WorldWideScience

Sample records for stress failure caused

  1. Fuel element failures caused by iodine stress corrosion

    International Nuclear Information System (INIS)

    Videm, K.; Lunde, L.

    1976-01-01

    Sections of unirradiated cladding tubes were plugged in both ends by mechanical seals and internally pressurized with argon containing iodine. The time to failure and the strain at failure as a function of stress was determined for tubing with different heat treatments. Fully annealed tubes suffer cracking at the lowest stress but exhibit the largest strains at failure. Elementary iodine is not necessary for stress corrosion: small amounts of iodides of zirconium, iron and aluminium can also give cracking. Moisture, however, was found to act as an inhibitor. A deformation threshold exists below which stress corrosion failure does not occur regardless of the exposure time. This deformation limit is lower the harder the tube. The deformation at failure is dependent on the deformation rate and has a minimum at 0.1%/hr. At higher deformation rates the failure deformation increases, but only slightly for hard tubes. Fuel was over-power tested at ramp rates varying between 0.26 to 30 W/cm min. For one series of fuel pins the failure deformations of 0.8% at high ramp rates were in good agreement with predictions based on stress corrosion experiments. For another series of experiments the failure deformation was surprisingly low, about 0.2%. (author)

  2. Patient-reported causes of heart failure in a large European sample

    DEFF Research Database (Denmark)

    Timmermans, Ivy; Denollet, Johan; Pedersen, Susanne S.

    2018-01-01

    ), psychosocial (35%, mainly (work-related) stress), and natural causes (32%, mainly heredity). There were socio-demographic, clinical and psychological group differences between the various categories, and large discrepancies between prevalence of physical risk factors according to medical records and patient...... distress (OR = 1.54, 95% CI = 0.94–2.51, p = 0.09), and behavioral causes and a less threatening view of heart failure (OR = 0.64, 95% CI = 0.40–1.01, p = 0.06). Conclusion: European patients most frequently reported comorbidities, smoking, stress, and heredity as heart failure causes, but their causal......Background: Patients diagnosed with chronic diseases develop perceptions about their disease and its causes, which may influence health behavior and emotional well-being. This is the first study to examine patient-reported causes and their correlates in patients with heart failure. Methods...

  3. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller

    Science.gov (United States)

    Sun, Jiao; Chen, Songying; Qu, Yanpeng; Li, Jianfeng

    2015-03-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  4. In-situ observations of stress-induced thin film failures

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Z.B., E-mail: zzhao@firstsolar.co [Delphi Research Labs, 51786 Shelby Parkway, Shelby Twp., MI 48315 (United States); Hershberger, J. [Laird Technologies, 4707 Detroit Avenue, Cleveland, Ohio, 44102 (United States); Bilello, J.C. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109-2136 (United States)

    2010-02-01

    In this work, the failure modes of thin films under thermo-mechanical treatments were observed via in-situ white beam X-ray topography. The in-situ experiments were carried out using an experimental setup on Beamline 2-2 at the Stanford Synchrotron Radiation Laboratory. Magnetron sputtered polycrystalline thin films of Ta and CrN on Si substrates were selected for the present study due to their disparate states of intrinsic residual stresses: the Ta film was anisotropically compressive and the CrN film was isotropically tensile. Under a similar heating-cooling cycle in air, the two types of films exhibited distinct failure modes, which were observed in-situ and in a quasi-real-time fashion. The failures of the samples have been interpreted based on their distinctive growth stress states, superimposed on the additional stress development associated with different forms of thermal instabilities upon heating. These included the formation of oxide for the Ta/Si sample, which led to an increase in compressive stress, and a phase change for the CrN/Si sample, which caused the isotropic stress in the film to become increasingly tensile.

  5. In-situ observations of stress-induced thin film failures

    International Nuclear Information System (INIS)

    Zhao, Z.B.; Hershberger, J.; Bilello, J.C.

    2010-01-01

    In this work, the failure modes of thin films under thermo-mechanical treatments were observed via in-situ white beam X-ray topography. The in-situ experiments were carried out using an experimental setup on Beamline 2-2 at the Stanford Synchrotron Radiation Laboratory. Magnetron sputtered polycrystalline thin films of Ta and CrN on Si substrates were selected for the present study due to their disparate states of intrinsic residual stresses: the Ta film was anisotropically compressive and the CrN film was isotropically tensile. Under a similar heating-cooling cycle in air, the two types of films exhibited distinct failure modes, which were observed in-situ and in a quasi-real-time fashion. The failures of the samples have been interpreted based on their distinctive growth stress states, superimposed on the additional stress development associated with different forms of thermal instabilities upon heating. These included the formation of oxide for the Ta/Si sample, which led to an increase in compressive stress, and a phase change for the CrN/Si sample, which caused the isotropic stress in the film to become increasingly tensile.

  6. Electrical failure analysis for root-cause determination

    International Nuclear Information System (INIS)

    Riddle, J.

    1990-01-01

    This paper outlines a practical failure analysis sequence. Several technical definitions are required. A failure is defined as a component that was operating in a system where the system malfunctioned and the replacement of the device restored system functionality. The failure mode is the malfunctioning behavior of the device. The failure mechanism is the underlying cause or source of the failure mode. The failure mechanism is the root cause of the failure mode. The failure analysis procedure needs to be adequately refined to result in the determination of the cause of failure to the degree that corrective action or design changes will prevent recurrence of the failure mode or mechanism. An example of a root-cause determination analysis performed for a nuclear power industry customer serves to illustrate the analysis methodology

  7. Governing of common cause failures

    International Nuclear Information System (INIS)

    Bock, H.W.

    1998-01-01

    Agreed strategy is to govern common cause failures by the application of diversity, to assure that the overall plant safety objectives are met even in the case that a common cause failure of a system with all redundant trains is assumed. The presented strategy aims on the application of functional diversity without the implementation of equipment diversity. In the focus are the design criteria which have to be met for the design of independent systems in such a way that the time-correlated failure of such independent systems according a common cause can be excluded deterministically. (author)

  8. Common cause failures of reactor pressure components

    International Nuclear Information System (INIS)

    Mankamo, T.

    1978-01-01

    The common cause failure is defined as a multiple failure event due to a common cause. The existence of common failure causes may ruin the potential advantages of applying redundancy for reliability improvement. Examples relevant to large mechanical components are presented. Preventive measures against common cause failures, such as physical separation, equipment diversity, quality assurance, and feedback from experience are discussed. Despite the large number of potential interdependencies, the analysis of common cause failures can be done within the framework of conventional reliability analysis, utilizing, for example, the method of deriving minimal cut sets from a system fault tree. Tools for the description and evaluation of dependencies between components are discussed: these include the model of conditional failure causes that are common to many components, and evaluation of the reliability of redundant components subjected to a common load. (author)

  9. BILAM: a composite laminate failure-analysis code using bilinear stress-strain approximations

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, P.V. Jr.; Dasgupta, A.; Chun, Y.W.

    1980-10-01

    The BILAM code which uses constant strain laminate analysis to generate in-plane load/deformation or stress/strain history of composite laminates to the point of laminate failure is described. The program uses bilinear stress-strain curves to model layer stress-strain behavior. Composite laminates are used for flywheels. The use of this computer code will help to develop data on the behavior of fiber composite materials which can be used by flywheel designers. In this program the stress-strain curves are modelled by assuming linear response in axial tension while using bilinear approximations (2 linear segments) for stress-strain response to axial compressive, transverse tensile, transverse compressive and axial shear loadings. It should be noted that the program attempts to empirically simulate the effects of the phenomena which cause nonlinear stress-strain behavior, instead of mathematically modelling the micromechanics involved. This code, therefore, performs a bilinear laminate analysis, and, in conjunction with several user-defined failure interaction criteria, is designed to provide sequential information on all layer failures up to and including the first fiber failure. The modus operandi is described. Code BILAM can be used to: predict the load-deformation/stress-strain behavior of a composite laminate subjected to a given combination of in-plane loads, and make analytical predictions of laminate strength.

  10. Common cause failure analysis methodology for complex systems

    International Nuclear Information System (INIS)

    Wagner, D.P.; Cate, C.L.; Fussell, J.B.

    1977-01-01

    Common cause failure analysis, also called common mode failure analysis, is an integral part of a complex system reliability analysis. This paper extends existing methods of computer aided common cause failure analysis by allowing analysis of the complex systems often encountered in practice. The methods presented here aid in identifying potential common cause failures and also address quantitative common cause failure analysis

  11. Root cause analysis of SI line-seated thermal sleeve separation failures

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Jhung, Myung Jo; Kim, Hho Jung

    2004-01-01

    At conventional pressurized water reactors, a thermal sleeve (named simply 'sleeve' hereafter) is seated inside the nozzle part of each Safety Injection (SI) branch pipe to prevent and relieve potential excessive transient thermal stress in the nozzle wall when a cold water is injected during the safety injection mode Recently, mechanical failures that the sleeves are separated from the SI branch pipe and fall into the connected cold leg main pipe were occurred in sequence at Yonggwang units 5 and 6 and Ulchin unit 5. There were many activities and efforts to figure out the causes of those failures with experts' reasoning, but the proposed causes were derived from superficial views rather than physically concrete grounds or analysis results. The prerequisites to find out the root causes of failure mechanism will be to identify the flow situation in the pipe junction area connecting the cold leg with the SI pipe and to know the vibration characteristics of sleeves. This paper investigates the flow field in the pipe junction thru a numerical simulation and vibration characteristics of thermal sleeves thru a modal analysis, from which the root causes of sleeve separation mechanism are analyzed

  12. Structures for common-cause failure analysis

    International Nuclear Information System (INIS)

    Vaurio, J.K.

    1981-01-01

    Common-cause failure methodology and terminology have been reviewed and structured to provide a systematical basis for addressing and developing models and methods for quantification. The structure is based on (1) a specific set of definitions, (2) categories based on the way faults are attributable to a common cause, and (3) classes based on the time of entry and the time of elimination of the faults. The failure events are then characterized by their likelihood or frequency and the average residence time. The structure provides a basis for selecting computational models, collecting and evaluating data and assessing the importance of various failure types, and for developing effective defences against common-cause failure. The relationships of this and several other structures are described

  13. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways

    Science.gov (United States)

    Bergsma, Alexis L.; Senchuk, Megan M.; Van Raamsdonk, Jeremy M.

    2016-01-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage. PMID:27053445

  14. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways.

    Science.gov (United States)

    Dues, Dylan J; Andrews, Emily K; Schaar, Claire E; Bergsma, Alexis L; Senchuk, Megan M; Van Raamsdonk, Jeremy M

    2016-04-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage.

  15. Stress Voiding in IC Interconnects - Rules of Evidence for Failure Analysts

    Energy Technology Data Exchange (ETDEWEB)

    FILTER, WILLIAM F.

    1999-09-17

    Mention the words ''stress voiding'', and everyone from technology engineer to manager to customer is likely to cringe. This IC failure mechanism elicits fear because it is insidious, capricious, and difficult to identify and arrest. There are reasons to believe that a damascene-copper future might be void-free. Nevertheless, engineers who continue to produce ICs with Al-alloy interconnects, or who assess the reliability of legacy ICs with long service life, need up-to-date insights and techniques to deal with stress voiding problems. Stress voiding need not be fearful. Not always predictable, neither is it inevitable. On the contrary, stress voids are caused by specific, avoidable processing errors. Analytical work, though often painful, can identify these errors when stress voiding occurs, and vigilance in monitoring the improved process can keep it from recurring. In this article, they show that a methodical, forensics approach to failure analysis can solve suspected cases of stress voiding. This approach uses new techniques, and patiently applies familiar ones, to develop evidence meeting strict standards of proof.

  16. Importance analysis for the systems with common cause failures

    International Nuclear Information System (INIS)

    Pan Zhijie; Nonaka, Yasuo

    1995-01-01

    This paper extends the importance analysis technique to the research field of common cause failures to evaluate the structure importance, probability importance, and β-importance for the systems with common cause failures. These importance measures would help reliability analysts to limit the common cause failure analysis framework and find efficient defence strategies against common cause failures

  17. Risk of shear failure and extensional failure around over-stressed excavations in brittle rock

    Directory of Open Access Journals (Sweden)

    Nick Barton

    2017-04-01

    Full Text Available The authors investigate the failure modes surrounding over-stressed tunnels in rock. Three lines of investigation are employed: failure in over-stressed three-dimensional (3D models of tunnels bored under 3D stress, failure modes in two-dimensional (2D numerical simulations of 1000 m and 2000 m deep tunnels using FRACOD, both in intact rock and in rock masses with one or two joint sets, and finally, observations in TBM (tunnel boring machine tunnels in hard and medium hard massive rocks. The reason for ‘stress-induced’ failure to initiate, when the assumed maximum tangential stress is approximately (0.4–0.5σc (UCS, uniaxial compressive strength in massive rock, is now known to be due to exceedance of a critical extensional strain which is generated by a Poisson's ratio effect. However, because similar ‘stress/strength’ failure limits are found in mining, nuclear waste research excavations, and deep road tunnels in Norway, one is easily misled into thinking of compressive stress induced failure. Because of this, the empirical SRF (stress reduction factor in the Q-system is set to accelerate as the estimated ratio σθmax/σc >> 0.4. In mining, similar ‘stress/strength’ ratios are used to suggest depth of break-out. The reality behind the fracture initiation stress/strength ratio of ‘0.4’ is actually because of combinations of familiar tensile and compressive strength ratios (such as 10 with Poisson's ratio (say 0.25. We exceed the extensional strain limits and start to see acoustic emission (AE when tangential stress σθ ≈ 0.4σc, due to simple arithmetic. The combination of 2D theoretical FRACOD models and actual tunnelling suggests frequent initiation of failure by ‘stable’ extensional strain fracturing, but propagation in ‘unstable’ and therefore dynamic shearing. In the case of very deep tunnels (and 3D physical simulations, compressive stresses may be too high for extensional strain fracturing, and

  18. A huge bladder calculus causing acute renal failure.

    Science.gov (United States)

    Komeya, Mitsuru; Sahoda, Tamami; Sugiura, Shinpei; Sawada, Takuto; Kitami, Kazuo

    2013-02-01

    A 81-year-old male was referred to our emergency outpatient unit due to acute renal failure. The level of serum creatinine was 276 μmol/l. A CT scan showed bilateral hydronephroureter, large bladder stone (7 cm × 6 cm × 6 cm) and bladder wall thickness. He was diagnosed as post renal failure due to bilateral hydronephroureter. Large bladder stone is thought to be the cause of bilateral hydronephroureter and renal failure. To improve renal failure, we performed open cystolithotomy and urethral catheterization. Three days after the surgery, the level of serum creatinine decreased to 224 μmol/l. He was discharged from our hospital with uneventful course. Bladder calculus is thought to be a rare cause of renal failure. We summarize the characteristics of bladder calculus causing renal failure. We should keep that long-term pyuria and urinary symptom, and repeated urinary tract infection can cause huge bladder calculus and renal failure in mind.

  19. Tensile and compressive failure modes of laminated composites loaded by fatigue with different mean stress

    Science.gov (United States)

    Rotem, Assa

    1990-01-01

    Laminated composite materials tend to fail differently under tensile or compressive load. Under tension, the material accumulates cracks and fiber fractures, while under compression, the material delaminates and buckles. Tensile-compressive fatigue may cause either of these failure modes depending on the specific damage occurring in the laminate. This damage depends on the stress ratio of the fatigue loading. Analysis of the fatigue behavior of the composite laminate under tension-tension, compression-compression, and tension-compression had led to the development of a fatigue envelope presentation of the failure behavior. This envelope indicates the specific failure mode for any stress ratio and number of loading cycles. The construction of the fatigue envelope is based on the applied stress-cycles to failure (S-N) curves of both tensile-tensile and compressive-compressive fatigue. Test results are presented to verify the theoretical analysis.

  20. Common-Cause Failure Analysis in Event Assessment

    International Nuclear Information System (INIS)

    Rasmuson, D.M.; Kelly, D.L.

    2008-01-01

    This paper reviews the basic concepts of modeling common-cause failures (CCFs) in reliability and risk studies and then applies these concepts to the treatment of CCF in event assessment. The cases of a failed component (with and without shared CCF potential) and a component being unavailable due to preventive maintenance or testing are addressed. The treatment of two related failure modes (e.g. failure to start and failure to run) is a new feature of this paper, as is the treatment of asymmetry within a common-cause component group

  1. Data needs for common cause failure analysis

    International Nuclear Information System (INIS)

    Parry, G.W.; Paula, H.M.; Rasmuson, D.; Whitehead, D.

    1990-01-01

    The procedures guide for common cause failure analysis published jointly by USNRC and EPRI requires a detailed historical event analysis. Recent work on the further development of the cause-defense picture of common cause failures introduced in that guide identified the information that is necessary to perform the detailed analysis in an objective manner. This paper summarizes these information needs

  2. Erythrocyte Membrane Failure by Electromechanical Stress

    Directory of Open Access Journals (Sweden)

    E Du

    2018-01-01

    Full Text Available We envision that electrodeformation of biological cells through dielectrophoresis as a new technique to elucidate the mechanistic details underlying membrane failure by electrical and mechanical stresses. Here we demonstrate the full control of cellular uniaxial deformation and tensile recovery in biological cells via amplitude-modified electric field at radio frequency by an interdigitated electrode array in microfluidics. Transient creep and cyclic experiments were performed on individually tracked human erythrocytes. Observations of the viscoelastic-to-viscoplastic deformation behavior and the localized plastic deformations in erythrocyte membranes suggest that electromechanical stress results in irreversible membrane failure. Examples of membrane failure can be separated into different groups according to the loading scenarios: mechanical stiffening, physical damage, morphological transformation from discocyte to echinocyte, and whole cell lysis. These results show that this technique can be potentially utilized to explore membrane failure in erythrocytes affected by other pathophysiological processes.

  3. Paralysis and heart failure precede ion balance disruption in heat-stressed European green crabs.

    Science.gov (United States)

    Jørgensen, Lisa B; Overgaard, Johannes; MacMillan, Heath A

    2017-08-01

    Acute exposure of ectotherms to critically high temperatures causes injury and death, and this mortality has been associated with a number of physiological perturbations including impaired oxygen transport, loss of ion and water homeostasis, and neuronal failure. It is difficult to discern which of these factors, if any, is the proximate cause of heat injury because, for example, loss of ion homeostasis can impair neuromuscular function (including cardiac function), and conversely impaired oxygen transport reduces ATP supply and can thus reduce ion transport capacity. In this study we investigated if heat stress causes a loss of ion homeostasis in marine crabs and examined if such loss is related to heart failure. We held crabs (Carcinus maenas) at temperatures just below their critical thermal maximum and measured extracellular (hemolymph) and intracellular (muscle) ion concentrations over time. Analysis of Arrhenius plots for heart rates during heating ramps revealed a breakpoint temperature below which heart rate increased with temperature, and above which heart rate declined until complete cardiac failure. As hypothesised, heat stress reduced the Nernst equilibrium potentials of both K + and Na + , likely causing a depolarization of the membrane potential. To examine whether this loss of ion balance was likely to cause disruption of neuromuscular function, we exposed crabs to the same temperatures, but this time measured ion concentrations at the individual-specific times of complete paralysis (from which the crabs never recovered), and at the time of cardiac failure. Loss of ion balance was observed only after both paralysis and complete heart failure had occurred; indicating that the loss of neuromuscular function is not caused by a loss of ion homeostasis. Instead we suggest that the observed loss of ion balance may be linked to tissue damage related to heat death. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Finite Element Creep-Fatigue Analysis of a Welded Furnace Roll for Identifying Failure Root Cause

    Science.gov (United States)

    Yang, Y. P.; Mohr, W. C.

    2015-11-01

    Creep-fatigue induced failures are often observed in engineering components operating under high temperature and cyclic loading. Understanding the creep-fatigue damage process and identifying failure root cause are very important for preventing such failures and improving the lifetime of engineering components. Finite element analyses including a heat transfer analysis and a creep-fatigue analysis were conducted to model the cyclic thermal and mechanical process of a furnace roll in a continuous hot-dip coating line. Typically, the roll has a short life, modeling heat convection from hot air inside the furnace. The creep-fatigue analysis was performed by inputting the predicted temperature history and applying mechanical loads. The analysis results showed that the failure was resulted from a creep-fatigue mechanism rather than a creep mechanism. The difference of material properties between the filler metal and the base metal is the root cause for the roll failure, which induces higher creep strain and stress in the interface between the weld and the HAZ.

  5. Statistical study on applied stress dependence of failure time in stress corrosion cracking of Zircaloy-4 alloy

    International Nuclear Information System (INIS)

    Hirao, Keiichi; Yamane, Toshimi; Minamino, Yoritoshi; Tanaka, Akiei.

    1988-01-01

    Effects of applied stress on failure time in stress corrosion cracking of Zircaloy-4 alloy were investigated by Weibull distribution method. Test pieces in the evaculated silica tubes were annealed at 1,073 K for 7.2 x 10 3 s, and then quenched into ice-water. These species under constant applied stresses of 40∼90 % yield stress were immersed in CH 3 OH-1 w% I 2 solution at room temperature. The probability distribution of failure times under applied stress of 40 % of yield stress was described as single Weibull distribution, which had one shape parameter. The probability distributions of failure times under applied stress above 60 % of yield stress were described as composite and mixed Weibull distributions, which had the two shape parameters of Weibull distributions for the regions of the shorter time and longer one of failure. The values of these shape parameters in this study were larger than the value of 1 which corresponded to that of wear out failure. The observation of fracture surfaces and the stress dependence of the shape parameters indicated that the shape parameters both for the times of failure under 40 % of yield stress and for the longer ones above 60 % of yield stress corresponded to intergranular cracking, and that for shorter times of failure corresponded to transgranular cracking and dimple fracture. (author)

  6. Root cause of failure analysis and the system engineer

    International Nuclear Information System (INIS)

    Coppock, M.S.; Hartwig, A.W.

    1990-01-01

    In an industry where ever-increasing emphasis is being placed on root cause of failure determination, it is imperative that a successful nuclear utility have an effective means of identifying failures and performing the necessary analyses. The current Institute of Nuclear Power Operations (INPO) good practice, OE-907, root-cause analysis, gives references to methodology that will help determine breakdowns in procedures, programs, or design but gives very little guidance on how or when to perform component root cause of failure analyses. The system engineers of nuclear utilities are considered the focal point for their respective systems and are required by most programs to investigate component failures. The problem that the system engineer faces in determining a component root cause of failures lies in acquisition of the necessary data to identify the need to perform the analysis and in having the techniques and equipment available to perform it. The system engineers at the Palo Verde nuclear generating station routinely perform detailed component root cause of failure analyses. The Palo Verde program provides the system engineers with the information necessary to identify when a component root cause of failure is required. Palo Verde also has the necessary equipment on-site to perform the analyses

  7. BACFIRE, Minimal Cut Sets Common Cause Failure Fault Tree Analysis

    International Nuclear Information System (INIS)

    Fussell, J.B.

    1983-01-01

    1 - Description of problem or function: BACFIRE, designed to aid in common cause failure analysis, searches among the basic events of a minimal cut set of the system logic model for common potential causes of failure. The potential cause of failure is called a qualitative failure characteristics. The algorithm searches qualitative failure characteristics (that are part of the program input) of the basic events contained in a set to find those characteristics common to all basic events. This search is repeated for all cut sets input to the program. Common cause failure analysis is thereby performed without inclusion of secondary failure in the system logic model. By using BACFIRE, a common cause failure analysis can be added to an existing system safety and reliability analysis. 2 - Method of solution: BACFIRE searches the qualitative failure characteristics of the basic events contained in the fault tree minimal cut set to find those characteristics common to all basic events by either of two criteria. The first criterion can be met if all the basic events in a minimal cut set are associated by a condition which alone may increase the probability of multiple component malfunction. The second criterion is met if all the basic events in a minimal cut set are susceptible to the same secondary failure cause and are located in the same domain for that cause of secondary failure. 3 - Restrictions on the complexity of the problem - Maxima of: 1001 secondary failure maps, 101 basic events, 10 cut sets

  8. Stress relaxation in tempered glass caused by heat soak testing

    DEFF Research Database (Denmark)

    Schneider, Jens; Hilcken, Jonas; Aronen, Antti

    2016-01-01

    Heat soak testing of tempered glass is a thermal process required after the tempering process itself to bring glasses of commercial soda-lime-silica-glass to failure that are contaminated with nickel sulphide inclusions, diameter 50 mm to 500 mm typically. Thus, the tests avoid a so-called "spont...... of commercial soda-lime-silica glass, it causes stress relaxation in tempered glass and the fracture pattern of the glass changes accordingly, especially thin glasses are affected. Based on the Tool-Narayanaswamy-Model, this paper comprises the theoretical background of the stress...

  9. Increased Dicarbonyl Stress as a Novel Mechanism of Multi-Organ Failure in Critical Illness

    Directory of Open Access Journals (Sweden)

    Bas C. T. van Bussel

    2017-02-01

    Full Text Available Molecular pathological pathways leading to multi-organ failure in critical illness are progressively being unravelled. However, attempts to modulate these pathways have not yet improved the clinical outcome. Therefore, new targetable mechanisms should be investigated. We hypothesize that increased dicarbonyl stress is such a mechanism. Dicarbonyl stress is the accumulation of dicarbonyl metabolites (i.e., methylglyoxal, glyoxal, and 3-deoxyglucosone that damages intracellular proteins, modifies extracellular matrix proteins, and alters plasma proteins. Increased dicarbonyl stress has been shown to impair the renal, cardiovascular, and central nervous system function, and possibly also the hepatic and respiratory function. In addition to hyperglycaemia, hypoxia and inflammation can cause increased dicarbonyl stress, and these conditions are prevalent in critical illness. Hypoxia and inflammation have been shown to drive the rapid intracellular accumulation of reactive dicarbonyls, i.e., through reduced glyoxalase-1 activity, which is the key enzyme in the dicarbonyl detoxification enzyme system. In critical illness, hypoxia and inflammation, with or without hyperglycaemia, could thus increase dicarbonyl stress in a way that might contribute to multi-organ failure. Thus, we hypothesize that increased dicarbonyl stress in critical illness, such as sepsis and major trauma, contributes to the development of multi-organ failure. This mechanism has the potential for new therapeutic intervention in critical care.

  10. Coordination failure caused by sunspots

    DEFF Research Database (Denmark)

    Beugnot, Julie; Gürgüç, Zeynep; Øvlisen, Frederik Roose

    2012-01-01

    on the efficient equilibrium, we consider sunspots as a potential reason for coordination failure. We conduct an experiment with a three player 2x2x2 game in which coordination on the efficient equilibrium is easy and should normally occur. In the control session, we find almost perfect coordination on the payoff......-dominant equilibrium, but in the sunspot treatment, dis-coordination is frequent. Sunspots lead to significant inefficiency, and we conclude that sunspots can indeed cause coordination failure....

  11. Restoration of nuclear-import failure caused by triple A syndrome and oxidative stress

    International Nuclear Information System (INIS)

    Kiriyama, Takao; Hirano, Makito; Asai, Hirohide; Ikeda, Masanori; Furiya, Yoshiko; Ueno, Satoshi

    2008-01-01

    Triple A syndrome is an autosomal recessive neurological disease, mimicking motor neuron disease, and is caused by mutant ALADIN, a nuclear-pore complex component. We recently discovered that the pathogenesis involved impaired nuclear import of DNA repair proteins, including DNA ligase I and the cerebellar ataxia causative protein aprataxin. Such impairment was overcome by fusing classical nuclear localization signal (NLS) and 137-aa downstream sequence of XRCC1, designated stretched NLS (stNLS). We report here that the minimum essential sequence of stNLS (mstNLS) is residues 239-276, downsized by more than 100 aa. mstNLS enabled efficient nuclear import of DNA repair proteins in patient fibroblasts, functioned under oxidative stress, and reduced oxidative-stress-induced cell death, more effectively than stNLS. The stress-tolerability of mstNLS was also exerted in control fibroblasts and neuroblastoma cells. These findings may help develop treatments for currently intractable triple A syndrome and other oxidative-stress-related neurological diseases, and contribute to nuclear compartmentalization study

  12. Parameter Estimation of a Reliability Model of Demand-Caused and Standby-Related Failures of Safety Components Exposed to Degradation by Demand Stress and Ageing That Undergo Imperfect Maintenance

    Directory of Open Access Journals (Sweden)

    S. Martorell

    2017-01-01

    Full Text Available One can find many reliability, availability, and maintainability (RAM models proposed in the literature. However, such models become more complex day after day, as there is an attempt to capture equipment performance in a more realistic way, such as, explicitly addressing the effect of component ageing and degradation, surveillance activities, and corrective and preventive maintenance policies. Then, there is a need to fit the best model to real data by estimating the model parameters using an appropriate tool. This problem is not easy to solve in some cases since the number of parameters is large and the available data is scarce. This paper considers two main failure models commonly adopted to represent the probability of failure on demand (PFD of safety equipment: (1 by demand-caused and (2 standby-related failures. It proposes a maximum likelihood estimation (MLE approach for parameter estimation of a reliability model of demand-caused and standby-related failures of safety components exposed to degradation by demand stress and ageing that undergo imperfect maintenance. The case study considers real failure, test, and maintenance data for a typical motor-operated valve in a nuclear power plant. The results of the parameters estimation and the adoption of the best model are discussed.

  13. Seismically induced common cause failures in PSA of nuclear power plants

    International Nuclear Information System (INIS)

    Ravindra, M.K.; Johnson, J.J.

    1991-01-01

    In this paper, a research project on the seismically induced common cause failures in nuclear power plants performed for Toshiba Corp. is described. The objective of this research was to develop the procedure for estimating the common cause failure probabilities of different nuclear power plant components using the combination of seismic experience data, the review of sources of dependency, sensitivity studies and engineering judgement. The research project consisted of three tasks: the investigation of damage instances in past earthquakes, the analysis of multiple failures and their root causes, and the development of the methodology for assessing seismically induced common cause failures. The details of these tasks are explained. In this paper, the works carried out in the third task are described. A methodology for treating common cause failures and the correlation between component failures is formulated; it highlights the modeling of event trees taking into account common cause failures and the development of fault trees considering the correlation between component failures. The overview of seismic PSA, the quantification methods for dependent failures and Latin Hypercube sampling method are described. (K.I.)

  14. Investigations of inter-system common cause failures

    International Nuclear Information System (INIS)

    Nonclerca, P.; Gallois, M.; Vasseur, D.

    2012-01-01

    Intra-system common-cause failures (CCF) are widely studied and addressed in existing PSA models, but the information and studies that incorporate the potential for inter-system CCF is limited. However, the French Safety Authority has requested that EDF investigate the possibility of common-cause failure across system boundaries for Flamanville 3 (an EPR design). Also, the modeling of inter-system CCF, or the proof that their impact is negligible, would satisfy Capability Category III for one of the requirements in the ASME/ANS PRA standard in the U.S. EDF and EPRI have been working on a method to assess when it is necessary to take into account inter-system CCF in a PSA model between 2008 and 2010. This method is based both on the likelihood of inter-system CCF and on its demonstrated potential impact on CDF (core damage frequency). This method was first applied on pumps in different systems of the 900 MWe series plants. The second application concerned the motor-operated valves across different systems, using the same PSA model. This second application helped us refine the method, which was not optimal when the number of concerned components is very large. Since then, the method has been successfully applied on the pumps and 10 kV breakers of the EPR power plant in Flamanville. This paper describes the method and the results obtained in some of these studies. All studies have shown either that components in different systems, when they were not already part of a common cause failure group in the model, are not susceptible to common causes of failure, or that the potential for inter-system common-cause failure is negligible regarding the overall risk. (authors)

  15. Specific strain work as a failure criterion in plane stress state

    International Nuclear Information System (INIS)

    Zuchowski, R.; Zietkowski, L.

    1985-01-01

    An experimental verification of failure criterion based on specific strain work was performed. Thin-walled cylindrical specimens were examined by loading with constant force and constant torque moment, assuming different values for particular tests, at the same time keeping stress intensity constant, and by subjecting to thermal cycling. It was found that the critical value of failure did not depend on axial-to-shearing stresses ratio, i.e., on the type of state of stress. Thereby, the validity of the analysed failure criterion in plane stress was confirmed. Besides, a simple description of damage development in plane stress was suggested. (orig./RF)

  16. Effect of Thermal Stresses on the Failure Criteria of Fiber Composites

    DEFF Research Database (Denmark)

    Leong, Martin Klitgaard; Sankar, Bhavani V.

    2010-01-01

    , the latter, called micro-thermal stresses, has not been given much attention. In this paper the Direct Micromechanics Method is used to investigate the effects of micro-thermal stresses on the failure envelope of composites. Using FEA the unit-cell of the composite is analyzed. Assuming the failure criteria...... for the fiber and matrix are known, the exact failure envelope is developed. Using the micromechanics results, the Tsai-Wu failure envelope is modified to account for the micro-thermal stresses. The approach is demonstrated using two example structures at cryogenic temperature....

  17. Modes of failures: primary and secondary stresses

    International Nuclear Information System (INIS)

    Roche, R.L.

    1987-07-01

    The paper begins with a reminder that the purpose of stress classification is to ensure suitable margins with respect to failure modes. The distinction between primary stresses and secondary stresses is then examined and a method is given for assessing the degree of elastic follow up in the elastic plastic field. The importance of elastic follow up is then highlighted by an examination of the effect of primary and secondary stresses on crack behavior

  18. A new method for explicit modelling of single failure event within different common cause failure groups

    International Nuclear Information System (INIS)

    Kančev, Duško; Čepin, Marko

    2012-01-01

    Redundancy and diversity are the main principles of the safety systems in the nuclear industry. Implementation of safety components redundancy has been acknowledged as an effective approach for assuring high levels of system reliability. The existence of redundant components, identical in most of the cases, implicates a probability of their simultaneous failure due to a shared cause—a common cause failure. This paper presents a new method for explicit modelling of single component failure event within multiple common cause failure groups simultaneously. The method is based on a modification of the frequently utilised Beta Factor parametric model. The motivation for development of this method lays in the fact that one of the most widespread softwares for fault tree and event tree modelling as part of the probabilistic safety assessment does not comprise the option for simultaneous assignment of single failure event to multiple common cause failure groups. In that sense, the proposed method can be seen as an advantage of the explicit modelling of common cause failures. A standard standby safety system is selected as a case study for application and study of the proposed methodology. The results and insights implicate improved, more transparent and more comprehensive models within probabilistic safety assessment.

  19. Electromigration failures under bidirectional current stress

    Science.gov (United States)

    Tao, Jiang; Cheung, Nathan W.; Hu, Chenming

    1998-01-01

    Electromigration failure under DC stress has been studied for more than 30 years, and the methodologies for accelerated DC testing and design rules have been well established in the IC industry. However, the electromigration behavior and design rules under time-varying current stress are still unclear. In CMOS circuits, as many interconnects carry pulsed-DC (local VCC and VSS lines) and bidirectional AC current (clock and signal lines), it is essential to assess the reliability of metallization systems under these conditions. Failure mechanisms of different metallization systems (Al-Si, Al-Cu, Cu, TiN/Al-alloy/TiN, etc.) and different metallization structures (via, plug and interconnect) under AC current stress in a wide frequency range (from mHz to 500 MHz) has been study in this paper. Based on these experimental results, a damage healing model is developed, and electromigration design rules are proposed. It shows that in the circuit operating frequency range, the "design-rule current" is the time-average current. The pure AC component of the current only contributes to self-heating, while the average (DC component) current contributes to electromigration. To ensure longer thermal-migration lifetime under high frequency AC stress, an additional design rule is proposed to limit the temperature rise due to self-joule heating.

  20. Stress Transmission and Failure in Disordered Porous Media

    Science.gov (United States)

    Laubie, Hadrien; Radjai, Farhang; Pellenq, Roland; Ulm, Franz-Josef

    2017-08-01

    By means of extensive lattice-element simulations, we investigate stress transmission and its relation with failure properties in increasingly disordered porous systems. We observe a non-Gaussian broadening of stress probability density functions under tensile loading with increasing porosity and disorder, revealing a gradual transition from a state governed by single-pore stress concentration to a state controlled by multipore interactions and metric disorder. This effect is captured by the excess kurtosis of stress distributions and shown to be nicely correlated with the second moment of local porosity fluctuations, which appears thus as a (dis)order parameter for the system. By generating statistical ensembles of porous textures with varying porosity and disorder, we derive a general expression for the fracture stress as a decreasing function of porosity and disorder. Focusing on critical sites where the local stress is above the global fracture threshold, we also analyze the transition to failure in terms of a coarse-graining length. These findings provide a general framework which can also be more generally applied to multiphase and structural heterogeneous materials.

  1. Reliability-based failure cause assessment of collapsed bridge during construction

    International Nuclear Information System (INIS)

    Choi, Hyun-Ho; Lee, Sang-Yoon; Choi, Il-Yoon; Cho, Hyo-Nam; Mahadevan, Sankaran

    2006-01-01

    Until now, in many forensic reports, the failure cause assessments are usually carried out by a deterministic approach so far. However, it may be possible for the forensic investigation to lead to unreasonable results far from the real collapse scenario, because the deterministic approach does not systematically take into account any information on the uncertainties involved in the failures of structures. Reliability-based failure cause assessment (reliability-based forensic engineering) methodology is developed which can incorporate the uncertainties involved in structural failures and structures, and to apply them to the collapsed bridge in order to identify the most critical failure scenario and find the cause that triggered the bridge collapse. Moreover, to save the time and cost of evaluation, an algorithm of automated event tree analysis (ETA) is proposed and possible to automatically calculate the failure probabilities of the failure events and the occurrence probabilities of failure scenarios. Also, for reliability analysis, uncertainties are estimated more reasonably by using the Bayesian approach based on the experimental laboratory testing data in the forensic report. For the applicability, the proposed approach is applied to the Hang-ju Grand Bridge, which collapsed during construction, and compared with deterministic approach

  2. Change in failure stress on the southern san andreas fault system caused by the 1992 magnitude = 7.4 landers earthquake.

    Science.gov (United States)

    Stein, R S; King, G C; Lin, J

    1992-11-20

    The 28 June Landers earthquake brought the San Andreas fault significantly closer to failure near San Bernardino, a site that has not sustained a large shock since 1812. Stress also increased on the San Jacinto fault near San Bernardino and on the San Andreas fault southeast of Palm Springs. Unless creep or moderate earthquakes relieve these stress changes, the next great earthquake on the southern San Andreas fault is likely to be advanced by one to two decades. In contrast, stress on the San Andreas north of Los Angeles dropped, potentially delaying the next great earthquake there by 2 to 10 years.

  3. Common cause failure investigations using the European Reliability Data System

    International Nuclear Information System (INIS)

    Games, A.M.; Breewood, M.; Amendola, A.; Keller, A.Z.

    1984-01-01

    The European Reliability Data System (ERDS) has provided data for use in investigations into common cause failures (CCFs) in nuclear power plants. These investigations have been made on two levels, at a system and inter-system level. Data have been used from the Component Event Data Bank and from the Licensee Event Report Files, both part of the ERDS. The two studies required different methodologies although both commenced with a temporal sorting procedure for the failure events. The studies demonstrated that different types of common cause failure necessitate different search algorithms, and thus a data search must be closely related to an appropriate CCF classification system, which in the first instance would not be based on causes of failure. (author)

  4. Failure of Sierra White granite under general states of stress

    Science.gov (United States)

    Ingraham, M. D.; Dewers, T. A.; Lee, M.; Holdman, O.; Cheung, C.; Haimson, B. C.

    2017-12-01

    The effect of the intermediate principal stress on the failure of Sierra White granite was investigated by performing tests under true triaxial states of stress. Tests were performed under constant Lode angle conditions with Lode angles ranging from 0 to 30°, pure shear to axisymmetric compression. Results show that the failure of Sierra White granite is heavily dependent on the intermediate principal stress which became more dramatic as the mean stress increased. An analysis of the shear bands formed at failure was performed using an associated flow rule and the Rudnicki and Rice (1975) localization criteria. The localization analysis showed excellent agreement with experimental results. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  5. Estimation of common cause failure parameters for diesel generators

    International Nuclear Information System (INIS)

    Tirira, J.; Lanore, J.M.

    2002-10-01

    This paper presents a summary of some results concerning the feedback analysis of French Emergency diesel generator (EDG). The database of common cause failure for EDG has been updated. The data collected covers a period of 10 years. Several latent common cause failure (CCF) events counting in tens are identified. In fact, in this number of events collected, most are potential CCF. From events identified, 15% events are characterized as complete CCF. The database is organised following the structure proposed by 'International Common Cause Data Exchange' (ICDE project). Events collected are analyzed by failure mode and degree of failure. Qualitative analysis of root causes, coupling factors and corrective actions are studied. The exercise of quantitative analysis is in progress for evaluating CCF parameters taking into account the average impact vector and the rate of the independent failures. The interest of the average impact vector approach is that it makes it possible to take into account a wide experience feedback, not limited to complete CCF but including also many events related to partial or potential CCF. It has to be noted that there are no finalized quantitative conclusions yet to be drawn and analysis is in progress for evaluating diesel CCF parameters. In fact, the numerical coding CCF representation of the events uses a part of subjective analysis, which requests a complete and detailed event examination. (authors)

  6. Analysis Method of Common Cause Failure on Non-safety Digital Control System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yun Goo; Oh, Eun Gse [KHNP, Daejeon (Korea, Republic of)

    2014-08-15

    The effects of common cause failure on safety digital instrumentation and control system had been considered in defense in depth analysis with safety analysis method. However, the effects of common cause failure on non-safety digital instrumentation and control system also should be evaluated. The common cause failure can be included in credible failure on the non-safety system. In the I and C architecture of nuclear power plant, many design feature has been applied for the functional integrity of control system. One of that is segmentation. Segmentation defenses the propagation of faults in the I and C architecture. Some of effects from common cause failure also can be limited by segmentation. Therefore, in this paper there are two type of failure mode, one is failures in one control group which is segmented, and the other is failures in multiple control group because that the segmentation cannot defense all effects from common cause failure. For each type, the worst failure scenario is needed to be determined, so the analysis method has been proposed in this paper. The evaluation can be qualitative when there is sufficient justification that the effects are bounded in previous safety analysis. When it is not bounded in previous safety analysis, additional analysis should be done with conservative assumptions method of previous safety analysis or best estimation method with realistic assumptions.

  7. Computer aided approach to qualitative and quantitative common cause failure analysis for complex systems

    International Nuclear Information System (INIS)

    Cate, C.L.; Wagner, D.P.; Fussell, J.B.

    1977-01-01

    Common cause failure analysis, also called common mode failure analysis, is an integral part of a complete system reliability analysis. Existing methods of computer aided common cause failure analysis are extended by allowing analysis of the complex systems often encountered in practice. The methods aid in identifying potential common cause failures and also address quantitative common cause failure analysis

  8. Biaxial failure criteria and stress-strain response for concrete of containment structure

    International Nuclear Information System (INIS)

    Lee, S. K.; Woo, S. K.; Song, Y. C.; Kweon, Y. K.; Cho, C. H.

    2001-01-01

    Biaxial failure criteria and stress-strain response for plain concrete of containment structure on nuclear power plants are studied under uniaxial and biaxial stress(compression-compression, compression-tension, and tension-tension combined stress). The concrete specimens of a square plate type are used for uniaxial and biaxial loading. The experimental data indicate that the strength of concrete under biaxial compression, f 2 /f 1 =-1/-1, is 17 percent larger than under uniaxial compression and the poisson's ratio of concrete is 0.1745. On the base of the results, a biaxial failure envelope for plain concrete that the uniaxial strength is 5660 psi are provided, and the biaxial failure behaviors for three biaxial loading areas are plotted respectively. And, various analytical equations having the reliability are proposed for representations of the biaxial failure criteria and stress-strain response curves of concrete

  9. Failure Forecasting in Triaxially Stressed Sandstones

    Science.gov (United States)

    Crippen, A.; Bell, A. F.; Curtis, A.; Main, I. G.

    2017-12-01

    Precursory signals to fracturing events have been observed to follow power-law accelerations in spatial, temporal, and size distributions leading up to catastrophic failure. In previous studies this behavior was modeled using Voight's relation of a geophysical precursor in order to perform `hindcasts' by solving for failure onset time. However, performing this analysis in retrospect creates a bias, as we know an event happened, when it happened, and we can search data for precursors accordingly. We aim to remove this retrospective bias, thereby allowing us to make failure forecasts in real-time in a rock deformation laboratory. We triaxially compressed water-saturated 100 mm sandstone cores (Pc= 25MPa, Pp = 5MPa, σ = 1.0E-5 s-1) to the point of failure while monitoring strain rate, differential stress, AEs, and continuous waveform data. Here we compare the current `hindcast` methods on synthetic and our real laboratory data. We then apply these techniques to increasing fractions of the data sets to observe the evolution of the failure forecast time with precursory data. We discuss these results as well as our plan to mitigate false positives and minimize errors for real-time application. Real-time failure forecasting could revolutionize the field of hazard mitigation of brittle failure processes by allowing non-invasive monitoring of civil structures, volcanoes, and possibly fault zones.

  10. Common cause failures - a dilemma in perspective

    International Nuclear Information System (INIS)

    Smith, A.M.; Watson, I.A.

    1980-01-01

    This paper identifies the broad spectrum of common cause failure (CCF) definitions used by various authors. These definitions, as applied to real aircraft and nuclear reactor failure events, lead to a divergence of interpretation and a resultant confusion that obscures meaningful progress in CCF analysis. A new definition is proposed, explained, and tested against the examples. Technical as well as administrative practices are cited as ways to control or eliminate the product defects that lead to CCF. (author)

  11. Writing About Past Failures Attenuates Cortisol Responses and Sustained Attention Deficits Following Psychosocial Stress

    Science.gov (United States)

    DiMenichi, Brynne C.; Lempert, Karolina M.; Bejjani, Christina; Tricomi, Elizabeth

    2018-01-01

    Acute stress can harm performance. Paradoxically, writing about stressful events—such as past failures—has been shown to improve cognitive functioning and performance, especially in tasks that require sustained attention. Yet, there is little physiological evidence for whether writing about past failures or other negative events improves performance by reducing stress. In this experiment, we studied the effects of an acute psychosocial stressor, the Trier Social Stress Test, on attentional performance and salivary cortisol release in humans. Additionally, we investigated whether an expressive writing task could reduce the detrimental effects of stress, both on performance and physiological response. We found that when individuals were asked to write about a past failure before experiencing a stressor, they exhibited attenuated stress responses. Moreover, those who wrote about a past failure before being exposed to stress also exhibited better behavioral performance. Our results suggest that writing about a previous failure may allow an individual to experience a new stressor as less stressful, reducing its physiological and behavioral effects. PMID:29628878

  12. Analysis of the main causes of failures in the Atucha I PWR moderator circuit branch piping

    International Nuclear Information System (INIS)

    Porto, J.; Sarmiento, G.S.

    1983-01-01

    From 1977 to 1979 four through cracks were detected in the auxiliary connection of the moderator piping with the coolant circuit in the PWR Atucha I Nuclear Plant. The failures were observed to occur systematically in the same place of the pipe, where mechanical stresses were detected experimentally and thermal stresses were calculated based on temperature values measured on the pipe. The temperature field in steady state conditions as well as during thermal shocks was modelled by finite element codes, and the corresponding thermal stresses were than numerically calculated. Considering those thermal and mechanical solicitations, a crack propagation analysis based on the elastoplastic fracture mechanics and the finite element method is now being developed. Among other causes such as fatigue corrosion and vibrations, the results of the analysis show that the most preponderant factors determining the cracking are mechanical stress, thermal stress and thermal fatigue

  13. What Is Better Than Coulomb Failure Stress? A Ranking of Scalar Static Stress Triggering Mechanisms from 105 Mainshock-Aftershock Pairs

    Science.gov (United States)

    Meade, Brendan J.; DeVries, Phoebe M. R.; Faller, Jeremy; Viegas, Fernanda; Wattenberg, Martin

    2017-11-01

    Aftershocks may be triggered by the stresses generated by preceding mainshocks. The temporal frequency and maximum size of aftershocks are well described by the empirical Omori and Bath laws, but spatial patterns are more difficult to forecast. Coulomb failure stress is perhaps the most common criterion invoked to explain spatial distributions of aftershocks. Here we consider the spatial relationship between patterns of aftershocks and a comprehensive list of 38 static elastic scalar metrics of stress (including stress tensor invariants, maximum shear stress, and Coulomb failure stress) from 213 coseismic slip distributions worldwide. The rates of true-positive and false-positive classification of regions with and without aftershocks are assessed with receiver operating characteristic analysis. We infer that the stress metrics that are most consistent with observed aftershock locations are maximum shear stress and the magnitude of the second and third invariants of the stress tensor. These metrics are significantly better than random assignment at a significance level of 0.005 in over 80% of the slip distributions. In contrast, the widely used Coulomb failure stress criterion is distinguishable from random assignment in only 51-64% of the slip distributions. These results suggest that a number of alternative scalar metrics are better predictors of aftershock locations than classic Coulomb failure stress change.

  14. Modeling Stress Strain Relationships and Predicting Failure Probabilities For Graphite Core Components

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, Stephen [Cleveland State Univ., Cleveland, OH (United States)

    2013-09-09

    This project will implement inelastic constitutive models that will yield the requisite stress-strain information necessary for graphite component design. Accurate knowledge of stress states (both elastic and inelastic) is required to assess how close a nuclear core component is to failure. Strain states are needed to assess deformations in order to ascertain serviceability issues relating to failure, e.g., whether too much shrinkage has taken place for the core to function properly. Failure probabilities, as opposed to safety factors, are required in order to capture the bariability in failure strength in tensile regimes. The current stress state is used to predict the probability of failure. Stochastic failure models will be developed that can accommodate possible material anisotropy. This work will also model material damage (i.e., degradation of mechanical properties) due to radiation exposure. The team will design tools for components fabricated from nuclear graphite. These tools must readily interact with finite element software--in particular, COMSOL, the software algorithm currently being utilized by the Idaho National Laboratory. For the eleastic response of graphite, the team will adopt anisotropic stress-strain relationships available in COMSO. Data from the literature will be utilized to characterize the appropriate elastic material constants.

  15. Modeling Stress Strain Relationships and Predicting Failure Probabilities For Graphite Core Components

    International Nuclear Information System (INIS)

    Duffy, Stephen

    2013-01-01

    This project will implement inelastic constitutive models that will yield the requisite stress-strain information necessary for graphite component design. Accurate knowledge of stress states (both elastic and inelastic) is required to assess how close a nuclear core component is to failure. Strain states are needed to assess deformations in order to ascertain serviceability issues relating to failure, e.g., whether too much shrinkage has taken place for the core to function properly. Failure probabilities, as opposed to safety factors, are required in order to capture the bariability in failure strength in tensile regimes. The current stress state is used to predict the probability of failure. Stochastic failure models will be developed that can accommodate possible material anisotropy. This work will also model material damage (i.e., degradation of mechanical properties) due to radiation exposure. The team will design tools for components fabricated from nuclear graphite. These tools must readily interact with finite element software--in particular, COMSOL, the software algorithm currently being utilized by the Idaho National Laboratory. For the eleastic response of graphite, the team will adopt anisotropic stress-strain relationships available in COMSO. Data from the literature will be utilized to characterize the appropriate elastic material constants.

  16. Exploitation of a component event data bank for common cause failure analysis

    International Nuclear Information System (INIS)

    Games, A.M.; Amendola, A.; Martin, P.

    1985-01-01

    Investigations into using the European Reliability Data System Component Event Data Bank for common cause failure analysis have been carried out. Starting from early exercises where data were analyzed without computer aid, different types of linked multiple failures have been identified. A classification system is proposed based on this experience. It defines a multiple failure event space wherein each category defines causal, modal, temporal and structural links between failures. It is shown that a search algorithm which incorporates the specific interrogative procedures of the data bank can be developed in conjunction with this classification system. It is concluded that the classification scheme and the search algorithm are useful organizational tools in the field of common cause failures studies. However, it is also suggested that the use of the term common cause failure should be avoided since it embodies to many different types of linked multiple failures

  17. Revision of unicompartmental knee arthroplasty: implants used and causes of failure

    Directory of Open Access Journals (Sweden)

    Alan de Paula Mozella

    2014-04-01

    Full Text Available OBJECTIVE: to determine the causes of unicondylar knee arthroplasty failures, as well as identify the implants used and the need of bone grafting in patients undergoing revision UKA in Center of Knee Surgery at the Instituto Nacional de Traumatologia e Ortopedia (INTO in the period between January 1990 and January 2013.METHODS: a retrospective analysis of the medical documentation and imaging, determining the cause of failure of UKA and the time of its occurrence, as well as prosthetic components implanted during the review and the need for bone grafting.RESULTS: in this study, 27 UKA failures in 26 patients were included. Collapse of one or more components was the main cause of failure, occurring in 33% of patients. Aseptic failure was identified in 30% of cases, progression of osteoarthrosis in 15%, infection and pain 7% each, and osteolysis and polyethylene failure in 4% each. Early failure occurred in 41% of all revisions of UKA and late failure in 59%. 23 patients have undergone revision of UK.CONCLUSION: in 35% of revisions the use of bone grafting was needed in tibial area; in 3 cases we needed allograft from Tissue Bank. We did not use metal increase in any of the revision. In one patient we used implant constraint for instability.

  18. A pragmatic approach to estimate alpha factors for common cause failure analysis

    International Nuclear Information System (INIS)

    Hassija, Varun; Senthil Kumar, C.; Velusamy, K.

    2014-01-01

    Highlights: • Estimation of coefficients in alpha factor model for common cause analysis. • A derivation of plant specific alpha factors is demonstrated. • We examine sensitivity of common cause contribution to total system failure. • We compare beta factor and alpha factor models for various redundant configurations. • The use of alpha factors is preferable, especially for large redundant systems. - Abstract: Most of the modern technological systems are deployed with high redundancy but still they fail mainly on account of common cause failures (CCF). Various models such as Beta Factor, Multiple Greek Letter, Binomial Failure Rate and Alpha Factor exists for estimation of risk from common cause failures. Amongst all, alpha factor model is considered most suitable for high redundant systems as it arrives at common cause failure probabilities from a set of ratios of failures and the total component failure probability Q T . In the present study, alpha factor model is applied for the assessment of CCF of safety systems deployed at two nuclear power plants. A method to overcome the difficulties in estimation of the coefficients viz., alpha factors in the model, importance of deriving plant specific alpha factors and sensitivity of common cause contribution to the total system failure probability with respect to hazard imposed by various CCF events is highlighted. An approach described in NUREG/CR-5500 is extended in this study to provide more explicit guidance for a statistical approach to derive plant specific coefficients for CCF analysis especially for high redundant systems. The procedure is expected to aid regulators for independent safety assessment

  19. Causes and effects of vital instrumentation and control power supply bus failures

    International Nuclear Information System (INIS)

    Muhlheim, M.D.; Murphy, G.A.

    1987-01-01

    This article presents the results of a study in which the objective was to evaluate nuclear power-plant operating experience to identify the causes and the effects of vital instrumentation and control (I and C) power supply bus failures. Vital I and C power is normally provided to essential instrumentation and controls through either vital d-c or a-c power supply systems. The vital d-c power supply system generally provides control power for starting the diesel generators, for operating electrical circuit breakers, and for controlling various logic circuits. The vital d-c power system also supplies vital a-c power through an inverter. The vital a-c power supply system generally feeds the reactor protection system channels, the engineered safety features actuation system channels, and critical instrumentation in the control room. The leading cause of vital bus failures is inverter failures; other causes are human errors, battery charger failures, and miscellaneous failures. The effects of these failures are that the margin of safety can be degraded by (1) denying key information to the operators, (2) inducing plant transients, (3) causing safety injection actuations, and (4) causing the loss of shutdown cooling flow

  20. A multiple shock model for common cause failures using discrete Markov chain

    International Nuclear Information System (INIS)

    Chung, Dae Wook; Kang, Chang Soon

    1992-01-01

    The most widely used models in common cause analysis are (single) shock models such as the BFR, and the MFR. But, single shock model can not treat the individual common cause separately and has some irrational assumptions. Multiple shock model for common cause failures is developed using Markov chain theory. This model treats each common cause shock as separately and sequently occuring event to implicate the change in failure probability distribution due to each common cause shock. The final failure probability distribution is evaluated and compared with that from the BFR model. The results show that multiple shock model which minimizes the assumptions in the BFR model is more realistic and conservative than the BFR model. The further work for application is the estimations of parameters such as common cause shock rate and component failure probability given a shock,p, through the data analysis

  1. Common cause failure: enhancing defenses against root cause and coupling factor

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, Poorva; Kim, Sok Chul [KINS, Daejeon (Korea, Republic of)

    2016-10-15

    A Common Cause Failure(CCF) event refers to a specific class of dependent events that result from co-existence of two main factors: Susceptibility of components to fail or become unavailable due to particular root cause of failure, and coupling factor coupling mechanism) that creates the condition for multiple components getting affected. PSA (Probabilistic Safety Assessment) operating experience of Nuclear Power Plants have demonstrated that dependent events such as CCF events are major contributor to risk during operation. From cost-benefit consideration, putting significant design modifications in place to prevent CCF would not be desirable in terms of risk management regulatory effectiveness and efficiency. The aim of this study was to propose feasible defenses against CCF from cost benefit consideration to enhance the safety. This study provides the CDM and CFDM of EDG. Defenses employed against cause and coupling factor can be easily employed in operation and maintenance programme of NPP and are not an additional cost burden. Such enhancement of defense against the CCF can give a modest improvement in CDF. This approach is specifically helpful in plants that are already under operation and significant modifications are not economically feasible.

  2. Gravity-driven groundwater flow and slope failure potential: 1. Elastic effective-stress model

    Science.gov (United States)

    Iverson, Richard M.; Reid, Mark E.

    1992-01-01

    Hilly or mountainous topography influences gravity-driven groundwater flow and the consequent distribution of effective stress in shallow subsurface environments. Effective stress, in turn, influences the potential for slope failure. To evaluate these influences, we formulate a two-dimensional, steady state, poroelastic model. The governing equations incorporate groundwater effects as body forces, and they demonstrate that spatially uniform pore pressure changes do not influence effective stresses. We implement the model using two finite element codes. As an illustrative case, we calculate the groundwater flow field, total body force field, and effective stress field in a straight, homogeneous hillslope. The total body force and effective stress fields show that groundwater flow can influence shear stresses as well as effective normal stresses. In most parts of the hillslope, groundwater flow significantly increases the Coulomb failure potential Φ, which we define as the ratio of maximum shear stress to mean effective normal stress. Groundwater flow also shifts the locus of greatest failure potential toward the slope toe. However, the effects of groundwater flow on failure potential are less pronounced than might be anticipated on the basis of a simpler, one-dimensional, limit equilibrium analysis. This is a consequence of continuity, compatibility, and boundary constraints on the two-dimensional flow and stress fields, and it points to important differences between our elastic continuum model and limit equilibrium models commonly used to assess slope stability.

  3. Writing About Past Failures Attenuates Cortisol Responses and Sustained Attention Deficits Following Psychosocial Stress

    Directory of Open Access Journals (Sweden)

    Brynne C. DiMenichi

    2018-03-01

    Full Text Available Acute stress can harm performance. Paradoxically, writing about stressful events—such as past failures—has been shown to improve cognitive functioning and performance, especially in tasks that require sustained attention. Yet, there is little physiological evidence for whether writing about past failures or other negative events improves performance by reducing stress. In this experiment, we studied the effects of an acute psychosocial stressor, the Trier Social Stress Test, on attentional performance and salivary cortisol release in humans. Additionally, we investigated whether an expressive writing task could reduce the detrimental effects of stress, both on performance and physiological response. We found that when individuals were asked to write about a past failure before experiencing a stressor, they exhibited attenuated stress responses. Moreover, those who wrote about a past failure before being exposed to stress also exhibited better behavioral performance. Our results suggest that writing about a previous failure may allow an individual to experience a new stressor as less stressful, reducing its physiological and behavioral effects.

  4. On machine surface to the unit event causing residual stress

    International Nuclear Information System (INIS)

    Arunachalama, R.M.; Mannanb, M.A.; Spowageca, A.

    2005-01-01

    Integrity and reduce overall costs. Within the framework of surface integrity investigations, special emphasis is given to the measurement of residual stresses because they contribute directly to premature failure of components. Since the highest residual stresses are to be found in surface layers, these deserve special attention when dealing with dynamically, heavily loaded machine parts such as gas turbine components used in aero engines. Of the many techniques available for the measurement of residual stresses, the most highly developed and widely used non-destructive method is based on X-ray diffraction (XRD). However, it is not possible to use this technique for inspection of all the components, since it is time consuming, complicated as well as expensive. In this paper, a method is being proposed that augments the XRD method but at the same time capable of inspecting all the components. A non-destructive, visual inspection technique has been developed that can correlate the characteristic features on the surface to the unit event causing the residual stress and the type of residual stress generated on the machined surface. Pictures of the machined surfaces have been taken using a digital video microscope at a magnification of 500 and the surface feature correlated to the unit event causing the residual stress. Sharp and well defined long grooves indicate that the plastic deformation is dominated by a mechanical unit event while appearance of streaks and small areas of smeared material indicate that the plastic deformation is dominated by a thermal unit event. These trends have been confirmed by measuring the residual stresses using XRD. The proposed technique is an attempt at establishing a simple methodology that would be useful to industries manufacturing aerospace and other components that require good surface integrity. (Author)

  5. Investigation of Macroscopic Brittle Creep Failure Caused by Microcrack Growth Under Step Loading and Unloading in Rocks

    Science.gov (United States)

    Li, Xiaozhao; Shao, Zhushan

    2016-07-01

    The growth of subcritical cracks plays an important role in the creep of brittle rock. The stress path has a great influence on creep properties. A micromechanics-based model is presented to study the effect of the stress path on creep properties. The microcrack model of Ashby and Sammis, Charles' Law, and a new micro-macro relation are employed in our model. This new micro-macro relation is proposed by using the correlation between the micromechanical and macroscopic definition of damage. A stress path function is also introduced by the relationship between stress and time. Theoretical expressions of the stress-strain relationship and creep behavior are derived. The effects of confining pressure on the stress-strain relationship are studied. Crack initiation stress and peak stress are achieved under different confining pressures. The applied constant stress that could cause creep behavior is predicted. Creep properties are studied under the step loading of axial stress or the unloading of confining pressure. Rationality of the micromechanics-based model is verified by the experimental results of Jinping marble. Furthermore, the effects of model parameters and the unloading rate of confining pressure on creep behavior are analyzed. The coupling effect of step axial stress and confining pressure on creep failure is also discussed. The results provide implications on the deformation behavior and time-delayed rockburst mechanism caused by microcrack growth on surrounding rocks during deep underground excavations.

  6. Probability of failure prediction for step-stress fatigue under sine or random stress

    Science.gov (United States)

    Lambert, R. G.

    1979-01-01

    A previously proposed cumulative fatigue damage law is extended to predict the probability of failure or fatigue life for structural materials with S-N fatigue curves represented as a scatterband of failure points. The proposed law applies to structures subjected to sinusoidal or random stresses and includes the effect of initial crack (i.e., flaw) sizes. The corrected cycle ratio damage function is shown to have physical significance.

  7. Failure analysis on a ruptured petrochemical pipe

    Energy Technology Data Exchange (ETDEWEB)

    Harun, Mohd [Industrial Technology Division, Malaysian Nuclear Agency, Ministry of Science, Technology and Innovation Malaysia, Bangi, Kajang, Selangor (Malaysia); Shamsudin, Shaiful Rizam; Kamardin, A. [Univ. Malaysia Perlis, Jejawi, Arau (Malaysia). School of Materials Engineering

    2010-08-15

    The failure took place on a welded elbow pipe which exhibited a catastrophic transverse rupture. The failure was located on the welding HAZ region, parallel to the welding path. Branching cracks were detected at the edge of the rupture area. Deposits of corrosion products were also spotted. The optical microscope analysis showed the presence of transgranular failures which were related to the stress corrosion cracking (SCC) and were predominantly caused by the welding residual stress. The significant difference in hardness between the welded area and the pipe confirmed the findings. Moreover, the failure was also caused by the low Mo content in the stainless steel pipe which was detected by means of spark emission spectrometer. (orig.)

  8. Variations of fracture toughness and stress-strain curve of cold worked stainless steel and their influence on failure strength of cracked pipe

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2016-01-01

    In order to assess failure probability of cracked components, it is important to know the variations of the material properties and their influence on the failure load assessment. In this study, variations of the fracture toughness and stress-strain curve were investigated for cold worked stainless steel. The variations of the 0.2% proof and ultimate strengths obtained using 8 specimens of 20% cold worked stainless steel (CW20) were 77 MPa and 81 MPa, respectively. The respective variations were decreased to 13 and 21 MPa for 40% cold worked material (CW40). Namely, the variation in the tensile strength was decreased by hardening. The COVs (coefficients of variation) of fracture toughness were 7.3% and 16.7% for CW20 and CW40, respectively. Namely, the variation in the fracture toughness was increased by hardening. Then, in order to investigate the influence of the variations in the material properties on failure load of a cracked pipe, flaw assessments were performed for a cracked pipe subjected to a global bending load. Using the obtained material properties led to variation in the failure load. The variation in the failure load of the cracked pipe caused by the variation in the stress-strain curve was less than 1.5% for the COV. The variation in the failure load caused by fracture toughness variation was relatively large for CW40, although it was less than 2.0% for the maximum case. It was concluded that the hardening induced by cold working does not cause significant variation in the failure load of cracked stainless steel pipe. (author)

  9. The multi-class binomial failure rate model for the treatment of common-cause failures

    International Nuclear Information System (INIS)

    Hauptmanns, U.

