Sample records for stress drop independent

  1. Drop splashing is independent of substrate wetting

    Latka, Andrzej; Nagel, Sidney R; de Pablo, Juan J


    A liquid drop impacting a dry solid surface with sufficient kinetic energy will splash, breaking apart into numerous secondary droplets. This phenomenon shows many similarities to forced wetting, including the entrainment of air at the contact line. Because of these similarities and the fact that forced wetting has been shown to depend on the wetting properties of the surface, existing theories predict splashing to depend on wetting properties as well. However, using high-speed interference imaging we observe that wetting properties have no effect on splashing for various liquid-surface combinations. Additionally, by fully resolving the Navier-Stokes equations at length and time scales inaccessible to experiments, we find that the shape and motion of the air-liquid interface at the contact line are independent of wettability. We use these findings to evaluate existing theories and to compare splashing with forced wetting.

  2. Improving Earthquake Stress Drop Measurements - What can we Really Resolve?

    Abercrombie, R. E.; Bannister, S. C.; Fry, B.; Ruhl, C. J.; Kozlowska, M.


    Earthquake stress drop is fundamental to understanding the physics of the rupture process. Although it is superficially simple to calculate an estimate of stress drop from the corner frequency of the radiated spectrum, it is much harder to be certain that measurements are reliable and accurate. The same is true of other measurements of stress drop and radiated energy. The large number of studies of earthquake stress drop, the high variability in results (~0.1-100 MPa), the large uncertainties, and the ongoing scaling controversy are evidence for this. We investigate the resolution and uncertainties of stress drops calculated using an empirical Green's function (EGF) approach. Earthquakes in 3 sequences at Parkfield, California are recorded by multiple borehole stations and have abundant smaller earthquakes to use as EGFs (Abercrombie, 2014). The earthquakes in the largest magnitude cluster (M~2.1) exhibit clear temporal variation of stress drop. Independent studies obtained a similar pattern implying that it is resolvable for these well-recorded, simple sources. The borehole data reveal a similar temporal pattern for another sequence, not resolvable in an earlier study using surface recordings. The earthquakes in the third sequence have complex sources; corner frequency measurements for this sequence are highly variable and poorly resolved. We use the earthquakes in the first cluster to quantify the uncertainties likely to arise in less optimal settings. The limited signal bandwidth and the quality of the EGF assumption are major sources of error. Averaging across multiple stations improves the resolution, as does using multiple good EGFs (Abercrombie, 2015). We adapt the approach to apply to larger data sets. We focus on New Zealand, with the aim of resolving stress drop variability in a variety of tectonic settings. We investigate stacking over stations and multiple EGFs, and compare earthquakes (M~3-6) from both the overlying and the subducting plates.

  3. Earthquake stress drops, ambient tectonic stresses and stresses that drive plate motions

    Hanks, T.C.


    A variety of geophysical observations suggests that the upper portion of the lithosphere, herein referred to as the elastic plate, has long-term material properties and frictional strength significantly greater than the lower lithosphere. If the average frictional stress along the non-ridge margin of the elastic plate is of the order of a kilobar, as suggested by the many observations of the frictional strength of rocks at mid-crustal conditions of pressure and temperature, the only viable mechanism for driving the motion of the elastic plate is a basal shear stress of several tens of bars. Kilobars of tectonic stress are then an ambient, steady condition of the earth's crust and uppermost mantle. The approximate equality of the basal shear stress and the average crustal earthquake stress drop, the localization of strain release for major plate margin earthquakes, and the rough equivalence of plate margin slip rates and gross plate motion rates suggest that the stress drops of major plate margin earthquakes are controlled by the elastic release of the basal shear stress in the vicinity of the plate margin, despite the existence of kilobars of tectonic stress existing across vertical planes parallel to the plate margin. If the stress differences available to be released at the time of faulting are distributed in a random, white fasbion with a mean-square value determined by the average earthquake stress drop, the frequency of occurrence of constant stress drop earthquakes will be proportional to reciprocal faulting area, in accordance with empirically known frequency of occurrence statistics. ?? 1977 Birkha??user Verlag.

  4. Estimates of stress drop and crustal tectonic stress from the 27 February 2010 Maule, Chile, earthquake: Implications for fault strength

    Luttrell, Karen M.; Tong, Xiaopeng; Sandwell, David T.; Brooks, Benjamin A.; Bevis, Michael G.


    The great 27 February 2010 Mw 8.8 earthquake off the coast of southern Chile ruptured a ˜600 km length of subduction zone. In this paper, we make two independent estimates of shear stress in the crust in the region of the Chile earthquake. First, we use a coseismic slip model constrained by geodetic observations from interferometric synthetic aperture radar (InSAR) and GPS to derive a spatially variable estimate of the change in static shear stress along the ruptured fault. Second, we use a static force balance model to constrain the crustal shear stress required to simultaneously support observed fore-arc topography and the stress orientation indicated by the earthquake focal mechanism. This includes the derivation of a semianalytic solution for the stress field exerted by surface and Moho topography loading the crust. We find that the deviatoric stress exerted by topography is minimized in the limit when the crust is considered an incompressible elastic solid, with a Poisson ratio of 0.5, and is independent of Young's modulus. This places a strict lower bound on the critical stress state maintained by the crust supporting plastically deformed accretionary wedge topography. We estimate the coseismic shear stress change from the Maule event ranged from -6 MPa (stress increase) to 17 MPa (stress drop), with a maximum depth-averaged crustal shear-stress drop of 4 MPa. We separately estimate that the plate-driving forces acting in the region, regardless of their exact mechanism, must contribute at least 27 MPa trench-perpendicular compression and 15 MPa trench-parallel compression. This corresponds to a depth-averaged shear stress of at least 7 MPa. The comparable magnitude of these two independent shear stress estimates is consistent with the interpretation that the section of the megathrust fault ruptured in the Maule earthquake is weak, with the seismic cycle relieving much of the total sustained shear stress in the crust.

  5. Influence of Lithostatic Stress on Earthquake Stress Drops in North America

    U.S. Geological Survey, Department of the Interior — Earthquake stress drop is a critical parameter for estimating seismic hazard. This parameter can have a strong effect on ground motion amplitudes above ~1Hz and is...

  6. Earthquake stress drops and inferred fault strength on the Hayward Fault, east San Francisco Bay, California

    Hardebeck, J.L.; Aron, A.


    We study variations in earthquake stress drop with respect to depth, faulting regime, creeping versus locked fault behavior, and wall-rock geology. We use the P-wave displacement spectra from borehole seismic recordings of M 1.0-4.2 earthquakes in the east San Francisco Bay to estimate stress drop using a stack-and-invert empirical Green's function method. The median stress drop is 8.7 MPa, and most stress drops are in the range between 0.4 and 130 MPa. An apparent correlation between stress drop and magnitude is entirely an artifact of the limited frequency band of 4-55 Hz. There is a trend of increasing stress drop with depth, with a median stress drop of ~5 MPa for 1-7 km depth, ~10 MPa for 7-13 km depth, and ~50 MPa deeper than 13 km. We use S=P amplitude ratios measured from the borehole records to better constrain the first-motion focal mechanisms. High stress drops are observed for a deep cluster of thrust-faulting earthquakes. The correlation of stress drops with depth and faulting regime implies that stress drop is related to the applied shear stress. We compare the spatial distribution of stress drops on the Hayward fault to a model of creeping versus locked behavior of the fault and find that high stress drops are concentrated around the major locked patch near Oakland. This also suggests a connection between stress drop and applied shear stress, as the locked patch may experience higher applied shear stress as a result of the difference in cumulative slip or the presence of higher-strength material. The stress drops do not directly correlate with the strength of the proposed wall-rock geology at depth, suggesting that the relationship between fault strength and the strength of the wall rock is complex.

  7. Influence of lithostatic stress on earthquake stress drops in North America

    Boyd, Oliver; McNamara, Daniel E.; Hartzell, Stephen; Choy, George


    We estimate stress drops for earthquakes in and near the continental United States using the method of spectral ratios. The ratio of acceleration spectra between collocated earthquakes recorded at a given station removes the effects of path and recording site and yields source parameters including corner frequency for, and the ratio of seismic moment between, the two earthquakes. We determine stress drop from these parameters for 1121 earthquakes greater than M∼3 in 60 earthquake clusters. We find that the average Brune stress drop for the few eastern United States (EUS) tectonic mainshocks studied (2.6–36 MPa) is about three times greater than that of tectonic mainshocks in the western United States (WUS, 1.0–7.9 MPa) and five times greater than mainshocks potentially induced by wastewater injection in the central United States (CUS, 0.6–5.6 MPa). EUS events tend to be deeper thrusting events, whereas WUS events tend to be shallower but have a wide range of focal mechanisms. CUS events tend to be shallow with strike‐slip to normal‐faulting mechanisms. With the possible exception of CUS aftershocks, we find that differences in stress drop among all events can be taken into account, within one standard deviation of significance, by differences in the shear failure stress as outlined by Mohr–Coulomb theory. The shear failure stress is a function of vertical stress (or depth), the fault style (normal, strike slip, or reverse), and coefficient of friction (estimated here to be, on average, 0.64). After accounting for faulting style and depth dependence, we find that the average Brune stress drop is about 3% of the failure stress. These results suggest that high‐frequency shaking hazard (>∼1  Hz) from shallow induced events and aftershocks is reduced to some extent by lower stress drop. However, the shallow hypocenters will increase hazard within several kilometers of the source.

  8. Study on determination of stress level by seismic stress drops and the stress axis deflections before and after large earthquakes

    WAN Yong-ge


    To obtain the stress level at the earthquake source, this paper sets forth the solution of the stress magnitude at the earthquake source by seismic stress drop and the stress axis deflections before and after large earthquakes. The pre-seismic and post-seismic stress direction can be statistically determined by a large collection of foreshock and aftershock focal mechanism data while the stress drop can be determined through the source fracture inversion from seismic wave data or crust deformation data. The paper attempts to make a fundamental contribution to seismic dynamics.

  9. Variability of earthquake stress drop in a subduction setting, the Hikurangi Margin, New Zealand

    Abercrombie, Rachel E.; Bannister, Stephen; Ristau, John; Doser, Diane


    We calculate stress drops for 176 earthquakes (M2.6-M6.6) from four sequences of earthquakes in New Zealand. Two sequences are within the subducting Pacific plate (2014 Eketahuna and 2005 Upper Hutt), one in the over-riding plate (2013 Cook Strait) and one involved reverse faulting at the subduction interface (2015 Pongaroa). We focus on obtaining precise and accurate measurements of corner frequency and stress drop for the best-recorded earthquakes. We use an empirical Green's function (EGF) approach, and require the EGF earthquakes to be highly correlated (cross-correlation ≥ 0.8) to their respective main shocks. In order to improve the quality, we also stack the spectral ratios and source time functions obtained from the best EGF. We perform a grid search for each individual ratio, and each stacked ratio to obtain quantitative uncertainty measurements, and restrict our analysis to the well-constrained corner frequency measurements. We are able to analyse both P and S waves independently and the high correlation between these measurements strengthens the reliability of our results. We find that there is significant real variability in corner frequency, and hence stress drop, within each sequence; the range of almost 2 orders of magnitude is larger than the uncertainties. The four sequences have overlapping stress drop ranges, and the variability within a sequence is larger than any between different sequences. There is no clear systematic difference in the populations analysed here with tectonic setting. We see no dependence of the stress drop values on depth, time, or magnitude after taking the frequency bandwidth limitations into consideration. Small-scale heterogeneity must therefore exert a more primary influence on earthquake stress drop than these larger scale factors. We confirm that when fitting individual spectral ratios, a corner frequency within a factor of three of the maximum signal frequency is likely to be underestimated. Stacked ratios are

  10. Temporal static stress drop variations due to injection activity at The Geysers geothermal field, California

    Staszek, M.; Orlecka-Sikora, B.; Leptokaropoulos, K.; Kwiatek, G.; Martínez-Garzón, P.


    We use a high-quality data set from the NW part of The Geysers geothermal field to determine statistical significance of temporal static stress drop variations and their relation to injection rate changes. We use a group of 322 seismic events which occurred in the proximity of Prati-9 and Prati-29 injection wells to examine the influence of parameters such as moment magnitude, focal mechanism, hypocentral depth, and normalized hypocentral distances from open-hole sections of injection wells on static stress drop changes. Our results indicate that (1) static stress drop variations in time are statistically significant, (2) statistically significant static stress drop changes are inversely related to injection rate fluctuations. Therefore, it is highly expected that static stress drop of seismic events is influenced by pore pressure in underground fluid injection conditions and depends on the effective normal stress and strength of the medium.

  11. The Effect of a Yield Stress on the Drainage of the Thin Film Between Two Colliding Newtonian Drops

    Goel, Sachin; Ramachandran, Arun


    Coalescence of drops immersed in fluids possessing a yield stress has been of interest to many industries such as the oil extraction, cosmetics and food industries. Unfortunately, a theoretical understanding of the drainage of the thin film of Bingham fluid (a model yield stress fluid) that develops between two drops undergoing a collision is still lacking, with the exception of two prior studies that make ad-hoc assumptions about the film shape. In this work, we examine this problem via a combination of scaling analysis and numerical simulations based on the lubrication analysis. There are four key features of the film drainage process of Bingham fluids. First, the introduction of a yield stress in the suspending fluid retards the drainage process relative to Newtonian fluid of the same viscosity. Second, the drainage time shows a minimum with respect to the capillary number. Third, the effect of yield stress on the drainage process becomes more pronounced at higher capillary numbers and lower Hamaker constant. Lastly, below a critical height, drainage can be arrested completely due to the yield stress. This critical height scales as τ02R3 τ02R3 γ2 γ2 , where τ0 is the yield stress, R is the drop radius and γ is the interfacial tension, and is, surprisingly, independent of the force colliding the drops. This and other distinguishing characteristics of the drainage process will be elucidated in the presentation.

  12. Stress drop Scaling and Stress Release in the Darfield-Christchurch, New Zealand Earthquake Sequence

    Abercrombie, R. E.; Fry, B.; Gerstenberger, M. C.; Doser, D. I.; Bannister, S. C.


    To investigate earthquake rupture dynamics, and which factors (e.g. normal stress, strain rate, fluids, rheology) govern the earthquake source and consequent ground motions, we need to study earthquakes over a wide range of magnitudes, from a diverse range of tectonic environments. The uncertainties and discrepancies between studies of earthquake stress drop are a frustration to all those who are interested in earthquake source and fault dynamics. There is controversy over whether the earthquake rupture process is self-similar and whether it varies with tectonic setting; different studies give different results. It is unclear whether this is due to differences between the earthquakes, or the analysis methods. We are developing a direct wave, spectral ratio analysis approach that includes realistic estimates of uncertainties and has strict objective criteria for assessing the quality of an EGF derived spectral ratio (Abercrombie, 2012, submitted). Comparing this approach to other methods reveals significant random and systematic biases, enabling us to improve our understanding of the real uncertainties. The Canterbury earthquake sequence that began with the M7.1 Darfield earthquake in September 2010, and includes the devastating M6.2 Christchurch earthquake in February 2011 is a very active sequence within a low strain rate tectonic setting. To date there have been 15 earthquakes with M>5.5. High quality recording and accurate relocations make this an ideal sequence to investigate any spatial, temporal, or magnitude dependence to stress drop. The largest earthquakes appear to have relatively high stress drops (and apparent stress), consistent with the high ground accelerations and damage in Christchurch. This observation is also consistent with the hypothesis that faults in low-strain rate regions with long inter-event times rupture in higher stress drop earthquakes. We use recordings from the various GeoNet broadband stations deployed to record the ongoing

  13. Estimates of stress drop from the 27 February 2010 Chile earthquake and tectonic stress in the crust: Implications for fault strength

    Luttrell, K. M.; Tong, X.; Sandwell, D. T.; Brooks, B. A.


    The great February 27, 2010 Mw 8.8 earthquake off the coast of southern Chile ruptured a 606 km length of subduction zone. In this study we make two independent estimates of shear stress in the crust in the region of the Chile earthquake. First, we use a coseismic slip model constrained by geodetic observations from InSAR and GPS to derive a spatially variable estimate of the change in static shear stress along the ruptured fault. Second, we use a static force balance model to constrain the crustal shear stress required to support observed accretionary wedge topography and the stress orientation indicated by the earthquake focal mechanism. This includes the derivation of a semi-analytic solution for the stress field exerted by surface and Moho topography loading the crust. We find that the deviatoric stress exerted by topography is minimized in the limit when the crust is considered an incompressible elastic solid, with a Poisson’s ratio of 0.5. This places a lower bound on the critical stress state maintained by the crust supporting plastically deformed accretionary wedge topography. We estimate the shear stress change from the Maule event ranged from -6 MPa (stress increase) to 14 MPa (stress drop), with a maximum depth-averaged shear stress drop of 4 MPa. We separately estimate that the plate driving forces acting in the region, regardless of their exact mechanism, must contribute at least 15 MPa trench-parallel compression, and trench-perpendicular compression must exceed trench-parallel compression by at least 12 MPa. This corresponds to a depth-averaged shear stress of at least 7 MPa. The comparable magnitude of these two independent shear stress estimates is consistent with the interpretation that the section of the megathrust fault ruptured in the Maule earthquake is weak, with the seismic cycle relieving much of the total sustained shear stress in the crust, and an equal portion of plate-driving stress being transmitted through the mantle.

  14. Fault roughness and strength heterogeneity control earthquake size and stress drop

    Zielke, Olaf


    An earthquake\\'s stress drop is related to the frictional breakdown during sliding and constitutes a fundamental quantity of the rupture process. High-speed laboratory friction experiments that emulate the rupture process imply stress drop values that greatly exceed those commonly reported for natural earthquakes. We hypothesize that this stress drop discrepancy is due to fault-surface roughness and strength heterogeneity: an earthquake\\'s moment release and its recurrence probability depend not only on stress drop and rupture dimension but also on the geometric roughness of the ruptured fault and the location of failing strength asperities along it. Using large-scale numerical simulations for earthquake ruptures under varying roughness and strength conditions, we verify our hypothesis, showing that smoother faults may generate larger earthquakes than rougher faults under identical tectonic loading conditions. We further discuss the potential impact of fault roughness on earthquake recurrence probability. This finding provides important information, also for seismic hazard analysis.

  15. Stress drops and radiated energies of aftershocks of the 1994 Northridge, California, earthquake

    Mori, Jim; Abercrombie, Rachel E.; Kanamori, Hiroo


    We study stress levels and radiated energy to infer the rupture characteristics and scaling relationships of aftershocks and other southern California earthquakes. We use empirical Green functions to obtain source time functions for 47 of the larger (M ≥ 4.0) aftershocks of the 1994 Northridge, California earthquake (M6.7). We estimate static and dynamic stress drops from the source time functions and compare them to well-calibrated estimates of the radiated energy. Our measurements of radiated energy are relatively low compared to the static stress drops, indicating that the static and dynamic stress drops are of similar magnitude. This is confirmed by our direct estimates of the dynamic stress drops. Combining our results for the Northridge aftershocks with data from other southern California earthquakes appears to show an increase in the ratio of radiated energy to moment, with increasing moment. There is no corresponding increase in the static stress drop. This systematic change in earthquake scaling from smaller to larger (M3 to M7) earthquakes suggests differences in rupture properties that may be attributed to differences of dynamic friction or stress levels on the faults.

  16. Stress drops of induced and tectonic earthquakes in the central United States are indistinguishable.

    Huang, Yihe; Ellsworth, William L; Beroza, Gregory C


    Induced earthquakes currently pose a significant hazard in the central United States, but there is considerable uncertainty about the severity of their ground motions. We measure stress drops of 39 moderate-magnitude induced and tectonic earthquakes in the central United States and eastern North America. Induced earthquakes, more than half of which are shallower than 5 km, show a comparable median stress drop to tectonic earthquakes in the central United States that are dominantly strike-slip but a lower median stress drop than that of tectonic earthquakes in the eastern North America that are dominantly reverse-faulting. This suggests that ground motion prediction equations developed for tectonic earthquakes can be applied to induced earthquakes if the effects of depth and faulting style are properly considered. Our observation leads to the notion that, similar to tectonic earthquakes, induced earthquakes are driven by tectonic stresses.

  17. Low stress drops observed for aftershocks of the 2011 Mw 5.7 Prague, Oklahoma, earthquake

    Sumy, Danielle F.; Neighbors, Corrie J.; Cochran, Elizabeth S.; Keranen, Katie M.


    In November 2011, three Mw ≥ 4.8 earthquakes and thousands of aftershocks occurred along the structurally complex Wilzetta fault system near Prague, Oklahoma. Previous studies suggest that wastewater injection induced a Mw 4.8 foreshock, which subsequently triggered a Mw 5.7 mainshock. We examine source properties of aftershocks with a standard Brune-type spectral model and jointly solve for seismic moment (M0), corner frequency (f0), and kappa (κ) with an iterative Gauss-Newton global downhill optimization method. We examine 934 earthquakes with initial moment magnitudes (Mw) between 0.33 and 4.99 based on the pseudospectral acceleration and recover reasonable M0, f0, and κ for 87 earthquakes with Mw 1.83-3.51 determined by spectral fit. We use M0 and f0 to estimate the Brune-type stress drop, assuming a circular fault and shear-wave velocity at the hypocentral depth of the event. Our observations suggest that stress drops range between 0.005 and 4.8 MPa with a median of 0.2 MPa (0.03-26.4 MPa with a median of 1.1 MPa for Madariaga-type), which is significantly lower than typical eastern United States intraplate events (>10 MPa). We find that stress drops correlate weakly with hypocentral depth and magnitude. Additionally, we find the stress drops increase with time after the mainshock, although temporal variation in stress drop is difficult to separate from spatial heterogeneity and changing event locations. The overall low median stress drop suggests that the fault segments may have been primed to fail as a result of high pore fluid pressures, likely related to nearby wastewater injection.

  18. On the Relation of Earthquake Stress Drop and Ground Motion Variability

    Oth, A.; Miyake, H.; Bindi, D.


    The physical properties of the seismic source play a major role in the generation of earthquake ground motions. One of the key parameters typically used in this context is the so-called stress drop since it can be directly linked to the high-frequency spectral level of ground motion, and it is an important input parameter for ground motion modeling. At the same time, classically determined stress drop estimates from moment-corner frequency analysis have been shown to be extremely variable, and this to a much larger degree than might be expected from the decomposition of ground motion variability into its between-event and within-event components following the random effects approach (Cotton et al., 2013). This discrepancy raises the question of whether classically determined stress drop variability is too large, which would have significant implications for ground motion prediction in seismic hazard analysis. We use the rich high-quality accelerometric databases available in Japan to derive non-parametric ground motion models on these data that serve as reference models. We then investigate the relation between the between-event terms for the individual earthquakes from these regressions with stress drop estimates determined nation-wide for crustal earthquakes. As a complement to the non-parametric models, we also apply a parametric mixed effects modeling approach to investigate the influence of between-event, between-region and between-sequence variability. The analysis is carried out for JMA equivalent seismic intensity, PGA and PGV data. Our results indicate a clear correlation of the between-event terms with stress drops estimates, both for non-parametric and parametric approaches - however with the interesting effect of the appearance of two major families of events with widely different stress drop, yet similar range of between-event terms. This effect is in agreement with the observation made by Cotton et al. (2013) that the between-event ground motion

  19. Stress drops and radiated energies of aftershocks of the 1994 Northridge, California, earthquake

    Mori, Jim; Abercrombie, Rachel E.; Kanamori, Hiroo


    We study stress levels and radiated energy to infer the rupture characteristics and scaling relationships of aftershocks and other southern California earthquakes. We use empirical Green functions to obtain source time functions for 47 of the larger (M ≥ 4.0) aftershocks of the 1994 Northridge, California earthquake (M6.7). We estimate static and dynamic stress drops from the source time functions and compare them to well-calibrated estimates of the radiated energy. Our measurements of radiat...

  20. Scaling of stress drop and high-frequency fall-off of source spectra


    It has been observed for a long time that the high-frequency fall-off constant of source spectra is about 2 for "large" earthquakes and about 3 for "small" earthquakes. For earthquakes between "large" and "small", the highfrequency fall-off constant is not an integer and varies with the size of the earthquake. In this article such a variation is explained in the perspective of the scaling of stress drop, which proposes a new approach to the study of the scaling of stress drop using seismic data with lower quality of completeness and high-frequency characteristics. The study on the source spectra of the aftershocks of the 1988 Lancang-Gengma, Yunnan, China earthquake shows that the high-frequency fall-off of source spectra and its variation with the size of earthquake can be well explained by the model that for "large" earthquakes the stress drop is a constant while for "small" earthquakes the stress drop increases with the size of the earthquake.

  1. On statistical behaviour of stress drops in Portevin–Le Chatelier effect

    A Chatterjee; P Mukherjee; N Gayathri; P Barat; Arnab Barat; A Sarkar


    The Portevin–Le Chatelier (PLC) effect is a kind of plastic instability observed in many dilute alloys when deformed at certain ranges of strain rate and temperature. In this paper we present a comprehensive statistical analysis of the observed experimental data obtained during PLC effect and establish that the occurrence probability of the stress drops in the dynamical process responsible for PLC effect is Poisson in nature.

  2. The depth of pseudotachylyte formation from detailed thermochronology and constraints on coseismic stress drop variability

    Kirkpatrick, J. D.; Dobson, K. J.; Mark, D. F.; Shipton, Z. K.; Brodsky, E. E.; Stuart, F. M.


    Pseudotachylytes are accepted as recording paleo-seismicity in the rock record. However, the interpretation of the mechanics of faulting based on pseudotachylyte generation is often hindered because the depth at which they form is poorly constrained. Here, we use thermochronology to determine the depth at which pseudotachylytes in the Sierra Nevada, California, formed. The pseudotachylytes formed in ≤10 m long patches over a rupture surface, the rest of which comprised cataclasites that did not melt. The age of the pseudotachylytes is found to be 76.6 ± 0.3 Ma (2σ) from 40Ar/39Ar dating of pristine vein matrix. A suite of thermochronometers define the temperature-time path of the host rock granodiorite from ˜550 to 60°C. When the pseudotachylytes formed, the ambient temperature was 110 to 160°C, implying a depth of ˜2.4 to 6.0 km under typical geothermal gradients. At these depths, the failure stress on optimally oriented faults with Byerlee friction and hydrostatic pore pressure was ≤51 MPa. Following melting, the dynamic stress acting on the fault is the melt shear resistance, which we calculate to be <0.2 MPa, suggesting that the stress drop associated with melting was complete. To conform with seismologically observed dynamic stress drops averaged over an entire rupture (1 to 10 MPa), dynamic stress drop must have varied by at least an order of magnitude between the parts of the fault that melted and those that did not. Constraining the depth of pseudotachylyte formation using thermochronology therefore provides a quantitative estimate of the degree and scale of coseismic stress heterogeneity.

  3. Spatio-temporal variations of stress drop in and around the asperity of the Mw 6.1, 6 April 2009 L'Aquila earthquake.

    Calderoni, G.


    We investigate the variability of Brune stress drop in the normal fault system activated by the Mw 6.1 L'Aquila earthquake in the complex tectonic setting of the central Apennine. We re-analyze the dataset used by Calderoni et al. [2013], augmented by additional earthquakes and additional records at closer distance stations. We refine the EGF method used by Calderoni et al. [2013] applying more restrictive criteria in the selection of the EGF events and removing outliers based on statistical criteria. We focus on spatio-temporal variations in the Paganica fault before the mainshock. Using 51 earthquakes (9 foreshocks, the mainshock, and 42 aftershocks), we show that, after the Mw 4.1 largest foreshock of 30 March 2009, the Brune stress drop goes down to the lowest values (0.4 MPa). This largest foreshock was indicated as a marker for the onset of the temporal variations in efficiency of fault-zone guided waves (Calderoni et al., 2015) and other independent seismic parameters such as the b value [Papadopoulos et al., 2010; Sugan et al., 2014], and the P-to-S wave velocity ratio [Di Luccio et al., 2010; Lucente et al., 2010]. The low values of stress drop after the Mw 4.1 foreshock are consistent with the increase of pore pressure invoked by other authors to explain the increase of the Vp/Vs ratio and the decrease of Vs in the damage fault zone. In contrast, immediate foreshocks occurring a few hours before the mainshock very close to its nucleation are characterized by the highest values observed for foreshocks (≈5 MPa). These high stress drop foreshocks are located in the fault patch where a low b value anomaly indicates highly stressed rock before the main shock rupture [Sugan et al., 2014]. These results provide further evidence to previous observations before major earthquakes suggesting that stress drop variations can provide insight into the preparatory phase of impending earthquakes.

  4. Effects of surface properties on the impact process of a yield stress fluid drop

    Saidi, Alireza [UMR 5518 CNRS-Grenoble Institut Polytechnique (Grenoble INP), Laboratory of Pulp and Paper Science and Graphic Arts (LGP2), St Martin d' Heres (France); Martin, Celine [UMR 5518 CNRS-Grenoble Institut Polytechnique (Grenoble INP), Laboratory of Pulp and Paper Science and Graphic Arts (LGP2), St Martin d' Heres (France); Universite Joseph Fourier Grenoble I, CNRS, Laboratoire de Rheologie, CNRS UMR 5520, Grenoble Institut Polytechnique, BP 53, Grenoble Cedex 9 (France); Magnin, Albert [Universite Joseph Fourier Grenoble I, CNRS, Laboratoire de Rheologie, CNRS UMR 5520, Grenoble Institut Polytechnique, BP 53, Grenoble Cedex 9 (France)


    The impact of a yield stress fluid drop onto a solid surface with diversified interface properties has been experimentally investigated. Two smooth substrates with distinct surface energies and three similar substrates with different roughnesses have been used. The bulk shear rheological behaviour of Carbopol gels, concentrated suspensions of swollen micro-gels, has been measured. Wall friction has also been characterized on each substrate. Slip effects of gels proved to be greater on a more hydrophobic substrate. They decreased with an increase in roughness. The drop hydrodynamics during the impact was correlated with the wall friction of the gels on all substrates and with the ratio of surface roughness to size of the swollen micro-gels. At very low impact velocities, the gravitational subsidence amplitude depends greatly on surface properties. At higher impact velocities, no significant difference is observed during the spreading phase. The drop behaviour differs during the retraction depending on the substrate. Interface effects during the retraction stage proved to diminish when the yield stress value increases. (orig.)

  5. Stress Drop as a Result of Splitting, Brittle and Transitional Faulting of Rock Samples in Uniaxial and Triaxial Compression Tests

    Cieślik Jerzy


    Full Text Available Rock samples can behave brittle, transitional or ductile depending on test pressure, rate of loading and temperature. Axial stiffness and its changes, relative and absolute dilatancy, yield, and fracture thresholds, residual strength are strongly pressure dependent. In this paper the stress drop as an effect of rock sample strength loss due to failure was analyzed. Uniaxial and triaxial experiments on three types of rock were performed to investigate the stress drop phenomenon. The paper first introduces short background on rock behavior and parameters defining a failure process under uniaxial and triaxial loading conditions. Stress drop data collected with experiments are analyzed and its pressure dependence phenomenon is described. Two methods for evaluation of stress drop value are presented.

  6. The intraplate Mw 7 Machaze earthquake in Mozambique: Improved point source model, stress drop, and geodynamic implications

    Attanayake, Januka; Fonseca, João F. B. D.


    The February 22nd 2006 Mw = 7 Machaze earthquake is one of the largest, if not the largest, earthquakes reported since 1900 within Continental Africa. This large continental intraplate event has important implications to our understanding of tectonics and strong ground motion prediction locally and in the global context. Thus, accurate estimates of source parameters of this earthquake are important. In this study, we inverted the complete azimuthally distributed high frequency (0.05-2 Hz) P waveform dataset available for a best-fitting point source model and obtained stress drop estimates assuming different theoretical rupture models from spectral fitting. Our best-fitting point source model confirms steep normal faulting, has strike = 173° (309°), dip = 73° (23°), rake = -72° (-132°), and shows a 12%-4% improvement in waveform fit compared to previous models, which translates into an error minimization. We attribute this improvement to higher order reverberations near the source region that we took in to account and the excellent azimuthal coverage of the dataset. Preferred stress drop estimates assuming a rupture velocity = 0.9 x shear wave velocity (Vs) are between 11 and 15 MPa though, even higher stress drop estimates are possible for rupture velocities lower than 0.9Vs. The estimated stress drop is significantly higher than the global stress drop average of intraplate earthquakes, but is consistent with stress drop estimated for some intra-continental earthquakes elsewhere. The detection of a new active structure that appears to terminate in Machaze, its step-like geometry, and lithospheric strength all favors a hypothesis of stress concentration in the source region, which is likely the cause of this event and the higher than average stress drop.

  7. A comparison of broadband source spectra, seismic energies, and stress drops of the 1989 Loma Prieta and 1988 Armenian earthquakes

    Houston, Heidi

    Broadband source spectra of the 1989 Loma Prieta (MW = 6.9) and 1988 Armenian (MW = 6.7) earthquakes are computed at periods from 1 to 50 sec using digitally-recorded teleseismic P body waves. The effects of attenuation, geometrical spreading, and radiation pattern are removed from the spectra of individual stations, which are then averaged. The source spectra of the Loma Prieta and Armenian earthquakes are higher for their seismic moments than the spectra of 11 intraplate earthquakes studied by Zhuo and Kanamori [1987], which in turn are 2 to 4 times larger than average spectra of interplate subduction zone earthquakes.The seismically radiated energy can be computed from the source spectrum using Haskell's [1964] formulation assuming a point source with no directivity. An Orowan stress drop can be obtained from the seismic energy and moment. The Orowan stress drops for the Loma Prieta and Armenian earthquakes are both about 20 bars, significantly higher than Orowan stress drops of recent large interplate earthquakes. There is a positive correlation between the Orowan stress drops and the estimated repeat times, consistent with the notion that mechanical fault strength increases with increasing interseismic period.

  8. Interlaminar stress analysis of dropped-ply laminated plates and shells by a mixed method. Ph.D. Thesis

    Harrison, Peter N.; Johnson, Eric R.; Starnes, James H., Jr.


    A mixed method of approximation based on Reissner's variational principle is developed for the linear analysis of interlaminar stresses in laminated composites, with special interest in laminates that contain terminated internal plies (dropped-ply laminates). Two models are derived, one for problems of generalized plane deformation and the other for the axisymmetric response of shells of revolution. A layerwise approach is taken in which the stress field is assumed with an explicit dependence on the thickness coordinate in each layer. The dependence of the stress field on the thickness coordinate is determined such that the three-dimensional equilibrium equations are satisfied by the approximation. The solution domain is reduced to one dimension by integration through the thickness. Continuity of tractions and displacements between layers is imposed. The governing two-point boundary value problem is composed of a system of both differential and algebraic equations (DAE's) and their associated boundary conditions. Careful evaluation of the system of DAE's was required to arrive at a form that allowed application of a one-step finite difference approximation. A two-stage Gauss implicit Runge-Kutta finite difference scheme was used for the solution because of its relatively high degree of accuracy. Patch tests of the two models revealed problems with solution accuracy for the axisymmetric model of a cylindrical shell loaded by internal pressure. Parametric studies of dropped-ply laminate characteristics and their influence on the interlaminar stresses were performed using the generalized plane deformation model. Eccentricity of the middle surface of the laminate through the ply drop-off was found to have a minimal effect on the interlaminar stresses under longitudinal compression, transverse tension, and in-plane shear. A second study found the stiffness change across the ply termination to have a much greater influence on the interlaminar stresses.

  9. A Study of The Elongational Flow of Dilute Polymer Solutions : Estimation of The Elongational Stresses by Utilizing Pressure Drops with Orifice Flows

    福冨, 清; 長谷川, 富市; Fukutomi, Kiyoshi; Hasegawa, Tomiichi


    By assuming a uniformly converging radial flow on the upstream side of an orifice and integrating the equation of motion, an expression was derived to estimate elongational stresses for dilute polymer solutions at the orifice exit from pressure drops between the upstream and downstream of the orifice. The expression shown that the dilute polymer solutions usually give lower values of pressure drop than the solvent (water) does. An experiment was carried out to obtain the pressure drops for th...

  10. Moment rate scaling for earthquakes 3.3 ≤ M ≤ 5.3 with implications for stress drop

    Archuleta, Ralph J.; Ji, Chen


    We have determined a scalable apparent moment rate function (aMRF) that correctly predicts the peak ground acceleration (PGA), peak ground velocity (PGV), local magnitude, and the ratio of PGA/PGV for earthquakes 3.3 ≤ M ≤ 5.3. Using the NGA-West2 database for 3.0 ≤ M ≤ 7.7, we find a break in scaling of LogPGA and LogPGV versus M around M 5.3 with nearly linear scaling for LogPGA and LogPGV for 3.3 ≤ M ≤ 5.3. Temporal parameters tp and td—related to rise time and total duration—control the aMRF. Both scale with seismic moment. The Fourier amplitude spectrum of the aMRF has two corners between which the spectrum decays f- 1. Significant attenuation along the raypath results in a Brune-like spectrum with one corner fC. Assuming that fC ≅ 1/td, the aMRF predicts non-self-similar scaling M0∝fC3.3 and weak stress drop scaling Δσ∝M00.091. This aMRF can explain why stress drop is different from the stress parameter used to predict high-frequency ground motion.

  11. Immunoreactive cortisone in droppings reflect stress levels, diet and growth rate of gull-billed tern chicks.

    Albano, Noelia; Santiago-Quesada, Francisco; Masero, José A; Sánchez-Guzmán, Juan M; Möstl, Erich


    Blood levels of corticosterone have been traditionally analyzed to assess stress levels in birds; however, measuring steroid hormone metabolites in feces and droppings has gained much interest as a noninvasive technique successfully used for such purposed in vertebrates. Diet may affect these fecal metabolite levels (e.g., due to nutritional stress), however, this variable has not been taken into account in studies with chicks despite the great dietary flexibility of many avian species. In this study, we addressed for the first time this key issue and validated the technique in wild gull-billed tern chicks (Gelochelidon nilotica). Several enzyme immunoassays were used to determine the most appropriate test to measure the stress response. Subsequently, we performed an experiment in captivity to assess adrenocortical activity in gull-billed tern chicks fed with two diets: piscivorous vs. insectivorous. Finally, the relation between the chicks' growth rate and excreted immunoreactive glucocorticoid metabolites (EGMs) was also evaluated. We found the immunoreactive cortisone metabolites to be a good index of stress (as being an index of adrenocortical reactivity) in chicks of this species. Fish-fed chicks had higher levels of cortisone metabolites when comparing both concentration and total daily excreted metabolites. Within each treatment diet, cortisone metabolite levels and growth rates were negatively correlated. These findings suggest that the diet should be considered when using this technique for comparative purposes and highlight the trade-off between stress levels and chicks growth rates. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Detecting Significant Stress Drop Variations in Large Micro-Earthquake Datasets: A Comparison Between a Convergent Step-Over in the San Andreas Fault and the Ventura Thrust Fault System, Southern California

    Goebel, T. H. W.; Hauksson, E.; Plesch, A.; Shaw, J. H.


    A key parameter in engineering seismology and earthquake physics is seismic stress drop, which describes the relative amount of high-frequency energy radiation at the source. To identify regions with potentially significant stress drop variations, we perform a comparative analysis of source parameters in the greater San Gorgonio Pass (SGP) and Ventura basin (VB) in southern California. The identification of physical stress drop variations is complicated by large data scatter as a result of attenuation, limited recording bandwidth and imprecise modeling assumptions. In light of the inherently high uncertainties in single stress drop measurements, we follow the strategy of stacking large numbers of source spectra thereby enhancing the resolution of our method. We analyze more than 6000 high-quality waveforms between 2000 and 2014, and compute seismic moments, corner frequencies and stress drops. Significant variations in stress drop estimates exist within the SGP area. Moreover, the SGP also exhibits systematically higher stress drops than VB and shows more scatter. We demonstrate that the higher scatter in SGP is not a generic artifact of our method but an expression of differences in underlying source processes. Our results suggest that higher differential stresses, which can be deduced from larger focal depth and more thrust faulting, may only be of secondary importance for stress drop variations. Instead, the general degree of stress field heterogeneity and strain localization may influence stress drops more strongly, so that more localized faulting and homogeneous stress fields favor lower stress drops. In addition, higher loading rates, for example, across the VB potentially result in stress drop reduction whereas slow loading rates on local fault segments within the SGP region result in anomalously high stress drop estimates. Our results show that crustal and fault properties systematically influence earthquake stress drops of small and large events and should

  13. Detecting Significant Stress Drop Variations in Large Micro-Earthquake Datasets: A Comparison Between a Convergent Step-Over in the San Andreas Fault and the Ventura Thrust Fault System, Southern California

    Goebel, T. H. W.; Hauksson, E.; Plesch, A.; Shaw, J. H.


    A key parameter in engineering seismology and earthquake physics is seismic stress drop, which describes the relative amount of high-frequency energy radiation at the source. To identify regions with potentially significant stress drop variations, we perform a comparative analysis of source parameters in the greater San Gorgonio Pass (SGP) and Ventura basin (VB) in southern California. The identification of physical stress drop variations is complicated by large data scatter as a result of attenuation, limited recording bandwidth and imprecise modeling assumptions. In light of the inherently high uncertainties in single stress drop measurements, we follow the strategy of stacking large numbers of source spectra thereby enhancing the resolution of our method. We analyze more than 6000 high-quality waveforms between 2000 and 2014, and compute seismic moments, corner frequencies and stress drops. Significant variations in stress drop estimates exist within the SGP area. Moreover, the SGP also exhibits systematically higher stress drops than VB and shows more scatter. We demonstrate that the higher scatter in SGP is not a generic artifact of our method but an expression of differences in underlying source processes. Our results suggest that higher differential stresses, which can be deduced from larger focal depth and more thrust faulting, may only be of secondary importance for stress drop variations. Instead, the general degree of stress field heterogeneity and strain localization may influence stress drops more strongly, so that more localized faulting and homogeneous stress fields favor lower stress drops. In addition, higher loading rates, for example, across the VB potentially result in stress drop reduction whereas slow loading rates on local fault segments within the SGP region result in anomalously high stress drop estimates. Our results show that crustal and fault properties systematically influence earthquake stress drops of small and large events and should

  14. Stress analysis of a complete maxillary denture under various drop impact conditions: a 3D finite element study.

    Sunbuloglu, Emin


    Complete maxillary dentures are one of the most economic and easy ways of treatment for edentulous patients and are still widely used. However, their survival rate is slightly above three years. It is presumed that the failure reasons are not only due to normal fatigue but also emerge from damage based on unavoidable improper usage. Failure types other than long-term fatigue, such as over-deforming, also influence the effective life span of dentures. A hypothesis is presumed, stating that the premature/unexpected failures may be initiated by impact on dentures, which can be related to dropping them on the ground or other effects such as biting crispy food. Thus, the behavior of a complete maxillary denture under impact loading due to drop on a rigid surface was investigated using the finite element method utilizing explicit time integration and a rate-sensitive elastoplastic material model of polymethylmethacrylate (PMMA). Local permanent deformations have been observed along with an emphasis on frenulum region of the denture, regardless of the point of impact. Contact stresses at the tooth-denture base were also investigated. The spread of energy within the structure via wave propagation is seen to play a critical role in this fact. Stress-wave propagation is also seen to be an important factor that decreases the denture's fatigue life.

  15. Stress drops for intermediate-depth intraslab earthquakes beneath Hokkaido, northern Japan: Differences between the subducting oceanic crust and mantle events

    Kita, Saeko; Katsumata, Kei


    Spatial variations in the stress drop for 1726 intermediate-depth intraslab earthquakes were examined in the subducting Pacific plate beneath Hokkaido, using precisely relocated hypocenters, the corner frequencies of events, and detailed determined geometry of the upper interface of the Pacific plate. The results show that median stress drop for intraslab earthquakes generally increases with an increase in depth from ˜10 to 157 Mpa at depths of 70-300 km. More specifically, median stress drops for events in the oceanic crust decrease (9.9-6.8 MPa) at depths of 70-120 km and increase (6.8-17 MPa) at depths of 120-170 km, whereas median stress drop for events in the oceanic mantle decrease (21.6-14.0 MPa) at depths of 70-170 km, where the geometry of the Pacific plate is well determined. The increase in stress drop with depth in the oceanic crust at depths of 120-170 km, for which several studies have shown an increase in velocity, can be explained by an increase in the velocity and a decrease in the water content due to the phase boundary with dehydration in the oceanic crust. Stress drops for events in the oceanic mantle were larger than those for events in the oceanic crust at depths of 70-120 km. Differences in both the rigidity of the rock types and in the rupture mechanisms for events between the oceanic crust and mantle could be causes for the stress drop differences within a slab.

  16. Stress Drops of the 1997-1998 Colfiorito, Central Italy Earthquakes: Hints for a Common Behaviour of Normal Faults in the Apennines

    Rovelli, Antonio; Calderoni, Giovanna


    Stress drop estimates of moderate-magnitude earthquakes in the Umbria-Marche region, in the northern Apennines, exhibit a large scatter. For the two M w 5.7 and 6.0 main shocks of 26 September 1997 near Colfiorito, several papers resulted in stress drop estimates of 20 MPa, but values as low as 2-3 MPa were proposed as well. Also for the largest aftershocks ( M w > 4), estimates spread from earthquakes in a broad magnitude interval (1.7 ≤ M w ≤ 6.0). We have found that the mainshock-aftershock sequences result in stress drops of 2-5 MPa at M w ≥ 5.6, with an average tendency to decrease at smaller magnitudes where stress drop variability increases. These findings confirm the source scaling recently assessed through Empirical Green's Function deconvolution for another well-monitored seismic sequence of normal-faulting earthquakes, which struck the city of L'Aquila in the central Apennines in April 2009. The similar scaling law of the two areas suggests common mechanisms of stress release for the shallow normal faults in the Apennines. The propensity of smaller earthquakes to increase in variability, with a tendency toward smaller stress drops, may reflect an effect of fault strength heterogeneities for smaller size ruptures.

  17. Fiber optic stress-independent helical torsion sensor.

    Fernandes, Luís A; Grenier, Jason R; Aitchison, J Stewart; Herman, Peter R


    Femtosecond laser-fabricated waveguides have been formed into helical paths throughout the cladding of single-mode optical fibers to demonstrate a strain-independent fiber torsion sensor. A comparison between a Bragg grating sensor and a Mach-Zehnder based on helical waveguides (HWs) showed a much weaker twist sensitivity of 1.5 pm/(rad/m) for the grating in contrast with a value of 261 pm/(rad/m) for the interferometer. The HW geometry provided an unambiguous determination of the rotational direction of the twist while facilitating a convenient and efficient means for optical coupling into the single-mode core of the fiber. The flexible three-dimensional writing by the femtosecond laser fabrication method enabled the direct inscription of compact and robust optical cladding devices without the need for combining or splicing multiple-fiber segments.

  18. A lipemia-independent NanoDrop(®)-based score to identify hemolysis in plasma and serum samples.

    Appierto, Valentina; Callari, Maurizio; Cavadini, Elena; Morelli, Daniele; Daidone, Maria Grazia; Tiberio, Paola


    The identification and management of hemolyzed samples are crucial issues in the development of new blood-based biomarkers. Using experiments of controlled hemolysis and lipemia and two plasma series from cancer patients, we developed and validated a lipemia-independent hemolysis score (HS). HS resulted strictly associated with the amount of lysed erythrocytes and with serum index measurement (reference method), highly reproducible, and able to identify as hemolyzed plasma/serum samples containing ≥6.1 mg/dl of free hemoglobin. We developed a simple, robust, sensitive, cost-effective, spectrophotometrically-based system to identify hemolyzed plasma/serum specimens. The procedure requires only 2 μl of sample, thus representing a useful tool for research studies and an essential pre-analytical quality control for an optimal biobanking of liquid biopsies.

  19. Muscle mitochondrial stress adaptation operates independently of endogenous FGF21 action

    Mario Ost


    Conclusions: Here we demonstrate that although FGF21 drives WAT remodeling, the adaptive pseudo-starvation response under elevated muscle mitochondrial stress conditions operates independently of both WAT browning and FGF21 action. Thus, our findings challenge FGF21 as key metabolic mediator of the mitochondrial stress adaptation and powerful therapeutic target during muscle mitochondrial disease.

  20. Testing the critical exponent in the relation between stress drop of earthquake and lead time of seismic electric signal

    E. Dologlou


    Full Text Available The application of new data in the power law relation between the stress drop of the earthquake and the lead time of the precursory seismic electric signal led to an exponent which falls in the range of the values of critical exponents for fracture and it is in excellent agreement with a previous one found by (Dologlou, 2012. In addition, this exponent is very close to the one reported by Varotsos and Alexopoulos (1984a, which interconnects the amplitude of the precursory seismic electric signals (SES and the magnitude of the impending earthquake. Hence, the hypothesis that underlying dynamic processes evolving to criticality prevail in the pre-focal area when the SES is emitted is significantly supported.

  1. Dynamic Source Inversion of an Intraslab Earthquake: a Slow and Inefficient Rupture with Large Stress Drop and Radiated Energy

    Cruz-Atienza, V. M.; Diaz-Mojica, J.; Madariaga, R. I.; Singh, S. K.; Tago Pacheco, J.; Iglesias, A.


    We introduce a method for imaging the earthquake source dynamics through the inversion of ground motion records based on a parallel genetic algorithm. The source model follows an elliptical patch approach and uses the staggered-grid split-node method to model the earthquake dynamics. A statistical analysis is used to estimate uncertainties in both inverted and derived source parameters. Synthetic inversion tests reveal that the rupture speed (Vr), the rupture area and the stress drop (Δτ) are determined within an error of ~30%, ~12% and ~10%, respectively. In contrast, derived parameters such as the radiated energy (Er), the radiation efficiency (η) and the fracture energy (G) have larger uncertainties, around ~70%, ~40% and ~25%, respectively. We applied the method to the Mw6.5 intermediate-depth (62 km) normal-faulting earthquake of December 11, 2011 in Guerrero, Mexico (Diaz-Mojica et al., JGR, 2014). Inferred values of Δτ = 29.2±6.2 MPa and η = 0.26±0.1 are significantly higher and lower, respectively, than those of typical subduction thrust events. Fracture energy is large, so that more than 73% of the available potential energy for the dynamic process of faulting was deposited in the focal region (i.e., G = (14.4±3.5)x1014J), producing a slow rupture process (Vr/Vs = 0.47±0.09) despite the relatively-high energy radiation (Er = (0.54±0.31)x1015 J) and energy-moment ratio (Er/M0 = 5.7x10-5). It is interesting to point out that such a slow and inefficient rupture along with the large stress drop in a small focal region are features also observed in the 1994 deep Bolivian earthquake.

  2. Finite stopping times for freely oscillating drop of a yield stress fluid

    Cheng, Wanli


    The paper addresses the question if there exists a finite stopping time for an unforced motion of a yield stress fluid with free surface. A variation inequality formulation is deduced for the problem of yield stress fluid dynamics with a free surface. Free surface is assumed to evolve with a normal velocity the flow. We also consider capillary forces acting along the free surface. Based on the variational inequality formulation an energy equality is obtained, where kinetic and free energy rate of change is in a balance with the internal energy viscoplastic dissipation and the work of external forces. Further, the paper considers free small-amplitude oscillations of a droplet of Herschel-Bulkley fluid under the action of surface tension forces. Under certain assumptions it is shown that the finite stopping time $T_f$ of oscillations exists once the yield stress parameter is positive and the flow index $\\alpha$ satisfies ($\\alpha\\ge1$). Results of several numerical experiments illustrate the analysis, reveal th...

  3. Melatonin improves memory acquisition under stress independent of stress hormone release

    Rimmele, U; Spillmann, M; Bärtschi, C; Wolf, O.T.; Weber, C S; Ehlert, Ulrike; Wirtz, P H


    RATIONALE: Animal studies suggest that the pineal hormone melatonin influences basal stress hormone levels and dampens hormone reactivity to stress. OBJECTIVES: We investigated whether melatonin also has a suppressive effect on stress-induced catecholamine and cortisol release in humans. As stress hormones affect memory processing, we further examined a possible accompanying modulation of memory function. MATERIALS AND METHODS: Fifty healthy young men received a single oral dose of either 3...

  4. Repetition of large stress drop earthquakes on Wairarapa fault, New Zealand, revealed by LiDAR data

    Delor, E.; Manighetti, I.; Garambois, S.; Beaupretre, S.; Vitard, C.


    We have acquired high-resolution LiDAR topographic data over most of the onland trace of the 120 km-long Wairarapa strike-slip fault, New Zealand. The Wairarapa fault broke in a large earthquake in 1855, and this historical earthquake is suggested to have produced up to 18 m of lateral slip at the ground surface. This would make this earthquake a remarkable event having produced a stress drop much higher than commonly observed on other earthquakes worldwide. The LiDAR data allowed us examining the ground surface morphology along the fault at vegetation. In doing so, we identified more than 900 alluvial features of various natures and sizes that are clearly laterally offset by the fault. We measured the about 670 clearest lateral offsets, along with their uncertainties. Most offsets are lower than 100 m. Each measurement was weighted by a quality factor that quantifies the confidence level in the correlation of the paired markers. Since the slips are expected to vary along the fault, we analyzed the measurements in short, 3-5 km-long fault segments. The PDF statistical analysis of the cumulative offsets per segment reveals that the alluvial morphology has well recorded, at every step along the fault, no more than a few (3-6), well distinct cumulative slips, all lower than 80 m. Plotted along the entire fault, the statistically defined cumulative slip values document four, fairly continuous slip profiles that we attribute to the four most recent large earthquakes on the Wairarapa fault. The four slip profiles have a roughly triangular and asymmetric envelope shape that is similar to the coseismic slip distributions described for most large earthquakes worldwide. The four slip profiles have their maximum slip at the same place, in the northeastern third of the fault trace. The maximum slips vary from one event to another in the range 7-15 m; the most recent 1855 earthquake produced a maximum coseismic slip of 15 × 2 m at the ground surface. Our results thus confirm

  5. Stress-induced inhibition of translation independently of eIF2α phosphorylation.

    Knutsen, Jon Halvor Jonsrud; Rødland, Gro Elise; Bøe, Cathrine Arnason; Håland, Tine Weise; Sunnerhagen, Per; Grallert, Beáta; Boye, Erik


    Exposure of fission yeast cells to ultraviolet (UV) light leads to inhibition of translation and phosphorylation of the eukaryotic initiation factor-2α (eIF2α). This phosphorylation is a common response to stress in all eukaryotes. It leads to inhibition of translation at the initiation stage and is thought to be the main reason why stressed cells dramatically reduce protein synthesis. Phosphorylation of eIF2α has been taken as a readout for downregulation of translation, but the role of eIF2α phosphorylation in the downregulation of general translation has not been much investigated. We show here that UV-induced global inhibition of translation in fission yeast cells is independent of eIF2α phosphorylation and the eIF2α kinase general control nonderepressible-2 protein (Gcn2). Also, in budding yeast and mammalian cells, the UV-induced translational depression is largely independent of GCN2 and eIF2α phosphorylation. Furthermore, exposure of fission yeast cells to oxidative stress generated by hydrogen peroxide induced an inhibition of translation that is also independent of Gcn2 and of eIF2α phosphorylation. Our findings show that stress-induced translational inhibition occurs through an unknown mechanism that is likely to be conserved through evolution. © 2015. Published by The Company of Biologists Ltd.

  6. Narrative centrality and negative affectivity: independent and interactive contributors to stress reactions.

    Rubin, David C; Boals, Adriel; Hoyle, Rick H


    Reactions to stressful negative events have long been studied using approaches based on either the narrative interpretation of the event or the traits of the individual. Here, we integrate these 2 approaches by using individual-differences measures of both the narrative interpretation of the stressful event as central to one's life and the personality characteristic of negative affectivity. We show that they each have independent contributions to stress reactions and that high levels on both produce greater than additive effects. The effects on posttraumatic stress symptoms are substantial for both undergraduates (Study 1, n = 2,296; Study 3, n = 488) and veterans (Study 2, n = 104), with mean levels for participants low on both measures near floor on posttraumatic stress symptoms and those high on both measures scoring at or above diagnostic thresholds. Study 3 included 3 measures of narrative centrality and 3 of negative affectivity to demonstrate that the effects were not limited to a single measure. In Study 4 (n = 987), measures associated with symptoms of posttraumatic stress correlated substantially with either measures of narrative centrality or measures of negative affectivity. The concepts of narrative centrality and negative affectivity and the results are consistent with findings from clinical populations using similar measures and with current approaches to therapy. In broad nonclinical populations, such as those used here, the results suggest that we might be able to substantially increase our ability to account for the severity of stress response by including both concepts.

  7. Arteries respond to independent control of circumferential and shear stress in organ culture.

    Wayman, Brian H; Taylor, W Robert; Rachev, Alexander; Vito, Raymond P


    Arteries respond to changes in global mechanical parameters (pressure, flow rate, and longitudinal stretching) by remodeling to restore local parameters (circumferential stress, shear stress, and axial strain) to baseline levels. Because a change in a single global parameter results in changes of multiple local parameters, the effects of individual local parameters on remodeling remain unknown. This study uses a novel approach to study remodeling in organ culture based on independent control of local mechanical parameters. The approach is illustrated by studying the short term effects of circumferential and shear stress on remodeling-related biological markers. Porcine carotid arteries were cultured for 3 days at a circumferential stress of 50 or 150 kPa or, in separate experiments, a shear stress of 0.75 or 2.25 Pa. At high circumferential stress, matrix synthesis, smooth muscle cell proliferation, and cell death are significantly greater, but matrix metalloproteinase-2 (MMP-2) and pro-MMP-2 activity are significantly less. In contrast, biological markers measured were unaffected by shear stress. Applications of the proposed approach for improved understanding of remodeling, optimizing mechanical conditioning of tissue engineered arteries, and selection of experimentally motivated growth laws are discussed.

  8. Impaired Mitochondrial Energy Production Causes Light-Induced Photoreceptor Degeneration Independent of Oxidative Stress.

    Manish Jaiswal


    Full Text Available Two insults often underlie a variety of eye diseases including glaucoma, optic atrophy, and retinal degeneration--defects in mitochondrial function and aberrant Rhodopsin trafficking. Although mitochondrial defects are often associated with oxidative stress, they have not been linked to Rhodopsin trafficking. In an unbiased forward genetic screen designed to isolate mutations that cause photoreceptor degeneration, we identified mutations in a nuclear-encoded mitochondrial gene, ppr, a homolog of human LRPPRC. We found that ppr is required for protection against light-induced degeneration. Its function is essential to maintain membrane depolarization of the photoreceptors upon repetitive light exposure, and an impaired phototransduction cascade in ppr mutants results in excessive Rhodopsin1 endocytosis. Moreover, loss of ppr results in a reduction in mitochondrial RNAs, reduced electron transport chain activity, and reduced ATP levels. Oxidative stress, however, is not induced. We propose that the reduced ATP level in ppr mutants underlies the phototransduction defect, leading to increased Rhodopsin1 endocytosis during light exposure, causing photoreceptor degeneration independent of oxidative stress. This hypothesis is bolstered by characterization of two other genes isolated in the screen, pyruvate dehydrogenase and citrate synthase. Their loss also causes a light-induced degeneration, excessive Rhodopsin1 endocytosis and reduced ATP without concurrent oxidative stress, unlike many other mutations in mitochondrial genes that are associated with elevated oxidative stress and light-independent photoreceptor demise.

  9. Adenylate kinase-independent thiamine triphosphate accumulation under severe energy stress in Escherichia coli

    Wins Pierre


    Full Text Available Abstract Background Thiamine triphosphate (ThTP exists in most organisms and might play a role in cellular stress responses. In E. coli, ThTP is accumulated in response to amino acid starvation but the mechanism of its synthesis is still a matter of controversy. It has been suggested that ThTP is synthesized by an ATP-dependent specific thiamine diphosphate kinase. However, it is also known that vertebrate adenylate kinase 1 catalyzes ThTP synthesis at a very low rate and it has been postulated that this enzyme is responsible for ThTP synthesis in vivo. Results Here we show that bacterial, as vertebrate adenylate kinases are able to catalyze ThTP synthesis, but at a rate more than 106-fold lower than ATP synthesis. This activity is too low to explain the high rate of ThTP accumulation observed in E. coli during amino acid starvation. Moreover, bacteria from the heat-sensitive CV2 strain accumulate high amounts of ThTP (>50% of total thiamine at 37°C despite complete inactivation of adenylate kinase and a subsequent drop in cellular ATP. Conclusion These results clearly demonstrate that adenylate kinase is not responsible for ThTP synthesis in vivo. Furthermore, they show that E. coli accumulate large amounts of ThTP under severe energy stress when ATP levels are very low, an observation not in favor of an ATP-dependent mechanisms for ThTP synthesis.

  10. Soft drop

    Larkoski, Andrew J. [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Marzani, Simone [Institute for Particle Physics Phenomenology, Durham University,South Road, Durham DH1 3LE (United Kingdom); Soyez, Gregory [IPhT, CEA Saclay, CNRS URA 2306,F-91191 Gif-sur-Yvette (France); Thaler, Jesse [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)


    We introduce a new jet substructure technique called “soft drop declustering”, which recursively removes soft wide-angle radiation from a jet. The soft drop algorithm depends on two parameters — a soft threshold z{sub cut} and an angular exponent β — with the β=0 limit corresponding roughly to the (modified) mass drop procedure. To gain an analytic understanding of soft drop and highlight the β dependence, we perform resummed calculations for three observables on soft-dropped jets: the energy correlation functions, the groomed jet radius, and the energy loss due to soft drop. The β=0 limit of the energy loss is particularly interesting, since it is not only “Sudakov safe” but also largely insensitive to the value of the strong coupling constant. While our calculations are strictly accurate only to modified leading-logarithmic order, we also include a discussion of higher-order effects such as multiple emissions and (the absence of) non-global logarithms. We compare our analytic results to parton shower simulations and find good agreement, and we also estimate the impact of non-perturbative effects such as hadronization and the underlying event. Finally, we demonstrate how soft drop can be used for tagging boosted W bosons, and we speculate on the potential advantages of using soft drop for pileup mitigation.

