WorldWideScience

Sample records for stress acquire resistance

  1. Yeasts acquire resistance secondary to antifungal drug treatment by adaptive mutagenesis.

    Directory of Open Access Journals (Sweden)

    David Quinto-Alemany

    Full Text Available Acquisition of resistance secondary to treatment both by microorganisms and by tumor cells is a major public health concern. Several species of bacteria acquire resistance to various antibiotics through stress-induced responses that have an adaptive mutagenesis effect. So far, adaptive mutagenesis in yeast has only been described when the stress is nutrient deprivation. Here, we hypothesized that adaptive mutagenesis in yeast (Saccharomyces cerevisiae and Candida albicans as model organisms would also take place in response to antifungal agents (5-fluorocytosine or flucytosine, 5-FC, and caspofungin, CSP, giving rise to resistance secondary to treatment with these agents. We have developed a clinically relevant model where both yeasts acquire resistance when exposed to these agents. Stressful lifestyle associated mutation (SLAM experiments show that the adaptive mutation frequencies are 20 (S. cerevisiae -5-FC, 600 (C. albicans -5-FC or 1000 (S. cerevisiae--CSP fold higher than the spontaneous mutation frequency, the experimental data for C. albicans -5-FC being in agreement with the clinical data of acquisition of resistance secondary to treatment. The spectrum of mutations in the S. cerevisiae -5-FC model differs between spontaneous and acquired, indicating that the molecular mechanisms that generate them are different. Remarkably, in the acquired mutations, an ectopic intrachromosomal recombination with an 87% homologous gene takes place with a high frequency. In conclusion, we present here a clinically relevant adaptive mutation model that fulfils the conditions reported previously.

  2. Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance

    International Nuclear Information System (INIS)

    Lee, Eun-Young; Shim, Yhong-Hee; Chitwood, David J.; Hwang, Soon Baek; Lee, Junho; Paik, Young-Ki

    2005-01-01

    Because Caenorhabditis elegans lacks several components of the de novo sterol biosynthetic pathway, it requires sterol as an essential nutrient. Supplemented cholesterol undergoes extensive enzymatic modification in C. elegans to form other sterols of unknown function. 7-Dehydrocholesterol reductase (DHCR) catalyzes the reduction of the Δ 7 double bond of sterols and is suspected to be defective in C. elegans, in which the major endogenous sterol is 7-dehydrocholesterol (7DHC). We microinjected a human DHCR expression vector into C. elegans, which was then incorporated into chromosome by γ-radiation. This transgenic C. elegans was named cholegans, i.e., cholesterol-producing C. elegans, because it was able to convert 7DHC into cholesterol. We investigated the effects of changes in sterol composition on longevity and stress resistance by examining brood size, mean life span, UV resistance, and thermotolerance. Cholegans contained 80% more cholesterol than the wild-type control. The brood size of cholegans was reduced by 40% compared to the wild-type control, although the growth rate was not significantly changed. The mean life span of cholegans was increased up to 131% in sterol-deficient medium as compared to wild-type. The biochemical basis for life span extension of cholegans appears to partly result from its acquired resistance against both UV irradiation and thermal stress

  3. Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria.

    Science.gov (United States)

    Arzanlou, Mohsen; Chai, Wern Chern; Venter, Henrietta

    2017-02-28

    Gram-negative bacteria are responsible for a large proportion of antimicrobial-resistant infections in humans and animals. Among this class of bacteria are also some of the most successful environmental organisms. Part of this success is their adaptability to a variety of different niches, their intrinsic resistance to antimicrobial drugs and their ability to rapidly acquire resistance mechanisms. These mechanisms of resistance are not exclusive and the interplay of several mechanisms causes high levels of resistance. In this review, we explore the molecular mechanisms underlying resistance in Gram-negative organisms and how these different mechanisms enable them to survive many different stress conditions. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  4. Association between Mycobacterium tuberculosis complex phylogenetic lineage and acquired drug resistance.