    1995-01-01

    The impact of common cause failures (CCF) on PSA results for NPPs is in sharp contrast with the limited quality which can be achieved in their assessment. This is due to the dearth of observations and cannot be remedied in the short run. Therefore the methods employed for calculating failure rates should be devised such as to make the best use of the few available observations on CCF. The Multi-Class Binomial Failure Rate (MCBFR) Model achieves this by assigning observed failures to different classes according to their technical characteristics and applying the BFR formalism to each of these. The results are hence determined by a superposition of BFR type expressions for each class, each of them with its own coupling factor. The model thus obtained flexibly reproduces the dependence of CCF rates on failure multiplicity insinuated by the observed failure multiplicities. This is demonstrated by evaluating CCFs observed for combined impulse pilot valves in German NPPs. (orig.) [de

  10. Effects of Common Cause Failure on Electrical Systems

    International Nuclear Information System (INIS)

    Pepper, Kevin

    2015-01-01

    The essential electrical systems of reactor designs have developed progressively with an increased focus on the use of redundant, segregated and independent safety system equipment 'trains'. In this arrangement, essential safety functions associated with safe shutdown and cooling of the reactor are replicated on near identical electrical systems with each of the trains of safety system equipment supported by a fully rated standby generator. Development in designs has seen the number of trains increased to enable maintenance to be undertaken with reactors at power, improving the economics of the units whilst maintaining nuclear safety. This paper provides a background to common cause failure and provides examples where supporting guidance and international experience is available. It also highlights the regulatory guidance available to UK licensees. Recent examples of common cause failures on plant in the UK are presented together with an issue identified during the recent Generic Design Assessment review of new reactor designs within the UK. It was identified that one design was claiming a very low probability of failure associated with the loss of a single break and no-break voltage level, orders of magnitude below the target figure within ONR's Safety Assessment Principles. On closer scrutiny it was established that a significant safety function provided from identical low voltage switchboards would be lost in the event of a common cause failure affecting these boards. The paper will explain the action that has been taken by the requesting party to improve the resilience of the design and how this impacts on the ONR reliability targets for reactor designs within the UK. (authors)

  11. Deformation and Failure Mechanism of Roadway Sensitive to Stress Disturbance and Its Zonal Support Technology

    Directory of Open Access Journals (Sweden)

    Qiangling Yao

    2016-01-01

    Full Text Available The 6163 haulage roadway in the Qidong coal mine passes through a fault zone, which causes severe deformation in the surrounding rock, requiring repeated roadway repairs. Based on geological features in the fault area, we analyze the factors affecting roadway deformation and failure and propose the concept of roadway sensitive to stress disturbance (RSSD. We investigate the deformation and failure mechanism of the surrounding rocks of RSSD using field monitoring, theoretical analysis, and numerical simulation. The deformation of the surrounding rocks involves dilatation of shallow rocks and separation of deep rocks. Horizontal and longitudinal fissures evolve to bed separation and fracture zones; alternatively, fissures can evolve into fracture zones with new fissures extending to deeper rock. The fault affects the stress field of the surrounding rock to ~27 m radius. Its maximum impact is on the vertical stress of the rib rock mass and its minimum impact is on the vertical stress of the floor rock mass. Based on our results, we propose a zonal support system for a roadway passing through a fault. Engineering practice shows that the deformation of the surrounding rocks of the roadway can be effectively controlled to ensure normal and safe production in the mine.

  12. Causes of failure to control hypertension in people over 65 years of age

    Directory of Open Access Journals (Sweden)

    Alireza Khosravi

    2012-03-01

    Full Text Available BACKGROUND: Hypertension is a major cause of cardiovascular diseases whose prevalence increases by 10% for every 10 years after 50 years of age. This study aimed to investigate the causes of failure to control blood pressure in people aged over 65 years old. METHODS: This descriptive case-control study was conducted on 200 participants aged over 65 years old who were diagnosed with hypertension through a routine travel check-up for pilgrimage to Mecca in Amin Hospital, Isfahan, Iran during 2003. Following the medical examinations and blood pressure measurements according to the World Health Organization (WHO standards, the participants were divided into two groups of controlled blood pressure (case and uncontrolled blood pressure (control. A questionnaire was filled in for each participant and the data was analyzed using chi-square and student-t tests. RESULTS: The mean age was 70.7 ± 5.2 and 69 ± 4.9 in case and control groups, respectively. Less than half of the participants in the case group took anti-hypertensive medicine, out of which 87.5% were treated by a physician and 12.5% practiced self-therapy. In addition, 25% took their medicine regularly and 55% expressed a lack of motivation as the cause of discontinuing their medication. Furthermore, patients with controlled blood pressure had significantly better knowledge and performance than the case group (P < 0.05. CONCLUSION: The most common causes of failure to control blood pressure were poor knowledge, inappropriate practice in diet, stress, smoking, and irregular intake of medication. Keywords: Hypertension, Cardiovascular Diseases, Antihypertensive Agents, Diet Therapy    

  13. Insights About Emergency Diesel Generator Failures from the USNRC's Common Cause Failure Database

    International Nuclear Information System (INIS)

    Mosleh, A.; Rasmuson, D.; Marshall, F.; Wierman, T.

    1999-01-01

    The US Nuclear Regulatory Commission has sponsored development of a database of common cause failure events for use in commercial nuclear power plant risk and reliability analyses. This paper presents a summary of the results from analysis of the emergency diesel generator data from the database. The presentation is limited to the overall insights, the design and manufacturing cause and the instrumentation and control sub-system

  14. Data analysis using the Binomial Failure Rate common cause model

    International Nuclear Information System (INIS)

    Atwood, C.L.

    1983-09-01

    This report explains how to use the Binomial Failure Rate (BFR) method to estimate common cause failure rates. The entire method is described, beginning with the conceptual model, and covering practical issues of data preparation, treatment of variation in the failure rates, Bayesian estimation of the quantities of interest, checking the model assumptions for lack of fit to the data, and the ultimate application of the answers

  15. Dynamic stresses, coulomb failure, and remote triggering: corrected

    Science.gov (United States)

    Hill, David P.

    2012-01-01

    Dynamic stresses associated with crustal surface waves with 15–30 s periods and peak amplitudes Coulomb failure models based on a frictional strength threshold offer one explanation for instances of rapid‐onset triggered seismicity that develop during the surface‐wave peak dynamic stressing. Evaluation of the triggering potential of surface‐wave dynamic stresses acting on critically stressed faults using a Mohr’s circle representation together with the Coulomb failure criteria indicates that Love waves should have a higher triggering potential than Rayleigh waves for most fault orientations and wave incidence angles. That (1) the onset of triggered seismicity often appears to begin during the Rayleigh wave rather than the earlier arriving Love wave, and (2) Love‐wave amplitudes typically exceed those for Rayleigh waves suggests that the explanation for rapid‐onset dynamic triggering may not reside solely with a simple static‐threshold friction mode. The results also indicate that normal faults should be more susceptible to dynamic triggering by 20‐s Rayleigh‐wave stresses than thrust faults in the shallow seismogenic crust (<10  km) while the advantage tips in favor of reverse faults greater depths. This transition depth scales with wavelength and coincides roughly with the transition from retrograde‐to‐prograde particle motion. Locally elevated pore pressures may have a role in the observed prevalence of dynamic triggering in extensional regimes and geothermal/volcanic systems. The result is consistent with the apparent elevated susceptibility of extensional or transtensional tectonic regimes to remote triggering by Rayleigh‐wave dynamic stresses than compressional or transpressional regimes.

  16. Numerical analysis oriented biaxial stress-strain relation and failure criterion of plain concrete

    International Nuclear Information System (INIS)

    Link, J.

    1975-01-01

    A biaxial stress-strain relation and failure criterion is proposed, which is applicable to structural analysis methods. The formulation of material behavior of plain concrete in biaxial stress-state was developed. A nonlinear elastic, anisotropic stress-strain relation was derived with two moduli of elasticity, E 1 , E 2 and Poisson's ratios, ν 1 , ν 2 , which depend on the prevailing biaxial stress state. The stress-strain relation is valid in the whole biaxial stress field, that means with a smooth transition between the domains of tension/tension, tension/compression and compression/compression. The stress-dependent moduli E 1 , E 2 and the Poisson's ratios ν 1 , ν 2 are approximated by polynomials, trigonometrical and exponential functions. A failure criterion was defined by approximating the test results of the biaxial ultimate concrete strength with a 7th degree polynomial, which is also valid in the whole biaxial stress domain. The definition of the state of failure is given as a function of stresses as well as strains. Initial parameters of the formulation of the biaxial material behavior are the uniaxial cylindrical strength of concrete and the initial values of Young's modulus and Poisson's ratio. A simple expansion of this formulation makes it applicable not only to normal but also to light-weight concrete. Comparison of numerically calculated stress-strain curves up to the ultimate biaxial stresses which indicate the failure criteria with those obtained from tests show a very good agreement. It is shown, that the biaxial stress-strain relation can be extended for use in cases of triaxial tension/tension/compression stress state. Numerical examples of analysis of concrete slabs show the importance of incorporation of a realistic material behavior for better safety estimations

  17. Atrial Fibrillation and Heart Failure - Cause or Effect?

    Science.gov (United States)

    Prabhu, Sandeep; Voskoboinik, Aleksandr; Kaye, David M; Kistler, Peter M

    2017-09-01

    There are emerging epidemics of atrial fibrillation (AF) and heart failure in most developed countries, with a significant health burden. Due to many shared pathophysiological mechanisms, which facilitate the maintenance of each condition, AF and heart failure co-exist in up to 30% of patients. In the circumstance where known structural causes of heart failure (such as myocardial infarction) are absent, patients presenting with both conditions present a unique challenge, particularly as the temporal relationship of each condition can often remain elusive from the clinical history. The question of whether the AF is driving, or significantly contributing to the left ventricular (LV) dysfunction, rather than merely a consequence of heart failure, has become ever more pertinent, especially as catheter ablation now offers a significant advancement over existing rhythm control strategies. This paper will review the inter-related physiological drivers of AF and heart failure before considering the implications from the outcomes of recent clinical trials in patients with AF and heart failure. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  18. Electromechanical stress in transformers caused by three-phase short-circuits; Estresse eletromecanico em transformadores causado por curtos-circuitos trifasicos

    Energy Technology Data Exchange (ETDEWEB)

    Rosentino, A.J.J. Pereira; Delaiba, A.C.; Saraiva, E.; Oliveira, J.C. de; Lynce, M. [Universidade Federal de Uberlandia (UFU), MG (Brazil). Fac. de Engenharia Eletrica], Emails: arnaldoufu@gmail.com, delaiba@ufu.br, elise.saraiva@yahoo.com.br, jcoliveira@ufu.br, lynce@ufu.br; Bronzeado, H. de S. [Companhia Hidro Eletrica do Sao Francisco (CHESF), Recife, PE (Brazil)], Emails: herivelto.bronzeado@gmail.com, hebron@chesf.gov.br

    2009-07-01

    One of the reasons for internal failures of transformers is the weakness of the isolation of its conductors/coils due to vibrations caused by electromechanics forces produced by the high short-circuit currents. In this context, this paper presents a methodology to estimate the electromechanical stress in transformers caused by three-phase short circuits. Details of the characteristics of radial and axial forces that can occur in concentric windings of transformers, focusing mainly on the axial are presented. It is presented the preliminary description of techniques for diagnosis and monitoring of transformers in the face of mechanical stress caused by short circuit. This study considers the transformers core involved.

  19. High lung volume increases stress failure in pulmonary capillaries

    Science.gov (United States)

    Fu, Z.; Costello, M. L.; Tsukimoto, K.; Prediletto, R.; Elliott, A. R.; Mathieu-Costello, O.; West, J. B.

    1992-01-01

    We previously showed that when pulmonary capillaries in anesthetized rabbits are exposed to a transmural pressure (Ptm) of approximately 40 mmHg, stress failure of the walls occurs with disruption of the capillary endothelium, alveolar epithelium, or sometimes all layers. The present study was designed to test whether stress failure occurred more frequently at high than at low lung volumes for the same Ptm. Lungs of anesthetized rabbits were inflated to a transpulmonary pressure of 20 cmH2O, perfused with autologous blood at 32.5 or 2.5 cmH2O Ptm, and fixed by intravascular perfusion. Samples were examined by both transmission and scanning electron microscopy. The results were compared with those of a previous study in which the lung was inflated to a transpulmonary pressure of 5 cmH2O. There was a large increase in the frequency of stress failure of the capillary walls at the higher lung volume. For example, at 32.5 cmH2O Ptm, the number of endothelial breaks per millimeter cell lining was 7.1 +/- 2.2 at the high lung volume compared with 0.7 +/- 0.4 at the low lung volume. The corresponding values for epithelium were 8.5 +/- 1.6 and 0.9 +/- 0.6. Both differences were significant (P less than 0.05). At 52.5 cmH2O Ptm, the results for endothelium were 20.7 +/- 7.6 (high volume) and 7.1 +/- 2.1 (low volume), and the corresponding results for epithelium were 32.8 +/- 11.9 and 11.4 +/- 3.7. At 32.5 cmH2O Ptm, the thickness of the blood-gas barrier was greater at the higher lung volume, consistent with the development of more interstitial edema. Ballooning of the epithelium caused by accumulation of edema fluid between the epithelial cell and its basement membrane was seen at 32.5 and 52.5 cmH2O Ptm. At high lung volume, the breaks tended to be narrower and fewer were oriented perpendicular to the axis of the pulmonary capillaries than at low lung volumes. Transmission and scanning electron microscopy measurements agreed well. Our findings provide a physiological

  20. ICDE project report: collection and analysis of common-cause failure of check valves

    International Nuclear Information System (INIS)

    Theiss, Klaus; Hessel, Philippe; Werner, Wolfgang

    2003-05-01

    This report documents a study performed on the set of Common Cause Failure (CCF) events of Check Valves (CVs). The events studied here were derived from the International CCF Data Exchange (ICDE) database. Organizations from Canada, Finland, France, Germany, Netherlands, Sweden, Switzerland and the United States contributed with data to this data exchange. This study examines 94 CCF events of CVs reported in the ICDE database by tabulating the data and observing trends. The database contains general information about event attributes like root cause, coupling factor, detection method and corrective action taken. As part of this study, most of these events were reviewed in more detail and characterized by failure cause and failure symptom categories. The study itself begins with an overview of the entire data set in chapter 5. Charts are provided for each of the above-mentioned event attributes. This chapter forms the baseline for chapter 6. The intention of chapter 6 is to give the reader a deeper qualitative insight in the database content beyond that obtained from using the event coding only. Chapter 7 contains the summary of the study results and the conclusions derived from. Approximately 8% of all ICDE events of CVs were complete CCFs (all redundant components had failed). The number of partial CCF events (at least two of the redundant components failed) accounted for 24%. In the remaining 68% of the ICDE events, less than two components had failed completely, and the other components of the observed group only suffered from small defects, incipient degradation or were not affected at all. However, it was found that for more than 75% of the ICDE events the causal factors had a high probability to be shared by all the redundant components. 88 of the 94 reported ICDE events were reviewed in some more detail in Section 6 of this report with respect to failure causes, failure symptoms and failure mechanism. All events classified with a low 'shared cause factor

  1. Dialysis Arteriovenous Fistula Failure and Angioplasty: Intimal Hyperplasia and Other Causes of Access Failure

    Science.gov (United States)

    Duque, Juan C.; Tabbara, Marwan; Martinez, Laisel; Cardona, Jose; Vazquez-Padron, Roberto I; Salman, Loay H

    2016-01-01

    Arteriovenous fistula (AVF) is the preferred hemodialysis access type because it has better patency rates and fewer complications than other access types. However, primary failure remains a common problem impeding AVF maturation and adding to patients’ morbidity and mortality. Juxta-anastomotic (or inflow) stenosis is the most common reason leading to primary failure, and percutaneous transluminal angioplasty (PTA) continues to be the gold standard treatment with excellent success rates. Intimal hyperplasia (IH) has been traditionally blamed as the main pathophysiologic culprit, but new evidence raises doubts regarding the contribution of IH alone to primary failure. We report a 64-year-old man with a two-stage brachio-basilic AVF that was complicated by failure four months after creation. Angiogram showed multiple juxta-anastomotic and mid-fistula stenotic lesions. PTA was successful in assisting maturation and subsequently cannulating AVF for hemodialysis treatment. We failed to identify the underlying cause of stenosis as biopsy specimens from fistula tissue obtained at the time of transposition revealed no occlusive IH. This case emphasizes the need for additional research on factors contributing to AVF failure besides IH, and highlights the need for more therapeutic options to reduce AVF failure rate. PMID:28084215

  2. Relationships among grit, academic performance, perceived academic failure, and stress in associate degree students.

    Science.gov (United States)

    Lee, Wincy Wing Sze

    2017-10-01

    The present study examined the relationships among grit, academic performance, perceived academic failure, and stress levels of Hong Kong associate degree students using path analysis. Three hundred and forty-five students from a community college in Hong Kong voluntarily participated in the study. They completed a questionnaire that measured their grit (operationalized as interest and perseverance) and stress levels. The students also provided their actual academic performance and evaluated their perception of their academic performance as a success or a failure. The results of the path analysis showed that interest and perseverance were negatively associated with stress, and only perceived academic failure was positively associated with stress. These findings suggest that psychological appraisal and resources are more important antecedents of stress than objective negative events. Therefore, fostering students' psychological resilience may alleviate the stress experienced by associate degree students or college students in general. Copyright © 2017 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  3. BDD-based reliability evaluation of phased-mission systems with internal/external common-cause failures

    International Nuclear Information System (INIS)

    Xing, Liudong; Levitin, Gregory

    2013-01-01

    Phased-mission systems (PMS) are systems in which multiple non-overlapping phases of operations (or tasks) are accomplished in sequence for a successful mission. Examples of PMS abound in applications such as aerospace, nuclear power, and airborne weapon systems. Reliability analysis of a PMS must consider statistical dependence across different phases as well as dynamics in system configuration, failure criteria, and component behavior. This paper proposes a binary decision diagrams (BDD) based method for the reliability evaluation of non-repairable binary-state PMS with common-cause failures (CCF). CCF are simultaneous failure of multiple system elements, which can be caused by some external factors (e.g., lightning strikes, sudden changes in environment) or by propagated failures originating from some elements within the system. Both the external and internal CCF is considered in this paper. The proposed method is combinatorial, exact, and is applicable to PMS with arbitrary system structures and component failure distributions. An example with different CCF scenarios is analyzed to illustrate the application and advantages of the proposed method. -- Highlights: ► Non-repairable phased-mission systems with common-cause failures are analyzed. ► Common-cause failures caused by internal or external factors are considered. ► A combinatorial algorithm based on binary decision diagrams is suggested

  4. A Study of the Failure Wave Phenomenon in Glasses at Peak Stresses Exceeding the HEL

    International Nuclear Information System (INIS)

    Kanel, G. I.; Razorenov, S. V.; Savinykh, A. S.; Rajendran, A.; Chen Zhen

    2006-01-01

    Shock-wave experiments with two glasses of different hardness have been carried out at shock stress levels above the Hugoniot elastic limit. A comparison between the measured free surface velocity histories from two plate impact experiments performed at approximately the same shock stress level (one with a single thick target plate, and the other with several adjacent target plates of total thickness equal to that of the thick target plate) revealed: 1) at shock loading the failure wave is not formed at stress levels above the HEL, indicating suppression of the fracture process by plasticity, 2) at gradual compression the failure wave process occurs as the stress increases above the failure threshold up to the stress at which plastic deformation begins

  5. Failure in imperfect anisotropic materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2005-01-01

    The fundamental cause of crack growth, namely nucleation and growth of voids, is investigated numerically for a two phase imperfect anisotropic material. A unit cell approach is adopted from which the overall stress strain is evaluated. Failure is observed as a sudden stress drop and depending...

  6. Climate change and the causes of dam failures in Australia

    International Nuclear Information System (INIS)

    Lewis, B.

    2007-01-01

    As a result of poor dam construction methods in Australia and significant droughts occurring over the past 60 years, there is a danger that mistakes made during previous droughts will be repeated. Dams were often built in soils of very low moisture content to ensure a properly compacted bank. As a result of these poor construction methods, the drought years have produced an unusually high number of dam failures. This paper discussed the causes of dam failures such as dispersive clays and defects in associated structures. The discussion on dispersive clays included cracking, piping, tunneling, and slides. Dispersive clays occur in soils whose clay minerals separate into single grains when placed in contact with water and are associated with high soil erodability and their distribution often coincides with the occurrence of erosion gullying, rilling and piping. Dispersive clays in a dam embankment can result in the leaching out of material from the embankment with consequent erosion and failure. Defects in associated structures that were discussed included spillway blockage and outlet pipe blockage. It was concluded that dam failures are seldom due to one particular cause but rather due to one weakness triggering another. It was concluded that failures are difficult and expensive to remedy. 9 refs., 4 figs

  7. Assessment of Workplace Stress: Occupational Stress, Its Consequences, and Common Causes of Teacher Stress.

    Science.gov (United States)

    Hansen, Jo-Ida; Sullivan, Brandon A.

    This chapter introduces teachers and other education professionals to the assessment of occupational stress. It begins with a brief discussion of what occupational stress is, and overview of the consequences of prolonged stress, and a review of the common causes of teacher stress. Next, it presents methods for reducing occupational stress through…

  8. Influence of effective stress coefficient on mechanical failure of chalk

    DEFF Research Database (Denmark)

    Alam, Mohammad Monzurul; Fabricius, Ida Lykke; Hjuler, M.L.

    2012-01-01

    The Effective stress coefficient is a measure of how chalk grains are connected with each other. The stiffness of chalk may decrease if the amount of contact cements between the grains decreases, which may lead to an increase of the effective stress coefficient. We performed CO2 injection in chal...... precise failure strength of chalk during changed stress state and under the influence of chemically reactive fluids during production of hydrocarbon and geological storage CO2....

  9. Three-dimensional analysis of stresses and the development of failure mechanism in prestressed thick-walled cylinders

    International Nuclear Information System (INIS)

    Bertrand, G.; Kotulla, B.

    1984-01-01

    The new design concept for a prestressed concrete reactor vessel which integrates the complete gas cycle into the pressure vessel demands knowledge of crack zone propagation even in zones where predominantly pressure stresses exist. Analytically, the state of stresses and strains, which is dependent on the loading history, can be computed by recording the triaxial stress-strain law for concrete up to the range of critical volumetric and shear deformations. The constitutive law is derived tensorially using invariant description in the stress space. It is demonstrated that near failure loads membrane stress states develop which increase failure resistance. Collapse loads can be defined through the observation of the principal stress vector with the aid of the triaxial failure law of concrete. (author)

  10. 'NTA', a locally named unclear condition that causes failure to thrive ...

    African Journals Online (AJOL)

    'NTA', a locally named unclear condition that causes failure to thrive amongst under five children in southeastern Nigeria: An assessment of mothers' and caregivers' perception of its causes and management.

  11. A hybrid of fuzzy FMEA-AHP to determine factors affecting alternator failure causes

    Directory of Open Access Journals (Sweden)

    Reza Kiani Aslani

    2014-09-01

    Full Text Available This paper presents a method to determine factors influencing alternator failure causes. Failure Mode and Effects Analysis (FMEA is one of the first systematic techniques for failure analysis based on three factors including Probability (P, Severity (S and Detection (D. Traditional FMEA method considers equal weights for all three factors, however, in read-world cases; one may wish to consider various weights. The proposed study develops a mathematical model to determine optimal weights based on analytical hierarchy process technique. The implementation of the proposed study has been demonstrated for a read-world case study of alternator failure causes.

  12. α-Decomposition for estimating parameters in common cause failure modeling based on causal inference

    International Nuclear Information System (INIS)

    Zheng, Xiaoyu; Yamaguchi, Akira; Takata, Takashi

    2013-01-01

    The traditional α-factor model has focused on the occurrence frequencies of common cause failure (CCF) events. Global α-factors in the α-factor model are defined as fractions of failure probability for particular groups of components. However, there are unknown uncertainties in the CCF parameters estimation for the scarcity of available failure data. Joint distributions of CCF parameters are actually determined by a set of possible causes, which are characterized by CCF-triggering abilities and occurrence frequencies. In the present paper, the process of α-decomposition (Kelly-CCF method) is developed to learn about sources of uncertainty in CCF parameter estimation. Moreover, it aims to evaluate CCF risk significances of different causes, which are named as decomposed α-factors. Firstly, a Hybrid Bayesian Network is adopted to reveal the relationship between potential causes and failures. Secondly, because all potential causes have different occurrence frequencies and abilities to trigger dependent failures or independent failures, a regression model is provided and proved by conditional probability. Global α-factors are expressed by explanatory variables (causes’ occurrence frequencies) and parameters (decomposed α-factors). At last, an example is provided to illustrate the process of hierarchical Bayesian inference for the α-decomposition process. This study shows that the α-decomposition method can integrate failure information from cause, component and system level. It can parameterize the CCF risk significance of possible causes and can update probability distributions of global α-factors. Besides, it can provide a reliable way to evaluate uncertainty sources and reduce the uncertainty in probabilistic risk assessment. It is recommended to build databases including CCF parameters and corresponding causes’ occurrence frequency of each targeted system

  13. Analysis of events with common cause failures (CCF) from the international common cause failure date exchange (ICDE); Analyse von Ereignissen mit gemeinsam verursachten Ausfaellen (GVA) aus dem internationalen GVA-Datenaustauschprojekt ICDE

    Energy Technology Data Exchange (ETDEWEB)

    Brueck, Benjamin; Kreuser, Albert; Simon, Julia; Stiller, Jan

    2014-08-15

    Common-cause-failure (CCF) events can significantly impact the availability of safety systems of nuclear power plants. In recognition of this, CCF data are systematically being collected and analyzed in several countries. A comprehensive evaluation of CCF events derived only from the operating experience in German nuclear power plants is not sufficient due to the low probability of occurrence of such events. Therefore it is necessary to make use of the operating experience of other countries using similar technology. In order to be able to use the CCF operating experience from other countries in the aim to carry on the development of the bases for evaluation of CCF GRS decisively co-initiated the setting up of an international common-cause failure working group. This working group has elaborated the project ''International Common-Cause Failure Data Exchange'' (ICDE). The project's objective is to organize a broad exchange of information concerning observed events with relevance to common-cause failures. The tasks for preparation and evaluation of information of the ICDE working group serve for confirmation and extension of the common-cause failure knowledge with regards to probabilistic safety analyses, the better understanding of causes and mechanisms of common-cause failures and the evaluation of preventive measures against the occurrence of common-cause failures. The objectives of the exchange on a long term basis are to - improve the comprehension of CCF events and their causes and their prevention, - generate qualitative insights into the root causes of CCF events which can then be used to derive and assess preventive measures against the occurrence of such events or their consequences, - establish an efficient feedback of experience gained in connection with observed common-cause failure phenomena which could be used e.g. for the development of indicators for risk based inspections, - provide quantitative information regarding the

  14. Stress in College Athletics: Causes, Consequences, Coping.

    Science.gov (United States)

    Humphrey, James H.; Yow, Deborah A.; Bowden, William W.

    This book addresses the causes and consequences of stress in college sports and offers effective coping mechanisms to help individuals understand and control stressors and emotions in their environment. The chapters are: (1) "Understanding Stress"; (2) "Perceptions of Stress in College Athletics"; (3) "Stress among College Athletes"; (4) "Stress…

  15. Interference fits and stress-corrosion failure. [aircraft parts fatigue life analysis

    Science.gov (United States)

    Hanagud, S.; Carter, A. E.

    1976-01-01

    It is pointed out that any proper design of interference fit fastener, interference fit bushings, or stress coining processes should consider both the stress-corrosion susceptibility and fatigue-life improvement together. Investigations leading to such a methodology are discussed. A service failure analysis of actual aircraft parts is considered along with the stress-corrosion susceptibility of cold-working interference fit bushings. The optimum design of the amount of interference is considered, giving attention to stress formulas and aspects of design methodology.

  16. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways

    OpenAIRE

    Dues, Dylan J.; Andrews, Emily K.; Schaar, Claire E.; Bergsma, Alexis L.; Senchuk, Megan M.; Van Raamsdonk, Jeremy M.

    2016-01-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxi...

  17. Ductile failure analysis of defective API X65 pipes based on stress-modified fracture strain criterion

    International Nuclear Information System (INIS)

    Oh, Chang Kyun; Kim, Yun Jae; Baek, Jong Hyun; Kim, Young Pyo; Kim, Woo Sik

    2006-01-01

    A local failure criterion for the API X65 steel is applied to predict ductile failure of full-scale API X65 pipes with simulated corrosion and gouge defects under internal pressure. The local failure criterion is the stress-modified fracture strain for the API X65 steel as a function of the stress triaxiality (defined by the ratio of the hydrostatic stress to the effective stress). Based on detailed FE analyses with the proposed local failure criteria, burst pressures of defective pipes are estimated and compared with experimental data. The predicted burst pressures are in good agreement with experimental data. Noting that an assessment equation against the gouge defect is not yet available, parametric study is performed, from which a simple equation is proposed to predict burst pressure for API X65 pipes with gouge defects

  18. Embedded mechatronic systems 1 analysis of failures, predictive reliability

    CERN Document Server

    El Hami, Abdelkhalak

    2015-01-01

    In operation, mechatronics embedded systems are stressed by loads of different causes: climate (temperature, humidity), vibration, electrical and electromagnetic. These stresses in components which induce failure mechanisms should be identified and modeled for better control. AUDACE is a collaborative project of the cluster Mov'eo that address issues specific to mechatronic reliability embedded systems. AUDACE means analyzing the causes of failure of components of mechatronic systems onboard. The goal of the project is to optimize the design of mechatronic devices by reliability. The projec

  19. STRESS AND FAILURE ANALYSIS OF RAPIDLY ROTATING ASTEROID (29075) 1950 DA

    International Nuclear Information System (INIS)

    Hirabayashi, Masatoshi; Scheeres, Daniel J.

    2015-01-01

    Rozitis et al. recently reported that near-Earth asteroid (29075) 1950 DA, whose bulk density ranges from 1.0 g cm –3 to 2.4 g cm –3 , is a rubble pile and requires a cohesive strength of at least 44-76 Pa to keep from failing due to its fast spin period. Since their technique for giving failure conditions required the averaged stress over the whole volume, it discarded information about the asteroid's failure mode and internal stress condition. This paper develops a finite element model and revisits the stress and failure analysis of 1950 DA. For the modeling, we do not consider material hardening and softening. Under the assumption of an associated flow rule and uniform material distribution, we identify the deformation process of 1950 DA when its constant cohesion reaches the lowest value that keeps its current shape. The results show that to avoid structural failure the internal core requires a cohesive strength of at least 75-85 Pa. It suggests that for the failure mode of this body, the internal core first fails structurally, followed by the surface region. This implies that if cohesion is constant over the whole volume, the equatorial ridge of 1950 DA results from a material flow going outward along the equatorial plane in the internal core, but not from a landslide as has been hypothesized. This has additional implications for the likely density of the interior of the body

  20. Failure cause and failure rate evaluation on pumps of BWR plants in PSA. Hypothesis testing for typical or plant specific failure rate of pumps

    International Nuclear Information System (INIS)

    Sanada, Takahiro; Nakamura, Makoto

    2009-01-01

    In support of domestic nuclear industry effort to gather and analyze failure data of components concerning nuclear power plants, Nuclear Information Archives (NUCIA) are published for useful information to help PSA. This report focuses on NUCIA pertaining to pumps in domestic nuclear power plants, and provides the reliable estimation on failure rate of pumps resulting from failure cause analysis and hypothesis testing of classified and plant specific failure rate of pumps for improving quality in PSA. The classified and plant specific failure rate of pumps are estimated by analyzing individual domestic nuclear power plant's data of 26 Boiling Water Reactors (BWRs) concerning functionally structurally classified pump failures reported from beginning of commercial operation to March 31, 2007. (author)

  1. Biomarkers of myocardial stress and fibrosis as predictors of mode of death in patients with chronic heart failure.

    Science.gov (United States)

    Ahmad, Tariq; Fiuzat, Mona; Neely, Benjamin; Neely, Megan L; Pencina, Michael J; Kraus, William E; Zannad, Faiez; Whellan, David J; Donahue, Mark P; Piña, Ileana L; Adams, Kirkwood F; Kitzman, Dalane W; O'Connor, Christopher M; Felker, G Michael

    2014-06-01

    The aim of this study was to determine whether biomarkers of myocardial stress and fibrosis improve prediction of the mode of death in patients with chronic heart failure. The 2 most common modes of death in patients with chronic heart failure are pump failure and sudden cardiac death. Prediction of the mode of death may facilitate treatment decisions. The relationship between amino-terminal pro-brain natriuretic peptide (NT-proBNP), galectin-3, and ST2, biomarkers that reflect different pathogenic pathways in heart failure (myocardial stress and fibrosis), and mode of death is unknown. HF-ACTION (Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training) was a randomized controlled trial of exercise training versus usual care in patients with chronic heart failure due to left ventricular systolic dysfunction (left ventricular ejection fraction ≤35%). An independent clinical events committee prospectively adjudicated mode of death. NT-proBNP, galectin-3, and ST2 levels were assessed at baseline in 813 subjects. Associations between biomarkers and mode of death were assessed using cause-specific Cox proportional hazards modeling, and interaction testing was used to measure differential associations between biomarkers and pump failure versus sudden cardiac death. Discrimination and risk reclassification metrics were used to assess the added value of galectin-3 and ST2 in predicting mode of death risk beyond a clinical model that included NT-proBNP. After a median follow-up period of 2.5 years, there were 155 deaths: 49 from pump failure, 42 from sudden cardiac death, and 64 from other causes. Elevations in all biomarkers were associated with increased risk for both pump failure and sudden cardiac death in both adjusted and unadjusted analyses. In each case, increases in the biomarker had a stronger association with pump failure than sudden cardiac death, but this relationship was attenuated after adjustment for clinical risk factors. Clinical

  2. Stress evaluation of baffle former bolt for IASCC failure prediction

    International Nuclear Information System (INIS)

    Matsubara, T.; Tsutsui, T.; Kamei, Y.; Kitsu, M.

    2011-01-01

    Baffle structure in PWRs Reactor is quite important assembly for the core safety, and Baffle Former Bolts (BFBs) are fastener members for maintaining Baffle structure. It has been reported worldwide that some of BFBs were cracked due to IASCC (Irradiation Assisted Stress Corrosion Cracking) because BFBs are located at core region under severe environments, high neutron flux, high temperature and high stress. According to the material studies of IASCC on austenitic stainless steel, a crack initiation of IASCC is strongly related with the stress and the neutron fluence. For this reason, it is very important for IASCC failure prediction to simulate the stress of BFBs. However, the stress of BFBs are considered to be influenced by several factors and to be changed complexly as operational time increases, by irradiation creep of Bolt itself, swelling of Baffle structure, and so on. Therefore, it is difficult to estimate the stress histories of BFBs (Bolt stress as a function of operational time) precisely. Then, the author has developed the calculation method of the stress histories of BFBs considering irradiation effects (swelling and irradiation creep). In this method, the stress histories of BFBs are calculated by combining two kinds of FE models, Global model (modeled whole Baffle structure which consists of Baffle plates, Former plates and Core Barrel) and Local model (modeled around BFB finely). The whole Baffle structure deformation changes as a function of heat, swelling and irradiated creep are calculated by Global model, and the stress histories of BFBs are calculated by Local model using the outputs (deformations on driving nodes) of Global model. In the FE analysis of Local model, the stress of BFBs are calculated considering irradiation effects and elastic-plastic characteristics depending on neutron fluence, so this method enables to calculate precisely the stress of extreme small area of BFBs surface. This paper shows the outline of the calculation method

  3. Overheating failure of superheater suspension tubes of a captive thermal power plant boiler

    International Nuclear Information System (INIS)

    Bhattacharya, Sova; Amir, Q.M.; Kannan, C.; Mahapatra, S.B.

    2000-01-01

    Failure of boiler tubes is the foremost cause of forced boiler outages. One of the predominant failure mechanism of boiler tubes is the stress rupture failure in the form of either short term overheating or long term overheating which are normally encountered in superheater and reheater sections working in the creep range. The strength of the boiler tube depends on the stress level as well on the temperature of exposure in the creep range. An increase in either can reduce the time to rupture. Time at the exposure temperature is an important factor based on which the failures are categorised as either short term or long term. Though there is no established time duration criteria demarcating the short or long term stress rupture failures, depending on the various manifestations on the failed samples, one can categorise the failure. This paper addresses one such stress rupture failure in the superheater section of a captive thermal power plant of a refinery. Multiple failures on the suspension coil of a superheater section was investigated for the cause of failure. Laboratory investigation of the failed sample involved visual inspection, dimensional measurements, chemical analysis of internal deposits and microstructural study. On the basis of these, the failure was attributed to deposition of trisodium phosphate carried over by the feed water into the superheater section resulting in chokage and increase in local operating hoop stresses of the tube. The ultimate failure was thus categorised as long term overheating failure. (author)

  4. Evolution of thermal stress and failure probability during reduction and re-oxidation of solid oxide fuel cell

    Science.gov (United States)

    Wang, Yu; Jiang, Wenchun; Luo, Yun; Zhang, Yucai; Tu, Shan-Tung

    2017-12-01

    The reduction and re-oxidation of anode have significant effects on the integrity of the solid oxide fuel cell (SOFC) sealed by the glass-ceramic (GC). The mechanical failure is mainly controlled by the stress distribution. Therefore, a three dimensional model of SOFC is established to investigate the stress evolution during the reduction and re-oxidation by finite element method (FEM) in this paper, and the failure probability is calculated using the Weibull method. The results demonstrate that the reduction of anode can decrease the thermal stresses and reduce the failure probability due to the volumetric contraction and porosity increasing. The re-oxidation can result in a remarkable increase of the thermal stresses, and the failure probabilities of anode, cathode, electrolyte and GC all increase to 1, which is mainly due to the large linear strain rather than the porosity decreasing. The cathode and electrolyte fail as soon as the linear strains are about 0.03% and 0.07%. Therefore, the re-oxidation should be controlled to ensure the integrity, and a lower re-oxidation temperature can decrease the stress and failure probability.

  5. Effects of Stress Ratio and Microstructure on Fatigue Failure Behavior of Polycrystalline Nickel Superalloy

    Science.gov (United States)

    Zhang, H.; Guan, Z. W.; Wang, Q. Y.; Liu, Y. J.; Li, J. K.

    2018-05-01

    The effects of microstructure and stress ratio on high cycle fatigue of nickel superalloy Nimonic 80A were investigated. The stress ratios of 0.1, 0.5 and 0.8 were chosen to perform fatigue tests in a frequency of 110 Hz. Cleavage failure was observed, and three competing failure crack initiation modes were discovered by a scanning electron microscope, which were classified as surface without facets, surface with facets and subsurface with facets. With increasing the stress ratio from 0.1 to 0.8, the occurrence probability of surface and subsurface with facets also increased and reached the maximum value at R = 0.5, meanwhile the probability of surface initiation without facets decreased. The effect of microstructure on the fatigue fracture behavior at different stress ratios was also observed and discussed. Based on the Goodman diagram, it was concluded that the fatigue strength of 50% probability of failure at R = 0.1, 0.5 and 0.8 is lower than the modified Goodman line.

  6. Long-term effects as the cause of failure in electronic components

    International Nuclear Information System (INIS)

    Renz, H.; Kreichgauer, H.

    1989-01-01

    After a brief presentation of the utilisation properties of electronic components, their failure rates are discussed with particular reference to the socalled bath-tub curve. The main emphasis is on the construction and manufacture of integrated circuits and the possible types and causes of failure arising from the individual manufacturing stages (layout faults, internal corrosion, masking and etching errors, leakage currents, inadequate heat removal, etc.). A technical insurance assessment is then provided of the long-term failures associated with technological matters. (orig.) [de

  7. ICDE project report: collection and analysis of common-cause failures of batteries

    International Nuclear Information System (INIS)

    2003-12-01

    This report documents a study performed on the set of Common Cause Failure (CCF) events of batteries (BT). the events studied here were derived from the International CCF Data Exchange (ICDE) database, with contributions from organizations from several countries. 50 events in the ICDE database were studied by tabulating the data and observing the trends. The data span a period from 1980 through 2000. The database contains general information about event attributes such as root cause, coupling factor, common cause component group (CCCG) size, and corrective action. The objective of the report was also to develop the failure mechanisms and phenomena involved in the events, their relationship to the root causes, and possibilities for improvement

  8. External dacryocystorhinostomy in consultants and fellows - a comparison of the causes of failure.

    Science.gov (United States)

    Sullivan, L; Fearnley, T; Al-Maskari, A; El-Hindy, N; Kalantzis, G; Chang, B Y

    2015-01-01

    Failure of primary dacryocystorhinostomy (DCR) often requires revision surgery to inspect the cause of failure and re-establish anatomic patency. This study aims to specifcally compare the anatomical causes of failure noted during revision DCR of primary external DCR (EX-DCR) and compare the difference between consultants and fellows. A retrospective review of 37 patients who underwent revision of a primary external approach DCR over a 7-year-period in a University Hospital. All primary surgery was performed by either a consultant surgeon or senior oculoplastic fellow. Details of the initial pathology prior to primary DCR and grade of operating surgeon were collected along with perioperative surgical findings. The cause of failure of the initial surgery was classified according to perioperative findings. Failure was classified as either inappropriately sized/located ostium or fibrous/membranous soft tissue obstruction of the newly created ostium. The cause of failure of the initial surgery was soft tissue obstruction in 43.3% and an inappropriately sized/located ostium in 56.7%. In those patients whose primary surgery was performed by a consultant, 73.3% were found to have a soft tissue obstruction and 26.7% were found to have an inappropriately sized/ located ostium. In contrast, if initial surgery was performed by a fellow, 22.7% were found to have a soft tissue obstruction and 77.3% an inappropriately sized/ located ostium (p =0.002). Where the primary surgeon has been a trainee there is a trend toward inadequately sized or located ostium being the most likely causative factor in failure of primary EX-DCR.  Hippokratia 2015; 19 (3): 216-218.

  9. Fuel failure in water reactors: Causes and mitigation. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2003-03-01

    The objective of this technical meeting (TM) was to review the present knowledge of the causes and mechanisms of fuel failure in water reactors during normal operational conditions. Emphasis has been given to analysis of failure causes and their mitigation by means of design as well as plant and core operation including strategies for operation with failed fuel. Some information on detection techniques (on-line monitoring and diagnostics, flux tilting, sipping techniques, etc) has also been presented. This TM presented also the progress on the above-mentioned subjects since the last meeting held in 1992 (Dimitrovgrad, Russian Federation). The topics covered in the papers were as follows: Experience feedback on fuel reliability (8 papers); Strategies to avoid or mitigate fuel failures (4 papers); Experimental studies on fuel failures and degradation mechanisms (4 papers); Modelling of fuel failure mechanisms (3 papers); Detection and monitoring during operation or outage (4 papers); Modelling and assessment of fuel failures (3 papers)

  10. Procedures for treating common cause failures in safety and reliability studies: Procedural framework and examples

    International Nuclear Information System (INIS)

    Mosleh, A.; Fleming, K.N.; Parry, G.W.; Paula, H.M.; Worledge, D.H.; Rasmuson, D.M.

    1988-01-01

    This report presents a framework for the inclusion of the impact of common cause failures in risk and reliability evaluations. Common cause failures are defined as that cutset of dependent failures for which causes are not explicitly included in the logic model as basic events. The emphasis here is on providing procedures for a practical, systematic approach that can be used to perform and clearly document the analysis. The framework comprises four major stages: (1) System Logic Model Development; (2) Identification of Common Cause Component Groups; (3) Common Cause Modeling and Data Analysis; and (4) System Quantification and Interpretation of Results. The framework and the methods discussed for performing the different stages of the analysis integrate insights obtained from engineering assessments of the system and the historical evidence from multiple failure events into a systematic, reproducible, and defensible analysis. 22 figs., 34 tabs

  11. Uncertainties and quantification of common cause failure rates and probabilities for system analyses

    International Nuclear Information System (INIS)

    Vaurio, Jussi K.

    2005-01-01

    Simultaneous failures of multiple components due to common causes at random times are modelled by constant multiple-failure rates. A procedure is described for quantification of common cause failure (CCF) basic event probabilities for system models using plant-specific and multiple-plant failure-event data. Methodology is presented for estimating CCF-rates from event data contaminated with assessment uncertainties. Generalised impact vectors determine the moments for the rates of individual systems or plants. These moments determine the effective numbers of events and observation times to be input to a Bayesian formalism to obtain plant-specific posterior CCF-rates. The rates are used to determine plant-specific common cause event probabilities for the basic events of explicit fault tree models depending on test intervals, test schedules and repair policies. Three methods are presented to determine these probabilities such that the correct time-average system unavailability can be obtained with single fault tree quantification. Recommended numerical values are given and examples illustrate different aspects of the methodology

  12. Failure mechanism of coated biomaterials under high impact-sliding contact stresses

    Science.gov (United States)

    Chen, Ying

    This study uses a newly developed testing method--- inclined cyclic impact-sliding test to investigate the failure behaviors of different types of biomaterials, (SS316L, Ti6Al4V and CoCr) coated by different coatings (TiN, DLC and PEO), under extremely high dynamic contact stress conditions. This test method can simulate the combined impact and sliding/rolling loading conditions, which is very practical in many aspects of commercial usages. During the tests, fatigue cracking, chipping, peeling and material transferring were observed in damaged area. This research is mainly focused on the failure behaviors of load-bearing materials which cyclic impacting and sliding are always involved. This purpose was accomplished in the three stages: First, impact-sliding test was carried out on TiN coated unhardened M2. It was found that soft substrate can cause early failure of coating due to the considerable plastic deformation in the substrate. In this case, stronger substrate is required to support coating better when tested under high contact stresses. Second, PEO coated Ti-6Al-4V was tested under pure sliding and impact-sliding wear conditions. PEO coating was found not strong enough to afford the high contact pressure under cyclic impact-sliding wear test due to its porous surface structure. However, the wear performance of PEO coating was enhanced due to the sub-stoichiometric oxide. To sum up, for load-bearing biomedical implants involved in high impacting movement, PEO coating may not be a promising surface protection. Third, the dense, smooth PVD/CVD bio-inert coatings were reconsidered. DLC and TiN coatings, combined by different substrates together with different interface materials were tested under the cyclic impact-sliding test using a set of proper loading. The results show that to choose a proper combination of coating, interface and substrate based on their mechanical properties is of great importance under the test condition. Hard substrates provide support

  13. Deformation Failure Characteristics of Coal Body and Mining Induced Stress Evolution Law

    Directory of Open Access Journals (Sweden)

    Zhijie Wen

    2014-01-01

    Full Text Available The results of the interaction between coal failure and mining pressure field evolution during mining are presented. Not only the mechanical model of stope and its relative structure division, but also the failure and behavior characteristic of coal body under different mining stages are built and demonstrated. Namely, the breaking arch and stress arch which influence the mining area are quantified calculated. A systematic method of stress field distribution is worked out. All this indicates that the pore distribution of coal body with different compressed volume has fractal character; it appears to be the linear relationship between propagation range of internal stress field and compressed volume of coal body and nonlinear relationship between the range of outburst coal mass and the number of pores which is influenced by mining pressure. The results provide theory reference for the research on the range of mining-induced stress and broken coal wall.

  14. Dependency Analysis Guidance Nordic/German Working Group on Common Cause Failure analysis. Phase 2, Development of Harmonized Approach and Applications for Common Cause Failure Quantification

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Guenter; Johanson, Gunnar; Lindberg, Sandra; Vaurio, Jussi

    2009-03-15

    The Regulatory Code SSMFS 2008:1 of Swedish Radiation Safety Authority (SSM) includes requirements regarding the performance of probabilistic safety assessments (PSA), as well as PSA activities in general. Therefore, the follow-up of these activities is part of the inspection tasks of SSM. According to the SSMFS 2008:1, the safety analyses shall be based on a systematic identification and evaluation of such events, event sequences and other conditions which may lead to a radiological accident. The research report Nordic/German Working Group on Common cause Failure analysis. Phase 2 project report: Development of Harmonized Approach and Applications for Common Cause Failure Quantification has been developed under a contract with the Nordic PSA Group (NPSAG) and its German counterpart VGB, with the aim to create a common experience base for defence and analysis of dependent failures i.e. Common Cause Failures CCF. Phase 2 in this project if a deepened data analyses of CCF events and a demonstration on how the so called impact vectors can be constructed and on how CCF parameters are estimated. The word Guidance in the report title is used in order to indicate a common methodological guidance accepted by the NPSAG, based on current state of the art concerning the analysis of dependent failures and adapted to conditions relevant for Nordic sites. This will make it possible for the utilities to perform cost effective improvements and analyses. The report presents a common attempt by the authorities and the utilities to create a methodology and experience base for defence and analysis of dependent failures. The performed benchmark application has shown how important the interpretation of base data is to obtain robust CCF data and data analyses results. Good features were found in all benchmark approaches. The obtained experiences and approaches should now be used in harmonised procedures. A next step could be to develop and agree on event and formula driven impact vector

  15. Dependency Analysis Guidance Nordic/German Working Group on Common Cause Failure analysis. Phase 2, Development of Harmonized Approach and Applications for Common Cause Failure Quantification

    International Nuclear Information System (INIS)

    Becker, Guenter; Johanson, Gunnar; Lindberg, Sandra; Vaurio, Jussi

    2009-03-01

    The Regulatory Code SSMFS 2008:1 of Swedish Radiation Safety Authority (SSM) includes requirements regarding the performance of probabilistic safety assessments (PSA), as well as PSA activities in general. Therefore, the follow-up of these activities is part of the inspection tasks of SSM. According to the SSMFS 2008:1, the safety analyses shall be based on a systematic identification and evaluation of such events, event sequences and other conditions which may lead to a radiological accident. The research report Nordic/German Working Group on Common cause Failure analysis. Phase 2 project report: Development of Harmonized Approach and Applications for Common Cause Failure Quantification has been developed under a contract with the Nordic PSA Group (NPSAG) and its German counterpart VGB, with the aim to create a common experience base for defence and analysis of dependent failures i.e. Common Cause Failures CCF. Phase 2 in this project if a deepened data analyses of CCF events and a demonstration on how the so called impact vectors can be constructed and on how CCF parameters are estimated. The word Guidance in the report title is used in order to indicate a common methodological guidance accepted by the NPSAG, based on current state of the art concerning the analysis of dependent failures and adapted to conditions relevant for Nordic sites. This will make it possible for the utilities to perform cost effective improvements and analyses. The report presents a common attempt by the authorities and the utilities to create a methodology and experience base for defence and analysis of dependent failures. The performed benchmark application has shown how important the interpretation of base data is to obtain robust CCF data and data analyses results. Good features were found in all benchmark approaches. The obtained experiences and approaches should now be used in harmonised procedures. A next step could be to develop and agree on event and formula driven impact vector

  16. Investigating for failure of central ventilation fan blade

    International Nuclear Information System (INIS)

    Koo, Jae Raeyang; Ko Woo Sig; Kim, Yeon Hwan; Park, Kwang Ha

    2002-01-01

    During the operation, central ventilation fan stopped when switch 'on' condition. When central ventilation fan disassemble, ten blades of fan fractured. We have searched cause of failure. We had modeling one of the fan blades and analysis with computer programs. Thus we have find that fracture of central ventilation fan blades is alternative stress and vibration at hub. In this paper, we have described cause of failure

  17. The root cause analysis of 9DVN002ZV fan failure in Daya Bay Nuclear Power Station

    International Nuclear Information System (INIS)

    Guan Jianjun; Zhang Mingjia

    2005-01-01

    Extensive investigations and detailed analysis of the failure reason of 9DVN002ZV fan in Daya Bay Nuclear Power Station showed that the fan destroy was caused by the failure of non-drive end bear. The direct cause of this bearing' failure was its improper assembly caused by improper maintenance procedure, and the root cause was too small internal radial clearance after mounting. The factor affecting bearing internal radial clearance, the relationship between clearance and operating life time and fan failure process were discussed. (authors)

  18. DRESS syndrome secondary to ibuprofen as a cause of hyperacute liver failure

    Directory of Open Access Journals (Sweden)

    Valentín Roales-Gómez

    2014-08-01

    Full Text Available Acute liver failure has a high mortality and its most frequent cause in Spain is viral infection. In this article, we present a case of fulminant liver failure. The failure is secondary to an idiosyncratic reaction to ibuprofen, an entity included in the DRESS syndrome. This syndrome plays a key role in the differential diagnosis of acute liver failure, since its unfortunate course often requires liver transplantation as the only useful therapeutic weapon. This case illustrates the need for an efficient coordination between hospitals as a key factor for improving the prognosis.

  19. Distribution of incremental static stress caused by earthquakes

    Directory of Open Access Journals (Sweden)

    Y. Y. Kagan

    1994-01-01

    Full Text Available Theoretical calculations, simulations and measurements of rotation of earthquake focal mechanisms suggest that the stress in earthquake focal zones follows the Cauchy distribution which is one of the stable probability distributions (with the value of the exponent α equal to 1. We review the properties of the stable distributions and show that the Cauchy distribution is expected to approximate the stress caused by earthquakes occurring over geologically long intervals of a fault zone development. However, the stress caused by recent earthquakes recorded in instrumental catalogues, should follow symmetric stable distributions with the value of α significantly less than one. This is explained by a fractal distribution of earthquake hypocentres: the dimension of a hypocentre set, ��, is close to zero for short-term earthquake catalogues and asymptotically approaches 2¼ for long-time intervals. We use the Harvard catalogue of seismic moment tensor solutions to investigate the distribution of incremental static stress caused by earthquakes. The stress measured in the focal zone of each event is approximated by stable distributions. In agreement with theoretical considerations, the exponent value of the distribution approaches zero as the time span of an earthquake catalogue (ΔT decreases. For large stress values α increases. We surmise that it is caused by the δ increase for small inter-earthquake distances due to location errors.

  20. Fear of failure, psychological stress, and burnout among adolescent athletes competing in high level sport.

    Science.gov (United States)

    Gustafsson, H; Sagar, S S; Stenling, A

    2017-12-01

    The purpose of this study was to investigate fear of failure in highly competitive junior athletes and the association with psychological stress and burnout. In total 258 athletes (152 males and 108 females) ranged in age from 15 to 19 years (M = 17.4 years, SD = 1.08) participated. Athletes competed in variety of sports including both team and individual sports. Results showed in a variable-oriented approach using regression analyses that one dimension, fear of experiencing shame and embarrassment had a statistically significant effect on perceived psychological stress and one dimension of burnout, reduced sense of accomplishment. However, adopting a person-oriented approach using latent class analysis, we found that athletes with high levels of fear failure on all dimensions scored high on burnout. We also found another class with high scores on burnout. These athletes had high scores on the individual-oriented dimensions of fear of failure and low scores on the other oriented fear of failure dimensions. The findings indicate that fear of failure is related to burnout and psychological stress in athletes and that this association is mainly associated with the individual-oriented dimensions of fear of failure. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Comparison of stress-based and strain-based creep failure criteria for severe accident analysis

    International Nuclear Information System (INIS)

    Chavez, S.A.; Kelly, D.L.; Witt, R.J.; Stirn, D.P.

    1995-01-01

    We conducted a parametic analysis of stress-based and strain-based creep failure criteria to determine if there is a significant difference between the two criteria for SA533B vessel steel under severe accident conditions. Parametric variables include debris composition, system pressure, and creep strain histories derived from different testing programs and mathematically fit, with and without tertiary creep. Results indicate significant differences between the two criteria. Stress gradient plays an important role in determining which criterion will predict failure first. Creep failure was not very sensitive to different creep strain histories, except near the transition temperature of the vessel steel (900K to 1000K). Statistical analyses of creep failure data of four independent sources indicate that these data may be pooled, with a spline point at 1000K. We found the Manson-Haferd parameter to have better failure predictive capability than the Larson-Miller parameter for the data studied. (orig.)

  2. Competing fatigue failure behaviors of Ni-based superalloy FGH96 at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Guolei [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Yang, Xiaoguang [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-engine(CICAAE), Beihang University, Beijing 100191 (China); Shi, Duoqi, E-mail: shdq@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-engine(CICAAE), Beihang University, Beijing 100191 (China)

    2016-06-21

    Fatigue experiments were performed on a polycrystalline P/M processed nickel-based superalloy, FGH96 at 600 °C to investigate competing fatigue failure behaviors of the alloy. The experiments were performed at four levels of stress (from high cycle fatigue to low cycle fatigue) at stress ratio of 0.05. There was large variability in fatigue life at both high and low stresses. Scanning electron microscopy (SEM) was used to analyze the failure surfaces. Three types of competing failure modes were observed (surface, sub-surface and internal initiated failures). Crack initiation sites were gradually changed from the surface to the interior with the decreasing of stress level. Roles of microstructures in competing failure mechanism were analyzed. There were six kinds of fatigue crack initiation modes: (1) surface inclusion initiated; (2) surface facet initiated; (3) sub-surface inclusion initiated; (4) sub-surface facet initiated; (5) internal inclusion initiated; (6) internal facet initiated. Inclusions at surface were the life-limiting microstructures at higher stress levels. The probability of occurrence of inclusions initiated is gradually reduced with decreasing of stress level, simultaneously the probability of occurrence of facets initiated is increasing. The existence of the inclusions resulted in large life variability at higher stress levels, while heterogeneity of material caused by random combinations of grains was the main cause of fatigue variability at lower stress levels.

  3. Competing fatigue failure behaviors of Ni-based superalloy FGH96 at elevated temperature

    International Nuclear Information System (INIS)

    Miao, Guolei; Yang, Xiaoguang; Shi, Duoqi

    2016-01-01

    Fatigue experiments were performed on a polycrystalline P/M processed nickel-based superalloy, FGH96 at 600 °C to investigate competing fatigue failure behaviors of the alloy. The experiments were performed at four levels of stress (from high cycle fatigue to low cycle fatigue) at stress ratio of 0.05. There was large variability in fatigue life at both high and low stresses. Scanning electron microscopy (SEM) was used to analyze the failure surfaces. Three types of competing failure modes were observed (surface, sub-surface and internal initiated failures). Crack initiation sites were gradually changed from the surface to the interior with the decreasing of stress level. Roles of microstructures in competing failure mechanism were analyzed. There were six kinds of fatigue crack initiation modes: (1) surface inclusion initiated; (2) surface facet initiated; (3) sub-surface inclusion initiated; (4) sub-surface facet initiated; (5) internal inclusion initiated; (6) internal facet initiated. Inclusions at surface were the life-limiting microstructures at higher stress levels. The probability of occurrence of inclusions initiated is gradually reduced with decreasing of stress level, simultaneously the probability of occurrence of facets initiated is increasing. The existence of the inclusions resulted in large life variability at higher stress levels, while heterogeneity of material caused by random combinations of grains was the main cause of fatigue variability at lower stress levels.

  4. Scrub typhus causing neonatal hepatitis with acute liver failure-A case series.

    Science.gov (United States)

    Vajpayee, Shailja; Gupta, R K; Gupta, M L

    2017-05-01

    Neonatal hepatitis with acute liver failure due to varied etiology including various infections is reported in the past. Scrub typhus as a cause of neonatal hepatitis has rarely been reported in literature. A high index of clinical suspicion is required for early diagnosis and timely treatment. Severity and prognosis of the disease varies widely because several different strains of Orientia tsutsugamushi exist with different virulence. Delayed diagnosis can result in complication and significant morbidity and mortality. Here, we report three cases of neonatal hepatitis with acute liver failure caused by scrub typhus to increase awareness.

  5. A COCAP program for the statistical analysis of common cause failure parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Baehyeuk; Jae, Moosung [Hanyang Univ., Seoul (Korea, Republic of). Dept. of Nuclear Engineering

    2016-03-15

    Probabilistic Safety Assessment (PSA) based applications and regulations are becoming more important in the field of nuclear energy. According to the results of a PSA in Korea, the common cause failure evaluates CDF (Core Damage Frequency) as one of the significant factors affecting redundancy of NPPs. The purpose of the study is to develop a COCAP (Common Cause Failure parameter Analysis for PSA) program for the accurate use of the alpha factor model parameter data provided by other countries and for obtaining the indigenous CCF data of NPPs in Korea through Bayesian updating.

  6. Stress Corrosion Cracking of Steel and Aluminum in Sodium Hydroxide: Field Failure and Laboratory Test

    Directory of Open Access Journals (Sweden)

    Y. Prawoto

    2012-01-01

    Full Text Available Through an investigation of the field failure analysis and laboratory experiment, a study on (stress corrosion cracking SCC behavior of steel and aluminum was performed. All samples were extracted from known operating conditions from the field failures. Similar but accelerated laboratory test was subsequently conducted in such a way as to mimic the field failures. The crack depth and behavior of the SCC were then analyzed after the laboratory test and the mechanism of stress corrosion cracking was studied. The results show that for the same given stress relative to ultimate tensile strength, the susceptibility to SCC is greatly influenced by heat treatment. Furthermore, it was also concluded that when expressed relative to the (ultimate tensile strength UTS, aluminum has similar level of SCC susceptibility to that of steel, although with respect to the same absolute value of applied stress, aluminum is more susceptible to SCC in sodium hydroxide environment than steel.

  7. Common Cause Failure Analysis for the Digital Plant Protection System

    International Nuclear Information System (INIS)

    Kagn, Hyun Gook; Jang, Seung Cheol

    2005-01-01

    Safety-critical systems such as nuclear power plants adopt the multiple-redundancy design in order to reduce the risk from the single component failure. The digitalized safety-signal generation system is also designed based on the multiple-redundancy strategy which consists of more redundant components. The level of the redundant design of digital systems is usually higher than those of conventional mechanical systems. This higher redundancy would clearly reduce the risk from the single failure of components, but raise the importance of the common cause failure (CCF) analysis. This research aims to develop the practical and realistic method for modeling the CCF in digital safety-critical systems. We propose a simple and practical framework for assessing the CCF probability of digital equipment. Higher level of redundancy causes the difficulty of CCF analysis because it results in impractically large number of CCF events in the fault tree model when we use conventional CCF modeling methods. We apply the simplified alpha-factor (SAF) method to the digital system CCF analysis. The precedent study has shown that SAF method is quite realistic but simple when we consider carefully system success criteria. The first step for using the SAF method is the analysis of target system for determining the function failure cases. That is, the success criteria of the system could be derived from the target system's function and configuration. Based on this analysis, we can calculate the probability of single CCF event which represents the CCF events resulting in the system failure. In addition to the application of SAF method, in order to accommodate the other characteristics of digital technology, we develop a simple concept and several equations for practical use

  8. The evaluation of failure stress and released amount of fission product gas of power ramped rod by fuel behaviour analysis code 'FEMAXI-III'

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Fujita, Misao

    1984-01-01

    Pellet-Cladding Interaction(PCI) related in-pile failure of Zircaloy sheathed fuel rod is in general considered to be caused by combination of pellet-cladding mechanical interaction(PCMI) with fuel-cladding chemical interaction(FCCI). An understanding of a basic mechanism of PCI-related fuel failure is therefore necessary to get actual cladding hoop stress from mechanical interaction and released amounts of fission product(FP) gas of aggressive environmental agency from chemical interaction. This paper describes results of code analysis performed on fuel failure to cladding hoop stress and amounts of FP gas released under the condition associated with power ramping. Data from Halden(HBWR) and from Studsvik(R2) are used for code analysis. The fuel behaviour analysis code ''FEMAXI-III'' is used as an analytical tool. The followings are revealed from the study: (1) PCI-related fuel failure is dependent upon cladding hoop stress and released amounts of FP gas at power ramping. (2) Preliminary calculated threshold values of hoop stress and of released amounts of FP gas to PCI failure are respectively 330MPa, 10% under the Halden condition, 190MPa, 5% under the Inter ramp(BWR) condition, and 270MPa, 14% under the Over ramp(PWR) condition. The values of hoop stress calculated are almost in the similar range of those obtained from ex-reactor PCI simulated tests searched from references published. (3) The FEMAXI-III code verification is made in mechanical manner by using in-pile deformation data(diametral strain) obtained from power ramping test undertaken by JAERI. While, the code verification is made in thermal manner by using punctured FP gas data obtained from post irradiation examination performed on non-defected power ramped fuel rods. The calculations are resulted in good agreements to both, mechanical and thermal experimental data suggesting the validity of the code evaluation. (J.P.N.)

  9. Trial application of the candidate root cause categorization scheme and preliminary assessment of selected data bases for the root causes of component failures program

    International Nuclear Information System (INIS)

    Bruske, S.Z.; Cadwallader, L.C.; Stepina, P.L.

    1985-04-01

    The objective of the Nuclear Regulatory Commission's (NRC) Root Causes of Component Failures Program is to develop and apply a categorization scheme for identifying root causes of failures for components that comprise safety and safety support systems of nuclear power plants. Results from this program will provide valuable input in the areas of probabilistic risk assessment, reliability assurance, and application of risk assessments in the inspection program. This report presents the trial application and assessment of the candidate root cause categorization scheme to three failure data bases: the In-Plant Reliability Data System (IPRDS), the Licensee Event Report (LER) data base, and the Nuclear Plant Reliability Data System (NPRDS). Results of the trial application/assessment show that significant root cause information can be obtained from these failure data bases

  10. The conservatism of the net-section stress criterion for the failure of cracked stainless steel piping

    International Nuclear Information System (INIS)

    Smith, E.

    1991-01-01

    The failure of cracked stainless steel piping can be predicted by assuming that failure conforms to a net-section stress criterion, using as input an appropriate value for the critical net-section stress together with a knowledge of the anticipated loadings. The stresses at the cracked section are usually calculated via a purely elastic analysis based on the piping being uncracked. However because the piping is built-in at its ends into a larger component, this limits the amount of elastic follow-up and, consequently, use of the net-section stress approach in this manner can lead to conservative failure predictions. This paper quantifies the extent of this conservatism, and shows that it can be quite marked. There is an additional measure of conservatism due to the fact that unstable failure need not necessarily be associated with the onset of crack extension. A key parameter with regard to both these conservatisms is L EFF , a length parameter which is a measure of the degree of elastic follow-up in the system. (author)

  11. Acute Unilateral Vestibular Failure Does Not Cause Spatial Hemineglect.

    Directory of Open Access Journals (Sweden)

    Julian Conrad

    Full Text Available Visuo-spatial neglect and vestibular disorders have common clinical findings and involve the same cortical areas. We questioned (1 whether visuo-spatial hemineglect is not only a disorder of spatial attention but may also reflect a disorder of higher cortical vestibular function and (2 whether a vestibular tone imbalance due to an acute peripheral dysfunction can also cause symptoms of neglect or extinction. Therefore, patients with an acute unilateral peripheral vestibular failure (VF were tested for symptoms of hemineglect.Twenty-eight patients with acute VF were assessed for signs of vestibular deficits and spatial neglect using clinical measures and various common standardized paper-pencil tests. Neglect severity was evaluated further with the Center of Cancellation method. Pathological neglect test scores were correlated with the degree of vestibular dysfunction determined by the subjective visual vertical and caloric testing.Three patients showed isolated pathological scores in one or the other neglect test, either ipsilesionally or contralesionally to the VF. None of the patients fulfilled the diagnostic criteria of spatial hemineglect or extinction.A vestibular tone imbalance due to unilateral failure of the vestibular endorgan does not cause spatial hemineglect, but evidence indicates it causes mild attentional deficits in both visual hemifields.