  11. Acute stress alters auditory selective attention in humans independent of HPA: a study of evoked potentials.

    Ludger Elling

    Full Text Available BACKGROUND: Acute stress is a stereotypical, but multimodal response to a present or imminent challenge overcharging an organism. Among the different branches of this multimodal response, the consequences of glucocorticoid secretion have been extensively investigated, mostly in connection with long-term memory (LTM. However, stress responses comprise other endocrine signaling and altered neuronal activity wholly independent of pituitary regulation. To date, knowledge of the impact of such "paracorticoidal" stress responses on higher cognitive functions is scarce. We investigated the impact of an ecological stressor on the ability to direct selective attention using event-related potentials in humans. Based on research in rodents, we assumed that a stress-induced imbalance of catecholaminergic transmission would impair this ability. METHODOLOGY/PRINCIPAL FINDINGS: The stressor consisted of a single cold pressor test. Auditory negative difference (Nd and mismatch negativity (MMN were recorded in a tonal dichotic listening task. A time series of such tasks confirmed an increased distractibility occurring 4-7 minutes after onset of the stressor as reflected by an attenuated Nd. Salivary cortisol began to rise 8-11 minutes after onset when no further modulations in the event-related potentials (ERP occurred, thus precluding a causal relationship. This effect may be attributed to a stress-induced activation of mesofrontal dopaminergic projections. It may also be attributed to an activation of noradrenergic projections. Known characteristics of the modulation of ERP by different stress-related ligands were used for further disambiguation of causality. The conjuncture of an attenuated Nd and an increased MMN might be interpreted as indicating a dopaminergic influence. The selective effect on the late portion of the Nd provides another tentative clue for this. CONCLUSIONS/SIGNIFICANCE: Prior studies have deliberately tracked the adrenocortical influence

  12. Examining factors involved in stress-related working memory impairments: Independent or conditional effects?

    Banks, Jonathan B; Tartar, Jaime L; Tamayo, Brittney A


    A large and growing body of research demonstrates the impact of psychological stress on working memory. However, the typical study approach tests the effects of a single biological or psychological factor on changes in working memory. The current study attempted to move beyond the standard single-factor assessment by examining the impact of 2 possible factors in stress-related working memory impairments. To this end, 60 participants completed a working memory task before and after either a psychological stressor writing task or a control writing task and completed measures of both cortisol and mind wandering. We also included a measure of state anxiety to examine the direct and indirect effect on working memory. We found that mind wandering mediated the relationship between state anxiety and working memory at the baseline measurement. This indirect relationship was moderated by cortisol, such that the impact of mind wandering on working memory increased as cortisol levels increased. No overall working memory impairment was observed following the stress manipulation, but increases in state anxiety and mind wandering were observed. State anxiety and mind wandering independently mediated the relationship between change in working memory and threat perception. The indirect paths resulted in opposing effects on working memory. Combined, the findings from this study suggest that cortisol enhances the impact of mind wandering on working memory, that state anxiety may not always result in stress-related working memory impairments, and that high working memory performance can protect against mind wandering.

  13. Independent and combined influence of AGTR1 variants and aerobic exercise on oxidative stress in hypertensives.

    Fenty-Stewart, Nicola; Park, Joon-Young; Roth, Stephen M; Hagberg, James M; Basu, Samar; Ferrell, Robert E; Brown, Michael D


    Abstract Angiotensin II (AngII), via the AngII type 1 receptor (AT(1)R), contributes to oxidative stress. Aerobic exercise training (AEXT) reduces the risk of cardiovascular (CV) disease, presumably by reducing the grade of oxidative stress. We investigated the independent and combined influence of the AGTR1 A1166C and -825 T/A polymorphisms on oxidative stress and plasma AngII responses to AEXT in pre- and stage 1 hypertensives. Urinary 8-iso-PGF(2alpha) significantly increased with AEXT (p=0.002); however, there were no significant changes in superoxide dismutase activity or AngII levels. There was a significant difference in the change in AngII levels with AEXT between A1166C genotype groups (p=0.04) resulting in a significant interactive effect of the A1166C polymorphism and AEXT on the change in AngII (pAGTR1 gene is associated with differential changes in plasma AngII but not oxidative stress.

  14. Cellular stress stimulates nuclear localization signal (NLS) independent nuclear transport of MRJ

    Andrews, Joel F.; Sykora, Landon J.; Barik-Letostak, Tiasha; Menezes, Mitchell E.; Mitra, Aparna; Barik, Sailen; Shevde, Lalita A.; Samant, Rajeev S.


    HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington’s, Parkinson’s diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies imply that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S). PMID:22504047

  15. Cellular stress stimulates nuclear localization signal (NLS) independent nuclear transport of MRJ

    Andrews, Joel F.; Sykora, Landon J.; Barik Letostak, Tiasha; Menezes, Mitchell E.; Mitra, Aparna [Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL (United States); Barik, Sailen [Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Science, Cleveland State University, Cleveland, OH (United States); Shevde, Lalita A. [Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL (United States); Samant, Rajeev S., E-mail: [Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL (United States)


    HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington's, Parkinson's diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies imply that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S).

  16. Recovery of Work-Related Stress: Complaint Reduction and Work-Resumption are Relatively Independent Processes.

    de Vente, Wieke; Kamphuis, Jan Henk; Blonk, Roland W B; Emmelkamp, Paul M G


    The process of recovery from work-related stress, consisting of complaint reduction and work-resumption, is not yet fully understood. The aim of this study was to investigate predictors of complaint reduction and work-resumption, as well as testing complaint reduction as a mediator in the association between predictors and work-resumption. Seventy-one patients on sickness-leave because of work-related stress complaints were followed over a period of 13 months. Predictors comprised personal (demographics, coping, cognitions), work-related (job-characteristics, social support), and illness-related (complaint duration, absence duration) variables. Dependent variables were distress complaints, burnout complaints, and work-resumption. Complaints reduced considerably over time to borderline clinical levels and work-resumption increased to 68% at 13 months. Predictors of stronger reduction of distress complaints were male gender, less working hours, less decision authority, more co-worker support, and shorter absence duration. Predictors of stronger reduction of burnout complaints were male gender, lower age, high education, less avoidant coping, less decision authority, more job security, and more co-worker support. Predictors of work-resumption were lower age and stronger reduction of burnout complaints. No indication for a mediating role of burnout complaints between the predictor age and work-resumption was found. Complaint reduction and work-resumption are relatively independent processes. Symptom reduction is influenced by individual and work-related characteristics, which holds promise for a multidisciplinary treatment approach for work-related stress.

  17. Soft Drop

    Larkoski, Andrew J; Soyez, Gregory; Thaler, Jesse


    We introduce a new jet substructure technique called "soft drop declustering", which recursively removes soft wide-angle radiation from a jet. The soft drop algorithm depends on two parameters--a soft threshold $z_\\text{cut}$ and an angular exponent $\\beta$--with the $\\beta = 0$ limit corresponding roughly to the (modified) mass drop procedure. To gain an analytic understanding of soft drop and highlight the $\\beta$ dependence, we perform resummed calculations for three observables on soft-dropped jets: the energy correlation functions, the groomed jet radius, and the energy loss due to soft drop. The $\\beta = 0$ limit of the energy loss is particularly interesting, since it is not only "Sudakov safe" but also largely insensitive to the value of the strong coupling constant. While our calculations are strictly accurate only to modified leading-logarithmic order, we also include a discussion of higher-order effects such as multiple emissions and (the absence of) non-global logarithms. We compare our analytic r...

  18. Chronic family stress moderates the association between a TOMM40 variant and triglyceride levels in two independent Caucasian samples

    Jiang, Rong; Brummett, Beverly H; Hauser, Elizabeth R


    independent Caucasian samples (242 U.S. women and men; 466 Danish men) testing the hypothesis that chronic family stress also moderates the association between rs157580 and triglyceride levels. The interaction of rs157580 and family stress in predicting triglyceride levels was statistically significant...

  19. Anandamide-induced endoplasmic reticulum stress and apoptosis are mediated by oxidative stress in non-melanoma skin cancer: Receptor-independent endocannabinoid signaling.

    Soliman, Eman; Van Dross, Rukiyah


    Endocannabinoids are neuromodulatory lipids that regulate central and peripheral physiological functions. Endocannabinoids have emerged as effective antitumor drugs due to their ability to induce apoptosis in various cancer studies. The G-protein coupled cannabinoid receptors (CB1 and CB2) and the TRPV1 ion channel were reported to mediate the antiproliferative activity of endocannabinoids. However, receptor-independent effects also account for their activity. Our previous studies showed that the antiproliferative activity of anandamide (AEA) was regulated by cyclooxygenase-2 (COX-2) via induction of endoplasmic reticulum (ER) stress. We also determined that AEA induced oxidative stress. However, the role of oxidative stress, the cannabinoid receptors, and TRPV1 in AEA-induced ER stress-apoptosis was unclear. Therefore, the current study examines the role of oxidative stress in ER stress-apoptosis and investigates whether this effect is modulated by CB1, CB2, or TRPV1. In non-melanoma skin cancer (NMSC) cells, AEA reduced the total intracellular level of glutathione and induced oxidative stress. To evaluate the importance of oxidative stress in AEA-induced cell death, the antioxidants, N-acetylcysteine (NAC) and Trolox, were utilized. Each antioxidant ameliorated the antiproliferative effect of AEA. Furthermore, Trolox inhibited AEA-induced CHOP10 expression and caspase 3 activity, indicating that oxidative stress was required for AEA-induced ER stress-apoptosis. On the other hand, selective blockade of CB1, CB2, and TRPV1 did not inhibit AEA-induced oxidative stress or ER stress-apoptosis. These findings suggest that AEA-induced ER stress-apoptosis in NMSC cells is mediated by oxidative stress through a receptor-independent mechanism. Hence, receptor-independent AEA signaling pathways may be targeted to eliminate NMSC. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  20. Spectral models for ground motion prediction in the L'Aquila region (central Italy): evidence for stress-drop dependence on magnitude and depth

    Pacor, F.; Spallarossa, D.; Oth, A.; Luzi, L.; Puglia, R.; Cantore, L.; Mercuri, A.; D'Amico, M.; Bindi, D.


    In this study we derive a spectral model describing the source, propagation and site characteristics of S waves recorded in central Italy. To this end, we compile and analyse a high-quality data set composed of more than 9000 acceleration and velocity waveforms in the local magnitude (Ml) range 3.0-5.8 recorded at epicentral distances smaller than 120 km. The data set spans the time period from 2008 January 1 to 2013 May 31, and includes also the 2009 L'Aquila (moment magnitude Mw 6.1, Ml = 5.8) sequence. This data set is suitable for the application of data-driven approaches to derive the empirical functions for source, attenuation and site terms. Therefore, we apply a non-parametric inversion scheme to the acceleration Fourier spectra of the S waves of 261 earthquakes recorded at 129 stations. In a second step, with the aim of defining spectral models suitable for the implementation in numerical simulation codes, we represent the obtained non-parametric source and propagation terms by fitting standard parametric models. The frequency-dependent attenuation with distance r shows a complex trend that we parametrize in terms of geometrical spreading, anelastic attenuation and high-frequency decay parameter k. The geometrical spreading term is described by a piecewise linear model with crossover distances at 10 and 70 km: in the first segment, the spectral ordinates decay as r- 1.01 while in the second as r- 1.68. Beyond 70 km, the attenuation decreases and the spectral amplitude attenuate as r- 0.64. The quality factor Q(f ) and the high-frequency attenuation parameter k, are Q(f) = 290f0.16 and k = 0.012 s, respectively, the latter being applied only for frequencies higher than 10 Hz. The source spectra are well described by ω2 models, from which seismic moment and stress drops of 231 earthquakes are estimated. We calibrate a new regional relationship between seismic moment and local magnitude that improves the existing ones and extends the validity range to 3

  1. Oxidative stress inactivates cobalamin-independent methionine synthase (MetE in Escherichia coli.

    Elise R Hondorp


    Full Text Available In nature, Escherichia coli are exposed to harsh and non-ideal growth environments-nutrients may be limiting, and cells are often challenged by oxidative stress. For E. coli cells confronting these realities, there appears to be a link between oxidative stress, methionine availability, and the enzyme that catalyzes the final step of methionine biosynthesis, cobalamin-independent methionine synthase (MetE. We found that E. coli cells subjected to transient oxidative stress during growth in minimal medium develop a methionine auxotrophy, which can be traced to an effect on MetE. Further experiments demonstrated that the purified enzyme is inactivated by oxidized glutathione (GSSG at a rate that correlates with protein oxidation. The unique site of oxidation was identified by selectively cleaving N-terminally to each reduced cysteine and analyzing the results by liquid chromatography mass spectrometry. Stoichiometric glutathionylation of MetE by GSSG occurs at cysteine 645, which is strategically located at the entrance to the active site. Direct evidence of MetE oxidation in vivo was obtained from thiol-trapping experiments in two different E. coli strains that contain highly oxidizing cytoplasmic environments. Moreover, MetE is completely oxidized in wild-type E. coli treated with the thiol-oxidizing agent diamide; reduced enzyme reappears just prior to the cells resuming normal growth. We argue that for E. coli experiencing oxidizing conditions in minimal medium, MetE is readily inactivated, resulting in cellular methionine limitation. Glutathionylation of the protein provides a strategy to modulate in vivo activity of the enzyme while protecting the active site from further damage, in an easily reversible manner. While glutathionylation of proteins is a fairly common mode of redox regulation in eukaryotes, very few proteins in E. coli are known to be modified in this manner. Our results are complementary to the independent findings of Leichert

  2. Nordic walking training attenuation of oxidative stress in association with a drop in body iron stores in elderly women.

    Kortas, Jakub; Kuchta, Agnieszka; Prusik, Krzysztof; Prusik, Katarzyna; Ziemann, Ewa; Labudda, Sandra; Ćwiklińska, Agnieszka; Wieczorek, Ewa; Jankowski, Maciej; Antosiewicz, Jedrzej


    Excess body iron accumulation and oxidative stress has been associated with ageing. Regular exercise has been shown to reduce oxidative stress and induce some changes in iron metabolism. However, the effects of exercise on both of these parameters have been poorly investigated. In our study, 35 elderly women participated in 12 weeks of Nordic walking (NW) training (three times a week). We demonstrated that the training caused a significant reduction in malondialdehyde advanced oxidation protein products-markers of oxidative stress but had no effects on paraoxonase 1 activity. These changes were associated with the decrease of blood ferritin (99.4 ± 62.7 vs. 81.4 ± 61.7 ng/ml p < 0.05). Measurement of physical fitness revealed that the training caused a significant improvement in performance and a negative correlation between the blood ferritin and endurance test was recorded (r = -0.34, p = 0.03). In addition, a significant correlation between blood ferritin and fasting glucose level was noted. The training induced a rise of HDL cholesterol from 70.8 ± 19.3-75.3 ± 21.1, p < 0.05, whereas other lipid parameters remained unchanged. In conclusion, NW training reduced body iron stores and it was associated with lower oxidative stress and better endurance.

  3. Abdominal obesity can induce both systemic and follicular fluid oxidative stress independent from polycystic ovary syndrome.

    Nasiri, Nahid; Moini, Ashraf; Eftekhari-Yazdi, Poopak; Karimian, Leila; Salman-Yazdi, Reza; Zolfaghari, Zahra; Arabipoor, Arezoo


    The abdominal form of obesity is prevalent in women with polycystic ovary syndrome (PCOS). Visceral fat accumulation seems to play an important role in etiology of PCOS. In this cross-sectional study we evaluated the association of oxidative stress (OS) induced with PCOS and abdominal obesity in serum and follicular fluid (FF) of infertile women. A total of 80 women younger than 37 years old undergoing an IVF program were studied in the same period of time from September 2012 to October 2013. Blood serum and FF obtained from 40 women with PCOS (diagnosed by the Rotterdam 2004 criteria) and 40 women without PCOS undergoing IVF were evaluated for two OS markers: lipid peroxide (LPO) and total antioxidant capacity (TAC), after puncture. The patients were divided into 4 groups on the basis of presence of PCOS and waist-to-hip ratio (WHR) or abdominal obesity (OA). Healthy and PCOS women with abdominal obesity had significantly higher amounts of LPO in the serum and FF as compared with women without abdominal obesity. LPO concentration in FF was significantly lower than in serum and corroborates the hypothesis that the germinal cells have a potent antioxidant mechanism. We also found that LPO concentration in the PCOS group associated with AO had an increasing trend vs. those AO patients without PCOS but this difference was not significant, so the increase in LPO level was approximately independent of PCOS. Based on our results, the association and interaction between PCOS and AO can lead to TAC concentration reduction in patients. Abdominal obesity can induce local and systemic oxidative stress in PCOS and non-PCOS patients. We suggest that PCOS-induced disorders are likely to be exacerbated in the presence of abdominal obesity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Psychosocial stress inhibits amplitude of gonadotropin-releasing hormone pulses independent of cortisol action on the type II glucocorticoid receptor.

    Wagenmaker, Elizabeth R; Breen, Kellie M; Oakley, Amy E; Tilbrook, Alan J; Karsch, Fred J


    Our laboratory has developed a paradigm of psychosocial stress (sequential layering of isolation, blindfold, and predator cues) that robustly elevates cortisol secretion and decreases LH pulse amplitude in ovariectomized ewes. This decrease in LH pulse amplitude is due, at least in part, to a reduction in pituitary responsiveness to GnRH, caused by cortisol acting via the type II glucocorticoid receptor (GR). The first experiment of the current study aimed to determine whether this layered psychosocial stress also inhibits pulsatile GnRH release into pituitary portal blood. The stress paradigm significantly reduced GnRH pulse amplitude compared with nonstressed ovariectomized ewes. The second experiment tested if this stress-induced decrease in GnRH pulse amplitude is mediated by cortisol action on the type II GR. Ovariectomized ewes were allocated to three groups: nonstress control, stress, and stress plus the type II GR antagonist RU486. The layered psychosocial stress paradigm decreased GnRH and LH pulse amplitude compared with nonstress controls. Importantly, the stress also lowered GnRH pulse amplitude to a comparable extent in ewes in which cortisol action via the type II GR was antagonized. Therefore, we conclude that psychosocial stress reduces the amplitude of GnRH pulses independent of cortisol action on the type II GR. The present findings, combined with our recent observations, suggest that the mechanisms by which psychosocial stress inhibits reproductive neuroendocrine activity at the hypothalamic and pituitary levels are fundamentally different.

  5. Sulforaphane induces oxidative stress and death by p53-independent mechanism: implication of impaired glutathione recycling.

    José Miguel P Ferreira de Oliveira

    Full Text Available Sulforaphane (SFN is a naturally-occurring isothiocyanate best known for its role as an indirect antioxidant. Notwithstanding, in different cancer cell lines, SFN may promote the accumulation of reactive oxygen species (ROS and cause cell death e.g. by apoptosis. Osteosarcoma often becomes chemoresistant, and new molecular targets to prevent drug resistance are needed. Here, we aimed to determine the effect of SFN on ROS levels and to identify key biomarkers leading to ROS unbalance and apoptosis in the p53-null MG-63 osteosarcoma cell line. MG-63 cells were exposed to SFN for up to 48 h. At 10 μM concentration or higher, SFN decreased cell viability, increased the%early apoptotic cells and increased caspase 3 activity. At these higher doses, SFN increased ROS levels, which correlated with apoptotic endpoints and cell viability decline. In exposed cells, gene expression analysis revealed only partial induction of phase-2 detoxification genes. More importantly, SFN inhibited ROS-scavenging enzymes and impaired glutathione recycling, as evidenced by inhibition of glutathione reductase (GR activity and combined inhibition of glutathione peroxidase (GPx gene expression and enzyme activity. In conclusion, SFN induced oxidative stress and apoptosis via a p53-independent mechanism. GPx expression and activity were found associated with ROS accumulation in MG-63 cells and are potential biomarkers for the efficacy of ROS-inducing agents e.g. as co-adjuvant drugs in osteosarcoma.

  6. On the motion of a sessile drop on an incline: Effect of non-monotonic thermocapillary stresses

    Mamalis, Dimitrios; Koutsos, Vasileios; Sefiane, Khellil


    We studied the short-time contact-line dynamics of a self-rewetting sessile droplet sliding "freely" on a silicone oil layer, on an inclined, uniformly heated substrate under non-isothermal conditions (liquid-solid). The effect of thermocapillarity and the contribution of surface tension gradients (Marangoni effect) to the droplet motion was investigated. The temperature of the substrate in conjunction with the non-monotonic surface tension/temperature dependence of the deformed self-rewetting droplet was found to significantly affect the early-stage inertial-capillary spreading regime. Infrared (IR) thermography images were also acquired to investigate the generation of thermal patterns at the liquid surface due to the strong surface-tension gradients. Our results demonstrate that the presence of strong surface tension driven flows at the liquid interface combined with droplet deformation (contact-angle hysteresis) gives rise to complex droplet dynamics. The interplay between thermocapillary stresses and body forces results in enhanced spreading rates, temporal non-monotonic dependence of the contact-line speed, as well as the droplet motion overcoming gravity in some instances.

  7. The Wnt Target Protein Peter Pan Defines a Novel p53-independent Nucleolar Stress-Response Pathway.

    Pfister, Astrid S; Keil, Marina; Kühl, Michael


    Proper ribosome formation is a prerequisite for cell growth and proliferation. Failure of this process results in nucleolar stress and p53-mediated apoptosis. The Wnt target Peter Pan (PPAN) is required for 45 S rRNA maturation. So far, the role of PPAN in nucleolar stress response has remained elusive. We demonstrate that PPAN localizes to mitochondria in addition to its nucleolar localization and inhibits the mitochondrial apoptosis pathway in a p53-independent manner. Loss of PPAN induces BAX stabilization, depolarization of mitochondria, and release of cytochrome c, demonstrating its important role as an anti-apoptotic factor. Staurosporine-induced nucleolar stress and apoptosis disrupt nucleolar PPAN localization and induce its accumulation in the cytoplasm. This is accompanied by phosphorylation and subsequent cleavage of PPAN by caspases. Moreover, we show that PPAN is a novel interaction partner of the anti-apoptotic protein nucleophosmin (NPM). PPAN depletion induces NPM and upstream-binding factor (UBF) degradation, which is independent of caspases. In summary, we provide evidence for a novel nucleolar stress-response pathway involving PPAN, NPM, and BAX to guarantee cell survival in a p53-independent manner. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Impact of ultra-viscous drops: air-film gliding and extreme wetting

    Langley, K.


    A drop impacting on a solid surface must push away the intervening gas layer before making contact. This entails a large lubricating air pressure which can deform the bottom of the drop, thus entrapping a bubble under its centre. For a millimetric water drop, the viscous-dominated flow in the thin air layer counteracts the inertia of the drop liquid. For highly viscous drops the viscous stresses within the liquid also affect the interplay between the drop and the gas. Here the drop also forms a central dimple, but its outer edge is surrounded by an extended thin air film, without contacting the solid. This is in sharp contrast with impacts of lower-viscosity drops where a kink in the drop surface forms at the edge of the central disc and makes a circular contact with the solid. Larger drop viscosities make the central air dimple thinner. The thin outer air film subsequently ruptures at numerous random locations around the periphery, when it reaches below 150 nm thickness. This thickness we measure using high-speed two-colour interferometry. The wetted circular contacts expand rapidly, at orders of magnitude larger velocities than would be predicted by a capillary-viscous balance. The spreading velocity of the wetting spots is independent of the liquid viscosity. This may suggest enhanced slip of the contact line, assisted by rarefied-gas effects, or van der Waals forces in what we call extreme wetting. Myriads of micro-bubbles are captured between the local wetting spots.

  9. A role for glutathione, independent of oxidative stress, in the developmental toxicity of methanol

    Siu, Michelle T.; Shapiro, Aaron M. [Division of Biomolecular Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario (Canada); Wiley, Michael J. [Division of Anatomy, Faculty of Medicine, University of Toronto, Toronto, Ontario (Canada); Wells, Peter G., E-mail: [Division of Biomolecular Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario (Canada); Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario (Canada)


    Oxidative stress and reactive oxygen species (ROS) have been implicated in the teratogenicity of methanol (MeOH) in rodents, both in vivo and in embryo culture. We explored the ROS hypothesis further in vivo in pregnant C57BL/6J mice. Following maternal treatment with a teratogenic dose of MeOH, 4 g/kg via intraperitoneal (ip) injection on gestational day (GD) 12, there was no increase 6 h later in embryonic ROS formation, measured by 2′,7′-dichlorodihydrofluorescin diacetate (DCFH-DA) fluorescence, despite an increase observed with the positive control ethanol (EtOH), nor was there an increase in embryonic oxidatively damaged DNA, quantified as 8-oxo-2′-deoxyguanosine (8-oxodG) formation. MeOH teratogenicity (primarily ophthalmic anomalies, cleft palate) also was not altered by pre- and post-treatment with varying doses of the free radical spin trapping agent alpha-phenyl-N-tert-butylnitrone (PBN). In contrast, pretreatment with L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, depleted maternal hepatic and embryonic GSH, and enhanced some new anomalies (micrognathia, agnathia, short snout, fused digits, cleft lip, low set ears), but not the most common teratogenic effects of MeOH (ophthalmic anomalies, cleft palate) in this strain. These results suggest that ROS did not contribute to the teratogenic effects of MeOH in this in vivo mouse model, in contrast to results in embryo culture from our laboratory, and that the protective effect of GSH in this model may arise from its role as a cofactor for formaldehyde dehydrogenase in the detoxification of formaldehyde. - Highlights: • In vivo, a free radical scavenger did not block methanol (MeOH) teratogenesis. • MeOH did not increase embryonic reactive oxygen species formation or DNA oxidation. • MeOH teratogenesis was enhanced by glutathione (GSH) depletion. • GSH may protect as the cofactor for formaldehyde dehydrogenase (ADH3). • Formaldehyde may be a ROS-independent

  10. Pro-Social Behaviour and Behaviour Problems Independently Predict Maternal Stress

    Beck, Alexandra; Hastings, Richard; Daley, Dave; Stevenson, Jim


    Parents of children with intellectual and developmental disabilities generally report more stress than other parents. Child behavioural features, and specifically their behaviour problems, have been shown to account for some of the variation in parents' experience of stress. However, there has been no exploration of whether the child's pro-social…

  11. Static stress drop of the largest recorded M 4.6 hydraulic fracturing induced earthquake and its aftershock pattern in the northern Montney Play, British Columbia, Canada

    Wang, B.; Harrington, R. M.; Liu, Y.; Kao, H.


    The largest suspected fracking-induced earthquake to date occurred near Fort St. John, British Columbia on August 17, 2015, with a reported magnitude of Mw 4.6. Here we estimate the static stress released by the mainshock and the five cataloged aftershocks using new data from eight broadband seismometers installed approximately 50km from the hypocenter of the mainshock, at distances much closer than the Natural Resources Canada regional seismic stations. The estimated cross-correlation coefficient among the 5 cataloged earthquakes is 0.35 or greater. We will present seismic moment (M0) and spectral corner frequency (fc) values estimated using both individual earthquake spectra and spectral ratios to correct for travel-path attenuation and site effects. Static stress drop and scaled energy value calculations based on the estimated moment and corner frequency values will be presented, as well as focal mechanisms for the largest events with adequate station coverage. We will also use a multi-station matched-filter approach to detect additional uncataloged earthquakes on continuous waveforms for a period of two months after the mainshock. Using the results of the matched-filter approach, we will present the aftershock magnitude distribution and locations. The results of our detection and location calculations will be compared to reported fracking parameters, such as fluid injection pressure and duration, to determine their correlation with the spatial and temporal distribution of aftershocks. The objective of this study is to relate operational parameters to earthquake occurrence in order to help to develop procedures to understand the mechanisms responsible for fracking induced earthquakes, their relation to the maximum induced magnitude, and to reduce potential hazards of anthropogenically induced seismic activity.

  12. Carbon dioxide enrichment alleviates heat stress by improving cellular redox homeostasis through an ABA-independent process in tomato plants.

    Li, X; Ahammed, G J; Zhang, Y Q; Zhang, G Q; Sun, Z H; Zhou, J; Zhou, Y H; Xia, X J; Yu, J Q; Shi, K


    Plant responses to elevated CO₂ and high temperature are critically regulated through a complex network of phytohormones and redox homeostasis. However, the involvement of abscisic acid (ABA) in plant adaptation to heat stress under elevated CO₂ conditions has not been thoroughly studied. This study investigated the interactive effects of elevated CO₂ (800 μmol·mol(-1) ) and heat stress (42 °C for 24 h) on the endogenous level of ABA and the cellular redox state of two genotypes of tomato with different ABA biosynthesis capacities. Heat stress significantly decreased maximum photochemical efficiency of PSII (Fv/Fm) and leaf water potential, but also increased levels of malondialdehyde (MDA) and electrolyte leakage (EL) in both genotypes. Heat-induced damage was more severe in the ABA-deficient mutant notabilis (not) than in its parental cultivar Ailsa Craig (Ailsa), suggesting that a certain level of endogenous ABA is required to minimise the heat-induced oxidative damage to the photosynthetic apparatus. Irrespective of genotype, the enrichment of CO₂ remarkably stimulated Fv/Fm, MDA and EL in heat-stressed plants towards enhanced tolerance. In addition, elevated CO₂ significantly strengthened the antioxidant capacity of heat-stressed tomato seedlings towards a reduced cellular redox state for a prolonged period, thereby mitigating oxidative stress. However, elevated CO₂ and heat stress did not alter the endogenous level of ABA or the expression of its biosynthetic gene NCED2 in either genotype, indicating that ABA is not involved in elevated CO₂ -induced heat stress alleviation. The results of this study suggest that elevated CO₂ alleviated heat stress through efficient regulation of the cellular redox poise in an ABA-independent manner in tomato plants.

  13. Effect of uniform electric field on the drop deformation in simple shear flow and emulsion shear rheology

    Mandal, Shubhadeep; Chakraborty, Suman


    Electrohydrodynamic deformation and orientation of a neutrally buoyant, leaky dielectric, Newtonian drop suspended in another immiscible, leaky dielectric, Newtonian medium is analyzed under the combined influence of uniform electric field and simple shear flow. Application of uniform electric field, perpendicular to the direction of shear flow, not only deforms the drop but also modifies the rheological behavior of a dilute emulsion. In the creeping flow limit, an analytical solution for the deformed drop shape is obtained when the drop shape remains nearly spherical and the surface charge convection is weak. The effective shear rheology is obtained for a dilute emulsion of non-interacting drops by calculating the one-particle contribution to the emulsion stress. The results show that the combined influence of uniform electric field and shear flow is not a simple linear superposition of the independent contributions from electric field and shear flow. Application of uniform electric field always leads to larger drop deformation with drop inclination more towards the direction of velocity gradient for the particular case of perfectly dielectric drops. Presence of surface charge convection for a leaky dielectric drop can increase or decrease the drop deformation with the drop inclination more towards either the direction of shear flow or velocity gradient. The effective shear viscosity and normal stress differences are found to be independent of shear rate. These quantities are significantly affected by the surface charge convection and shape deformation. Shape deformation always increases the effective viscosity of a dilute emulsion composed of perfectly dielectric drops. Interestingly, for a dilute emulsion composed of leaky dielectric drops, results show that the combined influence of charge convection and shape deformation can augment or decrease the effective shear viscosity.

  14. Stress and Cognitive Reserve as independent factors of neuropsychological performance in healthy elderly

    João Carlos Centurion Cabral

    Full Text Available Abstract Exposure to high levels of cortisol and self-reported stress, as well as cognitive reserve, have been linked to Alzheimer’s disease pathology. However, there are no studies on the interaction of these variables. The present study aims to assess the associations of measures of cortisol, self-reported stress, and cognitive reserve with neuropsychological performance in healthy elderly people; besides, to test the interactions between these variables. Cross-sectional analyzes were conducted using data on stress, cognitive reserve and clinical conditions in 145 healthy elderly adults. A neuropsychological battery was used to assess executive functions, verbal memory and processing speed. Measurement of salivary cortisol at the circadian nadir was taken. A negative association between different stress measures and performance on tasks of memory, executive functions and processing speed was observed. Elderly people with higher cognitive reserve showed superior performance on all neuropsychological measures. No significant interaction between stress and cognitive reserve to neuropsychological performance was observed. These results indicate that older adults with high levels of stress and reduced cognitive reserve may be more susceptible to cognitive impairment.

  15. Kidney hypoxia, attributable to increased oxygen consumption, induces nephropathy independently of hyperglycemia and oxidative stress.

    Friederich-Persson, Malou; Thörn, Erik; Hansell, Peter; Nangaku, Masaomi; Levin, Max; Palm, Fredrik


    Diabetic nephropathy is strongly associated with both increased oxidative stress and kidney tissue hypoxia. The increased oxidative stress causes increased kidney oxygen consumption resulting in kidney tissue hypoxia. To date, it has been difficult to determine the role of kidney hypoxia, per se, for the development of nephropathy. We tested the hypothesis that kidney hypoxia, without confounding factors such as hyperglycemia or elevated oxidative stress, results in nephropathy. To induce kidney hypoxia, dinitrophenol (30 mg per day per kg bodyweight by gavage), a mitochondrial uncoupler that increases oxygen consumption and causes kidney hypoxia, was administered for 30 consecutive days to rats. Thereafter, glomerular filtration rate, renal blood flow, kidney oxygen consumption, kidney oxygen tension, kidney concentrations of glucose and glycogen, markers of oxidative stress, urinary protein excretion, and histological findings were determined and compared with vehicle-treated controls. Dinitrophenol did not affect arterial blood pressure, renal blood flow, glomerular filtration rate, blood glucose, or markers of oxidative stress but increased kidney oxygen consumption, and reduced cortical and medullary concentrations of glucose and glycogen, and resulted in intrarenal tissue hypoxia. Furthermore, dinitrophenol treatment increased urinary protein excretion, kidney vimentin expression, and infiltration of inflammatory cells. In conclusion, increased mitochondrial oxygen consumption results in kidney hypoxia and subsequent nephropathy. Importantly, these results demonstrate that kidney tissue hypoxia, per se, without confounding hyperglycemia or oxidative stress, may be sufficient to initiate the development of nephropathy and therefore demonstrate a new interventional target for treating kidney disease.

  16. The Parkfield Stress Drop Controversy

    Abercrombie, R. E.; Nadeau, R. M.


    Nadeau et al. (1995) found that the seismicity on the San Andreas fault at Parkfield is highly clustered. Individual clusters consist of a sequence of near periodically repeating small earthquakes of similar seismic moment. Nadeau and Johnston (1998) compared the moments and timing of these repeating earthquakes (Mw 1000 MPa) for the small earthquakes (Mw patches of high Δ σ would be resolvable by standard seismic methods. However, to date nobody has used seismic methods to determine source parameters for these controversial small earthquakes at Parkfield. We use closely located earthquakes of different sizes (for example, the sub-clusters of cluster CL14, Nadeau et al., 1995, Mw-0.2 to 1), recorded on the HRSN borehole network to analyse the source parameters. The smaller earthquakes are used as empirical Green's functions to resolve source processes of the larger events. Preliminary results from the earthquakes in cluster CL14 result in a source dimension of about 25 m and Δ σ of about 1 MPa for the Mw1 earthquakes, assuming that rupture velocity is the same as that for large earthquakes. We also resolve source-time functions for these earthquakes at most stations and so we can investigate the directivity and velocity of the rupture. Finally we compare the source parameter estimates from the seismic modeling, with those from recurrence and creep rate, and assess the validity of the various proposed models.

  17. Star-shaped Oscillations of Leidenfrost Drops

    Ma, Xiaolei; Burton, Justin C


    We experimentally investigate the self-organized, star-shaped oscillations of Leidenfrost drops. The drops levitate on a cushion of evaporated vapor over a heated, curved surface. We observe modes with $n = 2-13$ lobes around the drop periphery. We find that both the wavelength and frequency of the oscillations depend only on the capillary length of the liquid, and are independent of the drop radius and substrate temperature. However, the number of observed modes depend sensitively on the liquid viscosity. The dominant frequency of pressure variations under the drop is approximately twice that the drop oscillation frequency, consistent with a parametric forcing mechanism. Our results suggest that the star-shaped oscillations are hydrodynamic in origin, and are driven by capillary waves beneath the drop. The exact mechanism by which the vapor flow initiates the capillary waves is likely related to static "brim waves" in levitated, viscous drops.

  18. (Pro)renin receptor mediates both angiotensin II-dependent and -independent oxidative stress in neuronal cells.

    Peng, Hua; Li, Wencheng; Seth, Dale M; Nair, Anand R; Francis, Joseph; Feng, Yumei


    The binding of renin or prorenin to the (pro)renin receptor (PRR) promotes angiotensin (Ang) II formation and mediates Ang II-independent signaling pathways. In the central nervous system (CNS), Ang II regulates blood pressure via inducing oxidative stress; however, the role of PRR-mediated Ang II-independent signaling pathways in oxidative stress in the CNS remains undefined. To address this question, Neuro-2A cells were infected with control virus or an adeno-associated virus encoding the human PRR. Human PRR over-expression alone increased ROS levels, NADPH oxidase activity, as well as NADPH oxidase (NOX) isoforms 2 and 4 mRNA expression levels and these effects were not blocked by losartan. Moreover, the increase in NOX 2 and NOX 4 mRNA levels, NADPH oxidase activity, and ROS levels induced by PRR over-expression was prevented by mitogen activated protein kinase/extracellular signal-regulated kinase 1 and 2 (MAPK/ERK1/2) inhibition, and phosphoinositide 3 kinase/Akt (IP3/Akt) inhibition, indicating that PRR regulates NOX activity and ROS formation in neuro-2A cells through Ang II-independent ERK1/2 and IP3/Akt activation. Interestingly, at a concentration of 2 nM or higher, prorenin promoted Ang II formation, and thus further increased the ROS levels in cultured Neuro-2A cells via PRR. In conclusion, human PRR over-expression induced ROS production through both angiotensin II-dependent and -independent mechanisms. We showed that PRR-mediated angiotensin II-independent ROS formation is associated with activation of the MAPK/ERK1/2 and PI3/Akt signaling pathways and up-regulation of mRNA level of NOX 2 and NOX4 isoforms in neuronal cells.

  19. Recovery of Work-Related Stress: Complaint Reduction and Work-Resumption are Relatively Independent Processes

    Vente, W. de; Kamphuis, J.H.; Blonk, R.W.; Emmelkamp, P.M.


    Purpose The process of recovery from work-related stress, consisting of complaint reduction and work-resumption, is not yet fully understood. The aim of this study was to investigate predictors of complaint reduction and work-resumption, as well as testing complaint reduction as a mediator in the as

  20. Recovery of work-related stress: Complaint reduction and work-resumption are relatively independent processes

    de Vente, W.; Kamphuis, J.H.; Blonk, R.W.B.; Emmelkamp, P.M.G.


    Purpose: The process of recovery from work-related stress, consisting of complaint reduction and work-resumption, is not yet fully understood. The aim of this study was to investigate predictors of complaint reduction and work-resumption, as well as testing complaint reduction as a mediator in the a

  1. Financial strain and stressful events predict newlyweds' negative communication independent of relationship satisfaction.

    Williamson, Hannah C; Karney, Benjamin R; Bradbury, Thomas N


    Social-learning perspectives explicitly recognize the role of partners' personal histories and contexts as possible causes of couple communication behavior, but these assumptions are rarely tested directly, and operationalizations of context in behavioral research on couples rarely extend beyond the interacting dyad. To broaden our understanding of why couples differ in communication, the current study examined whether observed behaviors in marital interactions covary with individual experiences and contextual factors. Behaviors coded from in-home conversations of 414 ethnically diverse newlywed couples were examined simultaneously in relation to childhood and family-of-origin experiences, financial strain and stressful life events, depressive symptoms, and relationship satisfaction. A latent factor representing financial strain and stressful life events was the strongest correlate of negative communication, with higher levels of stress predicting more negativity. Relationship satisfaction was the strongest correlate of observed positivity, with higher levels of satisfaction predicting more positivity. Childhood and family experiences were unrelated to behaviors, whereas results for depressive symptoms were complex and counterintuitive. Because the negative behaviors highlighted in social-learning models of relationship functioning, and often targeted in educational interventions, covary reliably with the stresses and financial strains that couples experience, contextual factors merit greater emphasis in models designed to explain and prevent marital deterioration.

  2. Investigation of independent verification and validation of the servicemen occupational stress scale

    Jia XU


    Full Text Available Objective  To examine the reliability and validity of the servicemen occupational stress scale. Methods  A survey with the servicemen occupational stress scale was carried out on 1100 randomly chosen military personnel in the army, and 106 among them also underwent examination with Chinese Military Mental Health Scale (CMMHS at the same time. Results  The Cronbach's α coefficient of total scale was 0.929, and subscales were 0.731-0.857 (P<0.01; the half reliability of total scale was 0.932, and subscales were 0.465-0.881 (P<0.01. The correlation coefficients among factors and between factors and total scale score were 0.699-0.900 (P<0.01. The factors of the servicemen occupational stress scale showed a significant correlation with most factors of the CMMHS, the correlation coefficients were 0.186-0253. According to the results of exploratory factor analysis, it was showed that the scale of the entries in the collation and factors named were more reasonable. According to the results of confirmatory factor analysis, there was a higher degree of accordance between the sample data and the hypothesized structure of factors, with Chi-Square statistic equal to 8293.0, RMSEA (root mean square error of approximation equal to 0.055, RMR (root mean square residual equal to 0.031, TLI (Tucker-Lewis index, CFI (comparative fit index, IFI (incremental fit index and GFI (goodness of fit index 0.919, 0.926, 0.920, 0.915, respectively. Conclusion  The reliability and validity of the servicemen occupational stress scale meet the standards for scale designing.

  3. Acute stress-induced antinociception is cGMP-dependent but heme oxygenase-independent

    Carvalho-Costa, P.G. [Programa de Graduação em Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Branco, L.G.S. [Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Leite-Panissi, C.R.A. [Programa de Graduação em Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)


    Endogenous carbon monoxide (CO), which is produced by the enzyme heme oxygenase (HO), participates as a neuromodulator in physiological processes such as thermoregulation and nociception by stimulating the formation of 3′,5′-cyclic guanosine monophosphate (cGMP). In particular, the acute physical restraint-induced fever of rats can be blocked by inhibiting the enzyme HO. A previous study reported that the HO-CO-cGMP pathway plays a key phasic antinociceptive role in modulating noninflammatory acute pain. Thus, this study evaluated the involvement of the HO-CO-cGMP pathway in antinociception induced by acute stress in male Wistar rats (250-300 g; n=8/group) using the analgesia index (AI) in the tail flick test. The results showed that antinociception induced by acute stress was not dependent on the HO-CO-cGMP pathway, as neither treatment with the HO inhibitor ZnDBPG nor heme-lysinate altered the AI. However, antinociception was dependent on cGMP activity because pretreatment with the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxaline-1-one (ODQ) blocked the increase in the AI induced by acute stress.

  4. Acute stress-induced antinociception is cGMP-dependent but heme oxygenase-independent

    P.G. Carvalho-Costa


    Full Text Available Endogenous carbon monoxide (CO, which is produced by the enzyme heme oxygenase (HO, participates as a neuromodulator in physiological processes such as thermoregulation and nociception by stimulating the formation of 3′,5′-cyclic guanosine monophosphate (cGMP. In particular, the acute physical restraint-induced fever of rats can be blocked by inhibiting the enzyme HO. A previous study reported that the HO-CO-cGMP pathway plays a key phasic antinociceptive role in modulating noninflammatory acute pain. Thus, this study evaluated the involvement of the HO-CO-cGMP pathway in antinociception induced by acute stress in male Wistar rats (250-300 g; n=8/group using the analgesia index (AI in the tail flick test. The results showed that antinociception induced by acute stress was not dependent on the HO-CO-cGMP pathway, as neither treatment with the HO inhibitor ZnDBPG nor heme-lysinate altered the AI. However, antinociception was dependent on cGMP activity because pretreatment with the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxaline-1-one (ODQ blocked the increase in the AI induced by acute stress.

  5. Managerial leadership is associated with employee stress, health, and sickness absence independently of the demand-control-support model.

    Westerlund, Hugo; Nyberg, Anna; Bernin, Peggy; Hyde, Martin; Oxenstierna, Gabriel; Jäppinen, Paavo; Väänänen, Ari; Theorell, Töres


    Research on health effects of managerial leadership has only taken established work environment factors into account to a limited extent. We therefore investigated the associations between a measure of Attentive Managerial Leadership (AML), and perceived stress, age-relative self-rated health, and sickness absence due to overstrain/fatigue, adjusting for the dimensions of the Demand-Control-Support model. Blue- and white-collar workers from Finland, Germany and Sweden employed in a multi-national forest industry company (N=12,622). Cross-sectional data on leadership and health from a company-wide survey analysed with logistic regression in different subgroups. AML was associated with perceived stress, age-relative self-rated health, and sickness absence due to overstrain/fatigue after controlling for the Demand-Control-Support model. Lack of AML was significantly associated with a high stress level in all subgroups (OR=1.68-2.67). Associations with age-relative self-rated health and sickness absence due to overstrain/fatigue were weaker, but still significant, and in the expected direction for several of the subgroups studied, suggesting an association between lack of AML and negative health consequences. The study indicates that managerial leadership is associated with employee stress, health, and sickness absence independently of the Demand-Control-Support model and should be considered in future studies of health consequences for employees, and in work environment interventions.

  6. Oxidative Stress in Hypertensive Patients Induces an Increased Contractility in Vein Grafts Independent of Endothelial Function

    Claudio Joo Turoni


    Full Text Available Objective. To evaluate the impact of oxidative stress on vascular reactivity to vasoconstrictors and on nitric oxide (NO bioavailability in saphenous vein (SV graft with endothelial dysfunction from hypertensive patients (HT. Methods. Endothelial function, vascular reactivity, oxidative state, nitrites and NO release were studied in isolated SV rings from HT and normotensive patients (NT. Only rings with endothelial dysfunction were used. Results. HT rings presented a hyperreactivity to vasoconstrictors that was reverted by diphenylene iodonium (DPI. In NT, no effect of DPI was obtained, but Nω-nitro-L-arginine methyl ester (L-NAME increased the contractile response. NO was present in SV rings without endothelial function. Nitrites were higher in NT than in HT (1066.1 ± 86.3 pmol/mg; n=11 versus 487.8 ± 51.6; n=23; P<0.01 and inhibited by nNOS inhibitor. L-arginine reversed this effect. Antioxidant agents increased nitrites and NO contents only in HT. The anti-nNOS-stained area by immunohistochemistry was higher in NT than HT. HT showed an elevation of oxidative state. Conclusions. Extraendothelial NO counter-regulates contractility in SV. However, this action could be altered in hypertensive situations by an increased oxidative stress or a decreased ability of nNOS to produce NO. Further studies should be performed to evaluate the implication of these results in graft patency rates.

  7. Unstable Leidenfrost Drops on Roughened Surfaces

    Boreyko, Jonathan B


    Drops placed on a surface with a temperature above the Leidenfrost point float atop an evaporative vapor layer. In this fluid dynamics video, it is shown that for roughened surfaces the Leidenfrost point depends on the drop size, which runs contrary to previous claims of size independence. The thickness of the vapor layer is known to increase with drop radius, suggesting that the surface roughness will not be able to penetrate the vapor layer for drops above a critical size. This size dependence was experimentally verified: at a given roughness and temperature, drops beneath a critical size exhibited transition boiling while drops above the critical size were in the Leidenfrost regime. These Leidenfrost drops were unstable; upon evaporation down to the critical size the vapor film suddenly collapsed.

  8. Relationship between physical activity and markers of oxidative stress in independent community-living elderly individuals.

    Fraile-Bermúdez, A B; Kortajarena, M; Zarrazquin, I; Maquibar, A; Yanguas, J J; Sánchez-Fernández, C E; Gil, J; Irazusta, A; Ruiz-Litago, F


    The aim of the present study was to examine the relationship between objective data of physical activity and markers of oxidative stress in older men and women. Participants were old adults, aged≥60years (61 women and 34 men) who were all capable of performing basic daily activities by themselves and lived on their own. To describe physical activity we used objective data measured by accelerometers which record active and sedentary periods during everyday life for five days. Determination of oxidative stress was conducted from three perspectives: determination plasma total antioxidant status (TAS), plasma antioxidant enzyme activities, i.e., glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD), and membrane lipid peroxidation (TBARS). In the group of women, those who met physical activity recommendations (WR) had lower level of TAS. In addition, the moderate to vigorous physical activity (MVPA) was negatively correlated with TAS. Simultaneously, MVPA was correlated with increase in the GPx antioxidant enzyme activity, and the counts per minute were positively correlated with CAT activity. In the group of men, the cpm and the MVPA were negatively correlated with lipid peroxidation while lifestyle physical activity was positively correlated with CAT activity. These findings suggest that MVPA in the elderly although it is related to a decrease in the TAS in women, induces adaptive increase in antioxidant enzyme activity and decreases lipid peroxidation in both women and men. These results suggest that at this time of life, it is not only the amount of physical activity performed that is important but also its intensity. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Aldosterone induces fibrosis, oxidative stress and DNA damage in livers of male rats independent of blood pressure changes

    Queisser, Nina; Happ, Kathrin; Link, Samuel [Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg (Germany); Jahn, Daniel [Division of Hepatology, Department of Medicine II, University Hospital Würzburg, Würzburg (Germany); Zimnol, Anna [Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg (Germany); Geier, Andreas [Division of Hepatology, Department of Medicine II, University Hospital Würzburg, Würzburg (Germany); Schupp, Nicole, E-mail: [Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg (Germany)


    Mineralocorticoid receptor blockers show antifibrotic potential in hepatic fibrosis. The mechanism of this protective effect is not known yet, although reactive oxygen species seem to play an important role. Here, we investigated the effects of elevated levels of aldosterone (Ald), the primary ligand of the mineralocorticoid receptor, on livers of rats in a hyperaldosteronism model: aldosterone-induced hypertension. Male Sprague–Dawley rats were treated for 4 weeks with aldosterone. To distinguish if damage caused in the liver depended on increased blood pressure or on increased Ald levels, the mineralocorticoid receptor antagonist spironolactone was given in a subtherapeutic dose, not normalizing blood pressure. To investigate the impact of oxidative stress, the antioxidant tempol was administered. Aldosterone induced fibrosis, detected histopathologically, and by expression analysis of the fibrosis marker, α-smooth muscle actin. Further, the mRNA amount of the profibrotic cytokine TGF-β was increased significantly. Fibrosis could be reduced by scavenging reactive oxygen species, and also by blocking the mineralocorticoid receptor. Furthermore, aldosterone treatment caused oxidative stress and DNA double strand breaks in livers, as well as the elevation of DNA repair activity. An increase of the transcription factor Nrf2, the main regulator of the antioxidative response could be observed, and of its target genes heme oxygenase-1 and γ-glutamylcysteine synthetase. All these effects of aldosterone were prevented by spironolactone and tempol. Already after 4 weeks of treatment, aldosteroneinfusion induced fibrosis in the liver. This effect was independent of elevated blood pressure. DNA damage caused by aldosterone might contribute to fibrosis progression when aldosterone is chronically increased. - Highlights: • Aldosterone has direct profibrotic effects on the liver independent of blood pressure. • Fibrosis is mediated by the mineralocorticoid receptor and

  10. The yeast PUF protein Puf5 has Pop2-independent roles in response to DNA replication stress.

    Ana Traven

    Full Text Available PUFs are RNA binding proteins that promote mRNA deadenylation and decay and inhibit translation. Yeast Puf5 is the prototype for studying PUF-dependent gene repression. Puf5 binds to the Pop2 subunit of the Ccr4-Pop2-NOT mRNA deadenylase, recruiting the deadenylase and associated translational repressors to mRNAs. Here we used yeast genetics to show that Puf5 has additional roles in vivo that do not require Pop2. Deletion of PUF5 caused increased sensitivity to DNA replication stress in cells lacking Pop2, as well as in cells mutated for two activities recruited to mRNAs by the Puf5-Pop2 interaction, the deadenylase Ccr4 and the translational repressor Dhh1. A functional Puf5 RNA binding domain was required, and Puf5 cytoplasmic localisation was sufficient for resistance to replication stress, indicating posttranscriptional gene expression control is involved. In contrast to DNA replication stress, in response to the cell wall integrity pathway activator caffeine, PUF5 and POP2 acted in the same genetic pathway, indicating that functions of Puf5 in the caffeine response are mediated by Pop2-dependent gene repression. Our results support a model in which Puf5 uses multiple, Pop2-dependent and Pop2-independent mechanisms to control mRNA expression. The Pop2-independent roles for Puf5 could involve spatial control of gene expression, a proposition supported by our data indicating that the active form of Puf5 is localised to cytoplasmic foci.

  11. Dynamics and shapes of ferrofluid drops under spatially uniform magnetic fields

    Rowghanian, Payam; Serwane, Friedhelm; Kealhofer, David; Meinhart, Carl D.; Campas, Otger


    We study the shape and dynamics of a Newtonian ferrofluid drop immersed in a Newtonian and non-magnetic viscous fluid under the action of a uniform external magnetic field. We obtain the exact equilibrium drop shapes for arbitrary ferrofluids which describe unexplained previous experiments, characterize the extent of deviations of the exact shape from the commonly assumed ellipsoidal shape, and analyze the smoothness of highly curved tips in elongated drops. We present a comprehensive study of drop deformation for a Langevin ferrofluid. Using a computational scheme that allows fast and accurate simulations of ferrofluid drop dynamics, we show that the dynamics of drop deformation by an applied magnetic field is described up to a numerical factor by the same time scale as drop relaxation in the absence of any magnetic field. The numerical factor depends on the ratio of viscosities and the ratio of magnetic to capillary stresses, but is independent of the nature of the ferrofluid in most practical cases. Finally, we use the shape and dynamics of the magnetic drops to measure the rheology of complex fluids.

  12. Oxidative stress is associated with C-reactive protein in nondiabetic postmenopausal women, independent of obesity and insulin resistance.

    Park, Seonmin; Kim, Minjoo; Paik, Jean Kyung; Jang, Yoon-Jung; Lee, Sang-Hyun; Lee, Jong Ho


    Oxidative stress is associated with obesity, metabolic syndrome and inflammation, suggesting it could be an early event in the pathology of chronic diseases. We tested the hypothesis that elevated levels of oxidative stress markers are associated with increased C-reactive protein (CRP) and that this is independent of obesity and insulin resistance. This study was cross-sectional designed and nondiabetic postmenopausal women (n = 1821) with CRP levels ≤10 mg/l was enrolled. The CRP levels were categorized into quartiles from the lowest to the highest concentrations (Q1-Q4). The degree of insulin resistance was determined using the homoeostasis model assessment of insulin resistance (HOMA-IR). We measured oxidative stress using urinary 8-epi-prostaglandin F2α (8-epi-PGF2α) and plasma oxidized low-density lipoprotein (ox-LDL). After adjustments for age and lifestyle habits, including smoking and drinking, we found higher body mass index (BMI) and HOMA-IR scores in Q2 and Q3 vs Q1. The Q4 BMI and HOMA-IR scores were higher than all other quartiles. The plasma ox-LDL was higher in Q4 than in Q1. Urinary 8-epi-PGF2α was higher in Q3 and Q4 than in Q1 or Q2. Urinary 8-epi-PGF2α positively correlated with CRP (r = 0·235, P obesity and insulin resistance in nondiabetic postmenopausal women. © 2012 John Wiley & Sons Ltd.

  13. Skin blood flow and local temperature independently modify sweat rate during passive heat stress in humans.

    Wingo, Jonathan E; Low, David A; Keller, David M; Brothers, R Matthew; Shibasaki, Manabu; Crandall, Craig G


    Sweat rate (SR) is reduced in locally cooled skin, which may result from decreased temperature and/or parallel reductions in skin blood flow. The purpose of this study was to test the hypotheses that decreased skin blood flow and decreased local temperature each independently attenuate sweating. In protocols I and II, eight subjects rested supine while wearing a water-perfused suit for the control of whole body skin and internal temperatures. While 34°C water perfused the suit, four microdialysis membranes were placed in posterior forearm skin not covered by the suit to manipulate skin blood flow using vasoactive agents. Each site was instrumented for control of local temperature and measurement of local SR (capacitance hygrometry) and skin blood flow (laser-Doppler flowmetry). In protocol I, two sites received norepinephrine to reduce skin blood flow, while two sites received Ringer solution (control). All sites were maintained at 34°C. In protocol II, all sites received 28 mM sodium nitroprusside to equalize skin blood flow between sites before local cooling to 20°C (2 sites) or maintenance at 34°C (2 sites). In both protocols, individuals were then passively heated to increase core temperature ~1°C. Both decreased skin blood flow and decreased local temperature attenuated the slope of the SR to mean body temperature relationship (2.0 ± 1.2 vs. 1.0 ± 0.7 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased skin blood flow, P = 0.01; 1.2 ± 0.9 vs. 0.07 ± 0.05 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased local temperature, P = 0.02). Furthermore, local cooling delayed the onset of sweating (mean body temperature of 37.5 ± 0.4 vs. 37.6 ± 0.4°C, P = 0.03). These data demonstrate that local cooling attenuates sweating by independent effects of decreased skin blood flow and decreased local skin temperature.

  14. Coalescence of a Drop inside another Drop

    Mugundhan, Vivek; Jian, Zhen; Yang, Fan; Li, Erqiang; Thoroddsen, Sigurdur


    Coalescence dynamics of a pendent drop sitting inside another drop, has been studied experimentally and in numerical simulations. Using an in-house fabricated composite micro-nozzle, a smaller salt-water drop is introduced inside a larger oil drop which is pendent in a tank containing the same liquid as the inner drop. On touching the surface of outer drop, the inner drop coalesces with the surrounding liquid forming a vortex ring, which grows in time to form a mushroom-like structure. The initial dynamics at the first bridge opening up is quantified using Particle Image Velocimetry (PIV), while matching the refractive index of the two liquids. The phenomenon is also numerically simulated using the open-source code Gerris. The problem is fully governed by two non-dimensional parameters: the Ohnesorge number and the diameter ratios of the two drops. The validated numerical model is used to better understand the dynamics of the phenomenon. In some cases a coalescence cascade is observed with liquid draining intermittently and the inner drop reducing in size.

  15. Exercise effect on oxidative stress is independent of change in estrogen metabolism.

    Schmitz, Kathryn H; Warren, Meghan; Rundle, Andrew G; Williams, Nancy I; Gross, Myron D; Kurzer, Mindy S


    The effect of exercise training on lipid peroxidation and endogenous estrogens is not well understood in premenopausal women. Exercise effects on these variables could mediate observed associations of exercise with hormonally related cancers, including breast cancer. The purpose of the study is to determine the effect of 15 weeks of aerobic exercise on lipid peroxidation, endogenous estrogens, and body composition in young, healthy eumenorrheic women. Fifteen sedentary premenopausal women (18-25 years) participated. Pre- and post-exercise training urine collection (three 24-h samples) started 48 h after most recent exercise session for analysis of a marker of lipid peroxidation (F(2)-isoprostane) and endogenous estrogens, including 2-hydroxyestrogens, 4-hydroxyestrogens, 16-alpha-hydroxyestrone, and ratios of these metabolites (2:16, 2:4). Body composition was measured by dual-energy X-ray absorptiometry, and F(2)-isoprostanes and estrogens were measured by gas chromatography-mass spectrometry. Aerobic exercise resulted in a 34% decrease in F(2)-isoprostane (P = 0.02), a 10% increase in fitness (P = 0.004), a 1.2 kg decrease in body mass (P = 0.007), and a 1.8 kg decrease in fat mass (P = 0.04). No significant changes were noted in estrogens. The effect of exercise training on oxidative stress may be relevant to risk for hormonally related cancers.

  16. Cell Wall Invertase Promotes Fruit Set under Heat Stress by Suppressing ROS-Independent Cell Death1[OPEN


    Reduced cell wall invertase (CWIN) activity has been shown to be associated with poor seed and fruit set under abiotic stress. Here, we examined whether genetically increasing native CWIN activity would sustain fruit set under long-term moderate heat stress (LMHS), an important factor limiting crop production, by using transgenic tomato (Solanum lycopersicum) with its CWIN inhibitor gene silenced and focusing on ovaries and fruits at 2 d before and after pollination, respectively. We found that the increase of CWIN activity suppressed LMHS-induced programmed cell death in fruits. Surprisingly, measurement of the contents of H2O2 and malondialdehyde and the activities of a cohort of antioxidant enzymes revealed that the CWIN-mediated inhibition on programmed cell death is exerted in a reactive oxygen species-independent manner. Elevation of CWIN activity sustained Suc import into fruits and increased activities of hexokinase and fructokinase in the ovaries in response to LMHS. Compared to the wild type, the CWIN-elevated transgenic plants exhibited higher transcript levels of heat shock protein genes Hsp90 and Hsp100 in ovaries and HspII17.6 in fruits under LMHS, which corresponded to a lower transcript level of a negative auxin responsive factor IAA9 but a higher expression of the auxin biosynthesis gene ToFZY6 in fruits at 2 d after pollination. Collectively, the data indicate that CWIN enhances fruit set under LMHS through suppression of programmed cell death in a reactive oxygen species-independent manner that could involve enhanced Suc import and catabolism, HSP expression, and auxin response and biosynthesis. PMID:27462084

  17. Protein conjugated with aldehydes derived from lipid peroxidation as an independent parameter of the carbonyl stress in the kidney damage

    Medina-Navarro Rafael


    Full Text Available Abstract Background One of the well-defined and characterized protein modifications usually produced by oxidation is carbonylation, an irreversible non-enzymatic modification of proteins. However, carbonyl groups can be introduced into proteins by non-oxidative mechanisms. Reactive carbonyl compounds have been observed to have increased in patients with renal failure. In the present work we have described a procedure designed as aldehyde capture to calculate the protein carbonyl stress derived solely from lipid peroxidation. Methods Acrolein-albumin adduct was prepared as standard at alkaline pH. Rat liver microsomal membranes and serum samples from patients with diabetic nephropathy were subjected to the aldehyde capture procedure and aldol-protein formation. Before alkalinization and incubation, samples were precipitated and redisolved in 6M guanidine. The absorbances of the samples were read with a spectrophotometer at 266 nm against a blank of guanidine. Results Evidence showed abundance of unsaturated aldehydes derived from lipid peroxidation in rat liver microsomal membranes and in the serum of diabetic patients with advanced chronic kidney disease. Carbonyl protein and aldol-proteins resulted higher in the diabetic nephropathy patients (p Conclusion The aldehyde-protein adduct represents a non oxidative component of carbonyl stress, independent of the direct amino acid oxidation and could constitute a practical and novelty strategy to measure the carbonyl stress derived solely from lipid peroxidation and particularly in diabetic nephropathy patients. In addition, we are in a position to propose an alternative explanation of why alkalinization of urine attenuates rhabdomyolysis-induced renal dysfunction.

  18. XBP1-Independent UPR Pathways Suppress C/EBP-β Mediated Chondrocyte Differentiation in ER-Stress Related Skeletal Disease.

