results, which offers experimental data for improving the designing efficiency and the lifespan of the barrel.

  3. Modeling Slip System Strength Evolution in Ti 7Al Informed by In situ Grain Stress Measurements (Postprint)


    coordinate system where eDx and e D y are aligned with the edges of the detector and e D z is normal to the detector face. The instrument geometry...2011) 527e547. [29] M. Ester , H. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in

  4. The Financial Stress Index: Identification of Systemic Risk Conditions

    Mikhail V. Oet


    Full Text Available This paper develops a financial stress measure for the United States, the Cleveland Financial Stress Index (CFSI. The index is based on publicly available data describing a six-market partition of the financial system comprising credit, funding, real estate, securitization, foreign exchange, and equity markets. This paper improves upon existing stress measures by objectively selecting between several index weighting methodologies across a variety of monitoring frequencies through comparison against a volatility-based benchmark series. The resulting measure facilitates the decomposition of stress to identify disruptions in specific markets and provides insight into historical stress regimes.

  5. Measurement of probability distributions for internal stresses in dislocated crystals

    Wilkinson, Angus J.; Tarleton, Edmund; Vilalta-Clemente, Arantxa; Collins, David M. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Jiang, Jun; Britton, T. Benjamin [Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, London SW7 2AZ (United Kingdom)


    Here, we analyse residual stress distributions obtained from various crystal systems using high resolution electron backscatter diffraction (EBSD) measurements. Histograms showing stress probability distributions exhibit tails extending to very high stress levels. We demonstrate that these extreme stress values are consistent with the functional form that should be expected for dislocated crystals. Analysis initially developed by Groma and co-workers for X-ray line profile analysis and based on the so-called “restricted second moment of the probability distribution” can be used to estimate the total dislocation density. The generality of the results are illustrated by application to three quite different systems, namely, face centred cubic Cu deformed in uniaxial tension, a body centred cubic steel deformed to larger strain by cold rolling, and hexagonal InAlN layers grown on misfitting sapphire and silicon carbide substrates.

  6. Three dimensional contact stresses under the LINTRACK wide base single tyres, measured with the Vehicle-Road Surface Pressure Transducer Array (VRSPTA) system in South Africa

    De Beer, Morris


    Full Text Available This report describes an international cooperative study into the 3 dimensional tyre/pavement contact stresses measured under slow moving free rolling wide base single tyres from the Netherlands. These tyres, a used tyre from the Dutch Lintrack...

  7. Measuring wind and stress under tropical cyclones with scatterometer

    Liu, W. Timothy


    Ocean surface stress, the turbulent transport of momentum, is largely derived from wind through a drag coefficient. In tropical cyclones (TC), scatterometers have difficulty in measuring strong wind and there is large uncertainty in the drag coefficient. We postulate that the microwave backscatter from ocean surface roughness, which is in equilibrium with local stress, does not distinguish weather systems. The reduced sensitivity of scatterometer wind retrieval algorithm under the strong wind is an air-sea interaction problem that is caused by a change in the behavior of the drag coefficient and not a sensor problem. Under this assumption, we applied a stress retrieval algorithm developed over a moderate wind range to retrieve stress under the strong winds of TCs. Over a moderate wind range, the abundant wind measurements and more established drag coefficient value allow sufficient stress data to be computed from wind to develop a stress retrieval algorithm for the scatterometer. Using unprecedented large amount of stress retrieved from the scatterometer coincident with strong winds in TC, we showed that the drag coefficient decreases with wind speed at a much steeper rate than previously revealed, for wind speeds over 25 m/s. The result implies that the ocean applies less drag to inhibit TC intensification and the TC causes less ocean mixing and surface cooling than previous studies indicated. With continuous and extensive coverage from constellations of scatterometers for several decades, the impact of tropical cyclones on the ocean and the feedback from the ocean are examined.

  8. Measurement System & Calibration report

    Kock, Carsten Weber; Vesth, Allan

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A major part of the sensors has been installed by others (see [1]) the rest of the sensors have been installed by DTU. The results of the measurements, described in this report...

  9. Flexible Micropost Arrays for Shear Stress Measurement

    Wohl, Christopher J.; Palmieri, Frank L.; Hopkins, John W.; Jackson, Allen M.; Connell, John W.; Lin, Yi; Cisotto, Alexxandra A.


    Increased fuel costs, heightened environmental protection requirements, and noise abatement continue to place drag reduction at the forefront of aerospace research priorities. Unfortunately, shortfalls still exist in the fundamental understanding of boundary-layer airflow over aerodynamic surfaces, especially regarding drag arising from skin friction. For example, there is insufficient availability of instrumentation to adequately characterize complex flows with strong pressure gradients, heat transfer, wall mass flux, three-dimensionality, separation, shock waves, and transient phenomena. One example is the acoustic liner efficacy on aircraft engine nacelle walls. Active measurement of shear stress in boundary layer airflow would enable a better understanding of how aircraft structure and flight dynamics affect skin friction. Current shear stress measurement techniques suffer from reliability, complexity, and airflow disruption, thereby compromising resultant shear stress data. The state-of-the-art for shear stress sensing uses indirect or direct measurement techniques. Indirect measurements (e.g., hot-wire, heat flux gages, oil interferometry, laser Doppler anemometry, small scale pressure drag surfaces, i.e., fences) require intricate knowledge of the studied flow, restrictive instrument arrangements, large surface areas, flow disruption, or seeding material; with smaller, higher bandwidth probes under development. Direct measurements involve strain displacement of a sensor element and require no prior knowledge of the flow. Unfortunately, conventional "floating" recessed components for direct measurements are mm to cm in size. Whispering gallery mode devices and Fiber Bragg Gratings are examples of recent additions to this type of sensor with much smaller (?m) sensor components. Direct detection techniques are often single point measurements and difficult to calibrate and implement in wind tunnel experiments. In addition, the wiring, packaging, and installation

  10. Health System Measurement Project

    U.S. Department of Health & Human Services — The Health System Measurement Project tracks government data on critical U.S. health system indicators. The website presents national trend data as well as detailed...

  11. Measuring Systemic Risk

    Acharya, Viral V.; Heje Pedersen, Lasse; Philippon, Thomas

    We present a simple model of systemic risk and we show that each financial institution's contribution to systemic risk can be measured as its systemic expected shortfall (SES), i.e., its propensity to be undercapitalized when the system as a whole is undercapitalized. SES increases...

  12. Precision volume measurement system.

    Fischer, Erin E.; Shugard, Andrew D.


    A new precision volume measurement system based on a Kansas City Plant (KCP) design was built to support the volume measurement needs of the Gas Transfer Systems (GTS) department at Sandia National Labs (SNL) in California. An engineering study was undertaken to verify or refute KCP's claims of 0.5% accuracy. The study assesses the accuracy and precision of the system. The system uses the ideal gas law and precise pressure measurements (of low-pressure helium) in a temperature and computer controlled environment to ratio a known volume to an unknown volume.

  13. Measuring Systemic Risk

    Acharya, Viral V.; Heje Pedersen, Lasse; Philippon, Thomas


    We present an economic model of systemic risk in which undercapitalization of the financial sector as a whole is assumed to harm the real economy, leading to a systemic risk externality. Each financial institution’s contribution to systemic risk can be measured as its systemic expected shortfall...... of components of SES to predict emerging systemic risk during the financial crisis of 2007–2009....

  14. Measurement of residual stress in thermally grown oxide layers in thermal barrier coating systems - development of non-destructive test methods.

    Saunders, S.R.J.; Banks, J.P.; Chen, G.; Chunnilall, C.J. [National Physical Lab., Teddington, Middlesex (United Kingdom)


    It is established that the adhesion of thermal barrier coatings (TBCs) is dependent upon the characteristics of the thermally grown oxide (TGO) that forms between the TBC (zirconia) and the corrosion resistant bond coat. Work has been carried using laser induced fluorescence out to investigate the properties of the TGO (normally alumina) as a function of ageing treatments. The zirconia layer is transparent to the laser light used and thus the laser light can cause fluorescence in the TGO layer present on the bondcoat, so that the method is non-destructive. Fluorescence in the TGO is caused by trace impurities of Cr in the alumina layer. The position of the spectral peaks generated is stress dependent so that residual stress in the TGO can be determined; the method is also known as piezospectroscopy. Residual stress maps were generated for an electron beam physical vapour deposited (EB-PVD) TBC that showed a large variation in residual stress over the surface of a coated sample. The two peaks generally associated with {alpha} alumina (R1 and R2) frequently appear as doublets with a high and low stress component. In addition, the presence of a metastable {theta}-alumina was detected in aged samples. It is believed that these observations can be related to incipient spallation of the TBC. The development of residual stress and the metastable oxide have been studied and correlated with the spallation behaviour of the TBC. Additionally, the intensity of the spectra has been shown to yield information about the Cr content of the TGO, and this in turn could also be used as an indication of the remaining life of the TBC system. (orig.)

  15. Neutron stress measurement of W-fiber reinforced Cu composite

    Nishida, M; Ikeuchi, Y; Minakawa, N


    Stress measurement methods using neutron and X-ray diffraction were examined by comparing the surface stresses with internal stresses in the continuous tungsten-fiber reinforced copper-matrix composite. Surface stresses were measured by X-ray stress measurement with the sin sup 2 psi method. Furthermore, the sin sup 2 psi method and the most common triaxal measurement method using Hooke's equation were employed for internal stress measurement by neutron diffraction. On the other hand, microstress distributions developed by the difference in the thermal expansion coefficients between these two phases were calculated by FEM. The weighted average strains and stresses were compared with the experimental results. The FEM results agreed with the experimental results qualitatively and confirmed the importance of the triaxial stress analysis in the neutron stress measurement. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  16. Stress Effects on Multiple Memory System Interactions.

    Ness, Deborah; Calabrese, Pasquale


    Extensive behavioural, pharmacological, and neurological research reports stress effects on mammalian memory processes. While stress effects on memory quantity have been known for decades, the influence of stress on multiple memory systems and their distinct contributions to the learning process have only recently been described. In this paper, after summarizing the fundamental biological aspects of stress/emotional arousal and recapitulating functionally and anatomically distinct memory systems, we review recent animal and human studies exploring the effects of stress on multiple memory systems. Apart from discussing the interaction between distinct memory systems in stressful situations, we will also outline the fundamental role of the amygdala in mediating such stress effects. Additionally, based on the methods applied in the herein discussed studies, we will discuss how memory translates into behaviour.

  17. Stress Effects on Multiple Memory System Interactions

    Deborah Ness


    Full Text Available Extensive behavioural, pharmacological, and neurological research reports stress effects on mammalian memory processes. While stress effects on memory quantity have been known for decades, the influence of stress on multiple memory systems and their distinct contributions to the learning process have only recently been described. In this paper, after summarizing the fundamental biological aspects of stress/emotional arousal and recapitulating functionally and anatomically distinct memory systems, we review recent animal and human studies exploring the effects of stress on multiple memory systems. Apart from discussing the interaction between distinct memory systems in stressful situations, we will also outline the fundamental role of the amygdala in mediating such stress effects. Additionally, based on the methods applied in the herein discussed studies, we will discuss how memory translates into behaviour.

  18. Electrochemical thermodynamic measurement system

    Reynier, Yvan; Yazami, Rachid; Fultz, Brent T.


    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  19. Residual Stress Determination from a Laser-Based Curvature Measurement

    Swank, William David; Gavalya, Rick Allen; Wright, Julie Knibloe; Wright, Richard Neil


    Thermally sprayed coating characteristics and mechanical properties are in part a result of the residual stress developed during the fabrication process. The total stress state in a coating/substrate is comprised of the quench stress and the coefficient of thermal expansion (CTE) mismatch stress. The quench stress is developed when molten particles impact the substrate and rapidly cool and solidify. The CTE mismatch stress results from a large difference in the thermal expansion coefficients of the coating and substrate material. It comes into effect when the substrate/coating combination cools from the equilibrated deposit temperature to room temperature. This paper describes a laser-based technique for measuring the curvature of a coated substrate and the analysis required to determine residual stress from curvature measurements. Quench stresses were determined by heating the specimen back to the deposit temperature thus removing the CTE mismatch stress. By subtracting the quench stress from the total residual stress at room temperature, the CTE mismatch stress was estimated. Residual stress measurements for thick (>1mm) spinel coatings with a Ni-Al bond coat on 304 stainless steel substrates were made. It was determined that a significant portion of the residual stress results from the quenching stress of the bond coat and that the spinel coating produces a larger CTE mismatch stress than quench stress.

  20. Measurement of residual stresses using fracture mechanics weight functions

    Fan, Y. [Bettis Atomic Power Laboratory, West Mifflin, PA (United States)


    A residual stress measurement method has been developed to quantify through-the-thickness residual stresses. Accurate measurement of residual stresses is crucial for many engineering structures. Fabrication processes such as welding and machining generate residual stresses that are difficult to predict. Residual stresses affect the integrity of structures through promoting failures due to brittle fracture, fatigue, stress corrosion cracking, and wear. In this work, the weight function theory of fracture mechanics is used to measure residual stresses. The weight function theory is an important development in computational fracture mechanics. Stress intensity factors for arbitrary stress distribution on the crack faces can be accurately and efficiently computed for predicting crack growth. This paper demonstrates that the weight functions are equally useful in measuring residual stresses. In this method, an artificial crack is created by a thin cut in a structure containing residual stresses. The cut relieves the residual stresses normal to the crack-face and allows the relieved residual stresses to deform the structure. Strain gages placed adjacent to the cut measure the relieved strains corresponding to incrementally increasing depths of the cut. The weight functions of the cracked body relate the measured strains to the residual stresses normal to the cut within the structure. The procedure details, such as numerical integration of the singular functions in applying the weight function method, will be discussed. (author)

  1. Measurement System Reliability Assessment

    Kłos Ryszard


    Full Text Available Decision-making in problem situations is based on up-to-date and reliable information. A great deal of information is subject to rapid changes, hence it may be outdated or manipulated and enforce erroneous decisions. It is crucial to have the possibility to assess the obtained information. In order to ensure its reliability it is best to obtain it with an own measurement process. In such a case, conducting assessment of measurement system reliability seems to be crucial. The article describes general approach to assessing reliability of measurement systems.

  2. Measuring Systemic Risk

    Acharya, Viral V.; Heje Pedersen, Lasse; Philippon, Thomas

    We present a simple model of systemic risk and we show that each financial institution's contribution to systemic risk can be measured as its systemic expected shortfall (SES), i.e., its propensity to be undercapitalized when the system as a whole is undercapitalized. SES increases...... with the institution's leverage and with its expected loss in the tail of the system's loss distribution. Institutions internalize their externality if they are ‘taxed’ based on their SES. We demonstrate empirically the ability of SES to predict emerging risks during the financial crisis of 2007-2009, in particular...

  3. Stress, catecholaminergic system and cancer.

    Krizanova, O; Babula, P; Pacak, K


    Stress as a modern civilization factor significantly affects our lives. While acute stress might have a positive effect on the organism, chronic stress is usually detrimental and might lead to serious health complications. It is known that stress induced by the physical environment (temperature-induced cold stress) can significantly impair the efficacy of cytotoxic chemotherapies and the anti-tumor immune response. On the other hand, epidemiological evidence has shown that patients taking drugs known as β-adrenergic antagonists ("β-blockers"), which are commonly prescribed to treat arrhythmia, hypertension, and anxiety, have significantly lower rates of several cancers. In this review, we summarize the current knowledge about catecholamines as important stress hormones in tumorigenesis and discuss the use of β-blockers as the potential therapeutic agents.

  4. Analytical Investigation for In Situ Stress Measurement with Rheological Stress Recovery Method and Its Application

    Quansheng Liu


    Full Text Available In situ stress is one of the most important parameters in underground engineering. Due to the difficulty and weakness of current stress measurement methods in deep soft rock, a new one, rheological stress recovery (RSR method, to determine three-dimensional stress tensor is developed. It is supposed that rock stresses will recover gradually with time and can be measured by embedding transducers into the borehole. In order to explore the relationship between the measured recovery stress and the initial stress, analytical solutions are developed for the stress measurement process with RSR method in a viscoelastic surrounding rock. The results showed that the measured recovery stress would be more close to the initial stress if the rock mass has a better rheological property, and the property of grouting material should be close to that of rock mass. Then, the RSR method, as well as overcoring technique, was carried out to measure the in situ stresses in Pingdingshan Number 1 coal mines in Henan Province, China. The stress measurement results are basically in the same order, and the major principal stresses are approximately in the direction of NW-SE, which correlates well with the stress regime of Pingdingshan zone known from the tectonic movement history.

  5. Realtime 3D stress measurement in curing epoxy packaging

    Richter, Jacob; Hyldgård, A.; Birkelund, Karen;


    This paper presents a novel method to characterize stress in microsystem packaging. A circular p-type piezoresistor is implemented on a (001) silicon chip. We use the circular stress sensor to determine the packaging induced stress in a polystyrene tube filled with epoxy. The epoxy curing process...... is monitored by stress measurements. From the stress measurements we conclude that the epoxy cures in 8 hours at room temperature. We find the difference in in-plane normal stresses to be sigmaxx-sigmayy=6.7 MPa and (sigmaxx+sigmayy-0.4sigmazz)=232 MPa....

  6. Wall shear stress measurements using a new transducer

    Vakili, A. D.; Wu, J. M.; Lawing, P. L.


    A new instrument has been developed for direct measurement of wall shear stress. This instrument is simple and symmetric in design with small moving mass and no internal friction. Features employed in the design of this instrument eliminate most of the difficulties associated with the traditional floating element balances. Vibration problems associated with the floating element skin friction balances have been found to be minimized by the design features and optional damping provided. The unique design of this instrument eliminates or reduces the errors associated with conventional floating-element devices: such as errors due to gaps, pressure gradient, acceleration, heat transfer and temperature change. The instrument is equipped with various sensing systems and the output signal is a linear function of the wall shear stress. Measurement made in three different tunnels show good agreement with theory and data obtained by the floating element devices.

  7. Mechanical Stress Measurement During Thin-Film Fabrication

    Broadway, David M. (Inventor)


    A method and system are provided for determining mechanical stress experienced by a film during fabrication thereof on a substrate positioned in a vacuum deposition chamber. The substrate's first surface is disposed to have the film deposited thereon and the substrate's opposing second surface is a specular reflective surface. A portion of the substrate is supported. An optical displacement sensor is positioned in the vacuum deposition chamber in a spaced-apart relationship with respect to a portion of the substrate's second surface. During film deposition on the substrate's first surface, displacement of the portion of the substrate's second surface is measured using the optical displacement sensor. The measured displacement is indicative of a radius of curvature of the substrate, and the radius of curvature is indicative of mechanical stress being experienced by the film.

  8. Measurements of residual stress in fracture mechanics coupons

    Prime, Michael B [Los Alamos National Laboratory; Hill, Michael R [U.C. DAVIS; Nav Dalen, John E [HILL ENGINEERING


    This paper describes measurements of residual stress in coupons used for fracture mechanics testing. The primary objective of the measurements is to quantify the distribution of residual stress acting to open (and/or close) the crack across the crack plane. The slitting method and the contour method are two destructive residual stress measurement methods particularly capable of addressing that objective, and these were applied to measure residual stress in a set of identically prepared compact tension (C(T)) coupons. Comparison of the results of the two measurement methods provides some useful observations. Results from fracture mechanics tests of residual stress bearing coupons and fracture analysis, based on linear superposition of applied and residual stresses, show consistent behavior of coupons having various levels of residual stress.

  9. Secondary Traumatisation And Systemic Traumatic Stress

    Klaric, Miro; Kvesic, Ante; Mandic, Vjekoslav; Petrov, Bozo; Franciskovic, Tanja


    .... Studying trauma within the family is a part of what is called systemic traumatology, a study of groups, institutions and other human systems that show stress reactions directly caused by a traumatic...

  10. Individualized Stress Detection System Project

    National Aeronautics and Space Administration — Given the extended duration of future missions and the isolated, extreme and confined environments, there is the possibility that stress-related behavioral...

  11. Individualized Stress Detection System Project

    National Aeronautics and Space Administration — Given the extended duration of future missions and the isolated, extreme, and confined environments, there is the possibility that stress-related behavioral...

  12. Measuring type II stresses using 3DXRD

    Oddershede, Jette; Schmidt, Søren; Poulsen, Henning Friis;


    An algorithm is presented for characterization of the grain resolved (type II) stress states in a polycrystalline sample based on monochromatic X-ray diffraction data. The algorithm is a robust 12-parameter-per-grain fit of the centre-of-mass grain positions, orientations and stress tensors...

  13. Calorimetric measuring systems

    Ritchie, Andrew Ewen; Pedersen, John Kim; Blaabjerg, Frede


    the system cooling requirement. A common problem is that high-frequency phenomena like proximity effect, skin effect, hysteresis losses, and eddy current losses appear in the systems. These losses are very difficult to treat both theoretically and in practice. It is often difficult to measure the effect......Power Electronics remains an emerging technology. New materials, new devices, and new circuit topologies reduce the cost, weight, and volume for important applications [1]. Two important factors in power electronic circuits are the switching speed of the devices and the total power losses...... in the system. If the switching speed can be increased, improvements may be possible (e.g., current ripple in an electrical machine or physical size of passive components may be reduced). On the other hand, increased switching speed may cause additional losses in a power electronic system and increase...

  14. Galvanic Skin Response as a Measure of Soldier Stress


    in the body have been used as an effective measure of stress, including social stress such as performance in front of an audience (Nater, La Marca ...Lake, CA, 1992. Nater, U. M.; La Marca , R.; Florin, L.; Moses, A.; Langhans, W.; Koller, M. M.; Ehlert, U. Stress-Induced Changes in Human

  15. Enterprise performance measurement systems

    Milija Bogavac


    Full Text Available Performance measurement systems are an extremely important part of the control and management actions, because in this way a company can determine its business potential, its market power, potential and current level of business efficiency. The significance of measurement consists in influencing the relationship between the results of reproduction (total volume of production, value of production, total revenue and profit and investments to achieve these results (factors of production spending and hiring capital in order to achieve the highest possible quality of the economy. (The relationship between the results of reproduction and investment to achieve them quantitatively determines economic success as the quality of the economy. Measuring performance allows the identification of the economic resources the company has, so looking at the key factors that affect its performance can help to determine the appropriate course of action.

  16. Wireless Acoustic Measurement System

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.


    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  17. Axillary temperature measurement: a less stressful alternative for hospitalised cats?

    Girod, M; Vandenheede, M; Farnir, F; Gommeren, K


    Rectal temperature measurement (RTM) can promote stress and defensive behaviour in hospitalised cats. The aim of this study was to assess if axillary temperature measurement (ATM) could be a reliable and less stressful alternative for these animals. In this prospective study, paired rectal and axillary temperatures were measured in 42 cats, either by a veterinarian or a student. To assess the impact of these procedures on the cat's stress state, their heart rate was checked and a cat stress score (CSS) was defined and graded from 1 (relaxed) to 5 (terrified). A moderate correlation was found between RTM and ATM (r=0.52; Pcats.

  18. Experimental Development of a Novel Stress Sensor for in situ Stress Measurement

    Polsky, Yarom [ORNL; Lance, Michael J [ORNL; Mattus, Catherine H [ORNL; Daniels, Ryan J [ORNL


    This paper will describe ongoing work to adapt a previously demonstrated method for measuring stress in ceramics to develop a borehole deployed in situ stress sensor. The method involves the use of a cementitious material which exhibits a strong piezo-spectroscopic stress response as a downhole stress gage. A description of the conceptual approach will be provided along with preliminary analysis and proof-of-concept laboratory results.

  19. Determination of moisture deficit and heat stress tolerance in corn using physiological measurements and a low-cost microcontroller-based monitoring system

    In the southern United States, corn production encounters moisture deficit coupled with high temperature stress, particularly during the reproductive stage of the plant. In evaluating plants for environmental stress tolerance, it is important to monitor changes in their physical environment under na...

  20. The measurement of in situ stress using NQR/NMR

    Schempp, E.; Murdoch, J. B.; Klainer, S. M.


    The measurement of stress in rocks underground is a difficult but very important problem in mining engineering and in the design of underground waste repositories. The structural stability of any excavation is critically dependent on the stress distribution in the surrounding rock and its capability to bear the stress, which can build up to hundreds of atmospheres in deep mines. Because existing methods for the determination of stress have limitations, Lawrence Berkeley Laboratory (LBL) has been investigating the use of spectroscopic techniques - nuclear quadrupole resonance (NQR) and nuclear magnetic resonance (NMR) - for rapid in situ measurements of three-dimensional stress in both salt and hard rock. Efforts in the past year have been directed toward computer simulation of boreholes stress patterns and NQR lineshapes, laboratory measurements on salt and aluminosilicates, and construction of a state-of-the-art pulsed NQR spectrometer.

  1. Measurment Of Residual Stress In Ferromagnetic Materials

    Namkung, Min; Yost, William T.; Kushnick, Peter W.; Grainger, John L.


    Magnetoacoustic (MAC) and magnetoacoustic emission (MAE) techniques combined to provide complete characterization of residual stresses in ferromagnetic structural materials. Combination of MAC and MAE techniques makes it possible to characterize residual tension and compression without being limited by surface conditions and unavailability of calibration standards. Significant in field of characterization of materials as well as detection of fatigue failure.

  2. Local residual stress measurements on nitride layers

    Mansilla, C.; Ocelik, V.; De Hosson, J. Th. M.


    In this work, local stresses in different nitrided maraging steel samples of high practical interest for industrial applications were studied through the so-called micro-slit milling method using a focused ion beam. The nitrogen concentration profiles were acquired by glow discharge optical emission

  3. Measurment Of Residual Stress In Ferromagnetic Materials

    Namkung, Min; Yost, William T.; Kushnick, Peter W.; Grainger, John L.


    Magnetoacoustic (MAC) and magnetoacoustic emission (MAE) techniques combined to provide complete characterization of residual stresses in ferromagnetic structural materials. Combination of MAC and MAE techniques makes it possible to characterize residual tension and compression without being limited by surface conditions and unavailability of calibration standards. Significant in field of characterization of materials as well as detection of fatigue failure.

  4. Investigations of some rock stress measuring techniques and the stress field in Norway

    Hanssen, Tor Harald


    Rock stresses are important to the safe construction and operation of all man-made structures in rock, whether In mining, civil or petroleum engineering. The crucial issue is their relative magnitude and orientation. This thesis develops equipment and methods for further rock stress assessment and reevaluates existing overcoring rock stress measurements, and relates this information to the present geological setting. Both laboratory work and field work are involved. In the field, rock stresses are measured by the overcoring and the hydraulic fracturing technique. An observation technique for assessing likely high stresses is developed. The field data refer to several hydropower projects and to some offshore hydrocarbon fields. The principal sections are: (1) Tectonic setting in the western Fennoscandia, (2) Triaxial rock stress measurements by overcoring using the NTH cell (a strain gauge cell developed at the Norwegian technical university in Trondheim and based on the CSIR cell of the South African Council for Scientific and Industrial Research), (3) Laboratory testing of the NTH cell, (4) Quality ranking of stresses measured by the NTH cell, (4) Recalculated rock stresses and implications to the regional stress field, (5) Hydraulic fracturing stress measurements. 113 refs., 98 figs., 62 tabs.

  5. Induction of systemic stress tolerance by brassinosteroid in Cucumis sativus.

    Xia, Xiao-Jian; Zhou, Yan-Hong; Ding, Ju; Shi, Kai; Asami, Tadao; Chen, Zhixiang; Yu, Jing-Quan


    • Brassinosteroids (BRs) are a new class of plant hormones that are essential for plant growth and development. Here, the involvement of BRs in plant systemic tolerance to biotic and abiotic stresses was studied. • The effects of 24-epibrassinolide (EBR) on plant stress tolerance were studied through the assessment of symptoms of photooxidative stress by chlorophyll fluorescence imaging pulse amplitude modulation, the analysis of gene expression using quantitative real-time PCR and the measurement of hydrogen peroxide (H₂O₂) production using a spectrophotometric assay or confocal laser scanning microscopy. • Treatment of primary leaves with EBR induced systemic tolerance to photooxidative stress in untreated upper and lower leaves. This was accompanied by the systemic accumulation of H₂O₂ and the systemic induction of genes associated with stress responses. Foliar treatment of EBR also enhanced root resistance to Fusarium wilt pathogen. Pharmacological study showed that EBR-induced systemic tolerance was dependent on local and systemic H₂O₂ accumulation. The expression of BR biosynthetic genes was repressed in EBR-treated leaves, but elevated significantly in untreated systemic leaves. Further analysis indicated that EBR-induced systemic induction of BR biosynthetic genes was mediated by systemically elevated H₂O₂. • These results strongly argue that local EBR treatment can activate the continuous production of H₂O₂, and the autopropagative nature of the reactive oxygen species signal, in turn, mediates EBR-induced systemic tolerance.

  6. Phase stress measurements in composite materials

    Akiniwa, Yoshiaki; Tanaka, Keisuke [Nagoya Univ. (Japan). School of Engineering


    Using an aluminum alloy composite containing 20 wt.% of SiC powder and an aluminum alloy itself, a phase stress under monoaxial tensile load was tested using x-ray and neutron methods, to compare both of them. For specimens, a 20 vol.% SiC powder reinforced aluminum alloy and an aluminum alloy itself were used. As a result, the following results could be obtained. Young`s modulus and Poisson ratio of the aluminum alloy itself using x-ray method were E=74.5 GPa and {nu}=0.312, respectively, and those using neutron method were E=75.3 GPa and {nu}=0.384, respectively. A relationship between loading stress and lattice strain of the aluminum alloy itself using neutron method was possible to approximate linearly by containing macroscopic plastic deformation region. The lattice strain of each phase in the composite increased proportionally with loading stress in its elastic region, but when remarkably increasing plastic deformation, the lattice strain decreased proportionally in aluminum phase and increased in SiC phase. (G.K.)

  7. Thermal microstructure measurement system

    Carver, Michael J. (Inventor)


    A thermal microstructure measurement system (TMMS) operates autonomously h its own internal power supply and telemeters data to a platform. A thermal array is mounted on a cross-braced frame designed to orient itself normal to existing currents with fixed sensor positioning bars protruding from the cross bars. A plurality of matched thermistors, conductivity probes and inclinometers are mounted on the frame. A compass and pressure transducer are contained in an electronics package suspended below the array. The array is deployed on a taut mooring below a subsurface float. Data are digitized, transmitted via cable to a surface buoy and then telemetered to the platform where the data is processed via a computer, recorded and/or displayed. The platform computer also sends commands to the array via telemetry.

  8. Stress Response of Granular Systems

    Ramola, Kabir; Chakraborty, Bulbul


    We develop a framework for stress response in two dimensional granular media, with and without friction, that respects vector force balance at the microscopic level. We introduce local gauge degrees of freedom that determine the response of contact forces between constituent grains on a given, disordered, contact network, to external perturbations. By mapping this response to the spectral properties of the graph Laplacian corresponding to the underlying contact network, we show that this naturally leads to spatial localization of forces. We present numerical evidence for localization using exact diagonalization studies of network Laplacians of soft disk packings. Finally, we discuss the role of other constraints, such as torque balance, in determining the stability of a granular packing to external perturbations.

  9. Stress Response of Granular Systems

    Ramola, Kabir; Chakraborty, Bulbul


    We develop a framework for stress response in two dimensional granular media, with and without friction, that respects vector force balance at the microscopic level. We introduce local gauge degrees of freedom that determine the response of contact forces between constituent grains on a given, disordered, contact network, to external perturbations. By mapping this response to the spectral properties of the graph Laplacian corresponding to the underlying contact network, we show that this naturally leads to spatial localization of forces. We present numerical evidence for localization using exact diagonalization studies of network Laplacians of soft disk packings. Finally, we discuss the role of other constraints, such as torque balance, in determining the stability of a granular packing to external perturbations.

  10. Motion sickness, stress and the endocannabinoid system.

    Alexander Choukèr

    Full Text Available BACKGROUND: A substantial number of individuals are at risk for the development of motion sickness induced nausea and vomiting (N&V during road, air or sea travel. Motion sickness can be extremely stressful but the neurobiologic mechanisms leading to motion sickness are not clear. The endocannabinoid system (ECS represents an important neuromodulator of stress and N&V. Inhibitory effects of the ECS on N&V are mediated by endocannabinoid-receptor activation. METHODOLOGY/PRINCIPAL FINDINGS: We studied the activity of the ECS in human volunteers (n = 21 during parabolic flight maneuvers (PFs. During PFs, microgravity conditions (<10(-2 g are generated for approximately 22 s which results in a profound kinetic stimulus. Blood endocannabinoids (anandamide and 2-arachidonoylglycerol, 2-AG were measured from blood samples taken in-flight before start of the parabolic maneuvers, after 10, 20, and 30 parabolas, in-flight after termination of PFs and 24 h later. Volunteers who developed acute motion sickness (n = 7 showed significantly higher stress scores but lower endocannabinoid levels during PFs. After 20 parabolas, blood anandamide levels had dropped significantly in volunteers with motion sickness (from 0.39+/-0.40 to 0.22+/-0.25 ng/ml but increased in participants without the condition (from 0.43+/-0.23 to 0.60+/-0.38 ng/ml resulting in significantly higher anandamide levels in participants without motion sickness (p = 0.02. 2-AG levels in individuals with motion sickness were low and almost unchanged throughout the experiment but showed a robust increase in participants without motion sickness. Cannabinoid-receptor 1 (CB1 but not cannabinoid-receptor 2 (CB2 mRNA expression in leucocytes 4 h after the experiment was significantly lower in volunteers with motion sickness than in participants without N&V. CONCLUSIONS/SIGNIFICANCE: These findings demonstrate that stress and motion sickness in humans are associated with impaired endocannabinoid

  11. Measuring depth profiles of residual stress with Raman spectroscopy

    Enloe, W.S.; Sparks, R.G.; Paesler, M.A.


    Knowledge of the variation of residual stress is a very important factor in understanding the properties of machined surfaces. The nature of the residual stress can determine a part`s susceptibility to wear deformation, and cracking. Raman spectroscopy is known to be a very useful technique for measuring residual stress in many materials. These measurements are routinely made with a lateral resolution of 1{mu}m and an accuracy of 0.1 kbar. The variation of stress with depth; however, has not received much attention in the past. A novel technique has been developed that allows quantitative measurement of the variation of the residual stress with depth with an accuracy of 10nm in the z direction. Qualitative techniques for determining whether the stress is varying with depth are presented. It is also demonstrated that when the stress is changing over the volume sampled, errors can be introduced if the variation of the stress with depth is ignored. Computer aided data analysis is used to determine the depth dependence of the residual stress.

  12. Stress measurement in thick plates using nonlinear ultrasonics

    Abbasi, Zeynab, E-mail:, E-mail:; Ozevin, Didem, E-mail:, E-mail: [University of Illinois at Chicago, Civil and Materials Engineering, 842 W Taylor Street ERF 2095, Chicago, IL 60607 (United States)


    In this paper the interaction between nonlinear ultrasonic characteristics and stress state of complex loaded thick steel plates using fundamental theory of nonlinear ultrasonics is investigated in order to measure the stress state at a given cross section. The measurement concept is based on phased array placement of ultrasonic transmitter-receiver to scan three angles of a given cross section using Rayleigh waves. The change in the ultrasonic data in thick steel plates is influenced by normal and shear stresses; therefore, three measurements are needed to solve the equations simultaneously. Different thickness plates are studied in order to understand the interaction of Rayleigh wave penetration depth and shear stress. The purpose is that as the thickness becomes smaller, the shear stress becomes negligible at the angled measurement. For thicker cross section, shear stress becomes influential if the depth of penetration of Rayleigh wave is greater than the half of the thickness. The influences of plate thickness and ultrasonic frequency on the identification of stress tensor are numerically studied in 3D structural geometry and Murnaghan material model. The experimental component of this study includes uniaxial loading of the plate while measuring ultrasonic wave at three directions (perpendicular, parallel and angled to the loading direction). Instead of rotating transmitter-receiver pair for each test, a device capable of measuring the three angles is designed.

  13. Stress measurement in thick plates using nonlinear ultrasonics

    Abbasi, Zeynab; Ozevin, Didem


    In this paper the interaction between nonlinear ultrasonic characteristics and stress state of complex loaded thick steel plates using fundamental theory of nonlinear ultrasonics is investigated in order to measure the stress state at a given cross section. The measurement concept is based on phased array placement of ultrasonic transmitter-receiver to scan three angles of a given cross section using Rayleigh waves. The change in the ultrasonic data in thick steel plates is influenced by normal and shear stresses; therefore, three measurements are needed to solve the equations simultaneously. Different thickness plates are studied in order to understand the interaction of Rayleigh wave penetration depth and shear stress. The purpose is that as the thickness becomes smaller, the shear stress becomes negligible at the angled measurement. For thicker cross section, shear stress becomes influential if the depth of penetration of Rayleigh wave is greater than the half of the thickness. The influences of plate thickness and ultrasonic frequency on the identification of stress tensor are numerically studied in 3D structural geometry and Murnaghan material model. The experimental component of this study includes uniaxial loading of the plate while measuring ultrasonic wave at three directions (perpendicular, parallel and angled to the loading direction). Instead of rotating transmitter-receiver pair for each test, a device capable of measuring the three angles is designed.

  14. Comparing measured with simulated vertical soil stress under vehicle load

    Keller, Thomas; Lamandé, Mathieu; Arvidsson, Johan;

    in the soil profile at 0.3, 0.5 and 0.7 m depth was measured during wheeling at field capacity on five soils (13-66% clay). Stress propagation was then simulated with the semi-analytical model, using vertical stress at 0.1 m depth estimated from tyre characteristics as upper boundary condition, and v...

  15. Comparing measured with simulated vertical soil stress under vehicle load

    Keller, Thomas; Lamandé, Mathieu; Arvidsson, Johan

    in the soil profile at 0.3, 0.5 and 0.7 m depth was measured during wheeling at field capacity on five soils (13-66% clay). Stress propagation was then simulated with the semi-analytical model, using vertical stress at 0.1 m depth estimated from tyre characteristics as upper boundary condition, and v...

  16. Transient water stress in a vegetation canopy - Simulations and measurements

    Carlson, Toby N.; Belles, James E.; Gillies, Robert R.


    Consideration is given to observational and modeling evidence of transient water stress, the effects of the transpiration plateau on the canopy radiometric temperature, and the factors responsible for the onset of the transpiration plateau, such as soil moisture. Attention is also given to the point at which the transient stress can be detected by remote measurement of surface temperature.

  17. Measurement of spatial stress gradients near grain boundaries

    Basu, Indranil; Ocelík, Vaclav; De Hosson, Jeff Th M.


    A correlative method based on electron back scattered diffraction and focused ion-beam–digital image correlation slit milling technique was used to quantitatively determine spatially resolved stress profiles in the vicinity of grain boundaries in pure titanium. Measured local stress gradients were

  18. 3D Tyre/Road pavement contact stress measurements

    De Beer, Morris


    Full Text Available The CSIR’s proprietary Stress-in-Motion (SIM) measurements provide rational descriptions of 1D, 2D and 3D tyre/road pavement stresses for: Road pavement design testing and evaluation, as well as tyre design, testing and evaluation....

  19. Oxidative stress and the ageing endocrine system.

    Vitale, Giovanni; Salvioli, Stefano; Franceschi, Claudio


    Ageing is a process characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-related diseases and death. Several hundred theories have attempted to explain this phenomenon. One of the most popular is the 'oxidative stress theory', originally termed the 'free radical theory'. The endocrine system seems to have a role in the modulation of oxidative stress; however, much less is known about the role that oxidative stress might have in the ageing of the endocrine system and the induction of age-related endocrine diseases. This Review outlines the interactions between hormones and oxidative metabolism and the potential effects of oxidative stress on ageing of endocrine organs. Many different mechanisms that link oxidative stress and ageing are discussed, all of which converge on the induction or regulation of inflammation. All these mechanisms, including cell senescence, mitochondrial dysfunction and microRNA dysregulation, as well as inflammation itself, could be targets of future studies aimed at clarifying the effects of oxidative stress on ageing of endocrine glands.

  20. Measuring Stress and Ability to Recover from Stress with Salivary Alpha-Amylase Levels


    to be resilient. So what is salivary alpha amylase ? To start, an amylase is enzyme in the body that hydrolyzes starch (breaks it down) into...Ability to Recover from Stress with Salivary α- Amylase Levels Authors Brandon L. Mulrine Michael F. Sheehan Lolita M. Burrell Michael...TITLE AND SUBTITLE Measuring Stress and Ability to Recover from Stress with Salivary Alpha Amylase Levels 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  1. High precision stress measurements in semiconductor structures by Raman microscopy

    Uhlig, Benjamin


    Stress in silicon structures plays an essential role in modern semiconductor technology. This stress has to be measured and due to the ongoing miniaturization in today's semiconductor industry, the measuring method has to meet certain requirements. The present thesis deals with the question how Raman spectroscopy can be used to measure the state of stress in semiconductor structures. In the first chapter the relation between Raman peakshift and stress in the material is explained. It is shown that detailed stress maps with a spatial resolution close to the diffraction limit can be obtained in structured semiconductor samples. Furthermore a novel procedure, the so called Stokes-AntiStokes-Difference method is introduced. With this method, topography, tool or drift effects can be distinguished from stress related influences in the sample. In the next chapter Tip-enhanced Raman Scattering (TERS) and its application for an improvement in lateral resolution is discussed. For this, a study is presented, which shows the influence of metal particles on the intensity and localization of the Raman signal. A method to attach metal particles to scannable tips is successfully applied. First TERS scans are shown and their impact on and challenges for high resolution stress measurements on semiconductor structures is explained. (orig.)

  2. Ultrasonic measurement of residual stress in shot peened aluminum alloy

    Lavrentyev, Anton I.; Veronesi, William A.


    Shot peening is a well-known method for extending the fatigue life of metal components by introducing compressive residual stresses near their surfaces. The capability to non-destructively evaluate the near surface residual stress would greatly aid the assurance of proper fatigue life in shot-peened components. This paper addresses issues encountered in near-surface residual stress measurement by an ultrasonic surface wave method. In this method, a variation of ultrasonic surface wave speed with shot peening intensity is measured. Since the effective wave penetration depth inversely related to the excitation frequency, by making measurements at different frequencies, the method has the potential to provide the stress-depth profile. Experiments were conducted on aluminum specimens (alloy 7075-T7351) peened within the Almen peening intensity from 4A-16A. Several factors were found to contribute to the measured responses: surface roughness, near surface texture change, dislocation density increase and residual stress. In this paper, the contributions of residual stress, dislocation density and surface roughness to the overall effect are separately estimated. It is shown that the experimentally observed velocity change in shot peened samples is dominated by the effect of surface roughness while the role of residual stress is much smaller.

  3. Residual stress measurements with barkhausen noise in power plant creep failure analysis

    Karvonen, I. [CoMoTest Oy, Maentsaelae (Finland)] Suominen, L. [Stresstech Oy, Jyvaeskylae (Finland)


    Continuously developing power and process industry needs predictive maintenance inspection methods in order to prevent failures with correctly timed and properly specified measures. Materials` monitoring has traditionally been non-destructive inspection to detect growing cracks or other deficiencies. Recently, after the development of portable stress measurement systems, some advances has been reached. Based on stress anomalies due to creep, fatigue or corrosion, new applications have been found in the use of Barkhausen noise inspection. When the Barkhausen noise findings have been simultaneously confirmed with other stress measuring methods, a wider acceptance of the application of the method can be proposed. (orig.) 7 refs.

  4. Measuring stress variation with depth using Barkhausen signals

    Kypris, O.; Nlebedim, I. C.; Jiles, D. C.


    Magnetic Barkhausen noise analysis (BNA) is an established technique for the characterization of stress in ferromagnetic materials. An important application is the evaluation of residual stress in aerospace components, where shot-peening is used to strengthen the part by inducing compressive residual stresses on its surface. However, the evaluation of the resulting stress-depth gradients cannot be achieved by conventional BNA methods, where signals are interpreted in the time domain. The immediate alternative of using x-ray diffraction stress analysis is less than ideal, as the use of electropolishing to remove surface layers renders the part useless after inspection. Thus, a need for advancing the current BNA techniques prevails. In this work, it is shown how a parametric model for the frequency spectrum of Barkhausen emissions can be used to detect variations of stress along depth in ferromagnetic materials. Proof of concept is demonstrated by inducing linear stress-depth gradients using four-point bending, and fitting the model to the frequency spectra of measured Barkhausen signals, using a simulated annealing algorithm to extract the model parameters. Validation of our model suggests that in bulk samples the Barkhausen frequency spectrum can be expressed by a multi-exponential function with a dependence on stress and depth. One practical application of this spectroscopy method is the non-destructive evaluation of residual stress-depth profiles in aerospace components, thus helping to prevent catastrophic failures.

  5. Stress

    ... diabetes. Your Stress-Free System for Family Dinners! - 2017-03-book-oclock-scramble.html Your Stress-Free System for Family Dinners! A year of delicious meals to help prevent ...

  6. Secondary traumatisation and systemic traumatic stress.

    Klarić, Miro; Kvesić, Ante; Mandić, Vjekoslav; Petrov, Božo; Frančišković, Tanja


    Traditionally, research has been focused on the development of symptoms in direct trauma survivors. However, during the last two decades researchers and clinicians have started exploring the way individual traumatic stress exposure affects trauma victims' spouses, children and professional caregivers. Studying trauma within the family is a part of what is called systemic traumatology, a study of groups, institutions and other human systems that show stress reactions directly caused by a traumatic event or series of events. The effect of an individual's traumatic stress on family members and on persons in direct contact is conceptualized as secondary traumatisation. In its narrow sense, secondary traumatisation involves a transfer of nightmares, intrusive thoughts, flashbacks and other Posttraumatic Stress Disorder symptoms, which are typically experienced by individuals suffering from PTSD, onto their immediate surroundings. In its broader sense, the term refers to any kind of distress transfer from a trauma victim to their immediate surroundings, and includes a broad spectrum of distress manifestation along with that resembling Posttraumatic Stress Disorder. Beyond that, a family member's PTSD is potentially transferable to subsequent generations, interfering with the psychological development of children.

  7. Perceived stress, recurrent pain, and aggregate salivary cortisol measures in mid-adolescent girls and boys.

    Lindfors, Petra; Folkesson Hellstadius, Lisa; Östberg, Viveca


    Measures of perceived stress have been criticized for theoretical inconsistency. However, the validated pressure activation stress scale has been suggested as a theoretically sound alternative. But it is unclear how pressure and activation stress relate to objective and subjective measures including commonly used aggregate cortisol measures and health complaints respectively. Specifically, this study aimed at investigating how pressure and activation stress were related to aggregate salivary cortisol measures and recurrent pain in mid-adolescent girls and boys. Mid-adolescents (119 girls and 56 boys) provided self-reports in questionnaires on activation and pressure stress and recurrent pain (headache, stomach ache, neck/shoulder and back pain). Additionally, adolescents sampled saliva during an ordinary school day: (1) immediately at awakening; (2) 30 minutes after waking up; (3) 60 minutes after waking up, and (4) at 8 p.m. These samples were analyzed for cortisol. Hierarchical regressions showed no statistically significant associations between activation and pressure stress and cortisol, neither for girls nor for boys. However, activation and pressure stress were significantly associated with recurrent pain but only for girls. The findings may relate to subjective and objective measures reflecting distinct aspects of stress-related functioning. However, the study participants included mid-adolescents whose bodily systems are flexible and still relatively unaffected by the strain of their daily stress perceptions. To conclude, the non-significant relationships between activation and pressure stress and commonly used aggregate measures of cortisol adds to the understanding of how perceived stress may relate to physiological functioning in the daily life of adolescents when using such aggregate measures.

  8. An ultrasonic technique for measuring stress in fasteners

    Stevens, K. J.; Day, P.; Byron, D.


    High temperature bolting alloys are extensively used in the thermal power generation industry as for example, reheat ESV and Governor valve studs. Remnant life assessment methodologies and plant maintenance procedures require the monitoring of the operational stress levels in these fasteners. Some conventional ultrasonic techniques require longitudinal wave measurements to be undertaken when the nut on the bolt is loosened and then re-tightened. Other techniques use a combination of shear waves and longitudinal waves. In this paper, the problems and pitfalls associated with various ultrasonic techniques for measuring stress in bolts, is discussed. An ultrasonic technique developed for measuring the stress in Durehete 1055 bolts is presented. Material from a textured rolled bar has been used as a test bed in the development work. The technique uses shear wave birefringence and compression waves at several frequencies to measure texture, fastener length and the average stress. The technique was developed by making ultrasonic measurements on bolts tensioned in universal testing machines and a hydraulic nut. The ultrasonic measurements of residual stress have been checked against strain gauge measurements. The Durehete bolts have a hollow cylinder geometry of restricted dimensions, which significantly alters compression and shear wave velocities from bulk values and introduces hoop stresses which can be measured by rotating the polarization of the shear wave probe. Modelling of the experimental results has been undertaken using theories for the elastic wave propagation through waveguides. The dispersion equations allow the velocity and length of the fastener to be measured ultrasonically in some situations where the length of the fastener can not be measured directly with a vernier caliper or micrometer and/or where it is undesirable to loosen nuts to take calibration readings of the shear and compression wave velocities.

  9. Systems Measures of Water Distribution System Resilience

    Klise, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murray, Regan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements to water distribution system modeling tools.

  10. Buried wire gage for wall shear stress measurements

    Murthy, V. S.; Rose, W. C.