  12. Intravenous Milrinone Infusion Improves Congestive Heart Failure Caused by Diastolic Dysfunction

    Science.gov (United States)

    Albrecht, Carlos A.; Giesler, Gregory M.; Kar, Biswajit; Hariharan, Ramesh; Delgado, Reynolds M.

    2005-01-01

    Although there have been significant advances in the medical treatment of heart failure patients with impaired systolic function, very little is known about the diagnosis and treatment of diastolic dysfunction. We report the cases of 3 patients in New York Heart Association functional class IV who had echocardiographically documented diastolic dysfunction as the main cause of heart failure. All 3 patients received medical therapy with long-term milrinone infusion. PMID:16107121

  13. Study of Stress Migration Failure in SiLKTM/SiO2 Hybrid Cu Interconnects

    International Nuclear Information System (INIS)

    Tsuchikawa, Haruo; Nakamura, Tomoji; Suzuki, Takashi; Mori, Hiroko; Shono, Ken

    2004-01-01

    Stress migration (SM) behavior is studied for a 130nm-node SiLK TM /SiO2 hybrid structure in which the interlevel dielectrics (ILD) consist of SiLK TM for trench levels and SiO2 for via levels. The failure rate dependence on the temperature, line width and circuit is examined in detail. Furthermore, an effect of dielectric deposition process on the reliability of the hybrid interconnects is investigated. It has been found that SM behavior is essentially similar to that reported in Cu/SiO2 systems. It has also been clarified that SiO2 PVD conditions at via level had a large impact on the failure rate. Therefore, the control of ILD deposition conditions is found to be one of the key factors in suppressing the SM failure. In order to examine the effect of the PVD conditions, the residual stress in vias were measured by using X-ray diffraction method. The results show that σx (the stress component parallel to the surface) in vias greatly depends on the PVD conditions. Then, the relationship between the PVD conditions and the SM failure rate is clarified

  14. Psychological stress and short-term hospitalisations or death in patients with heart failure

    NARCIS (Netherlands)

    Endrighi, R.; Waters, A.J.; Gottlieb, S.S.; Harris, K.M.; Wawrzyniak, A.J.; Bekkouche, N.S.; Li, Y.; Kop, W.J.; Krantz, D.S.

    2016-01-01

    Objective Standard predictors do not fully explain variations in the frequency and timing of heart failure (HF) adverse events (AEs). Psychological stress can trigger acute cardiovascular (CV) events, but it is not known whether stress can precipitate AEs in patients with HF. We investigated

  15. Investigation into Cause of High Temperature Failure of Boiler Superheater Tube

    Science.gov (United States)

    Ghosh, D.; Ray, S.; Roy, H.; Shukla, A. K.

    2015-04-01

    The failure of the boiler tubes occur due to various reasons like creep, fatigue, corrosion and erosion. This paper highlights a case study of typical premature failure of a final superheater tube of 210 MW thermal power plant boiler. Visual examination, dimensional measurement, chemical analysis, oxide scale thickness measurement, microstructural examination are conducted as part of the investigations. Apart from these investigations, sulfur print, Energy Dispersive spectroscopy (EDS) and X ray diffraction analysis (XRD) are also conducted to ascertain the probable cause of failure of final super heater tube. Finally it has been concluded that the premature failure of the super heater tube can be attributed to the combination of localized high tube metal temperature and loss of metal from the outer surface due to high temperature corrosion. The corrective actions have also been suggested to avoid this type of failure in near future.

  16. VALIDATING A COMPUTER-BASED TECHNIQUE FOR ASSESSING STABILITY TO FAILURE STRESS

    Directory of Open Access Journals (Sweden)

    I. F. Arshava

    2013-03-01

    Full Text Available An upsurge of interest in the implicit personality assessment, currently observed both in personality psycho-diagnostics and in experimental studies of social attitudes and prejudices, signals the shifting of researchers’ attention from de?ning between-person personality taxonomy to specifying comprehensive within-person processes, the dynamics of which can be captured at the level of an individual case. This research examines the possibility of the implicit assessment of the individual’s stability vs. susceptibility to failure stress by comparing the degrees of ef?cacy in the voluntary self-regulation of a computer-simulated information-processing activity under different conditions (patent of Ukraine № 91842, issued in 2010. By exposing two groups of participants (university undergraduates to processing the information, the scope of which exceeds the human short-term memory capacity at one of the stages of the modeled activity an unexpected and unavoidable failure is elicited. The participants who retain stability of their self-regulation behavior after having been exposed to failure, i.e. who keep processing information as effectively as they did prior to failure, are claimed to retain homeostasis and thus possess emotional stability. Those, who loose homeostasis after failure and display lower standards of self-regulation behavior, are considered to be susceptible to stress. The validity of the suggested type of the implicit diagnostics was empirically tested by clustering (K-means algorithm two samples of the participants on the  properties of their self-regulation behavior and testing between-cluster differences by a set of the explicitly assessed variables: Action control ef?cacy (Kuhl, 2001, preferred strategies of Coping with Stressful Situations (Endler, Parker, 1990,  Purpose-in-Life orientation (a Russian version of the test by Crumbaugh and Maholick, modi?ed by D.Leontiev, 1992, Psychological Well-being (Ryff, 1989

  17. Anti-glomerular basement membrane: A rare cause of renal failure in children

    Directory of Open Access Journals (Sweden)

    Indira Agarwal

    2017-01-01

    Full Text Available Anti-glomerular basement membrane (GBM disease is a rare cause of acute renal failure and known to have bad prognosis regarding renal functions recovery and patient survival specially when diagnosed late and presents with severe renal failure that requires dialysis. We report a case of 11-year-old child with acute renal failure secondary to anti-GBM disease and associated with antineutrophil cytoplasmic antibody-positive vasculitis. He was treated with plasmapheresis, steroids, and cyclophosphamide with recovery of his kidney functions.

  18. On the value of redundancy subject to common-cause failures: Toward the resolution of an on-going debate

    International Nuclear Information System (INIS)

    Hoepfer, V.M.; Saleh, J.H.; Marais, K.B.

    2009-01-01

    Common-cause failures (CCF) are one of the more critical and challenging issues for system reliability and risk analyses. Academic interest in modeling CCF, and more broadly in modeling dependent failures, has steadily grown over the years in the number of publications as well as in the sophistication of the analytical tools used. In the past few years, several influential articles have shed doubts on the relevance of redundancy arguing that 'redundancy backfires' through common-cause failures, and that the latter dominate unreliability, thus defeating the purpose of redundancy. In this work, we take issue with some of the results of these publications. In their stead, we provide a nuanced perspective on the (contingent) value of redundancy subject to common-cause failures. First, we review the incremental reliability and MTTF provided by redundancy subject to common-cause failures. Second, we introduce the concept and develop the analytics of the 'redundancy-relevance boundary': we propose this redundancy-relevance boundary as a design-aid tool that provides an answer to the following question: what level of redundancy is relevant or advantageous given a varying prevalence of common-cause failures? We investigate the conditions under which different levels of redundancy provide an incremental MTTF over that of the single component in the face of common-cause failures. Recognizing that redundancy comes at a cost, we also conduct a cost-benefit analysis of redundancy subject to common-cause failures, and demonstrate how this analysis modifies the redundancy-relevance boundary. We show how the value of redundancy is contingent on the prevalence of common-cause failures, the redundancy level considered, and the monadic cost-benefit ratio. Finally we argue that general unqualified criticism of redundancy is misguided, and efforts are better spent for example on understanding and mitigating the potential sources of common-cause failures rather than deriding the concept

  19. Procedures for treating common cause failures in safety and reliability studies: Analytical background and techniques

    International Nuclear Information System (INIS)

    Mosleh, A.; Fleming, K.N.; Parry, G.W.; Paula, H.M.; Worledge, D.H.; Rasmuson, D.M.

    1989-01-01

    Volume I of this report presents a framework for the inclusion of the impact of common cause failures in risk and reliability evaluations. Common cause failures are defined as that subset of dependent failures for which causes are not explicitly included in the logic model as basic events. The emphasis here is on providing procedures for a practical, systematic approach that can be used to perform and clearly document the analysis. The framework and the methods discussed for performing the different stages of the analysis integrate insights obtained from engineering assessments of the system and the historical evidence from multiple failure events into a systematic, reproducible, and defensible analysis. This document, Volume 2, contains a series of appendices that provide additional background and methodological detail on several important topics discussed in Volume I

  20. Systemic arteriovenous malformations as a cause of cardiac failure: Treatment with embolization

    International Nuclear Information System (INIS)

    Smith, E.J.; Hemingway, A.P.; Allison, D.J.

    1987-01-01

    Massive cogenital systemic arteriovenous malformations (AVMs) present considerable management problems for clinicians. Their size, position, and vascularity make successful surgical reaction impossible. Attempts at resection produce only temporary relief of symptoms and cause further disfigurement. Large AVMs give rise to pain, swelling, and distal ischaemia, can erode bone, and give rise to life-threatening hemorrhage, and a massive left or right shunt causes high-output cardiac failure and death. Ten patients (age range, 5-50 years; mean 26 years) have massive AVMs giving rise to high-output cardiac failure (26-28 liters). These patients (seven male, three female), have undergone a total of 43 embolization procedures. The advent of nonionic contrast media, digital subtraction angiography, steel coils, and balloons allows us to successfully treat these patients who until recently were condemned to die in high-output cardiac failure

  1. Causes of Contractor's Business Failure in Developing Countries: The Case of Palestine

    Directory of Open Access Journals (Sweden)

    Sherif Mohamed

    2006-12-01

    Full Text Available The construction industry has unique characteristics that sharply distinguish it from other sectors of the economy. It is fragmented, very sensitive to the economic cycles and political environment, and has a significantly high rate of business failure. Business failure, collapse and bankruptcy are common terms in the industry due to the many risks inherited in how the industry operates. Throughout the world, the relative ease of entry gives rise to a large number of contracting firms competing fiercely in the market exposing many of them to business failure, Palestine is no exception. The objectives of this paper are to report on a research study which aims at exploring the causes of contractor's business failure in Palestine, and investigating their severity from the contractor's point of view. The study's results shows that the main causes of business failure are delay in collecting debt from clients (donors, border closure, heavy dependence on bank loans and payment of high interest on these loans, lack of capital, absence of industry regulations, low profit margin due to high competition, awarding contracts by client to the lowest bidder, and lack of experience in contract management. Based on these findings, recommendations to the Palestinian National Authority (PNA and local contractors are presented in this paper.

  2. Study of simple CFRP-metal joint failure

    Science.gov (United States)

    Cheng, Jingquan; Rodriguez, Antonio; Emerson, Nicolas; Symmes, Arthur

    2008-07-01

    In millimeter wavelength telescope design and construction, there have been a number of mysterious failures of simple CFRF-metal joints. Telescope designers have not had satisfactory interpretations of these failures. In this paper, factors which may influence the failure of joints are discussed. These include stress concentration, material creep, joint fatigue, reasons related to chemical process and manufacture process. Extrapolation formulas for material creep, joint fatigue, and differential thermal stresses are derived in this paper. Detailed chemical and manufacturing factors are also discussed. All these issues are the causes of a number of early failures under a loading which is significantly lower than the strength of adhesives used. For ensuring reliability of a precision instrument structure joint, the designer should have a thorough understanding of all these factors.

  3. Estimation Procedure of Common Cause Failure Parameters for CAFE-PSA

    International Nuclear Information System (INIS)

    Kang, Dae Il; Hwang, M. J.; Han, S. H.

    2009-03-01

    Detailed common cause failure (CCF) analysis generally needs the data for CCF events from other nuclear power plants because the CCF events rarely occur. Since 2002, KAERI has participated in the international common cause failure data exchange (ICDE) project to get data for CCF events. The operation office of the ICDE project sent about 400 CCF event data for emergency diesel generators, motor operated valves, check valves, pumps, and breakers to KAERI in 2009. However, there was no program available to analyze the ICDE CCF event data. Therefore, we developed the CAFE-PSA (common CAuse Failure Event analysis program for PSA) to estimate CCF parameters by using the ICDE CCF event data. With CAFE-PSA, the CCF events in the ICDE database can be qualitatively and quantitatively analyzed. The qualitative analysis results of the ICDE CCF data, by using the CAFE-PSA, showed that the major root cause of CCF events, for motor operated valves, check valves, and pumps, was the fault of their internal parts, and that for emergency diesel generators and breakers was the inadequacy of design/manufacture or construction. The quantitative analysis results of the ICDE CCF data, by using the CAFE-PSA, showed that the estimated Alpha Factors of components, mentioned above, were lower than those previously used in the PSA for domestic nuclear power plants, but were higher than those in USNRC 2007 CCF data. Through performing qualitative and quantitative analysis of the ICDE CCF data, by using the CAFE-PSA, a plan for coping with CCF events for design and operation of nuclear power plants can be produced and reasonable values for CCF parameters can be estimated. In addition, it is expected that the technical adequacy of PSA can be improved

  4. MDEP Generic Common Position No DICWG-01. Common position on the treatment of common cause failure caused by software within digital safety systems

    International Nuclear Information System (INIS)

    2013-01-01

    Common cause failures (CCF)2 have been a significant safety concern for nuclear power plant systems. The increasing dependence on software-in safety systems for nuclear power plants has increased the safety significance of CCF caused by software, when software in redundant channels or portions of safety systems has some common dependency. For example, the effect of systematic failures can lead to a loss of safety in many ways: unwanted actuations, a safety function is not provided when needed. Therefore, nuclear power plants should be systematically protected from the effects of common cause failures caused by software in DI and C safety systems. Software for nuclear power plant safety systems should be of the high quality necessary to help assure against the loss of safety (i.e. developed with high-quality engineering practices, commensurate quality assurance applied, with continuous improvement through corrective actions based on lessons learned from operating experience). However, demonstrating adequate software quality only through verification and validation activities and controls on the development process has proved to be problematic. Therefore, this common position provides guidance for the assessment of the potential for CCF for software. It is recognized that programmable logic devices do not execute software in the conventional sense; however, the application development process using these devices have many similarities with software development, and the deficiencies that may be introduced during the application development process may induce errors in the programmable logic devices that can result in common cause failures of these devices of a type similar to software common cause failure. Although deficiencies with the potential to give rise to software common cause failures can be introduced at all phases of the software life cycle, this common position will only consider the potential for software common cause failures within digital safety system

  5. Technical Basis for Evaluating Software-Related Common-Cause Failures

    Energy Technology Data Exchange (ETDEWEB)

    Muhlheim, Michael David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wood, Richard [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    The instrumentation and control (I&C) system architecture at a nuclear power plant (NPP) incorporates protections against common-cause failures (CCFs) through the use of diversity and defense-in-depth. Even for well-established analog-based I&C system designs, the potential for CCFs of multiple systems (or redundancies within a system) constitutes a credible threat to defeating the defense-in-depth provisions within the I&C system architectures. The integration of digital technologies into the I&C systems provides many advantages compared to the aging analog systems with respect to reliability, maintenance, operability, and cost effectiveness. However, maintaining the diversity and defense-in-depth for both the hardware and software within the digital system is challenging. In fact, the introduction of digital technologies may actually increase the potential for CCF vulnerabilities because of the introduction of undetected systematic faults. These systematic faults are defined as a “design fault located in a software component” and at a high level, are predominately the result of (1) errors in the requirement specification, (2) inadequate provisions to account for design limits (e.g., environmental stress), or (3) technical faults incorporated in the internal system (or architectural) design or implementation. Other technology-neutral CCF concerns include hardware design errors, equipment qualification deficiencies, installation or maintenance errors, instrument loop scaling and setpoint mistakes.

  6. A robust Bayesian approach to modeling epistemic uncertainty in common-cause failure models

    International Nuclear Information System (INIS)

    Troffaes, Matthias C.M.; Walter, Gero; Kelly, Dana

    2014-01-01

    In a standard Bayesian approach to the alpha-factor model for common-cause failure, a precise Dirichlet prior distribution models epistemic uncertainty in the alpha-factors. This Dirichlet prior is then updated with observed data to obtain a posterior distribution, which forms the basis for further inferences. In this paper, we adapt the imprecise Dirichlet model of Walley to represent epistemic uncertainty in the alpha-factors. In this approach, epistemic uncertainty is expressed more cautiously via lower and upper expectations for each alpha-factor, along with a learning parameter which determines how quickly the model learns from observed data. For this application, we focus on elicitation of the learning parameter, and find that values in the range of 1 to 10 seem reasonable. The approach is compared with Kelly and Atwood's minimally informative Dirichlet prior for the alpha-factor model, which incorporated precise mean values for the alpha-factors, but which was otherwise quite diffuse. Next, we explore the use of a set of Gamma priors to model epistemic uncertainty in the marginal failure rate, expressed via a lower and upper expectation for this rate, again along with a learning parameter. As zero counts are generally less of an issue here, we find that the choice of this learning parameter is less crucial. Finally, we demonstrate how both epistemic uncertainty models can be combined to arrive at lower and upper expectations for all common-cause failure rates. Thereby, we effectively provide a full sensitivity analysis of common-cause failure rates, properly reflecting epistemic uncertainty of the analyst on all levels of the common-cause failure model

  7. The incorporation of displacement-controlled loadings within the net-section stress failure criterion

    International Nuclear Information System (INIS)

    Smith, E.

    1985-01-01

    A net-section stress failure criterion can be used to evaluate the critical flaw size for a material having a high fracture resistance. A simple analysis shows that the stress arising from displacement-controlled loadings should be taken into account fully if the applied tearing modulus exceeds a critical value. (author)

  8. Numerical simulation of mechanisms of deformation,failure and energy dissipation in porous rock media subjected to wave stresses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The pore characteristics,mineral compositions,physical and mechanical properties of the subarkose sandstones were acquired by means of CT scan,X-ray diffraction and physical tests.A few physical models possessing the same pore characteristics and matrix properties but different porosities compared to the natural sandstones were developed.The 3D finite element models of the rock media with varied porosities were established based on the CT image processing of the physical models and the MIMICS software platform.The failure processes of the porous rock media loaded by the split Hopkinson pressure bar(SHPB) were simulated by satisfying the elastic wave propagation theory.The dynamic responses,stress transition,deformation and failure mechanisms of the porous rock media subjected to the wave stresses were analyzed.It is shown that an explicit and quantitative analysis of the stress,strain and deformation and failure mechanisms of porous rocks under the wave stresses can be achieved by using the developed 3D finite element models.With applied wave stresses of certain amplitude and velocity,no evident pore deformation was observed for the rock media with a porosity less than 15%.The deformation is dominantly the combination of microplasticity(shear strain),cracking(tensile strain) of matrix and coalescence of the cracked regions around pores.Shear stresses lead to microplasticity,while tensile stresses result in cracking of the matrix.Cracking and coalescence of the matrix elements in the neighborhood of pores resulted from the high transverse tensile stress or tensile strain which exceeded the threshold values.The simulation results of stress wave propagation,deformation and failure mechanisms and energy dissipation in porous rock media were in good agreement with the physical tests.The present study provides a reference for analyzing the intrinsic mechanisms of the complex dynamic response,stress transit mode,deformation and failure mechanisms and the disaster

  9. Constitutive modeling of void-growth-based tensile ductile failures with stress triaxiality effects

    KAUST Repository

    Mora Cordova, Angel

    2014-07-01

    In most metals and alloys, the evolution of voids has been generally recognized as the basic failure mechanism. Furthermore, stress triaxiality has been found to influence void growth dramatically. Besides strain intensity, it is understood to be the most important factor that controls the initiation of ductile fracture. We include sensitivity of stress triaxiality in a variational porous plasticity model, which was originally derived from hydrostatic expansion. Under loading conditions rather than hydrostatic deformation, we allow the critical pressure for voids to be exceeded so that the growth due to plasticity becomes dependent on the stress triaxiality. The limitations of the spherical void growth assumption are investigated. Our improved constitutive model is validated through good agreements with experimental data. Its capacity for reproducing realistic failure patterns is also indicated by a numerical simulation of a compact tensile (CT) test. © 2013 Elsevier Inc.

  10. Centrifuge model test of rock slope failure caused by seismic excitation. Plane failure of dip slope

    International Nuclear Information System (INIS)

    Ishimaru, Makoto; Kawai, Tadashi

    2008-01-01

    Recently, it is necessary to assess quantitatively seismic safety of critical facilities against the earthquake induced rock slope failure from the viewpoint of seismic PSA. Under these circumstances, it is essential to evaluate more accurately the possibilities of rock slope failure and the potential failure boundary, which are triggered by earthquake ground motions. The purpose of this study is to analyze dynamic failure characteristics of rock slopes by centrifuge model tests for verification and improvement of the analytical methods. We conducted a centrifuge model test using a dip slope model with discontinuities limitated by Teflon sheets. The centrifugal acceleration was 50G, and the acceleration amplitude of input sin waves increased gradually at every step. The test results were compared with safety factors of the stability analysis based on the limit equilibrium concept. Resultant conclusions are mainly as follows: (1) The slope model collapsed when it was excited by the sine wave of 400gal, which was converted to real field scale, (2) Artificial discontinuities were considerably concerned in the collapse, and the type of collapse was plane failure, (3) From response acceleration records observed at the slope model, we can say that tension cracks were generated near the top of the slope model during excitation, and that might be cause of the collapse, (4) By considering generation of the tension cracks in the stability analysis, correspondence of the analytical results and the experimental results improved. From the obtained results, we need to consider progressive failure in evaluating earthquake induced rock slope failure. (author)

  11. Digoxin Use and Lower 30-day All-cause Readmission for Medicare Beneficiaries Hospitalized for Heart Failure

    NARCIS (Netherlands)

    Ahmed, Ali; Bourge, Robert C.; Fonarow, Gregg C.; Patel, Kanan; Morgan, Charity J.; Fleg, Jerome L.; Aban, Inmaculada B.; Love, Thomas E.; Yancy, Clyde W.; Deedwania, Prakash; van Veldhuisen, Dirk J.; Filippatos, Gerasimos S.; Anker, Stefan D.; Allman, Richard M.

    BACKGROUND: Heart failure is the leading cause for hospital readmission, the reduction of which is a priority under the Affordable Care Act. Digoxin reduces 30-day all-cause hospital admission in chronic systolic heart failure. Whether digoxin is effective in reducing readmission after

  12. A cause-defense approach to the understanding and analysis of common cause failures

    International Nuclear Information System (INIS)

    Paula, Henrique M.; Campbell, David J.; Parry, Gareth W.; Mitchell, Donald B.; Rasmuson, Dale M.

    1990-03-01

    For improved reliability and safety, nuclear power plants are designed with redundant safety systems, many of which also have redundant trains of equipment within the system. However, the very high reliability theoretically achievable through the use of redundancy is often compromised by single events that can individually render redundant components unavailable (common cause failure [CCF] events). As evidenced by the results of probabilistic risk assessments (PRAs) and by historical experience with nuclear power plant operations, CCF events are usually major contributors to the risk posed by nuclear power plant operation. Thus, it is important that PRAs recognize the potential for CCF events and realistically account for CCF contributions to system unavailability and plant risk. Much progress has been made over the years in the area of CCF analysis, including the development of both qualitative and quantitative analysis methods. Until now, however, CCF methodologies have not explicitly and systematically accounted for the impact of plant-specific defenses, such as design features and operational and maintenance policies, in place to reduce the likelihood of failure occurrences at nuclear power plants. Recognizing the importance of this issue, the NRC has funded a research effort that has focused on developing the cause-defense methodology for CCF analysis and prevention. This report presents the results of this research. Specifically, this report discusses the development of (1) procedures for identifying the potential for CCF events at individual nuclear power plants and (2) cause-defense matrices for analysis of CCF events. Also, new concepts and more precise definitions are introduced to enhance CCF terminology and interpretation of historical event data. (author)

  13. The pacemaker-twiddler's syndrome: an infrequent cause of pacemaker failure.

    Science.gov (United States)

    Salahuddin, Mohammad; Cader, Fathima Aaysha; Nasrin, Sahela; Chowdhury, Mashhud Zia

    2016-01-20

    The pacemaker-twiddler's syndrome is an uncommon cause of pacemaker malfunction. It occurs due to unintentional or deliberate manipulation of the pacemaker pulse generator within its skin pocket by the patient. This causes coiling of the lead and its dislodgement, resulting in failure of ventricular pacing. More commonly reported among elderly females with impaired cognition, the phenomenon usually occurs in the first year following pacemaker implantation. Treatment involves repositioning of the dislodged leads and suture fixation of the lead and pulse generator within its pocket. An 87 year old Bangladeshi lady who underwent a single chamber ventricular pacemaker (VVI mode: i.e. ventricle paced, ventricle sensed, inhibitory mode) implantation with the indication of complete heart block, and presented to us again 7 weeks later, with syncopal attacks. She admitted to repeatedly manipulating the pacemaker generator in her left pectoral region. Physical examination revealed a heart rate of 42 beats/minute, blood pressure 140/80 mmHg and bilateral crackles on lung auscultation. She had no cognitive deficit. An immediate electrocardiogram showed complete heart block with pacemaker spikes and failure to capture. Chest X-ray showed coiled and retracted right ventricular lead and rotated pulse generator. An emergent temporary pace maker was set at a rate of 60 beats per minute. Subsequently, she underwent successful lead repositioning with strong counselling to avoid further twiddling. Twiddler's syndrome should be considered as a cause of pacemaker failure in elderly patients presenting with bradyarrythmias following pacemaker implantation. Chest X-ray and electrocardiograms are simple and easily-available first line investigations for its diagnosis. Lead repositioning is required, however proper patient education and counselling against further manipulation is paramount to long-term management.

  14. Stress analysis of shear/compression test

    International Nuclear Information System (INIS)

    Nishijima, S.; Okada, T.; Ueno, S.

    1997-01-01

    Stress analysis has been made on the glass fiber reinforced plastics (GFRP) subjected to the combined shear and compression stresses by means of finite element method. The two types of experimental set up were analyzed, that is parallel and series method where the specimen were compressed by tilted jigs which enable to apply the combined stresses, to the specimen. Modified Tsai-Hill criterion was employed to judge the failure under the combined stresses that is the shear strength under the compressive stress. The different failure envelopes were obtained between the two set ups. In the parallel system the shear strength once increased with compressive stress then decreased. On the contrary in the series system the shear strength decreased monotonicly with compressive stress. The difference is caused by the different stress distribution due to the different constraint conditions. The basic parameters which control the failure under the combined stresses will be discussed

  15. Benchmark exercise of the European Community on common cause failure

    International Nuclear Information System (INIS)

    Doerre, P.

    1986-09-01

    This report summarizes experiences and results of the contractor's contribution to the 'Second Reliability Benchmark Exercise of the European Community on Common Cause Failure' (CCF-RBE). The choice of a method for the treatment of dependent failures in a given reliability analysis depends on the purpose and aim of this analysis as well as on quality and extent of the available data, which may also influence the necessary degree of detail of the analysis. When data are applied to a system with different degree of redundancy, two types of errors have to be avoided which lead to extremely pessimistic assessments. (orig.) With 20 refs., 3 tabs., 1 fig [de

  16. Failure Characteristics of Granite Influenced by Sample Height-to-Width Ratios and Intermediate Principal Stress Under True-Triaxial Unloading Conditions

    Science.gov (United States)

    Li, Xibing; Feng, Fan; Li, Diyuan; Du, Kun; Ranjith, P. G.; Rostami, Jamal

    2018-05-01

    The failure modes and peak unloading strength of a typical hard rock, Miluo granite, with particular attention to the sample height-to-width ratio (between 2 and 0.5), and the intermediate principal stress was investigated using a true-triaxial test system. The experimental results indicate that both sample height-to-width ratios and intermediate principal stress have an impact on the failure modes, peak strength and severity of rockburst in hard rock under true-triaxial unloading conditions. For longer rectangular specimens, the transition of failure mode from shear to slabbing requires higher intermediate principal stress. With the decrease in sample height-to-width ratios, slabbing failure is more likely to occur under the condition of lower intermediate principal stress. For same intermediate principal stress, the peak unloading strength monotonically increases with the decrease in sample height-to-width. However, the peak unloading strength as functions of intermediate principal stress for different types of rock samples (with sample height-to-width ratio of 2, 1 and 0.5) all present the pattern of initial increase, followed by a subsequent decrease. The curves fitted to octahedral shear stress as a function of mean effective stress also validate the applicability of the Mogi-Coulomb failure criterion for all considered rock sizes under true-triaxial unloading conditions, and the corresponding cohesion C and internal friction angle φ are calculated. The severity of strainburst of granite depends on the sample height-to-width ratios and intermediate principal stress. Therefore, different supporting strategies are recommended in deep tunneling projects and mining activities. Moreover, the comparison of test results of different σ 2/ σ 3 also reveals the little influence of minimum principal stress on failure characteristics of granite during the true-triaxial unloading process.

  17. Multilinear stress-strain and failure calibrations for Ti-6Al-4V.

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    This memo concerns calibration of an elastic-plastic J2 material model for Ti-6Al-4V (grade 5) alloy based on tensile uniaxial stress-strain data obtained in the laboratory. In addition, tension tests on notched specimens provided data to calibrate two ductile failure models: Johnson-Cook and Wellman's tearing parameter. The tests were conducted by Kim Haulen- beek and Dave Johnson (1528) in the Structural Mechanics Laboratory (SML) during late March and early April, 2017. The SML EWP number was 4162. The stock material was a TIMETALR® 6-4 Titanium billet with 9 in. by 9 in. square section and length of 137 in. The product description indicates that it was a forging delivered in annealed condition (2 hours @ 1300oF, AC at the mill). The tensile mechanical properties reported in the material certi cation are given in Table 1, where σo represents the 0.2% strain offset yield stress, σu the ultimate stress, εf the elongation at failure and R.A. the reduction in area.

  18. The causes, consequences, and treatment of left or right heart failure

    Directory of Open Access Journals (Sweden)

    Peteiro J

    2011-04-01

    Full Text Available Pablo Pazos-López, Jesús Peteiro-Vázquez, Ana Carcía-Campos, Lourdes García-Bueno, Juan Pablo Abugattas de Torres, Alfonso Castro-BeirasDepartment of Cardiology, Complejo hospitalario Universitario A Coruña, A Coruña, SpainAbstract: Chronic heart failure (HF is a cardiovascular disease of cardinal importance because of several factors: a an increasing occurrence due to the aging of the population, primary and secondary prevention of cardiovascular events, and modern advances in therapy, b a bad prognosis: around 65% of patients are dead within 5 years of diagnosis, c a high economic cost: HF accounts for 1% to 2% of total health care expenditure. This review focuses on the main causes, consequences in terms of morbidity, mortality and costs and treatment of HF.Keywords: heart failure, cause, consequence, treatment

  19. The mechanism and characteristics of ground movement and strata failure caused by mining

    Energy Technology Data Exchange (ETDEWEB)

    Tianquan, L. (Central Coal Mining Research Institute, Beijing (China))

    1988-01-01

    Analyzes strata movement and ground subsidence caused by underground coal mining. Five types of strata failure during and after underground coal mining are comparatively evaluated: caving zone, fractured zone, bending zone, arched caving, bending with continuous ground movement, sinkhole formation. Effects of coal seam thickness, dip angle, coal panel dimensions, rock stratification and mechanical properties on dimensions and distribution of failure zones in rock strata are investigated. Strata movement during level and steep seam mining is comparatively evaluated. Causes of continuous ground surface deformation and discontinuous deformation are analyzed. Rock strata properties and water influx, which influence sinkhole hazards, are discussed.

  20. Preliminary Analysis of the Common Cause Failure Events for Domestic Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kang, Daeil; Han, Sanghoon

    2007-01-01

    It is known that the common cause failure (CCF) events have a great effect on the safety and probabilistic safety assessment (PSA) results of nuclear power plants (NPPs). However, the domestic studies have been mainly focused on the analysis method and modeling of CCF events. Thus, the analysis of the CCF events for domestic NPPs were performed to establish a domestic database for the CCF events and to deliver them to the operation office of the international common cause failure data exchange (ICDE) project. This paper presents the analysis results of the CCF events for domestic nuclear power plants

  1. Bearing Stress at Failure of Double-Lap Hybrid Joints in Woven Fabric Kenaf Fiber Composite Plates under Quasi-static Loading

    Directory of Open Access Journals (Sweden)

    Lee Sim Yee

    2017-01-01

    Full Text Available The present paper is focused on the bearing stress at failure of double-lap woven fabric kenaf fiber reinforced polymer (KFRP hybrid bonded-bolted joints in experimental frameworks. The effects of different normalized plate width (plate width/hole diameter, W/d, lay-up types and bolt loads were incorporated in current study as specified in testing series. Generally, hybrid joint coupons separated within adhesive layer prior to net-tension failure or bearing/net-tension failure. The bearing stress at failure increased as W/d ratio increment, critical W/d is given as four and three in clamped and finger tight condition respectively. Lay-up types present insignificant effect to bearing stress at failure due to low volume fiber fraction in kenaf fiber composites. Combination of thicker and clamped conditions plate demonstrated greater bearing stress than equivalent finger-tight (FT conditions due to higher load transferred from friction, as expected.

  2. The failure of earthquake failure models

    Science.gov (United States)

    Gomberg, J.

    2001-01-01

    In this study I show that simple heuristic models and numerical calculations suggest that an entire class of commonly invoked models of earthquake failure processes cannot explain triggering of seismicity by transient or "dynamic" stress changes, such as stress changes associated with passing seismic waves. The models of this class have the common feature that the physical property characterizing failure increases at an accelerating rate when a fault is loaded (stressed) at a constant rate. Examples include models that invoke rate state friction or subcritical crack growth, in which the properties characterizing failure are slip or crack length, respectively. Failure occurs when the rate at which these grow accelerates to values exceeding some critical threshold. These accelerating failure models do not predict the finite durations of dynamically triggered earthquake sequences (e.g., at aftershock or remote distances). Some of the failure models belonging to this class have been used to explain static stress triggering of aftershocks. This may imply that the physical processes underlying dynamic triggering differs or that currently applied models of static triggering require modification. If the former is the case, we might appeal to physical mechanisms relying on oscillatory deformations such as compaction of saturated fault gouge leading to pore pressure increase, or cyclic fatigue. However, if dynamic and static triggering mechanisms differ, one still needs to ask why static triggering models that neglect these dynamic mechanisms appear to explain many observations. If the static and dynamic triggering mechanisms are the same, perhaps assumptions about accelerating failure and/or that triggering advances the failure times of a population of inevitable earthquakes are incorrect.

  3. Residual stresses

    International Nuclear Information System (INIS)

    Macherauch, E.

    1978-01-01

    Residual stresses are stresses which exist in a material without the influence of external powers and moments. They come into existence when the volume of a material constantly changes its form as a consequence of mechanical, thermal, and/or chemical processes and is hindered by neighbouring volumes. Bodies with residual stress are in mechanical balance. These residual stresses can be manifested by means of all mechanical interventions disturbing this balance. Acoustical, optical, radiological, and magnetical methods involving material changes caused by residual stress can also serve for determining residual stress. Residual stresses have an ambivalent character. In technical practice, they are feared and liked at the same time. They cause trouble because they can be the cause for unexpected behaviour of construction elements. They are feared since they can cause failure, in the worst case with catastrophical consequences. They are appreciated, on the other hand, because, in many cases, they can contribute to improvements of the material behaviour under certain circumstances. But they are especially liked for their giving convenient and (this is most important) mostly uncontrollable explanations. For only in very few cases we have enough knowledge and possibilities for the objective evaluation of residual stresses. (orig.) [de

  4. ICDE project report on collection and analysis of common-cause failures of centrifugal pumps

    International Nuclear Information System (INIS)

    2000-01-01

    Several member countries of OECD/NEA decided to establish the International Common-Cause Failure Data Exchange (ICDE) Project to encourage multilateral co-operation in the collection and analysis of data relating to Common-Cause Failure (CCF) events. The project was initiated in August 1994 in Sweden and was discussed at meetings in both Sweden and France in 1995. A coding benchmark exercise was defined which was evaluated at meetings held in Germany and in the US in 1996. Subsequently, the exchange of centrifugal pump data was defined; the first phase of this exchange was evaluated at meetings in Switzerland and in France in 1997. The objectives of the ICDE Project are: - to collect and analyse CCF events in the long term so as to better understand such events, their causes, and their prevention, - to generate qualitative insights into the root causes of CCF events which can then be used to derive approaches or mechanisms for their prevention or for mitigating their consequences, - to establish a mechanism for the efficient feedback of experience gained on CCF phenomena, including the development of defences against their occurrence, such as indicators for risk based inspections. The ICDE Project is envisaged as including all possible events of interest, comprising complete, partial and incipient CCF events, called 'ICDE events' in the following. The Project covers the key components of the main safety systems, like centrifugal pumps, diesel generators, motor operated valves, power operated relief valves, safety relief valves, check valves, RPS circuit breakers, batteries and transmitters. Data are collected in an MS ACCESS based databank implemented and maintained at ES-Konsult, Sweden, by NEA appointed clearinghouse. The databank is regularly updated. The clearinghouse and the project group operate it. In the modelling of common-cause failures in systems consisting of several redundant components, two kinds of events are distinguished: a) Unavailability of a

  5. Estimation of liver parameters and oxidative stress in chronic renal failure patients on hemodialysis in Erbil governorate

    Science.gov (United States)

    Kakey, Musher Ismail Salih; Abdoulrahman, Kamaran Kaiani

    2017-09-01

    The present study aims to evaluate iron related parameters in chronic renal failure (CRF) patients on hemodialysis (HD). The study was carried out in Kidney Dialysis Center of Hawler Teaching Hospital in Erbil governorate. This study comprised (76) patients with chronic renal failure on hemodialysis and 41 healthy subjects as a control group of same ages. All hemodialysis patients were taking erythropoietin. The blood samples were taken from the patients before and after the process of hemodialysis for liver parameters and oxidative stress estimations. The results of this study showed lower levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin, total bilirubin, total protein and total antioxidant capacity (TAC), while higher levels of alkaline phosphatase (ALP), direct bilirubin and malondialdeyhde (MDA) before analysis was seen. Hemodialysis causes increasing in AST, ALT, albumin, total bilirubin, total protein and decreasing in ALP, direct bilirubin MDA and TAC.

  6. The relationship between beginning teachers' stress causes, stress responses, teaching behaviour and attrition

    NARCIS (Netherlands)

    Harmsen, Ruth; Lorenz, Michelle; Maulana, Ridwan; van Veen, Klaas

    2018-01-01

    In this study, the relationships between beginning teachers’ perceived stress causes, stress responses, observed teaching behaviour and attrition is investigated employing structural equation modelling (SEM). A total of 143 BTs were surveyed using the Questionnaire on the Experience and Evaluation

  7. Residual stress measurements with barkhausen noise in power plant creep failure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Karvonen, I. [CoMoTest Oy, Maentsaelae (Finland)] Suominen, L. [Stresstech Oy, Jyvaeskylae (Finland)

    1998-12-31

    Continuously developing power and process industry needs predictive maintenance inspection methods in order to prevent failures with correctly timed and properly specified measures. Materials` monitoring has traditionally been non-destructive inspection to detect growing cracks or other deficiencies. Recently, after the development of portable stress measurement systems, some advances has been reached. Based on stress anomalies due to creep, fatigue or corrosion, new applications have been found in the use of Barkhausen noise inspection. When the Barkhausen noise findings have been simultaneously confirmed with other stress measuring methods, a wider acceptance of the application of the method can be proposed. (orig.) 7 refs.

  8. Residual stress measurements with barkhausen noise in power plant creep failure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Karvonen, I. [CoMoTest Oy, Maentsaelae (Finland)] Suominen, L. [Stresstech Oy, Jyvaeskylae (Finland)

    1997-12-31

    Continuously developing power and process industry needs predictive maintenance inspection methods in order to prevent failures with correctly timed and properly specified measures. Materials` monitoring has traditionally been non-destructive inspection to detect growing cracks or other deficiencies. Recently, after the development of portable stress measurement systems, some advances has been reached. Based on stress anomalies due to creep, fatigue or corrosion, new applications have been found in the use of Barkhausen noise inspection. When the Barkhausen noise findings have been simultaneously confirmed with other stress measuring methods, a wider acceptance of the application of the method can be proposed. (orig.) 7 refs.

  9. Preliminary review of critical shutdown heat removal items for common cause failure susceptibility on LMFBR's. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Allard, L.T.; Elerath, J.G.

    1976-02-01

    This document presents a common cause failure analysis for Critical LMFBR Shutdown Heat Removal Systems. The report is intended to outline a systematic approach to defining areas with significant potential for common causes of failure, and ultimately provide inputs to the reliability prediction model. A preliminary evaluation of postulatd single initiating causes resulting in multiple failures of LMFBR-SHRS items is presented in Appendix C. This document will be periodically updated to reflect new information and activity.

  10. Collections and Analyses of Common Cause Failure Data for the Korea Standard and Westinghouse Type NPPs

    International Nuclear Information System (INIS)

    Kang, Dae Il; Han, S. H.

    2007-04-01

    The analyses of the CCF events for domestic NPPs were performed to establish the domestic database for the CCF events and to deliver supply them to the operation office of the international common cause failure data exchange (ICDE) project. We collected and analyzed the CCF events of emergency diesel generators, centrifugal pumps, motor-operated valves, check valves, circuit breakers for the Korean Standard Type nuclear power plants (NPPs), Yonggwang Units 3 and 4 and Ulchin Units 3 and 4, and the Westinghouse type NPPs, Kori Unit 3 and 4 and Yonggwang Units 1 and 2. First, the components to be collected and analyzed were classified into the common cause component groups (CCCGs) according to the ICDE coding guidelines. Next, the CCF events were identified based on reviews of the component database for the PSA and its related documents, and consultations with NPP staff. Fourteen CCF events were identified. The ratio of the number of CCF events to that of individual failure events was identified as approximately 10 percentages. However, an in depth review of the CCF events showed that most failure severities of them were identified as partial CCF events, which can be interpreted as some component failures within the CCCGs. Root causes of the CCF events were identified as 9 internal part failures, 2 human errors, 2 design deficiencies, 1 procedure inadequacy. It could be concluded that the major root causes of the CCF events were internal piece part failures

  11. Stress-corrosion cracking of indium tin oxide coated polyethylene terephthalate for flexible optoelectronic devices

    International Nuclear Information System (INIS)

    Sierros, Konstantinos A.; Morris, Nicholas J.; Ramji, Karpagavalli; Cairns, Darran R.

    2009-01-01

    Stress corrosion cracking of transparent conductive layers of indium tin oxide (ITO), sputtered on polyethylene terephthalate (PET) substrates, is an issue of paramount importance in flexible optoelectronic devices. These components, when used in flexible device stacks, can be in contact with acid containing pressure-sensitive adhesives or with conductive polymers doped in acids. Acids can corrode the brittle ITO layer, stress can cause cracking and delamination, and stress-corrosion cracking can cause more rapid failure than corrosion alone. The combined effect of an externally-applied mechanical stress to bend the device and the corrosive environment provided by the acid is investigated in this work. We show that acrylic acid which is contained in many pressure-sensitive adhesives can cause corrosion of ITO coatings on PET. We also investigate and report on the combined effect of external mechanical stress and corrosion on ITO-coated PET composite films. Also, it is shown that the combination of stress and corrosion by acrylic acid can cause ITO cracking to occur at stresses less than a quarter of those needed for failure with no corrosion. In addition, the time to failure, under ∼ 1% tensile strain can reduce the total time to failure by as much as a third

  12. Acute-on-chronic liver failure: causes, clinical characteristics and predictors of mortality

    International Nuclear Information System (INIS)

    Ali, A.; Luck, N.H.

    2017-01-01

    Objective: To determine the causes, characteristics and predictors of mortality in patients with acute-on-chronic liver failure (ACLF). Study Design: Cross-sectional study. Place and Duration of Study:Department of Hepatogastroenterology, Sindh Institute of Urology and Transplantation, Karachi, from July 2014 to June 2016. Methodology:All patients with acute-on-chronic liver disease (ACLD) with ages > 12 were included. Patients with ACLF, as defined by the Asian Pacific Association for the Study of Liver (APASL, 2014) were identified. Predictors of mortality were identified using chi-square or Fisher's exact test. Results: Included in the study were 72 patients with mean age of 36.71 years, 46 (63.9%) being males. Among them, 61 developed ACLF. Commonest causes of chronic liver disease (CLD) were chronic viral hepatitis (37, 51.4%) and autoimmune hepatitis (14, 19.4%). Commonest causes of acute liver injury (ALI) were acute viral hepatitis (24, 33.3%) and drug induced liver injury (DILI) (17, 23.6%). Among those with ACLF, 24 (39.3%) patients died with median survival of 17.1 +-13.5 days. Mortality was significantly associated with Child Turcotte Pugh (CTP) score =>13 (p=0.010), model for end-stage liver disease (MELD) score =>30 (p=0.001), age >40 years (p=0.036), organ failures (OF) =>3 (p 3, CTP =>13, MELD =>30, age >40 years, PSE, renal failure and urosepsis. (author)

  13. Common cause failure rate estimates for diesel generators in nuclear power plants

    International Nuclear Information System (INIS)

    Steverson, J.A.; Atwood, C.L.

    1982-01-01

    Common cause fault rates for diesel generators in nuclear power plants are estimated, using Licensee Event Reports for the years 1976 through 1978. The binomial failure rate method, used for obtaining the estimates, is briefly explained. Issues discussed include correct classification of common cause events, grouping of the events into homogeneous data subsets, and dealing with plant-to-plant variation

  14. Diseases causing acute renal failure in a tertiary care hospital

    International Nuclear Information System (INIS)

    Khan, G.; Hussain, K.; Rehman, A.

    2011-01-01

    Objective: This study was done to evaluate frequency of acute renal failure ( ARF ), its causes and out come of the patients. Study Design: Descriptive analytic study Place and Duration of Study: March to Dec 2007 at Combined Military Hospital Lahore. Patients and Methods: All patients, admitted in different wards of the hospital, who developed acute renal failure (doubling of serum creatinine measured on two occasions 12 hours apart), were included in this study. Results: A total of 39 patients were included in the study. Males were 19 (48.71%) and 20 (51.28%) were female. Mean age of patients was 40.2 years (SD=18.0). The major cause was acute Gastroenteritis seen in 23 (58.97%) cases. Others developed ARF due to, Abruptio Placentae 5 (12.82%), Postoperative 5 (12.82%), Eclampsia 3 (7.69%) and Drug induced 3 (7.69%) . Oliguric phase developed in 28 (71.79%) patients and lasted for 8.45 +- 4.16 days. Of these 17 (60.71%) patients had acute gastroenteritis. Conclusion: Gastroenteritis is the most common and important cause of ARF though gynaecological and surgical etiologies must be kept in mind. It is evident that the gynaecological and surgical patients need critical peri-partum and peri-operative monitoring to prevent development of ARF. Early institution of therapy will prevent subsequent morbidity associated with this disease. (author)

  15. ξ common cause failure model and method for defense effectiveness estimation

    International Nuclear Information System (INIS)

    Li Zhaohuan

    1991-08-01

    Two issues have been dealt. One is to develop an event based parametric model called ξ-CCF model. Its parameters are expressed in the fraction of the progressive multiplicities of failure events. By these expressions, the contribution of each multiple failure can be presented more clearly. It can help to select defense tactics against common cause failures. The other is to provide a method which is based on the operational experience and engineering judgement to estimate the effectiveness of defense tactics. It is expressed in terms of reduction matrix for a given tactics on a specific plant in the event by event form. The application of practical example shows that the model in cooperation with the method can simply estimate the effectiveness of defense tactics. It can be easily used by the operators and its application may be extended

  16. (m, M) Machining system with two unreliable servers, mixed spares and common-cause failure

    OpenAIRE

    Jain, Madhu; Mittal, Ragini; Kumari, Rekha

    2015-01-01

    This paper deals with multi-component machine repair model having provision of warm standby units and repair facility consisting of two heterogeneous servers (primary and secondary) to provide repair to the failed units. The failure of operating and standby units may occur individually or due to some common cause. The primary server may fail partially following full failure whereas secondary server faces complete failure only. The life times of servers and operating/standby units and their re...

  17. The metal failure cases discussed

    Energy Technology Data Exchange (ETDEWEB)

    Gupton, P

    1978-06-05

    The metal failure cases discussed by P. Gupton (Monsanto Chem. Co.) at a joint meeting of the American Society of Metals (ASM) and the National Association of Corrosion Engineers Calgary Section (Calgary 1978) include a high-temperature (1775/sup 0/-1800/sup 0/F) failure in an HK 40 outside heater tube in a synthesis gas steam-methane reformer, resulting in two major fissures caused by carbonization and oxide deposits with high carbon and lead contents due to the use of remelt scrap material with high lead content; separation of a support pad from a 30 in. pipeline due to corrosion caused by molybdenum-peroxide action; oxidation of a section of 180/sup 0/ U-bend in a thermal ethylene cracking furnace due to fluxing reaction of a high sodium and calcium feed which collected in the return bed; stress corrosion cracking of an austenitic stainless cracker tube from high temperature and electrolytic attack; and other cases of metal failure caused by weld quality problems, use of contaminated material and inadequate designs, processing, and fabrication.

  18. Causes of liver failure and impact analysis of prognostic risk factors

    Directory of Open Access Journals (Sweden)

    WU Xiaoqing

    2013-04-01

    Full Text Available ObjectiveTo perform a retrospective analysis of patients with liver failure to investigate the causative factors and related risk factors that may affect patient prognosis. MethodsThe clinical, demographic, and laboratory data of 79 consecutive patients diagnosed with liver failure and treated at our hospital between January 2010 and January 2012 (58 males and 21 females; age range: 16-74 years old were collected from the medical records. To identify risk factors of liver failure, the patient variables were assessed by Student’s t-test (continuous variables or Chi-squared test (categorical variables. Multivariate logistic regression analysis was used to investigate the relation between patient outcome and independent risk factors. ResultsThe 79 cases of liver failure were grouped according to disease severity: acute liver failure (n=6; 5 died, subacute liver failure (n=35; 19 died, and chronic liver failure (n=38; 28 died. The overall rate of death was 66%. The majority of cases (81% were related to hepatitis B virus infection. While the three groups of liver failure severity did not show significant differences in sex, mean age, occupation, presence of potassium disorder, total bilirubin (TBil or total cholesterol (CHO at admission, or lowest recorded level of CHO during hospitalization, there were significant intergroup differences in highest recorded TBil level, prothrombin activity (PTA at admission, and highest and lowest recorded PTA, and highest recorded level of CHO. Five independent risk factors were identified: the highest recorded TBil level during hospitalization, presence of infection, hepatorenal syndrome, gastrointestinal bleeding, and hepatic encephalopathy. ConclusionThe major cause of liver failure in this cohort of patients was hepatitis infection, and common biomarkers of liver function, such as TBil, CHO and PTA, may indicate patients with poor prognosis despite clinical intervention. Complications should be addressed as

  19. PACC information management code for common cause failures analysis

    International Nuclear Information System (INIS)

    Ortega Prieto, P.; Garcia Gay, J.; Mira McWilliams, J.

    1987-01-01

    The purpose of this paper is to present the PACC code, which, through an adequate data management, makes the task of computerized common-mode failure analysis easier. PACC processes and generates information in order to carry out the corresponding qualitative analysis, by means of the boolean technique of transformation of variables, and the quantitative analysis either using one of several parametric methods or a direct data-base. As far as the qualitative analysis is concerned, the code creates several functional forms for the transformation equations according to the user's choice. These equations are subsequently processed by boolean manipulation codes, such as SETS. The quantitative calculations of the code can be carried out in two different ways: either starting from a common cause data-base, or through parametric methods, such as the Binomial Failure Rate Method, the Basic Parameters Method or the Multiple Greek Letter Method, among others. (orig.)

  20. Device for detecting imminent failure of high-dielectric stress capacitors. [Patent application

    Science.gov (United States)

    McDuff, G.G.

    1980-11-05

    A device is described for detecting imminent failure of a high-dielectric stress capacitor utilizing circuitry for detecting pulse width variations and pulse magnitude variations. Inexpensive microprocessor circuitry is utilized to make numerical calculations of digital data supplied by detection circuitry for comparison of pulse width data and magnitude data to determine if preselected ranges have been exceeded, thereby indicating imminent failure of a capacitor. Detection circuitry may be incorporated in transmission lines, pulse power circuitry, including laser pulse circuitry or any circuitry where capacitors or capacitor banks are utilized.

  1. On the failure analysis of bondlines: Stress or energy based fracture criteria?

    DEFF Research Database (Denmark)

    Anyfantis, Konstantinos

    2014-01-01

    that characterizes a given bondline, both its cohesive strength and fracture toughness material parameters must be experimentally defined. Based on these properties, failure analysis of the bondline can be done either through stress- or energy-based criteria. The aim of this work is to investigate the effectiveness...... to classify the wide range of bondlines with respect to the failure theory that best describes the debonding process. Cohesive length scale effects are first demonstrated by modeling end notch flexure geometries and later by modeling double strap joint geometries within the framework of a wide numerical...

  2. Cheyne-Stokes respiration in patients with congestive heart failure: causes and consequences.

    Science.gov (United States)

    Lorenzi-Filho, Geraldo; Genta, Pedro R; Figueiredo, Adelaide C; Inoue, Daniel

    2005-08-01

    Cheyne-Stokes respiration is a form of periodic breathing in which central apneas and hypopneas alternate with periods of hyperventilation, producing a waxing and waning pattern of tidal volume. This review focuses on the causes and consequences of Cheyne-Stokes respiration in patients with congestive heart failure, in whom the prevalence is strikingly high and ranges from 30% to 50%. Several factors have been implicated in the genesis of Cheyne-Stokes respiration, including low cardiac output and recurrent hypoxia. The key pathophysiological mechanism triggering Cheyne-Stokes respiration is hyperventilation and low arterial CO2 (PaCO2) that when below the apneic threshold triggers a central apnea. Hyperventilation is associated with pulmonary congestion, and Cheyne-Stokes respiration is more prone to occur during sleep, when the respiratory system is mainly dependent on chemical control. It is associated with recurrent dips in oxygen saturation and arousals from sleep, with oscillations in blood pressure and heart rate, sympathetic activation and increased risk of ventricular tachycardia. Cheyne-Stokes respiration is an independent marker of poor prognosis and may participate in a vicious cycle, further stressing the failing heart.

  3. Constitutive modeling of void-growth-based tensile ductile failures with stress triaxiality effects

    KAUST Repository

    Mora Cordova, Angel; Liu, Jinxing; El Sayed, Tamer S.

    2014-01-01

    In most metals and alloys, the evolution of voids has been generally recognized as the basic failure mechanism. Furthermore, stress triaxiality has been found to influence void growth dramatically. Besides strain intensity, it is understood

  4. Diencephalic syndrome: a frequently neglected cause of failure to thrive in infants.

    Science.gov (United States)

    Kim, Ahlee; Moon, Jin Soo; Yang, Hye Ran; Chang, Ju Young; Ko, Jae Sung; Seo, Jeong Kee

    2015-01-01

    Diencephalic syndrome is an uncommon cause of failure to thrive in early childhood that is associated with central nervous system neoplasms in the hypothalamic-optic chiasmatic region. It is characterized by complex signs and symptoms related to hypothalamic dysfunction; such nonspecific clinical features may delay diagnosis of the brain tumor. In this study, we analyzed a series of cases in order to define characteristic features of diencephalic syndrome. We performed a retrospective study of 8 patients with diencephalic syndrome (age, 5-38 months). All cases had presented to Seoul National University Children's Hospital between 1995 and 2013, with the chief complaint of poor weight gain. Diencephalic syndrome with central nervous system (CNS) neoplasm was identified in 8 patients. The mean age at which symptoms were noted was 18±10.5 months, and diagnosis after symptom onset was made at the mean age of 11±9.7 months. The mean z score was -3.15±1.14 for weight, -0.12±1.05 for height, 1.01±1.58 for head circumference, and -1.76±1.97 for weight-for-height. Clinical features included failure to thrive (n=8), hydrocephalus (n=5), recurrent vomiting (n=5), strabismus (n=2), developmental delay (n=2), hyperactivity (n=1), nystagmus (n=1), and diarrhea (n=1). On follow-up evaluation, 3 patients showed improvement and remained in stable remission, 2 patients were still receiving chemotherapy, and 3 patients were discharged for palliative care. Diencephalic syndrome is a rare cause of failure to thrive, and diagnosis is frequently delayed. Thus, it is important to consider the possibility of a CNS neoplasm as a cause of failure to thrive and to ensure early diagnosis.

  5. In-situ failure test in the research tunnel at Olkiluoto

    Energy Technology Data Exchange (ETDEWEB)

    Autio, J.; Johansson, E.; Kirkkomaeki, T. [Saanio and Riekkola Consulting Engineers, Helsinki (Finland); Hakala, M. [Gridpoint Finland Oy (Finland); Heikkilae, E. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Rock Engineering

    2000-05-01

    A failure test suitable for execution in the Research Tunnel at Olkiluoto has been planned to study the failure of rock in-situ. The objectives of the in-situ failure test is to assess the applicability of numerical modelling codes and methods to the study of rock failure and associated crack propagation and to develop a novel technique to be used to determine the strength of rock in-situ. The objective of this study was to make a preliminary design of the failure test, assess the technical feasibility of the test and to give input information for further numerical modelling of the test. The design of the failure test is reported and results of preliminary modelling are given. The input information for future modelling includes a study of rock properties, fracture propagation in rock, in-situ stresses and the development of techniques for using the expanding agent to produce artificial stress field. The study showed that mechanical properties such as strength of gneissic tonalite, the main rock type in the Research Tunnel, depends highly on the orientation of schistocity. The in-situ failure test was shown to be technically feasible and a state of stress high enough to cause failure can be created artificially by using a proper expansive agent and design. (orig.)

  6. Reliability and Availability Analysis of Some Systems with Common-Cause Failures Using SPICE Circuit Simulation Program

    Directory of Open Access Journals (Sweden)

    Muhammad Taher Abuelma'atti

    1999-01-01

    Full Text Available The effectiveness of SPICE circuit simulation program in calculating probabilities, reliability, steady-state availability and mean-time to failure of repairable systems described by Markov models is demonstrated. Two examples are presented. The first example is a warm standby system with common-cause failures and human errors. The second example is a non-identical unit parallel system with common-cause failures. In both cases recourse to numerical solution is inevitable to obtain the Laplace transforms of the probabilities. Results obtained using SPICE are compared with previously published results obtained using the Laplace transform method. Full SPICE listings are included.

  7. Work-related stress, associated comorbidities and stress causes in French community pharmacies: a nationwide cross-sectional study

    Science.gov (United States)

    Pereira, Bruno; Virot, Julie; Lambert, Céline; Collin, Aurore; Alapini, David; Gagnaire, Jean-Marc; Authier, Nicolas; Cuny, Damien; Vennat, Brigitte

    2017-01-01

    Background Like other health professionals, community pharmacists are exposed to stress factors (being efficient, avoiding mistakes and bearing emotional load), but they are also under the pressure of entrepreneurial responsibilities. The main objective was to assess the level of work-related stress in French community pharmacies. The other objectives of the study were to assess the associated comorbidities and causes of work-related stress. Methods This observational cross-sectional study was sent to all French community pharmacies by email. The survey was anonymous and designed to collect the following items: socio-demographic factors, professional status, characteristics of community pharmacy, work-related stress (visual analogic scale—VAS), fatigue (VAS), sleep disturbances (questions), anxiety and depression symptoms (hospital anxiety and depression scale), medical consultation for work-related stress, medication use for work related stress, psychoactive drug-use and causes of work-related stress. Participants were included in the survey if they were pharmacists (owner or assistant) or pharmacy technicians working in a community pharmacy at the time of the survey. Exclusion criteria were defined as follows: pharmacy students or other professionals involved in a community pharmacy (e.g. dietician, beautician) and lack of professional status information. There was no age limitation. Results After three months of data collection, 1,339 participants answered the survey and 1,272 participants were included in conformity with the inclusion and exclusion criteria, and to avoid missing data on the primary endpoint. Work-related stress was detected in 32.8% (417/1,272) of individuals (scores ≥70/100). Men were significantly more affected than women and there was no difference between professional statuses and no relation with the age of the participants. Work-related stress was significantly associated with anxiety, depression, fatigue, sleep disturbances, medical

  8. Work-related stress, associated comorbidities and stress causes in French community pharmacies: a nationwide cross-sectional study

    Directory of Open Access Journals (Sweden)

    David Balayssac

    2017-10-01

    Full Text Available Background Like other health professionals, community pharmacists are exposed to stress factors (being efficient, avoiding mistakes and bearing emotional load, but they are also under the pressure of entrepreneurial responsibilities. The main objective was to assess the level of work-related stress in French community pharmacies. The other objectives of the study were to assess the associated comorbidities and causes of work-related stress. Methods This observational cross-sectional study was sent to all French community pharmacies by email. The survey was anonymous and designed to collect the following items: socio-demographic factors, professional status, characteristics of community pharmacy, work-related stress (visual analogic scale—VAS, fatigue (VAS, sleep disturbances (questions, anxiety and depression symptoms (hospital anxiety and depression scale, medical consultation for work-related stress, medication use for work related stress, psychoactive drug-use and causes of work-related stress. Participants were included in the survey if they were pharmacists (owner or assistant or pharmacy technicians working in a community pharmacy at the time of the survey. Exclusion criteria were defined as follows: pharmacy students or other professionals involved in a community pharmacy (e.g. dietician, beautician and lack of professional status information. There was no age limitation. Results After three months of data collection, 1,339 participants answered the survey and 1,272 participants were included in conformity with the inclusion and exclusion criteria, and to avoid missing data on the primary endpoint. Work-related stress was detected in 32.8% (417/1,272 of individuals (scores ≥70/100. Men were significantly more affected than women and there was no difference between professional statuses and no relation with the age of the participants. Work-related stress was significantly associated with anxiety, depression, fatigue, sleep

  9. Work-related stress, associated comorbidities and stress causes in French community pharmacies: a nationwide cross-sectional study.

    Science.gov (United States)

    Balayssac, David; Pereira, Bruno; Virot, Julie; Lambert, Céline; Collin, Aurore; Alapini, David; Gagnaire, Jean-Marc; Authier, Nicolas; Cuny, Damien; Vennat, Brigitte

    2017-01-01

    Like other health professionals, community pharmacists are exposed to stress factors (being efficient, avoiding mistakes and bearing emotional load), but they are also under the pressure of entrepreneurial responsibilities. The main objective was to assess the level of work-related stress in French community pharmacies. The other objectives of the study were to assess the associated comorbidities and causes of work-related stress. This observational cross-sectional study was sent to all French community pharmacies by email. The survey was anonymous and designed to collect the following items: socio-demographic factors, professional status, characteristics of community pharmacy, work-related stress (visual analogic scale-VAS), fatigue (VAS), sleep disturbances (questions), anxiety and depression symptoms (hospital anxiety and depression scale), medical consultation for work-related stress, medication use for work related stress, psychoactive drug-use and causes of work-related stress. Participants were included in the survey if they were pharmacists (owner or assistant) or pharmacy technicians working in a community pharmacy at the time of the survey. Exclusion criteria were defined as follows: pharmacy students or other professionals involved in a community pharmacy (e.g. dietician, beautician) and lack of professional status information. There was no age limitation. After three months of data collection, 1,339 participants answered the survey and 1,272 participants were included in conformity with the inclusion and exclusion criteria, and to avoid missing data on the primary endpoint. Work-related stress was detected in 32.8% (417/1,272) of individuals (scores ≥70/100). Men were significantly more affected than women and there was no difference between professional statuses and no relation with the age of the participants. Work-related stress was significantly associated with anxiety, depression, fatigue, sleep disturbances, medical consultations, medication use

  10. Breakfast and Snacks: Associations with Cognitive Failures, Minor Injuries, Accidents and Stress

    Directory of Open Access Journals (Sweden)

    Katherine Chaplin

    2011-05-01

    Full Text Available One strategy for examining effects of nutrients on cognitive function is to initially investigate foods that contain many different nutrients. If effects are demonstrated with these foods then further studies can address the role of specific nutrients. Breakfast foods (e.g., cereals, dairy products and fruit provide many important nutrients and consumption of breakfast has been shown to be associated with beneficial effects on cognitive function. Isolating effects of specific constituents of breakfast has proved more difficult and it is still unclear what impact breakfast has on real-life performance. The present study provided initial information on associations between breakfast consumption and cognitive failures and accidents. A second aim was to examine associations between consumption of snacks which are often perceived as being unhealthy (chocolate, crisps and biscuits. A sample of over 800 nurses took part in the study. The results showed that frequency of breakfast consumption (varied breakfasts: 62% cereal was associated with lower stress, fewer cognitive failures, injuries and accidents at work. In contrast, snacking on crisps, chocolate and biscuits was associated with higher stress, more cognitive failures and more injuries outside of work. Further research requires intervention studies to provide a clearer profile of causality and underlying mechanisms.