    Directory of Open Access Journals (Sweden)

    Courtney M Yuen

    Full Text Available BACKGROUND: Development of resistance to antituberculosis drugs during treatment (i.e., acquired resistance can lead to emergence of resistant strains and consequent poor clinical outcomes. However, it is unknown whether Mycobacterium tuberculosis complex species and lineage affects the likelihood of acquired resistance. METHODS: We analyzed data from the U.S. National Tuberculosis Surveillance System and National Tuberculosis Genotyping Service for tuberculosis cases during 2004-2011 with assigned species and lineage and both initial and final drug susceptibility test results. We determined univariate associations between species and lineage of Mycobacterium tuberculosis complex bacteria and acquired resistance to isoniazid, rifamycins, fluoroquinolones, and second-line injectables. We used Poisson regression with backward elimination to generate multivariable models for acquired resistance to isoniazid and rifamycins. RESULTS: M. bovis was independently associated with acquired resistance to isoniazid (adjusted prevalence ratio = 8.46, 95% CI 2.96-24.14 adjusting for HIV status, and with acquired resistance to rifamycins (adjusted prevalence ratio = 4.53, 95% CI 1.29-15.90 adjusting for homelessness, HIV status, initial resistance to isoniazid, site of disease, and administration of therapy. East Asian lineage was associated with acquired resistance to fluoroquinolones (prevalence ratio = 6.10, 95% CI 1.56-23.83. CONCLUSIONS: We found an association between mycobacterial species and lineage and acquired drug resistance using U.S. surveillance data. Prospective clinical studies are needed to determine the clinical significance of these findings, including whether rapid genotyping of isolates at the outset of treatment may benefit patient management.

  5. Cancer resistance as an acquired and inheritable trait

    DEFF Research Database (Denmark)

    Koch, Janne; Hau, Jann; Jensen, Henrik Elvang

    2014-01-01

    AIM: To induce cancer resistance in wild-type mice and detect if the resistance could be inherited to the progeny of the induced resistant mice. Furthermore to investigate the spectrum and immunology of this inherited cancer resistance. MATERIALS AND METHODS: Resistance to with live S180 cancer c...... of the resistance is unknown but may involve epigenetic mechanisms. Other examples of inheritability of acquired phenotypic changes exist but, to our knowledge, this is the first demonstration of acquired, inherited cancer resistance.......AIM: To induce cancer resistance in wild-type mice and detect if the resistance could be inherited to the progeny of the induced resistant mice. Furthermore to investigate the spectrum and immunology of this inherited cancer resistance. MATERIALS AND METHODS: Resistance to with live S180 cancer...... cells in BALB/c mice was induced by immunization with inactivated S180 cancer cells. The immunization was performed by either frozen/thawed or irradiated cancer cells or cell-free ascitic fluid (CFAF). RESULTS: In all instances the induced resistance was demonstrated to be inheritable. The phenotype...

  6. Induced resistance in tomato by SAR activators during predisposing salinity stress

    Directory of Open Access Journals (Sweden)

    Matthew Francis Pye

    2013-05-01

    Full Text Available Plant activators are chemicals that induce disease resistance. The phytohormone salicylic acid (SA is a crucial signal for systemic acquired resistance (SAR, and SA-mediated resistance is a target of several commercial plant activators, including Actigard (1,2,3-benzothiadiazole-7-thiocarboxylic acid-s-methyl-ester, BTH and Tiadinil (N-(3-chloro-4-methylphenyl-4-methyl-1,2,3-thiadiazole-5-carboxamide, TDL. BTH and TDL were examined for their impact on abscisic acid (ABA-mediated, salt-induced disease predisposition in tomato seedlings. A brief episode of salt stress to roots significantly increased the severity of disease caused by Pseudomonas syringae pv. tomato (Pst and Phytophthora capsici relative to non-stressed plants. Root treatment with TDL induced resistance to Pst in leaves and provided protection in both non-stressed and salt-stressed seedlings in WT and highly susceptible NahG plants. Non-stressed and salt-stressed ABA-deficient sitiens mutants were highly resistant to Pst. Neither TDL nor BTH induced resistance to root infection by P. capsici, nor did they moderate the salt-induced increment in disease severity. Root treatment with these plant activators increased the levels of ABA in roots and shoots similar to levels observed in salt-stressed plants. The results indicate that SAR activators can protect tomato plants from bacterial speck disease under predisposing salt stress, and suggest that some SA-mediated defense responses function sufficiently in plants with elevated levels of ABA.