    A buried wire gage for measuring wall shear stress in fluid flow was studied and further developed. Several methods of making this relatively new type of gage were examined to arrive at a successful technique that is well-suited for wind-tunnel testing. A series of measurements was made to demonstrate the adequacy of a two-point calibration procedure for these gages. The buried wire gage is also demonstrated to be ideally suited for quantitative measurement of wall shear stress in wind-tunnel testing.

  11. Measuring occupational stress: development of the pressure management indicator.

    Williams, S; Cooper, C L


    The study of occupational stress is hindered by the lack of compact and comprehensive standardized measurement tools. The Pressure Management Indicator (PMI) is a 120-item self-report questionnaire developed from the Occupational Stress Indicator (OSI). The PMI is more reliable, more comprehensive, and shorter than the OSI. It provides an integrated measure of the major dimensions of occupational stress. The outcome scales measure job satisfaction, organizational satisfaction, organizational security, organizational commitment, anxiety--depression, resilience, worry, physical symptoms, and exhaustion. The stressor scales cover pressure from workload, relationships, career development, managerial responsibility, personal responsibility, home demands, and daily hassles. The moderator variables measure drive, impatience, control, decision latitude, and the coping strategies of problem focus, life work balance, and social support.

  12. Measurement System and Calibration report

    Kock, Carsten Weber; Vesth, Allan

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A major part of the sensors has been installed by others (see [1]) the rest of the sensors have been installed by DTU. The results of the measurements, described in this report...

  13. Measurement System and Calibration report

    Gómez Arranz, Paula; Villanueva, Héctor

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A major part of the sensors has been installed by others (see [1]) the rest of the sensors have been installed by DTU. The results of the measurements, described in this repor...

  14. Residual stress measurement in silicon sheet by shadow moire interferometry

    Kwon, Y.; Danyluk, S.; Bucciarelli, L.; Kalejs, J. P.


    A shadow moire interferometry technique has been developed to measure residual strain in thin silicon sheet. The curvature of a segment of sheet undergoing four-point bending is analyzed to include the applied bending moments, the in-plane residual stresses, and the 'end effect' of the sheet since it is of finite length. The technique is applied to obtain residual stress distributions for silicon sheet grown by the edge-defined film-fed growth technique.

  15. Measuring Propellant Stress Relaxation Modulus Using Dynamic Mechanical Analyzer


    P. N., Singh, P. P., and Bhattacharya, B., “Determination of Activation Energy of Relaxation Events in Composite Solid Propellants by Dynamic...Article 3. DATES COVERED (From - To) 04 August 2016 – 29 March 2017 4. TITLE AND SUBTITLE Measuring Propellant Stress Relaxation Modulus Using Dynamic...ERC 14. ABSTRACT A method for determining the stress relaxation master curve of solid rocket propellants was developed. The propellant was tested in

  16. Phosphate-dependent root system architecture responses to salt stress

    Kawa, Dorota


    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  17. Measuring residual stress in ceramic zirconia-porcelain dental crowns by nanoindentation.

    Zhang, Y; Allahkarami, M; Hanan, J C


    Residual stress plays a critical role in failure of ceramic dental crowns. The magnitude and distribution of residual stress in the crown system are largely unknown. Determining the residual stress quantitatively is challenging since the crown has such complex contours and shapes. This work explored the feasibility and validity of measuring residual stress of zirconia and porcelain in ceramic crowns by nanoindentation. Nanoindentation tests were performed on the cross-section of a crown for both porcelain and zirconia along four critical locations: the thickest, thinnest and medium porcelain thicknesses. Zirconia and porcelain pieces, chipped off from the crown and annealed at 400 °C, were used as reference samples. The residual stress was determined by comparing the measured hardness of the stressed sample with that of the reference sample. Nanoindentation impression images were acquired through a scanning probe microscope (SPM) equipped with a Hysitron Triboindenter. Zirconia showed large pile-up. Residual stress is determined along the thickness of crowns at the chosen locations for both porcelain and zirconia. The measured results were compared with the results from X-ray diffraction (XRD) and finite element modeling (FEM). Results show there are large amounts of residual stresses in the dental crown and their magnitude differs between locations due to the complex shape of the crown. The average residual stress readings were as high as -637 MPa and 323 MPa for zirconia and porcelain respectively.

  18. Measurement Systems Advisory Group


    noted with the aluminum wire used in the lacing. For these reasons the tests were concluded and deemed unsatisfactory. The second system tested was an...vehicle for "bringing many particulate pollutants into contact with the tape or magnetic heads, e.g., from deodorant spray powders, face powder and

  19. Measuring name system health

    Casalicchio, Emiliano; Caselli, M.; Coletta, Alessio; Di Blasi, Salvatore; Fovino, Igor Nai; Butts, Jonathan; Shenoi, Sujeet


    Modern critical infrastructure assets are exposed to security threats arising from their use of IP networks and the Domain Name System (DNS). This paper focuses on the health of DNS. Indeed, due to the increased reliance on the Internet, the degradation of DNS could have significant consequences for

  20. Measuring name system health

    Casalicchio, Emiliano; Caselli, Marco; Coletta, Alessio; Di Blasi, Salvatore; Fovino, Igor Nai; Butts, Jonathan; Shenoi, Sujeet


    Modern critical infrastructure assets are exposed to security threats arising from their use of IP networks and the Domain Name System (DNS). This paper focuses on the health of DNS. Indeed, due to the increased reliance on the Internet, the degradation of DNS could have significant consequences for

  1. Eddy Correlation Flux Measurement System

    Oak Ridge National Laboratory — The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat,...

  2. Molecular force sensors to measure stress in cells

    Prabhune, Meenakshi; Rehfeldt, Florian; Schmidt, Christoph F.


    Molecularly generated forces are essential for most activities of biological cells, but also for the maintenance of steady state or homeostasis. To quantitatively understand cellular dynamics in migration, division, or mechanically guided differentiation, it will be important to exactly measure stress fields within the cell and the extracellular matrix. Traction force microscopy and related techniques have been established to determine the stress transmitted from adherent cells to their substrates. However, different approaches are needed to directly assess the stress generated inside the cell. This has recently led to the development of novel molecular force sensors. In this topical review, we briefly mention methods used to measure cell-external forces, and then summarize and explain different designs for the measurement of cell-internal forces with their respective advantages and disadvantages.

  3. Normal stress measurement via image analysis of interfacial deformation

    Lowry, Brian; Höpfl, Wolfgang


    The first coefficient of normal stress in polymer solutions is determined via image analysis. The method measures pointwise normal stresses along a sheared liquid-liquid interface. In the case of a steady rotating liquid bridge, the deformation of the interface is strictly due to normal stress swelling effects. In our experiments, a cylindrical liquid bridge of polystyrene solution rotates in a cylindrical bath filled with a glycerol-water solution of similar density. The shape of the interface and the jump in normal stress across the interface are determined using pressure-stress image analysis (P-SIA) from high resolution digital images. The stress resolution is better than 0.1 Pa at the free interface. The polystyrene solution exhibits a normal stress at the interface which grows with the square of the rotation rate. This effect is absent for Newtonian liquids, and is in excellent agreement with the ideal low shear behaviour of polymer solutions. Small density differences between the liquids are taken into consideration, showing that centrifugal effects are negligible. This method is potentially an excellent alternative to classical rheometry at low shear rates.

  4. Measuring short-term stress in birds: Comparing different endpoints of the endocrine-immune interface.

    Huber, Nikolaus; Fusani, Leonida; Ferretti, Andrea; Mahr, Katharina; Canoine, Virginie


    -term stress in captive house sparrows and as promising for other bird species. Collectively the study highlights the necessity to incorporate a range of physiological systems and their endpoints to measure and to assess stress reactions effectively. Copyright © 2017. Published by Elsevier Inc.

  5. Measured Resolved Shear Stresses and Bishop Hill Stress States in Individual Grains of Austenitic Stainless Steel (Postprint)


    Activation of a slip system requires that it is critically stressed , i.e. that the shear stress resolved on the slip system exceeds a threshold...increment. A direct way of investigating which slip systemsmay be active in each grain is to investigate the stress state of the grain. From...correlation (DIC) system [29] and a load cell. The stress - strain curve in Fig. 1b) presents the maximum stress reading after each loading step. Relaxation

  6. Neutron diffraction facility for internal stress measurements at JAERI

    Tsuchiya, Yoshinori; Minakawa, Nobuaki; Morii, Yukio [Japan Atomic Energy Research Inst., Tokyo (Japan)


    The Neutron Diffractometer for Residual Stress Analysis (RESA) is a two axis type neutron diffractometer with a goniometer controllable to specimen position in high precision for spatial distribution measurement of residual stress and with one- and zero-dimensional detectors, and has a characteristics of providing a pin-hole type neutron ray diaphragm to obtain local informations of the specimen. It is elucidated from the reported examples that the RESA in JAERI has a capacity of sufficient detection to a local strain with 10{sup -3} to 10{sup -4}. The residual stress measurement in JAERI is just in beginning state, and has many necessities to do a lot of trial measurements on various materials in future. And, when finishing the construction of pulsed neutron source under planning in JAERI, it can be expected to realize a neutron intensity of more than one hundred for the residual stress measurement and to construct a powerful measurement instrument in combination with introduction of testing method for TOF. (G.K.)

  7. Improving Earthquake Stress Drop Measurements - What can we Really Resolve?

    Abercrombie, R. E.; Bannister, S. C.; Fry, B.; Ruhl, C. J.; Kozlowska, M.


    Earthquake stress drop is fundamental to understanding the physics of the rupture process. Although it is superficially simple to calculate an estimate of stress drop from the corner frequency of the radiated spectrum, it is much harder to be certain that measurements are reliable and accurate. The same is true of other measurements of stress drop and radiated energy. The large number of studies of earthquake stress drop, the high variability in results (~0.1-100 MPa), the large uncertainties, and the ongoing scaling controversy are evidence for this. We investigate the resolution and uncertainties of stress drops calculated using an empirical Green's function (EGF) approach. Earthquakes in 3 sequences at Parkfield, California are recorded by multiple borehole stations and have abundant smaller earthquakes to use as EGFs (Abercrombie, 2014). The earthquakes in the largest magnitude cluster (M~2.1) exhibit clear temporal variation of stress drop. Independent studies obtained a similar pattern implying that it is resolvable for these well-recorded, simple sources. The borehole data reveal a similar temporal pattern for another sequence, not resolvable in an earlier study using surface recordings. The earthquakes in the third sequence have complex sources; corner frequency measurements for this sequence are highly variable and poorly resolved. We use the earthquakes in the first cluster to quantify the uncertainties likely to arise in less optimal settings. The limited signal bandwidth and the quality of the EGF assumption are major sources of error. Averaging across multiple stations improves the resolution, as does using multiple good EGFs (Abercrombie, 2015). We adapt the approach to apply to larger data sets. We focus on New Zealand, with the aim of resolving stress drop variability in a variety of tectonic settings. We investigate stacking over stations and multiple EGFs, and compare earthquakes (M~3-6) from both the overlying and the subducting plates.

  8. The Acute Effect of Aerobic Exercise on Measures of Stress.

    Fort, Inza L.; And Others

    The immediate response of stress to aerobic exercise was measured by utilizing the Palmar Sweat Index (PSI) and the State-Trait Anxiety Inventory (STAI). Forty subjects (20 male and 20 female) from the ages of 18-30 sustained a single bout of aerobic activity for 30 minutes at 60 percent of their maximum heart rate. Pre-treatment procedures…

  9. Principles of the measurement of residual stress by neutron diffraction

    Webster, G.A.; Ezeilo, A.N. [Imperial Coll. of Science and Technology, London (United Kingdom). Dept. of Mechanical Engineering


    The presence of residual stresses in engineering components can significantly affect their load carrying capacity and resistance to fracture. In order to quantify their effect it is necessary to know their magnitude and distribution. Neutron diffraction is the most suitable method of obtaining these stresses non-destructively in the interior of components. In this paper the principles of the technique are described. A monochromatic beam of neutrons, or time of flight measurements, can be employed. In each case, components of strain are determined directly from changes in the lattice spacings between crystals. Residual stresses can then be calculated from these strains. The experimental procedures for making the measurements are described and precautions for achieving reliable results discussed. These include choice of crystal planes on which to make measurements, extent of masking needed to identify a suitable sampling volume, type of detector and alignment procedure. Methods of achieving a stress free reference are also considered. A selection of practical examples is included to demonstrate the success of the technique. (author) 14 figs., 1 tab., 18 refs.

  10. Measuring mechanical stresses on inserts during injection molding

    Martina Heinle


    Full Text Available Assembly molding presents an interesting approach to innovative product solutions. Here, individual components can be simultaneously positioned, affixed, and provided with a casing. However, while overmolding elements in the mold cavity with hot polymer melt, high mechanical loads occur on, in some cases, very sensitive components such as electronic devices. For the design of such systems, it is important to know these stresses, the influences on their quantities, and mathematical options for their prediction. In this article, a new measurement method for determining the forces acting on a small element in the cavity during the injection molding process in three dimensions is presented. Therefore, a new installation method for a force sensor was developed. The results in this article concentrate on force changes during one molding cycle. Our research shows that there are different mechanical load spectra in the different phases of the molding process. For example, the force component in flow direction on an element in the cavity is positive in the direction of the flow during filling. However, after the filling step, the force becomes negative due to the contraction of the injected material and results in a continuously increasing permanent force.

  11. New measurement technology for diagnostic evaluation of stress and deformation states in building objects

    Kollataj, Robert; Kollataj, Jerzy


    This paper presents a new wireless measurement method for static and dynamic examination of buildings, bridges, masts, towers, steel structures, silos etc. by using new generation telemetric modules operating in intelligent radio network. The system provides a possibility of steel and reinforced concrete structures evaluation by measurement of mechanical stresses, deformation and temperature - depending on used sensor. Developed and built prototype system can be used for the on line monitoring, quality assessment and the usefulness of the building objects over long time periods.

  12. Measurement of in-situ stress in salt and rock using NQR techniques

    Schempp, E.; Hirschfeld, T.; Klainer, S.


    A discussion of how stress and strain affect the quantities which can be measured in an NQR experiment shows that, for stresses of the magnitude to be expected at depths up to about 10,000 feet, quadrupole coupling constants will fall in the range of 1 to 10 kHz for both the sodium and chloride ions in NaCl. The most promising system involves pulsed nuclear double resonance detection; and alterative is to observe the quadrupolar splitting of the NMR signal. Choices to be made in the measurement and mapping techniques are discussed. The well-known perturbation of the homogenous stress field in the neighborhood of a borehole is shown to be advantageous from the point of view of obtaining directional information on the stress. Construction and operation of a borehole stress sensor are considered. The NQR technique seems feasible for measuring the magnitude and direction of underground stress with a resolution of about 25 psi, or 2.5% at 1000 psi. Downhole instrumentation suitable for in-situ determinations of stress appears within the state of the art. Additional tasks required on the project are identified.

  13. Carbon Dioxide Flux Measurement Systems

    Oak Ridge National Laboratory — The Southern Great Plains (SGP) carbon dioxide flux (CO2 flux) measurement systems provide half-hour average fluxes of CO2, H2O (latent heat), and sensible heat. The...

  14. Linear and nonlinear modulus surfaces in stress space, from stress-strain measurements on Berea sandstone

    M. Boudjema


    Full Text Available The elastic response of many rocks to quasistatic stress changes is highly nonlinear and hysteretic, displaying discrete memory. Rocks also display unusual nonlinear response to dynamic stress changes. A model to describe the elastic behavior of rocks and other consolidated materials is called the Preisach-Mayergoyz (PM space model. In contrast to the traditional analytic approach to stress-strain, the PM space picture establishes a relationship between the quasistatic data and a number density of hysteretic mesoscopic elastic elements in the rock. The number density allows us to make quantitative predictions of dynamic elastic properties. Using the PM space model, we analyze a complex suite of quasistatic stress-strain data taken on Berea sandstone. We predict a dynamic bulk modulus and a dynamic shear modulus surface as a function of mean stress and shear stress. Our predictions for the dynamic moduli compare favorably to moduli derived from time of flight measurements. We derive a set of nonlinear elastic constants and a set of constants that describe the hysteretic behavior of the sandstone.

  15. Raman microprobe measurements of stress in ion implanted materials

    Nugent, K.W.; Prawer, S.; Weiser, P.S.; Dooley, S.P. [Melbourne Univ., Parkville, VIC (Australia). School of Physics


    Raman microprobe measurements of ion implanted diamond and silicon have shown significant shifts in the Raman line due to stresses in the materials. The Raman line shifts to higher energy if the stress is compressive and to lower energy for tensile stress{sup 1}. The silicon sample was implanted in a 60 {mu}m square with 2.56 x 10{sup 17} ions per square centimeter of 2 MeV Helium. This led to the formation of raised squares with the top 370mm above the original surface. In Raman studies of silicon using visible light, the depth of penetration of the laser beam into the sample is much less than one micron. It was found that the Raman line is due to the silicon overlying the damage region. The diamond sample was implanted with 2 x 10{sup 15} ions per square centimeter of 2.8 MeV carbon. It was concluded that the Raman spectrum could provide information concerning both the magnitude and the direction of stress in an ion implanted sample. It was possible in some cases to determine whether the stress direction is parallel or perpendicular to the sample surface. 1 refs., 2 figs.

  16. Stress Rupture Life Reliability Measures for Composite Overwrapped Pressure Vessels

    Murthy, Pappu L. N.; Thesken, John C.; Phoenix, S. Leigh; Grimes-Ledesma, Lorie


    Composite Overwrapped Pressure Vessels (COPVs) are often used for storing pressurant gases onboard spacecraft. Kevlar (DuPont), glass, carbon and other more recent fibers have all been used as overwraps. Due to the fact that overwraps are subjected to sustained loads for an extended period during a mission, stress rupture failure is a major concern. It is therefore important to ascertain the reliability of these vessels by analysis, since the testing of each flight design cannot be completed on a practical time scale. The present paper examines specifically a Weibull statistics based stress rupture model and considers the various uncertainties associated with the model parameters. The paper also examines several reliability estimate measures that would be of use for the purpose of recertification and for qualifying flight worthiness of these vessels. Specifically, deterministic values for a point estimate, mean estimate and 90/95 percent confidence estimates of the reliability are all examined for a typical flight quality vessel under constant stress. The mean and the 90/95 percent confidence estimates are computed using Monte-Carlo simulation techniques by assuming distribution statistics of model parameters based also on simulation and on the available data, especially the sample sizes represented in the data. The data for the stress rupture model are obtained from the Lawrence Livermore National Laboratories (LLNL) stress rupture testing program, carried out for the past 35 years. Deterministic as well as probabilistic sensitivities are examined.

  17. Strain Measurement Using FBG on COPV in Stress Rupture Test

    Banks, Curtis; Grant, Joseph


    White Sands Test Facility (WSTF) was requested to perform ambient temperature hydrostatic pressurization testing of a Space Transportation System (STS) 40-in. Kevlar Composite Overwrapped Pressure Vessel (COPV). The 40-in. vessel was of the same design and approximate age as the STS Main Propulsion System (MPS) and Orbiter Maneuvering System (OMS) vessels. The NASA Engineering Safety Center (NESC) assembled a team of experts and conducted an assessment that involved a review of national Kevlar COPY data. During the review, the STS COPVs were found to be beyond their original certification of ten years. The team observed that the likelihood of STS COPV Stress rupture, a catastrophic burst before leak failure mode, was greater than previously believed. Consequently, a detailed assessment of remaining stress rupture life became necessary. Prior to STS-114, a certification deviation was written for two flights of OV-103 (Discovery) and OV-104 (Atlantis) per rationale that was based on an extensive review of the Lawrence Livermore National Laboratories, COPV data, and revisions to the STS COPV stress levels. In order to obtain flight rationale to extend the certification deviation through the end of the Program, the Orbiter Project Office has directed an interagency COPV team to conduct further testing and analysis to investigate conservatism in the stress rupture model and evaluate material age degradation. Additional analysis of stress rupture life requires understanding the fiber stresses including stress that occurs due to thru-wall composite compression in COPV components. Data must be obtained at both zero gauge pressure (pre-stress) and at the component operating pressure so that this phenomenon can be properly evaluated. The zero gauge pressure stresses are predominantly a result of the autofrettage process used during vessel manufacture. Determining these pre-stresses and the constitutive behavior of the overwrap at pressure will provide necessary information

  18. Endovascular blood flow measurement system

    Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Krivoshapkin, A. L.; Orlov, K. Yu


    In this paper an endovascular measurement system used for intraoperative cerebral blood flow monitoring is described. The system is based on a Volcano ComboMap Pressure and Flow System extended with analogue-to-digital converter and PC laptop. A series of measurements performed in patients with cerebrovascular pathologies allows us to introduce “velocity-pressure” and “flow rate-energy flow rate” diagrams as important characteristics of the blood flow. The measurement system presented here can be used as an additional instrument in neurosurgery for assessment and monitoring of the operation procedure. Clinical data obtained with the system are used for construction of mathematical models and patient-specific simulations. The monitoring of the blood flow parameters during endovascular interventions was approved by the Ethics Committee at the Meshalkin Novosibirsk Research Institute of Circulation Pathology and included in certain surgical protocols for pre-, intra- and postoperative examinations.

  19. Physiologic Measures of Animal Stress during Transitional States of Consciousness

    Robert E. Meyer


    Full Text Available Determination of the humaneness of methods used to produce unconsciousness in animals, whether for anesthesia, euthanasia, humane slaughter, or depopulation, relies on our ability to assess stress, pain, and consciousness within the contexts of method and application. Determining the subjective experience of animals during transitional states of consciousness, however, can be quite difficult; further, loss of consciousness with different agents or methods may occur at substantially different rates. Stress and distress may manifest behaviorally (e.g., overt escape behaviors, approach-avoidance preferences [aversion] or physiologically (e.g., movement, vocalization, changes in electroencephalographic activity, heart rate, sympathetic nervous system [SNS] activity, hypothalamic-pituitary axis [HPA] activity, such that a one-size-fits-all approach cannot be easily applied to evaluate methods or determine specific species applications. The purpose of this review is to discuss methods of evaluating stress in animals using physiologic methods, with emphasis on the transition between the conscious and unconscious states.

  20. Measuring Complexity of SAP Systems

    Ilja Holub


    Full Text Available The paper discusses the reasons of complexity rise in ERP system SAP R/3. It proposes a method for measuring complexity of SAP. Based on this method, the computer program in ABAP for measuring complexity of particular SAP implementation is proposed as a tool for keeping ERP complexity under control. The main principle of the measurement method is counting the number of items or relations in the system. The proposed computer program is based on counting of records in organization tables in SAP.

  1. Test with different stress measurement methods in two orthogonal bore holes in Aespoe HRL

    Janson, Thomas; Stigsson, Martin [Golder Associates AB, Stockholm (Sweden)


    Within the scope of work, to provide the necessary rock mechanics support for the site investigations, SKB has studied some available pieces of equipment for in situ stress measurements in deep boreholes. A project with the objective to compare three different pieces of equipment for in situ stress measurements under similar conditions has been carried out. The main objective for the project is to compare the three different pieces of equipment for in situ stress measurements and find a strategy for SKB's Site Investigations to determine the state of stress in the rock mass. Two units of equipment use the overcoring method while the third uses the hydraulic fracturing method. The overcoring was performed by AECL, using Deep Door stopper Gauge System (DDGS), and SwedPower, using their triaxial strain measuring instrument (Borre Probe). MeSy Geo Systeme GmbH performed the hydraulic fracturing. The DDGS system is a new method to SKB while the experience of the SwedPower overcoring and the hydraulic fracturing methods are long. The tests were performed in the same orthogonal boreholes at Aespoe Hard Rock Laboratory (HRL), Oskarshamn, Sweden. The measured results have been verified against known conditions at the Aespoe HRL. The results from the three in situ stress measurement methods rose more questions than answers. Which illustrate the complexity to determine the in situ stresses in a rock mass. To understand the difference in results and answer the questions, it was necessary to do deeper investigations such as laboratory tests and theoretical calculations such as geological structure model, analysis of the influence of a nearby fracture, P-wave measurements, uniaxial tests on small cores from the HQ-3 core, theoretical and numerical analyses of the hole bottom (theoretical strains, stress concentrations and microcracking), auditing of DDGS measurements results and assumptions in the DDGS analyse and microscopy investigations on the cores. The following

  2. Airborne Atmospheric Aerosol Measurement System

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.


    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  3. Chronic unpredictable mild stress generates oxidative stress and systemic inflammation in rats.

    López-López, Ana Laura; Jaime, Herlinda Bonilla; Escobar Villanueva, María Del Carmen; Padilla, Malinalli Brianza; Palacios, Gonzalo Vázquez; Aguilar, Francisco Javier Alarcón


    Stress is considered to be a causal agent of chronic degenerative diseases, such as cardiovascular disease, diabetes mellitus, arthritis and Alzheimer's. Chronic glucocorticoid and catecholamine release into the circulation during the stress response has been suggested to activate damage mechanisms, which in the long term produce metabolic alterations associated with oxidative stress and inflammation. However, the consequences of stress in animal models for periods longer than 40days have not been explored. The goal of this work was to determine whether chronic unpredictable mild stress (CUMS) produced alterations in the redox state and the inflammatory profile of rats after 20, 40, and 60days. CUMS consisted of random exposure of the animals to different stressors. The following activities were measured in the liver and pancreas: reduced glutathione (GSH), lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (TAC), and protein oxidation. Similarly, serum cytokine levels (IL-6, TNF-α, IL-1β, and IL-10) were determined. CUMS activated the stress response from day 20 until day 60. In the liver and pancreas, GHS levels were decreased from day 40, whereas protein lipid peroxidation and protein oxidation were increased. This is the first work to report that the pancreas redox state is subject to chronic stress conditions. The TAC was constant in the liver and reduced in the pancreas. An increase in the TNF-α, IL-1β, and IL-6 inflammatory markers and a decrease in the IL-10 level due to CUMS was shown, thereby resulting in the generation of a systemic inflammation state after 60days of treatment. Together, the CUMS consequences on day 60 suggest that both processes can contribute to the development of chronic degenerative diseases, such as cardiovascular disease and diabetes mellitus. CUMS is an animal model that in addition to avoiding habituation activates damage mechanisms such as oxidative stress and low-grade chronic

  4. The Difficult Patient Stress Scale: a new instrument to measure interpersonal stress in nursing.

    Santamaria, N


    This study describes the development of the Difficult Patient Stress Scale, an instrument designed to investigate the stress that nurses experience when they are involved in interpersonal conflict with patients. The DPSS is based on the theoretical conceptualization of stress proposed by DeLongis, Lazarus and Folkman and on the personality theory of Individual Psychology. The DPSS utilises visual analog scales to measure nurses' responses to hypothetical scenarios that present typical, difficult nurse-patient situations. The DPSS has been tested over a period of two years with 228 nurses and the results to date indicate that it is valid, reliable and suitable for use in the clinical environment. It is proposed that it may provide a useful instrument for exploring the impact and frequency of interpersonal stressors in nursing and may assist in the development of educational programs to better equip nurses to deal with interpersonal nurse-patient conflict.

  5. X-ray residual stress measurement of laminated coating layers produced by plasma spraying

    Nishida, Masayuki (Faculty of Engineering, Tokushima Univ. (Japan)); Hanabusa, Takao (Faculty of Engineering, Tokushima Univ. (Japan)); Fujiwara, Haruo (Faculty of Engineering, Tokushima Univ. (Japan))


    The present paper describes residual stress in laminated layers deposited by thermal spraying on a low carbon steel substrate. Laminated layers were made of Al[sub 2]O[sub 3]-NiCr or Al[sub 2]O[sub 3]-NiAl with various combinations of mixing ratios. X-Ray diffraction was used to measure residual stress in the outermost surface layer. The results of finite-element method (FEM) thermal stress analysis were compared with the experimental results of X-ray measurements. From the X-ray stress measurements, tensile residual stress (100-300 MPa) was measured in the as-coated surface layers of all specimens. The effect of annealing on residual stress variation was also examined. In the case of the Al[sub 2]O[sub 3] (100%) layer of the Al[sub 2]O[sub 3]-NiCr system, residual stress of surface layers was not greatly affected by the method of lamination and did not change significantly upon annealing. In contrast, in the layer with mixed Al[sub 2]O[sub 3] and NiAl, residual stress in the as-coated layer was influenced by the mixing ratio of Al[sub 2]O[sub 3] and NiAl. Furthermore, residual stresses were gradually reduced in both the Al[sub 2]O[sub 3] and Ni phase following annealing. FEM calculation revealed that large compressive residual stress (about -2 GPa) was produced in the 100% Al[sub 2]O[sub 3] layer after a full annealing treatment. The value of residual stress depends on the difference between the thermal expansion coefficients of the laminated layers and the substrate. This result was exactly opposite to the experimental results for the fully annealed Al[sub 2]O[sub 3]-NiCr system. However, residual stresses in the mixed layer (Al[sub 2]O[sub 3]-NiAl) depended on the mixing ration of Al[sub 2]O[sub 3] and NiAl. This agrees qualitatively with the experimental results. (orig.)

  6. Developments in wireline in-situ rock stress measurement

    Pedroso, Carlos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Canas, Jesus A.; Holzberg, Bruno; Gmach, Helmut [Schlumberger Servicos de Petroleo Ltda., Rio de Janeiro, RJ (Brazil)


    This paper presents recent developments of in-situ stress measurements with wireline tools. The stress measurements are based on the micro hydraulic techniques that can be initialized when an interval is pressurized by pumping fluid until a tensile fracture begins or by packers fracturing (sleeve fracturing). Ultrasonic and Micro-resistivity borehole image logs (before and after the testes) are used as a complement, in order to observe the fractures created by the tests, evaluating the mechanical behavior of the formation. An offshore case study is presented, where shales and tight sandstones at depths deeper than 4500 meters depth were successfully evaluated. A workflow to succeed on stress measurements on such environments is proposed, what includes a planning phase: where breakdown pressures ranges are estimated and compared with the capacity of the tools, a Real Time Monitoring phase, where a decision tree is proposed to help on quick decisions while testing, and an interpretation phase, where appropriate techniques are indicated to evaluate the results. Also, the paper presents the main operational needs to succeed on such environments. Basically, such tests require an entirely software controlled, motorized and modular design tool consisting of dual packer (DP), pump out and flow control modules (Figure 1). These modules were upgraded for the present environment: conditions such as temperatures above 300 deg F, formation pressures above 10,000 psia, very low formation permeability, high pressure differential need and oil based mud (OBM) environment. (author)

  7. Acoustic Measurements of Residual Stresses and Grain Sizes in Aluminum Alloys

    Fisher, Martin John

    The theory of acoustoelasticity relates the velocity of an acoustic wave in a solid to the elastic stress state in that solid. This thesis presents new theories, measurement techniques, and methodologies related to the use of longitudinal wave acoustoelasticity in aluminum alloys. A one-dimensional model has been developed to provide a simple understanding of the acoustoelastic effect. A new acoustic device for accurately measuring relative thickness variations has been designed and built. This device is used--in conjunction with a pulse-echo phase measurement device and a computer controlled scanning system--to measure acoustic velocity variations in plastically deformed and non-flat-and-parallel samples. Acoustic velocity variations from point to point in an unstressed sample can sometimes be on the same order as velocity changes due to applied or residual stresses, and this can make stress measurements difficult. A statistical theory has been developed to relate these unstressed velocity variations to the average grain size in the sample and to the active area of the acoustic transducer used. Large transducers and small grain sizes will minimize these variations. This relationship has been verified by tests on a number of aluminum alloys and a new method for non-destructive grain size determination has been suggested. A systematic methodology has been developed and tested for studying the influence of uniaxial plastic deformation on the acoustoelastic response. Samples have been plastically deformed in four-point bending to produce elastic-plastic and residual stress states. Acoustic measurements of these stresses have then been compared directly to theoretical predictions based on the materials' stress-strain curves and simple beam theory. In the aluminum alloys tested (2024-T351 and 7075-T651), the acoustoelastic constants are shown to be virtually unchanged by uniaxial plastic strains of less than 2.5%. Thus, the acoustoelastic technique can be reliably

  8. A Method Using Optical Contactless Displacement Sensors to Measure Vibration Stress of Small-Bore Piping.

    Maekawa, Akira; Tsuji, Takashi; Takahashi, Tsuneo; Noda, Michiyasu


    In nuclear power plants, vibration stress of piping is frequently evaluated to prevent fatigue failure. A simple and fast measurement method is attractive to evaluate many piping systems efficiently. In this study, a method to measure the vibration stress using optical contactless displacement sensors was proposed, the prototype instrument was developed, and the instrument practicality for the method was verified. In the proposed method, light emitting diodes (LEDs) were used as measurement sensors and the vibration stress was estimated by measuring the deformation geometry of the piping caused by oscillation, which was measured as the piping curvature radius. The method provided fast and simple vibration estimates for small-bore piping. Its verification and practicality were confirmed by vibration tests using a test pipe and mock-up piping. The stress measured by both the proposed method and an accurate conventional method using strain gauges were in agreement, and it was concluded that the proposed method could be used for actual plant piping systems.

  9. HLS bunch current measurement system


    Bunch current is an important parameter for studying the injection fill-pattern in the storage ring and the instability threshold of the bunch, and the bunch current monitor also is an indispensable tool for the top-up injection. A bunch current measurement (BCM) system has been developed to meet the needs of the upgrade project of Hefei Light Source (HLS). This paper presents the layout of the BCM system. The system based on a high-speed digital oscilloscope can be used to measure the bunch current and synchronous phase shift. To obtain the absolute value of bunch-by-bunch current, the calibration coefficient is measured and analyzed. Error analysis shows that the RMS of bunch current is less than 0.01 mA when bunch current is about 5 mA, which can meet project requirement.

  10. 热应激对鸡免疫系统的影响及预防研究进展%Advances in Effect of Heat Stress on the Immune System and Preventive Measures in Chickens

    唐嘉; 谢佳; 李中文; 许平; 陈忠


    In order to avoid or mitigate the harm of heat stress to chickens and provide the reference for the production practice, effects of heat stress on immune organs and immune functions in chickens were summarized, and the possible preventive measures were described from the following three aspects: anti-heat shock and temperature drop, adjusting the feed formula and adding anti-heat stress drugs to the diet.%为避免或减轻热应激对鸡的危害,为生产实践提供参考依据,综述了热应激对鸡免疫器官、免疫功能的影响,并从防暑降温、调整饲料配方和添加抗应激药物等方面阐述了降低热应激对鸡免疫危害的措施.

  11. Heat stress monitoring system. Innovative technology summary report



    The US Department of Energy`s (DOE) nuclear facility decontamination and decommissioning (D and D) program involves the need to decontaminate and decommission buildings expeditiously and cost-effectively. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. Often, D and D workers must perform duties in inclement weather, and because they also frequently work in contaminated areas, they must wear personal protective clothing and/or respirators. Monitoring the health status of workers under these conditions is an important component of ensuring their safety. The MiniMitter VitalSense Telemetry System`s heat stress monitoring system (HSMS) is designed to monitor the vital signs of individual workers as they perform work in conditions that might be conducive to heat exhaustion or heat stress. The HSMS provides real-time data on the physiological condition of workers which can be monitored to prevent heat stress or other adverse health situations. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their condition more difficult. The MiniMitter VitalSense Telemetry System can monitor up to four channels (e.g., heart rate, body activity, ear canal, and skin temperature) and ten workers from a single supervisory station. The monitors are interfaced with a portable computer that updates and records information on individual workers. This innovative technology, even though it costs more, is an attractive alternative to the traditional (baseline) technology, which measures environmental statistics and predicts the average worker`s reaction to those environmental conditions without taking the physical condition of the individual worker into consideration. Although use of the improved technology might be justified purely on the basis of improved safety, it has the potential to pay for itself by reducing worker time lost caused by heat

  12. Measurement of residual stress for ITO/PET substrates by the double beam shadow moiré interferometer.

    Chen, Hsi-Chao; Huang, Kuo-Ting; Lo, Yen-Ming


    This study constructed a measurement system that can quickly and accurately analyze the residual stress of flexible electronics. A double beam shadow moiré interferometer was set up to measure and evaluate the residual stress of tin-doped indium oxide films on a polyethylene terephthalate substrate. However, this system required only two symmetrical fringes to evaluate the residual stress of transparent conductive oxide films on flexible substrate. Applying the grating translation techniques to the double beam shadow moiré interferometer greatly improved the measurement resolution and accuracy, and the relative error was reduced to 1.2%.

  13. Wireless computer vision system for crop stress detection

    Knowledge of soil water deficits, crop water stress, and biotic stress from disease or insects is important for optimal irrigation scheduling and water management. Crop spectral reflectances provide a means to quantify visible and near infrared thermal crop stress, but in-situ measurements can be cu...

  14. Enhancement to Non-Contacting Stress Measurement of Blade Vibration Frequency

    Platt, Michael; Jagodnik, John


    A system for turbo machinery blade vibration has been developed that combines time-of-arrival sensors for blade vibration amplitude measurement and radar sensors for vibration frequency and mode identification. The enabling technology for this continuous blade monitoring system is the radar sensor, which provides a continuous time series of blade displacement over a portion of a revolution. This allows the data reduction algorithms to directly calculate the blade vibration frequency and to correctly identify the active modes of vibration. The work in this project represents a significant enhancement in the mode identification and stress calculation accuracy in non-contacting stress measurement system (NSMS) technology when compared to time-of-arrival measurements alone.

  15. Residual Stress Measurements After Proof and Flight: ETP-0403

    Webster, Ronald L..


    The intent of this testing was to evaluate the residual stresses that occur in and around the attachment details of a case stiffener segment that has been subjected to flight/recovery followed by proof loading. Not measured in this test were stresses relieved at joint disassembly due to out-of-round and interference effects, and those released by cutting the specimens out of the case segment. The test article was lightweight case stiffener segment 1U50715, S/N L023 which was flown in the forward stiffener position on flight SRM 14A and in the aft position on flight SRM24A. Both of these flights were flown with the 3 stiffener ring configuration. Stiffener L023 had a stiffener ring installed only on the aft stub in its first flight, and it had both rings installed on its second flight. No significant post flight damage was found on either flight. Finally, the segment was used on the DM-8 static test motor in the forward position. No stiffener rings were installed. It had only one proof pressurization prior to assignment to its first use, and it was cleaned and proof tested after each flight. Thus, the segment had seen 3 proof tests, two flight pressurizations, and two low intensity water impacts prior to manufacturing for use on DM-8. On DM-8 it received one static firing pressurization in the horizontal configuration. Residual stresses at the surface and in depth were evaluated by both the x-ray diffraction and neutron beam diffraction methods. The x-ray diffraction evaluations were conducted by Technology for Energy Corporation (TEC) at their facilities in Knoxville, TN. The neutron beam evaluations were done by Atomic Energy of Canada Limited (AECL) at the Chalk River Nuclear Laboratories in Ontario. The results showed general agreement with relatively high compressive residual stresses on the surface and moderate to low subsurface tensile residual stresses.

  16. Measurement of mobile antenna systems

    Arai, Hiroyuki


    If you're involved with the design, installation or maintenance of mobile antenna systems, this thoroughly revised and updated edition of a classic Artech book offers you the most current and comprehensive coverage of all the mandatory measurement techniques you need for your work in the field. This Second Edition presents critical new material in key areas, including radiation efficiency measurement, mobile phone usage position, and MIMO (multiple-input/multiple-output) antennas.This unique resource provides in-depth examinations of all relevant mobile antenna measurement theories, along with

  17. A Study on Reynolds Shear Stress Measurement by LDV

    Mizue Munekata; Hideki Ohba; Kazuyoshi Matsuzaki


    The measurement results by Laser Doppler Velocimetry (LDV) are compared with the direct numerical simulation result by Eggels et al.[1] for a cylindrical pipe flow. In the case of a pipe flow, the bias error for mean velocity is very small, because the local turbulent intensity is very small all over the pipe cross section. However the difference of the combination of u' and v' have considerable effects on Reynolds shear stress. From our investigation, it is found that the selection of coincidence time that is a necessary parameter for combination of u' and v' is more important in obtaining the accurate Reynolds shear stress. The suitable coincidence time is selected for a jet flow and the effectiveness of coincident time method or equal time interval method with coincidence data is shown.

  18. Rorschach Performance Assessment System (R-PAS) and vulnerability to stress: A preliminary study on electrodermal activity during stress.

    Giromini, Luciano; Ando', Agata; Morese, Rosalba; Salatino, Adriana; Di Girolamo, Marzia; Viglione, Donald J; Zennaro, Alessandro


    This study investigated the predictive validity of the ten Rorschach Performance Assessment System (R-PAS) variables from the Stress and Distress domain, by testing whether they predicted increased sympathetic reactivity to a mild, laboratory-induced stress, occurred one week after Rorschach administration. A relatively small student sample (N=52) contributed to this research: During a first meeting (T1) participants were administered the Rorschach task according to R-PAS guidelines; about one week later (T2) their electrodermal activity (EDA) was recorded during exposure to a mild laboratory stress-inducing task. Based on literature indicating that exposure to stress tends to increase physiological vulnerability/reactivity to stressful situations, we anticipated that Stress and Distress R-PAS variables measured at T1 would positively correlate with increased sympathetic reactivity to stress at T2, as indicated by greater EDA changes from baseline to stress and recovery. Results partially confirmed our hypotheses: (a) the mean of and (b) the majority of the Stress and Distress R-PAS variables were significantly correlated, in the expected direction, with medium and medium to large effect sizes.

  19. A comparison of X-ray stress measurement methods \\\\based on the fundamental equation

    Miyazaki, Toshiyuki; Sasaki, Toshihiko


    Stress measurement methods using X-ray diffraction (XRD methods) are based on so-called fundamental equations. The fundamental equation is described in the coordinate system that best suites the measurement situation, and, thus, making a comparison between different XRD methods is not straightforward. However, by using the diffraction vector representation, the fundamental equations of different methods become identical. Furthermore, the differences between the various XRD methods are in the ...

  20. Effects of cutting and specimen size on neutron measurement of residual stresses

    Law, M.; Luzin, V.; Kirstein, O.


    To perform neutron residual stress measurements it is often necessary to cut samples to a manageable size. The effects of cutting a girth welded pipe were investigated with analytical methods and finite element analysis. The effect of cutting on measured stresses was calculated. A simplified method of modelling residual stresses in welds, "chill modelling", is introduced. In ring slitting a cut is made in the axial direction and the deformation is maeesured. The change in elastic stress can be calculated and added to neutron diffraction measurements made on a cut ring to calculate the original stresses. Residual stress measurements were performed to validate the ring slitting correction using ANSTO's residual stress diffractometer Kowari.

  1. Telemetry System Utilization for Stress Monitoring of Pilots During Training

    Luboš Socha


    Full Text Available Air transport development brings an increased focus on the safety of piloting. The safety conditions can be assessed by mental workload. Psychic discomfort or excessive stress on pilots can negatively influence the course of flights. Therefore it appears convenient to monitor such parameters, which represent the mental wellbeing, or discomfort of a pilot. Since physiological measurements can provide a good information about mental workload or stress, this work primarily focuses on the observation of the change in heart rate, as it is an indicator of stress during the training of pilots, using the designed modular telemetry system. Another aim of this study is to evaluate the influence of a change in the avionic data visualization. This can have an unfavorable effect on the piloting of an airplane. This work, based on the evaluation of heart rate shows, that the switch from analog visualization to glass cockpit creates increased levels of stress in pilots, which was proved for all examined subjects except one. Significant level of correlation in the heart beat rate change in subjects in the course of training was also discovered.

  2. StressPhone: smartphone based platform for measurement of cortisol for stress detection (Conference Presentation)

    Jain, Aadhar; Rey, Elizabeth; Lee, Seoho; O'Dell, Dakota; Erickson, David


    Anxiety disorders are estimated to be the most common mental illness in US affecting around 40 million people and related job stress is estimated to cost US industry up to $300 billion due to lower productivity and absenteeism. A personal diagnostic device which could help identify stressed individuals would therefore be a huge boost for workforce productivity. We are therefore developing a point of care diagnostic device that can be integrated with smartphones or tablets for the measurement of cortisol - a stress related salivary biomarker, which is known to be strongly involved in body's fight-or-flight response to a stressor (physical or mental). The device is based around a competitive lateral flow assay whose results can then be read and quantified through an accessory compatible with the smartphone. In this presentation, we report the development and results of such an assay and the integrated device. We then present the results of a study relating the diurnal patterns of cortisol levels and the alertness of an individual based on the circadian rhythm and sleep patterns of the individual. We hope to use the insight provided by combining the information provided by levels of stress related to chemical biomarkers of the individual with the physical biomarkers to lead to a better informed and optimized activity schedule for maximized work output.

  3. Stress and the neuroendocrine system: the role of exercise as a stressor and modifier of stress

    Hackney, Anthony C


    In this article, the physiological impact of one form of stress – physical exercise – on the neuroendocrine system will be discussed. The specific intent of the review is to present an overview of stress endocrinology, the conceptual models associated with this area of study, and a discourse on the dual role of exercise as both a stressor and a modifier of stress within the neuroendocrine system. These points are addressed with respect to the current research literature dealing with exercise ...

  4. Stress effects in prism coupling measurements of thin polymer films

    Agan, S.; Ay, F.; Kocabas, A.; Aydinli, A.


    Due to the increasingly important role of some polymers in optical waveguide technologies, precise measurement of their optical properties has become important. Typically, prism coupling to slab waveguides made of materials of interest is used to measure the relevant optical parameters. However, such measurements are often complicated by the softness of the polymer films when stress is applied to the prism to couple light into the waveguides. In this work, we have investigated the optical properties of three different polymers, polystyrene (PS), polymethyl-methacrylate (PMMA), and benzocyclobutane (BCB). For the first time, the dependence of the refractive index, film thickness, and birefringence on applied stress in these thin polymer films was determined by means of the prism coupling technique. Both symmetric trapezoid shaped and right-angle prisms were used to couple the light into the waveguides. It was found that trapezoid shaped prism coupling gives better results in these thin polymer films. The refractive index of PMMA was found to be in the range of 1.4869 up to 1.4876 for both TE and TM polarizations under the applied force, which causes a small decrease in the film thickness of up to 0.06 μm. PMMA waveguide films were found not to be birefringent. In contrast, both BCB and PS films exhibit birefringence albeit of opposing signs.

  5. Neurobiological Interactions Between Stress and the Endocannabinoid System.

    Morena, Maria; Patel, Sachin; Bains, Jaideep S; Hill, Matthew N


    Stress affects a constellation of physiological systems in the body and evokes a rapid shift in many neurobehavioral processes. A growing body of work indicates that the endocannabinoid (eCB) system is an integral regulator of the stress response. In the current review, we discuss the evidence to date that demonstrates stress-induced regulation of eCB signaling and the consequential role changes in eCB signaling have with respect to many of the effects of stress. Across a wide array of stress paradigms, studies have generally shown that stress evokes bidirectional changes in the two eCB molecules, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), with stress exposure reducing AEA levels and increasing 2-AG levels. Additionally, in almost every brain region examined, exposure to chronic stress reliably causes a downregulation or loss of cannabinoid type 1 (CB1) receptors. With respect to the functional role of changes in eCB signaling during stress, studies have demonstrated that the decline in AEA appears to contribute to the manifestation of the stress response, including activation of the hypothalamic-pituitary-adrenal (HPA) axis and increases in anxiety behavior, while the increased 2-AG signaling contributes to termination and adaptation of the HPA axis, as well as potentially contributing to changes in pain perception, memory and synaptic plasticity. More so, translational studies have shown that eCB signaling in humans regulates many of the same domains and appears to be a critical component of stress regulation, and impairments in this system may be involved in the vulnerability to stress-related psychiatric conditions, such as depression and posttraumatic stress disorder. Collectively, these data create a compelling argument that eCB signaling is an important regulatory system in the brain that largely functions to buffer against many of the effects of stress and that dynamic changes in this system contribute to different aspects of the stress response.

  6. Perceived Stress and Wellness in Early Adolescents Using the Neuman Systems Model

    Yarcheski, Thomas J.; Mahon, Noreen E.; Yarcheski, Adela; Hanks, Michele M.


    The purpose of this study was to examine the relationship between perceived stress and wellness in early adolescents and to test primary appraisal as a mediator of this relationship using the Neuman Systems Model as the primary framework. The sample consisted of 144 adolescents, ages 12-14, who responded to instruments measuring perceived stress,…

  7. Abiotic Stress Monitoring, Forecasting and Management System

    Gutam, Sridhar; Jain, Rajni; Rao, DVKN; Pannikkar, Preetha; Sarangi, A; Narula, Sapna


    The ill effects of abiotic factors like excess or deficient water availability, increase in temperature, climatic aberrations, soil salinity, sodicity, acidity, deficiency or toxicity of soil nutrients, pollution of water and soil are causing severe stress on the living organisms on the earth. Since long famers and soil scientists including plant breeders are aware that it is often the simultaneous occurrence of several abiotic stresses, rather than a particular stress condition, that is most...

  8. Understanding Process Performance Measurement Systems

    Ljubica MilanoviÊ Glavan


    Full Text Available The purpose of this paper is to analyze the current state of Process Performance Measurement Systems (PPMS by means of a systematic review of literature. The PPMS literature is reviewed using a systematic approach. Based on an extensive literature review only twelve articles that contain the term PPMS in the title were found. The literature analysis showed that PPMS is a relatively new topic in the area of performance measurement. In order to understand PPMS, it was crucial to explain the concepts of business process management, business performance measurement and Performance Measurement System (PMS which are well known and used in the literature and practice. PPMS is a special type of PMS that should be used in process-oriented organizations. Limitations of this research lie in the fact that all the conclusions were derived only from the literature, not empirical research. The results presented in the paper continue towards providing an updated overview of the current state of performance measurement, especially PPMS in order to identify the existing research gaps on which ongoing and future research efforts regarding this topic can be focused.

