WorldWideScience

Sample records for stress distribution spiral

  1. Star distribution in the Orion spiral arm

    International Nuclear Information System (INIS)

    Basharina, T.S.; Pavlovskaya, E.D.; Filippova, A.A.

    1985-01-01

    The structure of the Orion spiral arm is studied by numerical experiments, assuming that in each direction considered the star distribution along the line of sight is a combination of two Gaussian laws. The corresponding parameters are evaluated for four Milky Way fields; the bimodal laws now fit the observations by the chi 2 criterion. In the Orion arm the line-of-sight star densities follow asymmetric curves, steeper at the outer edge of the arm

  2. Spatial and mass distributions of molecular clouds and spiral structure

    International Nuclear Information System (INIS)

    Kwan, J.; Valdes, F.; National Optical Astronomy Observatories, Tucson, AZ)

    1987-01-01

    The growth of molecular clouds resulting from cloud-cloud collisions and coalescence in the Galactic ring between 4 and 8 kpc are modeled, taking into account the presence of a spiral potential and the mutual cloud-cloud gravitational attraction. The mean lifetime of molecular clouds is determined to be about 200 million years. The clouds are present in both spiral arm and interarm regions, but a spiral pattern in their spatial distribution is clearly discernible, with the more massive clouds showing a stronger correlation with the spiral arms. As viewed from within the Galactic disk, however, it is very difficult to ascertain that the molecular cloud distribution in longitude-velocity space has a spiral pattern. 19 references

  3. A Procedure for 3-D Contact Stress Analysis of Spiral Bevel Gears

    Science.gov (United States)

    Kumar, A.; Bibel, G.

    1994-01-01

    Contact stress distribution of spiral bevel gears using nonlinear finite element static analysis is presented. Procedures have been developed to solve the nonlinear equations that identify the gear and pinion surface coordinates based on the kinematics of the cutting process and orientate the pinion and the gear in space to mesh with each other. Contact is simulated by connecting GAP elements along the intersection of a line from each pinion point (parallel to the normal at the contact point) with the gear surface. A three dimensional model with four gear teeth and three pinion teeth is used to determine the contact stresses at two different contact positions in a spiral bevel gearset. A summary of the elliptical contact stress distribution is given. This information will be helpful to helicopter and aircraft transmission designers who need to minimize weight of the transmission and maximize reliability.

  4. Selection effects in the bivariate brightness distribution for spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1986-01-01

    The joint distribution of total luminosity and characteristic surface brightness (the bivariate brightness distribution) is investigated for a complete sample of spiral galaxies in the Virgo cluster. The influence of selection and physical limits of various kinds on the apparent distribution are detailed. While the distribution of surface brightness for bright galaxies may be genuinely fairly narrow, faint galaxies exist right across the (quite small) range of accessible surface brightnesses so no statement can be made about the true extent of the distribution. The lack of high surface brightness bright galaxies in the Virgo sample relative to an overall RC2 sample (mostly field galaxies) supports the contention that the star-formation rate is reduced in the inner region of the cluster for environmental reasons. (author)

  5. Distributed predictive control of spiral wave in cardiac excitable media

    International Nuclear Information System (INIS)

    Zheng-Ning, Gan; Xin-Ming, Cheng

    2010-01-01

    In this paper, we propose the distributed predictive control strategies of spiral wave in cardiac excitable media. The modified FitzHugh–Nagumo model was used to express the cardiac excitable media approximately. Based on the control-Lyapunov theory, we obtained the distributed control equation, which consists of a positive control-Lyapunov function and a positive cost function. Using the equation, we investigate two kinds of robust control strategies: the time-dependent distributed control strategy and the space-time dependent distributed control strategy. The feasibility of the strategies was demonstrated via an illustrative example, in which the spiral wave was prevented to occur, and the possibility for inducing ventricular fibrillation was eliminated. The strategies are helpful in designing various cardiac devices. Since the second strategy is more efficient and robust than the first one, and the response time in the second strategy is far less than that in the first one, the former is suitable for the quick-response control systems. In addition, our spatiotemporal control strategies, especially the second strategy, can be applied to other cardiac models, even to other reaction-diffusion systems. (general)

  6. The cored distribution of dark matter in spiral galaxies

    OpenAIRE

    Gentile, G.; Salucci, P.; Klein, U.; Vergani, D.; Kalberla, P.

    2004-01-01

    We present the HI data for 5 spiral galaxies that, along with their Halpha rotation curves, are used to derive the distribution of dark matter within these objects. A new method for extracting rotation curves from HI data cubes is presented; this takes into account the existence of a warp and minimises projection effects. The rotation curves obtained are tested by taking them as input to construct model data cubes that are compared to the observed ones: the agreement is excellent. On the cont...

  7. Hermite-Gaussian beams with self-forming spiral phase distribution

    Science.gov (United States)

    Zinchik, Alexander A.; Muzychenko, Yana B.

    2014-05-01

    Spiral laser beams is a family of laser beams that preserve the structural stability up to scale and rotate with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Spiral beams have a complicated phase distribution in cross section. This paper describes the results of analytical and computer simulation of Hermite-Gaussian beams with self-forming spiral phase distribution. In the simulation used a laser beam consisting of the sum of the two modes HG TEMnm and TEMn1m1. The coefficients n1, n, m1, m were varied. Additional phase depending from the coefficients n, m, m1, n1 imposed on the resulting beam. As a result, formed the Hermite Gaussian beam phase distribution which takes the form of a spiral in the process of distribution. For modeling was used VirtualLab 5.0 (manufacturer LightTrans GmbH).

  8. Spiral symmetry

    CERN Document Server

    Hargittai, Istvan

    1992-01-01

    From the tiny twisted biological molecules to the gargantuan curling arms of many galaxies, the physical world contains a startling repetition of spiral patterns. Today, researchers have a keen interest in identifying, measuring, and defining these patterns in scientific terms. Spirals play an important role in the growth processes of many biological forms and organisms. Also, through time, humans have imitated spiral motifs in their art forms, and invented new and unusual spirals which have no counterparts in the natural world. Therefore, one goal of this multiauthored book is to stress the c

  9. Radial distributions of arm-gas offsets as an observational test of spiral theories

    OpenAIRE

    Baba, Junichi; Morokuma-Matsui, Kana; Egusa, Fumi

    2015-01-01

    Theories of stellar spiral arms in disk galaxies can be grouped into two classes based on the longevity of a spiral arm. Although the quasi-stationary density wave theory supposes that spirals are rigidly-rotating, long-lived patterns, the dynamic spiral theory predicts that spirals are differentially-rotating, transient, recurrent patterns. In order to distinguish between the two spiral models from observations, we performed hydrodynamic simulations with steady and dynamic spiral models. Hyd...

  10. The luminosity distributions of edge-on spiral galaxies: Pt. 1

    International Nuclear Information System (INIS)

    Shaw, M.A.; Gilmore, G.

    1989-01-01

    An objective, non-linear, least-squares algorithm is presented for modelling the observed two-dimensional luminosity distributions in edge-on spiral and lenticular galaxies. The technique has three particular advantages: the entire projected 2D luminosity distribution is fitted; a wide range of combinations of luminosity components can be tested, and an objective criterion is provided which allows one to specify the adequacy of the imposed parametric representation. One may therefore discriminate between the efficacy of different luminosity profiles as a valid representation of an observed galaxy, thereby addressing such questions as whether spiral bulges are adequately described by an r 1/4 law, as well as testing the need for multicomponent modelling of galaxies. We find that the Sbc galaxy NGC 891 is adequately described by a simple two-component model. For NGC 4565, a three-component combination is required. (author)

  11. Experimental study on manufacturing of grits-spiral- distribution electroplated wire saw

    Directory of Open Access Journals (Sweden)

    Yufei GAO

    2016-12-01

    Full Text Available In order to obtain high performance electroplating diamond wire saw, experimental studies are conducted for development of grits-spiral-distribution electroplated diamond wire saw using sand-suspend electroplating method. The influences of pre-plating cathode current density, grits electro-embedding cathode current density and time on composite deposite coating appearance and grits distribution of wire saw are analyzed, and the sawing experiment is carried out by using the trial wire saw. The results show that good bonding strength between the coating and the steel wire can be obtained when the adopted cathode current density is 5.0 A/dm2 at pre-plating stage; good coating and girts distribution can be obtained when the adopted cathode current density is 5.0 A/dm2 and the electroplating time is 7~8 min at grits electro-embedding stage. By winding insulation wire on the surface of steel wire and reasonably selecting technological parameters before pre-plating can make the diamond wire saw with grits-spiral-distribution on surface, and the new type of wire saw has a better crumbs-clearing effect in wire sawing process.

  12. Constraints on radial migration in spiral galaxies - II. Angular momentum distribution and preferential migration

    Science.gov (United States)

    Daniel, Kathryne J.; Wyse, Rosemary F. G.

    2018-05-01

    The orbital angular momentum of individual stars in galactic discs can be permanently changed through torques from transient spiral patterns. Interactions at the corotation resonance dominate these changes and have the further property of conserving orbital circularity. We derived in an earlier paper an analytic criterion that an unperturbed stellar orbit must satisfy in order for such an interaction to occur, i.e. for it to be in a trapped orbit around corotation. We here use this criterion in an investigation of how the efficiency of induced radial migration for a population of disc stars varies with the angular momentum distribution of that population. We frame our results in terms of the velocity dispersion of the population, this being an easier observable than is the angular momentum distribution. Specifically, we investigate how the fraction of stars in trapped orbits at corotation varies with the velocity dispersion of the population, for a system with an assumed flat rotation curve. Our analytic results agree with the finding from simulations that radial migration is less effective in populations with `hotter' kinematics. We further quantify the dependence of this trapped fraction on the strength of the spiral pattern, finding a higher trapped fraction for higher amplitude perturbations.

  13. Radial distributions of surface mass density and mass-to-luminosity ratio in spiral galaxies

    Science.gov (United States)

    Sofue, Yoshiaki

    2018-03-01

    We present radial profiles of the surface mass density (SMD) in spiral galaxies directly calculated using rotation curves of two approximations of flat-disk (SMD-F) and spherical mass distribution (SMD-S). The SMDs are combined with surface brightness using photometric data to derive radial variations of the mass-to-luminosity ratio (ML). It is found that the ML generally has a central peak or a plateau, and decreases to a local minimum at R ˜ 0.1-0.2 h, where R is the radius and h is the scale radius of optical disk. The ML, then, increases rapidly until ˜0.5 h, and is followed by gradual rise till ˜2 h, remaining at around ˜2 [M_{⊙} L^{-1}_{⊙}] in the w1 band (infrared λ3.4 μm) and ˜ 10 [M_⊙ L_⊙ ^{-1}] in the r band (λ6200-7500 Å). Beyond this radius, the ML increases steeply with approaching the observed edges at R ˜ 5 h, attaining to as high values as ˜20 in w1 and ˜ 10^2 [M_⊙ L_⊙ ^{-1}] in the r band, which are indicative of dominant dark matter. The general properties of the ML distributions will be useful for constraining cosmological formation models of spiral galaxies.

  14. The distribution of mass for spiral galaxies in clusters and in the field

    International Nuclear Information System (INIS)

    Forbes, D.A.; Whitmore, B.C.

    1989-01-01

    A comparison is made between the mass distributions of spiral galaxies in clusters and in the field using Burstein's mass-type methodology. Both the H-alpha emission-line rotation curves and more extended H I rotation curves are used. The fitting technique for determining mass types used by Burstein and coworkers has been replaced by an objective chi-sq method. Mass types are shown to be a function of both the Hubble type and luminosity, contrary to earlier results. The present data show a difference in the distribution of mass types for spiral galaxies in the field and in clusters, in the sense that mass type I galaxies, where the inner and outer velocity gradients are similar, are generally found in the field rather than in clusters. This can be understood in terms of the results of Whitmore, Forbes, and Rubin (1988), who find that the rotation curves of galaxies in the central region of clusters are generally failing, while the outer galaxies in a cluster and field galaxies tend to have flat or rising rotation curves. 15 refs

  15. distributed parameter model of spiral-wound sepralator for treatment of uranyl nitrate effluents

    International Nuclear Information System (INIS)

    El-Bialy, S.H; Elsherbiny, A.E.

    2004-01-01

    in this paper, mathematical formulation of spiral-wound sepralator was derived and applied for the treatment of effluent stream which is produced during nuclear fuel processing stage. the concentration of the stream has a value up to 200 ppm . cross-flow characteristic of both feed and permeate streams was taken into account and their mutual effects on the values of system variables were investigated. of course, such a flow pattern leads to a heterogeneous system which leads-in turn-to six partial differential equations, beside a set of algebraic equations. those were solved numerically and the results were used to estimate the average values of both permeate flux and percent solute rejection. then, these were compared with both experimental data in addition to the results of lumped parameter model. the study showed that distributed parameter model gives better results than lumped parameter one compared with experimental data

  16. Temperature distribution and thermal stress

    Indian Academy of Sciences (India)

    Abstract. Thermal effects of a double-end-pumped cubic Nd:YVO4 laser crystal are investigated in this paper. A detailed analysis of temperature distribution and thermal stress in cubic crystal with circular shape pumping is discussed. It has been shown that by considering the total input powers as constant, the ...

  17. Can we detect Galactic spiral arms? 3D dust distribution in the Milky Way

    Science.gov (United States)

    Rezaei Kh., Sara; Bailer-Jones, Coryn A. L.; Fouesneau, Morgan; Hanson, Richard

    2018-04-01

    We present a model to map the 3D distribution of dust in the Milky Way. Although dust is just a tiny fraction of what comprises the Galaxy, it plays an important role in various processes. In recent years various maps of dust extinction have been produced, but we still lack a good knowledge of the dust distribution. Our presented approach leverages line-of-sight extinctions towards stars in the Galaxy at measured distances. Since extinction is proportional to the integral of the dust density towards a given star, it is possible to reconstruct the 3D distribution of dust by combining many lines-of-sight in a model accounting for the spatial correlation of the dust. Such a technique can be used to infer the most probable 3D distribution of dust in the Galaxy even in regions which have not been observed. This contribution provides one of the first maps which does not show the ``fingers of God'' effect. Furthermore, we show that expected high precision measurements of distances and extinctions offer the possibility of mapping the spiral arms in the Galaxy.

  18. Dynamical effects of the spiral arms on the velocity distribution of disc stars

    Science.gov (United States)

    Hattori, Kohei; Gouda, Naoteru; Yano, Taihei; Sakai, Nobuyuki; Tagawa, Hiromichi

    2018-04-01

    Nearby disc stars in Gaia DR1 (TGAS) and RAVE DR5 show a bimodal velocity distribution in the metal-rich region (characterized by the Hercules stream) and mono-modal velocity distribution in the metal-poor region. We investigate the origin of this [Fe/H] dependence of the local velocity distribution by using 2D test particle simulations. We found that this [Fe/H] dependence can be well reproduced if we assume fast rotating bar models with Ωbar ~= 52 km s-1 kpc-1. A possible explanation for this result is that the metal-rich, relatively young stars are more likely to be affected by bar's outer Lindblad resonance due to their relatively cold kinematics. We also found that slowly rotating bar models with Ωbar ~= 39 km s-1 kpc-1 can not reproduce the observed data. Interestingly, when we additionally consider spiral arms, some models can reproduce the observed velocity distribution even when the bar is slowly rotating.

  19. SPIRAL STRUCTURE OF M51 - DISTRIBUTION AND KINEMATICS OF THE ATOMIC AND IONIZED HYDROGEN

    NARCIS (Netherlands)

    TILANUS, RPJ; ALLEN, RJ

    The atomic hydrogen (H I) and the H-alpha emission lines in the grand-design spiral galaxy M51 have been observed with the Westerbork Synthesis Radio Telescope and the TAURUS Fabry-Perot imaging spectrometer, respectively. Across the inner spiral arms significant tangential and radial velocity

  20. Predicting the distribution of spiral waves from cell properties in a developmental-path model of Dictyostelium pattern formation.

    Directory of Open Access Journals (Sweden)

    Daniel Geberth

    2009-07-01

    Full Text Available The slime mold Dictyostelium discoideum is one of the model systems of biological pattern formation. One of the most successful answers to the challenge of establishing a spiral wave pattern in a colony of homogeneously distributed D. discoideum cells has been the suggestion of a developmental path the cells follow (Lauzeral and coworkers. This is a well-defined change in properties each cell undergoes on a longer time scale than the typical dynamics of the cell. Here we show that this concept leads to an inhomogeneous and systematic spatial distribution of spiral waves, which can be predicted from the distribution of cells on the developmental path. We propose specific experiments for checking whether such systematics are also found in data and thus, indirectly, provide evidence of a developmental path.

  1. Adenosine stress cardiovascular magnetic resonance with variable-density spiral pulse sequences accurately detects coronary artery disease: initial clinical evaluation.

    Science.gov (United States)

    Salerno, Michael; Taylor, Angela; Yang, Yang; Kuruvilla, Sujith; Ragosta, Michael; Meyer, Craig H; Kramer, Christopher M

    2014-07-01

    Adenosine stress cardiovascular magnetic resonance perfusion imaging can be limited by motion-induced dark-rim artifacts, which may be mistaken for true perfusion abnormalities. A high-resolution variable-density spiral pulse sequence with a novel density compensation strategy has been shown to reduce dark-rim artifacts in first-pass perfusion imaging. We aimed to assess the clinical performance of adenosine stress cardiovascular magnetic resonance using this new perfusion sequence to detect obstructive coronary artery disease. Cardiovascular magnetic resonance perfusion imaging was performed during adenosine stress (140 μg/kg per minute) and at rest on a Siemens 1.5-T Avanto scanner in 41 subjects with chest pain scheduled for coronary angiography. Perfusion images were acquired during injection of 0.1 mmol/kg Gadolinium-diethylenetriaminepentacetate at 3 short-axis locations using a saturation recovery interleaved variable-density spiral pulse sequence. Significant stenosis was defined as >50% by quantitative coronary angiography. Two blinded reviewers evaluated the perfusion images for the presence of adenosine-induced perfusion abnormalities and assessed image quality using a 5-point scale (1 [poor] to 5 [excellent]). The prevalence of obstructive coronary artery disease by quantitative coronary angiography was 68%. The average sensitivity, specificity, and accuracy were 89%, 85%, and 88%, respectively, with a positive predictive value and negative predictive value of 93% and 79%, respectively. The average image quality score was 4.4±0.7, with only 1 study with more than mild dark-rim artifacts. There was good inter-reader reliability with a κ statistic of 0.67. Spiral adenosine stress cardiovascular magnetic resonance results in high diagnostic accuracy for the detection of obstructive coronary artery disease with excellent image quality and minimal dark-rim artifacts. © 2014 American Heart Association, Inc.

  2. Variability of macrofauna distribution along a dissipative log-spiral sandy beach in Rio de Janeiro, Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Carlos A.M. Barboza

    2017-03-01

    Full Text Available Log-spiral beaches display defined physical gradients alongshore. However, the majority of studies focus on the variability of a single population of macrofauna species. We aimed to investigate the variation in species distribution and in community structure along ten transects on a log-spiral beach. Principal component analysis indicated a clear physical gradient alongshore. Redundancy analysis showed that the sheltered end was related to smaller particle sizes, higher organic matter content and high densities of polychaetes. The exposed end was characterized by coarser sand, lower organic matter content and a high presence of crustaceans. Model selection indicated that the “best fit” to explain the variability in the number of individuals included grain size and beach slope. Variability of the polychaete Scolelepis squamata was best explained by grain size, slope and sediment sorting. The best model for the cirolanid Excirolana armata only included sediment sorting. The physical gradient in sediment texture and the beach slope explained more than one-third of the variability in community structure. The physical variables were also correlated with the distribution of the individual species. We showed that the physical gradient on log-spiral coasts may be an important driver of macrofauna variability, even at mesoscales and in dissipative conditions.

  3. GHASP: an Hα kinematical survey of spiral galaxies - XI. Distribution of luminous and dark matter in spiral and irregular nearby galaxies using WISE photometry.

    Science.gov (United States)

    Korsaga, M.; Carignan, C.; Amram, P.; Epinat, B.; Jarrett, T. H.

    2018-04-01

    We present the mass distribution of a sample of 121 nearby galaxies with high quality optical velocity fields and available infra-red WISE 3.4 μm data. Contrary to previous studies, this sample covers all morphological types and is not biased toward late-type galaxies. These galaxies are part of the Fabry-Perot kinematical GHASP survey of spirals and irregular nearby galaxies. Combining the kinematical data to the WISE surface brightness data probing the emission from the old stellar population, we derive mass models allowing us to compare the luminous to the dark matter halo mass distribution in the optical regions of those galaxies. Dark matter (DM) models are constructed using the isothermal core profile and the Navarro-Frenk-White cuspy profile. We allow the M/L of the baryonic disc to vary or we keep it fixed, constrained by stellar evolutionary models (WISE W1-W2 color) and we carry out best fit (BFM) and pseudo-isothermal maximum disc (MDM) models. We found that the MDM provides M/L values four times higher than the BFM, suggesting that disc components, on average, tend to be maximal. The main results are: (i) the rotation curves of most galaxies are better fitted with core rather than cuspy profiles; (ii) the relation between the parameters of the DM and of the luminous matter components mostly depends on morphological types. More precisely, the distribution of the DM inside galaxies depends on whether or not the galaxy has a bulge.

  4. The DiskMass Survey. VII. The distribution of luminous and dark matter in spiral galaxies

    NARCIS (Netherlands)

    Martinsson, T.P.K.; Verheijen, M.; Westfall, K.; Bershady, M.; Andersen, D.; Swaters, R.

    2013-01-01

    We present dynamically-determined rotation-curve mass decompositions of 30 spiral galaxies, which were carried out to test the maximum-disk hypothesis and to quantify properties of their dark-matter halos. We used measured vertical velocity dispersions of the disk stars to calculate dynamical mass

  5. The DiskMass Survey. VII. The distribution of luminous and dark matter in spiral galaxies

    NARCIS (Netherlands)

    Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Bershady, Matthew A.; Andersen, David R.; Swaters, Rob A.

    We present dynamically-determined rotation-curve mass decompositions of 30 spiral galaxies, which were carried out to test the maximum-disk hypothesis and to quantify properties of their dark-matter halos. We used measured vertical velocity dispersions of the disk stars to calculate dynamical mass

  6. The DiskMass Survey : VII. The distribution of luminous and dark matter in spiral galaxies

    NARCIS (Netherlands)

    Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Bershady, Matthew A.; Andersen, David R.; Swaters, Rob A.

    We present dynamically- determined rotation- curve mass decompositions of 30 spiral galaxies, which were carried out to test the maximum- disk hypothesis and to quantify properties of their dark- matter halos. We used measured vertical velocity dispersions of the disk stars to calculate dynamical

  7. Logarithmic Spiral

    Indian Academy of Sciences (India)

    Switzerland) even today can see the. Archimedian spiral and the inscription under it on the tombstone of Jacob Bernoulli 1. Logarithmic Spiral in Nature. Apart from logarithmic spiral no other curve seems to have attracted the attention of scientists, ...

  8. Estimation of stress distribution in ferromagnetic tensile specimens using low cost eddy current stress measurement system and BP neural network.

    Directory of Open Access Journals (Sweden)

    Jianwei Li

    Full Text Available Estimation of the stress distribution in ferromagnetic components is very important for evaluating the working status of mechanical equipment and implementing preventive maintenance. Eddy current testing technology is a promising method in this field because of its advantages of safety, no need of coupling agent, etc. In order to reduce the cost of eddy current stress measurement system, and obtain the stress distribution in ferromagnetic materials without scanning, a low cost eddy current stress measurement system based on Archimedes spiral planar coil was established, and a method based on BP neural network to obtain the stress distribution using the stress of several discrete test points was proposed. To verify the performance of the developed test system and the validity of the proposed method, experiment was implemented using structural steel (Q235 specimens. Standard curves of sensors at each test point were achieved, the calibrated data were used to establish the BP neural network model for approximating the stress variation on the specimen surface, and the stress distribution curve of the specimen was obtained by interpolating with the established model. The results show that there is a good linear relationship between the change of signal modulus and the stress in most elastic range of the specimen, and the established system can detect the change in stress with a theoretical average sensitivity of -0.4228 mV/MPa. The obtained stress distribution curve is well consonant with the theoretical analysis result. At last, possible causes and improving methods of problems appeared in the results were discussed. This research has important significance for reducing the cost of eddy current stress measurement system, and advancing the engineering application of eddy current stress testing.

  9. Estimation of stress distribution in ferromagnetic tensile specimens using low cost eddy current stress measurement system and BP neural network.

    Science.gov (United States)

    Li, Jianwei; Zhang, Weimin; Zeng, Weiqin; Chen, Guolong; Qiu, Zhongchao; Cao, Xinyuan; Gao, Xuanyi

    2017-01-01

    Estimation of the stress distribution in ferromagnetic components is very important for evaluating the working status of mechanical equipment and implementing preventive maintenance. Eddy current testing technology is a promising method in this field because of its advantages of safety, no need of coupling agent, etc. In order to reduce the cost of eddy current stress measurement system, and obtain the stress distribution in ferromagnetic materials without scanning, a low cost eddy current stress measurement system based on Archimedes spiral planar coil was established, and a method based on BP neural network to obtain the stress distribution using the stress of several discrete test points was proposed. To verify the performance of the developed test system and the validity of the proposed method, experiment was implemented using structural steel (Q235) specimens. Standard curves of sensors at each test point were achieved, the calibrated data were used to establish the BP neural network model for approximating the stress variation on the specimen surface, and the stress distribution curve of the specimen was obtained by interpolating with the established model. The results show that there is a good linear relationship between the change of signal modulus and the stress in most elastic range of the specimen, and the established system can detect the change in stress with a theoretical average sensitivity of -0.4228 mV/MPa. The obtained stress distribution curve is well consonant with the theoretical analysis result. At last, possible causes and improving methods of problems appeared in the results were discussed. This research has important significance for reducing the cost of eddy current stress measurement system, and advancing the engineering application of eddy current stress testing.

  10. High-Assurance Spiral

    Science.gov (United States)

    2017-11-01

    HIGH-ASSURANCE SPIRAL CARNEGIE MELLON UNIVERSITY NOVEMBER 2017 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED STINFO...MU 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Carnegie Mellon University 5000 Forbes Ave Pittsburgh, PA 15217 8. PERFORMING ORGANIZATION...Approved for Public Release; Distribution Unlimited. Carnegie Mellon Carnegie Mellon HA SPIRAL Code Synthesis KeYmaera X Hybrid Theorem Prover

  11. Spiral blood flow in aorta-renal bifurcation models.

    Science.gov (United States)

    Javadzadegan, Ashkan; Simmons, Anne; Barber, Tracie

    2016-01-01

    The presence of a spiral arterial blood flow pattern in humans has been widely accepted. It is believed that this spiral component of the blood flow alters arterial haemodynamics in both positive and negative ways. The purpose of this study was to determine the effect of spiral flow on haemodynamic changes in aorta-renal bifurcations. In this regard, a computational fluid dynamics analysis of pulsatile blood flow was performed in two idealised models of aorta-renal bifurcations with and without flow diverter. The results show that the spirality effect causes a substantial variation in blood velocity distribution, while causing only slight changes in fluid shear stress patterns. The dominant observed effect of spiral flow is on turbulent kinetic energy and flow recirculation zones. As spiral flow intensity increases, the rate of turbulent kinetic energy production decreases, reducing the region of potential damage to red blood cells and endothelial cells. Furthermore, the recirculation zones which form on the cranial sides of the aorta and renal artery shrink in size in the presence of spirality effect; this may lower the rate of atherosclerosis development and progression in the aorta-renal bifurcation. These results indicate that the spiral nature of blood flow has atheroprotective effects in renal arteries and should be taken into consideration in analyses of the aorta and renal arteries.

  12. Spiral tectonics

    Science.gov (United States)

    Hassan Asadiyan, Mohammad

    2014-05-01

    Spiral Tectonics (ST) is a new window to global tectonics introduced as alternative model for Plate Tectonics (PT). ST based upon Dahw(rolling) and Tahw(spreading) dynamics. Analogues to electric and magnetic components in the electromagnetic theory we could consider Dahw and Tahw as components of geodynamics, when one component increases the other decreases and vice versa. They are changed to each other during geological history. D-component represents continental crust and T-component represents oceanic crust. D and T are two arm of spiral-cell. T-arm 180 degree lags behind D-arm so named Retard-arm with respect to D or Forward-arm. It seems primary cell injected several billions years ago from Earth's center therefore the Earth's core was built up first then mantel and finally the crust was build up. Crust building initiate from Arabia (Mecca). As the universe extended gravitation wave swirled the earth fractaly along cycloid path from big to small scale. In global scale (order-0) ST collect continents in one side and abandoned Pacific Ocean in the other side. Recent researches also show two mantels upwelling in opposite side of the Earth: one under Africa (tectonic pose) and the other under Pacific Ocean (tectonic tail). In higher order (order-1) ST build up Africa in one side and S.America in the other side therefore left Atlantic Ocean meandered in between. In order-n e.g. Khoor Musa and Bandar-Deylam bay are seen meandered easterly in the Iranian part but Khoor Abdullah and Kuwait bay meandered westerly in the Arabian part, they are distributed symmetrically with respect to axis of Persian Gulf(PG), these two are fractal components of easterly Caspian-wing and westerly Black Sea-wing which split up from Anatoly. Caspian Sea and Black Sea make two legs of Y-like structure, this shape completely fitted with GPS-velocity map which start from PG and split up in the Catastrophic Point(Anatoly). We could consider PG as remnants of Ancient Ocean which spent up

  13. Spirals on the sea

    Directory of Open Access Journals (Sweden)

    Walter Munk

    2001-12-01

    Full Text Available Spiral eddies were first seen in the sun glitter on the Apollo Mission 30 years ago; they have since been recorded on SAR missions and in the infrared. The spirals are globally distributed, 10-25 km in size and overwhelmingly cyclonic. They have not been explained. Under light winds favorable to visualization, linear surface features with high surfactant density and low surface roughness are of common occurrence. We have proposed that frontal formations concentrate the ambient shear and prevailing surfactants. Horizontal shear instabilities ensue when the shear becomes comparable to the coriolis frequency. The resulting vortices wind the liner features into spirals. The hypothesis needs to be tested by prolonged measurements and surface truth. Spiral eddies are a manifestation of a sub-mesoscale oceanography associated with upper ocean stirring; dimensional considerations suggest a horizontal diffusivity of order 103 m2 s-1.

  14. Stress distribution in two-dimensional silos

    Science.gov (United States)

    Blanco-Rodríguez, Rodolfo; Pérez-Ángel, Gabriel

    2018-01-01

    Simulations of a polydispersed two-dimensional silo were performed using molecular dynamics, with different numbers of grains reaching up to 64 000, verifying numerically the model derived by Janssen and also the main assumption that the walls carry part of the weight due to the static friction between grains with themselves and those with the silo's walls. We vary the friction coefficient, the radii dispersity, the silo width, and the size of grains. We find that the Janssen's model becomes less relevant as the the silo width increases since the behavior of the stresses becomes more hydrostatic. Likewise, we get the normal and tangential stress distribution on the walls evidencing the existence of points of maximum stress. We also obtained the stress matrix with which we observe zones of concentration of load, located always at a height around two thirds of the granular columns. Finally, we observe that the size of the grains affects the distribution of stresses, increasing the weight on the bottom and reducing the normal stress on the walls, as the grains are made smaller (for the same total mass of the granulate), giving again a more hydrostatic and therefore less Janssen-type behavior for the weight of the column.

  15. Macro design effects on stress distribution around implants: A photoelastic stress analysis

    Directory of Open Access Journals (Sweden)

    Serhat Emre Ozkir

    2012-01-01

    Conclusion: As there were observable differences between the implant types, straight placed cylindrical implants showed better stress distribution characteristics, while inclined tapering implants had better stress distribution characteristics.

  16. The Viability of Single Cancer Cells after Exposure to Hydrodynamic Shear Stresses in a Spiral Microchannel: A Canine Cutaneous Mast Cell Tumor Model

    Directory of Open Access Journals (Sweden)

    Dettachai Ketpun

    2017-12-01

    Full Text Available Our laboratory has the fundamental responsibility to study cancer stem cells (CSC in various models of human and animal neoplasms. However, the major impediments that spike our accomplishment are the lack of universal biomarkers and cellular heterogeneity. To cope with these restrictions, we have tried to apply the concept of single cell analysis, which has hitherto been recommended throughout the world as an imperative solution pack for resolving such dilemmas. Accordingly, our first step was to utilize a predesigned spiral microchannel fabricated by our laboratory to perform size-based single cell separation using mast cell tumor (MCT cells as a model. However, the impact of hydrodynamic shear stresses (HSS on mechanical cell injury and viability in a spiral microchannel has not been fully investigated so far. Intuitively, our computational fluid dynamics (CFD simulation has strongly revealed the formations of fluid shear stress (FSS and extensional fluid stress (EFS in the sorting system. The panel of biomedical assays has also disclosed cell degeneration and necrosis in the model. Therefore, we have herein reported the combinatorically detrimental effect of FSS and EFS on the viability of MCT cells after sorting in our spiral microchannel, with discussion on the possibly pathogenic mechanisms of HSS-induced cell injury in the study model.

  17. Measurement of coronary flow response to cold pressor stress in asymptomatic women with cardiovascular risk factors using spiral velocity-encoded cine MRI at 3 Tesla

    International Nuclear Information System (INIS)

    Maroules, Christopher D.; Peshock, Ronald M.; Chang, Alice Y.; Kontak, Andrew; Dimitrov, Ivan; Kotys, Melanie

    2010-01-01

    Background: Coronary sinus (CS) flow in response to a provocative stress has been used as a surrogate measure of coronary flow reserve, and velocity-encoded cine (VEC) magnetic resonance imaging (MRI) is an established technique for measuring CS flow. In this study, the cold pressor test (CPT) was used to measure CS flow response because it elicits an endothelium-dependent coronary vasodilation that may afford greater sensitivity for detecting early changes in coronary endothelial function. Purpose: To investigate the feasibility and reproducibility of CS flow reactivity (CSFR) to CPT using spiral VEC MRI at 3 Tesla in a sample of asymptomatic women with cardiovascular risk factors. Material and Methods: Fourteen asymptomatic women (age 38 years ± 10) with cardiovascular risk factors were studied using 3D spiral VEC MRI of the CS at 3 T. The CPT was utilized as a provocative stress to measure changes in CS flow. CSFR to CPT was calculated from the ratio of CS flow during peak stress to baseline CS flow. Results: CPT induced a significant hemodynamic response as measured by a 45% increase in rate-pressure product (P<0.01). A significant increase in CS volume flow was also observed (baseline, 116 ± 26 ml/min; peak stress, 152 ± 34 ml/min, P=0.01). CSFR to CPT was 1.31 ± 0.20. Test-retest variability of CS volume flow was 5% at baseline and 6% during peak stress. Conclusion: Spiral CS VEC MRI at 3 T is a feasible and reproducible technique for measuring CS flow in asymptomatic women at risk for cardiovascular disease. Significant changes in CSFR to CPT are detectable, without demanding pharmacologic stress

  18. Frequency spirals

    International Nuclear Information System (INIS)

    Ottino-Löffler, Bertrand; Strogatz, Steven H.

    2016-01-01

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call “frequency spirals.” These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seen in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.

  19. Frequency spirals

    Energy Technology Data Exchange (ETDEWEB)

    Ottino-Löffler, Bertrand; Strogatz, Steven H., E-mail: strogatz@cornell.edu [Center for Applied Mathematics, Cornell University, Ithaca, New York 14853 (United States)

    2016-09-15

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call “frequency spirals.” These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seen in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.

  20. The Effect of Tic Coated Balls and Stress on the Lubricant Lifetime of a Synthetic Hydrocarbon (pennzane 2001A) Using a Vacuum Spiral Orbit Tribometer

    Science.gov (United States)

    Jansen, Mark J.; Jones, William R., Jr.; Pepper, Stephen V.; Wheeler, Donald R.; Schroeer, Achim; Fluehmann, Freddy; Loewenthal, Stuart H.; Shogrin, Bradley A.

    2000-01-01

    A vacuum spiral orbit rolling contact tribometer was used to determine effect of varying mean Hertzian stress (1.0, 1.5, 2.0 GPa) and the use of 440C and TiC coated 440C balls on lubricant lifetime of a synthetic hydrocarbon (Pennzane 2001A) on 440C stainless steel. Conditions included 210 rpm, approx. 50 micrograms lubricant, an initial vacuum TiC coated 440C ball showed no increase in lifetime over the 440C ball. The decreasing lifetime with increasing stress level correlated well with energy dissipation calculations.

  1. Stress distributions of coils for toroidal magnetic field

    International Nuclear Information System (INIS)

    Kajita, Tateo; Miyamoto, Kenro.

    1976-01-01

    The stress distributions of a D shaped coil and a circular coil are computed by the finite element method. The dependences of the stress distribution on the geometrical parameters of the stress distribution on the geometrical parameters of the coils and supporting methods are examined. The maximum amount of the stress in the D shaped coil is not much smaller than that of the circular one. However, the stress distribution of the D shaped coil becomes much more uniform. The supporting method has as much effect as the geometrical parameters of the coil on the stress distribution. (auth.)

  2. Finite element analysis of thermal stress distribution in different ...

    African Journals Online (AJOL)

    Nigerian Journal of Clinical Practice. Journal Home ... Von Mises and thermal stress distributions were evaluated. Results: In all ... distribution. Key words: Amalgam, finite element method, glass ionomer cement, resin composite, thermal stress ...

  3. Stress Distribution, Friction and Listeria Propulsion

    Science.gov (United States)

    Prost, Jacques

    2003-03-01

    I will review our work on the physics of listeria propulsion based on an unavoidable elastic analysis of the stress distribution in the actin gel and dynamical boundary conditions (both normal and tangential). I will show in particular that it provides a natural explanation for the symmetry breaking transition occurring with beads (work with K. Sekimoto and F. Julicher), of the saltatory behavior of beads reported by A Bernheim et al (Nature 2002) and of the shape of soft beads (with O. Campas and J.F Joanny). This last analysis proves that, as announced in an earlier paper (F; Gerbal et al Biophys Journal 2000) the rear part of the gel contributes negatively to the motion.

  4. stress distribution in continuo ribution in continuous thin ribution

    African Journals Online (AJOL)

    eobe

    studied stresses in thin-walled box girder bridges but stress distribution walled box girder bridges .... the classical thin plate theory and trigonometric series. Lertsima et al. ..... remedied by applying spline finite strip method. Compared to other ...

  5. The spiral

    DEFF Research Database (Denmark)

    Bibace, Roger; Kharlamov, Nikita

    2013-01-01

    ’s work with Bernard Kaplan on symbol formation is a primer on this idea. This paper examines the idea of spirality and develops the notion of dynamic coexistence that can clarify the issue of directionality of development; that is, what is the general trajectory or ground plan that development assumes...... and the environment. The idea of dynamic coexistence is developed on this foundation. In the context of Werner and Kaplan’s work, dynamic coexistence represents the syncretic nature of processes and levels of organization: they are neither innately fused nor organized. Instead, the antithesis between fusion...

  6. ANGULAR-MOMENTUM IN BINARY SPIRAL GALAXIES

    NARCIS (Netherlands)

    OOSTERLOO, T

    In order to investigate the relative orientations of spiral galaxies in pairs, the distribution of the angle between the spin-vectors for a new sample of 40 binary spiral galaxies is determined. From this distribution it is found, contrary to an earlier result obtained by Helou (1984), that there is

  7. Holographic Chiral Magnetic Spiral

    International Nuclear Information System (INIS)

    Kim, Keun-Young; Sahoo, Bindusar; Yee, Ho-Ung

    2010-06-01

    We study the ground state of baryonic/axial matter at zero temperature chiral-symmetry broken phase under a large magnetic field, in the framework of holographic QCD by Sakai-Sugimoto. Our study is motivated by a recent proposal of chiral magnetic spiral phase that has been argued to be favored against previously studied phase of homogeneous distribution of axial/baryonic currents in terms of meson super-currents dictated by triangle anomalies in QCD. Our results provide an existence proof of chiral magnetic spiral in strong coupling regime via holography, at least for large axial chemical potentials, whereas we don't find the phenomenon in the case of purely baryonic chemical potential. (author)

  8. Use of frozen stress in extracting stress intensity factor distributions in three dimensional cracked body problems

    Science.gov (United States)

    Smith, C. W.

    1992-01-01

    The adaptation of the frozen stress photoelastic method to the determination of the distribution of stress intensity factors in three dimensional problems is briefly reviewed. The method is then applied to several engineering problems of practical significance.

  9. Stress Distribution in Graded Cellular Materials Under Dynamic Compression

    Directory of Open Access Journals (Sweden)

    Peng Wang

    Full Text Available Abstract Dynamic compression behaviors of density-homogeneous and density-graded irregular honeycombs are investigated using cell-based finite element models under a constant-velocity impact scenario. A method based on the cross-sectional engineering stress is developed to obtain the one-dimensional stress distribution along the loading direction in a cellular specimen. The cross-sectional engineering stress is contributed by two parts: the node-transitive stress and the contact-induced stress, which are caused by the nodal force and the contact of cell walls, respectively. It is found that the contact-induced stress is dominant for the significantly enhanced stress behind the shock front. The stress enhancement and the compaction wave propagation can be observed through the stress distributions in honeycombs under high-velocity compression. The single and double compaction wave modes are observed directly from the stress distributions. Theoretical analysis of the compaction wave propagation in the density-graded honeycombs based on the R-PH (rigid-plastic hardening idealization is carried out and verified by the numerical simulations. It is found that stress distribution in cellular materials and the compaction wave propagation characteristics under dynamic compression can be approximately predicted by the R-PH shock model.

  10. Multiple mechanisms quench passive spiral galaxies

    Science.gov (United States)

    Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin; Dolley, Tim; Bonne, Nicolas J.

    2018-02-01

    We examine the properties of a sample of 35 nearby passive spiral galaxies in order to determine their dominant quenching mechanism(s). All five low-mass (M⋆ environments. We postulate that cluster-scale gas stripping and heating mechanisms operating only in rich clusters are required to quench low-mass passive spirals, and ram-pressure stripping and strangulation are obvious candidates. For higher mass passive spirals, while trends are present, the story is less clear. The passive spiral bar fraction is high: 74 ± 15 per cent, compared with 36 ± 5 per cent for a mass, redshift and T-type matched comparison sample of star-forming spiral galaxies. The high mass passive spirals occur mostly, but not exclusively, in groups, and can be central or satellite galaxies. The passive spiral group fraction of 74 ± 15 per cent is similar to that of the comparison sample of star-forming galaxies at 61 ± 7 per cent. We find evidence for both quenching via internal structure and environment in our passive spiral sample, though some galaxies have evidence of neither. From this, we conclude no one mechanism is responsible for quenching star formation in passive spiral galaxies - rather, a mixture of mechanisms is required to produce the passive spiral distribution we see today.

  11. Distribution of incremental static stress caused by earthquakes

    Directory of Open Access Journals (Sweden)

    Y. Y. Kagan

    1994-01-01

    Full Text Available Theoretical calculations, simulations and measurements of rotation of earthquake focal mechanisms suggest that the stress in earthquake focal zones follows the Cauchy distribution which is one of the stable probability distributions (with the value of the exponent α equal to 1. We review the properties of the stable distributions and show that the Cauchy distribution is expected to approximate the stress caused by earthquakes occurring over geologically long intervals of a fault zone development. However, the stress caused by recent earthquakes recorded in instrumental catalogues, should follow symmetric stable distributions with the value of α significantly less than one. This is explained by a fractal distribution of earthquake hypocentres: the dimension of a hypocentre set, ��, is close to zero for short-term earthquake catalogues and asymptotically approaches 2¼ for long-time intervals. We use the Harvard catalogue of seismic moment tensor solutions to investigate the distribution of incremental static stress caused by earthquakes. The stress measured in the focal zone of each event is approximated by stable distributions. In agreement with theoretical considerations, the exponent value of the distribution approaches zero as the time span of an earthquake catalogue (ΔT decreases. For large stress values α increases. We surmise that it is caused by the δ increase for small inter-earthquake distances due to location errors.

  12. Thermographic Analysis of Stress Distribution in Welded Joints

    Directory of Open Access Journals (Sweden)

    Domazet Ž.

    2010-06-01

    Full Text Available The fatigue life prediction of welded joints based on S-N curves in conjunction with nominal stresses generally is not reliable. Stress distribution in welded area affected by geometrical inhomogeneity, irregular welded surface and weld toe radius is quite complex, so the local (structural stress concept is accepted in recent papers. The aim of this paper is to determine the stress distribution in plate type aluminum welded joints, to analyze the reliability of TSA (Thermal Stress Analysis in this kind of investigations, and to obtain numerical values for stress concentration factors for practical use. Stress distribution in aluminum butt and fillet welded joints is determined by using the three different methods: strain gauges measurement, thermal stress analysis and FEM. Obtained results show good agreement - the TSA mutually confirmed the FEM model and stresses measured by strain gauges. According to obtained results, it may be stated that TSA, as a relatively new measurement technique may in the future become a standard tool for the experimental investigation of stress concentration and fatigue in welded joints that can help to develop more accurate numerical tools for fatigue life prediction.

  13. Thermographic Analysis of Stress Distribution in Welded Joints

    Science.gov (United States)

    Piršić, T.; Krstulović Opara, L.; Domazet, Ž.

    2010-06-01

    The fatigue life prediction of welded joints based on S-N curves in conjunction with nominal stresses generally is not reliable. Stress distribution in welded area affected by geometrical inhomogeneity, irregular welded surface and weld toe radius is quite complex, so the local (structural) stress concept is accepted in recent papers. The aim of this paper is to determine the stress distribution in plate type aluminum welded joints, to analyze the reliability of TSA (Thermal Stress Analysis) in this kind of investigations, and to obtain numerical values for stress concentration factors for practical use. Stress distribution in aluminum butt and fillet welded joints is determined by using the three different methods: strain gauges measurement, thermal stress analysis and FEM. Obtained results show good agreement - the TSA mutually confirmed the FEM model and stresses measured by strain gauges. According to obtained results, it may be stated that TSA, as a relatively new measurement technique may in the future become a standard tool for the experimental investigation of stress concentration and fatigue in welded joints that can help to develop more accurate numerical tools for fatigue life prediction.

  14. Core stress distribution of phase shifting multimode polymer optical fiber

    International Nuclear Information System (INIS)

    Furukawa, Rei; Matsuura, Motoharu; Nagata, Morio; Mishima, Kenji; Inoue, Azusa; Tagaya, Akihiro; Koike, Yasuhiro

    2013-01-01

    Poly-(methyl methacrylate-co-benzyl methacrylate) polarization-maintaining optical fibers are known for their high response to normal stress. In this report, responses to higher stress levels up to 0.45 MPa were investigated. The stress amplitude and direction in the fiber cross section were calculated and analyzed with a coincident mode-field obtained from the near-field pattern. The stress amplitude varies significantly in the horizontal direction and is considered to create multiple phases, explaining the measurement results. To investigate possible permanent deformation, the core yield point profile was analyzed. Although it largely exceeds the average applied stress, the calculated stress distribution indicates that the core could partially experience stress that exceeds the yield point

  15. Vertical Distribution of Tidal Flow Reynolds Stress in Shallow Sea

    Institute of Scientific and Technical Information of China (English)

    SONG Zhi-yao; NI Zhi-hui; LU Guo-nian

    2009-01-01

    Based on the results of the tidal flow Reynolds stresses of the field observations,indoor experiments,and numerical models,the parabolic distribution of the tidal flow Reynolds stress is proposed and its coefficients are determined theoretically in this paper.Having been well verified with the field data and experimental data,the proposed distribution of Reynolds stress is also compared with numerical model results,and a good agreement is obtained,showing that this distribution can well reflect the basic features of Reynolds stress deviating from the linear distribution that is downward when the tidal flow is of acceleration,upward when the tidal flow is of deceleration.Its dynamics cause is also discussed preliminarily and the influence of the water depth is pointed out from the definition of Reynolds stress,turbulent generation,transmission,and so on.The established expression for the vertical distribution of the tidal flow Reynolds stress is not only simple and explicit,but can also well reflect the features of the tidal flow acceleration and deceleration for further study on the velocity profile of tidal flow.

  16. Observations of barred spirals

    International Nuclear Information System (INIS)

    Elmegreen, D.M.

    1990-01-01

    Observations of barred spiral galaxies are discussed which show that the presence of a bar increases the likelihood for grand design spiral structure only in early Hubble types. This result is contrary to the more common notion that grand design spiral structure generally accompanies bars in galaxies. Enhanced deprojected color images are shown which reveal that a secondary set of spiral arms commonly occurs in barred galaxies and also occasionally in ovally distorted galaxies. 6 refs

  17. A study of spiral galaxies

    International Nuclear Information System (INIS)

    Wevers, B.M.H.R.

    1984-01-01

    Attempts have been made to look for possible correlations between integral properties of spiral galaxies as a function of morphological type. To investigate this problem, one needs the detailed distribution of both the gaseous and the stellar components for a well-defined sample of spiral galaxies. A sample of about 20 spiral galaxies was therefore defined; these galaxies were observed in the 21 cm neutral hydrogen line with the Westerbork Synthesis Radio Telescope and in three broad-band optical colours with the 48-inch Palomar Smidt Telescope. First, an atlas of the combined radio and optical observations of 16 nearby northern-hemisphere spiral galaxies is presented. Luminosity profiles are discussed and the scale lengths of the exponential disks and extrapolated central surface brightnesses are derived, as well as radial color distributions; azimuthal surface brightness distributions and rotation curves. Possible correlations with optical features are investigated. It is found that 20 to 50 per cent of the total mass is in the disk. (Auth.)

  18. Prediction of residual stress distributions due to surface machining and welding and crack growth simulation under residual stress distribution

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Katsuyama, JInya; Onizawa, Kunio; Hashimoto, Tadafumi; Mikami, Yoshiki; Mochizuki, Masahito

    2011-01-01

    Research highlights: → Residual stress distributions due to welding and machining are evaluated by XRD and FEM. → Residual stress due to machining shows higher tensile stress than welding near the surface. → Crack growth analysis is performed using calculated residual stress. → Crack growth result is affected machining rather than welding. → Machining is an important factor for crack growth. - Abstract: In nuclear power plants, stress corrosion cracking (SCC) has been observed near the weld zone of the core shroud and primary loop recirculation (PLR) pipes made of low-carbon austenitic stainless steel Type 316L. The joining process of pipes usually includes surface machining and welding. Both processes induce residual stresses, and residual stresses are thus important factors in the occurrence and propagation of SCC. In this study, the finite element method (FEM) was used to estimate residual stress distributions generated by butt welding and surface machining. The thermoelastic-plastic analysis was performed for the welding simulation, and the thermo-mechanical coupled analysis based on the Johnson-Cook material model was performed for the surface machining simulation. In addition, a crack growth analysis based on the stress intensity factor (SIF) calculation was performed using the calculated residual stress distributions that are generated by welding and surface machining. The surface machining analysis showed that tensile residual stress due to surface machining only exists approximately 0.2 mm from the machined surface, and the surface residual stress increases with cutting speed. The crack growth analysis showed that the crack depth is affected by both surface machining and welding, and the crack length is more affected by surface machining than by welding.

  19. Measurement of probability distributions for internal stresses in dislocated crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, Angus J.; Tarleton, Edmund; Vilalta-Clemente, Arantxa; Collins, David M. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Jiang, Jun; Britton, T. Benjamin [Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, London SW7 2AZ (United Kingdom)

    2014-11-03

    Here, we analyse residual stress distributions obtained from various crystal systems using high resolution electron backscatter diffraction (EBSD) measurements. Histograms showing stress probability distributions exhibit tails extending to very high stress levels. We demonstrate that these extreme stress values are consistent with the functional form that should be expected for dislocated crystals. Analysis initially developed by Groma and co-workers for X-ray line profile analysis and based on the so-called “restricted second moment of the probability distribution” can be used to estimate the total dislocation density. The generality of the results are illustrated by application to three quite different systems, namely, face centred cubic Cu deformed in uniaxial tension, a body centred cubic steel deformed to larger strain by cold rolling, and hexagonal InAlN layers grown on misfitting sapphire and silicon carbide substrates.

  20. Distribution of Stress in Deformation Zone of Niobium Microalloyed Steel

    Science.gov (United States)

    Jandrlić, Ivan; Rešković, Stoja; Brlić, Tin

    2018-07-01

    Microalloyed steels today represent a significant part of total world production and processing of steel. Although widely used, there are scarce data on the stress distribution in the deformation zone of these steels. Research was carried out on two steel grades, both low-carbon structural steels with the same basic chemical composition, with one of them additionally microalloyed with niobium. Differences in the stress distribution in the deformation zone between two tested steels were continuously observed and measured using the methods of digital image correlation and thermography. It has been found out that niobium microalloyed steel has significantly more complex material flow and stress distribution in the deformation zone when compared to the plain low carbon steel.

  1. Distribution of Stress in Deformation Zone of Niobium Microalloyed Steel

    Science.gov (United States)

    Jandrlić, Ivan; Rešković, Stoja; Brlić, Tin

    2018-03-01

    Microalloyed steels today represent a significant part of total world production and processing of steel. Although widely used, there are scarce data on the stress distribution in the deformation zone of these steels. Research was carried out on two steel grades, both low-carbon structural steels with the same basic chemical composition, with one of them additionally microalloyed with niobium. Differences in the stress distribution in the deformation zone between two tested steels were continuously observed and measured using the methods of digital image correlation and thermography. It has been found out that niobium microalloyed steel has significantly more complex material flow and stress distribution in the deformation zone when compared to the plain low carbon steel.

  2. Residual-stress distributions near stainless steel butt weldments

    International Nuclear Information System (INIS)

    Elligson, W.A.; Shack, W.J.

    1978-01-01

    Concern for the integrity of stainless steel butt-weldments in boiling-water-reactor (BWR) piping systems has stimulated study of the conditions that cause stress corrosion cracking (SCC) in the heat-affected zones (HAZ) of the weldments. It is generally agreed that a high stress exceeding the initial yield strength is one of the essential elements for crack initiation. Since design procedures usually ensure that load stresses are below initial yield, the source of the high stresses necessary to produce SCC is thought to be the residual stresses due to welding. To examine the level of residual stresses in the weldments of interest, bulk residual stresses were measured on 100 mm (4-in.) and 254 mm (10-in.) diameter Schedule 80 piping weldments using strain relief techniques. Both laboratory welded specimens and field welded specimens from reactors in service were studied. Axial bulk residual stress distributions were obtained at 45 0 intervals around the circumference. At each azimuthal position, the residual stresses were measured at seven axial positions: on the weld centerline and 13, 20, and 25 mm on either side of the weld centerline on both the inside and outside surfaces

  3. Lopsided spiral galaxies

    International Nuclear Information System (INIS)

    Jog, Chanda J.; Combes, Francoise

    2009-01-01

    The light distribution in the disks of many galaxies is 'lopsided' with a spatial extent much larger along one half of a galaxy than the other, as seen in M101. Recent observations show that the stellar disk in a typical spiral galaxy is significantly lopsided, indicating asymmetry in the disk mass distribution. The mean amplitude of lopsidedness is 0.1, measured as the Fourier amplitude of the m=1 component normalized to the average value. Thus, lopsidedness is common, and hence it is important to understand its origin and dynamics. This is a new and exciting area in galactic structure and dynamics, in contrast to the topic of bars and two-armed spirals (m=2) which has been extensively studied in the literature. Lopsidedness is ubiquitous and occurs in a variety of settings and tracers. It is seen in both stars and gas, in the outer disk and the central region, in the field and the group galaxies. The lopsided amplitude is higher by a factor of two for galaxies in a group. The lopsidedness has a strong impact on the dynamics of the galaxy, its evolution, the star formation in it, and on the growth of the central black hole and on the nuclear fuelling. We present here an overview of the observations that measure the lopsided distribution, as well as the theoretical progress made so far to understand its origin and properties. The physical mechanisms studied for its origin include tidal encounters, gas accretion and a global gravitational instability. The related open, challenging problems in this emerging area are discussed

  4. Rebuilding Spiral Galaxies

    Science.gov (United States)

    2005-01-01

    of distant galaxies at various redshifts taken by the Hubble Space Telescope. The central panel displays the star formation rate as a function of time. The numbers coincide with the numbers shown on the images. The story revealed by these observations is in agreement with the so-called "hierarchical merging of galaxies" scenario, present in the literature since about 20 years. According to this model, small galaxies merge to build larger ones. As François Hammer however points out: "In the current scenario, it was usually assumed that galaxy merging almost ceased 8,000 million years ago. Our complete set of observations show that this is far from being the case. In the following 4,000 million years, galaxies still merged to form the large spirals we observe in the local Universe." To account for all these properties, the astronomers thus devised a new galaxy formation scenario, comprising three major phases: a merger event, a compact galaxy phase and a "growth of the disc" phase (see PR Photo 02b/05). Because of the unique aspects of this scenario, where big galaxies get first disrupted by a major collision to be born again later as a present-day spiral galaxy, the astronomers rather logically dubbed their evolutionary sequence, the "spiral galaxy rebuilding". Although being at odds with standard views which assert that galaxy mergers produce elliptical galaxies instead of spiral ones, the astronomers stress that their scenario is consistent with the observed fractions of the different types of galaxies and can account for all the observations. The new scenario can indeed account for the formation of about three quarters of the present-day spiral galaxies, those with massive central bulge. It would apply for example to the Andromeda Galaxy but not to our own Milky way. It seems that our Galaxy somehow escaped major collisions in the last thousands of million years. Further observations, in particular with the FLAMES instrument on the VLT, will show if spiral

  5. Imaging shear stress distribution and evaluating the stress concentration factor of the human eye

    Science.gov (United States)

    Joseph Antony, S.

    2015-03-01

    Healthy eyes are vital for a better quality of human life. Historically, for man-made materials, scientists and engineers use stress concentration factors to characterise the effects of structural non-homogeneities on their mechanical strength. However, such information is scarce for the human eye. Here we present the shear stress distribution profiles of a healthy human cornea surface in vivo using photo-stress analysis tomography, which is a non-intrusive and non-X-ray based method. The corneal birefringent retardation measured here is comparable to that of previous studies. Using this, we derive eye stress concentration factors and the directional alignment of major principal stress on the surface of the cornea. Similar to thermometers being used for monitoring the general health in humans, this report provides a foundation to characterise the shear stress carrying capacity of the cornea, and a potential bench mark for validating theoretical modelling of stresses in the human eye in future.

  6. Macro design effects on stress distribution around implants: a photoelastic stress analysis.

    Science.gov (United States)

    Ozkir, Serhat Emre; Terzioglu, Hakan

    2012-01-01

    Biomechanics is one of the main factors for achieving long-term success of implant supported prostheses. Long-term failures mostly depend on biomechanical complications. It is important to distinguish the effects of macro design of the implants. In this study, the photoelastic response of four different types of implants that were inserted with different angulations were comparatively analyzed. The implant types investigated were screw cylinder (ITI, Straumann AG, Basel, Switzerland), stepped cylinder (Frialit2, Friadent GmbH, Manheim, Germany), root form (Camlog Rootline, Alatatec, Wilshelm, Germany), and cylindrical implant, with micro-threads on the implant neck (Astra, AstraTech, Mölndal, Sweden). In the test models, one of the implants was inserted straight, while the other one was aligned mesially with 15° angles. The superstructures were prepared as single crowns. A 150N loading was applied to the restorations throughout the test. A comparison of the implant designs showed that there were no significant differences between the straight implants; however, between the inclined implants, the most favorable stress distribution was seen with the stepped cylinder implants. The least favorable stress concentration was observed around the root formed implants. Microthreads around the implant neck appeared to be effective in a homogenous stress distribution. Observations showed that misaligned implants caused less stress than straight implants, but the stress concentrations were not homogenous. As there were observable differences between the implant types, straight placed cylindrical implants showed better stress distribution characteristics, while inclined tapering implants had better stress distribution characteristics.

  7. Electromechanics of graphene spirals

    Energy Technology Data Exchange (ETDEWEB)

    Korhonen, Topi; Koskinen, Pekka, E-mail: pekka.koskinen@iki.fi [NanoScience Center, Department of Physics, University of Jyväskylä, 40014 Jyväskylä (Finland)

    2014-12-15

    Among the most fascinating nanostructure morphologies are spirals, hybrids of somewhat obscure topology and dimensionality with technologically attractive properties. Here, we investigate mechanical and electromechanical properties of graphene spirals upon elongation by using density-functional tight-binding, continuum elasticity theory, and classical force field molecular dynamics. It turns out that electronic properties are governed by interlayer interactions as opposed to strain effects. The structural behavior is governed by van der Waals interaction: in its absence spirals unfold with equidistant layer spacings, ripple formation at spiral perimeter, and steadily increasing axial force; in its presence, on the contrary, spirals unfold via smooth local peeling, complex geometries, and nearly constant axial force. These electromechanical trends ought to provide useful guidelines not only for additional theoretical investigations but also for forthcoming experiments on graphene spirals.

  8. Pulsatile spiral blood flow through arterial stenosis.

    Science.gov (United States)

    Linge, Fabian; Hye, Md Abdul; Paul, Manosh C

    2014-11-01

    Pulsatile spiral blood flow in a modelled three-dimensional arterial stenosis, with a 75% cross-sectional area reduction, is investigated by using numerical fluid dynamics. Two-equation k-ω model is used for the simulation of the transitional flow with Reynolds numbers 500 and 1000. It is found that the spiral component increases the static pressure in the vessel during the deceleration phase of the flow pulse. In addition, the spiral component reduces the turbulence intensity and wall shear stress found in the post-stenosis region of the vessel in the early stages of the flow pulse. Hence, the findings agree with the results of Stonebridge et al. (2004). In addition, the results of the effects of a spiral component on time-varying flow are presented and discussed along with the relevant pathological issues.

  9. Model for the local spiral structure of the galaxy

    International Nuclear Information System (INIS)

    Humphreys, R.M.