  11. A modified GO-FLOW methodology with common cause failure based on Discrete Time Bayesian Network

    International Nuclear Information System (INIS)

    Fan, Dongming; Wang, Zili; Liu, Linlin; Ren, Yi

    2016-01-01

    Highlights: • Identification of particular causes of failure for common cause failure analysis. • Comparison two formalisms (GO-FLOW and Discrete Time Bayesian network) and establish the correlation between them. • Mapping the GO-FLOW model into Bayesian network model. • Calculated GO-FLOW model with common cause failures based on DTBN. - Abstract: The GO-FLOW methodology is a success-oriented system reliability modelling technique for multi-phase missions involving complex time-dependent, multi-state and common cause failure (CCF) features. However, the analysis algorithm cannot easily handle the multiple shared signals and CCFs. In addition, the simulative algorithm is time consuming when vast multi-state components exist in the model, and the multiple time points of phased mission problems increases the difficulty of the analysis method. In this paper, the Discrete Time Bayesian Network (DTBN) and the GO-FLOW methodology are integrated by the unified mapping rules. Based on these rules, the multi operators can be mapped into DTBN followed by, a complete GO-FLOW model with complex characteristics (e.g. phased mission, multi-state, and CCF) can be converted to the isomorphic DTBN and easily analyzed by utilizing the DTBN. With mature algorithms and tools, the multi-phase mission reliability parameter can be efficiently obtained via the proposed approach without considering the shared signals and the various complex logic operation. Meanwhile, CCF can also arise in the computing process.

  12. Asymmetrical cross-talk between the endoplasmic reticulum stress and oxidative stress caused by dextrose.

    Science.gov (United States)

    Mooradian, Arshag D; Onstead-Haas, Luisa; Haas, Michael J

    2016-01-01

    Oxidative and endoplasmic reticulum (ER) stresses are implicated in premature cardiovascular disease in people with diabetes. The aim of the present study was to characterize the nature of the interplay between the oxidative and ER stresses to facilitate the development of therapeutic agents that can ameliorate these stresses. Human coronary artery endothelial cells were treated with varying concentrations of dextrose in the presence or absence of three antioxidants (alpha tocopherol, ascorbate and ebselen) and two ER stress modifiers (ERSMs) (4-phenylbutyrate and taurodeoxycholic acid). ER stress was measured using the placental alkaline phosphatase assay and superoxide (SO) generation was measured using the superoxide-reactive probe 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride chemiluminescence. The SO generation was increased with increasing concentrations of dextrose. The ER stress was increased with both low (0 and 2.75 mM) and high (13.75 and 27.5 mM) concentrations of dextrose. The antioxidants inhibited the dextrose induced SO production while in high concentrations they aggravated ER stress. The ERSM reduced ER stress and potentiated the efficacy of the three antioxidants. Tunicamycin-induced ER stress was not associated with increased SO generation. Time course experiments with a high concentration of dextrose or by overexpressing glucose transporter one in endothelial cells revealed that dextrose induced SO generation undergoes adaptive down regulation within 2 h while the ER stress is sustained throughout 72 h of observation. The nature of the cross talk between oxidative stress and ER stress induced by dextrose may explain the failure of antioxidant therapy in reducing diabetes complications. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Upgrade of Common Cause Failure Modelling of NPP Krsko PSA

    International Nuclear Information System (INIS)

    Vukovic, I.; Mikulicic, V.; Vrbanic, I.

    2006-01-01

    Over the last thirty years the probabilistic safety assessments (PSA) have been increasingly applied in technical engineering practice. Various failure modes of system of concern are mathematically and explicitly modelled by means of fault tree structure. Statistical independence of basic events from which the fault tree is built is not acceptable for an event category referred to as common cause failures (CCF). Based on overview of current international status of modelling of common cause failures in PSA several steps were made related to primary technical basis for methodology and data used for CCF model upgrade project in NPP Krsko (NEK) PSA. As a primary technical basis for methodological aspects of CCF modelling in Krsko PSA the following documents were considered: NUREG/CR-5485, NUREG/CR-4780, and Westinghouse Owners Group documents (WOG) WCAP-15674 and WCAP-15167. Use of these documents is supported by the most relevant guidelines and standards in the field, such as ASME PRA Standard and NRC Regulatory Guide 1.200. WCAP documents are in compliance with NUREG/CR-5485 and NUREG/CR-4780. Additionally, they provide WOG perspective on CCF modelling, which is important to consider since NEK follows WOG practice in resolving many generic and regulatory issues. It is, therefore, desirable that NEK CCF methodology and modelling is in general accordance with recommended WOG approaches. As a primary basis for CCF data needed to estimate CCF model parameters and their uncertainty, the main used documents were: NUREG/CR-5497, NUREG/CR-6268, WCAP-15167, and WCAP-16187. Use of NUREG/CR-5497 and NUREG/CR-6268 as a source of data for CCF parameter estimating is supported by the most relevant industry and regulatory PSA guides and standards currently existing in the field, including WOG. However, the WCAP document WCAP-16187 has provided a basis for CCF parameter values specific to Westinghouse PWR plants. Many of events from NRC / INEEL database were re-classified in WCAP

  14. Stress analysis and fatigue life prediction for a U-bend steam generator tube

    International Nuclear Information System (INIS)

    Cheng Weili; Finnie, I.

    1996-01-01

    An analysis is carried out to determine the stresses in a steam generator tube that failed by fatigue. Using data available for the failed tube and for failures in two similar steam generators, the magnitudes of the alternating and mean stresses produced during operation are estimated. The cause for the early fatigue failure is shown to be the high mean stress caused by denting of the tube in the location where it passed through the tube sheet. (orig.)

  15. What causes treatment failure - the patient, primary care, secondary care or inadequate interaction in the health services?

    Directory of Open Access Journals (Sweden)

    Lange Ove

    2011-05-01

    Full Text Available Abstract Background Optimal treatment gives complete relief of symptoms of many disorders. But even if such treatment is available, some patients have persisting complaints. One disorder, from which the patients should achieve complete relief of symptoms with medical or surgical treatment, is gastroesophageal reflux disease (GERD. Despite the fact that such treatment is cheap, safe and easily available; some patients have persistent complaints after contact with the health services. This study evaluates the causes of treatment failure. Methods Twelve patients with GERD and persistent complaints had a semi-structured interview which focused on the patients' evaluation of treatment failure. The interviews were taped, transcribed and evaluated by 18 physicians, (six general practitioners, six gastroenterologists and six gastrointestinal surgeons who completed a questionnaire for each patient. The questionnaires were scored, and the relative responsibility for the failure was attributed to the patient, primary care, secondary care and interaction in the health services. Results Failing interaction in the health services was the most important cause of treatment failure, followed by failure in primary care, secondary care and the patient himself; the relative responsibilities were 35%, 28%, 27% and 10% respectively. There was satisfactory agreement about the causes between doctors with different specialities, but significant inter-individual differences between the doctors. The causes of the failures differed between the patients. Conclusions Treatment failure is a complex problem. Inadequate interaction in the health services seems to be important. Improved communication between parts of the health services and with the patients are areas of improvement.

  16. Stress transfer among en echelon and opposing thrusts and tear faults: Triggering caused by the 2003 Mw = 6.9 Zemmouri, Algeria, earthquake

    Science.gov (United States)

    Lin, J.; Stein, R.S.; Meghraoui, M.; Toda, S.; Ayadi, A.; Dorbath, C.; Belabbes, S.

    2011-01-01

    The essential features of stress interaction among earthquakes on en echelon thrusts and tear faults were investigated, first through idealized examples and then by study of thrust faulting in Algeria. We calculated coseismic stress changes caused by the 2003 Mw = 6.9 Zemmouri earthquake, finding that a large majority of the Zemmouri afterslip sites were brought several bars closer to Coulomb failure by the coseismic stresses, while the majority of aftershock nodal planes were brought closer to failure by an average of ~2 bars. Further, we calculated that the shallow portions of the adjacent Thenia tear fault, which sustained ~0.25 m slip, were brought >2 bars closer to failure. We calculated that the Coulomb stress increased by 1.5 bars on the deeper portions of the adjacent Boumerdes thrust, which lies just 10–20 km from the city of Algiers; both the Boumerdes and Thenia faults were illuminated by aftershocks. Over the next 6 years, the entire south dipping thrust system extending 80 km to the southwest experienced an increased rate of seismicity. The stress also increased by 0.4 bar on the east Sahel thrust fault west of the Zemmouri rupture. Algiers suffered large damaging earthquakes in A.D. 1365 and 1716 and is today home to 3 million people. If these shocks occurred on the east Sahel fault and if it has a ~2 mm/yr tectonic loading rate, then enough loading has accumulated to produce a Mw = 6.6–6.9 shock today. Thus, these potentially lethal faults need better understanding of their slip rate and earthquake history.

  17. A reference stress approach for the characterisation of the creep failure of dissimilar welds under isothermal conditions

    International Nuclear Information System (INIS)

    Nicholson, R.D.; Williams, J.A.

    1988-11-01

    In high temperature power plant, welds between austenitic and ferritic steels are required to operate under plant conditions for up to 250,000h. The experience and failure modes for such joints are briefly surveyed in this report. A semi-empirical reference stress approach is used to define the failure life of joints under isothermal conditions. The reference stress is based on a previously published form for multiaxial creep fracture of homogeneous materials but modified to include an additional factor to reflect the complex strains present close to the interface in a dissimilar weld. This reference stress can be modified to give approximate bounds characterised by the equivalent stress or the axial stress on the weld. The reference stress, when applied to the 21/4Cr1Mo:Type 316 welded component data base, gives conservative results for the test data available although conservatism is low for the 9Cr1Mo:Alloy 600 combination. The existing data base for welded components is limited. More data are needed covering a wider range of stress ratios and incorporating bending loads. (author)

  18. Pathogenesis of apical periodontitis and the causes of endodontic failures.

    Science.gov (United States)

    Nair, P N R

    2004-11-01

    Apical periodontitis is a sequel to endodontic infection and manifests itself as the host defense response to microbial challenge emanating from the root canal system. It is viewed as a dynamic encounter between microbial factors and host defenses at the interface between infected radicular pulp and periodontal ligament that results in local inflammation, resorption of hard tissues, destruction of other periapical tissues, and eventual formation of various histopathological categories of apical periodontitis, commonly referred to as periapical lesions. The treatment of apical periodontitis, as a disease of root canal infection, consists of eradicating microbes or substantially reducing the microbial load from the root canal and preventing re-infection by orthograde root filling. The treatment has a remarkably high degree of success. Nevertheless, endodontic treatment can fail. Most failures occur when treatment procedures, mostly of a technical nature, have not reached a satisfactory standard for the control and elimination of infection. Even when the highest standards and the most careful procedures are followed, failures still occur. This is because there are root canal regions that cannot be cleaned and obturated with existing equipments, materials, and techniques, and thus, infection can persist. In very rare cases, there are also factors located within the inflamed periapical tissue that can interfere with post-treatment healing of the lesion. The data on the biological causes of endodontic failures are recent and scattered in various journals. This communication is meant to provide a comprehensive overview of the etio-pathogenesis of apical periodontitis and the causes of failed endodontic treatments that can be visualized in radiographs as asymptomatic post-treatment periapical radiolucencies.

  19. Recurrent infective endocarditis causing heart valve failure: A case report

    Directory of Open Access Journals (Sweden)

    Victoria McIntyre, BASc Chemical Engineering (2018 candidate

    2017-11-01

    Full Text Available Infective endocarditis (IE is an infection that does not usually respond rapidly to treatment, often because its early symptoms are non-specific. The diseased valves (native or bioprosthetic may be calcified and the thrombotic vegetations on them typically friable and embolize easily. Left untreated IE leads to damage to the infected valve and to congestive heart failure (CHF. Its treatment usually requires heart valve replacement. Our 69-year-old patient had IE, and underwent aortic valve replacement (AVR with a bioprosthesis. This case stresses the complications of IE and its tendency to recur in patients with bioprosthetic heart valves (BHV who previously had IE.

  20. Tsunamis caused by submarine slope failures along western Great Bahama Bank.

    Science.gov (United States)

    Schnyder, Jara S D; Eberli, Gregor P; Kirby, James T; Shi, Fengyan; Tehranirad, Babak; Mulder, Thierry; Ducassou, Emmanuelle; Hebbeln, Dierk; Wintersteller, Paul

    2016-11-04

    Submarine slope failures are a likely cause for tsunami generation along the East Coast of the United States. Among potential source areas for such tsunamis are submarine landslides and margin collapses of Bahamian platforms. Numerical models of past events, which have been identified using high-resolution multibeam bathymetric data, reveal possible tsunami impact on Bimini, the Florida Keys, and northern Cuba. Tsunamis caused by slope failures with terminal landslide velocity of 20 ms -1 will either dissipate while traveling through the Straits of Florida, or generate a maximum wave of 1.5 m at the Florida coast. Modeling a worst-case scenario with a calculated terminal landslide velocity generates a wave of 4.5 m height. The modeled margin collapse in southwestern Great Bahama Bank potentially has a high impact on northern Cuba, with wave heights between 3.3 to 9.5 m depending on the collapse velocity. The short distance and travel time from the source areas to densely populated coastal areas would make the Florida Keys and Miami vulnerable to such low-probability but high-impact events.

  1. Failure analysis of a Francis turbine runner

    Energy Technology Data Exchange (ETDEWEB)

    Frunzaverde, D; Campian, V [Research Center in Hydraulics, Automation and Heat Transfer, ' Eftimie Murgu' University of Resita P-ta Traian Vuia 1-4, RO-320085, Resita (Romania); Muntean, S [Centre of Advanced Research in Engineering Sciences, Romanian Academy - Timisoara Branch Bv. Mihai Viteazu 24, RO-300223, Timisoara (Romania); Marginean, G [University of Applied Sciences Gelsenkirchen, Neidenburger Str. 10, 45877 Gelsenkirchen (Germany); Marsavina, L [Department of Strength, ' Politehnica' University of Timisoara, Bv. Mihai Viteazu 1, RO-300222, Timisoara (Romania); Terzi, R; Serban, V, E-mail: gabriela.marginean@fh-gelsenkirchen.d, E-mail: d.frunzaverde@uem.r [Ramnicu Valcea Subsidiary, S.C. Hidroelectrica S.A., Str. Decebal 11, RO-240255, Ramnicu Valcea (Romania)

    2010-08-15

    The variable demand on the energy market requires great flexibility in operating hydraulic turbines. Therefore, turbines are frequently operated over an extended range of regimes. Francis turbines operating at partial load present pressure fluctuations due to the vortex rope in the draft tube cone. This phenomenon generates strong vibrations and noise that may produce failures on the mechanical elements of the machine. This paper presents the failure analysis of a broken Francis turbine runner blade. The failure appeared some months after the welding repair work realized in situ on fatigue cracks initiated near to the trailing edge at the junction with the crown, where stress concentration occurs. In order to determine the causes that led to the fracture of the runner blade, the metallographic investigations on a sample obtained from the blade is carried out. The metallographic investigations included macroscopic and microscopic examinations, both performed with light and scanning electron microscopy, as well as EDX - analyses. These investigations led to the conclusion, that the cracking of the blade was caused by fatigue, initiated by the surface unevenness of the welding seam. The failure was accelerated by the hydrogen embrittlement of the filling material, which appeared as a consequence of improper welding conditions. In addition to the metallographic investigations, numerical computations with finite element analysis are performed in order to evaluate the deformation and stress distribution on blade.

  2. Failure analysis of a Francis turbine runner

    International Nuclear Information System (INIS)

    Frunzaverde, D; Campian, V; Muntean, S; Marginean, G; Marsavina, L; Terzi, R; Serban, V

    2010-01-01

    The variable demand on the energy market requires great flexibility in operating hydraulic turbines. Therefore, turbines are frequently operated over an extended range of regimes. Francis turbines operating at partial load present pressure fluctuations due to the vortex rope in the draft tube cone. This phenomenon generates strong vibrations and noise that may produce failures on the mechanical elements of the machine. This paper presents the failure analysis of a broken Francis turbine runner blade. The failure appeared some months after the welding repair work realized in situ on fatigue cracks initiated near to the trailing edge at the junction with the crown, where stress concentration occurs. In order to determine the causes that led to the fracture of the runner blade, the metallographic investigations on a sample obtained from the blade is carried out. The metallographic investigations included macroscopic and microscopic examinations, both performed with light and scanning electron microscopy, as well as EDX - analyses. These investigations led to the conclusion, that the cracking of the blade was caused by fatigue, initiated by the surface unevenness of the welding seam. The failure was accelerated by the hydrogen embrittlement of the filling material, which appeared as a consequence of improper welding conditions. In addition to the metallographic investigations, numerical computations with finite element analysis are performed in order to evaluate the deformation and stress distribution on blade.

  3. Elastic Rock Heterogeneity Controls Brittle Rock Failure during Hydraulic Fracturing

    Science.gov (United States)

    Langenbruch, C.; Shapiro, S. A.

    2014-12-01

    For interpretation and inversion of microseismic data it is important to understand, which properties of the reservoir rock control the occurrence probability of brittle rock failure and associated seismicity during hydraulic stimulation. This is especially important, when inverting for key properties like permeability and fracture conductivity. Although it became accepted that seismic events are triggered by fluid flow and the resulting perturbation of the stress field in the reservoir rock, the magnitude of stress perturbations, capable of triggering failure in rocks, can be highly variable. The controlling physical mechanism of this variability is still under discussion. We compare the occurrence of microseismic events at the Cotton Valley gas field to elastic rock heterogeneity, obtained from measurements along the treatment wells. The heterogeneity is characterized by scale invariant fluctuations of elastic properties. We observe that the elastic heterogeneity of the rock formation controls the occurrence of brittle failure. In particular, we find that the density of events is increasing with the Brittleness Index (BI) of the rock, which is defined as a combination of Young's modulus and Poisson's ratio. We evaluate the physical meaning of the BI. By applying geomechanical investigations we characterize the influence of fluctuating elastic properties in rocks on the probability of brittle rock failure. Our analysis is based on the computation of stress fluctuations caused by elastic heterogeneity of rocks. We find that elastic rock heterogeneity causes stress fluctuations of significant magnitude. Moreover, the stress changes necessary to open and reactivate fractures in rocks are strongly related to fluctuations of elastic moduli. Our analysis gives a physical explanation to the observed relation between elastic heterogeneity of the rock formation and the occurrence of brittle failure during hydraulic reservoir stimulations. A crucial factor for understanding

  4. Adrenal Insufficiency as a Cause of Acute Liver Failure: A Case Report

    Directory of Open Access Journals (Sweden)

    Jamshid Vafaeimanesh

    2013-01-01

    Full Text Available Introduction. Many diseases and conditions can contribute to elevated liver enzymes. Common causes include viral and autoimmune hepatitis, fatty liver, and bile duct diseases, but, in uncommon cases like liver involvement in endocrine disorders, liver failure is also seen. Adrenal insufficiency is the rarest endocrine disorder complicating the liver. In the previously reported cases of adrenal insufficiency, mild liver enzymes elevation was seen but we report a case with severe elevated liver enzymes and liver failure due to adrenal insufficiency. Based on our knowledge, this is the first report in this field. Case Report. A 39-year-old woman was referred to emergency ward due to drowsiness and severe fatigue. Her laboratory tests revealed prothrombin time: 21 sec, alanine aminotransferase (ALT: 2339 IU/L, aspartate aminotransferase (AST: 2002 IU/L, and ALP: 90 IU/L. No common cause of liver involvement was discovered, and eventually, with diagnosis of adrenal insufficiency and corticosteroid therapy, liver enzymes and function became normal. Finally, the patient was discharged with good general condition. Conclusion. With this report, we emphasize adrenal insufficiency (primary or secondary as a reason of liver involvement in unexplainable cases and recommend that any increase in the liver enzymes, even liver failure, in these patients should be observed.

  5. Failure assessments of corroded pipelines with axial defects using stress-based criteria: Numerical studies and verification analyses

    International Nuclear Information System (INIS)

    Chiodo, Mario S.G.; Ruggieri, Claudio

    2009-01-01

    Conventional procedures used to assess the integrity of corroded piping systems with axial defects generally employ simplified failure criteria based upon a plastic collapse failure mechanism incorporating the tensile properties of the pipe material. These methods establish acceptance criteria for defects based on limited experimental data for low strength structural steels which do not necessarily address specific requirements for the high grade steels currently used. For these cases, failure assessments may be overly conservative or provide significant scatter in their predictions, which lead to unnecessary repair or replacement of in-service pipelines. Motivated by these observations, this study examines the applicability of a stress-based criterion based upon plastic instability analysis to predict the failure pressure of corroded pipelines with axial defects. A central focus is to gain additional insight into effects of defect geometry and material properties on the attainment of a local limit load to support the development of stress-based burst strength criteria. The work provides an extensive body of results which lend further support to adopt failure criteria for corroded pipelines based upon ligament instability analyses. A verification study conducted on burst testing of large-diameter pipe specimens with different defect length shows the effectiveness of a stress-based criterion using local ligament instability in burst pressure predictions, even though the adopted burst criterion exhibits a potential dependence on defect geometry and possibly on material's strain hardening capacity. Overall, the results presented here suggests that use of stress-based criteria based upon plastic instability analysis of the defect ligament is a valid engineering tool for integrity assessments of pipelines with axial corroded defects

  6. Failure assessments of corroded pipelines with axial defects using stress-based criteria: Numerical studies and verification analyses

    Energy Technology Data Exchange (ETDEWEB)

    Chiodo, Mario S.G. [Department of Naval Architecture and Ocean Engineering, University of Sao Paulo, Av. Prof. Mello Moraes, 2231 (PNV-EPUSP), Sao Paulo, SP 05508-030 (Brazil); Ruggieri, Claudio [Department of Naval Architecture and Ocean Engineering, University of Sao Paulo, Av. Prof. Mello Moraes, 2231 (PNV-EPUSP), Sao Paulo, SP 05508-030 (Brazil)], E-mail: claudio.ruggieri@poli.usp.br

    2009-02-15

    Conventional procedures used to assess the integrity of corroded piping systems with axial defects generally employ simplified failure criteria based upon a plastic collapse failure mechanism incorporating the tensile properties of the pipe material. These methods establish acceptance criteria for defects based on limited experimental data for low strength structural steels which do not necessarily address specific requirements for the high grade steels currently used. For these cases, failure assessments may be overly conservative or provide significant scatter in their predictions, which lead to unnecessary repair or replacement of in-service pipelines. Motivated by these observations, this study examines the applicability of a stress-based criterion based upon plastic instability analysis to predict the failure pressure of corroded pipelines with axial defects. A central focus is to gain additional insight into effects of defect geometry and material properties on the attainment of a local limit load to support the development of stress-based burst strength criteria. The work provides an extensive body of results which lend further support to adopt failure criteria for corroded pipelines based upon ligament instability analyses. A verification study conducted on burst testing of large-diameter pipe specimens with different defect length shows the effectiveness of a stress-based criterion using local ligament instability in burst pressure predictions, even though the adopted burst criterion exhibits a potential dependence on defect geometry and possibly on material's strain hardening capacity. Overall, the results presented here suggests that use of stress-based criteria based upon plastic instability analysis of the defect ligament is a valid engineering tool for integrity assessments of pipelines with axial corroded defects.

  7. Investigation of abrupt degradation of drain current caused by under-gate crack in AlGaN/GaN high electron mobility transistors during high temperature operation stress

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Chang; Liao, XueYang; Li, RuGuan; Wang, YuanSheng; Chen, Yiqiang, E-mail: yiqiang-chen@hotmail.com; Su, Wei; Liu, Yuan; Wang, Li Wei; Lai, Ping; Huang, Yun; En, YunFei [Science and Technology on Reliability Physics and Application of Electronic Component Laboratory, The 5th Electronics Research Institute of the Ministry of Industry and Information Technology, 510610 Guangzhou (China)

    2015-09-28

    In this paper, we investigate the degradation mode and mechanism of AlGaN/GaN based high electron mobility transistors (HEMTs) during high temperature operation (HTO) stress. It demonstrates that there was abrupt degradation mode of drain current during HTO stress. The abrupt degradation is ascribed to the formation of crack under the gate which was the result of the brittle fracture of epilayer based on failure analysis. The origin of the mechanical damage under the gate is further investigated and discussed based on top-down scanning electron microscope, cross section transmission electron microscope and energy dispersive x-ray spectroscopy analysis, and stress simulation. Based on the coupled analysis of the failure physical feature and stress simulation considering the coefficient of thermal expansion (CTE) mismatch in different materials in gate metals/semiconductor system, the mechanical damage under the gate is related to mechanical stress induced by CTE mismatch in Au/Ti/Mo/GaN system and stress concentration caused by the localized structural damage at the drain side of the gate edge. These results indicate that mechanical stress induced by CTE mismatch of materials inside the device plays great important role on the reliability of AlGaN/GaN HEMTs during HTO stress.

  8. Electrical failure during cardiopulmonary bypass: an evaluation of incidence, causes, management and guidelines for preventative measures.

    LENUS (Irish Health Repository)

    Hargrove, M

    2012-02-03

    The incidence of electrical failure during cardiopulmonary bypass (CPB) has been reported to occur in approximately 1 per 1000 cases. While the resultant morbidity and mortality is low, electrical failure is a life-threatening scenario. We report three major electrical failures during CPB in a patient population of 3500 over a 15-year period. These cases involved mains failure and generator shut down, mains failure and generator power surge, and failure of the uninterruptable power supply (UPS), which caused protected sockets to shut down. Protocols for preventative maintenance, necessary equipment, battery backup and guidelines for the successful management of such accidents during CPB are discussed.

  9. A study on spalling in soft rock under low confining stress

    International Nuclear Information System (INIS)

    Tomita, Atsunori; Ebina, Takahito; Toida, Masaru; Shirasagi, Suguru; Kishida, Kiyoshi; Adachi, Toshihisa

    2007-01-01

    The aim of this paper is to study spalling in soft rock excavation. During the test cavern excavation of the radioactive waste disposal project, spalling occurred. Therefore, it has been estimated performing the stress path simulation test and measuring the induced stress. In the stress path simulation test, the splitting failure has been confirmed under low confining stress. In the induced stress measurements, the rock mass around the cavern has shifted to the low radial confinement. Hence, spalling in soft rock was interpreted by the splitting failure caused by the induced stress under low confinement. Furthermore, the failure zone was proved by the numerical analysis applying the criterion based on the results of the above triaxial test. (author)

  10. The extent and causes of stress in teachers in the George region ...

    African Journals Online (AJOL)

    Stress is currently a phenomenon that must be recognized and addressed in various professions and the teaching profession is no exception. Stress in the workplace can cause "job compassion fatigue". In the past teachers did not consider stress to be the primary cause when they needed to escape from the school ...

  11. Implant failure caused by non-union of bisphosphonate-associated subtrochanteric femur fracture.

    LENUS (Irish Health Repository)

    O'Neill, Barry James

    2014-04-03

    Bisphosphonate use has been identified as a contributory factor in atypical subtrochanteric fracture of the femur. These fractures are commonly treated with an intramedullary device. We present a case of implant failure of an intrameduallary device caused by non-union of an atypical subtrochanteric fracture.

  12. Failure cause analysis and improvement for magnetic component cabinet

    International Nuclear Information System (INIS)

    Ge Bing

    1999-01-01

    The magnetic component cabinet is an important thermal control device fitted on the nuclear power. Because it used a self-saturation amplifier as a primary component, the magnetic component cabinet has some boundness. For increasing the operation safety on the nuclear power, the author describes a new scheme. In order that the magnetic component cabinet can be replaced, the new type component cabinet is developed. Integrate circuit will replace the magnetic components of every function parts. The author has analyzed overall failure cause for magnetic component cabinet and adopted some measures

  13. Common cause failure data collection and analysis for safety-related components of TRIGA SSR-14MW Pitesti, Romania

    International Nuclear Information System (INIS)

    Radu, G.; Mladin, D.

    2003-01-01

    This paper presents a study performed on the set of common cause failures (CCF) of safety-related components of the research reactor TRIGA SSR-14 MW Pitesti. The data collected cover a period of 20 years, from 1979 to 2000. The sources of data are Shift Supervisor Reports, Work Authorizations, and Reactor Log Books. Events collected are analyzed by failure mode and degrees of failure. Qualitative analysis of root causes, coupling factors and corrective actions and quantitative analysis of CCF events are studied. The objective of this work is to develop qualitative insights in the nature of the reported events and to build a site-specific common cause events database. (author)

  14. Successful Treatment of Fibrosing Organising Pneumonia Causing Respiratory Failure with Mycophenolic Acid.

    Science.gov (United States)

    Paul, Christina; Lin-Shaw, Ammy; Joseph, Mariamma; Kwan, Keith; Sergiacomi, Gianluigi; Mura, Marco

    2016-01-01

    Organising pneumonia (OP) is usually promptly responsive to corticosteroid treatment. We describe a series of 3 cases of severe, progressive, biopsy-proven fibrosing OP causing respiratory failure. All cases presented with peribronchial and subpleural consolidations, had a fibro-inflammatory infiltrative component in the alveolar septa, and only had a partial and unsatisfactory response to corticosteroids. However, they responded to mycophenolic acid (MPA) treatment with resolution of respiratory failure as well as clinical and functional improvement. MPA as an additional treatment option for aggressive forms of fibrosing OP and interstitial lung disease needs to be further explored. © 2016 S. Karger AG, Basel.

  15. A Take Stock of Turbine Blades Failure Phenomenon

    Science.gov (United States)

    Roy, Abhijit

    2018-02-01

    Turbine Blade design and engineering is one of the most complicated and important aspects of turbine technology. Experiments with blades can be simple or very complicated, depending upon parameters of analysis. Turbine blades are subjected to vigorous environments, such as high temperatures, high stresses, and a potentially high vibration environment. All these factors can lead to blade failures, which can destroy the turbine, and engine, so careful design is the prime consideration to resist those conditions. A high cycle of fatigue of compressor and turbine blades due to high dynamic stress caused by blade vibration and resonance within the operating range of machinery is common failure mode for turbine machine. Continuous study and investigation on failure of turbine blades are going on since last five decades. Some review papers published during these days aiming to present a review on recent studies and investigations done on failures of turbine blades. All the detailed literature related with the turbine blades has not been described but emphasized to provide all the methodologies of failures adopted by various researches to investigate turbine blade. This paper illustrate on various factors of failure.

  16. Mathematical model to determine the surface stress acting on the tooth of gear

    Directory of Open Access Journals (Sweden)

    Hinojosa-Torres J.

    2010-01-01

    Full Text Available Surface stress on the surface contact of gear tooth calculated by the Buckingham equation constitutes the basis for The American Gear Manufacturers Association (AGMA pitting resistance formula, which is based on a normal stress that does not cause failure since the yielding in contact problems is caused by shear stresses. An alternative expression based on the maximum-shear-stress is proposed in this paper. The new expression is obtained by using the maximum-shear-stress distribution and the Tresca failure criteria in order to know the maximum-shear-stress value and its location beneath the contact surface. Remarkable differences between the results using the proposed equation and those when the AGMA equation is applied are found.

  17. Root cause analysis of pump valve failures of three membrane pump systems

    NARCIS (Netherlands)

    Buijs, L.J.; Eijk, A.; Hooft, L. van

    2014-01-01

    This paper will present the root cause analysis and the solution of fatigue failures of the pump valves of three membrane pump systems installed on a chemical plant of Momentive in Pernis, the Netherlands. The membrane pumps were installed approximately 30 years ago. Each system has encountered

  18. Identification of Modeling Approaches To Support Common-Cause Failure Analysis

    International Nuclear Information System (INIS)

    Korsah, Kofi; Wood, Richard Thomas

    2015-01-01

    Experience with applying current guidance and practices for common-cause failure (CCF) mitigation to digital instrumentation and control (I&C) systems has proven problematic, and the regulatory environment has been unpredictable. The impact of CCF vulnerability is to inhibit I&C modernization and, thereby, challenge the long-term sustainability of existing plants. For new plants and advanced reactor concepts, the issue of CCF vulnerability for highly integrated digital I&C systems imposes a design burden resulting in higher costs and increased complexity. The regulatory uncertainty regarding which mitigation strategies are acceptable (e.g., what diversity is needed and how much is sufficient) drives designers to adopt complicated, costly solutions devised for existing plants. The conditions that constrain the transition to digital I&C technology by the U.S. nuclear industry require crosscutting research to resolve uncertainty, demonstrate necessary characteristics, and establish an objective basis for qualification of digital technology for usage in Nuclear Power Plant (NPP) I&C applications. To fulfill this research need, Oak Ridge National Laboratory is conducting an investigation into mitigation of CCF vulnerability for nuclear-qualified applications. The outcome of this research is expected to contribute to a fundamentally sound, comprehensive technical basis for establishing the qualification of digital technology for nuclear power applications. This report documents the investigation of modeling approaches for representing failure of I&C systems. Failure models are used when there is a need to analyze how the probability of success (or failure) of a system depends on the success (or failure) of individual elements. If these failure models are extensible to represent CCF, then they can be employed to support analysis of CCF vulnerabilities and mitigation strategies. Specifically, the research findings documented in this report identify modeling approaches that

  19. Identification of Modeling Approaches To Support Common-Cause Failure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Korsah, Kofi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wood, Richard Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-01

    Experience with applying current guidance and practices for common-cause failure (CCF) mitigation to digital instrumentation and control (I&C) systems has proven problematic, and the regulatory environment has been unpredictable. The impact of CCF vulnerability is to inhibit I&C modernization and, thereby, challenge the long-term sustainability of existing plants. For new plants and advanced reactor concepts, the issue of CCF vulnerability for highly integrated digital I&C systems imposes a design burden resulting in higher costs and increased complexity. The regulatory uncertainty regarding which mitigation strategies are acceptable (e.g., what diversity is needed and how much is sufficient) drives designers to adopt complicated, costly solutions devised for existing plants. The conditions that constrain the transition to digital I&C technology by the U.S. nuclear industry require crosscutting research to resolve uncertainty, demonstrate necessary characteristics, and establish an objective basis for qualification of digital technology for usage in Nuclear Power Plant (NPP) I&C applications. To fulfill this research need, Oak Ridge National Laboratory is conducting an investigation into mitigation of CCF vulnerability for nuclear-qualified applications. The outcome of this research is expected to contribute to a fundamentally sound, comprehensive technical basis for establishing the qualification of digital technology for nuclear power applications. This report documents the investigation of modeling approaches for representing failure of I&C systems. Failure models are used when there is a need to analyze how the probability of success (or failure) of a system depends on the success (or failure) of individual elements. If these failure models are extensible to represent CCF, then they can be employed to support analysis of CCF vulnerabilities and mitigation strategies. Specifically, the research findings documented in this report identify modeling approaches that

  20. Acrolein Induces Endoplasmic Reticulum Stress and Causes Airspace Enlargement

    Science.gov (United States)

    Hanaoka, Masayuki; Natarajan, Ramesh; Kraskauskas, Donatas; Voelkel, Norbert F.

    2012-01-01

    Background Given the relative abundance and toxic potential of acrolein in inhaled cigarette smoke, it is surprising how little is known about the pulmonary and systemic effects of acrolein. Here we test the hypothesis whether systemic administration of acrolein could cause endoplasmic reticulum (ER) stress, and lung cell apoptosis, leading to the enlargement of the alveolar air spaces in rats. Methods Acute and chronic effects of intraperitoneally administered acrolein were tested. Mean alveolar airspace area was measured by using light microscopy and imaging system software. TUNEL staining and immunohistochemistry (IHC) for active caspase 3 and Western blot analysis for active caspase 3, and caspase 12 were performed to detect apoptosis. The ER-stress related gene expression in the lungs was determined by Quantitative real-time PCR analysis. Acrolein-protein adducts in the lung tissue were detected by IHC. Results Acute administration of acrolein caused a significant elevation of activated caspase 3, upregulation of VEGF expression and induced ER stress proteins in the lung tissue. The chronic administration of acrolein in rats led to emphysematous lung tissue remodeling. TUNEL staining and IHC for cleaved caspase 3 showed a large number of apoptotic septal cells in the acrolein-treated rat lungs. Chronic acrolein administration cause the endoplasmic reticulum stress response manifested by significant upregulation of ATF4, CHOP and GADd34 expression. In smokers with COPD there was a considerable accumulation of acrolein-protein adducts in the inflammatory, airway and vascular cells. Conclusions Systemic administration of acrolein causes endoplasmic reticulum stress response, lung cell apoptosis, and chronic administration leads to the enlargement of the alveolar air spaces and emphysema in rats. The substantial accumulation of acrolein-protein adducts in the lungs of COPD patients suggest a role of acrolein in the pathogenesis of emphysema. PMID:22675432

  1. Questioning the Role of Requirements Engineering in the Causes of Safety-Critical Software Failures

    Science.gov (United States)

    Johnson, C. W.; Holloway, C. M.

    2006-01-01

    Many software failures stem from inadequate requirements engineering. This view has been supported both by detailed accident investigations and by a number of empirical studies; however, such investigations can be misleading. It is often difficult to distinguish between failures in requirements engineering and problems elsewhere in the software development lifecycle. Further pitfalls arise from the assumption that inadequate requirements engineering is a cause of all software related accidents for which the system fails to meet its requirements. This paper identifies some of the problems that have arisen from an undue focus on the role of requirements engineering in the causes of major accidents. The intention is to provoke further debate within the emerging field of forensic software engineering.

  2. Causes and Alleviation of Occupational Stress in Child Care Work

    Science.gov (United States)

    Dillenburger, Karola

    2004-01-01

    Occupational stress in not a new phenomenon in the working population. However, in the helping professions it has only recently attracted attention. The survey reported here was carried out in order to assess the extent of occupational stress, identify its causes, and suggest ways in which occupational stress can be alleviated. Field social…

  3. An Investigation of the Relationship between Spiritual Health and Depression, Anxiety, and Stress in Patients with Heart Failure

    Directory of Open Access Journals (Sweden)

    Mahbobe Safavi

    2016-06-01

    Full Text Available Background and Objectives: Heart failure is a life-threatening illness in which panic disorder, anxiety, depression, and death expectation are constantly experienced. This study, thus, determined to examine the relationship between spiritual health and depression, anxiety, and stress in patients with heart failure. Methods: This study was a descriptive-correlational investigation that was performed on 150 patients with heart failure in selected Ardabil teaching hospitals in 2014. Data was collected using Demographic Questionnaire, Ellison-Paloutzian Spiritual Well-Being Scale, and Depression, Anxiety, and Stress Scale (DASS-21. They were, then, analyzed using SPSS, descriptive statistical method, Pearson’s correlation coefficient, and multivariable regression analysis. Results: The results of this study showed that the spiritual wellbeing level of most subjects (75.3% was in the range of medium. Mean scores of religious and existential aspects of spiritual well-being were obtained to be 33.26±1.247 and 45.76±1.328, respectively. In addition, depression, anxiety, and stress levels of most research units were in the medium range. Pearson’s correlation coefficient showed that there was a statistically significant relationship between depression, anxiety, and stress in all aspects of spiritual wellbeing (r=-0.592, P<0.01. Conclusion:  Results indicated that an increase in spiritual health would be a concomitant of a reduction in depression, anxiety, and stress levels in heart failure patients. Based on the results and importance of spiritual health, an improvement of proficiencies of medical and paramedical communities in offering spiritual healthcares appears to be mandatory.

  4. FACTORS CAUSING OCCUPATIONAL STRESS AMONG SENIOR SECONDARY SCHOOL TEACHERS OF AMRITSAR DISTRICT

    Directory of Open Access Journals (Sweden)

    Mandeep Singh

    2009-12-01

    Full Text Available The study attempts to investigate the various factors causing occupational stress experienced by senior secondary school teachers. A sample of 100 teachers (50 science teachers and 50 physical education teachers was randomly selected. They were administered a comprehensive questionnaire which measures various factors of stress. Factor analyses were used to identify underlying factors causing stress. The analysis showed that non cooperation from the colleagues, hastiness to finish the work, unable to perform duty smoothly, unclear instructions and insufficient facilities, unclear expectations of higher authority and having more work load in less time were the significant factors causing occupational stress among the teachers. The monotonous nature of work, ignorance of higher authority and violation of administrative processes and policies were factors also contributing towards occupational stress among teachers

  5. CSB-PGBD3 Mutations Cause Premature Ovarian Failure.

    Directory of Open Access Journals (Sweden)

    Yingying Qin

    2015-07-01

    Full Text Available Premature ovarian failure (POF is a rare, heterogeneous disorder characterized by cessation of menstruation occurring before the age of 40 years. Genetic etiology is responsible for perhaps 25% of cases, but most cases are sporadic and unexplained. In this study, through whole exome sequencing in a non-consanguineous family having four affected members with POF and Sanger sequencing in 432 sporadic cases, we identified three novel mutations in the fusion gene CSB-PGBD3. Subsequently functional studies suggest that mutated CSB-PGBD3 fusion protein was impaired in response to DNA damage, as indicated by delayed or absent recruitment to damaged sites. Our data provide the first evidence that mutations in the CSB-PGBD3 fusion protein can cause human disease, even in the presence of functional CSB, thus potentially explaining conservation of the fusion protein for 43 My since marmoset. The localization of the CSB-PGBD3 fusion protein to UVA-induced nuclear DNA repair foci further suggests that the CSB-PGBD3 fusion protein, like many other proteins that can cause POF, modulates or participates in DNA repair.

  6. Procedures for treating common cause failures in safety and reliability studies: Volume 2, Analytic background and techniques: Final report

    International Nuclear Information System (INIS)

    Mosleh, A.; Fleming, K.N.; Parry, G.W.; Paula, H.M.; Worledge, D.H.; Rasmuson, D.M.

    1988-12-01

    This report presents a framework for the inclusion of the impact of common cause failures in risk and reliability evaluations. Common cause failures are defined as that subset of dependent failures for which causes are not explicitly included in the logic model as basic events. The emphasis here is on providing procedures for a practical, systematic approach that can be used to perform and clearly document the analysis. The framework and the methods discussed for performing the different stages of the analysis integrate insights obtained from engineering assessments of the system and the historical evidence from multiple failure events into a systematic, reproducible, and defensible analysis. This document, Volume 2, contains a series of appendices that provide additional background and methodological detail on several important topics discussed in Volume 1

  7. Failure probability analyses for PWSCC in Ni-based alloy welds

    International Nuclear Information System (INIS)

    Udagawa, Makoto; Katsuyama, Jinya; Onizawa, Kunio; Li, Yinsheng

    2015-01-01

    A number of cracks due to primary water stress corrosion cracking (PWSCC) in pressurized water reactors and Ni-based alloy stress corrosion cracking (NiSCC) in boiling water reactors have been detected around Ni-based alloy welds. The causes of crack initiation and growth due to stress corrosion cracking include weld residual stress, operating stress, the materials, and the environment. We have developed the analysis code PASCAL-NP for calculating the failure probability and assessment of the structural integrity of cracked components on the basis of probabilistic fracture mechanics (PFM) considering PWSCC and NiSCC. This PFM analysis code has functions for calculating the incubation time of PWSCC and NiSCC crack initiation, evaluation of crack growth behavior considering certain crack location and orientation patterns, and evaluation of failure behavior near Ni-based alloy welds due to PWSCC and NiSCC in a probabilistic manner. Herein, actual plants affected by PWSCC have been analyzed using PASCAL-NP. Failure probabilities calculated by PASCAL-NP are in reasonable agreement with the detection data. Furthermore, useful knowledge related to leakage due to PWSCC was obtained through parametric studies using this code

  8. Renal and post-renal causes of acute renal failure in children

    International Nuclear Information System (INIS)

    Jamal, A.; Ramzan, A.

    2004-01-01

    Objective: To identify the causes of acute renal failure (ARF) in pediatric population along with the identification of the age and gender most affected by the failure. Subjects and Methods: The study included children under the age of 12 years who presented with signs and symptoms suggestive of ARF (oliguria/anuria, vomiting, acidotic breathing etc.) along with raised blood urea nitrogen (BUN) serum creatinine and metabolic acidosis as shown by arterial blood gases (ABGs). Patients were divided into two group on the basis of age; group A consisting of 0-2 years and group B from >2 years. Patients presenting with transient pre-renal azotaemia were excluded from the study. After providing initial emergency cover, detailed history, physical examination and investigations were carried out according to a proforma specially designed to ascertain the cause of ARF. Patients were managed for ARF as per standard recommendations and investigations completed or repeated as and when required. Results: A total of 119 patients with ARF were admitted in the ward over a period of two years constituting 1.36% of the total admissions and 16.39% of the admissions due to renal pathology. Mean age of presentation was 4.5 years 16.7% of the patients under the age of 5 years. Male predominance was noted in all ages with an overall male to female ratio of 2.3:1. Most common cause leading to ARF in younger age group was found to be hemolytic uremic syndrome [25(54.34%)] followed by septicemia [7(15.21 %)]. In older patients renal calculus disease was the most common [22(30.13%)] underlying pathology followed by pre-existing, undiagnosed chronic renal failure [16(21.91 %)]. Conclusion: ARF is fairly cotton in children especially under the age of 5 years showing a male predominance. More than 90% of the cases can be prevented by improving primary health care and by early and prompt treatment of infections. (author)

  9. Failure Analysis of a Modern High Performance Diesel Engine Cylinder Head

    Directory of Open Access Journals (Sweden)

    Bingbin Guo

    2014-05-01

    Full Text Available This paper presents a failure analysis on a modern high performance diesel engine cylinder head made of gray cast iron. Cracks appeared intensively at the intersection of two exhaust passages in the cylinder head. The metallurgical examination was conducted in the crack origin zone and other zones. Meanwhile, the load state of the failure part of the cylinder head was determined through the Finite Element Analysis. The results showed that both the point of the maximum temperature and the point of the maximum thermal-mechanical coupling stress were not in the crack position. The excessive load was not the main cause of the failure. The large cooling rate in the casting process created an abnormal graphite zone that existed below the surface of the exhaust passage (about 1.1 mm depth, which led to the fracture of the cylinder head. In the fractured area, there were a large number of casting defects (dip sand, voids, etc. and inferior graphite structure (type D, type E which caused stress concentration. Moreover, high temperature gas entered the cracks, which caused material corrosion, material oxidization, and crack propagation. Finally, premature fracture of the cylinder head took place.

  10. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats.

    Science.gov (United States)

    Chang, Xue-Ying; Cui, Lei; Wang, Xing-Zhi; Zhang, Lei; Zhu, Dan; Zhou, Xiao-Rong; Hao, Li-Rong

    2017-01-01

    This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta ( P chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway.

  11. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats

    Science.gov (United States)

    Chang, Xue-ying; Cui, Lei; Wang, Xing-zhi; Zhang, Lei; Zhu, Dan

    2017-01-01

    Background This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. Methods 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Results Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta (P chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway. PMID:28691026

  12. Recognition and Analysis of Corrosion Failure Mechanisms

    Directory of Open Access Journals (Sweden)

    Steven Suess

    2006-02-01

    Full Text Available Corrosion has a vast impact on the global and domestic economy, and currently incurs losses of nearly $300 billion annually to the U.S. economy alone. Because of the huge impact of corrosion, it is imperative to have a systematic approach to recognizing and mitigating corrosion problems as soon as possible after they become apparent. A proper failure analysis includes collection of pertinent background data and service history, followed by visual inspection, photographic documentation, material evaluation, data review and conclusion procurement. In analyzing corrosion failures, one must recognize the wide range of common corrosion mechanisms. The features of any corrosion failure give strong clues as to the most likely cause of the corrosion. This article details a proven approach to properly determining the root cause of a failure, and includes pictographic illustrations of the most common corrosion mechanisms, including general corrosion, pitting, galvanic corrosion, dealloying, crevice corrosion, microbiologically-influenced corrosion (MIC, corrosion fatigue, stress corrosion cracking (SCC, intergranular corrosion, fretting, erosion corrosion and hydrogen damage.

  13. Complex bladder-exstrophy-epispadias management: Causes of failure of initial bladder closure

    Directory of Open Access Journals (Sweden)

    Kouame Dibi Bertin

    2014-01-01

    Full Text Available The success of the initial closure of the complex bladder-exstrophy remains a challenge in pediatric surgery. This study describes a personal experience of the causes of failure of the initial closure and operative morbidity during the surgical treatment of bladder-exstrophy complex. From April 2000 to March 2014, four patients aged 16 days to 7 years and 5 months underwent complex exstrophy-epispadias repair with pelvic osteotomies. There were three males and one female. Three of them had posterior pelvic osteotomy, one had anterior innominate osteotomy. Bladder Closure: Bladder closure was performed in three layers. Our first patient had initial bladder closure with polyglactin 4/0 (Vicryl ® 4/0, concerning the last three patients, initial bladder closure was performed with polydioxanone 4/0 (PDS ® 4/0. The bladder was repaired leaving the urethral stent and ureteral stents for full urinary drainage for three patients. In one case, only urethral stent was left, ureteral drainage was not possible, because stents sizes were more important than the ureteral diameter. Out of a total of four patients, initial bladder closure was completely achieved for three patients. At the immediate postoperative follow-up, two patients presented a complete disunion of the abdominal wall and bladder despite an appropriate postoperative care. The absorbable braided silk (polyglactin used for the bladder closure was considered as the main factor in the failure of the bladder closure. The second cause of failure of the initial bladder closure was the incomplete urine drainage, ureteral catheterisation was not possible because the catheters sizes were too large compared with the diameters of the ureters. The failure of the initial bladder-exstrophy closure may be reduced by a closure with an absorbable monofilament silk and efficient urine drainage via ureteral catheterisation.

  14. Power distribution gradients in WWER type cores and fuel failure root causes

    Energy Technology Data Exchange (ETDEWEB)

    Mikuš, Ján M., E-mail: JanMikus.nrc@hotmail.com

    2014-02-15

    Highlights: • Power (fission rate) distribution gradients can represent fuel failure root causes. • Positions with above gradients were investigated in WWER type cores on reactor LR-0. • Above gradients were evaluated near core heterogeneities and construction materials. • Results can be used for code validation and fuel failure occurrence investigation. - Abstract: Neutron flux non-uniformity and gradients of neutron current resulting in corresponding power (fission rate) distribution changes can represent root causes of the fuel failure. Such situation can be expected in vicinity of some core heterogeneities and construction materials. Since needed data cannot be obtained from nuclear power plant (NPP), results of some benchmark type experiments performed on light water, zero-power research reactor LR-0 were used for investigation of the above phenomenon. Attention was focused on determination of the spatial power distribution changes in fuel assemblies (FAs): Containing fuel rods (FRs) with Gd burnable absorber in WWER-440 and WWER-1000 type cores, Neighboring the core blanket and dummy steel assembly simulators on the periphery of the WWER-440 standard and low leakage type cores, resp., Neighboring baffle in WWER-1000 type cores, and Neighboring control rod (CR) in WWER-440 type cores, namely (a) power peak in axial power distribution in periphery FRs of the adjacent FAs near the area between CR fuel part and butt joint to the CR absorbing part and (b) decrease in radial power distribution in FRs near CR absorbing part. An overview of relevant experimental results from reactor LR-0 and some information concerning leaking FAs on NPP Temelín are presented. Obtained data can be used for code validation and subsequently for the fuel failure occurrence investigation.

  15. The Root Cause of Post-traumatic and Developmental Stress Disorder

    Science.gov (United States)

    2013-03-01

    Post - traumatic and Developmental Stress Disorder PRINCIPAL INVESTIGATOR: Keith A...28 Feb 2013 4. TITLE AND SUBTITLE The Root Cause of Post - traumatic and Developmental Stress Disorder 5a. CONTRACT NUMBER W81XWH-­‐07-­‐1-­‐0244...goal of Project 1 is to describe the progression of post -deployment stress disorders ( PTSD , major depression, suicidality) in active duty troops

  16. Investigating the Causes of Heart Failure based on Persian Medicine Point of View

    Directory of Open Access Journals (Sweden)

    R Ghods

    2017-07-01

    CONCLUSION: Several factors are mentioned as the cause of heart failure or heart weakness in PM, only a few of which are considered in modern medicine. However, some of these less considered theories can be used as new assumptions to prevent and control this disease

  17. Mechanical analysis of congestive heart failure caused by bundle branch block based on an electromechanical canine heart model

    Energy Technology Data Exchange (ETDEWEB)

    Dou Jianhong; Xia Ling; Zhang Yu; Shou Guofa [Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027 (China); Wei Qing; Liu Feng; Crozier, Stuart [School of Information Technology and Electrical Engineering, University of Queensland, St Lucia, Brisbane, Queensland 4072 (Australia)], E-mail: xialing@zju.edu.cn

    2009-01-21

    Asynchronous electrical activation, induced by bundle branch block (BBB), can cause reduced ventricular function. However, the effects of BBB on the mechanical function of heart are difficult to assess experimentally. Many heart models have been developed to investigate cardiac properties during BBB but have mainly focused on the electrophysiological properties. To date, the mechanical function of BBB has not been well investigated. Based on a three-dimensional electromechanical canine heart model, the mechanical properties of complete left and right bundle branch block (LBBB and RBBB) were simulated. The anatomical model as well as the fiber orientations of a dog heart was reconstructed from magnetic resonance imaging (MRI) and diffusion tensor MRI (DT-MRI). Using the solutions of reaction-diffusion equations and with a strategy of parallel computation, the asynchronous excitation propagation and intraventricular conduction in BBB was simulated. The mechanics of myocardial tissues were computed with time-, sarcomere length-dependent uniaxial active stress initiated at the time of depolarization. The quantification of mechanical intra- and interventricular asynchrony of BBB was then investigated using the finite-element method with an eight-node isoparametric element. The simulation results show that (1) there exists inter- and intraventricular systolic dyssynchrony during BBB; (2) RBBB may have more mechanical synchrony and better systolic function of the left ventricle (LV) than LBBB; (3) the ventricles always move toward the early-activated ventricle; and (4) the septum experiences higher stress than left and right ventricular free walls in BBB. The simulation results validate clinical and experimental recordings of heart deformation and provide regional quantitative estimates of ventricular wall strain and stress. The present work suggests that an electromechanical heart model, incorporating real geometry and fiber orientations, may be helpful for better

  18. Expanding arch aneurysm causing a "kink" in a Bentall graft and heart failure.

    Science.gov (United States)

    Al-Mohaissen, Maha A; Skarsgard, Peter; Khoo, Clarence; Virani, Sean A; Munt, Brad; Leipsic, Jonathon; Ignaszewski, Andrew

    2012-07-01

    Marfan syndrome is associated with a high incidence of aortic root aneurysm and life-threatening aortic dissection. With the successful use of surgical aortic root replacement, dissection-related mortality has been significantly reduced. We present the case of a patient with Marfan syndrome who presented with heart failure secondary to an unusual graft-related complication 14 years after a Bentall procedure. Investigations revealed a supra-aortic stenosis resulting from a kink in the Bentall graft caused by pressure from an expanding aortic arch aneurysm. The patient underwent surgery with improvement in his ejection fraction and heart failure symptoms.

  19. Some calculations of the failure statistics of coated fuel particles

    International Nuclear Information System (INIS)

    Martin, D.G.; Hobbs, J.E.

    1977-03-01

    Statistical variations of coated fuel particle parameters were considered in stress model calculations and the resulting particle failure fraction versus burn-up evaluated. Variations in the following parameters were considered simultaneously: kernel diameter and porosity, thickness of the buffer, seal, silicon carbide and inner and outer pyrocarbon layers, which were all assumed to be normally distributed, and the silicon carbide fracture stress which was assumed to follow a Weibull distribution. Two methods, based respectively on random sampling and convolution of the variations were employed and applied to particles manufactured by Dragon Project and RFL Springfields. Convolution calculations proved the more satisfactory. In the present calculations variations in the silicon carbide fracture stress caused the greatest spread in burn-up for a given change in failure fraction; kernel porosity is the next most important parameter. (author)

  20. Measuring general and specific stress causes and stress responses among beginning secondary school teachers in the Netherlands

    NARCIS (Netherlands)

    Harmsen, R; Helms-Lorenz, M.; Maulana, R; van Veen, K; van Veldhoven, M.J.P.M.

    2018-01-01

    The main aim of this study was to adjust the Questionnaire on the Experience and Evaluation of Work (QEEW) in order to measure stress causes and stress responses of beginning secondary school teachers in the Netherlands. First, the suitability of the original QEEW stress scales for use in the

  1. The difference in causes of early and late ultrafiltration failure in peritoneal dialysis

    NARCIS (Netherlands)

    Smit, Watske; Parikova, Alena; Struijk, Dirk G.; Krediet, Raymond T.

    2005-01-01

    OBJECTIVE: Ultrafiltration failure (UFF) is a major complication of peritoneal dialysis. Although it seems associated with long-term treatment, it can also occur in recently started patients. To identify the causes of this complication in patients with early and late UFF we studied a group of 48

  2. Star fruit (Averrhoa carambola) intoxication: an important cause of consciousness disturbance in patients with renal failure.

    Science.gov (United States)

    Chang, Chin-Tung; Chen, Yung-Chang; Fang, Ji-Tseng; Huang, Chiu-Ching

    2002-05-01

    Star fruit intoxication is a rare cause of consciousness disturbance in patients with renal failure. Most cases in the literature are uremic patients on maintenance dialysis. We present a patient with chronic renal failure, who was not on dialysis program yet, suffered from star fruit intoxication with presentation of consciousness disturbance and successfully managed by a session of hemodialysis.

  3. Analyses Of Techniques On Structural Fatigue Failure Detection ...

    African Journals Online (AJOL)

    Machines and structures are subjected to variable loading conditions where the stress cycle does not remain the same during the operation of the machine. Fatigue is undoubtedly one of the most serious of all causes of breakdowns of machines and structures which results in sudden failures. The use of the time domain ...

  4. Influence of N-acetylcysteine on oxidative stress in slow-twitch soleus muscle of heart failure rats

    OpenAIRE

    Martinez, Paula Felippe [UNESP; Bonomo, Camila [UNESP; Guizoni, Daniele Mendes [UNESP; Oliveira Junior, Silvio Assis [UNESP; Damatto, Ricardo Luiz [UNESP; Cezar, Marcelo Diarcadia Mariano [UNESP; Lima, Aline Regina Ruiz [UNESP; Pagan, Luana Urbano [UNESP; Seiva, Fabio Rodrigues; Fernandes, Denise Castro; Laurindo, Francisco Rafael Martins; Novelli, Ethel Lourenzi Barbosa [UNESP; Matsubara, Luiz Shiguero [UNESP; Zornoff, Leonardo Antonio Mamede [UNESP; Okoshi, Katashi [UNESP

    2015-01-01

    Background: Chronic heart failure is characterized by decreased exercise capacity with early exacerbation of fatigue and dyspnea. Intrinsic skeletal muscle abnormalities can play a role in exercise intolerance. Causal or contributing factors responsible for muscle alterations have not been completely defined. This study evaluated skeletal muscle oxidative stress and NADPH oxidase activity in rats with myocardial infarction (MI) induced heart failure. Methods and Results: Four months after MI,...

  5. On the fractography of overload, stress corrosion, and cyclic fatigue failures in pyrolytic-carbon materials used in prosthetic heart-valve devices.

    Science.gov (United States)

    Ritchie, R O; Dauskardt, R H; Pennisi, F J

    1992-01-01

    A scanning electron microscopy study is reported of the nature and morphology of fracture surfaces in pyrocarbons commonly used for the manufacture of mechanical heart-valve prostheses. Specifically, silicon-alloyed low-temperature-isotropic (LTI)-pyrolytic carbon is examined, both as a coating on graphite and as a monolithic material, following overload, stress corrosion (static fatigue), and cyclic fatigue failures in a simulated physiological environment of 37 degrees C Ringer's solution. It is found that, in contrast to most metallic materials yet in keeping with many ceramics, there are no distinct fracture morphologies in pyro-carbons which are characteristic of a specific mode of loading; fracture surfaces appear to be identical for both catastrophic and subcritical crack growth under either sustained or cyclic loading. We conclude that caution should be used in assigning the likely cause of failure of pyrolytic carbon heart-valve components using fractographic examination.

  6. Snow fracture: From micro-cracking to global failure

    Science.gov (United States)

    Capelli, Achille; Reiweger, Ingrid; Schweizer, Jürg

    2017-04-01

    Slab avalanches are caused by a crack forming and propagating in a weak layer within the snow cover, which eventually causes the detachment of the overlying cohesive slab. The gradual damage process leading to the nucleation of the initial failure is still not entirely understood. Therefore, we studied the damage process preceding snow failure by analyzing the acoustic emissions (AE) generated by bond failure or micro-cracking. The AE allow studying the ongoing progressive failure in a non-destructive way. We performed fully load-controlled failure experiments on snow samples presenting a weak layer and recorded the generated AE. The size and frequency of the generated AE increased before failure revealing an acceleration of the damage process with increased size and frequency of damage and/or microscopic cracks. The AE energy was power-law distributed and the exponent (b-value) decreased approaching failure. The waiting time followed an exponential distribution with increasing exponential coefficient λ before failure. The decrease of the b-value and the increase of λ correspond to a change in the event distribution statistics indicating a transition from homogeneously distributed uncorrelated damage producing mostly small AE to localized damage, which cause larger correlated events which leads to brittle failure. We observed brittle failure for the fast experiment and a more ductile behavior for the slow experiments. This rate dependence was reflected also in the AE signature. In the slow experiments the b value and λ were almost constant, and the energy rate increase was moderate indicating that the damage process was in a stable state - suggesting the damage and healing processes to be balanced. On a shorter time scale, however, the AE parameters varied indicating that the damage process was not steady but consisted of a sum of small bursts. We assume that the bursts may have been generated by cascades of correlated micro-cracks caused by localization of

  7. Stress in telephone helpline nurses is associated with failures of concentration, attention and memory, and with more conservative referral decisions.

    Science.gov (United States)

    Allan, Julia L; Farquharson, Barbara; Johnston, Derek W; Jones, Martyn C; Choudhary, Carolyn J; Johnston, Marie

    2014-05-01

    Nurses working for telephone-based medical helplines must maintain attentional focus while quickly and accurately processing information given by callers to make safe and appropriate treatment decisions. In this study, both higher levels of general occupational stress and elevated stress levels on particular shifts were associated with more frequent failures of attention, memory, and concentration in telephone nurses. Exposure to a stressful shift was also associated with a measurable increase in objectively assessed information-processing errors. Nurses who experienced more frequent cognitive failures at work made more conservative decisions, tending to refer patients on to other health professionals more often than other nurses. As stress is associated with cognitive performance decrements in telephone nursing, stress-reduction interventions could improve the quality and safety of care that callers to medical helplines receive. © 2013 The British Psychological Society.

  8. Stress corrosion of low alloy steel forgings

    International Nuclear Information System (INIS)

    Thornton, D.V.; Mould, P.B.; Patrick, E.C.

    1976-01-01

    The catastrophic failure of a steam turbine rotor disc at Hinkley Point 'A' Power station was shown to have been caused by the growth of a stress corrosion crack to critical dimensions. This failure has promoted great interest in the stress corrosion susceptibility of medium strength low alloy steel forgings in steam environments. Consequently, initiation and growth of stress corrosion cracks of typical disc steels have been investigated in steam and also in water at 95 0 C. Cracking has been shown to occur, predominantly in an intergranular manner, with growth rates of between 10 -9 and 10 -7 mm sec. -1 . It is observed that corrosion pitting and oxide penetration prior to the establishment of a stress corrosion crack in the plain samples. (author)

  9. Criticality in the Approach to Failure in Amorphous Solids

    Science.gov (United States)

    Lin, Jie; Gueudré, Thomas; Rosso, Alberto; Wyart, Matthieu

    2015-10-01

    Failure of amorphous solids is fundamental to various phenomena, including landslides and earthquakes. Recent experiments indicate that highly plastic regions form elongated structures that are especially apparent near the maximal shear stress Σmax where failure occurs. This observation suggested that Σmax acts as a critical point where the length scale of those structures diverges, possibly causing macroscopic transient shear bands. Here, we argue instead that the entire solid phase (Σ system-spanning events, and that their magnitude diverges at Σmax independently of the presence of shear bands. We relate the statistics and fractal properties of these rearrangements to an exponent θ that captures the stability of the material, which is observed to vary continuously with stress, and we confirm our predictions in elastoplastic models.

  10. Practical application of failure criteria in determining safe mud weight windows in drilling operations

    Directory of Open Access Journals (Sweden)

    R. Gholami

    2014-02-01

    Full Text Available Wellbore instability is reported frequently as one of the most significant incidents during drilling operations. Analysis of wellbore instability includes estimation of formation mechanical properties and the state of in situ stresses. In this analysis, the only controllable parameter during drilling operation is the mud weight. If the mud weight is larger than anticipated, the mud will invade into the formation, causing tensile failure of the formation. On the other hand, a lower mud weight can result in shear failures of rock, which is known as borehole breakouts. To predict the potential for failures around the wellbore during drilling, one should use a failure criterion to compare the rock strength against induced tangential stresses around the wellbore at a given mud pressure. The Mohr–Coulomb failure criterion is one of the commonly accepted criteria for estimation of rock strength at a given state of stress. However, the use of other criteria has been debated in the literature. In this paper, Mohr–Coulomb, Hoek–Brown and Mogi–Coulomb failure criteria were used to estimate the potential rock failure around a wellbore located in an onshore field of Iran. The log based analysis was used to estimate rock mechanical properties of formations and state of stresses. The results indicated that amongst different failure criteria, the Mohr–Coulomb criterion underestimates the highest mud pressure required to avoid breakouts around the wellbore. It also predicts a lower fracture gradient pressure. In addition, it was found that the results obtained from Mogi–Coulomb criterion yield a better comparison with breakouts observed from the caliper logs than that of Hoek–Brown criterion. It was concluded that the Mogi–Coulomb criterion is a better failure criterion as it considers the effect of the intermediate principal stress component in the failure analysis.

  11. Radiation necrosis causing failure of automatic ventilation during sleep with central sleep apnea

    International Nuclear Information System (INIS)

    Udwadia, Z.F.; Athale, S.; Misra, V.P.; Wadia, N.H.