  9. Acoustical and optical backscatter measurements of sediment transport in the 1988 1989 STRESS experiment

    Lynch, J. F.; Gross, T. F.; Sherwood, C. R.; Irish, J. D.; Brumley, B. H.


    During the 1988-1989 Sediment Transport Events on Shelves and Slopes (STRESS) experiment, a 1-MHz acoustic backscatter system (ABSS), deployed in 90 m of water off the California coast measured vertical profiles of suspended sediment concentration from 1.5 to (nominally) 26 meters above bottom (m.a.b.). An 8-week-long time series was obtained, showing major sediment transport events (storms) in late December and early January. Comparison of the acoustics measurements from 1.5 m.a.b. are made with optical backscatter system (OBS) concentration estimates lower in the boundary layer (0.25 m.a.b.). Correlations between ABSS and OBS concentration measurements and the boundary layer forcing functions (waves, currents, and their non-linear interaction) provided a variety of insights into the nature of the sediment transport of the STRESS site. Transport rates and integrated transport are seen to be dominated by the largest storm events.

  10. DC Magnetics Measurement System Design

    Mastny, Timothy


    This report will detail the updates to the magnetics measurement system design and testing procedures that are required for performing static (DC) magnetics testing of future flight hardware. An older magnetics testing system had to be integrated with new procedures and hardware to meet the demands of future testing programs and accommodate an upcoming magnetics tests. The next test will be for the Geostationary Operational Environmental Satellite R-Series (GOES-R), which will verify that the SAFT Battery component meets its specifications for magnetic cleanliness. The satellite is scheduled to launch in 2015 with magnetics testing to be completed on the battery in November 2012.

  11. Wireless sap flow measurement system

    Kuo, C.; Davis, T. W.; Tseng, C.; Cheng, C.; Liang, X.; Yu, P.


    This study exhibits a measurement system for wireless sensor networks to measure sap flow in multiple locations simultaneously. Transpiration is a major component of the land-surface system because it is indicative of the water movement between the soil and the air. Sap flow can be used to approximate transpiration. In forests, transpiration cannot be represented by the sap flow from a single tree. Multi-location sap flow measurements are required to show the heterogeneity caused by different trees or soil conditions. Traditional multi-location measurements require manpower and capital for data collection and instrument maintenance. Fortunately, multi-location measurements can be achieved by using the new technology of wireless sensor networks. With multi-hop communication protocol, data can be forwarded to the base station via multiple sensor nodes. This communication protocol can provide reliable data collection with the least power consumption. This study encountered two major problems. The first problem was signal amplification. The Crossbow IRIS mote was selected as the sensor node that receives the temperature data of the sap flow probe (thermocouple) through a MDA300 data acquisition board. However, the wireless sensor node could not directly receive any data from the thermocouples since the least significant bit value of the MDA300, 0.6 mV, is much higher than the voltage signal generated. Thus, the signal from the thermocouple must be amplified to exceed this threshold. The second problem is power management. A specific heat differential is required for the thermal dissipation method of measuring sap flow. Thus, an adjustable DC power supply is necessary for calibrating the heater's temperature settings. A circuit was designed to combine the signal amplifier and power regulator. The regulator has been designed to also provide power to the IRIS mote to extend battery life. This design enables wireless sap flow measurements in the forest. With the

  12. The brain norepinephrine system, stress and cardiovascular vulnerability.

    Wood, Susan K; Valentino, Rita J


    Chronic exposure to psychosocial stress has adverse effects on cardiovascular health, however the stress-sensitive neurocircuitry involved remains to be elucidated. The anatomical and physiological characteristics of the locus coeruleus (LC)-norepinephrine (NE) system position it to contribute to stress-induced cardiovascular disease. This review focuses on cardiovascular dysfunction produced by social stress and a major theme highlighted is that differences in coping strategy determine individual differences in social stress-induced cardiovascular vulnerability. The establishment of different coping strategies and cardiovascular vulnerability during repeated social stress has recently been shown to parallel a unique plasticity in LC afferent regulation, resulting in either excitatory or inhibitory input to the LC. This contrasting regulation of the LC would translate to differences in cardiovascular regulation and may serve as the basis for individual differences in the cardiopathological consequences of social stress. The advances described suggest new directions for developing treatments and/or strategies for decreasing stress-induced cardiovascular vulnerability.

  13. Stochastic measurements and systems implications

    Collins, J. L.; Greene, R. R.


    The U.S. Navy is defining the baseline performance of the current SSN ASW suite in the Arctic operating environment. This suite includes the AN/BQQ-5 sonar suit (including the Towed Array, the sphere and other sensor and processor sub-systems), communications subsystems and weapon systems (Mk 48 and ADCAP). An effective acoustic measurement program in the Arctic must support the evaluation of how well the different subsystems are able to carry out their assigned functions. Unique aspects of the operating environment in the Arctic include unusual noise properties, unusual transmission effects and an unusual sea surface. This report addresses those acoustic transmission effects which affect system performance due to fluctuations or spreads in the acoustic field space, angle time and frequency.

  14. Quantifying Stress in Marine Mammals: Measuring Biologically Active Cortisol in Cetaceans and Pinnipeds


    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Quantifying Stress in Marine Mammals : Measuring...boonstra/ LONG-TERM GOALS This research will improve our ability to measure stress in marine mammals . Stress hormones (glucocorticoids... mammal researchers to measure free glucocorticoid levels. OBJECTIVES This project has two main objectives, both related to improving our

  15. Measuring Stress Distributions of Orthotropic Composite Material in Plane Stress State by the Lock-in Infrared Thermography Technique

    LI Xu-Dong; WANG Wei-Bo; LI Yong-Sheng; WU Dong-Liu


    Feasibility of measuring stress distributions of orthotropic composite materials and structures in plane stress state by the lock-in infrared thermography technique is analyzed and stress distributions of a lap joint structure made of a kind of glass reinforced plastic composite lamination plates under tensile loadings are obtained by the lock-in infrared thermography technique. Feasibility and credibility of using this technique to measure stress distributions of orthotropic composite materials and structures in plane stress state are proved by comparing the results with the data given by the digital speckle correlation method.%@@ Feasibility of measuring stress distributions of orthotropic composite materials and structures in plane stress state by the lock-in infrared thermography technique is analyzed and stress distributions of a lap joint structure made of a kind of glass reinforced plastic composite lamination plates under tensile loadings axe obtained by the lock-in infrared thermography technique.Feasibility and credibility of using this technique to measure stress distributions of orthotropic composite materials and structures in plane stress state axe proved by comparing the results with the data given by the digital speckle correlation method.

  16. Measurement and study of the distributing law of in-situ stresses in rock mass at great depth


    To solve the technical cruxes of the conventional system in deep rock mass, an automatic testing system for hydraulic fracturing that includes a single tube for hydraulic loop, a pressure-relief valve, central-tubeless packers, and a multichannel real-time data acquisition system was used for in-situ stresses measurement at great depths (over 1000 m) in a coalfield in Juye of Northern China.The values and orientations of horizontal principal stresses were determined by the new system. The virgin stress field and its distributing law were decided by the linear regression from the logged 37 points in seven boreholes. Besides, the typical boreholes arranged in both the adjacent zone and far away zone of the faults were analyzed, respectively. The results show that a stress concentration phenomenon and a deflection in the orientation of the maximal horizontal stress exist in the adjacent zone of the faults, which further provides theoretical basis for design and optimization of mining.

  17. Properties of Swedish posttraumatic stress measures after a disaster.

    Arnberg, Filip K; Michel, Per-Olof; Johannesson, Kerstin Bergh


    This study evaluated the properties of Swedish versions of self-report measures of posttraumatic stress disorder (PTSD), with emphasis on the Impact of Event Scale-Revised (IES-R). Survey data from adult survivors 1, 3, and 6 years after the 2004 Indian Ocean tsunami (n=1506) included the IES-R (from which the IES-6 was derived) and the 12-item General Health Questionnaire (GHQ-12). The PTSD Checklist (PCL) was included in one survey. A structured clinical interview was performed after 6 years (n=142). Factor analyses of the IES-R and PCL indicated that a dysphoric-arousal model provided good fit invariant across assessments. Both measures were accurate in excluding PTSD while all measures provided poorer positive predictive values. The IES-R, but not the IES-6 and GHQ-12, evidenced stability across assessments. In conclusion, the Swedish IES-R and PCL are sound measures of chronic PTSD, and the findings illustrate important temporal aspects of PTSD assessment.

  18. Stress-Related Growth in Racial/Ethnic Minority Adolescents: Measurement Structure and Validity

    Vaughn, Allison A.; Roesch, Scott C.; Aldridge, Arianna A.


    Stress-related growth is defined as the perception or experience of deriving benefits from encountering stressful circumstances and, thus, has been identified as a protective factor against stress. The current study revised and subsequently validated scores on an existing measure of stress-related growth in a sample of racial/ethnic minority…

  19. Eo-1 Hyperion Measures Canopy Drought Stress In Amazonia

    Asner, Gregory P.; Nepstad, Daniel; Cardinot, Gina; Moutinho, Paulo; Harris, Thomas; Ray, David


    The central, south and southeast portions of the Amazon Basin experience a period of decreased cloud cover and precipitation from June through November. There are likely important effects of seasonal and interannual rainfall variation on forest leaf area index, canopy water stress, productivity and regional carbon cycling in the Amazon. While both ground and spaceborne studies of precipitation continue to improve, there has been almost no progress made in observing forest canopy responses to rainfall variability in the humid tropics. This shortfall stems from the large stature of the vegetation and great spatial extent of tropical forests, both of which strongly impede field studies of forest responses to water availability. Those few studies employing satellite measures of canopy responses to seasonal and interannual drought (e.g., Bohlman et al. 1998, Asner et al. 2000) have been limited by the spectral resolution and sampling available from Landsat and AVHRR sensors. We report on a study combining the first landscape-level, managed drought experiment in Amazon tropical forest with the first spaceborne imaging spectrometer observations of this experimental area. Using extensive field data on rainfall inputs, soil water content, and both leaf and canopy responses, we test the hypothesis that spectroscopic signatures unique to hyperspectral observations can be used to quantify relative differences in canopy stress resulting from water availability.

  20. An Estimation Method of Stress in Soft Rock Based on In-situ Measured Stress in Hard Rock

    LI Wen-ping; LI Xiao-qin; SUN Ru-hua


    The law of variation of deep rock stress in gravitational and tectonic stress fields is analyzed based on the Hoek-Brown strength criterion. In the gravitational stress field, the rocks in the shallow area are in an elastic state and the deep, relatively soft rock may be in a plastic state. However, in the tectonic stress field, the relatively soft rock in the shallow area is in a plastic state and the deep rock in an elastic state. A method is proposed to estimate stress values in coal and soft rock based on in-situ measurements of hard rock. Our estimation method relates to the type of stress field and stress state. The equations of rock stress in various stress states are presented for the elastic, plastic and critical states. The critical state is a special stress state, which indicates the conversion of the elastic to the plastic state in the gravitational stress field and the conversion of the plastic to the elastic state in the tectonic stress field. Two cases studies show that the estimation method is feasible.

  1. Measuring Mechanical Properties by Staring: Using Stress Assessment from Local Structural Anisotropy (SALSA) to Probe Viscosity and Visualize Stress Networks in Colloidal Suspensions

    Cohen, Itai; Bierbaum, Matthew; Sethna, James; Lin, Neil


    Measurement of stress induced thermal fluctuations in materials can be used to determine macroscopic mechanical properties including viscosity in fluids, as well as bulk and shear moduli in solids. When extended to the single particle scale, such measurements also reveal underlying spatially inhomogeneous response mechanisms in systems such as glasses, gels, and polycrystals. Unfortunately, it is not possible to experimentally measure these temporal and spatial stress fluctuations in a colloidal suspension using conventional rheometers. Here however, we show that using fast confocal microscopy it is possible conduct a Stress Assessment from Local Structural Anisotropy (SALSA) to measure such spatio-temporal stress fluctuations. We directly image the microstructure of a nearly hard-sphere suspension using a high-speed confocal microscope and determine particle positions. We compute the structure anisotropy of the suspension and building on the Brady formalism, calculate particle-level stresses. In conjunction with the fluctuation-dissipation theorem, we then determine the bulk viscosity of a colloidal liquid. Furthermore, we show our local measurements allow direct visualization of the complex stress networks in a 3D supercooled liquid under compression. Our method provides an experimental approach that applies to a broad range of processes arising in sheared glasses, compressed gels, and even indented crystals.

  2. Using of abrasive water jet for measurement of residual stress in railway wheels

    Hlaváček, P. (Petr); Brumek, J.; Horsák, L.


    The paper provides a general introduction to methods of measurement of residual stresses on railway wheels. Determination of residual stress distribution is necessary for the prediction of wheel service life and possible catastrophic failure. Therefore experimental section is devoted to residual stress measurement using strain gauges according to standard EN 13262 + A1. During measurement, several segments of tested wheel were cut by abrasive water jet to detect changes of residual stresses o...

  3. Soil Stress-Strain Behavior: Measurement, Modeling and Analysis

    Ling, Hoe I; Leshchinsky, Dov; Koseki, Junichi; A Collection of Papers of the Geotechnical Symposium in Rome


    This book is an outgrowth of the proceedings for the Geotechnical Symposium in Roma, which was held on March 16 and 17, 2006 in Rome, Italy. The Symposium was organized to celebrate the 60th birthday of Prof. Tatsuoka as well as honoring his research achievement. The publications are focused on the recent developments in the stress-strain behavior of geomaterials, with an emphasis on laboratory measurements, soil constitutive modeling and behavior of soil structures (such as reinforced soils, piles and slopes). The latest advancement in the field, such as the rate effect and dynamic behavior of both clay and sand, behavior of modified soils and soil mixtures, and soil liquefaction are addressed. A special keynote paper by Prof. Tatsuoka is included with three other keynote papers (presented by Prof. Lo Presti, Prof. Di Benedetto, and Prof. Shibuya).

  4. Neutron scattering instruments for residual stress/strain measurements at KUR

    Ono, Masayoshi [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.


    A Kyoto University Reactor project research finished on March, 1997 is a first trial in Japan. In this research, some residual stress measurement in accompany with thermal and processing deformation history of various superconductive composite wires and so on were conducted to obtain a lot of research results. At TOF system, simultaneous measurement of the direction dependent collective texture using a multi point detector was useful, and at PSD system the strain measurement in a region under 10{sup -4} became possible to conduct. In addition, it is intending now to establish high performance instruments such as a two-stage type disc chopper at the TOF system and a high resolution vent type Si monocrystal monochromator at the PSD system. In particular, it is expected a the TOF system that a direction dependent collective texture and a stress distribution state in various kinds of functional materials can be measured simultaneously and without destruction. The mechanical property research of the metallic materials using low speed neutron scattering method is now a big interest in and out of Japan. This research contains a lot of contents coinciding to the industrial fields in an application research field of nuclear basic research and is expected in future to powerfully promote international cooperative research and to deeply recognize its usefulness and importance. (G.K.)

  5. Stress Testing Liquidity Risk: The Case of the Brazilian Banking System.

    Benjamin M. Tabak; Solange M. Guerra; Rodrigo C. Miranda; Sergio Rubens S. de Souza


    This paper discusses the effects of the recent financial crisis on the Brazilian banking system. It discusses how liquidity risks have risen during the crisis and preventive measures that were taken in order to cope with these risks. It presents the liquidity stress testing approach that is under use in the Central Bank of Brazil and results from a survey on liquidity stress testing that has been applied to banks that operate in the Brazilian banking system.

  6. The Measurement of Wall Shear Stress in the Low-Viscosity Liquids

    Adamec J.


    Full Text Available The paper is focused on quantitative evaluation of the value of the wall shear stress in liquids with low viscosity by means of the method of the hot film anemometry in a laminar and turbulent flow. Two systems for calibration of probes are described in the paper. The first of these uses an innovative method of probe calibration using a known flow in a cylindrical gap between two concentric cylinders where the inner cylinder is rotated and a known velocity profile and shear rate, or shear stress profile, is calculated from the Navier-Stokes equations. This method is usable for lower values of the wall shear stress, particularly in the areas of laminar flow. The second method is based on direct calibration of the probes using a floating element. This element, with a size of 120x80 mm, is part of a rectangular channel. This method of calibration enables the probe calibration at higher shear rates and is applicable also to turbulent flow. Values obtained from both calibration methods are also compared with results of measurements of the wall shear stress in a straight smooth channel for a certain range of Reynolds numbers and compared with analytical calculations. The accuracy of the method and the influence of various parasitic phenomena on the accuracy of the measured results were discussed. The paper describes in particular the influence of geometric purity of the probe location, the impact of various transfer phenomena, requirements for the measured liquid and layout of the experiment.

  7. Effects of perch access and age on physiological measures of stress in caged White Leghorn pullets.

    Yan, F F; Hester, P Y; Enneking, S A; Cheng, H W


    The neuroendocrine system controls animals' adaptability to their environments by releasing psychotropic compounds such as catecholamines [epinephrine (EP), norepinephrine (NE), and dopamine (DA)], corticosterone (CORT), and serotonin (5-hydroxytryptamine or 5-HT). Changes of these neuroendocrine compounds have been used as biomarkers of animals' stress responses associated with their well-being. Assuming that pullets, like laying hens, are highly motivated to perch, we hypothesize that pullets with access to perches will experience less stress than pullets that never have access to perches. The objective of this study was to examine the effects of perch access and age on physiological measurements of stress in White Leghorn pullets housed in conventional cages. Hatchlings (n = 1,064) were randomly assigned to 28 cages. Two parallel metal round perches were installed in each of 14 cages assigned the perch treatment, whereas control cages were without perches. Two birds per cage were bled at wk 4, 6, and 12 wk of age. Plasma levels of CORT, DA, EP, and NE, blood concentrations of 5-HT and Trp, and heterophil to lymphocyte ratios were measured. Data were analyzed using a 2-way ANOVA. The perch treatment or its interaction with age did not affect any parameter measured in the study. The increase in the concentrations of circulating EP, NE, 5-HT (numerical increase at 4 wk), and Trp in 4- and 6-wk-old pullets compared with 12-wk-old pullets is unclear, but may have been due to acute handling stress at younger ages. In contrast, concentrations of DA were less at 4 wk compared with levels at 6 and 12 wk of age. Plasma CORT levels and the heterophil to lymphocyte ratio, indicators of long-term stress, were unaffected by age (P = 0.07 and 0.49, respectively). These results indicated that age, but not perch access, affects neuroendocrine homeostasis in White Leghorn pullets. Pullets that were never exposed to perches showed no evidence of eliciting a stress response.

  8. Measuring Bus Drivers' Occupational Stress Under Changing Working Conditions

    Hlotova, Y.; Cats, O.; Meijer, S.A.


    Stress is an immense problem in modern society; approximately half of all occupational illnesses are directly or indirectly related to stress. The work of a bus driver is typically associated with high stress levels that negatively influence individual well-being as well as workforce management. The

  9. Measuring Bus Drivers' Occupational Stress Under Changing Working Conditions

    Hlotova, Y.; Cats, O.; Meijer, S.A.


    Stress is an immense problem in modern society; approximately half of all occupational illnesses are directly or indirectly related to stress. The work of a bus driver is typically associated with high stress levels that negatively influence individual well-being as well as workforce management. The

  10. Measurements of Creep Internal Stress Based on Constant Strain Rate and Its Application to Engineering

    TAO Wen-liang; WEI Tao


    This research is carried out on the basis of Constant Strain Rate(CSR) to measure creep internal stress. Measurements of creep internal stress are conducted on the material test machine by using the CSR method. A mathematical model of creep internal stress is also proposed and its application is presented in this paper.

  11. How to measure prenatal stress? A systematic review of psychometric instruments to assess psychosocial stress during pregnancy.

    Nast, Irina; Bolten, Margarete; Meinlschmidt, Gunther; Hellhammer, Dirk H


    A growing body of literature documents associations of maternal psychosocial stress during pregnancy with fetal, infant and child behaviour and development. However, findings across studies are often inconsistent, which may in part be due to differences in stress definitions and assessments. We systematically reviewed methods applied to assess maternal psychosocial stress during pregnancy in studies looking at associations with biobehavioural outcomes in the offspring. A systematic literature search was performed on Web of Science and PubMed for the time period between January 1999 and October 2009. Psychometric instruments assessing maternal psychosocial stress during pregnancy were identified and described if data on psychometric properties were available. We identified 115 publications that assessed psychosocial stress during pregnancy with validated methods. These publications applied overall 43 different instruments assessing constructs falling under seven categories, ordered according to their frequency of use: anxiety, depression, daily hassles, aspects of psychological symptomatology (not reduced to anxiety or depression), life events, specific socio-environmental stressors and stress related to pregnancy and parenting. If available, we provide information on validity and reliability of the instruments for samples of pregnant women. Within the 'prenatal stress' research, a broad range of instruments is applied to assess psychosocial stress during pregnancy. Prenatal stress research should take into consideration that the variety of methods in use might hamper the comparability of stress research results. In each category of stress constructs, one instrument with good psychometric properties in pregnant women is highlighted as the best currently available measure. © 2013 John Wiley & Sons Ltd.

  12. H/L ratio as a measurement of stress in laying hens - methodology and reliability.

    Lentfer, T L; Pendl, H; Gebhardt-Henrich, S G; Fröhlich, E K F; Von Borell, E


    Measuring the ratio of heterophils and lymphocytes (H/L) in response to different stressors is a standard tool for assessing long-term stress in laying hens but detailed information on the reliability of measurements, measurement techniques and methods, and absolute cell counts is often lacking. Laying hens offered different sites of the nest boxes at different ages were compared in a two-treatment crossover experiment to provide detailed information on the procedure for measuring and the difficulties in the interpretation of H/L ratios in commercial conditions. H/L ratios were pen-specific and depended on the age and aviary system. There was no effect for the position of the nest. Heterophiles and lymphocytes were not correlated within individuals. Absolute cell counts differed in the number of heterophiles and lymphocytes and H/L ratios, whereas absolute leucocyte counts between individuals were similar. The reliability of the method using relative cell counts was good, yielding a correlation coefficient between double counts of r > 0.9. It was concluded that population-based reference values may not be sensitive enough to detect individual stress reactions and that the H/L ratio as an indicator of stress under commercial conditions may not be useful because of confounding factors and that other, non-invasive, measurements should be adopted.

  13. In-situ stress measurements and stress change monitoring to monitor overburden caving behaviour and hydraulic fracture pre-conditioning

    Puller Jesse W.; Mills Ken W.; Jeffrey Rob G.; Walker Rick J.


    A coal mine in New South Wales is longwall mining 300 m wide panels at a depth of 160–180 m directly below a 16–20 m thick conglomerate strata. As part of a strategy to use hydraulic fracturing to manage potential windblast and periodic caving hazards associated with these conglomerate strata, the in-situ stresses in the conglomerate were measured using ANZI strain cells and the overcoring method of stress relief. Changes in stress associated with abutment loading and placement of hydraulic fractures were also measured using ANZI strain cells installed from the surface and from underground. Overcore stress mea-surements have indicated that the vertical stress is the lowest principal stress so that hydraulic fractures placed ahead of mining form horizontally and so provide effective pre-conditioning to promote caving of the conglomerate strata. Monitoring of stress changes in the overburden strata during longwall retreat was undertaken at two different locations at the mine. The monitoring indicated stress changes were evi-dent 150 m ahead of the longwall face and abutment loading reached a maximum increase of about 7.5 MPa. The stresses ahead of mining change gradually with distance to the approaching longwall and in a direction consistent with the horizontal in-situ stresses. There was no evidence in the stress change monitoring results to indicate significant cyclical forward abutment loading ahead of the face. The for-ward abutment load determined from the stress change monitoring is consistent with the weight of over-burden strata overhanging the goaf indicated by subsidence monitoring.

  14. Systemic inflammatory response syndrome and surgical stress in thoracic surgery.

    Takenaka, Kazumasa; Ogawa, Eiji; Wada, Hiromi; Hirata, Toshiki


    To evaluate the clinical usefulness of postoperative systemic inflammatory response syndrome (SIRS) as an index of surgical stress in patients undergoing thoracic surgery. Forty-five consecutive patients who underwent thoracic surgery with thoracotomy were enrolled. The SIRS criteria were examined daily during the first 7 postoperative days. The serum interleukin-6 (IL-6) level, operation time, intraoperative blood loss, amount of thoracic drainage, and C-reactive protein levels were also measured. Sixteen cases were categorized into the SIRS group, whereas 29 cases were categorized into the non-SIRS group. Among the patients who underwent thoracic surgery, the physiological responses of the patients to the surgery, such as serum IL-6 levels and C-reactive protein levels, were significantly higher in the SIRS group than in the non-SIRS group (P = .002 and .024, respectively). The serum IL-6 level on the first postoperative day was an independent factor associated with SIRS (95% CI 1.002-1.041; P = .030). Furthermore, there was a correlation between the number of SIRS days and the duration of the postoperative hospital stay (r = 0.379, P = .012). Our results demonstrated that SIRS reflected the degree of surgical stress, especially thoracotomic procedures, through the IL-6 levels, and affected the postoperative hospital stay. Systemic inflammatory response syndrome can be useful for the postoperative management of patients undergoing thoracic surgery.

  15. Reliable practical technique for in-situ rock stress measurements in deep gold mines.

    Stacey, TR


    Full Text Available The proposed primary output of this research project is the development of a set of equipment and method of in situ stress measurements in a high stress environment typical of the deep level gold mines....

  16. Through-Thickness Measurements of Residual Stresses in an Overlay Dissimilar Weld Pipe using Neutron Diffraction

    Woo, Wan Chuck; EM, Vyacheslav; Lee, Ho Jin; Kim, Kang Soo; Kang, Mi Hyun; Joo, Jong Dae; Seong, Baek Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Byeon, Jin Gwi; Park, Kwang Soo [Doosan Heavy Industries and Construction Co., Changwon (Korea, Republic of)


    The distribution of residual stresses in dissimilar material joints has been extensively studied because of the wide applications of the dissimilar welds in many inevitable complex design structures. Especially the cracking of dissimilar welding has been a long standing issue of importance in many components of the power generation industries such as nuclear power plant, boiling pressure system, and steam generators. In particular, several failure analysis and direct observations have shown that critical fractures have frequently occurred in one side of the dissimilar welded parts. For example, the heat-affected zone on the ferrite steel side is known to critical in many dissimilar welding pipes when ferrite (low carbon steel) and austenite (stainless) steels are joined. The main cause of the residual stresses can be attributed to the mismatch in the coefficient of thermal expansion between the dissimilar metals (ferrite and austenite). Additional cladding over circumferential welds is known to reinforce the mechanical property due to the beneficial compressive residual stress imposed on the weld and heat-affected zone. However, science-based quantitative measurement of the through thickness residual stress distribution is very limited in literature. The deep penetration capability of neutrons into most metallic materials makes neutron diffraction a powerful tool to investigate and map the residual stresses of materials throughout the thickness and across the weld. Furthermore, the unique volume averaged bulk characteristic of materials and mapping capability in three dimensions are suitable for the engineering purpose. Thus, the neutron-diffraction measurement method has been selected as the most useful method for the study of the residual stresses in various dissimilar metal welded structures. The purpose of this study is to measure the distribution of the residual stresses in a complex dissimilar joining with overlay in the weld pipe. Specifically, we measured

  17. Stress-oriented driver assistance system for electric vehicles.

    Athanasiou, Georgia; Tsotoulidis, Savvas; Mitronikas, Epaminondas; Lymberopoulos, Dimitrios


    Stress is physiological and physical reaction that appears in highly demanding situations and affects human's perception and reaction capability. Occurrence of stress events within highly dynamic road environment could lead to life-threatening situation. With the perspective of safety and comfort driving provision to anxious drivers, in this paper a stress-oriented Driver Assistance System (DAS) is proposed. The DAS deployed on Electric Vehicle. This novel DAS customizes driving command signal in respect to road context, when stress is detected. The effectiveness of this novel DAS is verified by simulation in MATLAB/SIMULINK environment.

  18. Measurement of stress-induced birefringence in glasses based on reflective laser feedback effect

    Haisha, Niu; YanXiong, Niu; Jiyang, Li


    A glass birefringence measurement system utilizing the reflective laser feedback (RLF) effect is presented. The measurement principle is analyzed based on the equivalent cavity of a Fabry-Perot interferometer, and the experiments are conducted with a piece of quartz glass with applied extrusion force. In the feedback system, aluminum film used as a feedback mirror is affixed to the back of the sample. When the light is reflected back into the cavity, as the reinjected light is imprinted with the birefringence information in the sample, the gain and polarization states of the laser are modulated. The variation of optical power and polarization states hopping is monitored to obtain the magnitude of the stress. The system has advantages such as simplicity and low-cost with a precision of 1.9 nm. Moreover, by adjusting the position of the aluminum, large-area samples can be measured anywhere at any place.

  19. Bond strength and stress measurements in thermal barrier coatings

    Gell, M.; Jordan, E. [Univ. of Connecticut, Storrs, CT (United States)


    Thermal barrier coatings have been used extensively in aircraft gas turbines for more than 15 years to insulate combustors and turbine vanes from the hot gas stream. Plasma sprayed thermal barrier coatings (TBCs) provide metal temperature reductions as much as 300{degrees}F, with improvements in durability of two times or more being achieved. The introduction of TBCs deposited by electron beam physical vapor deposition (EB-PVD) processes in the last five years has provided a major improvement in durability and also enabled TBCs to be applied to turbine blades for improved engine performance. To meet the aggressive Advanced Turbine Systems goals for efficiency, durability and the environment, it will be necessary to employ thermal barrier coatings on turbine airfoils and other hot section components. For The successful application of TBCs to ATS engines with 2600{degrees}F turbine inlet temperatures and required component lives 10 times greater than those for aircraft gas turbine engines, it is necessary to develop quantitative assessment techniques for TBC coating integrity with time and cycles in ATS engines. Thermal barrier coatings in production today consist of a metallic bond coat, such as an MCrAlY overlay coating or a platinum aluminide (Pt-Al) diffusion coating. During heat treatment, both these coatings form a thin, tightly adherent alumina (Al{sub 2}O{sub 3}) film. Failure of TBC coatings in engine service occurs by spallation of the ceramic coating at or near the bond coat to alumina or the alumina to zirconia bonds. Thus, it is the initial strength of these bonds and the stresses at the bond plane, and their changes with engine exposure, that determines coating durability. The purpose of this program is to provide, for the first time, a quantitative assessment of TBC bond strength and bond plane stresses as a function of engine time and cycles.

  20. A Comparison between Deep and Shallow Stress Fields in Korea Using Earthquake Focal Mechanism Inversions and Hydraulic Fracturing Stress Measurements

    Lee, Rayeon; Chang, Chandong; Hong, Tae-kyung; Lee, Junhyung; Bae, Seong-Ho; Park, Eui-Seob; Park, Chan


    We are characterizing stress fields in Korea using two types of stress data: earthquake focal mechanism inversions (FMF) and hydraulic fracturing stress measurements (HF). The earthquake focal mechanism inversion data represent stress conditions at 2-20 km depths, whereas the hydraulic fracturing stress measurements, mostly conducted for geotechnical purposes, have been carried out at depths shallower than 1 km. We classified individual stress data based on the World Stress Map quality ranking scheme. A total of 20 FMF data were classified into A-B quality, possibly representing tectonic stress fields. A total of 83 HF data out of compiled 226 data were classified into B-C quality, which we use for shallow stress field characterization. The tectonic stress, revealed from the FMF data, is characterized by a remarkable consistency in its maximum stress (σ1) directions in and around Korea (N79±2° E), indicating a quite uniform deep stress field throughout. On the other hand, the shallow stress field, represented by HF data, exhibits local variations in σ1 directions, possibly due to effects of topography and geologic structures such as faults. Nonetheless, there is a general similarity in σ1 directions between deep and shallow stress fields. To investigate the shallow stress field statistically, we follow 'the mean orientation and wavelength analysis' suggested by Reiter et al. (2014). After the stress pattern analysis, the resulting stress points distribute sporadically over the country, not covering the entire region evenly. In the western part of Korea, the shallow σ1directions are generally uniform with their search radius reaching 100 km, where the average stress direction agrees well with those of the deep tectonic stress. We note two noticeable differences between shallow and deep stresses in the eastern part of Korea. First, the shallow σ1 orientations are markedly non-uniform in the southeastern part of Korea with their search radius less than 25 km

  1. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M.


    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of (/sup 3/H)Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in (14C)iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress (an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures), although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results.

  2. Plant-Stress Measurements Using Laser-Induced Fluorescence Excitation: Poland Experiment

    Gene Capelle; Steve Jones


    Bechtel Nevada's Special Technologies Laboratory (STL) has been involved in remote sensing for many years, and in April 1995 STL began to study the use of active remote sensing for detecting plant stress. This work was motivated by the need to detect subsurface contamination, with the supposition that this could be accomplished by remote measurement of optical signatures from the overgrowing vegetation. The project has been a cooperative DOE/Disney effort, in which basic optical signature measurements (primarily fluorescence) were done at the Disney greenhouse facilities at Epcot Center in Florida, using instrumentation developed by STL on DOE funding. The primary instrument is a LIFI system, which had originally been developed for detection of surface uranium contamination at DOE sites. To deal specifically with the plant stress measurements, a LIFS system was built that utilizes the same laser, but captures the complete fluorescence spectrum from blue to red wavelengths. This system had continued to evolve, and the version in existence in September 1997 was sent to Poland, accompanied by two people from STL, for the purpose of making the measurements described in this report.

  3. Directional spectral emissivity measurement system

    Halyo, Nesim (Inventor); Pandey, Dhirendra K. (Inventor)


    Apparatus and process for determining the emissivity of a test specimen including an integrated sphere having two concentric walls with a coolant circulating therebetween, and disposed within a chamber which may be under ambient, vacuum or inert gas conditions. A reference sample is disposed within the sphere with a monochromatic light source in optical alignment therewith. A pyrometer is in optical alignment with the test sample for obtaining continuous test sample temperature measurements during a test. An arcuate slit port is provided through the spaced concentric walls of the integrating sphere with a movable monochromatic light source extending through and movable along the arcuate slit port. A detector system extends through the integrating sphere for continuously detecting an integrated signal indicative of all radiation within its field of view, as a function of the emissivity of the test specimen at various temperatures and various angle position of the monochromatic light source. A furnace for heating the test sample to approximately 3000 K. and control mechanism for transferring the heated sample from the furnace to the test sample port in the integrating sphere is also contained within the chamber.

  4. Indicators System for Poverty Measurement

    Constantin Mitrut


    Full Text Available Poverty represents a life aspect which is focusing the attention of both the macroeconomic analysis and the international comparisons. In order to measure the level being recorded by this phenomenon, there is a system of indicators which are used in order to underline, in a correlated manner, a number of aspects which are characterizing, quality and quantity wise, the evolution of the poverty in a specific country or, to a larger extent, through comparative surveys, at international level. Despite the fact that they are not the only instrument being used within the process of comparison of the stages of social and economic development at the international level, however the poverty indicators are providing a clear significance to the worked out surveys. In fact, the very purpose of the economic activity consists of increasing welfare and, as much as possible, at least reducing, if not eradicating, the poverty. The present work is broadly presenting the methodology as well as, both theoretical and practical, the way of computing the poverty, making a synthesis of the specific used indicators.

  5. Measuring Stress-dependent Fluid Flow Behavior in Fractured Porous Media

    Huo, Da; Benson, Sally


    Maintaining long-term storage of CO2 is one of the most important factors for selecting the site for a geological CO2 storage project. Nevertheless, it is important to be prepared for possible leakage due to leaking wells or leakage pathways through the seal of a storage reservoir. This research project is motivated by the need to understand unexpected CO2 leakage. The goal of this research is to investigate stress-dependent fracture permeability and relative permeability of CO2/brine systems. Laboratory measurements of fracture permeability and fracture apertures have been made as a function of effective stress. The phenomenon that permeability decreases with effective pressure increase is observed. Due to deformation of the fracture surface during periods with high effective stress, hysteretic behavior of fractured rock permeability is also observed in core flood experiments. A series of experiments are conducted to investigate permeability hysteresis. A single saw-cut fracture is created in the rock sample to simplify the problem and to focus on the fracture itself. Permeability is measured using a high pressure core flood apparatus with X-Ray CT scanning to measure the fracture aperture distributions. Two permeability data sets, including a high permeability fractured Berea Sandstone and a low permeability fractured Israeli Zenifim Formation sandstone, show clear hysteretic behavior in both permeability and fracture aperture in repeated cycles of compression and decompression. Due to closure of the fracture aperture, when a fractured rock is compressed axially, the permeability has an exponential decline with effective pressure, as expected from stress-dependent permeability theory. When the fractured rock is decompressed afterwards, permeability increases, but not along the compression pathway and never returns to the original value. Depending on the nature of the fracture and host rock, permeability can decrease from a factor of 2 to 40. After one or more

  6. Measuring nonlinear stresses generated by defects in 3D colloidal crystals

    Lin, Neil Y C; Schall, Peter; Sethna, James P; Cohen, Itai


    The mechanical, structural and functional properties of crystals are determined by their defects and the distribution of stresses surrounding these defects has broad implications for the understanding of transport phenomena. When the defect density rises to levels routinely found in real-world materials, transport is governed by local stresses that are predominantly nonlinear. Such stress fields however, cannot be measured using conventional bulk and local measurement techniques. Here, we report direct and spatially resolved experimental measurements of the nonlinear stresses surrounding colloidal crystalline defect cores, and show that the stresses at vacancy cores generate attractive interactions between them. We also directly visualize the softening of crystalline regions surrounding dislocation cores, and find that stress fluctuations in quiescent polycrystals are uniformly distributed rather than localized at grain boundaries, as is the case in strained atomic polycrystals. Nonlinear stress measurements ...

  7. Pulsed eddy current and ultrasonic data fusion applied to stress measurement

    Habibalahi, A.; Safizadeh, M. S.


    Stress measurement and its variation are key problems in the operating performance of materials. Stress can affect the material properties and the life of components. There are several destructive and nondestructive techniques that are used to measure stress. However, no single nondestructive testing (NDT) technique or method is satisfactory to fully assess stress. This paper presents an NDT data fusion method to improve stress measurement. An aluminum alloy 2024 specimen subjected to stress simulation is nondestructively inspected using pulsed eddy current and ultrasonic techniques. Following these nondestructive examinations, the information gathered from these two NDT methods has been fused using a suitable fuzzy combination operator. The results obtained with these processes are presented in this paper and their efficiency is discussed. It is shown that the fusion of NDT data with a suitable fuzzy operator can be adequate to improve the reliability of stress measurements.

  8. Local thermodynamic equilibrium for globally disequilibrium open systems under stress

    Podladchikov, Yury


    Predictive modeling of far and near equilibrium processes is essential for understanding of patterns formation and for quantifying of natural processes that are never in global equilibrium. Methods of both equilibrium and non-equilibrium thermodynamics are needed and have to be combined. For example, predicting temperature evolution due to heat conduction requires simultaneous use of equilibrium relationship between internal energy and temperature via heat capacity (the caloric equation of state) and disequilibrium relationship between heat flux and temperature gradient. Similarly, modeling of rocks deforming under stress, reactions in system open for the porous fluid flow, or kinetic overstepping of the equilibrium reaction boundary necessarily needs both equilibrium and disequilibrium material properties measured under fundamentally different laboratory conditions. Classical irreversible thermodynamics (CIT) is the well-developed discipline providing the working recipes for the combined application of mutually exclusive experimental data such as density and chemical potential at rest under constant pressure and temperature and viscosity of the flow under stress. Several examples will be presented.

  9. Oxidative stress parameters in different systemic rheumatic diseases.

    Firuzi, Omidreza; Fuksa, Leos; Spadaro, Chiara; Bousová, Iva; Riccieri, Valeria; Spadaro, Antonio; Petrucci, Rita; Marrosu, Giancarlo; Saso, Luciano


    The involvement of oxidative stress in the pathogenesis of rheumatic disorders, such as systemic sclerosis (SSc) and chronic polyarthritides, has been suggested yet not thoroughly verified experimentally. We analysed 4 plasmatic parameters of oxidative stress in patients with SSc (n = 17), psoriatic arthritis (PsA) (n = 10) and rheumatoid arthritis (RA) (n = 9) compared with healthy subjects (n = 22). The biomarkers were: total antioxidant capacity (TAC) measured by ferric reducing antioxidant power (FRAP) method, hydroperoxides determined by ferrous ion oxidation in presence of xylenol orange (FOX) method and sulfhydryl and carbonyl groups assessed by spectrophotometric assays. The results showed significantly increased hydroperoxides in SSc, PsA and RA (3.97 +/- 2.25, 4.87 +/- 2.18 and 5.13 +/- 2.36 micromol L(-1), respectively) compared with the control group (2.31 +/- 1.40 micromol L(-1); P diseases showed no difference in comparison with controls. Carbonyls were significantly higher in RA than in the control group (32.1 +/- 42 vs 2.21 +/- 1.0 nmol (mg protein)(-1); P rheumatic diseases and suggest a role for the use of antioxidants in prevention and treatment of these pathologies.

  10. Comparison of computational analysis with clinical measurement of stresses on below-knee residual limb in a prosthetic socket.

    Zhang, M; Roberts, C


    Interface pressures and shear stresses between a below-knee residual limb and prosthetic socket predicted using finite element analyses were compared with experimental measurements. A three-dimensional nonlinear finite element model, based on actual residual geometry and incorporating PTB socket rectification and interfacial friction/slip conditions, was developed to predict the stress distribution. A system for measuring pressures and bi-axial shear stresses was used to measure the stresses in the PTB socket of a trans-tibial amputee. The FE-predicted results indicated that the peak pressure of 226 kPa occurred at the patellar tendon area and the peak shear stress of 50 kPa at the anterolateral tibia area. Quantitatively, FE-predicted pressures were 11%, on average, lower than those measured by triaxial transducers placed at all the measurement sites. Because friction/slip conditions between the residual limb and socket liner were taken into consideration by using interface elements in the FE model, the directions and magnitudes of shear stresses match well between the FE prediction and clinical measurements. The results suggest that the nonlinear mechanical properties of soft tissues and dynamic effects during gait should be addressed in future work.

  11. Techniques for Interface Stress Measurements within Prosthetic Sockets of Transtibial Amputees: A Review of the Past 50 Years of Research.

    Al-Fakih, Ebrahim A; Abu Osman, Noor Azuan; Mahmad Adikan, Faisal Rafiq


    The distribution of interface stresses between the residual limb and prosthetic socket of a transtibial amputee has been considered as a direct indicator of the socket quality fit and comfort. Therefore, researchers have been very interested in quantifying these interface stresses in order to evaluate the extent of any potential damage caused by the socket to the residual limb tissues. During the past 50 years a variety of measurement techniques have been employed in an effort to identify sites of excessive stresses which may lead to skin breakdown, compare stress distributions in various socket designs, and evaluate interface cushioning and suspension systems, among others. The outcomes of such measurement techniques have contributed to improving the design and fitting of transtibial sockets. This article aims to review the operating principles, advantages, and disadvantages of conventional and emerging techniques used for interface stress measurements inside transtibial sockets. It also reviews and discusses the evolution of different socket concepts and interface stress investigations conducted in the past five decades, providing valuable insights into the latest trends in socket designs and the crucial considerations for effective stress measurement tools that lead to a functional prosthetic socket.

  12. Techniques for Interface Stress Measurements within Prosthetic Sockets of Transtibial Amputees: A Review of the Past 50 Years of Research

    Ebrahim A. Al-Fakih


    Full Text Available The distribution of interface stresses between the residual limb and prosthetic socket of a transtibial amputee has been considered as a direct indicator of the socket quality fit and comfort. Therefore, researchers have been very interested in quantifying these interface stresses in order to evaluate the extent of any potential damage caused by the socket to the residual limb tissues. During the past 50 years a variety of measurement techniques have been employed in an effort to identify sites of excessive stresses which may lead to skin breakdown, compare stress distributions in various socket designs, and evaluate interface cushioning and suspension systems, among others. The outcomes of such measurement techniques have contributed to improving the design and fitting of transtibial sockets. This article aims to review the operating principles, advantages, and disadvantages of conventional and emerging techniques used for interface stress measurements inside transtibial sockets. It also reviews and discusses the evolution of different socket concepts and interface stress investigations conducted in the past five decades, providing valuable insights into the latest trends in socket designs and the crucial considerations for effective stress measurement tools that lead to a functional prosthetic socket.

  13. Measurement System and Calibration report

    Vesth, Allan; Kock, Carsten Weber

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...

  14. Stimulation of systemic low-grade inflammation by psychosocial stress.

    Rohleder, Nicolas


    Psychosocial stress is an important precursor of disease and reduced quality of life in humans. The biological pathways between stress exposure and pathophysiological processes underlying disease have received substantial scientific attention, although the roles of the hypothalamic-pituitary-adrenal axis and sympathetic nervous system remain insufficiently understood. Recent attention has focused on chronic systemic low-grade inflammation as a promising pathway because elevated inflammation often accompanies chronic psychosocial distress. These alterations of inflammatory activity play a key role in the pathophysiology of diseases that are adversely affected by chronic distress, such as cardiovascular disease. Transient increases in systemic inflammation are observed in response to acute psychosocial stress, with larger responses among individuals reporting adverse psychosocial states or conditions such as depression, lower self-esteem, or lower self-compassion. Recent evidence shows that lower subjective social status and perceived purpose in life are associated with sensitization of inflammatory stress responses to repeated stress exposure. The aims of this selective review article are to summarize current knowledge of the role of acute and chronic psychosocial stress on low-grade inflammation in humans and to discuss potential relationships between inflammatory responses to acute psychosocial stress and long-term development of disease.

  15. Assessing College Student-Athletes' Life Stress: Initial Measurement Development and Validation

    Lu, Frank Jing-Horng; Hsu, Ya-Wen; Chan, Yuan-Shuo; Cheen, Jang-Rong; Kao, Kuei-Tsu


    College student-athletes have unique life stress that warrants close attention. The purpose of this study was to develop a reliable and valid measurement assessing college student-athletes' life stress. In Study 1, a focus group discussion and Delphi method produced a questionnaire draft, termed the College Student-Athletes' Life Stress Scale. In…

  16. Assessing College Student-Athletes' Life Stress: Initial Measurement Development and Validation

    Lu, Frank Jing-Horng; Hsu, Ya-Wen; Chan, Yuan-Shuo; Cheen, Jang-Rong; Kao, Kuei-Tsu


    College student-athletes have unique life stress that warrants close attention. The purpose of this study was to develop a reliable and valid measurement assessing college student-athletes' life stress. In Study 1, a focus group discussion and Delphi method produced a questionnaire draft, termed the College Student-Athletes' Life Stress Scale. In…

  17. The effect of upper gastrointestinal system endoscopy process on serum oxidative stress levels.

    Turan, Mehmet Nuri; Aslan, Mehmet; Bolukbas, Filiz Fusun; Bolukbas, Cengiz; Selek, Sahbettin; Sabuncu, Tevfik


    Some authors have investigated the effects of oxidative stress in some process such as undergoing laparoscopic. However, the effect of upper gastrointestinal system endoscopy process on oxidative stress is unclear. We evaluated the short-term effect of upper gastrointestinal system endoscopy process on oxidative stress. Thirty patients who underwent endoscopy process and 20 healthy controls were enrolled in the prospective study. Serum total antioxidant capacity and total oxidant status measurements were measured before and after endoscopy process. The ratio percentage of total oxidant status to total antioxidant capacity was regarded as oxidative stress index. Before endoscopy process, serum total antioxidant capacity levels were higher, while serum total oxidant status levels and oxidative stress index values were lower in patients than controls, but this difference was not statistically significant (all, p > 0.05). After endoscopy process, serum total antioxidant capacity and total oxidant status levels were significantly higher in patients than before endoscopy process (both, p oxidative stress index values were slight higher in patients but this difference was not statistically significant (p > 0.05). We observed that serum TAC and TOS levels were increased in patients who underwent endoscopy process after endoscopy process. However, short-time upper gastrointestinal system endoscopy process did not cause an important change in the oxidative stress index. Further studies enrolling a larger number of patients are required to clarify the results obtained here.

  18. Mobile measurement system for wind turbines

    Kildemoes Moeller, T.


    The aim of this project `Udviklingsafproevning af smaa moellevinger` has been to develop a mobile measurement system for wind turbines. The following report describes the measurement system. The project has been financed by the Danish Ministry of Energy. (au)

  19. Measurement of Residual Stress in a Welded Branch Connection and Effects on Fracture Behaviour

    Law, M.; Luzin, V.; Kirstein, O.


    The branch analysed in this paper was not post weld heat treated, resulting in significant residual stresses. Assessment codes assume these to be at, or close to, yield. An integrity assessment of a welded branch connection was carried out using these high assumed residual stresses. The weld then had residual stresses determined by neutron diffraction, performed using ANSTO's residual stress diffractometer, Kowari. The maximum measured residual stress (290 MPa or 60% of yield) was much lower than the yield value assumed by assessment codes. Reanalysing with the actual residual stresses almost doubled the critical crack size, increasing the safety of the connection.