    1976-01-01

    The spatial distribution of the most luminous stars, associations, clusters, and H II regions in the region l = 270 0 to 30 0 reveal a major spiral arm, Sagittarius-Carina, which can be observed to 9 or 10 kpc from the sun in the direction l = 290 0 to 305 0 . Evidence is also presented for a spur at l = 305 0 to 310 0 on the inner side of the Saggitarius-Carina arm. The noncircular motions observed in the Carina and Sagittarius spiral features agree in both magnitude and direction and support the suggestion that Sagittarius-Carina is a major spiral arm. A model is presented for the local spiral structure with wide, massive, spiral arms which show fragmentation in our region of the Galaxy. On the basis of the optical spiral structure, the Milky Way is an Sc type spiral galaxy, perhaps of the M 101 type

  10. The Two Defaults Scenario for Stressing Credit Portfolio Loss Distributions

    Directory of Open Access Journals (Sweden)

    Dirk Tasche

    2015-12-01

    Full Text Available The impact of a stress scenario of default events on the loss distribution of a credit portfolio can be assessed by determining the loss distribution conditional on these events. While it is conceptually easy to estimate loss distributions conditional on default events by means of Monte Carlo simulation, it becomes impractical for two or more simultaneous defaults as then the conditioning event is extremely rare. We provide an analytical approach to the calculation of the conditional loss distribution for the CreditRisk + portfolio model with independent random loss given default distributions. The analytical solution for this case can be used to check the accuracy of an approximation to the conditional loss distribution whereby the unconditional model is run with stressed input probabilities of default (PDs. It turns out that this approximation is unbiased. Numerical examples, however, suggest that the approximation may be seriously inaccurate but that the inaccuracy leads to overestimation of tail losses and, hence, the approach errs on the conservative side.

  11. Stress distribution and topography of Tellus Regio, Venus

    Science.gov (United States)

    Williams, David R.; Greeley, Ronald

    1989-01-01

    The Tellus Regio area of Venus represents a subset of a narrow latitude band where Pioneer Venus Orbiter (PVO) altimetry data, line-of-sight (LOS) gravity data, and Venera 15/16 radar images have all been obtained with good resolution. Tellus Regio also has a wide variety of surface morphologic features, elevations ranging up to 2.5 km, and a relatively low LOS gravity anomaly. This area was therefore chosen in order to examine the theoretical stress distributions resulting from various models of compensation of the observed topography. These surface stress distributions are then compared with the surface morphology revealed in the Venera 15/16 radar images. Conclusions drawn from these comparisons will enable constraints to be put on various tectonic parameters relevant to Tellus Regio. The stress distribution is calculated as a function of the topography, the equipotential anomaly, and the assumed model parameters. The topography data is obtained from the PVO altimetry. The equipotential anomaly is estimated from the PVO LOS gravity data. The PVO LOS gravity represents the spacecraft accelerations due to mass anomalies within the planet. These accelerations are measured at various altitudes and angles to the local vertical and therefore do not lend themselves to a straightforward conversion. A minimum variance estimator of the LOS gravity data is calculated, taking into account the various spacecraft altitudes and LOS angles and using the measured PVO topography as an a priori constraint. This results in an estimated equivalent surface mass distribution, from which the equipotential anomaly is determined.

  12. Stress distribution and topography of Tellus Regio, Venus

    International Nuclear Information System (INIS)

    Williams, D.R.; Greeley, R.

    1989-01-01

    The Tellus Regio area of Venus represents a subset of a narrow latitude band where Pioneer Venus Orbiter (PVO) altimetry data, line-of-sight (LOS) gravity data, and Venera 15/16 radar images have all been obtained with good resolution. Tellus Regio also has a wide variety of surface morphologic features, elevations ranging up to 2.5 km, and a relatively low LOS gravity anomaly. This area was therefore chosen in order to examine the theoretical stress distributions resulting from various models of compensation of the observed topography. These surface stress distributions are then compared with the surface morphology revealed in the Venera 15/16 radar images. Conclusions drawn from these comparisons will enable constraints to be put on various tectonic parameters relevant to Tellus Regio. The stress distribution is calculated as a function of the topography, the equipotential anomaly, and the assumed model parameters. The topography data is obtained from the PVO altimetry. The equipotential anomaly is estimated from the PVO LOS gravity data. The PVO LOS gravity represents the spacecraft accelerations due to mass anomalies within the planet. These accelerations are measured at various altitudes and angles to the local vertical and therefore do not lend themselves to a straightforward conversion. A minimum variance estimator of the LOS gravity data is calculated, taking into account the various spacecraft altitudes and LOS angles and using the measured PVO topography as an a priori constraint. This results in an estimated equivalent surface mass distribution, from which the equipotential anomaly is determined

  13. Stress-strength reliability for general bivariate distributions

    Directory of Open Access Journals (Sweden)

    Alaa H. Abdel-Hamid

    2016-10-01

    Full Text Available An expression for the stress-strength reliability R=P(X1distribution. Such distribution includes bivariate compound Weibull, bivariate compound Gompertz, bivariate compound Pareto, among others. In the parametric case, the maximum likelihood estimates of the parameters and reliability function R are obtained. In the non-parametric case, point and interval estimates of R are developed using Govindarajulu's asymptotic distribution-free method when X1 and X2 are dependent. An example is given when the population distribution is bivariate compound Weibull. Simulation is performed, based on different sample sizes to study the performance of estimates.

  14. Triangular spiral tilings

    International Nuclear Information System (INIS)

    Sushida, Takamichi; Hizume, Akio; Yamagishi, Yoshikazu

    2012-01-01

    The topology of spiral tilings is intimately related to phyllotaxis theory and continued fractions. A quadrilateral spiral tiling is determined by a suitable chosen triple (ζ, m, n), where ζ element of D/R, and m and n are relatively prime integers. We give a simple characterization when (ζ, m, n) produce a triangular spiral tiling. When m and n are fixed, the admissible generators ζ form a curve in the unit disk. The family of triangular spiral tilings with opposed parastichy pairs (m, n) is parameterized by the divergence angle arg (ζ), while triangular spiral tilings with non-opposed parastichy pairs are parameterized by the plastochrone ratio 1/|ζ|. The generators for triangular spiral tilings with opposed parastichy pairs are not dense in the complex parameter space, while those with non-opposed parastichy pairs are dense. The proofs will be given in a general setting of spiral multiple tilings. We present paper-folding (origami) sheets that build spiral towers whose top-down views are triangular tilings. (paper)

  15. Mechanical response of spiral interconnect arrays for highly stretchable electronics

    KAUST Repository

    Qaiser, Nadeem

    2017-11-21

    A spiral interconnect array is a commonly used architecture for stretchable electronics, which accommodates large deformations during stretching. Here, we show the effect of different geometrical morphologies on the deformation behavior of the spiral island network. We use numerical modeling to calculate the stresses and strains in the spiral interconnects under the prescribed displacement of 1000 μm. Our result shows that spiral arm elongation depends on the angular position of that particular spiral in the array. We also introduce the concept of a unit-cell, which fairly replicates the deformation mechanism for full complex hexagon, diamond, and square shaped arrays. The spiral interconnects which are axially connected between displaced and fixed islands attain higher stretchability and thus experience the maximum deformations. We perform tensile testing of 3D printed replica and find that experimental observations corroborate with theoretical study.

  16. Mechanical response of spiral interconnect arrays for highly stretchable electronics

    KAUST Repository

    Qaiser, Nadeem; Khan, S. M.; Nour, Maha A.; Rehman, M. U.; Rojas, J. P.; Hussain, Muhammad Mustafa

    2017-01-01

    A spiral interconnect array is a commonly used architecture for stretchable electronics, which accommodates large deformations during stretching. Here, we show the effect of different geometrical morphologies on the deformation behavior of the spiral island network. We use numerical modeling to calculate the stresses and strains in the spiral interconnects under the prescribed displacement of 1000 μm. Our result shows that spiral arm elongation depends on the angular position of that particular spiral in the array. We also introduce the concept of a unit-cell, which fairly replicates the deformation mechanism for full complex hexagon, diamond, and square shaped arrays. The spiral interconnects which are axially connected between displaced and fixed islands attain higher stretchability and thus experience the maximum deformations. We perform tensile testing of 3D printed replica and find that experimental observations corroborate with theoretical study.

  17. Spiral model of the Galaxy from observations of the interstellar light attenuation

    International Nuclear Information System (INIS)

    Urasin, L.A.

    1987-01-01

    The model of two arms spiral structure of the Galaxy is made from the observations of space distribution of the interstellar dust matter. This model is the logarithmic spiral with characteristic angle (pith) 6.5 deg

  18. Spiral Countercurrent Chromatography

    Science.gov (United States)

    Ito, Yoichiro; Knight, Martha; Finn, Thomas M.

    2013-01-01

    For many years, high-speed countercurrent chromatography conducted in open tubing coils has been widely used for the separation of natural and synthetic compounds. In this method, the retention of the stationary phase is solely provided by the Archimedean screw effect by rotating the coiled column in the centrifugal force field. However, the system fails to retain enough of the stationary phase for polar solvent systems such as the aqueous–aqueous polymer phase systems. To address this problem, the geometry of the coiled channel was modified to a spiral configuration so that the system could utilize the radially acting centrifugal force. This successfully improved the retention of the stationary phase. Two different types of spiral columns were fabricated: the spiral disk assembly, made by stacking multiple plastic disks with single or four interwoven spiral channels connected in series, and the spiral tube assembly, made by inserting the tetrafluoroethylene tubing into a spiral frame (spiral tube support). The capabilities of these column assemblies were successfully demonstrated by separations of peptides and proteins with polar two-phase solvent systems whose stationary phases had not been well retained in the earlier multilayer coil separation column for high-speed countercurrent chromatography. PMID:23833207

  19. Importance of packing in spiral defect chaos

    Indian Academy of Sciences (India)

    We develop two measures to characterize the geometry of patterns exhibited by the state of spiral defect chaos, a weakly turbulent regime of Rayleigh-Bénard convection. These describe the packing of contiguous stripes within the pattern by quantifying their length and nearest-neighbor distributions. The distributions ...

  20. Influence of Hardening Model on Weld Residual Stress Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, Jonathan; Gunnars, Jens (Inspecta Technology AB, Stockholm (Sweden))

    2009-06-15

    This study is the third stage of a project sponsored by the Swedish Radiation Safety Authority (SSM) to improve the weld residual stress modelling procedures currently used in Sweden. The aim of this study was to determine which material hardening model gave the best agreement with experimentally measured weld residual stress distributions. Two girth weld geometries were considered: 19mm and 65mm thick girth welds with Rin/t ratios of 10.5 and 2.8, respectively. The FE solver ABAQUS Standard v6.5 was used for analysis. As a preliminary step some improvements were made to the welding simulation procedure used in part one of the project. First, monotonic stress strain curves and a mixed isotropic/kinematic hardening model were sourced from the literature for 316 stainless steel. Second, more detailed information was obtained regarding the geometry and welding sequence for the Case 1 weld (compared with phase 1 of this project). Following the preliminary step, welding simulations were conducted using isotropic, kinematic and mixed hardening models. The isotropic hardening model gave the best overall agreement with experimental measurements; it is therefore recommended for future use in welding simulations. The mixed hardening model gave good agreement for predictions of the hoop stress but tended to under estimate the magnitude of the axial stress. It must be noted that two different sources of data were used for the isotropic and mixed models in this study and this may have contributed to the discrepancy in predictions. When defining a mixed hardening model it is difficult to delineate the relative contributions of isotropic and kinematic hardening and for the model used it may be that a greater isotropic hardening component should have been specified. The kinematic hardening model consistently underestimated the magnitude of both the axial and hoop stress and is not recommended for use. Two sensitivity studies were also conducted. In the first the effect of using a

  1. Influence of Hardening Model on Weld Residual Stress Distribution

    International Nuclear Information System (INIS)

    Mullins, Jonathan; Gunnars, Jens

    2009-06-01

    This study is the third stage of a project sponsored by the Swedish Radiation Safety Authority (SSM) to improve the weld residual stress modelling procedures currently used in Sweden. The aim of this study was to determine which material hardening model gave the best agreement with experimentally measured weld residual stress distributions. Two girth weld geometries were considered: 19mm and 65mm thick girth welds with Rin/t ratios of 10.5 and 2.8, respectively. The FE solver ABAQUS Standard v6.5 was used for analysis. As a preliminary step some improvements were made to the welding simulation procedure used in part one of the project. First, monotonic stress strain curves and a mixed isotropic/kinematic hardening model were sourced from the literature for 316 stainless steel. Second, more detailed information was obtained regarding the geometry and welding sequence for the Case 1 weld (compared with phase 1 of this project). Following the preliminary step, welding simulations were conducted using isotropic, kinematic and mixed hardening models. The isotropic hardening model gave the best overall agreement with experimental measurements; it is therefore recommended for future use in welding simulations. The mixed hardening model gave good agreement for predictions of the hoop stress but tended to under estimate the magnitude of the axial stress. It must be noted that two different sources of data were used for the isotropic and mixed models in this study and this may have contributed to the discrepancy in predictions. When defining a mixed hardening model it is difficult to delineate the relative contributions of isotropic and kinematic hardening and for the model used it may be that a greater isotropic hardening component should have been specified. The kinematic hardening model consistently underestimated the magnitude of both the axial and hoop stress and is not recommended for use. Two sensitivity studies were also conducted. In the first the effect of using a

  2. Stress distribution characteristics in the vicinity of coal seam floor

    Science.gov (United States)

    Cui, Zimo; Chanda, Emmanuel; Zhao, Jingli; Wang, Zhihe

    2018-01-01

    Although longwall top-coal caving (LTCC) has been a popular, more productive and cost-effective method in recent years, roadway floor heave and rock bursts frequently appear when exploiting such coal seams with large dip angle. This paper proposes addressing this problem by adopting three-dimensional roadway layout of stagger arrangement (3-D RLSA). In this study, the first step was to analyse the stress distribution characteristics in the vicinity of coal seam floor based on the stress slip line field theory. In the second step, numerical calculation using FLAC3D was conducted. Finally, an evaluation of the 3-D RLSA for solving this particular issue was given. Results indicate that for this particular mine the proposed 3-D RLSA results in 24% increase in the coal recovery ratio and a modest reduction in excavation and maintenance costs compared to the conventional LTCC method.

  3. Spiral 2 Week

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The main goal of this meeting is to present and discuss the current status of the Spiral-2 project at GANIL in front of a large community of scientists and engineers. Different issues have been tackled particularly the equipment around Spiral-2 like injectors, cryo-modules or beam diagnostics, a workshop was devoted to other facilities dedicated to radioactive ion beam production. This document gathers only the slides of the presentations.

  4. Stacking the Equiangular Spiral

    OpenAIRE

    Agrawal, A.; Azabi, Y. O.; Rahman, B. M.

    2013-01-01

    We present an algorithm that adapts the mature Stack and Draw (SaD) methodology for fabricating the exotic Equiangular Spiral Photonic Crystal Fiber. (ES-PCF) The principle of Steiner chains and circle packing is exploited to obtain a non-hexagonal design using a stacking procedure based on Hexagonal Close Packing. The optical properties of the proposed structure are promising for SuperContinuum Generation. This approach could make accessible not only the equiangular spiral but also other qua...

  5. Spiral 2 Week

    International Nuclear Information System (INIS)

    2007-01-01

    The main goal of this meeting is to present and discuss the current status of the Spiral-2 project at GANIL in front of a large community of scientists and engineers. Different issues have been tackled particularly the equipment around Spiral-2 like injectors, cryo-modules or beam diagnostics, a workshop was devoted to other facilities dedicated to radioactive ion beam production. This document gathers only the slides of the presentations

  6. High assurance SPIRAL

    Science.gov (United States)

    Franchetti, Franz; Sandryhaila, Aliaksei; Johnson, Jeremy R.

    2014-06-01

    In this paper we introduce High Assurance SPIRAL to solve the last mile problem for the synthesis of high assurance implementations of controllers for vehicular systems that are executed in today's and future embedded and high performance embedded system processors. High Assurance SPIRAL is a scalable methodology to translate a high level specification of a high assurance controller into a highly resource-efficient, platform-adapted, verified control software implementation for a given platform in a language like C or C++. High Assurance SPIRAL proves that the implementation is equivalent to the specification written in the control engineer's domain language. Our approach scales to problems involving floating-point calculations and provides highly optimized synthesized code. It is possible to estimate the available headroom to enable assurance/performance trade-offs under real-time constraints, and enables the synthesis of multiple implementation variants to make attacks harder. At the core of High Assurance SPIRAL is the Hybrid Control Operator Language (HCOL) that leverages advanced mathematical constructs expressing the controller specification to provide high quality translation capabilities. Combined with a verified/certified compiler, High Assurance SPIRAL provides a comprehensive complete solution to the efficient synthesis of verifiable high assurance controllers. We demonstrate High Assurance SPIRALs capability by co-synthesizing proofs and implementations for attack detection and sensor spoofing algorithms and deploy the code as ROS nodes on the Landshark unmanned ground vehicle and on a Synthetic Car in a real-time simulator.

  7. Spiral silicon drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs

  8. A Fundamental Plane of Spiral Structure in Disk Galaxies

    NARCIS (Netherlands)

    Davis, Benjamin L.; Kennefick, Daniel; Kennefick, Julia; Westfall, Kyle B.; Shields, Douglas W.; Flatman, Russell; Hartley, Matthew T.; Berrier, Joel C.; Martinsson, Thomas P. K.; Swaters, Rob A.

    Spiral structure is the most distinctive feature of disk galaxies and yet debate persists about which theory of spiral structure is correct. Many versions of the density wave theory demand that the pitch angle be uniquely determined by the distribution of mass in the bulge and disk of the galaxy. We

  9. Molecular clouds and galactic spiral structure

    International Nuclear Information System (INIS)

    Dame, T.M.

    1984-02-01

    Galactic CO line emission at 115 GHz was surveyed in order to study the distribution of molecular clouds in the inner galaxy. Comparison of this survey with similar H1 data reveals a detailed correlation with the most intense 21 cm features. To each of the classical 21 cm H1 spiral arms of the inner galaxy there corresponds a CO molecular arm which is generally more clearly defined and of higher contrast. A simple model is devised for the galactic distribution of molecular clouds. The modeling results suggest that molecular clouds are essentially transient objects, existing for 15 to 40 million years after their formation in a spiral arm, and are largely confined to spiral features about 300 pc wide

  10. Numerical modeling of regional stress distributions for geothermal exploration

    Science.gov (United States)

    Guillon, Theophile; Peter-Borie, Mariane; Gentier, Sylvie; Blaisonneau, Arnold

    2017-04-01

    Any high-enthalpy unconventional geothermal projectcan be jeopardized by the uncertainty on the presence of the geothermal resource at depth. Indeed, for the majority of such projects the geothermal resource is deeply seated and, with the drilling costs increasing accordingly, must be located as precisely as possible to increase the chance of their economic viability. In order to reduce the "geological risk", i.e., the chance to poorly locate the geothermal resource, a maximum amount of information must be gathered prior to any drilling of exploration and/or operational well. Cross-interpretation from multiple disciplines (e.g., geophysics, hydrology, geomechanics …) should improve locating the geothermal resource and so the position of exploration wells ; this is the objective of the European project IMAGE (grant agreement No. 608553), under which the work presented here was carried out. As far as geomechanics is concerned, in situ stresses can have a great impact on the presence of a geothermal resource since they condition both the regime within the rock mass, and the state of the major fault zones (and hence, the possible flow paths). In this work, we propose a geomechanical model to assess the stress distribution at the regional scale (characteristic length of 100 kilometers). Since they have a substantial impact on the stress distributions and on the possible creation of regional flow paths, the major fault zones are explicitly taken into account. The Distinct Element Method is used, where the medium is modeled as fully deformable blocks representing the rock mass interacting through mechanically active joints depicting the fault zones. The first step of the study is to build the model geometry based on geological and geophysical evidences. Geophysical and structural geology results help positioning the major fault zones in the first place. Then, outcrop observations, structural models and site-specific geological knowledge give information on the fault

  11. Analysis of spiral components in 16 galaxies

    International Nuclear Information System (INIS)

    Considere, S.; Athanassoula, E.

    1988-01-01

    A Fourier analysis of the intensity distributions in the plane of 16 spiral galaxies of morphological types from 1 to 7 is performed. The galaxies processed are NGC 300,598,628,2403,2841,3031,3198,3344,5033,5055,5194,5247,6946,7096,7217, and 7331. The method, mathematically based upon a decomposition of a distribution into a superposition of individual logarithmic spiral components, is first used to determine for each galaxy the position angle PA and the inclination ω of the galaxy plane onto the sky plane. Our results, in good agreement with those issued from different usual methods in the literature, are discussed. The decomposition of the deprojected galaxies into individual spiral components reveals that the two-armed component is everywhere dominant. Our pitch angles are then compared to the previously published ones and their quality is checked by drawing each individual logarithmic spiral on the actual deprojected galaxy images. Finally, the surface intensities for angular periodicities of interest are calculated. A choice of a few of the most important ones is used to elaborate a composite image well representing the main spiral features observed in the deprojected galaxies

  12. Representation of stress distributions inprismatic and cylindrical linear elements

    Directory of Open Access Journals (Sweden)

    Fernando Giménez-Palomares

    2017-08-01

    Full Text Available The  loads  applied  on  a  linear  structural  element  generate  internal  forces  in  the  cross  sections  which,  in turn, result in stresses along the element. The nature, extent and shape of stress distributions are required  parameters  to  compute  the  strength  of  structural  elements  or  machinery  components  in  order  to  its analysis or design. In this work, it is presented a virtual laboratory which allows to obtain different stress distributions  in  an  isostatic  beam,  prismatic  or  cylindrical,  subjected  to  axial  forces,  shear  forces  and bending moments. The virtual laboratory permits a great interactivity, allowing the simulation of various real  situations  in  which  the  user  can  modify  the  magnitude  and  direction  of  acting  loads,  and  also  the boundary conditions of the beam. The ultimate goal of this paper is to present a tool aimed to support the learning and teaching of subjects related to Elasticy and Strength of Materials that are found in bachelor university degrees.

  13. Research on performance of upstream pumping mechanical seal with different deep spiral groove

    International Nuclear Information System (INIS)

    Wang, Q; Chen, H L; Liu, T; Liu, Y H; Liu, Z B; Liu, D H

    2012-01-01

    As one new type of mechanical seal, Upstream Pumping Mechanical Seal has been widely used in fluid machinery. In this paper, structure of spiral groove is innovatively optimized to improve performance of Upstream Pumping Mechanical Seal with Spiral Groove: keeping the dam zone and the weir zone not changed, changing the bottom shape of spiral groove only, substituting different deep spiral groove for equal deep spiral groove. The simulation on Upstream Pumping Mechanical Seal with different deep spiral grooves is done using FVM method. According to calculation, the performances of opening force and pressure distribution on seals face are obtained. Five types of spiral grooves are analyzed, namely equal deep spiral groove, circumferential convergent ladder-like different deep spiral groove, circumferential divergent ladder-like different deep spiral groove, radial convergent ladder-like different deep spiral groove and radial divergent ladder-like different deep spiral groove. This paper works on twenty-five working conditions. The results indicate the performances of circumferential divergent 2-ladder different deep spiral groove are better than the others, with more opening force and better stabilization, while with the same leakage. The outcome provides theoretical support for application of Upstream Pumping Mechanical Seal with circumferential convergent ladder-like different deep spiral groove.

  14. Research on performance of upstream pumping mechanical seal with different deep spiral groove

    Science.gov (United States)

    Wang, Q.; Chen, H. L.; Liu, T.; Liu, Y. H.; Liu, Z. B.; Liu, D. H.

    2012-11-01

    As one new type of mechanical seal, Upstream Pumping Mechanical Seal has been widely used in fluid machinery. In this paper, structure of spiral groove is innovatively optimized to improve performance of Upstream Pumping Mechanical Seal with Spiral Groove: keeping the dam zone and the weir zone not changed, changing the bottom shape of spiral groove only, substituting different deep spiral groove for equal deep spiral groove. The simulation on Upstream Pumping Mechanical Seal with different deep spiral grooves is done using FVM method. According to calculation, the performances of opening force and pressure distribution on seals face are obtained. Five types of spiral grooves are analyzed, namely equal deep spiral groove, circumferential convergent ladder-like different deep spiral groove, circumferential divergent ladder-like different deep spiral groove, radial convergent ladder-like different deep spiral groove and radial divergent ladder-like different deep spiral groove. This paper works on twenty-five working conditions. The results indicate the performances of circumferential divergent 2-ladder different deep spiral groove are better than the others, with more opening force and better stabilization, while with the same leakage. The outcome provides theoretical support for application of Upstream Pumping Mechanical Seal with circumferential convergent ladder-like different deep spiral groove.

  15. Classifying and modelling spiral structures in hydrodynamic simulations of astrophysical discs

    Science.gov (United States)

    Forgan, D. H.; Ramón-Fox, F. G.; Bonnell, I. A.

    2018-05-01

    We demonstrate numerical techniques for automatic identification of individual spiral arms in hydrodynamic simulations of astrophysical discs. Building on our earlier work, which used tensor classification to identify regions that were `spiral-like', we can now obtain fits to spirals for individual arm elements. We show this process can even detect spirals in relatively flocculent spiral patterns, but the resulting fits to logarithmic `grand-design' spirals are less robust. Our methods not only permit the estimation of pitch angles, but also direct measurements of the spiral arm width and pattern speed. In principle, our techniques will allow the tracking of material as it passes through an arm. Our demonstration uses smoothed particle hydrodynamics simulations, but we stress that the method is suitable for any finite-element hydrodynamics system. We anticipate our techniques will be essential to studies of star formation in disc galaxies, and attempts to find the origin of recently observed spiral structure in protostellar discs.

  16. HammerCloud: A Stress Testing System for Distributed Analysis

    International Nuclear Information System (INIS)

    Ster, Daniel C van der; García, Mario Úbeda; Paladin, Massimo; Elmsheuser, Johannes

    2011-01-01

    Distributed analysis of LHC data is an I/O-intensive activity which places large demands on the internal network, storage, and local disks at remote computing facilities. Commissioning and maintaining a site to provide an efficient distributed analysis service is therefore a challenge which can be aided by tools to help evaluate a variety of infrastructure designs and configurations. HammerCloud is one such tool; it is a stress testing service which is used by central operations teams, regional coordinators, and local site admins to (a) submit arbitrary number of analysis jobs to a number of sites, (b) maintain at a steady-state a predefined number of jobs running at the sites under test, (c) produce web-based reports summarizing the efficiency and performance of the sites under test, and (d) present a web-interface for historical test results to both evaluate progress and compare sites. HammerCloud was built around the distributed analysis framework Ganga, exploiting its API for grid job management. HammerCloud has been employed by the ATLAS experiment for continuous testing of many sites worldwide, and also during large scale computing challenges such as STEP'09 and UAT'09, where the scale of the tests exceeded 10,000 concurrently running and 1,000,000 total jobs over multi-day periods. In addition, HammerCloud is being adopted by the CMS experiment; the plugin structure of HammerCloud allows the execution of CMS jobs using their official tool (CRAB).

  17. HammerCloud: A Stress Testing System for Distributed Analysis

    CERN Document Server

    van der Ster, Daniel C; Ubeda Garcia, Mario; Paladin, Massimo

    2011-01-01

    Distributed analysis of LHC data is an I/O-intensive activity which places large demands on the internal network, storage, and local disks at remote computing facilities. Commissioning and maintaining a site to provide an efficient distributed analysis service is therefore a challenge which can be aided by tools to help evaluate a variety of infrastructure designs and configurations. HammerCloud (HC) is one such tool; it is a stress testing service which is used by central operations teams, regional coordinators, and local site admins to (a) submit arbitrary number of analysis jobs to a number of sites, (b) maintain at a steady-state a predefined number of jobs running at the sites under test, (c) produce web-based reports summarizing the efficiency and performance of the sites under test, and (d) present a web-interface for historical test results to both evaluate progress and compare sites. HC was built around the distributed analysis framework Ganga, exploiting its API for grid job management. HC has been ...

  18. Plasma Generator Using Spiral Conductors

    Science.gov (United States)

    Szatkowski, George N. (Inventor); Dudley, Kenneth L. (Inventor); Ticatch, Larry A. (Inventor); Smith, Laura J. (Inventor); Koppen, Sandra V. (Inventor); Nguyen, Truong X. (Inventor); Ely, Jay J. (Inventor)

    2016-01-01

    A plasma generator includes a pair of identical spiraled electrical conductors separated by dielectric material. Both spiraled conductors have inductance and capacitance wherein, in the presence of a time-varying electromagnetic field, the spiraled conductors resonate to generate a harmonic electromagnetic field response. The spiraled conductors lie in parallel planes and partially overlap one another in a direction perpendicular to the parallel planes. The geometric centers of the spiraled conductors define endpoints of a line that is non-perpendicular with respect to the parallel planes. A voltage source coupled across the spiraled conductors applies a voltage sufficient to generate a plasma in at least a portion of the dielectric material.

  19. Barred spiral structure of galaxies

    International Nuclear Information System (INIS)

    Chen, Z.; Weng, s.; Xu, M.

    1982-01-01

    Observational data indicate the grand design of spiral or barred spiral structure in disk galaxies. The problem of spiral structure has been thoroughly investigated by C. C. Lin and his collaborators, but yet the problem of barred spiral structure has not been investigated systematically, although much work has been done, such as in Ref. 3--7. Using the gasdynamic model for galaxies and a method of integral transform presented in Ref. 1, we investigated the barred spiral structure and obtained an analytical solution. It gives the large-scale pattern of barred-spirals, which is in fairly good agreement with observational data

  20. The Influence of Distributed Leadership on Job Stress in Technical and Vocational Education

    OpenAIRE

    Siva Rabindarang; Khuan Wai Bing; Khoo Yin Yin

    2014-01-01

    Distributed leadership proposed in the field of leadership studies for the improvement of organizational effectiveness. Job stress is the work situation that can affect the organizational performance. Thus, these studies carried out to measure the influence of distributed leadership on job stress. Studies on distributed leadership and job stress are scarce especially in technical and vocational education. Therefore, the purpose of this study is to determine the influence of distributed leader...

  1. Space charge effect in the spiral inflector

    International Nuclear Information System (INIS)

    Toprek, Dragan

    2000-01-01

    This paper presents the analytical and numerical theory of the space charge effects in the beam in the spiral inflector. It considers a simplified model of a 'straight' cylindrical beam by using a uniform particle distribution. Numerical results represented in this paper are obtained by using a modified version of the program CASINO

  2. Some optical properties of the spiral inflector

    International Nuclear Information System (INIS)

    Toprek, Dragan; Subotic, Krunoslav

    1999-01-01

    This paper compares some optical properties of different spiral inflectors using the program CASINO. The electric field distribution in the inflectors has been numerically calculated from an electric potential map produced by the program RELAX3D. The magnetic field is assumed to be constant. We have also made an effort to minimize the inflector fringe field using the RELAX3D program. (author)

  3. Primitive Path Analysis and Stress Distribution in Highly Strained Macromolecules.

    Science.gov (United States)

    Hsu, Hsiao-Ping; Kremer, Kurt

    2018-01-16

    Polymer material properties are strongly affected by entanglement effects. For long polymer chains and composite materials, they are expected to be at the origin of many technically important phenomena, such as shear thinning or the Mullins effect, which microscopically can be related to topological constraints between chains. Starting from fully equilibrated highly entangled polymer melts, we investigate the effect of isochoric elongation on the entanglement structure and force distribution of such systems. Theoretically, the related viscoelastic response usually is discussed in terms of the tube model. We relate stress relaxation in the linear and nonlinear viscoelastic regimes to a primitive path analysis (PPA) and show that tension forces both along the original paths and along primitive paths, that is, the backbone of the tube, in the stretching direction correspond to each other. Unlike homogeneous relaxation along the chain contour, the PPA reveals a so far not observed long-lived clustering of topological constraints along the chains in the deformed state.

  4. The stress distribution in shell bodies and wings as an equilibrium problem

    Science.gov (United States)

    Wagner, H

    1937-01-01

    This report treats the stress distribution in shell-shaped airplane components (fuselage, wings) as an equilibrium problem; it includes both cylindrical and non-cylindrical shells. In particular, it treats the stress distribution at the point of stress application and at cut-out points.

  5. Chiral Magnetic Spirals

    International Nuclear Information System (INIS)

    Basar, Goekce; Dunne, Gerald V.; Kharzeev, Dmitri E.

    2010-01-01

    We argue that the presence of a very strong magnetic field in the chirally broken phase induces inhomogeneous expectation values, of a spiral nature along the magnetic field axis, for the currents of charge and chirality, when there is finite baryon density or an imbalance between left and right chiralities. This 'chiral magnetic spiral' is a gapless excitation transporting the currents of (i) charge (at finite chirality), and (ii) chirality (at finite baryon density) along the direction of the magnetic field. In both cases it also induces in the transverse directions oscillating currents of charge and chirality. In heavy ion collisions, the chiral magnetic spiral possibly provides contributions both to the out-of-plane and the in-plane dynamical charge fluctuations recently observed at BNL RHIC.

  6. The Spiral of Euroscepticism

    DEFF Research Database (Denmark)

    Galpin, Charlotte; Trenz, Hans-Jörg

    2017-01-01

    of Euroscepticism’, taking media autonomy seriously to understand how media logics and selective devices contribute to the shaping of public discourse about the EU. We review the literature on the media and EU legitimacy to show how media frames and their amplification on social media can account for the salience......Media scholars have increasingly examined the effects of a negativity bias that applies to political news. In the ‘spiral of cynicism’, journalist preferences for negative news correspond to public demands for sensational news. We argue that this spiral of cynicism in EU news results in a ‘spiral...... of Eurosceptic opinions in the public sphere that then push parties to contest the EU in predominantly negative terms....

  7. Embracing the Spiral

    Directory of Open Access Journals (Sweden)

    Li Mao

    2016-12-01

    Full Text Available Critical research demands that we interrogate our own positionality and social location. Critical reflexivity is a form of researcher critical consciousness that is constant and dynamic in a complex spiral-like process starting within our own experiences as racialized, gendered, and classed beings embedded in particular sociopolitical contexts. Across diverse critical methodologies, a group of graduate students and their supervisor explored their own conceptualization of the reflexivity spiral by reflecting on how their research motivations and methodologies emerged from their racializing, colonizing, language-learning, parenting, and identity negotiating experiences. In this article, they present a spiral model of the critical reflexivity process, review the literature on reflexivity, and conclude with a description of critical reflexivity as a social practice within a supportive and collaborative graduate school experience.

  8. Principles of spiral CT: III. Quality assurance

    International Nuclear Information System (INIS)

    Suess, C.; Kalender, W.A.

    1998-01-01

    Since its introduction in 1989 spiral CT has gained wide clinical acceptance and meanwhile it covers a large range of CT applications. This new technology, however, has not yet been recognized and acknowledged in the national or international regulations on scanner quality assurance (QA) programs. The conventional QA procedures should be extended to check the distribution of resolution and noise within the image plane. Imaging performance in the axial direction constitutes one of the major advantages of spiral scanning. Therefore, the slice sensitivity profiles and the spatial and low-contrast resolution along the z-axis have to be assessed. The high demands on table feed accuracy require additional tests. We suggest phantoms and procedures to check and quantify these parameters. Thereby, we hope to support the ongoing discussion about spiral CT quality assurance. (orig.) [de

  9. The spinning ball spiral

    International Nuclear Information System (INIS)

    Dupeux, Guillaume; Le Goff, Anne; Quere, David; Clanet, Christophe

    2010-01-01

    We discuss the trajectory of a fast revolving solid ball moving in a fluid of comparable density. As the ball slows down owing to drag, its trajectory follows an exponential spiral as long as the rotation speed remains constant: at the characteristic distance L where the ball speed is significantly affected by the drag, the bending of the trajectory increases, surprisingly. Later, the rotation speed decreases, which makes the ball follow a second kind of spiral, also described in the paper. Finally, the use of these highly curved trajectories is shown to be relevant to sports.

  10. Stress Distribution during Rapid Canine Retraction with a Distraction Device: A Finite Element Study

    Directory of Open Access Journals (Sweden)

    Nareen Chakravarthy Challagulla

    2013-01-01

    Conclusion: The periodontium in the maxillary first molar region showed the maximum stress and the canine showed unequal stress distribution with more stress at the crest of the alveolar bone and lesser stress at the apical region which lessens root resorption.

  11. Disruption of ion-trafficking system in the cochlear spiral ligament prior to permanent hearing loss induced by exposure to intense noise: possible involvement of 4-hydroxy-2-nonenal as a mediator of oxidative stress.

    Directory of Open Access Journals (Sweden)

    Taro Yamaguchi

    Full Text Available Noise-induced hearing loss is at least in part due to disruption of endocochlear potential, which is maintained by various K(+ transport apparatuses including Na(+, K(+-ATPase and gap junction-mediated intercellular communication in the lateral wall structures. In this study, we examined the changes in the ion-trafficking-related proteins in the spiral ligament fibrocytes (SLFs following in vivo acoustic overstimulation or in vitro exposure of cultured SLFs to 4-hydroxy-2-nonenal, which is a mediator of oxidative stress. Connexin (Cx26 and Cx30 were ubiquitously expressed throughout the spiral ligament, whereas Na(+, K(+-ATPase α1 was predominantly detected in the stria vascularis and spiral prominence (type 2 SLFs. One-hour exposure of mice to 8 kHz octave band noise at a 110 dB sound pressure level produced an immediate and prolonged decrease in the Cx26 expression level and in Na+, K(+-ATPase activity, as well as a delayed decrease in Cx30 expression in the SLFs. The noise-induced hearing loss and decrease in the Cx26 protein level and Na(+, K(+-ATPase activity were abolished by a systemic treatment with a free radical-scavenging agent, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl, or with a nitric oxide synthase inhibitor, N(ω-nitro-L-arginine methyl ester hydrochloride. In vitro exposure of SLFs in primary culture to 4-hydroxy-2-nonenal produced a decrease in the protein levels of Cx26 and Na(+, K(+-ATPase α1, as well as Na(+, K(+-ATPase activity, and also resulted in dysfunction of the intercellular communication between the SLFs. Taken together, our data suggest that disruption of the ion-trafficking system in the cochlear SLFs is caused by the decrease in Cxs level and Na(+, K(+-ATPase activity, and at least in part involved in permanent hearing loss induced by intense noise. Oxidative stress-mediated products might contribute to the decrease in Cxs content and Na(+, K(+-ATPase activity in the cochlear lateral wall structures.

  12. Tibiofemoral contact stress and stress distribution evaluation of total knee arthroplasties.

    Science.gov (United States)

    Szivek, J A; Cutignola, L; Volz, R G

    1995-08-01

    The Fuji film (Itochu, Los Angeles, CA) area analysis technique demonstrates that a more accurate assessment of tibiofemoral contact stresses is possible when the film is used at 37 degrees C and at the upper end of its sensitivity range (in this case, a 2,000-N load). An AMK with a regular and Hylamer-M insert (DePuy, Warsaw, IN), an MG II (Zimmer, Warsaw, IN), an Omnifit (Osteonics, Allendale, NJ), an Ortholoc III (Dow Corning Wright, Midland, MI), a PCA II (Howmedica, Rutherford, NJ), and a PFC (Johnson & Johnson Orthopaedics, Raynham, MA) had average contact stresses that varied only 12% at 60 degrees flexion. At 0 degrees, 15 degrees and 60 degrees flexion, stresses ranged from 13 to 25 MPa. Contact area distribution ratios, which were smaller at 37 degrees C than at 24 degrees C, provide a quantitative means of grouping implants according to the shape of the tibiofemoral contact area. The Omnifit, MG II, PCA II, and PFC had small ratios (symmetric areas). The AMK and Ortholoc III had large ratios (asymmetric contact areas). If the impression is reflective of wear, it would be expected to be focal in knees with small ratios and contact areas, and uniform in knees with large ratios and contact areas, whereas large ratios and small areas would imply a linear wear pattern. Calibrated electrical resistance contact stress measurements indicated that the Fuji film measurements underestimated the magnitude of contact stresses. They also provided a means of quantifying the rate of area increase during initial loading of the knees, with the highest area increase noted for the knee with the roughest insert (Ortholoc III) and the lowest area increase for the knee with the smoothest insert (PCA II).

  13. Investigation of stress distribution in normal and oblique partial penetration. Welded nozzles by 3-D photoelastic stress freezing method

    International Nuclear Information System (INIS)

    Miyamoto, H.; Kubo, M.; Katori, T.

    1981-01-01

    Experimental investigation by 3-D photoelasticity has been carried out to measure the stress distribution of partial penetration welded nozzles attached to the bottom head of a pressure vessel. A 3-D photoelastic stress freezing method was chosen as the most effective means of observation of the stress distribution in the vicinity of the nozzle/wall weld. The experimental model was a 1:20 scale spherical bottom head. Both an axisymmetric nozzle and an asymmetric nozzle were investigated. Epoxy resin, which is a thermosetting plastic, was used as the model material. The oblique effect was examined by comparing the stress distribution of the asymmetric nozzle with that of the axisymmetric nozzle. Furthermore, the experimental results were compared with the analytical results using 3-D finite element method (FEM). The stress distributions obtained from the frozen fringe pattern of the 3-D photoelastic model were in good agreement with those by 3-D FEM. (orig.)

  14. Are spiral galaxies heavy smokers?

    International Nuclear Information System (INIS)

    Davies, J.; Disney, M.; Phillipps, S

    1990-01-01

    The dustiness of spiral galaxies is discussed. Starburst galaxies and the shortage of truly bright spiral galaxies is cited as evidence that spiral galaxies are far dustier than has been thought. The possibility is considered that the dust may be hiding missing mass

  15. Properties of spiral resonators

    International Nuclear Information System (INIS)

    Haeuser, J.

    1989-10-01

    The present thesis deals with the calculation and the study of the application possibilities of single and double spiral resonators. The main aim was the development and the construction of reliable and effective high-power spiral resonators for the UNILAC of the GSI in Darmstadt and the H - -injector for the storage ring HERA of DESY in Hamburg. After the presentation of the construction and the properties of spiral resonators and their description by oscillating-circuit models the theoretical foundations of the bunching are presented and some examples of a rebuncher and debuncher and their influence on the longitudinal particle dynamics are shown. After the description of the characteristic accelerator quantities by means of an oscillating-circuit model and the theory of an inhomogeneous λ/4 line it is shown, how the resonance frequency and the efficiency of single and double spiral resonators can be calculated from the geometrical quantities of the structure. In the following the dependence of the maximal reachable resonator voltage in dependence on the gap width and the surface of the drift tubes is studied. Furthermore the high-power resonators are presented, which were built for the different applications for the GSI in Darmstadt, DESY in Hamburg, and for the FOM Institute in Amsterdam. (orig./HSI) [de

  16. A FUNDAMENTAL PLANE OF SPIRAL STRUCTURE IN DISK GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Benjamin L.; Kennefick, Daniel; Kennefick, Julia; Shields, Douglas W. [Arkansas Center for Space and Planetary Sciences, University of Arkansas, 346 1/2 North Arkansas Avenue, Fayetteville, AR 72701 (United States); Westfall, Kyle B. [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, NL-9700 AV Groningen (Netherlands); Flatman, Russell [School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332 (United States); Hartley, Matthew T. [Department of Physics, University of Arkansas, 226 Physics Building, 835 West Dickson Street, Fayetteville, AR 72701 (United States); Berrier, Joel C. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States); Martinsson, Thomas P. K. [Leiden Observatory, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Swaters, Rob A., E-mail: bld002@email.uark.edu [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2015-03-20

    Spiral structure is the most distinctive feature of disk galaxies and yet debate persists about which theory of spiral structure is correct. Many versions of the density wave theory demand that the pitch angle be uniquely determined by the distribution of mass in the bulge and disk of the galaxy. We present evidence that the tangent of the pitch angle of logarithmic spiral arms in disk galaxies correlates strongly with the density of neutral atomic hydrogen in the disk and with the central stellar bulge mass of the galaxy. These three quantities, when plotted against each other, form a planar relationship that we argue should be fundamental to our understanding of spiral structure in disk galaxies. We further argue that any successful theory of spiral structure must be able to explain this relationship.

  17. Laser quench hardening of steel: Effects of superimposed elastic pre-stress on the hardness and residual stress distribution

    Science.gov (United States)

    Meserve, Justin

    Cold drawn AISI 4140 beams were LASER surface hardened with a 2 kW CO2 LASER. Specimens were treated in the free state and while restrained in a bending fixture inducing surface tensile stresses of 94 and 230 MPa. Knoop hardness indentation was used to evaluate the through thickness hardness distribution, and a layer removal methodology was used to evaluate the residual stress distribution. Results showed the maximum surface hardness attained was not affected by pre-stress during hardening, and ranged from 513 to 676 kg/mm2. The depth of effective hardening varied at different magnitudes of pre-stress, but did not vary proportionately to the pre-stress. The surface residual stress, coinciding with the maximum compressive residual stress, increased as pre-stress was increased, from 1040 MPa for the nominally treated specimens to 1270 MPa for specimens pre-stressed to 230 MPa. The maximum tensile residual stress observed in the specimens decreased from 1060 MPa in the nominally treated specimens to 760 MPa for specimens pre-stressed to 230 MPa. Similarly, thickness of the compressive residual stress region increased and the depth at which maximum tensile residual stress occurred increased as the pre-stress during treatment was increased Overall, application of tensile elastic pre-stress during LASER hardening is beneficial to the development of compressive residual stress in AISI 4140, with minimal impact to the hardness attained from the treatment. The newly developed approach for LASER hardening may support efforts to increase both the wear and fatigue resistance of parts made from hardenable steels.

  18. STRUCTURED MOLECULAR GAS REVEALS GALACTIC SPIRAL ARMS

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Tsuyoshi [Joint ALMA Office, Alonso de Cordova 3107, Vitacura, Santiago 763-0355 (Chile); Hasegawa, Tetsuo [NAOJ Chile Observatory, Joaquin Montero 3000 Oficina 702, Vitacura, Santiago 763-0409 (Chile); Koda, Jin, E-mail: sawada.tsuyoshi@nao.ac.jp [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2012-11-01

    We explore the development of structures in molecular gas in the Milky Way by applying the analysis of the brightness distribution function and the brightness distribution index (BDI) in the archival data from the Boston University-Five College Radio Astronomy Observatory {sup 13}CO J = 1-0 Galactic Ring Survey. The BDI measures the fractional contribution of spatially confined bright molecular emission over faint emission extended over large areas. This relative quantity is largely independent of the amount of molecular gas and of any conventional, pre-conceived structures, such as cores, clumps, or giant molecular clouds. The structured molecular gas traced by higher BDI is located continuously along the spiral arms in the Milky Way in the longitude-velocity diagram. This clearly indicates that molecular gas changes its structure as it flows through the spiral arms. Although the high-BDI gas generally coincides with H II regions, there is also some high-BDI gas with no/little signature of ongoing star formation. These results support a possible evolutionary sequence in which unstructured, diffuse gas transforms itself into a structured state on encountering the spiral arms, followed by star formation and an eventual return to the unstructured state after the spiral arm passage.

  19. Tracking Target and Spiral Waves

    DEFF Research Database (Denmark)

    Jensen, Flemming G.; Sporring, Jon; Nielsen, Mads

    2002-01-01

    A new algorithm for analyzing the evolution of patterns of spiral and target waves in large aspect ratio chemical systems is introduced. The algorithm does not depend on finding the spiral tip but locates the center of the pattern by a new concept, called the spiral focus, which is defined...... by the evolutes of the actual spiral or target wave. With the use of Gaussian smoothing, a robust method is developed that permits the identification of targets and spirals foci independently of the wave profile. Examples of an analysis of long image sequences from experiments with the Belousov......–Zhabotinsky reaction catalyzed by ruthenium-tris-bipyridyl are presented. Moving target and spiral foci are found, and the speed and direction of movement of single as well as double spiral foci are investigated. For the experiments analyzed in this paper it is found that the movement of a focus correlates with foci...

  20. A novel stress distribution analytical model of O-ring seals under different properties of materials

    International Nuclear Information System (INIS)

    Wu, Di; Wang, Shao Ping; Wang, Xing Jian

    2017-01-01

    The elastomeric O-ring seals have been widely used as sealing elements in hydraulic systems. The sealing performance of O-ring seals is related to stress distribution. The stresses distribution depends on the squeeze rate and internal pressure, and would vary with properties of O-ring seals materials. Thus, in order to study the sealing performance of O-ring seals, it is necessary to describe the analytic relationship between stress distribution and properties of O-ring seals materials. For this purpose, a novel Stress distribution analytical model (SDAM) is proposed in this paper. The analytical model utilizes two stress complex functions to describe the stress distribution of O-ring seals. The proposed SDAM can express not only the analytical relationship between stress distribution and Young’s modulus, but also the one between stress distribution and Poisson’s ratio. Finally, compared results between finite element analysis and the SDAM validate that the proposed model can effectively reveal the stress distribution under different properties for O-ring materials

  1. A novel stress distribution analytical model of O-ring seals under different properties of materials

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Di; Wang, Shao Ping; Wang, Xing Jian [School of Automation Science and Electrical Engineering, Beihang University, Beijing (China)

    2017-01-15

    The elastomeric O-ring seals have been widely used as sealing elements in hydraulic systems. The sealing performance of O-ring seals is related to stress distribution. The stresses distribution depends on the squeeze rate and internal pressure, and would vary with properties of O-ring seals materials. Thus, in order to study the sealing performance of O-ring seals, it is necessary to describe the analytic relationship between stress distribution and properties of O-ring seals materials. For this purpose, a novel Stress distribution analytical model (SDAM) is proposed in this paper. The analytical model utilizes two stress complex functions to describe the stress distribution of O-ring seals. The proposed SDAM can express not only the analytical relationship between stress distribution and Young’s modulus, but also the one between stress distribution and Poisson’s ratio. Finally, compared results between finite element analysis and the SDAM validate that the proposed model can effectively reveal the stress distribution under different properties for O-ring materials.

  2. Forming Spirals From Shadows

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    What causes the large-scale spiral structures found in some protoplanetary disks? Most models assume theyre created by newly-forming planets, but a new study suggests that planets might have nothing to do with it.Perturbations from Planets?In some transition disks protoplanetary disks with gaps in their inner regions weve directly imaged large-scale spiral arms. Many theories currently attribute the formation of these structures to young planets: either the direct perturbations of a planet embedded in the disk cause the spirals, or theyre indirectly caused by the orbit of a planetary body outside of the arms.Another example of spiral arms detected in a protoplanetary disk, MWC 758. [NASA/ESA/ESO/M. Benisty et al.]But what if you could get spirals without any planets? A team of scientists led by Matas Montesinos (University of Chile) have recently published a study in which they examine what happens to a shadowed protoplanetary disk.Casting Shadows with WarpsIn the teams setup, they envision a protoplanetary disk that is warped: the inner region is slightly tilted relative to the outer region. As the central star casts light out over its protoplanetary disk, this disk warping would cause some regions of the disk to be shaded in a way that isnt axially symmetric with potentially interesting implications.Montesinos and collaborators ran 2D hydrodynamics simulations to determine what happens to the motion of particles within the disk when they pass in and out of the shadowed regions. Since the shadowed regions are significantly colder than the illuminated disk, the pressure in these regions is much lower. Particles are therefore accelerated and decelerated as they pass through these regions, and the lack of axial symmetry causes spiral density waves to form in the disk as a result.Initial profile for the stellar heating rate per unit area for one of the authors simulations. The regions shadowed as a result of the disk warp subtend 0.5 radians each (shown on the left

  3. Theory of spiral structure

    International Nuclear Information System (INIS)

    Lin, C.C.

    1977-01-01

    The density wave theory of galactic spirals has now developed into a form suitable for consideration by experts in Applied Mechanics. On the one hand, comparison of theoretical deductions with observational data has convinced astrophysicists of the validity of the basic physical picture and the calculated results. On the other hand, the dynamical problems of a stellar system, such as those concerning the origin of spiral structure in galaxies, have not been completely solved. This paper reviews the current status of such developments, including a brief summary of comparison with observations. A particularly important mechanism, currently called the mechanism of energy exchange, is described in some detail. The mathematical problems and the physical processes involved are similar to those occurring in certain instability mechanisms in the 'magnetic bottle' designed for plasma containment. Speculations are given on the future developments of the theory and on observational programs. (Auth.)

  4. Spiral 2 workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The accelerator and experimental facilities at GANIL will be transformed over the next 5-10 years. The centerpiece of the additions to the accelerator complex will be Spiral-2. This is the first phase of a new radioactive beam facility based on the ISOL principle. The main aim of Spiral-2 will be to produce intense, high quality beams of neutron-rich nuclei created in neutron-induced fission of heavy elements and accelerated by the existing CIME cyclotron. The principal aims of this workshop will be a) to publicize the new facilities, b) to discuss and define the science which might be carried out with them, c) to discuss the instrumentation and infrastructure required to exploit the new facilities and d) to help form collaborations of scientists wishing to design and construct the equipment needed to undertake the science programme. This document gathers most of the slides presented in the workshop.

  5. Spiral nonimaging optical designs

    Science.gov (United States)

    Zamora, Pablo; Benítez, Pablo; Miñano, Juan C.; Vilaplana, Juan

    2011-10-01

    Manufacturing technologies as injection molding or embossing specify their production limits for minimum radii of the vertices or draft angle for demolding, for instance. In some demanding nonimaging applications, these restrictions may limit the system optical efficiency or affect the generation of undesired artifacts on the illumination pattern. A novel manufacturing concept is presented here, in which the optical surfaces are not obtained from the usual revolution symmetry with respect to a central axis (z axis), but they are calculated as free-form surfaces describing a spiral trajectory around z axis. The main advantage of this new concept lies in the manufacturing process: a molded piece can be easily separated from its mold just by applying a combination of rotational movement around axis z and linear movement along axis z, even for negative draft angles. Some of these spiral symmetry examples will be shown here, as well as their simulated results.

  6. Spiral 2 workshop

    International Nuclear Information System (INIS)

    2004-01-01

    The accelerator and experimental facilities at GANIL will be transformed over the next 5-10 years. The centerpiece of the additions to the accelerator complex will be Spiral-2. This is the first phase of a new radioactive beam facility based on the ISOL principle. The main aim of Spiral-2 will be to produce intense, high quality beams of neutron-rich nuclei created in neutron-induced fission of heavy elements and accelerated by the existing CIME cyclotron. The principal aims of this workshop will be a) to publicize the new facilities, b) to discuss and define the science which might be carried out with them, c) to discuss the instrumentation and infrastructure required to exploit the new facilities and d) to help form collaborations of scientists wishing to design and construct the equipment needed to undertake the science programme. This document gathers most of the slides presented in the workshop

  7. Visualizing Stress and Temperature Distribution During Elevated Temperature Deformation of IN-617 Using Nanomechanical Raman Spectroscopy

    Science.gov (United States)

    Zhang, Yang; Wang, Hao; Tomar, Vikas

    2018-04-01

    This work presents direct measurements of stress and temperature distribution during the mesoscale microstructural deformation of Inconel-617 (IN-617) during 3-point bending tests as a function of temperature. A novel nanomechanical Raman spectroscopy (NMRS)-based measurement platform was designed for simultaneous in situ temperature and stress mapping as a function of microstructure during deformation. The temperature distribution was found to be directly correlated to stress distribution for the analyzed microstructures. Stress concentration locations are shown to be directly related to higher heat conduction and result in microstructural hot spots with significant local temperature variation.

  8. Residual Stress Distribution In Heat Affected Zone Of Welded Steel By Means Of Neutron Diffraction Method

    International Nuclear Information System (INIS)

    Fajar, Andika; Prasuad; Gunawan; Muslich, M. Rifai

    1996-01-01

    Three dimensional residual stress distribution in the heat affected zone of 10 mm thick welded steel by means of neutron diffraction technique has been measured. The results showed that the residual stress was distributed near the welded metal, namely within about 46,25 mm. The major tensile stresses occurred in the X-direction, and they attained a level greater than 2000 MPa through the position far away fram the weld. The tensile stresses in the Y and Z- directions lied between 500 and 1500 MPa, The results also suggest that the stress in the surface was greater than that in the middle of the sample

  9. Bed shear stress distribution in straight channels with arbitrary cross section

    DEFF Research Database (Denmark)

    Christensen, Henrik Bo; Fredsøe, Jørgen

    1998-01-01

    The bed shear stress distribution in straight open channels is affected by mechanisms as bed curvature of the cross section profile, shear diffusion, and secondary currents. This paper compares some analytical and numerical methods to estimate the bed shear stress distribution. The methods...

  10. Measurement of stress distributions in truck tyre contact patch in real rolling conditions

    Science.gov (United States)

    Anghelache, Gabriel; Moisescu, Raluca

    2012-12-01

    Stress distributions on three orthogonal directions have been measured across the contact patch of truck tyres using the complex measuring system that contains a transducer assembly with 30 sensing elements placed in the road surface. The measurements have been performed in straight line, in real rolling conditions. Software applications for calibration, data acquisition, and data processing were developed. The influence of changes in inflation pressure and rolling speed on the shapes and sizes of truck tyre contact patch has been shown. The shapes and magnitudes of normal, longitudinal, and lateral stress distributions, measured at low speed, have been presented and commented. The effect of wheel toe-in and camber on the stress distribution results was observed. The paper highlights the impact of the longitudinal tread ribs on the shear stress distributions. The ratios of stress distributions in the truck tyre contact patch have been computed and discussed.

  11. Investigation of Spiral and Sweeping Holes

    Science.gov (United States)

    Thurman, Douglas; Poinsatte, Philip; Ameri, Ali; Culley, Dennis; Raghu, Surya; Shyam, Vikram

    2015-01-01

    Surface infrared thermography, hotwire anemometry, and thermocouple surveys were performed on two new film cooling hole geometries: spiral/rifled holes and fluidic sweeping holes. The spiral holes attempt to induce large-scale vorticity to the film cooling jet as it exits the hole to prevent the formation of the kidney shaped vortices commonly associated with film cooling jets. The fluidic sweeping hole uses a passive in-hole geometry to induce jet sweeping at frequencies that scale with blowing ratios. The spiral hole performance is compared to that of round holes with and without compound angles. The fluidic hole is of the diffusion class of holes and is therefore compared to a 777 hole and Square holes. A patent-pending spiral hole design showed the highest potential of the non-diffusion type hole configurations. Velocity contours and flow temperature were acquired at discreet cross-sections of the downstream flow field. The passive fluidic sweeping hole shows the most uniform cooling distribution but suffers from low span-averaged effectiveness levels due to enhanced mixing. The data was taken at a Reynolds number of 11,000 based on hole diameter and freestream velocity. Infrared thermography was taken for blowing rations of 1.0, 1.5, 2.0, and 2.5 at a density ration of 1.05. The flow inside the fluidic sweeping hole was studied using 3D unsteady RANS.

  12. A numerical study on stress distribution across the ankle joint: Effects of material distribution of bone, muscle force and ligaments.

    Science.gov (United States)

    Mondal, Subrata; Ghosh, Rajesh

    2017-09-01

    The goal of this study is to develop a realistic three dimensional FE model of intact ankle joint. Three dimensional FE model of the intact ankle joint was developed using computed tomography data sets. The effect of muscle force, ligaments and proper material property distribution of bone on stress distribution across the intact ankle joint was studied separately. Present study indicates bone material property, ligaments and muscle force have influence on stress distribution across the ankle joint. Proper bone material, ligaments and muscle must be considered in the computational model for pre-clinical analysis of ankle prosthesis.

  13. Stress distribution in quasi-crystalline granular piles

    NARCIS (Netherlands)

    Trigger, S.A.; Heijst, van G.J.F.; Krasnopolskaya, T.S.; Schram, P.P.J.M.

    2001-01-01

    The main goal of this paper is a rigorous consideration of the stress problem in some simple models of granular piles. Discrete models are considered and the transition to the continuous description is accomplished in order to find the coarse-grained average stress. Some phenomenological rules are

  14. Investigation of spiral blood flow in a model of arterial stenosis.

    Science.gov (United States)

    Paul, Manosh C; Larman, Arkaitz

    2009-11-01

    The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system [Stonebridge PA, Brophy CM. Spiral laminar flow in arteries? Lancet 1991; 338: 1360-1]. We investigate the effects of the spiral blood flow in a model of three-dimensional arterial stenosis with a 75% cross-sectional area reduction at the centre by means of computational fluid dynamics (CFD) techniques. The standard k-omega model is employed for simulation of the blood flow for the Reynolds number of 500 and 1000. We find that for Re=500 the spiral component of the blood flow increases both the total pressure and velocity of the blood, and some significant differences are found between the wall shear stresses of the spiral and non-spiral induced flow downstream of the stenosis. The turbulent kinetic energy is reduced by the spiral flow as it induces the rotational stabilities in the forward flow. For Re=1000 the tangential component of the blood velocity is most influenced by the spiral speed, but the effect of the spiral flow on the centreline turbulent kinetic energy and shear stress is mild. The results of the effects of the spiral flow are discussed in the paper along with the relevant pathological issues.

  15. A study of stress distribution in elbows mounted on stanchions

    International Nuclear Information System (INIS)

    Basavanhally, N.R.; Tonet, N.

    1983-01-01

    It is a common practice, both in the nuclear and power piping industry, to have integral attachments on piping to either form a restraint or an anchor. For small attachments, such as lugs, one can use the readily available methods (eg., ASME Code Case N-318) to evaluate the local stresses at these attachments. For elbows or curved pipes mounted on stanchions, the evaluation of local stresses is more complex. In the present analysis, a 3D finite element model was implemented to determine the stress intensification factor that can be applied to piping stress under internal pressure and in-plane bending type of loads. The analysis indicates that, for an internal pressure load, in-plane bending is generated. For such supports, a stress intensification factor should be used to account for the increased loads. The results also indicate that there is an optimum elbow to stanchion post radius ratio which should be used in designing such supports. (orig.)

  16. X-ray study of residual stress distribution of ground ceramics

    International Nuclear Information System (INIS)

    Sakaida, Yoshihisa; Tanaka, Keisuke; Ikuhara, Yuichi; Suzuki, Kenzi.