  7. Resistance and resilience: the final frontier in traumatic stress management.

    Science.gov (United States)

    Everly, George S; Welzant, Victor; Jacobson, Jodi M

    2008-01-01

    This paper asserts that the constructs of resistance and resilience represent a domain rich in potential for a wide variety of applications in the field of traumatic stress. Resilience holds great potential for those working in applied settings such as public health planning and preparedness, Employee Assistance Programs (EAPs) and business continuity, as well as transportation, law enforcement, fire suppression, emergency medical services, pre-deployment training for military and other high risk professional groups. Additionally, its application to "the war on terrorism" cannot be denied. Finally, the construct of resilience may have direct applicability to businesses and organizations wherein there is perceived value in preparing a workforce to effectively function under adverse or high stress conditions. The putative value of resistance and resiliency in such applied settings resides in their ability to protect against stress-related behavioral morbidity, as well as counterproductive behavioral reactions. Given its importance, the question arises as to whether resilience is an innate trait or an acquired skill. This paper will report on preliminary data suggesting resiliency may be an attribute that can be acquired through participation in a relatively brief training program.

  8. Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells

    DEFF Research Database (Denmark)

    Zub, Kamila Anna; Sousa, Mirta Mittelstedt Leal de; Sarno, Antonio

    2015-01-01

    of the AKR1C family involved in prostaglandin synthesis contribute to the resistant phenotype. Finally, selected metabolic and oxidative stress response enzymes were targeted by inhibitors, several of which displayed a selective cytotoxicity against the melphalan-resistant cells and should be further...... and pathways not previously associated with melphalan resistance in multiple myeloma cells, including a metabolic switch conforming to the Warburg effect (aerobic glycolysis), and an elevated oxidative stress response mediated by VEGF/IL8-signaling. In addition, up-regulated aldo-keto reductase levels...

  9. Identification of acquired antimicrobial resistance genes

    DEFF Research Database (Denmark)

    Zankari, Ea; Hasman, Henrik; Cosentino, Salvatore

    2012-01-01

    ObjectivesIdentification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic laborato......ObjectivesIdentification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic...... laboratories and is anticipated to substitute traditional methods for resistance gene identification. Thus, the current challenge is to extract the relevant information from the large amount of generated data.MethodsWe developed a web-based method, ResFinder that uses BLAST for identification of acquired...... antimicrobial resistance genes in whole-genome data. As input, the method can use both pre-assembled, complete or partial genomes, and short sequence reads from four different sequencing platforms. The method was evaluated on 1862 GenBank files containing 1411 different resistance genes, as well as on 23 de...

  10. Next-generation systemic acquired resistance.

    Science.gov (United States)

    Luna, Estrella; Bruce, Toby J A; Roberts, Michael R; Flors, Victor; Ton, Jurriaan

    2012-02-01

    Systemic acquired resistance (SAR) is a plant immune response to pathogen attack. Recent evidence suggests that plant immunity involves regulation by chromatin remodeling and DNA methylation. We investigated whether SAR can be inherited epigenetically following disease pressure by Pseudomonas syringae pv tomato DC3000 (PstDC3000). Compared to progeny from control-treated Arabidopsis (Arabidopsis thaliana; C(1)), progeny from PstDC3000-inoculated Arabidopsis (P(1)) were primed to activate salicylic acid (SA)-inducible defense genes and were more resistant to the (hemi)biotrophic pathogens Hyaloperonospora arabidopsidis and PstDC3000. This transgenerational SAR was sustained over one stress-free generation, indicating an epigenetic basis of the phenomenon. Furthermore, P(1) progeny displayed reduced responsiveness of jasmonic acid (JA)-inducible genes and enhanced susceptibility to the necrotrophic fungus Alternaria brassicicola. This shift in SA- and JA-dependent gene responsiveness was not associated with changes in corresponding hormone levels. Instead, chromatin immunoprecipitation analyses revealed that SA-inducible promoters of PATHOGENESIS-RELATED GENE1, WRKY6, and WRKY53 in P(1) plants are enriched with acetylated histone H3 at lysine 9, a chromatin mark associated with a permissive state of transcription. Conversely, the JA-inducible promoter of PLANT DEFENSIN1.2 showed increased H3 triple methylation at lysine 27, a mark related to repressed gene transcription. P(1) progeny from the defense regulatory mutant non expressor of PR1 (npr1)-1 failed to develop transgenerational defense phenotypes, demonstrating a critical role for NPR1 in expression of transgenerational SAR. Furthermore, the drm1drm2cmt3 mutant that is affected in non-CpG DNA methylation mimicked the transgenerational SAR phenotype. Since PstDC3000 induces DNA hypomethylation in Arabidopsis, our results suggest that transgenerational SAR is transmitted by hypomethylated genes that direct priming

  11. Convergent Akt activation drives acquired EGFR inhibitor resistance in lung cancer

    DEFF Research Database (Denmark)