  20. Survey of horizontal stresses in coal mines from available measurements and mapping.

    Frith, R


    Full Text Available OF HORIZONTAL STRESS IN THE WITBANK AND HIGHVELD COALFIELDS 21 4.1 Is Horizontal Stress at Work in Roadway Roof Behaviour? 21 4.2 Summary of Measured Horizontal Stresses 24 4.3 Proposed Model for the Origin of Horizontal Stress Within the Coalfields 27 4... effects of horizontal stress could be further mitigated within the practicalities of the mining methods in use. Based on the work undertaken, the following project findings have been arrived at: (a) Horizontal stresses are clearly evident within both...

  1. Restricted and disrupted sleep : Effects on autonomic function, neuroendocrine stress systems and stress responsivity

    Meerlo, Peter; Sgoifo, Andrea; Suchecki, Deborah


    Frequently disrupted and restricted sleep is a common problem for many people in our modern around-the-clock society. In this context, it is an important question how sleep loss affects the stress systems in our bodies since these systems enable us to deal with everyday challenges. Altered activity

  2. Restricted and disrupted sleep : Effects on autonomic function, neuroendocrine stress systems and stress responsivity

    Meerlo, Peter; Sgoifo, Andrea; Suchecki, Deborah


    Frequently disrupted and restricted sleep is a common problem for many people in our modern around-the-clock society. In this context, it is an important question how sleep loss affects the stress systems in our bodies since these systems enable us to deal with everyday challenges. Altered activity

  3. The Applications of Measurement System for Crankshaft

    DAI Shangping; GAO Li; GAO Kai


    This paper will introduce two types of multi-parameter co-measuring system and their application in the production. The first is crankshaft bent deformation measuring machine system. The second is the crankshaft pneumatic-electric measuring system. They have been used in final inspection procedure of automation line for crankshaft of automobie engine with good results, the structure principle and soft clash technological process of the measurement system are presented.

  4. Measurement of lattice rotations and internal stresses in over one hundred individual grains during a stress-induced martensitic transformation

    Hachi Younes El


    Full Text Available To better understand the properties of polycrystals at a microscopic scale during cyclic mechanical loading we have measured the relationship between grain orientations, their positions inside the sample and their internal stresses. In this work, in-situ 3DXRD technique was performed on over hundred grains during the stress-induced martensitic transformation in a Cu-Al-Be shape memory alloy. Information about the position, orientation, and stress field was obtained for each austenitic grain. These results have been used to develop a procedure that allows automatic processing for a large number of grains, matching them during loading and leads to a quantitative stress field. A strong heterogeneity of stress state between the grains at the surface and in the volume is evident.

  5. Stress Measurement with an Improved Hollow Inclusion Technique In Jinchuan Nickel Mine


    Borehole overcoring stress measurement with an improved hollow inclusion technique was carried out at 10 points on 3 levels in Jinchuan nickel mine which is situated in north-west of China. Through the measurement, 3-D in situ stress state at the measuring points and distribution characteristics of the stress field in the mine were obtained. The stress state in Jinchuan mine is dominated by the horizontal tectonic stress field. The maximum principal stress is horizontal which is about twice the weight of the overburden and its orientation is approximately vertical to the regional tectonic line. The difference between two horizontal principal stresses is quite large which is an important reason to cause failure of underground excavations.

  6. Numerical and experimental demonstration of shear stress measurement at thick steel plates using acoustoelasticity

    Abbasi, Zeynab; Ozevin, Didem


    The purpose of this article is to numerically quantify the stress state of complex loaded thick steel plates using the fundamental theory of acoustoelasticity, which is the relationship with stress and ultrasonic velocity in the nonlinear regime. The normal and shear stresses of a thick plate can be measured using a phased array placement of ultrasonic sensors and Rayleigh ultrasonic waves. Three measurement angles (i.e., 0 45 and 90 degrees) are selected since three measurements are needed to solve the stress tensor in an isotropic plate. The ultrasonic data is influenced significantly by the frequency of the Rayleigh waves as well as the thickness of the plate being examined; consequently the overall experimental process is influenced by the measurement parameters. In this study, a numerical demonstration is implemented to extract the nonlinearity coefficients using a 3D structural geometry and Murnaghan material model capable of examining the effects of various plate thicknesses and ultrasonic frequencies on the shear stress measurement. The purpose is that as the thickness becomes smaller, the shear stress becomes negligible at the angled measurement. For thicker cross section, shear stress becomes influential if the depth of penetration of Rayleigh wave is greater than the half of the thickness. The correlation between the depth of penetration and shear stress is then obtained. The numerical results are compared with 1 MHz ultrasonic frequency and a 3/8 inch thick steel plate loaded uniaxially while the measurement direction is angled to have the presence of shear stress in the measurement direction.

  7. Measurement and modeling of bed shear stress under solitary waves

    Jayakumar, S.; Guard, P.A.; Baldock, T.E.

    convolution integration methods forced with the free stream velocity and incorporating a range of eddy viscosity models. Wave friction factors were estimated from skin shear stress at different instances over the wave (viz., time of maximum positive total...

  8. Measures of Autonomic Nervous System Regulation


    Tension-Release Practices Trauma Resiliency Model (TRM)* X* X* Trauma and Tension Releasing Exercises (TRE) Yoga (Asana...Mindfulness Based Stress Reduction (MBSR) Yoga Nidra (iRest) X X *Study currently in progress utilizing these measures 7...pulse oximeter have the benefit of being more portable; they do not require a trained technician and are more durable than the traditional EKG. The

  9. Measures of Autonomic Nervous System


    Resiliency Model (TRM)* X* X* Trauma and Tension Releasing Exercises (TRE) Yoga (Asana) Postures X X Breathing Practices...MBSR) Yoga Nidra (iRest) X X *Study currently in progress utilizing these measures 7...measuring oxygen saturation of blood. The Doppler radar cardiopulmonary remote sensing unit and the wearable reflectance pulse oximeter have the benefit

  10. Convection pattern and stress system under the African plate

    Liu, H.-S.


    Studies on tectonic forces from satellite-derived gravity data have revealed a subcrustal stress system which provides a unifying mechanism for uplift, depression, rifting, plate motion and ore formation in Africa. The subcrustal stresses are due to mantle convection. Seismicity, volcanicity and kimberlite magmatism in Africa and the development of the African tectonic and magnetic features are explained in terms of this single stress system. The tensional stress fields in the crust exerted by the upwelling mantle flows are shown to be regions of structural kinship characterized by major concentration of mineral deposits. It is probable that the space techniques are capable of detecting and determining the tectonic forces in the crust of Africa.

  11. Two-component laser Doppler anemometer for measurement of velocity and turbulent shear stress near prosthetic heart valves.

    Woo, Y R; Yoganathan, A P


    The velocity and turbulent shear stress measured in the immediate vicinity of prosthetic heart valves play a vital role in the design and evaluation of these devices. In the past hot wire/film and one-component laser Doppler anemometer (LDA) systems were used extensively to obtain these measurements. Hot wire/film anemometers, however, have some serious disadvantages, including the inability to measure the direction of the flow, the disturbance of the flow field caused by the probe, and the need for frequent calibration. One-component LDA systems do not have these problems, but they cannot measure turbulent shear stresses directly. Since these measurements are essential and are not available in the open literature, a two-component LDA system for measuring velocity and turbulent shear stress fields under pulsatile flow conditions was assembled under an FDA contract. The experimental methods used to create an in vitro data base of velocity and turbulent shear stress fields in the immediate vicinity of prosthetic heart valves of various designs in current clinical use are also discussed.



    In this article, a shear plate was mounted on the bottom in a wave flume and direct measurements of the smooth and rough bed shear stress under regular and irregular waves were conducted with the horizontal force exerted on the shear plates by the bottom shear stress in the wave boundary layer. Under immobile bed condition, grains of sand were glued uniformly and tightly onto the shear plate, being prevented from motion with the fluid flow and generation of sand ripples. The distribution of the bottom mean shear stress varying with time was measured by examining the interaction between the shear plate and shear transducers. The relation between the force measured by the shear transducers and its voltage is a linear one. Simultaneous measurements of the bottom velocity were carried out by an Acoustic Doppler Velocimeter (ADV), while the whole process was completely controlled by computers, bottom shear stress and velocity were synchronously measured. Based on the experimental results, it can be concluded that (1) the friction coefficient groews considerably with the increase of the Reynolds number, (2) the shear stress is a function varying with time and linearly proportional to the velocity. Compared with theoretical results and previous experimental data, it is shown that the experimental method is feasible and effective, A further study on the bed shear stress under regular or irregular waves can be carried out. And applicability to the laboratory studies on the initiation of sediments and the measurement of the shear stress after sediment imigration.

  13. Residual stress measurement in a metal microdevice by micro Raman spectroscopy

    Song, Chang; Du, Liqun; Qi, Leijie; Li, Yu; Li, Xiaojun; Li, Yuanqi


    Large residual stress induced during the electroforming process cannot be ignored to fabricate reliable metal microdevices. Accurate measurement is the basis for studying the residual stress. Influenced by the topological feature size of micron scale in the metal microdevice, residual stress in it can hardly be measured by common methods. In this manuscript, a methodology is proposed to measure the residual stress in the metal microdevice using micro Raman spectroscopy (MRS). To estimate the residual stress in metal materials, micron sized β-SiC particles were mixed in the electroforming solution for codeposition. First, the calculated expression relating the Raman shifts to the induced biaxial stress for β-SiC was derived based on the theory of phonon deformation potentials and Hooke’s law. Corresponding micro electroforming experiments were performed and the residual stress in Ni–SiC composite layer was both measured by x-ray diffraction (XRD) and MRS methods. Then, the validity of the MRS measurements was verified by comparing with the residual stress measured by XRD method. The reliability of the MRS method was further validated by the statistical student’s t-test. The MRS measurements were found to have no systematic error in comparison with the XRD measurements, which confirm that the residual stresses measured by the MRS method are reliable. Besides that, the MRS method, by which the residual stress in a micro inertial switch was measured, has been confirmed to be a convincing experiment tool for estimating the residual stress in metal microdevice with micron order topological feature size.


    亚敏; 戴福隆; 谢惠民; 吕坚


    Hole-drilling method is one of the most convenient methods for engineering residual ment data, hole-drilling technique can be used to solve non-uniform residual stress problems, both (MIIHD) for non-uniform residual stress measurement is introduced. Three dimensional finite element model is constructed by ABAQUS to obtain the coefficients for the residual stress calculation.An experimental system including real-time measurement, automatic data processing and residual stresses calculation is established. Two applications for non-uniform in-depth residual stress of surface nanocrystalline material and non-uniform in-plane residual stress of friction stir welding are presented.Experimental results show that MIIHD is effective for both non-uniform in-depth and in-plane residual stress measurements.

  15. Residual stress measurements of 2-phase sprayed coating layer

    Nishida, Masayuki [Kagawa Polytechnic College, Kagawa (Japan); Hanabusa, Takao


    In a series of the already reported single phase metal and ceramic melt sprayed films, on two phase melt sprayed films, their stress and thermal stress changes due to their bending load are tried to test. In order to prepare two phase state, austenitic stainless steel wire is used by a laser melt spraying method. In this method, CO{sub 2} laser is used for a thermal source, and proceeding direction of its laser is selected to cross melt spraying direction. As a result, the following facts can be elucidated. The stress values at {alpha}- and {gamma}-phase in the stainless steel film are linearly responsive to the bending load, and the stress change in {alpha}-phase is smaller than that in {gamma}-phase. In a heat and cool cycle, {alpha}-phase shows a trend of extension with increasing temperature but {gamma}-phase shows a trend of compression inversely. And, stress behavior at {alpha}- and {gamma}-phases in the stainless steel film does not agree with a mixing rule in common two-phase materials. (G.K.)

  16. Introduction to control system performance measurements

    Garner, K C


    Introduction to Control System Performance Measurements presents the methods of dynamic measurements, specifically as they apply to control system and component testing. This book provides an introduction to the concepts of statistical measurement methods.Organized into nine chapters, this book begins with an overview of the applications of automatic control systems that pervade almost every area of activity ranging from servomechanisms to electrical power distribution networks. This text then discusses the common measurement transducer functions. Other chapters consider the basic wave

  17. Structural integrity assessment and stress measurement of CHASNUPP-1 fuel assembly

    Waseem,, E-mail:; Murtaza, Ghulam; Elahi, Nadeem


    Highlights: • Finite element model of CHASNUPP-1 fuel assembly produced, using Shell181 elements. • Non-linear contact and buckling analysis have been performed. • Structural integrity and stress measurement of fuel assembly is calculated. • Calculated stresses and deformations, are compared with test results. • Results of both studies are comparable, which validate finite element methodology. - Abstract: Fuel assembly of the PWR nuclear power plant is a long and flexible structure. This study has been made in an attempt to find the structural integrity of the fuel assembly (FA) of Chashma Nuclear Power Plant-1 (CHASNUPP-1) at room temperature in air. Non-linear contact and buckling analyses have been performed using ANSYS 13.0, in-order to determine the FA's deformation behaviour as well as the location/values of the maximum stress intensity and stresses developed in axial direction under applied compression load of 7350 N or 1.6 g being the FA's handling load (Zhang et al., 1994). The finite element (FE) model comprises spacer grids, fuel rods, flexible contact between the fuel rods and grids’ supports system (springs and dimples) and guide thimbles with dash-pots and flow holes, in addition to the spot welds between spacer grids and guide thimbles, has been developed using Shell181, Conta174 and Targe170 elements. FA is a non-straight structure. The actual behaviour of the geometry is non-linear. The value of the perturbation force is related to the geometry of the model and/or the tolerance defined for the geometry. Therefore, a sensitivity study has been made to determine the appropriate value of an arbitrary perturbation load. It has been observed that FA deformation values obtained through FE analysis and experiment (SNERDI Tech Doc, 1994) under applied compression load are comparable and show linear behaviours. Therefore, it is confirmed that buckling of FA will not occur at the specified load. Moreover, the values of stresses obtained

  18. Study to evaluate the effectiveness of stress management workshops on response to general and occupational measures of stress.

    Heron, R J; McKeown, S; Tomenson, J A; Teasdale, E L


    This study was designed to evaluate the effectiveness of stress management training workshops within Zeneca Pharmaceuticals. The study was of cross-sectional design, comparing groups of workshop attendees and non-attendees. In addition, self-rated well-being scores of attendees were compared with results obtained pre-workshop and 2-3 months after the workshop. Employees participating in the study were drawn from the Manufacturing, Research and Development, Sales and Marketing sites of Zeneca Pharmaceuticals located in Cheshire, United Kingdom. Three hundred and ninety persons who had participated in stress management workshops since 1988 were matched for age, gender and department with an equal number of employees who had not attended stress management workshops. Outcome measures included self-rated well-being (as measured by the 30-question General Health Questionnaire), knowledge of company guidance on the management of stress in staff, and an assessment of coping strategies. Subjects who had not attended a stress management workshop were much more likely to have a poor understanding of the principles of management of stress in staff [odds ratio (OR) = 8.3; 95% confidence interval (CI) = 3.3-21.3] and more likely to have poor coping skills (OR = 2.8; CI = 1.3-6.1). However, mean scores for the two measures were similar in attendees and non-attendees. Self-rating of current well-being was strongly associated with the life-events score, but not related to workshop attendance. The study indicates that stress management training workshops reduce the prevalence of employees with a poor understanding of the principles of the management of stress in staff and with poor coping strategies. An improvement in the self-rated well-being observed shortly after the workshop was not sustained.

  19. Final Report: Geothermal dual acoustic tool for measurement of rock stress

    Normann, Randy A. [Perma Works LLC, Pattonville, TX (United States)


    This paper outlines the technology need for a rock formation stress measurement in future EGS wells. This paper reports on the results of work undertaken under a Phase I, DOE/SBIR on the feasibility to build an acoustic well logging tool for measuring rock formation stress.

  20. Final Report. Geothermal Dual Acoustic Tool for Measurement of Rock Stress

    Normann, Randy A [Perma Works LLC, Pattonville, TX (United States)


    This paper outlines the technology need for a rock formation stress measurement in future EGS wells. This paper reports on the results of work undertaken under a Phase I, DOE/SBIR on the feasibility to build an acoustic well logging tool for measuring rock formation stress.

  1. Accuracy of soil stress measurements as affected by transducer dimensions and shape

    Lamandé, Mathieu; Keller, Thomas; Berisso, Feto Esimo


    Accurate measurements of soil stress are needed to evaluate the impact of traffic on soil properties and prevent soil compaction. Four types of transducer commonly used to measure vertical stress were calibrated in realistic traffic conditions in the field. The four transducer types differed in s...

  2. Instruction manual for the use of CSIR triaxial rock stress measuring equipment

    Coetzer, SJ


    Full Text Available This is an updated version of CSIR Report no ME 1763 entitled "Instruction manual for the use for the CSIR triaxial rock stress measuring equipment" by F A Vreede. The manual contains a detailed description of CSIR Triaxial rock stress measuring...

  3. Final Report: Geothermal Dual Acoustic Tool for Measurement of Rock Stress

    Normann, Randy A.


    This paper outlines the technology need for a rock formation stress measurement in future EGS wells. This paper reports on the results of work undertaken under a Phase I, DOE/SBIR on the feasibility to build an acoustic well logging tool for measuring rock formation stress.

  4. Advanced holographic nondestructive testing system for residual stress analysis

    Kniazkov, Anatoli; Dovgalenko, George; Salamo, Gregory; Latychevskaia, Tatiana; 10.1117/12.347399


    The design and operating of a portable holographic interferometer for residual stress analysis by creating a small scratch along with a new mathematical algorithm of calculations are discussed. Preliminary data of the stress investigations on aluminum and steel alloys have been obtained by the automatic processing of the interference pattern using a notebook computer. A phase-shift compensation technique in real-time reflection interferometry is used to measure the out-of-plane stress release surface displacement surrounding a small scratch (25 um depth and 0.5 mm width) in a plate with residual stress of around 50 MPa. Comparison between theoretical models for a rectangular and triangular shaped scratch with the experimental data are presented.

  5. A decision support system for real-time stress detection during virtual reality exposure.

    Gaggioli, Andrea; Cipresso, Pietro; Serino, Silvia; Pioggia, Giovanni; Tartarisco, Gennaro; Baldus, Giovanni; Corda, Daniele; Ferro, Marcello; Carbonaro, Nicola; Tognetti, Alessandro; De Rossi, Danilo; Giakoumis, Dimitris; Tzovaras, Dimitrios; Riera, Alejandro; Riva, Giuseppe


    Virtual Reality (VR) is increasingly being used in combination with psycho-physiological measures to improve assessment of distress in mental health research and therapy. However, the analysis and interpretation of multiple physiological measures is time consuming and requires specific skills, which are not available to most clinicians. To address this issue, we designed and developed a Decision Support System (DSS) for automatic classification of stress levels during exposure to VR environments. The DSS integrates different biosensor data (ECG, breathing rate, EEG) and behavioral data (body gestures correlated with stress), following a training process in which self-rated and clinical-rated stress levels are used as ground truth. Detected stress events for each VR session are reported to the therapist as an aggregated value (ranging from 0 to 1) and graphically displayed on a diagram accessible by the therapist through a web-based interface.

  6. Low Temperature Emissivity Measurement System

    Jignesh A. Patel


    Full Text Available The emissivity of a material is the relative ability of its surface to emit energy by radiation. It is the ratio of energy radiated by a particular material to energy radiated by a black body at the same temperature. Knowledge about the low temperature emissivity of materials and coatings can be essential to the design of fusion cryoplants and in the thermal modeling for space satellite missions. The emittance of materials at cryogenics temperatures often cannot be predicted from room temperature data, but for computing radiative loads and infrared backgrounds this cryogenic data is often required. Measurement of the cryogenic emissivity of a highly reflective surface is a significant challenge: little thermal power is radiated from the sample, and the background radiation. However some researchers have measured emissivity at various low temperature ranges. Present work reports, the various emissivity measurement setup and their considerations.

  7. A Presence-Based Context-Aware Chronic Stress Recognition System

    Andrej Kos


    Full Text Available Stressors encountered in daily life may play an important role in personal well-being. Chronic stress can have a serious long-term impact on our physical as well as our psychological health, due to ongoing increased levels of the chemicals released in the ‘fight or flight’ response. The currently available stress assessment methods are usually not suitable for daily chronic stress measurement. The paper presents a context-aware chronic stress recognition system that addresses this problem. The proposed system obtains contextual data from various mobile sensors and other external sources in order to calculate the impact of ongoing stress. By identifying and visualizing ongoing stress situations of an individual user, he/she is able to modify his/her behavior in order to successfully avoid them. Clinical evaluation of the proposed methodology has been made in parallel by using electrodermal activity sensor. To the best of our knowledge, the system presented herein is the first one that enables recognition of chronic stress situations on the basis of user context.

  8. Investigation of stressful life events in patients with systemic sclerosis

    Yue CHEN; Ji-zhong HUANG; Yu QIANG; Jin WANG; Mao-mao HAN


    Objective: To assess the occurrence of stressful life events in the year before the initiation of systemic sclerosis. Methods: A consecutive series of 40 patients with systemic sclerosis (mean age (56.3~ 11.9) years, mean disease duration (4.3±3.1) years; 32 females and 8 males), including 28 with diffuse cutaneous scleroderma and 12 with limited cutaneous scleroderma, were evaluated. A control group of 40 healthy subjects free of systemic sclerosis also was included. Socioeconomic status was inves-tigated and Paykel's interview for recent life events (a semi-structured research interview covering 64 life events) was conducted. Results: Patients with systemic sclerosis showed higher percentages of lower education (72.5%) and working class (82.5%), and reported more stressful life events (P<0.05), such as exits (P<0.05), undesirable events (P<0.01), and uncontrolled events (P<0.001), when compared with the control. More events that had an objective negative impact (P<0.001) were also reported in systemic sclerosis patients than in the control. These results are in accordance with a muitifactorial model of pathogenesis in systemic sclerosis. Conclusion: We reported a strong relationship between stressful life events and the initiation of systemic sclerosis. Our findings are consistent with current understanding of the extensive links of behavioral responses to stress with neurophysiological and biochemical processes.

  9. Development of Simple Dip-Stick-Type Uniaxial Stress Actuator for Alternating-Current Susceptibility Measurements

    MYDEEN Kamal; YU Yong; JIN Chang-Qing


    A simple dip-stick type uniaxial stress actuator for ac-susceptibility measurement is designed. Target pressure can be achieved by smooth and continues work carried out using a combination of light weight micrometer and spring.The magnitude of the pressure is directly calculated from the force constant of the spring and the surface area of the sample. Benchmark on the quality of the data under uniaxial pressure is confirmed by the Piezo resistance measurements on [100] oriented n-type Si. The system is examined and calibrated with the standard paramagnetic Gd2O3. Further, the device performance, generation of constant uniaxial pressure against temperature variations,is assured by investigating the ac-magnetic susceptibility measurements on highly anisotropic La1.25 Sr1.75Mn2 O7bilayer single crystal.

  10. Interdependence of the volume and stress ensembles and equipartition in statistical mechanics of granular systems.

    Blumenfeld, Raphael; Jordan, Joe F; Edwards, Sam F


    We discuss the statistical mechanics of granular matter and derive several significant results. First, we show that, contrary to common belief, the volume and stress ensembles are interdependent, necessitating the use of both. We use the combined ensemble to calculate explicitly expectation values of structural and stress-related quantities for two-dimensional systems. We thence demonstrate that structural properties may depend on the angoricity tensor and that stress-based quantities may depend on the compactivity. This calls into question previous statistical mechanical analyses of static granular systems and related derivations of expectation values. Second, we establish the existence of an intriguing equipartition principle-the total volume is shared equally amongst both structural and stress-related degrees of freedom. Third, we derive an expression for the compactivity that makes it possible to quantify it from macroscopic measurements.

  11. Measuring animal welfare within a reintroduction: an assessment of different indices of stress in water voles Arvicola amphibius.

    Merryl Gelling

    Full Text Available Reintroductions are an increasingly common conservation restoration tool; however, little attention has hitherto been given to different methods for monitoring the stress encountered by reintroduced individuals. We compared ten potential measures of stress within four different categories (neuroendocrine, cell function, body condition and immune system function as proxies for animal welfare in water voles being reintroduced to the Upper Thames region, Oxfordshire, UK. Captive-bred voles were assessed pre-release, and each month post-release for up to five months. Wild-born voles were captured in the field and assessed from two months post-release. Plasma corticosteroid, hydration and body condition of captive-bred voles differed between their pre-release measures and both their first ("short-term" recapture, and their final recapture ("long-term" release, however only body condition and immunocompetence measured using the Nitroblue Tetrazolium (NBT test were significantly different post-release between the first and last recaptures. Captive-bred animals had lower fat reserves, higher weight/length ratios and better immunocompetence (NBT than did wild-born voles. Captive-bred males had higher ectoparasite burdens compared to wild-born males and, as reintroduction site quality decreased, became less hydrated. These observations indicate that some methods can identify changes in the stress response in individuals, highlighting areas of risk in a reintroduction programme. In addition, a single measure may not provide a full picture of the stress experienced; instead, a combination of measures of different physiological systems may give a more complete indication of stress during the reintroduction process. We highlight the need to monitor stress in reintroductions using measures from different physiological systems to inform on possible animal welfare improvements and thus the overall success rate of reintroductions.

  12. Breathing detection with a portable impedance measurement system: first measurements.

    Cordes, Axel; Foussier, Jerome; Leonhardt, Steffen


    For monitoring the health status of individuals, detection of breathing and heart activity is important. From an electrical point of view, it is known that breathing and heart activity change the electrical impedance distribution in the human body over the time due to ventilation (high impedance) and blood shifts (low impedance). Thus, it is possible to detect both important vital parameters by measuring the impedance of the thorax or the region around lung and heart. For some measurement scenarios it is also essential to detect these parameters contactless. For instance, monitoring bus drivers health could help to limit accidents, but directly connected systems limit the drivers free moving space. One measurement technology for measuring the impedance changes in the chest without cables is the magnetic impedance tomography (MIT). This article describes a portable measurement system we developed for this scenario that allows to measure breathing contactless. Furthermore, first measurements with five volunteers were performed and analyzed.




    Psychosocial factors are implicated in the development, in the course of, and in the recovery from disease. The immune system may be a mediator of the disease. Studies with animal models using social interactions in rodents suggest that short- and long-term social stress does not invariably suppress

  14. Nondestructive and Localized Measurements of Stress-Strain Curves and Fracture Toughness of Ferritic Steels at Various Temperatures Using Innovative Stress-Strain Microprobe Technology. Final Report for Period 8/13/1996--06/16/1999

    Fahmy M. Haggag


    The results presented in this report demonstrate the capabilities of Advanced Technology Corporation's patented Portable/In Situ Stress-Strain Microprobe (TM) (SSM) System and its Automated Ball Indentation (ABI) test techniques to nondestructively measure the yield strength, the stress-strain curve, and the fracture toughness of ferritic steel samples and components in a reliable and accurate manner.

  15. Development of radially movable multichannel Reynolds stress probe system for a cylindrical laboratory plasma

    Nagashima, Yoshihiko; Yamada, Takuma; Takase, Yuichi [GSFS, University of Tokyo, Kashiwa, Chiba 816-8561 (Japan); Inagaki, Shigeru; Kamakaki, Kunihiro; Yagi, Masatoshi; Fujisawa, Akihide; Itoh, Sanae-I. [RIAM, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Arakawa, Hiroyuki; Kawai, Yoshinobu [IGSES, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Shinohara, Shunjiro [IE, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Itoh, Kimitaka [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)


    A new radially movable multichannel azimuthal probe system has been developed for measuring azimuthal and radial profiles of electrostatic Reynolds stress (RS) per mass density of microscale fluctuations for a cylindrical laboratory plasma. The system is composed of 16 probe units arranged azimuthally. Each probe unit has six electrodes to simultaneously measure azimuthal and radial electric fields for obtaining RS. The advantage of the system is that each probe unit is radially movable to measure azimuthal RS profiles at arbitrary radial locations as well as two-dimensional structures of fluctuations. The first result from temporal observation of fluctuation azimuthal profile presents that a low-frequency fluctuation (1-2 kHz) synchronizes oscillating Reynolds stress. In addition, radial scanning of the probe system simultaneously demonstrates two-dimensional patterns of mode structure and nonlinear forces with frequency f= 1.5 kHz and azimuthal mode number m= 1.

  16. Systems analysis of oxidant stress in the vasculature.

    Handy, Diane E; Loscalzo, Joseph; Leopold, Jane A


    Systems biology and network analysis are emerging as valuable tools for the discovery of novel relationships, the identification of key regulatory factors, and the prediction of phenotypic changes in complex biological systems. Redox homeostasis in the vasculature is maintained by an intricate balance between oxidant-generating and antioxidant systems. When these systems are perturbed, conditions are permissive for oxidant stress, which, in turn, promotes vascular dysfunction and structural remodeling. Owing to the number of elements involved in redox regulation and the different vascular pathophenotypes associated with oxidant stress, vascular oxidant stress represents an ideal system to study by network analysis. Networks offer a method to organize experimentally derived factors, including proteins, metabolites, and DNA, that are represented as nodes into an unbiased comprehensive platform for study. Through analysis of the network, it is possible to determine essential or regulatory nodes, identify previously unknown connections between nodes, and locate modules, which are groups of nodes located within the same neighborhood that function together and have implications for phenotype. Investigators have only recently begun to construct oxidant stress-related networks to examine vascular structure and function; however, these early studies have provided mechanistic insight to further our understanding of this complicated biological system. © 2013 International Union of Biochemistry and Molecular Biology.

  17. Interspecies stress in momentum equations for dense binary particulate systems.

    Zhang, D Z; Ma, X; Rauenzahn, R M


    For two-species particulate systems, ensemble averaged continuity and momentum equations for each species are derived based on the Liouville equation of the system. The ensemble average used is species specific. It is found that the interaction between species results in not only the interspecies force but also a stress in the momentum equations. In the limit that particles of one of the species can be considered as a continuum, the existence of the interspecies stress enables us to reduce the derived equations to the familiar form for dispersed two-phase flows.

  18. Stress release model and proxy measures of earthquake size. Application to Italian seismogenic sources

    Varini, Elisa; Rotondi, Renata; Basili, Roberto; Barba, Salvatore


    This study presents a series of self-correcting models that are obtained by integrating information about seismicity and fault sources in Italy. Four versions of the stress release model are analyzed, in which the evolution of the system over time is represented by the level of strain, moment, seismic energy, or energy scaled by the moment. We carry out the analysis on a regional basis by subdividing the study area into eight tectonically coherent regions. In each region, we reconstruct the seismic history and statistically evaluate the completeness of the resulting seismic catalog. Following the Bayesian paradigm, we apply Markov chain Monte Carlo methods to obtain parameter estimates and a measure of their uncertainty expressed by the simulated posterior distribution. The comparison of the four models through the Bayes factor and an information criterion provides evidence (to different degrees depending on the region) in favor of the stress release model based on the energy and the scaled energy. Therefore, among the quantities considered, this turns out to be the measure of the size of an earthquake to use in stress release models. At any instant, the time to the next event turns out to follow a Gompertz distribution, with a shape parameter that depends on time through the value of the conditional intensity at that instant. In light of this result, the issue of forecasting is tackled through both retrospective and prospective approaches. Retrospectively, the forecasting procedure is carried out on the occurrence times of the events recorded in each region, to determine whether the stress release model reproduces the observations used in the estimation procedure. Prospectively, the estimates of the time to the next event are compared with the dates of the earthquakes that occurred after the end of the learning catalog, in the 2003-2012 decade.

  19. Glass-modified stress waves for adhesion measurement of ultra thin films for device applications

    Gupta, Vijay; Kireev, Vassili; Tian, Jun; Yoshida, Hiroshi; Akahoshi, Haruo


    Laser-generated stress wave profiles with rarefaction shocks (almost zero post-peak decay times) have been uncovered in different types of glasses and presented in this communication. The rise time of the pulses was found to increase with their amplitude, with values reaching as high as 50 ns. This is in contrast to measurements in other brittle crystalline solids where pulses with rise times of 1 -2 ns and post-peak decay times of 16 -20 ns were recorded. The formation of rarefaction shock is attributed to the increased compressibility of glasses with increasing pressures. This was demonstrated using a one-dimensional nonlinear elastic wave propagation model in which the wave speed was taken as a function of particle velocity. The technological importance of these pulses in measuring the tensile strength of very thin film interfaces is demonstrated by using a previously developed laser spallation experiment in which a laser-generated compressive stress pulse in the substrate reflects into a tensile wave from the free surface of the film and pries off its interface at a threshold amplitude. Because of the rarefaction shock, glass-modified waves allow generation of substantially higher interfacial tensile stress amplitudes compared with those with finite post-peak decay profiles. Thus, for the first time, tensile strengths of very strong and ultra thin film interfaces can be measured. Results presented here indicate that interfaces of 185-nm-thick films, and with strengths as high as 2.7 GPa, can be measured. Thus, an important advance has been made that should allow material optimization of ultra thin layer systems that may form the basis of future MEMS-based microelectronic, mechanical and clinical devices.

  20. Investigation of PACE™ software and VeriFax's Impairoscope device for quantitatively measuring the effects of stress

    Morgenthaler, George W.; Nuñez, German R.; Botello, Aaron M.; Soto, Jose; Shrairman, Ruth; Landau, Alexander


    Many reaction time experiments have been conducted over the years to observe human responses. However, most of the experiments that were performed did not have quantitatively accurate instruments for measuring change in reaction time under stress. There is a great need for quantitative instruments to measure neuromuscular reaction responses under stressful conditions such as distraction, disorientation, disease, alcohol, drugs, etc. The two instruments used in the experiments reported in this paper are such devices. Their accuracy, portability, ease of use, and biometric character are what makes them very special. PACE™ is a software model used to measure reaction time. VeriFax's Impairoscope measures the deterioration of neuromuscular responses. During the 1997 Summer Semester, various reaction time experiments were conducted on University of Colorado faculty, staff, and students using the PACE™ system. The tests included both two-eye and one-eye unstressed trials and trials with various stresses such as fatigue, distractions in which subjects were asked to perform simple arithmetic during the PACE™ tests, and stress due to rotating-chair dizziness. Various VeriFax Impairoscope tests, both stressed and unstressed, were conducted to determine the Impairoscope's ability to quantitatively measure this impairment. In the 1997 Fall Semester, a Phase II effort was undertaken to increase test sample sizes in order to provide statistical precision and stability. More sophisticated statistical methods remain to be applied to better interpret the data.

  1. High Temperature Superconducting Maglev Measurement System

    Wang, Jia-Su; Wang, Su-Yu


    Three high temperature superconducting (HTS) Maglev measurement systems were successfully developed in the Applied Superconductivity Laboratory (ASCLab) of Southwest Jiaotong University, P. R. China. These systems include liquid nitrogen vessel, Permanent Magnet Guideway (PMG), data collection and processing, mechanical drive and Autocontrol features. This chapter described the three different measuring systems along with their theory of operations and workflow. The SCML-01 HTS Maglev measure...

  2. Remarks on residual stress measurement by hole-drilling and electronic speckle pattern interferometry.

    Barile, Claudia; Casavola, Caterina; Pappalettera, Giovanni; Pappalettere, Carmine


    Hole drilling is the most widespread method for measuring residual stress. It is based on the principle that drilling a hole in the material causes a local stress relaxation; the initial residual stress can be calculated by measuring strain in correspondence with each drill depth. Recently optical techniques were introduced to measure strain; in this case, the accuracy of the final results depends, among other factors, on the proper choice of the area of analysis. Deformations are in fact analyzed within an annulus determined by two parameters: the internal and the external radius. In this paper, the influence of the choice of the area of analysis was analysed. A known stress field was introduced on a Ti grade 5 sample and then the stress was measured in correspondence with different values of the internal and the external radius of analysis; results were finally compared with the expected theoretical value.

  3. 600-GHz Electronically Tunable Vector Measurement System

    Dengler, Robert; Maiwald, Frank; Siegel, Peter


    A compact, high-dynamic-range, electronically tunable vector measurement system that operates in the frequency range from approximately 560 to approximately 635 GHz has been developed as a prototype of vector measurement systems that would be suitable for use in nearly-real-time active submillimeter-wave imaging. As used here, 'vector measurement system" signifies an instrumentation system that applies a radio-frequency (RF) excitation to an object of interest and measures the resulting amplitude and phase response, relative to either the applied excitatory signal or another reference signal related in a known way to applied excitatory signal.

  4. The Stress Management in the Enterprise Management System

    Kuzmin Oleh Ye.


    Full Text Available The article systematizes the classification of the type of management by a number of attributes: horizon of ambition, priority style of interaction between management and managed systems, level of centralization, orientation, consideration of environmental impact, contents, type of activity, and response to deviation. Within terms of the attribute of response to deviations, place of the stress management is allocated near to the harmonic and the risk management. It has been substantiated that the stress management is the enterprise management system aimed at overcoming unwanted deviations that are significant, extreme, and have a significant negative impact on the operation of enterprise. In the structure of the stress management, the following integral components have been allocated and characterized: crisis, adaptive, reactive, fears, and anticipative.

  5. Methods of Measuring Stress Relaxation in Composite Tape Springs


    additional analysis done in SOLIDWORKS . For the first method of analysis, PolyWorks is used to cut out the unnecessary portions of the raw scan data. Then...each tape spring is exported as a ‘.stl’ file. This file is imported as a surface into a SOLIDWORKS part file. The SOLIDWORKS parts are combined into...analyzed using MATLAB, PolyWorks, and SOLIDWORKS . These data provide a greater insight into the stress relaxation of tape springs when deformed

  6. Workshop on industrial application of neutron diffraction. Stress measurement by neutron diffraction

    Minakawa, N; Morii, Y; Oyama, Y


    This workshop was planned to make use of the neutron from the reactor and the pulse neutron source JSNS for the industrial world. Especially, this workshop focused on the stress measurement by the neutron diffraction and it was held on the Tokai JAERI from October 15 to 16, 2001. The participant total was 93 and 40 participated from the industrial world. The introduction of the residual stress development of measurement technique by the neutron diffraction method and a research of the measurement of the residual stress such as the nuclear reactor material, the ordinary structure material, the composite material, the quenching steel, the high strength material were presented and discussed in this workshop. Moreover, it was introduced for the industrial world that an internal stress measurement is important for development of new product or an improvement of a manufacturing process. The question from the industrial world about which can be measured the product form, the size, the measurement precision, the reso...

  7. Measurements of thermal residual stresses in SiC/Ti-15-3 composites

    Bobet, J.-L.; Masuda, C. [National Research Inst. for Metals, Tsukuba, Ibaraki (Japan)


    Residual stresses present in an as received and thermally cycled SCS-6/Ti-15-3 metal matrix composite (MMC) have been approached via X-ray diffraction (sin{sup 2}{psi}) experiments. Determination of stress profiles have been achieved by successive removal of the matrix from the composite surface by electropolishing. Axial and hoop stresses in the matrix were tensile (higher on the surface) and those measured in the fiber were compressive (about -500 to -600 MPa). A stress gradient normal to the surface of the composite was found. Measurement of residual stress levels in the composite subjected to thermal cycling from 400degC to 800degC in an inert atmosphere or in vacuum revealed a huge stress relaxation after only 200 cycles. (author)

  8. Measuring stress before and during pregnancy: a review of population-based studies of obstetric outcomes.

    Witt, Whitney P; Litzelman, Kristin; Cheng, Erika R; Wakeel, Fathima; Barker, Emily S


    Mounting evidence from clinic and convenience samples suggests that stress is an important predictor of adverse obstetric outcomes. Using a proposed theoretical framework, this review identified and synthesized the population-based literature on the measurement of stress prior to and during pregnancy in relation to obstetric outcomes. Population-based, peer-reviewed empirical articles that examined stress prior to or during pregnancy in relation to obstetric outcomes were identified in the PubMed and PsycInfo databases. Articles were evaluated to determine the domain(s) of stress (environmental, psychological, and/or biological), period(s) of stress (preconception and/or pregnancy), and strength of the association between stress and obstetric outcomes. Thirteen studies were evaluated. The identified studies were all conducted in developed countries. The majority of studies examined stress only during pregnancy (n = 10); three examined stress during both the preconception and pregnancy periods (n = 3). Most studies examined the environmental domain (e.g. life events) only (n = 9), two studies examined the psychological domain only, and two studies examined both. No study incorporated a biological measure of stress. Environmental stressors before and during pregnancy were associated with worse obstetric outcomes, although some conflicting findings exist. Few population-based studies have examined stress before or during pregnancy in relation to obstetric outcomes. Although considerable variation exists in the measurement of stress across studies, environmental stress increased the risk for poor obstetric outcomes. Additional work using a lifecourse approach is needed to fill the existing gaps in the literature and to develop a more comprehensive understanding of the mechanisms by which stress impacts obstetric outcomes.

  9. Phosphate-dependent root system architecture responses to salt stress

    Kawa, D.; Julkowska, M.M.; Montero Sommerfeld, H.; ter Horst, A.; Haring, M.A.; Testerink, C.


    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced ma

  10. The stress systems in depression: a postmortem study

    Ai-Min Bao


    Full Text Available After trauma, depressive disorders are among the most frequent emerging diagnoses. However, although the symptoms of depression are well characterized, the molecular mechanisms underlying this disorder are largely unknown. Factors involved in the heterogeneous pathogenesis of depression include polymorphisms in stress-related genes, gender, age, developmental history, and environmental (traumatic stressors such as epigenetic factors. These factors may make different parts of the stress-related brain systems more vulnerable to different stressful or traumatic life events or psychological stresses, causing alterations in a network of neurotransmitters and neuromodulators including amines, amino acids, nitric oxide (NO, and neuropeptides, and finally make individuals at risk for depression. The hypothalamo–pituitary–adrenal (HPA axis has a prominent position in this network. With the postmortem brain material obtained from the Netherlands Brain Bank, we have carried on a series of studies with the aim to elucidate the specific changes in these systems in relation to special subtypes of depression. Our final destination is to set up tailor-made treatment for depressive patients on the basis of his/her developmental history, genetic and epigenetic background, and the vulnerability in particular neurobiological systems. This presentation is a review of our findings of changes in systems of sex steroids, receptors in the hypothalamic paraventricular nucleus, corticotrophin-releasing hormone, orexin, γ-aminobutyric acid, and NO in the etiology of depression, in relation to HPA activity, sex differences, and suicide.

  11. Experimental investigation of system effects in stressed-skin elements

    Dela Stang, B.; Isaksson, T.; Hansson, M.

    What kind of behaviour can be expected from stressed-skin elements at failure? To answer this question was a primary objective of the experimental investigation presented in this report. Systems of 3 roof units, each made of 5 parallel beams, have been tested for load-carrying capacity...

  12. Stress Measurement in Coal Seam Ahead of Longwall Face - Case Study

    Kukutsch, R. (Radovan); P. Koníček; Waclawik, P. (Petr); Ptáček, J.; Staš, L. (Lubomír); M. Vavro; Hastíková, A. (Alice)


    Stress measurement and stress monitoring is an important task in mining geomechanics, because knowledge of the stress - strain state in a rock mass is the determining factor for the proper planning of roadway support and for the correct design of underground mining. This strategy is useful for ensuring mining safety, because increasing depth causes several issues, especially in areas with rockbur st hazard, when roadways are loaded by the pressure ahead...

  13. SQUID-based measuring systems

    M P Janawadkar; R Baskaran; R Nagendran; K Gireesan; N Harishkumar; Rita Saha; L S Vaidhyanathan; J Jayapandian; Y Hariharan; T S Radhakrishnan


    A program has been developed and initiated at the Indira Gandhi Centre for Atomic Research (IGCAR) for the utilization of SQUID sensors in various application areas. DC SQUID sensors based on Nb–AlO–Nb Josephson junctions have been designed and developed inhouse along with associated flux-locked loop (FLL) electronics. A compact low field SQUID magnetometer insertible in a liquid helium storage dewar has also been developed inhouse and is in use. Efforts to build a high field SQUID magnetometer, SQUID-DAC system, are in progress. A planar gradiometric DC SQUID sensor for non-destructive evaluation (NDE) application to be used in relatively unshielded environment has been designed and developed. An easily portable NDE cryostat with a small lift-off distance, to be used in external locations has been designed and tested. The magnetic field produced by a given two-dimensional current density distribution is inverted using the Fourier transform technique.

  14. Blade Vibration Measurement System for Characterization of Closely Spaced Modes and Mistuning Project

    National Aeronautics and Space Administration — The Phase I project successfully demonstrated that the advanced non-contacting stress measurement system (NSMS) was able to address closely spaced modes and...

  15. Blade Vibration Measurement System for Characterization of Closely Spaced Modes and Mistuning Project

    National Aeronautics and Space Administration — There are several ongoing challenges in non-contacting blade vibration and stress measurement systems that can address closely spaced modes and blade-to-blade...

  16. Study on in-situ stress measurement around coastal marginal land in Fujian

    LI Hong; AN Qi-mei; XIE Fu-ren


    The in-situ hydraulic fracturing stress measurements have been carried out around the coastal marginal land in Fujian Province. And the characteristics of magnitude, direction and distribution of tectonic stress have been obtained.Based on the observed stress data, the characteristics and activities of fault zones are analyzed and studied in the paper according to the Coulomb friction criteria. ① The maximum horizontal principal compressive stress is in the NW-WNW direction from the north to the south along the coastline verge, which is parallel to the strike of the NW-trending fault zone, consistent with the direction of principal compressive stress obtained from geological structure and across-fault deformation data, and different from that reflected by focal mechanism solution by about 20°. ② The horizontal principal stress increases with depth, the relation among three stresses is SH>Sv>Sh or SH≈Sv>Sh, and the stress state is liable to normal fault and strike-slip fault activities. ③ According to Coulomb friction criteria and taking the friction strength μ as 0.6~1.0 for analysis, the stress state reaching or exceeding the threshold for normal-fault frictional sliding near the fault implies that the current tectonic activity in the measuring area is mainly normal faulting. ④ The force source of current tectonic stress field comes mainly from the westward and northwestward horizontal extrusions from the Pacific and Philippine Plates respectively to the Eurasian Plate.

  17. Turbulence measurements in hypersonic boundary layers using constant-temperature anemometry and Reynolds stress measurements in hypersonic boundary layers

    Spina, Eric F.


    The primary objective in the two research investigations performed under NASA Langley sponsorship (Turbulence measurements in hypersonic boundary layers using constant temperature anemometry and Reynolds stress measurements in hypersonic boundary layers) has been to increase the understanding of the physics of hypersonic turbulent boundary layers. The study began with an extension of constant-temperature thermal anemometry techniques to a Mach 11 helium flow, including careful examinations of hot-wire construction techniques, system response, and system calibration. This was followed by the application of these techniques to the exploration of a Mach 11 helium turbulent boundary layer (To approximately 290 K). The data that was acquired over the course of more than two years consists of instantaneous streamwise mass flux measurements at a frequency response of about 500 kHz. The data are of exceptional quality in both the time and frequency domain and possess a high degree of repeatability. The data analysis that has been performed to date has added significantly to the body of knowledge on hypersonic turbulence, and the data reduction is continuing. An attempt was then made to extend these thermal anemometry techniques to higher enthalpy flows, starting with a Mach 6 air flow with a stagnation temperature just above that needed to prevent liquefaction (To approximately 475 F). Conventional hot-wire anemometry proved to be inadequate for the selected high-temperature, high dynamic pressure flow, with frequent wire breakage and poor system frequency response. The use of hot-film anemometry has since been investigated for these higher-enthalpy, severe environment flows. The difficulty with using hot-film probes for dynamic (turbulence) measurements is associated with construction limitations and conduction of heat into the film substrate. Work continues under a NASA GSRP grant on the development of a hot film probe that overcomes these shortcomings for hypersonic

  18. Measurement of SIFT operating system overhead

    Palumbo, D. L.; Butler, R. W.


    The overhead of the software implemented fault tolerance (SIFT) operating system was measured. Several versions of the operating system evolved. Each version represents different strategies employed to improve the measured performance. Three of these versions are analyzed. The internal data structures of the operating systems are discussed. The overhead of the SIFT operating system was found to be of two types: vote overhead and executive task overhead. Both types of overhead were found to be significant in all versions of the system. Improvements substantially reduced this overhead; even with these improvements, the operating system consumed well over 50% of the available processing time.

  19. Measurement of the residual stress in hot rolled strip using strain gauge method

    Kumar, Lokendra; Majumdar, Shrabani; Sahu, Raj Kumar


    Measurement of the surface residual stress in a flat hot rolled steel strip using strain gauge method is considered in this paper. Residual stresses arise in the flat strips when the shear cut and laser cut is applied. Bending, twisting, central buckled and edge waviness is the common defects occur during the cutting and uncoiling process. These defects arise due to the non-uniform elastic-plastic deformation, phase transformation occurring during cooling and coiling-uncoiling process. The residual stress analysis is very important because with early detection it is possible to prevent an object from failure. The goal of this paper is to measure the surface residual stress in flat hot rolled strip using strain gauge method. The residual stress was measured in the head and tail end of hot rolled strip considering as a critical part of the strip.

  20. Development of buried wire gages for measurement of wall shear stress in Blastane experiments

    Murthy, S. V.; Steinle, F. W.


    Buried Wire Gages operated from a Constant Temperature Anemometer System are among the special types of instrumentation to be used in the Boundary Layer Apparatus for Subsonic and Transonic flow Affected by Noise Environment (BLASTANE). These Gages are of a new type and need to be adapted for specific applications. Methods were developed to fabricate Gage inserts and mount those in the BLASTANE Instrumentation Plugs. A large number of Gages were prepared and operated from a Constant Temperature Anemometer System to derive some of the calibration constants for application to fluid-flow wall shear-stress measurements. The final stage of the calibration was defined, but could not be accomplished because of non-availability of a suitable flow simulating apparatus. This report provides a description of the Buried Wire Gage technique, an explanation of the method evolved for making proper Gages and the calibration constants, namely Temperature Coefficient of Resistance and Conduction Loss Factor.