    1997-01-01

    The residual stress distribution of ground ceramics was determined from the eigen strain existing in the ground surface. The eigen strain of ground ceramics was tensile, and exponentially decreased with the distance from the surface. The residual stress distribution is given as a superposition of an exponential function of compression and a linear function. It is found that the actual residual stress distribution can be approximated by a compressive exponential function because the magnitude of tensile residual stress is negligibly small compared to the compressive residual stress. In the experiments, the diffraction angle was measured on ground silicon nitride for a wide range of sin 2 ψ using the glancing incidence X-ray diffraction technique. A strong nonlinearity was found in the 2θ-sin 2 ψ diagram at very high ψ-angles. From the analysis of nonlinearity, the residual stress distribution was determined. The residual stress distribution of silicon nitride coincided with the distribution calculated from the eigen strain distribution. Transmission electron microscopy was used to clarify the origin of generation of the residual stress. Both strain contrasts and microcracks were observed below the ground surface ; straight dislocations were also observed within silicon nitride grains near the ground surface. (author)

  17. Internal stress distribution for generating closure domains in laser-irradiated Fe–3%Si(110) steels

    International Nuclear Information System (INIS)

    Iwata, Keiji; Imafuku, Muneyuki; Orihara, Hideto; Sakai, Yusuke; Ohya, Shin-Ichi; Suzuki, Tamaki; Shobu, Takahisa; Akita, Koichi; Ishiyama, Kazushi

    2015-01-01

    Internal stress distribution for generating closure domains occurring in laser-irradiated Fe–3%Si(110) steels was investigated using high-energy X-ray analysis and domain theory based on the variational principle. The measured triaxial stresses inside the specimen were compressive and the stress in the rolling direction became more dominant than stresses in the other directions. The calculations based on the variational principle of magnetic energy for closure domains showed that the measured triaxial stresses made the closure domains more stable than the basic domain without closure domains. The experimental and calculation results reveal that the laser-introduced internal stresses result in the occurrence of the closure domains

  18. Band-notched spiral antenna

    Science.gov (United States)

    Jeon, Jae; Chang, John

    2018-03-13

    A band-notched spiral antenna having one or more spiral arms extending from a radially inner end to a radially outer end for transmitting or receiving electromagnetic radiation over a frequency range, and one or more resonance structures positioned adjacent one or more segments of the spiral arm associated with a notch frequency band or bands of the frequency range so as to resonate and suppress the transmission or reception of electromagnetic radiation over said notch frequency band or bands.

  19. Nature of galaxy spiral arms

    International Nuclear Information System (INIS)

    Efremov, Yu.N.

    1984-01-01

    The nature of galaxy spiral arms is discussed in a popular form. Two approaches in the theory of spiral arms are considered; they are related to the problem of differential galaxy rotation and the spiral structure wave theory. The example of Galaxy M31 is considered to compare the structural peculiarity of its spiral arms with the wave theory predictions. The situation in the central and south-eastern part of arm S4 in Galaxy M31 noted to be completely explained by the wave theory and modern concepts on the origin of massive stars

  20. Measuring nutrient spiralling in streams

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J D; Elwood, J W; O' Neill, R V; Van Winkle, W

    1981-01-01

    Nutrient cycling in streams involves some downstream transport before the cycle is completed. Thus, the path traveled by a nutrient atom in passing through the cycle can be visualized as a spiral. As an index of the spiralling process, we introduce spiralling length, defined as the average distance associated with one complete cycle of a nutrient atom. This index provides a measure of the utilization of nutrients relative to the available supply from upstream. Using /sup 32/p as a tracer, we estimated a spiralling length of 193 m for phosphorus in a small woodland stream.

  1. Three phase spiral liver Scanning

    International Nuclear Information System (INIS)

    Kanyanja, T.A.

    2006-01-01

    The ability to perform rapid back-to-back spiral acquisitions is an important recent technical advantage of spiral CT. this allows imaging of the upper abdomen (liver) during peak arterial enhancement (arterial phase) and during peak hepatic parenchymal enhancement (portal venous phase). Breatheld spiral CT has completely replaced dynamic incremental CT for evaluation of the liver. in selected patients with hyper vascular metastasis (hepatoma, neuroendocrine tumors, renal cell carcinoma, etc.) a biphasic examination is performed with one spiral acquisition obtained during the hepatic arterial phase and a second acquisition during the portal venous phase

  2. Analytical model and application of stress distribution on mining coal floor

    Institute of Scientific and Technical Information of China (English)

    ZHU Shu-yun; JIAN Zhen-quan; HOU Hong-liang; XIAO Wei-guo; YAO Pu

    2008-01-01

    Given the analysis of underground pressure, a stress calculation model of coal floor stress has been established based on a theory of elasticity. The model presents the law of stress distribution on the relatively fixed position of the mining coal floor: the extent of stress variation in a fixed floor position decreases gradually along with depth, the decreasing rate of the vertical stress is clearly larger than that of the horizontal stress at a specific depth. The direction of the maximum principal stress changes gradually from a vertical direction to a horizontal direction with the advance of the working face. The deformation and permeability of the rock mass of the coal floor are obtained by contrasting the difference of the principal stress established from theoretical calculations with curves of stress-strain and permeability-strain from tests, which is an important mechanical basis for preventing water inrush from confined aquifers.

  3. Molecular clouds and galactic spiral structure

    International Nuclear Information System (INIS)

    Dame, T.M.

    1983-01-01

    Galactic CO line emission at 115 GHz has been surveyed in the region 12 0 less than or equal to l less than or equal to 60 0 and -1 0 less than or equal to b less than or equal to 1 0 in order to study the distribution of molecular clouds in the inner galaxy; an inner strip 0 0 .5 wide has been sampled every beamwidth (0 0 .125), the rest every two beamwidths. Comparison of the survey with similar HI data reveals a detailed correlation with the most intense 21-cm features, implying that the CO and HI trace the same galactic features and have the same large-scale kinematics. To each of the classical 21-cm (HI) spiral arms of the inner galaxy there corresponds a CO molecular arm which is generally more clearly defined and of higher contrast. A simple model is developed in which all of the CO emission from the inner galaxy arises from spiral arms. The modeling results suggest that molecular clouds are essentially transient objects, existing for 15 to 40 million years after their formation in a spiral arm, and are largely confined to spiral features about 300 pc wide. A variety of methods are employed to estimate distances and masses for the largest clouds detected by the inner-galaxy survey and a catalogue is compiled. The catalogued clouds, the largest of which have masses of several 10 6 M/sub sunmass/ and linear dimensions in excess of 100 pc, are found to be excellent spiral-arm tracers. One of the nearest of the clouds, that associated with the supernova remnant W44, is fully mapped in both CO and 13 CO and is discussed in detail

  4. Finite element analysis of thermal stress distribution in different ...

    African Journals Online (AJOL)

    Nigerian Journal of Clinical Practice • Jan-Feb 2016 • Vol 19 • Issue 1. Abstract ... Key words: Amalgam, finite element method, glass ionomer cement, resin composite, thermal stress ... applications for force analysis and assessment of different.

  5. The subtropical nutrient spiral

    Science.gov (United States)

    Jenkins, William J.; Doney, Scott C.

    2003-12-01

    We present an extended series of observations and more comprehensive analysis of a tracer-based measure of new production in the Sargasso Sea near Bermuda using the 3He flux gauge technique. The estimated annually averaged nitrate flux of 0.84 ± 0.26 mol m-2 yr-1 constitutes only that nitrate physically transported to the euphotic zone, not nitrogen from biological sources (e.g., nitrogen fixation or zooplankton migration). We show that the flux estimate is quantitatively consistent with other observations, including decade timescale evolution of the 3H + 3He inventory in the main thermocline and export production estimates. However, we argue that the flux cannot be supplied in the long term by local diapycnal or isopycnal processes. These considerations lead us to propose a three-dimensional pathway whereby nutrients remineralized within the main thermocline are returned to the seasonally accessible layers within the subtropical gyre. We describe this mechanism, which we call "the nutrient spiral," as a sequence of steps where (1) nutrient-rich thermocline waters are entrained into the Gulf Stream, (2) enhanced diapycnal mixing moves nutrients upward onto lighter densities, (3) detrainment and enhanced isopycnal mixing injects these waters into the seasonally accessible layer of the gyre recirculation region, and (4) the nutrients become available to biota via eddy heaving and wintertime convection. The spiral is closed when nutrients are utilized, exported, and then remineralized within the thermocline. We present evidence regarding the characteristics of the spiral and discuss some implications of its operation within the biogeochemical cycle of the subtropical ocean.

  6. Spiral branches and star formation

    International Nuclear Information System (INIS)

    Zasov, A.V.

    1974-01-01

    Origin of spiral branches of galaxies and formation of stars in them are considered from the point of view of the theory of the gravitational gas condensation, one of comparatively young theories. Arguments are presented in favour of the stellar condensation theory. The concept of the star formation of gas is no longer a speculative hypothesis. This is a theory which assumes quantitative verification and explains qualitatively many facts observed. And still our knowledge on the nature of spiral branches is very poor. It still remains vague what processes give origin to spiral branches, why some galaxies have spirals and others have none. And shapes of spiral branches are diverse. Some cases are known when spiral branches spread outside boundaries of galaxies themselves. Such spirals arise exclusively in the region where there are two or some interacting galaxies. Only first steps have been made in the explanation of the galaxy spiral branches, and it is necessary to carry out new observations and new theoretical calculations

  7. Global extinction in spiral galaxies

    NARCIS (Netherlands)

    Tully, RB; Pierce, MJ; Saunders, W; Verheijen, MAW; Witchalls, PL

    Magnitude-limited samples of spiral galaxies drawn from the Ursa Major and Pisces Clusters are used to determine their extinction properties as a function of inclination. Imaging photometry is available for 87 spirals in the B, R, I, and K' bands. Extinction causes systematic scatter in

  8. A model of the formation of spiral galaxies

    International Nuclear Information System (INIS)

    Brown, W.K.; Gritzo, L.A.

    1980-01-01

    It has been verified that the analytical results in a previous article for elliptical galaxies may also be used to describe spiral galaxies. Exploration of the model for small values of the principal parameter THETA yields surface mass density distributions as functions of radius which, while always displaying the exponential disk, describe both of the subcategories of spiral galaxies. Within the constraints of the model, the two main questions concerning spirals posed some years ago by Freeman appear to be successfully addressed. An intrinsic model mechanism has been identified that could account for the extended state of elliptical galaxies, as opposed to the flat disks of spirals. In general, the model correctly describes the relative sizes of the various types of galaxies. (orig.)

  9. Residual stress distribution in carbon steel pipe welded joint measured by neutron diffraction

    International Nuclear Information System (INIS)

    Hayashi, Makoto; Ishiwata, Masayuki; Morii, Yukio; Minakawa, Nobuaki

    2000-01-01

    In order to estimate crack growth behavior of fatigue and stress corrosion cracking in pipes, the residual stress distribution near the pipe weld region has to be measured through the wall thickness. Since the penetration depth of neutron is deep enough to pass through the thick pipe wall, the neutron diffraction technique for the residual stress measurement is effective for this purpose. At the first step the residual stress distribution near the weld region in a butt-welded carbon steel pipe was measured by the neutron diffraction. Significant stresses extended only to a distance of 30 mm from the center of the weld. The major tensile stresses occurred in the hoop direction in the fusion and heat affected zones of the weldment, and they attained a level greater than 200 MPa through the thickness. While the axial residual stress at the inside surface was 50 MPa, the stress at the outside surface was -100 MPa. The comparison of residual stress distributions measured by the neutron diffraction, the X-ray diffraction and the strain gauge method reveals that the neutron diffraction is the most effective for measuring the residual stress inside the structural components. (author)

  10. The mechanical properties of the non-sticky spiral in Nephila orb webs (Araneae, Nephilidae).

    Science.gov (United States)

    Hesselberg, Thomas; Vollrath, Fritz

    2012-10-01

    Detailed information on web geometry and the material properties of the various silks used enables the function of the web's different structures to be elucidated. In this study we investigated the non-sticky spiral in Nephila edulis webs, which in this species is not removed during web building. This permanent non-sticky spiral shows several modifications compared with others, e.g. temporary non-sticky spirals - it is zigzag shaped and wrapped around the radial thread at the elongated junctions. The material properties of the silk used in the non-sticky spiral and other scaffolding structures (i.e. radii, frame and anchor threads) were comparable. However, the fibre diameters differed, with the non-sticky spiral threads being significantly smaller. We used the measured data in a finite element (FE) model of the non-sticky spiral in a segment of the web. The FE analysis suggested that the observed zigzag index resulted from the application of very high pre-stresses to the outer turns of the non-sticky spiral. However, final pre-stress levels in the non-sticky spiral after reorganisation were down to 300 MPa or 1.5-2 times the stress in the radii, which is probably closer to the stress applied by the spider during web building.

  11. The perfect shape spiral stories

    CERN Document Server

    Hammer, Øyvind

    2016-01-01

    This book uses the spiral shape as a key to a multitude of strange and seemingly disparate stories about art, nature, science, mathematics, and the human endeavour. In a way, the book is itself organized as a spiral, with almost disconnected chapters circling around and closing in on the common theme. A particular strength of the book is its extremely cross-disciplinary nature - everything is fun, and everything is connected! At the same time, the author puts great emphasis on mathematical and scientific correctness, in contrast, perhaps, with some earlier books on spirals. Subjects include the mathematical properties of spirals, sea shells, sun flowers, Greek architecture, air ships, the history of mathematics, spiral galaxies, the anatomy of the human hand, the art of prehistoric Europe, Alfred Hitchcock, and spider webs, to name a few.

  12. Angular momentum redistribution by spiral waves in computer models of disc galaxies

    International Nuclear Information System (INIS)

    Sellwood, J.A.; James, R.A.

    1979-01-01

    It is shown that the spiral patterns which develop spontaneously in computer models of galaxies are generated through angular momentum transfer. By adjusting the distribution of mass in the rigid halo components of the models it is possible to alter radically the rotation curve of the disc component. Either trailing or leading spiral arms develop in the models, dependent only on the sense of the differential shear; no spirals are seen in models where the disc rotates uniformly. It is found that the distribution of angular momentum in the disc is altered by the spiral evolution. Although some spiral structure can be seen for a long period, the life of each pattern is very short. It is shown that resonances are of major importance even for these transient patterns. All spiral wave patterns which have been seen possess both an inner Lindblad resonance and a co-rotation resonance. (author)

  13. Rarefied, rotational gas flows in spiral galaxies

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Hausman, M.A.

    1983-01-01

    We develop a computational model of a rotating, rarefied gas in which the individual molecules collide inelastically and are subject to circularly asymmetric external forces and internal heating sources. This model is applied to the interstellar medium (ISM) of spiral galaxies, in which most of the matter is confined to discrete gas clouds separated by a tenuous intercloud medium. We identify inelastically-colliding gas molecules with interstellar clouds which orbit ballistically in the galactic gravitational field and are perturbed by expanding shells surrounding supernovae. When a small, spiral perturbation is added to the gravitational force to mimic a spiral galaxy, the cloud distribution responds with a strong, global shock. In the model, stars are formed from the gas when clouds collide or are perturbed by supernovae; these stars are the internal heating sources for the gas cloud system. We determine the morphologies (evolution, distribution) of the two components, gas and stars, in the model as functions of varying input physics. Variation of the cloud system's collisional mean free path (over physically-realistic ranges) has remarkably little influence on the computed shock structure

  14. Estimation of residual stress distribution for pressurizer nozzle of Kori nuclear power plant considering safe end

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae Kwang; Bae, Hong Yeol; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae [Korea University, Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-08-15

    In nuclear power plants, ferritic low alloy steel nozzle was connected with austenitic stainless steel piping system through alloy 82/182 butt weld. Accurate estimation of residual stress for weldment is important in the sense that alloy 82/182 is susceptible to stress corrosion cracking. There are many results which predict residual stress distribution for alloy 82/182 weld between nozzle and pipe. However, nozzle and piping system usually connected through safe end which has short length. In this paper, residual stress distribution for pressurizer nozzle of Kori nuclear power plant was predicted using FE analysis, which considered safe end. As a result, existing residual stress profile was redistributed and residual stress of inner surface was decreased specially. It means that safe end should be considered to reduce conservatism when estimating the piping system.

  15. Variation behavior of residual stress distribution by manufacturing processes in welded pipes of austenitic stainless steel

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Hashimoto, Tadafumi; Mochizuki, Masahito

    2012-01-01

    Stress corrosion cracking (SCC) has been observed near heat affected zone (HAZ) of primary loop recirculation pipes made of low-carbon austenitic stainless steel type 316L in the nuclear power plants. For the non-sensitization material, residual stress is the important factor of SCC, and it is generated by machining and welding. In the actual plants, welding is conducted after machining as manufacturing processes of welded pipes. It could be considered that residual stress generated by machining is varied by welding as a posterior process. This paper presents residual stress variation due to manufacturing processes of pipes using X-ray diffraction method. Residual stress distribution due to welding after machining had a local maximum stress in HAZ. Moreover, this value was higher than residual stress generated by welding or machining. Vickers hardness also had a local maximum hardness in HAZ. In order to clarify hardness variation, crystal orientation analysis with EBSD method was performed. Recovery and recrystallization were occurred by welding heat near the weld metal. These lead hardness decrease. The local maximum region showed no microstructure evolution. In this region, machined layer was remained. Therefore, the local maximum hardness was generated at machined layer. The local maximum stress was caused by the superposition effect of residual stress distributions due to machining and welding. Moreover, these local maximum residual stress and hardness are exceeded critical value of SCC initiation. In order to clarify the effect of residual stress on SCC initiation, evaluation including manufacturing processes is important. (author)

  16. Dark matter in spiral galaxies

    International Nuclear Information System (INIS)

    Albada, T.S. van; Sancisi, R.

    1986-01-01

    Mass models of spiral galaxies based on the observed light distribution, assuming constant M/L for bulge and disc, are able to reproduce the observed rotation curves in the inner regions, but fail to do so increasingly towards and beyond the edge of the visible material. The discrepancy in the outer region can be accounted for by invoking dark matter; some galaxies require at least four times as much dark matter as luminous matter. There is no evidence for a dependence on galaxy luminosity or morphological type. Various arguments support the idea that a distribution of visible matter with constant M/L is responsible for the circular velocity in the inner region, i.e. inside approximately 2.5 disc scalelengths. Luminous matter and dark matter seem to 'conspire' to produce the flat observed rotation curves in the outer region. It seems unlikely that this coupling between disc and halo results from the large-scale gravitational interaction between the two components. Attempts to determine the shape of dark halos have not yet produced convincing results. (author)

  17. Yield stress distribution in injection-moulded glassy polymers

    NARCIS (Netherlands)

    Verbeeten, W.M.H.; Kanters, M.J.W.; Engels, T.A.P.; Govaert, L.E.

    2015-01-01

    A methodology for structural analysis simulations is presented that incorporates the distribution of mechanical propertiesalong the geometrical dimensions of injection-moulded amorphous polymer products. It is based on a previously developedmodelling approach, where the thermomechanical history

  18. Research on stress distribution regularity of cement sheaths of radial well based on ABAQUS

    Science.gov (United States)

    Shi, Jihui; Cheng, Yuanfang; Li, Xiaolong; Xiao, Wen; Li, Menglai

    2017-12-01

    To ensure desirable outcome of hydraulic fracturing based on ultra-short radius radial systems, it is required to investigate the stress distribution regularity and stability of the cement sheath. On the basis of the theoretical model of the cement sheath stress distribution, a reservoir mechanical model was built using the finite element software, ABAQUS, according to the physical property of a certain oil reservoir of the Shengli oilfield. The stress distribution of the casing-cement-sheath-formation system under the practical condition was simulated, based on which analyses were conducted from multiple points of view. Results show that the stress on the internal interface of the cement sheath exceeds that on the external interface, and fluctuates with higher amplitudes, which means that the internal interface is the most failure-prone. The unevenness of the cement sheath stress distribution grows with the increasing horizontal principal stress ratio, and so does the variation magnitude. This indicates that higher horizontal principal stress ratios are unfavourable for the structural stability of the cement sheath. Both the wellbore quantity of the URRS and the physical property of the material can affect the cement sheath distribution. It is suggested to optimize the quantity of the radial wellbore and use cement with a lower elastic modulus and higher Poisson’s ratio. At last, the impact level of the above factor was analysed, with the help of the grey correlation analysis.

  19. Biomechanical effects of two different collar implant structures on stress distribution under cantilever fixed partial dentures.

    Science.gov (United States)

    Merıç, Gökçe; Erkmen, Erkan; Kurt, Ahmet; Eser, Atilim; özden, Ahmet Utku

    2011-11-01

    The purpose of the study was to compare the effects of two distinct collar geometries of implants on stress distribution in the bone around the implants supporting cantilever fixed partial dentures (CFPDs) as well as in the implant-abutment complex and superstructures. The three-dimensional finite element method was selected to evaluate the stress distribution. CFPDs which was supported by microthread collar structured (MCS) and non-microthread collar structured (NMCS) implants was modeled; 300 N vertical, 150 N oblique and 60 N horizontal forces were applied to the models separately. The stress values in the bone, implant-abutment complex and superstructures were calculated. In the MCS model, higher stresses were located in the cortical bone and implant-abutment complex in the case of vertical load while decreased stresses in cortical bone and implant-abutment complex were noted within horizontal and oblique loading. In the case of vertical load, decreased stresses have been noted in cancellous bone and framework. Upon horizontal and oblique loading, a MCS model had higher stress in cancellous bone and framework than the NMCS model. Higher von Mises stresses have been noted in veneering material for NMCS models. It has been concluded that stress distribution in implant-supported CFPDs correlated with the macro design of the implant collar and the direction of applied force.

  20. The instability of the spiral wave induced by the deformation of elastic excitable media

    International Nuclear Information System (INIS)

    Ma Jun; Jia Ya; Wang Chunni; Li Shirong

    2008-01-01

    which are selected symmetrically in different cases, such as the condition that the spiral wave coexists with the spiral turbulence, spiral wave without evident deformation, complete instability of the spiral wave (turbulence) and weak deformation of the spiral wave. It is found that more new peaks appear in the power spectrum and the distribution of frequency becomes sparser when the spiral wave encounters instability

  1. The instability of the spiral wave induced by the deformation of elastic excitable media

    Science.gov (United States)

    Ma, Jun; Jia, Ya; Wang, Chun-Ni; Li, Shi-Rong

    2008-09-01

    which are selected symmetrically in different cases, such as the condition that the spiral wave coexists with the spiral turbulence, spiral wave without evident deformation, complete instability of the spiral wave (turbulence) and weak deformation of the spiral wave. It is found that more new peaks appear in the power spectrum and the distribution of frequency becomes sparser when the spiral wave encounters instability.

  2. Residual stress measurement of large scaled welded pipe using neutron diffraction method. Effect of SCC crack propagation and repair weld on residual stress distribution

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Katsuyama, Jinya; Tobita, Tohru; Morii, Yukio

    2011-01-01

    The RESA-1 neutron engineering diffractometer in the JRR-3 (Japan Research Reactor No.3) at the Japan Atomic Energy Agency, which is used for stress measurements, was upgraded to realize residual stress measurements of large scaled mechanical components. A series of residual stress measurements was made to obtain through-thickness residual stress distributions in a Type 304 stainless steel butt-welded pipe of 500A-sch.80 using the upgraded RESA-1 diffractometer. We evaluated effects of crack propagation such as stress corrosion cracking (SCC) and a part-circumference repair weld on the residual stress distributions induced by girth welding. Measured residual stress distributions near original girth weld revealed good agreement with typical results shown in some previous works using finite element method, deep hole drilling as well as neutron diffraction. After introducing a mock crack with 10 mm depth in the heat affected zone on the inside wall of the pipe by electro discharge machining, the axial residual stresses were found to be released in the part of the mock crack. However, changes in the through-wall bending stress component and the self-equilibrated stress component were negligible and hence the axial residual stress distribution in the ligament was remained in the original residual stresses near girth weld without the mock crack. Furthermore, changes in hoop and radial residual stress were also small. The residual stress distributions after a part repair welding on the outer circumference of the girth weld were significantly different from residual stress distributions near the original girth weld. The through-thickness average axial residual stress was increased due to increase of the tensile membrane stress and mitigation of the bending stress after repair welding. Throughout above studies, we evidenced that the neutron diffraction technique is useful and powerful tool for measuring residual stress distributions in large as well as thick mechanical

  3. Arsia Mons Spiral Cloud

    Science.gov (United States)

    2002-01-01

    One of the benefits of the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) Extended Mission is the opportunity to observe how the planet's weather changes during a second full martian year. This picture of Arsia Mons was taken June 19, 2001; southern spring equinox occurred the same day. Arsia Mons is a volcano nearly large enough to cover the state of New Mexico. On this particular day (the first day of Spring), the MOC wide angle cameras documented an unusual spiral-shaped cloud within the 110 km (68 mi) diameter caldera--the summit crater--of the giant volcano. Because the cloud is bright both in the red and blue images acquired by the wide angle cameras, it probably consisted mostly of fine dust grains. The cloud's spin may have been induced by winds off the inner slopes of the volcano's caldera walls resulting from the temperature differences between the walls and the caldera floor, or by a vortex as winds blew up and over the caldera. Similar spiral clouds were seen inside the caldera for several days; we don't know if this was a single cloud that persisted throughout that time or one that regenerated each afternoon. Sunlight illuminates this scene from the left/upper left.Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  4. Effect study of multi-bubbles on stress distribution of fuel particle

    International Nuclear Information System (INIS)

    Zhao Yi; Wang Xiaomin; Long Chongsheng

    2015-01-01

    The finite element model was proposed to simulate the process of the UO_2 dispersion fuel particle sustaining the internal pressure of multi-bubbles, and the stress distribution of fuel particle with intra-bubbles was calculated. The results show that when the bubbles line equidistantly along x axis, the max normal stress along y axis increases with the number of bubbles, meanwhile, the increment of the normal stress gradually decreases. There is a limit that the effect of bubble's number imposes on the max normal stress in the fuel particle. When multi-column of bubbles exist, the max normal stress along x axis in the fuel particle increases, and the max normal stress along y axis decreases with the increase of the number of bubble column. The stress concentration in the fuel particle decreases with the spacing radius ratio increasing. (authors)

  5. Structure analysis of edge-on spiral galaxies

    NARCIS (Netherlands)

    deGrijs, R; vanderKruit, PC

    The stellar distribution of a small sample of edge-on spiral galaxies is examined in B, V, R, and I by fitting model distributions to the light profiles, both perpendicular to the galaxy planes and along the major axes. We have developed a method to compare the fits for the models obtained for

  6. Effects of Prosthesis Stem Tapers on Stress Distribution of Cemented Hip Arthroplasty

    International Nuclear Information System (INIS)

    Abdullah, Abdul Halim; Nor, Mohd Asri Mohd; Saman, Alias Mohd; Tamin, Mohd Nasir; Kadir, Mohammed Rafiq Abdul

    2010-01-01

    Aseptic loosening effects are critical issues in encouraging long term stability of cemented hip arthroplasty. Stress shielding is believed to be an important factor that contributes to the aseptic loosening problems. The numerous changes in the prosthesis stem design are intended to minimize the stress shielding and aseptic loosening problems and to improve the long term performance of the implants. In this study, the stress distribution in cemented hip arthroplasty is established using finite element method. The taper of the prosthesis is designed to be 3 deg. at anterior/posterior, 3 deg. at medial/lateral and 10 deg. from wide lateral to narrow medial. Major muscle loads and contact forces are simulated for walking (toe-off phase) and stair climbing load cases. Effects of prosthesis stem tapers on the resulting stress distribution are investigated. Results show that compressive stress dominates in the medial plane while tensile stress in the lateral plane of the femur. The corresponding stress levels of intact femur for walking and stair-climbing load cases are 22 and 29 MPa, respectively. The magnitude of Tresca stress for the THA femur in stair-climbing load case remains higher in the region of 85 MPa while the walking load case induces around 40 MPa. The stress range in the straight and single taper stem prosthesis is lower than 260 MPa, while localized Tresca stress is in the order of the yield strength of Ti-6Al-4V alloy for double and triple taper stem design.

  7. Effects on Subtalar Joint Stress Distribution After Cannulated Screw Insertion at Different Positions and Directions.

    Science.gov (United States)

    Yuan, Cheng-song; Chen, Wan; Chen, Chen; Yang, Guang-hua; Hu, Chao; Tang, Kang-lai

    2015-01-01

    We investigated the effects on subtalar joint stress distribution after cannulated screw insertion at different positions and directions. After establishing a 3-dimensional geometric model of a normal subtalar joint, we analyzed the most ideal cannulated screw insertion position and approach for subtalar joint stress distribution and compared the differences in loading stress, antirotary strength, and anti-inversion/eversion strength among lateral-medial antiparallel screw insertion, traditional screw insertion, and ideal cannulated screw insertion. The screw insertion approach allowing the most uniform subtalar joint loading stress distribution was lateral screw insertion near the border of the talar neck plus medial screw insertion close to the ankle joint. For stress distribution uniformity, antirotary strength, and anti-inversion/eversion strength, lateral-medial antiparallel screw insertion was superior to traditional double-screw insertion. Compared with ideal cannulated screw insertion, slightly poorer stress distribution uniformity and better antirotary strength and anti-inversion/eversion strength were observed for lateral-medial antiparallel screw insertion. Traditional single-screw insertion was better than double-screw insertion for stress distribution uniformity but worse for anti-rotary strength and anti-inversion/eversion strength. Lateral-medial antiparallel screw insertion was slightly worse for stress distribution uniformity than was ideal cannulated screw insertion but superior to traditional screw insertion. It was better than both ideal cannulated screw insertion and traditional screw insertion for anti-rotary strength and anti-inversion/eversion strength. Lateral-medial antiparallel screw insertion is an approach with simple localization, convenient operation, and good safety. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  8. SELF-DESTRUCTING SPIRAL WAVES: GLOBAL SIMULATIONS OF A SPIRAL-WAVE INSTABILITY IN ACCRETION DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jaehan; Hartmann, Lee [Department of Astronomy, University of Michigan, 1085 S. University Ave., Ann Arbor, MI 48109 (United States); Nelson, Richard P.; Richard, Samuel, E-mail: jaehbae@umich.edu, E-mail: lhartm@umich.edu, E-mail: r.p.nelson@qmul.ac.uk, E-mail: samuel.richard@qmul.ac.uk [Astronomy Unit, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2016-09-20

    We present results from a suite of three-dimensional global hydrodynamic simulations that shows that spiral density waves propagating in circumstellar disks are unstable to the growth of a parametric instability that leads to break down of the flow into turbulence. This spiral wave instability (SWI) arises from a resonant interaction between pairs of inertial waves, or inertial-gravity waves, and the background spiral wave. The development of the instability in the linear regime involves the growth of a broad spectrum of inertial modes, with growth rates on the order of the orbital time, and results in a nonlinear saturated state in which turbulent velocity perturbations are of a similar magnitude to those induced by the spiral wave. The turbulence induces angular momentum transport and vertical mixing at a rate that depends locally on the amplitude of the spiral wave (we obtain a stress parameter α ∼ 5 × 10{sup −4} in our reference model). The instability is found to operate in a wide range of disk models, including those with isothermal or adiabatic equations of state, and in viscous disks where the dimensionless kinematic viscosity ν ≤ 10{sup −5}. This robustness suggests that the instability will have applications to a broad range of astrophysical disk-related phenomena, including those in close binary systems, planets embedded in protoplanetary disks (including Jupiter in our own solar system) and FU Orionis outburst models. Further work is required to determine the nature of the instability and to evaluate its observational consequences in physically more complete disk models than we have considered in this paper.

  9. SELF-DESTRUCTING SPIRAL WAVES: GLOBAL SIMULATIONS OF A SPIRAL-WAVE INSTABILITY IN ACCRETION DISKS

    International Nuclear Information System (INIS)

    Bae, Jaehan; Hartmann, Lee; Nelson, Richard P.; Richard, Samuel

    2016-01-01

    We present results from a suite of three-dimensional global hydrodynamic simulations that shows that spiral density waves propagating in circumstellar disks are unstable to the growth of a parametric instability that leads to break down of the flow into turbulence. This spiral wave instability (SWI) arises from a resonant interaction between pairs of inertial waves, or inertial-gravity waves, and the background spiral wave. The development of the instability in the linear regime involves the growth of a broad spectrum of inertial modes, with growth rates on the order of the orbital time, and results in a nonlinear saturated state in which turbulent velocity perturbations are of a similar magnitude to those induced by the spiral wave. The turbulence induces angular momentum transport and vertical mixing at a rate that depends locally on the amplitude of the spiral wave (we obtain a stress parameter α ∼ 5 × 10 −4 in our reference model). The instability is found to operate in a wide range of disk models, including those with isothermal or adiabatic equations of state, and in viscous disks where the dimensionless kinematic viscosity ν ≤ 10 −5 . This robustness suggests that the instability will have applications to a broad range of astrophysical disk-related phenomena, including those in close binary systems, planets embedded in protoplanetary disks (including Jupiter in our own solar system) and FU Orionis outburst models. Further work is required to determine the nature of the instability and to evaluate its observational consequences in physically more complete disk models than we have considered in this paper.

  10. Evaluating stress distribution in two different designs of class I partial removable dentures

    Directory of Open Access Journals (Sweden)

    F. Geramipanah

    1998-05-01

    Full Text Available In Present study a digital model of hemimaxillectomy was reconstructed by computer and stress distribution of removable partial dentures in tissues, periodontal ligament and bone were thoroughly evaluated. The maximum stress of two different removable partial denture designs which contained buccal and lingual c-shaped clasps respectively were analyzed and compared. It was assumed that a 90 gram force which is equal to an average obturator’s weight is applied outwardly. The results showed that the maximum stress distribution in these two designs is not significantly different.

  11. Nonlocal approach to the analysis of the stress distribution in granular systems. I. Theoretical framework

    Science.gov (United States)

    Kenkre, V. M.; Scott, J. E.; Pease, E. A.; Hurd, A. J.

    1998-05-01

    A theoretical framework for the analysis of the stress distribution in granular materials is presented. It makes use of a transformation of the vertical spatial coordinate into a formal time variable and the subsequent study of a generally non-Markoffian, i.e., memory-possessing (nonlocal) propagation equation. Previous treatments are obtained as particular cases corresponding to, respectively, wavelike and diffusive limits of the general evolution. Calculations are presented for stress propagation in bounded and unbounded media. They can be used to obtain desired features such as a prescribed stress distribution within the compact.

  12. Stress and Friction Distribution around Slab Corner in Continuous Casting Mold with Different Corner Structures

    Science.gov (United States)

    Yu, Sheng; Long, Mujun; Chen, Huabiao; Chen, Dengfu; Liu, Tao; Duan, Huamei; Cao, Junsheng

    2018-06-01

    The non-uniform friction and thermal stress in the mold are important as causes of the transverse cracks around strand corner. To analyze the stress distribution features around strand corner, a three-dimensional thermo-elastoplastic finite-element mold model with different corner structures (right-angle, big-chamfer, multi-chamfer, and fillet) was established. The temperature field in the mold was indirectly coupled through a three-dimensional fluid flow and heat transfer model. In addition, the non-uniform mold friction stress loaded on the strand surface was calculated through a friction model. The results show that the stress distribution on the shell is similar to the temperature distribution. The stress concentration appears in the strand corner and the lower part of wide face. The friction stress enhances the corner stress around the edge of the air-gap. For chamfered molds, the stress around the corner between the wide face and chamfer face is larger than that between the narrow face and chamfer face. Around the corner region, both the stress peak and the area of the large stress zone of the right-angle strand are the largest, while those of big-chamfered, multi-chamfered, and fillet strands decrease in that order. The stress peak position of the chamfered strands is closer to the mold exit than that of the right-angle strand. Compared with the use of the right-angle mold, the application of chamfered molds is able to reduce the stress concentration around the strand corner.

  13. Stress and Friction Distribution around Slab Corner in Continuous Casting Mold with Different Corner Structures

    Science.gov (United States)

    Yu, Sheng; Long, Mujun; Chen, Huabiao; Chen, Dengfu; Liu, Tao; Duan, Huamei; Cao, Junsheng

    2018-02-01

    The non-uniform friction and thermal stress in the mold are important as causes of the transverse cracks around strand corner. To analyze the stress distribution features around strand corner, a three-dimensional thermo-elastoplastic finite-element mold model with different corner structures (right-angle, big-chamfer, multi-chamfer, and fillet) was established. The temperature field in the mold was indirectly coupled through a three-dimensional fluid flow and heat transfer model. In addition, the non-uniform mold friction stress loaded on the strand surface was calculated through a friction model. The results show that the stress distribution on the shell is similar to the temperature distribution. The stress concentration appears in the strand corner and the lower part of wide face. The friction stress enhances the corner stress around the edge of the air-gap. For chamfered molds, the stress around the corner between the wide face and chamfer face is larger than that between the narrow face and chamfer face. Around the corner region, both the stress peak and the area of the large stress zone of the right-angle strand are the largest, while those of big-chamfered, multi-chamfered, and fillet strands decrease in that order. The stress peak position of the chamfered strands is closer to the mold exit than that of the right-angle strand. Compared with the use of the right-angle mold, the application of chamfered molds is able to reduce the stress concentration around the strand corner.

  14. Polarization study of spiral galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Ward-Thompson, D

    1987-01-01

    Optical polarimetry results are presented for four spiral galaxies: NGC 5194 (M51), NGC 1068, NGC 4565 and NGC 4594 (M104). M51 and NGC 1068 show spiral polarization patterns interpreted as indicating a spiral magnetic field in each case. NGC 4565 and M104 show polarizations in their dust lanes which are parallel to their galactic planes, and which are interpreted in terms of a magnetic field in the plane of each. It is hypothesized that the observed magnetic fields may be linked to galactic shocks. A discussion of the origin of galactic magnetic fields concludes that there is not evidence that necessitates a primordial magnetic field.

  15. Spiral phases of doped antiferromagnets

    International Nuclear Information System (INIS)

    Shraiman, B.I.; Siggia, E.D.

    1990-01-01

    The dipole density field describing the holls in a doped antiferromagnet is considered for law hole density in the semiclassical limit. This yields a phase in which the order parameter is planar and spirals round a fixed direction. The single spiral state breaks the continuous spin rotational symmetry and exhibits long-range order at zero temperature. In it there is a global spin direction as rotation axis. The double spiral state, in which there are two perpendicular directions, is isotropic in both spin and real space. Several results of microscopic calculations, carried out to understand the electronic states, quantum fluctuations, lattice effects and normal mode dynamics, are recapitulated. 8 refs

  16. Evaluation of residual stresses in welded part using hard synchrotron x-rays

    International Nuclear Information System (INIS)

    Suzuki, Kenji; Shobu, Takahisa; Shiro, Ayumi; Zhang Shuoyuan

    2013-01-01

    The spiral slit-system and DSTM (diffraction spot trace method) are under development in order to evaluate internal stresses of materials with coarse grains. The spiral slit-system was improved so that the length of the gauge volume is independent of the diffraction angle. The bending stress in the specimen with coarse grains was measured in order to confirm performance of this advanced spiral slit-system. The distribution of the measured bending stress coincided with the applied bending stress. As a result, it was proved that the combination of the advanced spiral slit-system and the DSTM is useful for the internal stress measurement of materials with coarse grains. The welded specimen of a Mg-alloy plate was prepared by melt-run with TIG welding. The residual stress map in the cross-section of the specimen was made using the DSTM. On the other hand, the residual stresses of the welded specimen were simulated by a finite element method. Although the measured residual stresses were similar to the simulated results, the residual stresses due to extrusion were measured also using the DSTM. The DSTM is an excellent technique for the stress measurement of weld parts. (author)

  17. theoretical investigation of stresses distributions in hollow sandcrete

    African Journals Online (AJOL)

    user

    The test thin plate distributes the load on the block and the hollow block is regarded as a two ... Some research works had been done on the relationship between cavity ... The results would help reduce the cost, labour and time necessary to.

  18. Distribution of Side Abutment Stress in Roadway Subjected to Dynamic Pressure and Its Engineering Application

    Directory of Open Access Journals (Sweden)

    Yao Qiangling

    2015-01-01

    Full Text Available The borehole stress-meter was employed in this study to investigate the distribution of the side abutment stress in roadway subjected to dynamic pressure. The results demonstrate that the side abutment stress of the mining roadway reaches a peak value when the distance to the gob is 8 m and the distribution curve of the side abutment stress can be divided into three zones: stress rising zone, stress stabilizing zone, and stress decreasing zone. Further numerical investigation was carried out to study the effect of the coal mass strength, coal seam depth, immediate roof strength, and thickness on the distribution of the side abutment stress. Based on the research results, we determined the reasonable position of the mining roadway and the optimal width of the barrier pillar. The engineering application demonstrates that the retention of the barrier pillar with a width of 5 m along the gob as the haulage roadway for the next panel is feasible, which delivers favorable technological and economic benefits.

  19. The Effect of Resection Angle on Stress Distribution after Root-End Surgery

    Science.gov (United States)

    Monteiro, Jaiane Bandoli; Dal Piva, Amanda Maria de Oliveira; Tribst, João Paulo Mendes; Borges, Alexandre Luiz Souto; Tango, Rubens Nisie

    2018-01-01

    Introduction: This study aimed to investigate the influence of the resection angle on the stress distribution of retrograde endodontic treated maxillary incisors under oblique-load application. Methods and Materials: A maxillary central incisor which was endodontically treated and restored with a fiber glass post was obtained in a 3-dimensional numerical model and distributed into three groups according to type of resection: control; restored with fiber post without retrograde obturation, R45 and R90 with 45º and 90º resection from tooth axial axis, respectively and restored with Fuji II LC (GC America). The numerical models received a 45º occlusal load of 200 N/cm2 on the middle of lingual surface. All materials and structures were considered linear elastic, homogeneous and isotropic. Numerical models were plotted and meshed with isoparametric elements, and the results were analyzed using maximum principal stress (MPS). Results: MPS showed greater stress values in the bone tissue for control group than the other groups. Groups with apicectomy showed acceptable stress distribution on the fiber post, cement layer and root dentin, presenting more improved values than control group. Conclusion: Apicectomy at 90º promotes more homogeneity on stress distribution on the fiber post, cement layer and root dentin, which suggests less probability of failure. However, due to its facility and stress distribution also being better than control group, apicectomy at 45° could be a good choice for clinicians. PMID:29707013

  20. Thermodynamic method for generating random stress distributions on an earthquake fault

    Science.gov (United States)

    Barall, Michael; Harris, Ruth A.

    2012-01-01

    This report presents a new method for generating random stress distributions on an earthquake fault, suitable for use as initial conditions in a dynamic rupture simulation. The method employs concepts from thermodynamics and statistical mechanics. A pattern of fault slip is considered to be analogous to a micro-state of a thermodynamic system. The energy of the micro-state is taken to be the elastic energy stored in the surrounding medium. Then, the Boltzmann distribution gives the probability of a given pattern of fault slip and stress. We show how to decompose the system into independent degrees of freedom, which makes it computationally feasible to select a random state. However, due to the equipartition theorem, straightforward application of the Boltzmann distribution leads to a divergence which predicts infinite stress. To avoid equipartition, we show that the finite strength of the fault acts to restrict the possible states of the system. By analyzing a set of earthquake scaling relations, we derive a new formula for the expected power spectral density of the stress distribution, which allows us to construct a computer algorithm free of infinities. We then present a new technique for controlling the extent of the rupture by generating a random stress distribution thousands of times larger than the fault surface, and selecting a portion which, by chance, has a positive stress perturbation of the desired size. Finally, we present a new two-stage nucleation method that combines a small zone of forced rupture with a larger zone of reduced fracture energy.

  1. Incorporating hydrologic variability into nutrient spiraling

    Science.gov (United States)

    Doyle, Martin W.

    2005-09-01

    Nutrient spiraling describes the path of a nutrient molecule within a stream ecosystem, combining the biochemical cycling processes with the downstream driving force of stream discharge. To date, nutrient spiraling approaches have been hampered by their inability to deal with fluctuating flows, as most studies have characterized nutrient retention within only a small range of discharges near base flow. Here hydrologic variability is incorporated into nutrient spiraling theory by drawing on the fluvial geomorphic concept of effective discharge. The effective discharge for nutrient retention is proposed to be that discharge which, over long periods of time, is responsible for the greatest portion of nutrient retention. A developed analytical model predicts that the effective discharge for nutrient retention will equal the modal discharge for small streams or those with little discharge variability. As modal discharge increases or discharge variability increases, the effective discharge becomes increasingly less than the modal discharge. In addition to the effective discharge, a new metric is proposed, the functionally equivalent discharge, which is the single discharge that will reproduce the magnitude of nutrient retention generated by the full hydrologic frequency distribution when all discharge takes place at that rate. The functionally equivalent discharge was found to be the same as the modal discharge at low hydrologic variability, but increasingly different from the modal discharge at large hydrologic variability. The functionally equivalent discharge provides a simple quantitative means of incorporating hydrologic variability into long-term nutrient budgets.

  2. Interface topography and residual stress distributions in W coatings for fusion armour applications

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)], E-mail: g.thomas@cranfield.ac.uk; Vincent, R. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Matthews, G. [UKAEA Fusion, K2 Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Dance, B. [TWI Ltd, Granta Park, Great Abingdon, Cambridge CB1 6AL (United Kingdom); Grant, P.S. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2008-03-25

    Vacuum plasma sprayed (VPS) tungsten (W) coatings are potential plasma facing components in future fusion power plants. However, the large coefficient of thermal expansion mismatch between W and underlying structural steels and other metallic materials poses a significant problem for manufacturing and service life because of the evolution of large thermally induced stresses leading to failure. In this paper, the effects of the substrate/coating interface 3D geometry on stress distributions are investigated using finite element analysis and VPS experiments to manufacture up to 2 mm thick W coatings. The key factors that affect internal stress distributions during thermal exposure have been identified including graded composition inter-layers, stress concentration effects, mechanical adhesion, and the possible role of segmentation in relieving coating stresses on surface sculptured substrates.

  3. Interface topography and residual stress distributions in W coatings for fusion armour applications

    International Nuclear Information System (INIS)

    Thomas, G.; Vincent, R.; Matthews, G.; Dance, B.; Grant, P.S.

    2008-01-01

    Vacuum plasma sprayed (VPS) tungsten (W) coatings are potential plasma facing components in future fusion power plants. However, the large coefficient of thermal expansion mismatch between W and underlying structural steels and other metallic materials poses a significant problem for manufacturing and service life because of the evolution of large thermally induced stresses leading to failure. In this paper, the effects of the substrate/coating interface 3D geometry on stress distributions are investigated using finite element analysis and VPS experiments to manufacture up to 2 mm thick W coatings. The key factors that affect internal stress distributions during thermal exposure have been identified including graded composition inter-layers, stress concentration effects, mechanical adhesion, and the possible role of segmentation in relieving coating stresses on surface sculptured substrates

  4. Stress Distribution around Laser-Welded Cutting Wheels Using a Spherical Indentation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Hee; Lee, Wan Kyu; Jeong, In Hyeon; Nahm, Seung Hoon [KRISS, Daejeon (Korea, Republic of)

    2008-04-15

    A spherical indentation has been proposed as a nondestructive method of measuring local residual stress field in laser-voided joints. The apparent yield strengths interpreted from the spherical indentation data of as-welded cutting wheel were compared with the intrinsic yield strengths measured at nearly equivalent locations in annealed wheel. Their difference along the distance from the welding line is welding stress distribution because the intrinsic yield strength is invariant regardless of the elastic residual stress. The spherical indentations show that the laser-welded diamond cutting wheel displays a 10 min-wide distribution of the welding residual stress and has peak compressive and tensile stresses in the shank and tip regions, respectively.

  5. Impact of peak electricity demand in distribution grids: a stress test

    NARCIS (Netherlands)

    Hoogsteen, Gerwin; Molderink, Albert; Hurink, Johann L.; Smit, Gerardus Johannes Maria; Schuring, Friso; Kootstra, Ben

    2015-01-01

    The number of (hybrid) electric vehicles is growing, leading to a higher demand for electricity in distribution grids. To investigate the effects of the expected peak demand on distribution grids, a stress test with 15 electric vehicles in a single street is conducted and described in this paper.

  6. The color gradient in spiral galaxies: application to M 81

    International Nuclear Information System (INIS)

    Segalovitz, A.

    1975-01-01

    The calculated development of the color of a star cluster is used to predict the expected color evolution, as a function of radius, in a spiral galaxy. It is assumed that the fraction of gas which is converted into stars during a spiral arm passage is a function of radius only. Applying this model to M 81, it is shown that the observed color and mass distributions can be explained by an initial disk-like gas distribution proportional to the inverse square of the radius and a consumption fraction which is an increasing function of radius. (orig.) [de

  7. Spiral-shaped disinfection reactors

    KAUST Repository

    Ghaffour, NorEddine; Ait-Djoudi, Fariza; Naceur, Wahib Mohamed; Soukane, Sofiane

    2015-01-01

    This disclosure includes disinfection reactors and processes for the disinfection of water. Some disinfection reactors include a body that defines an inlet, an outlet, and a spiral flow path between the inlet and the outlet, in which the body

  8. Spiral-shaped disinfection reactors

    KAUST Repository

    Ghaffour, Noreddine

    2015-08-20

    This disclosure includes disinfection reactors and processes for the disinfection of water. Some disinfection reactors include a body that defines an inlet, an outlet, and a spiral flow path between the inlet and the outlet, in which the body is configured to receive water and a disinfectant at the inlet such that the water is exposed to the disinfectant as the water flows through the spiral flow path. Also disclosed are processes for disinfecting water in such disinfection reactors.

  9. Predicting spiral wave patterns from cell properties in a model of biological self-organization.

    Science.gov (United States)

    Geberth, Daniel; Hütt, Marc-Thorsten

    2008-09-01

    In many biological systems, biological variability (i.e., systematic differences between the system components) can be expected to outrank statistical fluctuations in the shaping of self-organized patterns. In principle, the distribution of single-element properties should thus allow predicting features of such patterns. For a mathematical model of a paradigmatic and well-studied pattern formation process, spiral waves of cAMP signaling in colonies of the slime mold Dictyostelium discoideum, we explore this possibility and observe a pronounced anticorrelation between spiral waves and cell properties (namely, the firing rate) and particularly a clustering of spiral wave tips in regions devoid of spontaneously firing (pacemaker) cells. Furthermore, we observe local inhomogeneities in the distribution of spiral chiralities, again induced by the pacemaker distribution. We show that these findings can be explained by a simple geometrical model of spiral wave generation.

  10. Influence of Transformation Plasticity on the Distribution of Internal Stress in Three Water-Quenched Cylinders

    Science.gov (United States)

    Liu, Yu; Qin, Shengwei; Zhang, Jiazhi; Wang, Ying; Rong, Yonghua; Zuo, Xunwei; Chen, Nailu

    2017-10-01

    Based on the hardenability of three medium carbon steels, cylinders with the same 60-mm diameter and 240-mm length were designed for quenching in water to obtain microstructures, including a pearlite matrix (Chinese steel mark: 45), a bainite matrix (42CrMo), and a martensite matrix (40CrNiMo). Through the combination of normalized functions describing transformation plasticity (TP), the thermo-elasto-plastic constitutive equation was deduced. The results indicate that the finite element simulation (FES) of the internal stress distribution in the three kinds of hardenable steel cylinders based on the proposed exponent-modified (Ex-Modified) normalized function is more consistent with the X-ray diffraction (XRD) measurements than those based on the normalized functions proposed by Abrassart, Desalos, and Leblond, which is attributed to the fact that the Ex-Modified normalized function better describes the TP kinetics. In addition, there was no significant difference between the calculated and measured stress distributions, even though TP was taken into account for the 45 carbon steel; that is, TP can be ignored in FES. In contrast, in the 42CrMo and 40CrNiMo alloyed steels, the significant effect of TP on the residual stress distributions was demonstrated, meaning that TP must be included in the FES. The rationality of the preceding conclusions was analyzed. The complex quenching stress is a consequence of interactions between the thermal and phase transformation stresses. The separated calculations indicate that the three steels exhibit similar thermal stress distributions for the same water-quenching condition, but different phase transformation stresses between 45 carbon steel and alloyed steels, leading to different distributions of their axial and tangential stresses.

  11. STRESS DISTRIBUTION IN THE STRATIFIED MASS CONTAINING VERTICAL ALVEOLE

    Directory of Open Access Journals (Sweden)

    Bobileva Tatiana Nikolaevna

    2017-08-01

    Full Text Available Almost all subsurface rocks used as foundations for various types of structures are stratified. Such heterogeneity may cause specific behaviour of the materials under strain. Differential equations describing the behaviour of such materials contain rapidly fluctuating coefficients, in view of this, solution of such equations is more time-consuming when using today’s computers. The method of asymptotic averaging leads to getting homogeneous medium under study to averaged equations with fixed factors. The present article is concerned with stratified soil mass consisting of pair-wise alternative isotropic elastic layers. In the results of elastic modules averaging, the present soil mass with horizontal rock stratification is simulated by homogeneous transversal-isotropic half-space with isotropy plane perpendicular to the standing axis. Half-space is loosened by a vertical alveole of circular cross-section, and virgin ground is under its own weight. For horizontal parting planes of layers, the following two types of surface conditions are set: ideal contact and backlash without cleavage. For homogeneous transversal-isotropic half-space received with a vertical alveole, the analytical solution of S.G. Lekhnitsky, well known in scientific papers, is used. The author gives expressions for stress components and displacements in soil mass for different marginal conditions on the alveole surface. Such research problems arise when constructing and maintaining buildings and when composite materials are used.

  12. Residual stress distribution analysis of heat treated APS TBC using image based modelling.

    Science.gov (United States)

    Li, Chun; Zhang, Xun; Chen, Ying; Carr, James; Jacques, Simon; Behnsen, Julia; di Michiel, Marco; Xiao, Ping; Cernik, Robert

    2017-08-01

    We carried out a residual stress distribution analysis in a APS TBC throughout the depth of the coatings. The samples were heat treated at 1150 °C for 190 h and the data analysis used image based modelling based on the real 3D images measured by Computed Tomography (CT). The stress distribution in several 2D slices from the 3D model is included in this paper as well as the stress distribution along several paths shown on the slices. Our analysis can explain the occurrence of the "jump" features near the interface between the top coat and the bond coat. These features in the residual stress distribution trend were measured (as a function of depth) by high-energy synchrotron XRD (as shown in our related research article entitled 'Understanding the Residual Stress Distribution through the Thickness of Atmosphere Plasma Sprayed (APS) Thermal Barrier Coatings (TBCs) by high energy Synchrotron XRD; Digital Image Correlation (DIC) and Image Based Modelling') (Li et al., 2017) [1].

  13. Analysis and measurement of residual stress distribution of vanadium/ceramics joints for fusion reactor applications

    International Nuclear Information System (INIS)

    Nemoto, Y.; Ueda, K.

    1998-01-01

    Vanadium alloys are considered as candidate structural materials for fusion reactor system. When vanadium alloys are used in fusion reactor system, joining with ceramics for insulating is one of material issues to be solved to make component of fusion reactor. In the application of ceramics/metal jointing and coating, residual stress caused by difference of thermal expansion rate between ceramics and metals is an important factor in obtaining good bonding strength and soundness of coating. In this work, residual stress distribution in direct diffusion bonded vanadium/alumina joint (jointing temperature: 1400 C) was measured by small area X-ray diffraction method. And the comparison of finite element method (FEM) analysis and actual stress distribution was carried out. Tensile stress concentration at the edge of the boundary of the joint in alumina was observed. The residual stress concentration may cause cracks in alumina, or failure of bonding. Actually, cracks in alumina caused by thermal stress after bonding at 1500 C was observed. The stress concentration of the joint must be reduced to obtain good bonded joint. Lower bonding temperature or to devise the shape of the outer surface of the joint will reduce the stress concentration. (orig.)

  14. On wave dark matter in spiral and barred galaxies

    International Nuclear Information System (INIS)

    Martinez-Medina, Luis A.; Matos, Tonatiuh; Bray, Hubert L.

    2015-01-01

    We recover spiral and barred spiral patterns in disk galaxy simulations with a Wave Dark Matter (WDM) background (also known as Scalar Field Dark Matter (SFDM), Ultra-Light Axion (ULA) dark matter, and Bose-Einstein Condensate (BEC) dark matter). Here we show how the interaction between a baryonic disk and its Dark Matter Halo triggers the formation of spiral structures when the halo is allowed to have a triaxial shape and angular momentum. This is a more realistic picture within the WDM model since a non-spherical rotating halo seems to be more natural. By performing hydrodynamic simulations, along with earlier test particles simulations, we demonstrate another important way in which wave dark matter is consistent with observations. The common existence of bars in these simulations is particularly noteworthy. This may have consequences when trying to obtain information about the dark matter distribution in a galaxy, the mere presence of spiral arms or a bar usually indicates that baryonic matter dominates the central region and therefore observations, like rotation curves, may not tell us what the DM distribution is at the halo center. But here we show that spiral arms and bars can develop in DM dominated galaxies with a central density core without supposing its origin on mechanisms intrinsic to the baryonic matter

  15. Temperature simulations for the SPIRAL ISOL target

    International Nuclear Information System (INIS)

    Maunoury, L.; Bajeat, O.; Lichtenthaler, R.; Villari, A.C.C.

    2001-01-01

    Simulations of the power deposition and target temperature distributions in the SPIRAL ISOL target are presented. These simulations consider different heavy-ion beams with intensities corresponding to 2 and 6 kW on a carbon target. A new solutions, which corresponds to the splitting of the production target into two parts, where the first is cooled and the second is heated, allows keeping the overall size of the target ensemble relatively small. An extrapolation of the considered target geometry to primary beam intensities up to 1 MW is also presented. (authors)

  16. Measurement of the residual stress distribution in a thick pre-stretched aluminum plate

    Science.gov (United States)

    Yuan, S. X.; Li, X. Q.; M, S.; Zhang, Y. C.; Gong, Y. D.

    2008-12-01

    Thick pre-stretched aluminum alloy plates are widely used in aircraft, while machining distortion caused by initial residual stress release in thick plates is a common and serious problem. To reduce the distortion, the residual stress distribution in thick plate must be measured. According to the characteristics of the thick pre-stretched aluminum alloy plate, based the elastic mechanical theory, this article deduces the modified layer-removal strain method adapting two different strain situations, which are caused by tensile and compressive stress. To validate this method, the residual stresses distribution along the thick direction of plate 2D70T351 is measured by this method, it is shown that the new method deduced in this paper is simple and accurate, and is very useful in engineering.

  17. Bayesian Approach for Constant-Stress Accelerated Life Testing for Kumaraswamy Weibull Distribution with Censoring

    Directory of Open Access Journals (Sweden)

    Abeer Abd-Alla EL-Helbawy

    2016-09-01

    Full Text Available The accelerated life tests provide quick information on the life time distributions by testing materials or products at higher than basic conditional levels of stress such as pressure, high temperature, vibration, voltage or load to induce failures. In this paper, the acceleration model assumed is log linear model. Constant stress tests are discussed based on Type I and Type II censoring. The Kumaraswmay Weibull distribution is used. The estimators of the parameters, reliability, hazard rate functions and p-th percentile at normal condition, low stress, and high stress are obtained. In addition, credible intervals for parameters of the models are constructed. Optimum test plan are designed. Some numerical studies are used to solve the complicated integrals such as Laplace and Markov Chain Monte Carlo methods.

  18. Bayesian Approach for Constant-Stress Accelerated Life Testing for Kumaraswamy Weibull Distribution with Censoring

    Directory of Open Access Journals (Sweden)

    Abeer Abd-Alla EL-Helbawy

    2016-12-01

    Full Text Available The accelerated life tests provide quick information on the life time distributions by testing materials or products at higher than basic conditional levels of stress such as pressure, high temperature, vibration, voltage or load to induce failures. In this paper, the acceleration model assumed is log linear model. Constant stress tests are discussed based on Type I and Type II censoring. The Kumaraswmay Weibull distribution is used. The estimators of the parameters, reliability, hazard rate functions and p-th percentile at normal condition, low stress, and high stress are obtained. In addition, credible intervals for parameters of the models are constructed. Optimum test plan are designed. Some numerical studies are used to solve the complicated integrals such as Laplace and Markov Chain Monte Carlo methods.

  19. Can cluster environment modify the dynamical evolution of spiral galaxies?

    Science.gov (United States)

    Amram, P.; Balkowski, C.; Cayatte, V.; Marcelin, M.; Sullivan, W. T., III

    1993-01-01

    Over the past decade many effects of the cluster environment on member galaxies have been established. These effects are manifest in the amount and distribution of gas in cluster spirals, the luminosity and light distributions within galaxies, and the segregation of morphological types. All these effects could indicate a specific dynamical evolution for galaxies in clusters. Nevertheless, a more direct evidence, such as a different mass distribution for spiral galaxies in clusters and in the field, is not yet clearly established. Indeed, Rubin, Whitmore, and Ford (1988) and Whitmore, Forbes, and Rubin (1988) (referred to as RWF) presented evidence that inner cluster spirals have falling rotation curves, unlike those of outer cluster spirals or the great majority of field spirals. If falling rotation curves exist in centers of clusters, as argued by RWF, it would suggest that dark matter halos were absent from cluster spirals, either because the halos had become stripped by interactions with other galaxies or with an intracluster medium, or because the halos had never formed in the first place. Even if they didn't disagree with RWF, other researchers pointed out that the behaviour of the slope of the rotation curves of spiral galaxies (in Virgo) is not so clear. Amram, using a different sample of spiral galaxies in clusters, found only 10% of declining rotation curves (2 declining vs 17 flat or rising) in opposition to RWF who find about 40% of declining rotation curves in their sample (6 declining vs 10 flat or rising), we will hereafter briefly discuss the Amram data paper and compare it to the results of RWF. We have measured the rotation curves for a sample of 21 spiral galaxies in 5 nearby clusters. These rotation curves have been constructed from detailed two-dimensional maps of each galaxy's velocity field as traced by emission from the Ha line. This complete mapping, combined with the sensitivity of our CFHT 3.60 m. + Perot-Fabry + CCD observations, allows

  20. Distribution and natural history of stress fractures in U.S. Marine recruits

    International Nuclear Information System (INIS)

    Greaney, R.B.; Gerber, F.H.; Laughlin, R.L.; Kmet, J.P.; Metz, C.D.; Kilcheski, T.S.; Rao, B.R.; Silverman, E.D.