    Trevor L Cameron


    Full Text Available Schmid metaphyseal chondrodysplasia (MCDS involves dwarfism and growth plate cartilage hypertrophic zone expansion resulting from dominant mutations in the hypertrophic zone collagen, Col10a1. Mouse models phenocopying MCDS through the expression of an exogenous misfolding protein in the endoplasmic reticulum (ER in hypertrophic chondrocytes have demonstrated the central importance of ER stress in the pathology of MCDS. The resultant unfolded protein response (UPR in affected chondrocytes involved activation of canonical ER stress sensors, IRE1, ATF6, and PERK with the downstream effect of disrupted chondrocyte differentiation. Here, we investigated the role of the highly conserved IRE1/XBP1 pathway in the pathology of MCDS. Mice with a MCDS collagen X p.N617K knock-in mutation (ColXN617K were crossed with mice in which Xbp1 was inactivated specifically in cartilage (Xbp1CartΔEx2, generating the compound mutant, C/X. The severity of dwarfism and hypertrophic zone expansion in C/X did not differ significantly from ColXN617K, revealing surprising redundancy for the IRE1/XBP1 UPR pathway in the pathology of MCDS. Transcriptomic analyses of hypertrophic zone cartilage identified differentially expressed gene cohorts in MCDS that are pathologically relevant (XBP1-independent or pathologically redundant (XBP1-dependent. XBP1-independent gene expression changes included large-scale transcriptional attenuation of genes encoding secreted proteins and disrupted differentiation from proliferative to hypertrophic chondrocytes. Moreover, these changes were consistent with disruption of C/EBP-β, a master regulator of chondrocyte differentiation, by CHOP, a transcription factor downstream of PERK that inhibits C/EBP proteins, and down-regulation of C/EBP-β transcriptional co-factors, GADD45-β and RUNX2. Thus we propose that the pathology of MCDS is underpinned by XBP1 independent UPR-induced dysregulation of C/EBP-β-mediated chondrocyte differentiation

  19. Eye Drop Tips

    ... Involved News About Us Donate In This Section Eye Drop Tips en Español email Send this article ... the reach of children. Steps For Putting In Eye Drops: Start by tilting your head backward while ...

  20. Dilating Eye Drops

    ... Corneal Abrasions Dilating Eye Drops Lazy eye (defined) Pink eye (defined) Retinopathy of Prematurity Strabismus Stye (defined) Vision ... Corneal Abrasions Dilating Eye Drops Lazy eye (defined) Pink eye (defined) Retinopathy of Prematurity Strabismus Stye (defined) Vision ...

  1. Estimation of the bottom stress and bottom drag coefficient in a highly asymmetric tidal bay using three independent methods

    Xu, Peng; Mao, Xinyan; Jiang, Wensheng


    Three independent methods, the dynamical balance (DB) method, the turbulence parameter (TP) method, and the log-layer fit (LF) method, are commonly employed to estimate the bottom stress and bottom drag coefficient in strong tidal systems. However, their results usually differ from each other and the differences are attributed to form drag. Alternatively, some researchers argued that the differences are caused by overestimates in some methods. Aiming to measure the performances of the three independent methods, they were simultaneously constructed in a bay with highly asymmetric tides. The results of the DB and TP methods are consistent with each other in not only the magnitude but also time variation patterns. The consistency of results of the two methods indicates that skin friction is dominant in the bay. The results of the DB and TP methods reveal obvious flood-dominant asymmetry caused by tidal straining. This flood-dominant asymmetry is enhanced during the transition period from spring to neap tide. When the original log-layer fit is employed, the results are much larger than those of the DB and TP methods, and these differences cannot be attributed to form drag since skin friction is dominant in the bay. Moreover, the results of the original log-layer fit reveal an obvious ebb-dominant asymmetry, which is contradictory to the results of the DB and TP methods. Therefore, the results of the original fit are just overestimates and lack physical meaning. By considering the effect of stratification on the mixing length, the modified log-layer fit achieves results with magnitudes that are close to those of the DB and TP methods, indicating that the modified log-layer fit is more representative of the bottom stress than the original log-layer fit in terms of physical meaning. However, the results of the modified log-layer fit still exhibit an ebb-dominant asymmetry in contrast to that of the DB and TP methods, implying that the empirical formula of the mixing

  2. Catalases and PhoB/PhoR system independently contribute to oxidative stress resistance in Vibrio cholerae O1.

    Goulart, Carolina L; Barbosa, Livia C; Bisch, Paulo M; von Krüger, Wanda M A


    All cells are subjected to oxidative stress, a condition under which reactive oxygen species (ROS) production exceeds elimination. Bacterial defences against ROS include synthesis of antioxidant enzymes like peroxidases and catalases. Vibrio cholerae can produce two distinct catalases, KatB and KatG, which contribute to ROS homeostasis. In this study, we analysed the mechanism behind katG and katB expression in two V. cholerae O1 pandemic strains, O395 and N16961, of classical and El Tor biotypes, respectively. Both strains express these genes, especially at stationary phase. However, El Tor N16961 produces higher KatB and KatG levels and is much more resistant to peroxide challenge than the classical strain, confirming a direct relationship between catalase activity and oxidative stress resistance. Moreover, we showed that katG and katB expression levels depend on inorganic phosphate (Pi) availability, in contrast to other bacterial species. In N16961, katB and katG expression is reduced under Pi limitation relative to Pi abundance. Total catalase activity in N16961 and its phoB mutant cells was similar, independently of growth conditions, indicating that the PhoB/PhoR system is not required for katB and katG expression. However, N16961 cells from Pi-limited cultures were 50-100-fold more resistant to H2O2 challenge and accumulated less ROS than phoB mutant cells. Together, these findings suggest that, besides KatB and KatG, the PhoB/PhoR system is an important protective factor against ROS in V. cholerae N16961. They also corroborate previous results from our and other groups, suggesting that the PhoB/PhoR system is fundamental for V. cholerae biology.

  3. Dielectrophoresis of a surfactant-laden viscous drop

    Mandal, Shubhadeep; Bandopadhyay, Aditya; Chakraborty, Suman


    The dielectrophoresis of a surfactant-laden viscous drop in the presence of non-uniform DC electric field is investigated analytically and numerically. Considering the presence of bulk-insoluble surfactants at the drop interface, we first perform asymptotic solution for both low and high surface Péclet numbers, where the surface Péclet number signifies the strength of surface convection of surfactants as compared to the diffusion at the drop interface. Neglecting fluid inertia and interfacial charge convection effects, we obtain explicit expression for dielectrophoretic drop velocity for low and high Péclet numbers by assuming small deviation of drop shape from sphericity and small deviation of surfactant concentration from the equilibrium uniform distribution. We then depict a numerical solution, assuming spherical drop, for arbitrary values of Péclet number. Our analyses demonstrate that the asymptotic solution shows excellent agreement with the numerical solution in the limiting conditions of low and high Péclet numbers. The present analysis shows that the flow-induced redistribution of the surfactants at the drop interface generates Marangoni stress, owing to the influence of the surfactant distribution on the local interfacial tension, at the drop interface and significantly alters the drop velocity at steady state. For a perfectly conducting/dielectric drop suspended in perfectly dielectric medium, Marangoni stress always retards the dielectrophoretic velocity of the drop as compared with a surfactant-free drop. For a leaky dielectric drop suspended in another leaky dielectric medium, in the low Péclet number limit, depending on the electrical conductivity and permittivity of both the liquids, the Marangoni stress may aid or retard the dielectrophoretic velocity of the drop. The Marangoni stress also has the ability to move the drop in the opposite direction as compared with a surfactant-free drop. This non-intuitive reverse motion of the drop is

  4. Drag on Sessile Drops

    Milne, Andrew J. B.; Fleck, Brian; Nobes, David; Sen, Debjyoti; Amirfazli, Alidad; University of Alberta Mechanical Engineering Collaboration


    We present the first ever direct measurements of the coefficient of drag on sessile drops at Reynolds numbers from the creeping flow regime up to the point of incipient motion, made using a newly developed floating element differential drag sensor. Surfaces of different wettabilities (PMMA, Teflon, and a superhydrophobic surface (SHS)), wet by water, hexadecane, and various silicone oils, are used to study the effects of drop shape, and fluid properties on drag. The relation between drag coefficient and Reynolds number (scaled by drop height) varies slightly with liquid-solid system and drop volume with results suggesting the drop experiences increased drag compared to similar shaped solid bodies due to drop oscillation influencing the otherwise laminar flow. Drops adopting more spherical shapes are seen to experience the greatest force at any given airspeed. This indicates that the relative exposed areas of drops is an important consideration in terms of force, with implications for the shedding of drops in applications such as airfoil icing and fuel cell flooding. The measurement technique used in this work can be adapted to measure drag force on other deformable, lightly adhered objects such as dust, sand, snow, vesicles, foams, and biofilms. The authours acknowledge NSERC, Alberta Innovates Technology Futures, and the Killam Trusts.

  5. Bubble and drop interfaces



    The book aims at describing the most important experimental methods for characterizing liquid interfaces, such as drop profile analysis, bubble pressure and drop volume tensiometry, capillary pressure technique, and oscillating drops and bubbles. Besides the details of experimental set ups, also the underlying theoretical basis is presented in detail. In addition, a number of applications based on drops and bubbles is discussed, such as rising bubbles and the very complex process of flotation. Also wetting, characterized by the dynamics of advancing contact angles is discussed critically. Spec

  6. Thiamine increases the resistance of baker's yeast Saccharomyces cerevisiae against oxidative, osmotic and thermal stress, through mechanisms partly independent of thiamine diphosphate-bound enzymes.

    Wolak, Natalia; Kowalska, Ewa; Kozik, Andrzej; Rapala-Kozik, Maria


    Numerous recent studies have established a hypothesis that thiamine (vitamin B1 ) is involved in the responses of different organisms against stress, also suggesting that underlying mechanisms are not limited to the universal role of thiamine diphosphate (TDP) in the central cellular metabolism. The current work aimed at characterising the effect of exogenously added thiamine on the response of baker's yeast Saccharomyces cerevisiae to the oxidative (1 mM H2 O2 ), osmotic (1 M sorbitol) and thermal (42 °C) stress. As compared to the yeast culture in thiamine-free medium, in the presence of 1.4 μM external thiamine, (1) the relative mRNA levels of major TDP-dependent enzymes under stress conditions vs. unstressed control (the 'stress/control ratio') were moderately lower, (2) the stress/control ratio was strongly decreased for the transcript levels of several stress markers localised to the cytoplasm, peroxisomes, the cell wall and (with the strongest effect observed) the mitochondria (e.g. Mn-superoxide dismutase), (3) the production of reactive oxygen and nitrogen species under stress conditions was markedly decreased, with the significant alleviation of concomitant protein oxidation. The results obtained suggest the involvement of thiamine in the maintenance of redox balance in yeast cells under oxidative stress conditions, partly independent of the functions of TDP-dependent enzymes.

  7. Turbulence, bubbles and drops

    Veen, van der Roeland Cornelis Adriaan


    In this thesis, several questions related to drop impact and Taylor-Couette turbulence are answered. The deformation of a drop just before impact can cause a bubble to be entrapped. For many applications, such as inkjet printing, it is crucial to control the size of this entrapped bubble. To study t

  8. Youth Crime Drop. Report.

    Butts, Jeffrey A.

    This report examines the recent drop in violent crime in the United States, discussing how much of the decrease seen between 1995-99 is attributable to juveniles (under age 18 years) and older youth (18-24 years). Analysis of current FBI arrest data indicates that not only did America's violent crime drop continue through 1999, but falling youth…

  9. Renal cells express different forms of vimentin: the independent expression alteration of these forms is important in cell resistance to osmotic stress and apoptosis.

    Bettina S Buchmaier

    Full Text Available Osmotic stress has been shown to regulate cytoskeletal protein expression. It is generally known that vimentin is rapidly degraded during apoptosis by multiple caspases, resulting in diverse vimentin fragments. Despite the existence of the known apoptotic vimentin fragments, we demonstrated in our study the existence of different forms of vimentin VIM I, II, III, and IV with different molecular weights in various renal cell lines. Using a proteomics approach followed by western blot analyses and immunofluorescence staining, we proved the apoptosis-independent existence and differential regulation of different vimentin forms under varying conditions of osmolarity in renal cells. Similar impacts of osmotic stress were also observed on the expression of other cytoskeleton intermediate filament proteins; e.g., cytokeratin. Interestingly, 2D western blot analysis revealed that the forms of vimentin are regulated independently of each other under glucose and NaCl osmotic stress. Renal cells, adapted to high NaCl osmotic stress, express a high level of VIM IV (the form with the highest molecular weight, besides the three other forms, and exhibit higher resistance to apoptotic induction with TNF-α or staurosporin compared to the control. In contrast, renal cells that are adapted to high glucose concentration and express only the lower-molecular-weight forms VIM I and II, were more susceptible to apoptosis. Our data proved the existence of different vimentin forms, which play an important role in cell resistance to osmotic stress and are involved in cell protection against apoptosis.

  10. Drop Tower Physics

    Dittrich, William A. Toby


    The drop towers of yesteryear were used to make lead shot for muskets, as described in The Physics Teacher1 in April 2012. However, modern drop towers are essentially elevators designed so that the cable can "break" on demand, creating an environment with microgravity for a short period of time, currently up to nine seconds at the drop tower in Bremen, Germany. Using these drop towers, one can briefly investigate various physical systems operating in this near zero-g environment. The resulting "Drop Tower Physics" is a new and exciting way to challenge students with a physical example that requires solid knowledge of many basic physics principles, and it forces them to practice the scientific method. The question is, "How would a simple toy, like a pendulum, behave when it is suddenly exposed to a zero-g environment?" The student must then postulate a particular behavior, test the hypothesis against physical principles, and if the hypothesis conforms to these chosen physical laws, the student can formulate a final conclusion. At that point having access to a drop tower is very convenient, in that the student can then experimentally test his or her conclusion. The purpose of this discussion is to explain the response of these physical systems ("toys") when the transition is made to a zero-g environment and to provide video demonstrations of this behavior to support in-class discussions of Drop Tower Physics.

  11. Rolling ferrofluid drop on the surface of a liquid

    Sterr, V; Morozov, K I; Rehberg, I; Engel, A; Richter, R


    We report on the controlled transport of drops of magnetic liquid, which are swimming on top of a non-magnetic liquid layer. A magnetic field which is rotating in a vertical plane creates a torque on the drop. Due to surface stresses within the immiscible liquid beneath, the drop is propelled forward. We measure the drop speed for different field amplitudes, field frequencies and drop volumes. Simplifying theoretical models describe the drop either as a solid sphere with a Navier slip boundary condition, or as a liquid half-sphere. An analytical expression for the drop speed is obtained which is free of any fitting parameters and is well in accordance with the experimental measurements. Possible microfluidic applications of the rolling drop are also discussed.


    While studies showed that aging is accompanied by increased exposure of the brain to oxidative stress, others have not detected any age-correlated differences in levels of markers of oxidative stress. Use of conventional markers of oxidative damage in vivo, which may be formed ex...

  13. Central Bank independence

    Vasile DEDU


    Full Text Available In this paper we present the key aspects regarding central bank’s independence. Most economists consider that the factor which positively influences the efficiency of monetary policy measures is the high independence of the central bank. We determined that the National Bank of Romania (NBR has a high degree of independence. NBR has both goal and instrument independence. We also consider that the hike of NBR’s independence played an important role in the significant disinflation process, as headline inflation dropped inside the targeted band of 3% ± 1 percentage point recently.

  14. Drop impact of shear thickening liquids

    Boyer, Francois; Dijksman, J Frits; Lohse, Detlef


    The impact of drops of concentrated non-Brownian suspensions (cornstarch and polystyrene spheres) onto a solid surface is investigated experimentally. The spreading dynamics and maxi- mal deformation of the droplet of such shear thickening liquids are found to be markedly different from the impact of Newtonian drops. A particularly striking observation is that the maximal de- formation is independent of the drop velocity and that the deformation suddenly stops during the impact phase. Both observations are due to the shear-thickening rheology of the suspensions, as is theoretically explained from a balance between the kinetic energy and the viscously-dissipated en- ergy, from which we establish a scaling relation between drop maximal deformation and rheological parameters of concentrated suspensions.

  15. A prospective cohort study of deficient maternal nurturing attitudes predicting adulthood work stress independent of adulthood hostility and depressive symptoms.

    Hintsanen, M; Kivimäki, M; Hintsa, T; Theorell, T; Elovainio, M; Raitakari, O T; Viikari, J S A; Keltikangas-Järvinen, L


    Stressful childhood environments arising from deficient nurturing attitudes are hypothesized to contribute to later stress vulnerability. We examined whether deficient nurturing attitudes predict adulthood work stress. Participants were 443 women and 380 men from the prospective Cardiovascular Risk in Young Finns Study. Work stress was assessed as job strain and effort-reward imbalance in 2001 when the participants were from 24 to 39 years old. Deficient maternal nurturance (intolerance and low emotional warmth) was assessed based on mothers' reports when the participants were at the age of 3-18 years and again at the age of 6-21 years. Linear regressions showed that deficient emotional warmth in childhood predicted lower adulthood job control and higher job strain. These associations were not explained by age, gender, socioeconomic circumstances, maternal mental problems or participant hostility, and depressive symptoms. Deficient nurturing attitudes in childhood might affect sensitivity to work stress and selection into stressful work conditions in adulthood. More attention should be paid to pre-employment factors in work stress research.

  16. Stress, satisfaction, and the work-family interface: a comparison of self-employed business owners, independents, and organizational employees.

    Prottas, David J; Thompson, Cynthia A


    Using data from the 2002 National Study of the Changing Workforce (NSCW) (N = 3,504), we examined differences among organizational employment and two categories of self-employment: independent contractors and small business owners. Our results suggest that self-employment, either as owner or independent, may allow individuals to achieve greater autonomy than would be available to them as organizational employees. However, the greater pressure associated with ownership of a small business detracts from the advantages of having autonomy, making small business ownership a double-edged sword. Those working as independent contractors appear to reap the benefits of greater autonomy as well as lower levels of job pressure.

  17. Mammalian orthoreovirus escape from host translational shutoff correlates with stress granule disruption and is independent of eIF2alpha phosphorylation and PKR.

    Qin, Qingsong; Carroll, Kate; Hastings, Craig; Miller, Cathy L


    In response to mammalian orthoreovirus (MRV) infection, cells initiate a stress response that includes eIF2α phosphorylation and protein synthesis inhibition. We have previously shown that early in infection, MRV activation of eIF2α phosphorylation results in the formation of cellular stress granules (SGs). In this work, we show that as infection proceeds, MRV disrupts SGs despite sustained levels of phosphorylated eIF2α and, further, interferes with the induction of SGs by other stress inducers. MRV interference with SG formation occurs downstream of eIF2α phosphorylation, suggesting the virus uncouples the cellular stress signaling machinery from SG formation. We additionally examined mRNA translation in the presence of SGs induced by eIF2α phosphorylation-dependent and -independent mechanisms. We found that irrespective of eIF2α phosphorylation status, the presence of SGs in cells correlated with inhibition of viral and cellular translation. In contrast, MRV disruption of SGs correlated with the release of viral mRNAs from translational inhibition, even in the presence of phosphorylated eIF2α. Viral mRNAs were also translated in the presence of phosphorylated eIF2α in PKR(-/-) cells. These results suggest that MRV escape from host cell translational shutoff correlates with virus-induced SG disruption and occurs in the presence of phosphorylated eIF2α in a PKR-independent manner.

  18. Rain Drop Charge Sensor

    S, Sreekanth T.

    begin{center} Large Large Rain Drop Charge Sensor Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , S. Murali Das (2) *Atmospheric Sciences Division, Centre for Earth Science Studies, Thiruvananthapuram 695011 (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) Kavyam, Manacaud, Thiruvananthapuram 695009 begin{center} ABSTRACT To study the inter-relations with precipitation electricity and precipitation microphysical parameters a rain drop charge sensor was designed and developed at CESS Electronics & Instrumentation Laboratory. Simultaneous measurement of electric charge and fall speed of rain drops could be done using this charge sensor. A cylindrical metal tube (sensor tube) of 30 cm length is placed inside another thick metal cover opened at top and bottom for electromagnetic shielding. Mouth of the sensor tube is exposed and bottom part is covered with metal net in the shielding cover. The instrument is designed in such a way that rain drops can pass only through unhindered inside the sensor tube. When electrically charged rain drops pass through the sensor tube, it is charged to the same magnitude of drop charge but with opposite polarity. The sensor tube is electrically connected the inverted input of a current to voltage converter operational amplifier using op-amp AD549. Since the sensor is electrically connected to the virtual ground of the op-amp, the charge flows to the ground and the generated current is converted to amplified voltage. This output voltage is recorded using a high frequency (1kHz) voltage recorder. From the recorded pulse, charge magnitude, polarity and fall speed of rain drop are calculated. From the fall speed drop diameter also can be calculated. The prototype is now under test running at CESS campus. As the magnitude of charge in rain drops is an indication of accumulated charge in clouds in lightning, this instrument has potential application in the field of risk and disaster management. By knowing the charge

  19. The Transcription Factor p8 Regulates Autophagy in Response to Palmitic Acid Stress via a Mammalian Target of Rapamycin (mTOR)-independent Signaling Pathway.

    Jia, Sheng-Nan; Lin, Cheng; Chen, Dian-Fu; Li, An-Qi; Dai, Li; Zhang, Li; Zhao, Ling-Ling; Yang, Jin-Shu; Yang, Fan; Yang, Wei-Jun


    Autophagy is an evolutionarily conserved degradative process that allows cells to maintain homoeostasis in numerous physiological situations. This process also functions as an essential protective response to endoplasmic reticulum (ER) stress, which promotes the removal and degradation of unfolded proteins. However, little is known regarding the mechanism by which autophagy is initiated and regulated in response to ER stress. In this study, different types of autophagy were identified in human gastric cancer MKN45 cells in response to the stress induced by nutrient starvation or lipotoxicity in which the regulation of these pathways is mammalian target of rapamycin (mTOR)-dependent or -independent, respectively. Interestingly, we found that p8, a stress-inducible transcription factor, was enhanced in MKN45 cells treated with palmitic acid to induce lipotoxicity. Furthermore, an increase in autophagy was observed in MKN45 cells stably overexpressing p8 using a lentivirus system, and autophagy induced by palmitic acid was blocked by p8 RNAi compared with the control. Western blotting analyses showed that autophagy was regulated by p8 or mTOR in response to the protein kinase-like endoplasmic reticulum kinase/activating transcription factor 6-mediated ER stress of lipotoxicity or the parkin-mediated mitochondrial stress of nutrient starvation, respectively. Furthermore, our results indicated that autophagy induced by palmitic acid is mTOR-independent, but this autophagy pathway was regulated by p8 via p53- and PKCα-mediated signaling in MKN45 cells. Our findings provide insights into the role of p8 in regulating autophagy induced by the lipotoxic effects of excess fat accumulation in cells.

  20. Central residual compressive stress drop on metal materials after laser induced shock wave%激光冲击波加载金属材料中心压应力缺失效应

    王波; 陈东林; 周留成; 何卫锋


    纳秒脉冲、千兆瓦级激光辐照金属材料产生高压等离子体冲击波,作用于金属材料表面并向内传播,产生残余压应力场。但在单次冲击加载时,残余压应力场中心出现的残余压应力值小于加载边缘,应用理论分析和实验测试的方法解释了这一过程,并结合激光诱导冲击波Fabbro方程和TC4钛合金动态响应模型,建立了不同形式冲击波加载TC4钛合金的数值仿真模型,分析了冲击波压力、作用时间和加载形式对中心压应力缺失的影响。%The high pressure plasma shock wave induced by nanosecond pulse and 1 000 MW laser irradiation on the metal materials will propagate into the materials and impart residual compressive stresses. But when shock wave was singly loaded, the lower residual stress at the center of the loading zone compared to those away from the center will be induced. This process is proved by theorems and experiments. Moreover, the Fabbro equation of plasma shock wave and dynamic response of TC4 titanium alloy was calculated in the numerical model of different shock wave loading, the influence of the shock wave pressure, the actuation duration and the loading shape on residual stress drop at the center was discussed.

  1. The Vibration of an Inviscid Incompressible Sessile Drop

    Smith, Marc


    The fundamental frequencies and normal modes of vibration of a sessile drop supported on a horizontal planar surface are found using an integrated analytical and numerical technique. Spherical coordinates are used to describe the interface shape, but the potential flow field inside the drop is computed numerically using the finite element method. The numerical velocity potentials at the interface for both the fluid inside the drop and outside are fitted using a Legendre series. When these series are combined in the interfacial normal-stress balance the result is a linear eigenvalue problem that is solved numerically. Results will be presented for sessile drops with different contact angles without gravity and compared to experimental data. This technique can also be extended to sessile drops with gravity, in which the drop shape is flattened, and to substrate geometries that are not planar, such as a drop in a shallow cavity or hole.

  2. Drop dynamics on a stretched viscoelastic filament: An experimental study

    Peixinho, Jorge; Renoult, Marie-Charlotte; Crumeyrolle, Olivier; Mutabazi, Innocent


    Capillary pressure can destabilize a thin liquid filament during breakup into a succession of drops. Besides, the addition of a linear, high molecular weight, flexible and soluble polymer is enough to modify the morphology of this instability. In the time period preceding the breakup, the development of beads-on-a-string structures where drops are connected by thin threads is monitored. The drops dynamics involve drop formation, drop migration and drop coalescence. Experiments using a high-speed camera on stretched bridges of viscoelastic polymeric solutions were conducted for a range of viscosities and polymer concentrations. The rheological properties of the solutions are also quantified through conventional shear rheology and normal stress difference. The overall goal of this experimental investigation is to gain more insight into the formation and time evolution of the drops. The project BIOENGINE is co-financed by the European Union with the European regional development fund and by the Normandie Regional Council.

  3. Lambda-dropping

    Danvy, Olivier; Schultz, Ulrik Pagh


    ;rbæk's case study presented at PEPM '95, most polyvariant specializers for procedural programs operate on recursive equations. To this end, in a pre-processing phase, they lambda-lift source programs into recursive equations, As a result, residual programs are also expressed as recursive equations, often......Lambda-lifting a functional program transforms it into a set of recursive equations. We present the symmetric transformation: lambda-dropping. Lambda-dropping a set of recursive equations restores block structure and lexical scope.For lack of scope, recursive equations must carry around all...... with dozens of parameters, which most compilers do not handle efficiently. Lambda-dropping in a post-processing phase restores their block structure and lexical scope thereby significantly reducing both the compile time and the run time of residual programs....

  4. Impact of granular drops

    Marston, J. O.


    We investigate the spreading and splashing of granular drops during impact with a solid target. The granular drops are formed from roughly spherical balls of sand mixed with water, which is used as a binder to hold the ball together during free-fall. We measure the instantaneous spread diameter for different impact speeds and find that the normalized spread diameter d/D grows as (tV/D)1/2. The speeds of the grains ejected during the “splash” are measured and they rarely exceed twice that of the impact speed.

  5. Endoplasmic reticulum stress inhibits collagen synthesis independent of collagen-modifying enzymes in different chondrocyte populations and dermal fibroblasts

    Vonk, Lucienne A.; Doulabi, Behrouz Zandieh; Huang, Chun-Ling; Helder, Marco N.; Everts, Vincent; Bank, Ruud A.


    Chondrocytes respond to glucose deprivation with a decreased collagen synthesis due to disruption of a proper functioning of the endoplasmic reticulum (ER): ER stress. Since the mechanisms involved in the decreased synthesis are unknown, we have investigated whether chaperones and collagen-modifying

  6. ZmCPK1, a calcium-independent kinase member of the Zea mays CDPK gene family, functions as a negative regulator in cold stress signalling.

    Weckwerth, Philipp; Ehlert, Britta; Romeis, Tina


    Calcium-dependent protein kinases (CDPKs) have been shown to play important roles in plant environmental stress signal transduction. We report on the identification of ZmCPK1 as a member of the maize (Zea mays) CDPK gene family involved in the regulation of the maize cold stress response. Based upon in silico analysis of the Z. mays cv. B73 genome, we identified that the maize CDPK gene family consists of 39 members. Two CDPK members were selected whose gene expression was either increased (Zmcpk1) or decreased (Zmcpk25) in response to cold exposure. Biochemical analysis demonstrated that ZmCPK1 displays calcium-independent protein kinase activity. The C-terminal calcium-binding domain of ZmCPK1 was sufficient to mediate calcium independency of a previously calcium-dependent enzyme in chimeric ZmCPK25-CPK1 proteins. Furthermore, co-transfection of maize mesophyll protoplasts with active full-length ZmCPK1 suppressed the expression of a cold-induced marker gene, Zmerf3 (ZmCOI6.21). In accordance, heterologous overexpression of ZmCPK1 in Arabidopsis thaliana yielded plants with altered acclimation-induced frost tolerance. Our results identify ZmCPK1 as a negative regulator of cold stress signalling in maize.

  7. Stress analysis of mandibular implant-retained overdenture with independent attachment system: effect of restoration space and attachment height.

    Ebadian, Behnaz; Talebi, Saeid; Khodaeian, Niloufar; Farzin, Mahmoud


    In this in vitro study, 2 implants were embedded in the interforaminal region of an acrylic model. Two kinds of retention mechanisms were used to construct complete overdentures: ball type and direct abutment (Locator). The ball-type retention mechanism models included 3 different collar heights (1, 2, and 3 mm) with 15 mm occlusal plane height, and 3 different occlusal plane heights (9, 12, and 15 mm) with 1 mm collar height. The direct abutment models included 3 different occlusal plane heights (9, 12, and 15 mm) with 1 mm cuff height. Vertical unilateral and bilateral loads of 150 N were applied to the central fossa of the first molar. The stress of the bone around the implant was analyzed by finite element analysis. The results showed that by increasing vertical restorative space, the maximum stress values around implants were decreased in both unilateral and bilateral loading models. The results also showed that the increase in maximum stress values around implants correlated with the ball attachment collar height. The Locator attachment with a 1 mm cuff height and 9 mm occlusal plane height demonstrated 6.147 and 3.914 MPa in unilateral and bilateral loading conditions, respectively. While a reduction in the collar height of a ball-type retention mechanism and an increase in the vertical restorative space in direct abutment retention mechanisms are both biomechanically favorable, and may result in reduced stress in peri-implant bone, a ball attachment seems to be more favorable in the stress distribution around an implant than a Locator attachment.

  8. Symptoms of borderline personality disorder predict interpersonal (but not independent) stressful life events in a community sample of older adults.

    Powers, Abigail D; Gleason, Marci E J; Oltmanns, Thomas F


    Individuals with borderline personality disorder (BPD) often experience stressful life events at a higher frequency than those without BPD. It is less clear what specific types of events are involved in this effect, and it has not been determined whether some features of BPD are more important than others in accounting for this effect. The latter issue is important in light of the heterogeneous nature of this diagnostic construct. These issues were examined in a large, representative community sample of men and women, ages 55-64. Ten Diagnostic and Statistical Manual of Mental Disorders (4th ed., text rev., DSM-IV-TR, Washington, DC, American Psychiatric Association, 2000) personality disorders were assessed at baseline using the Structured Interview for DSM-IV Personality: SIDP-IV (B. Pfohl, N. Blum, & M. Zimmerman, 1997, Washington, DC, American Psychiatric Press). Life events were measured at three sequential assessments following baseline at 6-month (N = 1,294), 12-month (N = 1,070), and 18-month (N = 837) follow-ups. Stressful life events were identified using a self-report questionnaire (LTE-Q; List of Threatening Experiences Questionnaire: A subset of prescribed life events with considerable long-term contextual threat by T. Brugha, C. Bebbington, P. Tennant, and J. Hurry, 1985, Psychological Medicine, Vol. 15, pp. 189-194.) followed by a telephone interview. Only borderline personality pathology was related to an increase in the frequency of interpersonal stressful life events. Three specific symptoms of BPD were largely responsible for this connection: unstable interpersonal relationships, impulsivity, and chronic feelings of emptiness (negative association). Symptoms of avoidant and schizoid personality disorders were associated with a reduced number of stressful life events that are considered to be outside a person's control (e.g., serious illness, injury, or death of a loved one). None of the personality disorders predicted an increase in the number of

  9. Coalescence of sessile drops

    Nikolayev, Vadim; Pomeau, Yves; Andrieu, Claire


    We present an experimental and theoretical description of the kinetics of coalescence of two water drops on a plane solid surface. The case of partial wetting is considered. The drops are in an atmosphere of nitrogen saturated with water where they grow by condensation and eventually touch each other and coalesce. A new convex composite drop is rapidly formed that then exponentially and slowly relaxes to an equilibrium hemispherical cap. The characteristic relaxation time is proportional to the drop radius R * at final equilibrium. This relaxation time appears to be nearly 10 7 times larger than the bulk capillary relaxation time t b = R * $\\eta$/$\\sigma$, where $\\sigma$ is the gas--liquid surface tension and $\\eta$ is the liquid shear viscosity. In order to explain this extremely large relaxation time, we consider a model that involves an Arrhenius kinetic factor resulting from a liquid--vapour phase change in the vicinity of the contact line. The model results in a large relaxation time of order t b exp(L/R...

  10. Sessile drops in microgravity

    Sparavigna, Amelia Carolina


    Interfaces with a liquid are governing several phenomena. For instance, these interfaces are giving the shape of sessile droplets and rule the spread of liquids on surfaces. Here we analyze the shape of sessile axisymmetric drops and how it is depending on the gravity, obtaining results in agreement with experimental observations under conditions of microgravity.

  11. The Independence and Interdependence of Coacting Observers in Regard to Performance Efficiency, Workload, and Stress in a Vigilance Task


    surrendered their time pieces and cell phones and signed an informed consent form. They were unaware of the length of the vigil other than it would not... Academic Press. Waag, W. L., & Halcomb, C. G. (1972). Team size and decision rule in the performance of simulated monitoring teams. Human Factors, 14...interdependence of co-acting observers in regard to performance efficiency, workload, and stress in a vigilance task 5a. CONTRACT NUMBER FA8650-14-D-6501

  12. The 2 March 2016 Wharton Basin Mw 7.8 earthquake: High stress drop north-south strike-slip rupture in the diffuse oceanic deformation zone between the Indian and Australian Plates

    Lay, Thorne; Ye, Lingling; Ammon, Charles J.; Dunham, Audrey; Koper, Keith D.


    The diffuse deformation zone between the Indian and Australian plates has hosted numerous major and great earthquakes during the seismological record, including the 11 April 2012 Mw 8.6 event, the largest recorded intraplate earthquake. On 2 March 2016, an Mw 7.8 strike-slip faulting earthquake occurred in the northwestern Wharton Basin, in a region bracketed by north-south trending fracture zones with no previously recorded large event nearby. Despite the large magnitude, only minor source finiteness is evident in aftershock locations or resolvable from seismic wave processing including high-frequency P wave backprojections and Love wave directivity analysis. Our analyses indicate that the event ruptured bilaterally on a north-south trending fault over a length of up to 70 km, with rupture speed of ≤ 2 km/s, and a total duration of 35 s. The estimated stress drop, 20 MPa, is high, comparable to estimates for other large events in this broad intraplate oceanic deformation zone.

  13. Oxidative stress-induced cell cycle blockage and a protease-independent programmed cell death in  microaerophilic Giardia lamblia

    Esha Ghosh


    Full Text Available Esha Ghosh1, Arjun Ghosh1, Amar Nath Ghosh2, Tomoyoshi Nozaki3, Sandipan Ganguly11Division of Parasitology; 2Division of Electron Microscopy, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, West Bengal, India; 3Division of Parasitology, National Institute of Infectious Diseases, Tokyo, JapanAbstract: Giardia lamblia is a microaerophilic human gastrointestinal parasite and considered as an early-diverged eukaryote. In vitro oxidative stress generation plays a significant role in cell cycle progression and cell death of this parasite. In the present study hydrogen peroxide, metronidazole, and a modified growth medium without cysteine and ascorbic acid have been chosen as oxidative stress-inducing agents. Cell cycle progression has been found to be regulated by different types of oxidative stresses. Apoptosis is not an established pathway in Giardia, which is devoid of ideal mitochondria, but in the present investigation, apoptosis-like programmed cell death has been found by the experiments like AnnexinV-FITC assay, DNA fragmentation pattern, etc. On the contrary, Caspase-9 assay, which confirms the caspase-mediated apoptotic pathway, has been found to be negative in all the stress conditions. Protease inhibitor assay confirmed that, even in absence of any proteases, programmed cell death does occur in this primitive eukaryote. All these results signify a novel pathway of programmed suicidal death in Giardia lamblia under oxidative stress. This is the first demonstration of protease-independent programmed cell death regulation in Giardia exclusive for its own specialties.Keywords: Giardia lamblia, oxidative stress, reactive oxygen species, programmed cell death, apoptosis, early branching eukaryotes

  14. Cystine dimethylester loading promotes oxidative stress and a reduction in ATP independent of lysosomal cystine accumulation in a human proximal tubular epithelial cell line.

    Sumayao, Rodolfo; McEvoy, Bernadette; Martin-Martin, Natalia; McMorrow, Tara; Newsholme, Philip


    Using the cystine dimethylester (CDME) loading technique to achieve elevated lysosomal cystine levels, ATP depletion has previously been postulated to be responsible for the renal dysfunction in cystinosis, a genetic disorder characterized by an excessive accumulation of cystine in the lysosomes. However, this is unlikely to be the sole factor responsible for the complexity of cell stress associated with cystinosis. Moreover, CDME has been shown to induce a direct toxic effect on mitochondrial ATP generation. Using a human-derived proximal tubular epithelial cell line, we compared the effects of CDME loading with small interfering RNA-mediated cystinosin, lysosomal cystine transporter (CTNS) gene silencing on glutathione redox status, reactive oxygen species levels, oxidative stress index, antioxidant enzyme activities and ATP generating capacity. The CDME-loaded cells displayed increased total glutathione content, extensive superoxide depletion, augmented oxidative stress index, decreased catalase activity, normal superoxide dismutase activity and compromised ATP generation. In contrast, cells subjected to CTNS gene inhibition demonstrated decreased total glutathione content, increased superoxide levels, unaltered oxidative stress index, unaltered catalase activity, induction of superoxide dismutase activity and normal ATP generation. Our data indicate that many CDME-induced effects are independent of lysosomal cystine accumulation, which further underscores the limited value of CDME loading for studying the pathogenesis of cystinosis. CTNS gene inhibition, which results in intracellular cystine accumulation, is a more realistic approach for investigating biochemical alterations in cystinosis.

  15. Oxidative stress and DNA damage caused by the urban air pollutant 3-NBA and its isomer 2-NBA in human lung cells analyzed with three independent methods.

    Nagy, Eszter; Johansson, Clara; Zeisig, Magnus; Moller, Lennart


    The air pollutant 3-nitrobenzanthrone (3-NBA), emitted in diesel exhaust, is a potent mutagen and genotoxin. 3-NBA can isomerise to 2-nitrobenzanthrone (2-NBA), which can become more than 70-fold higher in concentration in ambient air. In this study, three independent methods have been employed to evaluate the oxidative stress and genotoxicity of 2-NBA compared to 3-NBA in the human A549 lung cell line. HPLC-EC/UV was applied for measurements of oxidative damage in the form of 8-oxo-2'-deoxyg...

  16. More than just scanning: the importance of cap-independent mRNA translation initiation for cellular stress response and cancer.

    Lacerda, Rafaela; Menezes, Juliane; Romão, Luísa


    The scanning model for eukaryotic mRNA translation initiation states that the small ribosomal subunit, along with initiation factors, binds at the cap structure at the 5' end of the mRNA and scans the 5' untranslated region (5'UTR) until an initiation codon is found. However, under conditions that impair canonical cap-dependent translation, the synthesis of some proteins is kept by alternative mechanisms that are required for cell survival and stress recovery. Alternative modes of translation initiation include cap- and/or scanning-independent mechanisms of ribosomal recruitment. In most cap-independent translation initiation events there is a direct recruitment of the 40S ribosome into a position upstream, or directly at, the initiation codon via a specific internal ribosome entry site (IRES) element in the 5'UTR. Yet, in some cellular mRNAs, a different translation initiation mechanism that is neither cap- nor IRES-dependent seems to occur through a special RNA structure called cap-independent translational enhancer (CITE). Recent evidence uncovered a distinct mechanism through which mRNAs containing N (6)-methyladenosine (m(6)A) residues in their 5'UTR directly bind eukaryotic initiation factor 3 (eIF3) and the 40S ribosomal subunit in order to initiate translation in the absence of the cap-binding proteins. This review focuses on the important role of cap-independent translation mechanisms in human cells and how these alternative mechanisms can either act individually or cooperate with other cis-acting RNA regulons to orchestrate specific translational responses triggered upon several cellular stress states, and diseases such as cancer. Elucidation of these non-canonical mechanisms reveals the complexity of translational control and points out their potential as prospective novel therapeutic targets.

  17. A STRESS-RESPONSIVE NAC1-regulated protein phosphatase gene rice protein phosphatase18 modulates drought and oxidative stress tolerance through abscisic acid-independent reactive oxygen species scavenging in rice.

    You, Jun; Zong, Wei; Hu, Honghong; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong


    Plants respond to abiotic stresses through a complexity of signaling pathways, and the dephosphorylation mediated by protein phosphatase (PP) is an important event in this process. We identified a rice (Oryza sativa) PP2C gene, OsPP18, as a STRESS-RESPONSIVE NAC1 (SNAC1)-regulated downstream gene. The ospp18 mutant was more sensitive than wild-type plants to drought stress at both the seedling and panicle development stages. Rice plants with OsPP18 suppressed through artificial microRNA were also hypersensitive to drought stress. Microarray analysis of the mutant revealed that genes encoding reactive oxygen species (ROS) scavenging enzymes were down-regulated in the ospp18 mutant, and the mutant exhibited reduced activities of ROS scavenging enzymes and increased sensitivity to oxidative stresses. Overexpression of OsPP18 in rice led to enhanced osmotic and oxidative stress tolerance. The expression of OsPP18 was induced by drought stress but not induced by abscisic acid (ABA). Although OsPP18 is a typical PP2C with enzymatic activity, it did not interact with SNF1-RELATED PROTEIN KINASE2 protein kinases, which function in ABA signaling. Meanwhile, the expression of ABA-responsive genes was not affected in the ospp18 mutant, and the ABA sensitivities of the ospp18 mutant and OsPP18-overexpressing plants were also not altered. Together, these findings suggest that OsPP18 is a unique PP2C gene that is regulated by SNAC1 and confers drought and oxidative stress tolerance by regulating ROS homeostasis through ABA-independent pathways.

  18. Spreading of liquid drops over porous substrates.

    Starov, V M; Zhdanov, S A; Kosvintsev, S R; Sobolev, V D; Velarde, M G


    the other is a combination of permeability and effective capillary pressure inside the porous layer. Two additional experiments were used for an independent determination of these two parameters. The system of differential equations does not include any fitting parameter after these two parameters were determined. Experiments were carried out on the spreading of silicone oil drops over various dry nitrocellulose microfiltration membranes (permeable in both normal and tangential directions). The time evolution of the radii of both the drop base and the wetted region inside the porous layer was monitored. In agreement with our theory all experimental data fell on two universal curves if appropriate scales were used with a plot of the dimensionless radii of the drop base and of the wetted region inside the porous layer using a dimensionless time scale. Theory predicts that (a). the dynamic contact angle dependence on the dimensionless time should be a universal function, (b). the dynamic contact angle should change rapidly over an initial short stage of spreading and should remain a constant value over the duration of the rest of the spreading process. The constancy of the contact angle on this stage has nothing to do with hysteresis of the contact angle: there is no hysteresis in our system. These predictions are in the good agreement with our experimental observations. In the case of spreading of liquid drops over thick porous substrates (complete wetting) the spreading process goes in two similar stages as in the case of thin porous substrates. In this case also both the drop base and the radii of the wetted area on the surface of the porous substrates were monitored. Spreading of oil drops (with a wide range of viscosities) on dry porous substrates having similar porosity and average pore size shows universal behavior as in the case of thin porous substrates. However, the spreading behavior on porous substrates having different average pore sizes deviates from the

  19. Symmetric and Asymmetric Coalescence of Drops on a Substrate

    Hernandez-Sanchez, J F; Eddi, A; Snoeijer, J H


    The coalescence of viscous drops on a substrate is studied experimentally and theoretically. We consider cases where the drops can have different contact angles, leading to a very asymmetric coalescence process. Side view experiments reveal that the "bridge" connecting the drops evolves with self-similar dynamics, providing a new perspective on the coalescence of sessile drops. We show that the universal shape of the bridge is accurately described by similarity solutions of the one-dimensional lubrication equation. Our theory predicts a bridge that grows linearly in time and stresses the strong dependence on the contact angles. Without any adjustable parameters, we find quantitative agreement with all experimental observations.

  20. Numerical investigation of phase relationships in an oscillating sessile drop

    Korenchenko, A. E.; Malkova, J. P.


    Forced linear oscillations of a viscous drop placed on a horizontal surface vibrating in perpendicular direction are investigated. The problem is solved for two cases: (1) constant contact angle, and (2) pinned contact line. Phase-frequency and amplitude-frequency characteristics of oscillations of the drop apex are found for the first axisymmetrical mode of oscillations. The independence of the difference of oscillation phases of the drop apex and the substrate on fluid density, viscosity, surface tension, and drop size as well as on presence or absence of the gravity force was demonstrated.

  1. Bacteriophytochrome controls carotenoid-independent response to photodynamic stress in a non-photosynthetic rhizobacterium, Azospirillum brasilense Sp7.

    Kumar, Santosh; Kateriya, Suneel; Singh, Vijay Shankar; Tanwar, Meenakshi; Agarwal, Shweta; Singh, Hina; Khurana, Jitendra Paul; Amla, Devinder Vijay; Tripathi, Anil Kumar


    Ever since the discovery of the role of bacteriophytochrome (BphP) in inducing carotenoid synthesis in Deinococcus radiodurans in response to light the role of BphPs in other non-photosynthetic bacteria is not clear yet. Azospirillum brasilense, a non-photosynthetic rhizobacterium, harbours a pair of BphPs out of which AbBphP1 is a homolog of AtBphP1 of Agrobacterium tumefaciens. By overexpression, purification, biochemical and spectral characterization we have shown that AbBphP1 is a photochromic bacteriophytochrome. Phenotypic study of the ΔAbBphP1 mutant showed that it is required for the survival of A. brasilense on minimal medium under red light. The mutant also showed reduced chemotaxis towards dicarboxylates and increased sensitivity to the photooxidative stress. Unlike D. radiodurans, AbBphP1 was not involved in controlling carotenoid synthesis. Proteome analysis of the ΔAbBphP1 indicated that AbBphP1 is involved in inducing a cellular response that enables A. brasilense in regenerating proteins that might be damaged due to photodynamic stress.

  2. Responses of African Grasses in the Genus Sporobolus to Defoliation and Sodium Stress: Tradeoffs, Cross-Tolerance, or Independent Responses?

    Griffith, Daniel M.; Anderson, T. Michael


    In the Serengeti ecosystem of East Africa, grazing ungulates prefer areas with elevated grass Na, suggesting that some grasses tolerate both high soil Na and defoliation. We performed a factorial Na-by-defoliation greenhouse study with five abundant Sporobolus congeners to explore whether Serengeti grasses possess traits which: (i) confer tolerance to both Na and defoliation (cross-tolerance); (ii) display a tradeoff; or (iii) act independently in their tolerances. Our expectation was that related grasses would exhibit cross-tolerance when simultaneously subjected to Na and defoliation. Instead, we found that physiological tolerances and growth responses to Na and defoliation did not correlate but instead acted independently: species characterized by intense grazing in the field showed no growth or photosynthetic compensation for combined Na and defoliation. Additionally, in all but the highest Na dosage, mortality was higher when species were exposed to both Na and defoliation together. Across species, mortality rates were greater in short-statured species which occur on sodic soils in heavily grazed areas. Mortality among species was positively correlated with specific leaf area, specific root length, and relative growth rate, suggesting that rapidly growing species which invest in low cost tissues have higher rates of mortality when exposed to multiple stressors. We speculate that the prevalence of these species in areas of high Na and disturbance is explained by alternative strategies, such as high fecundity, a wide range of germination conditions, or further dispersal, to compensate for the lack of additional tolerance mechanisms. PMID:27137400

  3. Responses of African Grasses in the Genus Sporobolus to Defoliation and Sodium Stress: Tradeoffs, Cross-Tolerance, or Independent Responses?

    T. Michael Anderson


    Full Text Available In the Serengeti ecosystem of East Africa, grazing ungulates prefer areas with elevated grass Na, suggesting that some grasses tolerate both high soil Na and defoliation. We performed a factorial Na-by-defoliation greenhouse study with five abundant Sporobolus congeners to explore whether Serengeti grasses possess traits which: (i confer tolerance to both Na and defoliation (cross-tolerance; (ii display a tradeoff; or (iii act independently in their tolerances. Our expectation was that related grasses would exhibit cross-tolerance when simultaneously subjected to Na and defoliation. Instead, we found that physiological tolerances and growth responses to Na and defoliation did not correlate but instead acted independently: species characterized by intense grazing in the field showed no growth or photosynthetic compensation for combined Na and defoliation. Additionally, in all but the highest Na dosage, mortality was higher when species were exposed to both Na and defoliation together. Across species, mortality rates were greater in short-statured species which occur on sodic soils in heavily grazed areas. Mortality among species was positively correlated with specific leaf area, specific root length, and relative growth rate, suggesting that rapidly growing species which invest in low cost tissues have higher rates of mortality when exposed to multiple stressors. We speculate that the prevalence of these species in areas of high Na and disturbance is explained by alternative strategies, such as high fecundity, a wide range of germination conditions, or further dispersal, to compensate for the lack of additional tolerance mechanisms.

  4. Aluminium induced endoplasmic reticulum stress mediated cell death in SH-SY5Y neuroblastoma cell line is independent of p53.

    Mustafa Rizvi, Syed Husain; Parveen, Arshiya; Verma, Anoop K; Ahmad, Iqbal; Arshad, Md; Mahdi, Abbas Ali


    Aluminium (Al) is the third most abundant element in the earth's crust and its compounds are used in the form of house hold utensils, medicines and in antiperspirant etc. Increasing number of evidences suggest the involvement of Al+3 ions in a variety of neurodegenerative disorders including Alzheimer's disease. Here, we have attempted to investigate the role of Al in endoplasmic reticulum stress and the regulation of p53 during neuronal apoptosis using neuroblastoma cell line. We observed that Al caused oxidative stress by increasing ROS production and intracellular calcium levels together with depletion of intracellular GSH levels. We also studied modulation of key pro- and anti-apoptotic proteins and found significant alterations in the levels of Nrf2, NQO1, pAKT, p21, Bax, Bcl2, Aβ1-40 and Cyt c together with increase in endoplasmic reticulum (ER) stress related proteins like CHOP and caspase 12. However, with respect to the role of p53, we observed downregulation of its transcript as well as protein levels while analysis of its ubiquitination status revealed no significant changes. Not only did Al increase the activities of caspase 9, caspase 12 and caspase 3, but, by the use of peptide inhibitors of specific and pan-caspases, we observed significant protection against neuronal cell death upon inhibition of caspase 12, demonstrating the prominent role of endoplasmic reticulum stress generated responses in Al toxicity. Overall our findings suggest that Al induces ER stress and ROS generation which compromises the antioxidant defenses of neuronal cells thereby promoting neuronal apoptosis in p53 independent pathway.

  5. Coalescence of Liquid Drops

    Eggers, J; Stone, H A; Eggers, Jens; Lister, John R.; Stone, Howard A.


    When two drops of radius $R$ touch, surface tension drives an initially singular motion which joins them into a bigger drop with smaller surface area. This motion is always viscously dominated at early times. We focus on the early-time behavior of the radius $\\rmn$ of the small bridge between the two drops. The flow is driven by a highly curved meniscus of length $2\\pi \\rmn$ and width $\\Delta\\ll\\rmn$ around the bridge, from which we conclude that the leading-order problem is asymptotically equivalent to its two-dimensional counterpart. An exact two-dimensional solution for the case of inviscid surroundings [Hopper, J. Fluid Mech. ${\\bf 213}$, 349 (1990)] shows that R)]$; and thus the same is true in three dimensions. The case of coalescence with an external viscous fluid is also studied in detail both analytically and numerically. A significantly different structure is found in which the outer fluid forms a toroidal bubble of radius $\\Delta \\propto \\rmn^{3/2}$ at the meniscus and $\\rmn \\sim (t\\gamma/4\\pi\\eta)...

  6. Coalescence of bubbles and drops in an outer fluid

    Paulsen, Joseph D; Kannan, Anerudh; Burton, Justin C; Nagel, Sidney R


    When two liquid drops touch, a microscopic connecting liquid bridge forms and rapidly grows as the two drops merge into one. Whereas coalescence has been thoroughly studied when drops coalesce in vacuum or air, many important situations involve coalescence in a dense surrounding fluid, such as oil coalescence in brine. Here we study the merging of gas bubbles and liquid drops in an external fluid. Our data indicate that the flows occur over much larger length scales in the outer fluid than inside the drops themselves. Thus we find that the asymptotic early regime is always dominated by the viscosity of the drops, independent of the external fluid. A phase diagram showing the crossovers into the different possible late-time dynamics identifies a dimensionless number that signifies when the external viscosity can be important.

  7. Drops on soft solids: Free energy and double transition of contact angles

    Lubbers, Luuk A; Botto, Lorenzo; Das, Siddhartha; Andreotti, Bruno; Snoeijer, Jacco H


    The equilibrium shape of liquid drops on elastic substrates is determined by minimising elastic and capillary free energies. The problem is governed by three length scales: the size of the drop $R$, the molecular size $a$, and the ratio of surface tension to elastic modulus $\\gamma/E$. We show that the contact angles undergo two transitions upon changing the substrates from rigid to soft. The microscopic wetting angles deviate from Young's law when $\\gamma/Ea \\gg 1$, while the apparent macroscopic angle only changes in the very soft limit $\\gamma/ER \\gg 1$. Details of the elastic deformations are worked out in the simplifying case where the surface energy of the solid is assumed independent of the elastic strain. The total free energy is found to be lowest on softer substrates, consistent with recent experiments. Finally, we discuss how the variational framework can be generalized to properly account for surface stress.

  8. Mechanical stress triggers cardiomyocyte autophagy through angiotensin II type 1 receptor-mediated p38MAP kinase independently of angiotensin II.

    Li Lin

    Full Text Available Angiotensin II (Ang II type 1 (AT1 receptor is known to mediate a variety of physiological actions of Ang II including autophagy. However, the role of AT1 receptor in cardiomyocyte autophagy triggered by mechanical stress still remains elusive. The aim of this study was therefore to examine whether and how AT1 receptor participates in cardiomyocyte autophagy induced by mechanical stresses. A 48-hour mechanical stretch and a 4-week transverse aorta constriction (TAC were imposed to cultured cardiomyocytes of neonatal rats and adult male C57B/L6 mice, respectively, to induce cardiomyocyte hypertrophy prior to the assessment of cardiomyocyte autophagy using LC3b-II. Losartan, an AT1 receptor blocker, but not PD123319, the AT2 inhibitor, was found to significantly reduce mechanical stretch-induced LC3b-II upregulation. Moreover, inhibition of p38MAP kinase attenuated not only mechanical stretch-induced cardiomyocyte hypertrophy but also autophagy. To the contrary, inhibition of ERK and JNK suppressed cardiac hypertrophy but not autophagy. Intriguingly, mechanical stretch-induced autophagy was significantly inhibited by Losartan in the absence of Ang II. Taken together, our results indicate that mechanical stress triggers cardiomyocyte autophagy through AT1 receptor-mediated activation of p38MAP kinase independently of Ang II.

  9. PRMT1 and PRMT4 Regulate Oxidative Stress-Induced Retinal Pigment Epithelial Cell Damage in SIRT1-Dependent and SIRT1-Independent Manners

    Dong-Il Kim


    Full Text Available Oxidative stress-induced retinal pigment epithelial (RPE cell damage is involved in the progression of diabetic retinopathy. Arginine methylation catalyzed by protein arginine methyltransferases (PRMTs has emerged as an important histone modification involved in diverse diseases. Sirtuin (SIRT1 is a protein deacetylase implicated in the onset of metabolic diseases. Therefore, we examined the roles of type I PRMTs and their relationship with SIRT1 in human RPE cells under H2O2-induced oxidative stress. H2O2 treatment increased PRMT1 and PRMT4 expression but decreased SIRT1 expression. Similar to H2O2 treatment, PRMT1 or PRMT4 overexpression increased RPE cell damage. Moreover, the H2O2-induced RPE cell damage was attenuated by PRMT1 or PRMT4 knockdown and SIRT1 overexpression. In this study, we revealed that SIRT1 expression was regulated by PRMT1 but not by PRMT4. Finally, we found that PRMT1 and PRMT4 expression is increased in the RPE layer of streptozotocin-treated rats. Taken together, we demonstrated that oxidative stress induces apoptosis both via PRMT1 in a SIRT1-dependent manner and via PRMT4 in a SIRT1-independent manner. The inhibition of the expression of type I PRMTs, especially PRMT1 and PRMT4, and increased SIRT1 could be therapeutic approaches for diabetic retinopathy.

  10. Cells as Drops and Drops as Cells

    Dufresne, Eric R.


    How do the mechanical properties of tissues emerge from the interactions of individual cells? To shed some light on this fundamental biological question, we consider a model system of clusters of cohesive cells adherent to soft substrates. We quantify traction forces over a wide range of cluster sizes. The scaling of traction stresses with cluster size suggests the emergence of an apparent surface tension for large colonies. To explore the possible impact of cellular surface tension on physiology, we consider the behavior of liquid droplets on soft substrates. In this case, we find that the competition of surface tension and substrate elasticity can lead to rich phenomenology, mimicking certain aspects of the physiology of cells and tissues.

  11. Hydrodynamics of evaporating sessile drops

    Barash, L Yu


    Several dynamical stages of the Marangoni convection of an evaporating sessile drop are obtained. We jointly take into account the hydrodynamics of an evaporating sessile drop, effects of the thermal conduction in the drop and the diffusion of vapor in air. The stages are characterized by different number of vortices in the drop and the spatial location of vortices. During the early stage the array of vortices arises near a surface of the drop and induces a non-monotonic spatial distribution of the temperature over the drop surface. The number of near-surface vortices in the drop is controlled by the Marangoni cell size, which is calculated similar to that given by Pearson for flat fluid layers. The number of vortices quickly decreases with time, resulting in three bulk vortices in the intermediate stage. The vortex structure finally evolves into the single convection vortex in the drop, existing during about 1/2 of the evaporation time.

  12. Leidenfrost Drop on a Step

    Lagubeau, Guillaume; Le Merrer, Marie; Clanet, Christophe; Quere, David


    When deposited on a hot plate, a water droplet evaporates quickly. However, a vapor film appears under the drop above a critical temperature, called Leidenfrost temperature, which insulates the drop from its substrate. Linke & al (2006) reported a spontaneous movement of such a drop, when deposited on a ratchet. We study here the case of a flat substrate decorated with a single micrometric step. The drop is deposited on the lower part of the plate and pushed towards the step at small constant velocity. If the kinetic energy of the drop is sufficient, it can climb up the step. In that case, depending on the substrate temperature, the drop can either be decelerated or accelerated by the step. We try to understand the dynamics of these drops, especially the regime where they accelerate. Taking advantage of this phenomenon, we could then build a multiple-step setup, making it possible for a Leidenfrost drop to climb stairs.

  13. In Healthy Young Men, a Short Exhaustive Exercise Alters the Oxidative Stress Only Slightly, Independent of the Actual Fitness.

    Finkler, Maya; Hochman, Ayala; Pinchuk, Ilya; Lichtenberg, Dov


    The aim of the present study was to evaluate the apparent disagreement regarding the effect of a typical cycling progressive exercise, commonly used to assess VO2max, on the kinetics of ex vivo copper induced peroxidation of serum lipids. Thirty-two (32) healthy young men, aged 24-30 years, who do not smoke and do not take any food supplements, participated in the study. Blood was withdrawn from each participant at three time points (before the exercise and 5 minutes and one hour after exercise). Copper induced peroxidation of sera made of the blood samples was monitored by spectrophotometry. For comparison, we also assayed TBARS concentration and the activity of oxidation-related enzymes. The physical exercise resulted in a slight and reversible increase of TBARS and slight changes in the activities of the studied antioxidant enzymes and the lag preceding peroxidation did not change substantially. Most altered parameters returned to baseline level one hour after exercise. Notably, the exercise-induced changes in OS did not correlate with the physical fitness of the subjects, as evaluated in this study (VO2max = 30-60 mL/min/kg). We conclude that in healthy young fit men a short exhaustive exercise alters only slightly the OS, independent of the actual physical fitness.

  14. Drop Pinch-Off for Discrete Flows from a Capillary

    Wilson M.C.T.


    Full Text Available The problem of drop formation and pinch-off from a capillary tube under the influence of gravity has been extensively studied when the internal capillary pressure gradient is constant. This ensures a continuous time independent flow field inside the capillary tube typically of the Poiseuille flow type. Characteristic drop ejection behaviour includes: periodic drop ejection, drop ejection with associated satellite production, complex dripping, chaotic behaviour and jetting. It is well known that this characteristic behaviour is governed by the Weber (We and Ohnesorge (Oh numbers (for a given Bond number and may be delineated in a We verses Oh operability diagram. An in-depth physical understanding of drop ejection is also of great importance to industry where the tight control of drop size and ejection velocity are of critical importance in industrial processes such as sealants used in electronics assembly and inkjet printing. However, the use of such a continuous flow approach for drop ejection in industry is often impractical since such flows cannot be operator controlled. For this reason it is important to investigate so-called discrete pipe flows where the flow can be turned on and off at will. This means the flow inside the pipe is now time-dependent being controlled in a step-wise fashion. As a first stage in the investigation of drop pinch-off behaviour in discrete pipe flows this paper will study the critical pinch-off time required for drop ejection starting from a pendant drop. This is the discrete amount of time the pipe flow is turned on for in order for a drop to be ejected from the capillary. A Newtonian incompressible free-surface CFD flow code developed at the University of Leeds is used to investigate the critical pinch-off time for a range of internal pipe velocities (the central flow maximum in Poiseuille flow. It is found that the time required for drop ejection to occur decreases exponentially with internal pipe velocity

  15. IFN-γ regulates xanthine oxidase-mediated iNOS-independent oxidative stress in maneb- and paraquat-treated rat polymorphonuclear leukocytes.