  1. Research on Measurements for Temperature and Stress of Pistons in Internal Combustion Engine

    DONG Xiao-rui; TAN Jian-song


    In both numerical simulation and experimental research for the piston of internal combustion engine, the verification foundations are always insufficient. The reason is the measurements for its transient temperature and stress under actual operation conditions are very difficult. A multi-channel measurement-storage technology is used in the engine bench experiment to measure the piston temperature and stress in real time. The temperature and stress changes in the engine operation process are obtained. They provide reliable instructive criteria for numerical analysis and experiment of the piston working state.

  2. Electro-optical imaging system performance measurement

    Bijl, P.; Toet, A.; Valeton, J.M.


    The minimum resolvable temperature difference (MRTD), the minimum resolvable contrast (MRC), and the triangle orientation discrimination (TOD) are end-to-end EO system performance measures; that is, laboratory measures that characterize EO system performance with a human observer in the loop. Such s

  3. Measurement techniques for in situ stresses around underground constructions in a deep clay formation

    Li X.L.


    Full Text Available Disposal in deep underground geological formations is internationally recognized as the most viable option for the long-term management of high-level radioactive waste. In Belgium, the Boom clay formation is extensively studied in this context, in particular at the 225 m deep HADES Underground Research Facility in Mol. A cost-effective design of deep underground structures requires an accurate assessment of the in situ stresses; a good estimation of these stresses is also essential when interpreting in situ experiments regarding the hydro-mechanical behaviour of the host formation. Different measurement techniques are available to provide data on the stress evolution and other mechanical properties of the geological formation. The measurement can be direct (measurement of total pressure, or it can be an indirect technique, deriving the stress from related quantities such as strain (changes in structural members. Most total stress measurements are performed through permanently installed sensors; also once-only measurements are performed through specific methods (e.g. pressuremeter. Direct measurement of the stress state is challenging due to the complex mechanical behaviour of the clay, and the fact that the sensor installation inevitably disturbs the original stress field. This paper describes ways to deal with these problems and presents the results obtained using different techniques at HADES.

  4. Research on Measurement of Bed Shear Stress Under WaveCurrent Interaction

    徐华; 夏云峰; 张世钊马炳和; 郝思禹; 杜德军


    The movement of sediment in estuary and on coast is directly restricted by the bed shear stress. Therefore, the research on the basic problem of sediment movement by the bed shear stress is an important way to research the theory of sediment movement. However, there is not a measuring and computing method to measure the bed shear stress under a complicated dynamic effect like wave and current. This paper describes the measurement and test research on the bed shear stress in a long launder of direct current by the new instrument named thermal shearometer based on micro-nanotechnology. As shown by the research results, the thermal shearometer has a high response frequency and strong stability. The measured results can reflect the basic change of the bed shear stress under wave and wave-current effect, and confirm that the method of measuring bed shear stress under wave-current effect with thermal shearometer is feasible. Meanwhile, a preliminary method to compute the shear stress compounded by wave-current is put forward according to the tested and measured results, and then a reference for further study on the basic theory of sediment movement under a complicated dynamic effect is provided.

  5. Effect of reference point selection on microscopic stress measurement using EBSD

    Mikami, Yoshiki, E-mail: [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Oda, Kazuo [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kamaya, Masayuki [Institute of Nuclear Safety System, Inc., 64 Sata, Mihama-cho, Mikata-gun, Fukui 919-1205 (Japan); Mochizuki, Masahito [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)


    It is important to evaluate microscopic stress distributions on the order of the grain size to clarify the deformation and fracture behavior of structural materials. In this study, the microscopic stress distribution of coarse-grained austenitic stainless steel during tensile testing was measured using a method that employs cross-correlation of the electron backscatter diffraction (EBSD) pattern, and the effect of the reference point selection on the measured stress was investigated. First, parameters that characterize the quality of the EBSD pattern measurement—namely, the image quality (IQ), confidence index (CI), and Fit—and the parameter that corresponds to the extent of the plastic deformation—the kernel average misorientation (KAM)—were used to determine the reference point. It was confirmed that the value of the microscopic stress measured using the EBSD-based approach is relative to the value of the stress state of the reference point. Second, multiple reference points were determined within a grain by considering only the location, and the stress distribution in the grain was evaluated using each of the reference points. The deviation of the measured stress was calculated from the averaged value for all the measured results using a certain reference point, and its relationship to parameters such as the IQ, CI, Fit, and KAM of the reference point used was investigated. It was demonstrated that the choice of parameters did not significantly affect the evaluation of the relative stress distribution within a grain. The results of this study therefore show that the selection of the reference point does not affect the measured stress distribution, as long as the evaluation is limited to the relative stress within a grain for the selected reference point.

  6. Measurement invariance of the perceived stress scale and latent mean differences across gender and time.

    Barbosa-Leiker, Celestina; Kostick, Marylynne; Lei, Ming; McPherson, Sterling; Roper, Virginia; Hoekstra, Trynke; Wright, Bruce


    Measurement invariance of the 2-factor model of the Perceived Stress Scale--10-item version (Cohen & Williamson, 1988) was tested across men and women at two time points and in the combined total sample over a 2-year time frame (n = 871). Measurement invariance results indicated that the scale measured the latent factors, stress and counter-stress, equivalently in men and women and over time. With measurement invariance demonstrated, differences in latent means were tested. Results indicated that men had lower levels of frequencies of stressors, and at one time point, higher levels of counter-stress, when compared with women. When examining change in frequencies of stressors and counter-stress over 2 years with the combined male and female sample, stressors remained stable, yet counter-stress increased over time. These findings may aid in the interpretation of results when examining stressors and counter-stress in clinical samples where one would expect stress to increase, whereas positive psychological states decrease.

  7. Instruction manual for the use of the CSIR triaxial rock stress measuring equipment

    Vreede, F. A.


    A guide is presented for users of an instrument designed to measure the state of stress at any one point in a rock mass. The overscoring technique used to determine the absolute stress is described as well as equipment components. A computer program for processing the data is discussed and the equations on which the program is based are given.

  8. Demonstration of over core stress measurement from surface using the Sigra IST tool

    Gray, I


    Full Text Available 7 Core Sample Mechanical Properties Page 8 Stress Measurement Results Page 8 Principal and Tectonic Stresses and Tectonic Strains Page 9 Conclusions Page 11 Acknowledgments Page 11 Table 1 Sample Descriptions... Solutions Page 26 Appendix D Directional Survey Information Page 39 Appendix E Photographs of Each Test Core Page 41 4 5 TABLES Table 1- Sample Descriptions and Material...

  9. [Wireless ECG measurement system with capacitive coupling].

    Aleksandrowicz, Adrian; Walter, Marian; Leonhardt, Steffen


    This paper describes a measurement system that captures an electrocardiogram (ECG) using capacitively coupled electrodes. The measurement system was integrated into an off-the-shelf office chair (so-called "Aachen SmartChair"). Whereas for classical ECG measurement adhesive is used to attach conductively coupled electrodes to bare skin, the system presented allows ECG measurement through clothing without direct skin contact. Furthermore, a ZigBee communication module was integrated to allow wireless transmission of ECG data to a PC or an ICU patient monitor. For system validation, classical ECG using conductive electrodes was obtained simultaneously. First measurement results, including variations of cloth thickness and material, are presented and some of the system-specific problems of this approach are discussed.

  10. Compliance of Drilling-rod System for Hydro-fracturing in Situ Stress Measurement and Its Effect on Measurements at Great Depth%水压致裂应力测量系统柔性分析及其对深孔测量的影响

    王成虎; 宋成科; 邢博瑞


    The widely-accepted hydro-fracturing system in China mainland consists of six parts, i. e. control system for hydraulic fluid, high-pressure pump, power supply system, data recording system, straddle packers, and watertight drilling rods. This whole testing system can be divided into two kinds: one is the shallow testing system for boreholes with depth less than 100 m, the other is the deep testing system for boreholes with depth more than 100 m. As for the drilling-rod hydro-fracturing measurement system, the elastic deformations of drilling rods, connection high-pressure hoses and rock mass around testing interval have little effects on the compliance of testing system, and the elastic deformation of packers and the compressibility of fracturing fluids are two major factors. When testing interval is less than 100 m in depth, the compliance of testing system is controlled by the elastic deformation of packers and the compressibility of fracturing fluid, and when testing interval is greater than 100 m in depth, the compliance of testing system is controlled by the compressibility of fracturing fluids. For the testing at great depth, due to the large compliance of testing system, it is very difficult to determine the reopening pressure Pro In order to eliminate the negative effects from the compliance of testing system during the measurement campaign in deep boreholes, it is recommended to adopt other methods to determine Tfh, the tensile strength of rock mass around the testing interval so as to determine the maximum horizontal principal stress SH , or utilize other techniques to estimate SH. In the future research, the potential feasible way is to develop new down-well pressure gauges and flow meters in order to completely eliminate the negative effects from the compliance of testing system.%在中国大陆范围内广泛使用的钻杆式水压致裂测试系统由6个部分组成,分别为压力流体控制系统、高压水泵、动力系统、数据记录系

  11. Microminiature Inertial Measurement System and Its Applications

    毛刚; 顾启泰


    The microminiature inertial measurement system, a new style of inertial measurement system, hasmany advantages compared with traditional systems, such as small size, Iow mass, low cost, low powerconsumption, high bearing capacity, and long life. Undoubtedly, it will have wide applications in military andcommercial fields. However, current micro inertial sensors do not have sufficient accuracy, so, its applicationsare limited to some extent. This paper describes a microminiature inertial measurement system and its design,operating theory and error control techniques. In addition, its performance and applications are evaluated.``

  12. The role of oxidative stress in nervous system aging.

    Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M; Dauch, Jacqueline R; Keller, Peter J; Brooks, Susan V; Feldman, Eva L


    While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1(-/-)) mice, a mouse model of increased oxidative stress. Sod1(-/-) mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1(+/+) mice at 30 months and the Sod1(-/-) mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging.

  13. Stress-In-Motion (SIM) system for capturing tri-axial tyre-road interaction in the contact patch

    De Beer, Morris


    Full Text Available A unique measuring system for the quantification of tri-axial (3-D) tyre contact force (or stress) distributions was designed, developed and used in several studies since 1994. The uniqueness of the system is defined by a textured measuring surface...

  14. Calcium efflux systems in stress signalling and adaptation in plants

    Jayakumar eBose


    Full Text Available Transient cytosolic calcium ([Ca2+]cyt elevation is an ubiquitous denominator of the signalling network when plants are exposed to literally every known abiotic and biotic stress. These stress-induced [Ca2+]cyt elevations vary in magnitude, frequency and shape, depending on the severity of the stress as well the type of stress experienced. This creates a unique stress-specific calcium signature that is then decoded by signal transduction networks. While most published papers have been focused predominantly on the role of Ca2+ influx mechanisms in shaping [Ca2+]cyt signatures, restoration of the basal [Ca2+]cyt levels is impossible without both cytosolic Ca2+ buffering and efficient Ca2+ efflux mechanisms removing excess Ca2+ from cytosol, to reload Ca2+ stores and to terminate Ca2+ signalling. This is the topic of the current review. The molecular identity of two major types of Ca2+ efflux systems, Ca2+-ATPase pumps and Ca2+/H+ exchangers, is described, and their regulatory modes are analysed in detail. The spatial and temporal organisation of calcium signalling networks is described, and the importance of existence of intracellular calcium microdomains is discussed. Experimental evidence for the role of Ca2+ efflux systems in plant responses to a range of abiotic and biotic factors is summarised. Contribution of Ca2+-ATPase pumps and Ca2+/H+ exchangers in shaping [Ca2+]cyt signatures is then modelled by using a four-component model (plasma- and endo- membrane-based Ca2+-permeable channels and efflux systems taking into account the cytosolic Ca2+ buffering. It is concluded that physiologically relevant variations in the activity of Ca2+-ATPase pumps and Ca2+/H+ exchangers are sufficient to fully describe all the reported experimental evidence and determine the shape of [Ca2+]cyt signatures in response to environmental stimuli, emphasising the crucial role these active efflux systems play in plant adaptive responses to environment.

  15. The effects of school systems, teacher internal characteristics, and students on vocational teacher stress

    Adams, Elaine


    Job stress is a multidimensional phenomenon. The researcher sought to examine variables that cause vocational teachers to experience stress in their teaching occupations and to evaluate the effects of these related stressors. This research evaluated the relationships between school systems and vocational teacher stress, teacher internal characteristics and vocational teacher stress, and students and vocational teacher stress. It also analyzed vocational teacher stre...

  16. Detection of stress concentrations around a defect by magnetic Barkhausen noise measurements

    Mandal, K.; Dufour, D.; Sabet-Sharghi, R.; Sijgers, B.; Micke, D.; Krause, T.W.; Clapham, L.; Atherton, D.L. [Applied Magnetics Group, Department of Physics, Queen`s University, Kingston, K7L 3N6, Ontario (Canada)


    The stress distribution around a 50{percent} blind-hole pit in a steel pipe with a 9 mm wall has been studied using high-resolution magnetic Barkhausen noise (MBN) measurements. A magnetic disk read-head is used as the pick up coil in the MBN probe. The study shows a stress concentration factor of {approximately}2 at the defect edge perpendicular to the direction of applied stress and {approximately}{minus}0.6 at the edge parallel to the same. The experimental results are consistent with the analytical solutions obtained by the Airy{close_quote}s stress function approach. {copyright} {ital 1996 American Institute of Physics.}

  17. Effect of Young's modulus evolution on residual stress measurement of thermal barrier coatings by X-ray diffraction

    Chen, Q.; Mao, W. G.; Zhou, Y. C.; Lu, C.


    Subjected to thermal cycling, the apparent Young's modulus of air plasma-sprayed (APS) 8 wt.% Y 2O 3-stabilized ZrO 2 (8YSZ) thermal barrier coatings (TBCs) was measured by nanoindentation. Owing to the effects of sintering and porous microstructure, the apparent Young's modulus follows a Weibull distribution and changes from 50 to 93 GPa with an increase of thermal cycling. The evolution of residual stresses in the top coating of an 8YSZ TBC system was determined by X-ray diffraction (XRD). The residual stresses derived from the XRD data are well consistent with that obtained by the Vickers indention. It is shown that the evolution of Young's modulus plays an important role in improving the measurement precision of residual stresses in TBCs by XRD.

  18. Measuring multiple residual-stress components using the contour method and multiple cuts

    Prime, Michael B [Los Alamos National Laboratory; Swenson, Hunter [Los Alamos National Laboratory; Pagliaro, Pierluigi [U. PALERMO; Zuccarello, Bernardo [U. PALERMO


    The conventional contour method determines one component of stress over the cross section of a part. The part is cut into two, the contour of the exposed surface is measured, and Bueckner's superposition principle is analytically applied to calculate stresses. In this paper, the contour method is extended to the measurement of multiple stress components by making multiple cuts with subsequent applications of superposition. The theory and limitations are described. The theory is experimentally tested on a 316L stainless steel disk with residual stresses induced by plastically indenting the central portion of the disk. The stress results are validated against independent measurements using neutron diffraction. The theory has implications beyond just multiple cuts. The contour method measurements and calculations for the first cut reveal how the residual stresses have changed throughout the part. Subsequent measurements of partially relaxed stresses by other techniques, such as laboratory x-rays, hole drilling, or neutron or synchrotron diffraction, can be superimposed back to the original state of the body.

  19. Ocular microtremor measurement system: design and performance.

    Sheahan, N F; Coakley, D; Hegarty, F; Bolger, C; Malone, J


    The frequency of ocular microtremor (OMT) is related to the functional status of the brain stem, and thus OMT may be useful in the diagnosis and management of brain stem disorders. The paper discusses the design of an OMT measurement system and reports quantitative specifications for three portable systems. All systems use a piezo-electric element as the transducer, which measures the displacement of the sclera during eye rotations. The systems differ in the manner in which the signal is recorded. All systems can detect eye movements corresponding to displacements of the sclera ranging from 12 to over 3000 nm. The frequency responses of all systems are flat (< 2 dB deviation from peak response) between 20 and 150 Hz. The phase response shows deviations (< pi) at the extremes of this range, but qualitative comparison of input and measured signals demonstrates that phase distortion is not excessive. Thus all systems are acceptable for clinical studies involving OMT.

  20. Turbine gas temperature measurement and control system

    Webb, W. L.


    A fluidic Turbine Inlet Gas Temperature (TIGIT) Measurement and Control System was developed for use on a Pratt and Whitney Aircraft J58 engine. Based on engine operating requirements, criteria for high temperature materials selection, system design, and system performance were established. To minimize development and operational risk, the TIGT control system was designed to interface with an existing Exhaust Gas Temperature (EGT) Trim System and thereby modulate steady-state fuel flow to maintain a desired TIGT level. Extensive component and system testing was conducted including heated (2300F) vibration tests for the fluidic sensor and gas sampling probe, temperature and vibration tests on the system electronics, burner rig testing of the TIGT measurement system, and in excess of 100 hours of system testing on a J58 engine. (Modified author abstract)

  1. A Steel Wire Stress Measuring Sensor Based on the Static Magnetization by Permanent Magnets.

    Deng, Dongge; Wu, Xinjun; Zuo, Su


    A new stress measuring sensor is proposed to evaluate the axial stress in steel wires. Without using excitation and induction coils, the sensor mainly consists of a static magnetization unit made of permanent magnets and a magnetic field measurement unit containing Hall element arrays. Firstly, the principle is illustrated in detail. Under the excitation of the magnetization unit, a spatially varying magnetized region in the steel wire is utilized as the measurement region. Radial and axial magnetic flux densities at different lift-offs in this region are measured by the measurement unit to calculate the differential permeability curve and magnetization curve. Feature parameters extracted from the curves are used to evaluate the axial stress. Secondly, the special stress sensor for Φ5 and Φ7 steel wires is developed accordingly. At last, the performance of the sensor is tested experimentally. Experimental results show that the sensor can measure the magnetization curve accurately with the error in the range of ±6%. Furthermore, the obtained differential permeability at working points 1200 A/m and 10000 A/m change almost linearly with the stress in steel wires, the goodness of linear fits are all higher than 0.987. Thus, the proposed steel wire stress measuring sensor is feasible.

  2. A Steel Wire Stress Measuring Sensor Based on the Static Magnetization by Permanent Magnets

    Dongge Deng


    Full Text Available A new stress measuring sensor is proposed to evaluate the axial stress in steel wires. Without using excitation and induction coils, the sensor mainly consists of a static magnetization unit made of permanent magnets and a magnetic field measurement unit containing Hall element arrays. Firstly, the principle is illustrated in detail. Under the excitation of the magnetization unit, a spatially varying magnetized region in the steel wire is utilized as the measurement region. Radial and axial magnetic flux densities at different lift-offs in this region are measured by the measurement unit to calculate the differential permeability curve and magnetization curve. Feature parameters extracted from the curves are used to evaluate the axial stress. Secondly, the special stress sensor for Φ5 and Φ7 steel wires is developed accordingly. At last, the performance of the sensor is tested experimentally. Experimental results show that the sensor can measure the magnetization curve accurately with the error in the range of ±6%. Furthermore, the obtained differential permeability at working points 1200 A/m and 10000 A/m change almost linearly with the stress in steel wires, the goodness of linear fits are all higher than 0.987. Thus, the proposed steel wire stress measuring sensor is feasible.

  3. Measuring Fiscal Capacity of School Systems.

    Green, Harry A.

    Ways of measuring the fiscal capacity of school systems are examined in this paper, which presents a representative tax system model. Fiscal capacity is influenced by factors other than tax base size; the "ideal" model should address adjustments for variations in cost across communities and school systems. The first section examines the…

  4. The NIST Primary Radon-222 Measurement System

    Collé, R.; Hutchinson, J. M. R.; Unterweger, M. P.


    Within the United States, the national standard for radon measurements is embodied in a primary radon measurement system that has been maintained for over 50 years to accurately measure radon (222Rn) against international and national radium (226Ra) standards. In turn, all of the radon measurements made at the National Institute of Standards and Technology (NIST) and the radon transfer calibration standards and calibration services provided by NIST are directly related to this national radon ...

  5. Genetic influence on blood pressure measured in the office, under laboratory stress and during real life

    Wang, Xiaoling; Ding, Xiuhua; Su, Shaoyong; Harshfield, Gregory; Treiber, Frank; Snieder, Harold

    To determine to what extent the genetic influences on blood pressure (BP) measured in the office, under psychologically stressful conditions in the laboratory and during real life are different from each other...

  6. A novel concept of measuring mass flow rates using flow induced stresses

    P I Jagad; B P Puranik; A W Date


    Measurement of mass flow rate is important for automatic control of the mass flow rate in many industries such as semiconductor manufacturing and chemical industry (for supply of catalyst to a reaction). In the present work, a new concept for direct measurement of mass flow rates which does not depend on the volumetric flow rate measurement and obviates the need for the knowledge of density is proposed from the measurement of the flow induced stresses in a substrate. The concept is formulated by establishing the relationship between the mass flow rate and the stress in the substrate. To this end, the flow field and the stress field in the substrate are evaluated simultaneously using a numerical procedure and the necessary correlations are derived. A least squares based procedure is used to derive the mass flow rate from the correlations as a function of the stress in the substrate.

  7. System Entropy Measurement of Stochastic Partial Differential Systems

    Bor-Sen Chen


    Full Text Available System entropy describes the dispersal of a system’s energy and is an indication of the disorder of a physical system. Several system entropy measurement methods have been developed for dynamic systems. However, most real physical systems are always modeled using stochastic partial differential dynamic equations in the spatio-temporal domain. No efficient method currently exists that can calculate the system entropy of stochastic partial differential systems (SPDSs in consideration of the effects of intrinsic random fluctuation and compartment diffusion. In this study, a novel indirect measurement method is proposed for calculating of system entropy of SPDSs using a Hamilton–Jacobi integral inequality (HJII-constrained optimization method. In other words, we solve a nonlinear HJII-constrained optimization problem for measuring the system entropy of nonlinear stochastic partial differential systems (NSPDSs. To simplify the system entropy measurement of NSPDSs, the global linearization technique and finite difference scheme were employed to approximate the nonlinear stochastic spatial state space system. This allows the nonlinear HJII-constrained optimization problem for the system entropy measurement to be transformed to an equivalent linear matrix inequalities (LMIs-constrained optimization problem, which can be easily solved using the MATLAB LMI-toolbox (MATLAB R2014a, version 8.3. Finally, several examples are presented to illustrate the system entropy measurement of SPDSs.

  8. Measurement of stress-strain behaviour of human hair fibres using optical techniques.

    Lee, J; Kwon, H J


    Many studies have presented stress-strain relationship of human hair, but most of them have been based on an engineering stress-strain curve, which is not a true representation of stress-strain behaviour. In this study, a more accurate 'true' stress-strain curve of human hair was determined by applying optical techniques to the images of the hair deformed under tension. This was achieved by applying digital image cross-correlation (DIC) to 10× magnified images of hair fibres taken under increasing tension to estimate the strain increments. True strain was calculated by summation of the strain increments according to the theoretical definition of 'true' strain. The variation in diameter with the increase in longitudinal elongation was also measured from the 40× magnified images to estimate the Poisson's ratio and true stress. By combining the true strain and the true stress, a true stress-strain curve could be determined, which demonstrated much higher stress values than the conventional engineering stress-strain curve at the same degree of deformation. Four regions were identified in the true stress-strain relationship and empirical constitutive equations were proposed for each region. Theoretical analysis on the necking condition using the constitutive equations provided the insight into the failure mechanism of human hair. This analysis indicated that local thinning caused by necking does not occur in the hair fibres, but, rather, relatively uniform deformation takes place until final failure (fracture) eventually occurs.

  9. A New Method to Identify Quaternary Moraine:Acoustic Emission Stress Measurement

    ZHAO Zhizhong; QIAO Yansong; TIAN Jiaorong; WANG Min; LI Mingze; HE Peiyuan; QIAN Fang


    How to effectively identify glacial sediments, especially Quaternary moraine, has been in dispute for decades. The traditional methods, e.g., sedimentary and geomorphologic ones, are facing challenge in eastern China where controversial moraine deposits are dominatingly distributed. Here,for the first time, we introduce the acoustic emission (AE) stress measurement, a kind of historical stress measurement, to identify Quaternary moraine. The results demonstrate that it can be employed to reconstruct stress information of glaciation remaining in gravels, and may shed light on the identification of Quaternary moraine in eastern China. First, we measured the AE stress of gravels of glacial origin that are underlying the Xidatan Glacier, eastern Kunlun Mountains in western China.Second, we calculated the stress according to the actual thickness of the glacier. The almost identical stress values suggest that the glacial gravels can memorize and preserve the overlying glacier-derived aplomb stress. And then we introduce this new approach to the controversial moraine in Mount Lushan, eastern China. The results indicate that the stress is attributed to the Quaternary glacier, and the muddy gravels in the controversial moraine in Mount Lushan are moraine deposits but not others.

  10. Chlorine stress mediates microbial surface attachment in drinking water systems.

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei


    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  11. Thermal stress characterization using the impedance-based structural health monitoring system

    Zhu, Xuan; Lanza di Scalea, Francesco; Fateh, Mahmood


    Structural health monitoring (SHM) has attracted researchers' interests for the past two decades to reinforce the maintenance of the aging infrastructure systems all over the world. As one of the potential solutions, the electro-mechanical impedance (EMI) method was introduced in the early 1990s and has a great number of potential applications in the SHM of civil, mechanical and aerospace industries. This paper studied the impedance-based technique with the presence of environmental/operational variability, especially the influences of temperature and uniaxial stress on the admittance signature-based features. A comprehensive analytical model is established and provides satisfactory agreements with the experimental results. The stress and temperature sensitivities of all the proposed features are quantified using the experimental measurements, with discussions on their advantages and disadvantages. The final results illustrate that the EMI method can potentially provide effective measure for thermal stress.

  12. A new sensor for stress measurement based on blood flow fluctuations

    Fine, I.; Kaminsky, A. V.; Shenkman, L.


    It is widely recognized that effective stress management could have a dramatic impact on health care and preventive medicine. In order to meet this need, efficient and seamless sensing and analytic tools for the non-invasive stress monitoring during daily life are required. The existing sensors still do not meet the needs in terms of specificity and robustness. We utilized a miniaturized dynamic light scattering sensor (mDLS) which is specially adjusted to measure skin blood flow fluctuations and provides multi- parametric capabilities. Based on the measured dynamic light scattering signal from the red blood cells flowing in skin, a new concept of hemodynamic indexes (HI) and oscillatory hemodynamic indexes (OHI) have been developed. This approach was utilized for stress level assessment for a few usecase scenario. The new stress index was generated through the HI and OHI parameters. In order to validate this new non-invasive stress index, a group of 19 healthy volunteers was studied by measuring the mDLS sensor located on the wrist. Mental stress was induced by using the cognitive dissonance test of Stroop. We found that OHIs indexes have high sensitivity to the mental stress response for most of the tested subjects. In addition, we examined the capability of using this new stress index for the individual monitoring of the diurnal stress level. We found that the new stress index exhibits similar trends as reported for to the well-known diurnal behavior of cortisol levels. Finally, we demonstrated that this new marker provides good sensitivity and specificity to the stress response to sound and musical emotional arousal.

  13. Systematic Review of Uit Parameters on Residual Stresses of Sensitized AA5456 and Field Based Residual Stress Measurements for Predicting and Mitigating Stress Corrosion Cracking


    significant amount of grinding and other sorts of damage marks that may have influenced the measurements. These measurements will be repeated on non...Mech. Eng., Naval Postgraduate School, Monterey, CA, 2012. 107 [24] M. Pourbaix, Atlas of Electrochemical Equilibria, Houston, TX: National...Journal of Electrochemical Science and Technology, vol. 129, no. 12, pp. 2660–2665, Dec. 1982. [26] H. L. Logan, "Film rupture mechanism of stress

  14. From scientific instrument to industrial machine coping with architectural stress in embedded systems

    Doornbos, Richard


    Architectural stress is the inability of a system design to respond to new market demands. It is an important yet often concealed issue in high tech systems. In From scientific instrument to industrial machine, we look at the phenomenon of architectural stress in embedded systems in the context of a transmission electron microscope system built by FEI Company. Traditionally, transmission electron microscopes are manually operated scientific instruments, but they also have enormous potential for use in industrial applications. However, this new market has quite different characteristics. There are strong demands for cost-effective analysis, accurate and precise measurements, and ease-of-use. These demands can be translated into new system qualities, e.g. reliability, predictability and high throughput, as well as new functions, e.g. automation of electron microscopic analyses, automated focusing and positioning functions. From scientific instrument to industrial machine takes a pragmatic approach to the proble...

  15. Analysis of measurement system as the mechatronics system

    Giniotis, V.; Grattan, K. T. V.; Rybokas, M.; Bručas, D.


    The paper deals with the mechatronic arrangement for angle measuring system application. The objects to be measured are the circular raster scales, rotary encoders and coded scales. The task of the measuring system is to determine the bias of angle measuring standard as the circular scale and to use the results for the error correction and accuracy improvement of metal cutting machines, coordinate measuring machines, robots, etc. The technical solutions are given with the application of active materials for smart piezoactuators implemented into the several positions of angular measuring equipment. Mechatronic measuring system is analysed as complex integrated system and some of its elements can be used as separate units. All these functional elements are described and commented in the paper with the diagrams and graphs of errors and examples of microdisplacement devices using the mechatronic elements.

  16. Analysis of measurement system as the mechatronics system

    Giniotis, V [Institute of Geodesy, Vilnius Gediminas Technical University, Vilnius, Lithuania, Sauletekio al. 11, 10223 Vilnius-40, Lithuania, Fax: 370 5 2744 705 (Lithuania); Grattan, K T V [School of Engineering and Mathematical Sciences Electrical, Electronic and Information Eng, City University, Northampton Square, London EC1V 0HB (United Kingdom); Rybokas, M [Department of Information Technologies, Vilnius Gediminas Technical University, Sauletekio al. 11, 10223 Vilnius-40, Lithuania, Fax: 370 5 2744 705 (Lithuania); Brucas, D, E-mail: gi@ap.vtu.l, E-mail:, E-mail: MRybokas@gama.l, E-mail: domka@ktv.l, E-mail: vg@ai.vgtu.l [Department of Geodesy and Cadastre, Vilnius Gediminas Technical University, Vilnius, Lithuania Sauletekio al. 11, 10223 Vilnius-40, Lithuania, Fax: 370 5 2744 705 (Lithuania)


    The paper deals with the mechatronic arrangement for angle measuring system application. The objects to be measured are the circular raster scales, rotary encoders and coded scales. The task of the measuring system is to determine the bias of angle measuring standard as the circular scale and to use the results for the error correction and accuracy improvement of metal cutting machines, coordinate measuring machines, robots, etc. The technical solutions are given with the application of active materials for smart piezoactuators implemented into the several positions of angular measuring equipment. Mechatronic measuring system is analysed as complex integrated system and some of its elements can be used as separate units. All these functional elements are described and commented in the paper with the diagrams and graphs of errors and examples of microdisplacement devices using the mechatronic elements.

  17. Dynamic Properties of Impulse Measuring Systems

    Pedersen, A.; Lausen, P.


    After some basic considerations the dynamic properties of the measuring system are subjected to a general examination based on a number of responses, characteristic of the system. It is demonstrated that an impulse circuit has an internal impedance different from zero, for which reason the intera......After some basic considerations the dynamic properties of the measuring system are subjected to a general examination based on a number of responses, characteristic of the system. It is demonstrated that an impulse circuit has an internal impedance different from zero, for which reason...

  18. Preparation Measurements and Assessment of Roof Systems

    Baláž Richard


    Full Text Available The Institute of Architectural Engineering at the Civil Engineering Faculty TU of Kosice, in its ongoing research, aims to monitor the physical properties of building envelope structures with emphasis placed on hydrothermal problems, at present. The research focuses on the assembly of equipment in climate chambers with their respective sample envelopes and fenestration systems, which are involved in a measuring experiment. The prime aim is to design a logical and transparent system for gathering, evaluating and storing hydrothermal related data. This contribution further illustrates the embedding system of measurement points in installed samples and the system of monitoring their physical properties over an annual period.

  19. Preparation Measurements and Assessment of Roof Systems

    Baláž, Richard; Bagoňa, Miloslav


    The Institute of Architectural Engineering at the Civil Engineering Faculty TU of Kosice, in its ongoing research, aims to monitor the physical properties of building envelope structures with emphasis placed on hydrothermal problems, at present. The research focuses on the assembly of equipment in climate chambers with their respective sample envelopes and fenestration systems, which are involved in a measuring experiment. The prime aim is to design a logical and transparent system for gathering, evaluating and storing hydrothermal related data. This contribution further illustrates the embedding system of measurement points in installed samples and the system of monitoring their physical properties over an annual period.

  20. Three-component laser anemometer measurement systems

    Goldman, Louis J.


    A brief overview of the different laser anemometer (LA) optical designs available is presented. Then, the LA techniques that can be used to design a three-component measurement system for annular geometries are described. Some of the facility design considerations unique to these LA systems are also addressed. Following this, the facilities and the LA systems that were used to successfully measure the three components of velocity in the blading of annular-flow machines are reviewed. Finally, possible LA system enhancements and future research directions are presented.

  1. SIMS: The SLAC Industrial Measurement System

    Bell, B.; /SLAC


    The development of electronic sensors and of small powerful computers, and their integration together have led to the development of what has come to be known as Industrial Measurement Technology (IMT). Industrial Measurement Systems feature one or more electronic sensors and a computer with powerful software. The software has three essential components: data collection, data reduction and data analysis. In the field of industrial surveying, the IMT system is the automated theodolite system, but other systems such as the laser tracker are on the horizon.

  2. Quercetin Treatment Ameliorates Systemic Oxidative Stress in Cirrhotic Rats

    Vieira, Emanuelle Kerber; Bona, Silvia; Di Naso, Fábio Cangeri; Porawski, Marilene; Tieppo, Juliana; Marroni, Norma Possa


    Our aim was to investigate whether the antioxidant quercetin protects against liver injury and ameliorates the systemic oxidative stress in rats with common bile duct ligation. Secondary biliary cirrhosis was induced through 28 days of bile duct obstruction. Animals received quercetin (Q) after 14 days of obstruction. Groups of control (CO) and cirrhotic (CBDL) animals received a daily 50 mg/kg body weight i.p. injection of quercetin (CO + Q; CBDL + Q) or vehicle (CO; CBDL). Quercetin corrected the reduction in superoxide dismutase (SOD), catalase CAT, and glutathione peroxidase GPx activities and prevented the increase of thiobarbituric acid reactive substances (TBARS), aminotransferases, and alkaline phosphatase in cirrhotic animals. Quercetin administration also corrected the reduced total nitrate concentration in the liver and prevented liver fibrosis and necrosis. These effects suggest that quercetin might be a useful agent to preserve liver function and prevent systemic oxidative stress. PMID:21991520

  3. Measurement system as a subsystem of the quality management system

    Ľubica Floreková


    Full Text Available Each measurement system and a control principle must be based on certain facts about the system behaviour (what, operation (how and structure (why. Each system is distributed into subsystems that provide an input for the next subsystem. For each system, start is important the begin, that means system characteristics, collecting of data, its hierarchy and the processes distribution.A measurement system (based on the chapter 8 of the standard ISO 9001:2000 Quality management system, requirements defines the measurement, analysis and improvement for each organization in order to present the products conformity, the quality management system conformity guarantee and for the continuously permanent improvement of effectivity, efficiency and economy of quality management system.

  4. Coordination of Passive Systems under Quantized Measurements

    De Persis, Claudio; Jayawardhana, Bayu


    In this paper we investigate a passivity approach to collective coordination and synchronization problems in the presence of quantized measurements and show that coordination tasks can be achieved in a practical sense for a large class of passive systems.

  5. Measurement of photometric characteristics of daylighting systems

    Aydinli, S.; Kaase, H. [Technical Univ., Berlin (Germany); Kischkoweit-Lopin, M. [Institut fuer Licht- und Bautechnik an der FH Koln, Cologne (Germany); Scartezzini, J. L.; Michel, L. [Ecole Poytechnuque Federale de Lausanne (Switzerland); Wienold, J.; Apian-Bennewitz, P. [Frauenhofer Institute for Solar Energy Systems, Freiburg (Germany)


    The photometric properties of daylighting systems determine the quality of the daylighting in the interior of a building, as well as the possible energy savings by the daylight responsive artificial lighting control systems. Photometric characteristics of daylighting systems and the principles of their measurements in laboratory facilities are described. Characteristics that depend on light incidence and observation of radiation can be measured using integrating sphere photometers or goniophotometers. Luminous transmittance measurements are usually carried out using integrating sphere photometers (cheaper and less time -consuming than measurements with a goniometer). Although the principles involved in the measurement are well understood, results frequently show certain deviations. The various errors that might be responsible for these deviations, whether attributable to the method, or the instrument, or the sample, are also discussed. 10 refs., 8 figs.

  6. Wall shear stress measurement in blade end-wall corner region

    Bhargava, R.; Raj, R.; Boldman, D. R.


    The magnitude and the direction of wall shear stress and surface pressure in the blade end-wall corner region were investigated. The measurements were obtained on a specially designed Preston tube, the tip of which could be concentrically rotated about its axis of rotation at the measurement location. The magnitude of wall shear stress in the vicinity of the corner was observed to increase significantly (170 percent) compared to its far-upstream value; the increase was consistently higher on the blade surface compared to the value on the plate surface of the blade end-wall corner. On both surfaces in the blade end-wall corner, the variation of the wall shear stress direction was found to be more predominant in the vicinity of the blade leading-edge location. The trend of the measured wall shear stress direction showed good agreement with the limiting streamline directions obtained from the flow visualization studies.

  7. Comparison of surface wind stress measurements - Airborne radar scatterometer versus sonic anemometer

    Brucks, J. T.; Leming, T. D.; Jones, W. L.


    Sea surface wind stress measurements recorded by a sonic anemometer are correlated with airborne scatterometer measurements of ocean roughness (cross section of radar backscatter) to establish the accuracy of remotely sensed data and assist in the definition of geophysical algorithms for the scatterometer sensor aboard Seasat A. Results of this investigation are as follows: Comparison of scatterometer and sonic anemometer wind stress measurements are good for the majority of cases; however, a tendency exists for scatterometer wind stress to be somewhat high for higher wind conditions experienced in this experiment (6-9 m/s). The scatterometer wind speed algorithm tends to overcompute the higher wind speeds by approximately 0.5 m/s. This is a direct result of the scatterometer overestimate of wind stress from which wind speeds are derived. Algorithmic derivations of wind speed and direction are, in most comparisons, within accuracies defined by Seasat A scatterometer sensor specifications.

  8. Navigational and Environmental Measurement System (NEMS)

    Clem, T. D.


    The NEMS concept and design were initiated from the need to measure and record positional and environmental information during aircraft flights of developmental science research instrumentation. The unit was designed as a stand-alone system which could serve the needs of instruments whose developmental nature did not justify the cost and complexity of including these measurements within the instrument data system. Initially, the system was comprised of a Loran-C receiver and a portable IBM compatible computer recording position and time. Later, the system was interfaced with the Wallops aircraft inertial navigation system (INS), and various other sensors were supplied and shared by the Goddard science users. Real-time position mapping on video monitors was added for investigator's use and information. In 1987, the use of a Global Positioning System (GPS) receiver was included in some missions. A total configuration of the system and the various sensors which can be incorporated are shown.


    Henningsen, Poul; Arentoft, Mogens; Lagergren, Jonas;


    A load transducer has been developed to measure the contact forces in the deformation zone during rolling. The transducer consists of a strain gauge equipped insert, embedded in the surface of the roll. The length of the insert exceeds the contact length between material and roll. By analyzing...

  10. In Situ Measurement of Voltage-Induced Stress in Conducting Polymers with Redox-Active Dopants.

    Sen, Sujat; Kim, Sung Yeol; Palmore, Lia R; Jin, Shenghua; Jadhav, Nitin; Chason, Eric; Palmore, G Tayhas R


    Minimization of stress-induced mechanical rupture and delamination of conducting polymer (CP) films is desirable to prevent failure of devices based on these materials. Thus, precise in situ measurement of voltage-induced stress within these films should provide insight into the cause of these failure mechanisms. The evolution of stress in films of polypyrrole (pPy), doped with indigo carmine (IC), was measured in different electrochemical environments using the multibeam optical stress sensor (MOSS) technique. The stress in these films gradually increases to a constant value during voltage cycling, revealing an initial break-in period for CP films. The nature of the ions involved in charge compensation of pPy[IC] during voltage cycling was determined from electrochemical quartz crystal microbalance (EQCM) data. The magnitude of the voltage-induced stress within pPy[IC] at neutral pH correlated with the radius of the hydrated mobile ion in the order Li(+) > Na(+) > K(+). At acidic pH, the IC dopant in pPy[IC] undergoes reversible oxidation and reduction within the range of potentials investigated, providing a secondary contribution to the observed voltage-induced stress. We report on the novel stress response of these polymers due to the presence of pH-dependent redox-active dopants and how it can affect material performance.

  11. Automatic system for ionization chamber current measurements.

    Brancaccio, Franco; Dias, Mauro S; Koskinas, Marina F


    The present work describes an automatic system developed for current integration measurements at the Laboratório de Metrologia Nuclear of Instituto de Pesquisas Energéticas e Nucleares. This system includes software (graphic user interface and control) and a module connected to a microcomputer, by means of a commercial data acquisition card. Measurements were performed in order to check the performance and for validating the proposed design.

  12. Evaluation of Pressure Pain Threshold as a Measure of Perceived Stress and High Job Strain.

    Hven, Lisbeth; Frost, Poul; Bonde, Jens Peter Ellekilde


    To investigate whether pressure pain threshold (PPT), determined by pressure algometry, can be used as an objective measure of perceived stress and job strain. We used cross-sectional base line data collected during 1994 to 1995 within the Project on Research and Intervention in Monotonous work (PRIM), which included 3123 employees from a variety of Danish companies. Questionnaire data included 18 items on stress symptoms, 23 items from the Karasek scale on job strain, and information on discomfort in specified anatomical regions was also collected. Clinical examinations included pressure pain algometry measurements of PPT on the trapezius and supraspinatus muscles and the tibia. Associations of stress symptoms and job strain with PPT of each site was analyzed for men and women separately with adjustment for age body mass index, and discomfort in the anatomical region closest to the point of pressure algometry using multivariable linear regression. We found significant inverse associations between perceived stress and PPT in both genders in models adjusting for age and body mass index: the higher level of perceived stress, the lower the threshold. For job strain, associations were weaker and only present in men. In men all associations were attenuated when adjusting for reported discomfort in regions close to the site of pressure algometry. The distributions of PPT among stressed and non-stressed persons were strongly overlapping. Despite significant associations between perceived stress and PPT, the discriminative capability of PPT to distinguish individuals with and without stress is low. PPT measured by pressure algometry seems not applicable as a diagnostic tool of a state of mental stress.

  13. Distance and Cable Length Measurement System

    Jonay Toledo


    Full Text Available A simple, economic and successful design for distance and cable length detection is presented. The measurement system is based on the continuous repetition of a pulse that endlessly travels along the distance to be detected. There is a pulse repeater at both ends of the distance or cable to be measured. The endless repetition of the pulse generates a frequency that varies almost inversely with the distance to be measured. The resolution and distance or cable length range could be adjusted by varying the repetition time delay introduced at both ends and the measurement time. With this design a distance can be measured with centimeter resolution using electronic system with microsecond resolution, simplifying classical time of flight designs which require electronics with picosecond resolution. This design was also applied to position measurement.

  14. Distance and Cable Length Measurement System

    Hernández, Sergio Elias; Acosta, Leopoldo; Toledo, Jonay


    A simple, economic and successful design for distance and cable length detection is presented. The measurement system is based on the continuous repetition of a pulse that endlessly travels along the distance to be detected. There is a pulse repeater at both ends of the distance or cable to be measured. The endless repetition of the pulse generates a frequency that varies almost inversely with the distance to be measured. The resolution and distance or cable length range could be adjusted by varying the repetition time delay introduced at both ends and the measurement time. With this design a distance can be measured with centimeter resolution using electronic system with microsecond resolution, simplifying classical time of flight designs which require electronics with picosecond resolution. This design was also applied to position measurement. PMID:22303169


    Smaranda CIMPOERU


    Full Text Available Measuring financial stress is a key research issue that has gained a lot of interest in the years following the extreme events from 2007. Although a lot of models were used for assessing and measuring financial stress, none of the managed to forecast the global crisis from 2007. We can identify three generation of models plus the approach of measuring the probability of a crisis with financial stress indexes. In our paper, we review briefly the most important approaches in measuring financial stress from the specialty literature and we propose a case study for European countries. We apply a logistic regression model for panel data, using macroeconomic indicators with the goal of finding the most important triggers for a financial crisis or otherwise said, the early warning signals of a crisis. We obtain very good accuracy of the proposed model (85% and the results are of great importance for policy makers and also for researchers. The study highly contributes to the specialty literature, considering that it is the first early warning system developed on macroeconomic indicators only for European advanced and emerging economies. Moreover, it includes in the analysis a period of five year following 2007.


    Zybtsev, Y.; I. Marmut


    The study has shown that the accuracy of brakes checking by inertial stands depends upon the applied methods of measurement of braking parameters (stand slowing down, braking distance, brakes triggering time, current speed) as well as the methods of metrological checking of measuring system canals.

  17. System for measuring electric resistance skin

    V. P. Kutsenko


    Full Text Available Introduction. To measure the electrical resistance of leather frequently used system for applying testing signals from external current sources or voltage. Power testing signals the maximum limit, when they Electro studies still have a negative impact on the human body. Formulation of the problem. To achieve this task the authors conducted research and developed a system, which is based to measure electrical skin resistance (ESR responsible allocation and measurement noise variance bioelectric signal is proportional to the resistance area of research. Main body. The paper studied and developed a system, based on measuring electrical skin resistance on the identification and measurement of the noise variance from the BAP bioelectric signal that is proportional to the resistance of the investigation. A functional block diagram of an automated algorithm for converting the useful and noise signal BAP, whose range does not differ fundamentally from those of the intrinsic noise of the input elements in ESR. The proposed method will improve the accuracy of the measurements ESR without the use of test pacing signal. The simulation results and experimental studies correlate that confirms the adequacy of this method the results of experimental measurements. Conclusions. For noise voltage BAT can measure their electrical resistance without signals tested, external sources of electric current or voltage and thereby completely eliminate the harmful effect of probing. Thanks to one of the Inverting periodic noise voltages multiplied and simultaneous detection variable component switching frequency, provided the allocation and measurement noise voltage acupuncture points, which is proportional to the resistance, and the intensity of the same order or less than the intrinsic noise of the measuring system. Use as medical acupuncture needle electrodes allows to measure not only the skin but also deep resistivity, which reflects the physiological state of internal

  18. Incorporating human stress measurements into biomedical engineering class

    Bruna, Ondřej; Souček, Pavel; Holub, Jan


    The topic of this paper is to describe the current course at Czech Technical University in Prague X38KLS (Construction of medical systems) and to describe proposed improvements and differences between novel and old approach. The changes and in a state of preparation and have not been fully implemented. The new course should take over the old in September 2013.

  19. A Novel Instrument and Methodology for the In-Situ Measurement of the Stress in Thin Films

    Broadway, David M.; Omokanwaye, Mayowa O.; Ramsey, Brian D.


    We introduce a novel methodology for the in-situ measurement of mechanical stress during thin film growth utilizing a highly sensitive non-contact variation of the classic spherometer. By exploiting the known spherical deformation of the substrate the value of the stress induced curvature is inferred by measurement of only one point on the substrate's surface-the sagittal. From the known curvature the stress can be calculated using the well-known Stoney equation. Based on this methodology, a stress sensor has been designed which is simple, highly sensitive, compact, and low cost. As a result of its compact nature, the sensor can be mounted in any orientation to accommodate a given deposition geometry without the need for extensive modification to an already existing deposition system. The technique employs the use of a double side polished substrate that offers good specular reflectivity and is isotropic in its mechanical properties, such as oriented crystalline silicon or amorphous soda lime glass, for example. The measurement of the displacement of the uncoated side during deposition is performed with a high resolution (i.e. 5nm), commercially available, inexpensive, fiber optic sensor which can be used in both high vacuum and high temperature environments (i.e. 10(exp-7) Torr and 480oC, respectively). A key attribute of this instrument lies in its potential to achieve sensitivity that rivals other measurement techniques such as the micro cantilever method but, due to the comparatively larger substrate area, offers a more robust and practical alternative for subsequent measurement of additional characteristics of the film that can might be correlated to film stress. We present measurement results of nickel films deposited by magnetron sputtering which show good qualitative agreement to the know behavior of polycrystalline films previously reported by Hoffman.

  20. Time measurment system at the SSC

    Arai, Yasuo [National Laboratory for High Energy Physics, Ibaraki (Japan)


    A proposal of time measurement system at the SSC experiment is described. An example of a possible scheme for central tracking chambers is shown. Designs of a preamp/shaper/discri chip and a time digitizer chip are described. A method to distribute system clock and power/cooling problems are also discussed.