    1983-01-01

    In a prospective study of stress injuries of the lower extremities of U.S. Marine recruits, researchers derived a frequency distribution of stress fractures. The most frequently fractured bone was the tibia (73%), while the single most common site was the posterior calcaneal tuberosity (21%). The natural history of stress fractures by scintigraphy and radiography has been outlined, showing the evolutionary changes on either study as a universal progression independent of injury site or type of stress. An identical spectrum of changes should be present within any group undergoing intense new exercise. The frequency distribution of stress fractures should be a function of differing forms and intensities of exercise, therefore, our figures should not be applied to other groups. Researchers used the presence of a scintigraphic abnormality at a symptomatic site as the criterion for diagnosis of stress fracture. Since the distribution of skeletal radiotracer uptake is directly dependent on local metabolic activity, it is expected that a focal alteration in bone metabolism will result in a scintigram approaching 100% sensitivity for the abnormality (9). In the proper clinical setting, the specificity should approximate this figure; however, a focal, nonstress-related bone abnormality which has not manifested any radiographic change, such as early osteomyelitis, could result in a false-positive examination. Specificity cannot, therefore, be accurately determined without an actual determination of the pathologic changes within the bone, necessarily involving biopsy

  1. The study of the structural stability of the spiral laser beams propagation through inhomogeneous phase medium

    Science.gov (United States)

    Zinchik, Alexander A.; Muzychenko, Yana B.

    2015-06-01

    This paper discusses theoretical and experimental results of the investigation of light beams that retain their intensity structure during propagation and focusing. Spiral laser beams are a family of laser beams that preserve the structural stability up to scale and rotation with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Functionality laser manipulators can be significantly enhanced by using spiral beams whose intensity remains invariable. It is well known, that these beams has non-zero orbital angular momentum. Spiral beams have a complicated phase distribution in cross section. In this paper we investigate the structural stability of the laser beams having a spiral phase structure by passing them through an inhomogeneous phase medium. Laser beam is passed through a medium is characterized by a random distribution of phase in the range 0..2π. The modeling was performed using VirtualLab 5.0 (manufacturer LightTrans GmbH). Compared the intensity distribution of the spiral and ordinary laser beam after the passage of the inhomogeneous medium. It is shown that the spiral beams exhibit a significantly better structural stability during the passage phase heterogeneous environments than conventional laser beams. The results obtained in the simulation are tested experimentally. Experimental results show good agreement with the theoretical results.

  2. Measurements of three dimensional residual stress distribution on laser irradiated spot

    International Nuclear Information System (INIS)

    Tanaka, Hirotomo; Akita, Koichi; Ohya, Shin-ichi; Sano, Yuji; Naito, Hideki

    2004-01-01

    Three dimensional residual stress distributions on laser irradiated spots were measured using synchrotron radiation to study the basic mechanism of laser peening. A water-immersed sample of high tensile strength steel was irradiated with Q-switched and frequency-doubled Nd:YAG laser. The residual stress depth profile of the sample was obtained by alternately repeating the measurement and surface layer removal by electrolytic polishing. Tensile residual stresses were observed on the surface of all irradiated spots, whereas residual stress changed to compressive just beneath the surface. The depth of compressive residual stress imparted by laser irradiation and plastic deformation zone increased with increasing the number of laser pulses irradiated on the same spot. (author)

  3. The influence of muscle forces on the stress distribution in the lumbar spine

    DEFF Research Database (Denmark)

    Wong, C; Rasmussen, J; Simonsen, Erik B.

    2011-01-01

    muscles. Results: In general the von Mises stress was larger by 30 %, and even higher when looking at the von Mises stress distribution in the superio-anterior and central part of the vertebral body and in the pedicles. Conclusion: The application of spine muscles to a finite element model showed markedly...... larger von Mises stress responses in the central and anterior part of the vertebral body, which can be tolerated in the young and healthy spine, but it would increase the risk of compression fractures in the elderly, osteoporotic spine.......Introduction: Previous studies of bone stresses in the human lumbar spine have relied on simplified models when modeling the spinal musculature, even though muscle forces are likely major contributors to the stresses in the vertebral bones. Detailed musculoskeletal spine models have recently become...

  4. Yield shear stress model of magnetorheological fluids based on exponential distribution

    International Nuclear Information System (INIS)

    Guo, Chu-wen; Chen, Fei; Meng, Qing-rui; Dong, Zi-xin

    2014-01-01

    The magnetic chain model that considers the interaction between particles and the external magnetic field in a magnetorheological fluid has been widely accepted. Based on the chain model, a yield shear stress model of magnetorheological fluids was proposed by introducing the exponential distribution to describe the distribution of angles between the direction of magnetic field and the chain formed by magnetic particles. The main influencing factors were considered in the model, such as magnetic flux density, intensity of magnetic field, particle size, volume fraction of particles, the angle of magnetic chain, and so on. The effect of magnetic flux density on the yield shear stress was discussed. The yield stress of aqueous Fe 3 O 4 magnetreological fluids with volume fraction of 7.6% and 16.2% were measured by a device designed by ourselves. The results indicate that the proposed model can be used for calculation of yield shear stress with acceptable errors. - Highlights: • A yield shear stress model of magnetorheological fluids was proposed. • Use exponential distribution to describe the distribution of magnetic chain angles. • Experimental and predicted results were in good agreement for 2 types of MR

  5. Simulation of Stress Distribution in a Thick- Walled Bushing Produced by Die-Casting

    Directory of Open Access Journals (Sweden)

    Pisarek B.P.

    2017-12-01

    Full Text Available Metallographic investigations and a computer simulation of stresses in a gravity die-casting bushing were performed. Simulation of the casting process, solidification of the thick-walled bushing and calculations of the stress was performed using MAGMA5.3 software. The size variability of phases κII affecting the formation of phase stresses σf, depending on the location of the metallographic test area, was identified. The distribution of thermal σt and shrinkage stresses σs, depending on the location of the control point SC in the bushing's volume, was estimated. Probably the nature of these stresses will change slightly even after machining. This can cause variations in operating characteristics (friction coefficient, wear. Due to the strong inhomogeneity of the stress distribution in the bushing's casting, it is necessary to perform further tests of the possibility to conduct thermal treatment guaranteeing homogenization of the internal stresses in the casting, as well as to introduce changes in the bushing' s construction and the casting technology. The paper presents the continuation of the results of research aimed at identifying the causes of defects in the thick-walled bushing, die-casting made of CuAl10Fe5Ni5Cr aluminium bronze.

  6. Determination of stress distribution in III-V single crystal layers for heterogeneous integration applications

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, M.; Hayashi, S. [Dept. of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Goorsky, M.S.; Sandhu, R.; Chang-Chien, P.; Gutierrez-Aitken, A.; Tsai, R. [Northrop Grumman Space Technology, Redondo Beach, CA 90278 (United States); Noori, A.; Poust, B. [Dept. of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Northrop Grumman Space Technology, Redondo Beach, CA 90278 (United States)

    2007-08-15

    Double crystal X-ray diffraction imaging and a variable temperature stage are employed to determine the stress distribution in heterogeneous wafer bonded layers though the superposition of images produced at different rocking curve angles. The stress distribution in InP layers transferred to a silicon substrate at room temperature exhibits an anticlastic deformation, with different regions of the wafer experiencing different signs of curvature. Measurements at elevated temperatures ({<=}125 C) reveals that differences in thermal expansion coefficients dominate the stress and that interfacial particulates introduce very high local stress gradients that increase with increased temperature. For thinned GaAs substrates (100 {mu}m) bonded using patterned metal interlayers to a separate GaAs substrate at {approx}200 C, residual stresses are produced at room temperature due to local stress points from metallization contacts and vias and the complex stress patterns can be observed using the diffraction imaging technique. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Reorganizing Neural Network System for Two Spirals and Linear Low-Density Polyethylene Copolymer Problems

    Directory of Open Access Journals (Sweden)

    G. M. Behery

    2009-01-01

    Full Text Available This paper presents an automatic system of neural networks (NNs that has the ability to simulate and predict many of applied problems. The system architectures are automatically reorganized and the experimental process starts again, if the required performance is not reached. This processing is continued until the performance obtained. This system is first applied and tested on the two spiral problem; it shows that excellent generalization performance obtained by classifying all points of the two-spirals correctly. After that, it is applied and tested on the shear stress and the pressure drop problem across the short orifice die as a function of shear rate at different mean pressures for linear low-density polyethylene copolymer (LLDPE at 190∘C. The system shows a better agreement with an experimental data of the two cases: shear stress and pressure drop. The proposed system has been also designed to simulate other distributions not presented in the training set (predicted and matched them effectively.

  8. Multi-armed spirals and multi-pairs antispirals in spatial rock–paper–scissors games

    International Nuclear Information System (INIS)

    Jiang, Luo-Luo; Wang, Wen-Xu; Lai, Ying-Cheng; Ni, Xuan

    2012-01-01

    We study the formation of multi-armed spirals and multi-pairs antispirals in spatial rock–paper–scissors games with mobile individuals. We discover a set of seed distributions of species, which is able to produce multi-armed spirals and multi-pairs antispirals with a finite number of arms and pairs based on stochastic processes. The joint spiral waves are also predicted by a theoretical model based on partial differential equations associated with specific initial conditions. The spatial entropy of patterns is introduced to differentiate the multi-armed spirals and multi-pairs antispirals. For the given mobility, the spatial entropy of multi-armed spirals is higher than that of single armed spirals. The stability of the waves is explored with respect to individual mobility. Particularly, we find that both two armed spirals and one pair antispirals transform to the single armed spirals. Furthermore, multi-armed spirals and multi-pairs antispirals are relatively stable for intermediate mobility. The joint spirals with lower numbers of arms and pairs are relatively more stable than those with higher numbers of arms and pairs. In addition, comparing to large amount of previous work, we employ the no flux boundary conditions which enables quantitative studies of pattern formation and stability in the system of stochastic interactions in the absence of excitable media. -- Highlights: ► Multi-armed spirals and multi-pairs antispirals are observed. ► Patterns are predicted by computer simulations and partial differential equations. ► The spatial entropy of patterns is introduced. ► Patterns are relatively stable for intermediate mobility. ► The joint spirals with lower numbers of arms and pairs are relatively more stable.

  9. Multi-armed spirals and multi-pairs antispirals in spatial rock–paper–scissors games

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Luo-Luo, E-mail: jiangluoluo@gmail.com [College of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035 (China); College of Physics and Technology, Guangxi Normal University, Guilin, Guangxi 541004 (China); Wang, Wen-Xu [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 (United States); Department of Physics, Beijing Normal University, Beijing 100875 (China); Lai, Ying-Cheng [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 (United States); Department of Physics, Arizona State University, Tempe, AZ 85287 (United States); Ni, Xuan [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 (United States)

    2012-07-09

    We study the formation of multi-armed spirals and multi-pairs antispirals in spatial rock–paper–scissors games with mobile individuals. We discover a set of seed distributions of species, which is able to produce multi-armed spirals and multi-pairs antispirals with a finite number of arms and pairs based on stochastic processes. The joint spiral waves are also predicted by a theoretical model based on partial differential equations associated with specific initial conditions. The spatial entropy of patterns is introduced to differentiate the multi-armed spirals and multi-pairs antispirals. For the given mobility, the spatial entropy of multi-armed spirals is higher than that of single armed spirals. The stability of the waves is explored with respect to individual mobility. Particularly, we find that both two armed spirals and one pair antispirals transform to the single armed spirals. Furthermore, multi-armed spirals and multi-pairs antispirals are relatively stable for intermediate mobility. The joint spirals with lower numbers of arms and pairs are relatively more stable than those with higher numbers of arms and pairs. In addition, comparing to large amount of previous work, we employ the no flux boundary conditions which enables quantitative studies of pattern formation and stability in the system of stochastic interactions in the absence of excitable media. -- Highlights: ► Multi-armed spirals and multi-pairs antispirals are observed. ► Patterns are predicted by computer simulations and partial differential equations. ► The spatial entropy of patterns is introduced. ► Patterns are relatively stable for intermediate mobility. ► The joint spirals with lower numbers of arms and pairs are relatively more stable.

  10. Orientation decoding: Sense in spirals?

    Science.gov (United States)

    Clifford, Colin W G; Mannion, Damien J

    2015-04-15

    The orientation of a visual stimulus can be successfully decoded from the multivariate pattern of fMRI activity in human visual cortex. Whether this capacity requires coarse-scale orientation biases is controversial. We and others have advocated the use of spiral stimuli to eliminate a potential coarse-scale bias-the radial bias toward local orientations that are collinear with the centre of gaze-and hence narrow down the potential coarse-scale biases that could contribute to orientation decoding. The usefulness of this strategy is challenged by the computational simulations of Carlson (2014), who reported the ability to successfully decode spirals of opposite sense (opening clockwise or counter-clockwise) from the pooled output of purportedly unbiased orientation filters. Here, we elaborate the mathematical relationship between spirals of opposite sense to confirm that they cannot be discriminated on the basis of the pooled output of unbiased or radially biased orientation filters. We then demonstrate that Carlson's (2014) reported decoding ability is consistent with the presence of inadvertent biases in the set of orientation filters; biases introduced by their digital implementation and unrelated to the brain's processing of orientation. These analyses demonstrate that spirals must be processed with an orientation bias other than the radial bias for successful decoding of spiral sense. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. The thickness of the HI gas layer in spiral galaxies

    NARCIS (Netherlands)

    Sicking, Floris Jan

    1997-01-01

    In the present study, in two inclined spiral galaxies, NGC 3198 and NGC 2403, the HI random velocity dispersion and layer thickness will be measured simultaneously. This will be done from the HI velocity dispersion field (the distribution on the sky of the observed HI line of sight velocity

  12. A Study of Stress Distribution in Layered and Gradient Tribological Coatings (Preprint)

    Science.gov (United States)

    2006-11-01

    FG) Ti/TiC coating design. On the top of the 440C stainless steel substrate, α-Ti is added as a bond layer with 50nm thickness to improve the... stainless steel substrate and the rigid spherical indenter was performed. Figure 5 (a) shows the normalized Hertzian point contact pressure distribution...AFRL-ML-WP-TP-2007-402 A STUDY OF STRESS DISTRIBUTION IN LAYERED AND GRADIENT TRIBOLOGICAL COATINGS (PREPRINT) Young Sup Kang, Shashi K

  13. X-ray fractography by using synchrotron radiation source. Residual stress distribution just beneath fatigue fracture surface

    International Nuclear Information System (INIS)

    Akita, Koichi; Yoshioka, Yasuo; Suzuki, Hiroshi; Sasaki, Toshihiko

    2000-01-01

    The residual stress distributions just beneath the fatigue fracture surface were measured using synchrotron radiation with three different wavelengths, i.e., three different penetration depths. The residual stress distributions were estimated from three kinds of diffraction data by the following process. First, a temporary residual stress distribution in the depth direction is assumed. Theoretical 2θ-sin 2 ψ diagrams for each wavelength, where each has a different penetration depth, are calculated by the cosψ method developed by one of the authors. The sum total of the differences between the theoretical and experimental values of the diffraction angle in 2θ-sin 2 ψ diagrams is calculated. This total value is minimized by changing the assumed stress distribution by the quasi-Newton optimization method. Finally, optimized 2θ-sin 2 ψ diagrams for each penetration depth and detailed stress distribution are determined. The true surface residual stress is obtained from this stress distribution. No effect of load ratio R (= P min /P max ) on the residual stresses of the fatigue fracture surfaces in low-carbon steels was observed when the sin 2 ψ method was used for stress measurement. However, the residual stresses became higher with increasing R when these were measured by the proposed method. On the basis of this, the stress intensity factor range, ΔK, can be estimated from the residual stress on the fatigue fracture surface. (author)

  14. Effect of processing conditions on residual stress distributions by bead-on-plate welding after surface machining

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Mochizuki, Masahito

    2014-01-01

    Residual stress is important factor for stress corrosion cracking (SCC) that has been observed near the welded zone in nuclear power plants. Especially, surface residual stress is significant for SCC initiation. In the joining processes of pipes, butt welding is conducted after surface machining. Residual stress is generated by both processes, and residual stress distribution due to surface machining is varied by the subsequent butt welding. In previous paper, authors reported that residual stress distribution generated by bead on plate welding after surface machining has a local maximum residual stress near the weld metal. The local maximum residual stress shows approximately 900 MPa that exceeds the stress threshold for SCC initiation. Therefore, for the safety improvement of nuclear power plants, a study on the local maximum residual stress is important. In this study, the effect of surface machining and welding conditions on residual stress distribution generated by welding after surface machining was investigated. Surface machining using lathe machine and bead on plate welding with tungsten inert gas (TIG) arc under various conditions were conducted for plate specimens made of SUS316L. Then, residual stress distributions were measured by X-ray diffraction method (XRD). As a result, residual stress distributions have the local maximum residual stress near the weld metal in all specimens. The values of the local maximum residual stresses are almost the same. The location of the local maximum residual stress is varied by welding condition. It could be consider that the local maximum residual stress is generated by same generation mechanism as welding residual stress in surface machined layer that has high yield stress. (author)

  15. Factors affecting stress distribution and displacements in crystals III-V grown by Czochralski method with liquid encapsulation

    International Nuclear Information System (INIS)

    Schvezov, C.E.; Samarasekera, I.; Weinberg, F.

    1988-01-01

    A mathematical model based on the finite element method for calculating temperature and shear stress distributions in III-V crystals grown by LEC technique was developed. The calculated temperature are in good agreements with the experimental measurements. The shear stress distribution was calculated for several environmental conditions. The results showed that the magnitude and the distribution of shear stresses are highly sensitive to the crystal environment, including thickness and temperature distribution in boron oxides and the gas. The shear stress is also strongly influenced by interface curvature and cystals radius. (author) [pt

  16. Determination of Hot-Carrier Distribution Functions in Uniaxially Stressed p-Type Germanium

    DEFF Research Database (Denmark)

    Christensen, Ove

    1973-01-01

    This paper gives a description of an experimental determination of distribution functions in k→ space of hot holes in uniaxially compressed germanium. The hot-carrier studies were made at 85°K at fields up to 1000 V/cm and uniaxial stresses up to 11 800 kg/cm2. The field and stress were always in...... probabilities with stress. A model based on the nonparabolicity of the upper p3 / 2 level is proposed for the negative differential conductivity in stressed p-type Ge....... function has been assumed. The parameters of the distribution function are then fitted to the experimental modulation. The calculation of absorption was performed numerically, using a four-band k→·p→ model. This model was checked for consistency by comparing with piezoabsorption measurements performed...... in thermal equilibrium. The average carrier energy calculated from the distribution function shows a fast increase with stress and almost saturates when the strain splitting of the two p3 / 2 levels reaches the optical-phonon energy. This saturation is interpreted in terms of the change in scattering...

  17. Internal Stress Distribution Measurement of TIG Welded SUS304 Samples Using Neutron Diffraction Technique

    Science.gov (United States)

    Muslih, M. Refai; Sumirat, I.; Sairun; Purwanta

    2008-03-01

    The distribution of residual stress of SUS304 samples that were undergone TIG welding process with four different electric currents has been measured. The welding has been done in the middle part of the samples that was previously grooved by milling machine. Before they were welded the samples were annealed at 650 degree Celsius for one hour. The annealing process was done to eliminate residual stress generated by grooving process so that the residual stress within the samples was merely produced from welding process. The calculation of distribution of residual stress was carried out by measuring the strains within crystal planes of Fe(220) SUS304. Strain, Young modulus, and Poisson ratio of Fe(220) SUS304 were measured using DN1-M neutron diffractometer. Young modulus and Poisson ratio of Fe(220) SUS304 sample were measured in-situ. The result of calculations showed that distribution of residual stress of SUS304 in the vicinity of welded area is influenced both by treatments given at the samples-making process and by the electric current used during welding process.

  18. Simulation algorithm for spiral case structure in hydropower station

    Directory of Open Access Journals (Sweden)

    Xin-yong Xu

    2013-04-01

    Full Text Available In this study, the damage-plasticity model for concrete that was verified by the model experiment was used to calculate the damage to a spiral case structure based on the damage mechanics theory. The concrete structure surrounding the spiral case was simulated with a three-dimensional finite element model. Then, the distribution and evolution of the structural damage were studied. Based on investigation of the change of gap openings between the steel liner and concrete structure, the impact of the non-uniform variation of gaps on the load-bearing ratio between the steel liner and concrete structure was analyzed. The comparison of calculated results of the simplified and simulation algorithms shows that the simulation algorithm is a feasible option for the calculation of spiral case structures. In addition, the shell-spring model was introduced for optimization analysis, and the results were reasonable.

  19. Origins of galactic spiral structures

    International Nuclear Information System (INIS)

    Piddington, J.H.

    1978-01-01

    Theories of galactic structure are reviewed briefly before comparing them with recent observations. Also reviewed is the evidence for an intergalactic magnetic field and its possible effects on gas concentrations and patterns of star creation, including spiral arms. It is then shown that normal spiral galaxies may be divided into the M51-type and others. The rare M51-type have H I gas arms coincident with unusually filamentary and luminous optical arms; they also have a companion galaxy. The remaining great majority of spirals have no well-defined gas arms and their optical arms are irregular, broader and less luminous; they have no companion galaxy. It appears that without exception the half-dozen or so galaxies whose structures appear to support the density-wave theory show one or more of the characteristics of the rare type of spiral, and that 'the three principal confirmations of the spiral-wave idea' (M51, M81, M101) have companions which may account for their arms. Toomre has rejected this idea on the grounds that his models do not agree with the observed structures. It is shown that these models are inadequate in two major respects, and when replaced by magneto-tidal models using non-uniform gas disks one might expect agreement. The original hydromagnetic model of spiral arms is now reserved for non-interacting galaxies, of which M33 might be taken as a prototype. The model predicts broad or 'massive' optical arms and no corresponding arms of neutral hydrogen, as observed. (Auth.)

  20. Stress Prediction for Distributed Structural Health Monitoring Using Existing Measurements and Pattern Recognition.

    Science.gov (United States)

    Lu, Wei; Teng, Jun; Zhou, Qiushi; Peng, Qiexin

    2018-02-01

    The stress in structural steel members is the most useful and directly measurable physical quantity to evaluate the structural safety in structural health monitoring, which is also an important index to evaluate the stress distribution and force condition of structures during structural construction and service phases. Thus, it is common to set stress as a measure in steel structural monitoring. Considering the economy and the importance of the structural members, there are only a limited number of sensors that can be placed, which means that it is impossible to obtain the stresses of all members directly using sensors. This study aims to develop a stress response prediction method for locations where there are insufficent sensors, using measurements from a limited number of sensors and pattern recognition. The detailed improved aspects are: (1) a distributed computing process is proposed, where the same pattern is recognized by several subsets of measurements; and (2) the pattern recognition using the subset of measurements is carried out by considering the optimal number of sensors and number of fusion patterns. The validity and feasibility of the proposed method are verified using two examples: the finite-element simulation of a single-layer shell-like steel structure, and the structural health monitoring of the space steel roof of Shenzhen Bay Stadium; for the latter, the anti-noise performance of this method is verified by the stress measurements from a real-world project.

  1. Influence of parafunctional loading and prosthetic connection on stress distribution: a 3D finite element analysis.

    Science.gov (United States)

    Torcato, Leonardo Bueno; Pellizzer, Eduardo Piza; Verri, Fellippo Ramos; Falcón-Antenucci, Rosse Mary; Santiago Júnior, Joel Ferreira; de Faria Almeida, Daniel Augusto

    2015-11-01

    Clinicians should consider parafunctional occlusal load when planning treatment. Prosthetic connections can reduce the stress distribution on an implant-supported prosthesis. The purpose of this 3-dimensional finite element study was to assess the influence of parafunctional loading and prosthetic connections on stress distribution. Computer-aided design software was used to construct 3 models. Each model was composed of a bone and an implant (external hexagon, internal hexagon, or Morse taper) with a crown. Finite element analysis software was used to generate the finite element mesh and establish the loading and boundary conditions. A normal force (200-N axial load and 100-N oblique load) and parafunctional force (1000-N axial and 500-N oblique load) were applied. Results were visualized as the maximum principal stress. Three-way analysis of variance and Tukey test were performed, and the percentage of contribution of each variable to the stress concentration was calculated from sum-of squares-analysis. Stress was concentrated around the implant at the cortical bone, and models with the external hexagonal implant showed the highest stresses (PProsthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  2. Statistics on Near Wall Structures and Shear Stress Distribution from 3D Holographic Measurement.

    Science.gov (United States)

    Sheng, J.; Malkiel, E.; Katz, J.

    2007-11-01

    Digital Holographic Microscopy performs 3D velocity measurement in the near-wall region of a turbulent boundary layer in a square channel over a smooth wall at Reτ=1,400. Resolution of ˜1μm over a sample volume of 1.5x2x1.5mm (x^+=50, y^+=60, z^+=50) is sufficient for resolving buffer layer and lower log layer structures, and for measuring instantaneous wall shear stress distributions from velocity gradients in the viscous sublayer. Results, based on 700 instantaneous realizations, provide detailed statistics on the spatial distribution of both wall stress components along with characteristic flow structures. Conditional sampling based on maxima and minima of wall shear stresses, as well as examination of instantaneous flow structures, lead to development of a conceptual model for a characteristic flow phenomenon that seems to generating extreme stress events. This structure develops as an initially spanwise vortex element rises away from the surface, due to local disturbance, causing a local stress minimum. Due to increasing velocity with elevation, this element bends downstream, forming a pair of inclined streamwise vortices, aligned at 45^0 to freestream, with ejection-like flow between them. Entrainment of high streamwise momentum on the outer sides of this vortex pair generates streamwise shear stress maxima, 70 δν downstream, which are displaced laterally by 35 δν from the local minimum.

  3. Evaluation of stress distribution characteristics on various bar designs of three-implant-supported mandibular overdentures

    Directory of Open Access Journals (Sweden)

    Emre Tokar

    2017-01-01

    Full Text Available Objective: Implant-supported-overdentures, instead of conventional complete dentures, are frequently recommended to rehabilitate patients having edentulous mandible. The aim of this study was to evaluate the stress distribution characteristics of mandibular implant-supported overdentures with four different bar attachment designs. Materials and Method: A photoelastic mandibular model with three implants (3.75 mm - 13 mm placed at the interforaminal region was generated from a cast of an edentulous mandible. Four mandibular bar overdenture designs were fabricated: bar-clip, bar-galvano, bar-locator, and bar-ceka. Axial vertical loads (135 N were applied to the central fossa of the right first molar area for each overdenture design. Stress concentrations were recorded photographically and analyzed visually. Results: The tested bar attachment designs revealed low and moderate stress levels. The lowest stress was observed with the bar-clip design, followed by bar-locator, bar-ceka, and bar-galvano designs. Conclusion: The loads were distributed to all of the implants. Studied designs experienced moderate stress levels around the loaded side implant. Bars with distally placed stud attachments and surface treatment with electroforming seems to increase stress levels around the implants.

  4. Influence of Sewer Sediments on Flow Friction and Shear Stress Distribution

    DEFF Research Database (Denmark)

    Perrusquia, G.; Petersen, O.; Larsen, Torben

    1995-01-01

    Most sewers contain more or less deposited sediments. The paper discusses the distribution of the boundary shear stresses and the hydraulic resistance in part-full sewer pipes with such deposited sediments. The discussion is based on a series of numerical experiments using a validated numerical...

  5. Is the wide distribution of aspen a result of its stress tolerance?

    Science.gov (United States)

    V. J. Lieffers; S. M. Landhausser; E. H. Hogg

    2001-01-01

    Populus tremuloides is distributed from drought-prone fringes of the Great Plains to extremely cold sites at arctic treeline. To occupy these conditions aspen appears to be more tolerant of stress than the other North American species of the genus Populus. Cold winters, cold soil conditions during the growing season, periodic drought, insect defoliation, and...

  6. Transient temperature and stress distributions in the pressure vessel's wall of a nuclear reactor

    International Nuclear Information System (INIS)

    Silva, G.A. da

    1979-01-01

    In order to calculate the temperature distribution in a reactor vessel wall which is under the effect of gamma radiation originated in the reactor core, a numerical solution is proposed. This problem may arise from a reactor cooling pump failure .The thermal stresses are also calculated. (Author) [pt

  7. The influence of initial defects on mechanical stress and deformation distribution in oxidized silicon

    Directory of Open Access Journals (Sweden)

    Kulinich O. A.

    2008-10-01

    Full Text Available The near-surface silicon layers in silicon – dioxide silicon systems with modern methods of research are investigated. It is shown that these layers have compound structure and their parameters depend on oxidation and initial silicon parameters. It is shown the influence of initial defects on mechanical stress and deformation distribution in oxidized silicon.

  8. Thermal stress comparison in modular power converter topologies for smart transformers in the electrical distribution system

    DEFF Research Database (Denmark)

    Andresen, Markus; Ma, Ke; Liserre, Marco

    2015-01-01

    A Smart Transformer (ST) can cover an important managing role in the future electrical distribution grid. For the moment, the reliability and cost are not competitive with traditional transformers and create a barrier for its application. This work conduct detail designs and analysis...... for a promising modular ST solution, which is composed of Modular Multi-level converter, Quad Active Bridge DC-DC converters, and two-level voltage source converters. The focus is put on the loading conditions and thermal stress of power semiconductor devices in order to discover critical parts of the whole...... system when performing various mission profiles in the realistic distribution grid. It is concluded that the thermal stress for all stages is low during normal operation and especially the isolation stage is stressed least....

  9. Parameter Estimations and Optimal Design of Simple Step-Stress Model for Gamma Dual Weibull Distribution

    Directory of Open Access Journals (Sweden)

    Hamdy Mohamed Salem

    2018-03-01

    Full Text Available This paper considers life-testing experiments and how it is effected by stress factors: namely temperature, electricity loads, cycling rate and pressure. A major type of accelerated life tests is a step-stress model that allows the experimenter to increase stress levels more than normal use during the experiment to see the failure items. The test items are assumed to follow Gamma Dual Weibull distribution. Different methods for estimating the parameters are discussed. These include Maximum Likelihood Estimations and Confidence Interval Estimations which is based on asymptotic normality generate narrow intervals to the unknown distribution parameters with high probability. MathCAD (2001 program is used to illustrate the optimal time procedure through numerical examples.

  10. A fully coupled finite element model for stress distribution in buried gas pipeline

    International Nuclear Information System (INIS)

    Yahya Sukirman; Zainal Zakaria; Woong Soon Yue

    2001-01-01

    The study of stress-strain relationship is very important in many designs of buried structures over the years. The behavior and mechanism between the interaction of soil and buried structures such as a natural pipeline will mostly contributes to the integrity of the pipeline. This paper presents a fully coupled finite element of consolidation analysis model to study the stress-strain distribution along a buried pipeline before it excess its maximum deformation limit. The behavior of the soil-pipeline system can be modelled by a non-linear elasto-plastic based on Mohr-Coulomb and critical state yield surfaces. The deformation and deflection of the pipeline due to drained and external loading condition will be considered here. Finally the stress-strain distribution of the buried pipeline will be utilised to obtain the maximum deformation limit and the deflection of the buried pipeline. (Author)

  11. Evaluation of the stress distribution on the pressure vessel head with multi-openings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.S.; Kim, T.W.; Jeong, K.H.; Lee, G.M. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-06-01

    This report discusses and analyzes the stress distribution on the pressure vessel head with multi-openings(3 PSV nozzles, 2 SDS nozzles and 1 Man Way) according to patterns of the opening distance. The pressurizer of Korea Standardized Nuclear Power Plant(Ulchin 3 and 4), which meets requirements of the cyclic operation and opening design defined by ASME code, was used as the basic model for that. Stress changes according to the distance between openings were investigated and the factors which should be considered for the opening design were analyzed. Also, the nozzle loads at Level A, B conditions and internal pressure were applied in order to evaluate changes of head stress distributions due to nozzle loads. (author). 6 refs., 29 figs., 4 tabs.

  12. Dark matter in spiral galaxies

    International Nuclear Information System (INIS)

    Persic, M.; Salucci, P.

    1990-01-01

    The Tully-Fisher relation is used to probe dark matter (DM) in the optical regions of spiral galaxies. By establishing it at several different isophotal radii in an appropriate sample of 58 galaxies with good B-band photometry and rotation curves, it is shown that some of its attributes (such as scatter, residuals, nonlinearity, and bias) dramatically decrease moving from the disk edge inward. This behavior challenges any mass model which assumes no DM or a luminosity-independent DM mass fraction interior to the optical radius of spiral galaxies. 58 refs

  13. Adaptation of BAp crystal orientation to stress distribution in rat mandible during bone growth

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, T; Fujitani, W; Ishimoto, T [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871 (Japan); Umakoshi, Y [National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaragi, 305-0471 (Japan)], E-mail: nakano@mat.eng.osaka-u.ac.jp

    2009-05-01

    Biological apatite (BAp) c-axis orientation strongly depends on stress distribution in vivo and tends to align along the principal stress direction in bones. Dentulous mandible is subjected to a complicated stress condition in vivo during chewing but few studies have been carried out on the BAp c-axis orientation; so the adaptation of BAp crystal orientation to stress distribution was examined in rat dentulous mandible during bone growth and mastication. Female SD rats 4 to 14 weeks old were prepared, and the bone mineral density (BMD) and BAp crystal orientation were analyzed in a cross-section of mandible across the first molar focusing on two positions: separated from and just under the tooth root on the same cross-section perpendicular to the mesiodistal axis. The degree of BAp orientation was analyzed by a microbeam X-ray diffractometer using Cu-K{alpha} radiation equipped with a detector of curved one-dimensional PSPC and two-dimensional PSPC in the reflection and transmission optics, respectively. BMD quickly increased during bone growth up to 14 weeks, although it was independent of the position from the tooth root. In contrast, BAp crystal orientation strongly depended on the age and the position from the tooth root, even in the same cross-section and direction, especially along the mesiodistal and the biting axes. With increased biting stress during bone growth, the degree of BAp orientation increased along the mesiodistal axis in a position separated from the tooth root more than that near the tooth root. In contrast, BAp preferential alignment clearly appeared along the biting axis near the tooth root. We conclude that BAp orientation rather than BMD sensitively adapts to local stress distribution, especially from the chewing stress in vivo in the mandible.

  14. Tissue distribution of 3H-corticosterone in response to stress

    International Nuclear Information System (INIS)

    Kolta, M.G.; Soliman, K.F.A.

    1981-01-01

    The level and distribution of 3 H-corticosterone ( 3 H-B) was investigated in adult male Sprague-Dawley rats in response to diethyl ether stress, epinephrine (EP) and/or dexamethasone administration. Diethyl ether stress caused a significant increase in the 3 H-B counts by some of the body tissues and brain regions studied. Plasma 3 H-B counts in the stressed rats were found to be twice as much as in the control animals. When EP (1.0 mg/kg) was injected, the tissue-plasma ratios of 3 H-B were significantly lower (P 3 H-B count in the plasma in response to diethyl ether stress or EP may indicate a decline in rate of corticosterone metabolism. (author)

  15. Quasicrystallography on the spiral of Archimedes

    International Nuclear Information System (INIS)

    Bursill, L.A.

    1990-01-01

    The concept of a spiral lattice is discussed. Some examples of known mineral structures, namely clino asbestos, halloysite and cylindrite, are then interpreted in terms of this structural principle. An example of a synthetic sulphide catalyst spiral structure having atomic dimensions is also described. All of these inorganic spiral structures are based on the sprial of Archimedes. The principles for a new type of crystallography, based on the Archimedian spiral, are then presented. 45 refs., 8 figs

  16. A Unified Scaling Law in Spiral Galaxies.

    Science.gov (United States)

    Koda; Sofue; Wada

    2000-03-01

    We investigate the origin of a unified scaling relation in spiral galaxies. Observed spiral galaxies are spread on a plane in the three-dimensional logarithmic space of luminosity L, radius R, and rotation velocity V. The plane is expressed as L~&parl0;VR&parr0;alpha in the I passband, where alpha is a constant. On the plane, observed galaxies are distributed in an elongated region which looks like the shape of a surfboard. The well-known scaling relations L-V (Tully-Fisher [TF] relation), V-R (also the TF relation), and R-L (Freeman's law) can be understood as oblique projections of the surfboard-like plane into two-dimensional spaces. This unified interpretation of the known scaling relations should be a clue to understand the physical origin of all the relations consistently. Furthermore, this interpretation can also explain why previous studies could not find any correlation between TF residuals and radius. In order to clarify the origin of this plane, we simulate formation and evolution of spiral galaxies with the N-body/smoothed particle hydrodynamics method, including cooling, star formation, and stellar feedback. Initial conditions are set to 14 isolated spheres with two free parameters, such as mass and angular momentum. The cold dark matter (h=0.5, Omega0=1) cosmology is considered as a test case. The simulations provide the following two conclusions: (1) The slope of the plane is well reproduced but the zero point is not. This zero-point discrepancy could be solved in a low-density (Omega00.5) cosmology. (2) The surfboard-shaped plane can be explained by the control of galactic mass and angular momentum.

  17. PROTOPLANETARY DISK HEATING AND EVOLUTION DRIVEN BY SPIRAL DENSITY WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Rafikov, Roman R., E-mail: rrr@ias.edu [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)

    2016-11-10

    Scattered light imaging of protoplanetary disks often reveals prominent spiral arms, likely excited by massive planets or stellar companions. Assuming that these arms are density waves, evolving into spiral shocks, we assess their effect on the thermodynamics, accretion, and global evolution of the disk. We derive analytical expressions for the direct (irreversible) heating, angular momentum transport, and mass accretion rate induced by disk shocks of arbitrary amplitude. These processes are very sensitive to the shock strength. We show that waves of moderate strength (density jump at the shock ΔΣ/Σ ∼ 1) result in negligible disk heating (contributing at the ∼1% level to the energy budget) in passive, irradiated protoplanetary disks on ∼100 au scales, but become important within several au. However, shock heating is a significant (or even dominant) energy source in disks of cataclysmic variables, stellar X-ray binaries, and supermassive black hole binaries, heated mainly by viscous dissipation. Mass accretion induced by the spiral shocks is comparable to (or exceeds) the mass inflow due to viscous stresses. Protoplanetary disks featuring prominent global spirals must be evolving rapidly, in ≲0.5 Myr at ∼100 au. A direct upper limit on the evolution timescale can be established by measuring the gravitational torque due to the spiral arms from the imaging data. We find that, regardless of their origin, global spiral waves must be important agents of the protoplanetary disk evolution. They may serve as an effective mechanism of disk dispersal and could be related to the phenomenon of transitional disks.

  18. PROTOPLANETARY DISK HEATING AND EVOLUTION DRIVEN BY SPIRAL DENSITY WAVES

    International Nuclear Information System (INIS)

    Rafikov, Roman R.

    2016-01-01

    Scattered light imaging of protoplanetary disks often reveals prominent spiral arms, likely excited by massive planets or stellar companions. Assuming that these arms are density waves, evolving into spiral shocks, we assess their effect on the thermodynamics, accretion, and global evolution of the disk. We derive analytical expressions for the direct (irreversible) heating, angular momentum transport, and mass accretion rate induced by disk shocks of arbitrary amplitude. These processes are very sensitive to the shock strength. We show that waves of moderate strength (density jump at the shock ΔΣ/Σ ∼ 1) result in negligible disk heating (contributing at the ∼1% level to the energy budget) in passive, irradiated protoplanetary disks on ∼100 au scales, but become important within several au. However, shock heating is a significant (or even dominant) energy source in disks of cataclysmic variables, stellar X-ray binaries, and supermassive black hole binaries, heated mainly by viscous dissipation. Mass accretion induced by the spiral shocks is comparable to (or exceeds) the mass inflow due to viscous stresses. Protoplanetary disks featuring prominent global spirals must be evolving rapidly, in ≲0.5 Myr at ∼100 au. A direct upper limit on the evolution timescale can be established by measuring the gravitational torque due to the spiral arms from the imaging data. We find that, regardless of their origin, global spiral waves must be important agents of the protoplanetary disk evolution. They may serve as an effective mechanism of disk dispersal and could be related to the phenomenon of transitional disks.

  19. The Spiral Pattern During Development*

    African Journals Online (AJOL)

    1971-08-07

    Aug 7, 1971 ... which are destined to become the limb areas bud out laterally. Fig. 8. The early cells, which are destined to develop into the upper and the lower limbs, after lateral budding has occurred. Fig. 11 demonstrates the human embryo of about 5 mm. CR length and age of about 32 days. The spiral pattern is.

  20. A Microstructural Study of Load Distribution in Cartilage: A Comparison of Stress Relaxation versus Creep Loading

    Directory of Open Access Journals (Sweden)

    Ashvin Thambyah

    2015-01-01

    Full Text Available The compressive response of articular cartilage has been extensively investigated and most studies have focussed largely on the directly loaded matrix. However, especially in relation to the tissue microstructure, less is known about load distribution mechanisms operating outside the directly loaded region. We have addressed this issue by using channel indentation and DIC microscopy techniques that provide visualisation of the matrix microstructural response across the regions of both direct and nondirect loading. We hypothesise that, by comparing the microstructural response following stress relaxation and creep compression, new insights can be revealed concerning the complex mechanisms of load bearing. Our results indicate that, with stress relaxation, the initial mode of stress decay appears to primarily involve relaxation of the surface layer. In the creep loading protocol, the main mode of stress release is a lateral distribution of load via the mid matrix. While these two modes of stress redistribution have a complex relationship with the zonally differentiated tissue microstructure and the depth of strain, four mechanostructural mechanisms are proposed to describe succinctly the load responses observed.

  1. A new local thickening reverse spiral origami thin-wall construction for improving of energy absorption

    Science.gov (United States)

    Kong, C. H.; Zhao, X. L.; Hagiwara, I. R.

    2018-02-01

    As an effective and representative origami structure, reverse spiral origami structure can be capable to effectively take up energy in a crash test. The origami structure has origami creases thus this can guide the deformation of structure and avoid of Euler buckling. Even so the origami creases also weaken the support force and this may cut the absorption of crash energy. In order to increase the supporting capacity of the reverse spiral origami structure, we projected a new local thickening reverse spiral origami thin-wall construction. The reverse spiral origami thin-wall structure with thickening areas distributed along the longitudinal origami crease has a higher energy absorption capacity than the ordinary reverse spiral origami thin-wall structure.

  2. Novel type of chimera spiral waves arising from decoupling of a diffusible component

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaodong; Yang, Tao; Liu, Yang; Zhao, Yuemin; Gao, Qingyu, E-mail: epstein@brandeis.edu, E-mail: gaoqy@cumt.edu.cn [College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008 (China); Epstein, Irving R., E-mail: epstein@brandeis.edu, E-mail: gaoqy@cumt.edu.cn [Department of Chemistry and Volen Center for Complex Systems, MS 015, Brandeis University, Waltham, Massachusetts 02454-9110 (United States)

    2014-07-14

    Spiral waves composed of coherent traveling waves surrounding a core containing stochastically distributed stationary areas are found in numerical simulations of a three-variable reaction-diffusion system with one diffusible species. In the spiral core, diffusion of this component (w) mediates transitions between dynamic states of the subsystem formed by the other two components, whose dynamics is more rapid than that of w. Diffusive coupling between adjacent sites can be “on” or “off” depending on the subsystem state. The incoherent structures in the spiral core are produced by this decoupling of the slow diffusive component from the fast non-diffusing subsystem. The phase diagram reveals that the region of incoherent behavior in chimera spirals grows drastically, leading to modulation and breakup of the spirals, in the transition zones between 1{sup n-1} and 1{sup n} local mixed-mode oscillations.

  3. Numerical investigation on residual stress distribution and evolution during multipass narrow gap welding of thick-walled stainless steel pipes

    International Nuclear Information System (INIS)

    Liu, C.; Zhang, J.X.; Xue, C.B.

    2011-01-01

    Research highlights: → We performed pass-by-pass simulation of stresses for welding of thick-walled pipes. → The distributions and evolution of the residual stresses are demonstrated. → After the groove is filled to a height, the through-wall stress is almost unchanged. - Abstracts: The detailed pass-by-pass finite element (FE) simulation is presented to investigate the residual stresses in narrow gap multipass welding of pipes with a wall thickness of 70 mm and 73 weld passes. The simulated residual stress on the outer surface is validated with the experimental one. The distribution and evolution of the through-wall residual stresses are demonstrated. The investigated results show that the residual stresses on the outer and inner surfaces are tensile in the weld zone and its vicinity. The through-wall axial residual stresses at the weld center line and the HAZ line demonstrate a distribution of bending type. The through-wall hoop residual stress within the weld is mostly tensile. After the groove is filled to a certain height, the peak tensile stresses and the stress distribution patterns for both axial and hoop stresses remain almost unchanged.

  4. Three-Dimensional Finite Element Analysis on Stress Distribution of Internal Implant-Abutment Engagement Features.

    Science.gov (United States)

    Cho, Sung-Yong; Huh, Yun-Hyuk; Park, Chan-Jin; Cho, Lee-Ra

    To investigate the stress distribution in an implant-abutment complex with a preloaded abutment screw by comparing implant-abutment engagement features using three-dimensional finite element analysis (FEA). For FEA modeling, two implants-one with a single (S) engagement system and the other with a double (D) engagement system-were placed in the human mandibular molar region. Two types of abutments (hexagonal, conical) were connected to the implants. Different implant models (a single implant, two parallel implants, and mesial and tilted distal implants with 1-mm bone loss) were assumed. A static axial force and a 45-degree oblique force of 200 N were applied as the sum of vectors to the top of the prosthetic occlusal surface with a preload of 30 Ncm in the abutment screw. The von Mises stresses at the implant-abutment and abutment-screw interfaces were measured. In the single implant model, the S-conical abutment type exhibited broader stress distribution than the S-hexagonal abutment. In the double engagement system, the stress concentration was high in the lower contact area of the implant-abutment engagement. In the tilted implant model, the stress concentration point was different from that in the parallel implant model because of the difference in the bone level. The double engagement system demonstrated a high stress concentration at the lower contact area of the implant-abutment interface. To decrease the stress concentration, the type of engagement features of the implant-abutment connection should be carefully considered.

  5. Effect of preemptive weld overlay sequence on residual stress distribution for dissimilar metal weld of Kori nuclear power plant pressurizer

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hong Yeol; Song, Tae Kwang; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-07-01

    Weld overlay is one of the residual stress mitigation method which arrest crack. An overlay weld sued in this manner is termed a Preemptive Weld OverLay(PWOL). PWOL was good for distribution of residual stress of Dissimilar Metal Weld(DMW) by previous research. Because range of overlay welding is wide relatively, residual stress distribution on PWR is affected by welding sequence. In order to examine the effect of welding sequence, PWOL was applied to a specific DMW of KORI nuclear power plant by finite element analysis method. As a result, the welding direction that from nozzle to pipe is better good for residual stress distribution on PWR.

  6. Effect of preemptive weld overlay sequence on residual stress distribution for dissimilar metal weld of Kori nuclear power plant pressurizer

    International Nuclear Information System (INIS)

    Bae, Hong Yeol; Song, Tae Kwang; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae; Lee, Kyoung Soo; Park, Chi Yong

    2008-01-01

    Weld overlay is one of the residual stress mitigation method which arrest crack. An overlay weld sued in this manner is termed a Preemptive Weld OverLay(PWOL). PWOL was good for distribution of residual stress of Dissimilar Metal Weld(DMW) by previous research. Because range of overlay welding is wide relatively, residual stress distribution on PWR is affected by welding sequence. In order to examine the effect of welding sequence, PWOL was applied to a specific DMW of KORI nuclear power plant by finite element analysis method. As a result, the welding direction that from nozzle to pipe is better good for residual stress distribution on PWR

  7. Analysis of the temperature and stress distributions in ceramic window materials subjected to microwave heating

    International Nuclear Information System (INIS)

    Ferber, M.K.; Kimrey, H.D.; Becher, P.F.

    1983-07-01

    The temperature and stress and distributions generated in ceramic materials currently employed in microwave gyrotron tube windows were determined for a variety of operating conditions. Both edge- and face-cooled windows of either polycrystalline BeO or polycrystalline Al 2 O 3 were considered. The actual analysis involved three steps. First, a computer program was used to determine the electric field distribution within the window at a given power level and frequency (TE 02 wave propagation assumed). This program was capable of describing both the radial and axial dependence of the electric field. The effects of multiple internal reflections at the various dielectric interfaces were also accounted for. Secondly, the field distribution was used to derive an expression for the heat generated per unit volume per unit time within the window due to dieletric losses. A generalized heat conduction computer code was then used to compute the temperature distribution based on the heat generation function. Third, the stresses were determined from the temperature profiles using analytical expression or a finite-element computer program. Steady-state temperature and stress profiles were computed for the face-cooled and edge-cooled windows

  8. TESTING THEORIES IN BARRED-SPIRAL GALAXIES

    International Nuclear Information System (INIS)

    Martínez-García, Eric E.

    2012-01-01

    According to one version of the recently proposed 'manifold' theory that explains the origin of spirals and rings in relation to chaotic orbits, galaxies with stronger bars should have a higher spiral arms pitch angle when compared to galaxies with weaker bars. A subsample of barred-spiral galaxies in the Ohio State University Bright Galaxy Survey was used to analyze the spiral arms pitch angle. These were compared with bar strengths taken from the literature. It was found that the galaxies in which the spiral arms maintain a logarithmic shape for more than 70° seem to corroborate the predicted trend.

  9. Spiral-shaped reactor for water disinfection

    KAUST Repository

    Soukane, Sofiane

    2016-04-20

    Chlorine-based processes are still widely used for water disinfection. The disinfection process for municipal water consumption is usually carried out in large tanks, specifically designed to verify several hydraulic and disinfection criteria. The hydrodynamic behavior of contact tanks of different shapes, each with an approximate total volume of 50,000 m3, was analyzed by solving turbulent momentum transport equations with a computational fluid dynamics code, namely ANSYS fluent. Numerical experiments of a tracer pulse were performed for each design to generate flow through curves and investigate species residence time distribution for different inlet flow rates, ranging from 3 to 12 m3 s−1. A new nature-inspired Conch tank design whose shape follows an Archimedean spiral was then developed. The spiral design is shown to strongly outperform the other tanks’ designs for all the selected plug flow criteria with an enhancement in efficiency, less short circuiting, and an order of magnitude improvement in mixing and dispersion. Moreover, following the intensification philosophy, after 50% reduction in its size, the new design retains its properties and still gives far better results than the classical shapes.

  10. Effect of thermoplastic appliance thickness on initial stress distribution in periodontal ligament

    Directory of Open Access Journals (Sweden)

    De-Shin Liu

    2015-04-01

    Full Text Available A numerical investigation into the initial stress distribution induced within the periodontal ligament by thermoplastic appliances with different thicknesses is performed. Based on the plaster model of a 25-year-old male patient, a finite element model of the maxillary lateral incisors and their supporting structures is constructed. In addition, four finite element models of thermoplastic appliances with different thicknesses in the range of 0.5–1.25 mm are also constructed based on the same plaster model. Finite element analysis simulations are performed to examine the effects of the force delivered by the thermoplastic appliances on the stress response of the periodontal ligament during the elastic recovery process. The results show that the stress induced in the periodontal ligament increases with an increasing appliance thickness. For example, the stress triples from 0.0012 to 0.0038 MPa as the appliance thickness is increased from 0.75 to 1.25 mm. The results presented in this study provide a useful insight into as a result of the compressive and tensile stresses induced by thermoplastic appliances of different thicknesses. Moreover, the results enable the periodontal ligament stress levels produced by thermoplastic appliances of different thicknesses to be reliably estimated.

  11. Effect of cryogenic treatment on distribution of residual stress in case carburized En 353 steel

    International Nuclear Information System (INIS)

    Bensely, A.; Venkatesh, S.; Mohan Lal, D.; Nagarajan, G.; Rajadurai, A.; Junik, Krzysztof

    2008-01-01

    The effect of cryogenic treatment on the distribution of residual stress in the case carburized steel (En 353) was studied using X-ray diffraction technique. Two types of cryogenic treatment: shallow cryogenic treatment (193 K) and deep cryogenic treatment (77 K) were adopted, as a supplement to conventional heat treatment. The amount of retained austenite in conventionally heat-treated, shallow cryogenically treated and deep cryogenically treated samples was found to be 28%, 22% and 14%, respectively. The conventionally heat-treated, shallow cryogenically treated and deep cryogenically treated samples in untempered condition had a surface residual stress of -125 MPa, -115 MPa and -235 MPa, respectively. After tempering the conventionally heat-treated, shallow cryogenically treated and deep cryogenically treated samples had a surface residual stress of -150 MPa, -80 MPa and -80 MPa, respectively. A comparative study of the three treatments revealed that there was an increase in the compressive residual stress in steel that was subjected to cryogenic treatment prior to tempering. The experimental investigation revealed that deep cryogenically treated steel when subjected to tempering has undergone a reduction in compressive residual stress. Such stress relieving behaviour was mainly due to the increased precipitation of fine carbides in specimens subjected to DCT with tempering

  12. Robustness, Death of Spiral Wave in the Network of Neurons under Partial Ion Channel Block

    International Nuclear Information System (INIS)

    Jun, Ma; Long, Huang; Chun-Ni, Wang; Zhong-Sheng, Pu

    2013-01-01

    The development of spiral wave in a two-dimensional square array due to partial ion channel block (Potassium, Sodium) is investigated, the dynamics of the node is described by Hodgkin—Huxley neuron and these neurons are coupled with nearest neighbor connection. The parameter ratio x Na (and x K ), which defines the ratio of working ion channel number of sodium (potassium) to the total ion channel number of sodium (and potassium), is used to measure the shift conductance induced by channel block. The distribution of statistical variable R in the two-parameter phase space (parameter ratio vs. poisoning area) is extensively calculated to mark the parameter region for transition of spiral wave induced by partial ion channel block, the area with smaller factors of synchronization R is associated the parameter region that spiral wave keeps alive and robust to the channel poisoning. Spiral wave keeps alive when the poisoned area (potassium or sodium) and degree of intoxication are small, distinct transition (death, several spiral waves coexist or multi-arm spiral wave emergence) occurs under moderate ratio x Na (and x K ) when the size of blocked area exceeds certain thresholds. Breakup of spiral wave occurs and multi-arm of spiral waves are observed when the channel noise is considered. (interdisciplinary physics and related areas of science and technology)

  13. Interaction of multiarmed spirals in bistable media.

    Science.gov (United States)

    He, Ya-feng; Ai, Bao-quan; Liu, Fu-cheng

    2013-05-01

    We study the interaction of both dense and sparse multiarmed spirals in bistable media modeled by equations of the FitzHugh-Nagumo type. A dense one-armed spiral is characterized by its fixed tip. For dense multiarmed spirals, when the initial distance between tips is less than a critical value, the arms collide, connect, and disconnect continuously as the spirals rotate. The continuous reconstruction between the front and the back drives the tips to corotate along a rough circle and to meander zigzaggedly. The rotation frequency of tip, the frequency of zigzagged displacement, the frequency of spiral, the oscillation frequency of media, and the number of arms satisfy certain relations as long as the control parameters of the model are fixed. When the initial distance between tips is larger than the critical value, the behaviors of individual arms within either dense or sparse multiarmed spirals are identical to that of corresponding one-armed spirals.

  14. The probability distribution of intergranular stress corrosion cracking life for sensitized 304 stainless steels in high temperature, high purity water

    International Nuclear Information System (INIS)

    Akashi, Masatsune; Kenjyo, Takao; Matsukura, Shinji; Kawamoto, Teruaki

    1984-01-01

    In order to discuss the probability distribution of intergranular stress corrsion carcking life for sensitized 304 stainless steels, a series of the creviced bent beem (CBB) and the uni-axial constant load tests were carried out in oxygenated high temperature, high purity water. The following concludions were resulted; (1) The initiation process of intergranular stress corrosion cracking has been assumed to be approximated by the Poisson stochastic process, based on the CBB test results. (2) The probability distribution of intergranular stress corrosion cracking life may consequently be approximated by the exponential probability distribution. (3) The experimental data could be fitted to the exponential probability distribution. (author)

  15. Theoretical Analysis of Stress Distribution in Bonded Single Strap and Stiffened Joints

    Directory of Open Access Journals (Sweden)

    Behnam Ghoddous

    Full Text Available Abstract In this paper, distribution of peeling stress in two types of adhesively-bonded joints is investigated. The joints are a single strap and a stiffened joint. Theses joints are under uniform tensile load and materials are assumed orthotropic. Layers can be identical or different in mechanical or geometrical properties. A two-dimensional elasticity theory that includes the complete stress-strain and the complete strain-displacement relations for adhesive and adherends is used in this analysis. The displacement is assumed to be linear in the adhesive layer. A set of differential equations was derived and solved by using appropriate boundary conditions. Results revealed that the peak peeling stress developed within the adhesive layer is a function of geometrical and mechanical properties. FEM solution is used as the second method to verify the analytical results. A good agreement is observed between analytical and FEM solutions.

  16. Comparing of Normal Stress Distribution in Static and Dynamic Soil-Structure Interaction Analyses

    International Nuclear Information System (INIS)

    Kholdebarin, Alireza; Massumi, Ali; Davoodi, Mohammad; Tabatabaiefar, Hamid Reza

    2008-01-01

    It is important to consider the vertical component of earthquake loading and inertia force in soil-structure interaction analyses. In most circumstances, design engineers are primarily concerned about the analysis of behavior of foundations subjected to earthquake-induced forces transmitted from the bedrock. In this research, a single rigid foundation with designated geometrical parameters located on sandy-clay soil has been modeled in FLAC software with Finite Different Method and subjected to three different vertical components of earthquake records. In these cases, it is important to evaluate effect of footing on underlying soil and to consider normal stress in soil with and without footing. The distribution of normal stress under the footing in static and dynamic states has been studied and compared. This Comparison indicated that, increasing in normal stress under the footing caused by vertical component of ground excitations, has decreased dynamic vertical settlement in comparison with static state

  17. Non--Local Approach to the Analysis of the Stress Distribution in Granular Systems.

    Science.gov (United States)

    Scott, J. E.; Kenkre, V. M.; Hurd, A. J.

    1998-03-01

    A continuum mechanical theory of the stress distribution in granular materials is presented, where the transformation of the vertical spatial coordinate into a formal time variable converts the study of the static stress distribution into a generally non--Markoffian, i.e., memory-possessing (non-local) propagation analysis. Previous treatments (J. -P). Bouchaud, M. E. Cates, and P. Claudin, J. Phys. I France 5, 639 (1995). (C. -h). Liu, S. R. Nagel, D. A. Schecter, S. N. Coppersmith, S. Majumdar, O. Narayan, and T. A. Witten, Science 269, 513 (1995). are shown to be particular cases of our theory corresponding to, respectively, wave-like and dif fusive limits of the general evolution. Calculations are presented for the example of ceramic or metal powder compaction in dies, with emphasis on the understanding of previously unexplained features as seen in experimental data found in the literature o ver the past 50 years. Specific proposals for new experimental investigations are presented.

  18. Review on strategies for biofouling mitigation in spiral wound membrane systems

    KAUST Repository

    Bucs, Szilard

    2018-02-01

    Because of the uneven distribution of fresh water in time and space, a large number of regions are experiencing water scarcity and stress. Membrane based desalination technologies have the potential to solve the fresh water crisis in coastal areas. However, in many cases membrane performance is restricted by biofouling. The objective of this review is to provide an overview on the state of the art strategies to control biofouling in spiral wound reverse osmosis membrane systems and point to possible future research directions. A critical review on biofouling control strategies such as feed water pre-treatment, membrane surface modification, feed spacer geometry optimization and hydrodynamics in spiral wound membrane systems is presented. In conclusion, biofouling cannot be avoided in the long run, and thus biofouling control strategies should focus on delaying the biofilm formation, reducing its impact on membrane performance and enhancing biofilm removal by advanced cleaning strategies. Therefore, future studies should aim on: (i) biofilm structural characterization; (ii) understanding to what extent biofilm properties affect membrane filtration performance, and (iii) developing methods to engineer biofilm properties such that biofouling would have only a low or delayed impact on the filtration process and accumulated biomass can be easily removed.

  19. Study of the stress distribution around an orthotropic bi-material notch tip

    Czech Academy of Sciences Publication Activity Database

    Klusák, Jan; Profant, T.; Kotoul, M.

    417-418, - (2010), s. 385-388 ISSN 1013-9826. [International Conference on Fracture and Damage Mechanics /8./. Malta, 08.09.2009-10.09.2009] R&D Projects: GA ČR GA101/08/0994; GA AV ČR 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : Generalized fracture mechanics * Singular stress distribution * Orthotropic bimaterial notch Subject RIV: JL - Materials Fatigue, Friction Mechanics www.scientific.net

  20. Tungsten heavy metal alloys relations between the crystallographic texture and the internal stress distribution

    International Nuclear Information System (INIS)

    Nicolas, G.; Voltz, M.