    Singh, Deepali; Kumar, Vinod; Singh, Chetna


    Maneb (MB) and paraquat (PQ) provoke oxidative stress-mediated cell damage. Role of xanthine oxidase (XO) in oxidative stress and its association with nitric oxide (NO)/NO synthase (NOS) have been widely reported. While inducible NOS (iNOS) is implicated in MB+PQ-induced toxicity in rat polymorphonuclear leukocytes (PMNs), role of XO and its alliance with iNOS have not yet been established. The study investigated the role of XO in MB+PQ-induced oxidative stress in rat PMNs and its regulation by iNOS and inflammatory cytokines. MB+PQ-augmented reactive oxygen species (ROS), superoxide, nitro-tyrosine, lipid peroxidation (LPO), and nitrite levels along with the catalytic activity of iNOS, superoxide dismutase (SOD), and XO. XO inhibitor, allopurinol (AP), alleviated MB+PQ-induced changes except nitrite content and iNOS activity. Conversely, an iNOS inhibitor, aminoguanidine, mitigated MB+PQ-induced LPO, nitrite, iNOS, and nitro-tyrosine levels; however, no change was observed in ROS, SOD, and XO. Nuclear factor-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), tumor necrosis factor-alpha (TNF-α) inhibitor, pentoxyfylline, and an anti-inflammatory agent, dexamethasone, attenuated MB+PQ-induced increase in XO, superoxide, and ROS with parallel reduction in the expression of interferon-gamma (IFN-γ), TNF-α, and interleukin-1β (IL-1β) in rat PMNs. Exogenous IFN-γ, TNF-α, and IL-1β enhanced superoxide, ROS, and XO in the PMNs of control and MB+PQ-treated rats; however, IFN- γ was found to be the most potent inducer. Moreover, AP ameliorated cytokine-induced free radical generation and restored XO activity towards normalcy. The results thus demonstrate that XO mediates oxidative stress in MB+PQ-treated rat PMNs via iNOS-independent but cytokine (predominantly IFN-γ)-dependent mechanism.

  16. Superheated drop neutron spectrometer

    Das, M; Roy, B; Roy, S C; Das, Mala


    Superheated drops are known to detect neutrons through the nucleation caused by the recoil nuclei produced by the interactions of neutrons with the atoms constituting the superheated liquid molecule. A novel method of finding the neutron energy from the temperature dependence response of SDD has been developed. From the equivalence between the dependence of threshold energy for nucleation on temperature of SDD and the dependence of dE/dx of the recoil ions with the energy of the neutron, a new method of finding the neutron energy spectrum of a polychromatic as well as monochromatic neutron source has been developed.

  17. Mechanistic Target of Rapamycin-Independent Antidepressant Effects of (R)-Ketamine in a Social Defeat Stress Model.

    Yang, Chun; Ren, Qian; Qu, Youge; Zhang, Ji-Chun; Ma, Min; Dong, Chao; Hashimoto, Kenji


    The role of the mechanistic target of rapamycin (mTOR) signaling in the antidepressant effects of ketamine is controversial. In addition to mTOR, extracellular signal-regulated kinase (ERK) is a key signaling molecule in prominent pathways that regulate protein synthesis. (R)-Ketamine has a greater potency and longer-lasting antidepressant effects than (S)-ketamine. Here we investigated whether mTOR signaling and ERK signaling play a role in the antidepressant effects of two enantiomers. The effects of mTOR inhibitors (rapamycin and AZD8055) and an ERK inhibitor (SL327) on the antidepressant effects of ketamine enantiomers in the chronic social defeat stress (CSDS) model (n = 7 or 8) and on those of ketamine enantiomers in these signaling pathways in mouse brain regions were examined. The intracerebroventricular infusion of rapamycin or AZD8055 blocked the antidepressant effects of (S)-ketamine, but not (R)-ketamine, in the CSDS model. Furthermore, (S)-ketamine, but not (R)-ketamine, significantly attenuated the decreased phosphorylation of mTOR and its downstream effector, ribosomal protein S6 kinase, in the prefrontal cortex of susceptible mice after CSDS. Pretreatment with SL327 blocked the antidepressant effects of (R)-ketamine but not (S)-ketamine. Moreover, (R)-ketamine, but not (S)-ketamine, significantly attenuated the decreased phosphorylation of ERK and its upstream effector, mitogen-activated protein kinase/ERK kinase, in the prefrontal cortex and hippocampal dentate gyrus of susceptible mice after CSDS. This study suggests that mTOR plays a role in the antidepressant effects of (S)-ketamine, but not (R)-ketamine, and that ERK plays a role in (R)-ketamine's antidepressant effects. Thus, it is unlikely that the activation of mTOR signaling is necessary for antidepressant actions of (R)-ketamine. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Angiotensin-converting enzyme inhibitors reduce oxidative stress intensity in hyperglicemic conditions in rats independently from bradykinin receptor inhibitors

    Mikrut, Kinga; Kupsz, Justyna; Koźlik, Jacek; Krauss, Hanna; Pruszyńska-Oszmałek, Ewa; Gibas-Dorna, Magdalena


    Aim To investigate whether bradykinin-independent antioxidative effects of angiotensin-converting enzyme inhibitors (ACEIs) exist in acute hyperglycemia. Methods Male Wistar rats were divided into the normoglycemic group (n = 40) and the hyperglycemic group (n = 40). Hyperglycemia was induced by a single intraperitoneal injection of streptozotocin (STZ, 65 mg/kg body weight) dissolved in 0.1 mol/L citrate buffer (pH 4.5) 72 hours before sacrifice. The normoglycemic group received the same volume of citrate buffer. Each group was divided into five subgroups (n = 8): control group, captopril group, captopril + bradykinin B1 and B2 receptor antagonists group, enalapril group, and enalapril + bradykinin B1 and B2 receptor antagonists group. Captopril, enalapril, B1 and B2 receptor antagonists, or 0.15 mol/L NaCl were given at 2 and 1 hour before sacrifice. Oxidative status was determined by measuring the concentration of malondialdehyde and H2O2, and the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Results In STZ-induced hyperglycemic rats ACEIs significantly reduced H2O2 and MDA concentration, while they significantly enhanced SOD and GPx activity. The hyperglycemic group treated simultaneously with ACEIs and bradykinin B1 and B2 receptor antagonists showed a significant decrease in H2O2 concentration compared to the control hyperglycemic group. Conclusion These results suggest the existence of additional antioxidative effect of ACEIs in hyperglycemic conditions, which is not related to the bradykinin mediation and the structure of the drug molecule. PMID:27586552

  19. Stress

    ... diabetes. Your Stress-Free System for Family Dinners! - 2017-03-book-oclock-scramble.html Your Stress-Free System for Family Dinners! A year of delicious meals to help prevent ...

  20. Stress

    ... sudden negative change, such as losing a job, divorce, or illness Traumatic stress, which happens when you ... stress, so you can avoid more serious health effects. NIH: National Institute of Mental Health

  1. Simulation of the Relation between Magnitude and Stress Drop Using Heterogeneous Cellular Automata Model%利用非均匀细胞自动机模拟震级与应力降关系

    李锰; 杨峰; 胡伟华


    为解释实际观测资料震源破裂过程与自相似(分形)模型的不一致性,本文基于观测结果,构建了由81×81个细胞单元组成二维非均匀断层模型,并通过设计的细胞自动机模拟程序进行了模拟试验.研究结果表明:断层结构非均匀性是影响孕震过程特征的重要因素,而且地震强度分布并非简单的自相似.随着断层非匀质性增加,破裂过程出现由相对的脆性破坏向塑性破坏特征变化的趋势.利用细胞自动机不仅能较好地解释震级-频度关系中的大、小震级段低头现象,而且也可解释大震级事件具有相对恒定的应力降,得到了与实际观测研究相一致的结果.%In the paper, three kinds of heterogeneous faults with 81 ×81 cells are set up using celluar automata models and simulated for explaining the inconsistency between the observations and fractal-based model. The results show that the G-R relations behave not in simple self-similarity but multi-fractal, and with the increasing of heterogeneity the fracture process tends to turn from brittle to plastic behaviors. At the same time, using the models can explain not only the curvature at smaller and larger magnitudes in G-R relation but also the relatively constant stress drop for larger magnitude earthquake events.Fault structural heterogeneity plays a important role in earthquake preparation process.The results from computer simulation are consistent with observations from detailed seismicity studies.

  2. Investigations of levitated helium drops

    Whitaker, Dwight Lawrence


    We report on the development of two systems capable of levitating drops of liquid helium. Helium drops of ˜20 mum have been levitated with the radiation pressure from two counter-propagating Nd:YAG laser beams. Drops are produced with a submerged piezoelectric transducer, and could be held for up to three minutes in our optical trap. Calculations show that Brillouin and Raman scattering of the laser light in the liquid helium produces a negligible rate of evaporation of the drop. Evaporation caused by the enhanced vapor pressure of the curved drop surfaces appears to be a significant effect limiting the drop lifetimes. Helium drops as large as 2 cm in diameter have been suspended in the earth's gravitational field with a magnetic field. A commercial superconducting solenoid provides the necessary field, field-gradient product required to levitate the drops. Drops are cooled to 0.5 K with a helium-3 refrigerator, and can be held in the trap indefinitely. We have found that when two or more drops are levitated in the same magnetic trap, the drops often remain in a state of apparent contact without coalescing. This effect is a result of the evaporation of liquid from between the two drops, and is found to occur only for normal fluid drops. We can induce shape oscillations in charged, levitated drops with an applied ac electric field. We have measured the resonance frequencies and damping rates for the l = 2 mode of oscillation as function of temperature. We have also developed a theory to describe the small amplitude shape oscillations of a He II drop surrounded by its saturated vapor. In our theory, we have considered two sets of boundary conditions---one where the drop does not evaporate and another in which the liquid and vapor are in thermodynamic equilibrium. We have found that both solutions give a frequency that agrees well with experiment, but that the data for the damping rate agree better with the solution without evaporation.

  3. Morphology of viscoplastic drop impact on viscoplastic surfaces.

    Chen, Simeng; Bertola, Volfango


    The impact of viscoplastic drops onto viscoplastic substrates characterized by different magnitudes of the yield stress is investigated experimentally. The interaction between viscoplastic drops and surfaces has an important application in additive manufacturing, where a fresh layer of material is deposited on a partially cured or dried layer of the same material. So far, no systematic studies on this subject have been reported in literature. The impact morphology of different drop/substrate combinations, with yield stresses ranging from 1.13 Pa to 11.7 Pa, was studied by high speed imaging for impact Weber numbers between 15 and 85. Experimental data were compared with one of the existing models for Newtonian drop impact onto liquid surfaces. Results show the magnitude of the yield stress of drop/substrate strongly affects the final shape of the impacting drop, permanently deformed at the end of impact. The comparison between experimental data and model predictions suggests the crater evolution model is only valid when predicting the evolution of the crater at sufficiently high Weber numbers.

  4. Oxidative stress and DNA damage caused by the urban air pollutant 3-NBA and its isomer 2-NBA in human lung cells analyzed with three independent methods.

    Nagy, Eszter; Johansson, Clara; Zeisig, Magnus; Möller, Lennart


    The air pollutant 3-nitrobenzanthrone (3-NBA), emitted in diesel exhaust, is a potent mutagen and genotoxin. 3-NBA can isomerise to 2-nitrobenzanthrone (2-NBA), which can become more than 70-fold higher in concentration in ambient air. In this study, three independent methods have been employed to evaluate the oxidative stress and genotoxicity of 2-NBA compared to 3-NBA in the human A549 lung cell line. HPLC-EC/UV was applied for measurements of oxidative damage in the form of 8-oxo-2'-deoxyguanosine (8-oxodG), (32)P-HPLC for measurements of lipophilic DNA-adducts, and the Comet assay to measure a variety of DNA lesions, including oxidative stress. No significant oxidative damage from either isomer was found regarding formation of 8-oxodG analysed using HPLC-EC/UV. However, the Comet assay (with FPG-treatment), which is more sensitive and detects more types of damages compared to HPLC-EC/UV, showed a significant effect from both 3-NBA and 2-NBA. (32)P-HPLC revealed a strong DNA-adduct formation from both 3-NBA and 2-NBA, and also a significant difference between both isomers compared to negative control. These results clearly show that 2-NBA has a genotoxic potential. Even if the DNA-adduct forming capacity and the amount of DNA lesions measured with the (32)P-HPLC and Comet assay is about one third of 3-NBA, the high abundance of 2-NBA in ambient air calls for further investigation and evaluation of its health hazard.

  5. Axisymmetric model of drop spreading on a horizontal surface

    Mistry, Aashutosh; Muralidhar, K.


    Spreading of an initially spherical liquid drop over a textured surface is analyzed by solving an integral form of the governing equations. The mathematical model extends Navier-Stokes equations by including surface tension at the gas-liquid boundary and a force distribution at the three phase contact line. While interfacial tension scales with drop curvature, the motion of the contact line depends on the departure of instantaneous contact angle from its equilibrium value. The numerical solution is obtained by discretizing the spreading drop into disk elements. The Bond number range considered is 0.01-1. Results obtained for sessile drops are in conformity with limiting cases reported in the literature [J. C. Bird et al., "Short-time dynamics of partial wetting," Phys. Rev. Lett. 100, 234501 (2008)]. They further reveal multiple time scales that are reported in experiments [K. G. Winkels et al., "Initial spreading of low-viscosity drops on partially wetting surfaces," Phys. Rev. E 85, 055301 (2012) and A. Eddi et al., "Short time dynamics of viscous drop spreading," Phys. Fluids 25, 013102 (2013)]. Spreading of water and glycerin drops over fully and partially wetting surfaces is studied in terms of excess pressure, wall shear stress, and the dimensions of the footprint. Contact line motion is seen to be correctly captured in the simulations. Water drops show oscillations during spreading while glycerin spreads uniformly over the surface.

  6. Gas Pressure-Drop Experiment

    Luyben, William L.; Tuzla, Kemal


    Most chemical engineering undergraduate laboratories have fluid mechanics experiments in which pressure drops through pipes are measured over a range of Reynolds numbers. The standard fluid is liquid water, which is essentially incompressible. Since density is constant, pressure drop does not depend on the pressure in the pipe. In addition, flow…

  7. Pressure drop in contraction flow

    Rasmussen, Henrik Koblitz

    This note is a supplement to Dynamic of Polymeric Liquids (DPL) page 178. DPL gives an equation for the pressure drop in a tapered (and circular) contraction, valid only at low angles. Here the general definition of contraction flow (the Bagley correction) and a more general method to find...... the pressure drop in a contraction are given....

  8. Stress

    Keller, Hanne Dauer


    Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....

  9. Stress

    Keller, Hanne Dauer


    Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....

  10. Low-dose gold nanoparticles exert subtle endocrine-modulating effects on the ovarian steroidogenic pathway ex vivo independent of oxidative stress

    Larson, Jeremy K.; Carvan, Michael J.; Teeguarden, Justin G.; Watanabe, Gen; Taya, Kazuyoshi; Krystofiak, Evan; Hutz, Reinhold J.


    Gold nanoparticles (GNPs) have gained considerable attention for application in science and industry. However, the untoward effects of such particles on female fertility remain unclear. The objectives of this study were to (1) examine the effects of 10-nm GNPs on progesterone and estradiol-17b accumulation by rat ovaries ex vivo and (2) to identify the locus/loci whereby GNPs modulate steroidogenesis via multiple-reference gene quantitative real-time RT-PCR. Regression analyses indicated a positive relationship between both Star (p < 0.05, r2 = 0.278) and Cyp11a1 (p < 0.001, r2 = 0.366) expression and P4 accumulation. upon exposure to 1.43 * 106 GNPs/mL. Additional analyses showed that E2 accumulation was positively associated with Hsd3b1 (p < 0.05, r2 = 0.181) and Cyp17a1 (p < 0.01, r2 = 0.301) expression upon exposure to 1.43 * 13 and 1.43 * 109 GNPs/mL, respectively. These results suggest a subtle treatmentdependent impact of low-dose GNPs on the relationship between progesterone or estradiol-17b and specific steroidogenic target genes, independent of oxidative stress or inhibin.

  11. Rolling, sliding, and sticking of viscoplastic xanthan gum solution drops on a superhydrophobic surface

    Kim, Minyoung; Lee, Eungjun; Kim, Do Hyun; Kwak, Rhokyun


    Dynamics of Newtonian fluid on a non-wettable substrate have been reported, but those of non-Newtonian fluid, especially of viscoplastic fluid showing a yield stress, are not fully characterized yet. Here, we investigate three distinct behaviors of a viscoplastic drop (xanthan gum solution) -rolling, sliding, and sticking- on an inclined superhydrophobic surface with various inclined angles (1-24 degree) and xanthan gum concentrations (0.25-1.5%). At a low concentration of xanthan gum (low yield stress) and/or a high inclined angle (high gravitational stress), the drop rolls down the surface as the gravitational stress exceeds the yield stress. As the concentration increases, and thus the yield stress exceeds the gravitational stress, the drop stays on the surface like a solid (sticking). However, if we adjust the gravitational stress to induce an adhesive failure between the xanthan gum drop and the surface (but still lower than the yield stress), the drop slides down the surface without rolling. To the best of our knowledge, this is the first direct characterization of the behavior of the viscoplastic drops on an inclined surface considering gravitational stress, yield stress, and adhesive failure.

  12. Liquid drops on soft solids

    Lubbers, Luuk A.; Weijs, Joost H.; Das, Siddhartha; Botto, Lorenzo; Andreotti, Bruno; Snoeijer, Jacco H.


    A sessile drop can elastically deform a substrate by the action of capillary forces. The typical size of the deformation is given by the ratio of surface tension and the elastic modulus, γ / E , which can reach up to 10-100 microns for soft elastomers. In this talk we theoretically show that the contact angles of drops on such a surface exhibit two transitions when increasing γ / E : (i) the microsocopic geometry of the contact line first develops a Neumann-like cusp when γ / E is of the order of few nanometers, (ii) the macroscopic angle of the drop is altered only when γ / E reaches the size of the drop. Using the same framework we then show that two neighboring drops exhibit an effective interaction, mediated by the deformation of the elastic medium. This is in analogy to the well-known Cheerios effect, where small particles at a liquid interface attract each other due to the meniscus deformations. Here we reveal the nature of drop-drop interactions on a soft substrate by combining numerical and analytical calculations.

  13. Drop floating on a granular raft

    Jambon-Puillet, Etienne; Josserand, Christophe; Protiere, Suzie


    When a droplet comes in contact with a bath of the same liquid, it coalesces to minimize the surface energy. This phenomenon reduces emulsion stability and is usually fought with surfactant molecules. Another way to slow down coalescence is to use colloidal solid particles. In this case the particles spontaneously migrate to the interface to form ``Pickering'' emulsions and act as a barrier between droplets. Here we use dense, large particles (~ 500 μm) which form a monolayer at an oil/water interface that we call a granular raft. When a droplet is placed on top of such a raft, for a given set of particle properties (contact angle/size), the raft prevents coalescence indefinitely. However, in contrast to what happens when a droplet is placed on a hydrophobic surface and never wets the surface, here the droplet is strongly anchored to the raft and deforms it. We will use this specific configuration to probe the mechanical response of the granular raft: by controlling the droplet volume we can impose tensile or compressive stresses. Finally we will show that the drop, spherical at first, slowly takes a more complex shape as it's volume increases. This shape is not reversible as the drop volume is decreased. The drop can become oblate or prolate with wrinkling of the raft.

  14. Cusp formation in drops inside Taylor cones

    Marin, Alvaro G.; Loscertales, Ignacio G.; Barrero, Antonio


    Here, we report the formation of cusp in insulating drops inside compound Taylor cones. The action of the electrical shear stress acting on the outer interface, which is transmitted by viscous forces inside the Taylor cone, tends to deform the drop of insulating liquid placed inside. For appropriate values of the capillary number, the insulating drop develops a steady cusp angle which depends on both the capillary number and the conducting to insulating viscosity ratio. A self-similar analysis has been developed to qualitatively describe the flow inside these compounds Taylor cones. Any perturbation of the cusp gives rise to an intermittent emission of tiny droplets; this effect may recall the tip-streaming observed by G.I. Taylor in his four-roll mill device. This emission can be stabilized by an appropriate control of the injected flow rate of the insulating liquid. When the capillary number increases, the cusped interface turns into a spout which flows coated by the conducting liquid forming the electrified coaxial jet which has been successfully employed for the production of nanocapsules, coaxial nanofibers and nanotubes (Science 295, n. 5560, 1695, 2002; JACS 126, 5376, 2004).


    LU Hua-jian; ZHANG Hui-sheng


    A boundary integral method was developed for simulating the motion and deformation of a viscous drop in an axisymmetric ambient Stokes flow near a rigid wall and for direct calculating the stress on the wall. Numerical experiments by the method were performed for different initial stand-off distances of the drop to the wall, viscosity ratios, combined surface tension and buoyancy parameters and ambient flow parameters. Numerical results show that due to the action of ambient flow and buoyancy the drop is compressed and stretched respectively in axial and radial directions when time goes. When the ambient flow action is weaker than that of the buoyancy the drop raises and bends upward and the stress on the wall induced by drop motion decreases when time advances. When the ambient flow action is stronger than that of the buoyancy the drop descends and becomes flatter and flatter as time goes. In this case when the initial stand-off distance is large the stress on the wall increases as the drop evolutes but when the stand-off distance is small the stress on the wall decreases as a result of combined effects of ambient flow, buoyancy and the stronger wall action to the flow. The action of the stress on the wall induced by drop motion is restricted in an area near the symmetric axis, which increases when the initial stand-off distance increases.When the initial stand-off distance increases the stress induced by drop motion decreases substantially. The surface tension effects resist the deformation and smooth the profile of the drop surfaces. The drop viscosity will reduce the deformation and migration of the drop.

  16. Excited Sessile Drops Perform Harmonically

    Chang, Chun-Ti; Steen, Paul H


    In our fluid dynamics video, we demonstrate our method of visualizing and identifying various mode shapes of mechanically oscillated sessile drops. By placing metal mesh under an oscillating drop and projecting light from below, the drop's shape is visualized by the visually deformed mesh pattern seen in the top view. The observed modes are subsequently identified by their number of layers and sectors. An alternative identification associates them with spherical harmonics, as demonstrated in the tutorial. Clips of various observed modes are presented, followed by a 10-second quiz of mode identification.

  17. Stress

    Jensen, Line Skov; Lova, Lotte; Hansen, Zandra Kulikovsky; Schønemann, Emilie; Larsen, Line Lyngby; Colberg Olsen, Maria Sophia; Juhl, Nadja; Magnussen, Bogi Roin


    Stress er en tilstand som er meget omdiskuteret i samfundet, og dette besværliggør i en vis grad konkretiseringen af mulige løsningsforslag i bestræbelsen på at forebygge den såkaldte folkesygdom. Hovedkonklusionen er, at selv om der bliver gjort meget for at forebygge, er der ikke meget der aktivt kan sættes i værk for at reducere antallet af stressramte, før en fælles forståelse af stressårsager og effektiv stresshåndtering er fremlagt. Problemformuleringen er besvaret gennem en undersø...

  18. Relaxation or breakup of a low-conductivity drop upon removal of a uniform dc electric field

    Lanauze, Javier A.; Walker, Lynn M.; Khair, Aditya S.


    We quantify the dynamics of a prolate leaky dielectric drop upon removal of a uniform dc electric field. Experiments consisting of a castor oil drop suspended in silicone oil are compared against axisymmetric boundary integral computations that account for transient charging, or charge relaxation, of the interface. A temporal asymmetry between the drop deformation and relaxation processes is observed in the experiments and computations: The drop relaxes back to its spherical equilibrium shape faster than the time taken to achieve its steady-state deformation. During the deformation process, the electrical (Maxwell) stress deforms the drop along the direction of the applied field; it is counteracted by the capillary stress. During the relaxation process, i.e., after the field is removed, the electrical stress acts together with the capillary stress to quickly restore the drop back to equilibrium. This change in action of the electrical stress is responsible for the asymmetry between the drop deformation and relaxation. Notably, the electrical stress acts over the charge relaxation time scales of the fluids: Thus, counterintuitively, longer charging time scales yield faster drop relaxation. That is, the longer it takes for the interface to discharge, the faster the drop shape relaxes. We also present computational results for a drop that does not relax back to its initial spherical shape upon removal of the electric field; rather, the drop breaks up via an end-pinching mechanism.

  19. Drop spreading with random viscosity

    Xu, Feng


    We examine theoretically the spreading of a viscous liquid drop over a thin film of uniform thickness, assuming the liquid's viscosity is regulated by the concentration of a solute that is carried passively by the spreading flow. The solute is assumed to be initially heterogeneous, having a spatial distribution with prescribed statistical features. To examine how this variability influences the drop's motion, we investigate spreading in a planar geometry using lubrication theory, combining numerical simulations with asymptotic analysis. We assume diffusion is sufficient to suppress solute concentration gradients across but not along the film. The solute field beneath the bulk of the drop is stretched by the spreading flow, such that the initial solute concentration immediately behind the drop's effective contact lines has a long-lived influence on the spreading rate. Over long periods, solute swept up from the precursor film accumulates in a short region behind the contact line, allowing patches of elevated v...


    Federal Laboratory Consortium — The Drop Tower is used to simulate and measure the impact shocks that are exerted on parachute loads when they hit the ground. It is also used for HSL static lift to...

  1. The Contribution of Candida albicans Vacuolar ATPase Subunit V1B, Encoded by VMA2, to Stress Response, Autophagy, and Virulence Is Independent of Environmental pH

    Rane, Hallie S.; Bernardo, Stella M.; Hayek, Summer R.; Binder, Jessica L.; Parra, Karlett J.


    Candida albicans vacuoles are central to many critical biological processes, including filamentation and in vivo virulence. The V-ATPase proton pump is a multisubunit complex responsible for organellar acidification and is essential for vacuolar biogenesis and function. To study the function of the V1B subunit of C. albicans V-ATPase, we constructed a tetracycline-regulatable VMA2 mutant, tetR-VMA2. Inhibition of VMA2 expression resulted in the inability to grow at alkaline pH and altered resistance to calcium, cold temperature, antifungal drugs, and growth on nonfermentable carbon sources. Furthermore, V-ATPase was unable to fully assemble at the vacuolar membrane and was impaired in proton transport and ATPase-specific activity. VMA2 repression led to vacuolar alkalinization in addition to abnormal vacuolar morphology and biogenesis. Key virulence-related traits, including filamentation and secretion of degradative enzymes, were markedly inhibited. These results are consistent with previous studies of C. albicans V-ATPase; however, differential contributions of the V-ATPase Vo and V1 subunits to filamentation and secretion are observed. We also make the novel observation that inhibition of C. albicans V-ATPase results in increased susceptibility to osmotic stress. Notably, V-ATPase inhibition under conditions of nitrogen starvation results in defects in autophagy. Lastly, we show the first evidence that V-ATPase contributes to virulence in an acidic in vivo system by demonstrating that the tetR-VMA2 mutant is avirulent in a Caenorhabditis elegans infection model. This study illustrates the fundamental requirement of V-ATPase for numerous key virulence-related traits in C. albicans and demonstrates that the contribution of V-ATPase to virulence is independent of host pH. PMID:25038082

  2. Spontaneous Jumping of Coalescing Drops on a Superhydrophobic Surface

    Boreyko, Jonathan; Chen, Chuan-Hua


    When micrometric drops coalesce in-plane on a superhydrophobic surface, a surprising out-of-plane jumping motion was observed. Such jumping motion triggered by drop coalescence was reproduced on a Leidenfrost surface. High-speed imaging revealed that this jumping motion results from the elastic interaction of the bridged drops with the superhydrophobic/Leidenfrost surface. Experiments on both the superhydrophobic and Leidenfrost surfaces compare favorably to a simple scaling model relating the kinetic energy of the merged drop to the surface energy released upon coalescence. The spontaneous jumping motion on water repellent surfaces enables the autonomous removal of water condensate independently of gravity; this process is highly desirable for sustained dropwise condensation.

  3. Spontaneous Jumping of Coalescing Drops on a Superhydrophobic Surface

    Boreyko, Jonathan


    When micrometric drops coalesce in-plane on a superhydrophobic surface, a surprising out-of-plane jumping motion was observed. Such jumping motion triggered by drop coalescence was reproduced on a Leidenfrost surface. High-speed imaging revealed that this jumping motion results from the elastic interaction of the bridged drops with the superhydrophobic/Leidenfrost surface. Experiments on both the superhydrophobic and Leidenfrost surfaces compare favorably to a simple scaling model relating the kinetic energy of the merged drop to the surface energy released upon coalescence. The spontaneous jumping motion on water repellent surfaces enables the autonomous removal of water condensate independently of gravity; this process is highly desirable for sustained dropwise condensation.

  4. Oblique drop impact onto a deep liquid pool

    Gielen, Marise V; Benschop, Jos; Riepen, Michel; Voronina, Victoria; Lohse, Detlef; Snoeijer, Jacco H; Versluis, Michel; Gelderblom, Hanneke


    Oblique impact of drops on a solid or liquid surface is frequently observed in nature. Most studies on drop impact and splashing, however, focus on perpendicular impact. Here, we study oblique impact onto a deep liquid pool, where we quantify the splashing threshold, maximal cavity dimensions and cavity collapse by high-speed imaging above and below the water surface. Three different impact regimes are identified: smooth deposition onto the pool, splashing in the direction of impact only, and splashing in all directions. We provide scaling arguments that delineate these regimes by accounting for drop impact angle and Weber number. The angle of the axis of the cavity created below the water surface follows the impact angle of the drop independent of the Weber number, while cavity depth and its displacement with respect to the impact position depend on the Weber number. Weber number dependency of both the cavity depth and displacement is modeled using an energy argument.

  5. Impact dynamics of oxidized liquid metal drops

    Xu, Qin; Brown, Eric; Jaeger, Heinrich M.


    With exposure to air, many liquid metals spontaneously generate an oxide layer on their surface. In oscillatory rheological tests, this skin is found to introduce a yield stress that typically dominates the elastic response but can be tuned by exposing the metal to hydrochloric acid solutions of different concentration. We systematically studied the normal impact of eutectic gallium-indium (eGaIn) drops under different oxidation conditions and show how this leads to two different dynamical regimes. At low impact velocity (or low Weber number), eGaIn droplets display strong recoil and rebound from the impacted surface when the oxide layer is removed. In addition, the degree of drop deformation or spreading during impact is controlled by the oxide skin. We show that the scaling law known from ordinary liquids for the maximum spreading radius as a function of impact velocity can still be applied to the case of oxidized eGaIn if an effective Weber number We is employed that uses an effective surface tension factoring in the yield stress. In contrast, no influence on spreading from different oxidations conditions is observed for high impact velocity. This suggests that the initial kinetic energy is mostly damped by bulk viscous dissipation. Results from both regimes can be collapsed in an impact phase diagram controlled by two variables, the maximum spreading factor Pm=R0/Rm, given by the ratio of initial to maximum drop radius, and the impact number K=We/Re4/5, which scales with the effective Weber number We as well as the Reynolds number Re. The data exhibit a transition from capillary to viscous behavior at a critical impact number Kc≈0.1.

  6. La Gotita de Agua (The Little Drop of Water).

    Palandra, Maria; Puigdollers, Carmen

    This Spanish reader for children in kindergarten and first grade is about a drop of water that comes to life in a trip through the water cycle of evaporation, condensation, and subsequent return to a drier part of the earth's surface environment. The story is suitable for reading aloud or independent reading. The text is entirely in Spanish.…

  7. La Gotita de Agua (The Little Drop of Water).

    Palandra, Maria; Puigdollers, Carmen

    This Spanish reader for children in kindergarten and first grade is about a drop of water that comes to life in a trip through the water cycle of evaporation, condensation, and subsequent return to a drier part of the earth's surface environment. The story is suitable for reading aloud or independent reading. The text is entirely in Spanish.…

  8. Drop Spreading with Random Viscosity

    Xu, Feng; Jensen, Oliver


    Airway mucus acts as a barrier to protect the lung. However as a biological material, its physical properties are known imperfectly and can be spatially heterogeneous. In this study we assess the impact of these uncertainties on the rate of spreading of a drop (representing an inhaled aerosol) over a mucus film. We model the film as Newtonian, having a viscosity that depends linearly on the concentration of a passive solute (a crude proxy for mucin proteins). Given an initial random solute (and hence viscosity) distribution, described as a Gaussian random field with a given correlation structure, we seek to quantify the uncertainties in outcomes as the drop spreads. Using lubrication theory, we describe the spreading of the drop in terms of a system of coupled nonlinear PDEs governing the evolution of film height and the vertically-averaged solute concentration. We perform Monte Carlo simulations to predict the variability in the drop centre location and width (1D) or area (2D). We show how simulation results are well described (at much lower computational cost) by a low-order model using a weak disorder expansion. Our results show for example how variability in the drop location is a non-monotonic function of the solute correlation length increases. Engineering and Physical Sciences Research Council.

  9. Two touching spherical drops in a uniaxial compressional flow: The effect of interfacial slip

    Goel, Sachin; Ramachandran, Arun


    This study presents a semi-analytical solution for the problem of two touching drops with slipping interfaces pushed against each other in a uniaxial compressional flow at low capillary and Reynolds numbers. The jump in the tangential velocity at the liquid-liquid interface is modeled using the Navier slip condition. Analytical solutions of the contact force, the drop-scale stresses, and the drop-scale pressure are provided as functions of the slip coefficient (" separators=" α ) , the viscosity ratio (" separators=" κ ) , and the drop size ratio (" separators=" k ) . Since unequal drop sizes are considered, two problems are solved in the tangent sphere co-ordinate system to determine the steady state position: a pair of touching drops with its contact point at the origin of an axisymmetric straining flow, and two touching drops placed in a uniform flow parallel to the axis of symmetry of the drops. A general observation is that the effect of slip is manifested most strongly for drops whose viscosity is much greater than the suspending fluid (" separators=" κ ≫ 1 ) . For highly viscous drops, the flow and stress fields transition from those corresponding to solid particles for ακ ≪ 1, to those for inviscid drops in the limit ακ ≫ 1. The analytical expressions provided here for the contact force and the stress distributions will serve to provide the restrictions that complete the definition of the lubrication flow problem in the thin film between the two colliding drops. While the contact force that drains fluid out of the thin film is relatively unaffected by slip, the tangential stress and pressure in the near-contact region are mitigated significantly for ακ ≫ 1. The latter is expected to assist coalescence at high capillary numbers.

  10. Drop stability in wind: theory

    Lee, Sungyon


    Water drops may remain pinned on a solid substrate against external forcing due to contact angle hysteresis. Schmucker and White investigated this phenomenon experimentally in a high Reynolds number regime, by measuring the critical wind velocity at which partially wetting water drops depin inside a wind tunnel. Due to the unsteady turbulent boundary layer, droplets are observed to undergo vortex-shedding induced oscillations. By contrast, the overall elongation of the drop prior to depinning occurs on a much slower timescale with self-similar droplet shapes at the onset. Based on these observations, a simple, quasi-static model of depinning droplet is developed by implementing the phenomenological description of the boundary layer. The resultant model successfully captures the critical onset of droplet motion and is the first of on-going studies that connect the classical boundary layer theory with droplet dynamics.


    Cheng Peng; Xingyao Wang; Yongzhong Huo


    The mechanical behavior of shape memory alloys (SMAs) is closely related to the formation and evolution of its microstructures. Through theoretical analysis and experimental ob-servations, it was found that the stress-induced martensitic transformation process of single crys-tal Cu-based SMA under uniaxial tension condition consisted of three periods: nucleation, mixed nucleation and growth, and merging due to growth. During the nucleation, the stress dropped rapidly and the number of interfaces increased very fast while the phase fraction increased slowly.In the second period, both the stress and the interface number changed slightly but the phase fraction increased dramatically. Finally, the stress and the phase fraction changed slowly while the number of interfaces decreased quickly. Moreover, it was found that the transformation could be of multi-stage: sharp stress drops at several strains and correspondingly, the nucleation and growth process occurred quasi-independently in several parts of the sample.

  12. Drop interaction with solid boundaries in liquid/liquid systems

    Bordoloi, Ankur Deep

    The present experimental work was motivated primarily by the CO 2 sequestration process. In a possible scenario during this process, gravity driven CO2 bubbles coalesce at an interface near the rock surface. In another scenario, trapped CO2 fluid may escape from a porous matrix overcoming interfacial force inside a pore. Based on these potential scenarios, the current research was divided into two broad experimental studies. In the first part, coalescence at a quiescent interface of two analogous fluids (silicone oil and water/glycerin mixture) was investigated for water/glycerin drops with Bond number (Bo) ~7 and Ohnesorge number ~ 0.01 using high-speed imaging and time-resolved tomographic PIV. Two perturbation cases with a solid particle wetted in oil and water/glycerin placed adjacent to the coalescing drop were considered. The results were compared with coalescence of a single drop and that of a drop neighBored by a second drop of equivalent size. Each perturbing object caused an initial tilting of the drop, influencing its rupture location, subsequent film retraction and eventual collapse behavior. Once tilted, drops typically ruptured near their lowest vertical position which was located either toward or away from the perturbing object depending on the case. The trends in local retraction speed of the ruptured film and the overall dynamics of the collapsing drops were discussed in detail. In the second part, the motion of gravity driven drops (B o~0.8-11) through a confining orifice d/Dwater/glycerin, surrounded by silicone oil, fall toward and encounter the orifice plate after reaching terminal speed. The effects of surface wettability were investigated for Both round-edged and sharp-edged orifices. For the round-edged case, a thin film of surrounding oil prevented the drop fluid from contacting the orifice surface, such that the flow outcomes of the drops were independent of surface wettability. For d/Dsurface tension time scale. For the sharp-edged case

  13. Interfacial Instabilities in Evaporating Drops

    Moffat, Ross; Sefiane, Khellil; Matar, Omar


    We study the effect of substrate thermal properties on the evaporation of sessile drops of various liquids. An infra-red imaging technique was used to record the interfacial temperature. This technique illustrates the non-uniformity in interfacial temperature distribution that characterises the evaporation process. Our results also demonstrate that the evaporation of methanol droplets is accompanied by the formation of wave-trains in the interfacial temperature field; similar patterns, however, were not observed in the case of water droplets. More complex patterns are observed for FC-72 refrigerant drops. The effect of substrate thermal conductivity on the structure of the complex pattern formation is also elucidated.

  14. Coping with Medical Training Demands: Thinking of Dropping Out, or in It for the Long Haul

    Rogers, Mary E.; Creed, Peter A.; Searle, Judy; Nicholls, Serena L.


    Medical trainees are at risk of psychological distress due to training workload demands. Dropping out of medicine has hidden and real costs to both the public and the individual. Using quantitative and qualitative methodologies, this study assessed differences in stress and coping strategies between those serious and not serious about dropping out…

  15. GsAPK, an ABA-activated and calcium-independent SnRK2-type kinase from G. soja, mediates the regulation of plant tolerance to salinity and ABA stress.

    Yang, Liang; Ji, Wei; Gao, Peng; Li, Yong; Cai, Hua; Bai, Xi; Chen, Qin; Zhu, Yanming


    Plant Snf1 (sucrose non-fermenting-1) related protein kinase (SnRK), a subfamily of serine/threonine kinases, has been implicated as a crucial upstream regulator of ABA and osmotic signaling as in many other signaling cascades. In this paper, we have isolated a novel plant specific ABA activated calcium independent protein kinase (GsAPK) from a highly salt tolerant plant, Glycine soja (50109), which is a member of the SnRK2 family. Subcellular localization studies using GFP fusion protein indicated that GsAPK is localized in the plasma membrane. We found that autophosphorylation and Myelin Basis Protein phosphorylation activity of GsAPK is only activated by ABA and the kinase activity also was observed when calcium was replaced by EGTA, suggesting its independence of calcium in enzyme activity. We also found that cold, salinity, drought, and ABA stress alter GsAPK gene transcripts and heterogonous overexpression of GsAPK in Arabidopsis alters plant tolerance to high salinity and ABA stress. In summary, we demonstrated that GsAPK is a Glycine soja ABA activated calcium independent SnRK-type kinase presumably involved in ABA mediated stress signal transduction.

  16. Fluid flow in drying drops

    Gelderblom, H.


    When a suspension drop evaporates, it leaves behind a drying stain. Examples of these drying stains encountered in daily life are coffee or tea stains on a table top, mineral rings on glassware that comes out of the dishwasher, or the salt deposits on the streets in winter. Drying stains are also pr

  17. New identities for sessile drops

    Hajirahimi, Maryam; Fatollahi, Amir H


    A new set of mathematical identities is presented for axi-symmetric sessile drops on flat and curved substrates. The geometrical parameters, including the apex curvature and height, and the contact radius, are related by the identities. The validity of the identities are checked by various numerical solutions both for flat and curved substrates.

  18. Egg Drop: An Invention Workshop

    McCormack, Alan J.


    Describes an activity designed to stimulate elementary and junior high students to become actively engaged in thinking creatively rather than only analytically, convergently, or repetitively. The activity requires students to devise means of dropping an egg from a height without it breaking. (JR)

  19. Evaporating Drops of Alkane Mixtures

    Guéna, Geoffroy; Poulard, Christophe; Cazabat, Anne-Marie


    22 pages 9 figures; Alkane mixtures are model systems where the influence of surface tension gradients during the spreading and the evaporation of wetting drops can be easily studied. The surface tension gradients are mainly induced by concentration gradients, mass diffusion being a stabilising process. Depending on the relative concentration of the mixture, a rich pattern of behaviours is obtained.

  20. ``Quantum'' interference with bouncing drops

    Bohr, Tomas; Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens


    In a series of recent papers (most recently) Yves Couder and collaborators have explored the dynamics of walking drops on the surface of a vibrated bath of silicon oil and have demonstrated a close analogy to quantum phenomena. The bouncing drop together with the surface wave that it excites seems to be very similar to the pilot wave envisaged by de Broglie for quantum particles. In particular, have studied a double slit experiment with walking drops, where an interference pattern identical to the quantum version is found even though it is possible to follow the orbits of the drops and unambigously determine which slit it goes through, something which in quantum mechanics would be ruled out by the Heisenberg uncertainly relations. We have repeated the experiment and present a somewhat more complicated picture. Theoretically, we study a Schrödinger equation with a source term originating from a localised ``particle'' being simultaneously guided by the wave. We present simple solutions to such a field theory and discuss the fundamental difficulties met by such a theory in order to comply with quantum mechanics.

  1. Drops, contact lines, and electrowetting

    Mannetje, 't D.J.C.M.


    In this work, we study the behaviour of drops and contact lines under the influence of electric fields, and how these can answer fundamental and industrial questions. Our focus is on studying the varying balance of the electric field, hysteresis forces and inertia as the speed of a contact line chan

  2. Evaporating Drops of Alkane Mixtures

    Gu'ena, G; Poulard, C; Cazabat, Anne-Marie; Gu\\'{e}na, Geoffroy; Poulard, Christophe


    Alkane mixtures are model systems where the influence of surface tension gradients during the spreading and the evaporation of wetting drops can be easily studied. The surface tension gradients are mainly induced by concentration gradients, mass diffusion being a stabilising process. Depending on the relative concentration of the mixture, a rich pattern of behaviours is obtained.

  3. Drops spreading on flexible fibers

    Somszor, Katarzyna; Boulogne, François; Sauret, Alban; Dressaire, Emilie; Stone, Howard


    Fibrous media are encountered in many engineered systems such as textile, paper and insulating materials. In most of these materials, fibers are randomly oriented and form a complex network in which drops of wetting liquid tend to accumulate at the nodes of the network. Here we investigate the role of the fiber flexibility on the spreading of a small volume of liquid on a pair of crossed flexible fibers. A drop of silicone oil is dispensed at the point of contact of the fibers and we characterize the liquid morphologies as we vary the volume of liquid, the angle between the fibers, and the length and bending modulus of the fibers. Drop morphologies previously reported for rigid fibers, i.e. a drop, a column and a mixed morphology, are also observed on flexible fibers with modified domains of existence. Moreover, at small inclination angles of the fibers, a new behavior is observed: the fibers bend and collapse. Depending on the volume, the liquid can adopt a column or a mixed morphology on the collapsed fibers. We rationalize our observations with a model based on energetic considerations. Our study suggests that the fiber flexibility adds a rich variety of behaviors that can be crucial for industrial applications.

  4. Pressure drop in contraction flow

    Rasmussen, Henrik Koblitz

    This note is a supplement to Dynamic of Polymeric Liquids (DPL) page 178. DPL gives an equation for the pressure drop in a tapered (and circular) contraction, valid only at low angles. Here the general definition of contraction flow (the Bagley correction) and a more general method to find...

  5. Impact Dynamics of Oxidized Liquid Metal Drops

    Xu, Qin; Jaeger, Heinrich M


    With exposure to air, many liquid metals spontaneously generate an oxide layer on their surface. In oscillatory rheological tests, this skin is found to introduce a yield stress that typically dominates the elastic response but can be tuned by exposing the metal to hydrochloric acid solutions of different concentration. We systematically studied the normal impact of eutectic gallium-indium (eGaIn) drops under different oxidation conditions and show how this leads to two different dynamical regimes. At low impact velocity (or low Weber number), eGaIn droplets display strong recoil and rebound from the impacted surface when the oxide layer is removed. In addition, the degree of drop deformation or spreading during the impact is controlled by the oxide skin. We show that the scaling law known from ordinary liquids for the maximum spreading radius as a function of impact velocity can still be applied to the case of oxidized eGaIn if an effective Weber number $We^{\\star}$ is employed that uses an effective surface...

  6. Independent and co-morbid HIV infection and Meth use disorders on oxidative stress markers in the cerebrospinal fluid and depressive symptoms.

    Panee, Jun; Pang, Xiaosha; Munsaka, Sody; Berry, Marla J; Chang, Linda


    Both HIV infection and Methamphetamine (Meth) use disorders are associated with greater depressive symptoms and oxidative stress; whether the two conditions would show additive or interactive effects on the severity of depressive symptoms, and whether this is related to the level of oxidative stress in the CNS is unknown. 123 participants were evaluated, which included 41 HIV-seronegative subjects without substance use disorders (Control), 25 with recent (Meth use disorders (Meth), 34 HIV-seropositive subjects without substance use disorders (HIV) and 23 HIV+Meth subjects. Depressive symptoms were assessed with the Center for Epidemiologic Studies-Depression Scale (CES-D), and oxidative stress markers were evaluated with glutathione (GSH), 4-hydroxynonenal (HNE), and activities of gamma-glutamyltransferase (GGT) and glutathione peroxidase (GPx) in the cerebrospinal fluid (CSF). Compared with Controls, HIV subjects had higher levels of HNE (+350%) and GGT (+27%), and lower level of GSH (-34%), while Meth users had higher levels of GPx activity (+23%) and GSH (+30 %). GGT correlated with GPx, and with age, across all subjects (p Meth and HIV+Meth groups. HIV and Meth use had an interactive effects on depressive symptoms, but did not show additive or interactive effects on oxidative stress. The differential relationship between depressive symptoms and oxidative stress response amongst the four groups suggest that depressive symptoms in these groups are mediated through different mechanisms which are not always related to oxidative stress.

  7. Endoplasmic Reticulum Stress in Mice Increases Hepatic Expression of Genes Carrying a Premature Termination Codon via a Nutritional Status-Independent GRP78-Dependent Mechanism.

    Harada, Nagakatsu; Okuyama, Maiko; Yoshikatsu, Aya; Yamamoto, Hironori; Ishiwata, Saori; Hamada, Chikako; Hirose, Tomoyo; Shono, Masayuki; Kuroda, Masashi; Tsutsumi, Rie; Takeo, Jiro; Taketani, Yutaka; Nakaya, Yutaka; Sakaue, Hiroshi


    Nonsense-mediated mRNA decay (NMD) degrades mRNAs carrying a premature termination codon (PTC) in eukaryotes. Cellular stresses, including endoplasmic reticulum (ER) stress, inhibit NMD, and up-regulate PTC-containing mRNA (PTC-mRNA) levels in several cell lines. However, whether similar effects exist under in vivo conditions that involve systemic nutritional status is unclear. Here, we compared the effects of pharmacological induction of ER stress with those of nutritional interventions on hepatic PTC-mRNA levels in mice. In mouse livers, the ER stress inducer tunicamycin increased PTC-mRNA levels of endogenous marker genes. Tunicamycin decreased body weight and perturbed nutrient metabolism in mice. Food restriction or deprivation mimicked the effect of tunicamycin on weight loss and metabolism, but did not increase PTC-mRNA levels. Hyperphagia-induced obesity also had little effect on hepatic PTC-mRNA levels. Meanwhile, in mouse liver phosphorylation of eIF2α, a factor that regulates NMD, was increased by both tunicamycin and nutritional interventions. Hepatic expression of GRP78, a central chaperone in ER stress responses, was increased by tunicamycin but not by the nutritional interventions. In cultured liver cells (Hepa), exogenous overexpression of a phosphomimetic eIF2α failed to increase PTC-mRNA levels. However, GRP78 overexpression in Hepa cells increased PTC-mRNA and PTC-mRNA-derived protein levels. ER stress promoted localization of GRP78 to mitochondria, and exogenous expression of a GRP78 fusion protein targeted to mitochondria mimicked the effect of wild type GRP78. These results indicate that GRP78, but not nutritional status, is a potent up-regulator of hepatic PTC-mRNA levels during induction of ER stress in vivo. J. Cell. Biochem. 118: 3810-3824, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Interfacial Dynamics of Thin Viscoelastic Films and Drops

    Barra, Valeria; Kondic, Lou


    We present a computational investigation of thin viscoelastic films and drops on a solid substrate subject to the van der Waals interaction force. The governing equations are obtained within a long-wave approximation of the Navier-Stokes equations with Jeffreys model for viscoelastic stresses. We investigate the effects of viscoelasticity, Newtonian viscosity, and the substrate slippage on the dynamics of thin viscoelastic films. We also study the effects of viscoelasticity on drops that spread or recede on a prewetted substrate. For dewetting films, the numerical results show the presence of multiple secondary droplets for higher values of elasticity, consistently with experimental findings. For drops, we find that elastic effects lead to deviations from the Cox-Voinov law for partially wetting fluids. In general, elastic effects enhance spreading, and suppress retraction, compared to Newtonian ones.

  9. Independent Directors

    Ringe, Wolf-Georg


    This paper re-evaluates the corporate governance concept of ‘board independence’ against the disappointing experiences during the 2007-08 financial crisis. Independent or outside directors had long been seen as an essential tool to improve the monitoring role of the board. Yet the crisis revealed...... that they did not prevent firms' excessive risk taking; further, these directors sometimes showed serious deficits in understanding the business they were supposed to control, and remained passive in addressing structural problems. A closer look reveals that under the surface of seemingly unanimous consensus...... about board independence in Western jurisdictions, a surprising disharmony prevails about the justification, extent and purpose of independence requirements. These considerations lead me to question the benefits of the current system. Instead, this paper proposes a new, ‘functional’ concept of board...

  10. Cost-effective add-drop fiber optic microcell system for CDMA cellular network evolution

    Cheong, Jong M.; Ham, David; Song, Myoung H.; Son, Yong S.


    In this paper, we propose a cost effective add-drop fiber-optic microcell system for CDMA cellular network. The add-drop microcell is compatible with the existing PCS or digital cellular services (DCS) systems & networks. The proposed fiber-optic add-drop access network is independent of the different channels and gives flexibility in evolution scenarios. This add-drop network provides the optimum solution to cut-down the additional rental fees by sharing the existing fiber-optic cable for cellular/PCS service providers who want to provide third generation services.

  11. Angiotensin II type 1 receptor is required for the cardiac fibrosis triggered by mechanical stress independent of Ang II in mice

    YE Yong; YUAN Jie; JIANG Guo-liang; HUANG Jia-yuan; ZHANG Wei-jing; GE Jun-bo; ZOU Yun-zeng; GONG Hui; WU Jian; DING Zhi-wen; SHEN Yi; YIN Pei-pei; WANG Xing-xu; YOU Jie-yun; WANG Shi-jun


    AIM:We investigated how AT 1-R stimulated by mechanical stresses induces cardiac fibrosis .METHODS:We produced in vivo cardiac pressure overload model in angiotensinogen knockout ( ATG-/-) mice and in vitro mechanically-stretched cell model in cultured neonatal cardiac cells of ATG-/-mice both lack the participation of Ang II .RESULTS: Pressure overload for 4 weeks in ATG-/-mice induced myocardial hypertrophy accompanied by the significant interstitial fibrosis , however , the TGF-β, a key regulatory factor of fibrosis, was not significantly increased in these ATG-/-mice.Meanwhile, the inhibitor for AT1-R significantly inhibited mechani-cal stress-induced cardiac fibrosis in these ATG-/-models whereas inhibition of TGF-βdid not.CONCLUSION:The results showed that mechanical stress-induced fibrotic responses through AT 1-R required the phosphorylation of Smad 2 but not the involvement of TGF-β.

  12. Perceptions of Coach-Athlete Relationship are more Important to Coaches than Athletes in Predicting Dyadic Coping and Stress Appraisals: An Actor-Partner Independence Mediation Model

    Adam Robert Nicholls


    Full Text Available Most attempts to manage stress involve at least one other person, yet coping studies in sport tend to report an athlete’s individual coping strategies. There is a limited understanding of coping involving other people, particularly within sport, despite athletes potentially spending a lot of time with other people, such as their coach. Guided by the systemic-transactional model of stress and coping among couples (Bodenmann, 1995, from relationship psychology, we assessed dyadic coping, perceptions of relationship quality, and primary stress appraisals of challenge and threat among 158 coach-athlete dyads (n = 277 participants. The athletes competed at amateur (n = 123, semi-professional (n = 31, or professional levels (n = 4. Coaches and athletes from the same dyad completed a measure of dyadic coping, coach-athlete relationship, and stress appraisals. We tested an Actor-Partner Interdependence Mediation Model to account for the nonindependence of dyadic data. These actor-partner analyses revealed differences between athletes and coaches. Although the actor effects were relatively large compared to partner effects, perceptions of relationship quality demonstrated little impact on athletes. The mediating role of relationship quality was broadly as important as dyadic coping for coaches. These findings provide an insight in to how coach-athlete dyads interact to manage stress and indicate that relationship quality is of particular importance for coaches, but less important for athletes. In order to improve perceptions of relationship quality among coaches and athletes, interventions could be developed to foster positive dyadic coping among both coaches and athletes, which may also impact upon stress appraisals of challenge and threat.

  13. Scaling and Stress Release in the Darfield-Christchurch, New Zealand Earthquake Sequence

    Abercrombie, R. E.; Fry, B.; Doser, D. I.


    The Canterbury earthquake sequence began with the M7.1 Darfield earthquake in 2010, and includes the devastating M6.2 Christchurch earthquake in 2011. The high ground accelerations and damage in Christchurch suggested that the larger eartthquakes may be high stress drop events. This is consistent with the hypothesis that faults in low-strain rate regions with long inter-event times rupture in higher stress drop earthquakes. The wide magnitude range of this prolific sequence, and the high-quality recording enable us to test this. The spatial migration of the sequence, from Darfield through Christchurch and then offshore, enables us to investigate whether we can resolve any spatial or temporal variation in earthquake stress drop. An independent study of 500 aftershocks (Oth & Kaiser, 2014) found no magnitude dependence, and identified spatially varying stress drop. Such patterns can be more confidently interpreted if observed by independent studies using different approaches. We use a direct wave, empirical Green's function (EGF) approach that includes measurement uncertainties, and objective criteria for assessing the quality of each spectral ratio (Abercrombie, 2013). The large number of earthquakes in the sequence enables us to apply the same approach to a wide range of magnitudes (M~2-6) recorded at the same stations, and so minimize the effects of any systematic biases in results. In our preliminary study, we include 2500 earthquakes recorded at a number of strong motion and broadband stations. We use multiple EGFs for each event, and find 300 earthquakes with well-resolved ratios at 5 or more stations. The stress drops are magnitude independent and there is broad correlation with the results of Oth & Kaiser. We apply the same approach to a much larger data set and compare our results to those of Oth & Kaiser, and also to other regions studied using our EGF method.

  14. Choosing Independence


    Milo Djukanovic, Prime Minister of Montenegro, won a key referendum May 21 when voters in his tiny, mountainous nation endorsed a plan to split from Serbia and become an independent state. This marked a final step in the breakup of the former Yugoslavia formed by six republics.

  15. Non-coalescence of oppositely charged drops

    Ristenpart, W D; Belmonte, A; Dollar, F; Stone, H A


    Oppositely charged drops have long been assumed to experience an attractive force that favors their coalescence. In this fluid dynamics video we demonstrate the existence of a critical field strength above which oppositely charged drops do not coalesce. We observe that appropriately positioned and oppositely charged drops migrate towards one another in an applied electric field; but whereas the drops coalesce as expected at low field strengths, they are repelled from one another after contact at higher field strengths. Qualitatively, the drops appear to `bounce' off one another. We directly image the transient formation of a meniscus bridge between the bouncing drops.

  16. How to freeze drop oscillations with powders

    Marston, Jeremy; Zhu, Ying; Vakarelski, Ivan; Thoroddsen, Sigurdur


    We present experiments that show when a water drop impacts onto a bed of fine, hydrophobic powder, the final form of the drop can be very different from the spherical form with which it impacts. For all drop impact speeds, the drop rebounds due to the hydrophobic nature of the powder. However, we observe that above a critical impact speed, the drop undergoes a permanent deformation to a highly non-spherical shape with a complete coverage of powder, thus creating a deformed liquid marble. This powder coating acts to freeze the drop oscillations during rebound.

  17. Dancing drops over vibrating substrates

    Borcia, Rodica; Borcia, Ion Dan; Helbig, Markus; Meier, Martin; Egbers, Christoph; Bestehorn, Michael


    We study the motion of a liquid drop on a solid plate simultaneously submitted to horizontal and vertical harmonic vibrations. The investigation is done via a phase field model earlier developed for describing static and dynamic contact angles. The density field is nearly constant in every bulk region (ρ = 1 in the liquid phase, ρ ≈ 0 in the vapor phase) and varies continuously from one phase to the other with a rapid but smooth variation across the interfaces. Complicated explicit boundary conditions along the interface are avoided and captured implicitly by gradient terms of ρ in the hydrodynamic basic equations. The contact angle θ is controlled through the density at the solid substrate ρ S , a free parameter varying between 0 and 1 [R. Borcia, I.D. Borcia, M. Bestehorn, Phys. Rev. E 78, 066307 (2008)]. We emphasize the swaying and the spreading modes, earlier theoretically identified by Benilov and Billingham via a shallow-water model for drops climbing uphill along an inclined plane oscillating vertically [E.S. Benilov, J. Billingham, J. Fluid Mech. 674, 93 (2011)]. The numerical phase field simulations will be completed by experiments. Some ways to prevent the release of the dancing drops along a hydrophobic surface into the gas atmosphere are also discussed in this paper.

  18. The Myth of Softening behavior of the Cohesive Zone Model Exact derivation of yield drop behavior of wood

    Van der Put, T.A.C.M.


    It is shown that the postulate of strain softening of the fracture stress is based on the error to regard the nominal stress to be the actual, ultimate stress, at the actual area of the fracture plan. Strain sof-tening called yield drop is elastic unloading of the actual elastic stress at the

  19. Independent preferences

    Vind, Karl


    A simple mathematical result characterizing a subset of a product set is proved and used to obtain additive representations of preferences. The additivity consequences of independence assumptions are obtained for preferences which are not total or transitive. This means that most of the economic...... theory based on additive preferences - expected utility, discounted utility - has been generalized to preferences which are not total or transitive. Other economic applications of the theorem are given...

  20. Critical point wetting drop tower experiment

    Kaukler, W. F.; Tcherneshoff, L. M.; Straits, S. R.


    Preliminary results for the Critical Point Wetting CPW Drop Tower Experiment are produced with immiscible systems. Much of the observed phenomena conformed to the anticipated behavior. More drops will be needed to test the CPW theory with these immiscible systems.

  1. Telomere length is a biomarker of cumulative oxidative stress, biologic age, and an independent predictor of survival and therapeutic treatment requirement associated with smoking behavior.

    Babizhayev, Mark A; Savel'yeva, Ekaterina L; Moskvina, Svetlana N; Yegorov, Yegor E


    Globally, tobacco use is associated with 5 million deaths per annum and is regarded as one of the leading causes of premature death. Major chronic disorders associated with smoking include cardiovascular diseases, several types of cancer, and chronic obstructive pulmonary disease (lung problems). Cigarette smoking (CS) generates a cumulative oxidative stress, which may contribute to the pathogenesis of chronic diseases. Mainstream and side stream gas-phase smoke each have about the same concentration of reactive free radical species, about 1 × 10(16) radicals per cigarette (or 5 × 10(14) per puff). This effect is critical in understanding the biologic effects of smoke. Several lines of evidence suggest that cigarette smoke constituents can directly activate vascular reactive oxygen species production. In this work we present multiple evidence that CS provide the important risk factors in many age-related diseases, and is associated with increased cumulative and systemic oxidative stress and inflammation. The cited processes are marked by increased white blood cell (leucocytes, WBCs) turnover. The data suggest an alteration of the circulating WBCs by CS, resulting in increased adherence to endothelial cells. Telomeres are complex DNA-protein structures located at the end of eukaryotic chromosomes. Telomere length shortens with biologic age in all replicating somatic cells. It has been shown that tobacco smoking enhances telomere shortening in circulating human WBCs. Telomere attrition (expressed in WBCs) can serve as a biomarker of the cumulative oxidative stress and inflammation induced by smoking and, consequently, show the pace of biologic aging. We originally propose that patented specific oral formulations of nonhydrolized carnosine and carcinine provide a powerful tool for targeted therapeutic inhibition of cumulative oxidative stress and inflammation and protection of telomere attrition associated with smoking. The longitudinal studies of the clinical

  2. The Flip Side of the Boomerang Generation: The Role of Childhood Adversity and Social Support on Housing Stress and Independent Living of Millennials in Young Adulthood

    Curry, Susanna


    Background and Aims. There currently is a growing understanding of the physical and mental health consequences of childhood adversity, yet much less is known about how childhood adversity relates to adult housing outcomes. Some social supports present in the transition to adulthood may buffer young people from housing challenges. This study examines the relationship between childhood adversity, social support in the transition to adulthood, and housing stress and living arrangements in adulth...