  1. Internal Performance Measurement Systems: Problems and Solutions

    Jakobsen, Morten; Mitchell, Falconer; Nørreklit, Hanne


    . The analysis uses and extends N rreklit's (2000) critique of the BSC by applying the concepts developed therein to contemporary research on the BSC and to the development of practice in performance measurement. The analysis is of relevance for many companies in the Asia-Pacific area as an increasing numbers......This article pursues two aims: to identify problems and dangers related to the operational use of internal performance measurement systems of the Balanced Scorecard (BSC) type and to provide some guidance on how performance measurement systems may be designed to overcome these problems...

  2. [The role of individual stress resistance in realization of immobilization and zoosocial stress effects on pulmonary surfactant system].

    Vasil'eva, N N; Bryndina, I G


    The aim of the present study was to investigate the effect of chronic exposure to immobilization and psychosocial stress on surface activity, biochemical composition of pulmonary surfactant and lung fluid balance of rats with different stress-resistance. It is shown that both types of stress lead to elevation of lysophospholipids level and decrease of surface-active properties of pulmonary surfactant, more prominent in stress-vulnerable rats. Blood supply was decreased and extravascular fluid was increased under the psychosocial stress only in stress-vulnerable animals, in all rest cases the blood supply was increased and the content of extravascular fluid was not changed. Surfactant alteration was coupled on the level of 11-OCS in the blood and amount of fluid in the lungs. The obtained results indicate that different degree of impairment in the pulmonary surfactant system during immobilization and psychosocial conflicts depends on different resistance to emotional stress.

  3. Stress reducing by improvement of vehicle lighting systems; Verbesserung der Fahrzeugbeleuchtung zur Vermeidung von Stress

    Westermann, H.; Woerdenweber, B.


    Improvements for passive safety of vehicles have been widely accepted. Now, interest is focussing on accident avoidance and enhancement in active safety of vehicles. This includes better information systems and further driving comfort. Centre of attention is the driver, his relation to his immediate surroundings and his behaviour in traffic. Comfort implies absence of stress and relates to awareness and readiness to react. Comfort surves safety. Comfort-system engineering creates the means to raise the drivers welbeing and to maintain his reserves for safe behaviour in traffic. It reduces stress factors, irritations and dangers in traffic. Vision provides over 90 per cent of information for safe driving. International regulations control equipment for vehicle lighting. Vehicle and lights represent an interactive system for information and information-retrieval which should adapt to traffic, road or weather conditions. Today, however, this is not sufficiently the case. In other lighting applications regulations for equipment were replaced by regulations of functions. This permitted lighting systems to adapt to changing visual tasks or conditions, and encompass technological advances and aesthetic demands. This change in regulations has not yet happened in vehicle lighting, but, when it does, will set free reserves in improved visual and driving comfort for active safety. The European research (EUREKA) project AFS and the CELIS project are developments in comfort-system engineering. The CELIS system raises comfort in the vehicle interior for driver and passengers. AFS aims to establish adaptive frontlighting to suit every driving situation. AFS requires a fresh look at regulations. The European AFS project is also a precursor for traffic-ergonomic signal function. (orig.) [Deutsch] Nach breiter Akzeptanz der passiven Sicherheitseinrichtungen richtet sich das Interesse zunehmend auf die Unfallvermeidung durch Massnahmen zur Verbesserung der aktiven Sicherheit. Dazu

  4. Measurement of Residual Stress Field of Hardfacing Metal with RE Oxide and Its Numerical Simulation

    杨庆祥; 姚枚


    The temperature and residual stress fields of a medium-high carbon steel, welded by a cracking resistance electrode with rare earth (RE) oxide, were measured by thermo-vision analyzer and X-ray stress analyzer respectively. Meanwhile, the martensitic transformation temperatures of matrix, hard-face welding (hardfacing) metal welded by conventional hardfacing electrode and that welded by cracking resistance electrode with RE oxide were determined. According to the expe rimental data and the thermo-physical, mechanical parameters of materials, finite element method (FEM) of temperature and stress fields was established. In this FEM, the effect of martensitic transformation on residual stress of hardfacing metal of medium-high carbon steel was taken into account. The results show that, by adding RE oxide in the coat of hardfacing electrode, the martensitic trans formation temperature can be decreased, so that the residual tensile stress on the dangerous position can be decreased. Therefore, the cracking resistance of hardfacing metal can be improved.

  5. Coupled stress-strain and electrical resistivity measurements on copper based shape memory single crystals

    Gonzalez Cezar Henrique


    Full Text Available Recently, electrical resistivity (ER measurements have been done during some thermomechanical tests in copper based shape memory alloys (SMA's. In this work, single crystals of Cu-based SMA's have been studied at different temperatures to analyse the relationship between stress (s and ER changes as a function of the strain (e. A good consistency between ER change values is observed in different experiments: thermal martensitic transformation, stress induced martensitic transformation and stress induced reorientation of martensite variants. During stress induced martensitic transformation (superelastic behaviour and stress induced reorientation of martensite variants, a linear relationship is obtained between ER and strain as well as the absence of hys teresis. In conclusion, the present results show a direct evidence of martensite electrical resistivity anisotropy.

  6. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    Magdalena Cristóbal-García


    Full Text Available We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks and short-term (3 weeks effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW, OA+Allopurinol (AP, 150 mg/L drinking water, OA+Tempol (T, 15 mg/kg BW, or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase and oxidative stress markers (lipid and protein oxidation along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident.

  7. Viscoelastic stress analysis of thermally compatible and incompatible metal-ceramic systems.

    DeHoff, P H; Anusavice, K J


    The purpose of this study was to analyze transient and residual midpoint deflections and stresses in metal-opaque porcelain-body porcelain systems with matched and mismatched thermal contraction coefficients. Calculations and measurements were made for seven trimaterial strips that covered a wide range of thermal contraction mismatches among constituent materials. Midpoint deflections were measured in a beam-bending viscometer during slow cooling from an initial temperature of 700 degrees C. Linear regression analysis with a correlation coefficient of 0.950 was used to compare measured and calculated residual midpoint deflections. Stress relaxation data were fit to a three-term exponential series by nonlinear regression analyses with correlation ratios ranging from 0.9972 to 0.9999. While finite element analyses correctly predicted the general shape of the deflection behavior as a function of temperature for all combinations, the best agreement between measured mean residual midpoint deflections and calculated values (+250 microns vs. +268 microns) was obtained for strips composed of a Au-Pd alloy (alpha m = 13.5 ppm/ degree C) with a medium expansion opaque porcelain (alpha o = 13.3 ppm/degree C) and a high expansion body porcelain (alpha B = 14.4 ppm/degree C). The highest calculated residual tensile stress of +26 MPa at the surface of body porcelain was associated with the 0.5-mm-thick Ni-Cr-Be alloy strip (alpha m = 15.1 ppm/degree C) with medium expansion porcelains (alpha o = 13.5 ppm/degree C and alpha B = 13.9 ppm/degree C). The smallest measured residual deflection (+10 microns) was also associated with this combination. The results of this study indicated that metal-ceramic strips are sensitive indicators of stress development caused by a thermal contraction mismatch; however, the magnitudes of the residual deflections do not necessarily correlate with the stress magnitudes in the ceramic. Currently there are no U.S. or international standards that define

  8. Measuring Vulnerability in the Food System

    Paloviita, Ari; Puupponen, Antti; Kortetmäki, Teea; Silvasti, Tiina


    Food system vulnerability is an emerging concept for food security policies and food supply chain management. Hence, measuring food system vulnerability is necessary for developing appropriate food security policies and managing food supply chain vulnerabilities. In this paper, we aim to clarify the development process of food system vulnerability indicators. We conducted an abducted qualitative content analysis based on public documents of various Finnish organizations, including mi...

  9. Volatility Measurements Applied to Information Systems


    LISI Levels of Information Systems Integration NPV Net Present Value OEP Organizational Execution Plans ROI Return on Investment SIGINT Signals...IT system (Stikeleather, 2013). The interoperability performance can be measured with the Levels of Information Systems Interoperability ( LISI ), (DoD CIO, 2012). There are several IT evaluation methods including net present value (NPV), ROI, information economics, cost benefit analysis, and

  10. NKS MOMS. Final report. [Mobile Measurement Systems

    Nilssen, J. [Norwegian Radiation Protection Authority (NRPA) (Norway); Aage, H.K. [Danish Emergency Management Agency (DEMA) (Denmark); Palsson, S.E. [Icelandic Radiation Safety Authority (IRSA) (Iceland)


    Mobile car-borne measurement systems are an important asset in early phase emergency response in all Nordic countries. However, through the development of the systems in the different countries, there are considerable differences between the systems developed. This complicates Nordic cooperation and mutual assistance in emergency situations. This project aimed to facilitate harmonization of mobile measurement systems between the Nordic countries. The project focused on harmonizing data formats, information exchange and measurement strategies. Although the work done was funded by each member, the project established a good platform for cooperation which will hopefully continue beyond the scope of the project. A two-day seminar was held in May 2012, where all participants presented the current status (equipment, methods used etc.), in addition to invited speakers presenting development within the field of mobile detection and in situ measurements. Exchange of experiences and information on different measurement systems and practises in use was an important part of the seminar. The seminar was followed up by a small workshop during the REFOX exercise in Lund, Sweden, September 2012. Exchange of measurement data from the exercise was facilitated through a workspace proveded by NRPA as part of the MOMS project. The work done in this project will be presented at the NordEx12 seminar in March 2013. (Author)

  11. Systems and methods for measuring component matching

    Courter, Kelly J. (Inventor); Slenk, Joel E. (Inventor)


    Systems and methods for measuring a contour match between adjacent components are disclosed. In one embodiment, at least two pressure sensors are located between adjacent components. Each pressure sensor is adapted to obtain a pressure measurement at a location a predetermined distance away from the other pressure sensors, and to output a pressure measurement for each sensor location. An output device is adapted to receive the pressure measurements from at least two pressure sensors and display the pressure measurements. In one aspect, the pressure sensors include flexible thin film pressure sensors. In accordance with other aspects of the invention, a method is provided for measuring a contour match between two interfacing components including measuring at least one pressure applied to at least one sensor between the interfacing components.

  12. Computation of thermodynamic equilibrium in systems under stress

    Vrijmoed, Johannes C.; Podladchikov, Yuri Y.


    Metamorphic reactions may be partly controlled by the local stress distribution as suggested by observations of phase assemblages around garnet inclusions related to an amphibolite shear zone in granulite of the Bergen Arcs in Norway. A particular example presented in fig. 14 of Mukai et al. [1] is discussed here. A garnet crystal embedded in a plagioclase matrix is replaced on the left side by a high pressure intergrowth of kyanite and quartz and on the right side by chlorite-amphibole. This texture apparently represents disequilibrium. In this case, the minerals adapt to the low pressure ambient conditions only where fluids were present. Alternatively, here we compute that this particular low pressure and high pressure assemblage around a stressed rigid inclusion such as garnet can coexist in equilibrium. To do the computations we developed the Thermolab software package. The core of the software package consists of Matlab functions that generate Gibbs energy of minerals and melts from the Holland and Powell database [2] and aqueous species from the SUPCRT92 database [3]. Most up to date solid solutions are included in a general formulation. The user provides a Matlab script to do the desired calculations using the core functions. Gibbs energy of all minerals, solutions and species are benchmarked versus THERMOCALC, PerpleX [4] and SUPCRT92 and are reproduced within round off computer error. Multi-component phase diagrams have been calculated using Gibbs minimization to benchmark with THERMOCALC and Perple_X. The Matlab script to compute equilibrium in a stressed system needs only two modifications of the standard phase diagram script. Firstly, Gibbs energy of phases considered in the calculation is generated for multiple values of thermodynamic pressure. Secondly, for the Gibbs minimization the proportion of the system at each particular thermodynamic pressure needs to be constrained. The user decides which part of the stress tensor is input as thermodynamic

  13. Rolling Mill Work Roll Stress Analysis and Strain Measurement

    R. K. Jones


    This study of a rolling mill work roll failure consisted of (a) a review of related published materials, (b) measuring strain on the spindles with strain gages, (c) performing finite element analyses (FEA) modeling of the work roll thrust groove section (using the measured spindle loading), (d) fabricating and testing an physical model of the work roll, using the good end of a broken work roll, (e) recording motor voltage and current, and (f) processing, analyzing, and comparing the results. A methodical approach was taken to determine the causes of the failures. The actual loading to which the work rolls were subjected was determined, then these loads were used in a FEA of the thrust groove sections of three work roll designs: failed, current, and proposed. To verify the FEA results, a physical model was fabricated, built, and subjected to instrumented tests. The study offered the following recommendations: remove the undercut groove in the thrust groove section on future procurements; investigate possible methods of removing the transverse keyway; forego the larger drive train upgrades proposed by the mill manufacturer; continue frequent thrust groove inspections; require chemical and mechanical property certifications on all future procurements; and immediately scrap any work rolls that exhibit surface cracking.

  14. Telerobotic system performance measurement: motivation and methods

    Kondraske, George V.; Khoury, George J.


    Telerobotic systems (TRSs) and shared teleautonomous systems result from the integration of multiple sophisticated modules. Procedures used in systems integration design decision-making of such systems are frequently ad hoc compared to more quantitative and systematic methods employed elsewhere in engineering. Experimental findings associated with verification and validation (V&V) are often application-specific. Furthermore, models and measurement strategies do not exist which allow prediction of overall TRS performance in a given task based on knowledge of the performance characteristics of individual subsystems. This paper introduces the use of general systems performance theory (GSPT), developed by the senior author to help resolve similar problems in human performance, as a basis for: (1) measurement of overall TRS performance (viewing all system components, including the operator, as a single entity); (2) task decomposition; (3) development of a generic TRS model; and (4) the characterization of performance of subsystems comprising the generic model. GSPT uses a resource construct to model performance and resource economic principles to govern the interface of systems to tasks. It provides a comprehensive modeling/measurement strategy applicable to complex systems including both human and artificial components. Application is presented in the context of a distributed telerobotics network (Universities Space Automation and Robotics Consortium) as a testbed. Insight into the design of test protocols which elicit application-independent data (i.e., multi-purpose or reusable) is described. Although the work is motivated by space automation and robotics challenges, it is considered to be applicable to telerobotic systems in general.

  15. Foot Plantar Pressure Measurement System: A Review

    Yufridin Wahab


    Full Text Available Foot plantar pressure is the pressure field that acts between the foot and the support surface during everyday locomotor activities. Information derived from such pressure measures is important in gait and posture research for diagnosing lower limb problems, footwear design, sport biomechanics, injury prevention and other applications. This paper reviews foot plantar sensors characteristics as reported in the literature in addition to foot plantar pressure measurement systems applied to a variety of research problems. Strengths and limitations of current systems are discussed and a wireless foot plantar pressure system is proposed suitable for measuring high pressure distributions under the foot with high accuracy and reliability. The novel system is based on highly linear pressure sensors with no hysteresis.

  16. Linear systems a measurement based approach

    Bhattacharyya, S P; Mohsenizadeh, D N


    This brief presents recent results obtained on the analysis, synthesis and design of systems described by linear equations. It is well known that linear equations arise in most branches of science and engineering as well as social, biological and economic systems. The novelty of this approach is that no models of the system are assumed to be available, nor are they required. Instead, a few measurements made on the system can be processed strategically to directly extract design values that meet specifications without constructing a model of the system, implicitly or explicitly. These new concepts are illustrated by applying them to linear DC and AC circuits, mechanical, civil and hydraulic systems, signal flow block diagrams and control systems. These applications are preliminary and suggest many open problems. The results presented in this brief are the latest effort in this direction and the authors hope these will lead to attractive alternatives to model-based design of engineering and other systems.

  17. Residual stress measurement with high energy x-rays at the Advanced Photon Source.

    Winholtz, R. A.; Haeffner, D. R.; Green, R.E.L.; Varma, R.; Hammond, D.


    Preliminary measurements with high energy x-rays from the SRI CAT 1-ID beam line at the Advanced Photon show great promise for the measurement of stress and strain using diffraction. Comparisons are made with neutron measurements. Measurements of strains in a 2 mm thick 304 stainless steel weld show that excellent strain and spatial resolutions are possible. With 200 {micro}m slits, strain resolutions of 1 x 10{sup {minus}5} were achieved.

  18. Thermoelectric property measurements with computer controlled systems

    Chmielewski, A. B.; Wood, C.


    A joint JPL-NASA program to develop an automated system to measure the thermoelectric properties of newly developed materials is described. Consideration is given to the difficulties created by signal drift in measurements of Hall voltage and the Large Delta T Seebeck coefficient. The benefits of a computerized system were examined with respect to error reduction and time savings for human operators. It is shown that the time required to measure Hall voltage can be reduced by a factor of 10 when a computer is used to fit a curve to the ratio of the measured signal and its standard deviation. The accuracy of measurements of the Large Delta T Seebeck coefficient and thermal diffusivity was also enhanced by the use of computers.

  19. A Critique of Health System Performance Measurement.

    Lynch, Thomas


    Health system performance measurement is a ubiquitous phenomenon. Many authors have identified multiple methodological and substantive problems with performance measurement practices. Despite the validity of these criticisms and their cross-national character, the practice of health system performance measurement persists. Theodore Marmor suggests that performance measurement invokes an "incantatory response" wrapped within "linguistic muddle." In this article, I expand upon Marmor's insights using Pierre Bourdieu's theoretical framework to suggest that, far from an aberration, the "linguistic muddle" identified by Marmor is an indicator of a broad struggle about the representation and classification of public health services as a public good. I present a case study of performance measurement from Alberta, Canada, examining how this representational struggle occurs and what the stakes are.

  20. Integration of optical measurement methods with flight parameter measurement systems

    Kopecki, Grzegorz; Rzucidlo, Pawel


    During the AIM (advanced in-flight measurement techniques) and AIM2 projects, innovative modern techniques were developed. The purpose of the AIM project was to develop optical measurement techniques dedicated for flight tests. Such methods give information about aircraft elements deformation, thermal loads or pressure distribution, etc. In AIM2 the development of optical methods for flight testing was continued. In particular, this project aimed at the development of methods that could be easily applied in flight tests in an industrial setting. Another equally important task was to guarantee the synchronization of the classical measuring system with cameras. The PW-6U glider used in flight tests was provided by the Rzeszów University of Technology. The glider had all the equipment necessary for testing the IPCT (image pattern correlation technique) and IRT (infrared thermometry) methods. Additionally, equipment adequate for the measurement of typical flight parameters, registration and analysis has been developed. This article describes the designed system, as well as presenting the system’s application during flight tests. Additionally, the results obtained in flight tests show certain limitations of the IRT method as applied.

  1. High Speed Laser 3D Measurement System

    SONG Yuan-he; FAN Chang-zhou; GUO Ying; LI Hong-wei; ZHAO Hong


    Using the method of line structure light produced by a laser diode,three dimensional profile measurement is deeply researched.A hardware circuit developed is used to get the center position of light section for the improvement of the measurement speed.A double CCD compensation technology is used to improve the measurement precision. An easy and effective calibration method of the least squares to fit the parameter of system structure is used to get the relative coordinate relationship of objects and images of light section in the directions of height and axis. Sensor scanning segment by segment and layer by layer makes the measurement range expand greatly.

  2. Defining Efficient Stress Transfer in Binary Particle Systems Using Numerical Simulation


    discrete element line element. 3.3.6 Rigid objects Rigid objects are the principal means for imparting boundary conditions on a system of particles . The...stress of the compacted system, and likewise the peak mean stress increased with increased inter- particle friction, u. However, the inter- particle ...that define the stress tensor for each particle . The component stresses were used in this study to calculate the effective mean and shear stresses

  3. Stresses and Deformations Analysis of a Dry Friction Clutch System

    O.I. Abdullah


    Full Text Available The friction clutch is considered the essential element in the torquetransmission process. In this paper, the finite element method is used to study the stresses and deformations for clutch system (pressure plate, clutch disc and flywheel due to the contact pressure of diaphragm spring and the centrifugal force during the full engagement of clutch disc (assuming no slipping between contact surfaces. The investigation covers the effect of the contact stiffness factor FKN on the pressure distribution between contact surfaces, stresses and deformations. The penalty and Augmented Lagrangian algorithms have been used to obtain the pressure distribution between contact surfaces. ANSYS13 software has been used to perform the numerical calculation in this paper.

  4. Measurement of heat treatment induced residual stresses by using ESPI combined with hole-drilling method

    Jie Cheng; Si-Young Kwak; Ho-Young Hwang


    In this study,residual stresses in heat treated specimen were measured by using ESPI(Electronic Speckle-Pattern Interferometry)combined with the hole-drilling method.The specimen,made of SUS 304austenitic stainless steel,was quenched and water cooled to room temperature.Numerical simulation using a hybrid FDM/FEM package was also carried out to simulate the heat treatment process.As a result,the thermal stress fields were obtained from both the experiment and the numerical simulation.By comparision of stress fields,results from the experimental method and numerical simulation well agreed to each other,therefore,it is proved that the presented experimental method is applicable and reliable for heat treatment induced residual stress measurement.

  5. Measurement and tailoring of residual stress in expanded austenite on austenitic stainless steel

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Winther, Grethe


    Expanded austenite on stainless steel with a high interstitial nitrogen content is characterized by elasto-plastic accommodation of the large composition-induced lattice expansion leading to huge compressive residual stress. The elasto-plastic accommodation as well as the (steep) concentration...... profile has implications for the measurement strategy to determine lattice strains and associated residual stresses with X-ray diffraction. Lattice strain measurements were performed on nitrided as well as subsequently de-nitrided expanded austenite on AISI 316L stainless steel, for various grazing...... stresses in expanded austenite can be tailored by de-nitriding after nitriding, such that a condition of virtually zero stress at the surface is obtained....

  6. Laser Treatment of HVOF Coating: Modeling and Measurement of Residual Stress in Coating

    Arif, A. F. M.; Yilbas, B. S.


    High-velocity oxy-fuel (HVOF) coating of diamalloy 1005 (similar to Inconel 625 alloy) onto the Ti-6Al-4V alloy is considered and laser-controlled melting of the coating is examined. The residual stress developed after the laser treatment process is modeled using the finite element method (FEM). The experiment is conducted to melt the coating using a laser beam. The residual stress measurement in the coating after the laser treatment process is realized using the XRD technique. The morphological and metallurgical changes in the coating are examined using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). It is found that the residual stress reduces at the coating-base material interface and the residual stress predicted agrees with the XRD measurements. A compact and crack-free coating is resulted after the laser treatment process.

  7. Stress

    ... sudden negative change, such as losing a job, divorce, or illness Traumatic stress, which happens when you ... stress, so you can avoid more serious health effects. NIH: National Institute of Mental Health

  8. Spatial Resolution Correction for Electrochemical Wall-shear Stress Measurements using Rectangular Sensors

    Fethi Aloui


    Full Text Available This article is mainly motivated by the growing needs for highly resolved measurements for wall-bounded turbulent flows and aims to proposes a spatial correction coefficient in order to increase the wall-shear stress sensors accuracy. As it well known for the hot wire anemometry, the fluctuating streamwise velocity measurement attenuation is mainly due to the spatial resolution and the frequency response of the sensing element. The present work agrees well with this conclusion and expands it to the wall-shear stress fluctuations measurements using electrochemical sensors and suggested a correction method based on the spanwise correlation coefficient to take into account the spatial filtering effects on unresolved wall-shear stress measurements due to too large sensor spanwise size.

  9. Turbulent stress measurements with phase-contrast magnetic resonance through tilted slices

    MacKenzie, Jordan; Soederberg, Daniel; Lundell, Fredrik [Linne FLOW Centre, KTH Mechanics, Stockholm (Sweden); Swerin, Agne [SP Technical Research Institute of Sweden-Chemistry, Materials and Surfaces, Stockholm (Sweden); KTH Royal Institute of Technology, Surface and Corrosion Science, Stockholm (Sweden)


    Aiming at turbulent measurements in opaque suspensions, a simplistic methodology for measuring the turbulent stresses with phase-contrast magnetic resonance velocimetry is described. The method relies on flow-compensated and flow-encoding protocols with the flow encoding gradient normal to the slice. The experimental data is compared with direct numerical simulations (DNS), both directly but also, more importantly, after spatial averaging of the DNS data that resembles the measurement and data treatment of the experimental data. The results show that the most important MRI data (streamwise velocity, streamwise variance and Reynolds shear stress) is reliable up to at least anti r = 0.75 without any correction, paving the way for dearly needed turbulence and stress measurements in opaque suspensions. (orig.)

  10. Mental stress assessment using simultaneous measurement of EEG and fNIRS.

    Al-Shargie, Fares; Kiguchi, Masashi; Badruddin, Nasreen; Dass, Sarat C; Hani, Ahmad Fadzil Mohammad; Tang, Tong Boon


    Previous studies reported mental stress as one of the major contributing factors leading to various diseases such as heart attack, depression and stroke. An accurate stress assessment method may thus be of importance to clinical intervention and disease prevention. We propose a joint independent component analysis (jICA) based approach to fuse simultaneous measurement of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) on the prefrontal cortex (PFC) as a means of stress assessment. For the purpose of this study, stress was induced by using an established mental arithmetic task under time pressure with negative feedback. The induction of mental stress was confirmed by salivary alpha amylase test. Experiment results showed that the proposed fusion of EEG and fNIRS measurements improves the classification accuracy of mental stress by +3.4% compared to EEG alone and +11% compared to fNIRS alone. Similar improvements were also observed in sensitivity and specificity of proposed approach over unimodal EEG/fNIRS. Our study suggests that combination of EEG (frontal alpha rhythm) and fNIRS (concentration change of oxygenated hemoglobin) could be a potential means to assess mental stress objectively.

  11. In situ stress and nanogravimetric measurements during underpotential deposition of bismuth on (111)-textured Au.

    Stafford, G R; Bertocci, U


    The surface stress associated with the underpotential deposition (upd) of bismuth on (111)-textured Au is examined, using the wafer curvature method, in acidic perchlorate and nitrate supporting electrolyte. The surface stress is correlated to Bi coverage by independent nanogravimetric measurements using an electrochemical quartz crystal nanobalance. The mass increase measured in the presence of perchlorate is consistent with the (2 x 2) and (p x square root 3)-2Bi adlayers reported in the literature. ClO(4)(-) does not play a significant role in the upd process. The complete Bi monolayer causes an overall surface stress change of about -1.4 N m(-1). We attribute this compressive stress to the formation of Bi-Au bonds which partially satisfy the bonding requirements of the Au surface atoms, thereby reducing the tensile surface stress inherent to the clean Au surface. At higher Bi coverage, an additional contribution to the compressive stress is due to the electrocompression of the (p x square root 3)-2Bi adlayer. In nitric acid electrolyte, NO(3)(-) coadsorbs with Bi over the entire upd region but has little fundamental impact on adlayer structure and stress.

  12. Residual stress measurements in the dissimilar metal weld in pressurizer safety nozzle of nuclear power plant

    Campos, Wagner R.C.; Rabello, Emerson G.; Mansur, Tanius R.; Scaldaferri, Denis H.B.; Paula, Raphael G., E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Souto, Joao P.R.S.; Carvalho Junior, Ideir T., E-mail:, E-mail: [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Metalurgica


    Weld residual stresses have a large influence on the behavior of cracking that could possibly occur under normal operation of components. In case of an unfavorable environment, both stainless steel and nickel-based weld materials can be susceptible to stress-corrosion cracking (SCC). Stress corrosion cracks were found in dissimilar metal welds of some pressurized water reactor (PWR) nuclear plants. In the nuclear reactor primary circuit the presence of tensile residual stress and corrosive environment leads to so-called Primary Water Stress Corrosion Cracking (PWSCC). The PWSCC is a major safety concern in the nuclear power industry worldwide. PWSCC usually occurs on the inner surface of weld regions which come into contact with pressurized high temperature water coolant. However, it is very difficult to measure the residual stress on the inner surfaces of pipes or nozzles because of inaccessibility. A mock-up of weld parts of a pressurizer safety nozzle was fabricated. The mock-up was composed of three parts: an ASTM A508 C13 nozzle, an ASTM A276 F316L stainless steel safe-end, an AISI 316L stainless steel pipe and different filler metals of nickel alloy 82/182 and AISI 316L. This work presents the results of measurements of residual strain from the outer surface of the mock-up welded in base metals and filler metals by hole-drilling strain-gage method of stress relaxation. (author)

  13. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System.

    Fu-Wei Liu

    Full Text Available Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system.

  14. Transducer for measuring normal and friction stress in contact zone during rolling

    Henningsen, Poul; Wanheim, Tarras; Arentoft, Mogens


    by the friction conditions. To achieve this important information, measurements of the normal pressure and friction stresses in the deformation zone are requested. The interface conditions are analyzed by several authors [1-8] The direction of the friction stress is changing during the rolling gap....... At the entrance of the deformation zone, the peripherical velocity of the roll is higher than for the incoming material, which causes frictional stresses at the material acting in the rolling direction. At the outlet of the rolling gap, the velocity of the deformed material exceeds the velocity of the roll...

  15. The distorting effect of varying diets on fecal glucocorticoid measurements as indicators of stress

    Kalliokoski, Otto; Teilmann, A. Charlotte; Abelson, Klas S. P.


    The physiological stress response is frequently gauged in animals, non-invasively, through measuring glucocorticoids in excreta. A concern with this method is, however, the unknown effect of variations in diets on the measurements. With an energy dense diet, leading to reduced defecation, will low...

  16. Measuring Thermal Stress of Dairy Cattle Based on Temperature Humidity Index (THI) in Tropical Climate

    Sugiono; Dewi Hardiningtyas; Rudy Soenoko


    Thermal comfort for workers is very important factor to increase their performance, as well as the comfort level of dairy cattle will influence in milk productivity. The purposes of the paper is to measure the level of heat stress and then use the information to design the dairy cattle house for increasing thermal comfort. The research is started with literature review of heat stress and early survey of environment condition e.g. temperature, wind speed and relative humidity. The next step is...

  17. Green space and stress: evidence from cortisol measures in deprived urban communities.

    Roe, Jenny J; Thompson, Catharine Ward; Aspinall, Peter A; Brewer, Mark J; Duff, Elizabeth I; Miller, David; Mitchell, Richard; Clow, Angela


    Contact with green space in the environment has been associated with mental health benefits, but the mechanism underpinning this association is not clear. This study extends an earlier exploratory study showing that more green space in deprived urban neighbourhoods in Scotland is linked to lower levels of perceived stress and improved physiological stress as measured by diurnal patterns of cortisol secretion. Salivary cortisol concentrations were measured at 3, 6 and 9 h post awakening over two consecutive weekdays, together with measures of perceived stress. Participants (n = 106) were men and women not in work aged between 35-55 years, resident in socially disadvantaged districts from the same Scottish, UK, urban context as the earlier study. Results from linear regression analyses showed a significant and negative relationship between higher green space levels and stress levels, indicating living in areas with a higher percentage of green space is associated with lower stress, confirming the earlier study findings. This study further extends the findings by showing significant gender differences in stress patterns by levels of green space, with women in lower green space areas showing higher levels of stress. A significant interaction effect between gender and percentage green space on mean cortisol concentrations showed a positive effect of higher green space in relation to cortisol measures in women, but not in men. Higher levels of neighbourhood green space were associated with healthier mean cortisol levels in women whilst also attenuating higher cortisol levels in men. We conclude that higher levels of green space in residential neighbourhoods, for this deprived urban population of middle-aged men and women not in work, are linked with lower perceived stress and a steeper (healthier) diurnal cortisol decline. However, overall patterns and levels of cortisol secretion in men and women were differentially related to neighbourhood green space and warrant

  18. Web based Measurement System for Solar Radiation

    Shachi Awasthi


    Full Text Available We present in this paper, the principles of the measurement system for solar radiation, and our implementation using Web based data logging concept. The photocurrent produced by Silicon PN junction is used as a solar radiation transducer, to make it more viable we have used commercially available solar panels as our transducers. Using a silicon solar cell as sensor, a low cost solar radiometer can be constructed. The photocurrent produced by solar cell is electronically tailored to be measured and stored by our web based data acquisition and monitoring system. Measurement using real solar cell array gives a good measure of actual producible energy by solar arrays. Our portable instrument can be used in remote sites and substitutes the solar monitor and integrator, Current data of solar radiation can be monitored using Ethernet interface available in all PC, Laptops. We store the data into a secure digital card which can be retrieved to plot and analyse the data. We have developed system hardware and software based on ATmega32 AVR Microcontrollers and ENC28J60 Ethernet PHY and MAC network interface chip by Microchip. So the global irradiance data are obtained after correction using the instantaneous measurement of ambient temperature which allows us to calculate the junction temperature and consequently improve the precision of measurement of our data acquisition system.

  19. Feasibility of using a biowatch to monitor GSR as a measure of radiologists' stress and fatigue

    Krupinski, Elizabeth A.; MacKinnon, Lea; Reiner, Bruce I.


    We have been investigating the impact of fatigue on diagnostic performance of radiologists interpreting medical images. In previous studies we found evidence that eye strain could be objectively measured and that it correlates highly with degradations in diagnostic accuracy as radiologists work long hours. Eye strain however can be difficult to measure in a non-invasive and continuous manner over the work day so we have been investigating other ways to measure physiological stress and fatigue. In this study we evaluated the feasibility of using a commercially available biowatch to measure galvanic skin response (GSR), a well known indicator of stress. 10 radiology residents wore the biowatch for about 8 hours during their normal work day and data were automatically collected at 10 Hz. They completed the Swedish Occupational Fatigue Inventory (SOFI) at the start and finish of the day. GSR values (microsiemens) ranged from 0.14 to 38.27 with an average of 0.50 (0.28 median). Overall GSR tended to be fairly constant as the day progressed, but there were definite spikes indicating higher levels of stress. SOFI scores indicated greater levels of fatigue and stress at the end of the work day. Although further work is needed, GSR measurements obtained via an easy to wear watch may provide a means to monitor stress/fatigue and alert radiologists when to take a break from interpreting images to avoid making errors.

  20. Fluid-filled blood pressure measurement systems.

    Li, J K; van Brummelen, A G; Noordergraaf, A


    The performance of catheter-manometer systems for the measurement of pulsatile pressure has been evaluated by both experimental techniques and theoretical considerations. The former approach has shown, on occasion, multiple maxima in the amplitude response. The latter has been approached in a variety of ways, ranging from extreme lumping to application of transmission line theory while employing different configurations in the system's representation. Multiple maxima have also been seen, The present paper identifies the sources of the differences found and compares the relative merits of various theoretical approaches. It introduces the compliance of the system as a figure of merit and provides a simple first-order approximation formula for evaluation of the quality of a system. Damping and impedance matching to improve the system's frequency response were studied. It was found that they were not needed in a very stiff or a very compliant system, nor should one worry about the representation of such a system.

  1. Coordinate metrology accuracy of systems and measurements

    Sładek, Jerzy A


    This book focuses on effective methods for assessing the accuracy of both coordinate measuring systems and coordinate measurements. It mainly reports on original research work conducted by Sladek’s team at Cracow University of Technology’s Laboratory of Coordinate Metrology. The book describes the implementation of different methods, including artificial neural networks, the Matrix Method, the Monte Carlo method and the virtual CMM (Coordinate Measuring Machine), and demonstrates how these methods can be effectively used in practice to gauge the accuracy of coordinate measurements. Moreover, the book includes an introduction to the theory of measurement uncertainty and to key techniques for assessing measurement accuracy. All methods and tools are presented in detail, using suitable mathematical formulations and illustrated with numerous examples. The book fills an important gap in the literature, providing readers with an advanced text on a topic that has been rapidly developing in recent years. The book...

  2. Diffraction plane dependence of elastic constants in residual stress measurement by neutron diffraction

    Okido, Shinobu; Hayashi, Makoto [Hitachi Ltd., Tokyo (Japan); Morii, Yukio; Minakawa, Nobuaki; Tsuchiya, Yoshinori


    In a residual stress measurement by x-ray diffraction method and a neutron diffraction method, strictly speaking, the strain measurement of various diffracted surface was conducted and it is necessary to use its elastic modulus to convert from the strain to the stress. Then, in order to establish the residual stress measuring technique using neutron diffraction, it is an aim at first to make clear a diffraction surface dependency of elastic modulus for the stress conversion in various alloys. As a result of investigations the diffraction surface dependency of elastic module on SUS304 and STS410 steels by using RESA (Neutron diffractometer for residual stress analysis) installed at JRR-3M in Tokai Establishment of JAERI, following results are obtained. The elastic modulus of each diffraction surface considering till plastic region could be confirmed to be in a region of {+-}20% of that calculated by Kroner`s model and to be useful for that used on conversion to the stress. And, error of this elastic modulus was thought to cause the transition and defect formed at inner portion of the materials due to a plastic deformation. (G.K.)

  3. Residual stress measurement on propellant tank of 2219 aluminum alloy and study on its weak spot

    Huang, Chaoqun; Li, Huan; Li, Jianxiong; Luo, Chuanguang; Ni, Yanbing [Tianjin University, Tianjin (China)


    This paper presented residual stress measurement on two circumferential Variable polarity plasma arc welding (VPPAW) joints and one circular closed Friction stir welding (FSW) joint on the propellant tank of 2219 aluminum alloy using the indentation strain-gauge method. Quite large tensile residual stresses were attached to the center and inner areas of the circular closed FSW joint. There were very large tensile stresses in some points of the two circumferential VPPAW joints, among these points, the maximum value was +253 MPa, which was about 63 % of the yield strength of 410 MPa measured in the base material. In addition, the peak of compressive residual stress was about -160 MPa. Above all, there were two typical peaks of residual stress in the circumferential VPPAW joints, one was located in the middle part while the other one was near the start/end position of the joints. Combining the result of residual stress measurement with the characteristics of the tank structure, it can be concluded that circular closed FSW joint around the flange was a weak spot on the propellant tank. And the most vulnerable point on the circular closed FSW joint has also been found.

  4. Measuring system of high polymers’ pyromagnetic effect

    张永忠; 罗迎社; 粟建新; 马敏伟; 杨占宇; 张亮


    The measurement system is the main equipment of the project.Based on the characteristic of experiment system,a sensor array is designed,and used to continually acquire the global magnetic field.A scientific scheme is developed to get the signal processing and temperature compensation for nondirective weak magnetic field.The software of sampling control system is given,which is complied using C language in Labwindows/CVI.Taking computer as main engine,the system can acquire the nondirective weak magnetic field automatically and continuously use the sensor array,the change of magnetic field can be shown in real-time and intuitively.

  5. Preliminary Results of Stress Measurement Using Drill Cores of TCDP Hole-A: an Application of Anelastic Strain Recovery Method to Three-Dimensional In-Situ Stress Determination

    Weiren Lin En-Chao Yeh1


    Full Text Available In order to understand the feature of rock stress change at different depths above, within, and beneath the Chelungpu fault after the Chi-Chi earthquake, we employed a core-based stress measurement method, anelastic strain recovery (ASR technique to determine both the orientations and magnitudes of present three-dimensional principal rock stresses using drill core samples retrieved from Taiwan Chelungpu-fault Drilling Project (TCDP main Hole-A. The core samples used were taken from three depths; and their lithology were sandstone at depths of 592 and 1755 m and siltstone at 1112 m. The anelastic strains of the specimens in nine directions, including six independent directions, were measured after its in-situ stress was released. Acquired anelastic strains were of high quality and reached several hundred microstrains, which is sufficiently high for the accuracy of the measurement system used. Thus, the strain data could be used for three dimensional analysis resulting in the determination of orientations and the estimation of magnitudes of the principal in-situ stresses. Preliminary stress measurement results showed that the orientations of principal stresses changed between the shallower depth above the fault and the deeper depth beneath it, that is, the present stress distribution in the TCDP hole might be influenced by the Chelungpu fault rupture. At the same time, anelastic strain recovery measurement is well suited for the task of directly determining the orientations of principal in-situ stresses and to estimate the magnitude of stresses at large/great depth.

  6. Hair Measurements of Cortisol, DHEA, and DHEA to Cortisol Ratio as Biomarkers of Chronic Stress among People Living with HIV in China: Known-Group Validation

    Li, Xiaoming; Zilioli, Samuele; Chen, Zheng; Deng, Huihua; Pan, Juxian


    Background Existing literature suggests that endocrine measures, including the steroid hormones of cortisol and Dehydroepiandrosterone (DHEA), as well as the DHEA to cortisol ratio in the human hair can be used as promising biomarkers of chronic stress among humans. However, data are limited regarding the validity of these measures as biomarkers of chronic stress among people living with HIV (PLWH), whose endocrine system or hypothalamic pituitary adrenal (HPA) axis may be affected by HIV infection and/or antiretroviral therapy (ART) medications. Method Using hair sample data and self-reported survey from 60 PLWH in China, we examined the validity of three endocrine measures among Chinese PLWH using a known-groups validation strategy. High-stress group (n = 30) and low-stress group (n = 30) of PLWH were recruited through individual assessment interviews by a local licensed psychologist. The endocrine measures in hair were extracted and assessed by LC-APCI-MS/MS method. Both bivariate and multivariate analyses were conducted to examine the associations between the endocrine measures and the stress level, and to investigate if the associations differ by ART status. Results The levels of endocrine measures among Chinese PLWH were consistent with existing studies among PLWH. Generally, this pilot study confirmed the association between endocrine measures and chronic stress. The high stress group showed higher level hair cortisol and lower DHEA to cortisol ratio. The higher stress group also reported higher scores of stressful life events, perceived stress, anxiety and depression. Hair cortisol level was positively related to anxiety; DHEA was negatively associated with stressful life events; and the DHEA to cortisol ratio was positively related to stressful life events and perceived stress. ART did not affect the associations between the endocrine measures and stress level. Conclusions Our findings suggest that hair cortisol and DHEA to cortisol ratio can be used as

  7. Review of Stress and the Measurement of Stress in Marine Mammals


    et al., 2006). Hair shaft cortisol will be determined using a technique recently validated for use in free-ranging terrestrial mammals ( Macbeth et...extracted into methanol, reconstituted in phosphate buffer, and measured using a commercially available enzyme- linked immunosorbent assay ( Macbeth ...species of delphinids. Marine Mammal Science 22, 1-16. Macbeth , B. J., Cattet, M. R. L., Stenhouse, G. B., Gibeau, M. L., and Janz, D. M. 2010. Hair

  8. Video integrated measurement system. [Diagnostic display devices

    Spector, B.; Eilbert, L.; Finando, S.; Fukuda, F.


    A Video Integrated Measurement (VIM) System is described which incorporates the use of various noninvasive diagnostic procedures (moire contourography, electromyography, posturometry, infrared thermography, etc.), used individually or in combination, for the evaluation of neuromusculoskeletal and other disorders and their management with biofeedback and other therapeutic procedures. The system provides for measuring individual diagnostic and therapeutic modes, or multiple modes by split screen superimposition, of real time (actual) images of the patient and idealized (ideal-normal) models on a video monitor, along with analog and digital data, graphics, color, and other transduced symbolic information. It is concluded that this system provides an innovative and efficient method by which the therapist and patient can interact in biofeedback training/learning processes and holds considerable promise for more effective measurement and treatment of a wide variety of physical and behavioral disorders.

  9. Development of limb volume measuring system

    Bhagat, P. K.; Kadaba, P. K.


    The mechanisms underlying the reductions in orthostatic tolerance associated with weightlessness are not well established. Contradictory results from measurements of leg volume changes suggest that altered venomotor tone and reduced blood flow may not be the only contributors to orthostatic intolerance. It is felt that a more accurate limb volume system which is insensitive to environmental factors will aid in better quantification of the hemodynamics of the leg. Of the varous limb volume techniques presently available, the ultrasonic limb volume system has proven to be the best choice. The system as described herein is free from environmental effects, safe, simple to operate and causes negligible radio frequency interference problems. The segmental ultrasonic ultrasonic plethysmograph is expected to provide a better measurement of limb volume change since it is based on cross-sectional area measurements.

  10. Comparison of stress-measuring techniques at the DNA-UTP site, Rodgers Hollow, Kentucky

    Finley, R.E.


    The Defense Nuclear Agency (DNA) is developing explosives technology through its Underground Technology Program (UTP). Sandia National Laboratories (SNL) has supported the DNA by conducting research to characterize the in situ stress and rock mass deformability at one of the UTP underground sites at Rodgers Hollow, near Louisville, Kentucky on the Fort Knox Military Reservation. The purpose of SNL`s testing was to determine the in situ stress using three different measurement techniques and, if possible, to estimate the rock mass modulus near the underground opening. The three stress-measuring techniques are (1) borehole deformation measurements using overcoring, (2) Anelastic Strain Recovery (ASR) complemented by laboratory ultrasonic and mechanical properties testing, and (3) the in situ flatjack technique using cancellation pressure. Rock mass modulus around the underground opening was estimated using the load deformation history of the flatjack and surrounding rock. Borehole deformation measurements using the overcoring technique probably represent the most reliable method for in situ stress determination in boreholes up to 50 ft (15 m) deep in competent rock around an isolated excavation. The technique is used extensively by the tunneling and mining industries. The ASR technique is also a core-based technique and is used in the petroleum and natural gas industries for characterization of in situ stress from deep boreholes. The flatjack technique has also been used in the tunneling and mining industries, and until recently has been limited to measurement of the stress immediately around the excavation. Results from the flatjack technique must be further analyzed to calculate the in situ stress in the far field.

  11. A new nondestructive instrument for bulk residual stress measurement using tungsten kα1 X-ray

    Ma, Ce; Dou, Zuo-yong; Chen, Li; Li, Yun; Tan, Xiao; Dong, Ping; Zhang, Jin; Zheng, Lin; Zhang, Peng-cheng


    We describe an experimental instrument used for measuring nondestructively the residual stress using short wavelength X-ray, tungsten kα1. By introducing a photon energy screening technology, the monochromatic X-ray diffraction of tungsten kα1 was realized using a CdTe detector. A high precision Huber goniometer is utilized in order to reduce the error in residual stress measurement. This paper summarizes the main performance of this instrument, measurement depth, stress error, as opposed to the neutron diffraction measurements of residual stress. Here, we demonstrate an application on the determination of residual stress in an aluminum alloy welded by the friction stir welding.

  12. Considerations on the choice of experimental parameters in residual stress measurements by hole-drilling and ESPI

    C. Barile


    Full Text Available Residual stresses occur in many manufactured structures and components. Great number of investigations have been carried out to study this phenomenon. Over the years, different techniques have been developed to measure residual stresses; nowadays the combination of Hole Drilling method (HD with Electronic Speckle Pattern Interferometry (ESPI has encountered great interest. The use of a high sensitivity optical technique instead of the strain gage rosette has the advantage to provide full field information without any contact with the sample by consequently reducing the cost and the time required for the measurement. The accuracy of the measurement, however, is influenced by the proper choice of several parameters: geometrical, analysis and experimental. In this paper, in particular, the effects of some of those parameters are investigated: misknowledgment in illumination and detection angles, the influence of the relative angle between the sensitivity vector of the system and the principal stress directions, the extension of the area of analysis and the adopted drilling rotation speed. In conclusion indications are provided to the scope of optimizing the measurement process together with the identification of the major sources of errors that can arise during the measuring and the analysis stages.

  13. Differential Measurement Periodontal Structures Mapping System

    Companion, John A. (Inventor)


    This invention relates to a periodontal structure mapping system employing a dental handpiece containing first and second acoustic sensors for locating the Cemento-Enamel Junction (CEJ) and measuring the differential depth between the CEJ and the bottom of the periodontal pocket. Measurements are taken at multiple locations on each tooth of a patient, observed, analyzed by an optical analysis subsystem, and archived by a data storage system for subsequent study and comparison with previous and subsequent measurements. Ultrasonic transducers for the first and second acoustic sensors are contained within the handpiece and in connection with a control computer. Pressurized water is provided for the depth measurement sensor and a linearly movable probe sensor serves as the sensor for the CEJ finder. The linear movement of the CEJ sensor is obtained by a control computer actuated by the prober. In an alternate embodiment, the CEJ probe is an optical fiber sensor with appropriate analysis structure provided therefor.

  14. Uncertainty Quantification and Comparison of Weld Residual Stress Measurements and Predictions.

    Lewis, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brooks, Dusty Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    In pressurized water reactors, the prevention, detection, and repair of cracks within dissimilar metal welds is essential to ensure proper plant functionality and safety. Weld residual stresses, which are difficult to model and cannot be directly measured, contribute to the formation and growth of cracks due to primary water stress corrosion cracking. Additionally, the uncertainty in weld residual stress measurements and modeling predictions is not well understood, further complicating the prediction of crack evolution. The purpose of this document is to develop methodology to quantify the uncertainty associated with weld residual stress that can be applied to modeling predictions and experimental measurements. Ultimately, the results can be used to assess the current state of uncertainty and to build confidence in both modeling and experimental procedures. The methodology consists of statistically modeling the variation in the weld residual stress profiles using functional data analysis techniques. Uncertainty is quantified using statistical bounds (e.g. confidence and tolerance bounds) constructed with a semi-parametric bootstrap procedure. Such bounds describe the range in which quantities of interest, such as means, are expected to lie as evidenced by the data. The methodology is extended to provide direct comparisons between experimental measurements and modeling predictions by constructing statistical confidence bounds for the average difference between the two quantities. The statistical bounds on the average difference can be used to assess the level of agreement between measurements and predictions. The methodology is applied to experimental measurements of residual stress obtained using two strain relief measurement methods and predictions from seven finite element models developed by different organizations during a round robin study.

  15. Influence of brassinosteroids on plant cell alternative respiration pathway and antioxidant systems activity under abiotic stress conditions

    Derevyanchuk M. V.