    1987-01-01

    A patient operated upon for a midline cerebellar hemangioblastoma developed failure of automatic respiration during sleep, together with central sleep apnea syndrome, approximately two years after receiving radiation therapy to the brain. Clinical and CT scan findings were compatible with a diagnosis of radiation necrosis as the cause of his abnormal respiratory control

  12. Failure analysis of vise jaw holders for hacksaw machine

    Directory of Open Access Journals (Sweden)

    Essam Ali Al-Bahkali

    2018-01-01

    Full Text Available Failure analysis in mechanical components has been investigated in many studies in the last few years. Failure analysis and prevention are important functions in all engineering disciplines. Materials engineers are often the lead role in the analysis of failures, where a component or product fails in service or if a failure occurs during manufacturing or production processing. In any case, one must determine the cause of the failure to prevent future occurrences and/or to improve the performance of the device, component or structure. For example, the vise jaw holders of hacksaws can break due to accidental heavy loads or machine misuse. The parts that break are the stationary and movable vise jaw holders and the connecter power screw between the holders. To investigate the failure of these components, a three-dimensional finite element model for stress analysis was performed. First, the analysis identified the broken components of the hacksaw machine. In addition, the type of materials of the broken parts was identified, a CAD model was built, and the hacksaw mechanism was analyzed to determine the accurate applied loads on the broken parts. After analyzing the model using Abaqus CAE software, the results showed that the location of the high stresses was identical with the high-stress locations in the original, broken parts. Furthermore, the power screw was subjected to a high load, which deformed the power screw. Also, the stationary vise jaw holder was broken by impact because it was not touched by the power screw until the movable vise jaw holder broke. A conclusion is drawn from the failure analysis and a way to improve the design of the broken parts is suggested.

  13. Final report on PCRV thermal cylinder axial tendon failures

    International Nuclear Information System (INIS)

    Canonico, D.A.; Griess, J.C.; Robinson, G.C.

    1976-01-01

    The post-test examination of the failed tendons from the PCRV thermal cylinder experiment has been concluded. Failures in the wires are attributed to stress-corrosion cracking. The cause of tendon failures has not been unequivocably established, but they may have been due to nitrates in the duct. The wires employed in the manufacture of the tendons will crack in less than 72 hr in a 0.2 M solution of ammonium nitrate at 70 0 C. The quality of the wires is poor, and surface cracks were detected. These could have acted as concentrating sites for both stress and the deleterious contaminants. It is believed that the factors that led to the failures in the thermal cylinder experiment were unique. An improper formulation of the epoxy resin did not provide the tendon anchor plate seal that was desired; indeed, the improper formulation is responsible for the high level of nitrogen in the ducts of the failed tendons

  14. Analysis approach for common cause failure on non-safety digital control system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yun Goo; Oh, Eungse [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2014-05-15

    The effects of common cause failure (CCF) on safety digital instrumentation and control (I and C) system had been considered in defense in depth and diversity coping analysis with safety analysis method. For the non-safety system, single failure had been considered for safety analysis. IEEE Std. 603-1991, Clause 5.6.3.1(2), 'Isolation' states that no credible failure on the non-safety side of an isolation device shall prevent any portion of a safety system from meeting its minimum performance requirements during and following any design basis event requiring that safety function. The software CCF is one of the credible failure on the non-safety side. In advanced digital I and C system, same hardware component is used for different control system and the defect in manufacture or common external event can generate CCF. Moreover, the non-safety I and C system uses complex software for its various function and software quality assurance for the development process is less severe than safety software for the cost effective design. Therefore the potential defects in software cannot be ignored and the effect of software CCF on non-safety I and C system is needed to be evaluated. This paper proposes the general process and considerations for the analysis of CCF on non-safety I and C system.

  15. Flexural fatigue failures and lives of Eco-Core sandwich beams

    International Nuclear Information System (INIS)

    Hossain, Mohammad Mynul; Shivakumar, Kunigal

    2014-01-01

    Highlights: • Eco-Core sandwich beam is flexural fatigue tested to study its fatigue response. • The core showed three failure types: damage onset, progression and final failure. • These failures were found to be represented by 1%, 5% and 7% change in compliance. • The fatigue stress-life (S–N) relationship follows a power low, σ max /σ ct = A o N α . • The fatigue failure was by multiple vertical cracks followed by 45° shear failure. - Abstract: Eco-Core is a class of syntactic foam made from small volume of high char yield binder and large volume of a class of flyash for fire resistance application. Very little or no flexural fatigue data of this class of core material is reported in the open literature. This paper presents a flexural fatigue response of Eco-Core in a glass/vinyl ester composite face sheet sandwich beam. A four-point loaded flexural test specimen was designed and tested in static and fatigue loadings to cause tension failure in the core. The fatigue test was conducted at maximum cyclic stress (σ max ) ranged from 0.7σ ct to 0.9σ ct , where σ ct is the static flexural strength of the core. The sinusoidal loading frequency of 2 Hz with the stress ratio of 0.1 was used. Flexural fatigue failure modes of Eco-Core sandwich beam were classified: damage onset (single tension crack), damage progression (multiple tension cracks) and ultimate failure (a combination of tension and shear). These failures were characterized by 1%, 5% and 7% changes in compliance that corresponds to N 1% , N 5% and N 7% lives. The fatigue stress-life (S–N) relationship was found to follow the well-known power law equation, σ max /σ ct = A o N α . The constants A o and α were established for all three types of failures. The endurance limit was established based on 1 million cycles limit and it was found to be 0.65σ ct , 0.70σ ct and 0.71σ ct , respectively for the three modes of failure. Flexural fatigue and static failure modes of Eco-Core sandwich

  16. WELLBORE INSTABILITY: CAUSES AND CONSEQUENCES

    Directory of Open Access Journals (Sweden)

    Borivoje Pašić

    2007-12-01

    Full Text Available Wellbore instability is one of the main problems that engineers meet during drilling. The causes of wellbore instability are often classified into either mechanical (for example, failure of the rock around the hole because of high stresses, low rock strength, or inappropriate drilling practice or chemical effects which arise from damaging interaction between the rock, generally shale, and the drilling fluid. Often, field instances of instability are a result of a combination of both chemical and mechanical. This problem might cause serious complication in well and in some case can lead to expensive operational problems. The increasing demand for wellbore stability analyses during the planning stage of a field arise from economic considerations and the increasing use of deviated, extended reach and horizontal wells. This paper presents causes, indicators and diagnosing of wellbore instability as well as the wellbore stresses model.

  17. Probabilistic common cause failure modeling for auxiliary feedwater system after the introduction of flood barriers

    International Nuclear Information System (INIS)

    Zheng, Xiaoyu; Yamaguchi, Akira; Takata, Takashi

    2013-01-01

    Causal inference is capable of assessing common cause failure (CCF) events from the viewpoint of causes' risk significance. Authors proposed the alpha decomposition method for probabilistic CCF analysis, in which the classical alpha factor model and causal inference are integrated to conduct a quantitative assessment of causes' CCF risk significance. The alpha decomposition method includes a hybrid Bayesian network for revealing the relationship between component failures and potential causes, and a regression model in which CCF parameters (global alpha factors) are expressed by explanatory variables (causes' occurrence frequencies) and parameters (decomposed alpha factors). This article applies this method and associated databases needed to predict CCF parameters of auxiliary feedwater (AFW) system when defense barriers against internal flood are introduced. There is scarce operation data for functionally modified safety systems and the utilization of generic CCF databases is of unknown uncertainty. The alpha decomposition method has the potential of analyzing the CCF risk of modified AFW system reasonably based on generic CCF databases. Moreover, the sources of uncertainty in parameter estimation can be studied. An example is presented to demonstrate the process of applying Bayesian inference in the alpha decomposition process. The results show that the system-specific posterior distributions for CCF parameters can be predicted. (author)

  18. Technical Problem Identification for the Failures of the Liberty Ships

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2016-11-01

    Full Text Available The U.S. Liberty Ship Building Program in World War II set a record—a total of 2700 Liberty Ships were built in 6 years, in order to support the battle against Nazi-Germany. However, numerous vessels suffered sudden fracture, some of them being split in half. This paper demonstrates and investigation of the Liberty Ships failure and problems, which reveals that the failures are caused by a combination of three factors. The welds produced by largely unskilled work force contain crack type flaws. Beyond these cracks, another important reason for failure associated with welding is the hydrogen embitterment; most of the fractures initiate at deck square hatch corners where there is a stress concentration; and the ship steel has fairly poor Charpy-Impact tested fracture toughness. It has been admitted that, although the numerous catastrophic failures were a painful experience, the failures of the Liberty Ships caused significant progress in the study of fracture mechanics. Considering their effect, the Liberty Ships are still a success.

  19. Climatology and forest decay - stresses caused by dry periods

    International Nuclear Information System (INIS)

    Havlik, D.

    1991-01-01

    In the discussion of forest decline in the Eighties, stresses due to dry weather is often named as a secondary cause. The concept of 'climatological dry periods' is introduced in this article and applied to records for the Basel and Aachen regions. The time distribution of dry periods of different length and different water deficiency (40 mm, 60 mm, 100 mm) is analyzed. In the case of the Basel data, the dry periods are related to the 'forest damage caused by draught' recorded for the Basel region since 1930. The results support the theory that increasingly larger and more frequent dry periods with water shortage have contributed significantly to forest damage in the last 15 years. Apart from the 'dry stress' itself, also the enhanced production of photooxidants is a damaging mechanism. (orig.) [de

  20. Anastomoses of the Ovarian and Uterine Arteries: A Potential Pitfall and Cause of Failure of Uterine Embolization

    International Nuclear Information System (INIS)

    Matson, Matthew; Nicholson, Anthony; Belli, Anna-Maria

    2000-01-01

    Four women with symptomatic uterine fibroids were treated by uterine artery embolization (UAE). In all cases both uterine arteries were embolized via a single femoral puncture with polyvinyl alcohol using a selective catheter technique. In three cases, the ovarian artery was not visible on the initial angiogram before embolization, but appeared after the second uterine artery had been treated. In one case of clinical failure following UAE, a repeat angiogram demonstrated filling of the fibroids from the ovarian artery. Anastomoses between uterine and ovarian arteries may cause problems for radiologists performing UAE and are a potential cause of treatment failure

  1. Acoustic emission reviling and danger level evaluation of stress corrosion cracking in stainless steel pipes

    International Nuclear Information System (INIS)

    Muravin, Gregory; Muravin, Boris; Lezvinsky, Luidmila

    2000-01-01

    Breakdowns and catastrophic damage occurring during the operation of nuclear power stations pipelines cause substantial economic and social loss annually throughout the world. Stress corrosion, vibration, fatigue, erosion, water shock, dynamic load, construction defects/errors are the main causes of pipes failures. For these reasons and in view of the age of nuclear power station pipes, there is an increased interest in finding means to prevent potential pipe failures. Nevertheless, statistical data of pipe failures continues to show significant numbers of accidents mainly due to stress corrosion cracking (about 65-80% of total number). To this end, a complex of investigations was carried out for the reliable AE diagnosis of pipes undergone stress corrosion cracking. These include: finding AE indications (fingerprints) of flaws developing in the metal in original condition as well as in metal subjected to stress corrosion; preparing AE criteria for evaluating the danger level of defects. (author)

  2. Common cause failure and systems interactions issues - an overview

    International Nuclear Information System (INIS)

    Worledge, D.H.; Chu, B.B.; Conradi, L.L.; Smith, A.M.

    1985-01-01

    Common cause failures (CCFs) and systems interactions (SIs) are two concerns which have received significant attention over the years. Although many large and varied efforts have been directed toward these concerns, their resolution is less than satisfactory. Problems continue to exist, both in terms of understanding the basic issues represented by these concerns, and the perceived need for protection against their potentially harmful effects. This paper presents the results of recent EPRI work to provide a basis of understanding of these issues. Based on that improved understanding, a more appropriate way of defining and approaching the underlying technical questions is suggested. The current means of addressing the CCF and SI concerns are discussed and areas of additional activity needed to allow a more effective resolution are identified

  3. Failures and suggestions in Earthquake forecasting and prediction

    Science.gov (United States)

    Sacks, S. I.

    2013-12-01

    Seismologists have had poor success in earthquake prediction. However, wide ranging observations from earlier great earthquakes show that precursory data can exist. In particular, two aspects seem promising. In agreement with simple physical modeling, b-values decrease in highly loaded fault zones for years before failure. Potentially more usefully, in high stress regions, breakdown of dilatant patches leading to failure can yield expelled water-related observations. The volume increase (dilatancy) caused by high shear stresses decreases the pore pressure. Eventually, water flows back in restoring the pore pressure, promoting failure and expelling the extra water. Of course, in a generally stressed region there may be many small patches that fail, such as observed before the 1975 Haicheng earthquake. Only a few days before the major event will most of the dilatancy breakdown occur in the fault zone itself such as for the Tangshan, 1976 destructive event. Observations of 'water release' effects have been observed before the 1923 great Kanto earthquake, the 1984 Yamasaki event, the 1975 Haicheng and the 1976 Tangshan earthquakes and also the 1995 Kobe earthquake. While there are obvious difficulties in water release observations, not least because there is currently no observational network anywhere, historical data does suggest some promise if we broaden our approach to this difficult subject.

  4. Galen's vein aneurysm as cause of heart failure

    International Nuclear Information System (INIS)

    Echeverria, Claudia; Cassalett, Gabriel; Franco, Jaime; Carrillo, Gustavo

    2005-01-01

    We present the case of a newborn admitted to the intensive care unit with a heart failure of difficult medical management. A large ductus arteriosus was found. It was surgically corrected, but the heart failure persisted and did not improve with medical treatment. Incidentally, a big Galen's vein aneurysm was found. Galen's vein aneurysm is a rare congenital pathology, originated by a fusion defect of the internal cerebral veins. Due to its low resistance, it produces a picture of high-output heart failure. Large defects may contain 50% to 60% of cardiac output. An aneurysm may be suspected in each newborn or infant with clinical picture of heart failure and right cardiac chamber dilation without any evidence of structural cardiac anomaly

  5. A Large-scale Finite Element Model on Micromechanical Damage and Failure of Carbon Fiber/Epoxy Composites Including Thermal Residual Stress

    Science.gov (United States)

    Liu, P. F.; Li, X. K.

    2018-06-01

    The purpose of this paper is to study micromechanical progressive failure properties of carbon fiber/epoxy composites with thermal residual stress by finite element analysis (FEA). Composite microstructures with hexagonal fiber distribution are used for the representative volume element (RVE), where an initial fiber breakage is assumed. Fiber breakage with random fiber strength is predicted using Monte Carlo simulation, progressive matrix damage is predicted by proposing a continuum damage mechanics model and interface failure is simulated using Xu and Needleman's cohesive model. Temperature dependent thermal expansion coefficients for epoxy matrix are used. FEA by developing numerical codes using ANSYS finite element software is divided into two steps: 1. Thermal residual stresses due to mismatch between fiber and matrix are calculated; 2. Longitudinal tensile load is further exerted on the RVE to perform progressive failure analysis of carbon fiber/epoxy composites. Numerical convergence is solved by introducing the viscous damping effect properly. The extended Mori-Tanaka method that considers interface debonding is used to get homogenized mechanical responses of composites. Three main results by FEA are obtained: 1. the real-time matrix cracking, fiber breakage and interface debonding with increasing tensile strain is simulated. 2. the stress concentration coefficients on neighbouring fibers near the initial broken fiber and the axial fiber stress distribution along the broken fiber are predicted, compared with the results using the global and local load-sharing models based on the shear-lag theory. 3. the tensile strength of composite by FEA is compared with those by the shear-lag theory and experiments. Finally, the tensile stress-strain curve of composites by FEA is applied to the progressive failure analysis of composite pressure vessel.

  6. Random safety auditing, root cause analysis, failure mode and effects analysis.

    Science.gov (United States)

    Ursprung, Robert; Gray, James

    2010-03-01

    Improving quality and safety in health care is a major concern for health care providers, the general public, and policy makers. Errors and quality issues are leading causes of morbidity and mortality across the health care industry. There is evidence that patients in the neonatal intensive care unit (NICU) are at high risk for serious medical errors. To facilitate compliance with safe practices, many institutions have established quality-assurance monitoring procedures. Three techniques that have been found useful in the health care setting are failure mode and effects analysis, root cause analysis, and random safety auditing. When used together, these techniques are effective tools for system analysis and redesign focused on providing safe delivery of care in the complex NICU system. Copyright 2010 Elsevier Inc. All rights reserved.

  7. A review of macroscopic ductile failure criteria.

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo; Reedlunn, Benjamin

    2013-09-01

    The objective of this work was to describe several of the ductile failure criteria com- monly used to solve practical problems. The following failure models were considered: equivalent plastic strain, equivalent plastic strain in tension, maximum shear, Mohr- Coulomb, Wellman's tearing parameter, Johnson-Cook and BCJ MEM. The document presents the main characteristics of each failure model as well as sample failure predic- tions for simple proportional loading stress histories in three dimensions and in plane stress. Plasticity calculations prior to failure were conducted with a simple, linear hardening, J2 plasticity model. The resulting failure envelopes were plotted in prin- cipal stress space and plastic strain space, where the dependence on stress triaxiality and Lode angle are clearly visible. This information may help analysts select a ductile fracture model for a practical problem and help interpret analysis results.

  8. Presentation of common cause failures in fault tree structure of Krsko PSA : an historical overview

    International Nuclear Information System (INIS)

    Vrbanic, I.; Kosutic, I.; Vukovic, I.; Simic, Z.

    2003-01-01

    Failure of multiple components due to a common cause represents one of the most important issues in evaluation of system reliability or unavailability. The frequency of such events has relatively low expectancy, when compared to random failures, which affect individual components. However, in many cases the consequence is a direct loss of safety system or mitigative safety function. For this reason, the modeling of a common cause failure (CCF) and its presentation in fault tree structure is of the uttermost importance in probabilistic safety analyses (PSA). During the past decade, PSA model of Krsko NPP has undergone many small changes and a couple of major ones in fulfilling its basic purpose, which was serving as a tool for providing an appropriate information on the risk associated with actual plant design and operation. All changes to Krsko PSA model were undertaken in order to make it a better tool and / or to make it represent the plant in more accurate manner. The paper provides an overview of changes in CCF modeling in the fault tree structure from the initial PSA model development till present. (author)

  9. Genetic solutions to infertility caused by heat stress

    Science.gov (United States)

    Reproductive function in mammals is very susceptible to disruption by heat stress. In lactating dairy cows, for example, pregnancy rates per insemination can be as low as 10-15% in the summer vs. 25-40% in cool weather. Reduced fertility in females is caused by a combination of 1) the negative cons...

  10. Failure of azithromycin 2.0 g in the treatment of gonococcal urethritis caused by high-level resistance in California.

    Science.gov (United States)

    Gose, Severin O; Soge, Olusegun O; Beebe, James L; Nguyen, Duylinh; Stoltey, Juliet E; Bauer, Heidi M

    2015-05-01

    We report a treatment failure to azithromycin 2.0 g caused by a urethral Neisseria gonorrhoeae isolate with high-level azithromycin resistance in California. This report describes the epidemiological case investigation and phenotypic and genetic characterization of the treatment failure isolate.

  11. Common-cause failure analysis of McGuire Unit 2 auxiliary feedwater system

    International Nuclear Information System (INIS)

    Rasmuson, D.M.; Shepherd, J.C.; Fowler, R.D.; Summitt, R.L.; Logan, B.W.

    1982-01-01

    A powerful method for qualitative common cause failure analysis (CCFA) of nuclear power plant systems was developed by EG and G Idaho at the Idaho National Engineering Laboratory. As a cooperative project to demonstrate and evaluate the usefulness of the method, the Duke Power Company agreed to allow a CCFA of the auxiliary feedwater system (AFWS) in their McGuire Nuclear Station Unit 2. The results of the CCFA are the subject of this discussion

  12. The Aznalcollar (Spain) tailings pond failure of 1998 and the ecological disaster of Guadiamar river: causes, effects and lessons

    International Nuclear Information System (INIS)

    Ayala-Carcedo, F. J.

    2004-01-01

    On 1998 a large tailings pond confined by a rock fill dyke in the Aznalcollar metallic mine near Sevilla, at the SW of Spain, failed with a big impact on public opinion due to potential environmental Impact on Donana National Park,a key natural space for birds migration between Europea and Africa. The accident is placed in a comparative way with others in the world, the causes of failure, its dynamics and the spill are analysed and also the actual ecological impacts related to the tailings and acid waters scattered by the Agrio and Guadiamar rivers. The lessons for future design and location of these type of deposits and water dams are also presented. The accident very quick, was caused by shear failure of the foundation formation, a miocene over consolidated marly clay, known as Guadalquivir blue marl, through a vertical point and a bedding plane, as a result of a progressive failure process under high pore pressure. Dynamic liquefaction of tailings due to sudden vertical movement towards the void created by the initial movement was a key factor to increase the outwards movement of the dyke, broken by the movement, and the tailings spill. The double dyke failure (main dyke and internal one) produced a tailings spill with solid and liquid flow. The dynamics of these flows is presented and also the combination of factors driving to failure. the problem posed by the successive human institutional failures, a necessary cause driving to no consideration of the possibility of the progressive failure in these formations, known from 1964, is also analysed. (Author) 67 refs

  13. Mechanical failure and glass transition in metallic glasses

    International Nuclear Information System (INIS)

    Egami, T.

    2011-01-01

    Research highlights: → We review the recent results of molecular dynamics simulations on metallic glasses. → They show the equivalence of mechanical failure and glass transition. → We discuss the microscopic mechanism behind this equivalence. → We show that the density of defects in metallic glasses is as high as a quarter. → Our concepts about the defect state in glasses need to be changed. - Abstract: The current majority view on the phenomenon of mechanical failure in metallic glasses appears to be that it is caused by the activity of some structural defects, such as free-volumes or shear transformation zones, and the concentration of such defects is small, only of the order of 1%. However, the recent results compel us to revise this view. Through molecular dynamics simulation it has been shown that mechanical failure is the stress-induced glass transition. According to our theory the concentration of the liquid-like sites (defects) is well over 20% at the glass transition. We suggest that the defect concentration in metallic glasses is actually very high, and percolation of such defects causes atomic avalanche and mechanical failure. In this article we discuss the glass transition, mechanical failure and viscosity from such a point of view.

  14. Study of the Atucha I nuclear power plant's residual heat removal system unavailability through the fault tree analysis and common cause failures

    International Nuclear Information System (INIS)

    Terrado, C.A.

    1991-06-01

    The present essay offers a comprehensive research of the Atucha I nuclear power plant's residual heat removal system unavailability, including Fault Tree Analysis and Common Cause Failures (CCF) treatment. The study is developed within the Event Tree perspective that considers the loss of external electrical power of the initiating event. The event was constructed by the Safety Evaluations Division of the Ezeiza Atomic Center in Argentina. According to the Event Tree, the research includes system demand during plant operation with 132 KV and emergency generation (Diesel motor generators). The system unavailability assessment is approached in two different ways: a) Considering independent failures only. b) Taking into account the existence of Common Cause Events, and modeling dependent failures. The Fault Tree quantification is played using the AIEA PSAPACK Code. The assessment data base is compiled from plant specific records and generic data bases like TECDOC 478. After Fault Tree model logic development, some general procedures used in common cause failures treating are applied to pick up another set of solutions. The results of the study are: a) Four Fault Trees have been developed to model the abovementioned system: 132 KV and emergency generation, both including and excluding CCF. b) The following unavailability values were obtained: 132 KV independent failures only: 7 10 -4 . Emergency generation independent failures only: 1.53 10 -2 . 132 KV dependent and independent failures: 3.6 10 -3 . Emergency generation dependent and independent failures: 1.74 10 -2 . The major conclusions obtained from the precedent results are: a) When using 132 KV system configuration, minimal cut sets involving common cause failures represents 81%from total system unavailability. b) The dependent failures treatment is an important task to be considered in safety assessments in order to reach more realistic values. (Author) [es

  15. BWR Steam Dryer Alternating Stress Assessment Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Morante, R. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hambric, S. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ziada, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-12-01

    This report presents an overview of Boiling Water Reactor (BWR) steam dryer design; the fatigue cracking failures that occurred at the Quad Cities (QC) plants and their root causes; a history of BWR Extended Power Uprates (EPUs) in the USA; and a discussion of steam dryer modifications/replacements, alternating stress mechanisms on steam dryers, and structural integrity evaluations (static and alternating stress).

  16. A Failure Criterion for Concrete

    DEFF Research Database (Denmark)

    Ottosen, N. S.

    1977-01-01

    A four-parameter failure criterion containing all the three stress invariants explicitly is proposed for short-time loading of concrete. It corresponds to a smooth convex failure surface with curved meridians, which open in the negative direction of the hydrostatic axis, and the trace in the devi......A four-parameter failure criterion containing all the three stress invariants explicitly is proposed for short-time loading of concrete. It corresponds to a smooth convex failure surface with curved meridians, which open in the negative direction of the hydrostatic axis, and the trace...

  17. Boiler tube failure prevention in fossil fired boilers

    International Nuclear Information System (INIS)

    Townsend, R.D.

    1993-01-01

    It is the common experience of power generating companies worldwide that the main causes of forced outages on power plant are those due to boiler tube failures on fossil units. The main reason for the large number of failures are the severe environmental conditions in fossil boilers as the effects of stress, temperature, temperature gradients, corrosion, erosion and vibration combine to produce degradation of the tube steel. Corrosion by oxidation, by combustion products and by impure boiler water can significantly reduce the tube wall thickness and result in failure of a tube many years before its designed service life. Errors can also occur in the design manufacturer, storage, operation, and maintenance of boiler tubing and the wrong material installed in a critical location can lead to premature failure. Altogether, experts in the US and UK, from many different disciplines, have identified seven broad categories of boiler tube failure mechanisms. 1 tab., 2 figs

  18. Failure Waves in Shock-Compressed Glasses

    International Nuclear Information System (INIS)

    Kanel, G. I.

    2006-01-01

    The failure wave is a network of cracks that are nucleated on the surface and propagate into the elastically stressed body. It is a mode of catastrophic fracture in an elastically stressed media whose relevance is not limited to impact events. In the paper, main properties of the failure waves are summarized and discussed. It has been shown that the failure wave is really a wave process which is characterized by small increase of the longitudinal stress and corresponding increments of the particle velocity and the density. The propagation velocity of the failure wave is less than the sound speed; it is not directly related to the compressibility but is determined by the crack growth speed. The failure wave is steady if the stress state ahead of it is supported unchanging. In some sense the process is similar to a subsonic combustion wave. Computer simulations based on the phenomenological combustion-like model reproduces well all kinematical aspects of the phenomenon

  19. Oxidative Stress in Dilated Cardiomyopathy Caused by MYBPC3 Mutation

    Directory of Open Access Journals (Sweden)

    Thomas L. Lynch

    2015-01-01

    Full Text Available Cardiomyopathies can result from mutations in genes encoding sarcomere proteins including MYBPC3, which encodes cardiac myosin binding protein-C (cMyBP-C. However, whether oxidative stress is augmented due to contractile dysfunction and cardiomyocyte damage in MYBPC3-mutated cardiomyopathies has not been elucidated. To determine whether oxidative stress markers were elevated in MYBPC3-mutated cardiomyopathies, a previously characterized 3-month-old mouse model of dilated cardiomyopathy (DCM expressing a homozygous MYBPC3 mutation (cMyBP-C(t/t was used, compared to wild-type (WT mice. Echocardiography confirmed decreased percentage of fractional shortening in DCM versus WT hearts. Histopathological analysis indicated a significant increase in myocardial disarray and fibrosis while the second harmonic generation imaging revealed disorganized sarcomeric structure and myocyte damage in DCM hearts when compared to WT hearts. Intriguingly, DCM mouse heart homogenates had decreased glutathione (GSH/GSSG ratio and increased protein carbonyl and lipid malondialdehyde content compared to WT heart homogenates, consistent with elevated oxidative stress. Importantly, a similar result was observed in human cardiomyopathy heart homogenate samples. These results were further supported by reduced signals for mitochondrial semiquinone radicals and Fe-S clusters in DCM mouse hearts measured using electron paramagnetic resonance spectroscopy. In conclusion, we demonstrate elevated oxidative stress in MYPBC3-mutated DCM mice, which may exacerbate the development of heart failure.

  20. Failure analysis of buried tanks

    International Nuclear Information System (INIS)

    Watkins, R.K.

    1994-01-01

    Failure of a buried tank can be hazardous. Failure may be a leak through which product is lost from the tank; but also through which contamination can occur. Failures are epidemic -- because buried tanks are out of sight, but also because designers of buried tanks have adopted analyses developed for pressure tanks. So why do pressure tanks fail when they are buried? Most failures of buried tanks are really soil failures. Soil compresses, or slips, or liquefies. Soil is not only a load, it is a support without which the tank deforms. A high water table adds to the load on the tank. It also reduces the strength of the soil. Based on tests, structural analyses are proposed for empty tanks buried in soils of various quality, with the water table at various levels, and with internal vacuum. Failure may be collapse tank. Such collapse is a sudden, audible inversion of the cylinder when the sidefill soil slips. Failure may be flotation. Failure may be a leak. Most leaks are fractures in the welds in overlap seams at flat spots. Flat spots are caused by a hard bedding or a heavy surface wheel load. Because the tank wall is double thick at the overlap, shearing stress in the weld is increased. Other weld failures occur when an end plate shears down past a cylinder; or when the tank is supported only at its ends like a beam. These, and other, failures can be analyzed with justifiable accuracy using basic principles of mechanics of materials. 10 figs

  1. Effect of Preconditioning and Soldering on Failures of Chip Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander A.

    2014-01-01

    Soldering of molded case tantalum capacitors can result in damage to Ta205 dielectric and first turn-on failures due to thermo-mechanical stresses caused by CTE mismatch between materials used in the capacitors. It is also known that presence of moisture might cause damage to plastic cases due to the pop-corning effect. However, there are only scarce literature data on the effect of moisture content on the probability of post-soldering electrical failures. In this work, that is based on a case history, different groups of similar types of CWR tantalum capacitors from two lots were prepared for soldering by bake, moisture saturation, and longterm storage at room conditions. Results of the testing showed that both factors: initial quality of the lot, and preconditioning affect the probability of failures. Baking before soldering was shown to be effective to prevent failures even in lots susceptible to pop-corning damage. Mechanism of failures is discussed and recommendations for pre-soldering bake are suggested based on analysis of moisture characteristics of materials used in the capacitors' design.

  2. Root cause analysis underscores the importance of understanding, addressing, and communicating cold chain equipment failures to improve equipment performance.

    Science.gov (United States)

    Lennon, Pat; Atuhaire, Brian; Yavari, Shahrzad; Sampath, Vidya; Mvundura, Mercy; Ramanathan, Nithya; Robertson, Joanie

    2017-04-19

    Vaccine cold chain equipment (CCE) in developing countries is often exposed to harsh environmental conditions, such as extreme temperatures and humidity, and is subject to many additional challenges, including intermittent power supply, insufficient maintenance capacity, and a scarcity of replacement parts. Together, these challenges lead to high failure rates for refrigerators, potentially damaging vaccines and adversely affecting immunization coverage. Providing a sustainable solution for improving CCE performance requires an understanding of the root causes of failure. Project teams conducted small-scale studies to determine the root causes of CCE failure in selected locations in Uganda and Mozambique. The evaluations covered 59 failed refrigerators and freezers in Uganda and 27 refrigerators in Mozambique. In Uganda, the vast majority of failures were due to a cooling unit fault in one widely used refrigerator model. In Mozambique, 11 of the 27 problems were attributable to solar refrigerators with batteries that were unable to hold a charge, and another eight problems were associated with a need to adjust thermostat settings. The studies showed that tracking and evaluation of equipment performance and failure can yield important, actionable information for a range of stakeholders, including local CCE technicians, the ministry of health, equipment manufacturers, and international partners such as the United Nations Children's Fund, World Health Organization, and Gavi, the Vaccine Alliance. Collaborative efforts to systematically collect and communicate data on CCE performance and causes of failure will help to improve the efficiency and reach of immunization programs in low- and middle-income countries. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Non-compaction cardiomyopathy – an unusual cause of heart failure

    Directory of Open Access Journals (Sweden)

    Jure Dolenc

    2011-03-01

    Full Text Available Introduction: Non-compaction cardiomyopathy is a rare inborn anomaly caused by disorder of endomyocardial morphogenesis. The diagnosis is based on echocardiographic criteria. The prevalence in the adult population is not known. The symptoms are atypical. Three main groups of clinical signs exist: heart failure, thromobembolic events and arrhythmias. In the group of patients with reduced left ventricular function the prognosis is poor and the treatment options are limited. Patients and methods: In the recent 10 years, 7 patients with non-compaction cardiomyopathy were diagnosed at the Department of Cardiology of the University Medical Centre Ljubljana. Results: All seven patients were males, their mean age at the last follow-up being 39 ± 20.3 years (range 20 to 70 years. Five patients were diagnosed in adulthood. All of them fulfilled the echocardiographic diagnostic criteria of noncompaction cardiomyopathy. Five patients had depressed function of both ventricles, two patients had isolated left ventricular dysfunction. Three patients had decreased left ventricular ejection fraction, six patients showed left ventricular diastolic dysfunction. Only three patients had normal physical capacity. Two patients presented with clinical signs of overt heart failure. During follow-up, one patient died from heart failure. We observed thromboembolic events in one patient. Three patients suffered from nonsustained ventricular tachycardias and two patients had rhythm conduction abnormalities. Conclusions: Non-compaction cardiomyopathy is a rare disorder. We observed all common complications in our group of patients. The majority of patients displayed dysfunction of the affected ventricle and the dysfunction was more pronounced in older patients. Treatment of complications is an important factor in long-term survival of these patients.

  4. Study on the manufacturing process, causes of the pressure tube failure and methods for improving its performance

    Energy Technology Data Exchange (ETDEWEB)

    You, Ho Sik; Jeong, Jin Kon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-07-01

    Manufacturing processes of Zr-2.5Nb pressure tube used in CANDU reactor, effects of impurities on the properties of the pressure tube, experiences and causes of the pressure tube cracking accident and the development programs on the fuel channel at AECL have been described. Fabrication processes on the pressure tube have been explained in detail from the sponge production step to the final product. Test methods that are performed to verify the integrity of the final product have also been described. Most of the pressure tube rupture accidents were caused by DHC (Delayed Hydride Cracking). In cases of Pickering units 3 and 4 and Bruce unit 2, excessive residual stresses induced by improper rolled joint process had played a role to cause DHC. In Pickering unit 2, cracks formed by contact between pressure and calandria tubes due to the movement of garter spring were direct cause of failure. After the accidents, a lot of R and D programs on each component of the fuel channel have been carried out. The study on the improvement of manufacturing processes such as increasing cold working rate, performing the intermediate and final annealing and adding the third element like Fe, V, Cr for enhancing the pressure tube performance are on progress. To suppress hydrogen uptake into the pressure tube, the methods such as zirconia coating on the pressure tube, Cr-plating on the end fitting and placing the yttrium getter on the pressure tube are considered. Experiments on each test specimen are currently under way. Owing to such an effort, more advanced fuel channel can be installed in the next CANDU reactor. 6 tabs., 20 figs., 20 refs. (Author).

  5. Operational Failures Caused by Arrogant Leaders

    National Research Council Canada - National Science Library

    Parrington, James R

    2008-01-01

    .... The failures of the Japanese and U.S. militaries directly resulted from the professional arrogance exhibited by Admiral Yamamoto and Secretary Rumsfeld as they deliberately limited the scope of their strategic thinking to how their...

  6. Cheyne-Stokes respiration in patients with congestive heart failure: causes and consequences

    OpenAIRE

    Lorenzi-Filho,Geraldo; Genta,Pedro R; Figueiredo,Adelaide C.; Inoue,Daniel

    2005-01-01

    Cheyne-Stokes respiration is a form of periodic breathing in which central apneas and hypopneas alternate with periods of hyperventilation, producing a waxing and waning pattern of tidal volume. This review focuses on the causes and consequences of Cheyne-Stokes respiration in patients with congestive heart failure, in whom the prevalence is strikingly high and ranges from 30% to 50%. Several factors have been implicated in the genesis of Cheyne-Stokes respiration, including low cardiac outpu...

  7. Sensitivity study of state-of-the-art common cause failure analysis

    International Nuclear Information System (INIS)

    Guey, Ching

    2004-01-01

    Common cause failures (CCFs) have been touted as one of the major contributors of plant risk due to its pervasive nature and somewhat conservative approaches taken in most Probabilistic Risk Assessment (PRA) studies. The objectives of this study are twofold: First, to gain a better understanding on the impact of various CCF failure probability on the overall plant risk. Secondly, to appreciate the state-of-the-art CCF modelling and data limitations for applications to a full-scale plant risk assessment. The sensitivity study of varying the CCF parameters for different cases indicates that CCF data differences based on the various cases commonly adopted in the PRAs yield core damage frequency variations between 8.5% to -25.6% of the baseline case. It appears that only if CCFs are guaranteed to occur, the core damage frequency would change significantly, by approximately a factor of 5. This suggests that prevention of CCFs is more important than dwelling on the analytical differences in the finer interpretation of the operating experience to develop the CCF parameters. (author)

  8. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats

    Directory of Open Access Journals (Sweden)

    Xue-ying Chang

    2017-01-01

    Full Text Available Background. This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. Methods. 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d, 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS/p38 mitogen activated protein kinase (p38MAPK pathway was determined to explore the potential mechanism. Results. Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA and creatinine levels, malonaldehyde (MDA content, and superoxide dismutase (SOD activity in serum and the increases of calcium and alkaline phosphatase (ALP activity in the aorta (P<0.05 and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Conclusions. Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway.

  9. Influence of stress triaxiality and strain rate on the failure behavior of a dual-phase DP780 steel

    International Nuclear Information System (INIS)

    Anderson, D.; Winkler, S.; Bardelcik, A.; Worswick, M.J.

    2014-01-01

    Highlights: • DP780 steel sheet sensitive to strain rate and triaxiality. • Specimens failed due to ductile-shear mode. • Extent of transverse cracking due to martensitic islands increased with triaxiality. • Uniaxial stress decreased with strain rate then increased after 0.1 s −1 . • Predicted effective plastic strain, triaxiality at failure increased with strain rate. - Abstract: To better understand the in-service mechanical behavior of advanced high-strength steels, the influence of stress triaxiality and strain rate on the failure behavior of a dual-phase (DP) 780 steel sheet was investigated. Three flat, notched mini-tensile geometries with varying notch severities and initial stress triaxialities of 0.36, 0.45, and 0.74 were considered in the experiments. Miniature specimens were adopted to facilitate high strain rate testing in addition to quasi-static experiments. Tensile tests were conducted at strain rates of 0.001, 0.01, 0.1, 1, 10, and 100 s −1 for all three notched geometries and compared to mini-tensile uniaxial samples. Additional tests at a strain rate of 1500 s −1 were performed using a tensile split Hopkinson bar apparatus. The results showed that the stress–strain response of the DP780 steel exhibited mainly positive strain rate sensitivity for all geometries, with mild negative strain rate sensitivity up to 0.1 s −1 for the uniaxial specimens. The strain at failure was observed to decrease with strain rate at low strain rates of 0.001–0.1 s −1 ; however, it increased by 26% for an increase in strain rate from 0.1 to 1500 s −1 for the uniaxial condition. Initial triaxiality was found to have a significant negative impact on true failure strain with a decrease of 32% at the highest triaxiality compared to the uniaxial condition at a strain rate of 0.001 s −1 . High resolution scanning electron microscopy images of the failure surfaces revealed a dimpled surface while optical micrographs revealed shearing through the

  10. Measuring general and specific stress causes and stress responses among beginning secondary school teachers in the Netherlands

    OpenAIRE

    Harmsen, R; Helms-Lorenz, M.; Maulana, R; van Veen, K; van Veldhoven, M.J.P.M.

    2018-01-01

    The main aim of this study was to adjust the Questionnaire on the Experience and Evaluation of Work (QEEW) in order to measure stress causes and stress responses of beginning secondary school teachers in the Netherlands. First, the suitability of the original QEEW stress scales for use in the beginning teachers (BTs) context was investigated using a sample of 356 beginning teachers from 52 different secondary school locations in the Netherlands. Confirmatory Factor Analyses, Principal Compone...

  11. Measuring general and specific stress causes and stress responses among beginning secondary school teachers in the Netherlands.

    OpenAIRE

    Harmsen, Ruth; Helms-Lorenz, Michelle; Maulana, Ridwan; van Veen, Klaas; van Veldhoven, M.J.P.M.

    2018-01-01

    The main aim of this study was to adjust the Questionnaire on the Experience and Evaluation of Work (QEEW) in order to measure stress causes and stress responses of beginning secondary school teachers in the Netherlands. First, the suitability of the original QEEW stress scales for use in the beginning teachers (BTs) context was investigated using a sample of 356 beginning teachers from 52 different secondary school locations in the Netherlands. Confirmatory Factor Analyses, Principal Compone...

  12. Factors causing stress among Pakistani working women

    OpenAIRE

    Arif, Ahmed; Naveed, Shaheryar; Aslam, Ramsha

    2017-01-01

    Women are traditionally considered to be confined within the four walls of their houses in the developing countries. They are still unable to play an active role in the development of society. They are striving to make their identity as an integral part of the society. Being a member of conservative developing society, women are still facing many hindrances, causing stressful situation for them, which prohibits them to participate actively in the economic development. This paper attempts to e...

  13. Evaluation of the onset of failure under mechanical and thermal stresses on luting agent for metal-ceramic and metal crowns by finite element analysis

    Directory of Open Access Journals (Sweden)

    Hema Agnihotri

    2010-01-01

    Full Text Available Long-term clinical failures of cemented prosthesis depend, to a large extent, on the integrity of the luting agent. The causative factors that lead to microfracture and, hence, failure of the luting agents are the stresses acting inside the oral cavity. Therefore, the present study was designed to develop an understanding of the relationship between stresses in the tooth and the failure potential of the luting agent. Two-dimensional finite element stress analysis was performed on the mandibular second premolar. The behavior of zinc-phosphate and glass-ionomer were studied under different crowns (metal-ceramic and metal crown and loading conditions (mechanical force of 450 N acting vertically over the occlusal surface, thermal loads of 60° and 0°C. It was observed from the study that failure threshold of the luting agent was influenced both by the elastic modulus of the luting agent and by the type of the crown.

  14. Is work stress in palliative care nurses a cause for concern? A literature review.

    Science.gov (United States)

    Peters, Louise; Cant, Robyn; Sellick, Kenneth; O'Connor, Margaret; Lee, Susan; Burney, Sue; Karimi, Leila

    2012-11-01

    Palliative care nurses are at risk of work stress because their role involves exposure to frequent deaths and family grieving. Little is known about their degree of stress or whether they suffer stress or burnout more than nurses in other disciplines. The aim of this paper is to critically examine the current literature concerning stress and burnout in palliative care nurses. Sixteen papers were included in the review. Although work demands were a common cause of stress in the studies reported, there was no strong evidence that palliative care or hospice nurses experienced higher levels of stress than nurses in other disciplines. Common causes of stress were the work environment, role conflict, and issues with patients and their families. Constructive coping styles appeared to help nurses to manage stress. Managers have a key role in providing education and training for palliative care nurses to support their personal development and to help reduce vulnerability to and the impact of stress in the workplace.

  15. Role of scanning electron microscope )SEM) in metal failure analysis

    International Nuclear Information System (INIS)

    Shaiful Rizam Shamsudin; Hafizal Yazid; Mohd Harun; Siti Selina Abd Hamid; Nadira Kamarudin; Zaiton Selamat; Mohd Shariff Sattar; Muhamad Jalil

    2005-01-01

    Scanning electron microscope (SEM) is a scientific instrument that uses a beam of highly energetic electrons to examine the surface and phase distribution of specimens on a micro scale through the live imaging of secondary electrons (SE) and back-scattered electrons (BSE) images. One of the main activities of SEM Laboratory at MINT is for failure analysis on metal part and components. The capability of SEM is excellent for determining the root cause of metal failures such as ductility or brittleness, stress corrosion, fatigue and other types of failures. Most of our customers that request for failure analysis are from local petrochemical plants, manufacturers of automotive components, pipeline maintenance personnel and engineers who involved in the development of metal parts and component. This paper intends to discuss some of the technical concepts in failure analysis associated with SEM. (Author)

  16. Risk-based decision making to manage water quality failures caused by combined sewer overflows

    Science.gov (United States)

    Sriwastava, A. K.; Torres-Matallana, J. A.; Tait, S.; Schellart, A.

    2017-12-01

    Regulatory authorities set certain environmental permit for water utilities such that the combined sewer overflows (CSO) managed by these companies conform to the regulations. These utility companies face the risk of paying penalty or negative publicity in case they breach the environmental permit. These risks can be addressed by designing appropriate solutions such as investing in additional infrastructure which improve the system capacity and reduce the impact of CSO spills. The performance of these solutions is often estimated using urban drainage models. Hence, any uncertainty in these models can have a significant effect on the decision making process. This study outlines a risk-based decision making approach to address water quality failure caused by CSO spills. A calibrated lumped urban drainage model is used to simulate CSO spill quality in Haute-Sûre catchment in Luxembourg. Uncertainty in rainfall and model parameters is propagated through Monte Carlo simulations to quantify uncertainty in the concentration of ammonia in the CSO spill. A combination of decision alternatives such as the construction of a storage tank at the CSO and the reduction in the flow contribution of catchment surfaces are selected as planning measures to avoid the water quality failure. Failure is defined as exceedance of a concentration-duration based threshold based on Austrian emission standards for ammonia (De Toffol, 2006) with a certain frequency. For each decision alternative, uncertainty quantification results into a probability distribution of the number of annual CSO spill events which exceed the threshold. For each alternative, a buffered failure probability as defined in Rockafellar & Royset (2010), is estimated. Buffered failure probability (pbf) is a conservative estimate of failure probability (pf), however, unlike failure probability, it includes information about the upper tail of the distribution. A pareto-optimal set of solutions is obtained by performing mean

  17. Failure of the chassis of roller skates for agonistic figure skating

    Directory of Open Access Journals (Sweden)

    Giorgio Olmi

    2015-04-01

    Full Text Available The subject of this work was to investigate the early failure, which occurred in the chassis of a roller skate for figure skating. The paper deals with the preliminary analysis of the crack and with the integrated approach, which had to be followed to overcome the problem. Literature in the fields of physiology and biomechanics was studied to correctly simulate the load distribution on the chassis. Finite element simulation, experimental stress analysis and analytical modeling of impact phenomena had to be combined together to estimate the entity of dynamic loads and the corresponding state of stress. The analysis led to the determination of the primary cause of failure, bending fatigue, and to the suggestion of a simple solution to improve and optimize the project.

  18. Do causes of stress differ in their association with problem drinking by sex in Korean adolescents?

    Science.gov (United States)

    Choi, Jae-Woo; Park, Eun-Cheol; Kim, Jae-Hyun; Park, So-Hee

    2017-01-01

    Previous studies have focused mainly on whether stress causes present drinking or excessive drinking. However, few studies have been conducted on the relationship between stress and problem drinking in adolescents. The objective of this study was to examine the stress level and the cause of stress related to problem drinking behavior according to sex among Korean youth. Data for this study were pooled from cross-sectional data collected annually from 2007 through 2012 from the Korea Youth Risk Behavior Web-based Survey. A representative sample of 442,113 students from 800 randomly selected middle and high schools in Korea were included. Multiple logistic regression models were used in the analysis. Both male and female students with extremely high stress were more likely to engage in problem drinking than were students with no stress (odds ratios [OR], 1.73 in males and 1.41 in females). The major causes of stress in male students that were associated with problem drinking were conflict with a teacher, trouble with parents, and peer relationships (ORs, 2.47, 1.72, and 1.71, respectively), whereas there are no statistically significant association between causes of stress and problem drinking among female students. Considering stress level, Male students with extremely high stress level were associated with problem drinking regardless of causes of stress, while Female students who felt extremely high levels of stress were more likely to engage in problem drinking due to stress from a conflict with parents, peer relationships, appearance, and financial difficulty (ORs, 1.53, 1.53, 1.46, and 1.47, respectively). Adolescents who engage in problem drinking may be affected by different causes of stress according to sex. Thus, appropriate approaches that reflect sex differences will be helpful to alleviate problem drinking in adolescents and educational authorities need to arrange more effective education program for drinking given positive associations between drinking

  19. Occupational Stress in Secondary Education in Cyprus: Causes, Symptoms, Consequences and Stress Management

    Science.gov (United States)

    Hadjisymeou, Georgia

    2010-01-01

    The survey attempted to look into the causes, symptoms and consequences that occupational stress has on teachers in Secondary Education in Cyprus and find ways to manage it. Thirty eight schools with 553 teachers participated in the survey. The sample chosen is a result of a simple random sampling and it is representative of the country's…

  20. Aerobic exercise training rescues cardiac protein quality control and blunts endoplasmic reticulum stress in heart failure rats.

    Science.gov (United States)

    Bozi, Luiz H M; Jannig, Paulo R; Rolim, Natale; Voltarelli, Vanessa A; Dourado, Paulo M M; Wisløff, Ulrik; Brum, Patricia C

    2016-11-01

    Cardiac endoplasmic reticulum (ER) stress through accumulation of misfolded proteins plays a pivotal role in cardiovascular diseases. In an attempt to reestablish ER homoeostasis, the unfolded protein response (UPR) is activated. However, if ER stress persists, sustained UPR activation leads to apoptosis. There is no available therapy for ER stress relief. Considering that aerobic exercise training (AET) attenuates oxidative stress, mitochondrial dysfunction and calcium imbalance, it may be a potential strategy to reestablish cardiac ER homoeostasis. We test the hypothesis that AET would attenuate impaired cardiac ER stress after myocardial infarction (MI). Wistar rats underwent to either MI or sham surgeries. Four weeks later, rats underwent to 8 weeks of moderate-intensity AET. Myocardial infarction rats displayed cardiac dysfunction and lung oedema, suggesting heart failure. Cardiac dysfunction in MI rats was paralleled by increased protein levels of UPR markers (GRP78, DERLIN-1 and CHOP), accumulation of misfolded and polyubiquitinated proteins, and reduced chymotrypsin-like proteasome activity. These results suggest an impaired cardiac protein quality control. Aerobic exercise training improved exercise capacity and cardiac function of MI animals. Interestingly, AET blunted MI-induced ER stress by reducing protein levels of UPR markers, and accumulation of both misfolded and polyubiquinated proteins, which was associated with restored proteasome activity. Taken together, our study provide evidence for AET attenuation of ER stress through the reestablishment of cardiac protein quality control, which contributes to better cardiac function in post-MI heart failure rats. These results reinforce the importance of AET as primary non-pharmacological therapy to cardiovascular disease. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  1. Diethyl Phthalate Causes Oxidative Stress: An in Vitro Study

    Directory of Open Access Journals (Sweden)

    Heena Prajapati

    2014-03-01

    Full Text Available Background: Phthalates are a group of multifunctional chemicals. Diethyl phthalate (DEP is one of the most frequently used phthalates in solvents and fixatives for numerous industrial products. Method: The present experiment was designed to assess oxidative stress, if any, caused by diethyl phthalate. For this the homogenates of liver and kidney were treated with different concentrations ( 10-40 µg/mL of DEP. 10% liver and kidney homogenates were prepared in phosphate buffered saline and used for estimation of lipid peroxidation.In final step lipid peroxidation and total protein content were analyzed. Results: The result revealed significant and dose - dependent increase in lipid peroxidation, whereas protein content reduced significantly. Maximum increase in LPO and decrease in protein content was observed at 40 µg/mL of DEP concentration. Conclusion: From this study, it can be concluded that different concentrations of DEP leads to dose- dependent significant increase in lipid peroxidation and decrease protein content.So at the different concentration of DEP cause oxidative stress.

  2. Causes and consequences of nonpersistence with heart failure medication.

    LENUS (Irish Health Repository)

    Mockler, Mary

    2012-02-01

    Persistence with therapy may be more easily and objectively identified in the clinical setting than compliance and recent work has shown it to be linked to mortality in heart failure (HF). The aim of this study was to determine the extent, causes, and clinical impact of nonpersistence with disease-modifying therapy in a retrospective cohort study of 183 patients with systolic HF participating in a disease management program. The main outcome measurements were reasons\\/determinants of nonpersistence and its impact on hospitalizations. Fifty-three patients (29%) had 74 separate occurrences of nonpersistence with disease-modifying therapy. There was no medical reason for discontinuing medications in 50% of occurrences, whereas medication was discontinued for an adverse reaction in 30% and for a justified medical reason in 15% of occurrences. Nonpersistence was a significant predictor of all-cause readmission (hazard ratio 3.20, 95% confidence interval 1.74 to 11.37) and cardiovascular readmission (hazard ratio 4.45, 95% confidence interval 1.74 to 11.37). In the adjusted model, there was no significantly increased risk of HF readmission (hazard ratio 2.41, 95% confidence interval 0.88 to 6.62). In conclusion, nonpersistence with HF therapy is common, is often not medically justified, and is associated with an increased risk of hospitalization.

  3. Effective stresses and shear failure pressure from in situ Biot's coefficient, Hejre Field, North Sea

    DEFF Research Database (Denmark)

    Regel, Jeppe Bendix; Orozova-Bekkevold, Ivanka; Andreassen, Katrine Alling

    2017-01-01

    , is significantly different from 1. The log-derived Biot's coefficient is above 0.8 in the Shetland Chalk Group and in the Tyne Group, and 0.6-0.8 in the Heno Sandstone Formation. We show that the effective vertical and horizontal stresses obtained using the log-derived Biot's coefficient result in a drilling......We propose a combination of Biot's equations for effective stress and the expression for shear failure in a rock to obtain an expression for minimum pore pressure in a stable vertical well bore. We show that a Biot's coefficient calculated from logging data in the Hejre Field, North Sea...

  4. Bactericidal Antibiotics Do Not Appear To Cause Oxidative Stress in Listeria monocytogenes

    DEFF Research Database (Denmark)

    Feld, Louise; Knudsen, Gitte Maegaard; Gram, Lone

    2012-01-01

    Oxidative stress can be an important contributor to the lethal effect of bactericidal antibiotics in some bacteria, such as Escherichia coli and Staphylococcus aureus. Thus, despite the different target-specific actions of bactericidal antibiotics, they have a common mechanism leading to bacterial...... to cause oxidative stress in L. monocytogenes and propose that this is caused by its noncyclic tricarboxylic acid (TCA) pathway. Hence, in this noncyclic metabolism, there is a decoupling between the antibiotic-mediated cellular requirement for NADH and the induction of TCA enzyme activity, which...

  5. Stresses in Dolos Breakwater Armour Units

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Liu, Z.

    1991-01-01

    Breakage of slender unreinforced armour unite is the cause of many breakwater failures. Design diagrams to ensure structural integrity of armour unite such as dolosse and tetrapods have not been available. The article presents results of an analysis of the stresses in dolosse based on model tests...

  6. OECD/NEA International Common Cause Failure Data Exchange (ICDE) project - insights and lessons learnt

    International Nuclear Information System (INIS)

    Johanson, G.; Kreuser, A.; Pyy, P.; Rasmuson, D.; Werner, W.

    2006-01-01

    Events initiated by common-cause-failure (CCF) can significantly affect the availability and reliability of nuclear power plant safety systems. In recognition of this, CCF data are systematically collected and analysed in the International Common-Cause Data Exchange (ICDE) Project, which was initiated in August 1994. Since April 1998, the NEA has formally operated the project. Currently eleven countries participate in the project. The ICDE collects all events where two or more identical, redundant components of a group, fulfilling the same function, have failed or were impaired due to a shared cause (ICDE events). Complete CCFs, i. e. failure of all identical, redundant components in the group due to a shared cause are an important subset of the collected data. Currently, data exchange and analysis covers the following components: centrifugal pumps, diesel generators, motor-operated valves, safety and relief valves, check valves, reactor protection system components (level measurement, control rod drives, etc), circuit breakers, and batteries. The main findings of the ICDE reports issued by 2005 show averaged over all components that about two thirds of all complete CCF events involve faulty actions by plant personnel and contractors. The single largest contribution is from faulty testing and maintenance work due to deficient and/or incomplete procedures. Other important causes are insufficient testing and requalification of components or systems after maintenance, repair, modifications or backfitting work, as well as operator errors of commission. The probability that a reported ICDE event is a complete CCF decreases strongly with increasing number of redundant components, demonstrating the effectiveness of redundancy as a powerful defence against CCFs. However, complete CCFs cannot be completely prevented by high redundancy only. (orig.)

  7. Avoiding failures of steam turbine discs by automated ultrasonic inspections

    International Nuclear Information System (INIS)

    Morton, J.; Bird, C.R.

    1994-01-01

    Under certain conditions, stress corrosion cracking can cause catastrophic failure of steam turbine discs. Nuclear Electric has developed a range of inspection techniques for disc keyways, bores, buttons and blade attachments and has accumulated substantial experience on their use on plant. This paper gives examples of the techniques used and discusses the strengths and weaknesses of the techniques applied

  8. NDE and Stress Monitoring on Composite Overwrapped Pressure Vessels, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Damage caused by composite overwrapped pressure vessels (COPVs) failure can be catastrophic. Thus, monitoring condition and stress in the composite overwrap,...

  9. Stress-reducing preventive maintenance model for a unit under stressful environment

    International Nuclear Information System (INIS)

    Park, J.H.; Chang, Woojin; Lie, C.H.

    2012-01-01

    We develop a preventive maintenance (PM) model for a unit operated under stressful environment. The PM model in this paper consists of a failure rate model and two cost models to determine the optimal PM scheduling which minimizes a cost rate. The assumption for the proposed model is that stressful environment accelerates the failure of the unit and periodic maintenances reduce stress from outside. The failure rate model handles the maintenance effect of PM using improvement and stress factors. The cost models are categorized into two failure recognition cases: immediate failure recognition and periodic failure detection. The optimal PM scheduling is obtained by considering the trade-off between the related cost and the lifetime of a unit in our model setting. The practical usage of our proposed model is tested through a numerical example.

  10. International common-cause failure data exchange. ICDE general coding guidelines - Technical note

    International Nuclear Information System (INIS)

    Johanson, Gunnar; Werner, Wolfgang; Concepcion Capote, Marina; Kreuser, Albert; Rasmuson, Dale; Jonsson, Esther; Pereira Pagan, Begona; Tirira, Jorge; Morris, Ian; Morales, Rosa; Oxberry, Anna; Kreuser, Albert

    2004-01-01

    Several Member countries of the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OECD/NEA) have established the International Common-Cause Failure Data Exchange Project (ICDE Project) to encourage multilateral co-operation in the collection and analysis of data relating to Common-Cause Failure (CCF) events. The objectives of the ICDE Project are to: a) Collect and analyse CCF events over the long term so as to better understand such events, their causes, and their prevention; b) Generate qualitative insights into the root causes of CCF events which can then be used to derive approaches or mechanisms for their prevention or for mitigating their consequences; c) Establish a mechanism for the efficient feedback of experience gained in connection with CCF phenomena, including the development of defences against their occurrence, such as indicators for risk based inspections; and d) Record event attributes to facilitate quantification of CCF frequencies when so decided by the Project Working Group. The ICDE Project is envisaged to comprise all possible events of interest, including both complete and partial ICDE events. The ICDE Project will cover the key components of the main safety systems. Presently, the components listed below are included in the ICDE Project. Data have been collected for the six first components in the list: Centrifugal pumps, Diesel generators, Motor operated valves, Safety relief valves/power operated relief valves, Check valves, Batteries, Level measurement, Breakers, Control rod drive assemblies. Others will be added to this list later on. In this component coding guidelines, explanations on the ICDE General coding format are given. The guide reflects present experience with the data format and with the collected data. Further interpretations and clarifications will be added, should they become necessary. For each component analysed in the ICDE project, separate coding guidance is provided in the appendices

  11. Hypokalemic muscular paralysis causing acute respiratory failure due to rhabdomyolysis with renal tubular acidosis in a chronic glue sniffer.

    Science.gov (United States)

    Kao, K C; Tsai, Y H; Lin, M C; Huang, C C; Tsao, C Y; Chen, Y C

    2000-01-01

    A 34-year-old male was admitted to the emergency department with the development of quadriparesis and respiratory failure due to hypokalemia after prolonged glue sniffing. The patient was subsequently given mechanical ventilatory support for respiratory failure. He was weaned from the ventilator 4 days later after potassium replacement. Toluene is an aromatic hydrocarbon found in glues, cements, and solvents. It is known to be toxic to the nervous system, hematopoietic system, and causes acid-base and electrolyte disorders. Acute respiratory failure with hypokalemia and rhabdomyolysis with acute renal failure should be considered as potential events in a protracted glue sniffing.

  12. Acute liver failure caused by hepatitis E virus genotype 3 and 4: A systematic review and pooled analysis.

    Science.gov (United States)

    Haffar, Samir; Shalimar; Kaur, Ravinder J; Wang, Zhen; Prokop, Larry J; Murad, Mohammad H; Bazerbachi, Fateh

    2018-04-19

    Acute liver failure caused by hepatitis E virus genotype 3 and 4 has been rarely described. Because of the presence of a short golden therapeutic window in patients with viral acute liver failure from other causes, it is possible that early recognition and treatment might reduce the morbidity and mortality. We performed a systematic review and pooled analysis of acute liver failure caused by hepatitis E virus genotype 3 and 4. Two reviewers appraised studies after searching multiple databases on June 12th, 2017. Appropriate tests were used to compare hepatitis E virus genotype 3 vs 4, suspected vs confirmed genotypes, hepatitis E virus-RNA positive vs negative, and to discern important mortality risk factors. We identified 65 patients, with median age 58 years (range: 3-79), and a male to female ratio of 1.2:1. The median bilirubin, ALT, AST and alkaline phosphatase (expressed by multiplication of the upper limit of normal) levels were 14.8, 45.3, 34.8 and 1.63 respectively. Antihepatitis E virus IgG, antihepatitis E virus IgM and hepatitis E virus-RNA were positive in 84%, 91% and 86% of patients respectively. The median interval from symptoms onset to acute liver failure was 23 days, and 16 patients underwent liver transplantation. Final outcome was reported in 58 patients and mortality was 46%. Age was a predictor of poor prognosis in multivariate analysis. No important differences were found between patients infected with genotype 3 vs 4, patients with confirmed vs suspected genotypes, or patients with positive vs negative RNA. Acute liver failure caused by hepatitis E virus genotype 3 and 4 is rare, similar between genotypes, occurs commonly in middle-aged/elderly patients and has a very high mortality. Age is predictive of poor prognosis in multivariate analysis. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. External Dacryocystorhinostomy; Success Rate and Causes of Failure in Endoscopic and Pathologic Evaluations.

    Science.gov (United States)

    Ghasemi, Hassan; Asghari Asl, Sajedeh; Yarmohammadi, Mohammad Ebrahim; Jafari, Farhad; Izadi, Pupak

    2017-01-01

    External dacryocystorhinostomy (DCR) is the method of choice to treat nasolacrimal duct (NLD) obstruction and the other approaches are compared with it, with a failure rate of 4% to 13%. The current study aimed to assess the causes of failure in external DCR by postoperative endoscopic and pathological evaluation. The current retrospective cross sectional study followed-up113 patients with external DCR and silicone intubation for three months. Silicone tubes were removed after the third months. Failure was confirmed based on the clinical findings and irrigation test. Paranasal sinus computed tomography (CT) scanning, and endoscopic and pathological evaluations were performed in the failed cases. Totally, 113 patients underwent external DCR. The patients included 71 females and 42 males. The mean age of the patients was 55.91 years; ranged from 18 to 86. Epiphora was the most common complaint before surgery (90.3%). Clinically, epiphora continued in 17 cases (15%), of which 94.11% had at least one sinus CT abnormality and 82.35% had at least one endoscopic abnormality. The most common endoscopic findings were deviated septum (70.6%), scar tissue (52.94%), concha bullosa (46.9%), septal adhesion (47.05%), enlarged middle turbinate (41.2%), and sump syndrome (11.7%). The failure was significantly associated with the chronicity of the initial symptoms (P-value=0.00). Pathologically, there were significant relationship amongst the failure rate, scar formation, and allergic rhinitis (P-values =0.00 and <0.05, respectively). Preoperative endonasal evaluation and consultation with an otolaryngologist can improve surgical outcomes and help to have a better conscious to intranasal abnormalities before external DCR surgery.

  14. Failure of MPC overpack and inner container under corrosion and mechanical stresses in a backfilled drift

    International Nuclear Information System (INIS)

    Ladkany, S.G.; Rajagopalan, R.

    1995-01-01

    The thickness and time at failure of the 100mm thick overpack and the 9.5mm thick inner container of a Multi-purpose canister have been assessed due to loads resulting from temperature, overburden, backfill pressure and seismic loads. Critical stresses at various reduced thicknesses, resulting from pitting corrosion over the years of emplacement, have been evaluated using Finite element analysis. Both simple and continuous support conditions of the overpack have been considered in the analysis. The anticipated failure time due to corrosion of overpack and inner container is further reduced due to overburden, self and seismic loads

  15. Combinatorial analysis of systems with competing failures subject to failure isolation and propagation effects

    International Nuclear Information System (INIS)

    Xing Liudong; Levitin, Gregory

    2010-01-01

    This paper considers the reliability analysis of binary-state systems, subject to propagated failures with global effect, and failure isolation phenomena. Propagated failures with global effect are common-cause failures originated from a component of a system/subsystem causing the failure of the entire system/subsystem. Failure isolation occurs when the failure of one component (referred to as a trigger component) causes other components (referred to as dependent components) within the same system to become isolated from the system. On the one hand, failure isolation makes the isolated dependent components unusable; on the other hand, it prevents the propagation of failures originated from those dependent components. However, the failure isolation effect does not exist if failures originated in the dependent components already propagate globally before the trigger component fails. In other words, there exists a competition in the time domain between the failure of the trigger component that causes failure isolation and propagated failures originated from the dependent components. This paper presents a combinatorial method for the reliability analysis of systems subject to such competing propagated failures and failure isolation effect. Based on the total probability theorem, the proposed method is analytical, exact, and has no limitation on the type of time-to-failure distributions for the system components. An illustrative example is given to demonstrate the basics and advantages of the proposed method.