  3. Electrohydrodynamics of a particle-covered drop

    Ouriemi, Malika; Vlahovska, Petia


    We study the dynamics of a drop nearly-completely covered with a particle monolayer in a uniform DC electric field. The weakly conducting fluid system consists of a silicon oil drop suspended in castor oil. A broad range of particle sizes, conductivities, and shapes is explored. In weak electric fields, the presence of particles increases drop deformation compared to a particle-free drop and suppresses the electrohydrodynamic flow. Very good agreement is observed between the measured drop deformation and the small deformation theory derived for surfactant-laden drops (Nganguia et al., 2013). In stronger electric fields, where drops are expected to undergo Quincke rotation (Salipante and Vlahovska, 2010), the presence of the particles greatly decreases the threshold for rotation and the stationary tilted drop configuration observed for clean drop is replaced by a spinning drop with either a wobbling inclination or a very low inclination. These behaviors resemble the predicted response of rigid ellipsoids in uniform electric fields. At even stronger electric fields, the particles can form dynamic wings or the drop implodes. The similar behavior of particle-covered and surfactant-laden drops provides new insights into understanding stability of Pickering emulsions. Supported by NSF-CBET 1437545.

  4. Sessile Drop Evaporation and Leidenfrost Phenomenon

    A. K. Mozumder


    Full Text Available Problem statement: Quenching and cooling are important process in manufacturing industry for controlling the mechanical properties of materials, where evaporation is a vital mode of heat transfer. Approach: This study experimentally investigated the evaporation of sessile drop for four different heated surfaces of Aluminum, Brass, Copper and Mild steel with a combination of four different liquids as Methanol, Ethanol, Water and NaCl solution. The time of evaporation for the droplet on the hot metallic surface was measured and compared with a proposed correlation as well. With the time temperature plot of these experimental data, the Leidenfrost phenomena had been elucidated. In the pool boiling curve for liquid, just after the transition boiling region and before the film boiling region, the heat transfer approaches its minimum value. The corresponding temperature of this minimum value was termed as the Leidenfrost temperature and the phenomenon is known as Leidenfrost phenomena. According to the experimental data, the Leidenfrost temperature was within a range of 150-200°C for all the experimental conditions. Results: This revealed that Leidenfrost temperature was independent of thermo-physical properties of solid and liquid. Sessile drop evaporation time was the maximum for water, then decreases gradually for Nacl solution, methanol and was the minimum for ethanol for a particular solid material. On the other hand, this time was the highest for copper and the lowest for mild steel for a specific liquid. Conclusion: The experimental data for the evaporation time fairly agree with the proposed correlation within a certain range. The collected time and temperature data may be used as a good data bank for the researchers.

  5. The SARS Coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor.

    Rinki Minakshi

    Full Text Available The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV is reported to cause apoptosis of infected cells and several of its proteins including the 3a accessory protein, are pro-apoptotic. Since the 3a protein localizes to the endoplasmic reticulum (ER-Golgi compartment, its role in causing ER stress was investigated in transiently transfected cells. Cells expressing the 3a proteins showed ER stress based on activation of genes for the ER chaperones GRP78 and GRP94. Since ER stress can cause differential modulation of the unfolded protein response (UPR, which includes the inositol-requiring enzyme 1 (IRE-1, activating transcription factor 6 (ATF6 and PKR-like ER kinase (PERK pathways, these were individually tested in 3a-expressing cells. Only the PERK pathway was found to be activated in 3a-expressing cells based on (1 increased phosphorylation of eukaryotic initiation factor 2 alpha (eIF2alpha and inhibitory effects of a dominant-negative form of eIF2alpha on GRP78 promoter activity, (2 increased translation of activating transcription factor 4 (ATF4 mRNA, and (3 ATF4-dependent activation of the C/EBP homologous protein (CHOP gene promoter. Activation of PERK affects innate immunity by suppression of type 1 interferon (IFN signaling. The 3a protein was found to induce serine phosphorylation within the IFN alpha-receptor subunit 1 (IFNAR1 degradation motif and to increase IFNAR1 ubiquitination. Confocal microscopic analysis showed increased translocation of IFNAR1 into the lysosomal compartment and flow cytometry showed reduced levels of IFNAR1 in 3a-expressing cells. These results provide further mechanistic details of the pro-apoptotic effects of the SARS-CoV 3a protein, and suggest a potential role for it in attenuating interferon responses and innate immunity.

  6. Drop shaping by laser-pulse impact

    Klein, Alexander L; Visser, Claas Willem; Lhuissier, Henri; Sun, Chao; Snoeijer, Jacco H; Villermaux, Emmanuel; Lohse, Detlef; Gelderblom, Hanneke


    We study the hydrodynamic response of a falling drop hit by a laser pulse. Combining high-speed with stroboscopic imaging we report that a millimeter-sized dyed water drop hit by a milli-Joule nanosecond laser-pulse deforms and propels forward at several meters per second, until it eventually fragments. We show that the drop motion results from the recoil momentum imparted at the drop surface by water vaporization. We measure the propulsion speed and the time-deformation law of the drop, complemented by boundary integral simulations. We explain the drop propulsion and shaping in terms of the laser pulse energy and drop surface tension. These findings are crucial for the generation of extreme ultraviolet (EUV) light in lithography machines.

  7. Fast and Accurate Pressure-Drop Prediction in Straightened Atherosclerotic Coronary Arteries

    J.T.C. Schrauwen (Jelle); D. Koeze (Dion); J.J. Wentzel (Jolanda); F.N. van de Vosse (Frans); A.F.W. van der Steen (Ton); F.J.H. Gijsen (Frank)


    textabstractAtherosclerotic disease progression in coronary arteries is influenced by wall shear stress. To compute patient-specific wall shear stress, computational fluid dynamics (CFD) is required. In this study we propose a method for computing the pressure-drop in regions proximal and distal to

  8. When sessile drops are no longer small: transitions from spherical to fully flattened.

    Extrand, C W; Moon, Sung In


    We measured the dimensions and contact angles of sessile drops using three liquids on a variety of polymer and silicon surfaces. Drops ranged in size from a few microliters to several milliliters. With increasing liquid volume, heights of the drops initially rose steeply and then gradually tapered to a constant value. The heights of small, undistorted drops as well as the heights of the largest drops were accurately predicted by well-established models. A recently derived expression for meniscus height was used to estimate the heights of intermediate-size drops. While it was not exact, this expression produced reasonable approximations without having to resort to iterative numerical methods. We also identified transition points where gravity began to distort drop shape and ultimately limited drop height. Relatively simple closed analytical expressions for estimating these transition points were also derived. Predicted values of the height and volume at the onset of distortion agreed fairly well with the measured ones. Contact angles carefully measured by the tangent method were independent of drop size.

  9. Identification and Characterization of a Potent Activator of p53-Independent Cellular Senescence via a Small-Molecule Screen for Modifiers of the Integrated Stress Response

    Sayers, Carly M.; Papandreou, Ioanna; Guttmann, David M.; Maas, Nancy L.; Diehl, J. Alan; Witze, Eric S.; Koong, Albert C.


    The Integrated Stress Response (ISR) is a signaling program that enables cellular adaptation to stressful conditions like hypoxia and nutrient deprivation in the tumor microenvironment. An important effector of the ISR is activating transcription factor 4 (ATF4), a transcription factor that regulates genes involved in redox homeostasis and amino acid metabolism and transport. Because both inhibition and overactivation of the ISR can induce tumor cell death, modulators of ATF4 expression could prove to be clinically useful. In this study, chemical libraries were screened for modulators of ATF4 expression. We identified one compound, E235 (N-(1-benzyl-piperidin-4-yl)-2-(4-fluoro-phenyl)-benzo[d]imidazo[2,1-b]thiazole-7-carboxamide), that activated the ISR and dose-dependently increased levels of ATF4 in transformed cells. A dose-dependent decrease in viability was observed in several mouse and human tumor cell lines, and knockdown of ATF4 significantly increased the antiproliferative effects of E235. Interestingly, low μM doses of E235 induced senescence in many cell types, including HT1080 human fibrosarcoma and B16F10 mouse melanoma cells. E235-mediated induction of senescence was not dependent on p21 or p53; however, p21 conferred protection against the growth inhibitory effects of E235. Treatment with E235 resulted in an increase in cells arrested at the G2/M phase with a concurrent decrease in S-phase cells. E235 also activated DNA damage response signaling, resulting in increased levels of Ser15-phosphorylated p53, γ-H2AX, and phosphorylated checkpoint kinase 2 (Chk2), although E235 does not appear to cause physical DNA damage. Induction of γ-H2AX was abrogated in ATF4 knockdown cells. Together, these results suggest that modulation of the ISR pathway with the small molecule E235 could be a promising antitumor strategy. PMID:23229510

  10. Leidenfrost drops on a heated liquid pool

    Maquet, L.; Sobac, B.; Darbois-Texier, B.; Duchesne, A.; Brandenbourger, M.; Rednikov, A.; Colinet, P.; Dorbolo, S.


    We show that a volatile liquid drop placed at the surface of a nonvolatile liquid pool warmer than the boiling point of the drop can be held in a Leidenfrost state even for vanishingly small superheats. Such an observation points to the importance of the substrate roughness, negligible in the case considered here, in determining the threshold Leidenfrost temperature. A theoretical model based on the one proposed by Sobac et al. [Phys. Rev. E 90, 053011 (2014), 10.1103/PhysRevE.90.053011] is developed in order to rationalize the experimental data. The shapes of the drop and of the liquid substrate are analyzed. The model notably provides scalings for the vapor film thickness profile. For small drops, these scalings appear to be identical to the case of a Leidenfrost drop on a solid substrate. For large drops, in contrast, they are different, and no evidence of chimney formation has been observed either experimentally or theoretically in the range of drop sizes considered in this study. Concerning the evaporation dynamics, the radius is shown to decrease linearly with time whatever the drop size, which differs from the case of a Leidenfrost drop on a solid substrate. For high superheats, the characteristic lifetime of the drops versus the superheat follows a scaling law that is derived from the model, but, at low superheats, it deviates from this scaling by rather saturating.

  11. Stability of a compound sessile drop at the axisymmetric configuration.

    Zhang, Ying; Chatain, Dominique; Anna, Shelley L; Garoff, Stephen


    The equilibrium configuration of compound sessile drops has been calculated previously in the absence of gravity. Using the Laplace equations, we establish seven dimensionless parameters describing the axisymmetric configuration in the presence of gravity. The equilibrium axisymmetric configuration can be either stable or unstable depending on the fluid properties. A stability criterion is established by calculating forces on a perturbed Laplacian shape. In the zero Bond number limit, the stability criterion depends on the density ratio, two ratios of interfacial tensions, the volume ratio of the two drops, and the contact angle. We use Surface Evolver to examine the stability of compound sessile drops at small and large Bond numbers and compare with the zero Bond number approximation. Experimentally, we realize a stable axisymmetric compound sessile drop in air, where the buoyancy force exerted by the air is negligible. Finally, using a pair of fluids in which the density ratio can be tuned nearly independently of the interfacial tensions, the stability transition is verified for the axisymmetric configuration. Even though the perturbations are different for the theory, simulations and experiments, both simulations and experiments agree closely with the zero Bond number approximation, exhibiting a small discrepancy at large Bond number.

  12. Influence of Computational Drop Representation in LES of a Droplet-Laden Mixing Layer

    Bellan, Josette; Radhakrishnan, Senthilkumaran


    intensive is the simulation. A set of first order and second order flow statistics, and of drop statistics are extracted from LES predictions and are compared to results obtained by filtering a DNS database. First order statistics such as Favre averaged stream-wise velocity, Favre averaged vapor mass fraction, and the drop stream-wise velocity, are predicted accurately independent of the number of computational drops and grid spacing. Second order flow statistics depend both on the number of computational drops and on grid spacing. The scalar variance and turbulent vapor flux are predicted accurately by the fine mesh LES only when NR is less than 32, and by the coarse mesh LES reasonably accurately for all NR values. This is attributed to the fact that when the grid spacing is coarsened, the number of drops in a computational cell must not be significantly lower than that in the DNS.

  13. Horizontal Drop of 21- PWR Waste Package

    A.K. Scheider


    The objective of this calculation is to determine the structural response of the waste package (WP) dropped horizontally from a specified height. The WP used for that purpose is the 21-Pressurized Water Reactor (PWR) WP. The scope of this document is limited to reporting the calculation results in terms of stress intensities. The information provided by the sketches (Attachment I) is that of the potential design of the type of WP considered in this calculation, and all obtained results are valid for that design only. This calculation is associated with the WP design and was performed by the Waste Package Design group in accordance with the ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 16). AP-3.12Q, ''Calculations'' (Ref. 11) is used to perform the calculation and develop the document. The sketches attached to this calculation provide the potential dimensions and materials for the 21-PWR WP design.

  14. Pressure drop in saturated flow boiling

    Collado, Francisco J. [Universidad de Zaragoza, Zaragoza (Spain)


    A new mass balance for flow boiling have been recently suggested by the author following a quite simple idea: if the phases have different velocities, they can not cover the same distance -the control volume length for a 1-d system- in the same time. Thus, the time scales of the phases have to be different, and we should scale the time dependent magnitudes of one phase to the other one before combining them. Furthermore, it is reasonable to think that conservation equations should have to include in some manner this evident physical fact. In complete coherence with the former mass balance, a new energy balance, which does include the slip ratio has been also stated. This work, whilst reviews these new fundamentals for saturated flow boiling, stresses those aspects related with the prediction of the pressure drop in saturated flow boiling. The new correlations found for the data carefully measured by Thom during the Cambridge project would confirm the new two-phase flowapproach.

  15. On the spreading of impacting drops

    Wildeman, Sander; Sun, Chao; Lohse, Detlef


    The energy budget and dissipation mechanisms during droplet impact on solid surfaces are studied numerically and theoretically. We find that for high impact velocities and negligible surface friction, about one half of the initial kinetic energy is transformed into surface energy, independent of the impact parameters and the detailed energy loss mechanism(s). We argue that this seemingly universal rule is related to the deformation mode of the droplet and is reminiscent of pipe flow undergoing a sudden expansion, for which the head loss can be calculated by multiplying the kinetic energy of the incoming flow by a geometrical factor. For impacts on a no-slip surface also dissipation in the shear boundary layer at the solid surface is important. In this case the head loss acts as a lower bound on the total dissipation for small viscosities. This new view on the impact problem allows for simple analytical estimates of the maximum spreading diameter of impacting drops as a function of the impact parameters and th...

  16. Footprint Geometry and Sessile Drop Resonance

    Chang, Chun-Ti; Daniel, Susan; Steen, Paul H.


    How does a sessile drop resonate if its footprint is square (square drop)? In this talk, we discuss the two distinct families of observed modes in our experiments. One family (spherical modes) is identified with the natural modes of capillary spherical caps, and the other (grid modes) with Faraday waves on a square bath (square Faraday waves). A square drop exhibits grid or spherical modes depending on its volume, and the two families of modes arise depending on how wavenumber selection of footprint geometry and capillarity compete. For square drops, a dominant effect of footprint constraint leads to grid modes which are constrained response; otherwise the drops exhibit spherical modes, the characteristic of sessile drops on flat plates. Chun-Ti Chang takes his new position at National Taiwan University on Aug. 15th, 2016. Until then, Chun-Ti Chang is affiliated with Technical University Dortmund, Germany.

  17. Sepsis from dropped clips at laparoscopic cholecystectomy

    Hussain, Sarwat E-mail:


    We report seven patients in whom five dropped surgical clips and two gallstones were visualized in the peritoneal cavity, on radiological studies. In two, subphrenic abscesses and empyemas developed as a result of dropped clips into the peritoneal cavity during or following laparoscopic cholecystectomy. In one of these two, a clip was removed surgically from the site of an abscess. In two other patients dropped gallstones, and in three, dropped clips led to no complications. These were seen incidentally on studies done for other indications. Abdominal abscess secondary to dropped gallstones is a well-recognized complication of laparoscopic cholecystectomy (LC). We conclude that even though dropped surgical clips usually do not cause problems, they should be considered as a risk additional to other well-known causes of post-LC abdominal sepsis.

  18. A Different Cone: Bursting Drops in Solids

    Zhao, Xuanhe


    Drops in fluids tend to be spheres--a shape that minimizes surface energy. In thunderstorm clouds, drops can become unstable and emit thin jets when charged beyond certain limits. The instability of electrified drops in gases and liquids has been widely studied and used in applications including ink-jet printing, electrospinning nano-fibers, microfluidics and electrospray ionization. Here we report a different scenario: drops in solids become unstable and burst under sufficiently high electric fields. We find the instability of drops in solids morphologically resembles that in liquids, but the critical electric field for the instability follows a different scaling due to elasticity of solids. Our observations and theoretical models not only advance the fundamental understanding of electrified drops but also suggest a new failure mechanism of high-energy-density dielectric polymers, which have diverse applications ranging from capacitors for power grids and electric vehicles to muscle-like transducers for soft robots and energy harvesting.

  19. The suppression of droplet-droplet coalescence in a sheared yield stress fluid.

    Goel, Sachin; Ramachandran, Arun


    Efforts to stabilize emulsions against coalescence in flow have often focused on modifying properties of the interface between the continuous and dispersed phases, to create a repulsive barrier against coalescence. But prior to experiencing any interaction force, the liquid film between two colliding drops has to drain, and if this drainage process is arrested, coalescence will be suppressed. In this work, scaling analyses and thin-film lubrication simulations are used to study the hydrodynamic drainage properties of thin films of a Bingham fluid (a yield stress fluid, which flows only when a critical stress is exceeded) created between two drops colliding under the action of a constant force. Our study shows that the hydrodynamic drainage process can be arrested completely when the film reaches a critical thickness, before attractive forces result in the rupture of the film, provided that the film shape is in the dimpled configuration. This critical thickness is hf=6τ0(2)R(3)/γ(2), where τ0 is the yield stress of the suspending medium, R is the drop radius and γ is the interfacial tension between the fluids. The yield stress can thus serve as an independent tuning parameter that sets an upper bound on the drop size beyond which coalescence is turned off in sheared emulsions. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Quercetin ameliorates chronic unpredicted stress-mediated memory dysfunction in male Swiss albino mice by attenuating insulin resistance and elevating hippocampal GLUT4 levels independent of insulin receptor expression.

    Mehta, Vineet; Parashar, Arun; Sharma, Arun; Singh, Tiratha Raj; Udayabanu, Malairaman


    Chronic stress is associated with impaired neuronal functioning, altered insulin signaling, and behavioral dysfunction. Quercetin has shown neuroprotective and antidiabetic effects, besides modulating cognition and insulin signaling. Therefore, in the present study, we explored whether or not quercetin ameliorates stress-mediated cognitive dysfunction and explored the underlying mechanism. Swiss albino male mice were subjected to an array of unpredicted stressors for 21days, during which 30mg/kg quercetin treatment was given orally. The effect of chronic unpredicted stress (CUS) and quercetin treatment on cognition were evaluated using novel object recognition (NOR) and Morris water maze (MWM) tests. Hippocampal neuronal integrity was observed by histopathological examination. Blood glucose, serum corticosterone, and insulin levels were measured by commercial kits and insulin resistance was evaluated in terms of HOMA-IR index. Hippocampal insulin signaling was determined by immunofluorescence staining. CUS induced significant cognitive dysfunction (NOR and MWM) and severely damaged hippocampal neurons, especially in the CA3 region. Quercetin treatment alleviated memory dysfunction and rescued neurons from CUS-mediated damage. Fasting blood glucose, serum corticosterone, and serum insulin were significantly elevated in stressed animals, besides, having significantly higher HOMA-IR index, suggesting the development of insulin resistance. Quercetin treatment alleviated insulin resistance and attenuated altered biochemical parameters. CUS markedly down-regulated insulin signaling in CA3 region and quercetin treatment improved neuronal GLUT4 expression, which seemed to be independent of insulin and insulin receptor levels. These results suggest that intact insulin functioning in the hippocampus is essential for cognitive functions and quercetin improves CUS-mediated cognitive dysfunction by modulating hippocampal insulin signaling. Copyright © 2016 Elsevier Inc. All

  1. PI 3 kinase related kinases-independent proteolysis of BRCA1 regulates Rad51 recruitment during genotoxic stress in human cells.

    Ian Hammond-Martel

    Full Text Available BACKGROUND: The function of BRCA1 in response to ionizing radiation, which directly generates DNA double strand breaks, has been extensively characterized. However previous investigations have produced conflicting data on mutagens that initially induce other classes of DNA adducts. Because of the fundamental and clinical importance of understanding BRCA1 function, we sought to rigorously evaluate the role of this tumor suppressor in response to diverse forms of genotoxic stress. METHODOLOGY/PRINCIPAL FINDINGS: We investigated BRCA1 stability and localization in various human cells treated with model mutagens that trigger different DNA damage signaling pathways. We established that, unlike ionizing radiation, either UVC or methylmethanesulfonate (MMS (generating bulky DNA adducts or alkylated bases respectively induces a transient downregulation of BRCA1 protein which is neither prevented nor enhanced by inhibition of PIKKs. Moreover, we found that the proteasome mediates early degradation of BRCA1, BARD1, BACH1, and Rad52 implying that critical components of the homologous recombination machinery need to be functionally abrogated as part of the early response to UV or MMS. Significantly, we found that inhibition of BRCA1/BARD1 downregulation is accompanied by the unscheduled recruitment of both proteins to chromatin along with Rad51. Consistently, treatment of cells with MMS engendered complete disassembly of Rad51 from pre-formed ionizing radiation-induced foci. Following the initial phase of BRCA1/BARD1 downregulation, we found that the recovery of these proteins in foci coincides with the formation of RPA and Rad51 foci. This indicates that homologous recombination is reactivated at later stage of the cellular response to MMS, most likely to repair DSBs generated by replication blocks. CONCLUSION/SIGNIFICANCE: Taken together our results demonstrate that (i the stabilities of BRCA1/BARD1 complexes are regulated in a mutagen-specific manner

  2. A Model for Predicting Holdup and Pressure Drop in Gas-Liquid Stratified Flow


    The time-dependent liquid film thickness and pressure drop were measured by using parallel-wire conductance probes and capacitance differential-preesure transducers. Applying the eddy viscosity theory and an appropriate correlation of interfacial sear stress,a new two-dimensional separated model of holdup and pressure drop of turbulent/turbulent gas-liquid stratified flow was presented. Prediction results agreed well with experimental data.

  3. Mass Remaining During Evaporation of Sessile Drop


    to> \\fyj Greek Symbols P Contact angle of sessile drop . n Droplet shape factor = h/d 6 Non-dimensional time = t/i V Air kinematic viscosity...factor n, = h / d (where h = maximum height of the drop ), which can also be directly related to the contact angle (P) of the drop , that is r| = (l-cos(P...three drop size (initial mass or volume) conditions with all other conditions the same. These runs have a constant contact angle , (3 = 16.5° ± 1.5

  4. Rapid Drop Dynamics During Superhydrophobic Condensation

    Zhang, Xiaodong; Boreyko, Jonathan; Chen, Chuan-Hua


    Rapid drop motion is observed on superhydrophobic surfaces during condensation; condensate drops with diameter of order 10 μm can move at above 100G and 0.1 m/s. When water vapor condenses on a horizontal superhydrophobic surface, condensate drops move in a seemingly random direction. The observed motion is attributed to the energy released through coalescence of neighboring condensate drops. A scaling analysis captured the initial acceleration and terminal velocity. Our work is a step forward in understanding the dynamics of superhydrophobic condensation occurring in both natural water-repellant plants and engineered dropwise condensers.

  5. Numerical simulations of vibrating sessile drop

    Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Craster, Richard; Matar, Omar


    A vibrated drop constitutes a very rich physical system, blending both interfacial and volume phenomena. A remarkable experimental study was performed by M. Costalonga highlighting sessile drop motion subject to horizontal, vertical and oblique vibration. Several intriguing phenomena are observed such as drop walking and rapid droplet ejection. We perform three-dimensional direct numerical simulations of vibrating sessile drops where the phenomena described above are computed using the massively parallel multiphase code BLUE. EPSRC UK Programme Grant MEMPHIS (EP/K003976/1).

  6. Impact force of a falling drop

    Soto, Dan; Clanet, Cristophe; Quere, David; Xavier Boutillon Collaboration


    Controlling droplet deposition is crucial in many industrial processes such as spraying pesticides on crops, inkjet printing or spray coating. Therefore, the dynamics of drop impacts have been extensively studied for more than one century. However, few literature describe the impacting force of a drop on a solid flat surface, although it might be a way to measure the size distribution of a collection of falling drops. We investigated experimentally how the instantaneous force at impact depends on impact velocity and drop radius. We also propose a new model to understand our observations. Physique et Mecanique des Milieux Heterogenes, CNRS, ESPCI, Paris France & Ladhyx, CNRS, Ecole Polytechnique, Palaiseau, France.

  7. Drops moving along and across a filament

    Sahu, Rakesh P.; Sinha-Ray, Suman; Yarin, Alexander; Pourdeyhimi, Behnam


    The present work is devoted to the experimental study of oil drop motion both along and across a filament due to the air jet blowing. In case of drop moving along the filament, phenomena such as drop stick-slip motion, shape oscillations, shedding of a tail along the filament, the tail capillary instability and drop recoil motion were observed which were rationalized in the framework of simplified models. Experiments with cross-flow of the surrounding gas relative to the filament with an oil drop on it were conducted, with air velocity in the range of 7.23 to 22.7 m s-1. The Weber number varied from 2 to 40 and the Ohnesorge number varied from 0.07 to 0.8. The lower and upper critical Weber numbers were introduced to distinguish between the beginning of the drop blowing off the filament and the onset of the bag-stamen breakup. The range of the Weber number between these two critical values is filled with three types of vibrational breakup: V1 (a balloon-like drop being blown off), V2 (a drop on a single stamen being blown off), and V3 (a drop on a double stamen being blown off). The Weber number/Ohnesorge number plane was delineated into domains of different breakup regimes. The work is supported by the Nonwovens Cooperative Research Center (NCRC).

  8. Drop deformation by laser-pulse impact

    Gelderblom, Hanneke; Klein, Alexander L; Bouwhuis, Wilco; Lohse, Detlef; Villermaux, Emmanuel; Snoeijer, Jacco H


    A free-falling absorbing liquid drop hit by a nanosecond laser-pulse experiences a strong recoil-pressure kick. As a consequence, the drop propels forward and deforms into a thin sheet which eventually fragments. We study how the drop deformation depends on the pulse shape and drop properties. We first derive the velocity field inside the drop on the timescale of the pressure pulse, when the drop is still spherical. This yields the kinetic-energy partition inside the drop, which precisely measures the deformation rate with respect to the propulsion rate, before surface tension comes into play. On the timescale where surface tension is important the drop has evolved into a thin sheet. Its expansion dynamics is described with a slender-slope model, which uses the impulsive energy-partition as an initial condition. Completed with boundary integral simulations, this two-stage model explains the entire drop dynamics and its dependance on the pulse shape: for a given propulsion, a tightly focused pulse results in a...

  9. Universality of Tip Singularity Formation in Freezing Water Drops

    Marin, Alvaro G; Brunet, Philipe; Colinet, Pierre; Snoeijer, Jacco H


    A drop of water deposited on a cold plate freezes into an ice drop with a pointy tip. While this phenomenon clearly finds its origin in the expansion of water upon freezing, a quantitative description of the tip singularity has remained elusive. Here we demonstrate how the geometry of the freezing front, determined by heat transfer considerations, is crucial for the tip formation. We perform systematic measurements of the angles of the conical tip, and reveal the dynamics of the solidification front in a Hele-Shaw geometry. It is found that the cone angle is independent of substrate temperature and wetting angle, suggesting a universal, self-similar mechanism that does not depend on the rate of solidification. We propose a model for the freezing front and derive resulting tip angles analytically, in good agreement with observations.

  10. Development of Active Learning Curriculum for CASPER's Microgravity Drop Tower

    Carmona-Reyes, Jorge; Wang, Li; York, Judy; Matthews, Lorin; Laufer, Rene; Cook, Mike; Schmoke, Jimmy; Hyde, Truell


    As CASPER's new drop tower comes on line, plans for correlated educational research curricula are underway. CASPER's educational research team is working on developing curricula specific to the CASPER drop tower, modeled on a contest currently in use by (BEST) Robotics Inc. within central Texas independent school districts. The curricula integrates age specific use of computer programming software packages such as ``Scratch'' with industry standard communication protocols and augmented reality applications. Content is constructed around an earth and space science framework, covering subjects such as stars and galaxies, matter and energy, fusion and fission at a middle school level. CASPER faculty are partnering with the Region 12 Service Center; this combination provides a wide range of expertise that includes professional development, pedagogical methods, computational thinking in addition to microgravity and space science research expertise. The details of this work will be presented and samples of the manner in which it is impacting the CASPER research and educational outreach partnership will be discussed.

  11. Correlation for Sessile Drop Evaporation

    Kelly-Zion, Peter; Pursell, Christopher; Wassom, Gregory; Mandelkorn, Brenton; Nkinthorn, Chris


    To better understand how the evaporation of sessile drops and small puddles is controlled by the vapor phase transport mechanisms of mass diffusion and buoyancy-induced convection, the evaporation rates of eight liquids evaporating under a broad range of ambient conditions were correlated with physical and geometrical properties. Examination of the correlation provides valuable insight into how the roles of diffusive and convective transport change with physical and geometrical parameters. The correlation predicts measured evaporation rates to within a root-mean-square error of 7.3%. The correlation is composed of two terms, a term which provides the rate of evaporation under diffusion-only conditions, and a term which provides the influence of convection. This second term suggests the manner in which the processes of diffusion and convection are coupled. Both processes are dependent on the distribution of the vapor, through the molar concentration gradient for diffusion and through the mass density gradient for convection. The term representing the influence of convection is approximately inversely proportional to the square root of diffusivity, indicating the tendency of diffusive transport to reduce convection by making the vapor distribution more uniform. Financial support was provided by the ACS Petroleum Research Fund.

  12. Total Site Heat Integration Considering Pressure Drops

    Kew Hong Chew


    Full Text Available Pressure drop is an important consideration in Total Site Heat Integration (TSHI. This is due to the typically large distances between the different plants and the flow across plant elevations and equipment, including heat exchangers. Failure to consider pressure drop during utility targeting and heat exchanger network (HEN synthesis may, at best, lead to optimistic energy targets, and at worst, an inoperable system if the pumps or compressors cannot overcome the actual pressure drop. Most studies have addressed the pressure drop factor in terms of pumping cost, forbidden matches or allowable pressure drop constraints in the optimisation of HEN. This study looks at the implication of pressure drop in the context of a Total Site. The graphical Pinch-based TSHI methodology is extended to consider the pressure drop factor during the minimum energy requirement (MER targeting stage. The improved methodology provides a more realistic estimation of the MER targets and valuable insights for the implementation of the TSHI design. In the case study, when pressure drop in the steam distribution networks is considered, the heating and cooling duties increase by 14.5% and 4.5%.

  13. Aging, Terminal Decline, and Terminal Drop

    Palmore, Erdman; Cleveland, William


    Data from a 20-year longitudinal study of persons over 60 were analyzed by step-wise multiple regression to test for declines in function with age, for terminal decline (linear relationship to time before death), and for terminal drop (curvilinear relationship to time before death). There were no substantial terminal drop effects. (Author)

  14. Self-Excited Drop Oscillations in Electrowetting

    Baret, Jean-Christophe; Decre, Michel M.J.; Mugele, Frieder


    We studied millimeter-sized aqueous sessile drops in an ambient oil environment in a classical electrowetting configuration with a wire-shaped electrode placed at a variable height above the substrate. Within a certain range of height and above a certain threshold voltage, the drop oscillates period

  15. Static shapes of levitated viscous drops

    Duchemin, L.; Lister, J. R.; Lange, U.


    We consider the levitation of a drop of molten glass above a spherical porous mould, through which air is injected with constant velocity. The glass is assumed to be sufficiently viscous compared to air that motion in the drop is negligible. Thus static equilibrium shapes are determined by the coupling between the lubricating pressure in the supporting air cushion and the Young-Laplace equation. The upper surface of the drop is under constant atmospheric pressure; the static shape of the lower surface of the drop is computed using lubrication theory for the thin air film. Matching of the sessile curvature of the upper surface to the curvature of the mould gives rise to a series of capillary "brim" waves near the edge of the drop which scale with powers of a modified capillary number. Several branches of static solutions are found, such that there are multiple solutions for some drop volumes, but no physically reasonable solutions for other drop volumes. Comparison with experiments and full Navier-Stokes calculations suggests that the stability of the process can be predicted from the solution branches for the static shapes, and related to the persistence of brim waves to the centre of the drop. This suggestion remains to be confirmed by a formal stability analysis.

  16. University Drop-Out: An Italian Experience

    Belloc, Filippo; Maruotti, Antonello; Petrella, Lea


    University students' drop-out is a crucial issue for the universities' efficiency evaluation and funding. In this paper, we analyze the drop-out rate of the Economics and Business faculty of Sapienza University of Rome. We use administrative data on 9,725 undergraduates students enrolled in three-years bachelor programs from 2001 to 2007 and…

  17. Many Drops Make a Lake

    Chaitanya S. Mudgal


    greater knowledge, better skills and disseminate this knowledge through this journal to influence as many physicians and their patients as possible. They have taken the knowledge of their teachers, recognized their giants and are now poised to see further than ever before. My grandmother often used to quote to me a proverb from India, which when translated literally means “Many drops make a lake”. I cannot help but be amazed by the striking similarities between the words of Newton and this Indian saying. Therefore, while it may seem intuitive, I think it must be stated that it is vital for the betterment of all our patients that we recognize our own personal lakes to put our drops of knowledge into. More important is that we recognize that it is incumbent upon each and every one of us to contribute to our collective lakes of knowledge such as ABJS. And finally and perhaps most importantly we need to be utterly cognizant of never letting such lakes of knowledge run dry.... ever.

  18. Dynamic Stability of Equilibrium Capillary Drops

    Feldman, William M.; Kim, Inwon C.


    We investigate a model for contact angle motion of quasi-static capillary drops resting on a horizontal plane. We prove global in time existence and long time behavior (convergence to equilibrium) in a class of star-shaped initial data for which we show that topological changes of drops can be ruled out for all times. Our result applies to any drop which is initially star-shaped with respect to a small ball inside the drop, given that the volume of the drop is sufficiently large. For the analysis, we combine geometric arguments based on the moving-plane type method with energy dissipation methods based on the formal gradient flow structure of the problem.

  19. CPAS Preflight Drop Test Analysis Process

    Englert, Megan E.; Bledsoe, Kristin J.; Romero, Leah M.


    Throughout the Capsule Parachute Assembly System (CPAS) drop test program, the CPAS Analysis Team has developed a simulation and analysis process to support drop test planning and execution. This process includes multiple phases focused on developing test simulations and communicating results to all groups involved in the drop test. CPAS Engineering Development Unit (EDU) series drop test planning begins with the development of a basic operational concept for each test. Trajectory simulation tools include the Flight Analysis and Simulation Tool (FAST) for single bodies, and the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulation for the mated vehicle. Results are communicated to the team at the Test Configuration Review (TCR) and Test Readiness Review (TRR), as well as at Analysis Integrated Product Team (IPT) meetings in earlier and intermediate phases of the pre-test planning. The ability to plan and communicate efficiently with rapidly changing objectives and tight schedule constraints is a necessity for safe and successful drop tests.

  20. Temperature Effect on Photovoltaic Modules Power Drop

    Qais Mohammed Aish


    Full Text Available In order to determine what type of photovoltaic solar module could best be used in a thermoelectric photovoltaic power generation. Changing in powers due to higher temperatures (25oC, 35oC, and 45oC have been done for three types of solar modules: monocrystalline , polycrystalline, and copper indium gallium (di selenide (CIGS. The Prova 200 solar panel analyzer is used for the professional testing of three solar modules at different ambient temperatures; 25oC, 35oC, and 45oC and solar radiation range 100-1000 W/m2. Copper indium gallium (di selenide module has the lowest power drop (with the average percentage power drop 0.38%/oC while monocrystalline module has the highest power drop (with the average percentage power drop 0.54%/oC, while polycrystalline module has a percentage power drop of 0.49%/oC.

  1. Pressure drop in CIM disk monolithic columns.

    Mihelic, Igor; Nemec, Damjan; Podgornik, Ales; Koloini, Tine


    Pressure drop analysis in commercial CIM disk monolithic columns is presented. Experimental measurements of pressure drop are compared to hydrodynamic models usually employed for prediction of pressure drop in packed beds, e.g. free surface model and capillary model applying hydraulic radius concept. However, the comparison between pressure drop in monolith and adequate packed bed give unexpected results. Pressure drop in a CIM disk monolithic column is approximately 50% lower than in an adequate packed bed of spheres having the same hydraulic radius as CIM disk monolith; meaning they both have the same porosity and the same specific surface area. This phenomenon seems to be a consequence of the monolithic porous structure which is quite different in terms of the pore size distribution and parallel pore nonuniformity compared to the one in conventional packed beds. The number of self-similar levels for the CIM monoliths was estimated to be between 1.03 and 2.75.

  2. Universality in freezing of an asymmetric drop

    Ismail, Md Farhad; Waghmare, Prashant R.


    We present the evidence of universality in conical tip formation during the freezing of arbitrary-shaped sessile droplets. The focus is to demonstrate the relationship between this universality and the liquid drop shape. We observe that, in the case of asymmetric drops, this universal shape is achieved when the tip reconfigures by changing its location, which subsequently alters the frozen drop shape. The proposed "two-triangle" model quantifies the change in the tip configuration as a function of the asymmetry of the drop that shows a good agreement with the experimental evidence. Finally, based on the experimental and theoretical exercise, we propose the scaling dependence between the variations in the tip configuration and the asymmetry of the drop.

  3. Patients dropping out of treatment in Italy.

    Morlino, M; Martucci, G; Musella, V; Bolzan, M; de Girolamo, G


    The aim of this study was to explore the extent and the specific features of drop-out for patients having a first contact with an university psychiatric outpatient clinic in Italy over the course of 1 year and to determine which variables were associated with early termination of treatment. Of the 158 patients selected for this study, there was an overall 3-month drop-out rate following the first visit of 63%. Of the 59 patients who had returned once after the initial contact, 28 interrupted subsequently the treatment, although the therapist's plan included further visits. The overall drop-out rate at 3 months was thus 82%. The only 2 variables associated with drop-out rates were the patients' perception of the severity of their disorder and the psychiatric history: continuing patients were more frequently in agreement with the clinician's judgment as compared with those who dropped out and were more likely to have already been in psychiatric treatment.

  4. 2.45 GHz Microwave Radiation Impairs Learning and Spatial Memory via Oxidative/Nitrosative Stress Induced p53-Dependent/Independent Hippocampal Apoptosis: Molecular Basis and Underlying Mechanism.

    Shahin, Saba; Banerjee, Somanshu; Singh, Surya Pal; Chaturvedi, Chandra Mohini


    A close association between microwave (MW) radiation exposure and neurobehavioral disorders has been postulated but the direct effects of MW radiation on central nervous system still remains contradictory. This study was performed to understand the effect of short (15 days) and long-term (30 and 60 days) low-level MW radiation exposure on hippocampus with special reference to spatial learning and memory and its underlying mechanism in Swiss strain male mice, Mus musculus. Twelve-weeks old mice were exposed to 2.45 GHz MW radiation (continuous-wave [CW] with overall average power density of 0.0248 mW/cm(2) and overall average whole body specific absorption rate value of 0.0146 W/Kg) for 2 h/day over a period of 15, 30, and 60 days). Spatial learning and memory was monitored by Morris Water Maze. We have checked the alterations in hippocampal oxidative/nitrosative stress, neuronal morphology, and expression of pro-apoptotic proteins (p53 and Bax), inactive executioner Caspase- (pro-Caspase-3), and uncleaved Poly (ADP-ribose) polymerase-1 in the hippocampal subfield neuronal and nonneuronal cells (DG, CA1, CA2, and CA3). We observed that, short-term as well as long-term 2.45 GHz MW radiation exposure increases the oxidative/nitrosative stress leading to enhanced apoptosis in hippocampal subfield neuronal and nonneuronal cells. Present findings also suggest that learning and spatial memory deficit which increases with the increased duration of MW exposure (15 stress induced p53-dependent/independent activation of hippocampal neuronal and nonneuronal apoptosis associated with spatial memory loss.

  5. When the Penny Drops: Reframing Under Stress and Ambiguity


    phase grounded theory methodology (Goulding, 2002), was used to construct a preliminary model using interviews with five unsystematically selected...fear of specific risks , e.g., injury or death. C 12 Triggering Cues Stimuli indicating & activating specific frames. TD, (Abelson, 1981). The...flow chart models (see Figure 2 for 9 illustrative models). The analysis revealed the processes shared a common structure consisting of four segments

  6. Condensation on surface energy gradient shifts drop size distribution toward small drops.

    Macner, Ashley M; Daniel, Susan; Steen, Paul H


    During dropwise condensation from vapor onto a cooled surface, distributions of drops evolve by nucleation, growth, and coalescence. Drop surface coverage dictates the heat transfer characteristics and depends on both drop size and number of drops present on the surface at any given time. Thus, manipulating drop distributions is crucial to maximizing heat transfer. On earth, manipulation is achieved with gravity. However, in applications with small length scales or in low gravity environments, other methods of removal, such as a surface energy gradient, are required. This study examines how chemical modification of a cooled surface affects drop growth and coalescence, which in turn influences how a population of drops evolves. Steam is condensed onto a horizontally oriented surface that has been treated by silanization to deliver either a spatially uniform contact angle (hydrophilic, hydrophobic) or a continuous radial gradient of contact angles (hydrophobic to hydrophilic). The time evolution of number density and associated drop size distributions are measured. For a uniform surface, the shape of the drop size distribution is unique and can be used to identify the progress of condensation. In contrast, the drop size distribution for a gradient surface, relative to a uniform surface, shifts toward a population of small drops. The frequent sweeping of drops truncates maturation of the first generation of large drops and locks the distribution shape at the initial distribution. The absence of a shape change indicates that dropwise condensation has reached a steady state. Previous reports of heat transfer enhancement on chemical gradient surfaces can be explained by this shift toward smaller drops, from which the high heat transfer coefficients in dropwise condensation are attributed to. Terrestrial applications using gravity as the primary removal mechanism also stand to benefit from inclusion of gradient surfaces because the critical threshold size required for

  7. Vertical Drop Of 21-Pwr Waste Package On Unyielding Surface

    S. Mastilovic; A. Scheider; S.M. Bennett


    The objective of this calculation is to determine the structural response of a 21-PWR (pressurized-water reactor) Waste Package (WP) subjected to the 2-m vertical drop on an unyielding surface at three different temperatures. The scope of this calculation is limited to reporting the calculation results in terms of stress intensities in two different WP components. The information provided by the sketches (Attachment I) is that of the potential design of the type of WP considered in this calculation, and all obtained results are valid for that design only.

  8. A simple expression for pressure drops of water and other low molecular liquids in the flow through micro-orifices

    Hasegawa, Tomiichi; Ushida, Akiomi; Narumi, Takatsune


    Flows are generally divided into two types: shear flows and shear-free elongational (extensional) flows. Both are necessary for a thorough understanding of the flow properties of a fluid. Shear flows are easy to achieve in practice, for example, through Poiseuille or Couette flows. Shear-free elongational flows are experimentally hard to achieve, resulting in an incomplete understanding of the flow properties of fluids in micro-devices. Nevertheless, flows through micro-orifices are useful for probing the properties of elongational flows at high elongational rates; although these flows exhibit shear and elongation, the elongation is dominant and the shear is negligible in the central region of the flows. We previously reported an anomalous reduction in pressure drops in the flows of water, a 50/50 mixture of glycerol and water, and silicone oils through micro-orifices. In the present paper, we rearrange the data presented in the previous paper and reveal a simple relationship where the pressure drop is proportional to the velocity through the micro-orifices, independent of the orifice diameter and the viscosity of the liquids tested. We explain our observations by introducing a "fluid element" model, in which fluid elements are formed on entering the orifice. The model is based on the idea that low molecular liquids, including water, generate strong elongational stress, similar to a polymer solution, in the flow through micro-orifices.

  9. The Drop Tower Bremen -An Overview

    von Kampen, Peter; Könemann, Thorben; Rath, Hans J.

    The Center of Applied Space Technology and Microgravity (ZARM) was founded in 1985 as an institute of the University of Bremen, which focuses on research on gravitational and space-related phenomena. In 1988, the construction of ZARM`s drop tower began. Since its inau-guration in September 1990, the eye-catching Drop Tower Bremen with a height of 146m and its characteristic glass roof has become twice a landmark on the campus of the University of Bremen and the emblem of the technology park Bremen. As such an outstanding symbol of space science in Bremen the drop tower provides an european unique facility for experiments under conditions of high-quality weightlessness with residual gravitational accelerations in the microgravity regime. The period of maximum 4.74s of each freely falling experiment at the Drop Tower Bremen is only limited by the height of the drop tower vacuum tube, which was fully manufactured of steal and enclosed by an outer concrete shell. Thus, the pure free fall height of each microgravity drop experiment is approximately 110m. By using the later in-stalled catapult system established in 2004 ZARM`s short-term microgravity laboratory is able to nearly double the time of free fall. This world-wide inimitable capsule catapult system meets scientists` demand of extending the period of weightlessness. During the catapult operation the experiment capsule performs a vertical parabolic flight within the drop tower vacuum tube. In this way the time of microgravity can be extended to slightly over 9s. Either in the drop or in the catapult operation routine the repetition rates of microgravity experiments at ZARM`s drop tower facility are the same, generally up to 3 times per day. In comparison to orbital platforms the ground-based laboratory Drop Tower Bremen represents an economic alternative with a permanent access to weightlessness on earth. Moreover, the exceptional high quality of weightlessness in order of 1e-6 g (in the frequency range below 100

  10. Leidenfrost drops on a heated liquid pool

    Maquet, Laurent; Darbois-Texier, Baptiste; Brandenbourger, Martin; Rednikov, Alexey; Colinet, Pierre; Dorbolo, Stéphane


    We show that a volatile liquid drop placed at the surface of a non-volatile liquid pool warmer than the boiling point of the drop can experience a Leidenfrost effect even for vanishingly small superheats. Such an observation points to the importance of the substrate roughness, negligible in the case considered here, in determining the threshold Leidenfrost temperature. A theoretical model based on the one proposed by Sobac et al. [Phys. Rev. E 90, 053011 (2014)] is developed in order to rationalize the experimental data. The shapes of the drop and of the substrate are analyzed. The model notably provides scalings for the vapor film thickness. For small drops, these scalings appear to be identical to the case of a Leidenfrost drop on a solid substrate. For large drops, in contrast, they are different and no evidence of chimney formation has been observed either experimentally or theoretically in the range of drop sizes considered in this study. Concerning the evaporation dynamics, the radius is shown to decrea...

  11. Interaction of Drops on a Soft Substrate

    Lubbers, Luuk A.; Weijs, Joost H.; Das, Siddhartha; Botto, Lorenzo; Andreotti, Bruno; Snoeijer, Jacco H.


    A sessile drop can elastically deform a substrate by the action of capillary forces. The typical size of the deformation is given by the ratio of surface tension and the elastic modulus, γ / E , which can reach up to 10-100 microns for soft elastomers. In this talk we theoretically show that the contact angles of drops on such a surface exhibit two transitions when increasing γ / E : (i) the microsocopic geometry of the contact line first develops a Neumann-like cusp when γ / E is of the order of few nanometers, (ii) the macroscopic angle of the drop is altered only when γ / E reaches the size of the drop. Using the same framework we then show that two neighboring drops exhibit an effective interaction, mediated by the deformation of the elastic medium. This is in analogy to the well-known Cheerios effect, where small particles at a liquid interface attract eachother due to the meniscus deformations. Here we reveal the nature of drop-drop interactions on a soft substrate by combining numerical and analytical calculations.

  12. Drop impact splashing and air entrapment

    Thoraval, Marie-Jean


    Drop impact is a canonical problem in fluid mechanics, with numerous applications in industrial as well as natural phenomena. The extremely simple initial configuration of the experiment can produce a very large variety of fast and complex dynamics. Scientific progress was made in parallel with major improvements in imaging and computational technologies. Most recently, high-speed imaging video cameras have opened the exploration of new phenomena occurring at the micro-second scale, and parallel computing allowed realistic direct numerical simulations of drop impacts. We combine these tools to bring a new understanding of two fundamental aspects of drop impacts: splashing and air entrapment. The early dynamics of a drop impacting on a liquid pool at high velocity produces an ejecta sheet, emerging horizontally in the neck between the drop and the pool. We show how the interaction of this thin liquid sheet with the air, the drop or the pool, can produce micro-droplets and bubble rings. Then we detail how the breakup of the air film stretched between the drop and the pool for lower impact velocities can produce a myriad of micro-bubbles.

  13. Conically shaped drops in electric fields

    Stone, Howard A.; Brenner, Michael P.; Lister, John R.


    When an electric field is applied to a dielectric liquid containing a suspended immiscible fluid drop, the drop deforms into a prolate ellipsoidal shape. Above a critical field strength the drop develops conical ends, as first observed by Zeleny [Phys. Rev. 10, 1 (1917)] and Wilson & Taylor [Proc. Camb. Phil. Soc. 22, 728 (1925)] for, respectively, the case of conducting drops and soap films in air. The case of two dielectric liquids was studied recently using a slender drop approximation by Li, Halsey & Lobkovsky [Europhys. Lett 27, 575 (1994)]. In this presentation we further develop the slender body approximation to obtain coupled ordinary differential equations for the electric field and the drop shape. Analytical formulae are derived which approximately give the cone angle as a function of the dielectric constant ratio between the two fluids, and the minimum applied electric field at which conical tips first form as a function of the dielectric constant ratio. Finally, drops shapes are calculated numerically and compared with the common prolate shape assumption.

  14. Vibration-induced drop atomization and bursting

    James, A. J.; Vukasinovic, B.; Smith, Marc K.; Glezer, A.


    A liquid drop placed on a vibrating diaphragm will burst into a fine spray of smaller secondary droplets if it is driven at the proper frequency and amplitude. The process begins when capillary waves appear on the free surface of the drop and then grow in amplitude and complexity as the acceleration amplitude of the diaphragm is slowly increased from zero. When the acceleration of the diaphragm rises above a well-defined critical value, small secondary droplets begin to be ejected from the free-surface wave crests. Then, quite suddenly, the entire volume of the drop is ejected from the vibrating diaphragm in the form of a spray. This event is the result of an interaction between the fluid dynamical process of droplet ejection and the vibrational dynamics of the diaphragm. During droplet ejection, the effective mass of the drop diaphragm system decreases and the resonance frequency of the system increases. If the initial forcing frequency is above the resonance frequency of the system, droplet ejection causes the system to move closer to resonance, which in turn causes more vigorous vibration and faster droplet ejection. This ultimately leads to drop bursting. In this paper, the basic phenomenon of vibration-induced drop atomization and drop bursting will be introduced, demonstrated, and characterized. Experimental results and a simple mathematical model of the process will be presented and used to explain the basic physics of the system.

  15. Terminal Effect of Drop Coalescence on Single Drop Mass Transfer Measurements and Its Minimization


    For the mass transfer to single drops during the stage of steady buoyancy-driven motion, experimental measurement is complicated with the terminal effect of additional mass transfer during drop formation and coa lescence at the drop collector. Analysis reveals that consistent operating conditions and experimental procedure are of critical significance for minimizing the terminal effect of drop coalescence on the accuracy of mass transfer measurements. The novel design of a totally-closed extraction column is proposed for this purpose, which guaran tees that the volumetric rate of drop phase injection is exactly equal to that of withdrawal of drops. Tests in two extraction systems demonstrate that the experimental repeatability is improved greatly and the terminal effect of mass transfer during drop coalescence is brought well under control.

  16. Laplacian drop shapes and effect of random perturbations on accuracy of surface tension measurement for different drop constellations.

    Saad, Sameh M I; Neumann, A Wilhelm


    Theoretical drop shapes are calculated for three drop constellations: pendant drops, constrained sessile drops, and unconstrained sessile drops. Based on total Gaussian curvature, shape parameter and critical shape parameter are discussed as a function of different drop sizes and surface tensions. The shape parameter is linked to physical parameters for every drop constellation. The as yet unavailable detailed dimensional analysis for the unconstrained sessile drop is presented. Results show that the unconstrained sessile drop shape depends on a dimensionless volume term and the contact angle. Random perturbations are introduced and the accuracy of surface tension measurement is assessed for precise and perturbed profiles of the three drop constellations. It is concluded that pendant drops are the best method for accurate surface tension measurement, followed by constrained sessile drops. The unconstrained sessile drops come last because they tend to be more spherical at low and moderate contact angles. Of course, unconstrained sessile drops are the only option if contact angles are to be measured.

  17. Induction of Apoptosis in MCF-7 Cells via Oxidative Stress Generation, Mitochondria-Dependent and Caspase-Independent Pathway by Ethyl Acetate Extract of Dillenia suffruticosa and Its Chemical Profile.

    Yin Sim Tor

    Full Text Available Dillenia suffruticosa, which is locally known as Simpoh air, has been traditionally used to treat cancerous growth. The ethyl acetate extract of D. suffruticosa (EADs has been shown to induce apoptosis in MCF-7 breast cancer cells in our previous study. The present study aimed to elucidate the molecular mechanisms involved in EADs-induced apoptosis and to identify the major compounds in the extract. EADs was found to promote oxidative stress in MCF-7 cells that led to cell death because the pre-treatment with antioxidants α-tocopherol and ascorbic acid significantly reduced the cytotoxicity of the extract (P<0.05. DCFH-DA assay revealed that treatment with EADs attenuated the generation of intracellular ROS. Apoptosis induced by EADs was not inhibited by the use of caspase-inhibitor Z-VAD-FMK, suggesting that the cell death is caspase-independent. The use of JC-1 dye reflected that EADs caused disruption in the mitochondrial membrane potential. The related molecular pathways involved in EADs-induced apoptosis were determined by GeXP multiplex system and Western blot analysis. EADs is postulated to induce cell cycle arrest that is p53- and p21-dependent based on the upregulated expression of p53 and p21 (P<0.05. The expression of Bax was upregulated with downregulation of Bcl-2 following treatment with EADs. The elevated Bax/Bcl-2 ratio and the depolarization of mitochondrial membrane potential suggest that EADs-induced apoptosis is mitochondria-dependent. The expression of oxidative stress-related AKT, p-AKT, ERK, and p-ERK was downregulated with upregulation of JNK and p-JNK. The data indicate that induction of oxidative-stress related apoptosis by EADs was mediated by inhibition of AKT and ERK, and activation of JNK. The isolation of compounds in EADs was carried out using column chromatography and elucidated using the nuclear resonance magnetic analysis producing a total of six compounds including 3-epimaslinic acid, kaempferol, kaempferide

  18. Group counseling for medical students with drop-out experiences.

    Kim, Eun Kyung; Baek, Sunyong; Woo, Jae Seok; Im, Sun Ju; Lee, Sun Hee; Kam, Beesung; Lee, Sang Yeoup; Yun, So Jung


    The purpose of this research was to describe our group counseling methods for medical students with drop-out experiences. Group counseling was offered to 11 medical students with drop-out experiences in their previous second semester. All subjects provided written informed consent before participating and completed a 2-day group counseling program using the Gestalt approach. The self-assertiveness training group counseling program consisted of 6 sessions, each of which lasted 90 minutes. Experience reports by participants after the program and data from semi-structured qualitative interviews were qualitatively analyzed. Program participants reported that they were moderately satisfied with the program regarding its usefulness and helpfulness on self-awareness, understanding, and reminding them of attempts to change behavior. Most students showed heightened levels of sincerity perceptions and positive attitudes in every session. The results demonstrated significant changes in experience in self-esteem, self-recognition, and interpersonal relationships. A group counseling program using the Gestalt approach could help medical students with drop-out experiences to adjust with 1 year their juniors, enhance their self-esteem, contribute to their psychological well-being, and prevent student re-failure through effective stress management and improved interpersonal relationships.

  19. Effect of surface charge convection and shape deformation on the dielectrophoretic motion of a liquid drop

    Mandal, Shubhadeep; Bandopadhyay, Aditya; Chakraborty, Suman


    The dielectrophoretic motion and shape deformation of a Newtonian liquid drop in an otherwise quiescent Newtonian liquid medium in the presence of an axisymmetric nonuniform dc electric field consisting of uniform and quadrupole components is investigated. The theory put forward by Feng [J. Q. Feng, Phys. Rev. E 54, 4438 (1996), 10.1103/PhysRevE.54.4438] is generalized by incorporating the following two nonlinear effects—surface charge convection and shape deformation—towards determining the drop velocity. This two-way coupled moving boundary problem is solved analytically by considering small values of electric Reynolds number (ratio of charge relaxation time scale to the convection time scale) and electric capillary number (ratio of electrical stress to the surface tension) under the framework of the leaky dielectric model. We focus on investigating the effects of charge convection and shape deformation for different drop-medium combinations. A perfectly conducting drop suspended in a leaky (or perfectly) dielectric medium always deforms to a prolate shape and this kind of shape deformation always augments the dielectrophoretic drop velocity. For a perfectly dielectric drop suspended in a perfectly dielectric medium, the shape deformation leads to either increase (for prolate shape) or decrease (for oblate shape) in the dielectrophoretic drop velocity. Both surface charge convection and shape deformation affect the drop motion for leaky dielectric drops. The combined effect of these can significantly increase or decrease the dielectrophoretic drop velocity depending on the electrohydrodynamic properties of both the liquids and the relative strength of the electric Reynolds number and electric capillary number. Finally, comparison with the existing experiments reveals better agreement with the present theory.

  20. Staffing Up and Dropping Out

    Mark Fetler


    Full Text Available Growing public school enrollment and the need to maintain or improve service to students has increased the demand for teachers, perhaps more rapidly than existing sources can accommodate. While some schools recruit well qualified teachers by offering higher salaries or better working conditions, others may satisfy their need for staff by relaxing hiring standards or assigning novice teachers to difficult classrooms. Schools' hiring policies have consequences for student success. Dropout rates tend to be higher where faculties include a greater percentage of minimally educated teachers or teachers with little experience. The relationship between dropout rate and teacher qualifications is independent of student poverty, school size, and location. A proposed strategy to reduce dropout rates is to encourage higher preparation and employment standards, and to provide appropriate classroom assignments, mentoring, and support for new teachers.

  1. Conversion Disorder; an Unusual Etiology of Unilateral Foot Drop.

    Ayaz, Saeed Bin; Matee, Sumeera; Malik, Riffat; Ahmad, Khalil


    Foot drop is generally a consequence of common peroneal or sciatic nerve injury or L5 radiculopathy but rarely, it can be a manifestation of conversion disorder. A 24-year-old male presented with a foot drop on left side that developed overnight. He had difficulty walking with a trunk tilt towards right side and numbness in left leg up to mid-thigh. The initial diagnosis by the general practitioner was common peroneal nerve injury, which was not supported by the subsequent detailed examination in the physiatry department. Routine laboratory investigations, computed tomographic scan of brain and electrophysiological evaluation were normal. In a multidisciplinary team evaluation involving a psychiatrist, he was diagnosed to be suffering from conversion disorder and was advised gait retraining, cognitive and behavioral therapy and tablet venlafaxine. By sixth day of treatment, the patient was able to walk independently with a normal gait pattern and reported complete recovery of his symptoms. In the absence of an identifiable organic cause of foot drop in a patient, conversion disorder may be considered necessitating early intervention by a psychiatrist.

  2. Nanofluid Drop Evaporation: Experiment, Theory, and Modeling

    Gerken, William James

    Nanofluids, stable colloidal suspensions of nanoparticles in a base fluid, have potential applications in the heat transfer, combustion and propulsion, manufacturing, and medical fields. Experiments were conducted to determine the evaporation rate of room temperature, millimeter-sized pendant drops of ethanol laden with varying amounts (0-3% by weight) of 40-60 nm aluminum nanoparticles (nAl). Time-resolved high-resolution drop images were collected for the determination of early-time evaporation rate (D2/D 02 > 0.75), shown to exhibit D-square law behavior, and surface tension. Results show an asymptotic decrease in pendant drop evaporation rate with increasing nAl loading. The evaporation rate decreases by approximately 15% at around 1% to 3% nAl loading relative to the evaporation rate of pure ethanol. Surface tension was observed to be unaffected by nAl loading up to 3% by weight. A model was developed to describe the evaporation of the nanofluid pendant drops based on D-square law analysis for the gas domain and a description of the reduction in liquid fraction available for evaporation due to nanoparticle agglomerate packing near the evaporating drop surface. Model predictions are in relatively good agreement with experiment, within a few percent of measured nanofluid pendant drop evaporation rate. The evaporation of pinned nanofluid sessile drops was also considered via modeling. It was found that the same mechanism for nanofluid evaporation rate reduction used to explain pendant drops could be used for sessile drops. That mechanism is a reduction in evaporation rate due to a reduction in available ethanol for evaporation at the drop surface caused by the packing of nanoparticle agglomerates near the drop surface. Comparisons of the present modeling predictions with sessile drop evaporation rate measurements reported for nAl/ethanol nanofluids by Sefiane and Bennacer [11] are in fairly good agreement. Portions of this abstract previously appeared as: W. J

  3. Deviation of viscous drops at chemical steps

    Semprebon, Ciro; Filippi, Daniele; Perlini, Luca; Pierno, Matteo; Brinkmann, Martin; Mistura, Giampaolo


    We present systematic wetting experiments and numerical simulations of gravity driven liquid drops sliding on a plane substrate decorated with a linear chemical step. Surprisingly, the optimal direction to observe crossing is not the one perpendicular to the step, but a finite angle that depends on the material parameters. We computed the landscapes of the force acting on the drop by means of a contact line mobility model showing that contact angle hysteresis dominates the dynamics at the step and determines whether the drop passes onto the lower substrate. This analysis is very well supported by the experimental dynamic phase diagram in terms of pinning, crossing, sliding and sliding followed by pinning.

  4. New Hydrodynamic Mechanism for Drop Coarsening

    Nikolayev, Vadim; Guenoun, Patrick


    We discuss a new mechanism of drop coarsening due to coalescence only, which describes the late stages of phase separation in fluids. Depending on the volume fraction of the minority phase, we identify two different regimes of growth, where the drops are interconnected and their characteristic size grows linearly with time, and where the spherical drops are disconnected and the growth follows (time) 1/3. The transition between the two regimes is sharp and occurs at a well defined volume fraction of order 30%.

  5. On the Deepwater Horizon drop size distributions

    Ryerson, T. B.; Atlas, E. L.; Blake, D. R.; De Gouw, J. A.; Warneke, C.; Peischl, J.; Brock, C. A.; McKeen, S. A.