    Full Text Available Aim. To investigate the brassinosteroids (BRs influence on the plant alternative respiration pathway and antioxidant systems to regulate the ROS (reactive oxygen species production under optimal and abiotic stress conditions. Methods. Respiration measurement experiments were done with the polarographic technique. Original methods were used to evaluate the antioxidant systems activity. Results. Treatment with BRs increased the inten- sity of plant alternative respiration pathway under control and stress conditions. BRs had no effect on alternative respiration of the BR-insensitive bri1–6 plants. Brassinosteroids also increased the activity of a range of antioxidant systems under osmotic stress. Conclusions. BRs are involved in the regulation of alternative respiration pathway and antioxidant systems activity in plant cells under optimal and abiotic stress conditions.

  16. Eddy Correlation Flux Measurement System Handbook

    Cook, D. R. [Argonne National Lab. (ANL), Argonne, IL (United States)


    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind components and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.

  17. Systemic inflammatory changes and increased oxidative stress in rural Indian women cooking with biomass fuels

    Dutta, Anindita, E-mail: [College of Environmental Sciences and Engineering, Peking University, Beijing (China); Department of Experimental Hematology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata-700 026 (India); Ray, Manas Ranjan; Banerjee, Anirban [Department of Experimental Hematology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata-700 026 (India)


    The study was undertaken to investigate whether regular cooking with biomass aggravates systemic inflammation and oxidative stress that might result in increase in the risk of developing cardiovascular disease (CVD) in rural Indian women compared to cooking with a cleaner fuel like liquefied petroleum gas (LPG). A total of 635 women (median age 36 years) who cooked with biomass and 452 age-matched control women who cooked with LPG were enrolled. Serum interleukin-6 (IL-6), C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α) and interleukin-8 (IL-8) were measured by ELISA. Generation of reactive oxygen species (ROS) by leukocytes was measured by flow cytometry, and erythrocytic superoxide dismutase (SOD) was measured by spectrophotometry. Hypertension was diagnosed following the Seventh Report of the Joint Committee. Tachycardia was determined as pulse rate > 100 beats per minute. Particulate matter of diameter less than 10 and 2.5 μm (PM{sub 10} and PM{sub 2.5}, respectively) in cooking areas was measured using real-time aerosol monitor. Compared with control, biomass users had more particulate pollution in indoor air, their serum contained significantly elevated levels of IL-6, IL-8, TNF-α and CRP, and ROS generation was increased by 37% while SOD was depleted by 41.5%, greater prevalence of hypertension and tachycardia compared to their LPG-using neighbors. PM{sub 10} and PM{sub 2.5} levels were positively associated with markers of inflammation, oxidative stress and hypertension. Inflammatory markers correlated with raised blood pressure. Cooking with biomass exacerbates systemic inflammation, oxidative stress, hypertension and tachycardia in poor women cooking with biomass fuel and hence, predisposes them to increased risk of CVD development compared to the controls. Systemic inflammation and oxidative stress may be the mechanistic factors involved in the development of CVD. -- Highlights: ► Effect of chronic biomass smoke exposure on

  18. Stress transmission through a model system of cohesionless elastic grains

    Da Silva, Miguel; Rajchenbach, Jean


    Understanding the mechanical properties of granular materials is important for applications in civil and chemical engineering, geophysical sciences and the food industry, as well as for the control or prevention of avalanches and landslides. Unlike continuous media, granular materials lack cohesion, and cannot resist tensile stresses. Current descriptions of the mechanical properties of collections of cohesionless grains have relied either on elasto-plastic models classically used in civil engineering, or on a recent model involving hyperbolic equations. The former models suggest that collections of elastic grains submitted to a compressive load will behave elastically. Here we present the results of an experiment on a two-dimensional model system-made of discrete square cells submitted to a point load-in which the region in which the stress is confined is photoelastically visualized as a parabola. These results, which can be interpreted within a statistical framework, demonstrate that the collective response of the pile contradicts the standard elastic predictions and supports a diffusive description of stress transmission. We expect that these findings will be applicable to problems in soil mechanics, such as the behaviour of cohesionless soils or sand piles.

  19. Ozone measurement systems: associated instrumentation and calibration

    J. Bellido


    Full Text Available The harmful effects produced by ozone have lead to a vast regulation to define and establish the quality goals of ambient air, based on common methods and criteria. The surveillance nets of atmospheric pollution are worldwide extended systems and the applied technology for the ozone measurement is nowadays quite standardized. The aim of this paper is to give a general view of the most common systems used in the ozone measurement in ambient air from a practical point of view. The used instrumentation and the usual calibration methods will be described.

  20. Analysis for Measurement System Using Moving Range

    MA Yi-zhong; ZHAO Feng-yu; XU Ji-chao


    In order to control and continuous improve a production process, a good measurement system is essential. The assessment of a measurement system is known as a gauge repeatability and reproducibility (R&R) analysis. In this paper, the traditional method, analysis of variance (ANOVA), is reviewed and some drawbacks are pointed out. Then a new approach is introduced to estimate R&R. In the last part, an example is presented to show the efficiency of this approach and to demonstrate its application for front-line operation.

  1. Arterial compliance measurement using a noninvasive laser Doppler measurement system

    Hast, Jukka T.; Myllylae, Risto A.; Sorvoja, Hannu; Nissilae, Seppo M.


    The aim of this study was to study the elasticity of the arterial wall using a non-invasive laser Doppler measurement system. The elasticity of the arterial wall is described by its compliance factor, which can be determined when both blood pressure and the radial velocity of the arterial wall are known. To measure radical velocity we used a self- mixing interferometer. The compliance factors were measured from six healthy volunteers, whose ages were varied from 21 to 32. Although a single volunteer's compliance factor is presented as an example, this paper treated the volunteers as a group. First, the elastic modulus, which is inversely proportional to the compliance factor, was determined. Then, an exponential curve was fitted into the measured data and a characteristic equation for the elastic modulus of the arterial wall was determined. The elastic modulus was calculated at different pressures and the results were compared to the static incremental modulus of a dog's femoral artery. The results indicate that there is a correlation between human elastic and canine static incremental modulus for blood pressures varying from 60 to 110 mmHg.

  2. High temperature hall effect measurement system design, measurement and analysis

    Berkun, Isil

    A reliable knowledge of the transport properties of semiconductor materials is essential for the development and understanding of a number of electronic devices. In this thesis, the work on developing a Hall Effect measurement system with software based data acqui- sition and control for a temperature range of 300K-700K will be described. A system was developed for high temperature measurements of materials including single crystal diamond, poly-crystalline diamond, and thermoelectric compounds. An added capability for monitor- ing the current versus voltage behavior of the contacts was used for studying the influence of ohmic and non-ohmic contacts on Hall Effect measurements. The system has been primar- ily used for testing the transport properties of boron-doped single crystal diamond (SCD) deposited in a microwave plasma-assisted chemical vapor deposition (MPCVD) reactor [1]. Diamond has several outstanding properties that are of high interest for its development as an electronic material. These include a relatively wide band gap of 5.5 (eV), high thermal conductivity, high mobility, high saturation velocity, and a high breakdown voltage. For a temperature range of 300K-700K, IV curves, Hall mobilities and carrier concentrations are shown. Temperature dependent Hall effect measurements have shown carrier concentrations from below 1017cm --3 to approximately 1021 cm--3 with mobilities ranging from 763( cm2/V s) to 0.15(cm 2/V s) respectively. Simulation results have shown the effects of single and mixed carrier models, activation energies, effective mass and doping concentrations. These studies have been helpful in the development of single crystal diamond for diode applications. Reference materials of Ge and GaAs were used to test the Hall Effect system. The system was also used to characterize polycrystalline diamond deposited on glass for electrochemical applications, and Mg2(Si,Sn) compounds which are promising candidates of low-cost, light weight and non

  3. A climate stress-test of the financial system

    Battiston, Stefano; Mandel, Antoine; Monasterolo, Irene; Schütze, Franziska; Visentin, Gabriele


    The urgency of estimating the impact of climate risks on the financial system is increasingly recognized among scholars and practitioners. By adopting a network approach to financial dependencies, we look at how climate policy risk might propagate through the financial system. We develop a network-based climate stress-test methodology and apply it to large Euro Area banks in a `green' and a `brown' scenario. We find that direct and indirect exposures to climate-policy-relevant sectors represent a large portion of investors' equity portfolios, especially for investment and pension funds. Additionally, the portion of banks' loan portfolios exposed to these sectors is comparable to banks' capital. Our results suggest that climate policy timing matters. An early and stable policy framework would allow for smooth asset value adjustments and lead to potential net winners and losers. In contrast, a late and abrupt policy framework could have adverse systemic consequences.

  4. Standard test method for calibration of surface/stress measuring devices

    American Society for Testing and Materials. Philadelphia


    Return to Contents page 1.1 This test method covers calibration or verification of calibration, or both, of surface-stress measuring devices used to measure stress in annealed and heat-strengthened or tempered glass using polariscopic or refractometry based principles. 1.2 This test method is nondestructive. 1.3 This test method uses transmitted light, and therefore, is applicable to light-transmitting glasses. 1.4 This test method is not applicable to chemically tempered glass. 1.5 Using the procedure described, surface stresses can be measured only on the “tin” side of float glass. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  5. Residual stress measurement by successive extension of a slot: A literature review

    Prime, M.B.


    This report reviews the technical literature on techniques that employ successive extension of a slot and the resulting deformations to measure residual stress. Such techniques are known variously in the literature as the compliance or crack compliance method, the successive cracking method, the slotting method, and a fracture mechanics based approach. The report introduces the field and describes the basic aspects of these methods. The report then reviews all literature on the theoretical developments of the method. The theory portion first considers forward method solutions including fracture mechanics, finite element, analytical, and body force methods. Then it examines inverse solutions, including incremental inverses and series expansions. Next, the report reviews all experimental applications of slotting methods. Aspects reviewed include the specimen geometry and material, the details of making the slot, the method used to measure deformation, and the theoretical solutions used to solve for stress. Finally, the report makes a brief qualitative comparison between slotting methods and other residual stress measurement methods.

  6. A test case of the deformation rate analysis (DRA) stress measurement method

    Dight, P.; Hsieh, A. [Australian Centre for Geomechanics, Univ. of WA, Crawley (Australia); Johansson, E. [Saanio and Riekkola Oy, Helsinki (Finland); Hudson, J.A. [Rock Engineering Consultants (United Kingdom); Kemppainen, K.


    As part of Posiva's site and ONKALO investigations, the in situ rock stress has been measured by a variety of techniques, including hydraulic fracturing, overcoring, and convergence measurements. All these techniques involve direct measurements in a drillhole or at the rock surface. An alternative method is to test drillhole core in a way that enables estimation of the magnitudes and orientations of the in situ rock stress. The Kaiser Effect (KE) and Deformation Rate Analysis (DRA) are two ways to do this. In the work reported here, a 'blind' DRA test was conducted on core obtained from the POSE (Posiva's Olkiluoto Spalling Experiment) niche in the ONKALO. The term 'blind' means that the two first authors of this report, who conducted the tests at the Australian Centre for Geomechanics, did not know the depths below surface at which the cores had been obtained. The results of this DRA Test Case are presented, together with an explanation of the DRA procedure. Also, additional information that would help in such DRA testing and associated analysis is explained. One of the problems in comparing the DRA results with the known Olkiluoto stress field is that the latter is highly variable across the site, as experienced by the previous in situ stress measurements and as predicted by numerical analysis. The variability is mainly caused by the presence of the large brittle deformation zones which perturb the local stress state. However, this variability reduces with depth and the stress field becomes more stable at the {approx} 350 m at which the drillhole cores were obtained. Another compounding difficulty is that the stress quantity, being a second order tensor, requires six independent components for its specification. In other words, comparison of the DRA results and the known stress field requires comparison of six different quantities. In terms of the major principal stress orientation, the DRA results predict an orientation completely

  7. Autophagy as a Stress Response Pathway in the Immune System.

    Bhattacharya, Abhisek; Eissa, N Tony


    Macroautophagy, hereafter, referred to as autophagy, has long been regarded as a housekeeping pathway involved in intracellular degradation and energy recycling. These housekeeping and homeostatic functions are especially important during cellular stress, such as periods of nutrient deprivation. However, importance of autophagy extends far beyond its degradative functions. Recent evidence shows that autophagy plays an essential role in development, organization and functions of the immune system, and defects in autophagy lead to several diseases, including cancer and autoimmunity. In the immune system, autophagy is important in regulation of the innate and adaptive immune responses. This review focuses on the roles of autophagy in the adaptive immune system. We first introduce the autophagy pathway and provide a brief description of the major molecular players involved in autophagy. We then discuss the importance of autophagy as a stress integrator mechanism and provide relevant examples of this role of autophagy in adaptive immune cells. Then we proceed to describe how autophagy regulates development, activation and functions of different adaptive immune cells. In these contexts, we mention both degradative and non-degradative roles of autophagy, and illustrate their importance. We also discuss role of autophagy in antigen presenting cells, which play critical roles in the activation of adaptive immune cells. Further, we describe how autophagy regulates functions of different adaptive immune cells during infection, inflammation and autoimmunity.

  8. Combat-Ready Crew Performance Measurement System.


    station, as shown in Figure 11, must permit the transformacion of data collected through the five avenues shown in Figure 9 into a digital format...Measureti\\ent System: The performance measurement system consists of the following subsystems: (1) Data Acquisition. A hybrid audio/video/photo/ digital ...processing is provided. (2) Data Processing. A general purpose digital computer with standard peripherals is required, hi addition to executive and

  9. Measurement system for SSRF pulsed magnets

    PENG Chengcheng; GU Ming; LIU Bo; OUYANG Lianhua


    This paper describes the magnetic field measurement system for pulsed magnets in SSRF.The system consists of magnetic probes,analog active integrator,oscilloscope,stepper motor and a controller.An application program based on LabVIEW has been developed as main control unit.After the magnetic field mapping of a septum magnet prototype,it is verified that the test results accord with the results of theoretical calculation and computer simuladon.

  10. Reactivity Measurement and Analysis System (RMAS-7)

    Cordero, D.; Izquierdo, J.


    This paper tries to describe the Reactivity Measurement and Analysis System 7 (RMAS-7), which is an Areva’s hardware and software solution capable of accomplishing the physic startup tests in a work shift. RMAS-7 is a modular solution designed to be a powerful, convenient data collection and analysis system based on Ethernet communication network. This last feature allows RMAS-7 to have a distributed architecture. (Author)

  11. Deafferentation of the hypothalamic paraventricular nucleus (PVN) exaggerates the sympathoadrenal system activity in stressed rats.

    Ondicova, K; Kvetnansky, R; Mravec, B


    The hypothalamic paraventricular nucleus is a key structure in the regulation of the autonomic and neuroendocrine systems response to acute and chronic stress challenges. In this study, we examined the effect of a mechanical posterolateral deafferentation of the PVN on the activity of sympathoadrenal system (SAS) and hypothalamo-pituitary-adrenal (HPA) axis by measuring plasma concentrations of epinephrine (EPI), norepinephrine (NE), and corticosterone (CORT) in rats exposed to acute immobilization (IMO) stress. The surgical posterolateral deafferentation of the PVN (PVN-deaf) was performed by Halasz knife, in brain of the adult male Sprague Dawley rats, according to coordinates of a stereotaxic atlas. Sham-operated (SHAM) animals underwent a craniotomy only. The animals were allowed to recover 14 days. Thereafter, the tail artery was cannulated and the animals exposed to acute IMO for 2 h. The blood samples were collected via cannula at the time points of 0, 5, 30, 60, and 120 min of the IMO. Concentrations of plasma EPI, NE, and CORT were determined by radioimmunoassay. The IMO-induced elevation of plasma EPI concentrations in the PVN-deaf rats reached statistical significance at 60 min of the IMO, when compared to SHAM rats. Similarly, the stress-induced elevation of the NE plasma levels in the PVN-deaf rats was significantly exaggerated at all time intervals of IMO in comparison with SHAM rats, whereas plasma CORT levels were significantly reduced. In contrast to the traditional view of excitatory role of the PVN in response to stress, our data indicate that some projections from the PVN to caudally localized hypothalamic structures, the brainstem or the spinal cord, exert inhibitory effect on the SAS system activity during acute IMO stress. The data indicate that stress-induced activation of the HPA axis is partially dependent on inputs from the brainstem to the PVN.

  12. A new device designed for direct yield stress measurements of cement spacer

    Gordon, C.L.; Tonmukayakul, P.; Morgan, R.L. [Halliburton Energy Services, Houston, TX (United States)


    The rheological properties of spacer fluids and cement slurries have a significant impact on the hydraulic shear stress of well casing walls. This paper described experimental studies and numerical models of a device designed to measure the yield stress and rheological properties of spacer and cement samples. The device was designed using the Couette principle for rheological measurements, and measured the yield stress of particle-laden samples between 4 and 150 degrees C. A sample contained in a gap between a stator and a blade located along the inside wall of a steel cup was analyzed using the device. A stator was attached to a torque device and remained static during the rheological measurement. Yield stress was measured by rotating the device at a low speed at 3 rpm and at steady state torque. Torque was recorded when the rotation stopped. Two aqueous mixtures of titanium oxide (TiO{sub 2}) particles were used for the experiment. A cement spacer comprised of a blend of barite, citric acid and water was also measured. A volume-averaged shear method was used to calculate shear rate and shear stress. Key dimensionless variables were the impeller Reynolds number; the Froude number; the Weber number; and the Weissenberg number. Accuracy was assessed by examining the data obtained with a model fluid where yield stress data was already determined. Results of the comparison showed that values obtained using the device were consistent and comparable with results obtained using other techniques. It was concluded that further research is needed to characterize the elastic fluids in the device. 13 refs., 2 tabs., 3 figs.

  13. Rock stress measurements. Preparatory stage of the equipment development project; Kallioperaen jaennitystilan mittaaminen. Laitekehityshankkeen valmisteluvaihe

    Mononen, S.; Hakala, M.; Mikkola, P


    In recent years the rock stress measurement methods used in Finland have been overcoring and hydraulic fracturing. There have been mainly two companies involved in these measurements, namely Suomen Malmi Oy (Smoy) and SwedPower AB. Smoy has done measurements for mines and for rock engineering projects, whereas SwedPower AB has mainly been involved in nuclear waste disposal investigations and conducted hydraulic fracturing measurements in deep boreholes. Smoy together with its partners started in February 2001 a project named JTM, which was a preliminary stage for a future project, which aims to develop a device most suitable for rock stress measurements in Finland. The partners in the project were HUT Rock Engineering, Posiva Oy, Saanio and Riekkola Oy, Gridpoint Finland Oy and Geopros Oy. Tekes, the National Technology Agency, provided almost half of the project funding. In the management group of the project were Pekka Mikkola (chairman) and Tero Laurila from Smoy, Pekka Saerkkae and Sakari Mononen (full-time researcher) from HUT, Aimo Hautojaervi (Posiva Oy), Erik Johansson (Saanio and Riekkola Oy), Matti Hakala (Gridpoint Finland Oy) and Heikki Haemaelaeinen (Geopros Oy). The aim of the JTM-project was to find out the needs for the development of a device most suitable for rock stress measurements in Finnish mines and rock engineering projects. During the project work was done to find out the range of rock stress measurement devices available, to find out the needs for measurements, and to get acquainted to the measurements done in Scandinavia. Also a report of the most suitable methods for Finnish rock conditions was done based on literature and on interviews of rock stress experts. Based on all the information collected during the project a clear picture of the needs for rock stress measurements in Finland could be formed and a preliminary plan of a future project was done. The aim of the suggested project is to build a device based on hydraulic fracturing

  14. Studies of residual stress measurement and analysis techniques for a PWR dissimilar weld joint

    Ogawa, Naoki, E-mail: [Mitsubishi Heavy Industries, Ltd., 2-1-1, Shinhama, Arai-cho, Takasago 676-8686 (Japan); Muroya, Itaru; Iwamoto, Youichi; Ohta, Takahiro; Ochi, Mayumi; Hojo, Kiminobu [Mitsubishi Heavy Industries, Ltd., 2-1-1, Shinhama, Arai-cho, Takasago 676-8686 (Japan); Ogawa, Kazuo [Japan Nuclear Energy Safety Organization, 3-17-1, Toranomon, Minato-ku, Tokyo 105-0001 (Japan)


    For evaluation of the PWSCC crack propagation behavior, a test model was produced using the same fabrication process of Japanese PWR plants and the stress distribution change was measured during a fabrication process such as a hydrostatic test, welding a main coolant pipe to the stainless steel safe end and an operation condition test. For confirmation of validity of the numerical estimation method of the stress distribution, FE analysis was performed to calculate the stress distributions for each fabrication process. From the validation procedure, a standard residual stress evaluation method was established. Furthermore for consideration of characteristics of PWSCC's propagation behavior of the dissimilar welding joint of the safe end nozzles, the influence coefficients at the deepest point for the stress intensity factors of axial cracks with large aspect ratio a/c (crack depth/half of surface crack length) was prepared. The crack shape was assumed a rectangular shape and the stress intensity factors at the deepest point of the crack were calculated with change of crack depth using FE analysis. By using these stress distribution and influence coefficients, a behavior of a PWSCC crack propagation at the safe end nozzles can be estimated easily and rationally.

  15. Residual stresses in a quenched superalloy turbine disc: Measurements and modeling

    Rist, M. A.; James, J. A.; Tin, S.; Roder, B. A.; Daymond, M. R.


    A series of neutron diffraction measurements have been carried out to determine the elastic residual strains deep within a large, 40-cm-diameter, forged and water-quenched IN718 aeroengine compressor disc. Neutron path lengths of up to 6 cm were necessary to probe the thickest parts of the forging, and three-dimensional strain and stress components have been derived for the first time in such a large superalloy specimen. Measurements have been compared with the results from a coupled thermal-mechanical finite-element model of the quenching process, based upon appropriate temperature-dependent material properties, with some success. The general residual stress state in the disc is one of near-surface compression, balanced by tension within the disc interior. The steepest stress and strain gradients occur in the transition region from compression to tension, about 1 cm below the surface all around the disc. The largest stress component is in the disc tangential direction and reaches a magnitude of 400 to 500 MPa near the disc surface and at its core. This exceeds the effective yield stress because of the presence of significant hydrostatic stress.

  16. Measurement of 3-D hydraulic conductivity in aquifer cores at in situ effective stresses.

    Wright, Martin; Dillon, Peter; Pavelic, Paul; Peter, Paul; Nefiodovas, Andrew


    An innovative and nondestructive method to measure the hydraulic conductivity of drill core samples in horizontal and vertical directions within a triaxial cell has been developed. This has been applied to characterizing anisotropy and heterogeneity of a confined consolidated limestone aquifer. Most of the cores tested were isotropic, but hydraulic conductivity varied considerably and the core samples with lowest values were also the most anisotropic. Hydraulic conductivity decreased with increasing effective stress due to closure of microfractures caused by sampling for all core samples. This demonstrates the importance of replicating in situ effective stresses when measuring hydraulic conductivity of cores of deep aquifers in the laboratory.

  17. A systematic review of randomised control trials on the effects of yoga on stress measures and mood.

    Pascoe, Michaela C; Bauer, Isabelle E


    Stress related disorders such as depression and anxiety are leading sources of disability worldwide, and current treatment methods such as conventional antidepressant medications are not beneficial for all individuals. There is evidence that yoga has mood-enhancing properties possibly related to its inhibitory effects on physiological stress and inflammation, which are frequently associated with affective disorders. However the biological mechanisms via which yoga exerts its therapeutic mood-modulating effects are largely unknown. This systematic review investigates the effects of yoga on sympathetic nervous system and hypothalamic pituitary adrenal axis regulation measures. It focuses on studies collecting physiological parameters such as blood pressure, heart rate, cortisol, peripheral cytokine expression and/or structural and functional brain measures in regions involved in stress and mood regulation. Overall the 25 randomised control studies discussed provide preliminary evidence to suggest that yoga practice leads to better regulation of the sympathetic nervous system and hypothalamic-pituitary-adrenal system, as well as a decrease in depressive and anxious symptoms in a range of populations. Further research is warranted to confirm these preliminary findings and facilitate implementation in clinical settings.

  18. Hyperbolic contraction measuring systems for extensional flow

    Nyström, M.; Tamaddon Jahromi, H. R.; Stading, M.; Webster, M. F.


    In this paper an experimental method for extensional measurements on medium viscosity fluids in contraction flow is evaluated through numerical simulations and experimental measurements. This measuring technique measures the pressure drop over a hyperbolic contraction, caused by fluid extension and fluid shear, where the extensional component is assumed to dominate. The present evaluative work advances our previous studies on this experimental method by introducing several contraction ratios and addressing different constitutive models of varying shear and extensional response. The constitutive models included are those of the constant viscosity Oldroyd-B and FENE-CR models, and the shear-thinning LPTT model. Examining the results, the impact of shear and first normal stress difference on the measured pressure drop are studied through numerical pressure drop predictions. In addition, stream function patterns are investigated to detect vortex development and influence of contraction ratio. The numerical predictions are further related to experimental measurements for the flow through a 15:1 contraction ratio with three different test fluids. The measured pressure drops are observed to exhibit the same trends as predicted in the numerical simulations, offering close correlation and tight predictive windows for experimental data capture. This result has demonstrated that the hyperbolic contraction flow is well able to detect such elastic fluid properties and that this is matched by numerical predictions in evaluation of their flow response. The hyperbolical contraction flow technique is commended for its distinct benefits: it is straightforward and simple to perform, the Hencky strain can be set by changing contraction ratio, non-homogeneous fluids can be tested, and one can directly determine the degree of elastic fluid behaviour. Based on matching of viscometric extensional viscosity response for FENE-CR and LPTT models, a decline is predicted in pressure drop for

  19. Hyperbolic contraction measuring systems for extensional flow

    Nyström, M.; Tamaddon Jahromi, H. R.; Stading, M.; Webster, M. F.


    In this paper an experimental method for extensional measurements on medium viscosity fluids in contraction flow is evaluated through numerical simulations and experimental measurements. This measuring technique measures the pressure drop over a hyperbolic contraction, caused by fluid extension and fluid shear, where the extensional component is assumed to dominate. The present evaluative work advances our previous studies on this experimental method by introducing several contraction ratios and addressing different constitutive models of varying shear and extensional response. The constitutive models included are those of the constant viscosity Oldroyd-B and FENE-CR models, and the shear-thinning LPTT model. Examining the results, the impact of shear and first normal stress difference on the measured pressure drop are studied through numerical pressure drop predictions. In addition, stream function patterns are investigated to detect vortex development and influence of contraction ratio. The numerical predictions are further related to experimental measurements for the flow through a 15:1 contraction ratio with three different test fluids. The measured pressure drops are observed to exhibit the same trends as predicted in the numerical simulations, offering close correlation and tight predictive windows for experimental data capture. This result has demonstrated that the hyperbolic contraction flow is well able to detect such elastic fluid properties and that this is matched by numerical predictions in evaluation of their flow response. The hyperbolical contraction flow technique is commended for its distinct benefits: it is straightforward and simple to perform, the Hencky strain can be set by changing contraction ratio, non-homogeneous fluids can be tested, and one can directly determine the degree of elastic fluid behaviour. Based on matching of viscometric extensional viscosity response for FENE-CR and LPTT models, a decline is predicted in pressure drop for

  20. Neutron measurements of stresses in a test artifact produced by laser-based additive manufacturing

    Gnäupel-Herold, Thomas; Slotwinski, John; Moylan, Shawn


    A stainless steel test artifact produced by Direct Metal Laser Sintering and similar to a proposed standardized test artifact was examined using neutron diffraction. The artifact contained a number of structures with different aspect ratios pertaining to wall thickness, height above base plate, and side length. Through spatial resolutions of the order of one millimeter the volumetric distribution of stresses in several was measured. It was found that the stresses peak in the tensile region around 500 MPa near the top surface, with balancing compressive stresses in the interior. The presence of a support structure (a one millimeter high, thin walled, hence weaker, lattice structure deposited on the base plate, followed by a fully dense AM structure) has only minor effects on the stresses.

  1. A System for Unsteady Pressure Measurements Revisited

    Tijdeman, H.; Spiering, R.M.E.J.


    An overview is presented of some recent developments in the field of the design of effective sound absorbers. The first part deals with the application of socalled coupled tubes. For this purpose use is made of a system originally applied for unsteady pressure measurements on oscillating wind tunnel

  2. Distance Measures for Information System Reengineering

    Poels, G.; Viaene, S.; Dedene, G.; Wangler, B.; Bergman, L.


    We present an approach to assess the magnitude and impact of information system reengineering caused by business process change. This approach is based on two concepts: object-oriented business modeling and distance measurement. The former concept is used to visualize changes in the business layer

  3. Party System Compactness: Measurement and Consequences

    Alvarez, R. Michael; Nagler, Jonathan


    An important property of any party system is the set of choices it presents to the electorate. In this paper we analyze the distribution of parties relative to voters in the multidimensional issue space and introduce two measures of the dispersion of the parties in the issue space relative to the vo

  4. Measuring the Equity of School Finance Systems.

    Garms, Walter I.


    Presents a new method of measuring the adequacy and equity of school finance systems using the multiple regression technique. It enables the separation of provisions for differences in district wealth from differences in tax rate, and of both of these from the differences in provision for needs and costs. (Author/IRT)

  5. The system of blade's shape measuring

    Gorbachev, Alexey A.; Korotaev, Valery V.; Apehtin, Dmitri V.


    System that will allow visual and measuring control of blades is proposed. It based on triangulation method of measurement. This method implies using of elements described below: a receiving unit, source of structured light, processing and control unit, the monitor and power supply unit. Geometrical characteristics of the system are calculated. As a result we got numbers of receiving units and sources of structured light needed to monitor blade along its entire length. Theoretical error of system measurement is calculated. It depends on distance to the object, the base between receives unit and sources of structured light, resolution and physical size of image receive. Surface of blade is not flat this fact entails changing distance from object to receive unit. So the error of measurement will be different. The interval for researching was chosen from 90 to 130 mm. Error of measurement have steady upward trend from 0,08 to 0,017 mm all period between chosen distances. The physical model of control method is developed. As a result of its working picture of illuminated metal object was obtained. The program written in MatLab processes experimental picture, find lines of structure light and calculate dislocations of it. Then use this information to make a three-dimensional model of object.

  6. An Educational Application of Distributed Measurement Systems

    J. Saliga


    Full Text Available This paper describes an educational application of distributed measurement systems for the tutored and self-educational process that has been designed and applied at the Department of Electronics and Multimedial Telecommunications, Technical University of Kosice for students at the senior level of their study. The main goal of this activity has been to improve and spread our students' knowledge beyond the traditional university education in the area of measurement and communications. The students involved do not only play a passive role in the usage of a ready-made distributed measurement system by executing a remote measurement but they have the opportunity to participate in the process of design, carrying out and supervising an own simple distributed measurement system. To simplify their task, they may either use the graphical programming environment LabVIEW or the standard ANSI C language based on the programming environment Labwindows/CVI with ready-made instrument drivers (GPIB, serial and plug-in multifunction boards and basic software skeletons. The overview of the students' resources, task-solving steps and goals as well as the present results, experience and the expected future extensions are presented, too.

  7. Multidirectional four-dimensional shape measurement system

    Lenar, Janusz; Sitnik, Robert; Witkowski, Marcin


    Currently, a lot of different scanning techniques are used for 3D imaging of human body. Most of existing systems are based on static registration of internal structures using MRI or CT techniques as well as 3D scanning of outer surface of human body by laser triangulation or structured light methods. On the other hand there is an existing mature 4D method based on tracking in time the position of retro-reflective markers attached to human body. There are two main drawbacks of this solution: markers are attached to skin (no real skeleton movement is registered) and it gives (x, y, z, t) coordinates only in those points (not for the whole surface). In this paper we present a novel multidirectional structured light measurement system that is capable of measuring 3D shape of human body surface with frequency reaching 60Hz. The developed system consists of two spectrally separated and hardware-synchronized 4D measurement heads. The principle of the measurement is based on single frame analysis. Projected frame is composed from sine-modulated intensity pattern and a special stripe allowing absolute phase measurement. Several different geometrical set-ups will be proposed depending on type of movements that are to be registered.

  8. Oxidative airway inflammation leads to systemic and vascular oxidative stress in a murine model of allergic asthma.

    Al-Harbi, Naif O; Nadeem, A; Al-Harbi, Mohamed M; Imam, F; Al-Shabanah, Othman A; Ahmad, Sheikh F; Sayed-Ahmed, Mohamed M; Bahashwan, Saleh A


    Oxidant-antioxidant imbalance plays an important role in repeated cycles of airway inflammation observed in asthma. It is when reactive oxygen species (ROS) overwhelm antioxidant defenses that a severe inflammatory state becomes apparent and may impact vasculature. Several studies have shown an association between airway inflammation and cardiovascular complications; however so far none has investigated the link between airway oxidative stress and systemic/vascular oxidative stress in a murine model of asthma. Therefore, this study investigated the contribution of oxidative stress encountered in asthmatic airways in modulation of vascular/systemic oxidant-antioxidant balance. Rats were sensitized intraperitoneally with ovalbumin (OVA) in the presence of aluminum hydroxide followed by several intranasal (i.n.) challenges with OVA. Rats were then assessed for airway and vascular inflammation, oxidative stress (ROS, lipid peroxides) and antioxidants measured as total antioxidant capacity (TAC) and thiol content. Challenge with OVA led to increased airway inflammation and oxidative stress with a concomitant increase in vascular inflammation and oxidative stress. Oxidative stress in the vasculature was significantly inhibited by antioxidant treatment, N-acetyl cysteine; whereas hydrogen peroxide (H2O2) inhalation worsened it. Therefore, our study shows that oxidative airway inflammation is associated with vascular/systemic oxidative stress which might predispose these patients to increased cardiovascular risk.

  9. Cardiac reflections and natural vibrations: Force-frequency relation recording system in the stress echo lab

    Pianelli Mascia


    Full Text Available Abstract Background The inherent ability of ventricular myocardium to increase its force of contraction in response to an increase in contraction frequency is known as the cardiac force-frequency relation (FFR. This relation can be easily obtained in the stress echo lab, where the force is computed as the systolic pressure/end-systolic volume index ratio, and measured for increasing heart rates during stress. Ideally, the noninvasive, imaging independent, objective assessment of FFR would greatly enhance its practical appeal. Objectives 1 – To evaluate the feasibility of the cardiac force measurement by a precordial cutaneous sensor. 2 – To build the curve of force variation as a function of the heart rate. 3 – To compare the standard stress echo results vs. this sensor operator-independent built FFR. Methods The transcutaneous force sensor was positioned in the precordial region in 88 consecutive patients referred for exercise, dipyridamole, or pacing stress. The force was measured as the myocardial vibrations amplitude in the isovolumic contraction period. FFR was computed as the curve of force variation as a function of heart rate. Standard echocardiographic FFR measurements were performed. Results A consistent FFR was obtained in all patients. Both the sensor built and the echo built FFR identifiy pts with normal or abnormal contractile reserve. The best cut-off value of the sensor built FFR was 15.5 g * 10-3 (Sensitivity = 0.85, Specificity = 0.77. Sensor built FFR slope and shape mirror pressure/volume relation during stress. This approach is extendable to daily physiological exercise and could be potentially attractive in home monitoring systems.

  10. The neuroendocrine system and stress, emotions, thoughts and feelings

    Vaillant George


    Full Text Available The philosophy of mind is intimately connected with the philosophy of action. Therefore, concepts like free will, motivation, emotions (especially positive emotions, and also the ethical issues related to these concepts are of abiding interest. However, the concepts of consciousness and free will are usually discussed solely in linguistic, ideational and cognitive (i.e. "left brain" terms. Admittedly, consciousness requires language and the left-brain, but the aphasic right brain is equally conscious; however, what it "hears" are more likely to be music and emotions. Joy can be as conscious as the conscious motivation produced by the left-brain reading a sign that says, "Danger mines!!" However, look in the index of a Western textbook of psychology, psychiatry or philosophy for positive emotions located in the limbic system. Notice how discussion of positive spiritual/emotional issues in consciousness and motivation are scrupulously ignored. For example, the popular notions of "love" being either Eros (raw, amoral instinct or agape (noble, non-specific valuing of all other people miss the motivational forest for the trees. Neither Eros (hypothalamic nor agape (cortical has a fraction of the power to relieve stress as attachment (limbic love, yet until the 1950s attachment was neither appreciated nor discussed by academic minds. This paper will point out that the prosocial, "spiritual" positive emotions like hope, faith, forgiveness, joy, compassion and gratitude are extremely important in the relief of stress and in regulation of the neuroendocrine system, protecting us against stress. The experimental work reviewed by Antonio Damasio and Barbara Fredrickson, and the clinical example of Alcoholics Anonymous, will be used to illustrate these points.

  11. The neuroendocrine system and stress, emotions, thoughts and feelings

    George E. Vaillant


    Full Text Available The philosophy of mind is intimately connected with the philosophy of action. Therefore, concepts like free will, motivation, emotions (especially positive emotions, and also the ethical issues related to these concepts are of abiding interest. However, the concepts of consciousness and free will are usually discussed solely in linguistic, ideational and cognitive (i.e. "left brain" terms. Admittedly, consciousness requires language and the left-brain, but the aphasic right brain is equally conscious; however, what it "hears" are more likely to be music and emotions. Joy can be as conscious as the conscious motivation produced by the left-brain reading a sign that says, "Danger mines!!" However, look in the index of a Western textbook of psychology, psychiatry or philosophy for positive emotions located in the limbic system. Notice how discussion of positive spiritual/emotional issues in consciousness and motivation are scrupulously ignored. For example, the popular notions of "love" being either Eros (raw, amoral instinct or agape (noble, non-specific valuing of all other people miss the motivational forest for the trees. Neither Eros (hypothalamic nor agape (cortical has a fraction of the power to relieve stress as attachment (limbic love, yet until the 1950s attachment was neither appreciated nor discussed by academic minds. This paper will point out that the prosocial, "spiritual" positive emotions like hope, faith, forgiveness, joy, compassion and gratitude are extremely important in the relief of stress and in regulation of the neuroendocrine system, protecting us against stress. The experimental work reviewed by Antonio Damasio and Barbara Fredrickson, and the clinical example of Alcoholics Anonymous, will be used to illustrate these points.

  12. The neuroendocrine system and stress, emotions, thoughts and feelings.

    Vaillant, George E


    The philosophy of mind is intimately connected with the philosophy of action. Therefore, concepts like free will, motivation, emotions (especially positive emotions), and also the ethical issues related to these concepts are of abiding interest. However, the concepts of consciousness and free will are usually discussed solely in linguistic, ideational and cognitive (i.e. "left brain") terms. Admittedly, consciousness requires language and the left-brain, but the aphasic right brain is equally conscious; however, what it "hears" are more likely to be music and emotions. Joy can be as conscious as the conscious motivation produced by the left-brain reading a sign that says, "Danger mines!!" However, look in the index of a Western textbook of psychology, psychiatry or philosophy for positive emotions located in the limbic system. Notice how discussion of positive spiritual/emotional issues in consciousness and motivation are scrupulously ignored. For example, the popular notions of "love" being either Eros (raw, amoral instinct) or agape (noble, non-specific valuing of all other people) miss the motivational forest for the trees. Neither Eros (hypothalamic) nor agape (cortical) has a fraction of the power to relieve stress as attachment (limbic love), yet until the 1950s attachment was neither appreciated nor discussed by academic minds. This paper will point out that the prosocial, "spiritual" positive emotions like hope, faith, forgiveness, joy, compassion and gratitude are extremely important in the relief of stress and in regulation of the neuroendocrine system, protecting us against stress. The experimental work reviewed by Antonio Damasio and Barbara Fredrickson, and the clinical example of Alcoholics Anonymous, will be used to illustrate these points.

  13. Acoustic CT system for temperature distribution measurement

    Shinji Ohyama; Toyofumi Oga; Kazuo Oshima; Junya Takayama


    In this paper,a measurement method for crosssectional temperature distribution is addressed. A novel method based on an acoustic CT technique is proposed. Specifically,the temperature distributions are estimated using the time of flight data of several ultrasonic propagation paths. The times of the flight data contain both temperature and wind effect,and the method to select only temperature component is introduced. A filtered back projection method is applied to reconstruct the temperature distributions from the time of flight data. An experimental system was designed and fabricated to realize simultaneous temperature and wind velocity distribution measurements. Through this system,the effectiveness of the proposed measurement method is confirmed.

  14. Dust Measurements in the Outer Solar System

    Grün, E; Landgraf, M; Grün, Eberhard; Krüger, Harald; Landgraf, Markus


    Dust measurements in the outer solar system are reviewed. Only the plasma wave instrument on board Voyagers 1 and 2 recorded impacts in the Edgeworth-Kuiper belt (EKB). Pioneers 10 and 11 measured a constant dust flux of 10-micron-sized particles out to 20 AU. Dust detectors on board Ulysses and Galileo uniquely identified micron-sized interstellar grains passing through the planetary system. Impacts of interstellar dust grains onto big EKB objects generate at least about a ton per second of micron-sized secondaries that are dispersed by Poynting-Robertson effect and Lorentz force. We conclude that impacts of interstellar particles are also responsible for the loss of dust grains at the inner edge of the EKB. While new dust measurements in the EKB are in an early planning stage, several missions (Cassini and STARDUST) are en route to analyze interstellar dust in much more detail.

  15. Sustainable Food Security Measurement: A Systemic Methodology

    Findiastuti, W.; Singgih, M. L.; Anityasari, M.


    Sustainable food security measures how a region provides food for its people without endangered the environment. In Indonesia, it was legally measured in Food Security and Vulnerability (FSVA). However, regard to sustainable food security policy, the measurement has not encompassed the environmental aspect. This will lead to lack of environmental aspect information for adjusting the next strategy. This study aimed to assess Sustainable Food security by encompassing both food security and environment aspect using systemic eco-efficiency. Given existing indicator of cereal production level, total emission as environment indicator was generated by constructing Causal Loop Diagram (CLD). Then, a stock-flow diagram was used to develop systemic simulation model. This model was demonstrated for Indonesian five provinces. The result showed there was difference between food security order with and without environmental aspect assessment.

  16. Improving competitiveness through performance-measurement systems.

    Stewart, L J; Lockamy, A


    Parallels exist between the competitive pressures felt by U.S. manufacturers over the past 30 years and those experienced by healthcare providers today. Increasing market deregulation, changing government policies, and growing consumerism have altered the healthcare arena. Responding to similar pressures, manufacturers adopted a strategic orientation driven by customer needs and expectations that led them to achieve high performance levels and surpass their competition. The adoption of integrated performance-measurement systems was instrumental in these firms' success. An integrated performance-measurement model for healthcare organizations can help to blend the organization's strategy with the demands of the contemporary healthcare environment. Performance-measurement systems encourage healthcare organizations to focus on their mission and vision by aligning their strategic objectives and resource-allocation decisions with customer requirements.

  17. Low cost automated precise time measurement system

    Alpert, A.; Liposchak, P.


    The Aerospace Guidance and Metrology Center (AGMC) has the responsibility for the dissemination of Precise Time and Time Interval (PTTI) to Air Force timing systems requiring microsecond time. In order to maintain traceability to the USNO Master Clock in Washington D.C., and accomplish efficient logging of time and frequency data on individual precision clocks, a simple automatic means of acquiring precise time has been devised. The Automatic Time Interval Measurement System (ATIMS) consists of a minicomputer (8K Memory), teletype terminal, electronic counter, Loran C receiver, time base generator and locally-manufactured relay matrix panel. During the measurement process, the computer controls the relay matrix which selects for comparison 13 atomic clocks against a reference clock and the reference versus Loran C. Through use of the system teletype, the operator is able to set the system clock (hours, minutes and seconds), examine and/or modify all clock data and constants, and set measurement intervals. This is done in a conversational manner. A logic flow diagram, system schematic, source listing and software components are included in the presentation.

  18. Multi-scale biomedical systems: measurement challenges

    Summers, R.


    Multi-scale biomedical systems are those that represent interactions in materials, sensors, and systems from a holistic perspective. It is possible to view such multi-scale activity using measurement of spatial scale or time scale, though in this paper only the former is considered. The biomedical application paradigm comprises interactions that range from quantum biological phenomena at scales of 10-12 for one individual to epidemiological studies of disease spread in populations that in a pandemic lead to measurement at a scale of 10+7. It is clear that there are measurement challenges at either end of this spatial scale, but those challenges that relate to the use of new technologies that deal with big data and health service delivery at the point of care are also considered. The measurement challenges lead to the use, in many cases, of model-based measurement and the adoption of virtual engineering. It is these measurement challenges that will be uncovered in this paper.

  19. The measurement of shear stress and total heat flux in a nonadiabatic turbulent hypersonic boundary layer

    Mikulla, V.; Horstman, C. C.


    Turbulent shear stress and direct turbulent total heat-flux measurements have been made across a nonadiabatic, zero pressure gradient, hypersonic boundary layer by using specially designed hot-wire probes free of strain-gauging and wire oscillation. Heat-flux measurements were in reasonably good agreement with values obtained by integrating the energy equation using measured profiles of velocity and temperature. The shear-stress values deduced from the measurements, by assuming zero correlation of velocity and pressure fluctuations, were lower than the values obtained by integrating the momentum equation. Statistical properties of the cross-correlations are similar to corresponding incompressible measurements at approximately the same momentum-thickness Reynolds number.

  20. Measurement and prediction of residual stress in a bead-on-plate weld benchmark specimen

    Ficquet, X.; Smith, D.J. [Department of Mechanical Engineering, University of Bristol, Queen' s Building, University Walk, Bristol BS8 1TR (United Kingdom); Truman, C.E. [Department of Mechanical Engineering, University of Bristol, Queen' s Building, University Walk, Bristol BS8 1TR (United Kingdom)], E-mail:; Kingston, E.J. [Veqter Ltd, University Gate East, Park Row, Bristol BS1 5UB (United Kingdom); Dennis, R.J. [Frazer-Nash Consultancy Limited, 1 Trinity Street, College Green, Bristol BS1 5TE (United Kingdom)


    This paper presents measurements and predictions of the residual stresses generated by laying a single weld bead on a flat, austenitic stainless steel plate. The residual stress field that is created is strongly three-dimensional and is considered representative of that found in a repair weld. Through-thickness measurements are made using the deep hole drilling technique, and near-surface measurements are made using incremental centre hole drilling. Measurements are compared to predictions at the same locations made using finite element analysis incorporating an advanced, non-linear kinematic hardening model. The work was conducted as part of an European round robin exercise, coordinated as part of the NeT network. Overall, there was broad agreement between measurements and predictions, but there were notable differences.

  1. Fully automated system for pulsed NMR measurements

    Cantor, David Milton


    A system is described which places many of the complex, tedious operations for pulsed NMR experiments under computer control. It automatically optimizes the experiment parameters of pulse length and phase, and precision, accuracy, and measurement speed are improved. The hardware interface between the computer and the NMR instrument is described. Design features, justification of the choices made between alternative design strategies, and details of the implementation of design goals are presented. Software features common to all the available experiments are discussed. Optimization of pulse lengths and phases is performed via a sequential search technique called Uniplex. Measurements of the spin-lattice and spin-spin relaxation times and of diffusion constants are automatic. Options for expansion of the system are explored along with some of the limitations of the system.

  2. Torsional ultrasonic wave based level measurement system

    Holcomb, David E. (Oak Ridge, TN); Kisner, Roger A. (Knoxville, TN)


    A level measurement system suitable for use in a high temperature and pressure environment to measure the level of coolant fluid within the environment, the system including a volume of coolant fluid located in a coolant region of the high temperature and pressure environment and having a level therein; an ultrasonic waveguide blade that is positioned within the desired coolant region of the high temperature and pressure environment; a magnetostrictive electrical assembly located within the high temperature and pressure environment and configured to operate in the environment and cooperate with the waveguide blade to launch and receive ultrasonic waves; and an external signal processing system located outside of the high temperature and pressure environment and configured for communicating with the electrical assembly located within the high temperature and pressure environment.

  3. Measurement and Modeling of Job Stress of Electric Overhead Traveling Crane Operators

    Krishna, Obilisetty B.; Maiti, Jhareswar; Ray, Pradip K.; Samanta, Biswajit; Mandal, Saptarshi; Sarkar, Sobhan


    Background In this study, the measurement of job stress of electric overhead traveling crane operators and quantification of the effects of operator and workplace characteristics on job stress were assessed. Methods Job stress was measured on five subscales: employee empowerment, role overload, role ambiguity, rule violation, and job hazard. The characteristics of the operators that were studied were age, experience, body weight, and body height. The workplace characteristics considered were hours of exposure, cabin type, cabin feature, and crane height. The proposed methodology included administration of a questionnaire survey to 76 electric overhead traveling crane operators followed by analysis using analysis of variance and a classification and regression tree. Results The key findings were: (1) the five subscales can be used to measure job stress; (2) employee empowerment was the most significant factor followed by the role overload; (3) workplace characteristics contributed more towards job stress than operator's characteristics; and (4) of the workplace characteristics, crane height was the major contributor. Conclusion The issues related to crane height and cabin feature can be fixed by providing engineering or foolproof solutions than relying on interventions related to the demographic factors. PMID:26929839

  4. Measurement of the state of stress in silicon with micro-Raman spectroscopy

    Harris, Stephen J.; O'Neill, Ann E.; Yang, Wen; Gustafson, Peter; Boileau, James; Weber, W. H.; Majumdar, Bhaskar; Ghosh, Somnath


    Micro-Raman spectroscopy has been widely used to measure local stresses in silicon and other cubic materials. However, a single (scalar) line position measurement cannot determine the complete stress state unless it has a very simple form such as uniaxial. Previously published micro-Raman strategies designed to determine additional elements of the stress tensor take advantage of the polarization and intensity of the Raman-scattered light, but these strategies have not been validated experimentally. In this work, we test one such stategy [S. Narayanan, S. Kalidindi, and L. Schadler, J. Appl. Phys. 82, 2595 (1997)] for rectangular (110)- and (111)-orientated silicon wafers. The wafers are subjected to a bending stress using a custom-designed apparatus, and the state of (plane) stress is modeled with ABAQUS. The Raman shifts are calculated using previously published values for silicon phonon deformation potentials. The experimentally measured values for σxx, σyy, and τxy at the silicon surface are in good agreement with those calculated with the ABAQUS model.