    2001-01-01

    Quite often the W-Ni-Fe-Co heavy alloys are subjected to a thermomechanical processing of swaging and aging in order to obtain the highest possible level of resistance. Within the framework of this plastic deformation on cylindrical parts, the swaging leads to the distribution of morphological and crystallographic texture as well as specific internal stresses. The resulting mechanical characteristics are correlated to structural and sub-structural variations. (author)

  1. Distinctive hippocampal zinc distribution patterns following stress exposure in an animal model of PTSD.

    Science.gov (United States)

    Sela, Hagit; Cohen, Hagit; Karpas, Zeev; Zeiri, Yehuda

    2017-03-22

    Emerging evidence suggests that zinc (Zn) deficiency is associated with depression and anxiety in both human and animal studies. The present study sought to assess whether there is an association between the magnitude of behavioral responses to stress and patterns of Zn distribution. The work has focused on one case study, the association between an animal model of posttraumatic stress disorder (PTSD) and the Zn distribution in the rat hippocampus. Behaviors were assessed with the elevated plus-maze and acoustic startle response tests 7 days later. Preset cut-off criteria classified exposed animals according to their individual behavioral responses. To further characterize the distribution of Zn that occurs in the hippocampus 8 days after the exposure, laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging was used. It has been found that Zn distribution in the dentate gyrus (DG) sub-region in the hippocampus is clearly more widely spread for rats that belong to the extreme behavioral response (EBR) group as compared to the control group. Comparison of the Zn concentration changes in the cornu ammonis 1 (CA1) and the DG sub-regions of the hippocampus shows that the concentration changes are statistically significantly higher in the EBR rats compared to the rats in the control and minimal behavioral response (MBR) groups. In order to understand the mechanism of stress-induced hippocampal Zn dyshomeostasis, relative quantitative analyses of metallothionein (MT), B-cell lymphoma 2 (Bcl-2) and caspase 3 immunoreactivity were performed. Significant differences in the number of caspase-ir and Bcl-2 cells were found in the hippocampal DG sub-region between the EBR group and the control and MBR groups. The results of this study demonstrate a statistically significant association between the degree of behavioral disruption resulting from stress exposure and the patterns of Zn distribution and concentration changes in the various hippocampal regions

  2. Extended maximum likelihood analysis of apparent flattenings of S0 and spiral galaxies

    International Nuclear Information System (INIS)

    Okamura, Sadanori; Takase, Bunshiro; Hamabe, Masaru; Nakada, Yoshikazu; Kodaira, Keiichi.

    1981-01-01

    Apparent flattenings of S0 and spiral galaxies compiled by Sandage et al. (1970) and van den Bergh (1977), and those listed in the Second Reference Catalogue (RC2) are analyzed by means of the extended maximum likelihood method which was recently developed in the information theory for statistical model identification. Emphasis is put on the possible difference in the distribution of intrinsic flattenings between S0's and spirals as a group, and on the apparent disagreements present in the previous results. The present analysis shows that (1) One cannot conclude on the basis of the data in the Reference Catalogue of Bright Galaxies (RCBG) that the distribution of intrinsic flattenings of spirals is almost identical to that of S0's; spirals have wider dispersion than S0's, and there are more round systems in spirals than in S0's. (2) The distribution of intrinsic flattenings of S0's and spirals derived from the data in RC2 again indicates a significant difference from each other. (3) The distribution of intrinsic flattenings of S0's exhibits different characteristics depending upon the surface-brightness level; the distribution with one component is obtained from the data at RCBG level (--23.5 mag arcsec -2 ) and that with two components at RC2 level (25 mag arcsec -2 ). (author)

  3. Effect of phytohormones on absorption and distribution of ions in salt-stressed bean plants

    Directory of Open Access Journals (Sweden)

    Zofia Starck

    2014-01-01

    Full Text Available Bean plant seedlings grown in water culture were treated for 5 days either with NaCl or with 7-times concentrated nutrient solution (diminished water potential by 3-103 hPa in both cases. Control and stressed plants were treated for 24 hrs with zeatin and GA,. NaCl-stress reduced distinctly ion absorption rate (K, Ca and P. Zeatin and GA3 promoted potassium uptake, but only in NaCI-treated plants. These hormones diminished Na accumulation in metabolically active organs but increased P- and Ca-content. In plants grown under both kind of stresses zeatin and GA3 partially reestablished the ratio of the main mono- to divalent cations, which increased in the leaves and apical part of the stressed plants. ABA introduced into the nutrient solution caused inhibition of the ion uptake (K, Ca, Mg and P. similar to that caused by NaCl-stress. The above reported results seem to confirm the supposition, that hormones act as an important factor contributing to regulation of both uptake and distribution of ions. In this way growth substances may also participate in the regulation of transport of various substances (among others - assimilates in the whole plant.

  4. Macroscopic electrical field distribution and field-induced surface stresses of needle-shaped field emitters

    Energy Technology Data Exchange (ETDEWEB)

    Moy, Charles K.S., E-mail: charles.moy@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); ARC Centre of Excellence for Design in Light Metals, The University of Sydney, Sydney, NSW 2006 (Australia); School of Civil Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Ranzi, Gianluca [ARC Centre of Excellence for Design in Light Metals, The University of Sydney, Sydney, NSW 2006 (Australia); School of Civil Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Petersen, Timothy C. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); Ringer, Simon P. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); ARC Centre of Excellence for Design in Light Metals, The University of Sydney, Sydney, NSW 2006 (Australia)

    2011-05-15

    One major concern since the development of the field ion microscope is the mechanical strength of the specimens. The macroscopic shape of the imaging tip greatly influences field-induced stresses and there is merit in further study of this phenomenon from a classical perspective. Understanding the geometrical, as opposed to localized electronic, factors that affect the stress might improve the quality and success rate of atom probe experiments. This study uses macroscopic electrostatic principles and finite element modelling to investigate field-induced stresses in relation to the shape of the tip. Three two-dimensional idealized models are considered, namely hyperbolic, parabolic and sphere-on-orthogonal-cone; the shapes of which are compared to experimental tips prepared by electro-polishing. Three dimensional morphologies of both a nano-porous and single-crystal aluminium tip are measured using electron tomography to quantitatively test the assumption of cylindrical symmetry for electro-polished tips. The porous tip was prepared and studied to demonstrate a fragile specimen for which such finite element studies could determine potential mechanical failure, prior to any exhaustive atom probe investigation. -- Research highlights: {yields} We use electrostatic principles and finite element to model field-induced stresses. {yields} We study two-dimensional idealized needle-shaped field emitters. {yields} Stress distribution of hyperbolic, parabolic and sphere-on-orthogonal-cone tips mapped. {yields} Electron tomography to obtain the morphology of three-dimensional aluminium tips. {yields} Studies of the morphology of the porous tip demonstrate a fragile specimen.

  5. The effect of unerupted permanent tooth crowns on the distribution of masticatory stress in children.

    Directory of Open Access Journals (Sweden)

    Ashley S Hammond

    Full Text Available Human mothers wean their children from breast milk at an earlier developmental stage than do ape mothers, resulting in human children chewing solid and semi-solid foods using the deciduous dentition. Mechanical forces generated by chewing solid foods during the post-weaning period travel through not only the deciduous teeth, but also the enamel caps of the developing permanent teeth within the maxilla and mandible, which are not present in the adult face. The effects of mechanical stress propagating through these very stiff structures have yet to be examined. Based on a heuristic model, we predicted that the enamel of the embedded developing teeth would act to reduce stresses in the surrounding bony elements of the juvenile face. We tested this hypothesis by simulating occlusal loading in a finite element (FE model of a child's cranium with a complete set of deciduous teeth and the first permanent molars embedded in the bony crypt in the maxilla. We modeled bone and enamel with appropriate material properties and assessed the effect of embedding high-stiffness enamel structures on stress distribution in the juvenile face. Against expectation, the presence of unerupted enamel caps does not affect the magnitude or location of stresses in the juvenile face. Our results do not support the hypothesis that the unerupted secondary teeth act to moderate stresses in the juvenile face.

  6. Numerical simulation of stress distribution in Al2 O3-TiC/Q235 diffusion bonded joints

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The distributions of the axial stress and shear stress in Al2O3-TiC/Q235 diffusion bonded joints were studied using finite element method (FEM). The effect of interlayer thickness on the axial stress and shear stress was also investigated. The results indicate that the gradients of the axial stress and shear stress are great near the joint edge. The maximal shear stress produces at the interface of the Al2O3-TiC and Ti interlayer. With the increase of Cu interlayer thickness, the magnitudes of the axial stress and shear stress first decrease and then increase. The distribution of the axial stress changes greatly with a little change in the shear stress. The shear fracture initiates at the interface of the Al2O3-TiC/ Ti interlayer with high shear stress and then propagates to the Al2O3-TiC side, which is consistent with the stress FEM calculating results.

  7. Low surface brightness spiral galaxies

    International Nuclear Information System (INIS)

    Romanishin, W.

    1980-01-01

    This dissertation presents an observational overview of a sample of low surface brightness (LSB) spiral galaxies. The sample galaxies were chosen to have low surface brightness disks and indications of spiral structure visible on the Palomar Sky Survey. They are of sufficient angular size (diameter > 2.5 arcmin), to allow detailed surface photometry using Mayall 4-m prime focus plates. The major findings of this dissertation are: (1) The average disk central surface brightness of the LSB galaxies is 22.88 magnitude/arcsec 2 in the B passband. (2) From broadband color measurements of the old stellar population, we infer a low average stellar metallicity, on the order of 1/5 solar. (3) The spectra and optical colors of the HII regions in the LSB galaxies indicate a lack of hot ionizing stars compared to HII regions in other late-type galaxies. (4) The average surface mass density, measured within the radius containing half the total mass, is less than half that of a sample of normal late-type spirals. (5) The average LSB galaxy neutral hydrogen mass to blue luminosity ratio is about 0.6, significantly higher than in a sample of normal late-type galaxies. (6) We find no conclusive evidence of an abnormal mass-to-light ratio in the LSB galaxies. (7) Some of the LSB galaxies exhibit well-developed density wave patterns. (8) A very crude calculation shows the lower metallicity of the LSB galaxies compared with normal late-type spirals might be explained simply by the deficiency of massive stars in the LSB galaxies

  8. Dynamical models of spiral galaxies

    International Nuclear Information System (INIS)

    Grosbol, P.

    1990-01-01

    The effects of changing the basic parameters of rotation curve steepness, amount of bulge, and pitch angle of the imposed spiral pattern in the galactic model of Contoupolos and Grosbel (1986) are investigated. The general conclusions of the model are confirmed and shown to be insensitive to the specific choice of parameters for the galactic potential. The exact amplitude at which the nonlinear effects at the 4:1 resonance become important do, however, depend on the model

  9. Distribution of stress on TMJ disc induced by use of chincup therapy: assessment by the finite element method

    Science.gov (United States)

    Calçada, Flávio Siqueira; Guimarães, Antônio Sérgio; Teixeira, Marcelo Lucchesi; Takamatsu, Flávio Atsushi

    2017-01-01

    ABSTRACT Objective: To assess the distribution of stress produced on TMJ disc by chincup therapy, by means of the finite element method. Methods: a simplified three-dimensional TMJ disc model was developed by using Rhinoceros 3D software, and exported to ANSYS software. A 4.9N load was applied on the inferior surface of the model at inclinations of 30, 40, and 50 degrees to the mandibular plane (GoMe). ANSYS was used to analyze stress distribution on the TMJ disc for the different angulations, by means of finite element method. Results: The results showed that the tensile and compressive stresses concentrations were higher on the inferior surface of the model. More presence of tensile stress was found in the middle-anterior region of the model and its location was not altered in the three directions of load application. There was more presence of compressive stress in the middle and mid-posterior regions, but when a 50o inclined load was applied, concentration in the middle region was prevalent. Tensile and compressive stresses intensities progressively diminished as the load was more vertically applied. Conclusions: stress induced by the chincup therapy is mainly located on the inferior surface of the model. Loads at greater angles to the mandibular plane produced distribution of stresses with lower intensity and a concentration of compressive stresses in the middle region. The simplified three-dimensional model proved useful for assessing the distribution of stresses on the TMJ disc induced by the chincup therapy. PMID:29160348

  10. X-ray evaluation of residual stress distributions within surface machined layer generated by surface machining and sequential welding

    International Nuclear Information System (INIS)

    Taniguchi, Yuu; Okano, Shigetaka; Mochizuki, Masahito

    2017-01-01

    The excessive tensile residual stress generated by welding after surface machining may be an important factor to cause stress corrosion cracking (SCC) in nuclear power plants. Therefore we need to understand and control the residual stress distribution appropriately. In this study, residual stress distributions within surface machined layer generated by surface machining and sequential welding were evaluated by X-ray diffraction method. Depth directional distributions were also investigated by electrolytic polishing. In addition, to consider the effect of work hardened layer on the residual stress distributions, we also measured full width at half maximum (FWHM) obtained from X-ray diffraction. Testing material was a low-carbon austenitic stainless steel type SUS316L. Test specimens were prepared by surface machining with different cutting conditions. Then, bead-on-plate welding under the same welding condition was carried out on the test specimens with different surface machined layer. As a result, the tensile residual stress generated by surface machining increased with increasing cutting speed and showed nearly uniform distributions on the surface. Furthermore, the tensile residual stress drastically decreased with increasing measurement depth within surface machined layer. Then, the residual stress approached 0 MPa after the compressive value showed. FWHM also decreased drastically with increasing measurement depth and almost constant value from a certain depth, which was almost equal regardless of the machining condition, within surface machined layer in all specimens. After welding, the transverse distribution of the longitudinal residual stress varied in the area apart from the weld center according to machining conditions and had a maximum value in heat affected zone. The magnitude of the maximum residual stress was almost equal regardless of the machining condition and decreased with increasing measurement depth within surface machined layer. Finally, the

  11. Effect of geometric construction on residual stress distribution in designing a nuclear rotor joined by multipass narrow gap welding

    International Nuclear Information System (INIS)

    Tan, Long; Zhang, Linjie; Zhang, Jianxun; Zhuang, Dong

    2014-01-01

    Highlights: • The internal stress of the pipe is measured using local material removal method. • Bottom protrusion at weld seam can release the stress and mitigate stress evolution. The through-wall axial stress is bending type under the effect of the rotor discs. • The impact of geometric construction on the stress evolution begins after pass 15. - Abstract: The purpose of this study is to investigate the effect of geometric construction on the distribution of residual stresses before and after heat treatment in designing a nuclear welded rotor. The local material removal method was used to measure internal residual stress of the experimental pipe after post weld heat treatment. Three finite element models were employed as follows: a model of experimental pipe, a model with a bottom protrusion existed at the weld region, and a model of two rotor discs butt-welded with a bottom protrusion at the weld region. Investigated results showed that the bottom protrusion existed at the weld region can decrease the residual stress and mitigate the stress evolution significantly on the inner surface. Under the binding effect of the rotor discs, the axial stress of inner surface region is compressive stress; the through-wall axial stress at the weld center line can be deemed to a bending type; both the hoop stress and axial stress at the weld center line on the inner surface are compressive. The impact of geometric construction on the stress evolution at the root bead begins after pass 15 deposited

  12. Spiral arms and disc stability in the Andromeda galaxy

    Science.gov (United States)

    Tenjes, P.; Tuvikene, T.; Tamm, A.; Kipper, R.; Tempel, E.

    2017-04-01

    Aims: Density waves are often considered as the triggering mechanism of star formation in spiral galaxies. Our aim is to study relations between different star formation tracers (stellar UV and near-IR radiation and emission from H I, CO, and cold dust) in the spiral arms of M 31, to calculate stability conditions in the galaxy disc, and to draw conclusions about possible star formation triggering mechanisms. Methods: We selected fourteen spiral arm segments from the de-projected data maps and compared emission distributions along the cross sections of the segments in different datasets to each other, in order to detect spatial offsets between young stellar populations and the star-forming medium. By using the disc stability condition as a function of perturbation wavelength and distance from the galaxy centre, we calculated the effective disc stability parameters and the least stable wavelengths at different distances. For this we used a mass distribution model of M 31 with four disc components (old and young stellar discs, cold and warm gaseous discs) embedded within the external potential of the bulge, the stellar halo, and the dark matter halo. Each component is considered to have a realistic finite thickness. Results: No systematic offsets between the observed UV and CO/far-IR emission across the spiral segments are detected. The calculated effective stability parameter has a lowest value of Qeff ≃ 1.8 at galactocentric distances of 12-13 kpc. The least stable wavelengths are rather long, with the lowest values starting from ≃ 3 kpc at distances R > 11 kpc. Conclusions: The classical density wave theory is not a realistic explanation for the spiral structure of M 31. Instead, external causes should be considered, such as interactions with massive gas clouds or dwarf companions of M 31.

  13. Predicting Posttraumatic Stress Symptom Prevalence and Local Distribution after an Earthquake with Scarce Data.

    Science.gov (United States)

    Dussaillant, Francisca; Apablaza, Mauricio

    2017-08-01

    After a major earthquake, the assignment of scarce mental health emergency personnel to different geographic areas is crucial to the effective management of the crisis. The scarce information that is available in the aftermath of a disaster may be valuable in helping predict where are the populations that are in most need. The objectives of this study were to derive algorithms to predict posttraumatic stress (PTS) symptom prevalence and local distribution after an earthquake and to test whether there are algorithms that require few input data and are still reasonably predictive. A rich database of PTS symptoms, informed after Chile's 2010 earthquake and tsunami, was used. Several model specifications for the mean and centiles of the distribution of PTS symptoms, together with posttraumatic stress disorder (PTSD) prevalence, were estimated via linear and quantile regressions. The models varied in the set of covariates included. Adjusted R2 for the most liberal specifications (in terms of numbers of covariates included) ranged from 0.62 to 0.74, depending on the outcome. When only including peak ground acceleration (PGA), poverty rate, and household damage in linear and quadratic form, predictive capacity was still good (adjusted R2 from 0.59 to 0.67 were obtained). Information about local poverty, household damage, and PGA can be used as an aid to predict PTS symptom prevalence and local distribution after an earthquake. This can be of help to improve the assignment of mental health personnel to the affected localities. Dussaillant F , Apablaza M . Predicting posttraumatic stress symptom prevalence and local distribution after an earthquake with scarce data. Prehosp Disaster Med. 2017;32(4):357-367.

  14. Collective excitations in itinerant spiral magnets

    International Nuclear Information System (INIS)

    Kampf, A.P.

    1996-01-01

    We investigate the coupled charge and spin collective excitations in the spiral phases of the two-dimensional Hubbard model using a generalized random-phase approximation. Already for small doping the spin-wave excitations are strongly renormalized due to low-energy particle-hole excitations. Besides the three Goldstone modes of the spiral state the dynamical susceptibility reveals an extra zero mode for low doping and strong coupling values signaling an intrinsic instability of the homogeneous spiral state. In addition, near-zero modes are found in the vicinity of the spiral pitch wave number for out-of-plane spin fluctuations. Their origin is found to be the near degeneracy with staggered noncoplanar spiral states which, however, are not the lowest energy Hartree-Fock solutions among the homogeneous spiral states. copyright 1996 The American Physical Society

  15. ABA pretreatment can alter the distribution of polysomes in salt-stressed barley sprouts

    Directory of Open Access Journals (Sweden)

    Szypulska Ewa

    2016-12-01

    Full Text Available The study analyzed caryopses of barley (Hordeum vulgare cv. Stratus. Caryopses were germinated in darkness at 20°C in three experimental setups: (a in distilled water for 24 hours, followed by 100 mM NaCl for another 24 hours (salinity stress, SS, (b in 100 μM of abscisic acid for the first 24 hours, followed by rinsing with distilled water to remove residual ABA, and in 100 mM NaCl for another 24 hours (ABA pretreatment + salinity stress, ABAS, (c in distilled water only (control, C. Changes in the content of free polysomes (FP, membrane-bound polysomes (MBP, cytoskeleton-bound polysomes (CBP and cytomatrix-bound polysomes (CMBP were examined in barley sprouts germinated in SS and ABAS treatments for 48 hours. In salt-stressed barley sprouts, the concentrations of membrane-bound and cytoskeleton-bound polysomes (MBP, CBP and CMBP decreased significantly, whereas an increase was noted only in the free polysome (FP fraction. ABA pretreatment altered the distribution of polysomes in stressed plants. The content of cytoskeletonbound polysomes (CBP and CMBP increased, FP levels decreased, whereas no changes in MBP content were observed in response to ABA treatment. Our results suggest that plants respond to salt stress by increasing the concentrations of free polysomes that are probably released from damaged cell structures, mainly membranes. Our present and previous findings indicate that ABA could inhibit the release of FP in stressed plants by enhancing polysome binding to the cytoskeleton.

  16. THE STRESS STATE OF THE RADIALLY INHOMOGENEOUS HEMISPHERICAL SHELL UNDER LOCALLY DISTRIBUTED VERTICAL LOAD

    Directory of Open Access Journals (Sweden)

    Andreev Vladimir Igorevich

    2018-01-01

    Full Text Available Subject: one of the promising trends in the development of structural mechanics is the development of methods for solving problems in the theory of elasticity for bodies with continuous inhomogeneity of any deformation characteristics: these methods make it possible to use the strength of the material most fully. In this paper, we consider the two-dimensional problem for the case when a vertical, locally distributed load acts on the hemisphere and the inhomogeneity is caused by the influence of the temperature field. Research objectives: derive governing system of equations in spherical coordinates for determination of the stress state of the radially inhomogeneous hemispherical shell under locally distributed vertical load. Materials and methods: as a mechanical model, we chose a thick-walled reinforced concrete shell (hemisphere with inner and outer radii a and b, respectively, b > a. The shell’s parameters are a = 3.3 m, b = 4.5 m, Poisson’s ratio ν = 0.16; the load parameters are f = 10MPa - vertical localized load distributed over the outer face, θ0 = 30°, temperature on the internal surface of the shell Ta = 500 °C, temperature on the external surface of the shell Tb = 0 °C. The resulting boundary-value problem (a system of differential equations with variable coefficients is solved using the Maple software package. Results: maximal compressive stresses σr with allowance for material inhomogeneity are reduced by 10 % compared with the case when the inhomogeneity is ignored. But it is not so important compared with a 3-fold decrease in the tensile stress σθ on the inner surface and a 2-fold reduction in the tensile stress σθ on the outer surface of the hemisphere as concretes generally have a tensile strength substantially smaller than the compressive strength. Conclusions: the method presented in this article makes it possible to reduce the deformation characteristics of the material, i.e. it leads to a reduction in stresses

  17. [Influence of different designs of marginal preparation on stress distribution in the mandibular premolar restored with endocrown].

    Science.gov (United States)

    Guo, Jing; Wang, Xiao-Yu; Li, Xue-Sheng; Sun, Hai-Yang; Liu, Lin; Li, Hong-Bo

    2016-02-01

    To evaluate the effect of different designs of marginal preparation on stress distribution in the mandibular premolar restored with endocrown using three-dimensional finite element method. Four models with different designs of marginal preparation, including the flat margin, 90° shoulder, 135° shoulder and chamfer shoulder, were established to imitate mandibular first premolar restored with endocrown. A load of 100 N was applied to the intersection of the long axis and the occlusal surface, either parallel or with an angle of 45° to the long axis of the tooth. The maximum values of Von Mises stress and the stress distribution around the cervical region of the abutment and the endocrown with different designs of marginal preparation were analyzed. The load parallel to the long axis of the tooth caused obvious stress concentration in the lingual portions of both the cervical region of the tooth tissue and the restoration. The stress distribution characteristics on the cervical region of the models with a flat margin and a 90° shoulder were more uniform than those in the models with a 135° shoulder and chamfer shoulder. Loading at 45° to the long axis caused stress concentration mainly on the buccal portion of the cervical region, and the model with a flat margin showed the most favorable stress distribution patterns with a greater maximum Von Mises stress under this circumstance than that with a parallel loading. Irrespective of the loading direction, the stress value was the lowest in the flat margin model, where the stress value in the cervical region of the endocrown was greater than that in the counterpart of the tooth tissue. The stress level on the enamel was higher than that on the dentin nearby in the flat margin model. From the stress distribution point of view, endocrowns with flat margin followed by a 90° shoulder are recommended.

  18. Effects of heat stress on dynamic absorption process, tissue distribution and utilization efficiency of vitamin C in broilers

    International Nuclear Information System (INIS)

    Liu Guohua; Chen Guosheng; Cai Huiyi

    1998-01-01

    The experiment was conducted to determine the effects of heat stress on ascorbic acid nutritional physiology of broilers with radioisotope technology. 3 H-Vc was fed to broilers and then the blood, liver, kidney, breast muscle, and excreta were sampled to determine the dynamic absorption process, the tissue distribution and the utilization efficiency of vitamin C. The results indicated that the absorption, metabolism and mobilization of supplemented vitamin C in broilers with heat stress was faster than that in broilers without heat stress. However, the utilization efficiency of supplemented vitamin C in broilers with heat stress was not higher than that of broilers without heat stress

  19. Study on the Orion spiral arm structure by the statistical modelling method

    International Nuclear Information System (INIS)

    Basharina, T.S.; Pavlovskaya, E.D.; Filippova, A.A.

    1980-01-01

    A method of investigation of the spiral structure based on the statistical modelling methods is suggested. This method is used for the study of the Orion spiral arm. The maxima of density and the widths of the Orion arm in the direction of the areas considered for the longitude interval 55 deg - 187 deg are defined under the assumption of normal distribution of stars across the arm. The Sun is shown to be at the inner edge of the arm [ru

  20. Temperature-time distribution and thermal stresses on the RTG fins and shell during water cooling

    Science.gov (United States)

    Turner, R. H.

    1983-01-01

    Radioisotope thermoelectric generator (RTG) packages designed for space missions generally do not require active cooling. However, the heat they generate cannot remain inside of the launch vehicle bay and requires active removal. Therefore, before the Shuttle bay door is closed, the RTG coolant tubes attached to the heat rejection fins must be filled with water, which will circulate and remove most of the heat from the cargo bay. There is concern that charging a system at initial temperature around 200 C with water at 24 C can cause unacceptable thermal stresses in the RTG shell and fins. A computer model is developed to estimate the transient temperature distribution resulting from such charging. The thermal stresses resulting from the temperature gradients do not exceed the elastic deformation limit for the material. Since the simplified mathematical model for thermal stresses tends to overestimate stresses, it is concluded that the RTG can be cooled by introducing water at 24 C to the initially hot fin coolant tubes while the RTG is in the Shuttle cargo bay.

  1. Analisa Kekuatan Spiral Bevel Gear Dengan Variasi Sudut Spiral Menggunakan Metode Elemen Hingga

    OpenAIRE

    Deta Rachmat Andika; Agus Sigit Pramono

    2017-01-01

    Seiring perkembangan zaman,  teknologi roda gigi dituntut untuk mampu mentransmisikan daya yang besar dengan efisiensi yang besar pula. Pada jenis intersecting shaft gear, tipe roda gigi payung spiral (spiral bevel gear)  merupakan perkembangan dari roda gigi payung bergigi lurus (straight bevel gear). Kelebihan dari spiral bevel gear antara  lain adalah kemampuan transmisi daya dan efisiensi yang lebih besar pada geometri yang sama serta tidak terlalu berisik. Akan tetapi spiral bevel gear j...

  2. Solvable model of spiral wave chimeras.

    Science.gov (United States)

    Martens, Erik A; Laing, Carlo R; Strogatz, Steven H

    2010-01-29

    Spiral waves are ubiquitous in two-dimensional systems of chemical or biological oscillators coupled locally by diffusion. At the center of such spirals is a phase singularity, a topological defect where the oscillator amplitude drops to zero. But if the coupling is nonlocal, a new kind of spiral can occur, with a circular core consisting of desynchronized oscillators running at full amplitude. Here, we provide the first analytical description of such a spiral wave chimera and use perturbation theory to calculate its rotation speed and the size of its incoherent core.

  3. Evolutionary Acquisition and Spiral Development Tutorial

    National Research Council Canada - National Science Library

    Hantos, P

    2005-01-01

    .... NSS Acquisition Policy 03-01 provided some space-oriented customization and, similarly to the original DOD directives, also positioned Evolutionary Acquisition and Spiral Development as preferred...

  4. Solvable Model of Spiral Wave Chimeras

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Laing, Carlo R.; Strogatz, Steven H.

    2010-01-01

    Spiral waves are ubiquitous in two-dimensional systems of chemical or biological oscillators coupled locally by diffusion. At the center of such spirals is a phase singularity, a topological defect where the oscillator amplitude drops to zero. But if the coupling is nonlocal, a new kind of spiral...... can occur, with a circular core consisting of desynchronized oscillators running at full amplitude. Here, we provide the first analytical description of such a spiral wave chimera and use perturbation theory to calculate its rotation speed and the size of its incoherent core....

  5. Predicted tyre-soil interface area and vertical stress distribution based on loading characteristics

    DEFF Research Database (Denmark)

    Schjønning, Per; Stettler, M.; Keller, Thomas

    2015-01-01

    The upper boundary condition for all models simulating stress patterns throughout the soil profile is the stress distribution at the tyre–soil interface. The so-called FRIDA model (Schjønning et al., 2008. Biosyst. Eng. 99, 119–133) treats the contact area as a superellipse and has been shown...... of the actual to recommended inflation pressure ratio. We found that VT and Kr accounted for nearly all variation in the data with respect to the contact area. The contact area width was accurately described by a combination of tyre width and Kr, while the superellipse squareness parameter, n, diminished...... slightly with increasing Kr. Estimated values of the contact area length related to observed data with a standard deviation of about 0.06 m. A difference between traction and implement tyres called for separate prediction equations, especially for the contact area. The FRIDA parameters α and β, reflecting...

  6. Numerical Simulation of Temperature Field and Residual Stress Distribution for Laser Cladding Remanufacturing

    Directory of Open Access Journals (Sweden)

    Liang Hua

    2014-05-01

    Full Text Available A three-dimensional finite element model was employed to simulate the cladding process of Ni-Cr-B-Si coatings on 16MnR steel under different parameters of laser power, scanning speed, and spot diameter. The temperature and residual stress distribution, the depth of the heat affected zone (HAZ, and the optimized parameters for laser cladding remanufacturing technology were obtained. The orthogonal experiment and intuitive analysis on the depth of the HAZ were performed to study the influence of different cladding parameters. A new criterion based on the ratio of the maximum tensile residual stress and fracture strength of the substrate was proposed for optimization of the remanufacturing parameters. The result showed well agreement with that of the HAZ analysis.

  7. Spiral structure and star formation. II. Stellar lifetimes and cloud kinematics

    International Nuclear Information System (INIS)

    Hausman, M.A.; Roberts, W.W. Jr.

    1984-01-01

    We present further results of our model, introduced in Paper I, of star formation and star-gas interactions in the cloud-dominated ISMs of spiral density wave galaxies. The global density distribution and velocity field of the gas clouds are virtually independent of stellar parameters and even of mean free path for the wide range of values studied, but local density variations are found which superficially resemble cloud complexes. Increasing the average life span of ''spiral tracer'' stellar associations beyond about 20 Myr washes out the spiral pattern which younger associations show. Allowing clouds to form several successive associations (sequential star formation) slightly increases the frequency of interarm, young-star spurs and substantially increases the average star formation rate. The mean velocity field of clouds shows tipped oval streamlines, similar to both continuum gas dynamical models and stellar-kinematic models of spiral density waves. These streamlines are almost ballistic orbits except close to the spiral arms. Newly formed stellar associations leave the spiral density peak with initial tangential velocitie shigher than ''postshock'' values and do not fall back into the ''preshock'' region. By varying our stellar parametes within physically reasonable limits, we may reproduce spiral galaxies with a wide range of morphological appearaces

  8. Molecular gas and star formation in the centers of Virgo spirals

    International Nuclear Information System (INIS)

    Canzian, B.

    1990-01-01

    The CO and H alpha flux distributions for a sample of Virgo spirals were mapped out in an attempt to understand the coupling between gas dynamics and star formation in spiral galaxies. A broad range of morphological types were observed (types Sab through Scd) under the hypothesis that the gas dynamics is most influential in determining the overall appearance of a spiral galaxy. Only non-barred spirals were considered so that the well-studied but complicated properties of bars and their role in inducing star formation would not be a factor. All galaxies were chosen from the Virgo cluster to eliminate uncertainties due to distance errors. Since the dynamical seat of a spiral is at its center, it was expected that the dynamics of the central region would influence global properties of the rest of the disk. This could happen through the existence or absence of an inner Lindblad resonance (according to the degree of central concentration of mass) to modulate swing amplification of spiral waves, or the persistence of an oval distortion to initiate an instability which leads to spiral structure

  9. Modelling and analysis of the stress distribution in a multi-thin film system Pt/USG/Si

    Science.gov (United States)

    Yao, W. Z.; Roqueta, F.; Craveur, J. C.; Belhenini, S.; Gardes, P.; Tougui, A.

    2018-04-01

    Residual stress analysis is commonly achieved through curvature measurement with the help of Stoney’s formula. However, this conventional approach is inadequate for multi-layer thin film systems, which are widely used in today’s microelectronics. Also, for the thin film case, the residual stress is composed of thermal stress and intrinsic stress. Measuring the wafer curvature at room temperature provides a value for the average stresses in the layer, the two components cannot be distinguished by the existing methodologies of curvature measurement. To alleviate these problems, a modified curvature method combining finite element (FE) modelling is proposed to study the stress distribution in a Pt/USG/Si structure. A 2D FE model is firstly built in order to calculate the thermal stress in the multilayer structure, the obtained thermal stresses in respective films are verified by an analytical model. Then, we calculate the warpage of the multilayer structure by considering the intrinsic stress in the respective films. The residual stresses in the films are determined by minimizing the difference between the simulated warpage and that of experimental measurement. The proposed approach can be used to calculate not only the average residual stress but also thermal and intrinsic stress components in the USG and Platinum films. The obtained residual and intrinsic stresses from a numerical model are compared with the values of other studies. There is no limitation for the application of our methodologies regarding the number of the layers in the stack.

  10. Pressure distribution of implant-supported removable partial dentures with stress-breaking attachments.

    Science.gov (United States)

    Kono, Kentaro; Kurihara, Daisuke; Suzuki, Yasunori; Ohkubo, Chikahiro

    2014-04-01

    This in vitro study investigated the pressure distribution of the implant-supported removable partial dentures (RPDs) with the stress-breaking attachments under the occlusal force. The experimental model of bilateral missing premolars and molars was modified from a commercial simulation model. Five pressure sensors were embedded near the bilateral first molars, first premolars, and medio-lingual alveolar crest. Two implants were placed near the second molars, and they were connected to the denture base using the following conditions: complete separation between the denture base and implant with cover screws (CRPD), flexible connection with a stress-breaking ball (SBB) attachment, and rigid connection without stress breaking with healing caps (HC). The pressure at five different areas of the soft tissue and the displacement of the RPDs were simultaneously measured, loading up to 50 N. The coefficient of variation (CV) for each connection was calculated from all data of the pressure at five areas to evaluate the pressure distribution. The pressure on medio-lingual alveolar crest and molars of the HC was less than SBB and CRPD. In contrast, the pressure on premolars of SBB was greater than for the HC and CRPD. The CV of SBB was less than that of HC and CRPD. Denture displacement of HC and SBB was less than for CRPD. Within the in vitro limitations, precise denture settlements and pressure distribution under the denture base could be controlled using an SBB attachment. An SBB attachment might be able to protect the implant from harmful force. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  11. Spiral 2 the scientific objectives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    The French ministry of research took the decision to build Spiral-2 in May 2005. Its construction costs are estimated to 130 million euros while its operating costs will near 8.5 million euros per year. The construction works will last 5 years. The Spiral-2 facility is based on a high power, superconducting driver Linac, which will deliver a high intensity, 40 MeV deuteron beam as well as a variety of heavy-ion beams with mass over charge ratio equal to 3 and energy up to 14.5 MeV/nucleon. Using a carbon converter, fast neutrons from the breakup of the 5 mA of deuterons impinging on a uranium carbide target will induce a rate of up to 10{sup 14} fissions/s. The radioactive ion beam intensities in the mass range from A = 60 to 140 will be of the order of 10{sup 6} to 10{sup 11} particles/s surpassing by one or two orders-of-magnitude any existing facility in the world. A direct irradiation of the UC{sub 2} target with {sup 3,4}He, {sup 6,7}Li or {sup 12}C may also be used. Different production targets will be used to produce high-intensity beams of light radioactive species with the Isol technique. The extracted radioactive ion beam will be accelerated to energies up to 20 MeV/nucleons by the existing Cime cyclotron. One of the most important features of the future Ganil accelerator complex will be the capability of delivering up to 5 stable or radioactive beams simultaneously in the energy range from the keV to several tens of MeV/nucleons. The document details also the future contribution of Spiral-2 concerning the structure of exotic nuclei, the thermodynamical aspects of nuclear matter, nucleosynthesis, the fundamental basic interactions, and the use of neutrons. (A.C.)

  12. Spiral 2 the scientific objectives

    International Nuclear Information System (INIS)

    2006-06-01

    The French ministry of research took the decision to build Spiral-2 in May 2005. Its construction costs are estimated to 130 million euros while its operating costs will near 8.5 million euros per year. The construction works will last 5 years. The Spiral-2 facility is based on a high power, superconducting driver Linac, which will deliver a high intensity, 40 MeV deuteron beam as well as a variety of heavy-ion beams with mass over charge ratio equal to 3 and energy up to 14.5 MeV/nucleon. Using a carbon converter, fast neutrons from the breakup of the 5 mA of deuterons impinging on a uranium carbide target will induce a rate of up to 10 14 fissions/s. The radioactive ion beam intensities in the mass range from A = 60 to 140 will be of the order of 10 6 to 10 11 particles/s surpassing by one or two orders-of-magnitude any existing facility in the world. A direct irradiation of the UC 2 target with 3,4 He, 6,7 Li or 12 C may also be used. Different production targets will be used to produce high-intensity beams of light radioactive species with the Isol technique. The extracted radioactive ion beam will be accelerated to energies up to 20 MeV/nucleons by the existing Cime cyclotron. One of the most important features of the future Ganil accelerator complex will be the capability of delivering up to 5 stable or radioactive beams simultaneously in the energy range from the keV to several tens of MeV/nucleons. The document details also the future contribution of Spiral-2 concerning the structure of exotic nuclei, the thermodynamical aspects of nuclear matter, nucleosynthesis, the fundamental basic interactions, and the use of neutrons. (A.C.)

  13. Theoretical role of adjunctive implant positional support in stress distribution of distal-extension mandibular removable partial dentures.

    Science.gov (United States)

    Xiao, Wei; Li, Zhiyong; Shen, Shiqian; Chen, Shaowu; Wang, Yining; Wang, Jiawei

    2014-01-01

    This preliminary study evaluated the adjunctive supporting role of diverse implant positions on stress distribution in a Class I removable partial denture (RPD) design. Nine three-dimensional finite element models were prepared to simulate mandibular RPD designs with three different loading conditions applied. Implant supported designs demonstrated lower stress value concentrations and mucosal displacement.

  14. 78 FR 64153 - Policy Statement on the Principles for Development and Distribution of Annual Stress Test Scenarios

    Science.gov (United States)

    2013-10-28

    .... OCC-2012-0016] Policy Statement on the Principles for Development and Distribution of Annual Stress... the stress test horizon. The variables specified for each scenario generally address economic activity... institutions by November 15th of each year. This document articulates the principles that the OCC will apply to...

  15. 78 FR 72534 - Policy Statement on the Principles for Development and Distribution of Annual Stress Test Scenarios

    Science.gov (United States)

    2013-12-03

    ... FEDERAL DEPOSIT INSURANCE CORPORATION 12 CFR Part 325 Policy Statement on the Principles for... stress test horizon. The variables specified for each scenario generally address economic activity, asset..., 2012, that articulated the principles the FDIC will apply to develop and distribute the stress test...

  16. Three-Dimensional Finite Element Analysis of the Stress Distribution at the Internal Implant-Abutment Connection.

    Science.gov (United States)

    Cho, Sung-Yong; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra

    2016-01-01

    This study investigated stress distribution in four different implant-abutment interface conditions in the internal tapered connection implant system. Four different implant diameters (3.5 mm, 4.0 mm, 4.5 mm, and 5.0 mm) and two abutment types (hexagonal and conical) were simulated. Four unique implant-abutment interface conditions were assumed based on wall thickness, mating surface length, distance to the vertical stop, and abutment shape. Axial and oblique loading was applied during abutment screw preload, and the Von Mises stresses were measured at the implant-abutment and abutment-screw interfaces. The implant-abutment interface stress decreased as the wall thickness increased. As the mating surface increased, the stress distribution trended downward, and when the distance to the implant vertical stop was 0 μm, the Von Mises stress was extremely high at the vertical stop. Despite their different shapes, the abutments showed similar stress distributions. However, the maximum Von Mises stress was higher in the conical connection than in the hexagonal connection, particularly at the contralateral side to loading. To decrease the stress distribution at the implant-abutment interface, the implant wall thickness, mating surface contact length, distance to the vertical stop, and abutment shape should be carefully considered.

  17. Stress distribution in dental prosthesis under an occlusal combined dynamic loading

    International Nuclear Information System (INIS)

    Merdji, A.; Bachir Bouiadjra, B.; Ould Chikh, B.; Mootanah, R.; Aminallah, L.; Serier, B.; Muslih, I.M.

    2012-01-01

    Highlights: ► The mechanical stress reaches the highest in areas of cortical bones. ► The mechanical stress in the cancellous bone reaches greatest in the bottom of the dental implant. ► Implant with low-volume bone might cause increased stress concentration in the cortical bone. -- Abstract: The biomechanical behavior of osseointegrated dental prostheses systems plays an important role in its functional longevity inside the bone. Simulation of these systems requires an accurate modeling of the prosthesis components, the jaw bone, the implant–bone interface, and the response of the system to different types of applied forces. The purpose of this study was to develop a new three-dimensional model of an osseointegrated molar dental prosthesis and to carry out finite element analysis to evaluate stress distributions in the bone and the dental prosthesis compounds under an occlusal combined dynamic load was applied to the top of the occlusale face of the prosthesis crown. The jaw bone model containing cortical bone and cancellous bone was constructed by using computer tomography scan pictures and Computer Aided Design tools. The dental prosthesis compounds were constructed, simulating the commercially available cylindrical implant of 4.8 mm diameter and 10 mm length. Both finite element models were created in Abaqus finite element software. All materials used in the models were considered to be isotropic, homogeneous and linearly elastic. The elastic properties, loads and constraints used in the model were taken from published data. Results of our finite element analyses, indicated that the maximum stresses were located around the mesial neck of the implant, in the marginal bone. Thus, this area should be preserved clinically in order to maintain the bone–implant interface structurally and functionally.

  18. Study on improved procedure for determination of three dimensional distributions of the initial rock stresses. 3

    International Nuclear Information System (INIS)

    Mizuta, Yoshiaki

    2004-02-01

    In the fiscal year of 2003, our committee achieved the following work items during the contract period, from September 3rd, 2003 to February 13th, 2004. The more accurate numerical data with respect to the geological/geometrical conditions including the fault were provided from Tono Geoscience Center and the numerical models by Finite Element Method (FEM), Finite Difference Method (FDM) and Boundary Element Method (BEM) were built taking those strata data into account. For small region modeling by FEM, three layers models, Shoumasama model and Tono-Shoumasama model, as well as Tono Mine model, were constructed, and each strain state at the far field boundary was determined. In order to get better agreement in local stress states with the measured values, a far field strain state was determined to the modified model in which material properties of upper granite and lower granite are different. In intermediate region modeling by FDM, actual strata data was taken into account, whereas strata boundary was assumed to be horizontal in former modeling, and far field stress field was analyzed. Intermediate region modeling by BEM was also carried out and far field stress state was determined. In wide region modeling by FEM, the fault was build in the model and fault slip was taken into account, and evaluation of strain state at the far field boundary was carried out for inhomogeneous rock including fault. It was proposed to output three-dimensional distribution of the maximum shear stress coefficients in order to advance three-dimensional modeling. It will make clear effect of shape, scale and property of the fault on stress state characteristic. This report describes minutely the results of the studies mentioned above. (author)

  19. The rotation of spiral galaxies.

    Science.gov (United States)

    Rubin, V C

    1983-06-24

    There is accumulating evidence that as much as 90 percent of the mass of the universe is nonluminous and is clumped, halo-like, around individual galaxies. The gravitational force of this dark matter is presumed to be responsible for the high rotational velocities of stars and gas in the disks of spiral galaxie. At present, the form of the dark matter is unknown. Possible candidates span a range in mass of 10(70), from non-zero-mass neutrinos to massive black holes.

  20. Prediction of residual stress distribution in multi-stacked thin film by curvature measurement and iterative FEA

    International Nuclear Information System (INIS)

    Choi, Hyeon Chang; Park, Jun Hyub

    2005-01-01

    In this study, residual stress distribution in multi-stacked film by MEMS (Micro-Electro Mechanical System) process is predicted using Finite Element Method (FEM). We develop a finite element program for REsidual Stress Analysis (RESA) in multi-stacked film. The RESA predicts the distribution of residual stress field in multi-stacked film. Curvatures of multi-stacked film and single layers which consist of the multi-stacked film are used as the input to the RESA. To measure those curvatures is easier than to measure a distribution of residual stress. To verify the RESA, mean stresses and stress gradients of single and multilayers are measured. The mean stresses are calculated from curvatures of deposited wafer by using Stoney's equation. The stress gradients are calculated from the vertical deflection at the end of cantilever beam. To measure the mean stress of each layer in multi-stacked film, we measure the curvature of wafer with the film after etching layer by layer in multi-stacked film

  1. EFFECTS OF VARIOUS SOIL ENVIRONMENTAL STRESSES ON THE OCCURRENCE, DISTRIBUTION AND EFFECTIVENESS OF VA MYCORRHIZAE

    Directory of Open Access Journals (Sweden)

    A.G. KHAN

    1995-01-01

    Full Text Available The vesicular - arbuscular (VA mycorrhizal fungi are geographically ubiquitous soil inhabitants and form universal symbiotic relationship with plants from every phylum. These fungi link host plants with host soils and their biota in the mycorrhizosphere and play an important role in plant health, productivity and soil structure. Although VA mycorrhizal fungi do not show any host specificity, there is increasing evidence that various climatic and edaphic environmental factors such as land use and management practices, physical, chemical and biological properties of host soils and host plant characteristics influence their occurrence, taxonomic distribution and effectiveness. The interaction of these factors with vesicular-arbuscular mycorrhizae (VAM is poorly understood except in a few cases. It is now very clear that VA mycorrhizal associations are ecologically significant factors that require more attention than previously accorded. This paper discusses the occurrence, distribution and significance of VAM in environmentally stressed soil conditions that limit plant growth such as drought, waterlogging and salinity.

  2. Stress

    Science.gov (United States)

    ... can be life-saving. But chronic stress can cause both physical and mental harm. There are at least three different types of stress: Routine stress related to the pressures of work, family, and other daily responsibilities Stress brought about ...

  3. Heterogeneous Cytoskeletal Force Distribution Delineates the Onset Ca2+ Influx Under Fluid Shear Stress in Astrocytes

    Directory of Open Access Journals (Sweden)

    Mohammad M. Maneshi

    2018-03-01

    Full Text Available Mechanical perturbations increase intracellular Ca2+ in cells, but the coupling of mechanical forces to the Ca2+ influx is not well understood. We used a microfluidic chamber driven with a high-speed pressure servo to generate defined fluid shear stress to cultured astrocytes, and simultaneously measured cytoskeletal forces using a force sensitive actinin optical sensor and intracellular Ca2+. Fluid shear generated non-uniform forces in actinin that critically depended on the stimulus rise time emphasizing the presence of viscoelasticity in the activating sequence. A short (ms shear pulse with fast rise time (2 ms produced an immediate increase in actinin tension at the upstream end of the cell with minimal changes at the downstream end. The onset of Ca2+ rise began at highly strained areas. In contrast to stimulus steps, slow ramp stimuli produced uniform forces throughout the cells and only a small Ca2+ response. The heterogeneity of force distribution is exaggerated in cells having fewer stress fibers and lower pre-tension in actinin. Disruption of cytoskeleton with cytochalasin-D (Cyt-D eliminated force gradients, and in those cells Ca2+ elevation started from the soma. Thus, Ca2+ influx with a mechanical stimulus depends on local stress within the cell and that is time dependent due to viscoelastic mechanics.

  4. Influence of Connector Width on the Stress Distribution of Posterior Bridges under Loading

    Directory of Open Access Journals (Sweden)

    A. Azary

    2011-06-01

    Full Text Available Objective: In all ceramic fixed partial dentures the connector area is a common fracture location. The survival time of three-unit fixed partial dentures may be improved by altering the connector design in regions of maximum tension. The purpose of this study was to determine the effect of buccolingual increase of the connector width on the stress distribution in posterior fixed partial dentures made of IPS Empress 2. To simulate the anatomical condition, we used three-dimensional finite element analysis to generate.Materials and Methods: Three models of three-unit bridges replacing the first molar were prepared. The buccolingual connector width varied from 3.0 to 5.0 mm. Bridges were vertically loaded with 600 N at one point on the central fossa of the pontic, at 12 points along the cusp-fossa contact (50 N each, or at eight points along the cusp-marginal ridge contact (75 N each. Alternatively, a load of 225 N was applied at a 45º angle from the lingual side.Results: Stress concentrations were observed within or near the connectors. The von Mises stress decreased by increasing connector width, regardless of whether the loading was applied vertically or at an angle.Conclusion: Within the limitations of this study, we conclude that increasing the connector width decreases the failure probability when a vertical or angled load is applied.

  5. Distribution of Selenium and Oxidative Stress in Breast Tumor-Bearing Mice

    Directory of Open Access Journals (Sweden)

    Pei-Chung Chen

    2013-02-01

    Full Text Available The present study investigated the effects of breast tumors on the blood and tissue distribution of essential trace mineral selenium (Se, and oxidative stress status of mice. Female 10-week-old BALB/cByJNarl mice were randomly assigned into control (CNL and breast tumor-bearing (TB groups. TB mice were injected subcutaneously into the right hind thigh with 5 × 106 EMT6 mouse mammary tumor cells. After 22 days, we measured Se concentrations, Se-dependent glutathione peroxidase (GPx activities, and malondialdehyde (MDA products (indicator of oxidative stress in plasma, various tissues, and plasma vascular endothelial growth factor (VEGF concentrations. There were no significant differences in body weights and daily intake between both groups. Compared with the CNL group, TB mice have decreases in plasma Se concentrations and GPx activities, as well as higher plasma VEGF and MDA concentrations. Plasma Se concentrations were also negatively correlated with plasma MDA and VEGF concentrations. Furthermore, tissue Se concentrations and GPx activities in TB animals were lower; whereas the MDA concentrations higher in various tissues including liver, kidney, brain, lung, spleen, and thymic tissues. In conclusion, disruption of Se homeostasis critically reflects oxidative stress in target tissues, thus may increase the risk for progression of breast cancer and metastasis.

  6. Spiral density waves in M81. I. Stellar spiral density waves

    International Nuclear Information System (INIS)

    Feng, Chien-Chang; Lin, Lien-Hsuan; Wang, Hsiang-Hsu; Taam, Ronald E.

    2014-01-01

    Aside from the grand-design stellar spirals appearing in the disk of M81, a pair of stellar spiral arms situated well inside the bright bulge of M81 has been recently discovered by Kendall et al. The seemingly unrelated pairs of spirals pose a challenge to the theory of spiral density waves. To address this problem, we have constructed a three-component model for M81, including the contributions from a stellar disk, a bulge, and a dark matter halo subject to observational constraints. Given this basic state for M81, a modal approach is applied to search for the discrete unstable spiral modes that may provide an understanding for the existence of both spiral arms. It is found that the apparently separated inner and outer spirals can be interpreted as a single trailing spiral mode. In particular, these spirals share the same pattern speed 25.5 km s –1 kpc –1 with a corotation radius of 9.03 kpc. In addition to the good agreement between the calculated and the observed spiral pattern, the variation of the spiral amplitude can also be naturally reproduced.

  7. QS Spiral: Visualizing Periodic Quantified Self Data

    DEFF Research Database (Denmark)

    Larsen, Jakob Eg; Cuttone, Andrea; Jørgensen, Sune Lehmann

    2013-01-01

    In this paper we propose an interactive visualization technique QS Spiral that aims to capture the periodic properties of quantified self data and let the user explore those recurring patterns. The approach is based on time-series data visualized as a spiral structure. The interactivity includes ...

  8. Spiral modes in cold cylindrical systems

    International Nuclear Information System (INIS)

    Robe, H.

    1975-01-01

    The linearized hydrodynamical equations governing the non-axisymmetric free modes of oscillation of cold cylindrical stellar systems are separated in cylindrical coordinates and solved numerically for two models. Short-wavelength unstable modes corresponding to tight spirals do not exist; but there exists an unstable growing mode which has the form of trailing spirals which are quite open. (orig.) [de

  9. Spiral groove seal. [for rotating shaft

    Science.gov (United States)

    Ludwig, L. P.; Strom, T. N. (Inventor)

    1974-01-01

    Mating flat surfaces inhibit leakage of a fluid around a stationary shaft. A spiral groove produces a pumping action toward the fluid when the shaft rotates. This prevents leakage while a generated hydraulic lifting force separates the mating surfaces to minimize wear. Provision is made for placing these spiral grooves in communication with the fluid to accelerate the generation of the hydraulic lifting force.

  10. Colours and morphology of spiral galaxies

    International Nuclear Information System (INIS)

    Wyse, R.F.G.

    1981-01-01

    Tinsley has proposed that late-type spirals have relatively more non-luminous material than early-type spirals. A re-examination of the data indicates that this proposal is equally consistent with dark matter being more dominant in barred galaxies than in unbarred galaxies. Neither conclusion can be firm, since the dataset is far from ideal. (author)

  11. Scaling effects in spiral capsule robots.

    Science.gov (United States)

    Liang, Liang; Hu, Rong; Chen, Bai; Tang, Yong; Xu, Yan

    2017-04-01

    Spiral capsule robots can be applied to human gastrointestinal tracts and blood vessels. Because of significant variations in the sizes of the inner diameters of the intestines as well as blood vessels, this research has been unable to meet the requirements for medical applications. By applying the fluid dynamic equations, using the computational fluid dynamics method, to a robot axial length ranging from 10 -5 to 10 -2  m, the operational performance indicators (axial driving force, load torque, and maximum fluid pressure on the pipe wall) of the spiral capsule robot and the fluid turbulent intensity around the robot spiral surfaces was numerically calculated in a straight rigid pipe filled with fluid. The reasonableness and validity of the calculation method adopted in this study were verified by the consistency of the calculated values by the computational fluid dynamics method and the experimental values from a relevant literature. The results show that the greater the fluid turbulent intensity, the greater the impact of the fluid turbulence on the driving performance of the spiral capsule robot and the higher the energy consumption of the robot. For the same level of size of the robot, the axial driving force, the load torque, and the maximum fluid pressure on the pipe wall of the outer spiral robot were larger than those of the inner spiral robot. For different requirements of the operating environment, we can choose a certain kind of spiral capsule robot. This study provides a theoretical foundation for spiral capsule robots.

  12. Improved reconstruction for IDEAL spiral CSI

    DEFF Research Database (Denmark)

    Hansen, Rie Beck; Mariager, Christian; Laustsen, Christoffer

    2017-01-01

    In this study we demonstrate how reconstruction for IDEAL spiral CSI (spectroscopic imaging scheme developed for hyperpolarized dynamic metabolic MR imaging) can be improved by using regularization with a sparsity constraint. By exploiting sparsity of the spectral domain, IDEAL spiral CSI can...

  13. Miniaturization of Micro-Solder Bumps and Effect of IMC on Stress Distribution

    Science.gov (United States)

    Choudhury, Soud Farhan; Ladani, Leila

    2016-07-01

    As the joints become smaller in more advanced packages and devices, intermetallic (IMCs) volume ratio increases, which significantly impacts the overall mechanical behavior of joints. The existence of only a few grains of Sn (Tin) and IMC materials results in anisotropic elastic and plastic behavior which is not detectable using conventional finite element (FE) simulation with average properties for polycrystalline material. In this study, crystal plasticity finite element (CPFE) simulation is used to model the whole joint including copper, Sn solder and Cu6Sn5 IMC material. Experimental lap-shear test results for solder joints from the literature were used to validate the models. A comparative analysis between traditional FE, CPFE and experiments was conducted. The CPFE model was able to correlate the experiments more closely compared to traditional FE analysis because of its ability to capture micro-mechanical anisotropic behavior. Further analysis was conducted to evaluate the effect of IMC thickness on stress distribution in micro-bumps using a systematic numerical experiment with IMC thickness ranging from 0% to 80%. The analysis was conducted on micro-bumps with single crystal Sn and bicrystal Sn. The overall stress distribution and shear deformation changes as the IMC thickness increases. The model with higher IMC thickness shows a stiffer shear response, and provides a higher shear yield strength.

  14. Application of a distributed optical fiber sensing technique in monitoring the stress of precast piles

    International Nuclear Information System (INIS)

    Lu, Y; Shi, B; Wei, G Q; Zhang, D; Chen, S E

    2012-01-01

    Due to its ability in providing long distance, distributed sensing, the optical fiber sensing technique based on a Brillouin optical time domain reflectometer (BOTDR) has a unique advantage in monitoring the stability and safety of linear structures. This paper describes the application of a BOTDR-based technique to measure the stress within precast piles. The principle behind the BOTDR and the embedding technique for the sensing optical fiber in precast piles is first introduced, and then the analysis method and deformation and stress calculation based on distributed strain data are given. Finally, a methodology for using a BOTDR-based monitoring workflow for in situ monitoring of precast piles, combined with a practical example, is introduced. The methodology requires implantation of optical fibers prior to pile placement. Field experimental results show that the optical fiber implantation method with slotting, embedding, pasting and jointing is feasible, and have accurately measured the axial force, side friction, end-bearing resistance and bearing feature of the precast pile according to the strain measuring data. (paper)

  15. Analysis of temperature and stress distribution of superheater tubes after attemperation or sootblower activation

    International Nuclear Information System (INIS)

    Madejski, Paweł; Taler, Dawid

    2013-01-01

    Highlights: • The CFD simulation was used to calculate 3D steam and tube wall temperature distributions in the platen superheater. • The CFD results can be used in design of superheaters made of tubes with complex cross-section. • The CFD analysis enables the proper selection of the steel grade. • The transient temperature and stress distributions were calculated using Finite Volume Method. • The detailed analysis prevents superheater tubes from excessive stresses during sootblower or attemperator activation. - Abstract: Superheaters are characterized by high metal temperatures due to higher steam temperature and low heat transfer coefficients on the tube inner surfaces. Superheaters have especially difficult operating conditions, particularly during attemperator and sootblower activations, when temperature and steam flow rate as well as tube wall temperature change with time. A detailed thermo-mechanical analysis of the superheater tubes makes it possible to identify the cause of premature high-temperature failures and aids greatly in the changes in tubing arrangement and improving start-up technology. This paper presents a thermal and strength analysis of a tube “double omega”, used in the steam superheaters in CFB boilers

  16. Effect of Taper on Stress Distribution of All Ceramic Fixed Partial Dentures: a 3D-FEA Study

    Directory of Open Access Journals (Sweden)

    F. Gerami-Panah

    2005-09-01

    Full Text Available Statement of Problem: Mechanical failure of ceramic materials is controlled by brittle fracture, mostly occurred in tension. In 3-unit all-ceramic FPDs the connector area is considered to be at fracture risk because of tensile stress concentrations.Purpose: The aim of this FE analysis was to evaluate the effect of taper on stress distribution in all-ceramic FPDs.Materials and Methods: In this experimental study two 3-D finite element models of thee-unit IPS-Empress 2 FPDs replacing mandible second premolar were created by means of finite element software. The digital images were obtained from CT scan of human skull. Abutment was reduced with 12 and 22 degrees of taper. The cement layer,PDL, cancellous bone and cortical bone were also modeled. Frameworks of core material were fabricated. A static load of 100 N was applied at mid pontic area.Resolved stresses were calculated according to the Von Mises criterion and principal stresses.Results: In both models stresses were concentrated at the connectors. The maximum stresses were lower in the model with larger taper. The maximum Von Mises stress was recorded at the connector region of the premolar and the pontic. In model with larger taper the patterns of stresses were also more distributed and less concentrated.Conclusion: The highest Von Mises and principal stress were recorded at the connectors. Tensile stresses developed at the gingival connector of premolar and pontic was higher than molar. The stress level in model with 22-degree taper was lower compare to 12-degree and the stress pattern was more distributed, lowered the risk ofconcentrations.

  17. The Effect of Composite Thickness on the Stress Distribution Pattern of Restored Premolar Teeth with Cusp Reduction.

    Science.gov (United States)

    Panahandeh, Narges; Torabzadeh, Hassan; Ziaee, Nargess; Mahdian, Mina; Tootiaee, Bahman; Ghasemi, Amir

    2017-07-01

    Different thicknesses of restorative material can alter the stress distribution pattern in remaining tooth structure. The assumption is that a thicker composite restoration will induce a higher fracture resistance. Therefore, the present study evaluated the effect of composite thickness on stress distribution in a restored premolar with cusp reduction. A 3D solid model of a maxillary second premolar was prepared and meshed. MOD cavities were designed with different cusp reduction thicknesses (0, 0.5, 1, 1.5, 2.5 mm). Cavities were restored with Valux Plus composite. They were loaded with 200 N force on the occlusal surface in the direction of the long axis. Von Mises stresses were evaluated with Abaqus software. Stress increased from occlusal to gingival and was maximum in the cervical region. The stressed area in the palatal cusp was more than that of the buccal cusp. Increasing the thickness of composite altered the shear stress to compressive stress in the occlusal area of the teeth. The model with 2.5 mm cusp reduction exhibited the most even stress distribution. © 2015 by the American College of Prosthodontists.

  18. SPR Characteristics Curve and Distribution of Residual Stress in Self-Piercing Riveted Joints of Steel Sheets

    OpenAIRE

    Haque, Rezwanul; Wong, Yat C.; Paradowska, Anna; Blacket, Stuart; Durandet, Yvonne

    2017-01-01

    Neutron diffraction was used to describe the residual stress distributions in self-piercing riveted (SPR) joints. The sheet material displayed a compressive residual stress near the joint, and the stress gradually became tensile in the sheet material far away from the joint. The stress in the rivet leg was lower in the thick joint of the softer steel sheet than in the thin joint of the harder steel sheet. This lower magnitude was attributed to the lower force gradient during the rivet flaring...

  19. Stress distribution and contact area measurements of a gecko toe using a high-resolution tactile sensor.

    Science.gov (United States)

    Eason, Eric V; Hawkes, Elliot W; Windheim, Marc; Christensen, David L; Libby, Thomas; Cutkosky, Mark R

    2015-02-02

    The adhesive systems of geckos have been widely studied and have been a great source of bioinspiration. Load-sharing (i.e. preventing stress concentrations through equal distribution of loads) is necessary to maximize the performance of an adhesive system, but it is not known to what extent load-sharing occurs in gecko toes. In this paper, we present in vivo measurements of the stress distribution and contact area on the toes of a tokay gecko (Gekko gecko) using a custom tactile sensor with 100 μm spatial resolution. We found that the stress distributions were nonuniform, with large variations in stress between and within lamellae, suggesting that load-sharing in the tokay gecko is uneven. These results may be relevant to the understanding of gecko morphology and the design of improved synthetic adhesive systems.