    Model simulations of the fate of gas and oil released following the Deepwater Horizon blowout in 2012 depend critically on the assumed drop size distributions. We use direct observations of surfacing time, surfacing location, and atmospheric chemical composition to infer an average drop size distribution for June 10, 2012, providing robust first-order constraints on parameterizations in models. We compare the inferred drop size distribution to published work on Deepwater Horizon and discuss the ability of this approach to determine the efficacy of subsurface dispersant injection.

  6. Proceedings of the Second International Colloquium on Drops and Bubbles

    Lecroissette, D. H. (Editor)


    Applications of bubble and drop technologies are discussed and include: low gravity manufacturing, containerless melts, microballoon fabrication, ink printers, laser fusion targets, generation of organic glass and metal shells, and space processing. The fluid dynamics of bubbles and drops were examined. Thermomigration, capillary flow, and interfacial tension are discussed. Techniques for drop control are presented and include drop size control and drop shape control.

  7. Electrohydrodynamic migration of a spherical drop in a general quadratic flow

    Mandal, Shubhadeep; Chakraborty, Suman


    We investigate the motion of a spherical drop in a general quadratic flow acted upon by an arbitrarily oriented externally applied uniform electric field. The drop and media are considered to be leaky dielectrics. The flow field affects the distribution of charges on the drop surface, which leads to alteration in the electric field, thereby affecting the velocity field through the Maxwell stress on the fluid-fluid interface. The two-way coupled electrohydrodynamics is central towards dictating the motion of the drop in the flow field. We analytically address the electric potential distribution and Stokesian flow field in and around the drop in a general quadratic flow for small electric Reynolds number (which is the ratio of the charge relaxation time scale to the convective time scale). As a special case, we consider a drop in an unbounded cylindrical Poiseuille flow and show that, an otherwise absent, cross-stream drop migration may be obtained in the presence of a uniform electric field. Depending on the d...

  8. Blood drop size in passive dripping from weapons.

    Kabaliuk, N; Jermy, M C; Morison, K; Stotesbury, T; Taylor, M C; Williams, E


    Passive dripping, the slow dripping of blood under gravity, is responsible for some bloodstains found at crime scenes, particularly drip trails left by a person moving through the scene. Previous work by other authors has established relationships, under ideal conditions, between the size of the stain, the number of spines and satellite stains, the roughness of the surface, the size of the blood droplet and the height from which it falls. To apply these relationships to infer the height of fall requires independent knowledge of the size of the droplet. This work aims to measure the size of droplets falling from objects representative of hand-held weapons. Pig blood was used, with density, surface tension and viscosity controlled to fall within the normal range for human blood. Distilled water was also tested as a reference. Drips were formed from stainless steel objects with different roughnesses including cylinders of diameter between 10 and 100 mm, and flat plates. Small radius objects including a knife and a wrench were also tested. High speed images of the falling drops were captured. The primary blood drop size ranged from 4.15±0.11 mm up to 6.15±0.15 mm (depending on the object), with the smaller values from sharper objects. The primary drop size correlated only weakly with surface roughness, over the roughness range studied. The number of accompanying droplets increased with the object size, but no significant correlation with surface texture was observed. Dripping of blood produced slightly smaller drops, with more accompanying droplets, than dripping water. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Electric field induced deformation of sessile drops

    Corson, Lindsey; Tsakonas, Costas; Duffy, Brian; Mottram, Nigel; Brown, Carl; Wilson, Stephen


    The ability to control the shape of a drop with the application of an electric field has been exploited for many technological applications including measuring surface tension, producing an optical display device, and optimising the optical properties of microlenses. In this work we consider, both theoretically and experimentally, the deformation of pinned sessile drops with contact angles close to either 0° or 90° resting on the lower substrate inside a parallel plate capacitor due to an A.C. electric field. Using both asymptotic and numerical approaches we obtain predictive equations for the static and dynamic drop shape deformations as functions of the key experimental parameters (drop size, capacitor plate separation, electric field magnitude and contact angle). The asymptotic results agree well with the experimental results for a range of liquids. We gratefully acknowledge the financial support of EPSRC via research Grants EP/J009865 and EP/J009873.

  10. How to Use Nose Drops Properly

    ... Use nose drops only as long as directed Store medications out of reach of children Copyright 2013, American Society of Health-System Pharmacists. All rights reserved. This material may not be reproduced, displayed, modified, or distributed ...

  11. How to Use Eye Drops Properly

    ... doses Use the exact number of drops recommended Store medications out of reach of children Copyright 2013, American Society of Health-System Pharmacists. All rights reserved. This material may not be reproduced, displayed, modified, or distributed ...

  12. Micro-splashing by drop impacts

    Thoroddsen, Sigurdur T.


    We use ultra-high-speed video imaging to observe directly the earliest onset of prompt splashing when a drop impacts onto a smooth solid surface. We capture the start of the ejecta sheet travelling along the solid substrate and show how it breaks up immediately upon emergence from the underneath the drop. The resulting micro-droplets are much smaller and faster than previously reported and may have gone unobserved owing to their very small size and rapid ejection velocities, which approach 100 m s-1, for typical impact conditions of large rain drops. We propose a phenomenological mechanism which predicts the velocity and size distribution of the resulting microdroplets. We also observe azimuthal undulations which may help promote the earliest breakup of the ejecta. This instability occurs in the cusp in the free surface where the drop surface meets the radially ejected liquid sheet. © 2012 Cambridge University Press.

  13. Total Gaussian curvature, drop shapes and the range of applicability of drop shape techniques.

    Saad, Sameh M I; Neumann, A Wilhelm


    Drop shape techniques are used extensively for surface tension measurement. It is well-documented that, as the drop/bubble shape becomes close to spherical, the performance of all drop shape techniques deteriorates. There have been efforts quantifying the range of applicability of drop techniques by studying the deviation of Laplacian drops from the spherical shape. A shape parameter was introduced in the literature and was modified several times to accommodate different drop constellations. However, new problems arise every time a new configuration is considered. Therefore, there is a need for a universal shape parameter applicable to pendant drops, sessile drops, liquid bridges as well as captive bubbles. In this work, the use of the total Gaussian curvature in a unified approach for the shape parameter is introduced for that purpose. The total Gaussian curvature is a dimensionless quantity that is commonly used in differential geometry and surface thermodynamics, and can be easily calculated for different Laplacian drop shapes. The new definition of the shape parameter using the total Gaussian curvature is applied here to both pendant and constrained sessile drops as an illustration. The analysis showed that the new definition is superior and reflects experimental results better than previous definitions, especially at extreme values of the Bond number.

  14. Fluid Flower : Microliquid Patterning via Drop Impact

    Lee, Minhee


    In microfluidic technologies, direct patterning of liquid without resorting to micromachined solid structures has various advantages including reduction of the frictional dissipation and the fabrication cost. This fluid dynamics video illustrates the method to micropattern a liquid on a solid surface with drop impact. We experimentally show that a water drop impacting with the wettability-patterned solid retracts fast on the hydrophobic regions while being arrested on the hydrophilic areas.

  15. Blood drop patterns: Formation and applications.

    Chen, Ruoyang; Zhang, Liyuan; Zang, Duyang; Shen, Wei


    The drying of a drop of blood or plasma on a solid substrate leads to the formation of interesting and complex patterns. Inter- and intra-cellular and macromolecular interactions in the drying plasma or blood drop are responsible for the final morphologies of the dried patterns. Changes in these cellular and macromolecular components in blood caused by diseases have been suspected to cause changes in the dried drop patterns of plasma and whole blood, which could be used as simple diagnostic tools to identify the health of humans and livestock. However, complex physicochemical driving forces involved in the pattern formation are not fully understood. This review focuses on the scientific development in microscopic observations and pattern interpretation of dried plasma and whole blood samples, as well as the diagnostic applications of pattern analysis. Dried drop patterns of plasma consist of intricate visible cracks in the outer region and fine structures in the central region, which are mainly influenced by the presence and concentration of inorganic salts and proteins during drying. The shrinkage of macromolecular gel and its adhesion to the substrate surface have been thought to be responsible for the formation of the cracks. Dried drop patterns of whole blood have three characteristic zones; their formation as functions of drying time has been reported in the literature. Some research works have applied engineering treatment to the evaporation process of whole blood samples. The sensitivities of the resultant patterns to the relative humidity of the environment, the wettability of the substrates, and the size of the drop have been reported. These research works shed light on the mechanisms of spreading, evaporation, gelation, and crack formation of the blood drops on solid substrates, as well as on the potential applications of dried drop patterns of plasma and whole blood in diagnosis.

  16. Drop Performance Test of CRDMs for JRTR

    Choi, Myoung-Hwan; Cho, Yeong-Garp; Chung, Jong-Ha [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Jung-Hyun [POSCO Plandtec Co. Ltd, Ulsan (Korea, Republic of); Lee, Kwan-Hee [RIST, Pohang (Korea, Republic of)


    The drop test results of CRDMs with AC-type electromagnet show that the initial delay times are not satisfied with the requirement, 0.15 seconds. After the replacement of the electromagnet from AC-type to DCtype, the drop times of CARs and accelerations due to the impact of moving parts are satisfied with all requirements. As a result, it is found that four CRDMs to be installed at site have a good drop performance, and meet all performance requirements. A control rod drive mechanism (CRDM) is a device to control the position of a control absorber rod (CAR) in the core by using a stepping motor which is commanded by the reactor regulating system (RRS) to control the reactivity during the normal operation of the reactor. The top-mounted CRDM driven by the stepping motor for Jordan Research and Training Reactor (JRTR) has been developed in KAERI. The CRDM for JRTR has been optimized by the design improvement based on that of the HANARO. It is necessary to verify the performances such as the stepping, drop, endurance, vibration, seismic and structural integrity for active components. Especially, the CAR drop curves are important data for the safety analysis. This paper describes the test results to demonstrate the drop performances of a prototype and 4 CRDMs to be installed at site. The tests are carried out at a test rig simulating the actual reactor's conditions.

  17. Transition Mode Shapes in a Vibrating Drop

    Vukasinovic, Bojan; Smith, Marc K.; Glezer, Ari


    Vertical, time-periodic vibration of a diaphragm has been used to atomize a primary sessile drop into a fine spray of secondary droplets. The evolution and rate of atomization depend on the coupled dynamics of the sessile drop and the piezoelectrically-driven, low-mass diaphragm. The evolution of the free surface of the drop is characterized by the appearance of a hierarchy of surface waves that we investigated using high-speed imaging and laser vibrometry. At low-driving amplitudes, we see the appearance of time-harmonic axisymmetric waves on the drop's free surface induced by the motion of the contact line. As the vibration amplitude increases, azimuthal waves at the subharmonic of the forcing frequency appear around the periphery of the drop and propagate towards its center. A striking lattice mode emerges upon the breakdown of the axisymmetric wave pattern, followed by the appearance of the highly-agitated free surface of the pre-ejection mode shape. Subsequent to the breakdown of the lattice structure, the frequency of the most energetic mode is a subharmonic of the driving frequency. The complex interaction of the fundamental and subharmonic waves ultimately leads to the breakdown of the free surface and the atomization of the drop.

  18. Pattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study

    Bhardwaj, Rajneesh; Attinger, Daniel


    An efficient way to precisely pattern particles on solid surfaces is to dispense and evaporate colloidal drops, as for bioassays. The dried deposits often exhibit complex structures exemplified by the coffee ring pattern, where most particles have accumulated at the periphery of the deposit. In this work, the formation of deposits during the drying of nanoliter colloidal drops on a flat substrate is investigated numerically and experimentally. A finite-element numerical model is developed that solves the Navier-Stokes, heat and mass transport equations in a Lagrangian framework. The diffusion of vapor in the atmosphere is solved numerically, providing an exact boundary condition for the evaporative flux at the droplet-air interface. Laplace stresses and thermal Marangoni stresses are accounted for. The particle concentration is tracked by solving a continuum advection-diffusion equation. Wetting line motion and the interaction of the free surface of the drop with the growing deposit are modeled based on crite...

  19. Spreading of Electrolyte Drops on Charged Surfaces: Electric Double Layer Effects on Drop Dynamics

    Bae, Kyeong; Sinha, Shayandev; Chen, Guang; Das, Siddhartha


    Drop spreading is one of the most fundamental topics of wetting. Here we study the spreading of electrolyte drops on charged surfaces. The electrolyte solution in contact with the charged solid triggers the formation of an electric double layer (EDL). We develop a theory to analyze how the EDL affects the drop spreading. The drop dynamics is studied by probing the EDL effects on the temporal evolution of the contact angle and the base radius (r). The EDL effects are found to hasten the spreading behaviour - this is commensurate to the EDL effects causing a ``philic'' tendency in the drops (i.e., drops attaining a contact angle smaller than its equilibrium value), as revealed by some of our recent papers. We also develop scaling laws to illustrate the manner in which the EDL effects make the r versus time (t) variation deviate from the well known r ~tn variation, thereby pinpointing the attainment of different EDL-mediated spreading regimes.

  20. Charge and Size Distributions of Electrospray Drops

    de Juan L; de la Mora JF


    The distributions of charge q and diameter d of drops emitted from electrified liquid cones in the cone-jet mode are investigated with two aerosol instruments. A differential mobility analyzer (DMA, Vienna type) first samples the spray drops, selects those with electrical mobilities within a narrow band, and either measures the associated current or passes them to a second instrument. The drops may also be individually counted optically and sized by sampling them into an aerodynamic size spectrometer (API's Aerosizer). For a given cone-jet, the distribution of charge q for the main electrospray drops is some 2.5 times broader than their distribution of diameters d, with qmax/qmin approximately 4. But mobility-selected drops have relative standard deviations of only 5% for both d and q, showing that the support of the (q, d) distribution is a narrow band centered around a curve q(d). The approximate one-dimensionality of this support region is explained through the mechanism of jet breakup, which is a random process with only one degree of freedom: the wavelength of axial modulation of the jet. The observed near constancy of the charge over volume ratio (q approximately d3) shows that the charge is frozen in the liquid surface at the time scale of the breakup process. The charge over volume ratio of the primary drops varies between 98 and 55% of the ratio of spray current I over liquid flow rate Q, and decreases at increasing Q. I/Q is therefore an unreliable measure of the charge density of these drops.

  1. Motion of Drops on Surfaces with Wettability Gradients

    Subramanian, R. Shankar; McLaughlin, John B.; Moumen, Nadjoua; Qian, Dongying


    desiccator. This is done using an approximate line source of the vapor in the form of a string soaked in the alkylchlorosilane. Ordinarily, many fluids, including water, wet the surface of silicon quite well. This means that the contact angle is small. But the silanized surface resists wetting, with contact angles that are as large as 100 degs. Therefore, a gradient of wettability is formed on the silicon surface. The region near the string is highly hydrophobic, and the contact angle decreases gradually toward a small value at the hydrophilic end away from this region. The change in wettability occurs over a distance of several mm. The strip is placed on a platform within a Plexiglas cell. Drops of a suitable liquid are introduced on top of the strip near the hydrophobic end. An optical system attached to a video camera is trained on the drop so that images of the moving drop can be captured on videotape for subsequent analysis. We have performed preliminary experiments with water as well as ethylene glycol drops. Results from these experiments will be presented in the poster. Future plans include the refinement of the experimental system so as to permit images to be recorded from the side as well as the top, and the conduct of a systematic study in which the drop size is varied over a good range. Experiments will be conducted with different fluids so as to obtain the largest possible range of suitably defined Reynolds and Capillary numbers. Also, an effort will be initiated on theoretical modeling of this motion. The challenges in the development of the theoretical description lie in the proper analysis of the region in the vicinity of the contact line, as well as in the free boundary nature of the problem. It is known that continuum models assuming the no slip condition all the way to the contact line fail by predicting that the stress on the solid surface becomes singular as the contact line is approached. One approach for dealing with this issue has been to relax the no

  2. Shape oscillation of a levitated drop in an acoustic field

    Ran, Weiyu


    A `star drop' refers to the patterns created when a drop, flattened by some force, is excited into shape mode oscillations. These patterns are perhaps best understood as the two dimensional analog to the more common three dimensional shape mode oscillations. In this fluid dynamics video an ultrasonic standing wave was used to levitate a liquid drop. The drop was then flattened into a disk by increasing the field strength. This flattened drop was then excited to create star drop patterns by exciting the drop at its resonance frequency. Different oscillatory modes were induced by varying the drop radius, fluid properties, and frequency at which the field strength was modulated.

  3. Adaptive Tuning of Frequency Thresholds Using Voltage Drop Data in Decentralized Load Shedding

    Hoseinzadeh, Bakhtyar; Faria Da Silva, Filipe Miguel; Bak, Claus Leth


    Load shedding (LS) is the last firewall and the most expensive control action against power system blackout. In the conventional under frequency LS (UFLS) schemes, the load drop locations are already determined independently of the event location. Furthermore, the frequency thresholds of LS relays...

  4. Prediction of dynamic and mixing characteristics of drop-laden mixing layers using DNS and LES

    Okong'o, N.; Leboissetier, A.; Bellan, J.


    Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) have been conducted of a temporal mixing layer laden with evaporating drops, in order to assess the ability of LES to reproduce dynamic and mixing aspects of the DNS which affect combustion, independently of combustion models.

  5. Drops with non-circular footprints

    Ravazzoli, Pablo D; Diez, Javier A


    In this paper we study the morphology of drops formed on partially wetting substrates, whose footprint is not circular. This type of drops is a consequence of the breakup processes occurring in thin films when anisotropic contact line motions take place. The anisotropy is basically due to hysteresis effects of the contact angle since some parts of the contact line are wetting, while others are dewetting. Here, we obtain a peculiar drop shape from the rupture of a long liquid filament sitting on a solid substrate, and analyze its shape and contact angles by means of goniometric and refractive techniques. We also find a non--trivial steady state solution for the drop shape within the long wave approximation (lubrication theory), and compare most of its features with experimental data. This solution is presented both in Cartesian and polar coordinates, whose constants must be determined by a certain group of measured parameters. Besides, we obtain the dynamics of the drop generation from numerical simulations of...

  6. Drop splash on a smooth, dry surface

    Riboux, Guillaume; Gordillo, Jose Manuel; Korobkin, Alexander


    It is our purpose here to determine the conditions under which a drop of a given liquid with a known radius R impacting against a smooth impermeable surface at a velocity V, will either spread axisymmetrically onto the substrate or will create a splash, giving rise to usually undesired star-shaped patterns. In our experimental setup, drops are generated injecting low viscosity liquids falling under the action of gravity from a stainless steel hypodermic needle. The experimental observations using two high speed cameras operating simultaneously and placed perpendicularly to each other reveal that, initially, the drop deforms axisymmetrically, with A (T) the radius of the wetted area. For high enough values of the drop impact velocity, a thin sheet of liquid starts to be ejected from A (T) at a velocity Vjet > V for instants of time such that T >=Tc . If Vjet is above a certain threshold, which depends on the solid wetting properties as well as on the material properties of both the liquid and the atmospheric gas, the rim of the lamella dewets the solid to finally break into drops. Using Wagner's theory we demonstrate that A (T) =√{ 3 RVT } and our results also reveal that Tc We - 1 / 2 =(ρV2 R / σ) - 1 / 2 and Vjet We 1 / 4 .

  7. Drop impact entrapment of bubble rings

    Thoraval, M.-J.


    We use ultra-high-speed video imaging to look at the initial contact of a drop impacting on a liquid layer. We observe experimentally the vortex street and the bubble-ring entrapments predicted numerically, for high impact velocities, by Thoraval et al. (Phys. Rev. Lett., vol. 108, 2012, article 264506). These dynamics mainly occur within 50 -s after the first contact, requiring imaging at 1 million f.p.s. For a water drop impacting on a thin layer of water, the entrapment of isolated bubbles starts through azimuthal instability, which forms at low impact velocities, in the neck connecting the drop and pool. For Reynolds number Re above -12 000, up to 10 partial bubble rings have been observed at the base of the ejecta, starting when the contact is -20% of the drop size. More regular bubble rings are observed for a pool of ethanol or methanol. The video imaging shows rotation around some of these air cylinders, which can temporarily delay their breakup into micro-bubbles. The different refractive index in the pool liquid reveals the destabilization of the vortices and the formation of streamwise vortices and intricate vortex tangles. Fine-scale axisymmetry is thereby destroyed. We show also that the shape of the drop has a strong influence on these dynamics. 2013 Cambridge University Press.

  8. Drops with non-circular footprints

    Ravazzoli, Pablo D.; González, Alejandro G.; Diez, Javier A.


    In this paper we study the morphology of drops formed on partially wetting substrates, whose footprint is not circular. These drops are consequence of the breakup processes occurring in thin films when anisotropic contact line motions take place. The anisotropy is basically due to the hysteresis of the contact angle since there is a wetting process in some parts of the contact line, while a dewetting occurs in other parts. Here, we obtain a characteristic drop shape from the rupture of a long liquid filament sitting on a solid substrate. We analyze its shape and contact angles by means of goniometric and refractive techniques. We also find a non-trivial steady state solution for the drop shape within the long wave approximation (lubrication theory), and we compare most of its features with experimental data. This solution is presented both in Cartesian and polar coordinates, whose constants must be determined by a certain group of measured parameters. Besides, we obtain the dynamics of the drop generation from numerical simulations of the full Navier-Stokes equation, where we emulate the hysteretic effects with an appropriate spatial distribution of the static contact angle over the substrate.

  9. Drop Testing Representative Multi-Canister Overpacks

    Snow, Spencer D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Morton, Dana K. [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    The objective of the work reported herein was to determine the ability of the Multi- Canister Overpack (MCO) canister design to maintain its containment boundary after an accidental drop event. Two test MCO canisters were assembled at Hanford, prepared for testing at the Idaho National Engineering and Environmental Laboratory (INEEL), drop tested at Sandia National Laboratories, and evaluated back at the INEEL. In addition to the actual testing efforts, finite element plastic analysis techniques were used to make both pre-test and post-test predictions of the test MCOs structural deformations. The completed effort has demonstrated that the canister design is capable of maintaining a 50 psig pressure boundary after drop testing. Based on helium leak testing methods, one test MCO was determined to have a leakage rate not greater than 1x10-5 std cc/sec (prior internal helium presence prevented a more rigorous test) and the remaining test MCO had a measured leakage rate less than 1x10-7 std cc/sec (i.e., a leaktight containment) after the drop test. The effort has also demonstrated the capability of finite element methods using plastic analysis techniques to accurately predict the structural deformations of canisters subjected to an accidental drop event.

  10. Bubble and Drop Nonlinear Dynamics (BDND)

    Trinh, E. H.; Leal, L. Gary; Thomas, D. A.; Crouch, R. K.


    Free drops and bubbles are weakly nonlinear mechanical systems that are relatively simple to characterize experimentally in 1-G as well as in microgravity. The understanding of the details of their motion contributes to the fundamental study of nonlinear phenomena and to the measurement of the thermophysical properties of freely levitated melts. The goal of this Glovebox-based experimental investigation is the low-gravity assessment of the capabilities of a modular apparatus based on ultrasonic resonators and on the pseudo- extinction optical method. The required experimental task is the accurate measurements of the large-amplitude dynamics of free drops and bubbles in the absence of large biasing influences such as gravity and levitation fields. A single-axis levitator used for the positioning of drops in air, and an ultrasonic water-filled resonator for the trapping of air bubbles have been evaluated in low-gravity and in 1-G. The basic feasibility of drop positioning and shape oscillations measurements has been verified by using a laptop-interfaced automated data acquisition and the optical extinction technique. The major purpose of the investigation was to identify the salient technical issues associated with the development of a full-scale Microgravity experiment on single drop and bubble dynamics.

  11. Liquid Drop Measuring Device for Analyzing Liquid Properties


    Based on the correlation between certain properties of liquid and the properties of the corresponding liquid drop formed under given conditions, a liquid drop measuring device is utilized to monitor the drop formation process of the liquid sample with photoelectric measuring methods. The mechanical and optical characteristic of the liquid is explored with the optical fibers from the internal of the liquid drop during its formation. The drop head capacitor is utilized to monitor the growth process of the liquid drop to gain the drop volume information related to the physical property of liquid. The unique liquid drop trace containing the integrated properties of liquid is generated, and it is proved by experiment that for different liquids their liquid drop traces are different. The analysis on liquid properties and discrimination between different liquids can be proceeded with the liquid drop trace obtained by the liquid drop measuring device.

  12. Settling of copper drops in molten slags

    Warczok, A.; Utigard, T. A.


    The settling of suspended metal and sulfide droplets in liquid metallurgical, slags can be affected by electric fields. The migration of droplets due to electrocapillary motion phenomena may be used to enhance the recovery of suspended matte/metal droplets and thereby to increase the recovery of pay metals. An experimental technique was developed for the purpose of measuring the effect of electric fields on the settling rate of metallic drops in liquid slags. Copper drops suspended in CaO-SiO2-Al2O3-Cu2O slags were found to migrate toward the cathode. Electric fields can increase the settling rate of 5-mm-diameter copper drops 3 times or decrease the settling until levitation by reversal of the electric field. The enhanced settling due to electric fields decreases with increasing Cu2O contents in the slag.

  13. The surface temperature of free evaporating drops

    Borodulin, V. Y.; Letushko, V. N.; Nizovtsev, M. I.; Sterlyagov, A. N.


    Complex experimental and theoretical investigation of heat and mass transfer processes was performed at evaporation of free liquid drops. For theoretical calculation the emission-diffusion model was proposed. This allowed taking into account the characteristics of evaporation of small droplets, for which heat and mass transfer processes are not described in the conventional diffusion model. The calculation results of evaporation of droplets of different sizes were compared using two models: the conventional diffusion and emission-diffusion models. To verify the proposed physical model, the evaporation of droplets suspended on a polypropylene fiber was experimentally investigated. The form of droplets in the evaporation process was determined using microphotographing. The temperature was measured on the surfaces of evaporating drops using infrared thermography. The experimental results have showed good agreement with the numerical data for the time of evaporation and the temperature of evaporating drops.

  14. Ultrasonic characterization of single drops of liquids

    Sinha, Dipen N. (Los Alamos, NM)


    Ultrasonic characterization of single drops of liquids. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-quality measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities.

  15. Drop impact on a flexible fiber

    Dressaire, Emilie; Boulogne, François; Stone, Howard A


    When droplets impact fibrous media, the liquid can be captured by the fibers or contact then break away. Previous studies have shown that the efficiency of drop capture by a rigid fiber depends on the impact velocity and defined a threshold velocity below which the drop is captured. However, it is necessary to consider the coupling of elastic and capillary effects to achieve a greater understanding of the capture process for soft substrates. Here, we study experimentally the dynamics of a single drop impacting on a thin flexible fiber. Our results demonstrate that the threshold capture velocity depends on the flexibility of fibers in a non-monotonic way. We conclude that tuning the mechanical properties of fibers can optimize the efficiency of droplet capture.

  16. Secondary breakup of coal water slurry drops

    Zhao, Hui; Liu, Hai-Feng; Xu, Jian-Liang; Li, Wei-Feng


    To investigate secondary atomization of coal water slurry (CWS), deformation and breakup of eight kinds of CWS drops are presented using high speed digital camera. Based on morphology, deformation and breakup regimes of CWS drops can be termed some different modes: deformation, multimode breakup (including two sub-modes: hole breakup and tensile breakup), and shear breakup. Correlations on the ranges of breakup modes are also obtained. The conventional Weber number and Ohnesorge number are found to be insufficient to classify all breakup modes of CWS drops, so two other non-dimensional numbers based on rheology of CWS are suggested to use in the deformation and breakup regime map. Finally, total breakup time is studied and correlated, which increases with Ohnesorge number.

  17. Corticosterone metabolites in laying hen droppings-Effects of fiber enrichment, genotype, and daily variations.

    Alm, M; Holm, L; Tauson, R; Wall, H


    There is growing interest and concern for animal welfare in commercial poultry production. To evaluate stress and welfare in an objective and noninvasive way, fecal corticosterone metabolites (FCM) in droppings can be analyzed. However, the influence of diet, genotype, and daily variations in FCM and production of droppings in laying hens has been poorly investigated. This study examined the effect of insoluble fiber by adding 3% ground straw pellets to the feed to Lohmann Selected Leghorn (LSL) and Lohmann Brown (LB) hens housed in furnished cages between 20 and 40 wk of age. In total, 960 hens were included in the study. Droppings were collected 4 times per day for 3 consecutive days and analyzed by corticosterone immunoassay. Biological validation confirmed the ability of the assay to detect changes in FCM levels. Inclusion of straw pellets in the feed increased FCM concentration in both hen genotypes and increased excretion rate of FCM in LB hens. The LB hens also produced greater amounts of droppings than LSL hens. Both FCM levels and production of droppings varied during the day, although no distinct diurnal rhythm was found. These findings demonstrate that when using FCM to evaluate stress and welfare in laying hens, many factors (e.g., diet, genotype used, and so on) need to be taken into account to allow accurate interpretation of the results. In addition, under certain conditions, excretion rate of FCM might be more appropriate to use compared with FCM concentration.

  18. Water drops dancing on ice: how sublimation leads to drop rebound.

    Antonini, C; Bernagozzi, I; Jung, S; Poulikakos, D; Marengo, M


    Drop rebound is a spectacular event that appears after impact on hydrophobic or superhydrophobic surfaces but can also be induced through the so-called Leidenfrost effect. Here we demonstrate that drop rebound can also originate from another physical phenomenon, the solid substrate sublimation. Through drop impact experiments on a superhydrophobic surface, a hot plate, and solid carbon dioxide (commonly known as dry ice), we compare drop rebound based on three different physical mechanisms, which apparently share nothing in common (superhydrophobicity, evaporation, and sublimation), but lead to the same rebound phenomenon in an extremely wide temperature range, from 300 °C down to even below -79 °C. The formation and unprecedented visualization of an air vortex ring around an impacting drop are also reported.

  19. The new Drop Tower catapult system

    von Kampen, Peter; Kaczmarczik, Ulrich; Rath, Hans J.


    The Center of Applied Space Technology and Microgravity (ZARM) was founded in 1985 as an institute of the University Bremen, which focuses on research on gravitational and space-related phenomena. In 1988, the construction of the "Drop Tower" began. Since then, the eye-catching tower with a height of 146 m and its characteristic glass roof has become the emblem of the technology centre in Bremen. The Drop Tower Bremen provides a facility for experiments under conditions of weightlessness. Items are considered weightless, when they are in "free fall", i.e. moving without propulsion within the gravity field of the earth. The height of the tower limits the simple "free fall" experiment period to max. 4.74 s. With the inauguration of the catapult system in December 2004, the ZARM is entering a new dimension. This world novelty will meet scientists' demands of extending the experiment period up to 9.5 s. Since turning the first sod on May 3rd, 1988, the later installation of the catapult system has been taken into account by building the necessary chamber under the tower. The catapult system is located in a chamber 10 m below the base of the tower. This chamber is almost completely occupied by 12 huge pressure tanks. These tanks are placed around the elongation of the vacuum chamber of the drop tube. In its centre there is the pneumatic piston that accelerates the drop capsule by the pressure difference between the vacuum inside the drop tube and the pressure inside the tanks. The acceleration level is adjusted by means of a servo hydraulic breaking system controlling the piston velocity. After only a quarter of a second the drop capsule achieves its lift-off speed of 175 km/h. With this exact speed, the capsule will rise up to the top of the tower and afterwards fall down again into the deceleration unit which has been moved under the drop tube in the meantime. The scientific advantages of the doubled experiment time are obvious: during almost 10 s of high

  20. Electrohydrodynamic removal of particles from drop surfaces

    Nudurupati, S.; Janjua, M.; Singh, P.; Aubry, N.


    A uniform electric field is used for cleaning drops of the particles they often carry on their surface. In a first step, particles migrate to either the drop’s poles or equator. This is due to the presence of an electrostatic force for which an analytical expression is derived. In a second step, particles concentrated near the poles are released into the ambient liquid via tip streaming, and those near the equator are removed by stretching the drop and breaking it into several droplets. In the latter case, particles are all concentrated in a small middle daughter droplet.

  1. Development of revolving drop surface tensiometer.

    Mitani, S; Sakai, K


    A revolving drop surface tensiometer, which measures the surface tension of a small amount of liquid, is proposed. A remarkable feature of this device is that while using the pendant drop method, it employs a centrifugal force to deform the liquid droplet. The centrifugal force induces a large distortion of the droplet, which enables an accurate measurement of the surface tension to be made. In our experimental setup, the centrifugal force can be increased so that the apparent acceleration becomes up to 100 times larger than that due to gravity, and the capability of this method to measure surface tensions was demonstrated with ethylene glycol.

  2. Millikan "oil drop" stabilized by growth.

    Sun, L K; Gertler, A W; Reiss, H


    A diffusion cloud chamber has been used to qualitatively study some dynamic properties of liquid drops by suspending them in an electric field at the plane of saturation (p/ps = 1, where p is the actual partial pressure of the vapor at a given elevation and ps is the equilibrium pressure at that temperature characteristic of that elevation). By varying the strength of the electric field, it is possible to change the size of the suspended droplets and even, if desired, to isolate a single drop.

  3. Transformation of the bridge during drop separation

    Chashechkin, Yu. D.; Prokhorov, V. E.


    The geometry of flows during separation of pendant drops of liquids with significantly different physical properties (alcohol, water, glycerin, oil) has been studied by high-speed video recording. The dynamics of the processes involving the formation of bridges of two characteristic shapes—slightly nonuniform in thickness and with thinning of the upper and lower ends—has been investigated. It has been shown that the shape change of the separated bridge has a number of stages determined by the properties of the liquid. As a result, the bridge is transformed into a small drop—a satellite drop.

  4. Dropped head congenital muscular dystrophy caused by de novo mutations in LMNA.

    Karaoglu, Pakize; Quizon, Nicolas; Pergande, Matthias; Wang, Haicui; Polat, Ayşe Ipek; Ersen, Ayca; Özer, Erdener; Willkomm, Lena; Hiz Kurul, Semra; Heredia, Raúl; Yis, Uluç; Selcen, Duygu; Çirak, Sebahattin


    Dropped head syndrome is an easily recognizable clinical presentation of Lamin A/C-related congenital muscular dystrophy. Patients usually present in the first year of life with profound neck muscle weakness, dropped head, and elevated serum creatine kinase. Two patients exhibited head drop during infancy although they were able to sit independently. Later they developed progressive axial and limb-girdle weakness. Creatine kinase levels were elevated and muscle biopsies of both patients showed severe dystrophic changes. The distinctive clinical hallmark of the dropped head led us to the diagnosis of Lamin A/C-related congenital muscular dystrophy, with a pathogenic de novo mutation p.Glu31del in the head domain of the Lamin A/C gene in both patients. Remarkably, one patient also had a central involvement with white matter changes on brain magnetic resonance imaging. Lamin A/C-related dropped-head syndrome is a rapidly progressive congenital muscular dystrophy and may lead to loss of ambulation, respiratory insufficiency, and cardiac complications. Thus, the genetic diagnosis of dropped-head syndrome as L-CMD and the implicated clinical care protocols are of vital importance for these patients. This disease may be underdiagnosed, as only a few genetically confirmed cases have been reported. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  5. 14 CFR 23.727 - Reserve energy absorption drop test.


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Reserve energy absorption drop test. 23.727... Construction Landing Gear § 23.727 Reserve energy absorption drop test. (a) If compliance with the reserve energy absorption requirement in § 23.723(b) is shown by free drop tests, the drop height may not be...

  6. Best Measuring Time for a Millikan Oil Drop Experiment

    Kapusta, J. I.


    In a Millikan oil drop experiment, there is a best measuring time for observing the drop, due to Brownian motion of the drop and the experimenter's reaction time. Derives an equation for the relative error in the measurement of the drop's excess charge, and obtains a formula for the best measuring time. (Author/MLH)

  7. Detailed statistical contact angle analyses; "slow moving" drops on inclining silicon-oxide surfaces.

    Schmitt, M; Groß, K; Grub, J; Heib, F


    Contact angle determination by sessile drop technique is essential to characterise surface properties in science and in industry. Different specific angles can be observed on every solid which are correlated with the advancing or the receding of the triple line. Different procedures and definitions for the determination of specific angles exist which are often not comprehensible or reproducible. Therefore one of the most important things in this area is to build standard, reproducible and valid methods for determining advancing/receding contact angles. This contribution introduces novel techniques to analyse dynamic contact angle measurements (sessile drop) in detail which are applicable for axisymmetric and non-axisymmetric drops. Not only the recently presented fit solution by sigmoid function and the independent analysis of the different parameters (inclination, contact angle, velocity of the triple point) but also the dependent analysis will be firstly explained in detail. These approaches lead to contact angle data and different access on specific contact angles which are independent from "user-skills" and subjectivity of the operator. As example the motion behaviour of droplets on flat silicon-oxide surfaces after different surface treatments is dynamically measured by sessile drop technique when inclining the sample plate. The triple points, the inclination angles, the downhill (advancing motion) and the uphill angles (receding motion) obtained by high-precision drop shape analysis are independently and dependently statistically analysed. Due to the small covered distance for the dependent analysis (static to the "slow moving" dynamic contact angle determination. They are characterised by small deviations of the computed values. Additional to the detailed introduction of this novel analytical approaches plus fit solution special motion relations for the drop on inclined surfaces and detailed relations about the reactivity of the freshly cleaned silicon wafer

  8. Experimental study of drop breakup in a turbulent flow; Etude experimentale de la rupture de gouttes dans un ecoulement turbulent

    Galinat, S.


    This work presents the drop breakup phenomenon in a turbulent flow induced by a cross-section restriction in a pipe. A global analysis of single-drop breakup, in a finite volume downstream of the orifice, has allowed deriving statistical quantities such as the break-up probability and the daughter-drop distribution. These parameters are function of a global Weber number based on the maximal pressure drop through the orifice. At a local scale, the locations of breakup events are distributed heterogeneously and depend on the flow Reynolds number. The local hydrodynamic study in downstream of the orifice, which has been done by using Particle Image Velocimetry, reveals the specific breakup zones. Otherwise, this analysis has proved that the turbulence is the predominant external stress at the drop scale. The relation between drop deformation and the external stress along the trajectory has been simulated numerically by the response of a damped oscillator to the locally measured instantaneous turbulence forcing. The results of statistical analysis have allowed to introduce a breakup criterion, based on a unique deformation threshold value for all experiments. This multi-scale approach has been conducted to study drop breakup mechanisms in a concentrated dispersion. The breakup probability decrease with the increase of dispersed phase concentration, which influences the turbulent Weber number distribution in downstream of the orifice. (author)

  9. Sessile drop deformations under an impinging jet

    Feng, James Q.


    The problem of steady axisymmetric deformations of a liquid sessile drop on a flat solid surface under an impinging gas jet is of interest for understanding the fundamental behavior of free surface flows as well as for establishing the theoretical basis in process design for the Aerosol direct-write technology. It is studied here numerically using a Galerkin finite-element method, by computing solutions of Navier-Stokes equations. For effective material deposition in Aerosol printing, the desired value of Reynolds number for the laminar gas jet is found to be greater than ~500. The sessile drop can be severely deformed by an impinging gas jet when the capillary number is approaching a critical value beyond which no steady axisymmetric free surface deformation can exist. Solution branches in a parameter space show turning points at the critical values of capillary number, which typically indicate the onset of free surface shape instability. By tracking solution branches around turning points with an arc-length continuation algorithm, critical values of capillary number can be accurately determined. Near turning points, all the free surface profiles in various parameter settings take a common shape with a dimple at the center and bulge near the contact line. An empirical formula for the critical capillary number for sessile drops with contact angle is derived for typical ranges of jet Reynolds number and relative drop sizes especially pertinent to Aerosol printing.

  10. Drop impact entrapment of bubble rings

    Thoraval, M -J; Etoh, T G; Thoroddsen, S T


    We use ultra-high-speed video imaging to look at the initial contact of a drop impacting onto a liquid layer. We observe experimentally the vortex street and the bubble-ring entrapments predicted numerically, for high impact velocities, by Thoraval et al. [Phys. Rev. Lett. 108, 264506 (2012)]. These dynamics occur mostly within 50 {\\mu}s after the first contact, requiring imaging at 1 million frames/sec. For a water drop impacting onto a thin layer of water, the entrapment of isolated bubbles starts through azimuthal instability, which forms at low impact velocities, in the neck connecting the drop and pool. For Re above about 12 000, up to 10 partial bubble-rings have been observed at the base of the ejecta, starting when the contact is about 20% of the drop size. More regular bubble rings are observed for a pool of ethanol or methanol. The video imaging shows rotation around some of these air cylinders, which can temporarily delay their breakup into microbubbles. The different refractive index in the pool l...

  11. Predicting Students Drop Out: A Case Study

    Dekker, Gerben W.; Pechenizkiy, Mykola; Vleeshouwers, Jan M.


    The monitoring and support of university freshmen is considered very important at many educational institutions. In this paper we describe the results of the educational data mining case study aimed at predicting the Electrical Engineering (EE) students drop out after the first semester of their studies or even before they enter the study program…

  12. Scaling the drop size in coflow experiments

    Castro-Hernandez, E; Gordillo, J M [Area de Mecanica de Fluidos, Universidad de Sevilla, Avenida de los Descubrimientos s/n, 41092 Sevilla (Spain); Gundabala, V; Fernandez-Nieves, A [School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)], E-mail:


    We perform extensive experiments with coflowing liquids in microfluidic devices and provide a closed expression for the drop size as a function of measurable parameters in the jetting regime that accounts for the experimental observations; this expression works irrespective of how the jets are produced, providing a powerful design tool for this type of experiments.

  13. Drop Shaping by Laser-Pulse Impact

    Klein, A.L.; Bouwhuis, W.; Visser, C.W.; Lhuissier, H.E.; Sun, C.; Snoeijer, J.H.; Villermaux, E.; Lohse, D.; Gelderblom, H.


    We show how the deposition of laser energy induces propulsion and strong deformation of an absorbing liquid body. Combining high speed with stroboscopic imaging, we observe that a millimeter-sized dyed water drop hit by a millijoule nanosecond laser pulse propels forward at several meters per second

  14. Thermocapillary motion of bubbles and drops

    Subramanian, R. S.


    An account is given of interface-driven motions of drops and bubbles. It is shown that even in the simplest cases, theory predicts exotic flow topologies. Attention is given to several unsolved problems that must be addressed both theoretically and experimentally.

  15. Equilibrium drop surface profiles in electric fields

    Mugele, F.; Buehrle, J.


    Electrowetting is becoming a more and more frequently used tool to manipulate liquids in various microfluidic applications. On the scale of the entire drop, the effect of electrowetting is to reduce the apparent contact angle of partially wetting conductive liquids upon application of an external vo

  16. Sliding viscoelastic drops on slippery surfaces

    Xu, H.; Clarke, A.; Rothstein, J. P.; Poole, R. J.


    We study the sliding of drops of constant-viscosity dilute elastic liquids (Boger fluids) on various surfaces caused by sudden surface inclination. For smooth or roughened hydrophilic surfaces, such as glass or acrylic, there is essentially no difference between these elastic liquids and a Newtonian comparator fluid (with identical shear viscosity, surface tension, and static contact angle). In contrast for embossed polytetrafluoroethylene superhydrophobic surfaces, profound differences are observed: the elastic drops slide at a significantly reduced rate and complex branch-like patterns are left on the surface by the drop's wake including, on various scales, beads-on-a-string like phenomena. Microscopy images indicate that the strong viscoelastic effect is caused by stretching filaments of fluid from isolated islands, residing at pinning sites on the surface pillars, of the order ˜30 μm in size. On this scale, the local strain rates are sufficient to extend the polymer chains, locally increasing the extensional viscosity of the solution, retarding the drop and leaving behind striking branch-like structures on much larger scales.

  17. Liquid drops sliding down an inclined plane

    Kim, Inwon


    We investigate a one-dimensional model describing the motion of liquid drops sliding down an inclined plane (the so-called quasi-static approximation model). We prove existence and uniqueness of a solution and investigate its long time behavior for both homogeneous and inhomogeneous medium (i.e. constant and non-constant contact angle). We also obtain some homogenization results.

  18. Drop-Out Challenges: Pathways to Success

    Conner, Evguenia; McKee, Jan


    This article describes an action research at an alternative high school which explores drop-out prevention strategies with first-year students. Student retention is extremely challenging for alternative schools. Because their mission is to provide a second chance to students who could not succeed in a regular setting, those schools regularly must…

  19. 49 CFR 178.965 - Drop test.


    ... Large Packaging design types and performed periodically as specified in § 178.955(e) of this subpart. (b... § 178.960(d). (d) Test method. (1) Samples of all Large Packaging design types must be dropped onto a... be restored to the upright position for observation. (2) Large Packaging design types with a capacity...

  20. Utah Drop-Out Drug Use Questionnaire.

    Governor's Citizen Advisory Committee on Drugs, Salt Lake City, UT.

    This questionnaire assesses drug use practices in high school drop-outs. The 79 items (multiple choice or apply/not apply) are concerned with demographic data and use, use history, reasons for use/nonuse, attitudes toward drugs, availability of drugs, and drug information with respect to narcotics, amphetamines, LSD, Marijuana, and barbiturates.…

  1. Standardisation of superheated drop and bubble detectors

    Vanhavere, F.; D' Errico, F


    This study presents an analysis of the commercially available superheated drop detectors and bubble detectors, performed in substantial accordance with the guidelines developed by the International Organisation for Standardization (ISO). The analysis was performed in terms of linearity, reproducibility, ageing, minimum detection thresholds, energy and angular dependence of the response and the influence of various climatic conditions. (author)

  2. Utah Drop-Out Drug Use Questionnaire.

    Governor's Citizen Advisory Committee on Drugs, Salt Lake City, UT.

    This questionnaire assesses drug use practices in high school drop-outs. The 79 items (multiple choice or apply/not apply) are concerned with demographic data and use, use history, reasons for use/nonuse, attitudes toward drugs, availability of drugs, and drug information with respect to narcotics, amphetamines, LSD, Marijuana, and barbiturates.…

  3. Drop impact on solid surface: Short time self-similarity

    Philippi, Julien; Lagrée, Pierre-Yves; Antkowiak, Arnaud


    Drop impact on a solid surface is a problem with many industrial or environmental applications. Many studies focused on the last stages of this phenomenon as spreading or splashing. In this study we are interested in the early stages of drop impact on solid surface. Inspired by Wagner theory developed by water entry community we shown the self-similar structure of the velocity field and the pressure field. The latter is shown to exhibit a maximum not near the impact point, but rather at the contact line. The motion of the contact line is furthermore shown to exhibit a transition from ``tank treading'' motion to pure sweeping when the lamella appears. We performed numerical simulations with the open-cource code Gerris which are in good agreement with theoretical predictions. Interestingly the inviscid self-similar impact pressure and velocities depend on the self-similar variable r /√{ t} . This allows to construct a seamless uniform analytical solution encompassing both impact and viscous effects. We predict quantitatively observables of interest, such as the evolution of total and maximum viscous shear stresses and net total force. We finally demonstrate that the structure of the flow resembles a stagnation point flow unexpectedly involving r /√{ t} .

  4. Fundamental study of transpiration cooling. [pressure drop and heat transfer data from porous metals

    Koh, J. C. Y.; Dutton, J. L.; Benson, B. A.


    Isothermal and non-isothermal pressure drop data and heat transfer data generated on porous 304L stainless steel wire forms, sintered spherical stainless steel powder, and sintered spherical OFHC copper powder are reported and correlated. Pressure drop data was collected over a temperature range from 500 R to 2000 R and heat transfer data collected over a heat flux range from 5 to 15 BTU/in2/sec. It was found that flow data could be correlated independently of transpirant temperature and type (i.e., H2, N2). It was also found that no simple relation between heat transfer coefficient and specimen porosity was obtainable.

  5. Contact angle of sessile drops in Lennard-Jones systems.

    Becker, Stefan; Urbassek, Herbert M; Horsch, Martin; Hasse, Hans


    Molecular dynamics simulations are used for studying the contact angle of nanoscale sessile drops on a planar solid wall in a system interacting via the truncated and shifted Lennard-Jones potential. The entire range between total wetting and dewetting is investigated by varying the solid-fluid dispersive interaction energy. The temperature is varied between the triple point and the critical temperature. A correlation is obtained for the contact angle in dependence of the temperature and the dispersive interaction energy. Size effects are studied by varying the number of fluid particles at otherwise constant conditions, using up to 150,000 particles. For particle numbers below 10,000, a decrease of the contact angle is found. This is attributed to a dependence of the solid-liquid surface tension on the droplet size. A convergence to a constant contact angle is observed for larger system sizes. The influence of the wall model is studied by varying the density of the wall. The effective solid-fluid dispersive interaction energy at a contact angle of θ = 90° is found to be independent of temperature and to decrease linearly with the solid density. A correlation is developed that describes the contact angle as a function of the dispersive interaction, the temperature, and the solid density. The density profile of the sessile drop and the surrounding vapor phase is described by a correlation combining a sigmoidal function and an oscillation term.

  6. Annual Occurrence of Meteorite-Dropping Fireballs

    Konovalova, Natalia; Jopek, Tadeusz J.


    The event of Chelyabinsk meteorite has brought about change the earlier opinion about limits of the sizes of potentially dangerous asteroidal fragments that crossed the Earth's orbit and irrupted in the Earth's atmosphere making the brightest fireball. The observations of the fireballs by fireball networks allows to get the more precise data on atmospheric trajectories and coordinates of predicted landing place of the meteorite. For the reason to search the periods of fireball activity is built the annual distribution of the numbers of meteorites with the known fall dates and of the meteorite-dropping fireballs versus the solar longitude. The resulting profile of the annual activity of meteorites and meteorite-dropping fireballs shows several periods of increased activity in the course of the year. The analysis of the atmospheric trajectories and physical properties of sporadic meteorite-dropping fireballs observed in Tajikistan by instrumental methods in the summer‒autumn periods of increased fireballs activity has been made. As a result the structural strength, the bulk density and terminal mass of the studied fireballs that can survive in the Earth atmosphere and became meteorites was obtained. From the photographic IAU MDC_2003 meteor database and published sources based on the orbit proximity as determined by D-criterion of Southworth and Hawkins the fireballs that could be the members of group of meteorite-dropping fireballs, was found. Among the near Earth's objects (NEOs) the searching for parent bodies for meteorite-dropping fireballs was made and the evolution of orbits of these objects in the past on a long interval of time was investigated.

  7. Vertical Drop of 44-BWR Waste Package With Lifting Collars

    A.K. Scheider


    The objective of this calculation is to determine the structural response of a waste package (WP) dropped flat on its bottom from a specified height. The WP used for that purpose is the 44-Boiling Water Reactor (BWR) WP. The scope of this document is limited to reporting the calculation results in terms of stress intensities. The Uncanistered Waste Disposal Container System is classified as Quality Level 1 (Ref. 4, page 7). Therefore, this calculation is subject to the requirements of the Quality Assurance Requirements and Description (Ref. 16). AP-3. 12Q, Design Calculations and Analyses (Ref. 11) is used to perform the calculation and develop the document. The information provided by the sketches attached to this calculation is that of the potential design of the type of 44-BWR WP considered in this calculation and provides the potential dimensions and materials for that design.

  8. Electrohydrodynamic deformation of drops and bubbles at large Reynolds numbers

    Schnitzer, Ory


    In Taylor's theory of electrohydrodynamic drop deformation by a uniform electric field, inertia is neglected at the outset, resulting in fluid velocities that scale with E2, E being the applied-field magnitude. When considering strong fields and low viscosity fluids, the Reynolds number predicted by this scaling may actually become large, suggesting the need for a complementary large-Reynolds-number analysis. Balancing viscous and electrical stresses reveals that the velocity scales with E 4 / 3. Considering a gas bubble, the external flow is essentially confined to two boundary layers propagating from the poles to the equator, where they collide to form a radial jet. Remarkably, at leading order in the Capillary number the unique scaling allows through application of integral mass and momentum balances to obtain a closed-form expression for the O (E2) bubble deformation. Owing to a concentrated pressure load at the vicinity of the collision region, the deformed profile features an equatorial dimple which is non-smooth on the bubble scale. The dynamical importance of internal circulation in the case of a liquid drop leads to an essentially different deformation mechanism. This is because the external boundary layer velocity attenuates at a short distance from the interface, while the internal boundary-layer matches with a Prandtl-Batchelor (PB) rotational core. The dynamic pressure associated with the internal circulation dominates the interfacial stress profile, leading to an O (E 8 / 3) deformation. The leading-order deformation can be readily determined, up to the PB constant, without solving the circulating boundary-layer problem. To encourage attempts to verify this new scaling, we shall suggest a favourable experimental setup in which inertia is dominant, while finite-deformation, surface-charge advection, and gravity effects are negligible.

  9. Stressing academia?

    Opstrup, Niels; Pihl-Thingvad, Signe

    short of individual need while high degrees of fit will mitigate stress. The analysis is based on a stratified random sample including 2127 researchers at 64 Danish university departments and covering all main areas of research and all academic staff categories. The results show that fit with regard......Incongruences between the individual and the organizational work context are potential stressors. The present study focuses on the relationship between a complementary need-supply fit and Danish researchers’ self-perceived job stress. Strain is expected to increase as organizational supplies fall...... to “soft” dimensions as freedom and independence in the job, personal and professional development at work, and receiving peer recognition is highly significant for the researchers’ self-perceived stress-level. The better the fit is the lower stress-levels the researchers’ on average report. On the other...

  10. Coalescence collision of liquid drops I: Off-center collisions of equal-size drops

    Alejandro Acevedo-Malavé


    Full Text Available The Smoothed Particle Hydrodynamics method (SPH is used here to model off-center collisions of equal-size liquid drops in a three-dimensional space. In this study the Weber number is calculated for several conditions of the droplets dynamics and the velocity vector fields formed inside the drops during the collision process are shown. For the permanent coalescence the evolution of the kinetic and internal energy is shown and also the approaching to equilibrium of the resulting drop. Depending of the Weber number three possible outcomes for the collision of droplets is obtained: permanent coalescence, flocculation and fragmentation. The fragmentation phenomena are modeled and the formation of small satellite drops can be seen. The ligament that is formed follows the “end pinching” mechanism and it is transformed into a flat structure.

  11. Coalescence collision of liquid drops II: Off-center collisions of unequal-size drops

    Alejandro Acevedo-Malavé


    Full Text Available We applied the Smoothed Particle Hydrodynamics method to simulate for first time in the three-dimensional space the hydrodynamic off-center collisions of unequal-size liquid drops in a vacuum environment. The Weber number for several conditions of the droplets dynamics is determined. Also the velocity vector fields inside the drops are shown in the collision process. The evolution of the kinetic and internal energy is shown for the permanent coalescence case. The resulting drops tend to deform, and depending of the Weber number two possible outcomes for the collision of droplets arise: either permanent coalescence or flocculation. In the permanent coalescence of the drops a fragmentation case is modeled, yielding the formation of little satellite droplets.

  12. Dragon's blood dropping pills have protective effects on focal cerebral ischemia rats model.

    Xin, Nian; Yang, Fang-Ju; Li, Yan; Li, Yu-Juan; Dai, Rong-Ji; Meng, Wei-Wei; Chen, Yan; Deng, Yu-Lin


    Dragon's blood is a bright red resin obtained from Dracaena cochinchinensis (Lour.) S.C.Chen (Yunnan, China). As a traditional Chinese medicinal herb, it has great traditional medicinal value and is used for wound healing and to stop bleeding. Its main biological activity comes from phenolic compounds. In this study, phenolic compounds were made into dropping pills and their protective effects were examined by establishing focal cerebral ischemia rats model used method of Middle Cerebral Artery Occlusion (MCAO), and by investigating indexes of neurological scores, infarct volume, cerebral index, cerebral water content and oxidation stress. Compared to model group, high, middle and low groups of Dragon's blood dropping pills could improve the neurological function significantly (pDragon's blood dropping pills had protective effects on focal cerebral ischemia rats.

  13. Sigma-drop in galaxies and the sigma-metallicity degeneracy

    Koleva, Mina; De Rijcke, Sven


    In some galaxies, the central velocity dispersion, sigma, is depressed with respect to the surroundings. This sigma-drop phenomenon may have different physical origins, bearing information about the internal dynamics of the host galaxy. In this article, we stress the importance also of observational artifacts due to the sigma-metallicity degeneracy: when a spectrum of a population is compared with a template of miss-matched metallicity, the velocity dispersion may be wrongly estimated. A sigma-drop may appear in place of a metallicity peak. The discussion is illustrated using VLT/FORS spectra of diffuse elliptical galaxies. Some of the sigma-drop galaxies reported in the literature may be analysis artifacts.

  14. Pollination Drop in Juniperus communis: Response to Deposited Material

    Mugnaini, Serena; Nepi, Massimo; Guarnieri, Massimo; Piotto, Beti; Pacini, Ettore


    Background and Aims The pollination drop is a liquid secretion produced by the ovule and exposed outside the micropyle. In many gymnosperms, pollen lands on the surface of the pollination drop, rehydrates and enters the ovule as the drop retracts. The objective of this work was to study the formation of the pollination drop in Juniperus communis, its carbohydrate composition and the response to deposition of conspecific pollen, foreign pollen and other particulate material, in an attempt to clarify the mechanism of pollination drop retraction. Method Branches with female cones close to pollination drop secretion were collected. On the first day of pollination drop exposure, an eyelash mounted on a wooden stick with paraffin was used to collect pollen or silica gel particles, which were then deposited by contact with the drop. Volume changes in pollination drops were measured by using a stereomicroscope with a micrometer eyepiece 3 h after deposition. The volume of non-pollinated control drops was also recorded. On the first day of secretion, drops were also collected for sugar analysis by high-performance liquid chromatography. Key Results The pollination drop persisted for about 12 d if not pollinated, and formed again after removal for up to four consecutive days. After pollination with viable conspecific pollen, the drop retracted quickly and did not form again. Partial withdrawal occurred after deposition of other biological and non-biological material. Fructose was the dominant sugar; glucose was also present but at a much lower percentage. Conclusions Sugar analysis confirmed the general trend of fructose dominance in gymnosperm pollination drops. Complete pollination drop withdrawal appears to be triggered by a biochemical mechanism resulting from interaction between pollen and drop constituents. The results of particle deposition suggest the existence of a non-specific, particle-size-dependent mechanism that induces partial pollination drop withdrawal

  15. Semisupervised Community Detection by Voltage Drops

    Min Ji


    Full Text Available Many applications show that semisupervised community detection is one of the important topics and has attracted considerable attention in the study of complex network. In this paper, based on notion of voltage drops and discrete potential theory, a simple and fast semisupervised community detection algorithm is proposed. The label propagation through discrete potential transmission is accomplished by using voltage drops. The complexity of the proposal is OV+E for the sparse network with V vertices and E edges. The obtained voltage value of a vertex can be reflected clearly in the relationship between the vertex and community. The experimental results on four real networks and three benchmarks indicate that the proposed algorithm is effective and flexible. Furthermore, this algorithm is easily applied to graph-based machine learning methods.




    Full Text Available Mobile Ad-hoc NETwork (MANET is an application of wireless network with self-configuring mobile nodes. MANET does not require any fixed infrastructure. Its development never has any threshold range. Nodes in MANET can communicate with each other if and only if all the nodes are in the same range. This wide distribution of nodes makes MANET vulnerable to various attacks, packet dropping attack or black hole attack is one of the possible attack. It is very hard to detect and prevent. To prevent from packet dropping attack, detection of misbehavior links and selfish nodes plays a vital role in MANETs. In this paper, a omprehensive investigation on detection of misbehavior links and malicious nodes is carried out.

  17. Advances in superheated drop (bubble) detector techniques

    d`Errico, F. [Pisa Univ. (Italy). Dipt. di Costruzioni Meccaniche e Nucleari; Alberts, W.G.; Matzke, M. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)


    State-of-the-art neutron dosemeters based on superheated drop (bubble) detectors are described. These are either active systems for area monitoring, which rely on the acoustical recording of drop vaporisations, or passive pen size ones for personal dosimetry, based on optical bubble counting. The technological solutions developed for the construction of robust devices for health physics applications are described with special emphasis on methods adopted to reduce mechanical shock and temperature sensitivity of the detectors. Finally, a review is given of some current research activities. In particular, a new approach to neutron spectrometry is presented which relies on the thermal effects for the definition of the response matrix of the system. (author).

  18. A pressure drop model for PWR grids

    Oh, Dong Seok; In, Wang Ki; Bang, Je Geon; Jung, Youn Ho; Chun, Tae Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    A pressure drop model for the PWR grids with and without mixing device is proposed at single phase based on the fluid mechanistic approach. Total pressure loss is expressed in additive way for form and frictional losses. The general friction factor correlations and form drag coefficients available in the open literatures are used to the model. As the results, the model shows better predictions than the existing ones for the non-mixing grids, and reasonable agreements with the available experimental data for mixing grids. Therefore it is concluded that the proposed model for pressure drop can provide sufficiently good approximation for grid optimization and design calculation in advanced grid development. 7 refs., 3 figs., 3 tabs. (Author)

  19. Diffraction and interference of walking drops

    Pucci, Giuseppe; Harris, Daniel M.; Bush, John W. M.


    A decade ago, Yves Couder and Emmanuel Fort discovered a wave-particle association on the macroscopic scale: a drop can bounce indefinitely on a vibrating bath of the same liquid and can be piloted by the waves that it generates. These walking droplets have been shown to exhibit several quantum-like features, including single-particle diffraction and interference. Recently, the original diffraction and interference experiments of Couder and Fort have been revisited and contested. We have revisited this system using an improved experimental set-up, and observed a strong dependence of the behavior on system parameters, including drop size and vibrational forcing. In both the single- and the double-slit geometries, the diffraction pattern is dominated by the interaction of the walking droplet with a planar boundary. Critically, in the double-slit geometry, the walking droplet is influenced by both slits by virtue of its spatially extended wave field. NSF support via CMMI-1333242.

  20. Measuring Pressure Drop Under Non Ideal Conditions

    Austin M


    Full Text Available The method of measurement of the pressure drop (PD of cigarette filter rods and the draw resistance of cigarettes is defined in ISO 6565-2002 (1. This standard defines the calibration and use of a transfer standard to calibrate the measuring instrument and also defines the measurement procedure for cigarette and filter samples. The procedure described in the standard assumes that the measurement conditions are constant and that the sample is in equilibrium with the measurement environment.

  1. Impact of water drops on small targets

    Rozhkov, A.; Prunet-Foch, B.; Vignes-Adler, M.