  5. Measurement of the Full State of Stress of Silicon with Micro-Raman Spectroscopy

    Harris, Stephen; Weber, W. H.; Majumdar, Bhaskar; Ghosh, Somnath


    Micro-Raman spectroscopy has been widely used to measure local stresses in silicon and other cubic materials. However, a single (scalar) line position measurement cannot determine the complete stress state unless it is has a very simple form, such as uniaxial. Previously published micro-Raman strategies designed to determine additional elements of the stress tensor take advantage of the polarization and intensity of the Raman scattered light, but these strategies have not been validated experimentally. In this work we test one such stategy [S. Narayanan, S. Kalidindi, and L. Schadler, JAP. 82, 2595 (1997)] for rectangular (110)- and (111)-orientated silicon wafers. The wafers are subjected to a bending stress, and the state of (plane) stress is modeled with ABAQUS. The Raman shifts, intensities, and polarizations are calculated using previously published values for silicon phonon deformation potentials. The experimentally measured values for σxx, σyy, and τxy at the silicon surface are in good agreement with those calculated with the ABAQUS model.

  6. The advising alliance for international and domestic graduate students: Measurement invariance and implications for academic stress.

    Rice, Kenneth G; Suh, Hanna; Yang, Xiaohui; Choe, Elise; Davis, Don E


    We expanded the focus of a prior study of international graduate student advising relationships (Rice et al., 2009) to examine advising experiences of both international and domestic students. International (n = 434) and domestic (n = 387) students completed the Advisory Working Alliance Inventory (AWAI-S; Schlosser & Gelso, 2001) and measures of advising experiences, perceived academic stress, and desire to change advisor. Measurement invariance analyses suggested that a 23-item AWAI-S showed support for scalar invariance. A bifactor structure showed superior fit to the 3-factor model or a second-order factor model for the AWAI-S. International and domestic graduate students did not differ in ratings of general alliance, academic stress, or desire to change advisors. General alliance was strongly related to less academic stress and less desire to change advisors. International students who felt disrespected by their advisors were more likely to be academically stressed than domestic students. Structured mentoring experiences were associated with lower stress and less desire to change, and this effect was similar in both international and domestic students. Overall, results suggested that the current level of measurement, and possibly theory development, regarding the advisory alliance is good at identifying generic satisfaction but weaker at differentiating components of the alliance. (c) 2016 APA, all rights reserved).

  7. Method of stress and measurement modes for research of thin dielectric films of MIS structures

    Andreev, Vladimir V.; Maslovsky, Vladimir M.; Andreev, Dmitrii V.; Stolyarov, Alexander A.


    The paper proposes a new method of stress and measurement modes for research of thin dielectric films of MIS structures. The method realizes injection of the most part of charge into gate dielectric in one of stress modes: either current owing through dielectric is constant or voltage applied to gate is constant. In order to acquire an additional information about changing of charge state of MIS structure, the stress condition is interrupted in certain time ranges and during these time ranges the mode, in which structure is, is the mode of measurement. In measurement mode, changing of electric fields at interfaces between dielectric and semiconductor is monitored. By using these data, density of charge, which is accumulated in gate dielectric, and its centroid are calculated. Besides, by using these data, one studies processes of generation and relaxation of charge in dielectric. In order to raise precision of the method and reduce an influence of switching effects in measurement mode, density of measurement current should be much lower than density of stress current.

  8. Measurement invariance of the Depression Anxiety Stress Scales-21 across medical student genders.

    Jafari, Peyman; Nozari, Farnoosh; Ahrari, Forooghosadat; Bagheri, Zahra


    This study aimed to assess whether male and female Iranian medical students perceived the meaning of the items in the Depression Anxiety Stress Scales-21 consistently. A convenience sample of 783 preclinical medical students from the first to sixth semester was invited to this cross-sectional study. Of the 477 respondents, 238 were male and 239 were female. All participants completed the Persian version of the Depression Anxiety Stress Scales-21. The graded response model was used to assess measurement invariance of the instrument across the gender groups. Categorical confirmatory factor analysis was used to evaluate the construct validity of the measure. Moreover, internal consistency was assessed via Cronbach's Alpha. Statistically significant differential item functioning was flagged for just item 6 in the depression subscales (c(2)=6.5, df=1, p=0.011). However, removing or retaining the item 6 in the stress subscale did not change our findings significantly, when we compared stress scores across two genders. The results of categorical confirmatory factor analysis supported the fit of the three-factor model of Depression Anxiety Stress Scales-21. Moreover, Cronbach's alpha was greater than 0.7 in depression, anxiety and stress subscales. This study revealed that Depression Anxiety Stress Scales-21 is an invariant measure across male and female medical students. Hence, this reliable and valid instrument can be used for meaningful comparison of distress scores between medical student genders. Gender comparisons of medical students' psychological profiles provide a better insight into gender influences on the outcome of medical education and medical practice.

  9. Dysfunctional Neurotransmitter Systems in Fibromyalgia, Their Role in Central Stress Circuitry and Pharmacological Actions on These Systems

    Susanne Becker


    Full Text Available Fibromyalgia is considered a stress-related disorder, and hypo- as well as hyperactive stress systems (sympathetic nervous system and hypothalamic-pituitary-adrenal axis have been found. Some observations raise doubts on the view that alterations in these stress systems are solely responsible for fibromyalgia symptoms. Cumulative evidence points at dysfunctional transmitter systems that may underlie the major symptoms of the condition. In addition, all transmitter systems found to be altered in fibromyalgia influence the body's stress systems. Since both transmitter and stress systems change during chronic stress, it is conceivable that both systems change in parallel, interact, and contribute to the phenotype of fibromyalgia. As we outline in this paper, subgroups of patients might exhibit varying degrees and types of transmitter dysfunction, explaining differences in symptomatoloy and contributing to the heterogeneity of fibromyalgia. The finding that not all fibromyalgia patients respond to the same medications, targeting dysfunctional transmitter systems, further supports this hypothesis.

  10. Non-uniform, axisymmetric misfit strain: in thin films bonded on plate substrates/substrate systems: the relation between non-uniform film stresses and system curvatures

    Yonggang Huang; D. Ngo; A.J. Rosakis


    Current methodologies used for the inference of thin film stress through curvature measurements are strictly restricted to stress and curvature states which are assumed to remain uniform over the entire film/substrate system. By considering a circular thin film/substrate system subject to non-uniform, but axisymmetric misfit strain distributions in the thin film, we derived relations between the film stresses and the misfit strain, and between the plate system's curvatures and the misfit strain. These relations feature a "local"part which involves a direct dependence of the stress or curvature components on the misfit strain at the same point, and a "non-local" part which reflects the effect of misfit strain of other points on the location of scrutiny. Most notably, we also derived relations between the polar components of the film stress and those of system curvatures which allow for the experimental inference of such stresses from full-field curvature measurements in the presence of arbitrary radial non-uniformities. These relations also feature a "non-local"dependence on curvatures making a full-field measurement a necessity. Finally, it is shown that the interfacial shear tractions between the film and the substrate are proportional to the radial gradients of the first curvature invariant and can also be inferred experimentally.

  11. Understanding Water-Stress Responses in Soybean Using Hydroponics System-A Systems Biology Perspective.

    Tripathi, Prateek; Rabara, Roel C; Shulaev, Vladimir; Shen, Qingxi J; Rushton, Paul J


    The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us toward the right candidates, if not completely help us to resolve the issue.

  12. Understanding water-stress responses in Soybean using Hydroponics system - A Systems Biology Perspective

    Prateek eTripathi


    Full Text Available The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us towards the right candidates, if not completely help us to resolve the issue.

  13. Measurement and modelling of residual stresses in straightened commercial eutectoid steel rods

    Martinez-Perez, M.L. [ICMM, CSIC, Campus de Cantoblanco, E-28049 Madrid (Spain); Borlado, C.R. [ICMM, CSIC, Campus de Cantoblanco, E-28049 Madrid (Spain); Open University, Faculty of Technology, Milton Keynes, MK7 6AL (United Kingdom); Mompean, F.J. [ICMM, CSIC, Campus de Cantoblanco, E-28049 Madrid (Spain); Garcia-Hernandez, M. [ICMM, CSIC, Campus de Cantoblanco, E-28049 Madrid (Spain); Gil-Sevillano, J. [CEIT, Paseo de Manuel Lardizabal 15, E-20018 San Sebastian (Spain); Ruiz-Hervias, J. [Departamento de Ciencia de Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, c/ Profesor Aranguren s/n, E-28040 Madrid (Spain); Atienza, J.M. [Departamento de Ciencia de Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, c/ Profesor Aranguren s/n, E-28040 Madrid (Spain)]. E-mail:; Elices, M. [Departamento de Ciencia de Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, c/ Profesor Aranguren s/n, E-28040 Madrid (Spain); Peng, Ru Lin [NFL Studsvik, Uppsala University, S-61182 Nykoeping (Sweden); Daymond, M.R. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, K7L 3N6 (Canada)


    Neutron strain scanning measurements on a eutectoid steel rod that has been subjected to standard industrial coiling and straightening operations are presented. Strains were determined non-destructively using two different diffractometers, one at a steady-state neutron source and the other at a pulsed spallation neutron source, with measurements made in both the ferrite and cementite components of the pearlitic microstructure. The residual stress state is explained in terms of a simplified analytical model for a two-phase material, which takes into account the successive loading operations contributing to residual stress. The results show that residual stresses generated by bending-straightening operations are significant and are likely to play an important role in the mechanical properties of the final wires.

  14. Confocal detection of Rayleigh scattering for residual stress measurement in chemically tempered glass

    Hödemann, S.; Möls, P.; Kiisk, V.; Murata, T.; Saar, R.; Kikas, J.


    A new optical method is presented for evaluation of the stress profile in chemically tempered (chemically strengthened) glass based on confocal detection of scattered laser beam. Theoretically, a lateral resolution of 0.2 μm and a depth resolution of 0.6 μm could be achieved by using a confocal microscope with high-NA immersion objective. The stress profile in the 250 μm thick surface layer of chemically tempered lithium aluminosilicate glass was measured with a high spatial resolution to illustrate the capability of the method. The confocal method is validated using transmission photoelastic and Na+ ion concentration profile measurement. Compositional influence on the stress-optic coefficient is calculated and discussed. Our method opens up new possibilities for three-dimensional scattered light tomography of mechanical imaging in birefringent materials.

  15. Confocal detection of Rayleigh scattering for residual stress measurement in chemically tempered glass

    Hödemann, S., E-mail:; Möls, P.; Kiisk, V.; Saar, R.; Kikas, J. [Institute of Physics, University of Tartu, Wilhelm Ostwald st., Tartu 50411 (Estonia); Murata, T. [Nippon Electric Glass Co., 7-1 Seiran 2-chome, Otsu-shi, Shiga 520-8639 (Japan)


    A new optical method is presented for evaluation of the stress profile in chemically tempered (chemically strengthened) glass based on confocal detection of scattered laser beam. Theoretically, a lateral resolution of 0.2 μm and a depth resolution of 0.6 μm could be achieved by using a confocal microscope with high-NA immersion objective. The stress profile in the 250 μm thick surface layer of chemically tempered lithium aluminosilicate glass was measured with a high spatial resolution to illustrate the capability of the method. The confocal method is validated using transmission photoelastic and Na{sup +} ion concentration profile measurement. Compositional influence on the stress-optic coefficient is calculated and discussed. Our method opens up new possibilities for three-dimensional scattered light tomography of mechanical imaging in birefringent materials.

  16. Numerical analysis of drilling hole work-hardening effects in hole-drilling residual stress measurement

    Li, H.; Liu, Y. H.


    The hole-drilling strain gage method is an effective semi-destructive technique for determining residual stresses in the component. As a mechanical technique, a work-hardening layer will be formed on the surface of the hole after drilling, and affect the strain relaxation. By increasing Young's modulus of the material near the hole, the work-hardening layer is simplified as a heterogeneous annulus. As an example, two finite rectangular plates submitted to different initial stresses are treated, and the relieved strains are measured by finite element simulation. The accuracy of the measurement is estimated by comparing the simulated residual stresses with the given initial ones. The results are shown for various hardness of work-hardening layer. The influence of the relative position of the gages compared with the thickness of the work-hardening layer, and the effect of the ratio of hole diameter to work-hardening layer thickness are analyzed as well.

  17. Physiological antioxidant system and oxidative stress in stomach cancer patients with normal renal and hepatic function

    E Prabhakar Reddy


    Full Text Available Role of free radicals has been proposed in the pathogenesis of many diseases. Gastric cancer is a common disease worldwide, and leading cause of cancer death in India. Severe oxidative stress produces reactive oxygen species (ROS and induces uncontrolled lipid peroxidation. Albumin, uric acid (UA and Bilirubin are important physiological antioxidants. We aimed to evaluate and assess the role of oxidative stress (OS and physiological antioxidant system in stomach cancer patients. Lipid peroxidation measured as plasma Thio Barbituric Acid Reactive substances (TBARS, was found to be elevated significantly (p=0.001 in stomach cancer compared to controls along with a decrease in plasma physiological antioxidant system. The documented results were due to increased lipid peroxidation and involvement of physiological antioxidants in scavenging free radicals but not because of impaired hepatic and renal functions.

  18. Objective evaluation of stress with the blind by the monitoring of autonomic nervous system activity.

    Massot, Bertrand; Baltenneck, Nicolas; Gehin, Claudine; Dittmar, Andre; McAdams, Eric


    Accessibility for the blind in an urban space must be studied under real conditions in their daily environment. A new approach for evaluating the impact of environmental conditions on blind pedestrians is the objective measure of stress by the monitoring of the autonomic nervous system (ANS) activity. Original techniques of data analysis and spatial representation are proposed for the detection of the ANS activity through the assessment of the electrodermal activity. Skin resistance was recorded with an EmoSense system on 10 blind subjects who followed a charted course independently. The course was 1065 meters long and consisted of various environmental conditions in an urban space. The spatial frequency of the non-specific skin resistance responses was used to provide a more relevant representation of geographic hotspots. Results of statistical analysis based on this new parameter are discussed to conclude on phenomena causing mental stress with the blind moving in an urban space.

  19. Error measuring system of rotary Inductosyn

    Liu, Chengjun; Zou, Jibin; Fu, Xinghe


    The inductosyn is a kind of high-precision angle-position sensor. It has important applications in servo table, precision machine tool and other products. The precision of inductosyn is calibrated by its error. It's an important problem about the error measurement in the process of production and application of the inductosyn. At present, it mainly depends on the method of artificial measurement to obtain the error of inductosyn. Therefore, the disadvantages can't be ignored such as the high labour intensity of the operator, the occurrent error which is easy occurred and the poor repeatability, and so on. In order to solve these problems, a new automatic measurement method is put forward in this paper which based on a high precision optical dividing head. Error signal can be obtained by processing the output signal of inductosyn and optical dividing head precisely. When inductosyn rotating continuously, its zero position error can be measured dynamically, and zero error curves can be output automatically. The measuring and calculating errors caused by man-made factor can be overcome by this method, and it makes measuring process more quickly, exactly and reliably. Experiment proves that the accuracy of error measuring system is 1.1 arc-second (peak - peak value).

  20. Post-1906 stress recovery of the San Andreas fault system calculated from three-dimensional finite element analysis

    Parsons, T.


    The M = 7.8 1906 San Francisco earthquake cast a stress shadow across the San Andreas fault system, inhibiting other large earthquakes for at least 75 years. The duration of the stress shadow is a key question in San Francisco Bay area seismic hazard assessment. This study presents a three-dimensional (3-D) finite element simulation of post-1906 stress recovery. The model reproduces observed geologic slip rates on major strike-slip faults and produces surface velocity vectors comparable to geodetic measurements. Fault stressing rates calculated with the finite element model are evaluated against numbers calculated using deep dislocation slip. In the finite element model, tectonic stressing is distributed throughout the crust and upper mantle, whereas tectonic stressing calculated with dislocations is focused mostly on faults. In addition, the finite element model incorporates postseismic effects such as deep afterslip and viscoelastic relaxation in the upper mantle. More distributed stressing and postseismic effects in the finite element model lead to lower calculated tectonic stressing rates and longer stress shadow durations (17-74 years compared with 7-54 years). All models considered indicate that the 1906 stress shadow was completely erased by tectonic loading no later than 1980. However, the stress shadow still affects present-day earthquake probability. Use of stressing rate parameters calculated with the finite element model yields a 7-12% reduction in 30-year probability caused by the 1906 stress shadow as compared with calculations not incorporating interactions. The aggregate interaction-based probability on selected segments (not including the ruptured San Andreas fault) is 53-70% versus the noninteraction range of 65-77%.

  1. Web based Measurement System for Solar Radiation

    Shachi Awasthi


    Full Text Available We present in this paper, the principles of themeasurement system for solar radiation, and ourimplementation using Web based data loggingconcept.The photocurrent produced by Silicon PNjunction is used as a solar radiation transducer, tomake it more viable we have used commerciallyavailable solar panels as our transducers. Using asilicon solar cell as sensor, a low cost solarradiometer can be constructed. The photocurrentproduced by solar cell is electronically tailored to bemeasured and stored by our web based dataacquisition and monitoring system. Measurementusing real solar cell array gives a good measure ofactual producible energy by solar arrays. Ourportable instrument can be used in remote sites andsubstitutes the solar monitor and integrator,Current data of solar radiation can be monitoredusing Ethernet interface available in all PC,Laptops. We store the data into a secure digital cardwhich can be retrieved to plot and analyse the data.We have developed system hardware andsoftware based on ATmega32 AVR Microcontrollersand ENC28J60 Ethernet PHY and MAC networkinterface chip by Microchip.So the global irradiance data are obtained aftercorrection using the instantaneous measurement ofambient temperature which allows us to calculatethe junction temperature and consequently improvethe precision of measurement of our dataacquisition system

  2. Measuring and Synthesizing Systems in Probabilistic Environments

    Chatterjee, Krishnendu; Jobstmann, Barbara; Singh, Rohit


    Often one has a preference order among the different systems that satisfy a given specification. Under a probabilistic assumption about the possible inputs, such a preference order is naturally expressed by a weighted automaton, which assigns to each word a value, such that a system is preferred if it generates a higher expected value. We solve the following optimal-synthesis problem: given an omega-regular specification, a Markov chain that describes the distribution of inputs, and a weighted automaton that measures how well a system satisfies the given specification under the given input assumption, synthesize a system that optimizes the measured value. For safety specifications and measures that are defined by mean-payoff automata, the optimal-synthesis problem amounts to finding a strategy in a Markov decision process (MDP) that is optimal for a long-run average reward objective, which can be done in polynomial time. For general omega-regular specifications, the solution rests on a new, polynomial-time al...

  3. Gear Transmission Error Measurement System Made Operational

    Oswald, Fred B.


    A system directly measuring the transmission error between the meshing spur or helical gears was installed at the NASA Glenn Research Center and made operational in August 2001. This system employs light beams directed by lenses and prisms through gratings mounted on the two gear shafts. The amount of light that passes through both gratings is directly proportional to the transmission error of the gears. The device is capable of resolution better than 0.1 mm (one thousandth the thickness of a human hair). The measured transmission error can be displayed in a "map" that shows how the transmission error varies with the gear rotation or it can be converted to spectra to show the components at the meshing frequencies. Accurate transmission error data will help researchers better understand the mechanisms that cause gear noise and vibration and will lead to The Design Unit at the University of Newcastle in England specifically designed the new system for NASA. It is the only device in the United States that can measure dynamic transmission error at high rotational speeds. The new system will be used to develop new techniques to reduce dynamic transmission error along with the resulting noise and vibration of aeronautical transmissions.

  4. Communications System for Down-Hole Measurements

    Mijarez-Castro Rito


    Full Text Available Progressively deeper and hotter oil wells have driven design modification that enhances the performance in sensors and downhole electronic instruments. Oil reservoirs in Mexico are located at mean depths of 6,000 m; as a consequence, the requirements for measuring thermodynamic and geophysical parameters are challenging. This paper describes a bidirectional communication system that exchanges data from a down-hole high pressure and high temperature (HP/HT measurement tool to the surface installation. The communication medium is a 7 km mono-conductor 1K22 logging cable used also as a power supply transmission line. The system consists of a proprietary downhole measurement tool, composed of a HT/HP sensor and a high temperature DSP-based electronic device, and a data acquisition equipment located in the surface installation. The system employs a communication algorithm that automatically changes the carrier frequency of the modulation technique employed, to avoid issues derived from noise interference, cable attenuation and thermal drift of the front end passive elements. The laboratory tests results provide a firm basis for testing and evaluating the system in the field.

  5. Repeated forced swim stress differentially affects formalin-evoked nociceptive behaviour and the endocannabinoid system in stress normo-responsive and stress hyper-responsive rat strains.

    Jennings, Elaine M; Okine, Bright N; Olango, Weredeselam M; Roche, Michelle; Finn, David P


    Repeated exposure to a homotypic stressor such as forced swimming enhances nociceptive responding in rats. However, the influence of genetic background on this stress-induced hyperalgesia is poorly understood. The aim of the present study was to compare the effects of repeated forced swim stress on nociceptive responding in Sprague-Dawley (SD) rats versus the Wistar Kyoto (WKY) rat strain, a genetic background that is susceptible to stress, negative affect and hyperalgesia. Given the well-documented role of the endocannabinoid system in stress and pain, we investigated associated alterations in endocannabinoid signalling in the dorsal horn of the spinal cord and amygdala. In SD rats, repeated forced swim stress for 10 days was associated with enhanced late phase formalin-evoked nociceptive behaviour, compared with naive, non-stressed SD controls. In contrast, WKY rats exposed to 10 days of swim stress displayed reduced late phase formalin-evoked nociceptive behaviour. Swim stress increased levels of monoacylglycerol lipase (MAGL) mRNA in the ipsilateral side of the dorsal spinal cord of SD rats, an effect not observed in WKY rats. In the amygdala, swim stress reduced anandamide (AEA) levels in the contralateral amygdala of SD rats, but not WKY rats. Additional within-strain differences in levels of CB1 receptor and fatty acid amide hydrolase (FAAH) mRNA and levels of 2-arachidonylglycerol (2-AG) were observed between the ipsilateral and contralateral sides of the dorsal horn and/or amygdala. These data indicate that the effects of repeated stress on inflammatory pain-related behaviour are different in two rat strains that differ with respect to stress responsivity and affective state and implicate the endocannabinoid system in the spinal cord and amygdala in these differences.

  6. Flavor release measurement from gum model system

    Ovejero-López, I.; Haahr, Anne-Mette; van den Berg, Frans W.J.


    Flavor release from a mint-flavored chewing gum model system was measured by atmospheric pressure chemical ionization mass spectroscopy (APCI-MS) and sensory time-intensity (TI). A data analysis method for handling the individual curves from both methods is presented. The APCI-MS data are ratio...... composition can be measured by both instrumental and sensory techniques, providing comparable information. The peppermint oil level (0.5-2% w/w) in the gum influenced both the retronasal concentration and the perceived peppermint flavor. The sweeteners' (sorbitol or xylitol) effect is less apparent. Sensory...

  7. Slot Antenna for Wireless Temperature Measurement Systems

    Acar, Öncel; Jakobsen, Kaj Bjarne


    This paper presents a novel clover-slot antenna for a surface-acoustic-wave sensor based wireless temperature measurement system. The slot is described by a parametric locus curve that has the shape of a clover. The antenna is operated at high temperatures, in rough environments, and has a 43......% fractional bandwidth at the 2.4 GHz ISM-band. The slot antenna has been optimized for excitation by a passive chip soldered onto it. Measurement results are compared with simulation results and show good agreements....

  8. Eddy Correlation Flux Measurement System (ECOR) Handbook

    Cook, DR


    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.

  9. Electric Field Quantitative Measurement System and Method

    Generazio, Edward R. (Inventor)


    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  10. Fringe Projection Measurement System in Reverse Engineering

    林朝辉; 何海涛; 郭红卫; 陈明仪; 石璇; 俞涛


    Acquisition of physical data with high precision is a key step in reverse engineering ( RE). It is an important stimulative for the progress of reverse engineering with which various digitizing devices are invented, developed and made applicable. This paper introduces a three dimensional optical measurement method based on digital fringe projection technique in RE to improve the technique through its application. A practical example is presented and the result demonstrates the applicability and feasibility of the measurement system as well as the reliability and validity of relevant methods and algorithms.

  11. ARTUS: The tune measurement system at RHIC

    Drees, A.; Brennan, M.; Connolly, R.; Michnoff, R.; DeLong, J.


    The super-conducting Relativistic Heavy Ion Collider (RHIC) with two separate rings and six combined interaction regions will provide collisions between equal and unequal heavy ion species up to Au ions in typically 60 bunches. The betatron tunes of the two beams are among the most important parameters to be measured. The tunes have to be acquired at any moment during accelerator operation and in particular during the acceleration process. At RHIC the tune measurement device (ARTUS) consists of a fast horizontal and vertical kicker magnet and a dedicated beam position monitor in each ring. The system layout is described and first experiences from operation is reported.

  12. A new quantitative approach to measure perceived work-related stress in Italian employees.

    Cevenini, Gabriele; Fratini, Ilaria; Gambassi, Roberto


    We propose a method for a reliable quantitative measure of subjectively perceived occupational stress applicable in any company to enhance occupational safety and psychosocial health, to enable precise prevention policies and intervention and to improve work quality and efficiency. A suitable questionnaire was telephonically administered to a stratified sample of the whole Italian population of employees. Combined multivariate statistical methods, including principal component, cluster and discriminant analyses, were used to identify risk factors and to design a causal model for understanding work-related stress. The model explained the causal links of stress through employee perception of imbalance between job demands and resources for responding appropriately, by supplying a reliable U-shaped nonlinear stress index, expressed in terms of values of human systolic arterial pressure. Low, intermediate and high values indicated demotivation (or inefficiency), well-being and distress, respectively. Costs for stress-dependent productivity shortcomings were estimated to about 3.7% of national income from employment. The method identified useful structured information able to supply a simple and precise interpretation of employees' well-being and stress risk. Results could be compared with estimated national benchmarks to enable targeted intervention strategies to protect the health and safety of workers, and to reduce unproductive costs for firms.

  13. FEM Analysis and Measurement of Residual Stress by Neutron Diffraction on the Dissimilar Overlay Weld Pipe

    Kim, Kang Soo; Lee, Ho Jin; Woo, Wan Chuck; Seong, Baek Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Byeon, Jin Gwi; Park, Kwang Soo; Jung, In Chul [Doosan Heavy Industries and Construction Co., Changwon (Korea, Republic of)


    Much research has been done to estimate the residual stress on a dissimilar metal weld. There are many methods to estimate the weld residual stress and FEM (Finite Element Method) is generally used due to the advantage of the parametric study. And the X-ray method and a Hole Drilling technique for an experimental method are also usually used. The aim of this paper is to develop the appropriate FEM model to estimate the residual stresses of the dissimilar overlay weld pipe. For this, firstly, the specimen of the dissimilar overlay weld pipe was manufactured. The SA 508 Gr3 nozzle, the SA 182 safe end and SA376 pipe were welded by the Alloy 182. And the overlay weld by the Alloy 52M was performed. The residual stress of this specimen was measured by using the Neutron Diffraction device in the HANARO (High-flux Advanced Neutron Application ReactOr) research reactor, KAERI (Korea Atomic Energy Research Institute). Secondly, FEM Model on the dissimilar overlay weld pipe was made and analyzed by the ABAQUS Code (ABAQUS, 2004). Thermal analysis and stress analysis were performed, and the residual stress was calculated. Thirdly, the results of the FEM analysis were compared with those of the experimental methods

  14. Computer-assisted measurement of perceived stress: an application for a community-based survey.

    Kimura, Tomoaki; Uchida, Seiya; Tsuda, Yasutami; Eboshida, Akira


    The assessment of stress is a key issue in health promotion policies as well as in treatment strategies for patients. The aim of this study was to confirm the accessibility and reliability of computer-assisted data collection for perceived stress measurement, using the Japanese version of the Perceived Stress Scale (JPSS), within the setting of a community-based survey. There were two groups of participants in this survey. One group responded to a Web-based application, and the other to the VBA of a spreadsheet software. The total scores of JPSS were almost normally distributed. The means of total scores of JPSS were 23.6 and 23.1. These results were lower than the previous study of JPSS. Since Cronbach's alpha coefficients in both surveys were more than 0.8, high reliability was demonstrated despite a number of computer-illiterate and/or aged participants. They felt that the spreadsheet form was easier to respond to. Two components were extracted with the Varimax rotation of principal component analysis, and these were named "perception of stress and stressors" and "behavior to stress". This finding suggests that it is possible to determine sub-scales. From the viewpoint of preventive medicine, it is expected that the JPSS applications will be utilized to investigate the relationship between stress and other factors such as lifestyle, environment and quality of life.

  15. Orientation on quantitative IR-thermografy in wall-shear stress measurements

    Mayer, R.


    Wall-shear stresses are highly important in the aerodynamic design of aircraft, because they determine the drag and thus the fuel consumption of an airplane. Due to this importance many different measurement techniques have been developed. Most of these techniques are intrusive, which means that the

  16. Association between objectively measured physical activity, chronic stress and leukocyte telomere length.

    von Känel, Roland; Bruwer, Erna J; Hamer, Mark; de Ridder, J Hans; Malan, Leoné


    Physical activity (PA) attenuates chronic stress and age-related and cardiovascular disease risks, whereby potentially slowing telomere shortening. We aimed to study the association between seven-day objectively measured habitual PA, chronic stress and leukocyte telomere length. Study participants were African (N.=96) and Caucasian (N.=107) school teachers of the Sympathetic activity and Ambulatory Blood Pressure in Africans study. All lifestyle characteristics (including PA) were objectively measured. The general health questionnaire and serum cortisol were assessed as psychological and physical measures of chronic stress. Leukocyte telomere length was measured using the quantitative real-time polymerase chain reaction. Africans had significantly shorter telomeres (Pstress or telomere length. However, more time spent with light intensity PA time was significantly and independently correlated with lower waist circumference (r=-0.21, P=0.004); in turn, greater waist circumference was significantly associated shorter telomeres (β=-0.17 [-0.30, -0.03], P=0.017). Habitual PA of different intensity was not directly associated with markers of chronic stress and leukocyte telomere length in this biethnic cohort. However, our findings suggest that light intensity PA could contribute to lowered age-related disease risk and healthy ageing by facilitating maintenance of a normal waist circumference.

  17. Enhancing Maritime Education and Training: Measuring a Ship Navigator's Stress Based on Salivary Amylase Activity

    Murai, Koji; Wakida, Shin-Ichi; Miyado, Takashi; Fukushi, Keiichi; Hayashi, Yuji; Stone, Laurie C.


    Purpose: The purpose of this paper is to propose that the measurement of salivary amylase activity is an effective index to evaluate the stress of a ship navigator for safe navigation training and education. Design/methodology/approach: Evaluation comes from the simulator and actual on-board experiments. The subjects are real captains who have…

  18. Obtaining Heat Stress Measurements. Module 15. Vocational Education Training in Environmental Health Sciences.

    Consumer Dynamics Inc., Rockville, MD.

    This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on obtaining heat stress measurements. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) naming and describing the…

  19. Biotechnology Predictors of Physical Security Personnel Performance: Cerebral Potential Measures Related to Stress.


    Rosenman, 1983), are oriented primarily toward matching personalities with certain patterns of clinical responses to stress. Other, more general schemes...measured for the medio -basal region of the frontal lobes or for the limbic formations. Factual information relevant to problems of this kind will

  20. Application of x-ray stress measurement to practical materials for plastic work

    Sekiguchi, Haruo; Kiriyama, Sadao


    X-ray diffraction stress measurement is achieved commonly from calculating elastic strain of crystal lattice. Therefore, the accuracy of the measurement is apt to be influenced from plastic zone or preferred orientation of surface layer for the measurement of practical materials with strong plastic work. It was found that the Two-Axis Oscillation Method was suitable to improve the accuracy of measurement on those materials. This papar discussed on the mechanism of residual stress mode during the process of plastic work, and described the application results on the plastic worked materials, such as spring steel surface treated by shot peening, titanium alloy with preferred orientation and mechanically worked surface of SUS 304 materials.

  1. Effect of heat stress on cardiac output and systemic vascular conductance during simulated hemorrhage to presyncope in young men

    Ganio, Matthew S; Overgaard, Morten; Seifert, Thomas;


    During moderate actual or simulated hemorrhage, as cardiac output decreases, reductions in systemic vascular conductance (SVC) maintain mean arterial pressure (MAP). Heat stress, however, compromises the control of MAP during simulated hemorrhage, and it remains unknown whether this response is due...... to a persistently high SVC and/or a low cardiac output. This study tested the hypothesis that an inadequate decrease in SVC is the primary contributing mechanism by which heat stress compromises blood pressure control during simulated hemorrhage. Simulated hemorrhage was imposed via lower body negative pressure...... (LBNP) to presyncope in 11 passively heat-stressed subjects (increase core temperature: 1.2 ± 0.2°C; means ± SD). Cardiac output was measured via thermodilution, and SVC was calculated while subjects were normothermic, heat stressed, and throughout subsequent LBNP. MAP was not changed by heat stress...

  2. Psychological Stress Measure (PSM-9): integration of an evidence-based approach to assessment, monitoring, and evaluation of stress in physical therapy practice.

    Lemyre, Louise; Lalande-Markon, Marie-Pierre


    Stress can be a primary or secondary contributor to ill health via excessive and sustained sympathetic arousal leading to ischemic heart disease, hypertension, stroke, obesity, and mental ill health, or through related behaviors such as smoking, substance abuse, and over or inappropriate eating; or as a contextual variable in terms of risk factor and lifestyle outcome. In addition, psychosocial stress can impair recovery from any pathological insult or injury. Most assessments of stress relate to life events, and both past and current life stressors, acute and chronic, play a major role. However, beyond the impact of stressors, it is the reported state of feeling stressed that is the critical predictor of ill health. This article describes stress and its correlates, discusses models of stress, and presents the nine-item Psychological Stress Measure (PSM-9). This tool is aimed directly at the state of feeling stressed, is suited for assessing stress clinically in the general population and serving as an outcome measure. The tool is valid and reliable and easy to administer in health care settings; it has a normal distribution, which makes it a very sensitive-to-change instrument in repeated measures to document progress.

  3. Blood Contamination in Saliva: Impact on the Measurement of Salivary Oxidative Stress Markers

    Natália Kamodyová


    Full Text Available Salivary oxidative stress markers represent a promising tool for monitoring of oral diseases. Saliva can often be contaminated by blood, especially in patients with periodontitis. The aim of our study was to examine the impact of blood contamination on the measurement of salivary oxidative stress markers. Saliva samples were collected from 10 healthy volunteers and were artificially contaminated with blood (final concentration 0.001–10%. Next, saliva was collected from 12 gingivitis and 10 control patients before and after dental hygiene treatment. Markers of oxidative stress were measured in all collected saliva samples. Advanced oxidation protein products (AOPP, advanced glycation end products (AGEs, and antioxidant status were changed in 1% blood-contaminated saliva. Salivary AOPP were increased in control and patients after dental treatment (by 45.7% and 34.1%, p<0.01. Salivary AGEs were decreased in patients after microinjury (by 69.3%, p<0.001. Salivary antioxidant status markers were decreased in both control and patients after dental treatment (p<0.05 and p<0.01. One % blood contamination biased concentrations of salivary oxidative stress markers. Saliva samples with 1% blood contamination are visibly discolored and can be excluded from analyses without any specific biochemic detection of blood constituents. Salivary markers of oxidative stress were significantly altered in blood-contaminated saliva in control and patients with gingivitis after dental hygiene treatment.

  4. The revised Stress Measurement of Female Marriage Immigrants in Korea: Evaluation of the psychometric properties.

    Park, Min Hee; Yang, Sook Ja; Chee, Yeon Kyung


    The twenty-one item Stress Measurement of Female Marriage Immigrants (SMFMI) was developed to assess stress of female marriage immigrants in Korea. This study reports the psychometric properties of a revised SMFMI (SMFMI-R) for application with female marriage immigrants to Korea who were raising children. Participants were 190 female marriage immigrants from China, Vietnam, the Philippines, and other Asian countries, who were recruited using convenience sampling between November 2013 and December 2013. Survey questionnaires were translated into study participants' native languages (Chinese, Vietnamese, and English). Principal component analysis yielded nineteen items in four factors (family, parenting, cultural, and economic stress), explaining 63.5% of the variance, which was slightly better than the original scale. Confirmatory factor analysis indicated adequate fit for the four-factor model. Based on classic test theory and item response theory, strong support was provided for item discrimination, item difficulty, and internal consistency (Cronbach's alpha = 0.923). SMFMI-R scores were negatively associated with Korean proficiency and subjective economic status. The SMFMI-R is a valid, reliable, and comprehensive measure of stress for female marriage immigrants and can provide useful information to develop intervention programs for those who may be at risk for emotional stress.

  5. Children's stress during a restorative dental treatment: assessment using salivary cortisol measurements.

    Akyuz, S; Pince, S; Hekin, N


    Dental environment may be a source of stress for the young patient. Such stressful conditions may provoke fear in anxious children. It is well known that stress produces an activation adrenal steroid secretion. Among the methods for assessing child dental fear, measurement of salivary cortisol level is a simple method, because especially in children, sampling of saliva is easy, and cortisol levels in saliva closely mirror serum free cortisol levels, independent of salivary flow rate. For this study, the salivary cortisol levels of 8 children (mean age 5.6 yr) were measured receiving initial dental treatment. Saliva samples were collected via cotton rolls placed to the floor of the mouth at four stages; prior to treatment, during cavitation, placement of the liner and the restoration. Statistical comparison of the results were done by Student-t test. The increase in salivary cortisol levels during cavitation at the first and secondary appointments were significant (p0.05). The results of this study suggest that in restorative procedures, mostly it is the cavitation step that creates stress and anxiety in children. Knowledge of the most stressful condition may be helpful for the dentist to prepare the child to treatment steps.

  6. Measurement of urethral closure function in women with stress urinary incontinence

    Klarskov, N; Scholfield, D; Soma, K;


    , double-blind, placebo controlled, crossover study 17 women with stress urinary incontinence or mixed urinary incontinence received 4 mg esreboxetine or placebo for 7 to 9 days followed by a washout period before crossing over treatments. Urethral pressure reflectometry and urethral pressure profilometry...... esreboxetine patients had significantly fewer incontinence episodes and reported a treatment benefit (global impression of change) compared to placebo. CONCLUSIONS: The opening pressure measured with urethral pressure reflectometry was less variable compared to the parameters measured with urethral pressure...

  7. Internal tibial torsion correction study. [measurements of strain for corrective rotation of stressed tibia

    Cantu, J. M.; Madigan, C. M.


    A quantitative study of internal torsion in the entire tibial bone was performed by using strain gauges to measure the amount of deformation occuring at different locations. Comparison of strain measurements with physical dimensions of the bone produced the modulus of rigidity and its behavior under increased torque. Computerized analysis of the stress distribution shows that more strain occurs near the torqued ends of the bones where also most of the twisting and fracturing takes place.

  8. Optical measurements on overhead optical fiber cables for stresses and damage identification

    Ravet, Fabien L.; Heens, Bernard; Daniaux, D.; Froidure, Jean-Christophe; Blondel, Michel; Dascotte, M.; Lots, P.


    This paper concerns the characterization of various trunks of an OPGW based network. No strong fiber aging has been observed but combined OTDR and PMD measurements have pointed out strong cable clamping at suspension pylon. Large local losses have been measured at both 1.55 micrometers and 1.6 micrometers and stress induced birefringent behavior have been experienced. PMD temporal evolution has also been studied. A correlation between temperature variation and PMD evolution has been observed.

  9. Noncontacting Optical Measurement And Inspection Systems

    Asher, Jeffrey A.; Jackson, Robert L.


    Product inspection continues to play a growing role in the improvement of quality and reduction of scrap. Recent emphasis on precision measurements and in-process inspection have been a driving force for the development of noncontacting sensors. Noncontacting sensors can provide long term, unattended use due to the lack of sensor wear. Further, in applications where, sensor contact can damage or geometrically change the part to be measured or inspected, noncontacting sensors are the only technical approach available. MTI is involved in the development and sale of noncontacting sensors and custom inspection systems. This paper will review the recent advances in noncontacting sensor development. Machine vision and fiber optics sensor systems are finding a wide variety of industrial inspection applications. This paper will provide detailed examples of several state-of-the-art applications for these noncontacting sensors.

  10. In situ stress measurement with the new LVDT - Cell - method description and verification

    Hakala, M. [KMS Hakala Oy, Nokia (Finland); Christiansson, R. [Svensk Kaernbraenslehantering AB, Stockholm (Sweden); Martin, D. [Univ. of Alberta, Edmonton (Canada); Siren, T.; Kemppainen, K.


    Posiva Oy and SKB (Svensk Kaernbraenslehantering AB) tested the suitability a new LVDT-cell (Linear Variable Differential Transducer cell) to measure the induced stresses in the vicinity of an excavated surface and further to use these results to interpret the in situ state of stress. It utilises the overcoring methodology, measuring the radial convergence of four diameters using eight LVDTs, and is similar in concept to the USBM-gauge. A 127 mm diameter pilot-hole is required and the overcore diameter is 200 mm. The minimum overcoring length is 350 mm, and hence a compact drill can be utilised. Extensive testing of the LVDT-cell shows it to be robust and suitable for use in an underground environment. Sensitivity tests also show that the cell can withstand a range of operating conditions and still provide acceptable results. The in situ stress at the measurement location can be solved by numerical inversion using the results of at least three overcoring measurements around the three-dimensional tunnel section. The large dimensions of the measurement tool and the ability to utilise multiple measurements at various locations in a tunnel section, provides flexibility in selecting an appropriate rock mass volume. Because the inversion technique relies on knowing the exact location of the measurements and the geometry profile of the tunnel, modern survey techniques such as Lidar or photogrammetric technology should be used. Checks using traditional surveying techniques should also be used to ensure adequate survey resolution, specially in case of sidecoring measurements. To evaluate the suitability of the LVDT-cell to provide the in situ state of stress, tests were carried out in the drill-and-blast TASS tunnel and TBM tunnel at the Aespoe Hard Rock Laboratory in Sweden. The state of stress established using the LVDT-cell was in agreement with the state of stress established previously using traditional overcoring and hydraulic fracturing methods. In this study, the

  11. New methods to directly measure adhesive stress and movement on glass

    Watts, David C.; Marouf, A. S.; Heindl, Detlef


    Practical scientific methods have been devised to measure cure-shrinkage phenomena for a small-volume disk geometry of adhesive agents, in liquid or paste form. These can be conducted simply, reproducibly and quickly, typically 5-120 min, once the apparati are set up. Originally utilised to measure shrinkage behavior in photocuring dental adhesives and biomaterials, the measurements may be applied as well to adhesives for fiber optic and optical applications. They are especially suitable for UV and visible-light curing adhesives. The 'bonded-disk' method is used for the measurement of shrinkage-strain kinetics and the Bioman method for shrinkage-stress of adhesives.

  12. Comparison of local stress values obtained by two measuring methods on blast furnace shell

    P. Bigoš


    Full Text Available This paper describes measuring of time behaviour specified for local stress increments on the blast furnace shell that were performed using strain gauge sensors. These results are compared with values obtained by means of the second specific measuring method. There is also presented in this paper a commentary and discussion concerning the measured time behaviour obtained from the both measuring methods. This article presents results from another of experimental analysis series concerning the blast furnace shell in one concrete metallurgical plant.

  13. Reconstructing a Network of Stress-Response Regulators via Dynamic System Modeling of Gene Regulation

    Wei-Sheng Wu


    Full Text Available Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene’s expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specifi c stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably suffi cient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  14. Reconstructing a network of stress-response regulators via dynamic system modeling of gene regulation.

    Wu, Wei-Sheng; Li, Wen-Hsiung; Chen, Bor-Sen


    Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs) that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene's expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA) to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specific stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably sufficient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  15. Plume Measurement System (PLUMES) Calibration Experiment


    Atle Lohrmann SonTek, Inc. 7940 Silverton Avenue, No. 105 San Diego, California 92126 and Craig Huhta JIMAR University of Hawaii, Honolulu, Hawaii 96822...Measurement System (PLUMES) Calibration Experiment by Age Lohrmann SonTek, Inc. 7940 Silverton Avenue, No. 105 San Diego, CA 92126 Craig Huhta JIMAR...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) &. PERFORMING ORGANIZATION SonTek, Inc., 7940 Silverton Avenue, No. 105, San Diego, CA 92126 REPORT NUMBER

  16. Improved control of delayed measured systems

    Claussen, Jens Christian; Schuster, Heinz Georg


    In this paper, we address the question of how the control of delayed measured chaotic systems can be improved. Both unmodified Ott-Grebogi-Yorke control and difference control can be successfully applied only for a certain range of Lyapunov numbers depending on the delay time. We show that this limitation can be overcome by at least two classes of methods, namely, by rhythmic control and by the memory methods of linear predictive logging control and memory difference control.

  17. Optical tomography system for laboratory turbulence measurements

    McMackin, Lenore J.; Pierson, Robert E.; Hugo, Ronald J.; Truman, C. Randall


    We describe the design and operation of a high speed optical tomography system for measuring 2D images of a dynamic phase object at a rate of 5 kHz. Data from a set of eight Hartmann wavefront sensors is back-projected to produce phase images showing the details of the inner structure of a heated air flow. Series of reconstructions at different downstream locations illustrate the development of flow structure and the effect of acoustic flow forcing.

  18. Performance Measurement Systems: A Best Practices Study


    Vollman , 1990, p. 37). The use of self-directed work teams in this study, to make changes to the Performance Measurement Systems, using personnel from all...strategy and goals of the organization (Atkinson, et al, 1991, p. 86; Ernst and Young, 1990, p. 163). And as Dixon, Nanni and Vollman (1991) point out, a...Reaaining the Productive Edae, Massachusetts Institute of Technology, 1990. Dixon, J.R., Nanni, A.J., and Vollman , T.E., The N Performancge Challenge

  19. A portable magnetic induction measurement system (PIMS).

    Cordes, Axel; Foussier, Jérôme; Pollig, Daniel; Leonhardt, Steffen


    For contactless monitoring of ventilation and heart activity, magnetic induction measurements are applicable. As the technique is harmless for the human body, it is well suited for long-term monitoring solutions, e.g., bedside monitoring, monitoring of home care patients, and the monitoring of persons in critical occupations. For such settings, a two-channel portable magnetic induction system has been developed, which is small and light enough to be fitted in a chair or bed. Because demodulation, control, and filtering are implemented on a front-end digital signal processor, a PC is not required (except for visualization/data storage during research and development). The system can be connected to a local area network (LAN) or wireless network (WiFi), allowing to connect several devices to a large monitoring system, e.g., for a residential home for the elderly or a hospital with low-risk patients not requiring standard ECG monitoring. To visualize data streams, a Qt-based (Qt-framework by Nokia, Espoo, Finland) monitoring application has been developed, which runs on Netbook computers, laptops, or standard PCs. To induce and measure the magnetic fields, external coils and amplifiers are required. This article describes the system and presents results for monitoring respiration and heart activity in a (divan) bed and for respiration monitoring in a chair. Planar configurations and orthogonal coil setups were examined during the measurement procedures. The measurement data were streamed over a LAN to a monitoring PC running Matlab (The MathWorks Inc, Natick, MA, USA).

  20. Static and dynamic stress analyses of the prototype high head Francis runner based on site measurement

    Huang, X.; Oram, C.; Sick, M.


    More efforts are put on hydro-power to balance voltage and frequency within seconds for primary control in modern smart grids. This requires hydraulic turbines to run at off-design conditions. especially at low load or speed-no load. Besides. the tendency of increasing power output and decreasing weight of the turbine runners has also led to the high level vibration problem of the runners. especially high head Francis runners. Therefore. it is important to carry out the static and dynamic stress analyses of prototype high head Francis runners. This paper investigates the static and dynamic stresses on the prototype high head Francis runner based on site measurements and numerical simulations. The site measurements are performed with pressure transducers and strain gauges. Based on the measured results. computational fluid dynamics (CFD) simulations for the flow channel from stay vane to draft tube cone are performed. Static pressure distributions and dynamic pressure pulsations caused by rotor-stator interaction (RSI) are obtained under various operating conditions. With the CFD results. static and dynamic stresses on the runner at different operating points are calculated by means of the finite element method (FEM). The agreement between simulation and measurement is analysed with linear regression method. which indicates that the numerical result agrees well with that of measurement. Furthermore. the maximum static and dynamic stresses on the runner blade are obtained at various operating points. The relations of the maximum stresses and the power output are discussed in detail. The influences of the boundary conditions on the structural behaviour of the runner are also discussed.