  16. Failure in lithium-ion batteries under transverse indentation loading

    Science.gov (United States)

    Chung, Seung Hyun; Tancogne-Dejean, Thomas; Zhu, Juner; Luo, Hailing; Wierzbicki, Tomasz

    2018-06-01

    Deformation and failure of constrained cells and modules in the battery pack under transverse loading is one of the most common conditions in batteries subjected to mechanical impacts. A combined experimental, numerical and analytical approach was undertaken to reveal the underlying mechanism and develop a new cell failure model. When large format pouch cells were subjected to local indentation all the way to failure, the post-mortem examination of the failure zones beneath the punches indicates a consistent slant fracture surface angle to the battery plane. This type of behavior can be described by the critical fracture plane theory in which fracture is caused by the shear stress modified by the normal stress. The Mohr-Coulomb fracture criterion is then postulated and it is shown how the two material constants can be determined from just one indentation test. The orientation of the fracture plane is invariant with respect to the type of loading and can be considered as a property of the cell stack. In addition, closed-form solutions are derived for the load-displacement relation for both plane-strain and axisymmetric cases. The results are in good agreement with the numerical simulation of the homogenized model and experimentally measured responses.

  17. Update on Simulating Ice-Cliff Failure

    Science.gov (United States)

    Parizek, B. R.; Christianson, K. A.; Alley, R. B.; Voytenko, D.; Vankova, I.; Dixon, T. H.; Walker, R. T.; Holland, D.

    2017-12-01

    Using a 2D full-Stokes diagnostic ice-flow model and engineering and glaciological failure criteria, we simulate the limiting physical conditions for rapid structural failure of subaerial ice cliffs. Previously, using a higher-order flowline model, we reported that the threshold height, in crevassed ice and/or under favorable conditions for hydrofracture or crack lubrication, may be only slightly above the 100-m maximum observed today and that under well-drained or low-melt conditions, mechanically-competent ice supports cliff heights up to 220 m (with a likely range of 180-275 m) before ultimately succumbing to tensional and compressive failure along a listric surface. However, proximal to calving fronts, bridging effects lead to variations in vertical normal stress from the background glaciostatic stress state that give rise to the along-flow gradients in vertical shear stress that are included within a full-Stokes momentum balance. When including all flowline stresses within the physics core, diagnostic solutions continue to support our earlier findings that slumping failure ultimately limits the upper bound for cliff heights. Shear failure still requires low cohesive strength, tensile failure leads to deeper dry-crevasse propagation (albeit, less than halfway through the cliff), and compressive failure drops the threshold height for triggering rapid ice-front retreat via slumping to 200 m (145-280 m).

  18. Ductile shear failure or plug failure of spot welds modelled by modified Gurson model

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Tvergaard, Viggo

    2010-01-01

    For resistance spot welded shear-lab specimens, interfacial failure under ductile shearing or ductile plug failure are analyzed numerically, using a shear modified Gurson model. The interfacial shear failure occurs under very low stress triaxiality, where the original Gurson model would predict...

  19. Failures of fine tubes of steam generators and the essential defects

    International Nuclear Information System (INIS)

    Kawano, Shinji; Ebisawa, Toru; Sato, Susumu.

    1976-01-01

    Light water reactors were sold to Japan as their economy and safety have been established, but the average availability of 11 reactors in Japan during 7 year operation is only 53%, and it is being proved that there are questions in the safety and economy. In this report, the failures of fine tubes of steam generators are discussed from the standpoint of the corrosion of materials. First, the functions and construction of the fine tubes of steam generators in PWRs are explained. The failures of the fine tubes of steam generators became frequent since the beginning of 1970s as large capacity nuclear power stations have started the operation. When the fine tubes are pierced with holes during operation and the radioactivity in primary coolant leaks into secondary coolant, it is detected with radioactivity monitors. In order to find out the broken tubes, eddy current flaw detectors are used, and the tubes on which flaws were detected we plugged by explosion welding. In these works, many manual operations are included, and the radiation exposure of workers and the difficulties in the operations are the problems. The cases of the tube failures in Japan and foreign countries, the causes and the countermeasures are described. Chemical corrosion, thermal stress cycle, shaving off due to eddy flow, and stress corrosion are the probable causes. The safety of steam generators is essentially in extremely poor state. The seriousness of the tube failures in steam generators is emphasized. (Kako, I.)

  20. A study of fuel failure behavior in high burnup HTGR fuel. Analysis by STRESS3 and STAPLE codes

    International Nuclear Information System (INIS)

    Martin, David G.; Sawa, Kazuhiro; Ueta, Shouhei; Sumita, Junya

    2001-05-01

    In current high temperature gas-cooled reactors (HTGRs), Tri-isotropic coated fuel particles are employed as fuel. In safety design of the HTGR fuels, it is important to retain fission products within particles so that their release to primary coolant does not exceed an acceptable level. From this point of view, the basic design criteria for the fuel are to minimize the failure fraction of as-fabricated fuel coating layers and to prevent significant additional fuel failures during operation. This report attempts to model fuel behavior in irradiation tests using the U.K. codes STRESS3 and STAPLE. Test results in 91F-1A and HRB-22 capsules irradiation tests, which were carried out at the Japan Materials Testing Reactor of JAERI and at the High Flux Isotope Reactor of Oak Ridge National Laboratory, respectively, were employed in the calculation. The maximum burnup and fast neutron fluence were about 10%FIMA and 3 x 10 25 m -2 , respectively. The fuel for the irradiation tests was called high burnup fuel, whose target burnup and fast neutron fluence were higher than those of the first-loading fuel of the High Temperature Engineering Test Reactor. The calculation results demonstrated that if only mean fracture stress values of PyC and SiC are used in the calculation it is not possible to predict any particle failures, by which is meant when all three load bearing layers have failed. By contrast, when statistical variations in the fracture stresses and particle specifications are taken into account, as is done in the STAPLE code, failures can be predicted. In the HRB-22 irradiation test, it was concluded that the first two particles which had failed were defective in some way, but that the third and fourth failures can be accounted for by the pressure vessel model. In the 91F-1A irradiation test, the result showed that 1 or 2 particles had failed towards the end of irradiation in the upper capsule and no particles failed in the lower capsule. (author)

  1. Mesenchymal Stromal Cells Cultured in Serum from Heart Failure Patients Are More Resistant to Simulated Chronic and Acute Stress

    Directory of Open Access Journals (Sweden)

    Timo Z. Nazari-Shafti

    2018-01-01

    Full Text Available Despite regulatory issues surrounding the use of animal-derived cell culture supplements, most clinical cardiac cell therapy trials using mesenchymal stromal cells (MSCs still rely on fetal bovine serum (FBS for cell expansion before transplantation. We sought to investigate the effect of human serum from heart failure patients (HFS on cord blood MSCs (CB-MSCs during short-term culture under regular conditions and during simulated acute and chronic stress. Cell survival, proliferation, metabolic activity, and apoptosis were quantified, and gene expression profiles of selected apoptosis and cell cycle regulators were determined. Compared to FBS, HFS and serum from healthy donors (CS showed similar effects by substantially increasing cell survival during chronic and acute stress and by increasing cell yields 5 days after acute stress. Shortly after the termination of acute stress, both HFS and CS resulted in a marked decrease in apoptotic cells. Transcriptome analysis suggested a decrease in TNF-mediated induction of caspases and decreased activation of mitochondrial apoptosis. Our data confirm that human serum from both healthy donors and heart failure patients results in increased cell yields and increased resistance to cellular stress signals. Therefore, we consider autologous serum a valid alternative to FBS in cell-based therapies addressing severe heart disease.

  2. Classic Bartter syndrome: a rare cause of failure to thrive in a child

    OpenAIRE

    Vieira, Helena; Mendes, Leonor; Mendes, Patricia; da Silva, José Esteves

    2012-01-01

    Bartter syndrome is a group of rare autosomal-recessive disorders caused by a defect in distal tubule transport of sodium and chloride. Blood gases and plasma electrolytes raise suspicion of this diagnosis and the definitive diagnosis is made by genetic study. Early treatment improves prognosis. The authors present the case of an 11-month-old child with early failure to thrive and severe regurgitation. Blood gases revealed hypochloraemic metabolic alkalosis, hyponatraemia and hypokalaemia. Bl...

  3. Stress Causing Factors Among Teachers in Elementary Schools and Their Relationship with Demographic and Job Characteristics

    OpenAIRE

    Agai–Demjaha, Teuta; Minov, Jordan; Stoleski, Sasho; Zafirova, Beti

    2015-01-01

    BACKGROUND: Once high levels of work-related stress among teachers were confirmed many studies concentrated on identifying and investigating key stress factors among school teachers. Unfortunately there are very few researches made on stress causing factors among teachers in Republic of Macedonia. AIM: To determine the most frequent stress causing factors among teachers in elementary schools and to investigate their relationship with demographic and job characteristics. METHODOLOGY: W...

  4. Reliability analysis of the auxiliary feedwater system of Angra-1 including common cause failures using the multiple greek letter model

    International Nuclear Information System (INIS)

    Lapa, Celso Marcelo Franklin.

    1996-05-01

    The use of redundancy to increase the reliability of industrial systems make them subject to the occurrence of common cause events. The industrial experience and the results of safety analysis studies have indicated that common cause failures are the main contributors to the unreliability of plants that have redundant systems, specially in nuclear power plants. In this Thesis procedures are developed in order to include the impact of common cause failures in the calculation of the top event occurrence probability of the Auxiliary Feedwater System in a typical two-loop Nuclear Power Plant (PWR). For this purpose the Multiple Greek Letter Model is used. (author). 14 refs., 10 figs., 11 tabs

  5. Failure analysis of top nozzle holddown spring screw for nuclear fuel assembly

    International Nuclear Information System (INIS)

    Koh, S. K.; Ryu, C. H.; Na, E. G.; Baek, T. H.; Jeon, K. L.

    2003-01-01

    A failure analysis of holddown spring screw was performed using fracture mechanics approach. The spring screw was designed such that it was capable of sustaining the loads imposed by the initial tensile preload and operational loads. In order to investigate the cause of failure, a stress analysis of the top nozzle spring assembly was done using finite element analysis and a life prediction of the screw was made using a fracture mechanics approach. The elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded than the yield strength of the screw material, resulting in local plastic deformation. Primary water stress corrosion cracking life of the Inconel 600 screw was predicted by using integration of the Scott model and resulted in 1.42 years, which was fairly close to the actual service life of the holddown spring screw

  6. Salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA.

    Science.gov (United States)

    Gao, Qiuqiang; Liou, Liang-Chun; Ren, Qun; Bao, Xiaoming; Zhang, Zhaojie

    2014-03-03

    The yeast cell wall plays an important role in maintaining cell morphology, cell integrity and response to environmental stresses. Here, we report that salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA (ρ 0 ). Upon salt treatment, the cell wall is thickened, broken and becomes more sensitive to the cell wall-perturbing agent sodium dodecyl sulfate (SDS). Also, SCW11 mRNA levels are elevated in ρ 0 cells. Deletion of SCW11 significantly decreases the sensitivity of ρ 0 cells to SDS after salt treatment, while overexpression of SCW11 results in higher sensitivity. In addition, salt stress in ρ 0 cells induces high levels of reactive oxygen species (ROS), which further damages the cell wall, causing cells to become more sensitive towards the cell wall-perturbing agent.

  7. [The role of natriuretic peptides in heart failure].

    Science.gov (United States)

    Ancona, R; Limongelli, G; Pacileo, G; Miele, T; Rea, A; Roselli, T; Masarone, D; Messina, S; Palmieri, R; Golia, E; Iacomino, M; Gala, S; Calabrò, P; Di Salvo, G; Calabrò, R

    2007-10-01

    Over the last decades, there has been a significant increase in incidence and prevalence of heart failure, a major cause of cardiac morbidity and mortality. Measurements of neurohormones, in particular B-type natriuretic peptide (BNP), can significantly improve diagnostic accuracy, and also correlate with long-term morbidity and mortality in patients with chronic heart failure presenting to the emergency department. BNP is secreted by cardiac ventricles mainly in response to wall stress and neurohormonal factors like the sympathetic nervous system, endothelins, and the rennin-angiotensin-aldosterone system. BNP increases myocardial relaxation and oppose the vasoconstrictive, sodium retaining, and natriuretic effects caused by vasoconstrictive factors. BNP is the first biomarker to prove its clinical value for the diagnosis of left ventricular systolic and diastolic dysfunction but also for the right ventricular dysfunction, guiding prognosis and therapy management. Emerging clinical data will help further refine biomarker-guided therapeutic and monitoring strategies involving BNP.

  8. Perceived stress and cause-specific mortality among men and women: results from a prospective cohort study

    DEFF Research Database (Denmark)

    Nielsen, Naja Rod; Kristensen, Tage S; Schnohr, Peter

    2008-01-01

    until 2004, with Sex differences were found in the relations between stress and mortality (p = 0.02). After adjustments, men with high stress versus low stress had higher all-cause mortality (hazard ratio (HR) = 1.32, 95% confidence interval (CI): 1.15, 1.52). This finding......The authors assessed the effect of psychological stress on total and cause-specific mortality among men and women. In 1981-1983, the 12,128 Danish participants in the Copenhagen City Heart Study were asked two questions on stress intensity and frequency and were followed in a nationwide registry...... was most pronounced for deaths due to respiratory diseases (high vs. low stress: HR = 1.79, 95% CI: 1.10, 2.91), external causes (HR = 3.07, 95% CI: 1.65, 5.71), and suicide (HR = 5.91, 95% CI: 2.47, 14.16). High stress was related to a 2.59 (95% CI: 1.20, 5.61) higher risk of ischemic heart disease...

  9. A case of multiple organ failure induced by postoperative radiation therapy probably evoking oxidative stress

    International Nuclear Information System (INIS)

    Soejima, Akinori; Ishizuka, Shynji; Suzuki, Michihiko; Minoshima, Shinobu; Nakabayashi, Kimimasa; Kitamoto, Kiyoshi; Nagasawa, Toshihiko

    1995-01-01

    In recent years, several laboratories have suggested that serum levels of antioxidant activity and redox balance are reduced in patients with chronic renal failure. Some clinical reports have also proposed that defective serum antioxidative enzymes may contribute to a certain uremic toxicity through peroxidative cell damage. A 48-year-old woman was referred to us from the surgical department of our hospital because of consciousness disturbance, panctytopenia and acute acceleration of chronic azotemia after postoperative radiation therapy. We diagnosed acute acceleration of chronic renal failure with severe acidemia and started hemodialysis therapy immediately. Two days after admission to our department, she developed upper abdominal sharp pain and bradyarrhythmia. Serum amylase activity was elevated markedly and the ECG finding showed myocardial ischemia. On the 24th hospital day these complications were treated successfully with conservative therapy and hemodialysis. We considered that radiation therapy in this patient with chronic renal failure evoked marked oxidative stress and that deficiency of transferrin played an important role in peroxidative cell damage. (author)

  10. Avoiding failures of steam turbine discs by automated ultrasonic inspections

    International Nuclear Information System (INIS)

    Bird, C.R.; Morton, J.

    1994-01-01

    Under certain conditions, stress corrosion cracking can cause catastrophic failure of steam turbine discs. Nuclear Electric has developed a range of inspection techniques for disc keyways, bores, buttons and blade attachments and has accumulated substantial experience on their use on plant. This paper gives examples of the techniques used and discusses the strengths and weaknesses of the techniques applied. (Author)

  11. Oxidative Stress in Dog with Heart Failure: The Role of Dietary Fatty Acids and Antioxidants

    Directory of Open Access Journals (Sweden)

    Emmanuelle Sagols

    2011-01-01

    Full Text Available In dogs with heart failure, cell oxygenation and cellular metabolism do not work properly, leading to the production of a large amount of free radicals. In the organism, these free radicals are responsible of major cellular damages: this is oxidative stress. However, a suitable food intake plays an important role in limiting this phenomenon: on the one hand, the presence of essential fatty acids in the composition of membranes decreases sensitivity of cells to free radicals and constitutes a first protection against the oxidative stress; on the other hand, coenzyme Q10, vitamin E, and polyphenols are antioxidant molecules which can help cells to neutralize these free radicals.

  12. Causes analysis on the failure of government environmental responsibility—Based on the perspective of law and economics

    Science.gov (United States)

    Fa, L. N.

    2017-11-01

    As the important Environmental Interests of Subjects, government behooves to undertake the corresponding responsibility of Pollution Control and Environmental Protection. The current situations in our country, however, appear as government environmental responsibility failure. Based on the analysis of law and economics, this article reaches the conclusion through game analysis, principle-agency relationship and utility theory that the prisoners dilemma of environmental interest game between government and enterprise, and the inherent defect of the principal-agency relationship between central government and local government are the inherent causes of government environmental responsibility failure. Many officials tends to graft and corrupt to maximum their own benefit, thus leading to the government failure among environmental pollution treatment and the environmental responsibility to undertake.

  13. The standard deviation of extracellular water/intracellular water is associated with all-cause mortality and technique failure in peritoneal dialysis patients.

    Science.gov (United States)

    Tian, Jun-Ping; Wang, Hong; Du, Feng-He; Wang, Tao

    2016-09-01

    The mortality rate of peritoneal dialysis (PD) patients is still high, and the predicting factors for PD patient mortality remain to be determined. This study aimed to explore the relationship between the standard deviation (SD) of extracellular water/intracellular water (E/I) and all-cause mortality and technique failure in continuous ambulatory PD (CAPD) patients. All 152 patients came from the PD Center between January 1st 2006 and December 31st 2007. Clinical data and at least five-visit E/I ratio defined by bioelectrical impedance analysis were collected. The patients were followed up till December 31st 2010. The primary outcomes were death from any cause and technique failure. Kaplan-Meier analysis and Cox proportional hazards models were used to identify risk factors for mortality and technique failure in CAPD patients. All patients were followed up for 59.6 ± 23.0 months. The patients were divided into two groups according to their SD of E/I values: lower SD of E/I group (≤0.126) and higher SD of E/I group (>0.126). The patients with higher SD of E/I showed a higher all-cause mortality (log-rank χ (2) = 10.719, P = 0.001) and technique failure (log-rank χ (2) = 9.724, P = 0.002) than those with lower SD of E/I. Cox regression analysis found that SD of E/I independently predicted all-cause mortality (HR  3.551, 95 % CI 1.442-8.746, P = 0.006) and technique failure (HR  2.487, 95 % CI 1.093-5.659, P = 0.030) in CAPD patients after adjustment for confounders except when sensitive C-reactive protein was added into the model. The SD of E/I was a strong independent predictor of all-cause mortality and technique failure in CAPD patients.

  14. Visualising Three Dimensional Damage and Failure Envelopes: Implications for True Triaxial Deformation

    Science.gov (United States)

    Harland, S. R.; Browning, J.; Healy, D.; Meredith, P. G.; Mitchell, T. M.

    2017-12-01

    Ultimate failure in brittle rocks is commonly accepted to occur as a coalescence of micro-crack damage into a single failure plane. The geometry and evolution with stress of the cracks (damage) within the medium will play a role in dictating the geometry of the ultimate failure plane. Currently, the majority of experimental studies investigating damage evolution and rock failure use conventional triaxial stress states (σ1 > σ2 = σ3). Results from these tests can easily be represented on a Mohr-Coulomb plot (σn - τ), conveniently allowing the user to determine the geometry of the resultant failure plane. In reality however, stress in the subsurface is generally truly triaxial (σ1 > σ2 > σ3) and in this case, the Mohr-Coulomb failure criterion is inadequate as it incorporates no dependence on the intermediate stress (σ2), which has been shown to play an important role in controlling failure. It has recently been shown that differential stress is the key driver in initiating crack growth, regardless of the mean stress. Polyaxial failure criteria that incorporate the effect of the intermediate stress do exist and include the Modified Lade, Modified Wiebols and Cook, and the Drucker-Prager criteria. However, unlike the Mohr-Coulomb failure criterion, these polyaxial criteria do not offer any prediction of, or insight into, the geometry of the resultant failure plane. An additional downfall of all of the common conventional and polyaxial failure criteria is that they fail to describe the geometry of the damage (i.e. pre-failure microcracking) envelope with progressive stress; it is commonly assumed that the damage envelope is parallel to the ultimate brittle failure envelope. Here we use previously published polyaxial failure data for the Shirahama sandstone and Westerley granite to illustrate that the commonly used Mohr-Coulomb and polyaxial failure criteria do not sufficiently describe or capture failure or damage envelopes under true triaxial stress states

  15. Common cause failure analysis of the rodded scram system of the Arkansas Nuclear One-Unit 1 Plant

    International Nuclear Information System (INIS)

    Montague, D.F.; Campbell, D.J.; Flanagan, G.F.

    1986-10-01

    This study demonstrates the use of a formal method for common cause failure analysis in a reliability analysis of the Arkansas Nuclear One - Unit 1 rodded scram system. The scram system failure of interest is loss of capability of the system to shut the reactor down when required. The results of this analysis support the ATWS program sponsored by the US Nuclear Regulatory Commission. The methods used in this analysis support the NRC's Risk Methods Integration and Evaluation Program (RMIEP)

  16. Classic Bartter syndrome: a rare cause of failure to thrive in a child.

    Science.gov (United States)

    Vieira, Helena; Mendes, Leonor; Mendes, Patricia; da Silva, José Esteves

    2012-06-28

    Bartter syndrome is a group of rare autosomal-recessive disorders caused by a defect in distal tubule transport of sodium and chloride. Blood gases and plasma electrolytes raise suspicion of this diagnosis and the definitive diagnosis is made by genetic study. Early treatment improves prognosis. The authors present the case of an 11-month-old child with early failure to thrive and severe regurgitation. Blood gases revealed hypochloraemic metabolic alkalosis, hyponatraemia and hypokalaemia. Blood pressure was normal and polyuria was documented. She began therapy with potassium chloride supplementation and indomethacin. There was clinical improvement and plasma potassium and bicarbonate normalised. The molecular study confirmed it was the classic form of Bartter syndrome. Despite being rare in clinical practice, which may lead to unnecessary medical investigation and diagnosis delay, in a child with failure to thrive, hypochloraemic metabolic alkalosis and hypokalaemia, this diagnosis must be considered.

  17. Failure of cargo aileron’s actuator

    Directory of Open Access Journals (Sweden)

    G. Zucca

    2014-10-01

    Full Text Available During a ferry flight, in a standard operation condition and at cruising level, a military cargo experienced a double hydraulic system failure due to a structural damage of the dual booster actuator. The booster actuator is the main component in mechanism of aileron’s deflection. The crew was able to arrange an emergency landing thanks to the spare oil onboard: load specialists refilled the hydraulic reservoirs. Due to safety concerns and in order to prevent the possibility of other similar incidents, a technical investigation took place. The study aimed to carry out the analysis of root causes of the actuator failure. The Booster actuator is composed mainly by the piston rod and its aluminum external case (AA7049. The assembly has two bronze caps on both ends. These are fixed in position by means of two retainers. At one end of the actuator case is placed a trunnion: a cylindrical protrusion used as a pivoting point on the aircraft. The fracture was located at one end of the case, on the trunnion side, in correspondence to the cap and over the retainer. One of the two fracture surfaces was found separated to the case and with the cap entangled inside. The fracture surfaces of the external case indicated fatigue crack growth followed by ductile separation. The failure analysis was performed by means of optical, metallographic, digital and electronic microscopy. The collected evidences showed a multiple initiation fracture mechanism. Moreover, 3D scanner reconstruction and numerical simulation demonstrated that dimensional non conformances and thermal loads caused an abnormal stress concentration. Stress concentration was located along the case assy outer surface where the fatigue crack originated. The progressive rupture mechanism grew under cyclical axial load due to the normal operations. Recommendations were issued in order to improve dimensional controls and assembly procedures during production and overhaul activities.

  18. Analysis of the cause of failure in nonsurgical endodontic treatment by microscopic inspection during endodontic microsurgery.

    Science.gov (United States)

    Song, Minju; Kim, Hyeon-Cheol; Lee, Woocheol; Kim, Euiseong

    2011-11-01

    This study examined the clinical causes of failure and the limitation of a previous endodontic treatment by an inspection of the root apex and resected root surface at 26× magnification during endodontic microsurgery. The data were collected from patients in the Department of Conservative Dentistry at the Dental College, Yonsei University in Seoul, Korea between March 2001 and January 2011. All root-filled cases with symptomatic or asymptomatic apical periodontitis were enrolled in this study. All surgical procedures were performed by using an operating microscope. The surface of the apical root to be resected or the resected root surface after methylene blue staining was examined during the surgical procedure and recorded carefully with 26× magnification to determine the state of the previous endodontic treatment by using an operating microscope. Among the 557 cases with periapical surgery, 493 teeth were included in this study. With the exclusion of unknown cases, the most common possible cause of failure was perceived leakage around the canal filling material (30.4%), followed by a missing canal (19.7%), underfilling (14.2%), anatomical complexity (8.7%), overfilling (3.0%), iatrogenic problems (2.8%), apical calculus (1.8%), and cracks (1.2%). The frequency of possible failure causes differed according to the tooth position (P < .001). An appreciation of the root canal anatomy by using an operating microscope in nonsurgical endodontic treatment can make the prognosis more predictable and favorable. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Prevalence and causes of self-reported work-related stress in head teachers.

    Science.gov (United States)

    Phillips, Samantha; Sen, Dil; McNamee, Roseanne

    2007-08-01

    Work-related stress (WRS) is the leading cause of occupational ill-health in the education sector in the UK. Headship is believed to be a stressful role although there is little current research into stress in head teachers. Changes in the education sector since the late 1980s have meant that the findings of many existing studies are outdated. To investigate prevalence and causes of self-reported, WRS in head teachers in West Sussex, UK. A cross-sectional study using postal questionnaire in a population of 290 head teachers and principals. The measuring instrument was a short stress evaluation tool (ASSET) plus additional questions derived from previous studies. Stress cases were defined as respondents who felt their work was 'very or extremely stressful'. Prevalence of self-reported, WRS was 43%. Using ASSET scoring, work overload and work-life imbalance were the key stressors. Females were significantly more stressed than males for a number of stressors including overload and control. Although there was some evidence that primary head teachers fared worse than their secondary counterparts, once the confounding effects of gender were included, there were few significant differences. The prevalence of self-reported stress in head teachers in West Sussex is significantly increased compared to recent studies of workers in the UK. The recurring theme in existing studies of workload as a main stressor is confirmed in the findings of this study. Gender and type of school does affect outcome and female head teachers have more reported stressors than their male colleagues.

  20. Sedation for pediatric radiological procedures: analysis of potential causes of sedation failure and paradoxical reactions

    International Nuclear Information System (INIS)

    Karian, V.E.; Burrows, P.E.; Connor, L.; Zurakowski, D.; Mason, K.P.

    1999-01-01

    Background. Sedation for diagnostic imaging and interventional radiologic procedures in pediatrics has greatly increased over the past decade. With appropriate patient selection and monitoring, serious adverse effects are infrequent, but failure to sedate and paradoxical reactions do occur. Objective. The purpose of this study was to determine, among patients undergoing sedation for radiologic procedures, the incidence of sedation failure and paradoxical reaction to pentobarbital and to identify potentially correctable causes. Materials and methods. Records of 1665 patients who were sedated in the radiology department from 1 November 1997 to 1 July 1998 were reviewed. Patients failing sedation or experiencing paradoxical reaction were compared with respect to sex, age group, diagnosis, scan type, time of day, NPO status, use of IV contrast and type of sedation agent using the Fisher exact test, Pearson chi-square, analysis of variance (ANOVA), the Student t-test, and logistic regression. Results. Data analysis revealed a sedation failure rate of 1 % and paradoxical reaction rate of 1.2 %. Stepwise multiple logistic regression revealed that the only significant independent multivariate predictor of failure was the need for the administration of a combination of pentobarbital, fentanyl, and midazolam IV. Conclusion. The low rate of sedation failure and paradoxical reactions to pentobarbital was near optimal and probably cannot be improved with the currently available sedatives. (orig.)

  1. Sedation for pediatric radiological procedures: analysis of potential causes of sedation failure and paradoxical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Karian, V.E.; Burrows, P.E.; Connor, L. [Dept. of Radiology, Children' s Hospital, Boston, MA (United States); Zurakowski, D. [Dept. of Biostatistics, Children' s Hospital, Boston, MA (United States); Mason, K.P. [Dept. of Anesthesiology, Children' s Hospital, Boston, MA (United States)

    1999-11-01

    Background. Sedation for diagnostic imaging and interventional radiologic procedures in pediatrics has greatly increased over the past decade. With appropriate patient selection and monitoring, serious adverse effects are infrequent, but failure to sedate and paradoxical reactions do occur. Objective. The purpose of this study was to determine, among patients undergoing sedation for radiologic procedures, the incidence of sedation failure and paradoxical reaction to pentobarbital and to identify potentially correctable causes. Materials and methods. Records of 1665 patients who were sedated in the radiology department from 1 November 1997 to 1 July 1998 were reviewed. Patients failing sedation or experiencing paradoxical reaction were compared with respect to sex, age group, diagnosis, scan type, time of day, NPO status, use of IV contrast and type of sedation agent using the Fisher exact test, Pearson chi-square, analysis of variance (ANOVA), the Student t-test, and logistic regression. Results. Data analysis revealed a sedation failure rate of 1 % and paradoxical reaction rate of 1.2 %. Stepwise multiple logistic regression revealed that the only significant independent multivariate predictor of failure was the need for the administration of a combination of pentobarbital, fentanyl, and midazolam IV. Conclusion. The low rate of sedation failure and paradoxical reactions to pentobarbital was near optimal and probably cannot be improved with the currently available sedatives. (orig.)

  2. True Triaxial Strength and Failure Modes of Cubic Rock Specimens with Unloading the Minor Principal Stress

    Science.gov (United States)

    Li, Xibing; Du, Kun; Li, Diyuan

    2015-11-01

    True triaxial tests have been carried out on granite, sandstone and cement mortar using cubic specimens with the process of unloading the minor principal stress. The strengths and failure modes of the three rock materials are studied in the processes of unloading σ 3 and loading σ 1 by the newly developed true triaxial test system under different σ 2, aiming to study the mechanical responses of the rock in underground excavation at depth. It shows that the rock strength increases with the raising of the intermediate principal stress σ 2 when σ 3 is unloaded to zero. The true triaxial strength criterion by the power-law relationship can be used to fit the testing data. The "best-fitting" material parameters A and n ( A > 1.4 and n plastic deformation. The maximum extension strain criterion Stacey (Int J Rock Mech Min Sci Geomech Abstr 651 18(6):469-474, 1981) can be used to explain the change of failure mode from shear to slabbing for strong and hard rocks under true triaxial unloading test condition.

  3. Advanced Heart Failure

    Science.gov (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Advanced Heart Failure Updated:May 9,2017 When heart failure (HF) ... Making This content was last reviewed May 2017. Heart Failure • Home • About Heart FailureCauses and Risks for ...

  4. Causes of failure with Szabo technique - an analysis of nine cases.

    Science.gov (United States)

    Jain, Rajendra Kumar; Padmanabhan, T N C; Chitnis, Nishad

    2013-01-01

    The objective of this case series is to identify and define causes of failure of Szabo technique in rapid-exchange monorail system for ostial lesions. From March 2009 to March 2011, 42 patients with an ostial lesion were treated percutaneously at our institution using Szabo technique in a monorail stent system. All patients received unfractionated heparin during intervention. Loading dose of clopidogrel, followed by clopidogrel and aspirin was administered. In 57% of patients, drug-eluting stents were used and in 42.8% patients bare metal stents. The stent was advanced over both wires, the target wire and the anchor wire. The anchor wire, which was passed through the proximal trailing strut of the stent helps to achieve precise stenting. The procedure was considered to be successful if stent was placed precisely covering the lesion and without stent loss or anchor wire prolapsing. Of the total 42 patients, the procedure was successful in 33, while failed in 9. Majority of failures were due to wire entanglement, which was fixed successfully in 3 cases by removing and reinserting the anchor wire. Out of other three failures, in one stent dislodgment occurred, stent could not cross the lesion in one and in another anchor wire got looped and prolapsed into target vessel. This case series shows that the Szabo technique, in spite of some difficulties like wire entanglement, stent dislodgement and resistance during stent advancement, is a simple and feasible method for treating variety of ostial lesions precisely compared to conventional angioplasty. Copyright © 2013 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  5. Acetabular roof stress fracture: a rare cause of hip pain in children ...

    African Journals Online (AJOL)

    Stress fracture of acetabular roof is an unusual cause of hip pain. It is considered as an underdiagnosed entity. People who are more susceptible to experience this fracture are athletes, soldiers and dancers. We present the case of an 11 year old girl with a roof acetabular stress fracture for which the diagnosis and ...

  6. Simulasi Thermal Stress Pada Tube Superheater Package Boiler

    OpenAIRE

    Hamdani

    2013-01-01

    This project investigates the thermal stress behavior and the mechanisms of superheater tube failure with experimental method and numerical analysis. First of all the procedures for failure analysis were applied to determine the root cause of them. A visual assessment of boiler critical pressure parts was carried out, and then the failed tube is examined by nondestructive evaluation. For the numerical domain, initially the elastic solution for a superheater tube subjected to an internal press...

  7. Diversity Strategies to Mitigate Postulated Common Cause Failure Vulnerabilities

    International Nuclear Information System (INIS)

    Wood, Richard Thomas

    2010-01-01

    This paper describes an approach to establish effective mitigating strategies that can resolve potential common-cause failure (CCF) vulnerabilities in instrumentation and control (I and C) systems at nuclear power plants. A particular objective in the development of these strategies, which consist of combinations of diversity attributes and their associated criteria, is to address the unique characteristics of digital technology that can contribute to CCF concerns. The research approach employed to establish diversity strategies involves investigation of available documentation on diversity usage and experience from nuclear power and non-nuclear industries, capture of expert knowledge and lessons learned, determination of common practices, and assessment of the nature of CCFs and compensating diversity attributes. The resulting diversity strategies address considerations such as the effect of technology choices, the nature of CCF vulnerabilities, and the prospective impact of each diversity type. In particular, the impact of each attribute and criterion on the purpose, process, product, and performance aspects of diverse systems are considered.

  8. Numerical modelling of solid transport caused by an extreme flood: Case of the Hamiz dam failure (Algeria

    Directory of Open Access Journals (Sweden)

    Haddad Ali

    2017-07-01

    Full Text Available Study of solid transport caused by the flow of an extreme flood such as the propagation of dam failure wave aims to simulate the hydrodynamics behaviour of the solid particles contained in the valley during the flood passage. With this intention, we have developed a numerical model which is based on the resolution of the one-dimensional Saint Venant–Exner equations by the implicit finite difference scheme. Numerical stability of liquid phase calculation is checked by the Courant number and De Vries condition for the solid phase. The model has been applied to the Hamiz dam (Algeria which is built in the semi arid zone and presents a major risk of failure. The simulation of several scenarios of dam failure has allowed us to trace the cartography of sediment transport in the valley which is induced by the flood of dam failure.

  9. Analysis of cause-specific failure endpoints using simple proportions: an example from a randomized controlled clinical trial in early breast cancer

    International Nuclear Information System (INIS)

    Panzarella, Tony; Meakin, J. William

    1998-01-01

    Purpose: To describe a statistically valid method for analyzing cause-specific failure data based on simple proportions, that is easy to understand and apply, and outline under what conditions its implementation is well-suited. Methods and Materials: In the comparison of treatment groups, time to first failure (in any site) was analyzed first, followed by an analysis of the pattern of first failure, preferably at the latest complete follow-up time common to each group. Results: A retrospective analysis of time to contralateral breast cancer in 777 early breast cancer patients was undertaken. Patients previously treated by mastectomy plus radiation therapy to the chest wall and regional nodal areas were randomized to receive further radiation and prednisone (R+P), radiation alone (R), or no further treatment (NT). Those randomized to R+P had a statistically significantly delayed time to first failure compared to the group randomized to NT (p = 0.0008). Patients randomized to R also experienced a delayed time to first failure compared to NT, but the difference was not statistically significant (p 0.14). At 14 years from the date of surgery (the latest common complete follow-up time) the distribution of first failures was statistically significantly different between R+P and NT (p = 0.005), but not between R and NT (p = 0.09). The contralateral breast cancer first failure rate at 14 years from surgery was 7.2% for NT, 4.6% for R, and 3.7% for R+P. The corresponding Kaplan-Meier estimates were 13.2%, 8.2%, and 5.4%, respectively. Conclusion: Analyzing cause-specific failure data using methods developed for survival endpoints is problematic. We encourage the use of the two-step analysis strategy described when, as in the example presented, competing causes of failure are not likely to be statistically independent, and when a treatment comparison at a single time-point is clinically relevant and feasible; that is, all patients have complete follow-up to this point

  10. Helium pressures in RHIC vacuum cryostats and relief valve requirements from magnet cooling line failure

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, C.J.; Than, Y.; Tuozzolo, J.

    2011-03-28

    A catastrophic failure of the RHIC magnet cooling lines, similar to the LHC superconducting bus failure incident, would pressurize the insulating vacuum in the magnet and transfer line cryostats. Insufficient relief valves on the cryostats could cause a structural failure. A SINDA/FLUINT{reg_sign} model, which simulated the 4.5K/4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the vacuum cryostat and discharging via the reliefs into the RHIC tunnel, had been developed to calculate the helium pressure inside the cryostat. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces were included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Existing relief valve sizes were reviewed to make sure that the maximum stresses, caused by the calculated maximum pressures inside the cryostats, did not exceed the allowable stresses, based on the ASME Code B31.3 and ANSYS results. The conclusions are as follows: (1) The S/F simulation results show that the highest internal pressure in the cryostats, due to the magnet line failure, is {approx}37 psig (255115 Pa); (2) Based on the simulation, the temperature on the cryostat chamber, INJ Q8-Q9, could drop to 228 K, which is lower than the material minimum design temperature allowed by the Code; (3) Based on the ASME Code and ANSYS results, the reliefs on all the cryostats inside the RHIC tunnel are adequate to protect the vacuum chambers when the magnet cooling lines fail; and (4) In addition to the pressure loading, the thermal deformations, due to the temperature decrease on the cryostat chambers, could also cause a high stress on the chamber, if not properly supported.

  11. Helium pressures in RHIC vacuum cryostats and relief valve requirements from magnet cooling line failure

    International Nuclear Information System (INIS)

    Liaw, C.J.; Than, Y.; Tuozzolo, J.

    2011-01-01

    A catastrophic failure of the RHIC magnet cooling lines, similar to the LHC superconducting bus failure incident, would pressurize the insulating vacuum in the magnet and transfer line cryostats. Insufficient relief valves on the cryostats could cause a structural failure. A SINDA/FLUINT(reg s ign) model, which simulated the 4.5K/4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the vacuum cryostat and discharging via the reliefs into the RHIC tunnel, had been developed to calculate the helium pressure inside the cryostat. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces were included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Existing relief valve sizes were reviewed to make sure that the maximum stresses, caused by the calculated maximum pressures inside the cryostats, did not exceed the allowable stresses, based on the ASME Code B31.3 and ANSYS results. The conclusions are as follows: (1) The S/F simulation results show that the highest internal pressure in the cryostats, due to the magnet line failure, is ∼37 psig (255115 Pa); (2) Based on the simulation, the temperature on the cryostat chamber, INJ Q8-Q9, could drop to 228 K, which is lower than the material minimum design temperature allowed by the Code; (3) Based on the ASME Code and ANSYS results, the reliefs on all the cryostats inside the RHIC tunnel are adequate to protect the vacuum chambers when the magnet cooling lines fail; and (4) In addition to the pressure loading, the thermal deformations, due to the temperature decrease on the cryostat chambers, could also cause a high stress on the chamber, if not properly supported.

  12. Rooting out causes in failure analysis; Risk analysis

    Energy Technology Data Exchange (ETDEWEB)

    Keith, Graeme

    2010-07-01

    The Deepwater Horizon disaster was a terrible reminder of the consequences of equipment failure on facilities operating in challenging environments. Thankfully catastrophes on the scale of the Deepwater Horizon are rare, but equipment failure is a daily occurrence on installations around the globe. The consequences range from short unexpected downtime, to a total stop on production. from a brief burst of flaring to lasting environmental damage and from the momentary discomfiture of a worker to incapability or death. (Author)

  13. Taxonomy for Common-Cause Failure Vulnerability and Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Korsah, Kofi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mullens, James Allen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pullum, Laura L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Applying current guidance and practices for common-cause failure (CCF) mitigation to digital instrumentation and control (I&C) systems has proven problematic, and the regulatory environment has been unpredictable. The potential for CCF vulnerability inhibits I&C modernization, thereby challenging the long-term sustainability of existing plants. For new plants and advanced reactor concepts, concern about CCF vulnerability in highly integrated digital I&C systems imposes a design burden that results in higher costs and increased complexity. The regulatory uncertainty in determining which mitigation strategies will be acceptable (e.g., what diversity is needed and how much is sufficient) drives designers to adopt complicated, costly solutions devised for existing plants. To address the conditions that constrain the transition to digital I&C technology by the US nuclear industry, crosscutting research is needed to resolve uncertainty, demonstrate necessary characteristics, and establish an objective basis for qualification of digital technology for nuclear power plant (NPP) I&C applications. To fulfill this research need, Oak Ridge National Laboratory is investigating mitigation of CCF vulnerability for nuclear-qualified applications. The outcome of this research is expected to contribute to a fundamentally sound, comprehensive basis to qualify digital technology for nuclear power applications. This report documents the development of a CCF taxonomy. The basis for the CCF taxonomy was generated by determining consistent terminology and establishing a classification approach. The terminology is based on definitions from standards, guides, and relevant nuclear power industry technical reports. The classification approach is derived from identified classification schemes focused on I&C systems and key characteristics, including failure modes. The CCF taxonomy provides the basis for a systematic organization of key systems aspects relevant to analyzing the potential for

  14. Localized Failure Promoted by Heterogeneous Stresses in Tectonic Mélanges

    Science.gov (United States)

    Phillips, N. J.; Rowe, C. D.; Ujiie, K.

    2017-12-01

    Within the shallow (PLC) toolbox developed at the University of Maine, which uses Asymptotic Expansion Homogenization (AEH) over a finite element mesh to determine the instantaneous stress distributions in a multiphase system. We model the shale matrix mélange to be deforming through a modified flow law for viscous creep based on coupled frictional sliding and pressure solution, where at a strain rate of 10-12 s-1 the flow stress is 10 MPa under the temperature (190 ºC) and pressure ( 100 MPa) conditions during deformation, and describe the behaviour of the basaltic blocks using experimentally-derived power law flow laws. The results show that at the strain rates calculated based on plate-rate motion, differential stresses high enough to cause comminution of the basalts ( 300 MPa) correspond strongly to areas around the blocks with basalt derived cataclasites. Within the basalt derived cataclasites, thin zones of ultracataclasite record localized slip. We hypothesize that the heterogeneous stress distributions within subduction mélanges: 1) fractures the strong basalt thereby facilitating weakening through fluid-rock interactions, and 2) promotes localized slip (and occasionally seismicity) within these zones of altered basalt along the margins of strong intact basalt.

  15. First-Ply-Failure Performance of Composite Clamped Spherical Shells

    Science.gov (United States)

    Ghosh, A.; Chakravorty, D.

    2018-05-01

    The failure aspects of composites are available for plates, but studies of the literature on shells unveils that similar reports on them are very limited in number. The aim of this work was to investigate the first-ply-failure of industrially and aesthetically important spherical shells under uniform loadings. Apart from solving benchmark problems, numerical experiments were carried out with different variations of their parameters to obtain the first-ply-failure stresses by using the finite-element method. The load was increased in steps, and the lamina strains and stresses were put into well-established failure criteria to evaluate their first-ply-failure stress, the failed ply, the point of initiation of failure, and failure modes and tendencies. The results obtained are analyzed to extract the points of engineering significance.

  16. Does emotional stress cause type 2 diabetes mellitus?

    DEFF Research Database (Denmark)

    Pouwer, Frans; Kupper, Nina; Adriaanse, Marcel C

    2010-01-01

    and the development of type 2 diabetes mellitus. Results of longitudinal studies suggest that not only depression but also general emotional stress and anxiety, sleeping problems, anger, and hostility are associated with an increased risk for the development of type 2 diabetes. Conflicting results were found......According to the World Health Organization, approximately 220 million people worldwide have type 2 diabetes mellitus. Patients with type 2 diabetes not only have a chronic disease to cope with, they are also at increased risk for coronary heart disease, peripheral vascular disease, retinopathy......, nephropathy, and neuropathy. The exact causes of type 2 diabetes are still not clear. Since the 17th century, it has been suggested that emotional stress plays a role in the etiology of type 2 diabetes mellitus. So far, review studies have mainly focused on depression as a risk factor for the development...

  17. Metallurgical failure investigation of a pipe connector fracture of an expansion vessel

    International Nuclear Information System (INIS)

    Neidel, Andreas

    2016-01-01

    A pipe connector of an expansion vessel of a safety heat exchanger was torn off in a test facility's natural gas compressor. From a material point of view, the cause of the damage is a fatigue fracture induced by pulsating bending stress. The fatigue fracture originated from both, the pipe's outer surface as well as from its inner surface, which is consistent with the given stress situation (pulsating bending stress). Material defects or welding-induced flaws were not observed. Corrosion, wear, or thermal overload which may have promoted the damage, were not observed either. The primary cause was a major design error. Cases of dynamic load were obviously not duly taken into account during designing, so that the free-swinging mass of the expansion vessel which was mounted to a pipe of a diameter of only half an inch and, furthermore, installed in an angle of 45 (additional static preload.), could cause the fatigue failure induced by pulsating bending stress in the zone of highest stresses at the transition of the expansion vessel and the the pipe connector due to dynamic operating loads which always occur in plants like these.

  18. Heart Failure

    Science.gov (United States)

    Heart failure is a condition in which the heart can't pump enough blood to meet the body's needs. Heart failure does not mean that your heart has stopped ... and shortness of breath Common causes of heart failure are coronary artery disease, high blood pressure and ...

  19. Failure criterion of concrete type material and punching failure analysis of thick mortar plate

    International Nuclear Information System (INIS)

    Ohno, T.; Kuroiwa, M.; Irobe, M.

    1979-01-01

    In this paper falure surface of concrete type material is proposed and its validity to structural analysis is examined. The study is an introductory part of evaluation for ultimate strength of reinforced and prestressed concrete structures in reactor technology. The failure surface is expressed in a linear form in terms of octahedral normal and shear stresses. Coefficient of the latter stress is given by a trigonometric series in threefold angle of similarity. Hence, its meridians are multilinear and traces of its deviatoric sections are smooth curves having periodicity of 2π/3 around space diagonal in principal stress space. The mathematical expression of the surface has an arbitraty number of parameters so that material test results are well reflected. To confirm the effectiveness of proposed failure criterion, experiment and numerical analysis by the finite element method on punching failure of thick mortar plate in axial symmetry are compared. In the numerical procedure yield surface of the material is assumed to exist mainly in compression region, since a brittle cleavage or elastic fracture occurs in the concrete type material under stress state with tension, while a ductile or plastic fracture occurs under compressive stress state. (orig.)

  20. Failure analysis of electrolyte-supported solid oxide fuel cells

    Science.gov (United States)

    Fleischhauer, Felix; Tiefenauer, Andreas; Graule, Thomas; Danzer, Robert; Mai, Andreas; Kuebler, Jakob

    2014-07-01

    For solid oxide fuel cells (SOFCs) one key aspect is the structural integrity of the cell and hence its thermo mechanical long term behaviour. The present study investigates the failure mechanisms and the actual causes for fracture of electrolyte supported SOFCs which were run using the current μ-CHP system of Hexis AG, Winterthur - Switzerland under lab conditions or at customer sites for up to 40,000 h. In a first step several operated stacks were demounted for post-mortem inspection, followed by a fractographic evaluation of the failed cells. The respective findings are then set into a larger picture including an analysis of the present stresses acting on the cell like thermal and residual stresses and the measurements regarding the temperature dependent electrolyte strength. For all investigated stacks, the mechanical failure of individual cells can be attributed to locally acting bending loads, which rise due to an inhomogeneous and uneven contact between the metallic interconnect and the cell.

  1. Main factors for fatigue failure probability of pipes subjected to fluid thermal fluctuation

    International Nuclear Information System (INIS)

    Machida, Hideo; Suzuki, Masaaki; Kasahara, Naoto

    2015-01-01

    It is very important to grasp failure probability and failure mode appropriately to carry out risk reduction measures of nuclear power plants. To clarify the important factors for failure probability and failure mode of pipes subjected to fluid thermal fluctuation, failure probability analyses were performed by changing the values of a stress range, stress ratio, stress components and threshold of stress intensity factor range. The important factors for the failure probability are range, stress ratio (mean stress condition) and threshold of stress intensity factor range. The important factor for the failure mode is a circumferential angle range of fluid thermal fluctuation. When a large fluid thermal fluctuation acts on the entire circumferential surface of the pipe, the probability of pipe breakage increases, calling for measures to prevent such a failure and reduce the risk to the plant. When the circumferential angle subjected to fluid thermal fluctuation is small, the failure mode of piping is leakage and the corrective maintenance might be applicable from the viewpoint of risk to the plant. (author)

  2. Delayed Recognition of Deterioration of Patients in General Wards Is Mostly Caused by Human Related Monitoring Failures: A Root Cause Analysis of Unplanned ICU Admissions.

    Directory of Open Access Journals (Sweden)

    Louise S van Galen

    Full Text Available An unplanned ICU admission of an inpatient is a serious adverse event (SAE. So far, no in depth-study has been performed to systematically analyse the root causes of unplanned ICU-admissions. The primary aim of this study was to identify the healthcare worker-, organisational-, technical,- disease- and patient- related causes that contribute to acute unplanned ICU admissions from general wards using a Root-Cause Analysis Tool called PRISMA-medical. Although a Track and Trigger System (MEWS was introduced in our hospital a few years ago, it was implemented without a clear protocol. Therefore, the secondary aim was to assess the adherence to a Track and Trigger system to identify deterioration on general hospital wards in patients eventually transferred to the ICU.Retrospective observational study in 49 consecutive adult patients acutely admitted to the Intensive Care Unit from a general nursing ward. 1. PRISMA-analysis on root causes of unplanned ICU admissions 2. Assessment of protocol adherence to the early warning score system.Out of 49 cases, 156 root causes were identified. The most frequent root causes were healthcare worker related (46%, which were mainly failures in monitoring the patient. They were followed by disease-related (45%, patient-related causes (7, 5%, and organisational root causes (3%. In only 40% of the patients vital parameters were monitored as was instructed by the doctor. 477 vital parameter sets were found in the 48 hours before ICU admission, in only 1% a correct MEWS was explicitly documented in the record.This in-depth analysis demonstrates that almost half of the unplanned ICU admissions from the general ward had healthcare worker related root causes, mostly due to monitoring failures in clinically deteriorating patients. In order to reduce unplanned ICU admissions, improving the monitoring of patients is therefore warranted.

  3. Micromechanical Failure Analyses for Finite Element Polymer Modeling

    Energy Technology Data Exchange (ETDEWEB)

    CHAMBERS,ROBERT S.; REEDY JR.,EARL DAVID; LO,CHI S.; ADOLF,DOUGLAS B.; GUESS,TOMMY R.

    2000-11-01

    Polymer stresses around sharp corners and in constrained geometries of encapsulated components can generate cracks leading to system failures. Often, analysts use maximum stresses as a qualitative indicator for evaluating the strength of encapsulated component designs. Although this approach has been useful for making relative comparisons screening prospective design changes, it has not been tied quantitatively to failure. Accurate failure models are needed for analyses to predict whether encapsulated components meet life cycle requirements. With Sandia's recently developed nonlinear viscoelastic polymer models, it has been possible to examine more accurately the local stress-strain distributions in zones of likely failure initiation looking for physically based failure mechanisms and continuum metrics that correlate with the cohesive failure event. This study has identified significant differences between rubbery and glassy failure mechanisms that suggest reasonable alternatives for cohesive failure criteria and metrics. Rubbery failure seems best characterized by the mechanisms of finite extensibility and appears to correlate with maximum strain predictions. Glassy failure, however, seems driven by cavitation and correlates with the maximum hydrostatic tension. Using these metrics, two three-point bending geometries were tested and analyzed under variable loading rates, different temperatures and comparable mesh resolution (i.e., accuracy) to make quantitative failure predictions. The resulting predictions and observations agreed well suggesting the need for additional research. In a separate, additional study, the asymptotically singular stress state found at the tip of a rigid, square inclusion embedded within a thin, linear elastic disk was determined for uniform cooling. The singular stress field is characterized by a single stress intensity factor K{sub a} and the applicable K{sub a} calibration relationship has been determined for both fully bonded and

  4. Factors causing stress among Pakistani working women

    Directory of Open Access Journals (Sweden)

    Ahmed Arif

    2017-09-01

    Full Text Available Women are traditionally considered to be confined within the four walls of their houses in the developing countries. They are still unable to play an active role in the development of society. They are striving to make their identity as an integral part of the society. Being a member of conservative developing society, women are still facing many hindrances, causing stressful situation for them, which prohibits them to participate actively in the economic development. This paper attempts to explore the critical factors creating stress among Pakistani working women. Based on literature review, the key stressors were identified to be as work life balance, gender discrimination, peers behaviour, lack of promotional opportunities and sexual harassment. These factors were found to be creating physiological, behavioural and psychological problems. The target of this study was the women working in secretarial and administrative positions in Pakistani organisations. Regression analysis was conducted to find out the impact of these stressors on working women. The results revealed that sexual harassment, peers behaviour and lack of promotional opportunities were the most dominant stressors.

  5. When the heart kills the liver: acute liver failure in congestive heart failure

    Directory of Open Access Journals (Sweden)

    Saner FH

    2009-12-01

    Full Text Available Abstract Congestive heart failure as a cause of acute liver failure is rarely documented with only a few cases. Although the pathophysiology is poorly understood, there is rising evidence, that low cardiac output with consecutive reduction in hepatic blood flow is a main causing factor, rather than hypotension. In the setting of acute liver failure due to congestive heart failure, clinical signs of the latter can be absent, which requires an appropriate diagnostic approach. As a reference center for acute liver failure and liver transplantation we recorded from May 2003 to December 2007 202 admissions with the primary diagnoses acute liver failure. 13/202 was due to congestive heart failure, which was associated with a mortality rate of 54%. Leading cause of death was the underlying heart failure. Asparagine transaminase (AST, bilirubin, and international normalized ratio (INR did not differ significantly in surviving and deceased patients at admission. Despite both groups had signs of cardiogenic shock, the cardiac index (CI was significantly higher in the survival group on admission as compared with non-survivors (2.1 L/min/m2 vs. 1.6 L/min/m2, p = 0.04. Central venous - and pulmonary wedge pressure did not differ significantly. Remarkable improvement of liver function was recorded in the group, who recovered from cardiogenic shock. In conclusion, patients with acute liver failure require an appropriate diagnostic approach. Congestive heart failure should always be considered as a possible cause of acute liver failure.

  6. Evaluation of Causes of Retaining Wall Failure

    Directory of Open Access Journals (Sweden)

    Mu'azu Mohammed ABDULLAHI

    2009-07-01

    Full Text Available Retaining structures are vital geotechnical structure, because the topography of the earth surface is a combination of plain, sloppy and undulating terrain. The retaining wall resists thrust of a bank of earth as well as providing soil stability of a change of ground elevation. Earth pressures on retaining wall are designed from theories of Soil Mechanics, but unfortunately the engineers using them do not always realize the significance of the assumption in their development. This is usually accompanied by with failure and partial failures because of designed based on rules and formulae that fit only limited conditions. In addition there are also problems of using bad backfill materials without taking precautionary measures against built–up of hydrostatic pressure by provision of drainage and also poor workmanship.

  7. Types of Heart Failure

    Science.gov (United States)

    ... Introduction Types of Heart Failure Classes of Heart Failure Heart Failure in Children Advanced Heart FailureCauses and ... and procedures related to heart disease and stroke. Heart Failure Questions to Ask Your Doctor Use these questions ...

  8. Loss of parental role as a cause of stress in the neonatal intensive care unit.

    Science.gov (United States)

    Bouet, Kary M; Claudio, Norma; Ramirez, Verónica; García-Fragoso, Lourdes

    2012-01-01

    Having a baby in the Neonatal Intensive Care Unit (NICU) is a major source of stress for parents. The barriers to parenting and reactions to the environment may negatively influence the parent-infant relationship. To identify NICU-related parental stress and associated factors. Parents (N = 156) of newborns admitted to NICU completed the Parental Stressor Scale. Most of the parents (46%) rated the experience to be extremely stressful. The principal cause of stress was the alteration in parental role and being separated from their baby. Stress was not associated to education, marital status, infants' birth weight, gestational age, congenital anomalies or if the parents expected the baby to be in the NICU. Identification of areas associated to higher levels of stress in parents may help the NICU staff to establish strategies to help parents cope with the stress caused by being unable to start their parenting role immediately after their babies' birth.

  9. Classes of Heart Failure

    Science.gov (United States)

    ... Introduction Types of Heart Failure Classes of Heart Failure Heart Failure in Children Advanced Heart FailureCauses and ... and Advanced HF • Tools and Resources • Personal Stories Heart Failure Questions to Ask Your Doctor Use these questions ...

  10. Theory for Electromigration Failure in Cu Conductors

    International Nuclear Information System (INIS)

    Lloyd, J. R.; Murray, C. E.; Shaw, T. M.; Lane, M. W.; Liu, X.-H.; Liniger, E. G.

    2006-01-01

    A model for electromigration failure is proposed where the criterion for damage is not classical nucleation forming a void, but is a delamination at an interface. In addition, the anisotropy in the elastic constants of Cu metal is responsible for a bimodal failure distribution recognizing that the driving force for mass transport depends on the hydrostatic stress whereas the failure criterion depends on a normal stress. The agreement with published data is reasonably good

  11. Reliability based topology optimization for continuum structures with local failure constraints

    DEFF Research Database (Denmark)

    Luo, Yangjun; Zhou, Mingdong; Wang, Michael Yu

    2014-01-01

    This paper presents an effective method for stress constrained topology optimization problems under load and material uncertainties. Based on the Performance Measure Approach (PMA), the optimization problem is formulated as to minimize the objective function under a large number of (stress......-related) target performance constraints. In order to overcome the stress singularity phenomenon caused by the combined stress and reliability constraints, a reduction strategy on target reliability index is proposed and utilized together with the ε-relaxation approach. Meanwhile, an enhanced aggregation method...... is employed to aggregate the selected active constraints using a general K–S function, which avoids expensive computational cost from the large-scale nature of local failure constraints. Several numerical examples are given to demonstrate the validity of the present method....

  12. International Common Cause Failure Data Exchange (ICDE). General Coding Guidelines - Updated Version, October 2011

    International Nuclear Information System (INIS)

    Johanson, Gunnar; Werner, Wolfgang; Capote, Marina Concepcion; Kreuser, Albert

    2012-01-01

    Several OECD/NEA member countries have established the International Common-Cause Failure Data Exchange Project ('ICDE Project') to encourage multilateral cooperation in the collection and analysis of data relating to Common-Cause Failure (CCF) events. The objectives of the ICDE Project are to: a) Collect and analyse CCF events over the long term so as to better understand such events, their causes, and their prevention. b) Generate qualitative insights into the root causes of CCF events which can then be used to derive approaches or mechanisms for their prevention or for mitigating their consequences. c) Establish a mechanism for the efficient feedback of experience gained in connection with CCF phenomena, including the development of defenses against their occurrence, such as indicators for risk based inspections. d) Record event attributes to facilitate quantification of CCF frequencies when so decided by the Project Working Group. The ICDE Project is envisaged to comprise all possible events of interest, including both complete and partial ICDE events. The ICDE Project will cover the key components of the main safety systems. Presently, the components listed below are included in the ICDE Project. Data have been collected for the six first components in the list: Centrifugal pumps, Diesel generators, Motor operated valves, Safety relief valves/power operated relief valves, Check valves, Batteries, Level measurement, Breakers, Control rod drive assemblies. Others will be added to this list later on. In this component coding guidelines, explanations on the ICDE general coding format are given. The guide reflects present experience with the data format and with the collected data. Further interpretations and clarifications will be added, should they become necessary. For each component analysed in the ICDE project, separate coding guidance is provided in the appendices ICDECG 01-06, specifying details relevant to the respective components

  13. STRESSFUL SITUATIONS IN TEACHING PROFESSION – CAUSES AND CONSEQUENCES

    Directory of Open Access Journals (Sweden)

    Anna Romanowska-Tołłoczko

    2014-02-01

    Full Text Available Purpose . Determination which areas of teacher’s work are primary sources of stress, denomination of the extent to which disciplinary problems with students were stress inducing, and what was the frequency and intensity of these situations. Material and methods. The study involved 180 teachers from junior high schools, among which two groups were selected: physical education teachers (74 persons and teachers of other subjects (106 persons. The reason for this division was the necessity of identifying the groups of teachers differing in specifics of school subjects, studies which they graduated from, and determine the typical areas of difficulty experienced. The research was based on a diagnostic survey and a questionnaire. Results . Teaching profession is considered as psychologically challenging occupation due to numerous occurrences of stressful situations. Yet it is not equally aggravating for everyone – there are well-functioning teachers who cope easily, but on the other hand, there are cases of serious psychosomatic consequences caused by frequent and prolonged pressures. Abilities of dealing with difficult situations largely depend upon one’s individual predispositions, resistance to stress, way of assessing a situation and resulting type of action. Conclusions . The ability (or lack of it of coping with range of educational activities may determine the intensity of experienced difficulties, and therefore the frequency of occurring stressful situations. Lack of skills in the area of interpersonal relations translates to inability to coping with problematic situations with pupils. This leads the teacher to awareness of own inefficiency and helplessness, which increases the intensity of experienced stress.

  14. Causes of failure with Szabo technique – An analysis of nine cases

    Science.gov (United States)

    Jain, Rajendra Kumar; Padmanabhan, T.N.C.; Chitnis, Nishad

    2013-01-01

    Objective The objective of this case series is to identify and define causes of failure of Szabo technique in rapid-exchange monorail system for ostial lesions. Methods and results From March 2009 to March 2011, 42 patients with an ostial lesion were treated percutaneously at our institution using Szabo technique in a monorail stent system. All patients received unfractionated heparin during intervention. Loading dose of clopidogrel, followed by clopidogrel and aspirin was administered. In 57% of patients, drug-eluting stents were used and in 42.8% patients bare metal stents. The stent was advanced over both wires, the target wire and the anchor wire. The anchor wire, which was passed through the proximal trailing strut of the stent helps to achieve precise stenting. The procedure was considered to be successful if stent was placed precisely covering the lesion and without stent loss or anchor wire prolapsing. Of the total 42 patients, the procedure was successful in 33, while failed in 9. Majority of failures were due to wire entanglement, which was fixed successfully in 3 cases by removing and reinserting the anchor wire. Out of other three failures, in one stent dislodgment occurred, stent could not cross the lesion in one and in another anchor wire got looped and prolapsed into target vessel. Conclusion This case series shows that the Szabo technique, in spite of some difficulties like wire entanglement, stent dislodgement and resistance during stent advancement, is a simple and feasible method for treating variety of ostial lesions precisely compared to conventional angioplasty. PMID:23809379

  15. Tidally Driven Failure Along Europa's Rhadamanthys Linea

    Science.gov (United States)

    Cameron, M.; Konter, B.; Pappalardo, R. T.

    2013-12-01

    The surface of Europa is crosscut by a dense network of fractures and there are many candidate faults for studying past tectonic activity. To better understand the role of tidal stress sources and implications for faulting on Europa, we investigate the relationship between shear and normal stresses at Rhadamanthys Linea, a northwest oriented fracture in the northern hemisphere. Previous work on Agenor Linea, a right-lateral strike-slip fracture in the southern hemisphere, suggests that both tidal diurnal and non-synchronous rotation (NSR) stresses play a critical role in the mechanics of Coulomb shear failure on Europa. At Agenor Linea, shear failure from diurnal tidal stress mechanisms is difficult to achieve because the relatively large over¬burden stress (ie., 1.2 MPa at 1 km depth) dominates the stress field; however, MPa order stresses from NSR permit right-lateral shear failure along the west side of the fault at shallow depths (Astypalea Linea and Conamara Chaos will also be investigated, offering a unique comparison of geologic activity of fractures residing in geographically diverse locations of Europa.

  16. Failure criterion for graphene in biaxial loading—a molecular dynamics study

    International Nuclear Information System (INIS)

    Yazdani, Hessam; Hatami, Kianoosh

    2015-01-01

    Molecular dynamics simulations are carried out in order to develop a failure criterion for infinite/bulk graphene in biaxial tension. Stresses along the principal edge configurations of graphene (i.e. armchair and zigzag directions) are normalized to the corresponding uniaxial ultimate strength values. The combinations of normalized stresses resulting in the failure of graphene are used to define failure envelopes (limiting stress ratio surfaces). Results indicate that a bilinear failure envelope can be used to represent the tensile strength of graphene in biaxial loading at different temperatures with reasonable accuracy. A circular failure envelope is also introduced for practical applications. Both failure envelopes define temperature-independent upper limits for the feasible combinations of normalized stresses for a graphene sheet in biaxial loading. Predicted failure modes of graphene under biaxial loading are also shown and discussed. (paper)

  17. Stress Causing Factors Among Teachers in Elementary Schools and Their Relationship with Demographic and Job Characteristics.

    Science.gov (United States)

    Agai-Demjaha, Teuta; Minov, Jordan; Stoleski, Sasho; Zafirova, Beti

    2015-09-15

    Once high levels of work-related stress among teachers were confirmed many studies concentrated on identifying and investigating key stress factors among school teachers. Unfortunately there are very few researches made on stress causing factors among teachers in Republic of Macedonia. To determine the most frequent stress causing factors among teachers in elementary schools and to investigate their relationship with demographic and job characteristics. We performed a descriptive-analytical model of a cross-sectional study which involved 300 teachers employed in nine elementary schools. Evaluation of examined subjects included completion of a specially designed questionnaire. Among six categories of factors that generate work related stress (job demands, control, relationships, role, changes and support) control and support had the highest mean scores. Within the control category the highest levels of perceived teacher's work-related stress were caused by the following factors - changes in terms and conditions without consultation and given responsibility without the authority to take decisions. 141 out of the interviewed teachers (47%) have mentioned changes in terms and conditions without consultation as very stressful, while another 50 (16.67%) have reported it as stressful. 123 out of interviewed teachers (41%) have stated given responsibility without the authority to take decisions as very stressful, with another 105 (35%) have reported it as stressful. In the category support the highest levels of perceived teacher's work-related stress were caused by stress factors - lack of funds/resources to do the job and limited or no access to training. Out of 300 interviewed teachers, 179 (59.67%) have reported lack of funds/resources to do the job as very stressful, while another 50 (16.67%) as stressful. There is no significant relationship between the stress factor limited or no access to training and demographic and job characteristics. Our findings confirm that

  18. Progranulin causes adipose insulin resistance via increased autophagy resulting from activated oxidative stress and endoplasmic reticulum stress.