    The collision of water drops against small targets was studied experimentally by means of a high-speed photography technique. The drop impact velocity was about 3.5 m/s. Drop diameters were in the range of 2.8-4.0 mm. The target was a stainless steel disk of 3.9 mm diameter. The drop spread beyond the target like a central cap surrounded by a thin, slightly conical lamella bounded by a thicker rim. By mounting a small obstacle near the target, surface-tension driven Mach waves in the flowing lamella were generated, which are formally equivalent to the familiar compressibility driven Mach waves in gas dynamics. From the measurement of the Mach angle, the values of some flow parameters could be obtained as functions of time, which provided insight into the flow structure. The liquid flowed from the central cap to the liquid rim through the thin lamella at constant momentum flux. At a certain stage of the process, most of the liquid accumulated in the rim and the internal part of the lamella became metastable. In this situation, a rupture wave propagating through the metastable internal part of the lamella caused the rim to retract while forming outwardly directed secondary jets. The jets disintegrated into secondary droplets due to the Savart-Plateau-Rayleigh instability. Prior to the end of the retraction, an internal circular wave of rupture was formed. It originated at the target and then it propagated to meet the retracting rim. Their meeting resulted in a crown of tiny droplets. A theoretical analysis of the ejection process is proposed.

  2. Probable warfarin interaction with menthol cough drops.

    Coderre, Karen; Faria, Claudio; Dyer, Earl


    Warfarin is a widely used and effective oral anticoagulant; however, the agent has an extensive drug and food interaction profile. We describe a 46-year-old African-American man who was receiving warfarin for a venous thromboembolism and experienced a decrease in his international normalized ratio (INR). No corresponding reduction had been made in his warfarin dosage, and no changes had been made in his concomitant drug therapy or diet. The patient's INR fell from a therapeutic value of 2.6 (target range 2-3) to 1.6 while receiving a weekly warfarin dose of 50 mg. His INR remained stable at 1.6 for 3 weeks despite incremental increases in his warfarin dose. The patient reported that he had been taking 8-10 menthol cough drops/day due to dry conditions at his workplace during the time period that the INR decreased. Five days after discontinuing the cough drops, his INR increased from 1.6 to 2.9. Over the subsequent 5 weeks, his INR was stabilized at a much lower weekly warfarin dose of 40 mg. Use of the Naranjo adverse drug reaction probability scale indicated that the decreased INR was probably related to the concomitant use of menthol cough drops during warfarin therapy. The mechanism for this interaction may be related to the potential for menthol to affect the cytochrome P450 system as an inducer and inhibitor of certain isoenzymes that would potentially interfere with the metabolism of warfarin. To our knowledge, this is the second case report of an interaction between warfarin and menthol. Patients receiving warfarin should be closely monitored, as they may choose to take over-the-counter products without considering the potential implications, and counseled about a possible interaction with menthol cough drops.

  3. Sessile Drop Evaporation and Leidenfrost Phenomenon

    A. K. Mozumder; M. R. Ullah; Hossain, A.; Islam, M A


    Problem statement: Quenching and cooling are important process in manufacturing industry for controlling the mechanical properties of materials, where evaporation is a vital mode of heat transfer. Approach: This study experimentally investigated the evaporation of sessile drop for four different heated surfaces of Aluminum, Brass, Copper and Mild steel with a combination of four different liquids as Methanol, Ethanol, Water and NaCl solution. The time of evaporation for the droplet on the hot...

  4. Low-Pressure-Drop Shutoff Valve

    Thornborrow, John


    Flapper valve remains open under normal flow conditions but closes upon sudden increases to high rate of flow and remains closed until reset. Valve is fluid/mechanical analog of electrical fuse or circuit breaker. Low-pressure-drop shutoff valve contains flapper machined from cylindrical surface. During normal flow conditions, flapper presents small cross section to flow. (Useful in stopping loss of fluid through leaks in cooling systems.)

  5. Modeling Evaporation of Drops of Different Kerosenes

    Bellan, Josette; Harstad, Kenneth


    A mathematical model describes the evaporation of drops of a hydrocarbon liquid composed of as many as hundreds of chemical species. The model is intended especially for application to any of several types of kerosenes commonly used as fuels. The concept of continuous thermodynamics, according to which the chemical composition of the evaporating multicomponent liquid is described by use of a probability distribution function (PDF). However, the present model is more generally applicable than is its immediate predecessor.

  6. Drop impacts on electrospun nanofiber membranes

    Sahu, Rakesh P.; Sinha-Ray, Suman; Yarin, Alexander; Pourdeyhimi, Behnam


    This work reports a study of drop impacts of polar and non-polar liquids onto electrospun nanofiber membranes (of 8-10 mm thickness and pore sizes of 3-6 nm) with an increasing degree of hydrophobicity. The nanofibers used were electrospun from polyacrylonitrile (PAN), nylon 6/6, polycaprolactone (PCL) and Teflon. It was found that for any liquid/fiber pair there exists a threshold impact velocity (1.5 to 3 m/s) above which water penetrates membranes irrespective of their wettability. The low surface tension liquid left the rear side of sufficiently thin membranes as a millipede-like system of tiny jets protruding through a number of pores. For such a high surface tension liquid as water, jets immediately merged into a single bigger jet, which formed secondary drops due to capillary instability. An especially non-trivial result is that superhydrophobicity of the porous nano-textured Teflon skeleton with the interconnected pores is incapable of preventing water penetration due to drop impact, even at relatively low impact velocities close to 3.46 m/s. A theoretical estimate of the critical membrane thickness sufficient for complete viscous dissipation of the kinetic energy of penetrating liquid corroborates with the experimental data. The current work is supported by the Nonwovens Cooperative Research Center (NCRC).

  7. Ultrafast Drop Movements Arising from Curvature Gradient

    Lv, Cunjing; Chuang, Yin-Chuan; Tseng, Fan-Gang; Yin, Yajun; Zheng, Quanshui


    We report experimental observation of a kind of fast spontaneous movements of water drops on surfaces of cones with diameters from 0.1 to 1.5 mm. The observed maximum speed (0.22 m/s) under ambient conditions were at least two orders of magnitude higher than that resulting from any known single spontaneous movement mechanism, for example, Marangoni effect due to gradient of surface tension. We trapped even higher spontaneous movement speeds (up to 125 m/s) in virtual experiments for drops on nanoscale cones by using molecular dynamics simulations. The underlying mechanism is found to be universally effective - drops on any surface either hydrophilic or hydrophobic with varying mean curvature are subject to driving forces toward the gradient direction of the mean curvature. The larger the mean curvature of the surface and the lower the contact angle of the liquid are, the stronger the driving force will be. This discovery can lead to more effective techniques for transporting droplets.

  8. Low arc drop hybrid mode thermionic converter

    Shimada, K.


    The hybrid mode operation for the reduction of plasma drops is being investigated. This report discusses the results obtained from two molybdenum emitter converters. One converter had a molybdenum collector and the other a nickel collector. The molybdenum collector converter was operated in a hybrid mode (at an interelectrode distance of 1.7 mm) and produced a minimum barrier index of 1.96 eV at an emitter temperature of 1500 K. The arc drop was calculated to be 0.14 eV, using the published results for a molybdenum collector. On the other hand, the nickel collector converter was operated in a conventional ignited mode (at an interelectrode distance of 0.5 mm) and produced a minimum barrier index of 2.1 eV at an emitter temperature of 1700 K. It is tentatively concluded that a large-gap operation of the hybrid mode converter permits the diffusion of cesium ions to a distance in the order of one millimeter for an effective neutralization of electron space charge. By employing a low work function collector (1.55 eV) in a hybrid mode converter with an arc drop of 0.14 eV, it appears that a barrier index as low as 1.69 eV could be achieved.

  9. Drop Calculations of HLW Canister and Pu Can-in-Canister

    Sreten Mastilovic


    The objective of this calculation is to determine the structural response of the standard high-level waste (HLW) canister and the canister containing the cans of immobilized plutonium (Pu) (''can-in-canister'' [CIC] throughout this document) subjected to drop DBEs (design basis events) during the handling operation. The evaluated DBE in the former case is 7-m (23-ft) vertical (flat-bottom) drop. In the latter case, two 2-ft (0.61-m) corner (oblique) drops are evaluated in addition to the 7-m vertical drop. These Pu CIC calculations are performed at three different temperatures: room temperature (RT) (20 C ), T = 200 F = 93.3 C , and T = 400 F = 204 C ; in addition to these the calculation characterized by the highest maximum stress intensity is performed at T = 750 F = 399 C as well. The scope of the HLW canister calculation is limited to reporting the calculation results in terms of: stress intensity and effective plastic strain in the canister, directional residual strains at the canister outer surface, and change of canister dimensions. The scope of Pu CIC calculation is limited to reporting the calculation results in terms of stress intensity, and effective plastic strain in the canister. The information provided by the sketches from Reference 26 (Attachments 5.3,5.5,5.8, and 5.9) is that of the potential CIC design considered in this calculation, and all obtained results are valid for this design only. This calculation is associated with the Plutonium Immobilization Project and is performed by the Waste Package Design Section in accordance with Reference 24. It should be noted that the 9-m vertical drop DBE, included in Reference 24, is not included in the objective of this calculation since it did not become a waste acceptance requirement. AP-3.124, ''Calculations'', is used to perform the calculation and develop the document.

  10. Triple-line behavior and wettability controlled by nanocoated substrates: influence on sessile drop evaporation.

    Sobac, B; Brutin, D


    In this article, we investigate the influence of the surface properties of substrates on the evaporation process. Using various nanocoatings, it is possible to modify the surface properties of substrates, such as the roughness and the surface energy, while maintaining constant thermal properties. Experiments are conducted under atmospheric conditions with five fluids (methanol, ethanol, propanol, toluene and water) and four coatings (PFC, PTFE, SiOC, and SiO(x)). The various combinations of these fluids and coatings allow for a wide range of drop evaporation properties to be studied: the dynamics of the triple line, the volatility of fluids, and a large range of wettabilities (from 17 to 135°). The experimental data are in very good quantitative agreement with existing models of quasi-steady, diffusion-driven evaporation. The experimental results show that the dynamics of the evaporative rate are proportional to the dynamics of the wetting radius. Thus, the models succeed in describing the evaporative dynamics throughout the evaporation process regardless of the behavior of the triple line. Moreover, the use of various liquids reveals the validity of the models regardless of their volatility. The results also confirm the recent finding of a universal relation for the time evolution of the drop mass, independent of the drop size and initial contact angle. Finally, this study highlights the separate and coupled roles of the triple line and the wettability on the sessile drop evaporation process. Data reveal that the more wet and pinned a drop, the shorter the evaporation time.

  11. Predicting Factors of Drop Out Counseling Process in University Psychological Counseling and Guidance Center

    Omer OZER


    Full Text Available Objective: Objective: The purpose of this study is to evaluate the predicting factors the drop out the counseling process. Methods: The study group consists of 555 college students admitted to a Counseling and Guidance Center (CGC and participated in at least one session of counseling after the first view in the 2013-2014 academic year. As a data collection tool, an “Application Form” on the demographic information and the “Brief Symptom Inventory” was applied to the students; and independent samples t-test and binary logistic regression techniques were used in the analysis of the collected data. Results: According to the analysis results, the age of the students attending the counseling process was found to be higher than those who drop out, but no significant difference was found in their psychometric properties in terms of continuation of the counseling process. Only the age of clients and their previous psychiatric help history was found to predict the dropping out counseling process early. Conclusion: Drop outs are less frequently observed in clients having a previous psychiatric help experience. In addition, it was determined that older clients less frequently drop out the counseling process

  12. Failure Mechanisms of Air Entrainment in Drop Impact on Lubricated Surfaces

    Pack, Min; Hu, Han; Kim, Dong-Ook; Zheng, Zhong; Stone, Howard; Sun, Ying; Drexel University Team; Princeton University Team


    Lubricated surfaces have recently been introduced and studied due to their potential benefit in various applications. Combining the techniques of total internal reflection microscopy and reflection interference microscopy, we examine the dynamics of an underlying air film upon drop impact on a lubricated substrate. In contrast to drop impact on solid surfaces where asperities cause random breakup of the entraining air film, we report two air film failure mechanisms on lubricated surfaces. In particular, using thin liquid films of high viscosity, we show that air film rupture shifts from a randomly driven to a controlled event. At low Weber numbers (We) the droplet bounces. At intermediate We, the air film fails at the center as the drop top surface crashes downward owing to impact-induced capillary waves; the resulting liquid-liquid contact time is found to be independent of We. In contrast, at high We, the air film failure occurs much earlier in time at the first inflection point of the air film shape away from the drop center, where the liquid-liquid van der Waals interactions become important. The predictable failure modes of the air film upon drop impact sheds light on droplet deposition in applications such as lubricant-infused self-cleaning surfaces. Support for this work was provided by the National Science Foundation under Grant No. CMMI-1401438 to Y.S.

  13. Surfactant and nonlinear drop dynamics in microgravity

    Jankovsky, Joseph Charles


    Large amplitude drop dynamics in microgravity were conducted during the second United States Microgravity Laboratory mission carried onboard the Space Shuttle Columbia (20 October-5 November 1995). Centimeter- sized drops were statically deformed by acoustic radiation pressure and released to oscillate freely about a spherical equilibrium. Initial aspect ratios of up to 2.0 were achieved. Experiments using pure water and varying aqueous concentrations of Triton-X 100 and bovine serum albumin (BSA) were performed. The axisymmetric drop shape oscillations were fit using the degenerate spherical shape modes. The frequency and decay values of the fundamental quadrupole and fourth order shape mode were analyzed. Several large amplitude nonlinear oscillation dynamics were observed. Shape entrainment of the higher modes by the fundamental quadrupole mode occurred. Amplitude- dependent effects were observed. The nonlinear frequency shift, where the oscillation frequency is found to decrease with larger amplitudes, was largely unaffected by the presence of surfactants. The percentage of time spent in the prolate shape over one oscillation cycle was found to increase with oscillation amplitude. This prolate shape bias was also unaffected by the addition of surfactants. These amplitude-dependent effects indicate that the nonlinearities are a function of the bulk properties and not the surface properties. BSA was found to greatly enhance the surface viscoelastic properties by increasing the total damping of the oscillation, while Triton had only a small influence on damping. The surface concentration of BSA was found to be diffusion-controlled over the time of the experiments, while the Triton diffusion rate was very rapid. Using the experimental frequency and decay values, the suface viscoelastic properties of surface dilatational viscosity ( ks ) and surface shear viscosity ( ms ) were found for varying surfactant concentrations using the transcendental equation of Lu

  14. Are Independent Fiscal Institutions Really Independent?

    Slawomir Franek


    Full Text Available In the last decade the number of independent fiscal institutions (known also as fiscal councils has tripled. They play an important oversight role over fiscal policy-making in democratic societies, especially as they seek to restore public finance stability in the wake of the recent financial crisis. Although common functions of such institutions include a role in analysis of fiscal policy, forecasting, monitoring compliance with fiscal rules or costing of spending proposals, their roles, resources and structures vary considerably across countries. The aim of the article is to determine the degree of independence of such institutions based on the analysis of the independence index of independent fiscal institutions. The analysis of this index values may be useful to determine the relations between the degree of independence of fiscal councils and fiscal performance of particular countries. The data used to calculate the index values will be derived from European Commission and IMF, which collect sets of information about characteristics of activity of fiscal councils.

  15. Drop by drop scattering properties of a radar bin : a numerical experiment

    Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel


    This paper presents the development and initial results of a numerical simulation of pseudo-radar observations computed as the sum of the electric field backscattered by each drop. Simulations are carried out for three successive radar bins with a gate length of 30 m and beam width of 1°. The first step is the simulation of a 100 m x 100 m x 100 m volume with all its drops. The 3D raindrop generator relies on the findings on the rainfall field very small scales (mm to few tens of m) spatio-temporal structure, of the HYDROP experiment and a recent analysis of 2D video disdrometer data in a Multifractal framework. More precisely: (i) The Liquid Water Content (LWC) distribution is represented with the help a multiplicative cascade down to 0.5 m, below which it is considered as homogeneous. (ii) Within each 0.5 x 0.5 x 0.5 m3 patch, liquid water is distributed into drops according to a pre-defined Drop Size Distribution (DSD) and located randomly uniformly. (iii) Such configuration is compared with the one consisting of the same drops uniformly distributed over the 50 x 50 x 50 m3 volume. Then the backscattered field by the drops located within a radar bin are computed as the sum a individual contribution. Antenna beam weighing is taken into account Due to the fact that the radar wave length is much smaller than the "patches" size for rainfall, it appears that as theoretically expected we retrieved an exponential distribution for potential measure horizontal reflectivity. A much lower dispersion is noticed for differential reflectivity. We show that a simple ballistic assumption for drop velocities does not enable to reproduce radar observations, and turbulence must be taken into account. Finally the sensitivity of these outputs to the various model parameters is quantified.

  16. Kelvin Helmholtz instability in an ultrathin air film causes drop splashing on smooth surfaces

    Liu, Yuan; Xu, Lei


    When a fast-moving drop impacts onto a smooth substrate, splashing will be produced at the edge of the expanding liquid sheet. This ubiquitous phenomenon lacks a fundamental understanding. Combining experiment with model, we illustrate that the ultrathin air film trapped under the expanding liquid front triggers splashing. Because this film is thinner than the mean free path of air molecules, the interior airflow transfers momentum with an unusually high velocity comparable to the speed of sound and generates a stress 10 times stronger than the airflow in common situations. Such a large stress initiates Kelvin Helmholtz instabilities at small length scales and effectively produces splashing. Our model agrees quantitatively with experimental verifications and brings a fundamental understanding to the ubiquitous phenomenon of drop splashing on smooth surfaces.

  17. Kelvin-Helmholtz instability in an ultrathin air film causes drop splashing on smooth surfaces.

    Liu, Yuan; Tan, Peng; Xu, Lei


    When a fast-moving drop impacts onto a smooth substrate, splashing will be produced at the edge of the expanding liquid sheet. This ubiquitous phenomenon lacks a fundamental understanding. Combining experiment with model, we illustrate that the ultrathin air film trapped under the expanding liquid front triggers splashing. Because this film is thinner than the mean free path of air molecules, the interior airflow transfers momentum with an unusually high velocity comparable to the speed of sound and generates a stress 10 times stronger than the airflow in common situations. Such a large stress initiates Kelvin-Helmholtz instabilities at small length scales and effectively produces splashing. Our model agrees quantitatively with experimental verifications and brings a fundamental understanding to the ubiquitous phenomenon of drop splashing on smooth surfaces.

  18. Experimental Investigation of Pendant and Sessile Drops in Microgravity

    Zhu, Zhi-Qiang; Brutin, David; Liu, Qiu-Sheng; Wang, Yang; Mourembles, Alexandre; Xie, Jing-Chang; Tadrist, Lounes


    The experiments regarding the contact angle behavior of pendant and sessile evaporating drops were carried out in microgravity environment. All the experiments were performed in the Drop Tower of Beijing, which could supply about 3.6 s of microgravity (free-fall) time. In the experiments, firstly, drops were injected to create before microgravity. The wettability at different surfaces, contact angles dependance on the surface temperature, contact angle variety in sessile and pendant drops were measured. Different influence of the surface temperature on the contact angle of the drops were found for different substrates. To verify the feasibility of drops creation in microgravity and obtain effective techniques for the forthcoming satellite experiments, we tried to inject liquid to create bigger drop as soon as the drop entering microgravity condition. The contact angle behaviors during injection in microgravity were also obtained.

  19. Oscillating and star-shaped drops levitated by an airflow

    Bouwhuis, Wilco; Peters, Ivo R; Brunet, Philippe; van der Meer, Devaraj; Snoeijer, Jacco H


    We investigate the spontaneous oscillations of drops levitated above an air cushion, eventually inducing a breaking of axisymmetry and the appearance of `star drops'. This is strongly reminiscent of the Leidenfrost stars that are observed for drops floating above a hot substrate. The key advantage of this work is that we inject the airflow at a constant rate below the drop, thus eliminating thermal effects and allowing for a better control of the flow rate. We perform experiments with drops of different viscosities and observe stable states, oscillations and chimney instabilities. We find that for a given drop size the instability appears above a critical flow rate, where the latter is largest for small drops. All these observations are reproduced by numerical simulations, where we treat the drop using potential flow and the gas as a viscous lubrication layer. Qualitatively, the onset of instability agrees with the experimental results, although the typical flow rates are too large by a factor 10. Our results...

  20. Simplified procedure for determining of drop and stilling basin

    Ali R. Vatankhah


    Full Text Available Drops are used to effectively dissipate the surplus energy of the water flow. A closed conduit drop conveys water and stills it at its downstream. I-type pipe drop is one kind of the closed conduit drops which is used in irrigation networks as a typical hydraulic structure. Sump elevation is an important design parameter for I-type pipe drop. Similarly, in supercritical flow structures, such as open channel chutes, determination of stilling basin invert elevation is very important. At present, these key design parameters are determined by the momentum and energy equations using tedious trial-and-error procedure. In this study, square conduit drop, pipe drop, and rectangular stilling basin are considered, and three explicit equations have been developed by (multiple nonlinear regression technique to determine the sump and stilling basin invert elevations. Being very simple and accurate, these equations can be easily used to design the closed conduit drops and stilling basins by hydraulic engineers.

  1. Validation of a DNA mixture statistics tool incorporating allelic drop-out and drop-in.

    Mitchell, Adele A; Tamariz, Jeannie; O'Connell, Kathleen; Ducasse, Nubia; Budimlija, Zoran; Prinz, Mechthild; Caragine, Theresa


    DNA mixture analysis is a current topic of discussion in the forensics literature. Of particular interest is how to approach mixtures where allelic drop-out and/or drop-in may have occurred. The Office of Chief Medical Examiner (OCME) of The City of New York has developed and validated the Forensic Statistical Tool (FST), a software tool for likelihood ratio analysis of forensic DNA samples, allowing for allelic drop-out and drop-in. FST can be used for single source samples and for mixtures of DNA from two or three contributors, with or without known contributors. Drop-out and drop-in probabilities were estimated empirically through analysis of over 2000 amplifications of more than 700 mixtures and single source samples. Drop-out rates used by FST are a function of the Identifiler(®) locus, the quantity of template DNA amplified, the number of amplification cycles, the number of contributors to the sample, and the approximate mixture ratio (either unequal or approximately equal). Drop-out rates were estimated separately for heterozygous and homozygous genotypes. Drop-in rates used by FST are a function of number of amplification cycles only. FST was validated using 454 mock evidence samples generated from DNA mixtures and from items handled by one to four persons. For each sample, likelihood ratios (LRs) were computed for each true contributor and for each profile in a database of over 1200 non-contributors. A wide range of LRs for true contributors was obtained, as true contributors' alleles may be labeled at some or all of the tested loci. However, the LRs were consistent with OCME's qualitative assessments of the results. The second set of data was used to evaluate FST LR results when the test sample in the prosecution hypothesis of the LR is not a contributor to the mixture. With this validation, we demonstrate that LRs generated using FST are consistent with, but more informative than, OCME's qualitative sample assessments and that LRs for non

  2. Hydrodynamics and evaporation of a sessile drop of capillary size

    Barash, L Yu


    Fluid dynamics video of an evaporating sessile drop of capillary size is presented. The corresponding simulation represents the description taking into account jointly time dependent hydrodynamics, vapor diffusion and thermal conduction in an evaporating sessile drop. The fluid convection in the drop is driven by Marangoni forces associated with the temperature dependence of the surface tension. For the first time the evolution of the vortex structure in the drop during an evaporation process is obtained.

  3. Hydrodynamics and evaporation of a sessile drop of capillary size

    Barash, L. Yu.


    Fluid dynamics video of an evaporating sessile drop of capillary size is presented. The corresponding simulation represents the description taking into account jointly time dependent hydrodynamics, vapor diffusion and thermal conduction in an evaporating sessile drop. The fluid convection in the drop is driven by Marangoni forces associated with the temperature dependence of the surface tension. For the first time the evolution of the vortex structure in the drop during an evaporation process...

  4. Risk status for dropping out of developmental followup for very low birth weight infants.

    Catlett, A T; R.J. Thompson; Johndrow, D A; Boshkoff, M R


    Not keeping scheduled visits for medical care is a major health care issue. Little research has addressed how the interaction of demographic and biomedical parameters with psychosocial processes has an impact on appointment keeping. Typical factors are stress of daily living, methods of coping, social support, and instrumental support (that is, tangible assistance). In this study, the authors examine the role of these parameters and processes in the risk status for dropping out of a developme...

  5. How microstructures affect air film dynamics prior to drop impact

    Veen, van der R.C.A.; Hendrix, M.H.W.; Tran, A.T.; Sun, C.; Tsai, P.A.; Lohse, D.


    When a drop impacts a surface, a dimple can be formed due to the increased air pressure beneath the drop before it wets the surface. We employ a high-speed color interferometry technique to measure the evolution of the air layer profiles under millimeter-sized drops impacting hydrophobic micropatter

  6. Delayed Frost Growth on Jumping-Drop Superhydrophobic Surfaces

    Boreyko, Jonathan B [ORNL; Collier, Pat [ORNL


    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an inter-drop frost wave. The growth of this inter-drop frost front is shown to be up to three times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of inter-drop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an inter-drop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser was found to be superior to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by minimizing the success of interdrop ice bridge formation.

  7. Inverse Leidenfrost Effect: Levitating Drops on Liquid Nitrogen.

    Adda-Bedia, M; Kumar, S; Lechenault, F; Moulinet, S; Schillaci, M; Vella, D


    We explore the interaction between a liquid drop (initially at room temperature) and a bath of liquid nitrogen. In this scenario, heat transfer occurs through film-boiling: a nitrogen vapor layer develops that may cause the drop to levitate at the bath surface. We report the phenomenology of this inverse Leidenfrost effect, investigating the effect of the drop size and density by using an aqueous solution of a tungsten salt to vary the drop density. We find that (depending on its size and density) a drop either levitates or instantaneously sinks into the bulk nitrogen. We begin by measuring the duration of the levitation as a function of the radius R and density ρd of the liquid drop. We find that the levitation time increases roughly linearly with drop radius but depends weakly on the drop density. However, for sufficiently large drops, R ≥ Rc(ρd), the drop sinks instantaneously; levitation does not occur. This sinking of a (relatively) hot droplet induces film-boiling, releasing a stream of vapor bubbles for a well-defined length of time. We study the duration of this immersed-drop bubbling finding similar scalings (but with different prefactors) to the levitating drop case. With these observations, we study the physical factors limiting the levitation and immersed-film-boiling times, proposing a simple model that explains the scalings observed for the duration of these phenomena, as well as the boundary of (R,ρd) parameter space that separates them.

  8. A new method for neutron depth dosimetry with the superheated drop detector

    D' Errico, F.; Apfel, R.E. (Yale Univ., New Haven, CT (USA))


    Chemical composition and energy response of the Superheated Drop Detector (SDD) suggested to us a new technique for the direct measurement of dose equivalent depth distributions in tissue-equivalent phantoms, independently of impinging neutron spectra and energy degradation with depth. The SDD performance has been tested against the depth-dose curves published in NCRP Report 38. The experimental results, in agreement with the expected values, confirm the applicability of this method. (author).

  9. Novel broadband reconfigurable optical add-drop multiplexer employing custom fiber arrays and Opto-VLSI processors.

    Xiao, Feng; Juswardy, Budi; Alameh, Kamal; Lee, Yong Tak


    A reconfigurable optical add/drop multiplexer (ROADM) structure based on using a custom-made fiber array and an Opto-VLSI processor is proposed and demonstrated. The fiber array consists of N pairs of angled fibers corresponding to N channels, each of which can independently perform add, drop, and thru functions through a reconfigurable Opto-VLSI beam steerer. Experimental results show that the ROADM structure can attain an average add, drop/thru insertion loss of 5.5 dB and a uniformity of 0.3 dB over a wide bandwidth from 1524 nm to 1576 nm, and a drop/thru crosstalk level as small as -40 dB.

  10. Drop spreading at the impact in the Leidenfrost boiling

    Castanet, G.; Caballina, O.; Lemoine, F.


    Although the Leidenfrost effect has been extensively studied in the past, one challenge for the modeling of this phenomenon remains, namely, how to determine the effect induced by the presence of a vapor film on the frictions exerted on the drop. To address this issue, experiments are carried out on liquids with very different viscosities including water, ethanol, and several mixtures of water and glycerol. The deformation of droplets of a few hundred micrometers, impinging a perfectly smooth solid surface heated above the Leidenfrost temperature, is observed by shadowgraphy using a high-speed camera. Experimental results are compared to a theoretical model which is based on an inviscid asymptotic solution for the flow inside the lamella. This model also considers a lamella thickness which does not depend on the viscosity, the surface tension, and thus on the Reynolds and Weber numbers. This description of the lamella is valid if Weber and Reynolds numbers are high enough. Mass and momentum balances applied to the rim bounding the spreading lamella yield an equation for the rim motion which is then solved numerically. This equation accounts for the momentum transferred to the rim by the liquid coming from the lamella, the capillary forces, and the viscous stress at the separation between the lamella and the rim. The comparison between the model and the experiments suggests that the liquid at the bottom edge of the lamella is dragged by the vapor film given that the vapor velocity in the vapor film is significantly larger than that of the liquid. This process significantly increases the drop spreading for the low viscosity liquids. An analysis of the viscous boundary layer which develops at the bottom edge of the lamella is found to confirm this scenario.

  11. Partial coalescence from bubbles to drops

    Zhang, F. H.


    The coalescence of drops is a fundamental process in the coarsening of emulsions. However, counter-intuitively, this coalescence process can produce a satellite, approximately half the size of the original drop, which is detrimental to the overall coarsening. This also occurs during the coalescence of bubbles, while the resulting satellite is much smaller, approximately 10 %. To understand this difference, we have conducted a set of coalescence experiments using xenon bubbles inside a pressure chamber, where we can continuously raise the pressure from 1 up to 85 atm and thereby vary the density ratio between the inner and outer fluid, from 0.005 up to unity. Using high-speed video imaging, we observe a continuous increase in satellite size as the inner density is varied from the bubble to emulsion-droplet conditions, with the most rapid changes occurring as the bubble density grows up to 15 % of that of the surrounding liquid. We propose a model that successfully relates the satellite size to the capillary wave mode responsible for its pinch-off and the overall deformations from the drainage. The wavelength of the primary wave changes during its travel to the apex, with the instantaneous speed adjusting to the local wavelength. By estimating the travel time of this wave mode on the bubble surface, we also show that the model is consistent with the experiments. This wavenumber is determined by both the global drainage as well as the interface shapes during the rapid coalescence in the neck connecting the two drops or bubbles. The rate of drainage is shown to scale with the density of the inner fluid. Empirically, we find that the pinch-off occurs when 60 % of the bubble fluid has drained from it. Numerical simulations using the volume-of-fluid method with dynamic adaptive grid refinement can reproduce these dynamics, as well as show the associated vortical structure and stirring of the coalescing fluid masses. Enhanced stirring is observed for cases with second

  12. Dynamics of Ferrofluidic Drops Impacting Superhydrophobic Surfaces

    Bolleddula, D A; Alliseda, A; Bhosale, P; Berg, J C


    This is a fluid dynamics video illustrating the impact of ferrofluidic droplets on surfaces of variable wettability. Surfaces studied include mica, teflon, and superhydrophobic. A magnet is placed beneath each surface, which modifies the behavior of the ferrofluid by applying additional downward force apart from gravity resulting in reduced droplet size and increased droplet velocity. For the superhydrophobic droplet a jetting phenomena is shown which only occurs in a limited range of impact speeds, higher than observed before, followed by amplified oscillation due to magnetic field as the drop stabilizes on the surface.

  13. DNA Dynamics in A Water Drop

    Mazur, A K


    Due to its polyionic character the DNA double helix is stable and biologically active only in salty aqueous media where its charge is compensated by solvent counterions. Monovalent metal ions are ubiquitous in DNA environment and they are usually considered as the possible driving force of sequence-dependent modulations of DNA structure that make it recognizable by proteins. In an effort to directly examine this hypothesis, MD simulations of DNA in a water drop surrounded by vacuum were carried out, which relieves the requirement of charge neutrality. Surprisingly, with zero concentration of counterions a dodecamer DNA duplex appears metastable and its structure remains similar to that observed in experiments.

  14. Calculation of pressure drop in the developmental stages of the medaka fish heart and microvasculature

    Chakraborty, Sreyashi; Vlachos, Pavlos


    Peristaltic contraction of the developing medaka fish heart produces temporally and spatially varying pressure drop across the atrioventricular (AV) canal. Blood flowing through the tail vessels experience a slug flow across the developmental stages. We have performed a series of live imaging experiments over 14 days post fertilization (dpf) of the medaka fish egg and cross-correlated the red blood cell (RBC) pattern intensities to obtain the two-dimensional velocity fields. Subsequently we have calculated the pressure field by integrating the pressure gradient in the momentum equation. Our calculations show that the pressure drop across the AV canal increases from 0.8mm Hg during 3dpf to 2.8 mm Hg during 14dpf. We have calculated the time-varying wall shear stress for the blood vessels by assuming a spatially constant velocity magnitude in each vessel. The calculated wall shear stress matches the wall shear stress sensed by human endothelial cells (10-12 dyne/sq. cm). The pressure drop per unit length of the vessel is obtained by doing a control volume analysis of flow in the caudal arteries and veins. The current results can be extended to investigate the effect of the fluid dynamic parameters on the vascular and cardiac morphogenesis.

  15. NanoDrop microvolume quantitation of nucleic acids.

    Desjardins, Philippe; Conklin, Deborah


    Biomolecular assays are continually being developed that use progressively smaller amounts of material, often precluding the use of conventional cuvette-based instruments for nucleic acid quantitation for those that can perform microvolume quantitation. The NanoDrop microvolume sample retention system (Thermo Scientific NanoDrop Products) functions by combining fiber optic technology and natural surface tension properties to capture and retain minute amounts of sample independent of traditional containment apparatus such as cuvettes or capillaries. Furthermore, the system employs shorter path lengths, which result in a broad range of nucleic acid concentration measurements, essentially eliminating the need to perform dilutions. Reducing the volume of sample required for spectroscopic analysis also facilitates the inclusion of additional quality control steps throughout many molecular workflows, increasing efficiency and ultimately leading to greater confidence in downstream results. The need for high-sensitivity fluorescent analysis of limited mass has also emerged with recent experimental advances. Using the same microvolume sample retention technology, fluorescent measurements may be performed with 2 μL of material, allowing fluorescent assays volume requirements to be significantly reduced. Such microreactions of 10 μL or less are now possible using a dedicated microvolume fluorospectrometer. Two microvolume nucleic acid quantitation protocols will be demonstrated that use integrated sample retention systems as practical alternatives to traditional cuvette-based protocols. First, a direct A260 absorbance method using a microvolume spectrophotometer is described. This is followed by a demonstration of a fluorescence-based method that enables reduced-volume fluorescence reactions with a microvolume fluorospectrometer. These novel techniques enable the assessment of nucleic acid concentrations ranging from 1 pg/ μL to 15,000 ng/ μL with minimal consumption of

  16. PROGRAM DROP: A computer program for prediction of evaporation from freely falling multicomponent drops

    Gavin, P.M. [Gavin Consulting, Newark, OH (United States)


    PROGRAM DROP consists of a series of FORTRAN routine which together are used to model the evaporation of a freely falling, multicomponent drop composed of an arbitrary number of volatile species and a single nonvolatile, inert component. The physics underlying the model are clearly identified, and the model`s relationship to previous work in the literature is described. Test cases are used to illustrate the viability of the model and to highlight its potential usefulness in the accurate prediction of multicomponent droplet vaporization in a variety of applications.

  17. Universal phase and force diagrams for a microbubble or pendant drop in static fluid on a surface

    Wei, P. S.; Hsiao, C. C.; Chen, K. Y.


    Dimensionless three-dimensional universal phase and lift force diagrams of a microbubble (or pendant drop) in static liquid on a solid surface (or orifice) are presented in this work. Microbubble dynamics has been found to play a vital role in mass, momentum, energy, and concentration transfer rates in contemporary micro- and nanosciences and technologies. In this study, dimensionless phase and force diagrams are introduced by utilizing the analytical solutions of the microbubble shape reported in the literature. It shows that phase and force diagrams can be universally specified by two dimensionless independent parameters, Bond number, and contact angle (or base radius). Based on the presence of an inflection point or neck on the microbubble surface, each diagram exhibits three regions. Growth, detachment, and entrapment of a microbubble can be described by path lines in three regions. The corresponding universal total lift forces include hydrostatic buoyancy, difference in gas, and hydrostatic pressures at the base, capillary pressure, as well as surface tension induced by the variation of circumference, which has not been treated in the literature so far. In the absence of viscous stress and Marangoni force, the total lift force equals surface tension induced by the variation of circumference. The latter can be an attaching or lifting force, depending on whether the state in the distinct regions and contact angle is less than or greater than a critical angle. The critical angle, which is slightly less than the inclination angle at the inflection point, is decreased with increasing Bond number.

  18. Vertical vibration and shape oscillation of acoustically levitated water drops

    Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B., E-mail: [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)


    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  19. Detailed model of bouncing drops on a bounded, vibrated bath

    Blanchette, Francois; Gilet, Tristan


    We present a detailed model of drops bouncing on a bounded vibrated bath. These drops are known to bounce indefinitely and to exhibit complex and varied vertical dynamics depending on the acceleration of the bath. In addition, in a narrow parameter regime, these drops travel horizontally while being guided by the waves they generate. Our model tracks the drop's vertical radius and position, as well as the eigenmodes of the waves generated via ordinary differential equations only. We accurately capture the vertical dynamics, as well as some of the horizontal dynamics. Our model may be extended to account for interactions with other drops or obstacles, such as slits and corrals.

  20. Deformed liquid marbles: Freezing drop oscillations with powders

    Marston, Jeremy


    In this work we show that when a liquid drop impacts onto a fine-grained hydrophobic powder, the final form of the drop can be very different from the spherical form with which it impacts. In all cases, the drop rebounds due to the hydrophobic nature of the powder. However, we find that above a critical impact speed, the drop undergoes a permanent deformation to a highly non-spherical shape with a near-complete coverage of powder, which then freezes the drop oscillations during rebound. © 2012 Elsevier B.V.

  1. The bounce-splash of a viscoelastic drop

    Hernandez-Sanchez, Federico; Zenit, Roberto


    This is an entry for the Gallery of Fluid Motion of the 61st Annual Meeting of the APS-DFD (fluid dynamics videos). This video shows the collision and rebound of viscoelastic drops against a solid wall. Using a high speed camera, the process of approach, contact and rebound of drops of a viscoelastic liquid is observed. We found that these drops first splash, similar to what is observed in Newtonian colliding drops; after a few instants, the liquid recoils, recovering its original drop shape and bounce off the wall.

  2. Development of a Drop Tester for Portable Electronic Products


    Portable electronic products are susceptible to accidental drop impact which can cause various functional and physical damage. This paper first presents a patent pending drop tester which allows portable electronic products free drop at any orientation and drop height, and then introduces the drop tester experiment setup and its design principle. Using a cellular phone as an experiment object, we obtain some data such as the impact forces, the impact accelerations, and the strain of an interested spot. By analyzing experiment data the influence of impact to products in various states is investigated with the aim to provide help for the design of products and improvement of reliability.

  3. Vlasov simulations of parallel potential drops

    H. Gunell


    Full Text Available An auroral flux tube is modelled from the magnetospheric equator to the ionosphere using Vlasov simulations. Starting from an initial state, the evolution of the plasma on the flux tube is followed in time. It is found that when applying a voltage between the ends of the flux tube, about two thirds of the potential drop is concentrated in a thin double layer at approximately one Earth radius altitude. The remaining part is situated in an extended region 1–2 Earth radii above the double layer. Waves on the ion timescale develop above the double layer, and they move toward higher altitude at approximately the ion acoustic speed. These waves are seen both in the electric field and as perturbations of the ion and electron distributions, indicative of an instability. Electrons of magnetospheric origin become trapped between the magnetic mirror and the double layer during its formation. At low altitude, waves on electron timescales appear and are seen to be non-uniformly distributed in space. The temporal evolution of the potential profile and the total voltage affect the double layer altitude, which decreases with an increasing field aligned potential drop. A current–voltage relationship is found by running several simulations with different voltages over the system, and it agrees with the Knight relation reasonably well.

  4. An investigation on the motion and deformation of viscoelastic drops descending in another viscoelastic media

    Davoodi, M.; Norouzi, M.


    In the present study, an investigation of the motion and shape deformation of drops is carried out in creeping flow to highlight the effect of viscoelastic properties on the problem. A perturbation method is employed to derive an analytical solution for the general case that both interior and exterior fluids are viscoelastic, both fluids obeying the Giesekus model. An experiment is also performed for the limiting case of an immiscible drop of a 0.03% (w/w) polyacrylamide in an 80:20 glycerol/water solution falling through a viscous Newtonian silicon oil (410 cP polydimethylsiloxane oil) in order to check the accuracy of the analytical solution. It is shown that the addition of elastic properties to the interior fluid may cause a decrease in the terminal velocity of the droplet while an increase in the elastic properties of the exterior fluid results in the opposite behavior and increases the terminal velocity. The well-known spherical shape of creeping drops for Newtonian fluids is modified by elasticity into either prolate or oblate shapes. Using the analytical solution, it is shown that normal stresses play a key role on the final steady-state shape of the drops. To keep the drops spherical in viscoelastic phases, it is shown that the effect of normal stresses on the interior and exterior media can cancel out under certain conditions. The results presented here may be of interest to industries dealing with petroleum and medicine processing, paint and power-plant related fields where knowledge of the shape and terminal velocity of descending droplets is of great importance.

  5. Independent candidates in Mexico

    Campos, Gonzalo Santiago


    In this paper we discuss the issue of independent candidates in Mexico, because through the so-called political reform of 2012 was incorporated in the Political Constitution of the Mexican United States the right of citizens to be registered as independent candidates. Also, in September 2013 was carried out a reform of Article 116 of the Political Constitution of the Mexican United States in order to allow independent candidates in each state of the Republic. However, prior to the constitutio...

  6. Central bank Financial Independence

    J.Ramon Martinez-Resano


    Central bank independence is a multifaceted institutional design. The financial component has been seldom analysed. This paper intends to set a comprehensive conceptual background for central bank financial independence. Quite often central banks are modelled as robot like maximizers of some goal. This perspective neglects the fact that central bank functions are inevitably deployed on its balance sheet and have effects on its income statement. A financially independent central bank exhibits ...

  7. Direct observation of drops on slippery lubricant-infused surfaces.

    Schellenberger, Frank; Xie, Jing; Encinas, Noemí; Hardy, Alexandre; Klapper, Markus; Papadopoulos, Periklis; Butt, Hans-Jürgen; Vollmer, Doris


    For a liquid droplet to slide down a solid planar surface, the surface usually has to be tilted above a critical angle of approximately 10°. By contrast, droplets of nearly any liquid "slip" on lubricant-infused textured surfaces - so termed slippery surfaces - when tilted by only a few degrees. The mechanism of how the lubricant alters the static and dynamic properties of the drop remains elusive because the drop-lubricant interface is hidden. Here, we image the shape of drops on lubricant-infused surfaces by laser scanning confocal microscopy. The contact angle of the drop-lubricant interface with the substrate exceeds 140°, although macroscopic contour images suggest angles as low as 60°. Confocal microscopy of moving drops reveals fundamentally different processes at the front and rear. Drops recede via discrete depinning events from surface protrusions at a defined receding contact angle, whereas the advancing contact angle is 180°. Drops slide easily, as the apparent contact angles with the substrate are high and the drop-lubricant interfacial tension is typically lower than the drop-air interfacial tension. Slippery surfaces resemble superhydrophobic surfaces with two main differences: drops on a slippery surface are surrounded by a wetting ridge of adjustable height and the air underneath the drop in the case of a superhydrophobic surface is replaced by lubricant in the case of a slippery surface.

  8. Characterization of biofluids prepared by sessile drop formation.

    Esmonde-White, Karen A; Esmonde-White, Francis W L; Morris, Michael D; Roessler, Blake J


    Sessile drop formation, also called drop deposition, has been studied as a potential medical diagnostic, but the effects of complex biofluid rheology on the final deposition pattern are not well understood. We studied two model biofluids, blood plasma and synovial fluid, when deposited onto slightly hydrophilic substrates forming a contact angle of 50-90°. Drops were imaged during the evaporation process and geometric properties of the drop, such as contact angle and drop height, were calculated from the images. The resulting dried biofluid drops were then examined using light microscopy and Raman spectroscopy to assess morphological and chemical composition of the dried drop. The effect of substrate contact angle (surface wetting) and fluid concentration was examined. We found that when biofluids are deposited onto slightly hydrophilic surfaces, with a contact angle of 50-90°, a ring-shaped deposit was formed. Analysis of the drying drop's geometric properties indicates that biofluid dynamics follow the piling model of drop formation, as proposed by Deegan et al. The final deposition pattern varied with substrate surface and concentration, as shown by light microscopy photos of dried drops. The chemical composition of the outer ring was minimally affected by substrate surface, but the spatial heterogeneity of protein distribution within the ring varied with concentration. These results indicate that biofluid drop deposition produces ring-shaped deposits which can be examined by multiple analytical techniques.

  9. Drop-out from the Swedish addiction compulsory care system.

    Padyab, Mojgan; Grahn, Robert; Lundgren, Lena


    Drop-out of addiction treatment is common, however, little is known about drop-out of compulsory care in Sweden. Data from two national register databases were merged to create a database of 4515 individuals sentenced to compulsory care 2001-2009. The study examined (1) characteristics associated with having dropped out from a first compulsory care episode, (2) the relationship between drop-out and returning to compulsory care through a new court sentence, and (3) the relationship between drop-out and mortality. Multivariable logistic regression analysis was used to address Aim 1 and Cox proportional hazards regression modeling was applied to respond to Aims 2 and 3. Age and previous history of crime were significant predictors for drop-out. Clients who dropped out were 1.67 times more likely to return to compulsory care and the hazard of dying was 16% higher than for those who dropped-out. This study finds that 59% of clients assigned to compulsory care drop-out. Younger individuals are significantly more likely to drop-out. Those who drop out are significantly more likely to experience negative outcomes (additional sentence to compulsory care and higher risk of mortality). Interventions need to be implemented that increase motivation of youth to remain in compulsory care. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The impact of drop-out in cardiac rehabilitation on outcome among coronary artery disease patients.

    Pardaens, Sofie; Willems, Anne-Marie; Clays, Els; Baert, Anneleen; Vanderheyden, Marc; Verstreken, Sofie; Du Bois, Inge; Vervloet, Delphine; De Sutter, Johan


    Background The effect of adherence to cardiac rehabilitation (CR) on outcome is not clear. Therefore, we aimed to assess the impact of drop-out for non-medical reasons of CR on event-free survival in coronary artery disease (CAD). Methods A total of 876 patients who attended CR after acute coronary syndrome (ACS), percutaneous coronary intervention (PCI) or coronary artery bypass graft (CABG) were included. Drop-out was defined as attending ≤50% of the training sessions. A combined endpoint of all-cause mortality and rehospitalization for a cardiovascular event was used to specify event-free survival. Differences in clinical characteristics were assessed and parameters with p dropped out before finishing half of the program. Patients who withdrew prematurely had a risk twice as high for a cardiovascular event or death (hazard ratio 1.92, 95% confidence interval 1.28-2.90) than those who attended more than half of the sessions. Both ACS (2.36, 1.47-3.58) and PCI (2.20, 1.22-3.96), as primary indicators for CR, were associated with an adverse outcome and also a prior history of chronic heart failure (CHF) remained negatively associated with event-free survival (3.67, 1.24-10.91). Finally, the presence of hyperlipidemia was independently related to a worse outcome (1.48, 1.02-2.16). Conclusions Drop-out for non-medical reasons was independently associated with a negative outcome in CAD. Therefore, underlying factors for drop-out should gain more attention in future research and should be taken into account when organizing CR.

  11. Gravity Independent Compressor Project

    National Aeronautics and Space Administration — We propose to develop and demonstrate a small, gravity independent, vapor compression refrigeration system using a linear motor compressor which effectively...

  12. Asymmetry of Drop Impacts on Patterned Hydrophobic Microstructures

    Willmott, Geoff; Robson, Simon; Broom, Matheu


    When a water drop falls on to a flat solid surface, asymmetries in the geometry of the spreading drop can be specifically determined by patterned surface microstructures. For hydrophobic (or superhydrophobic) micropillar arrays, the most important asymmetric mechanisms appear to be the surface energy of contact lines, and pathways for gas escaping from penetrated microstructure. In this presentation, static wetting and drop impact experiments will be discussed in relation to drop asymmetries. In addition to micropillar arrays, natural superhydrophobic surfaces (leaves) have been studied, and may suggest possibilities for controlling drop impacts in applications. Some of the clearest large scale drop asymmetries on leaves, which are similar to those associated with low drop impact contact times on synthetic surfaces, appear to be caused by features which generate high contact angle hysteresis, and are therefore indicative of poor superhydrophocity.

  13. Destabilising Pickering emulsions by drop flocculation and adhesion.

    Whitby, Catherine P; Khairul Anwar, Hunainah; Hughes, James


    We have investigated how emulsions of water drops coated by organoclay particles destabilise in organic solvents. The drops destabilise and the emulsions undergo a fluid-solid transition if the particles are poorly wetted by the solvent. We show that the drops adhere together and form three-dimensional networks as the fraction of the poor-quality solvent in the mixture increases. Microscopic observations revealed that the drops coalesce into buckled, non-spherical shapes in mixtures rich in poor-quality solvent. A key finding is that destabilisation is favoured under conditions where the energy of adhesion between the particle layers coating drops is comparable to the energy required to detach the particles from the drops. Rupture of the interfacial layer produces particle flocs and uncoated, unstable water drops that settle out of the emulsion.

  14. Comparison of Personal, Social and Academic Variables Related to University Drop-out and Persistence.

    Bernardo, Ana; Esteban, María; Fernández, Estrella; Cervero, Antonio; Tuero, Ellián; Solano, Paula


    Dropping out of university has serious consequences not only for the student who drops out but also for the institution and society as a whole. Although this phenomenon has been widely studied, there is a need for broader knowledge of the context in which it occurs. Yet research on the subject often focuses on variables that, although they affect drop-out rates, lie beyond a university's control. This makes it hard to come up with effective preventive measures. That is why a northern Spanish university has undertaken a ex post facto holistic research study on 1,311 freshmen (2008/9, 2009/10, and 2010/11 cohorts). The study falls within the framework of the ALFA-GUIA European Project and focuses on those drop-out factors where there is scope for taking remedial measures. This research explored the possible relationship of degree drop-out and different categories of variables: variables related to the educational stage prior to university entry (path to entry university and main reason for degree choice), variables related to integration and coexistence at university (social integration, academic integration, relationships with teachers/peers and value of the living environment) financial status and performance during university studies (in terms of compliance with the program, time devoted to study, use of study techniques and class attendance). Descriptive, correlational and variance analyses were conducted to discover which of these variables really distinguish those students who drop-out from their peers who complete their studies. Results highlight the influence of vocation as main reason for degree choice, path to university entry, financial independency, social and academic adaptation, time devoted to study, use of study techniques and program compliance in the studied phenomenon.

  15. Comparison of Personal, Social and Academic Variables Related to University Drop-out and Persistence

    Bernardo, Ana; Esteban, María; Fernández, Estrella; Cervero, Antonio; Tuero, Ellián; Solano, Paula


    Dropping out of university has serious consequences not only for the student who drops out but also for the institution and society as a whole. Although this phenomenon has been widely studied, there is a need for broader knowledge of the context in which it occurs. Yet research on the subject often focuses on variables that, although they affect drop-out rates, lie beyond a university’s control. This makes it hard to come up with effective preventive measures. That is why a northern Spanish university has undertaken a ex post facto holistic research study on 1,311 freshmen (2008/9, 2009/10, and 2010/11 cohorts). The study falls within the framework of the ALFA-GUIA European Project and focuses on those drop-out factors where there is scope for taking remedial measures. This research explored the possible relationship of degree drop-out and different categories of variables: variables related to the educational stage prior to university entry (path to entry university and main reason for degree choice), variables related to integration and coexistence at university (social integration, academic integration, relationships with teachers/peers and value of the living environment) financial status and performance during university studies (in terms of compliance with the program, time devoted to study, use of study techniques and class attendance). Descriptive, correlational and variance analyses were conducted to discover which of these variables really distinguish those students who drop-out from their peers who complete their studies. Results highlight the influence of vocation as main reason for degree choice, path to university entry, financial independency, social and academic adaptation, time devoted to study, use of study techniques and program compliance in the studied phenomenon.

  16. The Oil Drop Experiment: How Did Millikan Decide What Was an Appropriate Drop?

    Niaz, Mansoor


    The oil drop experiment is considered an important contribution to the understanding of modern physics and chemistry. The objective of this investigation is to study and contrast the views and understanding with respect to the experiment of physicists or philosophers of science with those of authors of physics or chemistry textbooks and…

  17. Accounting for Independent Schools.

    Sonenstein, Burton

    The diversity of independent schools in size, function, and mode of operation has resulted in a considerable variety of accounting principles and practices. This lack of uniformity has tended to make understanding, evaluation, and comparison of independent schools' financial statements a difficult and sometimes impossible task. This manual has…

  18. Independence of Internal Auditors.

    Montondon, Lucille; Meixner, Wilda F.


    A survey of 288 college and university auditors investigated patterns in their appointment, reporting, and supervisory practices as indicators of independence and objectivity. Results indicate a weakness in the positioning of internal auditing within institutions, possibly compromising auditor independence. Because the auditing function is…

  19. Fostering Musical Independence

    Shieh, Eric; Allsup, Randall Everett


    Musical independence has always been an essential aim of musical instruction. But this objective can refer to everything from high levels of musical expertise to more student choice in the classroom. While most conceptualizations of musical independence emphasize the demonstration of knowledge and skills within particular music traditions, this…

  20. On Background Independence

    Anderson, Edward


    This paper concerns what Background Independence itself is (as opposed to some particular physical theory that is background independent). The notions presented mostly arose from a layer-by-layer analysis of the facets of the Problem of Time in Quantum Gravity. Part of this coincides with two relational postulates which are thus identified as classical precursors of two of the facets of the Problem of Time. These are furthemore tied to the forms of each of the GR Hamiltonian and momentum constraints. Other aspects of Background Independence include the algebraic closure of these constraints, expressing physics in terms of beables, foliation independence as implemented by refoliation invariance, the reconstruction of spacetime from space. The final picture is that Background Independence - a philosophically desirable and physically implementable feature for a theory to have - has the facets of the Problem of Time among its consequences. Thus these arise naturally and are problems to be resolved, as opposed to ...

  1. Nonlinear Resonance of Mechanically Excited Sessile Drops

    Chang, Chun-Ti; Daniel, Susan; Steen, Paul


    The spectrum of frequencies and mode shapes for an inviscid drop on a planar substrate have recently been documented. For vertical excitation, zonal modes respond to the driving frequency harmonically and non-zonal modes subharmonically, consistent with the prior literature. In this study, we report observations from the regime of nonlinear response. Here, zonals can respond non-harmonically, both sub- and super-harmonic responses are reported. The principal challenge to generating and observing superharmonic resonances of higher zonal modes is a mode-mixing behavior. However, using a simple visual simulation based on the ray-tracing technique, the individual contributions to the mixed resonance behavior can be extracted. In summary, results from experiment and theory show that the zonal modes, which respond harmonically and can mix with non-zonal modes without interfering with one another in the linear regime, tend to respond sub- or superharmonically and compete with non-zonal modes in the nonlinear regime.

  2. Drop Impact on to Moving Liquid Pools

    Muñoz-Sánchez, Beatriz Natividad; Castrejón-Pita, José Rafael; Castrejón-Pita, Alfonso Arturo; Hutchings, Ian M.


    The deposition of droplets on to moving liquid substrates is an omnipresent situation both in nature and industry. A diverse spectrum of phenomena emerges from this simple process. In this work we present a parametric experimental study that discerns the dynamics of the impact in terms of the physical properties of the fluid and the relative velocity between the impacting drop and the moving liquid pool. The behaviour ranges from smooth coalescence (characterized by little mixing) to violent splashing (generation of multiple satellite droplets and interfacial vorticity). In addition, transitional regimes such as bouncing and surfing are also found. We classify the system dynamics and show a parametric diagram for the conditions of each regime. This work was supported by the EPSRC (Grant EP/H018913/1), the Royal Society, Becas Santander Universidades and the International Relationships Office of the University of Extremadura.

  3. Drop Impact on a Solid Surface

    Josserand, C.


    © Copyright 2016 by Annual Reviews. All rights reserved. A drop hitting a solid surface can deposit, bounce, or splash. Splashing arises from the breakup of a fine liquid sheet that is ejected radially along the substrate. Bouncing and deposition depend crucially on the wetting properties of the substrate. In this review, we focus on recent experimental and theoretical studies, which aim at unraveling the underlying physics, characterized by the delicate interplay of not only liquid inertia, viscosity, and surface tension, but also the surrounding gas. The gas cushions the initial contact; it is entrapped in a central microbubble on the substrate; and it promotes the so-called corona splash, by lifting the lamella away from the solid. Particular attention is paid to the influence of surface roughness, natural or engineered to enhance repellency, relevant in many applications.

  4. Interface analysis of embedded chip resistor device package and its effect on drop shock reliability.

    Park, Se-Hoon; Kim, Sun Kyoung; Kim, Young-Ho


    In this study, the drop reliability of an embedded passive package is investigated under JESD22-B111 condition. Chip resistors were buried in a PCB board, and it was electrically interconnected by electroless and electrolytic copper plating on a tin pad of a chip resistor without intermetallic phase. However tin, nickel, and copper formed a complex intermetallic phase, such as (Cu, Ni)6Sn5, (Cu, Ni)3Sn, and (Ni, Cu)3Sn2, at the via interface and via wall after reflow and aging. Since the amount of the tin layer was small compared with the solder joint, excessive intermetallic layer growth was not observed during thermal aging. Drop failures are always initiated at the IMC interface, and as aging time increases Cu-Sn-Ni IMC phases are transformed continuously due to Cu diffusion. We studied the intermetallic formation of the Cu via interface and simulated the stress distribution of drop shock by using material properties and board structure of embedded passive boards. The drop simulation was conducted according to the JEDEC standard. It was revealed that the crack starting point related to failure fracture changed due to intermetallic phase transformation along the via interface, and the position where failure occurs experimentally agrees well with our simulation results.

  5. Interaction of two deformable viscous drops under external temperature gradient

    Berejnov, V V; Nir, A


    The axisymmetric deformation and motion of interacting droplets in an imposed temperature gradient is considered using boundary-integral techniques for slow viscous motion. Results showing temporal drop motion, deformations and separation are presented for equal-viscosity fluids. The focus is on cases when the drops are of equal radii or when the smaller drop trails behind the larger drop. For equal-size drops, our analysis shows that the motion of a leading drop is retarded while the motion of the trailing one is enchanced compared to the undeformable case. The distance between the centers of equal-sized deformable drops decreases with time. When a small drop follows a large one, two patterns of behavior may exist. For moderate or large initial separation the drops separate. However, if the initial separation is small there is a transient period in which the separation distance initially decreases and only afterwards the drops separate. This behavior stems from the multiple time scales that exist in the syst...

  6. Dynamics of Vapor Layer Under a Leidenfrost Drop

    Caswell, Thomas A


    In the Leidenfrost effect a small drop of fluid is levitated above a sufficiently hot surface, on a persistent vapor layer generated by evaporation from the drop. The vapor layer thermally insulates the drop from the surface leading to extraordinarily long drop lifetimes. The top-view shape of the levitated drops can exhibit persistent star-like vibrations. I extend recent work [Burton et al. PRL 2012] to study the bottom surface of the drop using interference-imaging. In this work I use a high-speed camera and automated image analysis to image, locate and classify the interference fringes. From the interference fringes I reconstruct the shape and height profile of the rim where the drop is closest to the surface. I measure the drop-size dependence of the planar vibrational mode frequencies, which agree well with previous work. I observe a distinct breathing mode in the average radius of the drop, the frequency of which scales differently with drop size than the other modes. This breathing mode can be tightly...

  7. Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics.

    Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime


    We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of smoothed particle hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse-interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid.

  8. Bubble formation during the collision of a sessile drop with a meniscus

    Keij, Diederik L; Castelijns, Hein; Riepen, Michel; Snoeijer, Jacco H


    The impact of a sessile droplet with a moving meniscus, as encountered in processes such as dip-coating, generically leads to the entrapment of small air bubbles. Here we experimentally study this process of bubble formation by looking through the liquid using high-speed imaging. Our central finding is that the size of the entrapped bubble crucially depends on the location where coalescence between the drop and the moving meniscus is initiated: (i) at a finite height above the substrate, or (ii) exactly at the contact line. In the first case, we typically find bubble sizes of the order of a few microns, independent of the size and speed of the impacting drop. By contrast, the bubbles that are formed when coalescence starts at the contact line become increasingly large, as the size or the velocity of the impacting drop is increased. We show how these observations can be explained from a balance between the lubrication pressure in the air layer and the capillary pressure of the drop.

  9. Neutron drops radii probed by the neutron skin thickness of nuclei

    Zhao, P W


    Multi-neutron systems are crucial to understand the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both non-relativistic and relativistic density functional theories and with ab initio calculations. We demonstrate a strong linear correlation, which is universal in the realm of mean-field models, between the root-mean-square (rms) radii of neutron drops and the neutron skin thickness of Pb-208 and Ca-48; i.e., the difference between the neutron and proton rms radii of a nucleus. Due to its high quality, this correlation can be used to deduce the radii of neutron drops from the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three neutron forces. This correlation, together with high- precision measurements of the neutron skin thicknesses of Pb-208 and Ca-48, will have an enduring impact on the understanding of multi-neutro...

  10. Probabilistic conditional independence structures

    Studeny, Milan


    Probabilistic Conditional Independence Structures provides the mathematical description of probabilistic conditional independence structures; the author uses non-graphical methods of their description, and takes an algebraic approach.The monograph presents the methods of structural imsets and supermodular functions, and deals with independence implication and equivalence of structural imsets.Motivation, mathematical foundations and areas of application are included, and a rough overview of graphical methods is also given.In particular, the author has been careful to use suitable terminology, and presents the work so that it will be understood by both statisticians, and by researchers in artificial intelligence.The necessary elementary mathematical notions are recalled in an appendix.

  11. Structural Analyses of the Support Trusses for the Nuclear Thermal Rocket Engines and Drop Tanks

    Myers, David E.; Kosareo, Daniel N.