  20. Stress distribution and contact area measurements of a gecko toe using a high-resolution tactile sensor

    International Nuclear Information System (INIS)

    Eason, Eric V; Hawkes, Elliot W; Christensen, David L; Cutkosky, Mark R; Windheim, Marc; Libby, Thomas

    2015-01-01

    The adhesive systems of geckos have been widely studied and have been a great source of bioinspiration. Load-sharing (i.e. preventing stress concentrations through equal distribution of loads) is necessary to maximize the performance of an adhesive system, but it is not known to what extent load-sharing occurs in gecko toes. In this paper, we present in vivo measurements of the stress distribution and contact area on the toes of a tokay gecko (Gekko gecko) using a custom tactile sensor with 100 μm spatial resolution. We found that the stress distributions were nonuniform, with large variations in stress between and within lamellae, suggesting that load-sharing in the tokay gecko is uneven. These results may be relevant to the understanding of gecko morphology and the design of improved synthetic adhesive systems. (paper)

  1. The Influence of Pressure Distribution on the Maximum Values of Stress in FEM Analysis of Plain Bearings

    Directory of Open Access Journals (Sweden)

    Vasile Cojocaru

    2016-12-01

    Full Text Available Several methods can be used in the FEM studies to apply the loads on a plain bearing. The paper presents a comparative analysis of maximum stress obtained for three loading scenarios: resultant force applied on the shaft – bearing assembly, variable pressure with sinusoidal distribution applied on the bearing surface, variable pressure with parabolic distribution applied on the bearing surface.

  2. [Influence of attachment type on stress distribution of implant-supported removable partial dentures].

    Science.gov (United States)

    Yang, Xue; Rong, Qi-guo; Yang, Ya-dong

    2015-02-18

    To compare influences of different retention attachments on stress among supporting structures. By 3-dimensional laser scanner and reverse engineering computer aided design (CAD) software, a basic partially edentulous digital model with mandibular premolar and molar missing was established. Implant attachment and removable partial dentures (RPD) were added into the basic model to build three kinds of models: RPD only, RPD + implant + Locator attachment, and RPD + implant + Magfit attachment. Vertical and inclined loads were put on artificial teeth unilaterally. By means of 3-dimensional finite element analysis, the stress distribution and displacement of the main supportive structures were compared. A complete 3-dimensional finite element model was established, which contained tooth structure, and periodontal structures. The displacement of the denture was smaller in Locator (9.38 μm vertically, 45.48 μm obliquely) and Magfit models (9.54 μm vertically, 39.45 μm obliquely) compared with non-implant RPD model (95.27 μm vertically, 155.70 μm obliquely). Compared with the two different attachments, cortical bone stress value was higher in Locator model (Locator model 10.850 MPa vertically, 43.760 MPa obliquely; Magfit model 7.100 MPa vertically, 19.260 MPa obliquely).The stress value of abutment periodontal ligamentin Magfit model (0.420 MPa vertically) was lower than that in Locator model (0.520 MPa vertically). The existence of implant could reduce maximum von Mises value of each supportive structure when Kennedy I partially edentulous mandible was restored. Comparing the structure of Magfit and Locator attachment, the contact of Magfit attachment was rigid, while Locator was resilient. Locator attachment could improve stability of the denture dramatically. Locator had stronger effect on defending horizontal movement of the denture.

  3. Laser milling of martensitic stainless steels using spiral trajectories

    Science.gov (United States)

    Romoli, L.; Tantussi, F.; Fuso, F.

    2017-04-01

    A laser beam with sub-picosecond pulse duration was driven in spiral trajectories to perform micro-milling of martensitic stainless steel. The geometry of the machined micro-grooves channels was investigated by a specifically conceived Scanning Probe Microscopy instrument and linked to laser parameters by using an experimental approach combining the beam energy distribution profile and the absorption phenomena in the material. Preliminary analysis shows that, despite the numerous parameters involved in the process, layer removal obtained by spiral trajectories, varying the radial overlap, allows for a controllable depth of cut combined to a flattening effect of surface roughness. Combining the developed machining strategy to a feed motion of the work stage, could represent a method to obtain three-dimensional structures with a resolution of few microns, with an areal roughness Sa below 100 nm.

  4. Mass models for disk and halo components in spiral galaxies

    International Nuclear Information System (INIS)

    Athanassoula, E.; Bosma, A.

    1987-01-01

    The mass distribution in spiral galaxies is investigated by means of numerical simulations, summarizing the results reported by Athanassoula et al. (1986). Details of the modeling technique employed are given, including bulge-disk decomposition; computation of bulge and disk rotation curves (assuming constant mass/light ratios for each); and determination (for spherical symmetry) of the total halo mass out to the optical radius, the concentration indices, the halo-density power law, the core radius, the central density, and the velocity dispersion. Also discussed are the procedures for incorporating galactic gas and checking the spiral structure extent. It is found that structural constraints limit disk mass/light ratios to a range of 0.3 dex, and that the most likely models are maximum-disk models with m = 1 disturbances inhibited. 19 references

  5. Morphology and grain-size characteristics of a log-spiral beach at Nagwa (Diu), west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Veerayya, M.; Shenoi, S.S.C; Murty, C

    Sediment samples collected along 6 beach profiles of a log-spiral shaped beach and nearby dunes have been studied for particle size distribution in relation to wave refraction patterns. The results reveal that the foreshore sediments...

  6. Evaluation of Residual Stress Distribution and Relaxation on In Situ TiB2/7050 Al Composites

    Directory of Open Access Journals (Sweden)

    Kunyang Lin

    2018-04-01

    Full Text Available Interior residual stresses induced by quenching may cause distortion during subsequent machining processes. Hence, various strategies have been employed to relieve the interior residual stress, such as stretching, post treatment, and other techniques. In this study, the stress distribution inside TiB2/7050 Al composite extrusions was investigated and the effects of different methods on relieving the quenching-induced stress were compared. Firstly, three TiB2/7050 Al composite extrusions were treated by stretching, stretching and heat treatment, and stretching and cold treatment processes, respectively. Then, the multiple-cut contour method was employed to assess the residual stresses in the three workpieces. Experimental results indicate that the interior stress of TiB2/7050 Al composite extrusions after stretching ranges from −89 MPa to +55 MPa, which is larger than that in 7050 aluminum alloy, which ranges from −25 Pa to +25 MPa. The heat treatment performs better than the cold treatment to reduce the post-stretching residual stress, with a reduction of 23.2–46.4% compared to 11.3–40.8%, respectively. From the stress map, it is found that the stress distribution after the heat treatment is more uniform compared with that after the cold treatment.

  7. Variable content and distribution of arabinogalactan proteins in banana (Musa spp.) under low temperature stress.

    Science.gov (United States)

    Yan, Yonglian; Takáč, Tomáš; Li, Xiaoquan; Chen, Houbin; Wang, Yingying; Xu, Enfeng; Xie, Ling; Su, Zhaohua; Šamaj, Jozef; Xu, Chunxiang

    2015-01-01

    Information on the spatial distribution of arabinogalactan proteins (AGPs) in plant organs and tissues during plant reactions to low temperature (LT) is limited. In this study, the extracellular distribution of AGPs in banana leaves and roots, and their changes under LT stress were investigated in two genotypes differing in chilling tolerance, by immuno-techniques using 17 monoclonal antibodies against different AGP epitopes. Changes in total classical AGPs in banana leaves were also tested. The results showed that AGP epitopes recognized by JIM4, JIM14, JIM16, and CCRC-M32 antibodies were primarily distributed in leaf veins, while those recognized by JIM8, JIM13, JIM15, and PN16.4B4 antibodies exhibited predominant sclerenchymal localization. Epitopes recognized by LM2, LM14, and MAC207 antibodies were distributed in both epidermal and mesophyll cells. Both genotypes accumulated classical AGPs in leaves under LT treatment, and the chilling tolerant genotype contained higher classical AGPs at each temperature treatment. The abundance of JIM4 and JIM16 epitopes in the chilling-sensitive genotype decreased slightly after LT treatment, and this trend was opposite for the tolerant one. LT induced accumulation of LM2- and LM14-immunoreactive AGPs in the tolerant genotype compared to the sensitive one, especially in phloem and mesophyll cells. These epitopes thus might play important roles in banana LT tolerance. Different AGP components also showed differential distribution patterns in banana roots. In general, banana roots started to accumulate AGPs under LT treatment earlier than leaves. The levels of AGPs recognized by MAC207 and JIM13 antibodies in the control roots of the tolerant genotype were higher than in the chilling sensitive one. Furthermore, the chilling tolerant genotype showed high immuno-reactivity against JIM13 antibody. These results indicate that several AGPs are likely involved in banana tolerance to chilling injury.

  8. Initiation and dynamics of a spiral wave around an ionic heterogeneity in a model for human cardiac tissue.

    Science.gov (United States)

    Defauw, Arne; Dawyndt, Peter; Panfilov, Alexander V

    2013-12-01

    In relation to cardiac arrhythmias, heterogeneity of cardiac tissue is one of the most important factors underlying the onset of spiral waves and determining their type. In this paper, we numerically model heterogeneity of realistic size and value and study formation and dynamics of spiral waves around such heterogeneity. We find that the only sustained pattern obtained is a single spiral wave anchored around the heterogeneity. Dynamics of an anchored spiral wave depend on the extent of heterogeneity, and for certain heterogeneity size, we find abrupt regional increase in the period of excitation occurring as a bifurcation. We study factors determining spatial distribution of excitation periods of anchored spiral waves and discuss consequences of such dynamics for cardiac arrhythmias and possibilities for experimental testings of our predictions.

  9. Mass of the spirals galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Maupome, L; Pismis, P; Aguilar, L [Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Astronomia

    1981-01-01

    In an earlier paper we have found that the total mass of galaxies-especially of the spirals-based on values published until 1975, decreased as the Hubble type varied from Sa through Sc and Irregulars. It was also pointed out that masses determined from the hydrogen 21-cm line were higher than the optically determined masses. To investigate the cause of these tendencies we have estimated the masses using an analytic rotation curve of Brandt adjusted to the optical observations in order to include all the mass of a galaxy up to the last observed point. Although the masses computed in this manner were found to be larger, as expected, the decrease of mass with Hubble type found earlier is confirmed. However, there is a discrepancy in the earlier types (Sa, Sab) in that their radio-masses are smaller than the optically determined ones. At present, the cause of this is not clear.

  10. [Effect of zirconia abutment angulation on stress distribution in the abutment and the bone around implant: a finite element study].

    Science.gov (United States)

    Yang, Yan-zhong; Tian, Xiao-hua; Zhou, Yan-min

    2015-08-01

    To investigate the effect of three different zirconia angular abutments on the stress distribution in bone and abutment using three-dimensional finite element analysis, and provide instruction for clinical application. Finite element analysis (FEA) was applied to analyze the stress distribution of three different zirconia/titanium angular abutments and bone around implant. The maximum Von Minses stress that existed in abutment, bolt and bone of the angular abutment model was significantly higher than that existed in the straight abutment model. The maximum Von Minses stress that existed in abutment, bolt and bone of the 20 ° angular abutment model was significantly higher than that existed in 15 ° angular abutment model. There was no significant difference between zirconia abutment model and titanium abutment model. The abutment angulation has a significant influence on the stress distribution in the abutment, bolt and bone, and exacerbates as the angulation increases, which suggest that we should take more attention to the implant orientation and use straight abutment or little angular abutment. The zirconia abutment can be used safely, and there is no noticeable difference between zirconia abutment and titanium abutment on stress distribution.

  11. A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis.

    Science.gov (United States)

    Liang, Liang; Liu, Minliang; Martin, Caitlin; Sun, Wei

    2018-01-01

    Structural finite-element analysis (FEA) has been widely used to study the biomechanics of human tissues and organs, as well as tissue-medical device interactions, and treatment strategies. However, patient-specific FEA models usually require complex procedures to set up and long computing times to obtain final simulation results, preventing prompt feedback to clinicians in time-sensitive clinical applications. In this study, by using machine learning techniques, we developed a deep learning (DL) model to directly estimate the stress distributions of the aorta. The DL model was designed and trained to take the input of FEA and directly output the aortic wall stress distributions, bypassing the FEA calculation process. The trained DL model is capable of predicting the stress distributions with average errors of 0.492% and 0.891% in the Von Mises stress distribution and peak Von Mises stress, respectively. This study marks, to our knowledge, the first study that demonstrates the feasibility and great potential of using the DL technique as a fast and accurate surrogate of FEA for stress analysis. © 2018 The Author(s).

  12. The bio-distribution of the antidepressant clomipramine is modulated by chronic stress in mice: Effects on behavior

    Directory of Open Access Journals (Sweden)

    Georgia eBalsevich

    2015-01-01

    Full Text Available Major depression is one of the most common psychiatric disorders, severely affecting the quality of life of millions of people worldwide. Despite the availability of several classes of antidepressants, treatment efficacy is still very variable and many patients do not respond to the treatment. Clomipramine (CMI, a classical and widely used antidepressant, shows widespread interindividual variability of efficacy, while the environmental factors contributing to such variability remain unclear. We investigated whether chronic stress modulates the bio-distribution of CMI, and as a result the behavioral response to CMI treatment in a mouse model of chronic social defeat stress. Our results show that stress exposure increased anxiety-like and depressive-like behaviors and altered the stress response. Chronic defeat stress furthermore significantly altered CMI bio-distribution. Interestingly, CMI bio-distribution highly correlated with anxiety-like and depressive-like behaviors only under basal conditions. Taken together, we provide first evidence demonstrating that chronic stress exposure modulates CMI bio-distribution and behavioral responses. This may contribute to CMI’s broad interindividual variability, and is especially relevant in clinical practice.

  13. Influence of occlusal contact area on cusp defection and stress distribution.

    Science.gov (United States)

    Costa, Anna Karina Figueiredo; Xavier, Thaty Aparecida; Paes-Junior, Tarcisio José Arruda; Andreatta-Filho, Oswaldo Daniel; Borges, Alexandre Luiz Souto

    2014-11-01

    The purpose of this study was to evaluate the effect of occlusal contact area for loading on the cuspal defection and stress distribution in a first premolar restored with a high elastic modulus restorative material. The Rhinoceros 4.0 software was used for modeling the three-dimensional geometries of dental and periodontal structures and the inlay restoration. Thus, two different models, intact and restored teeth with three occlusal contact areas, 0.1, 0.5 and 0.75 mm(2), on enamel at the occlusal surface of buccal and lingual cusps. Finite element analysis (FEA) was performed with the program ANSYS (Workbench 13.0), which generated a mesh with tetrahedral elements with greater refinement in the regions of interest, and was constrained at the bases of cortical and trabecular bone in all axis and loaded with 100 N normal to each contact area. To analysis of maximum principal stress, the smaller occlusal contact area showed greater compressive stress in region of load application for both the intact and inlay restored tooth. However, tensile stresses at the occlusal isthmus were similar for all three tested occlusal contact areas (60 MPa). To displacement of the cusps was higher for teeth with inlay (0.46-0.48 mm). For intact teeth, the smaller contact area showed greater displacement (0.10 mm). For teeth with inlays, the displacement of the cusps were similar in all types of occlusal area. Cuspal displacement was higher in the restored tooth when compared to the intact tooth, but there were no significant variations even with changes in the occlusal contact area. RELEVANCE CLINICAL: Occlusal contacts have a great influence on the positioning of teeth being able to maintain the position and stability of the mandible. Axial loads would be able to generate more uniform stress at the root presenting a greater concentration of load application in the point and the occlusal surface. Thus, is necessary to analyze the relationship between these occlusal contacts as dental

  14. Influence of intrinsic and extrinsic forces on 3D stress distribution using CUDA programming

    Science.gov (United States)

    Räss, Ludovic; Omlin, Samuel; Podladchikov, Yuri

    2013-04-01

    In order to have a better understanding of the influence of buoyancy (intrinsic) and boundary (extrinsic) forces in a nonlinear rheology due to a power law fluid, some basics needs to be explored through 3D numerical calculation. As first approach, the already studied Stokes setup of a rising sphere will be used to calibrate the 3D model. Far field horizontal tectonic stress is applied to the sphere, which generates a vertical acceleration, buoyancy driven. This simple and known setup allows some benchmarking performed through systematic runs. The relative importance of intrinsic and extrinsic forces producing the wide variety of rates and styles of deformation, including absence of deformation and generating 3D stress patterns, will be determined. Relation between vertical motion and power law exponent will also be explored. The goal of these investigations will be to run models having topography and density structure from geophysical imaging as input, and 3D stress field as output. The stress distribution in Swiss Alps and Plateau and its implication for risk analysis is one of the perspective for this research. In fact, proximity of the stress to the failure is fundamental for risk assessment. Sensitivity of this to the accurate topography representation can then be evaluated. The developed 3D numerical codes, tuned for mid-sized cluster, need to be optimized, especially while running good resolution in full 3D. Therefor, two largely used computing platforms, MATLAB and FORTRAN 90 are explored. Starting with an easy adaptable and as short as possible MATLAB code, which is then upgraded in order to reach higher performance in simulation times and resolution. A significant speedup using the rising NVIDIA CUDA technology and resources is also possible. Programming in C-CUDA, creating some synchronization feature, and comparing the results with previous runs, helps us to investigate the new speedup possibilities allowed through GPU parallel computing. These codes

  15. Finite Element Analysis of the Effect of Proximal Contour of Class II Composite Restorations on Stress Distribution

    Directory of Open Access Journals (Sweden)

    Hossein Abachizadeh

    2012-09-01

    Full Text Available Introduction: The aim of this study was to evaluate the effect of proximal contour of class II composite restorations placed with straight or contoured matrix band using composite resins with different modulus of elasticity on stress distribution by finite element method. Methods: In order to evaluate the stress distribution of class II composite restorations using finite element method, upper right first molar and second premolar were modeled. Proximal boxes were designed and restored with universal Z250 and packable P60 composite resins (3M ESPE using two matrix systems: flat Tofflemire matrix and precurved sectional matrix. Finally models were evaluated under loads of 200 and 400 Newton at 90 degrees angle and the results were graphically illustrated in the form of Von Misses stresses. Results: In general the stress obtained under 400 Newton load was significantly greater than the stress of models under 200 Newton load. Von Misses stress distribution pattern of two different Z250 and P60 composites were very similar in all modes of loading and proximal contour. In all analyzed models there was a significant difference between models restored with Tofflemire matrix with flat contour and models restored with sectional matrix with curved contour. This difference was greater in first molar than second premolar. Conclusion: Use of a contoured matrix band results in less stress in class II composite resin restorations.

  16. Stress distribution and displacement of abutment of middle implant-natural teeth fixed bridge under different loading

    International Nuclear Information System (INIS)

    Chen Erjun; Zhou Yanmin; Ma Chenchun; Cong Zhiqiang; Jiang Yonghua

    2004-01-01

    Objective: To study stress distribution and displacement of abutment of middle implant-natural teeth fixed bridge under different loading. Methods: The stress distribution and displacement of abutment were studied and analyzed by means of three-dimensional finite element when different loading was applied. Results: The biggest stress of middle implant was 4-5 times as big as that of natural teeth. Under concentrated vertical loading, the biggest stress of implant was about 2 times higher than that under dispersed vertical loading. There was no significant difference of biggest stress on the implant between concentrated oblique loading and dispersed oblique loading. The biggest stress of implant under oblique loading was 3 times as big as that under dispersed vertical loading. The biggest stress of natural teeth under dispersed loading was lower than that under concentrated loading. The maximum displacement of implant in occlusal-gum direction was great lower than that of natural teeth. Both in buccal-lingual direction and medial-distal direction, the displacement of implant were about equal to that of natural teeth. Conclusion: The oblique loading is the main force to destroy the middle implant-natural teeth fixed bridge. The lean of cusp should be reduced. The abnormally high occlusal points should be deleted. The bite points should be well distributed. The fixed bridge is feasible. (authors)

  17. Stochastic variability in stress, sleep duration, and sleep quality across the distribution of body mass index: insights from quantile regression.

    Science.gov (United States)

    Yang, Tse-Chuan; Matthews, Stephen A; Chen, Vivian Y-J

    2014-04-01

    Obesity has become a problem in the USA and identifying modifiable factors at the individual level may help to address this public health concern. A burgeoning literature has suggested that sleep and stress may be associated with obesity; however, little is know about whether these two factors moderate each other and even less is known about whether their impacts on obesity differ by gender. This study investigates whether sleep and stress are associated with body mass index (BMI) respectively, explores whether the combination of stress and sleep is also related to BMI, and demonstrates how these associations vary across the distribution of BMI values. We analyze the data from 3,318 men and 6,689 women in the Philadelphia area using quantile regression (QR) to evaluate the relationships between sleep, stress, and obesity by gender. Our substantive findings include: (1) high and/or extreme stress were related to roughly an increase of 1.2 in BMI after accounting for other covariates; (2) the pathways linking sleep and BMI differed by gender, with BMI for men increasing by 0.77-1 units with reduced sleep duration and BMI for women declining by 0.12 unit with 1 unit increase in sleep quality; (3) stress- and sleep-related variables were confounded, but there was little evidence for moderation between these two; (4) the QR results demonstrate that the association between high and/or extreme stress to BMI varied stochastically across the distribution of BMI values, with an upward trend, suggesting that stress played a more important role among adults with higher BMI (i.e., BMI > 26 for both genders); and (5) the QR plots of sleep-related variables show similar patterns, with stronger effects on BMI at the upper end of BMI distribution. Our findings suggested that sleep and stress were two seemingly independent predictors for BMI and their relationships with BMI were not constant across the BMI distribution.

  18. IMRT delivery verification using a spiral phantom

    International Nuclear Information System (INIS)

    Richardson, Susan L.; Tome, Wolfgang A.; Orton, Nigel P.; McNutt, Todd R.; Paliwal, Bhudatt R.

    2003-01-01

    In this paper we report on the testing and verification of a system for IMRT delivery quality assurance that uses a cylindrical solid water phantom with a spiral trajectory for radiographic film placement. This spiral film technique provides more complete dosimetric verification of the entire IMRT treatment than perpendicular film methods, since it samples a three-dimensional dose subspace rather than using measurements at only one or two depths. As an example, the complete analysis of the predicted and measured spiral films is described for an intracranial IMRT treatment case. The results of this analysis are compared to those of a single field perpendicular film technique that is typically used for IMRT QA. The comparison demonstrates that both methods result in a dosimetric error within a clinical tolerance of 5%, however the spiral phantom QA technique provides a more complete dosimetric verification while being less time consuming. To independently verify the dosimetry obtained with the spiral film, the same IMRT treatment was delivered to a similar phantom in which LiF thermoluminescent dosimeters were arranged along the spiral trajectory. The maximum difference between the predicted and measured TLD data for the 1.8 Gy fraction was 0.06 Gy for a TLD located in a high dose gradient region. This further validates the ability of the spiral phantom QA process to accurately verify delivery of an IMRT plan

  19. On Shear Stress Distributions for Flow in Smooth or Partially Rough Annuli

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, B; Hedberg, S

    1966-08-15

    It is commonly assumed that for turbulent flow in annuli the radii of zero shear and maximum velocity are coincident. By inspection of the differential equations for such flow and by an integral analysis it is shown that this is not necessarily true. To check whether important differences could occur, experiments were made in which velocity and shear stress distributions were measured in one smooth and two partially rough annuli. The results show no difference in the radii for the smooth annulus, but for the partially rough annuli there was a small but significant difference. This difference explains the breakdown of Hall's transformation theory reported by other investigators. The error introduced by use of Hall's theory is however small, of the order of 10 % or less.

  20. On Shear Stress Distributions for Flow in Smooth or Partially Rough Annuli

    International Nuclear Information System (INIS)

    Kjellstroem, B.; Hedberg, S.

    1966-08-01

    It is commonly assumed that for turbulent flow in annuli the radii of zero shear and maximum velocity are coincident. By inspection of the differential equations for such flow and by an integral analysis it is shown that this is not necessarily true. To check whether important differences could occur, experiments were made in which velocity and shear stress distributions were measured in one smooth and two partially rough annuli. The results show no difference in the radii for the smooth annulus, but for the partially rough annuli there was a small but significant difference. This difference explains the breakdown of Hall's transformation theory reported by other investigators. The error introduced by use of Hall's theory is however small, of the order of 10 % or less

  1. Sex differences in the tracer distribution on stress thallium-201 imaging, (1)

    International Nuclear Information System (INIS)

    Tamaki, Nagara; Koda, Hideki; Adachi, Yukihide; Sugihara, Takao; Kato, Mihoko; Tanaka, Nobuyuki; Tamari, Kimimasa.

    1988-01-01

    To determine the sex differences in the tracer distribution on stress thallium-201 imaging, the studies of 18 normal males and 18 normal females were subjected to quantitative circumferential profile analysis in each projection image. Although the exercise duration was shorter in females (11±3 min) than in males (14±3 min) (p<0.01), the peak heart rate, peak systolic pressure and the lung-to-myocardial count ratio were similar between them. The averaged profile curves in female showed a significant reduction in tracer uptake in anterior and upper septal regions, particularly in the study of lateral view, which may be attributed to breast attenuation. In addition, the percent washout of thallium in 3 hours was higher in females (48±8%) than in males (43±7%) (p<0.01), particularly in the study of anterior view. We conclude that important differences in the pattern of thallium uptake and washout between males and females should be considered for interpretation of stress thallium imaging. (author)

  2. Effect of Oval Posts on Stress Distribution in Endodontically Treated Teeth: A Three-Dimensional Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Mojtaba Mahmoodi

    2017-09-01

    Full Text Available Introduction: In post-core crown restorations, the use of prefabricated composite posts concentrate stress at the cervical region and the use of metal posts (prefabricated and customized posts concentrates stress at the interfaces. Fiber reinforced composite posts (FRCs with oval cross-section (oval posts were proposed for post-core crown restorations to reduce the stress levels at the cervical region. The aim of the present study was to investigate the impact of oval cross-section composite posts on stress distribution of premolar with oval-shaped canal by using three-dimensional (3D finite element analysis. Materials and Methods: An extracted premolar tooth was mounted, sectioned, and photographed to create a 3D model. The surrounding tissues of the tooth, periodontal ligament, as well as cortical and trabecular bones were modeled. Seven taper posts with two different cross-section geometries (circular and oval shapes were modeled, as well. Then, the effect of post geometry, post material (carbon fiber and fiberglass, and cement material were investigated by 3D finite element analysis and the stress distribution results were compared. Results: In all the models, the highest stress levels of the dentin were accumulated at the coronal third of the root, and the highest stress levels at the bonding layers were accumulated at the cervical margin. Narrow circular posts induced the highest stress levels, whereas the stress levels were reduced by using thick oval posts. Application of elastic cement reduces the stress at the bonding layers but increases stress at the dentin. Conclusion: Finite element analysis showed that prefabricated oval posts are superior to traditional circular ones. The use of cement with low elastic modulus reduces the risk of debonding but raises the risk of root fracture.

  3. Effect of Local Strain Distribution of Cold-Rolled Alloy 690 on Primary Water Stress Corrosion Crack Growth Behavior

    Directory of Open Access Journals (Sweden)

    Kim S.-W.

    2017-06-01

    Full Text Available This work aims to study the stress corrosion crack growth behavior of cold-rolled Alloy 690 in the primary water of a pressurized water reactor. Compared with Alloy 600, which shows typical intergranular cracking along high angle grain boundaries, the cold-rolled Alloy 690, with its heterogeneous microstructure, revealed an abnormal crack growth behavior in mixed mode, that is, in transgranular cracking near a banded region, and in intergranular cracking in a matrix region. From local strain distribution analysis based on local mis-orientation, measured along the crack path using the electron back scattered diffraction method, it was suggested that the abnormal behavior was attributable to a heterogeneity of local strain distribution. In the cold-rolled Alloy 690, the stress corrosion crack grew through a highly strained area formed by a prior cold-rolling process in a direction perpendicular to the maximum principal stress applied during a subsequent stress corrosion cracking test.

  4. Investigating the Effect of Drought Stress on Growth and distribution of Purple Nutsedge (Cyperus rotundus L.

    Directory of Open Access Journals (Sweden)

    N. Karimi Arpanahi

    2017-08-01

    Full Text Available Introduction: Drought is one of the most important and common environmental stresses in the country, which affect different stages of plant growth and development. Drought can affect plants growth in various ways, thereby reduces and delays germination, and decreases shoot growth and dry matter production. In the case of high water stress, it results showed great reductions in photosynthesis and disruption of the physiological processes, as well as growth stop and eventually plant death.Purple nutsedge (Cyperus rotundus L. has been listed as the world’s worst weed based onits worldwide distribution (92 countries and interference with over 50 crops. It causes high yield losses in fruiting vegetables and cucurbits in eastern and southeastern parts of Iran, where drought stress is a common phenomenon. Therefore, it is of utmost importance to understand the response of this noxious weed species to drought stress. Materials and Methods: In order to study the effect of drought stress on growth and distribution of purple nutsedge, two separate experiments were carried out in a randomized complete block design with three replications in the Research Greenhouse at Birjand University in 2013. The first experiment consisted of 6 irrigation interval levels (3, 6, 9, 12, 15 and 18- day irrigation intervals and the second one were 5 irrigation levels based on field capacity (12.5, 25, 50, 75 and 100 % FC. Results and Discussion: ANOVA results of both experiments showed that all growth characteristics of purple nutsedge were affected by drought stress. The results of irrigation interval stress experiment showed that the maximum height (76 cm, leaf area (110.83 cm2, stem number (4.66 stemperpot, shoot dry weight (4.132 gr per plant, tuber number (7.66 tuber per pot and total underground organs dry weight (4.435 gr per plant were observed in 3- day irrigation interval. Also, the lowest amount of these characteristics was obtained in 18- day irrigation interval

  5. STRENGTH AND STIFFNESS OF A FLEXIBLE HIGH-PRESSURE SPIRAL HOSE

    NARCIS (Netherlands)

    BREGMAN, PC; KUIPERS, M; TEERLING, HLJ; VANDERVEEN, WA

    1993-01-01

    We consider a flexible high-pressure rubber hose with separate reinforcing cylinders which each consist of one family of spiralized fibres. The straight tube is radially and axially loaded by an internal pressure. This paper gives an approximative analysis of the stresses and strains occurring in

  6. Spiral Gradient Coil Design for Use in Cylindrical MRI Systems.

    Science.gov (United States)

    Wang, Yaohui; Xin, Xuegang; Liu, Feng; Crozier, Stuart

    2018-04-01

    In magnetic resonance imaging, the stream function based method is commonly used in the design of gradient coils. However, this method can be prone to errors associated with the discretization of continuous current density and wire connections. In this paper, we propose a novel gradient coil design scheme that works directly in the wire space, avoiding the system errors that may appear in the stream function approaches. Specifically, the gradient coil pattern is described with dedicated spiral functions adjusted to allow the coil to produce the required field gradients in the imaging area, minimal stray field, and other engineering terms. The performance of a designed spiral gradient coil was compared with its stream-function counterpart. The numerical evaluation shows that when compared with the conventional solution, the inductance and resistance was reduced by 20.9 and 10.5%, respectively. The overall coil performance (evaluated by the figure of merit (FoM)) was improved up to 26.5% for the x -gradient coil design; for the z-gradient coil design, the inductance and resistance were reduced by 15.1 and 6.7% respectively, and the FoM was increased by 17.7%. In addition, by directly controlling the wire distributions, the spiral gradient coil design was much sparser than conventional coils.

  7. 3D design and electric simulation of a silicon drift detector using a spiral biasing adapter

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yu-yun; Xiong, Bo [School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105 (China); Center for Semiconductor Particle and photon Imaging Detector, Development and Fabrication, Xiangtan University, Xiangtan 411105 (China); Li, Zheng, E-mail: zhengli58@gmail.com [School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105 (China); Center for Semiconductor Particle and photon Imaging Detector, Development and Fabrication, Xiangtan University, Xiangtan 411105 (China)

    2016-09-21

    The detector system of combining a spiral biasing adapter (SBA) with a silicon drift detector (SBA-SDD) is largely different from the traditional silicon drift detector (SDD), including the spiral SDD. It has a spiral biasing adapter of the same design as a traditional spiral SDD and an SDD with concentric rings having the same radius. Compared with the traditional spiral SDD, the SBA-SDD separates the spiral's functions of biasing adapter and the p–n junction definition. In this paper, the SBA-SDD is simulated using a Sentaurus TCAD tool, which is a full 3D device simulation tool. The simulated electric characteristics include electric potential, electric field, electron concentration, and single event effect. Because of the special design of the SBA-SDD, the SBA can generate an optimum drift electric field in the SDD, comparable with the conventional spiral SDD, while the SDD can be designed with concentric rings to reduce surface area. Also the current and heat generated in the SBA are separated from the SDD. To study the single event response, we simulated the induced current caused by incident heavy ions (20 and 50 μm penetration length) with different linear energy transfer (LET). The SBA-SDD can be used just like a conventional SDD, such as X-ray detector for energy spectroscopy and imaging, etc. - Highlights: • The separation of the spiral biasing adapter and SDD is a new concept. • The distribution of the electric potential is symmetrical around the axis through the anode. • The region with higher electron concentrations defines the drift channel.

  8. Effects of water stress on the distribution of 14C-assimilates in young apple trees (mauls pumila mill.)

    International Nuclear Information System (INIS)

    Dong Jiankang; Deng Ximin; Zeng Xiang

    1994-01-01

    Young apple trees were treated by water stress and 14 CO 2 was fed to leaves. Distribution of assimilates in source and sink organs was determined. The results show that plant water deficit increased the proportion of 14 C-assimilates remained in source leaves, and decreased the proportion of 13 C-assimilates exported into the developing fruits. Water stress also significantly decreased the photosynthetic rate of leaves and the growth rate of plants

  9. SPR Characteristics Curve and Distribution of Residual Stress in Self-Piercing Riveted Joints of Steel Sheets

    Directory of Open Access Journals (Sweden)

    Rezwanul Haque

    2017-01-01

    Full Text Available Neutron diffraction was used to describe the residual stress distributions in self-piercing riveted (SPR joints. The sheet material displayed a compressive residual stress near the joint, and the stress gradually became tensile in the sheet material far away from the joint. The stress in the rivet leg was lower in the thick joint of the softer steel sheet than in the thin joint of the harder steel sheet. This lower magnitude was attributed to the lower force gradient during the rivet flaring stage of the SPR process curve. This study shows how the residual stress results may be related to the physical occurrences that happened during joining, using the characteristics curve. The study also shows that neutron diffraction technique enabled a crack in the rivet tip to be detected which was not apparent from a cross-section.

  10. The residual stress distribution in welded pipe inner surface of stainless steel from the nuclear power plant in Ringhals

    International Nuclear Information System (INIS)

    Larsson, L.E.

    1984-06-01

    The axial residual stress distribution on the inner surface of welded pipes of stainless steel SS 2333 (AISI 304) have been measured using the X-ray diffraction technique. Four halves of two pipes with the outer diameter of 114 mm and wall thickness of 10 mm were investigated. The result on the pipe inner surface shows compressive stresses in the weld metal and tensile stresses within a region between 8-23 mm with a maximum of 180MPa at a distance of 17 mm from the weld centerline. The maximum axial and circumferential residual stresses on the pipe outer surface are of the magnitude of 100 MPa. By cutting the pipes into two halves these stresses are relaxed by about 35 MPa. (author)

  11. Echo-Interleaved-Spiral MR Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Shirrie; Azhari, Haim [Department of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa 32000 (Israel); Montag, Avram [Elscint Ltd., MRI division, Haifa (Israel)

    1999-12-31

    Interleaved-Spiral imaging is an efficient method for MRI fast scans. However, images suffer from blurring and artifacts due to field inhomogeneities and the long readout times. In this paper, we combine interleaved-spirals with spin-echo for 3D scans. The refocusing RF-pulses (echoes) refocus off-resonance spins, thus allowing longer acquisition times per excitation, by limiting inhomogeneity effects. The total number of excitations for a 3D scan is reduced by half. The 3D Fourier transform of an object is divided into pairs of slices, one slice is scanned in an outgoing interleaved-spiral, initiated after a 90 degree pulse has been applied. The second slice is scanned in an ingoing interleaved-spiral, after a 180 degree pulse has been applied, thus reaching the slice origin at the echo time. (authors) 4 refs., 3 figs.

  12. Echo-Interleaved-Spiral MR Imaging

    International Nuclear Information System (INIS)

    Rosenthal, Shirrie; Azhari, Haim; Montag, Avram

    1998-01-01

    Interleaved-Spiral imaging is an efficient method for MRI fast scans. However, images suffer from blurring and artifacts due to field inhomogeneities and the long readout times. In this paper, we combine interleaved-spirals with spin-echo for 3D scans. The refocusing RF-pulses (echoes) refocus off-resonance spins, thus allowing longer acquisition times per excitation, by limiting inhomogeneity effects. The total number of excitations for a 3D scan is reduced by half. The 3D Fourier transform of an object is divided into pairs of slices, one slice is scanned in an outgoing interleaved-spiral, initiated after a 90 degree pulse has been applied. The second slice is scanned in an ingoing interleaved-spiral, after a 180 degree pulse has been applied, thus reaching the slice origin at the echo time. (authors)

  13. Corrosion of Spiral Rib Aluminized Pipe : [Summary

    Science.gov (United States)

    2012-01-01

    Large diameter, corrugated steel pipes are a common sight in the culverts that run alongside many Florida roads. Spiral-ribbed aluminized pipe (SRAP) has been widely specified by the Florida Department of Transportation (FDOT) for runoff drainage. Th...

  14. Corrosion of Spiral Rib Aluminized Pipe

    Science.gov (United States)

    2012-08-01

    Large diameter, corrugated steel pipes are a common sight in the culverts that run alongside many Florida roads. Spiral-ribbed aluminized pipe (SRAP) has been widely specified by the Florida Department of Transportation (FDOT) for runoff drainage. Th...

  15. Magnetic spiral arms in galaxy haloes

    Science.gov (United States)

    Henriksen, R. N.

    2017-08-01

    We seek the conditions for a steady mean field galactic dynamo. The parameter set is reduced to those appearing in the α2 and α/ω dynamo, namely velocity amplitudes, and the ratio of sub-scale helicity to diffusivity. The parameters can be allowed to vary on conical spirals. We analyse the mean field dynamo equations in terms of scale invariant logarithmic spiral modes and special exact solutions. Compatible scale invariant gravitational spiral arms are introduced and illustrated in an appendix, but the detailed dynamical interaction with the magnetic field is left for another work. As a result of planar magnetic spirals `lifting' into the halo, multiple sign changes in average rotation measures forming a regular pattern on each side of the galactic minor axis, are predicted. Such changes have recently been detected in the Continuum Halos in Nearby Galaxies-an EVLA Survey (CHANG-ES) survey.

  16. High energy x-ray synchrotron radiation analysis of residual stress distribution of shot-peened steels

    International Nuclear Information System (INIS)

    Tanaka, Keisuke; Akiniwa, Yoshiaki; Kimachi, Hirohisa; Suzuki, Kenji; Yanase, Etsuya; Nishio, Kouji; Kusumi, Yukihiro

    2001-01-01

    A high energy X-ray beam from synchrotron radiation source SPring-8 was used to determine the residual stress distribution beneath the shot-peened surface of carbon steel plates. By using the monochromatic X-ray beam with an energy of 72 keV, the relation between 2θ and sin 2 ψ was obtained by the side-inclination method upto sin 2 ψ = 0.9. The distribution of the residual stress was determined from the non-linearity of the relation between 2θ and sin 2 ψ. (author)

  17. Determination of the plastic deformation and residual stress tensor distribution using surface and bulk intrinsic magnetic properties

    International Nuclear Information System (INIS)

    Hristoforou, E.; Svec, P. Sr.

    2015-01-01

    We have developed an unique method to provide the stress calibration curve in steels: performing flaw-less welding in the under examination steel, we obtained to determine the level of the local plastic deformation and the residual stress tensors. These properties where measured using both the X-ray and the neutron diffraction techniques, concerning their surface and bulk stresses type II (intra-grain stresses) respectively, as well as the stress tensor type III by using the electron diffraction technique. Measuring the distribution of these residual stresses along the length of a welded sample or structure, resulted in determining the local stresses from the compressive to tensile yield point. Local measurement of the intrinsic surface and bulk magnetic property tensors allowed for the un-hysteretic correlation. The dependence of these local magnetic tensors with the above mentioned local stress tensors, resulting in a unique and almost un-hysteretic stress calibration curve of each grade of steel. This calibration integrated the steel's mechanical and thermal history, as well as the phase transformations and the presence of precipitations occurring during the welding process.Additionally to that, preliminary results in different grade of steels reveal the existence of a universal law concerning the dependence of magnetic and magnetostrictive properties of steels on their plastic deformation and residual stress state, as they have been accumulated due to their mechanical and thermal fatigue and history. This universality is based on the unique dependence of the intrinsic magnetic properties of steels normalized with a certain magnetoelastic factor, upon the plastic deformation or residual stress state, which, in terms, is normalized with their yield point of stress. (authors)

  18. Statistical analysis of metallicity in spiral galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Galeotti, P [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Ist. di Fisica Generale)

    1981-04-01

    A principal component analysis of metallicity and other integral properties of 33 spiral galaxies is presented; the involved parameters are: morphological type, diameter, luminosity and metallicity. From the statistical analysis it is concluded that the sample has only two significant dimensions and additonal tests, involving different parameters, show similar results. Thus it seems that only type and luminosity are independent variables, being the other integral properties of spiral galaxies correlated with them.

  19. Galactic models with variable spiral structure

    International Nuclear Information System (INIS)

    James, R.A.; Sellwood, J.A.

    1978-01-01

    A series of three-dimensional computer simulations of disc galaxies has been run in which the self-consistent potential of the disc stars is supplemented by that arising from a small uniform Population II sphere. The models show variable spiral structure, which is more pronounced for thin discs. In addition, the thin discs form weak bars. In one case variable spiral structure associated with this bar has been seen. The relaxed discs are cool outside resonance regions. (author)

  20. SIGNATURES OF LONG-LIVED SPIRAL PATTERNS

    International Nuclear Information System (INIS)

    Martínez-García, Eric E.; González-Lópezlira, Rosa A.

    2013-01-01

    Azimuthal age/color gradients across spiral arms are a signature of long-lived spirals. From a sample of 19 normal (or weakly barred) spirals where we have previously found azimuthal age/color gradient candidates, 13 objects were further selected if a two-armed grand-design pattern survived in a surface density stellar mass map. Mass maps were obtained from optical and near-infrared imaging, by comparison with a Monte Carlo library of stellar population synthesis models that allowed us to obtain the mass-to-light ratio in the J band, (M/L) J , as a function of (g – i) versus (i – J) color. The selected spirals were analyzed with Fourier methods in search of other signatures of long-lived modes related to the gradients, such as the gradient divergence toward corotation, and the behavior of the phase angle of the two-armed spiral in different wavebands, as expected from theory. The results show additional signatures of long-lived spirals in at least 50% of the objects.

  1. Chiralities of spiral waves and their transitions.

    Science.gov (United States)

    Pan, Jun-ting; Cai, Mei-chun; Li, Bing-wei; Zhang, Hong

    2013-06-01

    The chiralities of spiral waves usually refer to their rotation directions (the turning orientations of the spiral temporal movements as time elapses) and their curl directions (the winding orientations of the spiral spatial geometrical structures themselves). Traditionally, they are the same as each other. Namely, they are both clockwise or both counterclockwise. Moreover, the chiralities are determined by the topological charges of spiral waves, and thus they are conserved quantities. After the inwardly propagating spirals were experimentally observed, the relationship between the chiralities and the one between the chiralities and the topological charges are no longer preserved. The chiralities thus become more complex than ever before. As a result, there is now a desire to further study them. In this paper, the chiralities and their transition properties for all kinds of spiral waves are systemically studied in the framework of the complex Ginzburg-Landau equation, and the general relationships both between the chiralities and between the chiralities and the topological charges are obtained. The investigation of some other models, such as the FitzHugh-Nagumo model, the nonuniform Oregonator model, the modified standard model, etc., is also discussed for comparison.

  2. Effect of elasticity on stress distribution in CAD/CAM dental crowns: Glass ceramic vs. polymer-matrix composite.

    Science.gov (United States)

    Duan, Yuanyuan; Griggs, Jason A

    2015-06-01

    Further investigations are required to evaluate the mechanical behaviour of newly developed polymer-matrix composite (PMC) blocks for computer-aided design/computer-aided manufacturing (CAD/CAM) applications. The purpose of this study was to investigate the effect of elasticity on the stress distribution in dental crowns made of glass-ceramic and PMC materials using finite element (FE) analysis. Elastic constants of two materials were determined by ultrasonic pulse velocity using an acoustic thickness gauge. Three-dimensional solid models of a full-coverage dental crown on a first mandibular molar were generated based on X-ray micro-CT scanning images. A variety of load case-material property combinations were simulated and conducted using FE analysis. The first principal stress distribution in the crown and luting agent was plotted and analyzed. The glass-ceramic crown had stress concentrations on the occlusal surface surrounding the area of loading and the cemented surface underneath the area of loading, while the PMC crown had only stress concentration on the occlusal surface. The PMC crown had lower maximum stress than the glass-ceramic crown in all load cases, but this difference was not substantial when the loading had a lateral component. Eccentric loading did not substantially increase the maximum stress in the prosthesis. Both materials are resistant to fracture with physiological occlusal load. The PMC crown had lower maximum stress than the glass-ceramic crown, but the effect of a lateral loading component was more pronounced for a PMC crown than for a glass-ceramic crown. Knowledge of the stress distribution in dental crowns with low modulus of elasticity will aid clinicians in planning treatments that include such restorations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Spiral 2: preliminary design study

    International Nuclear Information System (INIS)

    2001-11-01

    The scientific council of GANIL asked to perform a comparative study on the production methods based on gamma induced fission and rapid-neutron induced fission concerning the nature and the intensity of the neutron-rich products. The production rate expected should be around 10 13 fissions per second. The study should include the implantation and the costs of the concerned accelerators. The scientific committee recommended also to study the possibility to re-inject the radioactive beams of SPIRAL-II in the cyclotrons available at GANIL in order to give access to an energy range from 1.7 to 100 MeV/nucleon. For that purpose, some study groups have been formed to evaluate the possibility of such a project in the different components: physics case, target-ion sources, drivers, post-acceleration and general infrastructure. The organization of the project study is given at the end of this report. The following report presents an overview of the study. Particularly the total costs have been assessed according to 3 options for the driver: 38.0*10 6 euros for a 40 MeV deuteron linac, 18.7*10 6 euros for a 45 MeV electron linac, and 29.1*10 6 euros for a 80 MeV deuteron cyclotron

  4. Spiral 2: preliminary design study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-11-15

    The scientific council of GANIL asked to perform a comparative study on the production methods based on gamma induced fission and rapid-neutron induced fission concerning the nature and the intensity of the neutron-rich products. The production rate expected should be around 10{sup 13} fissions per second. The study should include the implantation and the costs of the concerned accelerators. The scientific committee recommended also to study the possibility to re-inject the radioactive beams of SPIRAL-II in the cyclotrons available at GANIL in order to give access to an energy range from 1.7 to 100 MeV/nucleon. For that purpose, some study groups have been formed to evaluate the possibility of such a project in the different components: physics case, target-ion sources, drivers, post-acceleration and general infrastructure. The organization of the project study is given at the end of this report. The following report presents an overview of the study. Particularly the total costs have been assessed according to 3 options for the driver: 38.0*10{sup 6} euros for a 40 MeV deuteron linac, 18.7*10{sup 6} euros for a 45 MeV electron linac, and 29.1*10{sup 6} euros for a 80 MeV deuteron cyclotron.

  5. Scanning electron-acoustic imaging of residual stress distributions in aluminum metal and ZrSiO4 multiphase ceramics

    International Nuclear Information System (INIS)

    Zhang, B.Y.; Jiang, F.M.; Shi, Y.; Yin, Q.R.; Qian, M.L.

    1997-01-01

    The scanning electron-acoustic imaging technique has been used in the characterization of the residual stress field distributions existing in the subsurface in aluminum disks and 20 vol% SiC ( w)/ZrSiO 4 multiphase ceramics left by Vicker close-quote s indentation. The experimental results reveal that the distribution areas are the plastic-elastic interchange zones. The electron-acoustic signal generation mechanism in the samples are discussed. copyright 1997 American Institute of Physics

  6. Influence of implantoplasty on stress distribution of exposed implants at different bone insertion levels

    Directory of Open Access Journals (Sweden)

    João Paulo Mendes TRIBST

    2017-12-01

    Full Text Available Abstract This study evaluated the effect of implantoplasty on different bone insertion levels of exposed implants. A model of the Bone Level Tapered implant (Straumann Institute, Waldenburg, Switzerland was created through the Rhinoceros software (version 5.0 SR8, McNeel North America, Seattle, WA, USA. The abutment was fixed to the implant through a retention screw and a monolithic crown was modeled over a cementation line. Six models were created with increasing portions of the implant threads exposed: C1 (1 mm, C2 (2 mm, C3 (3 mm, C4 (4 mm, C5 (5 mm and C6 (6 mm. The models were made in duplicates and one of each pair was used to simulate implantoplasty, by removing the threads (I1, I2, I3, I4, I5 and I6. The final geometry was exported in STEP format to ANSYS (ANSYS 15.0, ANSYS Inc., Houston, USA and all materials were considered homogeneous, isotropic and linearly elastic. To assess distribution of stress forces, an axial load (300 N was applied on the cusp. For the periodontal insert, the strains increased in the peri-implant region according to the size of the exposed portion and independent of the threads’ presence. The difference between groups with and without implantoplasty was less than 10%. Critical values were found when the inserted portion was smaller than the exposed portion. In the exposed implants, the stress generated on the implant and retention screw was higher in the models that received implantoplasty. For the bone tissue, exposure of the implant’s thread was a damaging factor, independent of implantoplasty. Implantoplasty treatment can be safely used to control peri-implantitis if at least half of the implant is still inserted in bone.

  7. Formation of giant molecular clouds in global spiral structures: the role of orbital dynamics and cloud-cloud collisions

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Stewart, G.R.

    1987-01-01

    The different roles played by orbital dynamics and dissipative cloud-cloud collisions in the formation of giant molecular clouds (GMCs) in a global spiral structure are investigated. The interstellar medium (ISM) is simulated by a system of particles, representing clouds, which orbit in a spiral-perturbed, galactic gravitational field. The overall magnitude and width of the global cloud density distribution in spiral arms is very similar in the collisional and collisionless simulations. The results suggest that the assumed number density and size distribution of clouds and the details of individual cloud-cloud collisions have relatively little effect on these features. Dissipative cloud-cloud collisions play an important steadying role for the cloud system's global spiral structure. Dissipative cloud-cloud collisions also damp the relative velocity dispersion of clouds in massive associations and thereby aid in the effective assembling of GMC-like complexes

  8. Six Decades of Spiral Density Wave Theory

    Science.gov (United States)

    Shu, Frank H.

    2016-09-01

    The theory of spiral density waves had its origin approximately six decades ago in an attempt to reconcile the winding dilemma of material spiral arms in flattened disk galaxies. We begin with the earliest calculations of linear and nonlinear spiral density waves in disk galaxies, in which the hypothesis of quasi-stationary spiral structure (QSSS) plays a central role. The earliest success was the prediction of the nonlinear compression of the interstellar medium and its embedded magnetic field; the earliest failure, seemingly, was not detecting color gradients associated with the migration of OB stars whose formation is triggered downstream from the spiral shock front. We give the reasons for this apparent failure with an update on the current status of the problem of OB star formation, including its relationship to the feathering substructure of galactic spiral arms. Infrared images can show two-armed, grand design spirals, even when the optical and UV images show flocculent structures. We suggest how the nonlinear response of the interstellar gas, coupled with overlapping subharmonic resonances, might introduce chaotic behavior in the dynamics of the interstellar medium and Population I objects, even though the underlying forces to which they are subject are regular. We then move to a discussion of resonantly forced spiral density waves in a planetary ring and their relationship to the ideas of disk truncation, and the shepherding of narrow rings by satellites orbiting nearby. The back reaction of the rings on the satellites led to the prediction of planet migration in protoplanetary disks, which has had widespread application in the exploding data sets concerning hot Jupiters and extrasolar planetary systems. We then return to the issue of global normal modes in the stellar disk of spiral galaxies and its relationship to the QSSS hypothesis, where the central theoretical concepts involve waves with negative and positive surface densities of energy and angular

  9. Confinement of NORMAL- AND HIGH-STRENGTH CONCRETE by Shape Memory Alloy (SMA) Spirals

    Science.gov (United States)

    Gholampour, A.; Ozbakkaloglu, T.

    2018-01-01

    This paper presents the results of an experimental study on the axial compressive behaviour of normal- and high-strength concrete (NSC and HSC) confined by shape memory alloy (SMA) spirals. A spiral pitch space of 36 and 20 mm was used for SMA confinement of NSC and HSC columns, respectively. The confining pressure was applied on the concrete cylinders by SMA spirals that were prestrained at 0, 5.5, and 9.5%. The compression test results on the SMA-confined specimens indicate that the prestrain level of SMA significantly affects the axial compressive behaviour of both NSC and HSC. An increase in the level of prestrain leads to an increase in the peak axial stress and corresponding strain of SMA-confined concrete.

  10. Influence of phase transformations on the asymptotic residual stress distribution arising near a sharp V-notch tip

    International Nuclear Information System (INIS)

    Ferro, P

    2012-01-01

    In this work, the residual stress distribution induced by the solidification and cooling of a fusion zone in the vicinity of a sharp V-notch tip is investigated. The intensity of the residual asymptotic stress fields, quantified by the notch stress intensity factors, was studied for two different V-notch specimen geometries under generalized plane-strain conditions. In order to analyze the influence of phase transformations on the obtained results, simulations with and without the effects of phase transformation were carried out on ASTM SA 516 steel plates. Thanks to the possibilities of numerical modelling, additional analyses were performed without taking into account the transformation plasticity phenomenon. It was found that phase transformation effects (both volume change and transformation plasticity) have a great influence on the intensity and sign of the asymptotic stress fields at the sharp V-notch tips. This result is believed to be very important for the correct numerical determination (and future applications) of notch stress intensity factors resulting from asymptotic residual stress distributions induced by transient thermal loads. The analyses were performed with the finite element code SYSWELD. (paper)

  11. Effect of elliptic or circular holes on the stress distribution in plates of wood or plywood considered as orthotropic materials

    Science.gov (United States)

    C. B. Smith

    1944-01-01

    This is a mathematical analysis of the stress distribution existing near a hole in a wood or plywood plate subjected to tension, as, for example, near holes in the tension flanges of wood box beams. It is assumed that the strains are small and remain within the proportional limit. In this analysis a large, rectangular, orthotropic plate with a small elliptic hole at...

  12. Influence of Cement Particle-Size Distribution on Early Age Autogenous Strains and Stresses in Cement-Based Materials

    DEFF Research Database (Denmark)

    Bentz, Dale P.; Jensen, Ole Mejlhede; Hansen, Kurt Kielsgaard

    2001-01-01

    The influence of cement particle-size distribution on autogenous strains and stresses in cement pastes of identical water-to-cement ratios is examined for cement powders of four different finenesses. Experimental measurements include chemical shrinkage, to quantify degree of hydration; internal r...

  13. Influence of prosthesis type and material on the stress distribution in bone around implants: A 3-dimensional finite element analysis

    Directory of Open Access Journals (Sweden)

    Gökçe Meriç

    2011-03-01

    Conclusions: Prosthesis design and materials affect the load-transmission mechanism. Although additional experimental and clinical studies are needed, FRC FPDs can be considered a suitable alternative treatment choice for implant-supported prostheses. Within the limitations of the study, the 3-unit FPD supported by 2 implants with a cantilevered extension revealed acceptable stress distributions.

  14. Stress

    Science.gov (United States)

    ... taking care of an aging parent. With mental stress, the body pumps out hormones to no avail. Neither fighting ... with type 1 diabetes. This difference makes sense. Stress blocks the body from releasing insulin in people with type 2 ...

  15. Velocity and stress distributions of deep seismic zone under Izu-Bonin, Japan

    Science.gov (United States)

    Jiang, Guoming; Zhang, Guibin; Jia, Zhengyuan

    2017-04-01

    Deep earthquakes can provide the deep information of the Earth directly. We have collected the waveform data from 77 deep earthquakes with depth greater than 300 km under Izu-Bonin in Japan. To obtain the velocity structures of P- and S-wave, we have inversed the double-differences of travel times from deep event-pairs. These velocity anomalies can further yield the Poisson's ratio and the porosity. Our results show that the average P-wave velocity anomaly is lower 6%, however the S-wave anomaly is higher 2% than the iasp91 model. The corresponding Poisson's ratio and porosity anomaly are -24% and -4%, respectively, which suggest that the possibility of water in the deep seismic zone is very few and the porosity might be richer. To obtain the stress distribution, we have used the ISOLA method to analyse the non-double-couple components of moment tensors of 77 deep earthquakes. The focal mechanism results show that almost half of all earthquakes have larger double-couple (DC) components, but others have clear isotropic (ISO) or compensated linear vector dipole (CLVD) components. The non-double-couple components (ISO and CLVD) seem to represent the volume around a deep earthquake changes as it occurs, which could be explained the metastable olivine phase transition. All results indicate that the metastable olivine wedge (MOW) might exist in the Pacific slab under the Izu-Bonin region and the deep earthquakes might be induced by the phase change of metastable olivine.

  16. Vacuolar Chloride Fluxes Impact Ion Content and Distribution during Early Salinity Stress1

    Science.gov (United States)

    Baetz, Ulrike; Tohge, Takayuki; Martinoia, Enrico; De Angeli, Alexis

    2016-01-01

    The ability to control the cytoplasmic environment is a prerequisite for plants to cope with changing environmental conditions. During salt stress, for instance, Na+ and Cl− are sequestered into the vacuole to help maintain cytosolic ion homeostasis and avoid cellular damage. It has been observed that vacuolar ion uptake is tied to fluxes across the plasma membrane. The coordination of both transport processes and relative contribution to plant adaptation, however, is still poorly understood. To investigate the link between vacuolar anion uptake and whole-plant ion distribution during salinity, we used mutants of the only vacuolar Cl− channel described to date: the Arabidopsis (Arabidopsis thaliana) ALMT9. After 24-h NaCl treatment, almt9 knock-out mutants had reduced shoot accumulation of both Cl− and Na+. In contrast, almt9 plants complemented with a mutant variant of ALMT9 that exhibits enhanced channel activity showed higher Cl− and Na+ accumulation. The altered shoot ion contents were not based on differences in transpiration, pointing to a vacuolar function in regulating xylem loading during salinity. In line with this finding, GUS staining demonstrated that ALMT9 is highly expressed in the vasculature of shoots and roots. RNA-seq analysis of almt9 mutants under salinity revealed specific expression profiles of transporters involved in long-distance ion translocation. Taken together, our study uncovers that the capacity of vacuolar Cl− loading in vascular cells plays a crucial role in controlling whole-plant ion movement rapidly after onset of salinity. PMID:27503602

  17. Stress distribution and displacement of maxillary anterior teeth during en-masse intrusion and retraction: A FEM study

    Directory of Open Access Journals (Sweden)

    Parag Bohara

    2017-01-01

    Full Text Available Background: Space closure by en masse intrusion and retraction in orthodontics is of particular interest. Aim: The aim of this study was to evaluate the stress distribution and displacement of maxillary anterior teeth. Materials and Methods: Four different finite element models of maxillary arch were constructed to understand the nature of stresses and displacement patterns of anterior teeth during en masse intrusion and retraction on force application with different combinations of mini-implants and retraction hooks. Results: In this study, tensile stresses were seen in the cervical region and various movements of teeth such as lingual crown tipping, bodily movement, lingual root tipping, intrusion, and extrusion were observed. Conclusion: Nature of stresses changes from tensile to compressive from cervical area to apical area. Various tooth displacements suggest that different combinations of mini-implants and retraction hooks affect the direction of the tooth movement.

  18. Evaluation of stress distribution of implant-retained mandibular overdenture with different vertical restorative spaces: A finite element analysis

    Science.gov (United States)

    Ebadian, Behnaz; Farzin, Mahmoud; Talebi, Saeid; Khodaeian, Niloufar

    2012-01-01

    Background: Available restorative space and bar height is an important factor in stress distribution of implant-supported overdentures. The purpose of this study was to evaluate the effect of different vertical restorative spaces and different bar heights on the stress distribution around implants by 3D finite element analysis. Materials and Methods: 3D finite element models were developed from mandibular overdentures with two implants in the interforaminal region. In these models, four different bar heights from gingival crest (0.5, 1, 1.5, 2 mm) with 15 mm occlusal plane height and three different occlusal plane heights from gingival crest (9, 12, 15 mm) with 2 mm bar height were analyzed. A vertical unilateral and a bilateral load of 150 N were applied to the central occlusal fossa of the first molar and the stress of bone around implant was analyzed by finite element analysis. Results: By increasing vertical restorative space, the maximum stress values around implants were found to be decreased in unilateral loading models but slightly increased in bilateral loading cases. By increasing bar height from gingival crest, the maximum stress values around implants were found to be increased in unilateral loading models but slightly decreased in bilateral loading cases. In unilateral loading models, maximum stress was found in a model with 9 mm occlusal plane height and 1.5 mm bar height (6.254 MPa), but in bilateral loading cases, maximum stress was found in a model with 15 mm occlusal plane height and 0.5 mm bar height (3.482 MPa). Conclusion: The reduction of bar height and increase in the thickness of acrylic resin base in implant-supported overdentures are biomechanically favorable and may result in less stress in periimplant bone. PMID:23559952

  19. A new method of residual stress distribution analysis for corroded Zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Godlewski, J.; Cadalbert, R.