    Science.gov (United States)

    Guo, Qinyue; Xu, Lin; Li, Huixia; Sun, Hongzhi; Liu, Jiali; Wu, Shufang; Zhou, Bo

    2017-01-31

    Progranulin (PGRN) has recently emerged as an important regulator for insulin resistance. However, the direct effect of progranulin in adipose insulin resistance associated with the autophagy mechanism is not fully understood. In the present study, progranulin was administered to 3T3-L1 adipocytes and C57BL/6 J mice with/without specific inhibitors of oxidative stress and endoplasmic reticulum stress, and metabolic parameters, oxidative stress, endoplasmic reticulum stress and autophagy markers were assessed. Progranulin treatment increased iNOS expression, NO synthesis and ROS generation, and elevated protein expressions of CHOP, GRP78 and the phosphorylation of PERK, and caused a significant increase in Atg7 and LC3-II protein expression and a decreased p62 expression, and decreased insulin-stimulated tyrosine phosphorylation of IRS-1 and glucose uptake, demonstrating that progranulin activated oxidative stress and ER stress, elevated autophagy and induced insulin insensitivity in adipocytes and adipose tissue of mice. Interestingly, inhibition of iNOS and ER stress both reversed progranulin-induced stress response and increased autophagy, protecting against insulin resistance in adipocytes. Furthermore, the administration of the ER stress inhibitor 4-phenyl butyric acid reversed the negative effect of progranulin in vivo. Our findings showed the clinical potential of the novel adipokine progranulin in the regulation of insulin resistance, suggesting that progranulin might mediate adipose insulin resistance, at least in part, by inducing autophagy via activated oxidative stress and ER stress.

  19. Effects of simvastatin on the development of the atrial fibrillation substrate in dogs with congestive heart failure

    NARCIS (Netherlands)

    Shiroshita-Takeshita, Akiko; Brundel, Blanca J. J. M.; Burstein, Brett; Leung, Tack-Ki; Mitamura, Hideo; Ogawa, Satoshi; Nattel, Stanley

    Background: Congestive heart failure (CHF) is a common cause of atrial fibrillation (AF). Oxidative stress and inflammation (profibrotic) and peroxisome proliferator-activated receptor-alpha (PPAR-alpha, antifibrotic) factors may be involved in CHF-related remodeling. We evaluated the effects of

  20. Characterization and modeling of SET/RESET cycling induced read-disturb failure time degradation in a resistive switching memory

    Science.gov (United States)

    Su, Po-Cheng; Hsu, Chun-Chi; Du, Sin-I.; Wang, Tahui

    2017-12-01

    Read operation induced disturbance in SET-state in a tungsten oxide resistive switching memory is investigated. We observe that the reduction of oxygen vacancy density during read-disturb follows power-law dependence on cumulative read-disturb time. Our study shows that the SET-state read-disturb immunity progressively degrades by orders of magnitude as SET/RESET cycle number increases. To explore the cause of the read-disturb degradation, we perform a constant voltage stress to emulate high-field stress effects in SET/RESET cycling. We find that the read-disturb failure time degradation is attributed to high-field stress-generated oxide traps. Since the stress-generated traps may substitute for some of oxygen vacancies in forming conductive percolation paths in a switching dielectric, a stressed cell has a reduced oxygen vacancy density in SET-state, which in turn results in a shorter read-disturb failure time. We develop an analytical read-disturb degradation model including both cycling induced oxide trap creation and read-disturb induced oxygen vacancy reduction. Our model can well reproduce the measured read-disturb failure time degradation in a cycled cell without using fitting parameters.

  1. Data bank international of events of failure of common cause ICDE; Banco de datos internacional de sucesos de fallo de causa comum (ICDE)

    Energy Technology Data Exchange (ETDEWEB)

    Morales Castellanos, M. R.; Fernandez Andujar, B.; Pereira Pagan, M. B.

    2013-07-01

    Common Cause Failure (CCF) is a dependent event in which two or more components fail simultaneously or within a short space of time as a direct result of a shared common cause. Due to the low frequency of this type of events, some Member States of the Agency of Nuclear Energy (NEA) of the Organization for Cooperation and Economic Development (OECD) decided to create the project International Common-Cause Failure Data Exchange (ICDE) in order to encourage multilateral cooperation in the collection and analysis of data relating to CCF events.

  2. Causes of work-related stress and individual strategies in knowledge work

    DEFF Research Database (Denmark)

    Ipsen, Christine; Jensen, Per Langaa

    Recent studies point to work-related stress as an increasing problem for knowledge workers. This is a critical and not fully uncovered problem. The working life in knowledge-intensive companies is often described as good and stimulating. This study shows that some aspects of knowledge work can have...... a negative impact on daily activities and cause frustration and work-related stress. The study also finds that few primary preventive activities have been initiated. Based on an empirical study, the authors outline the characteristics of the job as knowledge worker and how it is being experienced. The study...... to the individual for his or her working life. Self-managed knowledge workers thus experience that they stand alone when it comes to work-related problems and stress. The stress intervention applied is characteristically short-term and focused on the individual. The individual perspective consequently affects...

  3. Yield and Failure Behavior Investigated for Cross-Linked Phenolic Resins Using Molecular Dynamics

    Science.gov (United States)

    Monk, Joshua D.; Lawson, John W.

    2016-01-01

    Molecular dynamics simulations were conducted to fundamentally evaluate the yield and failure behavior of cross-linked phenolic resins at temperatures below the glass transition. Yield stress was investigated at various temperatures, strain rates, and degrees of cross-linking. The onset of non-linear behavior in the cross-linked phenolic structures was caused by localized irreversible molecular rearrangements through the rotation of methylene linkers followed by the formation or annihilation of neighboring hydrogen bonds. The yield stress results, with respect to temperature and strain rate, could be fit by existing models used to describe yield behavior of amorphous glasses. The degree of cross-linking only indirectly influences the maximum yield stress through its influence on glass transition temperature (Tg), however there is a strong relationship between the degree of cross-linking and the failure mechanism. Low cross-linked samples were able to separate through void formation, whereas the highly cross-linked structures exhibited bond scission.

  4. Review of constitutive models and failure criteria for concrete

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong Moon; Choun, Young Sun [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    The general behavior, constitutive models, and failure criteria of concrete are reviewed. The current constitutive models for concrete cannot satisfy all of mechanical behavior of concrete. Among several constitutive models, damage models are recommended to describe properly the structural behavior of concrete containment buildings, because failure modes and post-failure behavior are important in containment buildings. A constitutive model which can describe the concrete behavior in tension is required because the containment buildings will reach failure state due to ultimate internal pressure. Therefore, a thorough study on the behavior and models under tension stress state in concrete and reinforced concrete has to be performed. There are two types of failure criteria in containment buildings: structural failure criteria and leakage failure criteria. For reinforced or prestressed concrete containment buildings, concrete cracking does not mean the structural failure of containment building because the reinforcement or post-tensioning system is able to resist tensile stress up to yield stress. Therefore leakage failure criteria will be prior to structural failure criteria, and a strain failure criterion for concrete has to be established. 120 refs., 59 figs., 1 tabs. (Author)

  5. CCF-RBE common cause failure reliability benchmark exercise

    International Nuclear Information System (INIS)

    Poucet, A.; Amendola, A.; Cacciabue, P.C.

    1987-01-01

    This report summarizes results, obtained by the participants in the Reliability Benchmark Exercise on Common Cause Failures (CCF-RBE). The reference power plant of the CCF-RBE was the NPP at Grohnde (KWG): it is a 1300 MW PWR plant of KWU design and operated by the utility Preussen Elektra. The systems studied were the Start-up and Shut-down system (RR/RL) and the Emergency Feedwater System (RS) both systems that can feed water into the steam generators in the emergency power mode. The CCF-RBE was organized in two phases: 1. The first phase: during which all participants have performed an analysis on the complete system as defined by the assumed boundaries, i.e. the Start-up and Shut-down system (RR/RL) and the Emergency Feedwater System (RS). 2. The second phase: in which the scope was limited to the RS system. This limitation in scope was agreed upon in the discussion on the results of the first phase, which showed that, within the boundaries of the exercise, RR/RL and RS systems could be considered independent of each other. This report gives an overview of the works carried out, the results obtained and the conclusions and lessons that could be drawn from the CCF-RBE

  6. The psychological impact of IVF failure after two or more cycles of IVF with a mild versus standard treatment strategy

    OpenAIRE

    Klerk, Cora; Macklon, Nick; Heijnen, E.M.; Eijkemans, René; Fauser, Bart; Passchier, Jan; Hunfeld, Joke

    2007-01-01

    textabstractBackground: Failure of IVF treatment after a number of cycles can be devastating for couples. Although mild IVF strategies reduce the psychological burden of treatment, failure may cause feelings of regret that a more aggressive approach, including the transfer of two embryos, was not employed. In this study, the impact of treatment failure after two or more cycles on stress was studied, following treatment with a mild versus a standard treatment strategy. Methods: Randomized cont...

  7. Psycho-Social Factors Causing Stress: A Study of Teacher Educators

    Science.gov (United States)

    Jain, Geetika; Tyagi, Harish Kumar; Kumar, Anil

    2015-01-01

    Purpose: The present investigation was planned to determine the influence of type of personality, gender, age, qualification and experience causing stress among teacher educators at work. Method: A sample of 100 subjects from male and female teachers teaching in teacher training colleges, Delhi, India was drawn randomly. The data was collected by…

  8. Reasons for service failure of an ÉKG-20 power shovel bogie wheel

    Science.gov (United States)

    Yakovleva, S. P.; Milokhin, S. E.

    1985-10-01

    Early failure of a bogie wheel is caused by the occurrence after heat treatment of a working surface structure with insufficient resistance to plastic deformation, which under the specific conditions of contact loading causes flattening of it with the formation of accumulations of material on the side surfaces. This leads to the occurrence of significant stresses on the faces of the wheel which intensify the nonuniformity of the structure obtained after machining of the side surface.

  9. The brain in acute liver failure. A tortuous path from hyperammonemia to cerebral edema

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Eefsen, Martin; Hansen, Bent Adel

    2008-01-01

    Acute liver failure (ALF) is a condition with an unfavourable prognosis. Multiorgan failure and circulatory collapse are frequent causes of death, but cerebral edema and intracranial hypertension (ICH) are also common complications with a high risk of fatal outcome. The underlying pathogenesis has...... been extensively studied and although the development of cerebral edema and ICH is of a complex and multifactorial nature, it is well established that ammonia plays a pivotal role. This review will focus on the effects of hyperammonemia on neurotransmission, mitochondrial function, oxidative stress...

  10. Coupling failure between stem and femoral component in a constrained revision total knee arthroplasty.

    LENUS (Irish Health Repository)

    Butt, Ahsan Javed

    2013-02-01

    Knee revision using constrained implants is associated with greater stresses on the implant and interface surfaces. The present report describes a case of failure of the screw coupling between the stem and the femoral component. The cause of the failure is surmised with outline of the treatment in this case with extensive femoral bone loss. Revision implant stability was augmented with the use of a cemented femoral stem, screw fixation and the metaphyseal sleeve of an S-ROM modular hip system (DePuy international Ltd).

  11. HIV reservoirs and immune surveillance evasion cause the failure of structured treatment interruptions: a computational study.

    Directory of Open Access Journals (Sweden)

    Emiliano Mancini

    Full Text Available Continuous antiretroviral therapy is currently the most effective way to treat HIV infection. Unstructured interruptions are quite common due to side effects and toxicity, among others, and cannot be prevented. Several attempts to structure these interruptions failed due to an increased morbidity compared to continuous treatment. The cause of this failure is poorly understood and often attributed to drug resistance. Here we show that structured treatment interruptions would fail regardless of the emergence of drug resistance. Our computational model of the HIV infection dynamics in lymphoid tissue inside lymph nodes, demonstrates that HIV reservoirs and evasion from immune surveillance themselves are sufficient to cause the failure of structured interruptions. We validate our model with data from a clinical trial and show that it is possible to optimize the schedule of interruptions to perform as well as the continuous treatment in the absence of drug resistance. Our methodology enables studying the problem of treatment optimization without having impact on human beings. We anticipate that it is feasible to steer new clinical trials using computational models.

  12. [The degree of chronic renal failure is associated with the rate of pro-inflammatory cytokines, hyperhomocysteinemia and with oxidative stress].

    Science.gov (United States)

    Tbahriti, H F; Messaoudi, A; Kaddous, A; Bouchenak, M; Mekki, K

    2014-06-01

    To evaluate pro-inflammatory cytokines, homocysteinemia and markers of oxidative status in the course of chronic renal failure. One hundred and two patients (male/female: 38/64; age: 45±07 years) with chronic renal failure were divided into 4 groups according to the National Kidney Foundation classification. They included 28 primary stage renal failure patients, 28 moderate stage renal failure, 28 severe stage renal failure and 18 end stage renal failure. The inflammatory status was evaluated by the determination of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-1β, interleukin-6) and total homocysteine. Pro-oxidant status was assessed by assaying thiobarbituric acid reactive substances, hydroperoxides, and protein carbonyls. Antioxidant defence was performed by analysis of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase. Inflammatory markers were elevated in the end stage renal failure group compared to the other groups (Prenal failure group in comparison with the other groups (Prenal function is closely associated with the elevation of inflammatory markers leading to both increased markers of oxidative stress and decreased antioxidant defense. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Failure mechanism for thermal fatigue of thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Giolli, C.; Scrivani, A.; Rizzi, G. [Turbocoating S.p.A., Rubbiano di Solignano (Italy); Borgioli, F. [Firenze Univ., Sesto Fiorentino (Italy); Bolelli, G.; Lusvarghi, L. [Univ. di Modena e Reggio Emilia, Modena (Italy)

    2008-07-01

    High temperature thermal fatigue causes the failure of Thermal Barrier Coating (TBC) systems. Due to the difference in thickness and microstructure between thick TBCs and traditional thin TBCs, they cannot be assumed a-priori to possess the same failure mechanisms. Thick TBCs, consisting of a CoNiCrAlY bond coat and Yttria Partially Stabilised Zirconia top coat with different values of porosity, were produced by Air Plasma Spray. Thermal fatigue resistance limit of TBCs was tested by Furnace Cycling Tests (FCT) according to the specifications of an Original Equipment Manufacturer (OEM). TBC systems were analyzed before and after FCT. The morphological and chemical evolution of CoNiCrAlY/TGO microstructure was studied. Sintering effect, residual stress, phase transformation and fracture toughness were evaluated in the ceramic Top Coat. All the tested samples passed FCT according to the specification of an important OEM. Thermal fatigue resistance increases with the amount of porosity in the top coat. The compressive in-plane stresses increase in the TBC systems after thermal cycling, nevertheless the increasing rate has a trend contrary to the porosity level of top coat. The data suggest that the spallation happens at the TGO/Top Coat interface. The failure mechanism of thick TBCs subjected to thermal fatigue was eventually found to be similar to the failure mechanism of thin TBC systems made by APS. (orig.)

  14. Development of component failure data for seismic risk analysis

    International Nuclear Information System (INIS)

    Fray, R.R.; Moulia, T.A.

    1981-01-01

    This paper describes the quantification and utilization of seismic failure data used in the Diablo Canyon Seismic Risk Study. A single variable representation of earthquake severity that uses peak horizontal ground acceleration to characterize earthquake severity was employed. The use of a multiple variable representation would allow direct consideration of vertical accelerations and the spectral nature of earthquakes but would have added such complexity that the study would not have been feasible. Vertical accelerations and spectral nature were indirectly considered because component failure data were derived from design analyses, qualification tests and engineering judgment that did include such considerations. Two types of functions were used to describe component failure probabilities. Ramp functions were used for components, such as piping and structures, qualified by stress analysis. 'Anchor points' for ramp functions were selected by assuming a zero probability of failure at code allowable stress levels and unity probability of failure at ultimate stress levels. The accelerations corresponding to allowable and ultimate stress levels were determined by conservatively assuming a linear relationship between seismic stress and ground acceleration. Step functions were used for components, such as mechanical and electrical equipment, qualified by testing. Anchor points for step functions were selected by assuming a unity probability of failure above the qualification acceleration. (orig./HP)

  15. Unexpected damage and/or failures caused by creep below the limit temperature for creep design; Ovaentade krypskador och/eller haverier orsakade av krypmekanismer under graenstemperaturen

    Energy Technology Data Exchange (ETDEWEB)

    Storesund, Jan; Eklund, Anders; Taflin, Anders; Thunvik, Thomas

    2006-07-15

    Recently, several cases of cracking caused by creep have occurred in components operating at temperatures below the specified limit temperature for creep. Components operating below this limit temperature have not been designed with due regard to creep cracking and have accordingly not been subjected to inspection for creep damage. This work has surveyed the extent of these cases of creep damage by reviewing earlier failures and performed metallographic studies of damaged components and made parametric calculations of creep crack growth below the limit temperature. The following critical parameters have been determined for power plants: Creep damage below the transition temperature does not usually occur until operating times above 200.000 hours. Time to rupture differs from ordinary creep crack growth because these cracks have substantially longer incubation time of 20-30 years, with relative low creep deformation, and after that a rapid creep crack growth with only some few years to the creep rupture. Operation at 470-480 deg C, i.e. up to some 10 deg C below the transition temperature for a material like EN 13CrMo4-5, can be expected to result in severe creep damages comparable with ordinary creep failures at stressed locations. Operation at a temperature of 450-460 deg C can give rise to creep damage, however, this damage shows a more sparse occurrence. Creep damaged welds occurring below the limit temperature show cracks at the melting junction of the weld bead in opposite to ordinary creep damages. System stresses can also cause a more rapid crack growth. An international survey also shows that the variation of creep strength values between individual steel batches are just as wide as for ordinary creep. Based on this work, the following complementary recommendations can be issued: Elastic stress analysis (based on expansion calculations) can also be recommended for the identification of areas with intensified stresses. One should also perform a complete

  16. Environmental stress-corrosion cracking of fiberglass: Lessons learned from failures in the chemical industry

    International Nuclear Information System (INIS)

    Myers, T.J.; Kytoemaa, H.K.; Smith, T.R.

    2007-01-01

    Fiberglass reinforced plastic (FRP) composite materials are often used to construct tanks, piping, scrubbers, beams, grating, and other components for use in corrosive environments. While FRP typically offers superior and cost effective corrosion resistance relative to other construction materials, the glass fibers traditionally used to provide the structural strength of the FRP can be susceptible to attack by the corrosive environment. The structural integrity of traditional FRP components in corrosive environments is usually dependent on the integrity of a corrosion-resistant barrier, such as a resin-rich layer containing corrosion resistant glass fibers. Without adequate protection, FRP components can fail under loads well below their design by an environmental stress-corrosion cracking (ESCC) mechanism when simultaneously exposed to mechanical stress and a corrosive chemical environment. Failure of these components can result in significant releases of hazardous substances into plants and the environment. In this paper, we present two case studies where fiberglass components failed due to ESCC at small chemical manufacturing facilities. As is often typical, the small chemical manufacturing facilities relied largely on FRP component suppliers to determine materials appropriate for the specific process environment and to repair damaged in-service components. We discuss the lessons learned from these incidents and precautions companies should take when interfacing with suppliers and other parties during the specification, design, construction, and repair of FRP components in order to prevent similar failures and chemical releases from occurring in the future

  17. Renin-Angiotensin Activation and Oxidative Stress in Early Heart Failure with Preserved Ejection Fraction

    Directory of Open Access Journals (Sweden)

    Smita I. Negi

    2015-01-01

    Full Text Available Animal models have suggested a role of renin-angiotensin system (RAS activation and subsequent cardiac oxidation in heart failure with preserved ejection fraction (HFpEF. Nevertheless, RAS blockade has failed to show efficacy in treatment of HFpEF. We evaluated the role of RAS activation and subsequent systemic oxidation in HFpEF. Oxidative stress markers were compared in 50 subjects with and without early HFpEF. Derivatives of reactive oxidative metabolites (DROMs, F2-isoprostanes (IsoPs, and ratios of oxidized to reduced glutathione (Eh GSH and cysteine (Eh CyS were measured. Angiotensin converting enzyme (ACE levels and activity were measured. On univariate analysis, HFpEF was associated with male sex (p=0.04, higher body mass index (BMI (p=0.003, less oxidized Eh CyS (p=0.001, lower DROMs (p=0.02, and lower IsoP (p=0.03. Higher BMI (OR: 1.3; 95% CI: 1.1–1.6 and less oxidized Eh CyS (OR: 1.2; 95% CI: 1.1–1.4 maintained associations with HFpEF on multivariate analysis. Though ACE levels were higher in early HFpEF (OR: 1.09; 95% CI: 1.01–1.05, ACE activity was similar to that in controls. HFpEF is not associated with significant systemic RAS activation or oxidative stress. This may explain the failure of RAS inhibitors to alter outcomes in HFpEF.

  18. Oxidative stress may be involved in distant organ failure in tourniquet shock model mice.

    Science.gov (United States)

    Nishikata, Rie; Kato, Naho; Hiraiwa, Kouichi

    2014-03-01

    Crush syndrome is characterized by prolonged shock resulting from extensive muscle damage and multiple organ failure. However, the pathogenesis of multiple organ failure has not yet been completely elucidated. Therefore, we investigated the molecular biological and histopathological aspects of distant organ injury in crush syndrome by using tourniquet shock model mice. DNA microarray analysis of the soleus muscle showed an increase in the mRNA levels of Cox-2, Hsp70, c-fos, and IL-6, at 3h after ischemia/reperfusion injury at the lower extremity. In vivo staining with hematoxylin and eosin (HE) showed edema and degeneration in the soleus muscle, but no change in the distant organs. Immunohistological staining of the HSP70 protein revealed nuclear translocation in the soleus muscle, kidney, liver, and lung. The c-fos mRNA levels were elevated in the soleus muscle, kidney, and liver, displaying nuclear translocation of c-FOS protein. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) analysis suggested the involvement of apoptosis in ischemia/reperfusion injury in the soleus muscle. Apoptotic cells were not found in greater quantities in the kidney. Oxidative stress, as determined using a free radical elective evaluator (d-ROM test), markedly increased after ischemia/reperfusion injury. Therefore, examination of immunohistological changes and determination of oxidative stress are proposed to be useful in evaluating the extent of tourniquet shock, even before changes are observed by HE staining. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. SERCA2 Haploinsufficiency in a Mouse Model of Darier Disease Causes a Selective Predisposition to Heart Failure

    Directory of Open Access Journals (Sweden)

    Vikram Prasad

    2015-01-01

    Full Text Available Null mutations in one copy of ATP2A2, the gene encoding sarco/endoplasmic reticulum Ca2+-ATPase isoform 2 (SERCA2, cause Darier disease in humans, a skin condition involving keratinocytes. Cardiac function appears to be unimpaired in Darier disease patients, with no evidence that SERCA2 haploinsufficiency itself causes heart disease. However, SERCA2 deficiency is widely considered a contributing factor in heart failure. We therefore analyzed Atp2a2 heterozygous mice to determine whether SERCA2 haploinsufficiency can exacerbate specific heart disease conditions. Despite reduced SERCA2a levels in heart, Atp2a2 heterozygous mice resembled humans in exhibiting normal cardiac physiology. When subjected to hypothyroidism or crossed with a transgenic model of reduced myofibrillar Ca2+-sensitivity, SERCA2 deficiency caused no enhancement of the disease state. However, when combined with a transgenic model of increased myofibrillar Ca2+-sensitivity, SERCA2 haploinsufficiency caused rapid onset of hypertrophy, decompensation, and death. These effects were associated with reduced expression of the antiapoptotic Hax1, increased levels of the proapoptotic genes Chop and Casp12, and evidence of perturbations in energy metabolism. These data reveal myofibrillar Ca2+-sensitivity to be an important determinant of the cardiac effects of SERCA2 haploinsufficiency and raise the possibility that Darier disease patients are more susceptible to heart failure under certain conditions.

  20. An investigation of characteristics of thermal stress caused by fluid temperature fluctuation at a T-junction pipe

    International Nuclear Information System (INIS)

    Miyoshi, Koji; Nakamura, Akira; Utanohara, Yoichi

    2014-01-01

    Thermal fatigue cracking may initiate at a T-junction pipe where high and low temperature fluids flow in from different directions and mix. Thermal stress is caused by a temperature gradient in a structure and by its variation. It is possible to obtain stress distributions if the temperature distributions at the pipe inner surface are obtained by experiments. The wall temperature distributions at a T-junction pipe were measured by experiments. The thermal stress distributions were calculated using the experimental data. The circumferential and axial stress fluctuations were larger than the radial stress fluctuation range. The stress fluctuation at the position of the maximum stress fluctuation had 10sec period. The distribution of the stress fluctuation was similar to that of the temperature fluctuation. The large stress fluctuations were caused by the time variation of the heating region by the hot jet flow. (author)

  1. Mechanical and hypoxia stress can cause chondrocytes apoptosis through over-activation of endoplasmic reticulum stress.

    Science.gov (United States)

    Huang, Ziwei; Zhou, Min; Wang, Qian; Zhu, Mengjiao; Chen, Sheng; Li, Huang

    2017-12-01

    contributed to the chondrocytes apoptosis. Mechanical stress can cause OA-like pathological change in rat mandibular condylar cartilage via ERS activation and hypoxia existed in the meantime. Both mechanical forces and hypoxia can induce ERS and cause chondrocytes apoptosis only if the stimulate was in higher level. Salubrinal can protect chondrocytes from apoptosis, and relieve OA-liked pathological change on mandibular condylar cartilage under mechanical stress stimulation. Copyright © 2017. Published by Elsevier Ltd.

  2. Acetic Acid Causes Endoplasmic Reticulum Stress and Induces the Unfolded Protein Response in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Nozomi Kawazoe

    2017-06-01

    Full Text Available Since acetic acid inhibits the growth and fermentation ability of Saccharomyces cerevisiae, it is one of the practical hindrances to the efficient production of bioethanol from a lignocellulosic biomass. Although extensive information is available on yeast response to acetic acid stress, the involvement of endoplasmic reticulum (ER and unfolded protein response (UPR has not been addressed. We herein demonstrated that acetic acid causes ER stress and induces the UPR. The accumulation of misfolded proteins in the ER and activation of Ire1p and Hac1p, an ER-stress sensor and ER stress-responsive transcription factor, respectively, were induced by a treatment with acetic acid stress (>0.2% v/v. Other monocarboxylic acids such as propionic acid and sorbic acid, but not lactic acid, also induced the UPR. Additionally, ire1Δ and hac1Δ cells were more sensitive to acetic acid than wild-type cells, indicating that activation of the Ire1p-Hac1p pathway is required for maximum tolerance to acetic acid. Furthermore, the combination of mild acetic acid stress (0.1% acetic acid and mild ethanol stress (5% ethanol induced the UPR, whereas neither mild ethanol stress nor mild acetic acid stress individually activated Ire1p, suggesting that ER stress is easily induced in yeast cells during the fermentation process of lignocellulosic hydrolysates. It was possible to avoid the induction of ER stress caused by acetic acid and the combined stress by adjusting extracellular pH.

  3. East coast fever caused by Theileria parva is characterized by macrophage activation associated with vasculitis and respiratory failure

    Science.gov (United States)

    Respiratory failure and death in East Coast Fever (ECF), a clinical syndrome of African cattle caused by the apicomplexan parasite Theileria parva, has historically been attributed to pulmonary infiltration by infected lymphocytes. However, immunohistochemical staining of tissue from T. parva infect...

  4. The conservatism of the net-section stress procedure for predicting the failure of cracked piping systems: The effect of crack location on the degree of conservatism

    International Nuclear Information System (INIS)

    Smith, E.

    1993-01-01

    Interest in the integrity of cracked piping systems fabricated from ductile materials has been motivated, in large part, by the technological problem of intergranular stress corrosion cracking of Type 304 stainless steel piping in boiling water nuclear reactor piping systems. The failure of cracked steel piping is often predicted by assuming that failure conforms to a net-section stress criterion using as input an appropriate value for the critical net-section stress together with a knowledge of the anticipated loadings. The stresses at the cracked section are usually calculated via a purely elastic analysis based on the piping being uncracked. However because the piping is built-in at the ends into a larger component, and since the onset of crack extension requires some plastic deformation, use of the net-section stress approach can give overly conservative failure predictions. An earlier paper has quantified the extent of this conservatism, and has shown how it depends on the material ductility and the elastic flexibility of a piping system. Using the results of analyses for simple model systems, the present paper shows that, for the same cracked section geometry, the degree of conservatism is markedly influenced by the location of the cracked section within the system

  5. A Markov Model for Commen-Cause Failures

    DEFF Research Database (Denmark)

    Platz, Ole

    1984-01-01

    A continuous time four-state Markov chain is shown to cover several of the models that have been used for describing dependencies between failures of components in redundant systems. Among these are the models derived by Marshall and Olkin and by Freund and models for one-out-of-three and two...

  6. β-cell dysfunction due to increased ER stress in a stem cell model of Wolfram syndrome.

    Science.gov (United States)

    Shang, Linshan; Hua, Haiqing; Foo, Kylie; Martinez, Hector; Watanabe, Kazuhisa; Zimmer, Matthew; Kahler, David J; Freeby, Matthew; Chung, Wendy; LeDuc, Charles; Goland, Robin; Leibel, Rudolph L; Egli, Dieter

    2014-03-01

    Wolfram syndrome is an autosomal recessive disorder caused by mutations in WFS1 and is characterized by insulin-dependent diabetes mellitus, optic atrophy, and deafness. To investigate the cause of β-cell failure, we used induced pluripotent stem cells to create insulin-producing cells from individuals with Wolfram syndrome. WFS1-deficient β-cells showed increased levels of endoplasmic reticulum (ER) stress molecules and decreased insulin content. Upon exposure to experimental ER stress, Wolfram β-cells showed impaired insulin processing and failed to increase insulin secretion in response to glucose and other secretagogues. Importantly, 4-phenyl butyric acid, a chemical protein folding and trafficking chaperone, restored normal insulin synthesis and the ability to upregulate insulin secretion. These studies show that ER stress plays a central role in β-cell failure in Wolfram syndrome and indicate that chemical chaperones might have therapeutic relevance under conditions of ER stress in Wolfram syndrome and other forms of diabetes.

  7. Heat Transfer and Failure Mode Analyses of Ultrahigh-Temperature Ceramic Thermal Protection System of Hypersonic Vehicles

    Directory of Open Access Journals (Sweden)

    Tianbao Cheng

    2014-01-01

    Full Text Available The transient temperature distribution of the ultrahigh-temperature ceramic (UHTC thermal protection system (TPS of hypersonic vehicles is calculated using finite volume method. Convective cooling enables a balance of heat increment and loss to be achieved. The temperature in the UHTC plate at the balance is approximately proportional to the surface heat flux and is approximately inversely proportional to the convective heat transfer coefficient. The failure modes of the UHTCs are presented by investigating the thermal stress field of the UHTC TPS under different thermal environments. The UHTCs which act as the thermal protection materials of hypersonic vehicles can fail because of the tensile stress at the lower surface, an area above the middle plane, and the upper surface as well as because of the compressive stress at the upper surface. However, the area between the lower surface and the middle plane and a small area near the upper surface are relatively safe. Neither the compressive stress nor the tensile stress will cause failure of these areas.

  8. What caused the failures of the solenoid valve screws

    International Nuclear Information System (INIS)

    Vassallo, T.P.; Mumford, J.R.; Hossain, F.

    2001-01-01

    At Seabrook Station on May 5,1998 following a lengthy purge of the pressurizer steam space through Containment isolation sample valve 1-RC-FV-2830, the UL status light associated with this solenoid valve did not come on when the valve was closed from the plant's main control board. The UL status light is used to confirm valve closure position to satisfy the plant's Technical Specification requirements. The incorrect valve position indication on the main control board was initially believed to have resulted from excessive heat from a failed voltage control module that did not reduce the voltage to the valve's solenoid coil. This conclusion was based on a similar event that occurred in November of 1996. Follow-up in-plant testing of the valve determined that the voltage control module had not failed and was functioning satisfactorily. Subsequent investigations determined the root cause of the event to be excessive heat-up of the valve caused by high process fluid temperature and an excessively long purge of the pressurizer. The excessive heat-up of the valve from the high temperature process fluid weakened the magnetic field strength of the valve stem magnet to the extent that the UL status light reed switch would not actuate when the valve was closed. Since the voltage control module was tested and found to be functioning properly it was not replaced. Only the UL status light reed switch was replaced with a more sensitive reed that would respond better to a reduced magnetic field strength that results from a hot magnet. During reed switch replacement, three terminal block screws in the valve housing were found fractured and three other terminal block screws fractured during determination of the electrical conductors. This paper describes the initial plant event and ensuing laboratory tests and examinations that were performed to determine the root cause of the failure of the terminal block screws from the Containment isolation sample solenoid valve. (author)

  9. Failure modes of composite sandwich beams

    OpenAIRE

    Gdoutos E.; Daniel I.M.

    2008-01-01

    A thorough investigation of failure behavior of composite sandwich beams under three-and four-point bending was undertaken. The beams were made of unidirectional carbon/epoxy facings and a PVC closed-cell foam core. The constituent materials were fully characterized and in the case of the foam core, failure envelopes were developed for general two-dimensional states of stress. Various failure modes including facing wrinkling, indentation failure and core failure were observed and compared wit...

  10. Investigation of smooth specimen scc test procedures; variations in environment, specimen size, stressing frame, and stress state. [for high strength aluminum alloys

    Science.gov (United States)

    Lifka, B. W.; Sprowls, D. O.; Kelsey, R. A.

    1975-01-01

    The variables studied in the stress-corrosion cracking performance of high strength aluminum alloys were: (1) corrosiveness of the environment, (2) specimen size and stiffness of the stressing system, (3) interpretation of transgranular cracking, and (4) interaction of the state of stress and specimen orientation in a product with an anisotropic grain structure. It was shown that the probability of failure and time to fracture for a specimen loaded in direct tension are influenced by corrosion pattern, the stressing assembly stiffness, and the notch tensile strength of the alloy. Results demonstrate that the combination of a normal tension stress and a shear stress acting on the plane of maximum susceptibility in a product with a highly directional grain cause the greatest tendency for stress-corrosion cracking.

  11. [Developmental radicular groove as a cause of endodontic failure].

    Science.gov (United States)

    Fabra Campos, H; Millet Part, J

    1989-01-01

    A clinical case of apical injury on an upper lateral incisor with endodontical and surgical failures in its treatment is presented. Extraction of the incisor and its study at the stereoscopic microscope showed the existence of a developmental groove running from the cingulum to the end of the root, establishing a communication between the crevice and the apical part of the tooth. Bacterial infection through the groove could provide an explanation for treatment failure.

  12. Heart failure - surgeries and devices

    Science.gov (United States)

    ... surgery; HF - surgery; Intra-aortic balloon pumps - heart failure; IABP - heart failure; Catheter based assist devices - heart failure ... problem may cause heart failure or make heart failure worse. Heart valve surgery may be needed to repair or ...

  13. Hypothyroidism Causes Endoplasmic Reticulum Stress in Adult Rat Hippocampus: A Mechanism Associated with Hippocampal Damage

    Directory of Open Access Journals (Sweden)

    Alejandra Paola Torres-Manzo

    2018-01-01

    Full Text Available Thyroid hormones (TH are essential for hippocampal neuronal viability in adulthood, and their deficiency causes hypothyroidism, which is related to oxidative stress events and neuronal damage. Also, it has been hypothesized that hypothyroidism causes a glucose deprivation in the neuron. This study is aimed at evaluating the temporal participation of the endoplasmic reticulum stress (ERE in hippocampal neurons of adult hypothyroid rats and its association with the oxidative stress events. Adult Wistar male rats were divided into euthyroid and hypothyroid groups. Thyroidectomy with parathyroid gland reimplementation caused hypothyroidism at three weeks postsurgery. Oxidative stress, redox environment, and antioxidant enzyme markers, as well as the expression of the ERE through the pathways of PERK, ATF6, and IRE1, were evaluated at the 3rd and 4th weeks postsurgery. We found a rise in ROS and nitrite production; also, catalase increased and glutathione peroxidase diminished their activities. These events promote an enhancement of the lipoperoxidation, as well as of γ-GT, myeloperoxidase, and caspase 3 activities. With respect to ERE, there were ATF6, IRE1, and GADD153 overexpressions with a reduction in mitochondrial activity and GSH2/GSSG ratio. We conclude that the endoplasmic reticulum stress might play a pivotal role in the activation of hypothyroidism-induced hippocampal cell death.

  14. A pellet-clad interaction failure criterion

    International Nuclear Information System (INIS)

    Howl, D.A.; Coucill, D.N.; Marechal, A.J.C.

    1983-01-01

    A Pellet-Clad Interaction (PCI) failure criterion, enabling the number of fuel rod failures in a reactor core to be determined for a variety of normal and fault conditions, is required for safety analysis. The criterion currently being used for the safety analysis of the Pressurized Water Reactor planned for Sizewell in the UK is defined and justified in this paper. The criterion is based upon a threshold clad stress which diminishes with increasing fast neutron dose. This concept is consistent with the mechanism of clad failure being stress corrosion cracking (SCC); providing excess corrodant is always present, the dominant parameter determining the propagation of SCC defects is stress. In applying the criterion, the SLEUTH-SEER 77 fuel performance computer code is used to calculate the peak clad stress, allowing for concentrations due to pellet hourglassing and the effect of radial cracks in the fuel. The method has been validated by analysis of PCI failures in various in-reactor experiments, particularly in the well-characterised power ramp tests in the Steam Generating Heavy Water Reactor (SGHWR) at Winfrith. It is also in accord with out-of-reactor tests with iodine and irradiated Zircaloy clad, such as those carried out at Kjeller in Norway. (author)

  15. Hyperbilirubinemia and rapid fatal hepatic failure in severe combined immunodeficiency caused by adenosine deaminase deficiency (ADA-SCID).

    Science.gov (United States)

    Kühl, J S; Schwarz, K; Münch, A; Schmugge, M; Pekrun, A; Meisel, C; Wahn, V; Ebell, W; von Bernuth, H

    2011-03-01

    Adenosin deaminase (ADA) deficiency is the cause for Severe Combined Immunodeficiency (SCID) in about 15% of patients with SCID, often presenting as T (-)B (-)NK (-)SCID. Treatment options for ADA-SCID are enzyme replacement, bone marrow transplantation or gene therapy. We here describe the first patient with ADA-SCID and fatal hepatic failure despite bone marrow transplantation from a 10/10 HLA identical related donor. As patients with ADA-SCID may be at yet underestimated increased risk for rapid hepatic failure we speculate whether hepatitis in ADA-SCID should lead to the immediate treatment with enzyme replacement by pegylated ADA. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Analysis of failure events for expansion joints in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Masahiro [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Although a large number of expansion joints are used in nuclear power plants with light water reactors, their failure events have not been paid as much attention as those of vessels and pipes. However, as the operation period of nuclear power plants becomes longer, it is necessary to pay attention to their failure events as well as those of vessels and pipes, because aging problems and latent troubles originated in design or fabrication of expansion joints may appear during their long period operation. In this work, we investigated failure event reports of expansion joints in nuclear power plants both in Japan and in U.S.A. and analyzed (1) the influence to output power level, (2) the position and (3) the cause of each failure. It is revealed that the failure events of expansion joints have continuously occurred, some of which have exerted influence upon power level and have caused fatal or injury accidents of personnel, and hence the importance of corrective actions to prevent the recurrence of such events is pointed out. The importance of countermeasures to the following individual events is also pointed out: (1) corrosion of expansion joints in service water systems, (2) degradation of rubber expansion joints in main condensers, (3) vibration and fatigue of expansion joints in extraction steam lines and (4) transgranular stress corrosion cracking of penetration bellows of containments. (author)

  17. Structural integrity of stainless steel components exposed to neutron irradiation. Change in failure strength of cracked components due to cold working

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Hojo, Tomohiro; Mochizuki, Masahito

    2015-01-01

    Load carrying capacity of austenitic stainless steel component is increased due to hardening caused by neutron irradiation if no crack is included in the component. On the other hand, if a crack is initiated in the reactor components, the hardening may decrease the load carrying capacity due to reduction in fracture toughness. In this paper, in order to develop a failure assessment procedure of irradiated cracked components, characteristics of change in failure strength of stainless steels due to cold working were investigated. It was experimentally shown that the proof and tensile strengths were increased by the cold working, whereas the fracture toughness was decreased. The fracture strengths of a cylinder with a circumferential surface crack were analyzed using the obtained material properties. Although the cold working altered the failure mode from plastic collapse to the unsteady ductile crack growth, it did not reduce failure strengths even if 50% cold working was applied. The increase in failure strength was caused not only by increase in flow stress but also by reduction in J-integral value, which was brought by the change in stress-strain curve. It was shown that the failure strength of the hardened stainless steel components could be derived by the two-parameter method, in which the change in material properties could be reasonably considered. (author)

  18. Best of failure analysis of turbomachinery components. Highlights from two decades' of laboratory practice; Best of Schadensanalyse an Turbomaschinen. Die Highlights aus 20 Jahren Laborpraxis

    Energy Technology Data Exchange (ETDEWEB)

    Neidel, Andreas; Cagliyan, Erhan; Gaedicke, Tobias; Giller, Madleine; Hartanto, Vincentius; Kramm, Christine; Riesenbeck, Susanne; Ullrich, Thomas; Wallich, Sebastian; Woehl, Eric [Siemens AG, Power and Gas, Berlin (Germany). Werkstoffprueflabor

    2017-01-15

    In this contribution, the most interesting and educational failure cases are presented that the author came across during his over twenty years of laboratory practice as manager of the Materials Testing Laboratory of the Berlin Gas Turbine Plant of Siemens' Power and Gas Division. The case studies are presented and categorised in accordance with VDI Guideline 3822, the German failure analyst's guide to the subject of how to organise and run a root cause failure analysis. An effort was made to have each of the main four categories of failure causes represented, namely failures due to mechanical loading, corrosive failures, failures due to thermal loading, and tribological failures. Case studies include turbomachinery components that failed due to tensile overload, stress corrosion cracking, intergranular corrosion, hydrogen embrittlement, hot cracking, fretting, erosion, and galling. Affected components include valves, retaining rings, tubing and piping, burners, rotor disks, lifting lugs, and casings. Some of the presented cases were published in the new section ''Failure Analysis'' of Practical Metallography between October 2011 and the present time. Others were oral presentations at the Metallography conferences and at the annual failure analysis conferences ''VDI Jahrestagung Schadensanalyse'', held during that time. The focus of discussion of the failure cases in this paper is the metallurgical evaluation of failure causes. This is the approach taken in many small and industrial laboratories. A holistic approach of a failure case, which includes calculation and simulation methods such as finite element analysis, and which also implies a knowledge of the service stresses intended by design as well as the actual loading situation of the failed part, is not the aim of this contribution.

  19. A comparative study of failure criteria in probabilistic fields and stochastic failure envelopes of composite materials

    International Nuclear Information System (INIS)

    Nakayasu, Hidetoshi; Maekawa, Zen'ichiro

    1997-01-01

    One of the major objectives of this paper is to offer a practical tool for materials design of unidirectional composite laminates under in-plane multiaxial load. Design-oriented failure criteria of composite materials are applied to construct the evaluation model of probabilistic safety based on the extended structural reliability theory. Typical failure criteria such as maximum stress, maximum strain and quadratic polynomial failure criteria are compared from the viewpoint of reliability-oriented materials design of composite materials. The new design diagram which shows the feasible region on in-plane strain space and corresponds to safety index or failure probability is also proposed. These stochastic failure envelope diagrams which are drawn in in-plane strain space enable one to evaluate the stochastic behavior of a composite laminate with any lamination angle under multi-axial stress or strain condition. Numerical analysis for a graphite/epoxy laminate of T300/5208 is shown for the comparative verification of failure criteria under the various combinations of multi-axial load conditions and lamination angles. The stochastic failure envelopes of T300/5208 were also described in in-plane strain space

  20. Estimation of the common cause failure probabilities on the component group with mixed testing scheme

    International Nuclear Information System (INIS)

    Hwang, Meejeong; Kang, Dae Il

    2011-01-01

    Highlights: ► This paper presents a method to estimate the common cause failure probabilities on the common cause component group with mixed testing schemes. ► The CCF probabilities are dependent on the testing schemes such as staggered testing or non-staggered testing. ► There are many CCCGs with specific mixed testing schemes in real plant operation. ► Therefore, a general formula which is applicable to both alternate periodic testing scheme and train level mixed testing scheme was derived. - Abstract: This paper presents a method to estimate the common cause failure (CCF) probabilities on the common cause component group (CCCG) with mixed testing schemes such as the train level mixed testing scheme or the alternate periodic testing scheme. In the train level mixed testing scheme, the components are tested in a non-staggered way within the same train, but the components are tested in a staggered way between the trains. The alternate periodic testing scheme indicates that all components in the same CCCG are tested in a non-staggered way during the planned maintenance period, but they are tested in a staggered way during normal plant operation. Since the CCF probabilities are dependent on the testing schemes such as staggered testing or non-staggered testing, CCF estimators have two kinds of formulas in accordance with the testing schemes. Thus, there are general formulas to estimate the CCF probability on the staggered testing scheme and non-staggered testing scheme. However, in real plant operation, there are many CCCGs with specific mixed testing schemes. Recently, Barros () and Kang () proposed a CCF factor estimation method to reflect the alternate periodic testing scheme and the train level mixed testing scheme. In this paper, a general formula which is applicable to both the alternate periodic testing scheme and the train level mixed testing scheme was derived.

  1. Heart Failure in Women

    Science.gov (United States)

    Bozkurt, Biykem; Khalaf, Shaden

    2017-01-01

    Heart failure is an important cause of morbidity and mortality in women, and they tend to develop it at an older age compared to men. Heart failure with preserved ejection fraction is more common in women than in men and accounts for at least half the cases of heart failure in women. When comparing men and women who have heart failure and a low left ventricular ejection fraction, the women are more symptomatic and have a similarly poor outcome. Overall recommendations for guideline-directed medical therapies show no differences in treatment approaches between men and women. Overall, women are generally underrepresented in clinical trials for heart failure. Further studies are needed to shed light into different mechanisms, causes, and targeted therapies of heart failure in women. PMID:29744014

  2. Catastrophic failures due to environment-assisted cracking of metals: Case histories

    International Nuclear Information System (INIS)

    Shipilov, S.A.

    1999-01-01

    One of the most serious problems in development of reliable equipment and structures in numerous major industries, namely a problem of the environment-assisted cracking of engineering materials, has been reviewed. This problem is directly related to the problems of maintenance of the safety and reliability of potentially dangerous engineering systems, such as nuclear power plants, fossil fuel power plants, oil and gas pipelines, field equipment, oil production platforms, aircraft and aerospace technologies, chemical plants, etc. At present, environment-assisted cracking, including stress corrosion cracking, corrosion fatigue, hydrogen-induced cracking, hydrogen embrittlement, sulfide stress cracking, irradiation-assisted stress corrosion cracking, and metal-induced embrittlement, has been a major cause of the premature failures of various components and equipment in these systems. (author)

  3. Mechanical modelling of transient- to- failure SFR fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L. E.

    2014-07-01

    The response of Sodium Fast Reactor (SFR) fuel rods to transient accident conditions is an important safety concern. During transients the cladding strain caused by the stress due to pellet cladding mechanical interaction (PCMI) can lead to failure. Due to the fact that SFR fuel rods are commonly clad with strengthened material made of stainless steel (SS), cladding is usually treated as an elastic-perfectly-plastic material. However, viscoplastic behaviour can contribute to mechanical strain at high temperature (> 1000 K). (Author)

  4. Technology integration box beam failure study

    Science.gov (United States)

    Shuart, M. J.; Ambur, Damodar R.; Davis, D. D., Jr.; Davis, R. C.; Farley, G. L.; Lotts, C. G.; Wang, J. T.

    1993-01-01

    Composite structures have the potential to be cost-effective, structurally efficient primary aircraft structures. The Advanced Composites Technology (ACT) Program has the goal to develop the technology to exploit this potential for heavily loaded aircraft structures. As part of the ACT Program, Lockheed Aeronautical Systems Company completed the design and fabrication of the Technology Integration Box Beam (TIBB). The TIBB is an advanced composite prototype structure for the center wing section of the C-130 aircraft. Lockheed subjected the TIBB to downbending, upbending, torsion and combined upbending and torsion load conditions to verify the design. The TIBB failed at 83 percent of design ultimate load for the combined upbending and torsion load condition. The objective of this paper is to describe the mechanisms that led to the failure of the TIBB. The results of a comprehensive analytical and experimental study are presented. Analytical results include strain and deflection results from both a global analysis of the TIBB and a local analysis of the failure region. These analytical results are validated by experimental results from the TIBB tests. The analytical and experimental results from the TIBB tests are used to determine a sequence of events that resulted in failure of the TIBB. A potential cause of failure is high stresses in a stiffener runout region. Analytical and experimental results are also presented for a stiffener runout specimen that was used to simulate the TIBB failure mechanisms.

  5. Sensitivity analysis on the effect of software-induced common cause failure probability in the computer-based reactor trip system unavailability

    International Nuclear Information System (INIS)

    Kamyab, Shahabeddin; Nematollahi, Mohammadreza; Shafiee, Golnoush

    2013-01-01

    Highlights: ► Importance and sensitivity analysis has been performed for a digitized reactor trip system. ► The results show acceptable trip unavailability, for software failure probabilities below 1E −4 . ► However, the value of Fussell–Vesley indicates that software common cause failure is still risk significant. ► Diversity and effective test is founded beneficial to reduce software contribution. - Abstract: The reactor trip system has been digitized in advanced nuclear power plants, since the programmable nature of computer based systems has a number of advantages over non-programmable systems. However, software is still vulnerable to common cause failure (CCF). Residual software faults represent a CCF concern, which threat the implemented achievements. This study attempts to assess the effectiveness of so-called defensive strategies against software CCF with respect to reliability. Sensitivity analysis has been performed by re-quantifying the models upon changing the software failure probability. Importance measures then have been estimated in order to reveal the specific contribution of software CCF in the trip failure probability. The results reveal the importance and effectiveness of signal and software diversity as applicable strategies to ameliorate inefficiencies due to software CCF in the reactor trip system (RTS). No significant change has been observed in the rate of RTS failure probability for the basic software CCF greater than 1 × 10 −4 . However, the related Fussell–Vesley has been greater than 0.005, for the lower values. The study concludes that consideration of risk associated with the software based systems is a multi-variant function which requires compromising among them in more precise and comprehensive studies

  6. Failure of Elevating Calcium Induces Oxidative Stress Tolerance and Imparts Cisplatin Resistance in Ovarian Cancer Cells

    OpenAIRE

    Ma, Liwei; Wang, Hongjun; Wang, Chunyan; Su, Jing; Xie, Qi; Xu, Lu; Yu, Yang; Liu, Shibing; Li, Songyan; Xu, Ye; Li, Zhixin

    2016-01-01

    Cisplatin is a commonly used chemotherapeutic drug, used for the treatment of malignant ovarian cancer, but acquired resistance limits its application. There is therefore an overwhelming need to understand the mechanism of cisplatin resistance in ovarian cancer, that is, ovarian cancer cells are insensitive to cisplatin treatment. Here, we show that failure of elevating calcium and oxidative stress tolerance play key roles in cisplatin resistance in ovarian cancer cell lines. Cisplatin induce...

  7. Biaxial Stress Tests of Plain Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.K.; Cho, M.S.; Song, Y.C. [Korea Electric Power Research Institute, Taejon (Korea)

    2001-07-01

    Containment concrete specimens(4000, 5000psi) were tested under biaxial stress and presented basic physical properties and biaxial failure envelops for the concrete specimens. Failure behaviors of concrete under biaxial stress were assessed with stress-strain responses and failure modes. Here provided real test data to develop nonlinear finite element concrete models. (author). 15 refs., 46 figs., 4 tabs.

  8. Analysis of the prevalence and causes of ultrafiltration failure during long-term peritoneal dialysis: a cross-sectional study

    NARCIS (Netherlands)

    Smit, Watske; Schouten, Natalie; van den Berg, Nicole; Langedijk, Monique J.; Struijk, Dirk G.; Krediet, Raymond T.

    2004-01-01

    BACKGROUND: Ultrafiltration failure (UFF) is a major complication of peritoneal dialysis (PD). It can occur at any stage of PD, but develops in time and is, therefore, especially important in long-term treatment. To investigate its prevalence and to identify possible causes, we performed a

  9. Procedures for conducting common cause failure analysis in probabilistic safety assessment

    International Nuclear Information System (INIS)

    1992-05-01

    The principal objective of this report is to supplement the procedure developed in Mosleh et al. (1988, 1989) by providing more explicit guidance for a practical approach to common cause failures (CCF) analysis. The detailed CCF analysis following that procedure would be very labour intensive and time consuming. This document identifies a number of options for performing the more labour intensive parts of the analysis in an attempt to achieve a balance between the need for detail, the purpose of the analysis and the resources available. The document is intended to be compatible with the Agency's Procedures for Conducting Probabilistic Safety Assessments for Nuclear Power Plants (IAEA, 1992), but can be regarded as a stand-alone report to be used in conjunction with NUREG/CR-4780 (Mosleh et al., 1988, 1989) to provide additional detail, and discussion of key technical issues

  10. Failure Investigation of a Cage Suspension Gear Chain used in Coal Mines

    Science.gov (United States)

    Ghosh, Debashis; Dutta, Shamik; Shukla, Awdhesh Kumar; Roy, Himadri

    2016-10-01

    This investigation is primarily aimed to examine the probable causes of in-service failure of cage suspension gear chain used in coal mines. Preliminary visual examination, dimensional measurement, chemical analysis, magnetic particle inspection and estimation of mechanical properties are necessary supplement to this investigation. Optical microscopic analysis along with scanning electron microscopy examinations are carried out to understand the metallurgical reasons for failure. The visual examination and magnetic particle investigations reveal presence of fissure cracks at weld joint for both un-failed and failed end link chain. The average hardness value has been found to increase gradually with the distance from the weld interface. The macro and microstructural examinations of the samples prepared from both failed and un-failed specimens depict presence of continuous as well as aligned linear inclusions randomly distributed along with decarburized layer at weld interface/fusion zone. Fractographic examination shows flat fracture covering major portion of cross-section, which is surrounded by a narrow annular metallic fracture surface having a texture different from that of the remaining surface. Fracture mechanics principles have been used to study the fatigue crack growth rate in both weld region and base region of the un-failed gear chain material. Detailed stress analyses are also carried out to evaluate the stress generated along the chain periphery. Finally, it is concluded that presence of serious weld defect due to use of improper welding parameters/procedure caused failure of the end links of the investigated chain link.

  11. Reactor Materials Program probability of indirectly--induced failure of L and P reactor process water piping

    International Nuclear Information System (INIS)

    Daugherty, W.L.

    1988-01-01

    The design basis accident for the Savannah River Production Reactors is the abrupt double-ended guillotine break (DEGB) of a large process water pipe. This accident is not considered credible in light of the low applied stresses and the inherent ductility of the piping material. The Reactor Materials Program was initiated to provide the technical basis for an alternate credible design basis accident. One aspect of this work is to determine the probability of the DEGB; to show that in addition to being incredible, it is also highly improbable. The probability of a DEGB is broken into two parts: failure by direct means, and indirectly-induced failure. Failure of the piping by direct means can only be postulated to occur if an undetected crack grows to the point of instability, causing a large pipe break. While this accident is not as severe as a DEGB, it provides a conservative upper bound on the probability of a direct DEGB of the piping. The second part of this evaluation calculates the probability of piping failure by indirect causes. Indirect failure of the piping can be triggered by an earthquake which causes other reactor components or the reactor building to fall on the piping or pull it from its supports. Since indirectly-induced failure of the piping will not always produce consequences as severe as a DEGB, this gives a conservative estimate of the probability of an indirectly- induced DEGB. This second part, indirectly-induced pipe failure, is the subject of this report. Failure by seismic loads in the piping itself will be covered in a separate report on failure by direct causes. This report provides a detailed evaluation of L reactor. A walkdown of P reactor and an analysis of the P reactor building provide the basis for extending the L reactor results to P reactor

  12. Recent insights from the international common-cause failure data exchange project

    Energy Technology Data Exchange (ETDEWEB)

    Kreuser, Albert [Gesellschaft fur Anlagen- und Reaktorsicherheit (GRS) gGmbH, Cologne (Germany); Johanson, Gunner [AF Industry, Stockholm (Sweden)

    2017-03-15

    Common-cause failure (CCF) events can significantly impact the availability of safety systems of nuclear power plants. For this reason, the International Common Cause Data Exchange (ICDE) project was initiated by several countries in 1994. Since 1997 it has been operated within the Organisation for Economic Co-operation and Development (OECD)/Nuclear Energy Agency (NEA) framework and has successfully been operated over six consecutive terms (the current term being 2015–2017). The ICDE project allows multiple countries to collaborate and exchange CCF data to enhance the quality of risk analyses, which include CCF modeling. As CCF events are typically rare, most countries do not experience enough CCF events to perform meaningful analyses. Data combined from several countries, however, have yielded sufficient data for more rigorous analyses. The ICDE project has meanwhile published 11 reports on the collection and analysis of CCF events of specific component types (centrifugal pumps, emergency diesel generators, motor operated valves, safety and relief valves, check valves, circuit breakers, level measurement, control rod drive assemblies, and heat exchangers) and two topical reports. This paper presents recent activities and lessons learnt from the data collection and the results of topical analysis on emergency diesel generator CCF impacting entire exposed population.

  13. Recent Insights from the International Common-Cause Failure Data Exchange Project

    Directory of Open Access Journals (Sweden)

    Albert Kreuser

    2017-03-01

    Full Text Available Common-cause failure (CCF events can significantly impact the availability of safety systems of nuclear power plants. For this reason, the International Common Cause Data Exchange (ICDE project was initiated by several countries in 1994. Since 1997 it has been operated within the Organisation for Economic Co-operation and Development (OECD/Nuclear Energy Agency (NEA framework and has successfully been operated over six consecutive terms (the current term being 2015–2017. The ICDE project allows multiple countries to collaborate and exchange CCF data to enhance the quality of risk analyses, which include CCF modeling. As CCF events are typically rare, most countries do not experience enough CCF events to perform meaningful analyses. Data combined from several countries, however, have yielded sufficient data for more rigorous analyses. The ICDE project has meanwhile published 11 reports on the collection and analysis of CCF events of specific component types (centrifugal pumps, emergency diesel generators, motor operated valves, safety and relief valves, check valves, circuit breakers, level measurement, control rod drive assemblies, and heat exchangers and two topical reports. This paper presents recent activities and lessons learnt from the data collection and the results of topical analysis on emergency diesel generator CCF impacting entire exposed population.

  14. Managing Feelings about Heart Failure

    Science.gov (United States)

    ... About Heart Failure Module 6: Managing Feelings About Heart Failure Download Module Order Hardcopy Heart failure can cause ... professional help for emotional problems. Common Feelings About Heart Failure It is common for people to feel depressed ...

  15. Using the 2011 Mw9.0 Tohoku earthquake to test the Coulomb stress triggering hypothesis and to calculate faults brought closer to failure

    Science.gov (United States)

    Toda, Shinji; Lin, Jian; Stein, Ross S.

    2011-01-01

    The 11 March 2011 Tohoku Earthquake provides an unprecedented test of the extent to which Coulomb stress transfer governs the triggering of aftershocks. During 11-31 March, there were 177 aftershocks with focal mechanisms, and so the Coulomb stress change imparted by the rupture can be resolved on the aftershock nodal planes to learn whether they were brought closer to failure. Numerous source models for the mainshock have been inverted from seismic, geodetic, and tsunami observations. Here, we show that, among six tested source models, there is a mean 47% gain in positively-stressed aftershock mechanisms over that for the background (1997-10 March 2011) earthquakes, which serve as the control group. An aftershock fault friction of 0.4 is found to fit the data better than 0.0 or 0.8, and among all the tested models, Wei and Sladen (2011) produced the largest gain, 63%. We also calculate that at least 5 of the seven large, exotic, or remote aftershocks were brought ≥0.3 bars closer to failure. With these tests as confirmation, we calculate that large sections of the Japan trench megathrust, the outer trench slope normal faults, the Kanto fragment beneath Tokyo, and the Itoigawa-Shizuoka Tectonic Line, were also brought ≥0.3 bars closer to failure.

  16. Assessment of the causes of failures of roto-dynamic equipment in Cirus

    International Nuclear Information System (INIS)

    Rao, K.N.; Singh, S.; Ganeshan, P.

    1994-01-01

    As a part of Cirus reactor life extension program study, a service life evaluation of critical roto-dynamic equipment in Cirus such as primary coolant pumps, and their concrete foundation structures, pressurised water loop pumps, main air compressors and supply and exhaust fans, was performed. An assessment of the causes of failures of roto-dynamic equipment in Cirus was done. Based on assessment of the degradation mitigating features and comparison to similar roto-dynamic equipment and their concrete foundation structures, it was concluded that life extension of these roto-dynamic equipment and their structures is feasible. To support this conclusion a program involving: a) non-destructive testing, b) surveillance and monitoring and, c) preventive maintenance is recommended. (author). 4 refs

  17. An informatics-based approach to reducing heart failure all-cause readmissions: the Stanford heart failure dashboard.

    Science.gov (United States)

    Banerjee, Dipanjan; Thompson, Christine; Kell, Charlene; Shetty, Rajesh; Vetteth, Yohan; Grossman, Helene; DiBiase, Aria; Fowler, Michael

    2017-05-01

    Reduction of 30-day all-cause readmissions for heart failure (HF) has become an important quality-of-care metric for health care systems. Many hospitals have implemented quality improvement programs designed to reduce 30-day all-cause readmissions for HF. Electronic medical record (EMR)-based measures have been employed to aid in these efforts, but their use has been largely adjunctive to, rather than integrated with, the overall effort. We hypothesized that a comprehensive EMR-based approach utilizing an HF dashboard in addition to an established HF readmission reduction program would further reduce 30-day all-cause index hospital readmission rates for HF. After establishing a quality improvement program to reduce 30-day HF readmission rates, we instituted EMR-based measures designed to improve cohort identification, intervention tracking, and readmission analysis, the latter 2 supported by an electronic HF dashboard. Our primary outcome measure was the 30-day index hospital readmission rate for HF, with secondary measures including the accuracy of identification of patients with HF and the percentage of patients receiving interventions designed to reduce all-cause readmissions for HF. The HF dashboard facilitated improved penetration of our interventions and reduced readmission rates by allowing the clinical team to easily identify cohorts with high readmission rates and/or low intervention rates. We significantly reduced 30-day index hospital all-cause HF readmission rates from 18.2% at baseline to 14% after implementation of our quality improvement program ( P  = .045). Implementation of our EMR-based approach further significantly reduced 30-day index hospital readmission rates for HF to 10.1% ( P for trend = .0001). Daily time to screen patients decreased from 1 hour to 15 minutes, accuracy of cohort identification improved from 83% to 94.6% ( P  = .0001), and the percentage of patients receiving our interventions, such as patient education

  18. Heart Failure

    OpenAIRE

    McMurray, John; Ponikowski, Piotr

    2011-01-01

    Heart failure occurs in 3% to 4% of adults aged over 65 years, usually as a consequence of coronary artery disease or hypertension, and causes breathlessness, effort intolerance, fluid retention, and increased mortality. The 5-year mortality in people with systolic heart failure ranges from 25% to 75%, often owing to sudden death following ventricular arrhythmia. Risks of cardiovascular events are increased in people with left ventricular systolic dysfunction (LVSD) or heart failure.

  19. On rate-state and Coulomb failure models

    Science.gov (United States)

    Gomberg, J.; Beeler, N.; Blanpied, M.

    2000-01-01

    We examine the predictions of Coulomb failure stress and rate-state frictional models. We study the change in failure time (clock advance) Δt due to stress step perturbations (i.e., coseismic static stress increases) added to "background" stressing at a constant rate (i.e., tectonic loading) at time t0. The predictability of Δt implies a predictable change in seismicity rate r(t)/r0, testable using earthquake catalogs, where r0 is the constant rate resulting from tectonic stressing. Models of r(t)/r0, consistent with general properties of aftershock sequences, must predict an Omori law seismicity decay rate, a sequence duration that is less than a few percent of the mainshock cycle time and a return directly to the background rate. A Coulomb model requires that a fault remains locked during loading, that failure occur instantaneously, and that Δt is independent of t0. These characteristics imply an instantaneous infinite seismicity rate increase of zero duration. Numerical calculations of r(t)/r0 for different state evolution laws show that aftershocks occur on faults extremely close to failure at the mainshock origin time, that these faults must be "Coulomb-like," and that the slip evolution law can be precluded. Real aftershock population characteristics also may constrain rate-state constitutive parameters; a may be lower than laboratory values, the stiffness may be high, and/or normal stress may be lower than lithostatic. We also compare Coulomb and rate-state models theoretically. Rate-state model fault behavior becomes more Coulomb-like as constitutive parameter a decreases relative to parameter b. This is because the slip initially decelerates, representing an initial healing of fault contacts. The deceleration is more pronounced for smaller a, more closely simulating a locked fault. Even when the rate-state Δt has Coulomb characteristics, its magnitude may differ by some constant dependent on b. In this case, a rate-state model behaves like a modified

  20. Failures of austenitic stainless steel components during storage: Case studies

    International Nuclear Information System (INIS)

    Shah, B.K.; Rastogi, P.K.; Sinha, A.K.; Kulkarni, P.G.