    Finite element structural analyses were performed on the support trusses of the Nuclear Thermal Rocket (NTR) engines and drop tanks to verify that the proper amount of mass was allocated for these components in the vehicle sizing model. The verification included a static stress analysis, a modal analysis, and a buckling analysis using the MSC/NASTRAN™ structural analysis software package. In addition, a crippling stress analysis was performed on the truss beams using a handbook equation. Two truss configurations were examined as possible candidates for the drop tanks truss while a baseline was examined for the engine support thrust structure. For the drop tanks trusses, results showed that both truss configurations produced similar results although one performed slightly better in buckling. In addition, it was shown that the mass allocated in the vehicle sizing model was adequate although the engine thrust structure may need to be modified slightly to increase its lateral natural frequency above the minimum requirement of 8 Hz that is specified in the Delta IV Payload Planners Guide.

  12. The behavior of pollination drop secretion in Ginkgo biloba L.

    Jin, Biao; Jiang, Xiaoxue; Wang, Di; Zhang, Lei; Wan, Yinglang; Wang, Li


    Pollination drop (PD) secretion plays a critical role in wind pollination in many gymnosperms. We conducted detailed investigations on PD secretion in Ginkgo biloba, and found that PDs could not form when the micropyle was removed, but were able to form after removal of the shoot, leaves, ovular stalk, or ovular collar. The duration and volume of the PD increased under high relative humidity, but addition of salt or sugar did not affect PD secretion, its size, or its duration. Morphological and anatomical observations showed that many secretion cells at the nucellus tip contributed to secreting the PD after the formation of pollen chamber. Under laboratory conditions, the PD persisted for approximately 10 d if not pollinated, and re-formed five times after it was removed, with the total volume of PDs reaching approximately 0.4 μL. These results suggested that PDs can be continuously secreted by the tip of the nucellus cells during the pollination stage to increase the chance of capturing pollen from the air. Importantly, PD secretion is an independent behavior of the ovule and PDs were produced apoplastically. PMID:22899081

  13. Drop motion due to oscillations of an inclined substrate

    Xia, Yi; Chang, Chun-Ti; Daniel, Susan; Steen, Paul


    A sessile drop on a stationary inclined substrate remains pinned unless the angle of inclination is greater than some critical value. Alternatively, when shaken at even small angles of inclination, the drop undergoes shape deflections which may lead to drop translation. Translation occurs when large contact angle fluctuations, favored by oscillations at resonance, overcome contact angle hysteresis. In this study, resonance is triggered by substrate-normal oscillations. The drop translation is typically observed to be of constant speed for a given set of parameters. The speed is measured experimentally as a function of resonance mode, driving amplitude and drop volume. This technique of activating the motion of drops having a particular volume can be utilized for applications of droplet selection and transport.

  14. Collision between chemically-driven self-propelled drops

    Yabunaka, Shunsuke


    We consider analytically and numerically head-on collision between two self-propelled drops. Each drop is driven by chemical reactions that produce or consume the concentration isotropically. The isotropic distribution of the concentration field is destabilized by motion of the drop which is itself made by Marangoni flow from concentration-dependent surface tension. This symmetry-breaking self-propulsion is distinct from other self-propulsion mechanisms due to the intrinsic polarity such as squirmers and self-phoretic motion; there is a bifurcation point below which the drop is stationary and above which it moves spontaneously. When two drops moving along the same axis with opposite direction, the interactions arise both from hydrodynamics and concentration overlap. We found that two drops exhibit either elastic collision or fusion depending on the distance from the bifurcation point controlled, for instance, by viscosity. The elastic collision results from the balance between dissipation and energy injection...

  15. Drop Test Results of CRDM under Seismic Loads

    Choi, Myoung-Hwan; Cho, Yeong-Garp; Kim, Gyeong-Ho; Sun, Jong-Oh; Huh, Hyung [KAERI, Daejeon (Korea, Republic of)


    This paper describes the test results to demonstrate the drop performance of CRDM under seismic loads. The top-mounted CRDM driven by the stepping motor for Jordan Research and Training Reactor (JRTR) has been developed in KAERI. The CRDM for JRTR has been optimized by the design improvement based on that of the HANARO. It is necessary to verify the drop performance under seismic loads such as operating basis earthquake (OBE) and safe shutdown earthquake (SSE). Especially, the CAR drop times are important data for the safety analysis. confirm the drop performance under seismic loads. The delay of drop time at Rig no. 2 due to seismic loads is greater than that at Rig no. 3. The total pure drop times under seismic loads are estimated as 1.169 and 1.855, respectively.

  16. Microwave Dielectric Heating of Drops in Microfluidic Devices

    Issadore, David; Brown, Keith A; Sandberg, Lori; Weitz, David; Westervelt, Robert M


    We present a technique to locally and rapidly heat water drops in microfluidic devices with microwave dielectric heating. Water absorbs microwave power more efficiently than polymers, glass, and oils due to its permanent molecular dipole moment that has a large dielectric loss at GHz frequencies. The relevant heat capacity of the system is a single thermally isolated picoliter drop of water and this enables very fast thermal cycling. We demonstrate microwave dielectric heating in a microfluidic device that integrates a flow-focusing drop maker, drop splitters, and metal electrodes to locally deliver microwave power from an inexpensive, commercially available 3.0 GHz source and amplifier. The temperature of the drops is measured by observing the temperature dependent fluorescence intensity of cadmium selenide nanocrystals suspended in the water drops. We demonstrate characteristic heating times as short as 15 ms to steady-state temperatures as large as 30 degrees C above the base temperature of the microfluidi...

  17. Drop Impact on Textile Material: Effect of Fabric Properties

    Romdhani Zouhaier


    Full Text Available This paper presents an experimental study of impact of water drop on a surface in a spreading regime with no splashing. Three surfaces were studied: virgin glass, coating film and woven cotton fabric at different construction parameters. All experiments were carried out using water drop with the same free fall high. Digidrop with high-resolution camera is used to measure the different parameters characterising this phenomenon. Results show an important effect of the height of the free fall on the drop profile and the spreading behaviour. An important drop deformation at the surface impact was observed. Then, fabric construction as the weft count deeply affects the drop impact. For plain weave, an increase of weft count causes a decrease in penetration and increase in the spreading rate. The same result was obtained for coated fabric. Therefore, the impact energy was modified and the drop shape was affected, which directly influenced the spreading rate.

  18. How geometry determines the coalescence of low-viscosity drops

    Eddi, A; Snoeijer, J H


    The coalescence of water drops on a substrate is studied experimentally. We focus on the rapid growth of the bridge connecting the two drops, which very quickly after contact ensues from a balance of surface tension and liquid inertia. For drops with contact angles below $90^\\circ$, we find that the bridge grows with a self-similar dynamics that is characterized by a height $h\\sim t^{2/3}$. By contrast, the geometry of coalescence changes dramatically for contact angles at $90^\\circ$, for which we observe $h\\sim t^{1/2}$, just as for freely suspended spherical drops in the inertial regime. We present a geometric model that quantitatively captures the transition from 2/3 to 1/2 exponent, and unifies the inertial coalescence of sessile drops and freely suspended drops.

  19. Changes in internal stress distributions during yielding of square prismatic gold nano-specimens

    Batra, R.C., E-mail: [Department of Engineering Science and Mechanics, M/C 0219, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Pacheco, A.A. [Universidad del Norte, Department of Mechanical Engineering, Barranquilla (Colombia)


    We use molecular statics simulations with the tight-binding potential to analyze stress evolution in nanosize square prismatic gold specimens of different aspect ratios (length/width) deformed in either simple tension/compression or tension/compression. In the former case atoms on end faces are displaced axially but are free to move laterally, and in the latter case atoms on end faces are restrained from moving laterally during their axial displacement. It is found that the stress distribution in the unloaded reference configuration is non-uniform, and it satisfies the local and the global equilibrium equations. Large values of the von Mises stress and the maximum shear stress occur on atoms located at the third layer beneath the traction free surfaces forming different patterns for specimens loaded in tension and compression. The specimen is assumed to yield when its total strain energy drops noticeably. Maximum values of the von Mises stress and the maximum shear stress at yielding are essentially independent of specimen's length for specimens deformed in tension. For specimens deformed in compression, wave-like patterns of stresses along the axial centroidal axis are observed when the specimen yields.

  20. Development of Drop/Shock Test in Microelectronics and Impact Dynamic Analysis for Uniform Board Response

    Kallolimath, Sharan Chandrashekar

    For the past several years, many researchers are constantly developing and improving board level drop test procedures and specifications to quantify the solder joint reliability performance of consumer electronics products. Predictive finite element analysis (FEA) by utilizing simulation software has become widely acceptable verification method which can reduce time and cost of the real-time test process. However, due to testing and metrological limitations it is difficult not only to simulate exact drop condition and capture critical measurement data but also tedious to calibrate the system to improve test methods. Moreover, some of the important ever changing factors such as board flexural rigidity, damping, drop height, and drop orientation results in non-uniform stress/strain distribution throughout the test board. In addition, one of the most challenging tasks is to quantify uniform stress and strain distribution throughout the test board and identify critical failure factors. The major contributions of this work are in the four aspects of the drop test in electronics as following. First of all, an analytical FEA model was developed to study the board natural frequencies and responses of the system with the consideration of dynamic stiffness, damping behavior of the material and effect of impact loading condition. An approach to find the key parameters that affect stress and strain distributions under predominate mode responses was proposed and verified with theoretical solutions. Input-G method was adopted to study board response behavior and cut boundary interpolation methods was used to analyze local model solder joint stresses with the development of global/local FEA model in ANSYS software. Second, no ring phenomenon during the drop test was identified theoretically when the test board was modeled as both discrete system and continuous system. Numerical analysis was then conducted by FEA method for detailed geometry of attached chips with solder

  1. Shaping and Capturing Leidenfrost drops with a magnetic field

    Piroird, Keyvan; Clanet, Christophe; Quéré, David


    Liquid oxygen, which is intrinsically paramagnetic, also undergoes Leidenfrost effect at room temperature. In this article, we first study the deformation of oxygen drops in a magnetic field via an effective capillary length, that includes the magnetic force. In a second part, we show that these ultra-mobile drops passing above a magnet significantly slow down and can even be trapped if slow enough. The critical velocity below which a drop is captured is determined from the deformation induced by the field.

  2. Behavior of liquid drop situated between two oscillating planes

    Korenchenko, A E [Institute of Metallurgy, Russian Academy of Science, Ural Branch, 101 Amundsen str., Ekaterinburg 620219 (Russian Federation); Beskachko, V P [South Ural State University, 76 Lenin str., Chelyabinsk 454080 (Russian Federation)], E-mail:


    The levitation drop technique is widely used for the measurement of the surface tension and viscosity of liquids. An experiment with a drop situated between two horizontal rigid planes gives the same possibilities. The dynamic problem is solved numerically in the following cases: (1) the free oscillations of the drop when the plates are motionless; (2) the forced oscillations when the upper plate makes a translational vibration in the normal direction. The possibility of viscosity determination in such experiments is shown.

  3. On the coalescence of sessile drops with miscible liquids.

    Borcia, R; Bestehorn, M


    Sessile drops sitting on highly wettable solid substrates fuse in qualitatively different ways after contact, depending on the surface tension gradients between the mixing droplets. In early time evolution the drop coalescence can be fast or delayed (intermittent). In long time evolution a secondary drop formation can occur. We study numerically droplet dynamics during coalescence in two and three spatial dimensions, within a phase field approach. We discuss criteria to distinguish different coalescence regimes. A comparison with recent experiments will be done.

  4. A drop jumps to weightlessness: a lecture demo

    Mayer, V. V.; Varaksina, E. I.; Saranin, V. A.


    The paper discusses the lecture demonstration of the phenomenon in which a drop lying on a solid unwettable substrate jumps when making the transition to weightlessness. An elementary theory of the phenomenon is given. A jump speed estimate is obtained for small and large drops. The natural vibrational frequency of a flying drop is determined. A full-scale model of Einstein’s elevator is described. Experimental and theoretical results are found to agree satisfactorily.

  5. Drop-out from a psychodynamic group psychotherapy outpatient unit.

    Jensen, Hans Henrik; Mortensen, Erik Lykke; Lotz, Martin


    BACKGROUND. Drop-out from psychotherapy is common and represents a considerable problem in clinical practice and research. Aim. To explore pre-treatment predictors of early and late drop-out from psychodynamic group therapy in a public outpatient unit for non-psychotic disorders in Denmark. Methods. Naturalistic design including 329 patients, the majority with mood, neurotic and personality disorders referred to 39-session group therapy. Predictors were socio-demographic and clinical variables, self-reported symptoms (Symptom Check List-90-Revised) and personality style (Millon Clinical Multiaxial Inventory-II). Drop-out was classified into early and late premature termination excluding patients who dropped out for external reasons. Results. Drop-out comprised 20.6% (68 patients) of the sample. Logistic regression revealed social functioning, vocational training, alcohol problems and antisocial behavior to be related to drop-out. However, early drop-outs had prominent agoraphobic symptoms, lower interpersonal sensitivity and compulsive personality features, and late drop-outs cognitive and somatic anxiety symptoms and antisocial personality features. Clinical and psychological variables accounted for the major part of variance in predictions of drop-out, which ranged from 15.6% to 19.5% (Nagelkerke Pseudo R-Square). Conclusion. Social functioning was consistently associated with drop-out, but personality characteristics and anxiety symptoms differentiated between early and late drop-out. Failure to discriminate between stages of premature termination may explain some of the inconsistencies in the drop-out literature. Clinical implications. Before selection of patients to time-limited psychodynamic groups, self-reported symptoms should be thoroughly considered. Patients with agoraphobic symptoms should be offered alternative treatment. Awareness of and motivation to work with interpersonal issues may be essential for compliance with group therapy.

  6. Sigma 1 receptor regulates the oxidative stress response in primary retinal Müller glial cells via NRF2 signaling and system xc(-), the Na(+)-independent glutamate-cystine exchanger.

    Wang, Jing; Shanmugam, Arul; Markand, Shanu; Zorrilla, Eric; Ganapathy, Vadivel; Smith, Sylvia B


    Oxidative stress figures prominently in retinal diseases, including diabetic retinopathy, and glaucoma. Ligands for σ1R, a unique transmembrane protein localized to the endoplasmic reticulum, mitochondria, and nuclear and plasma membranes, have profound retinal neuroprotective properties in vitro and in vivo. Studies to determine the mechanism of σ1R-mediated retinal neuroprotection have focused mainly on neurons. Little is known about the effects of σ1R on Müller cell function, yet these radial glial cells are essential for homeostatic support of the retina. Here we investigated whether σ1R mediates the oxidative stress response of Müller cells using wild-type (WT) and σ1R-knockout (σ1RKO) mice. We observed increased endogenous reactive oxygen species (ROS) levels in σ1RKO Müller cells compared to WT, which was accompanied by decreased expression of Sod1, catalase, Nqo1, Hmox1, Gstm6, and Gpx1. The protein levels of SOD1, CAT, NQO1, and GPX1 were also significantly decreased. The genes encoding these antioxidants contain an antioxidant response element (ARE), which under stress is activated by NRF2, a transcription factor that typically resides in the cytoplasm bound by KEAP1. In the σ1RKO Müller cells Nrf2 expression was decreased significantly at the gene (and protein) level, whereas Keap1 gene (and protein) levels were markedly increased. NRF2-ARE binding affinity was decreased markedly in σ1RKO Müller cells. We investigated system xc(-), the cystine-glutamate exchanger important for synthesis of glutathione (GSH), and observed decreased function in σ1RKO Müller cells compared to WT as well as decreased GSH and GSH/GSSG ratios. This was accompanied by decreased gene and protein levels of xCT, the unique component of system xc(-). We conclude that Müller glial cells lacking σ1R manifest elevated ROS, perturbation of antioxidant balance, suppression of NRF2 signaling, and impaired function of system xc(-). The data suggest that the oxidative

  7. Student Drop Tower Competitions: Dropping In a Microgravity Environment (DIME) and What If No Gravity? (WING)

    Hall, Nancy R.; Stocker, Dennis P.; DeLombard, Richard


    This paper describes two student competition programs that allow student teams to conceive a science or engineering experiment for a microgravity environment. Selected teams design and build their experimental hardware, conduct baseline tests, and ship their experiment to NASA where it is operated in the 2.2 Second Drop Tower. The hardware and acquired data is provided to the teams after the tests are conducted so that the teams can prepare their final reports about their findings.

  8. Dynamic Testing and Properties of Rubber O-rings and Their Application in Soft Drop Weight Tests of Low Strength Materials /


    Mechanical behavior of low strength materials and elements at high strain rates was studied using a drop tower at UCSD. A commercial drop tower was modified to conduct high strain-rate impact compression tests. Instrumentations including strain gauges, accelerometers and a high speed camera were used to establish equilibrium conditions and stress strain relation of samples with high accuracy. Dynamic response of strongly nonlinear, viscoelastic toroidal rubber elements (o-rings) is studied. N...

  9. "Drop in" gastroscopy outpatient clinic - experience after 9 months

    Huppertz-Hauss Gert


    Full Text Available Abstract Background Logistics handling referrals for gastroscopy may be more time consuming than the examination itself. For the patient, "drop in" gastroscopy may reduce uncertainty, inadequate therapy and time off work. Methods After an 8-9 month run-in period we asked patients, hospital staff and GPs to fill in a questionnaire to evaluate their experience with "drop in" gastroscopy and gastroscopy by appointment, respectively. The diagnostic gain was evaluated. Results 112 patients had "drop in" gastroscopy and 101 gastroscopy by appointment. The number of "drop in" patients varied between 3 and 12 per day (mean 6.5. Mean time from first GP consultation to gastroscopy was 3.6 weeks in the "drop in" group and 14 weeks in the appointment group. The half-yearly number of outpatient gastroscopies increased from 696 before introducing "drop in" to 1022 after (47% increase and the proportion of examinations with pathological findings increased from 42% to 58%. Patients and GPs expressed great satisfaction with "drop in". Hospital staff also acclaimed although it caused more unpredictable working days with no additional staff. Conclusions "Drop in" gastroscopy was introduced without increase in staff. The observed increase in gastroscopies was paralleled by a similar increase in pathological findings without any apparent disadvantages for other groups of patients. This should legitimise "drop in" outpatient gastroscopies, but it requires meticulous observation of possible unwanted effects when implemented.

  10. How to optimize the drop plate method for enumerating bacteria.

    Herigstad, B; Hamilton, M; Heersink, J


    The drop plate (DP) method can be used to determine the number of viable suspended bacteria in a known beaker volume. The drop plate method has some advantages over the spread plate (SP) method. Less time and effort are required to dispense the drops onto an agar plate than to spread an equivalent total sample volume into the agar. By distributing the sample in drops, colony counting can be done faster and perhaps more accurately. Even though it has been present in the laboratory for many years, the drop plate method has not been standardized. Some technicians use 10-fold dilutions, others use twofold. Some technicians plate a total volume of 0.1 ml, others plate 0.2 ml. The optimal combination of such factors would be useful to know when performing the drop plate method. This investigation was conducted to determine (i) the standard deviation of the bacterial density estimate, (ii) the cost of performing the drop plate procedure, (iii) the optimal drop plate design, and (iv) the advantages of the drop plate method in comparison to the standard spread plate method. The optimal design is the combination of factor settings that achieves the smallest standard deviation for a fixed cost. Computer simulation techniques and regression analysis were used to express the standard deviation as a function of the beaker volume, dilution factor, and volume plated. The standard deviation expression is also applicable to the spread plate method.

  11. Underwater sound produced by individual drop impacts and rainfall

    Pumphrey, Hugh C.; Crum, L. A.; Jensen, Leif Bjørnø


    An experimental study of the underwater sound produced by water drop impacts on the surface is described. It is found that sound may be produced in two ways: first when the drop strikes the surface and, second, when a bubble is created in the water. The first process occurs for every drop......; the second occurs for some impacts but not others. A range of conditions is described in which a bubble is produced for every drop impact, and it is shown that these conditions are likely to be met by a significant fraction of the raindrops in a typical shower. Underwater sound produced by artificial as well...

  12. Wetting and absorption of water drops on Nafion films.

    Goswami, Sharonmoyee; Klaus, Shannon; Benziger, Jay


    Water drops on Nafion films caused the surface to switch from being hydrophobic to being hydrophilic. Contact angle hysteresis of >70 degrees between advancing and receding values were obtained by the Wilhelmy plate technique. Sessile drop measurements were consistent with the advancing contact angle; the sessile drop contact angle was 108 degrees . Water drop adhesion, as measured by the detachment angle on an inclined plane, showed much stronger water adhesion on Nafion than Teflon. Sessile water and methanol drops caused dry Nafion films to deflect. The flexure went through a maximum with time. Flexure increased with contact area of the drop, but was insensitive to the film thickness. Methanol drops spread more on Nafion and caused larger film flexure than water. The results suggest that the Nafion surface was initially hydrophobic but water and methanol drops caused hydrophilic sulfonic acid domains to be drawn to the Nafion surface. Local swelling of the film beneath the water drop caused the film to buckle. The maximum flexure is suggested to result from motion of a water swelling front through the Nafion film.

  13. Substrate constraint modifies the Rayleigh spectrum of vibrating sessile drops.

    Chang, Chun-Ti; Bostwick, Joshua B; Steen, Paul H; Daniel, Susan


    In this work, we study the resonance behavior of mechanically oscillated, sessile water drops. By mechanically oscillating sessile drops vertically and within prescribed ranges of frequencies and amplitudes, a rich collection of resonance modes are observed and their dynamics subsequently investigated. We first present our method of identifying each mode uniquely, through association with spherical harmonics and according to their geometric patterns. Next, we compare our measured resonance frequencies of drops to theoretical predictions using both the classical theory of Lord Rayleigh and Lamb for free, oscillating drops, and a prediction by Bostwick and Steen that explicitly considers the effect of the solid substrate on drop dynamics. Finally, we report observations and analysis of drop mode mixing, or the simultaneous coexistence of multiple mode shapes within the resonating sessile drop driven by one sinusoidal signal of a single frequency. The dynamic response of a deformable liquid drop constrained by the substrate it is in contact with is of interest in a number of applications, such as drop atomization and ink jet printing, switchable electronically controlled capillary adhesion, optical microlens devices, as well as digital microfluidic applications where control of droplet motion is induced by means of a harmonically driven substrate.

  14. Communications: Wall free capillarity and pendant drop removal.

    Hong, Siang-Jie; Chang, Feng-Ming; Chan, Seong Heng; Sheng, Yu-Jane; Tsao, Heng-Kwong


    When a sessile drop encounters a pendant drop through a hole, it is generally anticipated that they will coalesce and flow downward due to gravity. However, like "wall-free" capillarity, we show that the pendant drop may be sucked up by a sliding drop instantaneously if the radius of the curvature of the former is smaller than that of the later. This phenomenon can be explained by Laplace-Young equation and convective Ostwald ripening. Our results indicate that superhydrophilic perforated surface can be used as an effective way for the removal of small droplets adhering to the inner walls of microchannel systems.

  15. Studies of the Stability and Dynamics of Levitated Drops

    Anikumar, A.; Lee, Chun Ping; Wang, T. G.


    This is a review of our experimental and theoretical studies relating to equilibrium and stability of liquid drops, typically of low viscosity, levitated in air by a sound field. The major emphasis here is on the physical principles and understanding behind the stability of levitated drops. A comparison with experimental data is also given, along with some fascinating pictures from high-speed photography. One of the aspects we shall deal with is how a drop can suddenly burst in an intense sound field; a phenomenon which can find applications in atomization technology. Also, we are currently investigating the phenomenon of suppression of coalescence between drops levitated in intense acoustic fields.


    耿荣慧; 胡文瑞; 金友兰; 敖超


    The experiments of drop Marangoni migration have been performed by the drop shift facility of short period of 4.5 s, and the drop accelerates gradually to an asymptotic velocity during the free fall. The unsteady and axisymmetric model is developed to study the drop migration for the case of moderate Reynolds number Re = O(1), and the results are compared with the experimental ones in the present paper. Both numerical and experimental results show that the migration velocity for moderate Reynolds number is several times smaller than that given by the linear YGB theory.

  17. Substrate constraint modifies the Rayleigh spectrum of vibrating sessile drops

    Chang, Chun-Ti; Bostwick, Joshua B.; Steen, Paul H.; Daniel, Susan


    In this work, we study the resonance behavior of mechanically oscillated, sessile water drops. By mechanically oscillating sessile drops vertically and within prescribed ranges of frequencies and amplitudes, a rich collection of resonance modes are observed and their dynamics subsequently investigated. We first present our method of identifying each mode uniquely, through association with spherical harmonics and according to their geometric patterns. Next, we compare our measured resonance frequencies of drops to theoretical predictions using both the classical theory of Lord Rayleigh and Lamb for free, oscillating drops, and a prediction by Bostwick and Steen that explicitly considers the effect of the solid substrate on drop dynamics. Finally, we report observations and analysis of drop mode mixing, or the simultaneous coexistence of multiple mode shapes within the resonating sessile drop driven by one sinusoidal signal of a single frequency. The dynamic response of a deformable liquid drop constrained by the substrate it is in contact with is of interest in a number of applications, such as drop atomization and ink jet printing, switchable electronically controlled capillary adhesion, optical microlens devices, as well as digital microfluidic applications where control of droplet motion is induced by means of a harmonically driven substrate.


    Coroi, Mihaela Cristina; Bungau, Simona; Tit, Mirela


    The use of preservatives in eye drops (eyewashes) has known glory at the beginning, but the side effects that they have on the ocular surface have led to a decrease of their popularity. Lachrymal film dysfunction, ocular hyperemia, dotted keratitis or toxic keratopathy were reported and analyzed in terms of pathophysiological mechanism of the role played by preservatives in ophthalmic drops (eyewashes). This article reviews the most common preservatives and the existing alternatives for the maintenance of the eye sterile drops. Keywords: preservatives, eye drops, ocular surface

  19. Insights from the pollination drop proteome and the ovule transcriptome of Cephalotaxus at the time of pollination drop production.

    Pirone-Davies, Cary; Prior, Natalie; von Aderkas, Patrick; Smith, Derek; Hardie, Darryl; Friedman, William E; Mathews, Sarah


    Many gymnosperms produce an ovular secretion, the pollination drop, during reproduction. The drops serve as a landing site for pollen, but also contain a suite of ions and organic compounds, including proteins, that suggests diverse roles for the drop during pollination. Proteins in the drops of species of Chamaecyparis, Juniperus, Taxus, Pseudotsuga, Ephedra and Welwitschia are thought to function in the conversion of sugars, defence against pathogens, and pollen growth and development. To better understand gymnosperm pollination biology, the pollination drop proteomes of pollination drops from two species of Cephalotaxus have been characterized and an ovular transcriptome for C. sinensis has been assembled. Mass spectrometry was used to identify proteins in the pollination drops of Cephalotaxus sinensis and C. koreana RNA-sequencing (RNA-Seq) was employed to assemble a transcriptome and identify transcripts present in the ovules of C. sinensis at the time of pollination drop production. About 30 proteins were detected in the pollination drops of both species. Many of these have been detected in the drops of other gymnosperms and probably function in defence, polysaccharide metabolism and pollen tube growth. Other proteins appear to be unique to Cephalotaxus, and their putative functions include starch and callose degradation, among others. Together, the proteins appear either to have been secreted into the drop or to occur there due to breakdown of ovular cells during drop production. Ovular transcripts represent a wide range of gene ontology categories, and some may be involved in drop formation, ovule development and pollen-ovule interactions. The proteome of Cephalotaxus pollination drops shares a number of components with those of other conifers and gnetophytes, including proteins for defence such as chitinases and for carbohydrate modification such as β-galactosidase. Proteins likely to be of intracellular origin, however, form a larger component of drops

  20. Marangoni Effects of a Drop in an Extensional Flow: The Role of Surfactant Physical Chemistry

    Stebe, Kathleen J.; Balasubramaniam, R. (Technical Monitor)


    While the changes in stresses caused by surfactant adsorption on non-deforming interfaces have been fairly well established, prior to this work, there were few studies addressing how surfactants alter stresses on strongly deforming interfaces. We chose the model problem of a drop in a uniaxial extensional flow to study these stress conditions To model surfactant effects at fluid interfaces, a proper description of the dependence of the surface tension on surface concentration, the surface equation of state, is required. We have adopted a surface equation of state that accounts for the maximum coverage limit; that is, because surfactants have a finite cross sectional area, there is an upper bound to the amount of surfactant that can adsorb in a monolayer. The surface tension reduces strongly only when this maximum coverage is approached. Since the Marangoni stresses go as the derivative of the surface equation of state times the surface concentration gradient, the non-linear equation of state determines both the effect of surfactants in the normal stress jump, (which is balanced by the product of the mean curvature of the interface times the surface tension), and the tangential stress jump, which is balanced by Marangoni stresses. First, the effects of surface coverage and intermolecular interactions among surfactants which drive aggregation of surfactants in the interface were studied. (see Pawar and Stebe, Physics of Fluids).

  1. Equilibrium shape and location of a liquid drop acoustically positioned in a resonant rectangular chamber

    Jackson, H. W.; Barmatz, M.; Shipley, C.


    The effect of a standing wave field in a rectangular chamber on the shape and location of an acoustically positioned drop or bubble is calculated. The sample deformation and equilibrium position are obtained from an analysis of the spherical harmonic projections of the total surface stress tensor. The method of calculation relies on the assumed condition that the sample is only slightly distorted from a spherical form. The equilibrium location of a levitated drop is combined with a formula introduced by Hasegawa (1979) to calcualte the ka dependence of the radiation force function. The present theory is valid for large as well as small ka values. Calculations in the small ka limit agree with previous theories and experimental results. Examples are presented for nonplane-wave modes as well as plane-wave rectangular modes.

  2. Validation of an All-Pressure Fluid Drop Model: Heptane Fluid Drops in Nitrogen

    Harstad, K.; Bellan, J.; Bulzan, Daniel L. (Technical Monitor)


    Despite the fact that supercritical fluids occur both in nature and in industrial situations, the fundamentals of their behavior is poorly understood because supercritical fluids combine the characteristics of both liquids and gases, and therefore their behavior is not intuitive. There are several specific reasons for the lack of understanding: First, data from (mostly optical) measurements can be very misleading because regions of high density thus observed are frequently identified with liquids. A common misconception is that if in an experiment one can optically identify "drops" and "ligaments", the observed fluid must be in a liquid state. This inference is incorrect because in fact optical measurements detect any large change (i.e. gradients) in density. Thus, the density ratio may be well below Omicron(10(exp 3)) that characterizes its liquid/gas value, but the measurement will still identify a change in the index of refraction providing that the change is sudden (steep gradients). As shown by simulations of supercritical fluids, under certain conditions the density gradients may remain large during the supercritical binary fluids mixing, thus making them optically identifiable. Therefore, there is no inconsistency between the optical observation of high density regions and the fluids being in a supercritical state. A second misconception is that because a fluid has a liquid-like density, it is appropriate to model it as a liquid. However, such fluids may have liquid-like densities while their transport properties differ from those of a liquid. Considering that the critical pressure of most fuel hydrocarbons used in Diesel and gas turbine engines is in the range of 1.5 - 3 MPa, and the fact that the maximum pressure attained in these engines is about 6 Mps, it is clear that the fuel in the combustion chamber will experience both subcritical and supercritical conditions. Studies of drop behavior over a wide range of pressures were performed in the past

  3. Motion of a drop on a horizontal solid surface with a wettability gradient

    Moumen, Nadjoua

    The motion of drops of tetraethylene glycol in a wettability gradient present on a silicon surface is investigated experimentally and theoretically. The gradient was formed by exposing clean silicon surfaces to a source of dodecyltrichlorosilane vapor. The static contact angles were measured as a function of position and used to characterize the local wettability gradient. The Reynolds, capillary, and Bond numbers in the experiments were relatively small. The measured migration velocities of drops over a range of sizes demonstrated the complex nature of the variation of the velocity with position on the gradient surface in response to the changes in the driving force and the resistance to the motion. The results are organized and interpreted using a simple quasi-steady hydrodynamic model in which inertial effects and deformation due to gravity as well as motion are neglected so that the shape is approximated by a spherical cap. Two approaches are used to estimate the hydrodynamic resistance experienced by the drop. In the "wedge approximation" the drop is modeled as a collection of wedges; the drag on each wedge is calculated from a solution for Stokes flow. In the second approach, lubrication theory is employed while retaining the exact shape of the drop. A slip boundary condition is used in a region close to the contact line to relax the usual stress singularity. The results from the wedge approximation and lubrication theory are indistinguishable at contact angles ≤ 30°. The theoretical model based on the wedge approximation describes the qualitative features of the shape of the curve of velocity versus position along the gradient surface. A detailed investigation of the remaining discrepancy does not support the hypothesis of a missing resistance due to either contact line dissipation or an underestimation of the hydrodynamic drag. Instead, it is concluded that a reduction in the driving force due to contact angle hysteresis is the most likely reason. The

  4. That's one small drop for Mankind...

    Anaïs Schaeffer


    In August, the members of an ISOLDE project called LOI88 successfully employed a new technique to study the interaction of metal ions in a liquid. It’s the first time that specific ions have been studied in a liquid medium - a technical achievement that opens promising doors for biochemistry.   In the heart of the LOI88 experiment: this is the point where the metal ions (from the left) enter the drop.  “More than half of the proteins in the human body contain metal ions such as magnesium, zinc and copper,” explains Monika Stachura, a biophysicist at the University of Copenhagen and the LOI88 project leader. “We know that these elements are crucial to a protein’s structure and function but their behaviour and interactions are not known in detail.” Detecting these ions directly in  a body-like environment is problematic as their closed atomic shells make them invisible to most spectroscopic techniques. However, using ...

  5. Apparent contact angle of an evaporating drop

    Morris, S. J. S.


    In experiments by Poulard et al. (2005), a sessile drop of perfectly wetting liquid evaporates from a non-heated substrate into an under-saturated mixture of vapour with an inert gas; evaporation is limited by vapour diffusion. The system exhibits an apparent contact angle θ that is a flow property. Under certain conditions, the apparent contact line was stationary relative to the substrate; we predict θ for this case. Observed values of θ are small, allowing lubrication analysis of the liquid film. The liquid and vapour flows are coupled through conditions holding at the phase interface; in particular, vapour partial pressure there is related to the local value of liquid pressure through the Kelvin condition. Because the droplet is shallow, the interfacial conditions can be transferred to the solid-liquid interface at y = 0 . We show that the dimensionless partial pressure p (x , y) and the film thickness h (x) are determined by solving ∇2 p = 0 for y > 0 subject to a matching condition at infinity, and the conditions - p = L hxx +h-3 and (h3px) x + 3py = 0 at y = 0 . The parameter L controls the ratio of Laplace to disjoining pressure. We analyse this b.v.p. for the experimentally-relevant case L --> 0 .

  6. The Digital Drag and Drop Pillbox

    Granger, Bradi B.; Locke, Susan C.; Bowers, Margaret; Sawyer, Tenita; Shang, Howard; Abernethy, Amy P.; Bloomfield, Richard A.; Gilliss, Catherine L.


    Objective: We present the design and feasibility testing for the “Digital Drag and Drop Pillbox” (D-3 Pillbox), a skill-based educational approach that engages patients and providers, measures performance, and generates reports of medication management skills. Methods: A single-cohort convenience sample of patients hospitalized with heart failure was taught pill management skills using a tablet-based D-3 Pillbox. Medication reconciliation was conducted, and aptitude, performance (% completed), accuracy (% correct), and feasibility were measured. Results: The mean age of the sample (n = 25) was 59 (36–89) years, 50% were women, 62% were black, 46% were uninsured, 46% had seventh-grade education or lower, and 31% scored very low for health literacy. However, most reported that the D-3 Pillbox was easy to read (78%), easy to repeat-demonstrate (78%), and comfortable to use (tablet weight) (75%). Accurate medication recognition was achieved by discharge in 98%, but only 25% reported having a “good understanding of my responsibilities.” Conclusions: The D-3 Pillbox is a feasible approach for teaching medication management skills and can be used across clinical settings to reinforce skills and medication list accuracy. PMID:28282304

  7. The viruses of wild pigeon droppings.

    Tung Gia Phan

    Full Text Available Birds are frequent sources of emerging human infectious diseases. Viral particles were enriched from the feces of 51 wild urban pigeons (Columba livia from Hong Kong and Hungary, their nucleic acids randomly amplified and then sequenced. We identified sequences from known and novel species from the viral families Circoviridae, Parvoviridae, Picornaviridae, Reoviridae, Adenovirus, Astroviridae, and Caliciviridae (listed in decreasing number of reads, as well as plant and insect viruses likely originating from consumed food. The near full genome of a new species of a proposed parvovirus genus provisionally called Aviparvovirus contained an unusually long middle ORF showing weak similarity to an ORF of unknown function from a fowl adenovirus. Picornaviruses found in both Asia and Europe that are distantly related to the turkey megrivirus and contained a highly divergent 2A1 region were named mesiviruses. All eleven segments of a novel rotavirus subgroup related to a chicken rotavirus in group G were sequenced and phylogenetically analyzed. This study provides an initial assessment of the enteric virome in the droppings of pigeons, a feral urban species with frequent human contact.

  8. Low-Bond Axisymmetric Drop Shape Analysis for Surface Tension and Contact Angle Measurements of Sessile Drops

    Stalder, A.F.; Melchior, T.; Müller, M.; Sage, D; T. Blu; Unser, M


    A new method based on the Young-Laplace equation for measuring contact angles and surface tensions is presented. In this approach, a first-order perturbation technique helps to analytically solve the Young-Laplace equation according to photographic images of axisymmetric sessile drops. When appropriate, the calculated drop contour is extended by mirror symmetry so that reflection of the drop into substrate allows the detection of position of the contact points. To keep a wide range of applica...

  9. Nonsense-mediated mRNA decay controls the changes in yeast ribosomal protein pre-mRNAs levels upon osmotic stress.

    Elena Garre

    Full Text Available The expression of ribosomal protein (RP genes requires a substantial part of cellular transcription, processing and translation resources. Thus, the RP expression must be tightly regulated in response to conditions that compromise cell survival. In Saccharomyces cerevisiae cells, regulation of the RP gene expression at the transcriptional, mature mRNA stability and translational levels during the response to osmotic stress has been reported. Reprogramming global protein synthesis upon osmotic shock includes the movement of ribosomes from RP transcripts to stress-induced mRNAs. Using tiling arrays, we show that osmotic stress yields a drop in the levels of RP pre-mRNAs in S. cerevisiae cells. An analysis of the tiling array data, together with transcription rates data, shows a poor correlation, indicating that the drop in the RP pre-mRNA levels is not merely a result of the lowered RP transcription rates. A kinetic study using quantitative RT-PCR confirmed the decrease in the levels of several RP-unspliced transcripts during the first 15 minutes of osmotic stress, which seems independent of MAP kinase Hog1. Moreover, we found that the mutations in the components of the nonsense-mediated mRNA decay (NMD, Upf1, Upf2, Upf3 or in exonuclease Xrn1, eliminate the osmotic stress-induced drop in RP pre-mRNAs. Altogether, our results indicate that the degradation of yeast RP unspliced transcripts by NMD increases during osmotic stress, and suggest that this might be another mechanism to control RP synthesis during the stress response.

  10. Pressure Tensor of Nanoscopic Liquid Drops

    José G. Segovia-López


    Full Text Available This study describes the structure of an inhomogeneous fluid of one or several components that forms a spherical interface. Using the stress tensor of Percus–Romero, which depends on the density of one particle and the intermolecular potential, it provides an analytical development leading to the microscopic expressions of the pressure differences and the interfacial properties of both systems. The results are compared with a previous study and agree with the description of the mean field.

  11. Statistical contact angle analyses; "slow moving" drops on a horizontal silicon-oxide surface.

    Schmitt, M; Grub, J; Heib, F


    Sessile drop experiments on horizontal surfaces are commonly used to characterise surface properties in science and in industry. The advancing angle and the receding angle are measurable on every solid. Specially on horizontal surfaces even the notions themselves are critically questioned by some authors. Building a standard, reproducible and valid method of measuring and defining specific (advancing/receding) contact angles is an important challenge of surface science. Recently we have developed two/three approaches, by sigmoid fitting, by independent and by dependent statistical analyses, which are practicable for the determination of specific angles/slopes if inclining the sample surface. These approaches lead to contact angle data which are independent on "user-skills" and subjectivity of the operator which is also of urgent need to evaluate dynamic measurements of contact angles. We will show in this contribution that the slightly modified procedures are also applicable to find specific angles for experiments on horizontal surfaces. As an example droplets on a flat freshly cleaned silicon-oxide surface (wafer) are dynamically measured by sessile drop technique while the volume of the liquid is increased/decreased. The triple points, the time, the contact angles during the advancing and the receding of the drop obtained by high-precision drop shape analysis are statistically analysed. As stated in the previous contribution the procedure is called "slow movement" analysis due to the small covered distance and the dominance of data points with low velocity. Even smallest variations in velocity such as the minimal advancing motion during the withdrawing of the liquid are identifiable which confirms the flatness and the chemical homogeneity of the sample surface and the high sensitivity of the presented approaches.

  12. Axisymmetric drop shape analysis-constrained sessile drop (ADSA-CSD): a film balance technique for high collapse pressures.

    Saad, Sameh M I; Policova, Zdenka; Acosta, Edgar J; Neumann, A Wilhelm


    Collapse pressure of insoluble monolayers is a property determined from surface pressure/area isotherms. Such isotherms are commonly measured by a Langmuir film balance or a drop shape technique using a pendant drop constellation (ADSA-PD). Here, a different embodiment of a drop shape analysis, called axisymmetric drop shape analysis-constrained sessile drop (ADSA-CSD) is used as a film balance. It is shown that ADSA-CSD has certain advantages over conventional methods. The ability to measure very low surface tension values (e.g., drop setup, and leak-proof design make the constrained sessile drop constellation a better choice than the pendant drop constellation in many situations. Results of compression isotherms are obtained on three different monolayers: octadecanol, dipalmitoyl-phosphatidyl-choline (DPPC), and dipalmitoyl-phosphatidyl-glycerol (DPPG). The collapse pressures are found to be reproducible and in agreement with previous methods. For example, the collapse pressure of DPPC is found to be 70.2 mJ/m2. Such values are not achievable with a pendant drop. The collapse pressure of octadecanol is found to be 61.3 mJ/m2, while that of DPPG is 59.0 mJ/m2. The physical reasons for these differences are discussed. The results also show a distinctive difference between the onset of collapse and the ultimate collapse pressure (ultimate strength) of these films. ADSA-CSD allows detailed study of this collapse region.

  13. Small-Scale Variability of Large Cloud Drops

    Marshak, Alexander; Knyazikhin, Y.; Wiscombe, Warren


    Cloud droplet size distribution is one of the most fundamental subjects in cloud physics. Understanding of spatial distribution and small-scale fluctuations of cloud droplets is essential for both cloud physics and atmospheric radiation. For cloud physics, it relates to the coalescence growth of raindrops while for radiation, it has a strong impact on a cloud's radiative properties. Most of the existing cloud radiation and precipitation formation models assume that the mean number of drops with a given radius varies proportionally to volume. The analysis of microphysical data on liquid water drop sizes shows that, for sufficiently small volumes, the number is proportional to the drop size dependent power of the volume. For abundant small drops present, the exponent is 1 as assumed in the conventional approach. However, for rarer large drops, the exponents fall below unity. At small scales, therefore, the mean number of large drops decreases with volume at a slower rate than the conventional approach assumes, suggesting more large drops at these scales than conventional models account for; their impact is consequently underestimated. Size dependent models of spatial distribution of cloud drops that simulate the observed power laws show strong drop clustering, the more so the larger the drops. The degree of clustering is determined by the observed exponents. The strong clustering of large drops arises naturally from the observed power-law statistics. Current theories of photon-cloud interaction and warm rain formation will need radical revision in order to produce these statistics; their underlying equations are unable to yield the observed power law.

  14. Free fall of water drops in laboratory rainfall simulations

    Chowdhury, M. Nasimul; Testik, Firat Y.; Hornack, Mathew C.; Khan, Abdul A.


    Motivated by various hydrological and meteorological applications, this paper investigates the free fall of water drops to provide guidance in laboratory simulations of natural rainfall and to elucidate drop morphodynamics. Drop fall velocity and shape parameters such as axis ratio (ratio of the maximum vertical and horizontal chords of the drop), chord ratio [ratio of the two orthogonal chords where one chord (cl) is the longest chord in the drop and the other one (cs) is the longest chord that is orthogonal to cl], canting angle (angle between the longest chord of the drop and the horizontal axis), and relative fluctuation of chords (difference between vertical and horizontal chord fluctuations) were investigated for three selected water drop sizes (2.6, 3.7, and 5.1 mm spherical volume equivalent diameter) using high speed imaging. Based upon experimental observations, three distinct fall zones were identified: Zone I, in which source-induced oscillations and shape adjustment take place; Zone II, in which equilibrium-shaped drops accelerate to achieve terminal velocity; and Zone III, in which equilibrium-shaped drops fall at terminal velocity. Our results revealed that the fall distance values of approximately 6 m and 12 m can be used as conservative reference values for rainfall experiments with oscillation-free fall of drops (i.e. end of Zone I and onset of Zone II) and with equilibrium-shaped drops falling at terminal velocities (i.e. end of Zone II and onset of Zone III), respectively, for the entire raindrop size spectrum in natural rainfall. These required fall distance values are smaller than the distances discussed in the literature. Methodology and results presented here will facilitate optimum experimental laboratory simulations of natural rainfall.

  15. Factors associated with non-participation and drop-out in a lifestyle intervention for workers with an elevated risk of cardiovascular disease.

    Groeneveld, Iris F; Proper, Karin I; van der Beek, Allard J; Hildebrandt, Vincent H; van Mechelen, Willem


    Non-response and drop-out are problems that are commonly encountered in health promotion trials. Understanding the health-related characteristics of non-participants and drop-outs and the reasons for non-participation and drop-out may be beneficial for future intervention trials. Male construction workers with an elevated risk of cardiovascular disease (CVD) were invited to participate in a lifestyle intervention study. In order to investigate the associations between participation and CVD risk factors, and drop-out and CVD risk factors, crude and multiple logistic regression analyses were performed. The reasons for non-participation and drop-out were assessed qualitatively. 20% of the workers who were invited decided to participate; 8.6% of the participants dropped out before the first follow-up measurement. The main reasons for non-participation were 'no interest', 'current (para-)medical treatment', and 'feeling healthy', and for drop-out they were 'lack of motivation', 'current (para-)medical treatment', and 'disappointment'. Participants were 4.2 years older, had a higher blood pressure, higher total cholesterol, and lower HDL cholesterol than non-participants, and were more likely to report 'tiredness and/or stress' and 'chest pain and/or shortness of breath'. After adjusting for age, most risk factors were not significantly associated with participation. Drop-outs were 4.6 years younger than those who completed the study. The prevalence of smoking was higher among non-participants and drop-outs. Participants had a worse CVD risk profile than non-participants, mainly because of the difference in age. Non-participants and drop-outs were younger and more likely to be smokers. The main reasons for non-participation and drop-out were health-related. Investigators in the field of health promotion should be encouraged to share comparable information. Current Controlled Trials ISRCTN60545588.

  16. Independent technical review, handbook


    Purpose Provide an independent engineering review of the major projects being funded by the Department of Energy, Office of Environmental Restoration and Waste Management. The independent engineering review will address questions of whether the engineering practice is sufficiently developed to a point where a major project can be executed without significant technical problems. The independent review will focus on questions related to: (1) Adequacy of development of the technical base of understanding; (2) Status of development and availability of technology among the various alternatives; (3) Status and availability of the industrial infrastructure to support project design, equipment fabrication, facility construction, and process and program/project operation; (4) Adequacy of the design effort to provide a sound foundation to support execution of project; (5) Ability of the organization to fully integrate the system, and direct, manage, and control the execution of a complex major project.

  17. Distro’: Independent Creativity for Independent Industr

    Wiwik Sri Wulandari


    Full Text Available To shortened this introduction, ‘Distro’ is one of cultural phenomenon in theyoung generation nowadays. The word of ‘Distro’ is the shortened of DistributionOutlet. The phenomenon of ‘Distro’ has been some kind of new trends inproducing and distributing creative design products of goods amongst theyoungsters independently, in an independence industry that open for challengingand competitiveness for everyone. This field research has been done in the city ofYogyakarta, reknown as the second city in creative design products after the cityof Bandung. Yogyakarta is welknown as the students’ city as well as the capital cityof culture of Indonesia. As a students’ city it is normal that Yogyakarta is growingin numbers of young people who pursued to study here and enriched the cultureof the city to become more multicultural and the varieties of pluralism as well.This sociocultural phenomenon not only brought some dynamic changing tosociety, economy and cultural life of the city, but also social problems that needsto be overcome. My first research question then is about how the existence of‘Distro’ in Yogyakarta can be a positive answer for social problems that may arisesfrom the hegemony of globalization markets domestically? My second questionis how the creative product designs are being made and distributed creatively inindependent industry? Lastly, my third question is dealling with the genres ofthe design products and how it can be a new trend in art expression? ‘Distro’ is aproduct of culture and it is also creating cultural change in some aspects of the lifeof the youngsters who are ‘Distro’ enthusiasts. ‘Distro’ phenomenon basically is anoffensive to the hegemony of internationally branded product design which turnsto become more over-dominated to the domestic markets and industry and thus,‘Distro’ has the spirit of survival whilts at the same time producing opportunity ofenterpreneurship

  18. Symmetry implies independence

    Renner, R


    Given a quantum system consisting of many parts, we show that symmetry of the system's state, i.e., invariance under swappings of the subsystems, implies that almost all of its parts are virtually identical and independent of each other. This result generalises de Finetti's classical representation theorem for infinitely exchangeable sequences of random variables as well as its quantum-mechanical analogue. It has applications in various areas of physics as well as information theory and cryptography. For example, in experimental physics, one typically collects data by running a certain experiment many times, assuming that the individual runs are mutually independent. Our result can be used to justify this assumption.

  19. Why Did They Not Drop Out? Narratives from Resilient Students

    Lessard, Anne; Fortin, Laurier; Marcotte, Diane; Potvin, Pierre; Royer, Egide


    There is much to be learned from students who were at-risk for dropping out of school but persevered and graduated. The purpose of the study on which this article is based, was to describe how students who were at-risk for dropping out of school persevered and graduated. The voices of two students are introduced, highlighting the challenges they…

  20. Understanding (sessile/constrained) bubble and drop oscillations.

    Milne, A J B; Defez, B; Cabrerizo-Vílchez, M; Amirfazli, A


    The diffuse literature on drop oscillation is reviewed, with an emphasis on capillary wave oscillations of constrained drops. Based on the review, a unifying conceptual framework is presented for drop and bubble oscillations, which considers free and constrained drops/bubbles, oscillation of the surface or the bulk (i.e. center of mass) of the drop/bubble, as well as different types of restoring forces (surface tension, gravity, electromagnetic, etc). Experimental results (both from literature and from a new set of experiments studying sessile drops in cross flowing air) are used to test mathematical models from literature, using a novel whole profile analysis technique for the new experiments. The cause of oscillation (cross flowing air, vibrated surface, etc.) is seen not to affect oscillation frequency. In terms of models, simplified models are seen to poorly predict oscillation frequencies. The most advanced literature models are found to be relatively accurate at predicting frequency. However it is seen that no existing models are reliably accurate across a wide range of contact angles, indicating the need for advanced models/empirical relations especially for drops undergoing the lowest frequency mode of oscillation (the order 1 degree 1 non-axisymmetric 'bending' mode that corresponds to a lateral 'rocking' motion of the drop).

  1. Stokes flow near the contact line of an evaporating drop

    Gelderblom, H.; Bloemen, O.; Snoeijer, J.H.


    The evaporation of sessile drops in quiescent air is usually governed by vapour diffusion. For contact angles below , the evaporative flux from the droplet tends to diverge in the vicinity of the contact line. Therefore, the description of the flow inside an evaporating drop has remained a challenge

  2. Large Eddy Simulation of jets laden with evaporating drops

    Leboissetier, A.; Okong'o, N.; Bellan, J.


    LES of a circular jet laden with evaporating liquid drops are conducted to assess computational-drop modeling and three different SGS-flux models: the Scale Similarity model (SSC), using a constant coefficient calibrated on a temporal mixing layer DNS database, and dynamic-coefficient Gradient and Smagorinsky models.

  3. Delayed frost growth on jumping-drop superhydrophobic surfaces.

    Boreyko, Jonathan B; Collier, C Patrick


    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an interdrop frost wave. The growth of this interdrop frost front is shown to be up to 3 times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of interdrop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an interdrop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser minimized frost formation relative to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by limiting the success of interdrop ice bridge formation.

  4. Simulation of the drop impact test for moulded thermoplastic containers

    Reed, P.E.; Breedveld, G.; Lim, B.C.


    An analysis is made of the drop impact test for moulded plastics containers, as a first step towards the simulation of the impact event for design and development purposes. Experimental data are analysed from instrumented base drop impact testing of water-filled blow-moulded bottles, 20 and 210 l dr

  5. Pressure Drop of Non-Newtonian Liquid Flow Through Elbows


    Experimental data on the pressure drop across different types of elbow for non-Newtonian pseudoplastic liquid flow in laminar condition have been presented. A generalized correlation has been developed for predicting the frictional pressure drop across the elbows in the horizontal plane.

  6. Segregation in desiccated sessile drops of biological fluids.

    Tarasevich, Yu Yu; Pravoslavnova, D M


    It is shown here that concurrence between advection and diffusion in a drying sessile drop of a biological fluid can produce spatial redistribution of albumen and salt. The result gives an explanation for the patterns observed in the dried drops of the biological fluids.

  7. Simple Model of Shape Evolution of Desiccated Colloidal Sessile Drop

    Tarasevich, Yu. Yu.; Vodolazskaya, I. V.; Isakova, O. P.


    We propose simple model of colloidal sessile drop desiccation. The model describes correctly both evolution of the phase boundary between sol and gel inside such a drop and the final shape of the dried film (deposit). The model is based on mass conservation and natural assumption that deposit (gel phase) prevents flows and evaporation.

  8. Electrowetting-driven oscillating drops sandwiched between two substrates

    Mampallil, Dileep; Eral, H.B.; Staicu, A.D.; Mugele, F.; Ende, van den D.


    Drops sandwiched between two substrates are often found in lab-on-chip devices based on digital microfluidics. We excite azimuthal oscillations of such drops by periodically modulating the contact line via ac electrowetting. By tuning the frequency of the applied voltage, several shape modes can be

  9. Shape of a large drop on a rough hydrophobic surface

    Park, Joonsik; Park, Jaebum; Lim, Hyuneui; Kim, Ho-Young


    Large drops on solid surfaces tend to flatten due to gravitational effect. Their shapes can be predicted by solving the Young-Laplace equation when their apparent contact angles are precisely given. However, for large drops sitting on rough surfaces, the apparent contact angles are often unavailable a priori and hard to define. Here we develop a model to predict the shape of a given volume of large drop placed on a rough hydrophobic surface using an overlapping geometry of double spheroids and the free energy minimization principle. The drop shape depends on the wetting state, thus our model can be used not only to predict the shape of a drop but also to infer the wetting state of a large drop through the comparison of theory and experiment. The experimental measurements of the shape of large water drops on various micropillar arrays agree well with the model predictions. Our theoretical model is particularly useful in predicting and controlling shapes of large drops on surfaces artificially patterned in microscopic scales, which are frequently used in microfluidics and lab-on-a-chip technology.

  10. Drop-out probabilities of IrisPlex SNP alleles

    Andersen, Jeppe Dyrberg; Tvedebrink, Torben; Mogensen, Helle Smidt


    -out of true alleles is possible. As part of the validation of the IrisPlex assay in our ISO17025 accredited, forensic genetic laboratory, we estimated the probability of drop-out of specific SNP alleles using 29 and 30 PCR cycles and 25, 50 and 100 Single Base Extension (SBE) cycles. We observed no drop...

  11. Maximal air bubble entrainment at liquid-drop impact

    Bouwhuis, W.; van der Veen, Roeland; Tran, Tuan; Keij, D.L.; Winkels, K.G.; Peters, I.R.; van der Meer, Roger M.; Sun, Chao; Snoeijer, Jacobus Hendrikus; Lohse, Detlef


    At impact of a liquid drop on a solid surface, an air bubble can be entrapped. Here, we show that two competing effects minimize the (relative) size of this entrained air bubble: for large drop impact velocity and large droplets, the inertia of the liquid flattens the entrained bubble, whereas for

  12. Drops in Space: Super Oscillations and Surfactant Studies

    Apfel, Robert E.; Tian, Yuren; Jankovsky, Joseph; Shi, Tao; Chen, X.; Holt, R. Glynn; Trinh, Eugene; Croonquist, Arvid; Thornton, Kathyrn C.; Sacco, Albert, Jr.; Coleman, Catherine; Leslie, Fred W.; Matthiesen, David H.


    An unprecedented microgravity observation of maximal shape oscillations of a surfactant-bearing water drop the size of a ping pong ball was observed during a mission of Space Shuttle Columbia as part of the second United States Microgravity Laboratory-USML-2 (STS-73, October 20-November 5, 1995). The observation was precipitated by the action of an intense sound field which produced a deforming force on the drop. When this deforming force was suddenly reduced, the drop executed nearly free and axisymmetric oscillations for several cycles, demonstrating a remarkable amplitude of nonlinear motion. Whether arising from the discussion of modes of oscillation of the atomic nucleus, or the explosion of stars, or how rain forms, the complex processes influencing the motion, fission, and coalescence of drops have fascinated scientists for centuries. Therefore, the axisymmetric oscillations of a maximally deformed liquid drop are noteworthy, not only for their scientific value but also for their aesthetic character. Scientists from Yale University, the Jet Propulsion Laboratory (JPL) and Vanderbilt University conducted liquid drop experiments in microgravity using the acoustic positioning/manipulation environment of the Drop Physics Module (DPM). The Yale/JPL group's objectives were to study the rheological properties of liquid drop surfaces on which are adsorbed surfactant molecules, and to infer surface properties such as surface tension, Gibb's elasticity, and surface dilatational viscosity by using a theory which relies on spherical symmetry to solve the momentum and mass transport equations.

  13. Complex cooling water systems optimization with pressure drop consideration

    Gololo, KV


    Full Text Available Pressure drop consideration has shown to be an essential requirement for the synthesis of a cooling water network where reuse/recycle philosophy is employed. This is due to an increased network pressure drop associated with additional reuse...

  14. Drop shape visualization and contact angle measurement on curved surfaces.

    Guilizzoni, Manfredo


    The shape and contact angles of drops on curved surfaces is experimentally investigated. Image processing, spline fitting and numerical integration are used to extract the drop contour in a number of cross-sections. The three-dimensional surfaces which describe the surface-air and drop-air interfaces can be visualized and a simple procedure to determine the equilibrium contact angle starting from measurements on curved surfaces is proposed. Contact angles on flat surfaces serve as a reference term and a procedure to measure them is proposed. Such procedure is not as accurate as the axisymmetric drop shape analysis algorithms, but it has the advantage of requiring only a side view of the drop-surface couple and no further information. It can therefore be used also for fluids with unknown surface tension and there is no need to measure the drop volume. Examples of application of the proposed techniques for distilled water drops on gemstones confirm that they can be useful for drop shape analysis and contact angle measurement on three-dimensional sculptured surfaces.

  15. [Drop-out from clinical psychotherapeutic treatment of personality problems].

    Cornelissen, A T J; Poppe, E; Ouwens, M A


    Drop-out is a serious problem in psychotherapy. Earlier studies have shown that the main factors associated with drop-out are young age, low socio-economic status and pathological symptoms such as severity of the problems and problematic substance-abuse. To investigate patient's and pathological characteristics that predict drop-out among patients with predominantly personality problems. Patient's characteristics and pathological characteristics of 372 subjects were ascertained via a retrospective study by means of four databases: intake letters, scid-ii personality questionnaires, scid-i and ii interviews and discharge letters. The association between these characteristics and drop-out was tested by means of bivariate and multivariate analysis. results The drop-out rate was 33.3 %. The main predictors of drop-out were young age, a low Global Assessment of Functioning (gaf)-score and the existence of problematic substance-abuse at discharge. The degree and severity of axis i disorders and the nature of personality problems made hardly any contribution to the prediction of drop-out. These findings indicate that more attention needs to be given to the existence of substance-abuse before psychotherapy begins. Drop-out is still a problem and is difficult to predict and hard to influence.

  16. Asymmetric Spreading of a Drop upon Impact onto a Surface.

    Almohammadi, H; Amirfazli, A


    Study of the spreading of an impacting drop onto a surface has gained importance recently due to applications in printing, coating, and icing. Limited studies are conducted to understand asymmetric spreading of a drop seen upon drop impact onto a moving surface; there is no relation to describe such spreading. Here, we experimentally studied the spreading of a drop over a moving surface; such study also provides insights for systems where a drop impacts at an angle relative to a surface, i.e., drop has both normal and tangential velocities relative to the surface. We developed a model that for the first time allows prediction of time evolution for the asymmetric shape of the lamella during spreading. The developed model is demonstrated to be valid for a range of liquids and surface wettabilities as well as drop and surface velocities, making this study a comprehensive examination of the topic. We also found out how surface wettability can affect the recoil of the drop after spreading and explained the role of contact angle hysteresis and receding contact angle in delaying the recoil process.

  17. Student Drop-Out from German Higher Education Institutions

    Heublein, Ulrich


    28% of students of any one year currently give up their studies in bachelor degree programmes at German higher education institutions. Drop-out is to be understood as the definite termination in the higher education system without obtaining an academic degree. The drop-out rate is thereby calculated with the help of statistical estimation…

  18. Drop Out Patterns in the East Los Angeles Community College

    Waktola, Daniel K.


    This study attempted to analyze the drop out problem from spatial perspectives within the context of East Los Angeles Community College, California. Selected urban land-use types, which positively and negatively influence the propensity to drop out or persist-in colleges, were selected and captured during a global positioning system (GPS)-based…

  19. Square wave voltammetry at the dropping mercury electrode: Theory

    Christie, J.H.; Turner, J.A.; Osteryoung, R.A.


    The theoretical aspects of square wave voltammetry at the dropping mercury electrode are presented. The technique involves scanning the entire potential range of interest on a single drop of a DME. Asymmetries in the waveform as well as variations in current measurement parameters are discussed. Indications are that previous uses of the waveform may not have utilized all its capabilities.

  20. Did Millikan observe fractional charges on oil drops?

    Fairbank, William M.; Franklin, Allan


    We have reanalyzed Millikan's 1913 data on oil drops to examine the evidence for charge quantization and for fractional residual charge. We find strong evidence in favor of charge quantization and no convincing evidence for fractional residual charges on the oil drops.