    1992-01-01

    An X-ray diffraction method of residual stress measurement is developed to determine the stress level in the metal near the metal/oxide interface of Zircaloy-4 cladding samples oxidized in steam water at 400degC under a pressure of 10.3 MPa. The stress gradient is obtained and the evolution of the average stress is determined as function of the oxidation time. The presence of tetragonal zirconia phase in quite large quantity near the metal/oxide interface could be correlated to the high stress level in the base metal, adjacent to the interface. (author)

  20. A new method for residual stress distribution - analysis of corroded zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Godlewski, J.; Cadalbert, R.

    1992-01-01

    An X-ray diffraction method for residual stress measurement is developed to determine the stress level in the metal near the metal/oxide interface of Zircaloy-4 cladding samples oxidized in steam water at 400 deg C under a pressure of 10.3 MPa. The stress gradient is obtained and the evolution of the average stress is determined as a function of the oxidation time. The presence of tetragonal zirconia phase in quite large quantity near the metal/oxide interface could be correlated to the high stress level in the base metal, adjacent to the interface. 12 refs., 5 figs., 1 tab

  1. Investigation of logarithmic spiral nanoantennas at optical frequencies

    Science.gov (United States)

    Verma, Anamika; Pandey, Awanish; Mishra, Vigyanshu; Singh, Ten; Alam, Aftab; Dinesh Kumar, V.

    2013-12-01

    The first study is reported of a logarithmic spiral antenna in the optical frequency range. Using the finite integration technique, we investigated the spectral and radiation properties of a logarithmic spiral nanoantenna and a complementary structure made of thin gold film. A comparison is made with results for an Archimedean spiral nanoantenna. Such nanoantennas can exhibit broadband behavior that is independent of polarization. Two prominent features of logarithmic spiral nanoantennas are highly directional far field emission and perfectly circularly polarized radiation when excited by a linearly polarized source. The logarithmic spiral nanoantenna promises potential advantages over Archimedean spirals and could be harnessed for several applications in nanophotonics and allied areas.

  2. Galaxy Zoo: dust in spiral galaxies

    Science.gov (United States)

    Masters, Karen L.; Nichol, Robert; Bamford, Steven; Mosleh, Moein; Lintott, Chris J.; Andreescu, Dan; Edmondson, Edward M.; Keel, William C.; Murray, Phil; Raddick, M. Jordan; Schawinski, Kevin; Slosar, Anže; Szalay, Alexander S.; Thomas, Daniel; Vandenberg, Jan

    2010-05-01

    We investigate the effect of dust on spiral galaxies by measuring the inclination dependence of optical colours for 24276 well-resolved Sloan Digital Sky Survey (SDSS) galaxies visually classified via the Galaxy Zoo project. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4mag for the ugri passbands (estimating 0.3mag of extinction in z band). We split the sample into `bulgy' (early-type) and `discy' (late-type) spirals using the SDSS fracdeV (or fDeV) parameter and show that the average face-on colour of `bulgy' spirals is redder than the average edge-on colour of `discy' spirals. This shows that the observed optical colour of a spiral galaxy is determined almost equally by the spiral type (via the bulge-disc ratio and stellar populations), and reddening due to dust. We find that both luminosity and spiral type affect the total amount of extinction, with discy spirals at Mr ~ -21.5mag having the most reddening - more than twice as much as both the lowest luminosity and most massive, bulge-dominated spirals. An increase in dust content is well known for more luminous galaxies, but the decrease of the trend for the most luminous has not been observed before and may be related to their lower levels of recent star formation. We compare our results with the latest dust attenuation models of Tuffs et al. We find that the model reproduces the observed trends reasonably well but overpredicts the amount of u-band attenuation in edge-on galaxies. This could be an inadequacy in the Milky Way extinction law (when applied to external galaxies), but more likely indicates the need for a wider range of dust-star geometries. We end by discussing the effects of dust on large galaxy surveys and emphasize that these effects will become important as we push to higher precision measurements of galaxy properties and their clustering. This publication has been made possible by the participation of more than

  3. Experimental investigation of localized stress-induced leakage current distribution in gate dielectrics using array test circuit

    Science.gov (United States)

    Park, Hyeonwoo; Teramoto, Akinobu; Kuroda, Rihito; Suwa, Tomoyuki; Sugawa, Shigetoshi

    2018-04-01

    Localized stress-induced leakage current (SILC) has become a major problem in the reliability of flash memories. To reduce it, clarifying the SILC mechanism is important, and statistical measurement and analysis have to be carried out. In this study, we applied an array test circuit that can measure the SILC distribution of more than 80,000 nMOSFETs with various gate areas at a high speed (within 80 s) and a high accuracy (on the 10-17 A current order). The results clarified that the distributions of localized SILC in different gate areas follow a universal distribution assuming the same SILC defect density distribution per unit area, and the current of localized SILC defects does not scale down with the gate area. Moreover, the distribution of SILC defect density and its dependence on the oxide field for measurement (E OX-Measure) were experimentally determined for fabricated devices.

  4. Study of temperature distribution of pipes heated by moving rectangular gauss distribution heat source. Development of pipe outer surface irradiated laser stress improvement process (L-SIP)

    International Nuclear Information System (INIS)

    Ohta, Takahiro; Kamo, Kazuhiko; Asada, Seiji; Terasaki, Toshio

    2009-01-01

    The new process called L-SIP (outer surface irradiated Laser Stress Improvement Process) is developed to improve the tensile residual stress of the inner surface near the butt welded joints of pipes in the compression stress. The temperature gradient occurs in the thickness of pipes in heating the outer surface rapidly by laser beam. By the thermal expansion difference between the inner surface and the outer surface, the compression stress occurs near the inner surface of pipes. In this paper, the theoretical equation for the temperature distributions of pipes heated by moving rectangular Gauss distribution heat source on the outer surface is derived. The temperature histories of pipes calculated by theoretical equation agree well with FEM analysis results. According to the theoretical equation, the controlling parameters of temperature distributions and histories are q/2a y , vh, a x /h and a y /h, where q is total heat input, a y is heat source length in the axial direction, a x is Gaussian radius of heat source in the hoop direction, ν is moving velocity, and h is thickness of the pipe. The essential variables for L-SIP, which are defined on the basis of the measured temperature histories on the outer surface of the pipe, are Tmax, F 0 =kτ 0 /h 2 , vh, W Q and L Q , where Tmax is maximum temperature on the monitor point of the outer surface, k is thermal diffusivity coefficient, τ 0 is the temperature rise time from 100degC to maximum temperature on the monitor point of the outer surface, W Q is τ 0 x ν, and L Q is the uniform temperature length in the axial direction. It is verified that the essential variables for L-SIP match the controlling parameters by the theoretical equation. (author)

  5. The line-of-sight warp of the spiral galaxy ESO 123-G23

    NARCIS (Netherlands)

    Gentile, G; Fraternali, F; Klein, U; Salucci, P

    We present 3-D modelling of the distribution and kinematics of the neutral hydrogen in the spiral galaxy ESO 123- G23. The optical appearance of this galaxy is an almost perfectly edge-on disk, while the neutral hydrogen is found to extend vertically out to about 15 kpc on either side of the

  6. Finite element analysis of the stress distributions in peri-implant bone in modified and standard-threaded dental implants

    Directory of Open Access Journals (Sweden)

    Serkan Dundar

    2016-01-01

    Full Text Available The aim of this study was to examine the stress distributions with three different loads in two different geometric and threaded types of dental implants by finite element analysis. For this purpose, two different implant models, Nobel Replace and Nobel Active (Nobel Biocare, Zurich, Switzerland, which are currently used in clinical cases, were constructed by using ANSYS Workbench 12.1. The stress distributions on components of the implant system under three different static loadings were analysed for the two models. The maximum stress values that occurred in all components were observed in FIII (300 N. The maximum stress values occurred in FIII (300 N when the Nobel Replace implant is used, whereas the lowest ones, in the case of FI (150 N loading in the Nobel Active implant. In all models, the maximum tensions were observed to be in the neck region of the implants. Increasing the connection between the implant and the bone surface may allow more uniform distribution of the forces of the dental implant and may protect the bone around the implant. Thus, the implant could remain in the mouth for longer periods. Variable-thread tapered implants can increase the implant and bone contact.

  7. Stress distribution at the dissimilar metal weld of safety injection nozzle according to safe-end length and SMW thickness

    International Nuclear Information System (INIS)

    Kim, Tae Jin; Jeong, Woo Chul; Huh, Nam Su

    2015-01-01

    In the present paper, we evaluate the effects of the safe-end length and thickness of the similar metal weld (SMW) of safety injection nozzles on stress distributions at the dissimilar metal weld (DMW). For this evaluation, we carry out detailed 2-D axisymmetric finite element analyses by considering four different values of the safe-end length and four different values of the thickness of SMW. Based on the results obtained, we found that the SMW thickness affects the axial stresses at the center of the DMW for the shorter safe-end length; on the other hand, it does not affect the hoop stresses. In terms of the safe-end length, the values of the axial and hoop stresses at the inner surface of the DMW center increase as the safe-end length increases. In particular, for the cases considered in the present study, the stress distributions at the DMW center can be categorized according to certain values of safe-end length

  8. The role of prosthetic abutment material on the stress distribution in a maxillary single implant-supported fixed prosthesis

    International Nuclear Information System (INIS)

    Peixoto, Hugo Eduardo; Bordin, Dimorvan; Del Bel Cury, Altair A.; Silva, Wander José da; Faot, Fernanda

    2016-01-01

    Purpose: Evaluate the influence of abutment's material and geometry on stress distribution in a single implant-supported prosthesis. Materials and Methods: Three-dimensional models were made based on tomographic slices of the upper middle incisor area, in which a morse taper implant was positioned and a titanium (Ti) or zirconia (ZrN) universal abutments was installed. The commercially available geometry of titanium (T) and zirconia (Z) abutments were used to draw two models, TM1 and ZM1 respectively, which served as control groups. These models were compared with 2 experimental groups were the mechanical properties of Z were applied to the titanium abutment (TM2) and vice versa for the zirconia abutment (ZM2). Subsequently, loading was simulated in two steps, starting with a preload phase, calculated with the respective friction coefficients of each materials, followed by a combined preload and chewing force. The maximum von Mises stress was described. Data were analyzed by two-way ANOVA that considered material composition, geometry and loading (p 0.05). Conclusion: The screw was the piece most intensely affected, mainly through the preload force, independent of the abutment's material. - Highlights: • The abutment's screw was the most impaired piece of the dental implant system. • The highest stress was located at first thread of the abutment's screw. • The preload is the main factor in the abutment's screw stress. • Abutment configuration and material can have a positive contribution for the stress distribution

  9. Composite resin reinforced with pre-tensioned fibers: a three-dimensional finite element study on stress distribution.

    Science.gov (United States)

    Jie, Lin; Shinya, Akikazu; Lassila, Lippo V J; Vallittu, Pekka K

    2013-01-01

    Pre-tensioned construction material is utilized in engineering applications of high strength demands. The purpose of this study was to evaluate the effect of the pre-tensioning fibers of fiber-reinforced composite (FRC) using three-dimensional finite element (FE) analysis. The 3D FE models of particulate composite resin (CR), FRC and composite resin reinforced with pre-tensioned fibers (PRE-T-FRC) were constructed. The uniaxial three-point bending test was simulated using FE analysis to calculate the principal stress distribution. In the FRC and PRE-T-FRC, stresses were higher than CR, and they were located in the fiber. However, the maximum principal stress value at the composite of PRE-T-FRC was lower than the FRC and CR. Composite resin reinforced with pre-tensioned fibers was advantageous for stress distribution and lowering the stress at the composite itself. Experimental studies on physical properties of pre-tensioned FRC are encouraged to be conducted.

  10. An assessment of a spiral duct centrifuge using standard and high concentration aerosols

    International Nuclear Information System (INIS)

    Smith, A.D.

    1982-12-01

    The Stoeber spiral duct centrifuge has been calibrated by means of polystyrene latex microspheres for the subsequent measurement of aerosol particle size distributions. Intermediate (1 g m -3 ) ad high (100 g m -3 ) sodium chloride aerosol concentrations have been sampled by the centrifuge to determine possible limitations in the equipment. Corrections have to be made for the effect of Coriolis forces, and aerosol concentrations above 1 g m -3 should be diluted before sampling. The spiral duct centrifuge is an extremely versatile instrument for aerosol analysis, and shows a high degree of reliability when operated under well-defined conditions. (author)

  11. Finite Element Analysis of the Effect of Superstructure Materials and Loading Angle on Stress Distribution around the Implant

    Directory of Open Access Journals (Sweden)

    Jafari K

    2014-12-01

    Full Text Available Statement of Problem: A general process in implant design is to determine the reason of possible problems and to find the relevant solutions. The success of the implant depends on the control technique of implant biomechanical conditions. Objectives: The goal of this study was to evaluate the influence of both abutment and framework materials on the stress of the bone around the implant by using threedimensional finite element analysis. Materials and Methods: A three-dimensional model of a patient’s premaxillary bone was fabricated using Cone Beam Computed Tomography (CBCT. Then, three types of abutment from gold, nickel-chromium and zirconia and also three types of crown frame from silver-palladium, nickel-chromium and zirconia were designed. Finally, a 178 N force at angles of zero, 30 and 45 degrees was exerted on the implant axis and the maximum stress and strain in the trabecular, cortical bones and cement was calculated. Results: With changes of the materials and mechanical properties of abutment and frame, little difference was observed in the level and distribution pattern of stress. The stress level was increased with the rise in the angle of pressure exertion. The highest stress concentration was related to the force at the angle of 45 degrees. The results of the cement analysis proved an inverse relationship between the rate of elastic modulus of the frame material and that of the maximum stress in the cement. Conclusions: The impact of the angle at which the force was applied was more significant in stress distribution than that of abutment and framework core materials.

  12. Sharp corners as sources of spiral pairs

    International Nuclear Information System (INIS)

    Biton, Y.; Rabinovitch, A.; Braunstein, D.; Friedman, M.; Aviram, I.

    2010-01-01

    It is demonstrated that using the FitzHugh-Nagumo model, stimulation of excitable media inside a region possessing sharp corners, can lead to the appearance of sources of spiral-pairs of sustained activity. The two conditions for such source creation are: The corners should be less than 120 deg. and the range of stimulating amplitudes should be small, occurring just above the threshold value and decreasing with the corner angle. The basic mechanisms driving the phenomenon are discussed. These include: A. If the corner angle is below 120 deg., the wave generated inside cannot emerge at the corner tip, resulting in the creation of two free edges which start spiraling towards each other. B. Spiraling must be strong enough; otherwise annihilation of the rotating arms would occur too soon to create a viable source. C. The intricacies of the different radii involved are elucidated. Possible applications in heart stimulation and in chemical reactions are considered.

  13. Spiral loaded cavities for heavy ion acceleration

    International Nuclear Information System (INIS)

    Schempp, A.; Klein, H.

    1976-01-01

    A transmission line theory of the spiral resonator has been performed and the calculated and measured properties will be compared. Shunt impedances up to 50 MΩ/m have been measured. In a number of high power tests the structure has been tested and its electrical and mechanical stability has been investigated. The static frequency shift due to ponderomotoric forces was between 0.2 and 50 kHz/kW dependent on the geometrical parameters of the spirals. The maximum field strength obtained on the axis was 16 MV/m in pulsed operation and 9.2 MV/m in cw, corresponding to a voltage gain per cavity of up to 0.96 MV. The results show that spiral resonators are well suited as heavy ion accelerator cavities. (author)

  14. Organic carbon spiralling in stream ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J D; Mulholland, P J; Elwood, J W; O' Neill, R V

    1982-01-01

    The term spiralling has been used to describe the combined processes of cycling and longitudinal transport in streams. As a measure or organic carbon spiralling, we introduced organic carbon turnover length, S, defined as the average or expected downstream distance travelled by a carbon atom between its entry or fixation in the stream and its oxidation. Using a simple model for organic carbon dynamics in a stream, we show that S is closely related to fisher and Likens' ecosystem efficiency. Unlike efficiency, however, S is independent of the length of the study reach, and values of S determined in streams of differing lengths can be compared. Using data from three different streams, we found the relationship between S and efficiency to agree closely with the model prediction. Hypotheses of stream functioning are discussed in the context of organic carbeon spiralling theory.

  15. Spiral arms, comets and terrestrial catastrophism

    International Nuclear Information System (INIS)

    Clube, S.V.M.; Napier, W.M.

    1982-01-01

    A review is presented of an hypothesis of terrestrial catastrophism in which comets grow in molecular clouds and are captured by the Sun as it passes through the spiral arms of the Galaxy. Assuming that comets are a major supplier of the Earth-crossing (Appollo) asteroid population, the latter fluctuates correspondingly and leads to episodes of terrestrial bombardment. Changes in the rotational momentum of core and mantle, generated by impacts, lead to episodes of magnetic field reversal and tectonic activity, while surface phenomena lead to ice-ages and mass extinctions. An episodic geophysical history with an interstellar connection is thus implied. If comets in spiral arms are necessary intermediaries in the process of star formation, the theory also has implications relating to early solar system history and galactic chemistry. These aspects are briefly discussed with special reference to the nature of spiral arms. (author)

  16. Considerations of an oscillating spiral universe cosmology

    International Nuclear Information System (INIS)

    Sachs, M.

    1989-01-01

    It is proposed that if the spiral configuration of galaxies is explicable in terms of the equations of motion of its constituent stars, as an expression of global laws of nature, then the universe as a whole may be similarly described in terms of the motions of its constituent galaxies with a similar spiral dynamics. With the functional form of the spiral paths in terms of Fresnel integrals, taken from solutions of equations in general relativity (from previous analyses of galactic configurations) the density of the universe at the big bang stage is determined. It is found to depend, numerically, on the neutron lifetime and the period of oscillation of the universe as a whole. There is some concluding discussion of the implications of this analysis of the matter of the universe at the big bang stage vis a vis the black hole state of matter

  17. Spiral CT manifestations of spherical pneumonia

    International Nuclear Information System (INIS)

    Li Xiaohong; Yang Hongwei; Xu Chunmin; Qin Xiu

    2008-01-01

    Objective: To explore the Spiral CT manifestations and differential diagnosis of spherical pneumonia. Methods: 18 cases of spherical pneumonia and 20 cases of peripheral pulmonary carcinoma were selected, both of them were confirmed by clinic and/or pathology. The SCT findings of both groups were compared retrospectively. Results: Main spiral CT findings of spherical pneumonia were showed as followings: square or triangular lesions adjacent to pleura; with irregular shape, blurry, slightly lobulated margin, sometimes with halo sign. Small inflammatory patches and intensified vascular markings around the lesions were seen. Lesions became smaller or vanished after short-term anti-inflammatory treatment. Conclusion: Spherical pneumonia showed some characteristics on Spiral CT scan, which are helpful in diagnosis and differential diagnosis of this disease. (authors)

  18. Spiral CT for evaluation of chest trauma

    International Nuclear Information System (INIS)

    Roehnert, W.; Weise, R.

    1997-01-01

    After implementation of spiral CT in our department, we carried out an analysis for determining anew the value of CT as a modality of chest trauma diagnosis in the emergency department. The retrospective study covers a period of 10 months and all emergency patients with chest trauma exmined by spiral CT. The major lesions of varying seriousness covered by this study are: pneumothorax, hematothorax, pulmonary contusion or laceration, mediastinal hematoma, rupture of a vessel, injury of the heart and pericardium. The various fractures are not included in this study. In many cases, spiral CT within relatively short time yields significant diagnostic findings, frequently saving additional angiography. A rigid diagnostic procedure cannot be formulated. Plain-film chest radiography still remains a diagnostic modality of high value. (Orig.) [de

  19. Simulations of the flocculent spiral M33: what drives the spiral structure?

    Science.gov (United States)

    Dobbs, C. L.; Pettitt, A. R.; Corbelli, E.; Pringle, J. E.

    2018-05-01

    We perform simulations of isolated galaxies in order to investigate the likely origin of the spiral structure in M33. In our models, we find that gravitational instabilities in the stars and gas are able to reproduce the observed spiral pattern and velocity field of M33, as seen in HI, and no interaction is required. We also find that the optimum models have high levels of stellar feedback which create large holes similar to those observed in M33, whilst lower levels of feedback tend to produce a large amount of small scale structure, and undisturbed long filaments of high surface density gas, hardly detected in the M33 disc. The gas component appears to have a significant role in producing the structure, so if there is little feedback, both the gas and stars organise into clear spiral arms, likely due to a lower combined Q (using gas and stars), and the ready ability of cold gas to undergo spiral shocks. By contrast models with higher feedback have weaker spiral structure, especially in the stellar component, compared to grand design galaxies. We did not see a large difference in the behaviour of Qstars with most of these models, however, because Qstars stayed relatively constant unless the disc was more strongly unstable. Our models suggest that although the stars produce some underlying spiral structure, this is relatively weak, and the gas physics has a considerable role in producing the large scale structure of the ISM in flocculent spirals.

  20. Quantifying the Attractive Force Exerted on the Pinned Calcium Spiral Waves by Using the Adventive Field

    International Nuclear Information System (INIS)

    Qiu Kang; Tang Jun; Luo Jin-Ming; Ma Jun

    2013-01-01

    The cytosolic calcium system is inhomogenous because of the discrete and random distribution of ion channels on the ER membrane. It is well known that the spiral tip can be pinned by the heterogenous area, and the field can detach the spiral from the heterogeneity. We use the adventive field to counteract the attractive force exerting on the calcium spiral wave by the heterogeneity, then the strength of the adventive field is used to quantify the attractive force indirectly. Two factors determining the attractive force are studied. It is found that: (1) the attractive force sharply increases with size of the heterogeneity for small-size heterogeneity, whereas the force increases to a saturated value for large-size heterogeneity; (2) for large-size heterogeneity, the force almost remains constant unless the level of the heterogeneity vanishes, the force decreases to zero linearly and sharply, and for small-size heterogeneity, the force decreases successively with the level of the heterogeneity. Furthermore, it is found that the forces exist only when the spiral tip is very close to the heterogenous area. Our study may shed some light on the control or suppression of the calcium spiral wave

  1. Stress distribution of metatarsals during forefoot strike versus rearfoot strike: A finite element study.

    Science.gov (United States)

    Li, Shudong; Zhang, Yan; Gu, Yaodong; Ren, James

    2017-12-01

    Due to the limitations of experimental approaches, comparison of the internal deformation and stresses of the human man foot between forefoot and rearfoot landing is not fully established. The objective of this work is to develop an effective FE modelling approach to comparatively study the stresses and energy in the foot during forefoot strike (FS) and rearfoot strike (RS). The stress level and rate of stress increase in the Metatarsals are established and the injury risk between these two landing styles is evaluated and discussed. A detailed subject specific FE foot model is developed and validated. A hexahedral dominated meshing scheme was applied on the surface of the foot bones and skin. An explicit solver (Abaqus/Explicit) was used to stimulate the transient landing process. The deformation and internal energy of the foot and stresses in the metatarsals are comparatively investigated. The results for forefoot strike tests showed an overall higher average stress level in the metatarsals during the entire landing cycle than that for rearfoot strike. The increase rate of the metatarsal stress from the 0.5 body weight (BW) to 2 BW load point is 30.76% for forefoot strike and 21.39% for rearfoot strike. The maximum rate of stress increase among the five metatarsals is observed on the 1st metatarsal in both landing modes. The results indicate that high stress level during forefoot landing phase may increase potential of metatarsal injuries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Neutrons for science (NFS) at spiral-2

    International Nuclear Information System (INIS)

    Ridikas, D.

    2005-01-01

    Both cross section measurements and various applications could be realised successfully using the high energy neutrons that will be produced at SPIRAL-2. Two particular cases were examined in more detail, namely: (a) neutron time-of-flight (nToF) measurements with pulsed neutron beams, and (b) material activation-irradiation with high-energy high-intensity neutron fluxes. Thanks to the high energy and high intensity neutron flux available, SPIRAL-2 offers a unique opportunity for material irradiations both for fission and fusion related research, tests of various detection systems and of resistance of electronics components to irradiations, etc. SPIRAL-2 also could be considered as an intermediate step towards new generation dedicated irradiation facilities as IFMIF previewed only beyond 2015. Equally, the interval from 0.1 MeV to 40 MeV for neutron cross section measurements is an energy range that is of particular importance for energy applications, notably accelerator driven systems (ADS) and Gen-IV fast reactors, as well as for fusion related devices. It is also the region where pre-equilibrium approaches are often used to link the low (evaporation) and high energy (intra-nuclear cascade) reaction models. With very intense neutron beams of SPIRAL-2 measurements of very low mass (often radioactive) targets and small cross sections become feasible in short experimental campaigns. Production of radioactive targets for dedicated physics experiments is also an attractive feature of SPIRAL-2. In brief, it was shown that SPIRAL-2 has got a remarkable potential for neutron based research both for fundamental physics and various applications. In addition, in the neutron energy range from a few MeV to, say, 35 MeV this research would have a leading position for the next 10-15 years if compared to other neutron facilities in operation or under construction worldwide. (author)

  3. Kidney spiral CT, indications, realization, results

    International Nuclear Information System (INIS)

    Braunschweig, R.; Beilicke, M.; Hundt, W.; Breiteneder, T.; Reiser, M.

    1999-01-01

    The introduction of spiral computed tomography (spiral CT) has vastly enriched the methodologically diversity of computer-tomographic scans. It allows for the recording of different perfusion or excretion stages of the kidney parenchyma of the urine draining paths by carrying out long-distance, phase-identical multiple examinations of the retroperitoneum. The description of the findings which are characterized by their local and contrasts behavior is possible. The following report describes the indications and technological process of kidney spiral CT using kidney-typical intravenous contrast media. Special emphasis is put on the advantages and limits of multiple phase spiral CT. Decisive preconditions are: 1. Specific clinical query, 2. selection of the corresponding phase contrasts of the kidneys and uretra or bladder, 3. exact technical and temporal adjustment of the acquisition parameters. Scanning times are in the range of seconds. The overall examination can be carried out quick and without any major strain on the part of the patient. A sound proof and a general differentiation of focal kideny lesions can be derived from the acquired data. This is also true for kidneys and ureters findings. Bladder findings can be localized and differentiated according to stage. More than two 'spiral acquisitions' should be carried out with restraint taking exposure to radiation into account. Due to the sound registration of focal lesions, its capability of reproduction and its short-time examination, the spiral CT of the kidneys can be said to be the most effective current scanning method of the retroperitoneum following clinical examinations and sonography. (orig.) [de

  4. Graphite target for the spiral project

    International Nuclear Information System (INIS)

    Putaux, J.C.; Ducourtieux, M.; Ferro, A.; Foury, P.; Kotfila, L.; Mueller, A.C.; Obert, J.; Pauwels, N.; Potier, J.C.; Proust, J.; Loiselet, M.

    1996-01-01

    A study of the thermal and physical properties of graphite targets for the SPIRAL project is presented. The main objective is to develop an optimized set-up both mechanically and thermally resistant, presenting good release properties (hot targets with thin slices). The results of irradiation tests concerning the mechanical and thermal resistance of the first prototype of SPIRAL target with conical geometry are presented. The micro-structural properties of the graphite target is also studied, in order to check that the release properties are not deteriorated by the irradiation. Finally, the results concerning the latest pilot target internally heated by an electrical current are shown. (author)

  5. Packing of equal discs on a parabolic spiral lattice

    International Nuclear Information System (INIS)

    Xudong, F.; Bursill, L.A.; Julin, P.

    1989-01-01

    A contact disc model is investigated to determine the most closely-packed parabolic spiral lattice. The most space-efficient packings have divergence angles in agreement with the priority ranking of natural spiral structures

  6. FEM Modeling of In-Plane Stress Distribution in Thick Brittle Coatings/Films on Ductile Substrates Subjected to Tensile Stress to Determine Interfacial Strength.

    Science.gov (United States)

    Wang, Kaishi; Zhang, Fangzhou; Bordia, Rajendra K

    2018-03-27

    The ceramic-metal interface is present in various material structures and devices that are vulnerable to failures, like cracking, which are typically due to their incompatible properties, e.g., thermal expansion mismatch. In failure of these multilayer systems, interfacial shear strength is a good measure of the robustness of interfaces, especially for planar films. There is a widely-used shear lag model and method by Agrawal and Raj to analyse and measure the interfacial shear strength of thin brittle film on ductile substrates. The use of this classical model for a type of polymer derived ceramic coatings (thickness ~18 μm) on steel substrate leads to high values of interfacial shear strength. Here, we present finite element simulations for such a coating system when it is subjected to in-plane tension. Results show that the in-plane stresses in the coating are non-uniform, i.e., varying across the thickness of the film. Therefore, they do not meet one of the basic assumptions of the classical model: uniform in-plane stress. Furthermore, effects of three significant parameters, film thickness, crack spacing, and Young's modulus, on the in-plane stress distribution have also been investigated. 'Thickness-averaged In-plane Stress' (TIS), a new failure criterion, is proposed for estimating the interfacial shear strength, which leads to a more realistic estimation of the tensile strength and interfacial shear strength of thick brittle films/coatings on ductile substrates.

  7. Model for electromagnetic field analysis of superconducting power transmission cable comprising spiraled coated conductors

    International Nuclear Information System (INIS)

    Takeuchi, Katsutoku; Amemiya, Naoyuki; Nakamura, Taketsune; Maruyama, Osamu; Ohkuma, Takeshi

    2011-01-01

    Since the superconductor layers of YBCO-coated conductors are very thin, the ac loss of coated conductors is dominated by the magnetic flux density normal to the conductor face. In cables, most of the normal magnetic flux component is generated near gaps between coated conductors. Although the effects of gaps are significant, there are few reports on the electromagnetic field analysis of cables with spiral structures carried out while taking the gap effect into consideration. In a finitely long cable with a spiral structure, the electromagnetic field is naturally periodic along the cable axis. In a two-layer cable, the simplest period along the cable axis is the least common multiple of the spiral pitches in the inner and outer layers. However, we verified that there is a shorter period, and the same electromagnetic field distribution appears in all conductors of the same layer. Using these periodicities, we developed a three-dimensional model for the analysis of two-layer cables with a spiral structure. Current distributions of cables were analyzed using this model, and ac losses were calculated. In addition, these results were compared with ac losses calculated by two-dimensional analysis performed on the cross section of a cable. It was verified that the ac loss in a cable is correctly calculated by the 2D model when the spiral pitch is long enough. However, in the case of a tightly twisted cable, the ac losses calculated by the 2D model include some errors caused by an approximation in which the spiral structure is ignored.

  8. Effect of Integration Patterns Around Implant Neck on Stress Distribution in Peri-Implant Bone: A Finite Element Analysis.

    Science.gov (United States)

    Han, Jingyun; Sun, Yuchun; Wang, Chao

    2017-08-01

    To investigate the biomechanical performance of different osseointegration patterns between cortical bone and implants using finite element analysis. Fifteen finite element models were constructed of the mandibular fixed prosthesis supported by implants. Masticatory loads (200 N axial, 100 N oblique, 40 N horizontal) were applied. The cortical bone/implant interface was divided equally into four layers: upper, upper-middle, lower-middle, and lower. The bone stress and implant displacement were calculated for 5 degrees of uniform integration (0, 20%, 40%, 60%, and 100%) and 10 integration patterns. The stress was concentrated in the bone margin and gradually decreased as osseointegration progressed, when the integrated and nonintegrated areas were alternated on the bone-implant surface. Compared with full integration, the integration of only the lower-middle layer or lower half layers significantly decreased von Mises, tensile, and compressive stresses in cortical bone under oblique and horizontal loads, and these patterns did not induce higher stress in the cancellous bone. For the integration of only the upper or upper-middle layer, stress in the cortical and cancellous bones significantly increased and was considerably higher than in the case of nonintegration. In addition, the maximum stress in the cortical bone was sensitive to the quantity of integrated nodes at the bone margin; lower quantity was associated with higher stress. There was no significant difference in the displacement of implants among 15 models. Integration patterns of cortical bone significantly affect stress distribution in peri-implant bone. The integration of only the lower-middle or lower half layers helps to increase the load-bearing capacity of peri-implant bone and decrease the risk of overloading, while upper integration may further increase the risk of bone resorption. © 2016 by the American College of Prosthodontists.

  9. A Distributed Computing Framework for Real-Time Detection of Stress and of Its Propagation in a Team.

    Science.gov (United States)

    Pandey, Parul; Lee, Eun Kyung; Pompili, Dario

    2016-11-01

    Stress is one of the key factor that impacts the quality of our daily life: From the productivity and efficiency in the production processes to the ability of (civilian and military) individuals in making rational decisions. Also, stress can propagate from one individual to other working in a close proximity or toward a common goal, e.g., in a military operation or workforce. Real-time assessment of the stress of individuals alone is, however, not sufficient, as understanding its source and direction in which it propagates in a group of people is equally-if not more-important. A continuous near real-time in situ personal stress monitoring system to quantify level of stress of individuals and its direction of propagation in a team is envisioned. However, stress monitoring of an individual via his/her mobile device may not always be possible for extended periods of time due to limited battery capacity of these devices. To overcome this challenge a novel distributed mobile computing framework is proposed to organize the resources in the vicinity and form a mobile device cloud that enables offloading of computation tasks in stress detection algorithm from resource constrained devices (low residual battery, limited CPU cycles) to resource rich devices. Our framework also supports computing parallelization and workflows, defining how the data and tasks divided/assigned among the entities of the framework are designed. The direction of propagation and magnitude of influence of stress in a group of individuals are studied by applying real-time, in situ analysis of Granger Causality. Tangible benefits (in terms of energy expenditure and execution time) of the proposed framework in comparison to a centralized framework are presented via thorough simulations and real experiments.

  10. Nonlocal approach to the analysis of the stress distribution in granular systems. II. Application to experiment

    International Nuclear Information System (INIS)

    Scott, J.E.; Kenkre, V.M.; Hurd, A.J.

    1998-01-01

    A theory of stress propagation in granular materials developed recently [Kenkre, Scott, Pease, and Hurd, preceding paper, Phys. Rev. E 57, 5841 (1998)] is applied to the compaction of ceramic and metal powders in pipes with previously unexplained experimental features such as nonmonotonic density and stress variation along the axis of cylindrical compacts. copyright 1998 The American Physical Society

  11. Stress distribution in a semi-infinite body symmetrically loaded over a circular area

    Science.gov (United States)

    Mcginness, H.

    1980-01-01

    Algorithms are developed for computing stresses in a semi-infinite body when loaded by a uniform pressure acting over a circular area. The algorithm allows easy determination of any stress component in a semi-infinite body having a known Poisson's ratio. Example curves are plotted for Portland cement grout and metal representative values.

  12. Nonlocal approach to the analysis of the stress distribution in granular systems. II. Application to experiment

    Science.gov (United States)

    Scott, J. E.; Kenkre, V. M.; Hurd, A. J.

    1998-05-01

    A theory of stress propagation in granular materials developed recently [Kenkre, Scott, Pease, and Hurd, preceding paper, Phys. Rev. E 57, 5841 (1998)] is applied to the compaction of ceramic and metal powders in pipes with previously unexplained experimental features such as nonmonotonic density and stress variation along the axis of cylindrical compacts.

  13. Elastic-plastic stress distributions near the endcap of a fuel element

    International Nuclear Information System (INIS)

    Tayal, M.; Hallgrimson, K.D.; Sejnoha, R.; Singh, P.N.

    1993-06-01

    This paper discusses the stress patterns in and near the endcap of a CANDU fuel element from the perspective of stress corrosion cracking. Simulations of out-reactor burst tests suggest that local plastic strains stay comparatively low for internal pressures below 26-30 MPa. Photoelastic measurements as well as analytical assessments show that the reentrant corner at the sheath/endcap junction results in high concentration of stresses and strains. Analytical assessments show that the in-reactor stresses and strains at the reentrant corner are highly multiaxial, and well into the plastic range. The maximum principal stress correlates well with the location and the direction of circumferential endcap cracks observed in fuel that failed in the Bruce reactor. Thus the maximum principal stress appears promising in ranking various geometries of the sheath/endcap junction with respect to their relative susceptibility to stress corrosion cracking. Design studies suggest that the most effective practical ways of lowering the stresses near the weld, in order of decreasing importance, are to provide a larger interference-free length between the ridge and the endcaps; to increase the pellet/sheath radial gap; to increase the pellet/endcap axial gap; and to keep the gas pressure low. (author). 16 refs., 16 figs

  14. The distribution of wall shear stress downstream of a change in roughness

    International Nuclear Information System (INIS)

    Loureiro, J.B.R.; Sousa, F.B.C.C.; Zotin, J.L.Z.; Silva Freire, A.P.

    2010-01-01

    In the present work, six different experimental techniques are used to characterize the non-equilibrium flow downstream of a rough-to-smooth step change in surface roughness. Over the rough surface, wall shear stress results obtained through the form drag and the Reynolds stress methods are shown to be mutually consistent. Over the smooth surface, reference wall shear stress data is obtained through two optical methods: linear velocity profiles obtained through laser-Doppler anemometry and a sensor surface, the diverging fringe Doppler sensor. The work shows that the two most commonly used methods to determine the wall shear stress, the log-law gradient method and the Reynolds shear stress method, are completely inappropriate in the developing flow region. Preston tubes, on the other hand, are shown to perform well in the region of a non-equilibrium flow.

  15. Stress distribution in a transversely loaded cross-shaped single fiber SCS-6/Ti-6Al-4V composite

    International Nuclear Information System (INIS)

    Warrier, S.G.; Gundel, D.B.; Majumdar, B.S.; Miracle, D.B.

    1996-01-01

    In most structural applications utilizing fiber reinforced metal matrix composites (MMCs), the mechanical response normal to the fiber direction has to be considered. The transverse response is very sensitive to the interface bond strength, which has commonly been determined by testing straight-sided 90 degree specimens and interpreting debond initiation from the knee in the stress-strain curve as well as from a sudden drop in the Poisson's ratio. In an attempt to modify the debond initiation site to an internal location free of uncharacteristic states of stress, a cross-shaped specimen has been developed. Experiments conducted by Gundel et al. indicated that this geometry was successful in obtaining the appropriate crack initiation site. In the present study, finite element analysis (FEA) was done on the cross-shaped specimen to obtain the stress distribution in the composite under transverse loading, in an effort to corroborate the success of this geometry in determining the true transverse response of the composite

  16. Tunable superstructure fiber Bragg grating with chirp-distribution modulation based on the effect of external stress.

    Science.gov (United States)

    Huang, Yize; Li, Yi; Zhu, Huiqun; Tong, Guoxiang; Fang, Baoying; Li, Liu; Shen, Yujian; Zheng, Qiuxin; Liang, Qian; Yan, Meng; Wang, Feng; Qin, Yuan; Ding, Jie; Wang, Xiaohua

    2012-09-15

    We report an external stress modulation method for producing a superstructure fiber Bragg grating (FBG) with approximate cascaded resonant cavities composed of different index chirp distributions. The 15 mm uncoated apodized uniform-period FBG is pressed by the vertical stress from the upper 11 pieces of the pattern plate controlled by a piezoelectric ceramic actuator. The piece length is 1 mm, and the interval of the adjacent pieces is 0.4 mm. The reflectivity of the modulated FBG gradually shows six obvious multichannel 75%-85% reflection peaks with the increase of the vertical stress of each pattern-plate piece from 0 to 30 N. The channel spacing is steady at about 10 GHz for a C-band wavelength division multiplexing system.

  17. Finite element analysis to determine the stress distribution, displacement and safety factor on a microplate for the fractured jaw case

    Science.gov (United States)

    Pratama, Juan; Mahardika, Muslim

    2018-03-01

    Microplate is a connecting plate that can be used for jaw bone fixation. In the last two decades, microplate has been used so many times to help reconstruction of fractured jaw bone which is called mandibular bone or mandible bone. The plate is used to provide stable fixation of the fractured bone tissue during healing and reconstruction process. In this study Finite Element Analysis was used to predict the stress concentration and distribution on a microplate, displacement on the microplate and also to determine the safety factor of the microplate based on maximum allowable stress value, and finally to ascertain whether microplate is safe to use or not. The microplate was produced from punching process using titanium grade 1 (pure titanium) as material with a thickness of 500 µm. The results of the research indicated that the microplate was safe to use according to the maximum stress around the hole, displacement around the hole and also the safety factor of the microplate.

  18. A prediction method of temperature distribution and thermal stress for the throttle turbine rotor and its application

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2017-01-01

    Full Text Available In this paper, a prediction method of the temperature distribution for the thermal stress for the throttle-regulated steam turbine rotor is proposed. The rotor thermal stress curve can be calculated according to the preset power requirement, the operation mode and the predicted critical parameters. The results of the 660 MW throttle turbine rotor show that the operators are able to predict the operation results and to adjust the operation parameters in advance with the help of the inertial element method. Meanwhile, it can also raise the operation level, thus providing the technical guarantee for the thermal stress optimization control and the safety of the steam turbine rotor under the variable load operation.

  19. Spiral Structure and Global Star Formation Processes in M 51

    Science.gov (United States)

    Gruendl, Robert A.

    1994-12-01

    The nearby grand design spiral galaxy, M 51, is an obvious proving ground for studies of spiral structure and large scale star formation processes. New near--infrared observations of M 51 made with COB (Cryogenic Optical Bench) on the Kitt Peak 1.3m allow us to examine the stellar distribution and the young star formation regions as well as probe regions of high extinction such as dust lanes. We also present an analysis of the kinematics of the ionized gas observed with the Maryland--Caltech Imaging Fabry Perot. The color information we derive from the near--infrared bands provides a more accurate tracer of extinction than optical observations. We find that the dust extinction and CO emission in the arms are well correlated. Our kinematic data show unambiguously that these dense gas concentrations are associated with kinematic perturbations. In the inner disk, these perturbations are seen to be consistent with the streaming motions predicted by classical density wave theory. The dust lanes, and presumably the molecular arms, form a narrow ridge that matches these velocity perturbations wherever the viewing angle is appropriate. This interpretation requires that the corotation radius be inward of the outer tidal arms. The outer tidal arms however show streaming velocities of the sign that would be expected interior to the corotation point. This can be reconciled if the outer arms are part of a second spiral pattern, most likely due to the interaction with the companion NGC 5195. The near--infrared observations also show emission from the massive star forming regions. These observations are less affected by extinction than optical observations of H II regions and show clearly that the sites of massive star formation are correlated with but downstream from the concentrations of dense molecular material. This provides clear evidence that the ISM has been organized by the streaming motions which have in turn triggered massive star formation.

  20. Optical analysis of dust complexes in spiral galaxies

    International Nuclear Information System (INIS)

    Elmegreen, D.A.M.

    1979-01-01

    A method for quantitatively investigating properties of dust regions in external galaxies is presented. The technique involves matching radiative transfer models (with absorption plus scattering) to multicolor photographic and photometric observations. Dust features in each galaxy are modeled with two configurations; one is rectangular with a Gaussian distribution perpendicular to the plane of the galaxy, and the other is a uniform oblate spheroid with an arbitrary height from the midplane. It is found that it is possible to determine the intrinsic opacities in the clouds and in the nearby comparison regions, and that differention between high opacity low-lying clouds and low opacity clouds that are above the midplane can be made. This technique was used to study dust complexes in the late-type spiral galaxies NGC 628 (M74), NGC 5194 (M51), NGC 5457 (M101), and NGC 7793. Most of the features in the prominent dust lanes were found to have internal visual extinctions corresponding to 10 to 15 mag kpc -1 , while the adjacent comparison regions typically contained 4 mag kpc -1 . Thus the opacity through a dust lane is about 1.5 mag greater than the 0.5 to 1.0 mag of extinction through a comparison region. A noticeable deviation from this result was found for all of the dust lanes that occurred on the inner edges of the spiral arm branches. These features had internal densities that were approx. 10 times larger than in their comparison regions, in contrast to the normal dust lanes which had density enhancements of a factor of approx. 3. Dust features which were on the outer sides of spiral arms appeared to be no different than main inner dust lane features

  1. Temperature and blood flow distribution in the human leg during passive heat stress.

    Science.gov (United States)

    Chiesa, Scott T; Trangmar, Steven J; González-Alonso, José

    2016-05-01

    The influence of temperature on the hemodynamic adjustments to direct passive heat stress within the leg's major arterial and venous vessels and compartments remains unclear. Fifteen healthy young males were tested during exposure to either passive whole body heat stress to levels approaching thermal tolerance [core temperature (Tc) + 2°C; study 1; n = 8] or single leg heat stress (Tc + 0°C; study 2; n = 7). Whole body heat stress increased perfusion and decreased oscillatory shear index in relation to the rise in leg temperature (Tleg) in all three major arteries supplying the leg, plateauing in the common and superficial femoral arteries before reaching severe heat stress levels. Isolated leg heat stress increased arterial blood flows and shear patterns to a level similar to that obtained during moderate core hyperthermia (Tc + 1°C). Despite modest increases in great saphenous venous (GSV) blood flow (0.2 l/min), the deep venous system accounted for the majority of returning flow (common femoral vein 0.7 l/min) during intense to severe levels of heat stress. Rapid cooling of a single leg during severe whole body heat stress resulted in an equivalent blood flow reduction in the major artery supplying the thigh deep tissues only, suggesting central temperature-sensitive mechanisms contribute to skin blood flow alone. These findings further our knowledge of leg hemodynamic responses during direct heat stress and provide evidence of potentially beneficial vascular alterations during isolated limb heat stress that are equivalent to those experienced during exposure to moderate levels of whole body hyperthermia. Copyright © 2016 the American Physiological Society.

  2. Increasing Aridity is Enhancing Silver Fir (Abies Alba Mill). Water Stress in its South-Western Distribution Limit

    Energy Technology Data Exchange (ETDEWEB)

    Macias, M. [Department of Geology, University of Helsinki, Gustaf Haellstroeminkatu 2, P.O. Box 64, FI-00014 Helsinki (Finland); Andreu, L.; Bosch, O.; Gutierrez, E. [Departament d' Ecologia, Universitat de Barcelona, Avgda. Diagonal, 645, Barcelona, 08028, Catalonia (Spain); Camarero, J.J. [Unidad de Recursos Forestales, Centro de Investigacion Agroalimentaria, Gobierno de Aragon, Apdo. 727, Zaragoza, 50080, Aragon (Spain)

    2006-12-15

    Tree populations located at the geographical distribution limit of the species may provide valuable information about the response of tree growth to climate warming across climatic gradients. Dendroclimatic information was extracted from a network of 10 silver-fir (Abies alba) populations in the south-western distribution limit of the species (Pyrenees, NE Iberian Peninsula). Ring-width chronologies were built for five stands sampled in mesic sites from the Main Range in the Pyrenees, and for five forests located in the southern Peripheral Ranges where summer drought is more pronounced. The radial growth of silver-fir in this region is constrained by water stress during the summer previous to growth, as suggested by the negative relationship with previous September temperature and, to a lesser degree, by a positive relationship with previous end of summer precipitation. Climatic data showed a warming trend since the 1970s across the Pyrenees, with more severe summer droughts. The recent warming changed the climate-growth relationships, causing higher growth synchrony among sites, and a higher year-to-year growth variation, especially in the southernmost forests. Moving-interval response functions suggested an increasing water-stress effect on radial growth during the last half of the 20th century. The growth period under water stress has extended from summer up to early autumn. Forests located in the southern Peripheral Ranges experienced a more intense water stress, as seen in a shift of their response to precipitation and temperature. The Main-Range sites mainly showed a response to warming. The intensification of water-stress during the late 20th century might affect the future growth performance of the highly-fragmented A. alba populations in the southwestern distribution limit of the species.

  3. Effect of different types of prosthetic platforms on stress-distribution in dental implant-supported prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Minatel, Lurian [Pró-Reitoria de Pesquisa e Pós-graduação (PRPPG), Universidade do Sagrado Coração, USC, 10–50 Irmã Armindal, Jardim Brasil, Bauru, 17011–160, SP (Brazil); Verri, Fellippo Ramos [Department of Dental Materials and Prosthodontics, Araçatuba Dental School, UNESP - Univ Estadual Paulista, 1193 José Bonifácio Street, Vila Mendonça, Araçatuba 16015–050 (Brazil); Kudo, Guilherme Abu Halawa [Pró-Reitoria de Pesquisa e Pós-graduação (PRPPG), Universidade do Sagrado Coração, USC, 10–50 Irmã Armindal, Jardim Brasil, Bauru, 17011–160, SP (Brazil); Faria Almeida, Daniel Augusto de; Souza Batista, Victor Eduardo de; Aparecido Araujo Lemos, Cleidiel; Piza Pellizzer, Eduardo [Department of Dental Materials and Prosthodontics, Araçatuba Dental School, UNESP - Univ Estadual Paulista, 1193 José Bonifácio Street, Vila Mendonça, Araçatuba 16015–050 (Brazil); and others

    2017-02-01

    A biomechanical analysis of different types of implant connections is relevant to clinical practice because it may impact the longevity of the rehabilitation treatment. Therefore, the objective of this study is to evaluate the Morse taper connections and the stress distribution of structures associated with the platform switching (PSW) concept. It will do this by obtaining data on the biomechanical behavior of the main structure in relation to the dental implant using the 3-dimensional finite element methodology. Four models were simulated (with each containing a single prosthesis over the implant) in the molar region, with the following specifications: M1 and M2 is an external hexagonal implant on a regular platform; M3 is an external hexagonal implant using PSW concept; and M4 is a Morse taper implant. The modeling process involved the use of images from InVesalius CT (computed tomography) processing software, which were refined using Rhinoceros 4.0 and SolidWorks 2011 CAD software. The models were then exported into the finite element program (FEMAP 11.0) to configure the meshes. The models were processed using NeiNastram software. The main results are that M1 (regular diameter 4 mm) had the highest stress concentration area and highest microstrain concentration for bone tissue, dental implants, and the retaining screw (P < 0.05). Using the PSW concept increases the area of the stress concentrations in the retaining screw (P < 0.05) more than in the regular platform implant. It was concluded that the increase in diameter is beneficial for stress distribution and that the PSW concept had higher stress concentrations in the retaining screw and the crown compared to the regular platform implant. - Highlights: • The external hexagon implants was unfavorable biomechanical. • The Morse taper implant presented the best biomechanical result. • Platform switching concept increased stress in screw-retained prostheses.

  4. Effect of different types of prosthetic platforms on stress-distribution in dental implant-supported prostheses

    International Nuclear Information System (INIS)

    Minatel, Lurian; Verri, Fellippo Ramos; Kudo, Guilherme Abu Halawa; Faria Almeida, Daniel Augusto de; Souza Batista, Victor Eduardo de; Aparecido Araujo Lemos, Cleidiel; Piza Pellizzer, Eduardo

    2017-01-01

    A biomechanical analysis of different types of implant connections is relevant to clinical practice because it may impact the longevity of the rehabilitation treatment. Therefore, the objective of this study is to evaluate the Morse taper connections and the stress distribution of structures associated with the platform switching (PSW) concept. It will do this by obtaining data on the biomechanical behavior of the main structure in relation to the dental implant using the 3-dimensional finite element methodology. Four models were simulated (with each containing a single prosthesis over the implant) in the molar region, with the following specifications: M1 and M2 is an external hexagonal implant on a regular platform; M3 is an external hexagonal implant using PSW concept; and M4 is a Morse taper implant. The modeling process involved the use of images from InVesalius CT (computed tomography) processing software, which were refined using Rhinoceros 4.0 and SolidWorks 2011 CAD software. The models were then exported into the finite element program (FEMAP 11.0) to configure the meshes. The models were processed using NeiNastram software. The main results are that M1 (regular diameter 4 mm) had the highest stress concentration area and highest microstrain concentration for bone tissue, dental implants, and the retaining screw (P < 0.05). Using the PSW concept increases the area of the stress concentrations in the retaining screw (P < 0.05) more than in the regular platform implant. It was concluded that the increase in diameter is beneficial for stress distribution and that the PSW concept had higher stress concentrations in the retaining screw and the crown compared to the regular platform implant. - Highlights: • The external hexagon implants was unfavorable biomechanical. • The Morse taper implant presented the best biomechanical result. • Platform switching concept increased stress in screw-retained prostheses.

  5. A finite element analysis of the stress distribution to the mandible from impact forces with various orientations of third molars*

    Science.gov (United States)

    Liu, Yun-feng; Wang, Russell; Baur, Dale A.; Jiang, Xian-feng

    2018-01-01

    Objective: To investigate the stress distribution to the mandible, with and without impacted third molars (IM3s) at various orientations, resulting from a 2000-Newton impact force either from the anterior midline or from the body of the mandible. Materials and methods: A 3D mandibular virtual model from a healthy dentate patient was created and the mechanical properties of the mandible were categorized to 9 levels based on the Hounsfield unit measured from computed tomography (CT) images. Von Mises stress distributions to the mandibular angle and condylar areas from static impact forces (Load I-front blow and Load II left blow) were evaluated using finite element analysis (FEA). Six groups with IM3 were included: full horizontal bony, full vertical bony, full 450 mesioangular bony, partial horizontal bony, partial vertical, and partial 450 mesioangular bony impaction, and a baseline group with no third molars. Results: Von Mises stresses in the condyle and angle areas were higher for partially than for fully impacted third molars under both loading conditions, with partial horizontal IM3 showing the highest fracture risk. Stresses were higher on the contralateral than on the ipsilateral side. Under Load II, the angle area had the highest stress for various orientations of IM3s. The condylar region had the highest stress when IM3s were absent. Conclusions: High-impact forces are more likely to cause condylar rather than angular fracture when IM3s are missing. The risk of mandibular fracture is higher for partially than fully impacted third molars, with the angulation of impaction having little effect on facture risk. PMID:29308606

  6. The dynamics of the spiral galaxy M81

    International Nuclear Information System (INIS)

    Visser, H.C.D.

    1978-01-01

    A detailed comparison of the observations of the spiral galaxy M81 with the density-wave theory for tightly-wound spirals is presented. In particular, hydrogen-line observations are compared with the nonlinear density-wave theory for the gas with the aim of constructing a density-wave model for the spiral galaxy M81

  7. Adaptation of the control system in view of SPIRAL integration

    International Nuclear Information System (INIS)

    Lecorche, E.

    1998-01-01

    As soon as the collaboration between the SPIRAL project and the Control Group has been defined, the first implementation of the SPIRAL control system started following various directions. Both the global hardware and software architectures has been specified and some practical works have been undertaken such as the Ethernet network installation or the first SPIRAL oriented software design and coding. (authors)

  8. Reproducibility of aluminum foam properties: Effect of precursor distribution on the structural anisotropy and the collapse stress and its dispersion

    International Nuclear Information System (INIS)

    Nosko, M.; Simancik, F.; Florek, R.

    2010-01-01

    The porous structure of aluminum foam manufactured through the foaming of precursors containing blowing agent is stochastic in nature, usually with a random distribution of pores of different size and shape, creating difficulties in the modeling and prediction of foam properties. In this study, the effect of the initial location of the precursor material in the mold on the foam structure and compression behavior was investigated. Structural characterization showed that the porosity distribution, surface skin thickness and pore orientation was affected by the location of the precursors in the mold and by the extrusion direction of the precursors. Moreover, compression tests demonstrated a significant effect of the structural anisotropy on the collapse stress and its dispersion. The collapse stress of the foam increased if the loading was performed parallel to the thicker surface skin or parallel to the preferential pore orientation, leading to a 20% difference in collapse stress. The dispersion of the collapse stress could be significantly decreased if the loading was performed with regard to the structural anisotropy.

  9. Stress Distribution in Single Dental Implant System: Three-Dimensional Finite Element Analysis Based on an In Vitro Experimental Model.

    Science.gov (United States)

    Rezende, Carlos Eduardo Edwards; Chase-Diaz, Melody; Costa, Max Doria; Albarracin, Max Laurent; Paschoeto, Gabriela; Sousa, Edson Antonio Capello; Rubo, José Henrique; Borges, Ana Flávia Sanches

    2015-10-01

    This study aimed to analyze the stress distribution in single implant system and to evaluate the compatibility of an in vitro model with finite element (FE) model. The in vitro model consisted of Brånemark implant; multiunit set abutment of 5 mm height; metal-ceramic screw-retained crown, and polyurethane simulating the bone. Deformations were recorded in the peri-implant region in the mesial and distal aspects, after an axial 300 N load application at the center of the occlusal aspect of the crown, using strain gauges. This in vitro model was scanned with micro CT to design a three-dimensional FE model and the strains in the peri-implant bone region were registered to check the compatibility between both models. The FE model was used to evaluate stress distribution in different parts of the system. The values obtained from the in vitro model (20-587 με) and the finite element analysis (81-588 με) showed agreement among them. The highest stresses because of axial and oblique load, respectively were 5.83 and 40 MPa for the cortical bone, 55 and 1200 MPa for the implant, and 80 and 470 MPa for the abutment screw. The FE method proved to be effective for evaluating the deformation around single implant. Oblique loads lead to higher stress concentrations.

  10. Comparison of the stress distribution in the metallic layers of flexible pipes using two alternative Bflex formulations

    OpenAIRE

    Shi, Yunzhu

    2014-01-01

    Axisymmetric load is the most common load acting on flexible pipe. Modelling axisymmetric load correctly is very important to estimate the strength of a flexible pipe. The purpose of the thesis is to compare the stress distribution in metallic layers under three load case, i.e. tension, internal pressure and external pressure. Literature study and discussion to mechanical properties of flexible pipe and finite element modelling method are included in the thesis. The modelling program is BFLEX...

  11. Partial LVAD restores ventricular outputs and normalizes LV but not RV stress distributions in the acutely failing heart in silico

    OpenAIRE

    Sack, Kevin L.; Baillargeon, Brian; Acevedo-Bolton, Gabriel; Genet, Martin; Rebelo, Nuno; Kuhl, Ellen; Klein, Liviu; Weiselthaler, Georg M.; Burkhoff, Daniel; Franz, Thomas; Guccione, Julius M.

    2016-01-01

    Purpose: Heart failure is a worldwide epidemic that is unlikely to change as the population ages and life expectancy increases. We sought to detail significant recent improvements to the Dassault Systèmes Living Heart Model (LHM) and use the LHM to compute left ventricular (LV) and right ventricular (RV) myofiber stress distributions under the following 4 conditions: (1) normal cardiac function; (2) acute left heart failure (ALHF); (3) ALHF treated using an LV assist device (LVAD) flow rate o...

  12. Evaluation on double-wall-tube residual stress distribution of sodium-heated steam generator by neutron diffraction and numerical analysis

    International Nuclear Information System (INIS)

    Kisohara, N.; Suzuki, H.; Akita, K.; Kasahara, N.

    2012-01-01

    A double-wall-tube is nominated for the steam generator heat transfer tube of future sodium fast reactors (SFRs) in Japan, to decrease the possibility of sodium/water reaction. The double-wall-tube consists of an inner tube and an outer tube, and they are mechanically contacted to keep the heat transfer of the interface between the inner and outer tubes by their residual stress. During long term SG operation, the contact stress at the interface gradually falls down due to stress relaxation. This phenomenon might increase the thermal resistance of the interface and degrade the tube heat transfer performance. The contact stress relaxation can be predicted by numerical analysis, and the analysis requires the data of the initial residual stress distributions in the tubes. However, unclear initial residual stress distributions prevent precious relaxation evaluation. In order to resolve this issue, a neutron diffraction method was employed to reveal the tri-axial (radius, hoop and longitudinal) initial residual stress distributions in the double-wall-tube. Strain gauges also were used to evaluate the contact stress. The measurement results were analyzed using a JAEA's structural computer code to determine the initial residual stress distributions. Based on the stress distributions, the structural computer code has predicted the transition of the relaxation and the decrease of the contact stress. The radial and longitudinal temperature distributions in the tubes were input to the structural analysis model. Since the radial thermal expansion difference between the inner (colder) and outer (hotter) tube reduces the contact stress and the tube inside steam pressure contributes to increasing it, the analytical model also took these effects into consideration. It has been conduced that the inner and outer tubes are contacted with sufficient stresses during the plant life time, and that effective heat transfer degradation dose not occur in the double-wall-tube SG. (authors)

  13. The role of prosthetic abutment material on the stress distribution in a maxillary single implant-supported fixed prosthesis

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Hugo Eduardo, E-mail: hugo.e.peixoto@hotmail.com [Implantology Team, Latin American Institute of Research and Education in Dentistry, Curitiba, Paraná (Brazil); Bordin, Dimorvan, E-mail: dimorvan_bordin@hotmail.com [Department of Prosthodontics and Periodontology, Piracicaba Dental School, State University of Campinas, Limeira avenue, 901-Vila Rezende, Piracicaba, SP 13414-903 (Brazil); Del Bel Cury, Altair A., E-mail: altcury@fop.unicamp.br [Department of Prosthodontics and Periodontology, Piracicaba Dental School, State University of Campinas, Limeira avenue, 901-Vila Rezende, Piracicaba, SP 13414-903 (Brazil); Silva, Wander José da, E-mail: wanderjose@fop.unicamp.br [Department of Prosthodontics and Periodontology, Piracicaba Dental School, State University of Campinas, Limeira avenue, 901-Vila Rezende, Piracicaba, SP 13414-903 (Brazil); Faot, Fernanda, E-mail: fernanda.faot@gmail.com [Department of Restorative Dentistry, School of Dentistry, Federal University of Pelotas, Gonçalves Chaves, 457, 2nd floor, Pelotas, Rio Grande do Sul 96015-560 (Brazil)

    2016-08-01

    Purpose: Evaluate the influence of abutment's material and geometry on stress distribution in a single implant-supported prosthesis. Materials and Methods: Three-dimensional models were made based on tomographic slices of the upper middle incisor area, in which a morse taper implant was positioned and a titanium (Ti) or zirconia (ZrN) universal abutments was installed. The commercially available geometry of titanium (T) and zirconia (Z) abutments were used to draw two models, TM1 and ZM1 respectively, which served as control groups. These models were compared with 2 experimental groups were the mechanical properties of Z were applied to the titanium abutment (TM2) and vice versa for the zirconia abutment (ZM2). Subsequently, loading was simulated in two steps, starting with a preload phase, calculated with the respective friction coefficients of each materials, followed by a combined preload and chewing force. The maximum von Mises stress was described. Data were analyzed by two-way ANOVA that considered material composition, geometry and loading (p < 0.05). Results: Titanium and zirconia abutments showed similar von Mises stresses in the mechanical part of the four models. The area with the highest concentration of stress was the screw thread, following by the screw body. The highest stress levels occurred in screw thread was observed during the preloading phase in the ZM1 model (931 MPa); and during the combined loading in the TM1 model (965 MPa). Statistically significant differences were observed for loading, the material × loading interaction, and the loading × geometry interaction (p < 0.05). Preloading contributed for 77.89% of the stress (p < 0.05). There were no statistically significant differences to the other factors (p > 0.05). Conclusion: The screw was the piece most intensely affected, mainly through the preload force, independent of the abutment's material. - Highlights: • The abutment's screw was the most impaired piece of the

  14. Stress distributions due to hydrogen concentrations in electrochemically charged and aged austenitic stainless steel

    International Nuclear Information System (INIS)

    Rozenak, P.; Loew, A.