    1993-01-01

    Three studies of failures of austenitic stainless steel components during storage are described. In all cases, stress corrosion cracking was the failure mode by the action of residual stress alone. However, the source of residual stress was different for each case. Case 1 was the failure of a sample tube header for a pressurized heavy water reactor (PHWR). In Case 2, a heat exchanger shell failed during a hydrotest in a fertilizer plant. Cases concerned the cracking of type 304L plates used for spent fuel pool lining of a nuclear power station

  1. The conservatism of the net-section stress procedure for predicting the failure of cracked piping systems: the effect of crack shape complexity on the degree of conservatism

    International Nuclear Information System (INIS)

    Smith, E.

    1996-01-01

    The failure of circumferentially cracked steel piping is often predicted by assuming that failure conforms to a net-section stress criterion using as input an appropriate value for the critical net-section stress together with a knowledge of the anticipated loadings. The stress at the cracked section is usually calculated via a purely elastic analysis based on the piping being uncracked. however, because the piping is built-in at the ends into a larger component, and since the onset of crack extension requires some plastic deformation, use of the net-section stress approach can give overly conservative failure predictions. In earlier work, the author has quantified the extent of this conservatism, and has shown how it depends on the geometry of the cracked section, the material ductility and the elastic flexibility of a piping system. This paper quantifies the conservatism with regard to the case where a through-wall crack extends over a prescribed fraction of the pipe circumference, while there is also an internal circumferential crack extending around the remainder of the pipe section. This is an extreme form of circumferential cracking but nevertheless, simulates the well-known Duane Arnold safe-end crack. (Author)

  2. Quantitative analysis of Common cause failures in systems with a high level of redundancies

    International Nuclear Information System (INIS)

    Pereira Pagan, B.; Lopez Fdez-Quevedo, C.; Gomez, F.; Cuallado, G.

    1996-01-01

    The importance of common cause failures in plants with systems featuring a high level of redundancies, and the difficulty implied by the lack of data on specific KWU design plants have been taken into account right from the beginning of the PSA. for this reason it has been necessary to analyse the different methodologies by establishing a procedure based on the documentation available, studying its applicability and solving problems arising from of the lack of information needed to make reliable statistical estimates. It was finally decided to systematically use the alpha parameter method. In case where this was not possible, the modified Beta factor method was used, and if there were no data available for the type of component considered, generic alpha values were used. this process required the definition of certain criteria to maintain coherent parameter estimates. The final result shows the impact of the number of redundancies considered in the estimated failure probability or rare. This process is valid for any size of system modelled. (Author)

  3. Nonacetaminophen Drug-Induced Acute Liver Failure.

    Science.gov (United States)

    Thomas, Arul M; Lewis, James H

    2018-05-01

    Acute liver failure of all causes is diagnosed in between 2000 and 2500 patients annually in the United States. Drug-induced acute liver failure is the leading cause of acute liver failure, accounting for more than 50% of cases. Nonacetaminophen drug injury represents 11% of all cases in the latest registry from the US Acute Liver Failure Study Group. Although rare, acute liver failure is clinically dramatic when it occurs, and requires a multidisciplinary approach to management. In contrast with acetaminophen-induced acute liver failure, non-acetaminophen-induced acute liver failure has a more ominous prognosis with a lower liver transplant-free survival. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. The Causes of Failure of the European Constitution From the Perspective of the Constitution-Making Process

    Directory of Open Access Journals (Sweden)

    Robert Podolnjak

    2006-01-01

    Full Text Available The basic argument of the article is that the main causes of failure of the European Constitution stem from an inadequate preparation and implementation of a complex procedure of constitution-making for a federation of countries on a continental scale. This process includes the issues of temporal aspects of constitutionmaking, the subject of constitution-making, the text of the constitution, the strategy of constitutional ratifi cation and the constitution-makers themselves. The principal causes of failure of the European Constitution will be presented in the form of certain preliminary assumptions, which will then be examined in the light of certain comparative experiences of constitution-making in two federal systems – the American and the Swiss system. The primary mistakes of the European constitution-making are refl ected in the lack of an appropriate moment for making the constitution, in the vagueness of the document in terms of its constitutional or contractual quality, in the creation of a text of the Constitution which is completely incomprehensible to the average citizen, in the making of the Constitution without a vision or ambition, in the complete lack of any strategy of ratifi cation of the Constitution, in the insistence on the direct participation of the people in the adoption of the Constitution, which is legally and politically considered primarily an international treaty, and in badly managed media presentation and defence of the Constitution before the European public. The most important mistakes, crucial to the failure of the Constitution, are the ambivalent approach of the European constitutionmakers to the mode of ratifi cation of the Constitution, and their disregard of the constitution-making experience of other federal countries.

  5. Failure prevention with stress measurement for dismantling of nuclear facilities. Final report

    International Nuclear Information System (INIS)

    Komber, T.; Reimche, W.; Bach, F.W.

    2003-07-01

    The dismantling of nuclear facilities is in progress since 20 years in Germany. Practical experiences in decommissioning have shown, that problem can occur during dismantling operations caused by release of residual stresses. In this case cutting parts or cutting tools get jammed if mechanical cutting techniques are used. The aim of this research work was to develop measuring techniques for the determination of the stress state in RPV, to predict the deformation during dismantling operations. This can serve as additional base for improved decommissioning planning and for time optimised dismantling. For determination of the stress state in components two small and inexpensive measuring techniques were new designed, for remote-controlled on-site use in atmosphere and under water. For the nondestructive determination of the directional stress state, based on the magnetostriction and the Harmonic-Analysis of alternating magnetic fields, a new developed rotating sensor is in use with a principal magnetisation direction. Because of the mainly isotropic material properties and the directional stresses, measured Harmonic values are influenced mainly by the stress state in the surface areas. In this way it is possible to determine the stress state qualitatively and the direction of principal stresses in the surface areas of the component. As an alternative to the established wire strain gauge, which remote-controlled application is still not possible under water, a new slot jet cutting strain control technique was designed. This technique detects the deformation in the surface after stresses are cut free by a water jet. So the stress state could be determined quantitatively in the surface and assessed in the depth. With the help of these two measuring techniques it is possible to characterize the stress state along a planned cutting line. The use of an adapted FEM simulation enables to calculate and determine the deformation of the cutting gap beforehand. These information

  6. STRESSES IN CEMENT-CONCRETE PAVEMENT SURFACING CAUSED BY THERMAL SHOCK

    Directory of Open Access Journals (Sweden)

    M. K. Pshembaev

    2016-01-01

    Full Text Available It is necessary to mention specially so-called thermal shock among various impacts on highway surface. Ice layer is formed on a concrete surface during the winter period of pavement surfacing operation. Sodium chloride which lowers temperature of water-ice transition temperature and causes ice thawing at negative temperature is usually used to remove ice from the pavement surface. Consequently, temperature in the concrete laying immediately under a thawing ice layer is coming down with a run that leads to significant stresses. Such phenomenon is known as a thermal shock with a meaning of local significant change in temperature. This process is under investigation, it has practical importance for an estimation of strength and longevity of a cement-concrete pavement surfacing and consequently it is considered as rather topical issue. The purpose of investigations is to develop a mathematical model and determination of shock blow permissible gradients for a cementconcrete road covering. Finite difference method has been used in order to determine stressed and deformed condition of the cement-concrete pavement surfacing of highways. A computer program has been compiled and it permits to carry out calculation of a road covering at various laws of temperature distribution in its depth. Regularities in distribution of deformation and stresses in the cement-concrete pavement surfacing of highways at thermal shock have been obtained in the paper. A permissible parameter of temperature distribution in pavement surfacing thickness has been determined in the paper. A strength criterion based on the process of micro-crack formation and development in concrete has been used for making calculations. It has been established that the thermal shock causes significant temperature gradients on the cement-concrete surfacing that lead to rather large normal stresses in the concrete surface layer. The possibility of micro-crack formation in a road covering is

  7. What caused Chicago bank failures in the Great Depression? A look at the 1920s.

    OpenAIRE

    Natacha Postel-Vinay

    2015-01-01

    This paper reassesses the causes of Chicago bank failures during the Great Depression by tracking the evolution of their balance sheets in the 1920s. I find that all Chicago banks suffered tremendous deposit withdrawals; however banks that failed earlier in the 1930s had invested more in mortgages in the 1920s. The main problem with mortgages was their lack of liquidity, not their quality. Banks heavily engaged in mortgages did not have enough liquid assets to face the withdrawals and failed....

  8. Temperature stress effects in Bemisia tabaci (Hemiptera: Aleyrodidae) type B whiteflies

    Science.gov (United States)

    Oxidative stress occurs in response to changes in the redox equilibiurm, which may be caused by increases in reactive oxygen species (ROS), a decrease in antioxidant protection or failure of cells to repair oxidative damage. ROS are either free radicals, reactive molecules containing oxygen atoms or...

  9. Stress corrosion and corrosion fatigue crack growth monitoring in metals

    International Nuclear Information System (INIS)

    Senadheera, T.; Shipilov, S.A.

    2003-01-01

    Environmentally assisted cracking (including stress corrosion cracking and corrosion fatigue) is one of the major causes for materials failure in a wide variety of industries. It is extremely important to understand the mechanism(s) of environmentally assisted crack propagation in structural materials so as to choose correctly from among the various possibilities-alloying elements, heat treatment of steels, parameters of cathodic protection, and inhibitors-to prevent in-service failures due to stress corrosion cracking and corrosion fatigue. An important step towards understanding the mechanism of environmentally assisted crack propagation is designing a testing machine for crack growth monitoring and that simultaneously provides measurement of electrochemical parameters. In the present paper, a direct current (DC) potential drop method for monitoring crack propagation in metals and a testing machine that uses this method and allows for measuring electrochemical parameters during stress corrosion and corrosion fatigue crack growth are described. (author)

  10. Failure modes of composite sandwich beams

    Directory of Open Access Journals (Sweden)

    Gdoutos E.

    2008-01-01

    Full Text Available A thorough investigation of failure behavior of composite sandwich beams under three-and four-point bending was undertaken. The beams were made of unidirectional carbon/epoxy facings and a PVC closed-cell foam core. The constituent materials were fully characterized and in the case of the foam core, failure envelopes were developed for general two-dimensional states of stress. Various failure modes including facing wrinkling, indentation failure and core failure were observed and compared with analytical predictions. The initiation, propagation and interaction of failure modes depend on the type of loading, constituent material properties and geometrical dimensions.

  11. [A sense of responsibility in health personnel as a cause of work-related stress].

    Science.gov (United States)

    Nedić, Olesja; Jocić, Neda; Filipović, Danka; Solak, Zdravko

    2002-01-01

    Job stress is a great problem in developed countries of the world, but in Yugoslavia, it is increased due to additional reasons associated with economic crisis in the society. Health services and health workers are in particularly difficult conditions. The aim of this paper was to examine sources and causes of job stress in health workers. The research was undertaken among health workers treated at Health Centre "Hospital" in Novi Sad. The study group included health workers--doctors, nurses and laboratory workers, and the control group included the rest of non-medical staff. Adapted Siegrist questionnaire was used. Three factors were examined: extrinsic efforts (disturbances at work, sense of great job responsibility and the need for overtime work); intrinsinc efforts (major criticism, thinking about the job from the early morning, getting nervous because of minor problems, discontentment because of unsolved problems at work, relaxation at home and so on), and low reward (respect from the superiors and colleagues, support and security at workplace). Answers were scored indicating intensity (high, moderate, low, not at all). Statistic analysis included testing the level of significance in health workers in relation to non-medical staff (t test and Fisher's exact test). Applying the scoring system it has been established that health workers are exposed to greater job stress, great sense of very high job responsibility and frequent overtime work (p stress increases absenteeism, reduces work productivity, causes higher expenses of medical treatment, rehabilitation and staff retraining. It is of great importance to identify factors which cause job dissatisfaction in order to decrease them to the lowest level. High sense of responsibility in health workers is a course of job stress.

  12. Fatigue life prediction method for contact wire using maximum local stress

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Seok; Haochuang, Li; Seok, Chang Sung; Koo, Jae Mean [Sungkyunkwan University, Suwon (Korea, Republic of); Lee, Ki Won; Kwon, Sam Young; Cho, Yong Hyeon [Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-01-15

    Railway contact wires supplying electricity to trains are exposed to repeated mechanical strain and stress caused by their own weight and discontinuous contact with a pantograph during train operation. Since the speed of railway transportation has increased continuously, railway industries have recently reported a number of contact wire failures caused by mechanical fatigue fractures instead of normal wear, which has been a more common failure mechanism. To secure the safety and durability of contact wires in environments with increased train speeds, a bending fatigue test on contact wire has been performed. The test equipment is too complicated to evaluate the fatigue characteristics of contact wire. Thus, the axial tension fatigue test was performed for a standard specimen, and the bending fatigue life for the contact wire structure was then predicted using the maximum local stress occurring at the top of the contact wire. Lastly, the tested bending fatigue life of the structure was compared with the fatigue life predicted by the axial tension fatigue test for verification.

  13. Fatigue life prediction method for contact wire using maximum local stress

    International Nuclear Information System (INIS)

    Kim, Yong Seok; Haochuang, Li; Seok, Chang Sung; Koo, Jae Mean; Lee, Ki Won; Kwon, Sam Young; Cho, Yong Hyeon

    2015-01-01

    Railway contact wires supplying electricity to trains are exposed to repeated mechanical strain and stress caused by their own weight and discontinuous contact with a pantograph during train operation. Since the speed of railway transportation has increased continuously, railway industries have recently reported a number of contact wire failures caused by mechanical fatigue fractures instead of normal wear, which has been a more common failure mechanism. To secure the safety and durability of contact wires in environments with increased train speeds, a bending fatigue test on contact wire has been performed. The test equipment is too complicated to evaluate the fatigue characteristics of contact wire. Thus, the axial tension fatigue test was performed for a standard specimen, and the bending fatigue life for the contact wire structure was then predicted using the maximum local stress occurring at the top of the contact wire. Lastly, the tested bending fatigue life of the structure was compared with the fatigue life predicted by the axial tension fatigue test for verification.

  14. Acute respiratory failure caused by organizing pneumonia secondary to antineoplastic therapy for non-Hodgkin's lymphoma

    Science.gov (United States)

    Santana, Adriell Ramalho; Amorim, Fábio Ferreira; Soares, Paulo Henrique Alves; de Moura, Edmilson Bastos; Maia, Marcelo de Oliveira

    2012-01-01

    Interstitial lung diseases belong to a group of diseases that typically exhibit a subacute or chronic progression but that may cause acute respiratory failure. The male patient, who was 37 years of age and undergoing therapy for non-Hodgkin's lymphoma, was admitted with cough, fever, dyspnea and acute hypoxemic respiratory failure. Mechanical ventilation and antibiotic therapy were initiated but were associated with unfavorable progression. Thoracic computed tomography showed bilateral pulmonary "ground glass" opacities. Methylprednisolone pulse therapy was initiated with satisfactory response because the patient had used three drugs related to organizing pneumonia (cyclophosphamide, doxorubicin and rituximab), and the clinical and radiological symptoms were suggestive. Organizing pneumonia may be idiopathic or linked to collagen diseases, drugs and cancer and usually responds to corticosteroid therapy. The diagnosis was anatomopathological, but the patient's clinical condition precluded performing a lung biopsy. Organizing pneumonia should be a differential diagnosis in patients with apparent pneumonia and a progression that is unfavorable to antimicrobial treatment. PMID:23917942

  15. Residual stress in silicon wafer using IR polariscope

    Science.gov (United States)

    Lu, Zhijia; Wang, Pin; Asundi, Anand

    2008-09-01

    The infrared phase shift polariscope (IR-PSP) is a full-field optical technique for stress analysis in Silicon wafers. Phase shift polariscope is preferred to a conventional polariscope, as it can provide quantitative information of the normal stress difference and the shear stress in the specimen. The method is based on the principles of photoelasticity, in which stresses induces temporary birefringence in materials which can be quantitatively analyzed using a phase shift polariscope. Compared to other stress analysis techniques such as x-ray diffraction or laser scanning, infrared photoelastic stress analysis provides full-field information with high resolution and in near real time. As the semiconductor fabrication is advancing, larger wafers, thinner films and more compact packages are being manufactured. This results in a growing demand of process control. Residual stress exist in silicon during semiconductor fabrication and these stresses may make cell processing difficult or even cause the failure of the silicon. Reducing these stresses would improve manufacturability and reliability. Therefore stress analysis is essential to trace the root cause of the stresses. The polariscope images are processed using MATLAB and four-step phase shifting method to provide quantitative as well as qualitative information regarding the residual stress of the sample. The system is calibrated using four-point bend specimen and then the residual stress distribution in a MEMS sample is shown.

  16. Exercise training restores cardiac protein quality control in heart failure.

    Directory of Open Access Journals (Sweden)

    Juliane C Campos

    Full Text Available Exercise training is a well-known coadjuvant in heart failure treatment; however, the molecular mechanisms underlying its beneficial effects remain elusive. Despite the primary cause, heart failure is often preceded by two distinct phenomena: mitochondria dysfunction and cytosolic protein quality control disruption. The objective of the study was to determine the contribution of exercise training in regulating cardiac mitochondria metabolism and cytosolic protein quality control in a post-myocardial infarction-induced heart failure (MI-HF animal model. Our data demonstrated that isolated cardiac mitochondria from MI-HF rats displayed decreased oxygen consumption, reduced maximum calcium uptake and elevated H₂O₂ release. These changes were accompanied by exacerbated cardiac oxidative stress and proteasomal insufficiency. Declined proteasomal activity contributes to cardiac protein quality control disruption in our MI-HF model. Using cultured neonatal cardiomyocytes, we showed that either antimycin A or H₂O₂ resulted in inactivation of proteasomal peptidase activity, accumulation of oxidized proteins and cell death, recapitulating our in vivo model. Of interest, eight weeks of exercise training improved cardiac function, peak oxygen uptake and exercise tolerance in MI-HF rats. Moreover, exercise training restored mitochondrial oxygen consumption, increased Ca²⁺-induced permeability transition and reduced H₂O₂ release in MI-HF rats. These changes were followed by reduced oxidative stress and better cardiac protein quality control. Taken together, our findings uncover the potential contribution of mitochondrial dysfunction and cytosolic protein quality control disruption to heart failure and highlight the positive effects of exercise training in re-establishing cardiac mitochondrial physiology and protein quality control, reinforcing the importance of this intervention as a non-pharmacological tool for heart failure therapy.

  17. Clinical characteristics and causes of heart failure adherence to treatment guidelines and mortality of patients with acute heart failure: Experience at Groote Schuur Hospital Cape Town South Africa

    Directory of Open Access Journals (Sweden)

    P Szymanski

    2018-02-01

    Full Text Available Background. There is limited information on acute heart failure (AHF and its treatment in sub-Saharan Africa.Objective. To describe the clinical characteristics and causes of heart failure (HF, adherence to HF treatment guidelines, and mortality of patients with AHF presenting to Groote Schuur Hospital (GSH, Cape Town, South Africa.Methods. This sub-study of The Sub-Saharan Africa Survey of Heart Failure (THESUS-HF was a prospective and observational survey that focused on the enrolment and follow-up of additional patients with AHF presenting to GSH and entered into the existing registry after publication of the primary THESUS-HF article in 2012. The patients were classified into prevalent (existing or incident (new cases of HF.Results. Of the 119 patients included, 69 (58.0% were female and the mean (standard deviation age was 49.9 (16.3 years. The majority of prevalent cases were patients of mixed ancestry (63.3%, and prevalent cases had more hypertension (70.0%, diabetes mellitus (36.7%, hyperlipidaemia (33.3% and ischaemic heart disease (IHD (36.7% than incident cases. The top five causes of HF were cardiomyopathy (20.2%, IHD (19.3%, rheumatic valvular heart disease (RHD (18.5%, cor pulmonale (11.8% and hypertension (10.1%, with the remaining 20.1% consisting of miscellaneous causes including pericarditis, toxins and congenital heart disease. Most patients received renin-angiotensin system blockers and loop diuretics on discharge. There was a low rate of beta-blocker, aldosterone antagonist and digoxin use. Rehospitalisation within 180 days occurred in 25.2% of cases. In-hospital mortality was 8.4% and the case fatality rate at 6 months was 26.1%.Conclusion. In Cape Town, the main causes of AHF are cardiomyopathy, IHD and RHD. AHF affects a young population and is associated with a high rate of rehospitalisation and mortality. There is serious under-use of beta-blockers, aldosterone antagonists and digoxin. Emphasis on the rigorous

  18. THE PATHOLOGY OF BONE MARROW FAILURE

    OpenAIRE

    Leguit , Roos; Van Den Tweel , Jan G

    2010-01-01

    Abstract An important indication for bone marrow investigation is the presence of bone marrow failure, which manifests itself as (pan)cytopenia. The causes of cytopenia are varied and differ considerable between childhood and adulthood. In the paediatric age group, inherited bone marrow failure syndromes are important causes of bone marrow failure but they play only a minor role in later life. This review gives a comprehensive overview of bone marrow failure disorders in children a...

  19. Modeling combined tension-shear failure of ductile materials

    International Nuclear Information System (INIS)

    Partom, Y

    2014-01-01

    Failure of ductile materials is usually expressed in terms of effective plastic strain. Ductile materials can fail by two different failure modes, shear failure and tensile failure. Under dynamic loading shear failure has to do with shear localization and formation of adiabatic shear bands. In these bands plastic strain rate is very high, dissipative heating is extensive, and shear strength is lost. Shear localization starts at a certain value of effective plastic strain, when thermal softening overcomes strain hardening. Shear failure is therefore represented in terms of effective plastic strain. On the other hand, tensile failure comes about by void growth under tension. For voids in a tension field there is a threshold state of the remote field for which voids grow spontaneously (cavitation), and the material there fails. Cavitation depends on the remote field stress components and on the flow stress. In this way failure in tension is related to shear strength and to failure in shear. Here we first evaluate the cavitation threshold for different remote field situations, using 2D numerical simulations with a hydro code. We then use the results to compute examples of rate dependent tension-shear failure of a ductile material.

  20. Assessment of thermal fatigue damage caused by local fluid temperature fluctuation (part I: characteristics of constraint and stress caused by thermal striation and stratification)

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2014-01-01

    Highlights: • The source of the membrane constraint due to local temperature fluctuation was shown. • Thermal fatigue that occurred at a mixing tee and branched elbow was analyzed. • Cracking occurrence was reasonably explained by the constraint and stress conditions. - Abstract: This study was aimed at identifying the constraint conditions under local temperature fluctuation by thermal striping at a mixing tee and by thermal stratification at an elbow pipe branched from the main pipe. Numerical and analytical approaches were made to derive the thermal stress and its fluctuation. It was shown that an inhomogeneous temperature distribution in a straight pipe caused thermal stress due to a membrane constraint even if an external membrane constraint did not act on the pipe. Although the membrane constraint increased the mean stress at the mixing tee, it did not contribute to fluctuation of the thermal stress. On the other hand, the membrane constraint played an important role in the fatigue damage accumulation near the stratification layer of the branched elbow. Based on the constraint and stress conditions analyzed, the characteristics of the cracking observed in actual nuclear power plants were reasonably explained. Namely, at the mixing tee, where thermal crazing has been found, the lack of contribution of the membrane constraint to stress fluctuation caused a stress gradient in the thickness direction and arrested crack growth. On the other hand, at the branched elbow, where axial through-wall cracks have been found, the relatively large hoop stress fluctuation was brought about by movement of the stratified layer together with the membrane constraint even under a relatively low frequency of stress fluctuation

  1. A statistical model for prediction of fuel element failure using the Markov process and entropy minimax principles

    International Nuclear Information System (INIS)

    Choi, K.Y.; Yoon, Y.K.; Chang, S.H.

    1991-01-01

    This paper reports on a new statistical fuel failure model developed to take into account the effects of damaging environmental conditions and the overall operating history of the fuel elements. The degradation of material properties and damage resistance of the fuel cladding is mainly caused by the combined effects of accumulated dynamic stresses, neutron irradiation, and chemical and stress corrosion at operating temperature. Since the degradation of material properties due to these effects can be considered as a stochastic process, a dynamic reliability function is derived based on the Markov process. Four damage parameters, namely, dynamic stresses, magnitude of power increase from the preceding power level and with ramp rate, and fatigue cycles, are used to build this model. The dynamic reliability function and damage parameters are used to obtain effective damage parameters. The entropy maximization principle is used to generate a probability density function of the effective damage parameters. The entropy minimization principle is applied to determine weighting factors for amalgamation of the failure probabilities due to the respective failure modes. In this way, the effects of operating history, damaging environmental conditions, and damage sequence are taken into account

  2. Stress in Professional Classes: Causes, Manifestations, Coping.

    Science.gov (United States)

    Endres, Fred F.

    1992-01-01

    Investigates whether students in professional journalism and mass communication classes experience class-related stress, what factors contribute to the stress, and whether that stress changes over time. Finds that students perceive stress in their professional course work, and reveals general stress patterns over the 15-week semester. (SR)

  3. management of bilateral fracture femur with implant failure

    African Journals Online (AJOL)

    Keywords: Implant failure, nonunion, plating, intramedullary nailing, stress risers, stress shielding. CASE REPORT ... and the patient was thrust forwards, injuring both ... stress once weight bearing starts will be guided by .... J. Bone Joint Surg.

  4. Acute renal failure caused by Klebsiella pneumoniae pyelonephritis

    NARCIS (Netherlands)

    Creyghton, W. M.; Lobatto, S.; Weening, J. J.

    2001-01-01

    We report a 34-year-old male patient without prior medical history who presented with acute renal failure due to acute bacterial pyelonephritis. Both blood and urine cultures grew Klebsiella pneumoniae. Although a kidney biopsy revealed extensive necrosis and no viable glomeruli, renal function

  5. Oxidative Stress and Metabolic Syndrome: Cause or Consequence of Alzheimer's Disease?

    Directory of Open Access Journals (Sweden)

    Diana Luque-Contreras

    2014-01-01

    Full Text Available Alzheimer’s disease (AD is a major neurodegenerative disease affecting the elderly. Clinically, it is characterized by a progressive loss of memory and cognitive function. Neuropathologically, it is characterized by the presence of extracellular β-amyloid (Aβ deposited as neuritic plaques (NP and neurofibrillary tangles (NFT made of abnormal and hyperphosphorylated tau protein. These lesions are capable of generating the neuronal damage that leads to cell death and cognitive failure through the generation of reactive oxygen species (ROS. Evidence indicates the critical role of Aβ metabolism in prompting the oxidative stress observed in AD patients. However, it has also been proposed that oxidative damage precedes the onset of clinical and pathological AD symptoms, including amyloid-β deposition, neurofibrillary tangle formation, vascular malfunction, metabolic syndrome, and cognitive decline. This paper provides a brief description of the three main proteins associated with the development of the disease (Aβ, tau, and ApoE and describes their role in the generation of oxidative stress. Finally, we describe the mitochondrial alterations that are generated by Aβ and examine the relationship of vascular damage which is a potential prognostic tool of metabolic syndrome. In addition, new therapeutic approaches targeting ROS sources and metabolic support were reported.

  6. Failure Analysis of High-Power Piezoelectric Transducers

    National Research Council Canada - National Science Library

    Gabrielson, T. B

    2005-01-01

    ... and stress in a piezoelectric material. For a transducer operated near resonance, there will be "hot spots" or regions of locally intense stress and electric field that precipitate premature failure...

  7. Characteristics of aperiodic sequence of slip events caused by interaction between seismic patches and that caused be self-organized stress heterogeneity

    Science.gov (United States)

    Kato, N.

    2017-12-01

    Numerical simulations of earthquake cycles are conducted to investigate the origin of complexity of earthquake recurrence. There are two main causes of the complexity. One is self-organized stress heterogeneity due to dynamical effect. The other is the effect of interaction between some fault patches. In the model, friction on the fault is assumed to obey a rate- and state-dependent friction law. Circular patches of velocity-weakening frictional property are assumed on the fault. On the remaining areas of the fault, velocity-strengthening friction is assumed. We consider three models: Single patch model, two-patch model, and three-patch model. In the first model, the dynamical effect is mainly examined. The latter two models take into consideration the effect of interaction as well as the dynamical effect. Complex multiperiodic or aperiodic sequences of slip events occur when slip behavior changes from the seismic to aseismic, and when the degree of interaction between seismic patches is intermediate. The former is observed in all the models, and the latter is observed in the two-patch model and the three-patch model. Evolution of spatial distribution of shear stress on the fault suggests that aperiodicity at the transition from seismic to aseismic slip is caused by self-organized stress heterogeneity. The iteration maps of recurrence intervals of slip events in aperiodic sequences are examined, and they are approximately expressed by simple curves for aperiodicity at the transition from seismic to aseismic slip. In contrast, the iteration maps for aperiodic sequences caused by interaction between seismic patches are scattered and they are not expressed by simple curves. This result suggests that complex sequences caused by different mechanisms may be distinguished.

  8. Virological failure and all-cause mortality in HIV-positive adults with low-level viremia during antiretroviral treatment.

    Directory of Open Access Journals (Sweden)

    Olof Elvstam

    Full Text Available Although most HIV-infected individuals achieve undetectable viremia during antiretroviral therapy (ART, a subset have low-level viremia (LLV of varying duration and magnitude. The impact of LLV on treatment outcomes is unclear. We investigated the association between LLV and virological failure and/or all-cause mortality among Swedish patients receiving ART.HIV-infected patients from two Swedish HIV centers were identified from the nationwide register InfCare HIV. Subjects aged ≥15 years with triple agent ART were included at 12 months after treatment initiation if ≥2 following viral load measurements were available. Patients with 2 consecutive HIV RNA values ≥1000 copies/mL at this time point were excluded. Participants were stratified into four categories depending on viremia profiles: permanently suppressed viremia (<50 copies/mL, LLV 50-199 copies/mL, LLV 200-999 copies/mL and viremia ≥1000 copies/mL. Association between all four viremia categories and all-cause death was calculated using survival analysis with viremia as a time-varying covariate, so that patients could change viremia category during follow-up. Association between the three lower categories and virological failure (≥2 consecutive measurements ≥1000 copies/mL was calculated in a similar manner.LLV 50-199 copies/mL was recorded in 70/1015 patients (6.9% and LLV 200-999 copies/mL in 89 (8.8% during 7812 person-years of follow-up (median 6.5 years. LLV 200-999 copies/mL was associated with virological failure (adjusted hazard ratio 3.14 [95% confidence interval 1.41-7.03, p<0.01], whereas LLV 50-199 copies/mL was not (1.01 [0.34-4.31, p = 0.99]; median follow-up 4.5 years. LLV 200-999 copies/mL had an adjusted mortality hazard ratio of 2.29 (0.98-5.32, p = 0.05 and LLV 50-199 copies/mL of 2.19 (0.90-5.37, p = 0.09.In this Swedish cohort followed during ART for a median of 4.5 years, LLV 200-999 copies/mL was independently associated with virological failure. Patients

  9. Comparing Two Different Approaches to the Modeling of the Common Cause Failures in Fault Trees

    International Nuclear Information System (INIS)

    Vukovic, I.; Mikulicic, V.; Vrbanic, I.

    2002-01-01

    The potential for common cause failures in systems that perform critical functions has been recognized as very important contributor to risk associated with operation of nuclear power plants. Consequentially, modeling of common cause failures (CCF) in fault trees has become one among the essential elements in any probabilistic safety assessment (PSA). Detailed and realistic representation of CCF potential in fault tree structure is sometimes very challenging task. This is especially so in the cases where a common cause group involves more than two components. During the last ten years the difficulties associated with this kind of modeling have been overcome to some degree by development of integral PSA tools with high capabilities. Some of them allow for the definition of CCF groups and their automated expanding in the process of Boolean resolution and generation of minimal cutsets. On the other hand, in PSA models developed and run by more traditional tools, CCF-potential had to be modeled in the fault trees explicitly. With explicit CCF modeling, fault trees can grow very large, especially in the cases when they involve CCF groups with 3 or more members, which can become an issue for the management of fault trees and basic events with traditional non-integral PSA models. For these reasons various simplifications had to be made. Speaking in terms of an overall PSA model, there are also some other issues that need to be considered, such as maintainability and accessibility of the model. In this paper a comparison is made between the two approaches to CCF modeling. Analysis is based on a full-scope Level 1 PSA model for internal initiating events that had originally been developed by a traditional PSA tool and later transferred to a new-generation PSA tool with automated CCF modeling capabilities. Related aspects and issues mentioned above are discussed in the paper. (author)

  10. Accelerated reliability demonstration under competing failure modes

    International Nuclear Information System (INIS)

    Luo, Wei; Zhang, Chun-hua; Chen, Xun; Tan, Yuan-yuan

    2015-01-01

    The conventional reliability demonstration tests are difficult to apply to products with competing failure modes due to the complexity of the lifetime models. This paper develops a testing methodology based on the reliability target allocation for reliability demonstration under competing failure modes at accelerated conditions. The specified reliability at mission time and the risk caused by sampling of the reliability target for products are allocated for each failure mode. The risk caused by degradation measurement fitting of the target for a product involving performance degradation is equally allocated to each degradation failure mode. According to the allocated targets, the accelerated life reliability demonstration test (ALRDT) plans for the failure modes are designed. The accelerated degradation reliability demonstration test plans and the associated ALRDT plans for the degradation failure modes are also designed. Next, the test plan and the decision rules for the products are designed. Additionally, the effects of the discreteness of sample size and accepted number of failures for failure modes on the actual risks caused by sampling for the products are investigated. - Highlights: • Accelerated reliability demonstration under competing failure modes is studied. • The method is based on the reliability target allocation involving the risks. • The test plan for the products is based on the plans for all the failure modes. • Both failure mode and degradation failure modes are considered. • The error of actual risks caused by sampling for the products is small enough

  11. Somatic versus cognitive symptoms of depression as predictors of all-cause mortality and health status in chronic heart failure

    DEFF Research Database (Denmark)

    Schiffer, Angélique A; Pelle, Aline J; Smith, Otto R F

    2009-01-01

    Depression is a predictor of adverse health outcomes in chronic heart failure (CHF), but it is not known whether specific symptoms drive this relationship. We examined the impact of somatic/affective, cognitive/affective, and total depressive symptoms on all-cause mortality and health status in CHF....

  12. Simulations of stress evolution and the current density scaling of electromigration-induced failure times in pure and alloyed interconnects

    Science.gov (United States)

    Park, Young-Joon; Andleigh, Vaibhav K.; Thompson, Carl V.

    1999-04-01

    An electromigration model is developed to simulate the reliability of Al and Al-Cu interconnects. A polynomial expression for the free energy of solution by Murray [Int. Met. Rev. 30, 211 (1985)] was used to calculate the chemical potential for Al and Cu while the diffusivities were defined based on a Cu-trapping model by Rosenberg [J. Vac. Sci. Technol. 9, 263 (1972)]. The effects of Cu on stress evolution and lifetime were investigated in all-bamboo and near-bamboo stud-to-stud structures. In addition, the significance of the effect of mechanical stress on the diffusivity of both Al and Cu was determined in all-bamboo and near-bamboo lines. The void nucleation and growth process was simulated in 200 μm, stud-to-stud lines. Current density scaling behavior for void-nucleation-limited failure and void-growth-limited failure modes was simulated in long, stud-to-stud lines. Current density exponents of both n=2 for void nucleation and n=1 for void growth failure modes were found in both pure Al and Al-Cu lines. Limitations of the most widely used current density scaling law (Black's equation) in the analysis of the reliability of stud-to-stud lines are discussed. By modifying the input materials properties used in this model (when they are known), this model can be adapted to predict the reliability of other interconnect materials such as pure Cu and Cu alloys.

  13. TEMP-STRESS analysis of a reinforced concrete vessel under internal pressure

    International Nuclear Information System (INIS)

    Marchertas, A.H.; Kennedy, J.M.; Pfeiffer, P.A.

    1987-01-01

    The TEMP-STRESS FEM represents an axisymmetric simulation of the reinforced concrete vessel to internal pressurization. The information shows the global deformation, the state of strain/stress within the containment vessel with respect to the imposed pressures. Thus, the location and progress of concrete cracking, the stretching of the liner and the reinforcing bars and final failure are indicated through the entire loading range. Equilibrium of the entire system is assured at definite loading increments. With the progress of concrete cracking, the resisting load is continuously transferred to the reinforcing bars and the liner. Thus, after the tensile strength is exceeded and the concrete stress is set to zero, the internal pressures are entirely resisted by the liner and the reserve strength of the reinforcing bars. The reinforcing bars are mechanically connected to each other by splices, the ultimate strength of which is less than that of the rebars themselves. The corresponding strain at this limiting stress is lower than the ultimate strain of the liner. Therefore, the specified ultimate strength of the splices limits the pressurization of the vessel. Furthermore, once any of the splices fail, then load is transferred to the adjacent members, causing their failure and general failure of the vessel. (orig./HP)

  14. Unexpected causes of pulmonary hypertension in a previously healthy Thai rural man with right-sided heart failure

    OpenAIRE

    Angkananard, Teeranan; Chonmaitree, Piyanant; Petborom, Pichaya

    2014-01-01

    Patient Male, 52 Final Diagnosis: Pulmonary hypertension Symptoms: Diarrhea • dyspnea • jaundice Medication: — Clinical Procedure: — Specialty: Endocrinology and Metabolic Objective: Unusual clinical course Background: Hyperthyroidism is one of the important causes of high-output failure and reversible pulmonary artery hypertension. Severe pulmonary artery hypertension is rarely found in associated with hyperthyroidism due to the small number of cases reported. We present an interesting case ...

  15. Asymptotic Method for Cladding Stress Evaluation in PCMI

    International Nuclear Information System (INIS)

    Kim, Hyungkyu; Kim, Jaeyong; Yoon, Kyungho; Lee, Kanghee; Kang, Heungseok

    2014-01-01

    A PCMI (Pellet Cladding Mechanical Interaction) failure was first reported in the GETR (General Electric Test Reactor) at Vacellitos in 1963, and such failures are still occurring. Since the high stress values in the cladding tube has been of a crucial concern in PCMI studies, there have been many researches on the stress analysis of a cladding tube pressed by a pellet. Typical works can be found in some references. It has often been assumed, however, that the cracks in the pellet were equally spaced and the pellet was a rigid body. In addition, the friction coefficient was arbitrarily chosen so that a slipping between the pellets and cladding tube could not be logically defined. Moreover, the stress intensification due to the sharp edge of a pellet fragment has never been realistically considered. These problems above drove us to launch a framework of a PCMI study particularly on stress analysis technology to improve the present analysis method incorporating the actual PCMI conditions such as the stress intensification, arbitrary distribution of the pellet cracks, material properties (esp. pellet) and slipping behavior of the pellet/cladding interface. As a first step of this work, this paper introduces an asymptotic method that was originally developed for a stress analysis in the vicinity of a sharp notch of a homogeneous body. The intrinsic reason for applying this method is to simulate the stress singularity that is expected to take place at the sharp edge of a pellet fragment due to cracking during irradiation. As a first attempt of this work, an eigenvalue problem is formulated in the case of adhered contact, and the generalized stress intensity factors are defined and evaluated. Although some works obviously remain to be accomplished, for the present framework on the PCMI analysis (e. g., slipping behaviour, contact force etc.), it was addressed that the asymptotic method can produce the stress values that cause the cladding tube failure in PCMI more

  16. Progressive failure site generation in AlGaN/GaN high electron mobility transistors under OFF-state stress: Weibull statistics and temperature dependence

    International Nuclear Information System (INIS)

    Sun, Huarui; Bajo, Miguel Montes; Uren, Michael J.; Kuball, Martin

    2015-01-01

    Gate leakage degradation of AlGaN/GaN high electron mobility transistors under OFF-state stress is investigated using a combination of electrical, optical, and surface morphology characterizations. The generation of leakage “hot spots” at the edge of the gate is found to be strongly temperature accelerated. The time for the formation of each failure site follows a Weibull distribution with a shape parameter in the range of 0.7–0.9 from room temperature up to 120 °C. The average leakage per failure site is only weakly temperature dependent. The stress-induced structural degradation at the leakage sites exhibits a temperature dependence in the surface morphology, which is consistent with a surface defect generation process involving temperature-associated changes in the breakdown sites

  17. Study on precursory characteristics of granite failure based on infrasonic energy

    Directory of Open Access Journals (Sweden)

    Jian-ping Wei

    Full Text Available To study signal characteristics of precursory infrasound of granite failure, coal-rock stress loading device and infrasound acquisition device were adopted to perform infrasound test in uniaxial loading process for granite samples. Wavelet filtering, infrasonic energy methods were used to process and analyze the test results. The results show that the infrasonic waves caused by the failure of rock samples are mainly in the middle and low frequency. Moreover, in the loading process, the ratio of relative energy of infrasound in different frequency sections and the total relative energy of the whole low frequency section both exhibit significant regularity of stage change, which is in consistent with the compaction stage, elastic stage, plastic stage of rock deformation. Additionally, the precursory characteristics of infrasound before rock failures are prominent and easy to be recognized. Meanwhile, infrasonic wave has the advantage of low attenuation in propagation process, which grants the superiority of infrasound prediction technology. A new method of rock failure prediction based on infrasound is formed, which provides an important reference for rock damage prediction in coal mining process. Keywords: Infrasonic energy, Wavelet filtering, Precursory characteristics, Failure prediction

  18. Image and Substance Failures in Regional Organisations: Causes, Consequences, Learning and Change?

    Directory of Open Access Journals (Sweden)

    Meng Hsuan Chou

    2016-08-01

    Full Text Available States often pool their sovereignty, capacity and resources to provide regionally specific public goods, such as security or trade rules, and regional organisations play important roles in international relations as institutions that attempt to secure peace and contribute to achieving other similar global policy goals. We observe failures occurring in these arrangements and activities in two areas: substance and image. To analytically account for this, we distinguish four modes of substance and image change and link these to specific types of failure and (lack of learning. To empirically ground and test our assumptions, we examine instances of image failure in ASEAN (political/security policy and substantive policy failure in EU labour migration policy. In so doing, this article contributes to several different fields of study and concepts that have hitherto rarely engaged with one another: analyses of policy failure from public policy, and regional integration concerns from area studies and international relations. We conclude with suggestions for ways forward to further analyse and understand failures at the international and supranational levels.

  19. Joint disorder; a contributory cause to reproductive failure in beef bulls?

    Directory of Open Access Journals (Sweden)

    Ekman Stina

    2007-11-01

    Full Text Available Abstract The lame sire, unsound for breeding, can cause substantial economic loss due to reduced pregnancies in the beef-producing herd. To test the hypothesis that joint disorder is a possible cause of infertility in beef sires, right and left hind limb bones from 34 beef sires were examined postmortem to identify lesions in the femorotibial, femoropatellar (stifle, tarsocrural, talocalcaneus, and proximal intertarsal (tarsal joints. The bulls were slaughtered during or after the breeding season due to poor fertility results. Aliquots of the cauda epididymal contents taken postmortem from 26 bulls were used for sperm morphology evaluation. As a control, hind limbs (but no semen samples from 11 beef bulls with good fertility results were included. Almost all infertile bulls (30/34 had lesions in at least one joint. Twenty-eight bulls (28/30, 93% had lesions in the stifle joint, and 24 (24/28, 86% of these were bilateral. Fourteen bulls (14/30, 47% had lesions in the tarsal joint, and 10 (10/14, 71% of these were bilateral. Four bulls (4/34, 12% had no lesions, three bulls (3/34, 9% had mild osteoarthritis (OA, 5 (5/34, 15% moderate OA, 17 (17/34, 50% severe OA and 5 (5/34, 15% deformed OA. Almost all OA lesions (97% were characterized as lesions secondary to osteochondrosis dissecans. All the bulls with satisfactory sperm morphology (n = 12/34 had joint lesions, with mostly severe or deformed bilateral lesions (83%. Consequently, the most likely cause of infertility in these 12 bulls was joint disease. Almost all control bulls (10/11 had OA lesions, but most of them were graded as mild (55% or moderate (36%. None of the control bulls had severe lesions or deformed OA. We suggest that joint lesions should be taken into consideration as a contributory cause of reproductive failure in beef sires without symptoms of lameness.

  20. Experimental stress analysis of large plastic deformations in a hollow sphere deformed by impact against a concrete block

    Science.gov (United States)

    Morris, R. E.

    1973-01-01

    An experimental plastic strain measurement system is presented for use on the surface of high velocity impact test models. The system was used on a hollow sphere tested in impact against a reinforced concrete block. True strains, deviatoric stresses, and true stresses were calculated from experimental measurements. The maximum strain measured in the model was small compared to the true failure strain obtained from static tensile tests of model material. This fact suggests that a much greater impact velocity would be required to cause failure of the model shell structure.

  1. Biofeedback in the treatment of heart failure.

    Science.gov (United States)

    McKee, Michael G; Moravec, Christine S

    2010-07-01

    Biofeedback training can be used to reduce activation of the sympathetic nervous system (SNS) and increase activation of the parasympathetic nervous system (PNS). It is well established that hyperactivation of the SNS contributes to disease progression in chronic heart failure. It has been postulated that underactivation of the PNS may also play a role in heart failure pathophysiology. In addition to autonomic imbalance, a chronic inflammatory process is now recognized as being involved in heart failure progression, and recent work has established that activation of the inflammatory process may be attenuated by vagal nerve stimulation. By interfering with both autonomic imbalance and the inflammatory process, biofeedback-assisted stress management may be an effective treatment for patients with heart failure by improving clinical status and quality of life. Recent studies have suggested that biofeedback and stress management have a positive impact in patients with chronic heart failure, and patients with higher perceived control over their disease have been shown to have better quality of life. Our ongoing study of biofeedback-assisted stress management in the treatment of end-stage heart failure will also examine biologic end points in treated patients at the time of heart transplant, in order to assess the effects of biofeedback training on the cellular and molecular components of the failing heart. We hypothesize that the effects of biofeedback training will extend to remodeling the failing human heart, in addition to improving quality of life.

  2. Estimating flood inundation caused by dam failures

    Energy Technology Data Exchange (ETDEWEB)

    Mocan, N. [Crozier and Associates Inc., Collingwood, ON (Canada); Joy, D.M. [Guelph Univ., ON (Canada). School of Engineering; Rungis, G. [Grand River Conservation Authority, Cambridge, ON (Canada)

    2006-01-15

    Recent advancements in modelling inundation due to dam failures have allowed easier and more illustrative analyses of potential outcomes. This paper described new model and mapping capabilities available using the HEC-RAS hydraulic model in concert with geographic information systems (GIS). The study area was the upper reaches of Canagagigue Creek and the Woolwich Dam near Elmira, Ontario. A hydraulic analysis of a hypothetical dam failure was developed based on the summer probable maximum flood (PMF) event. Limits extended from Woolwich Dam to downstream of the Town of Elmira. An incoming summer PMF hydrograph was set as the upstream boundary condition in the upstream model. Simulation parameters include simulation time-step; implicit weighting factor; water surface calculation tolerance; and output calculation interval. Peak flows were presented, as well as corresponding flood inundation results through the Town of Elmira. The hydraulic model results were exported to a GIS in order to develop inundation maps for emergency management planning. Results from post-processing included inundation maps for each of the simulated time-steps as well as an inundation animation for the duration of the dam breach. It was concluded that the modelling tools presented in the study can be applied to other dam safety assessment projects in order to develop effective and efficient emergency preparedness plans through public consultation and the establishment of impact zones. 1 tab., 2 figs.

  3. Fatigue Stress Fracture of the Talar Body: An Uncommon Cause of Ankle Pain.

    Science.gov (United States)

    Kim, Young Sung; Lee, Ho Min; Kim, Jong Pil; Moon, Han Sol

    2016-01-01

    Fatigue stress fractures of the talus are rare and usually involve the head of the talus in military recruits. We report an uncommon cause of ankle pain due to a fatigue stress fracture of the body of the talus in a 32-year-old male social soccer player. Healing was achieved after weightbearing suppression for 6 weeks. Although rare, a stress fracture of the body of the talus should be considered in an athlete with a gradual onset of chronic ankle pain. Magnetic resonance imaging and bone scan are useful tools for early diagnosis. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Anxiety, stress and depression in family members of patients with heart failure.

    Science.gov (United States)

    Lacerda, Marianna Sobral; Cirelli, Melissa Alves; Barros, Alba Lúcia Bottura Leite de; Lopes, Juliana de Lima

    2017-03-20

    Identifying the level of anxiety, stress and depression symptoms in family members of patients with heart failure; identifying the relationship between these feelings with sociodemographic and clinical variables. A cross-sectional study carried out with 100 family members. Depression, anxiety, and stress were evaluated by the Beck Depression and Anxiety Inventories and the Perceived Stress Scale - 10. The relationship between feelings and variables was performed through the t-test, Mann-Whitney or Kruskal-Wallis. Mean depression was 8.24, anxiety was 77.95, and stress was 17.43. The correlation coefficient between depression and anxiety and depression and stress was 0.53, and it was 0.66 between anxiety and stress. Females (p=0.002, p=0.031), smoking (p=0.05, p=0.011) and sedentary lifestyle (p=0.023, p=0.001) were related to anxiety and stress, respectively. Family income lower than five minimum wages (p=0.012) was related to depression, and regular/poor self-perceived health status related to the three feelings. Family members did not present high levels of these feelings. The scales were directly correlated with each one another and some variables were related to stress, anxiety and depression. Identificar o nível de ansiedade, estresse e sintomas de depressão de familiares de pacientes com insuficiência cardíaca; identificar a relação entre esses sentimentos com as variáveis sociodemográficas e clínicas. Estudo transversal composto por 100 familiares. A depressão, a ansiedade e o estresse foram avaliados pelos Inventários de Depressão e Ansiedade de Beck e pela Escala de Estresse Percebido ‒ 10. A relação dos sentimentos com as variáveis foi realizada pelo teste t, Mann-Whitney ou Kruskal-Wallis. A média de depressão foi de 8,24, ansiedade, 7,95 e estresse, 17,43. O coeficiente de correlação entre depressão e ansiedade e depressão e estresse foi de 0,53 e de 0,66 entre ansiedade e estresse. Sexo feminino (p=0,002; p=0,031), tabagismo (p=0

  5. Periodontitis in Chronic Heart Failure.

    Science.gov (United States)

    Fröhlich, Hanna; Herrmann, Kristina; Franke, Jennifer; Karimi, Alamara; Täger, Tobias; Cebola, Rita; Katus, Hugo A; Zugck, Christian; Frankenstein, Lutz

    2016-08-01

    Periodontal disease has been associated with an increased risk of cardiovascular events. The purpose of our study was to investigate whether a correlation between periodontitis and chronic heart failure exists, as well as the nature of the underlying cause. We enrolled 71 patients (mean age, 54 ± 13 yr; 56 men) who had stable chronic heart failure; all underwent complete cardiologic and dental evaluations. The periodontal screening index was used to quantify the degree of periodontal disease. We compared the findings to those in the general population with use of data from the 4th German Dental Health Survey. Gingivitis, moderate periodontitis, and severe periodontitis were present in 17 (24%), 17 (24%), and 37 (52%) patients, respectively. Severe periodontitis was more prevalent among chronic heart failure patients than in the general population. In contrast, moderate periodontitis was more prevalent in the general population (P periodontal disease was not associated with the cause of chronic heart failure or the severity of heart failure symptoms. Six-minute walking distance was the only independent predictor of severe periodontitis. Periodontal disease is highly prevalent in chronic heart failure patients regardless of the cause of heart failure. Prospective trials are warranted to clarify the causal relationship between both diseases.

  6. Modelling of Diffuse Failure and Fluidization in geo materials and Geo structures

    International Nuclear Information System (INIS)

    Pastor, M.

    2013-01-01

    Failure of geo structures is caused by changes in effective stresses induced by external loads (earthquakes, for instance), change in the pore pressures (rain), in the geometry (erosion), or in materials properties (chemical attack, degradation, weathering). Landslides can by analysed as the failure of a geo structure, the slope. There exist many alternative classifications of landslides can be analyzed as the failure of a geo structure, the slope. There exist many alternative classifications of landslides, but we will consider here a simple classification into slides and flows. In the case of slides, the failure consists on the movement of a part of the slope with deformations which concentrate in a narrow zone, the failure surface. This can be idealized as localized failure, and it is typical of over consolidated or dense materials exhibiting softening. On the other hand, flows are made of fluidized materials, flowing in a fluid like manner. This mechanism of failure is known as diffuse failure, and has received much less attention by researchers. Modelling of diffuse failure of slopes is complex, because there appear difficulties in the mathematical, constitutive and numerical models, which have to account for a phase transition. This work deals with modeling, and we will present here some tools recently developed by the author and the group to which he belongs. (Author)

  7. Fuel pin failure root causes and power distribution gradients in WWER cores

    International Nuclear Information System (INIS)

    Mikus, J.

    2008-01-01

    The purpose of this work is to investigate the influence of some core heterogeneities and reactor construction materials on space power distribution in WWER type cores, especially from viewpoint of the values and gradient occurrence that could result in static loads with some consequences, e.g., fuel pin (FP) or fuel assembly (FA) bowing and possible contribution to the FP failure root causes. Presented information were obtained by means of experiments on research reactor LR-0 concerning the: 1) Power distribution estimation on pellet surface of the FPs neighbouring a FP containing gadolinium (Gd 2 O 3 ) burnable absorber integrated into fuel in WWER-440 and -1000 type cores; 2) Power distribution measurement in periphery FAs neighbouring the baffle in WWER-1000 type cores and 3) Power distribution in FAs neighbouring the control rod absorbing part in a WWER-440 type core. (author)

  8. Your Heart Failure Healthcare Team

    Science.gov (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Your Heart Failure Healthcare Team Updated:May 9,2017 Patients with ... to the Terms and Conditions and Privacy Policy Heart Failure • Home • About Heart FailureCauses and Risks for ...

  9. Planning Ahead: Advanced Heart Failure

    Science.gov (United States)

    ... Venous Thromboembolism Aortic Aneurysm More Planning Ahead: Advanced Heart Failure Updated:May 9,2017 An important part of ... Care This content was last reviewed May 2017. Heart Failure • Home • About Heart FailureCauses and Risks for ...

  10. Systematic analysis and prevention of human originated common cause failures in relation to maintenance activities at Finnish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, K. [VTT Industrial Systems, Espoo (Finland)

    2006-12-15

    The focus in human reliability analysis of nuclear power plants has traditionally been on human performance in disturbance conditions. On the other hand, human maintenance failures and design deficiencies, remained latent in the system, have an impact on the severity of a disturbance, e.g. by disabling safety-related equipment on demand. Especially common cause failures (CCFs) of safety related systems can affect the core damage risk to a significant extent. The topic has been addressed in Finnish studies, where experiences of latent human errors have been searched and analysed systematically from the maintenance history stored in the the power plant information systems of the Loviisa and Olkiluoto NPPs. Both the single and multiple errors (CCFs) were classified in detail and documented as error and event reports. The human CCFs involved human, organisational and technical factors. The review of the analysed single and multiple errors showed that instrumentation and control and electrical equipment are more prone to human error caused failure events than the other maintenance objects. The review of the analysed experience showed that most errors stem from the refuelling and maintenance outage periods. More than half of the multiple errors from the outages remained latent to the power operating periods. The review of the analysed multiple errors showed that difficulties with small plant modifications and planning of maintenance and operability were significant sources of common cause failures. The most dependent human errors originating from small modifications could be reduced by a more tailored planning and coverage of their start-up testing programs. Improvements could also be achieved by identifying better in work planning from the operating experiences those complex or intrusive repair and preventive maintenance work tasks and actions which are prone to errors. Such uncertain cases in important equipment require a more tailored work planning of the installation

  11. Systematic analysis and prevention of human originated common cause failures in relation to maintenance activities at Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Laakso, K.

    2006-12-01

    The focus in human reliability analysis of nuclear power plants has traditionally been on human performance in disturbance conditions. On the other hand, human maintenance failures and design deficiencies, remained latent in the system, have an impact on the severity of a disturbance, e.g. by disabling safety-related equipment on demand. Especially common cause failures (CCFs) of safety related systems can affect the core damage risk to a significant extent. The topic has been addressed in Finnish studies, where experiences of latent human errors have been searched and analysed systematically from the maintenance history stored in the the power plant information systems of the Loviisa and Olkiluoto NPPs. Both the single and multiple errors (CCFs) were classified in detail and documented as error and event reports. The human CCFs involved human, organisational and technical factors. The review of the analysed single and multiple errors showed that instrumentation and control and electrical equipment are more prone to human error caused failure events than the other maintenance objects. The review of the analysed experience showed that most errors stem from the refuelling and maintenance outage periods. More than half of the multiple errors from the outages remained latent to the power operating periods. The review of the analysed multiple errors showed that difficulties with small plant modifications and planning of maintenance and operability were significant sources of common cause failures. The most dependent human errors originating from small modifications could be reduced by a more tailored planning and coverage of their start-up testing programs. Improvements could also be achieved by identifying better in work planning from the operating experiences those complex or intrusive repair and preventive maintenance work tasks and actions which are prone to errors. Such uncertain cases in important equipment require a more tailored work planning of the installation

  12. Stresses in Dolosse

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Liu, Zhou; Howell, Gary L.

    1991-01-01

    Failures of rubble mound breakwaters armoured with complex types of unreinforced concrete armour units are often due to breakage. This happens when the stresses exceed the material strength. Sufficient parametric studies of the stresses are not yet available to produce design diagrams for structu......Failures of rubble mound breakwaters armoured with complex types of unreinforced concrete armour units are often due to breakage. This happens when the stresses exceed the material strength. Sufficient parametric studies of the stresses are not yet available to produce design diagrams...... for structural integrity. The paper presents the results and the analyses of model tests with 200 kg and 200 g load-cell instrumented Dolosse. Static stresses and wave generated stresses were studied as well as model and scale effects. A preliminary design diagram for Dolosse is presented as well....

  13. Maternal active or passive smoking causes oxidative stress in placental tissue.

    Science.gov (United States)

    Aycicek, Ali; Varma, Mustafa; Ahmet, Koc; Abdurrahim, Kocyigit; Erel, Ozcan

    2011-05-01

    The aim of this study was to assess the influence of active and passive maternal smoking on placenta total oxidant/antioxidant status in term infants. The levels of cord blood total antioxidant capacity (TAC), total oxidant status (TOS), and oxidative stress index (OSI) were measured in samples of fetal placental tissue, cord blood, and the maternal peripheral blood serum and from 19 mothers who were active smokers, 19 who were passive smokers, and 22 who were nonsmokers (not exposed to active or passive smoking). The pregnancies were between 37 and 40 weeks' gestation, were uncomplicated, and the infants were delivered vaginally. Birth weight and head circumference in the active smokers were significantly (P antioxidant balance in fetal placental tissue and causes potent oxidative stress.

  14. Defense-in-depth for common cause failure of nuclear power plant safety system software

    International Nuclear Information System (INIS)

    Tian Lu

    2012-01-01

    This paper briefly describes the development of digital I and C system in nuclear power plant, and analyses the viewpoints of NRC and other nuclear safety authorities on Software Common Cause Failure (SWCCF). In view of the SWCCF issue introduced by the digitized platform adopted in nuclear power plant safety system, this paper illustrated a diversified defence strategy for computer software and hardware. A diversified defence-in-depth solution is provided for digital safety system of nuclear power plant. Meanwhile, analysis on problems may be faced during application of nuclear safety license are analyzed, and direction of future nuclear safety I and C system development are put forward. (author)

  15. Preservation of Skin Integrity in Heart Failure

    OpenAIRE

    DEMİR BARUTCU, Canan

    2018-01-01

    Congestive heart failure is an international health problem with its high incidence, prevalence, morbidity and mortality rates. Congestive heart failure is the most common reason of hospitalization in patients older than 65 and it causes more than a million hospitalizations a year. Patients with congestive heart failure experience a number of complications due to physiopathologic reasons, side effects of drugs, accompanying comorbid diseases and limitations caused by congestive heart failure....

  16. Failure strains and proposed limit strains for an reactor pressure vessel under severe accident conditions

    International Nuclear Information System (INIS)

    Krieg, R.

    2005-01-01

    The local failure strains of essential design elements of a reactor vessel are investigated. The size influence of the structure is of special interest. Typical severe accident conditions including elevated temperatures and dynamic loads are considered. The main part of work consists of test families with specimens under uniaxial and biaxial load. Within one test family the specimen geometry and the load conditions are similar, but the size is varied up to reactor dimensions. Special attention is given to geometries with a hole or a notch causing non-uniform stress and strain distributions typical for the reactor vessel. A key problem is to determine the local failure strain. Here suitable methods had to be developed including the so-called 'vanishing gap method', and the 'forging die method'. They are based on post-test geometrical measurements of the fracture surfaces and reconstructions of the related strain fields using finite element models. The results indicate that stresses versus dimensionless deformations are approximately size independent up to failure for specimens of similar geometry under similar load conditions. Local failure strains could be determined. The values are rather high and size dependent. Statistical evaluation allow the proposal of limit strains which are also size dependent. If these limit strains are not exceeded, the structures will not fracture

  17. Reliability analysis for the creep rupture mode of failure

    International Nuclear Information System (INIS)

    Vaidyanathan, S.

    1975-01-01

    An analytical study has been carried out to relate the factors of safety employed in the design of a component to the probability of failure in the thermal creep rupture mode. The analysis considers the statistical variations in the operating temperature, stress and rupture time, and applies the life fraction damage criterion as the indicator of failure. Typical results for solution annealed type 304-stainless steel material for the temperature and stress variations expected in an LMFBR environment have been obtained. The analytical problem was solved by considering the joint distribution of the independent variables and deriving the distribution for the function associated with the probability of failure by integrating over proper regions as dictated by the deterministic design rule. This leads to a triple integral for the final probability of failure where the coefficients of variation associated with the temperature, stress and rupture time distributions can be specified by the user. The derivation is general, and can be used for time varying stress histories and the case of irradiated material where the rupture time varies with accumulated fluence. Example calculations applied to solution annealed type 304 stainless steel material have been carried out for an assumed coefficient of variation of 2% for temperature and 6% for stress. The results show that the probability of failure associated with dependent stress intensity limits specified in the ASME Boiler and Pressure Vessel Section III Code Case 1592 is less than 5x10 -8 . Rupture under thermal creep conditions is a highly complicated phenomenon. It is believed that the present study will help in quantizing the reliability to be expected with deterministic design factors of safety

  18. Contrasting Changes Caused by Drought and Submergence Stresses in Bermudagrass (Cynodon dactylon)

    Science.gov (United States)

    Ye, Tiantian; Shi, Haitao; Wang, Yanping; Chan, Zhulong

    2015-01-01

    In this study, we investigated the mechanisms by which bermudagrass withstands the drought and submergence stresses through physiological, proteomic and metabolomic approaches. The results showed that significant physiological changes were observed after drought treatment, while only slight changes after submergence treatment, including compatible solute contents, ROS levels and antioxidant enzyme activities. Proteomics results showed that 81 proteins regulated by drought or submergence treatment were identified by MALDI-TOF-MS. Among them, 76 proteins were modulated by drought stress with 46 increased abundance and 30 decreased abundance. Forty-five showed abundance changes after submergence treatment with 10 increased and 35 decreased. Pathway enrichment analysis revealed that pathways of amino acid metabolism and mitochondrial electron transport/ATP synthesis were only enriched by drought treatment, while other pathways including photosynthesis, biodegradation of xenobiotics, oxidative pentose phosphate, glycolysis and redox were commonly over-represented after both drought and submergence treatments. Metabolomic analysis indicated that most of the metabolites were up-regulated by drought stress, while 34 of 40 metabolites contents exhibited down-regulation or no significant changes when exposed to submergence stress, including sugars and sugar alcohols. These data indicated that drought stress extensively promoted photosynthesis and redox metabolisms while submergence stress caused declined metabolisms and dormancy in Cynodon dactylon. Taken together, the quiescence strategy with retarded growth might allow bermudagrass to be adaptive to long-term submerged environment, while activation of photosynthesis and redox, and accumulation of compatible solutes and molecular chaperones increased bermudagrass tolerance to drought stress. PMID:26617615

  19. Bayesian estimation of source parameters and associated Coulomb failure stress changes for the 2005 Fukuoka (Japan) Earthquake

    Science.gov (United States)

    Dutta, Rishabh; Jónsson, Sigurjón; Wang, Teng; Vasyura-Bathke, Hannes

    2018-04-01

    Several researchers have studied the source parameters of the 2005 Fukuoka (northwestern Kyushu Island, Japan) earthquake (Mw 6.6) using teleseismic, strong motion and geodetic data. However, in all previous studies, errors of the estimated fault solutions have been neglected, making it impossible to assess the reliability of the reported solutions. We use Bayesian inference to estimate the location, geometry and slip parameters of the fault and their uncertainties using Interferometric Synthetic Aperture Radar and Global Positioning System data. The offshore location of the earthquake makes the fault parameter estimation challenging, with geodetic data coverage mostly to the southeast of the earthquake. To constrain the fault parameters, we use a priori constraints on the magnitude of the earthquake and the location of the fault with respect to the aftershock distribution and find that the estimated fault slip ranges from 1.5 to 2.5 m with decreasing probability. The marginal distributions of the source parameters show that the location of the western end of the fault is poorly constrained by the data whereas that of the eastern end, located closer to the shore, is better resolved. We propagate the uncertainties of the fault model and calculate the variability of Coulomb failure stress changes for the nearby Kego fault, located directly below Fukuoka city, showing that the main shock increased stress on the fault and brought it closer to failure.

  20. Investigation of Stress Concentration and Casing Strength Degradation Caused by Corrosion Pits

    Directory of Open Access Journals (Sweden)

    Wei Yan

    2016-01-01

    Full Text Available Downhole casing and tubing are subjected to corrosion in many cases because of the exposure to corrosive environment. A more serious problem is that pitting corrosion occurs in the casing inner surface. Meanwhile, downhole strings are subjected to various forms of mechanical loads, for example, internal pressure load, external collapse load, or both. These loads acting on the corrosion pits will cause stress concentration and degrade the casing strength. Thus, it is essential to evaluate the stress concentration degree reasonably. The SCF (stress concentration factor is usually used to characterize the degree of stress concentration induced by corrosion pits. This paper presented a comparison on the SCFs regarding the analytical method for a single pit and experimental method for double pits. The results show that the SCF of a single pit depends mainly on the depth of the corrosion pit; however, the SCF of the double pits strongly depends on the pits distance. A correction factor of 1.3 was recommended in the double pits SCF prediction model.