    2008-01-01

    As a result of hydrogen concentration gradients in type austenitic stainless steels, formed during electrochemical charging and followed by hydrogen loss during aging, at room temperature, surface stresses were developed. These stresses were measured by X-ray technique and the crack formation thus induced could be studied using equilibrium stress equations. After various electrochemical charging and aging times, X-ray diffraction patterns obtained from samples indicated that the reflected and broadened diffraction peaks are the result of the formation of a non-uniform but continuous solid solution in the austenitic matrix. Since both hydrogen penetrations during charging and hydrogen release during aging are diffusion controlled processes and huge hydrogen concentration gradients in the thin surface layer, at depths comparable with the depth of X-ray penetration, are observed. The non-uniform hydrogen concentration in the austenitic matrix, results to the non-uniform expansion of the atomic microstructure and latter inevitably leads to the development of internal stresses. The internal stresses development formulae's are very similar to those relating to non-uniform heating of the materials, where thermal stresses appear due to non-uniform expansion or contraction. The relevant well developed theory is applicable in our case of non-uniform hydrogen concentrations in a solid solution of electrochemically charged and aged austenitic matrix. A few cracks were present on the surface after some minutes of electrochemical charging and the severity of cracking increased as hydrogen was lost during subsequent aging. This is consistent with the expectation of high compressive stresses in the bulk of the specimen during charging and high tensile surface stresses (at the level of 1 x 10 11 Pa) during the aging process. These stresses can induce the formation of surface cracks during the aging process after electrochemical charging in the AISI 316 stainless steel

  15. Application of the photoelastic experimental hybrid method with new numerical method to the high stress distribution

    International Nuclear Information System (INIS)

    Hawong, Jai Sug; Lee, Dong Hun; Lee, Dong Ha; Tche, Konstantin

    2004-01-01

    In this research, the photoelastic experimental hybrid method with Hook-Jeeves numerical method has been developed: This method is more precise and stable than the photoelastic experimental hybrid method with Newton-Rapson numerical method with Gaussian elimination method. Using the photoelastic experimental hybrid method with Hook-Jeeves numerical method, we can separate stress components from isochromatics only and stress intensity factors and stress concentration factors can be determined. The photoelastic experimental hybrid method with Hook-Jeeves had better be used in the full field experiment than the photoelastic experimental hybrid method with Newton-Rapson with Gaussian elimination method

  16. Spiral kicker for the beam abort system

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.L.

    1983-01-01

    A brief study was carried out to determine the feasibility of a special kicker to produce a damped spiral beam at the beam dump for the beam abort system. There appears to be no problem with realizing this concept at a reasonably low cost.

  17. Spiral kicker for the beam abort system

    International Nuclear Information System (INIS)

    Martin, R.L.

    1983-01-01

    A brief study was carried out to determine the feasibility of a special kicker to produce a damped spiral beam at the beam dump for the beam abort system. There appears to be no problem with realizing this concept at a reasonably low cost

  18. Irrational Numbers Can "In-Spiral" You

    Science.gov (United States)

    Lewis, Leslie D.

    2007-01-01

    This article describes the instructional process of helping students visualize irrational numbers. Students learn to create a spiral, called "the wheel of Theodorus," which demonstrates irrational and rational lengths. Examples of student work help the reader appreciate the delightful possibilities of this project. (Contains 4 figures.)

  19. Spiral CT-angiography of the aorta

    NARCIS (Netherlands)

    Balm, R.; Eikelboom, B. C.; van Leeuwen, M. S.; Noordzij, J.

    1994-01-01

    AIMS: To determine whether the new technique of CT-angiography was accurate in displaying the complex anatomy of the aorta and its major branches. METHODS: Seventeen patients with a variety of aortic pathology were examined. Using a spiral CT-scanner a volumetric scan was made during injection of

  20. High-displacement spiral piezoelectric actuators

    Science.gov (United States)

    Mohammadi, F.; Kholkin, A. L.; Jadidian, B.; Safari, A.

    1999-10-01

    A high-displacement piezoelectric actuator, employing spiral geometry of a curved piezoelectric strip is described. The monolithic actuators are fabricated using a layered manufacturing technique, fused deposition of ceramics, which is capable of prototyping electroceramic components with complex shapes. The spiral actuators (2-3 cm in diameter) consisted of 4-5 turns of a lead zirconate titanate ceramic strip with an effective length up to 28 cm. The width was varied from 0.9 to 1.75 mm with a height of 3 mm. When driven by the electric field applied across the width of the spiral wall, the tip of the actuator was found to displace in both radial and tangential directions. The tangential displacement of the tip was about 210 μm under the field of 5 kV/cm. Both the displacement and resonant frequency of the spirals could be tailored by changing the effective length and wall width. The blocking force of the actuator in tangential direction was about 1 N under the field of 5 kV/cm. These properties are advantageous for high-displacement low-force applications where bimorph or monomorph actuators are currently employed.

  1. Biofouling of spiral wound membrane systems

    NARCIS (Netherlands)

    Vrouwenvelder, J.S.

    2009-01-01

    Biofouling of spiral wound membrane systems High quality drinking water can be produced with membrane filtration processes like reverse osmosis (RO) and nanofiltration (NF). Because the global demand for fresh clean water is increasing, these membrane technologies will increase in importance in the

  2. A nutrient’s downstream spiral

    Science.gov (United States)

    Indicators of a stream’s ability to remove nutrients provide insights on watershed integrity and stream habitat characteristics that are needed to help managers to restore stream ecosystem services. We used the Tracer Additon Spiraling Characterization Curve (TASCC) to mea...

  3. Spiral groove seal. [for hydraulic rotating shaft

    Science.gov (United States)

    Ludwig, L. P. (Inventor)

    1973-01-01

    Mating flat surfaces inhibit leakage of a fluid around a stationary shaft. A spiral groove pattern produces a pumping action toward the fluid when the shaft rotates which prevents leakage while a generated hydraulic lifting force separates the mating surfaces to minimize wear.

  4. Logarithmic spiral trajectories generated by Solar sails

    Science.gov (United States)

    Bassetto, Marco; Niccolai, Lorenzo; Quarta, Alessandro A.; Mengali, Giovanni

    2018-02-01

    Analytic solutions to continuous thrust-propelled trajectories are available in a few cases only. An interesting case is offered by the logarithmic spiral, that is, a trajectory characterized by a constant flight path angle and a fixed thrust vector direction in an orbital reference frame. The logarithmic spiral is important from a practical point of view, because it may be passively maintained by a Solar sail-based spacecraft. The aim of this paper is to provide a systematic study concerning the possibility of inserting a Solar sail-based spacecraft into a heliocentric logarithmic spiral trajectory without using any impulsive maneuver. The required conditions to be met by the sail in terms of attitude angle, propulsive performance, parking orbit characteristics, and initial position are thoroughly investigated. The closed-form variations of the osculating orbital parameters are analyzed, and the obtained analytical results are used for investigating the phasing maneuver of a Solar sail along an elliptic heliocentric orbit. In this mission scenario, the phasing orbit is composed of two symmetric logarithmic spiral trajectories connected with a coasting arc.

  5. The Spiral Curriculum. Research into Practice

    Science.gov (United States)

    Johnston, Howard

    2012-01-01

    The Spiral Curriculum is predicated on cognitive theory advanced by Jerome Bruner (1960), who wrote, "We begin with the hypothesis that any subject can be taught in some intellectually honest form to any child at any stage of development." In other words, even the most complex material, if properly structured and presented, can be understood by…

  6. Spiral Growth in Plants: Models and Simulations

    Science.gov (United States)

    Allen, Bradford D.

    2004-01-01

    The analysis and simulation of spiral growth in plants integrates algebra and trigonometry in a botanical setting. When the ideas presented here are used in a mathematics classroom/computer lab, students can better understand how basic assumptions about plant growth lead to the golden ratio and how the use of circular functions leads to accurate…

  7. The Spiral-Interactive Program Evaluation Model.

    Science.gov (United States)

    Khaleel, Ibrahim Adamu

    1988-01-01

    Describes the spiral interactive program evaluation model, which is designed to evaluate vocational-technical education programs in secondary schools in Nigeria. Program evaluation is defined; utility oriented and process oriented models for evaluation are described; and internal and external evaluative factors and variables that define each…

  8. The handedness of historiated spiral columns.

    Science.gov (United States)

    Couzin, Robert

    2017-09-01

    Trajan's Column in Rome (AD 113) was the model for a modest number of other spiral columns decorated with figural, narrative imagery from antiquity to the present day. Most of these wind upwards to the right, often with a congruent spiral staircase within. A brief introductory consideration of antique screw direction in mechanical devices and fluted columns suggests that the former may have been affected by the handedness of designers and the latter by a preference for symmetry. However, for the historiated columns that are the main focus of this article, the determining factor was likely script direction. The manner in which this operated is considered, as well as competing mechanisms that might explain exceptions. A related phenomenon is the reversal of the spiral in a non-trivial number of reproductions of the antique columns, from Roman coinage to Renaissance and baroque drawings and engravings. Finally, the consistent inattention in academic literature to the spiral direction of historiated columns and the repeated publication of erroneous earlier reproductions warrants further consideration.

  9. Nobeyama CO Atlas of Nearby Spiral Galaxies

    Science.gov (United States)

    Kuno, N.; Nakai, N.; Sorai, K.; Sato, N..; Yamauchi, A.; Tosaki, T.; Shioya, Y.; Vila-Vilaró, B.; Nishiyama, K.; Ishihara, Y.; Cepa, J.

    BEARS is a 25-beam focal plane array receiver mounted on the Nobeyama 45-m telescope. The combination of the large dish size of the telescope with the excellent performance of this receiver makes it an ideal tool for mapping observations of extended regions of the sky. We present here one of its current applications in a CO mapping survey of nearby spiral galaxies.

  10. Mode Theory of Multi-Armed Spiral Antennas and Its Application to Electronic Warfare Antennas

    Science.gov (United States)

    Radway, Matthew J.

    with exceptionally stable and clean radiation patterns without use of an absorbing cavity. The multiarming technique allows the spiral to retain its pattern integrity at frequencies well below those of comparable two-armed spiral antennas. A quadrifilar helix-type of end-loading is applied to the end of the spiral, resulting in dramatically-improved low-frequency gain. Careful application of resistive end-loading allows good impedance matching at frequencies as low as one-half of the Mode 1 cutoff frequency, while providing acceptable radiation efficiency due to effective use of the available antenna volume. A novel dual-layering technique for reducing the spiral's modal impedance is presented, allowing the antenna to present a good impedance match to a 50 ohm system. The third application of mode theory has been to exploit the wideband multi-mode capability of the multi-armed spiral antenna to implement a simple wide-band radiation pattern nulling technique on a multi-armed spiral antenna. It is shown that wideband nulling is possible and that, in contrast to traditional array antennas, grating lobes do not appear even over extremely wide bandwidths. Simple techniques for addressing the phenomenon of null rotation with frequency are discussed. Finally, mode theory has been used to analyze beamformer non-idealities. This has led to the revelation that the spectral distribution of beamformer errors is at least as important as the magnitude of those errors. Proper choice of beamformer topology can result in noticeable improvement in the antenna performance.

  11. Modelling effects of tyre inflation pressure on the stress distribution near the soil-tyre interface

    DEFF Research Database (Denmark)

    Schjønning, Per; Lamandé, Mathieu; Tøgersen, Frede A

    2008-01-01

    stress in the contact area for two radial-ply agricultural trailer tyres (650/65R30.5 and 800/50R34) loaded with 60 kN. The study took place on a sandy soil at a water content slightly less than field capacity. We tested the effect of three different inflation pressures (50, 100 and 240 k......Pa) in a randomised block design with three replicates. The vertical stress was measured with load cells located in 0.1 m soil depth. The vertical stress data were used also for identifying the soil area in contact with the tyre, i.e. the tyre footprint. A model (named FRIDA) is proposed that describes the tyre...... footprint by a super ellipse and the stress distribution by a combined exponential (perpendicular to the driving direction) and power-law (along the driving direction) function. The contact area doubled when the inflation pressure was reduced from 240 to 50 kPa. For both tyres, the measured peak stress...

  12. Cookbook asymptotics for spiral and scroll waves in excitable media.

    Science.gov (United States)

    Margerit, Daniel; Barkley, Dwight

    2002-09-01

    Algebraic formulas predicting the frequencies and shapes of waves in a reaction-diffusion model of excitable media are presented in the form of four recipes. The formulas themselves are based on a detailed asymptotic analysis (published elsewhere) of the model equations at leading order and first order in the asymptotic parameter. The importance of the first order contribution is stressed throughout, beginning with a discussion of the Fife limit, Fife scaling, and Fife regime. Recipes are given for spiral waves and detailed comparisons are presented between the asymptotic predictions and the solutions of the full reaction-diffusion equations. Recipes for twisted scroll waves with straight filaments are given and again comparisons are shown. The connection between the asymptotic results and filament dynamics is discussed, and one of the previously unknown coefficients in the theory of filament dynamics is evaluated in terms of its asymptotic expansion. (c) 2002 American Institute of Physics.

  13. Spiral CT for evaluation of chest trauma; Spiral-CT beim Thoraxtrauma

    Energy Technology Data Exchange (ETDEWEB)

    Roehnert, W. [Universitaetsklinikum Dresden (Germany). Inst. und Poliklinik fuer Radiologische Diagnostik; Weise, R. [Universitaetsklinikum Dresden (Germany). Inst. und Poliklinik fuer Radiologische Diagnostik

    1997-07-01

    After implementation of spiral CT in our department, we carried out an analysis for determining anew the value of CT as a modality of chest trauma diagnosis in the emergency department. The retrospective study covers a period of 10 months and all emergency patients with chest trauma exmined by spiral CT. The major lesions of varying seriousness covered by this study are: pneumothorax, hematothorax, pulmonary contusion or laceration, mediastinal hematoma, rupture of a vessel, injury of the heart and pericardium. The various fractures are not included in this study. In many cases, spiral CT within relatively short time yields significant diagnostic findings, frequently saving additional angiography. A rigid diagnostic procedure cannot be formulated. Plain-film chest radiography still remains a diagnostic modality of high value. (Orig.) [Deutsch] Nach Einfuehrung der Spiral-CT in unserer Einrichtung versuchten wir, den Stellenwert der Computertomographie in der Notfalldiagnostik des Thoraxtraumas neu zu bestimmen. Dazu wurden retrospektiv ueber einen Zeitraum von 10 Monaten alle mittels Spiral-CT untersuchten Notfallpatienten mit Thoraxverletzungen ausgewertet. Im Vordergrund standen folgende Befunde unterschiedlichen Schweregrades: Pneumothorax, Haematothorax, Lungenkontusion/-lazeration, Mediastinalhaematom, Gefaessruptur, Herz- und Herzbeutelverletzung. Auf die unterschiedlichen Frakturen wird bewusst nicht naeher eingegangen. In vielen Faellen liefert die Spiral-CT mit relativ geringem Zeitaufwand wesentliche diagnostische Aussagen. Haeufig kann auf eine Angiographie verzichtet werden. Ein starres diagnostisches Stufenschema laesst sich nicht definieren. Die Thoraxuebersichtsaufnahme besitzt einen unveraendert hohen Stellenwert. (orig.)

  14. Stress

    DEFF Research Database (Denmark)

    Keller, Hanne Dauer

    2015-01-01

    Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....

  15. Stress !!!

    OpenAIRE

    Fledderus, M.

    2012-01-01

    Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten. Opvallend is dat mannelijke studenten uit Twente zich veel minder druk lijken te maken over hun studie. Onder vrouwen ligt de stress juist erg hoog ten opzichte van het landelijk gemiddelde.

  16. Nutrient spiraling in streams and river networks

    Science.gov (United States)

    Ensign, Scott H.; Doyle, Martin W.

    2006-12-01

    Over the past 3 decades, nutrient spiraling has become a unifying paradigm for stream biogeochemical research. This paper presents (1) a quantitative synthesis of the nutrient spiraling literature and (2) application of these data to elucidate trends in nutrient spiraling within stream networks. Results are based on 404 individual experiments on ammonium (NH4), nitrate (NO3), and phosphate (PO4) from 52 published studies. Sixty-nine percent of the experiments were performed in first- and second-order streams, and 31% were performed in third- to fifth-order streams. Uptake lengths, Sw, of NH4 (median = 86 m) and PO4 (median = 96 m) were significantly different (α = 0.05) than NO3 (median = 236 m). Areal uptake rates of NH4 (median = 28 μg m-2 min-1) were significantly different than NO3 and PO4 (median = 15 and 14 μg m-2 min-1, respectively). There were significant differences among NH4, NO3, and PO4 uptake velocity (median = 5, 1, and 2 mm min-1, respectively). Correlation analysis results were equivocal on the effect of transient storage on nutrient spiraling. Application of these data to a stream network model showed that recycling (defined here as stream length ÷ Sw) of NH4 and NO3 generally increased with stream order, while PO4 recycling remained constant along a first- to fifth-order stream gradient. Within this hypothetical stream network, cumulative NH4 uptake decreased slightly with stream order, while cumulative NO3 and PO4 uptake increased with stream order. These data suggest the importance of larger rivers to nutrient spiraling and the need to consider how stream networks affect nutrient flux between terrestrial and marine ecosystems.

  17. Utilization of the ion traps by SPIRAL

    International Nuclear Information System (INIS)

    Le Brun, C.; Lienard, E.; Mauger, F.; Tamain, B.

    1997-01-01

    An ion trap is a device capable of confine particles, ions or atoms in a well-controlled environment isolated from any exterior perturbations. There are different traps. They are utilized to collect or stock ions, to cool them after in order to subject them to high precision measurement of masses, magnetic moments, hyperfine properties, beta decay properties, etc. Some dozen of traps are currently used all over the world to study stable or radioactive ions.. SPIRAL has been designed and built to produce radioactive ions starting from various heavy ion beams. SPIRAL has the advantage that the projectile parameters, the target and the energy can be chosen to optimize the production in various regions of the nuclear chart. Also, in SPIRAL it is possible to extract more rapidly the radioactive ions formed in the targets. In addition, in SPIRAL the multicharged ion production in a ECR source is possible. The utilization of multicharged ions is indeed very useful for fast mass measurements or for the study of the interaction between the nucleus and the electronic cloud. Finally, utilization of a ion trap on SPIRAL can be designed first at the level of production target by installing a low energy output line. Than, the trap system could be up-graded and brought to its full utilization behind of the recoil spectrometer. It must be capable of selecting and slowing down the ions produced in the reactions (fusion transfer, very inelastic collisions, etc.) induced by the radioactive ions accelerated in CIME. At present, the collaboration is debating on the most favored subject to study and the most suited experimental setups. The following subjects were selected: ion capture, purification and manipulation; isomers (separation and utilization); mass measurements; hyperfine interactions; lifetimes, nuclear electric cloud; β decays; study of the N = Z nuclei close to the proton drip line; physical and chemical properties of transuranium systems

  18. Safe Control for Spiral Recovery of Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Chang-Jian Ru

    2014-01-01

    Full Text Available With unmanned aerial vehicles (UAVs widely used in both military and civilian fields, many events affecting their safe flying have emerged. That UAV’s entering into the spiral is such a typical safety issue. To solve this safety problem, a novel recovery control approach is proposed. First, the factors of spiral are analyzed. Then, based on control scheduling of state variables and nonlinear dynamic inversion control laws, the spiral recovery controller is designed to accomplish guidance and control of spiral recovery. Finally, the simulation results have illustrated that the proposed control method can ensure the UAV autonomous recovery from spiral effectively.

  19. 21 centimeter study of spiral galaxies in the Coma supercluster

    International Nuclear Information System (INIS)

    Gavazzi, G.

    1987-01-01

    High-sensitivity, 21 cm line observations of 130 galaxies in the Coma/A1367 Supercluster region are presented and used to study the large-scale distribution of galaxies in the direction of the Coma Supercluster and the H I content in spiral galaxies as a function of the local galaxy density. Groups of galaxies are found to form a quasi-continuous structure that connects the Local Supercluster to the Coma Supercluster. This structure is composed of real filaments only in the vicinity of the Coma Cluster. Spiral galaxies in the surveyed groups and multiple systems have H I content not dissimilar from that of isolated galaxies. Galaxies within about 1 Abell radius from the Coma Cluster contain about three times less hydrogen on average than isolated galaxies. There is a strong tendency for galaxies that are more severely H I-depleted to be redder and of earlier Hubble type. In the Coma Cluster a considerable fraction of late-type, blue galaxies have large deficiency parameters. 51 references

  20. On observational foundations of models with a wave spiral structure

    International Nuclear Information System (INIS)

    Suchkov, A.A.

    1978-01-01

    The validity of the density wave models of the spiral structure is considered. It is shown that the density wave in the Galaxy is doverned by its flat subsystem only, whereas the disk and the halo do not contribute significantly into the wave. It is found that the density wave model of the spiral structure of the Galaxy is confirmed by the value of the pattern speed derived from observational data (Ω = 20-25 km s -1 kpc -1 ). The position and the properties of the outer Lindblad resonance are confirmed by the existence and position of gas ring features in outer regions of our Galaxy and external galaxies. The corotation region in the Galaxy is situated at R=10/12 kpc. Near the corotation region the galactic shock wave is not expected to develop. The observed rapid decrease in the number of H2 regions while moving from R=5 kpc to R=10 kpc confirms this conclusion. The similar consistency between the positions of corotation region and outer resonance and the observed properties of H2 and H1 distribution has also been found for a number of extermal galaxies

  1. FEM Modeling of In-Plane Stress Distribution in Thick Brittle Coatings/Films on Ductile Substrates Subjected to Tensile Stress to Determine Interfacial Strength

    Directory of Open Access Journals (Sweden)

    Kaishi Wang

    2018-03-01

    Full Text Available The ceramic-metal interface is present in various material structures and devices that are vulnerable to failures, like cracking, which are typically due to their incompatible properties, e.g., thermal expansion mismatch. In failure of these multilayer systems, interfacial shear strength is a good measure of the robustness of interfaces, especially for planar films. There is a widely-used shear lag model and method by Agrawal and Raj to analyse and measure the interfacial shear strength of thin brittle film on ductile substrates. The use of this classical model for a type of polymer derived ceramic coatings (thickness ~18 μm on steel substrate leads to high values of interfacial shear strength. Here, we present finite element simulations for such a coating system when it is subjected to in-plane tension. Results show that the in-plane stresses in the coating are non-uniform, i.e., varying across the thickness of the film. Therefore, they do not meet one of the basic assumptions of the classical model: uniform in-plane stress. Furthermore, effects of three significant parameters, film thickness, crack spacing, and Young’s modulus, on the in-plane stress distribution have also been investigated. ‘Thickness-averaged In-plane Stress’ (TIS, a new failure criterion, is proposed for estimating the interfacial shear strength, which leads to a more realistic estimation of the tensile strength and interfacial shear strength of thick brittle films/coatings on ductile substrates.

  2. How does a planet excite multiple spiral arms?

    Science.gov (United States)

    Bae, Jaehan; Zhu, Zhaohuan

    2018-01-01

    Protoplanetary disk simulations show that a single planet excites multiple spiral arms in the background disk, potentially supported by the multi-armed spirals revealed with recent high-resolution observations in some disks. The existence of multiple spiral arms is of importance in many aspects. It is empirically found that the arm-to-arm separation increases as a function of the planetary mass, so one can use the morphology of observed spiral arms to infer the mass of unseen planets. In addition, a spiral arm opens a radial gap as it steepens into a shock, so when a planet excites multiple spiral arms it can open multiple gaps in the disk. Despite the important implications, however, the formation mechanism of multiple spiral arms has not been fully understood by far.In this talk, we explain how a planet excites multiple spiral arms. The gravitational potential of a planet can be decomposed into a Fourier series, a sum of individual azimuthal modes having different azimuthal wavenumbers. Using a linear wave theory, we first demonstrate that appropriate sets of Fourier decomposed waves can be in phase, raising a possibility that constructive interference among the waves can produce coherent structures - spiral arms. More than one spiral arm can form since such constructive interference can occur at different positions in the disk for different sets of waves. We then verify this hypothesis using a suite of two-dimensional hydrodynamic simulations. Finally, we present non-linear behavior in the formation of multiple spiral arms.

  3. Mechanism of spiral formation in heterogeneous discretized excitable media.

    Science.gov (United States)

    Kinoshita, Shu-ichi; Iwamoto, Mayuko; Tateishi, Keita; Suematsu, Nobuhiko J; Ueyama, Daishin

    2013-06-01

    Spiral waves on excitable media strongly influence the functions of living systems in both a positive and negative way. The spiral formation mechanism has thus been one of the major themes in the field of reaction-diffusion systems. Although the widely believed origin of spiral waves is the interaction of traveling waves, the heterogeneity of an excitable medium has recently been suggested as a probable cause. We suggest one possible origin of spiral waves using a Belousov-Zhabotinsky reaction and a discretized FitzHugh-Nagumo model. The heterogeneity of the reaction field is shown to stochastically generate unidirectional sites, which can induce spiral waves. Furthermore, we found that the spiral wave vanished with only a small reduction in the excitability of the reaction field. These results reveal a gentle approach for controlling the appearance of a spiral wave on an excitable medium.

  4. Velocity and shear stress distribution downstream of mechanical heart valves in pulsatile flow.

    Science.gov (United States)

    Giersiepen, M; Krause, U; Knott, E; Reul, H; Rau, G

    1989-04-01

    Ten mechanical valves (TAD 27 mm): Starr-Edwards Silastic Ball, Björk-Shiley Standard, Björk-Shiley Concave-Convex, Björk-Shiley Monostrut, Hall-Kaster (Medtronic-Hall), OmniCarbon, Bicer Val, Sorin, Saint-Jude Medical and Hemex (Duromedics) are investigated in a comparative in vitro study. The velocity and turbulent shear stress profiles of the valves were determined by Laser Doppler anemometry in two different downstream axes within a model aortic root. Depending on the individual valve design, velocity peaks up to 1.5 m/s and turbulent shear stress peaks up to 150 N/m2 were measured during the systolic phase. These shear stress peaks mainly occurred in areas of flow separation and intense momentum exchange. Directly downstream of the valves (measuring axis 0.55.dAorta) turbulent shear stress peaks occurred at peak systole and during the deceleration phase, while in the second measuring axis (1.5.dAorta) turbulence levels were lower. Shear stress levels were high at the borders of the fluid jets. The results are discussed from a fluid-dynamic point of view.

  5. Numerical investigation on the convective heat transfer in a spiral coil with radiant heating

    Directory of Open Access Journals (Sweden)

    Đorđević Milan Lj.

    2016-01-01

    Full Text Available The objective of this study was to numerically investigate the heat transfer in spiral coil tube in the laminar, transitional, and turbulent flow regimes. The Archimedean spiral coil was exposed to radiant heating and should represent heat absorber of parabolic dish solar concentrator. Specific boundary conditions represent the uniqueness of this study, since the heat flux upon the tube external surfaces varies not only in the circumferential direction, but also in the axial direction. The curvature ratio of spiral coil varies from 0.029 at the flow inlet to 0.234 at the flow outlet, while the heat transfer fluid is water. The 3-D steady-state transport equations were solved using the Reynolds stress turbulence model. Results showed that secondary flows strongly affect the flow and that the heat transfer is strongly asymmetric, with higher values near the outer wall of spiral. Although overall turbulence levels were lower than in a straight pipe, heat transfer rates were larger due to the curvature-induced modifications of the mean flow and temperature fields. [Projekat Ministarstva nauke Republike Srbije, br. 42006

  6. β-distribution for Reynolds stress and turbulent heat flux in relaxation turbulent boundary layer of compression ramp

    Science.gov (United States)

    Hu, YanChao; Bi, WeiTao; Li, ShiYao; She, ZhenSu

    2017-12-01

    A challenge in the study of turbulent boundary layers (TBLs) is to understand the non-equilibrium relaxation process after sep-aration and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a turbulence model.

  7. Stress distribution patterns of implant supported overdentures-analog versus finite element analysis: A comparative in-vitro study

    Directory of Open Access Journals (Sweden)

    Soumyadev Satpathy

    2015-01-01

    Full Text Available Aims and Objectives: The aim of this study was to asses & compare the load transfer characteristics of Ball/O-ring and Bar/Clip attachment systems in implant supported overdentures using analog and finite element analysis models. Methodology: For the analog part of the study, castable bar was used for the bar and clip attachment and a metallic housing with a rubber O-ring component was used for the ball/O-ring attachment. The stress on the implant surface was measured using the strain-gauge technique. For the finite element analysis, the model were fabricated and load applications were done in a similar manner as in analog study. Results: The difference between both the attachment systems was found to be statistically significant (P<0.001. Conclusion: Ball/O-ring attachment system transmitted lesser amount of stresses to the implants on the non-loading side, as compared to the Bar-Clip attachment system. When overall stress distribution is compared, the Bar-Clip attachment seems to perform better than the Ball/O-ring attachment, because the force was distributed better.

  8. The global distribution of giant radiating dike swarms on Venus: Implications for the global stress state

    Science.gov (United States)

    Grosfils, Eric B.; Head, James W.

    1994-01-01

    Magellan radar data of Venus reveal 163 large radial lineament systems composed of graben, fissure, and fracture elements. On the basis of their structure, plan view geometry, and volcanic associations, at least 72% are interpreted to have formed primarily through subsurface dike swarm emplacement, the remainder through uplift or a combination of these two mechanisms. The population of swarms is used to determine regional and global stress orientation. The stress configuration recorded from 330-210 deg E (Aphrodite Terra) is best explained by isostatic compensation of existing long wavelength topography or coupling between mantle flow and the lithosphere. The rest are correlated with concentrations of rifting and volcanism in the Beta-Atla-Themis region. The global stress field on Venus is different than that of Earth, where plate boundary forces dominate.

  9. Stress distribution in the 16MND5 bainitic steel. Experimental analysis and polycrystalline modelling

    International Nuclear Information System (INIS)

    Pesci, R.; Inal, K.; Berveiller, M.; Masson, R.

    2003-01-01

    The 16MND5 bainitic steel being a two-phase material (ferrite/cementite), the X-Ray Diffraction (XRD) is the most efficient tool to determine the stress states into the ferritic phase (sin 2 ψ method). The latter, coupled to the observations realized during tensile tests (specimen surface and facies), have permitted to establish criteria to describe the behavior and the damaging processes of the material on a crystallographic scale, in the lower part of the ductile-to-brittle transition region and at lower temperatures [-196 deg. C;-60 deg. C]. During the loading, the damage is observed with a Scanning Electron Microscope, while the internal stresses are determined by XRD: the stress states are less important in ferrite than in bainite (macroscopic stress), the difference not exceeding 150 MPa. A multi-scale polycrystalline model is developed concurrently with the experimental measurements: a Mori-Tanaka formulation is used to describe the elastoplastic behavior of a ferritic single crystal reinforced by cementite precipitates, while the transition to the polycrystal is achieved by a self-consistent approach. The developed modeling takes into account the temperature effects on the stress states in each phase and includes a cleavage criterion (critical value of the stress normal to [100] planes), which expresses the damage of the material: thus, it enables to predict the actual experimental behavior of the 16MND5 steel in relation to temperature, and to take into account the failure process which is fragile from -120 deg. C. Besides, it is also possible to calculate the strains of the diffracting planes, which can be compared to those measured by XRD: this enables to evaluate the heterogeneity of the strains for each crystallographic orientation. (authors)

  10. Viscous flux flow velocity and stress distribution in the Kim model of a long rectangular slab superconductor

    Science.gov (United States)

    Yang, Yong; Chai, Xueguang

    2018-05-01

    When a bulk superconductor endures the magnetization process, enormous mechanical stresses are imposed on the bulk, which often leads to cracking. In the present work, we aim to resolve the viscous flux flow velocity υ 0/w, i.e. υ 0 (because w is a constant) and the stress distribution in a long rectangular slab superconductor for the decreasing external magnetic field (B a ) after zero-field cooling (ZFC) and field cooling (FC) using the Kim model and viscous flux flow equation simultaneously. The viscous flux flow velocity υ 0/w and the magnetic field B* at which the body forces point away in all of the slab volumes during B a reduction, are determined by both B a and the decreasing rate (db a /dt) of the external magnetic field normalized by the full penetration field B p . In previous studies, υ 0/w obtained by the Bean model with viscous flux flow is only determined by db a /dt, and the field B* that is derived only from the Kim model is a positive constant when the maximum external magnetic field is chosen. This means that the findings in this paper have more physical contents than the previous results. The field B* stress changing with decreasing field B a after ZFC if B* ≤ 0. The effect of db a /dt on the stress is significant in the cases of both ZFC and FC.

  11. Pore-Scale Investigation on Stress-Dependent Characteristics of Granular Packs and Their Impact on Multiphase Fluid Distribution

    Science.gov (United States)

    Torrealba, V.; Karpyn, Z.; Yoon, H.; Hart, D. B.; Klise, K. A.

    2013-12-01

    The pore-scale dynamics that govern multiphase flow under variable stress conditions are not well understood. This lack of fundamental understanding limits our ability to quantitatively predict multiphase flow and fluid distributions in natural geologic systems. In this research, we focus on pore-scale, single and multiphase flow properties that impact displacement mechanisms and residual trapping of non-wetting phase under varying stress conditions. X-ray micro-tomography is used to image pore structures and distribution of wetting and non-wetting fluids in water-wet synthetic granular packs, under dynamic load. Micro-tomography images are also used to determine structural features such as medial axis, surface area, and pore body and throat distribution; while the corresponding transport properties are determined from Lattice-Boltzmann simulations performed on lattice replicas of the imaged specimens. Results are used to investigate how inter-granular deformation mechanisms affect fluid displacement and residual trapping at the pore-scale. This will improve our understanding of the dynamic interaction of mechanical deformation and fluid flow during enhanced oil recovery and geologic CO2 sequestration. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. Influence of abutment screw preload on stress distribution in marginal bone.

    Science.gov (United States)

    Khraisat, Ameen

    2012-01-01

    Changes in an implant assembly after abutment connection might possibly cause deformation in the implant/abutment joint and even in the marginal bone. The aim of this study was to evaluate the influence of abutment screw preload through the implant collar on marginal bone stress without external load application. Models of three implant parts made of titanium (implant, abutment, and abutment screw) and cortical bone were built and positioned with computer-aided design software. Meshing and generation of boundary conditions, loads, and interactions were performed. Each part was meshed independently. The sole load applied to the model was a torque of 32 Ncm on the abutment screw about its axis of rotation. The implant collar was deformed axially after the screw was tightened (3 μm). This deformation resulted in 60 MPa of stress in the marginal bone. Moreover, pressure on the marginal bone in a radial direction was observed. It can be concluded that, without any external load application, abutment screw preload exerts stresses on the implant collar and the marginal bone. These findings should help guide the development of new implant/abutment joint designs that exert less stress on the marginal bone.

  13. Residual stress distribution of a 6061-T6 aluminum alloy under shear deformation

    International Nuclear Information System (INIS)

    Reyes-Ruiz, C.; Figueroa, I.A.; Braham, C.; Cabrera, J.M.; Zanellato, O.; Baiz, S.; Gonzalez, G.

    2016-01-01

    There is a lack of information with regards to the friction effect in ECAPed aluminum alloys, even though it might substantially modify the deformation at the surface. In this work, the friction effect at the surface and the deformation heterogeneity in the ECAPed aluminum alloy 6061-T6 were characterized. X-Ray diffraction was used to determine residual stresses (RS) on the sample surface. The volumetric sections were characterized by Synchrotron diffraction at ESRF beamline ID15B (Grenoble, France). It was found that the microhardness mapping and residual stress results showed a good agreement with the finite element analysis for the first layer studied. Minor strain variation, Δd/d as a function of (hkl) planes, for the different analyzed sections was found. The study also showed that there was an incomplete symmetry in the residual stress near the surface, even at up to a depth of 400 µm. The regions with higher deformation were found to be at the top and bottom parts of the sample, while the central region showed stress variations of up to 50 MPa.

  14. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Elaeagnus angustifolia Seedlings

    Directory of Open Access Journals (Sweden)

    Wei Chang

    2018-04-01

    Full Text Available Elaeagnus angustifolia L. is a drought-resistant species. Arbuscular mycorrhizal symbiosis is considered to be a bio-ameliorator of saline soils that can improve salinity tolerance in plants. The present study investigated the effects of inoculation with the arbuscular mycorrhizal fungus Rhizophagus irregularis on the biomass, antioxidant enzyme activities, and root, stem, and leaf ion accumulation of E. angustifolia seedlings grown during salt stress conditions. Salt-stressed mycorrhizal seedlings produced greater root, stem, and leaf biomass than the uninoculated stressed seedlings. In addition, the seedlings colonized by R. irregularis showed notably higher activities of superoxide dismutase (SOD, catalase (CAT, and ascorbate peroxidase (APX in the leaves of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings. Mycorrhizal seedlings not only significantly increased their ability to acquire K+, Ca2+, and Mg2+, but also maintained higher K+:Na+ ratios in the leaves and lower Ca2+:Mg2+ ratios than non-mycorrhizal seedlings during salt stress. These results suggest that the salt tolerance of E. angustifolia seedlings could be enhanced by R. irregularis. The arbuscular mycorrhizal symbiosis could be a promising method to restore and utilize salt-alkaline land in northern China.

  15. Distribution of stress in greenhouses frames estimated by aerodynamic coefficients of Brazilian and European standards

    Directory of Open Access Journals (Sweden)

    José Gabriel Vieira Neto

    2016-04-01

    Full Text Available ABSTRACT Widely disseminated in both national and international scenarios, greenhouses are agribusiness solutions which are designed to allow for greater efficiency and control of the cultivation of plants. Bearing this in mind, the construction of greenhouses should take into consideration the incidence of wind, and other such aspects of comfort and safety, and ensure they are factored into the design of structural elements. In this study, we evaluated the effects of pressure coefficients established by the European standard EN 13031-1 (2001 and the Brazilian standard ABNT (1988, which are applicable to the structures of greenhouses with flat roofs, taking into account the following variables: roof slope, external and internal pressure coefficients and height-span ratio of the structure. Using the ANSYSTM computer program, zones of columns and roof were discretized by the Beam44 finite element to identify the maximum and minimum stress portions connected to the aerodynamic coefficients. With this analysis, we found that, in the smallest roof slope (a equal to 20°, the frame stress was quite similar for standards adopted. On the other hand, for the greatest inclination (a equal to 26°, the stress was consistently lower under the Brazilian standard. In view of this, we came to the conclusion that the differences between stresses when applying both standards were more significant at the higher degrees of height-span ratio and roof slope.

  16. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Elaeagnus angustifolia Seedlings.

    Science.gov (United States)

    Chang, Wei; Sui, Xin; Fan, Xiao-Xu; Jia, Ting-Ting; Song, Fu-Qiang

    2018-01-01

    Elaeagnus angustifolia L. is a drought-resistant species. Arbuscular mycorrhizal symbiosis is considered to be a bio-ameliorator of saline soils that can improve salinity tolerance in plants. The present study investigated the effects of inoculation with the arbuscular mycorrhizal fungus Rhizophagus irregularis on the biomass, antioxidant enzyme activities, and root, stem, and leaf ion accumulation of E. angustifolia seedlings grown during salt stress conditions. Salt-stressed mycorrhizal seedlings produced greater root, stem, and leaf biomass than the uninoculated stressed seedlings. In addition, the seedlings colonized by R. irregularis showed notably higher activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) in the leaves of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings. Mycorrhizal seedlings not only significantly increased their ability to acquire K + , Ca 2+ , and Mg 2+ , but also maintained higher K + :Na + ratios in the leaves and lower Ca 2+ :Mg 2+ ratios than non-mycorrhizal seedlings during salt stress. These results suggest that the salt tolerance of E. angustifolia seedlings could be enhanced by R. irregularis. The arbuscular mycorrhizal symbiosis could be a promising method to restore and utilize salt-alkaline land in northern China.

  17. Impact of thermal stress on the growth, size-distribution and biomass ...

    African Journals Online (AJOL)

    This paper reports an in-vivo account of the impact of thermal stress on the biomass and sizedistribution of estuarine populations of Pachymelania aurita in Epe Lagoon, Nigeria. Off all physicochemical variables investigated only water temperature was statistically different among study stations. A total of 7626 individuals of ...

  18. Residual stress distribution of a 6061-T6 aluminum alloy under shear deformation

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Ruiz, C.; Figueroa, I.A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior S/N, Cd. Universitaria, A.P. 70-360, Coyoacán C.P. 04510 (Mexico); Braham, C. [Laboratoire Procédés et Ingénierie Mécanique et Matériaux, CNRS UMR 8006, ENSAM-CNAM, 151, Bd de l’Hôpital, 75013 Paris (France); Cabrera, J.M. [Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, ETSEIB-Universidad Politécnica de Cataluña, Av Diagonal 647, 08028 Barcelona (Spain); Fundació CTM Centre Tecnológic, Pl. de la Ciencia 2, 08243 Manresa (Spain); Zanellato, O.; Baiz, S. [Laboratoire Procédés et Ingénierie Mécanique et Matériaux, CNRS UMR 8006, ENSAM-CNAM, 151, Bd de l’Hôpital, 75013 Paris (France); Gonzalez, G., E-mail: joseggr@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior S/N, Cd. Universitaria, A.P. 70-360, Coyoacán C.P. 04510 (Mexico)

    2016-07-18

    There is a lack of information with regards to the friction effect in ECAPed aluminum alloys, even though it might substantially modify the deformation at the surface. In this work, the friction effect at the surface and the deformation heterogeneity in the ECAPed aluminum alloy 6061-T6 were characterized. X-Ray diffraction was used to determine residual stresses (RS) on the sample surface. The volumetric sections were characterized by Synchrotron diffraction at ESRF beamline ID15B (Grenoble, France). It was found that the microhardness mapping and residual stress results showed a good agreement with the finite element analysis for the first layer studied. Minor strain variation, Δd/d as a function of (hkl) planes, for the different analyzed sections was found. The study also showed that there was an incomplete symmetry in the residual stress near the surface, even at up to a depth of 400 µm. The regions with higher deformation were found to be at the top and bottom parts of the sample, while the central region showed stress variations of up to 50 MPa.

  19. A finite element study on stress distribution of two different attachment designs under implant supported overdenture

    Directory of Open Access Journals (Sweden)

    Mohamed I. El-Anwar

    2015-10-01

    Conclusions: Locator and ball and socket attachments induce equivalent stresses on bone surrounding implants. Locator attachment performance was superior to that of the ball and socket attachment in the implants, nylon caps, and overdenture. Locator attachments are highly recommended and can increase the interval between successive maintenance sessions.

  20. Temperature and stress distribution in pressure vessel by the boundary element method

    International Nuclear Information System (INIS)

    Alujevic, A.; Apostolovic, D.

    1990-01-01

    The aim of this paper is to demonstrate the applicability of boundary element method for the solution of temperatures and thermal stresses in the body of reactor pressure vessel of the NPP Krsko . In addition to the theory of boundary elements for thermo-elastic continua (2D, 3D) results are given of a numerically evaluated meridional cross-section. (author)

  1. Stress !!!

    NARCIS (Netherlands)

    Fledderus, M.

    2012-01-01

    Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten.

  2. The influence of die geometry on stress distribution by experimental and FEM simulation on electrolytic copper wiredrawing

    Directory of Open Access Journals (Sweden)

    Leonardo Kyo Kabayama

    2009-09-01

    Full Text Available The study of die geometry is vital in determining the surface and mechanical properties of drawn wires, and consequently, their application. In this work, annealed electrolytic copper wire (ETP, with 0.5 mm original diameter was reduced by 19% in dies with 2β = 10º and 18º and Hc = 35 and 50%. The best experimental results were then studied by the Finite Element Method to simulate residual stress distribution. The experimental results show that the friction coefficient decreases as the wire drawing speed increases, and that low 2β and Hc values bring about the most favorable wiredrawing conditions. The simulation shows a variation in the axial and radial tensions, both for the compression and traction stresses on all regions during the wire drawing process. In conclusion, the influence of the internal die geometry on the drawn wire is clarified.

  3. Influence of Reinforcement Anisotropy on the Stress Distribution in Tension and Shear of a Fusion Magnet Insulation System

    Science.gov (United States)

    Humer, K.; Raff, S.; Prokopec, R.; Weber, H. W.

    2008-03-01

    A glass fiber reinforced plastic laminate, which consists of half-overlapped wrapped Kapton/R-glass-fiber reinforcing tapes vacuum-pressure impregnated in a cyanate ester/epoxy blend, is proposed as the insulation system for the ITER Toroidal Field coils. In order to assess its mechanical performance under the actual operating conditions, cryogenic (77 K) tensile and interlaminar shear tests were done after irradiation to the ITER design fluence of 1×1022 m-2 (E>0.1 MeV). The data were then used for a Finite Element Method (FEM) stress analysis. We find that the mechanical strength and the fracture behavior as well as the stress distribution and the failure criteria are strongly influenced by the winding direction and the wrapping technique of the reinforcing tapes.

  4. Stress distribution and pressure-bearing capacity of a high-pressure split-cylinder die with prism cavity

    Science.gov (United States)

    Zhao, Liang; Li, Mingzhe; Wang, Liyan; Qu, Erhu; Yi, Zhuo

    2018-03-01

    A novel high-pressure belt-type die with a split-type cylinder is investigated with respect to extending its lifetime and improving its pressure bearing capacity. Specifically, a tungsten carbide cylinder is split into several parts along the radial direction with a prism-type cavity. In this paper, the cylinders with different split numbers are chosen to study the stress distribution and compare them with the traditional belt-type die. The simulation results indicate that the split cylinder has much smaller stress than those in the belt-type cylinder, and the statistical analysis reveals that the split-pressure cylinder is able to bear higher pressure. Experimental tests also show that the high-pressure die with a split cylinder and prism cavity has a stronger pressure-bearing capacity than a belt-type die. The split cylinder has advantages of easy manufacturing, high pressure bearing capacity, and replaceable performance.

  5. Transient thermal stress distribution in a circular pipe heated externally with a periodically moving heat source

    International Nuclear Information System (INIS)

    Özışık, Gülşah; Genç, M. Serdar; Yapıcı, Hüseyin

    2012-01-01

    This study presents the effects of periodically moving heat source on a circular steel pipe heated partly from its outer surface under stagnant ambient conditions. While the pipe is heated with this heat source applied on a certain section having a thickness of heat flux, the water flows through it to transfer heat. It is assumed that the flow is a fully-developed laminar flow. The heat source moves along from one end of the outer to the other end with a constant speed and then returns to the first end with the same speed. It is assumed that the heat transfer rate has a constant value, and that the thermo-physical properties of the steel do not change with temperature (elastic analysis). The numerical calculations have been performed individually for a wide range of thermal conductivity of steel and for different thicknesses of heat flux. The moving heat source produces the non-uniform temperature gradient and the non-uniform effective thermal stress, and when it arrives at the ends of the pipe, the temperature and effective thermal stress ratio profiles rise more excessively. The tangential component is more dominant in the effective thermal stress than the radial component. Highlights: ► Moving heat source produces non-uniform temperature gradients and thermal stresses. ► When moving heat source arrives at ends of pipe, temperature gradients rise excessively. ► With increasing of heat flux thickness and thermal conductivity, the temperature gradients reduce. ► Temperature gradients in thermal boundary layers slightly increase. ► Tangential component is more dominant in thermal stress than radial component.

  6. Finite element analysis of the equivalent stress distribution in Schanz screws during the use of a femoral fracture distractor

    Directory of Open Access Journals (Sweden)

    Vincenzo Giordano

    Full Text Available ABSTRACT To evaluate the mechanical stress and elastic deformation exercised in the thread/shaft transition of Schanz screws in assemblies with different screw anchorage distances in the entrance to the bone cortex, through the distribution and location of tension in the samples. An analysis of 3D finite elements was performed to evaluate the distribution of the equivalent stress (triple stress state in a Schanz screw fixed bicortically and orthogonally to a tubular bone, using two mounting patterns: (1 thread/shaft transition located 20 mm from the anchorage of the Schanz screws in the entrance to the bone cortex and (2 thread/shaft transition located 3 mm from the anchorage of the Schanz screws in entrance to the bone cortex. The simulations were performed maintaining the same direction of loading and the same distance from the force vector in relation to the center of the hypothetical bone. The load applied, its direction, and the distance to the center of the bone were constant during the simulations in order to maintain the moment of flexion equally constant. The present calculations demonstrated linear behavior during the experiment. It was found that the model with a distance of 20 mm between the Schanz screws anchorage in the entrance to the bone cortex and the thread/shaft transition reduces the risk of breakage or fatigue of the material during the application of constant static loads; in this model, the maximum forces observed were higher (350 MPa. The distance between the Schanz screws anchorage at the entrance to the bone cortex and the smooth thread/shaft transition of the screws used in a femoral distractor during acute distraction of a fracture must be farther from the entrance to the bone cortex, allowing greater degree of elastic deformation of the material, lower mechanical stress in the thread/shaft transition, and minimized breakage or fatigue. The suggested distance is 20 mm.

  7. Spiral optical designs for nonimaging applications

    Science.gov (United States)

    Zamora, Pablo; Benítez, Pablo; Miñano, Juan C.; Vilaplana, Juan; Buljan, Marina

    2011-10-01

    Manufacturing technologies as injection molding or embossing specify their production limits for minimum radii of the vertices or draft angle for demolding, for instance. In some demanding nonimaging applications, these restrictions may limit the system optical efficiency or affect the generation of undesired artifacts on the illumination pattern. A novel manufacturing concept is presented here, in which the optical surfaces are not obtained from the usual revolution symmetry with respect to a central axis (z axis), but they are calculated as free-form surfaces describing a spiral trajectory around z axis. The main advantage of this new concept lies in the manufacturing process: a molded piece can be easily separated from its mold just by applying a combination of rotational movement around axis z and linear movement along axis z, even for negative draft angles. Some of these spiral symmetry examples will be shown here, as well as their simulated results.

  8. Diagnosing extracranial atherosclerotic diseases with spiral CT

    International Nuclear Information System (INIS)

    Moran, C.J.; Vannier, M.W.; Erickson, K.K.; Broderick, D.F.; Kido, D.K.; Yoffie, R.L.

    1991-01-01

    This paper reports that this discovery study was performed to determine whether extracranial carotid artery plaques could be diagnosed with a new CT technique (spiral CT) that allows nondistorted three-dimensional (3D) reconstructions in the z axis. Twenty carotid arteries were examined with spiral CT in normal volunteers and in patients suspected of having atherosclerotic plaques in the extracranial carotid arteries. The Somatom Plus CT table was advanced at a constant rate, the x-ray tube was continuously rotated, and 3D data were continuously acquired. Sixty milliliters of nonionic contrast medium was injected intravenously previous to and during the acquisition of data. The carotid bifurcations were identified in all patients. Planar images, similar to conventional intraarterial angiograms, were routinely produced from the volumetric CT data

  9. Status of the SPIRAL2 injector commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Thuillier, T., E-mail: thuillier@lpsc.in2p3.fr; Angot, J.; Jacob, J.; Lamy, T.; Sole, P. [LPSC, Université Grenoble Alpes, CNRS/IN2P3, 53 rue des Martyrs, 38026 Grenoble Cedex (France); Barué, C.; Bertrand, P.; Canet, C.; Ferdinand, R.; Flambard, J.-L.; Jardin, P.; Lemagnen, F.; Maunoury, L.; Osmond, B. [GANIL, CNRS/IN2P3, Bvd Henri Becquerel, BP 55027, 14076 Caen Cedex 5 (France); Biarrotte, J. L. [IPN Orsay, Université Paris Sud, CNRS/IN2P3, 15 rue Georges Clémenceau, 91406 Orsay Cedex (France); Denis, J.-F.; Roger, A.; Touzery, R.; Tuske, O.; Uriot, D. [Irfu, CEA Saclay, DSM/Irfu/SACM, 91191 Gif Sur Yvette (France); and others

    2016-02-15

    The SPIRAL2 injector, installed in its tunnel, is currently under commissioning at GANIL, Caen, France. The injector is composed of two low energy beam transport lines: one is dedicated to the light ion beam production, the other to the heavy ions. The first light ion beam, created by a 2.45 GHz electron cyclotron resonance ion source, has been successfully produced in December 2014. The first beam of the PHOENIX V2 18 GHz heavy ion source was analyzed on 10 July 2015. A status of the SPIRAL2 injector commissioning is given. An upgrade of the heavy ion source, named PHOENIX V3 aimed to replace the V2, is presented. The new version features a doubled plasma chamber volume and the high charge state beam intensity is expected to increase by a factor of 1.5 to 2 up to the mass ∼50. A status of its assembly is proposed.

  10. Rolling motions in an inner spiral arm

    International Nuclear Information System (INIS)

    Strauss, F.M.; Poeppel, W.

    1976-01-01

    Hydrogen line observations made at low galactic latitudes for l=318degree, 326degree, 334degree, and 337degree show the presence of velocity gradients in latitude in the nearest inner spiral arm, similar to those found by other observations in different regions. Maximum velocity change is about 10 km s -1 for l=337degree. By generating synthetic line profiles constructed from a model spiral arm, several possible causes of these ''rolling motions'' were studied, such as a vertical displacement or a tilt of the arm (which failed to account for the observations) and rotation or shearing in the arm. It was futher shown that a typical arm can maintain such a motion (approx. =75 km s -1 kpc -1 ) with its own gravitational potential. The results are used to study the origin and tilt of Gould's Belt

  11. Stationary spiral flow in polytropic stellar models

    Science.gov (United States)

    Pekeris, C. L.

    1980-01-01

    It is shown that, in addition to the static Emden solution, a self-gravitating polytropic gas has a dynamic option in which there is stationary flow along spiral trajectories wound around the surfaces of concentric tori. The motion is obtained as a solution of a partial differential equation which is satisfied by the meridional stream function, coupled with Poisson's equation and a Bernoulli-type equation for the pressure (density). The pressure is affected by the whole of the Bernoulli term rather than by the centrifugal part only, which acts for a rotating model, and it may be reduced down to zero at the center. The spiral type of flow is illustrated for an incompressible fluid (n = 0), for which an exact solution is obtained. The features of the dynamic constant-density model are discussed as a basis for future comparison with the solution for compressible models. PMID:16592825

  12. Gastric spiral bacteria in small felids.

    Science.gov (United States)

    Kinsel, M J; Kovarik, P; Murnane, R D

    1998-06-01

    Nine small cats, including one bobcat (Felis rufus), one Pallas cat (F. manul), one Canada lynx (F. lynx canadensis), two fishing cats (F. viverrina), two margays (F. wiedii), and two sand cats (F. margarita), necropsied between June 1995 and March 1997 had large numbers of gastric spiral bacteria, whereas five large cats, including one African lion (Panthera leo), two snow leopards (P. uncia), one Siberian tiger (P. tigris altaica), and one jaguar (P. onca), necropsied during the same period had none. All of the spiral organisms from the nine small cats were histologically and ultrastructurally similar. Histologically, the spiral bacteria were 5-14 microm long with five to nine coils per organism and were located both extracellularly within gastric glands and surface mucus, and intracellularly in parietal cells. Spiral bacteria in gastric mucosal scrapings from the Canada lynx, one fishing cat, and the two sand cats were gram negative and had corkscrewlike to tumbling motility when viewed with phase contrast microscopy. The bacteria were 0.5-0.7 microm wide, with a periodicity of 0.65-1.1 microm in all cats. Bipolar sheathed flagella were occasionally observed, and no periplasmic fibrils were seen. The bacteria were extracellular in parietal cell canaliculi and intracellular within parietal cells. Culture of mucosal scrapings from the Canada lynx and sand cats was unsuccessful. Based on morphology, motility, and cellular tropism, the bacteria were probably Helicobacter-like organisms. Although the two margays had moderate lymphoplasmacytic gastritis, the other cats lacked or had only mild gastric lymphoid infiltrates, suggesting that these organisms are either commensals or opportunistic pathogens.

  13. The surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1983-01-01

    It is proposed that Freeman's discovery that the extrapolated central surface brightness of spiral galaxies is approximately constant can be simply explained if the galaxies contain a spheroidal component which dominates the light in their outer isophotes. Calculations of an effective central surface brightness indicate a wide spread of values. This requires either a wide spread in disc properties or significant spheroidal components or, most probably, both. (author)

  14. A Fermat's spiral multifilament-core fiber

    Science.gov (United States)

    Tartara, L.; Codemard, C.

    2013-02-01

    A multifilament-core optical fiber where the microstructure is arranged in a Fermat's spiral is presented. The properties of such a fiber to be exploited for laser light amplification are numerically investigated by means of a full-vectorial finite-element method. Thanks to this peculiar microstructure, the fiber is shown to have an increased Brillouin threshold power and very low bending losses, while preserving a very good beam spatial quality.

  15. Spiral-arm instability: giant clump formation via fragmentation of a galactic spiral arm

    Science.gov (United States)

    Inoue, Shigeki; Yoshida, Naoki

    2018-03-01

    Fragmentation of a spiral arm is thought to drive the formation of giant clumps in galaxies. Using linear perturbation analysis for self-gravitating spiral arms, we derive an instability parameter and define the conditions for clump formation. We extend our analysis to multicomponent systems that consist of gas and stars in an external potential. We then perform numerical simulations of isolated disc galaxies with isothermal gas, and compare the results with the prediction of our analytic model. Our model describes accurately the evolution of the spiral arms in our simulations, even when spiral arms dynamically interact with one another. We show that most of the giant clumps formed in the simulated disc galaxies satisfy the instability condition. The clump masses predicted by our model are in agreement with the simulation results, but the growth time-scale of unstable perturbations is overestimated by a factor of a few. We also apply our instability analysis to derive scaling relations of clump properties. The expected scaling relation between the clump size, velocity dispersion, and circular velocity is slightly different from that given by the Toomre instability analyses, but neither is inconsistent with currently available observations. We argue that the spiral-arm instability is a viable formation mechanism of giant clumps in gas-rich disc galaxies.

  16. Spiral computed tomography phase-space source model in the BEAMnrc/EGSnrc Monte Carlo system: implementation and validation

    International Nuclear Information System (INIS)

    Kim, Sangroh; Yoshizumi, Terry T; Yin Fangfang; Chetty, Indrin J

    2013-01-01

    Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan—scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the ‘ISource = 8: Phase-Space Source Incident from Multiple Directions’ in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the

  17. Spiral computed tomography phase-space source model in the BEAMnrc/EGSnrc Monte Carlo system: implementation and validation.

    Science.gov (United States)

    Kim, Sangroh; Yoshizumi, Terry T; Yin, Fang-Fang; Chetty, Indrin J

    2013-04-21

    Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan-scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the 'ISource = 8: Phase-Space Source Incident from Multiple Directions' in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral

  18. Analysis of stress distribution of timing belts by FEM; Yugen yosoho ni yoru timing belt oryoku kaiseki (belt code oryoku bunpu kaiseki hokoku)

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Y; Tomono, K; Takahashi, H; Uchida, T [Honda R and D Co. Ltd., Tokyo (Japan)

    1997-10-01

    A model of the belt analyzed by-ABAQUS (: a general nonlinear finite element program) successfully confirmed the mechanism that generates the belt cord stress. A quite good agreement between experimental and computed results for the stress distribution of the belt cord. It is found that maximum stress of the cords occurs near the root of the tooth by calculation, where the belt cords break off. 3 refs., 9 figs.

  19. Measurements on wave propagation characteristics of spiraling electron beams

    Science.gov (United States)

    Singh, A.; Getty, W. D.

    1976-01-01

    Dispersion characteristics of cyclotron-harmonic waves propagating on a neutralized spiraling electron beam immersed in a uniform axial magnetic field are studied experimentally. The experimental setup consisted of a vacuum system, an electron-gun corkscrew assembly which produces a 110-eV beam with the desired delta-function velocity distribution, a measurement region where a microwave signal is injected onto the beam to measure wavelengths, and a velocity analyzer for measuring the axial electron velocity. Results of wavelength measurements made at beam currents of 0.15, 1.0, and 2.0 mA are compared with calculated values, and undesirable effects produced by increasing the beam current are discussed. It is concluded that a suitable electron beam for studies of cyclotron-harmonic waves can be generated by the corkscrew device.

  20. The 1+/n+ solution for SPIRAL ?

    International Nuclear Information System (INIS)

    Villari, A.C.C.; Bruandet, J.S.; Chauvin, N.; Curdy, J.C.; Gaubert, G.; Lamy, T.; Maunoury, L.; Sole, J.P.; Sortais, P.; Vieux-Rochaz, J.L.

    1997-01-01

    The use of a primary ion source for the production of 1+ ions in the production cave of SPIRAL with subsequent injection in an ECRIS (Electron Cyclotron Resonance Ion Source) for charge multiplication is discussed. The first results obtained at ISN Grenoble for the production of Rb (9+) and Ar (8+) stable beams are presented. The overall efficiency of this system for the production of the Ar beams is compared with the present situation where the ECRIS is placed inside the cave of SPIRAL. An important gain in the reliability and reduction of functioning costs would be obtained in the case of the implementation of the 1+/n+ mode in the SPIRAL project at GANIL. A reduction of overall efficiency of a factor 1.5 to 3 with respect to the present NANOGAN-II ensemble is expected for light noble gas radioactive ion beams. This factor can be reduced depending on the choice of the ECRIS for a particular multicharged ion production. Finally, important R and D is needed for extending the range of elements to be produced in the 1+/n+ mode and to define 'good' ion sources with small energy dispersion for 1+ production. (authors)