    Jacobsen, Kirstine; Bertran-Alamillo, Jordi; Molina, Miguel Angel

    2017-01-01

    Non-small-cell lung cancer patients with activating epidermal growth factor receptor (EGFR) mutations typically benefit from EGFR tyrosine kinase inhibitor treatment. However, virtually all patients succumb to acquired EGFR tyrosine kinase inhibitor resistance that occurs via diverse mechanisms....... The diversity and unpredictability of EGFR tyrosine kinase inhibitor resistance mechanisms presents a challenge for developing new treatments to overcome EGFR tyrosine kinase inhibitor resistance. Here, we show that Akt activation is a convergent feature of acquired EGFR tyrosine kinase inhibitor resistance......, across a spectrum of diverse, established upstream resistance mechanisms. Combined treatment with an EGFR tyrosine kinase inhibitor and Akt inhibitor causes apoptosis and synergistic growth inhibition in multiple EGFR tyrosine kinase inhibitor-resistant non-small-cell lung cancer models. Moreover...

  12. Surveillance for Travel and Domestically Acquired Multidrug-Resistant Human Shigella Infections-Pennsylvania, 2006-2014.

    Science.gov (United States)

    Li, Yu Lung; Tewari, Deepanker; Yealy, Courtney C; Fardig, David; M'ikanatha, Nkuchia M

    2016-01-01

    Shigellosis is a leading cause of enteric infections in the United States. We compared antimicrobial resistance in Shigella infections related to overseas travel (travel-associated) and in those acquired domestically by analyzing antimicrobial resistance patterns, geographic distributions, and pulsed-field gel electrophoresis (PFGE) patterns. We tested samples (n = 204) from a collection of isolates recovered from patients in Pennsylvania between 2006 and 2014. Isolates were grouped into travel- and non-travel-associated categories. Eighty-one (79.4%) of the Shigella isolates acquired during international travel were resistant to multiple antibiotics compared to 53 (52.1%) of the infections transmitted in domestic settings. A majority (79.4%) of isolates associated with international travel demonstrated resistance to aminoglycosides and tetracyclines, whereas 47 (46.1%) of the infections acquired domestically were resistant to tetracycline. Almost all isolates (92.2%) transmitted in domestic settings were resistant to aminoglycosides, and 5 isolates from adult male patients were resistant to azithromycin, a drug often used for empiric treatment of severe shigellosis. Twenty (19.6%) isolates associated with illnesses acquired during overseas travel in 4 countries were resistant to quinolones. One S. sonnei PFGE pattern was traced to a multidrug-resistant isolate acquired overseas that had caused a multistate outbreak of shigellosis, suggesting global dissemination of a drug-resistant species. Resistance to certain drugs-for example, tetracycline-increased in both overseas- and domestic-acquired infections during the study period. The prevalence of resistance to macrolides (azithromycin) and third-generation cephalosporins (ceftriaxone) was less than 1%; however, efforts to better monitor changes in drug resistance over time combined with increased antimicrobial stewardship are essential at the local, national, and global levels.

  13. Tracking acquired antibiotic resistance in commensal bacteria of Galápagos land iguanas: no man, no resistance.

    Directory of Open Access Journals (Sweden)

    Maria Cristina Thaller

    Full Text Available BACKGROUND: Antibiotic resistance, evolving and spreading among bacterial pathogens, poses a serious threat to human health. Antibiotic use for clinical, veterinary and agricultural practices provides the major selective pressure for emergence and persistence of acquired resistance determinants. However, resistance has also been found in the absence of antibiotic exposure, such as in bacteria from wildlife, raising a question about the mechanisms of emergence and persistence of resistant strains under similar conditions, and the implications for resistance control strategies. Since previous studies yielded some contrasting results, possibly due to differences in the ecological landscapes of the studied wildlife, we further investigated this issue in wildlife from a remote setting of the Galapagos archipelago. METHODOLOGY/PRINCIPAL FINDINGS: Screening for acquired antibiotic resistance was carried out in commensal enterobacteria from Conolophus pallidus, the terrestrial iguana of Isla Santa Fe, where: i the abiotic conditions ensure to microbes good survival possibilities in the environment; ii the animal density and their habits favour microbial circulation between individuals; and iii there is no history of antibiotic exposure and the impact of humans and introduced animal species is minimal except for restricted areas. Results revealed that acquired antibiotic resistance traits were exceedingly rare among bacteria, occurring only as non-dominant strains from an area of minor human impact. CONCLUSIONS/SIGNIFICANCE: Where both the exposure to antibiotics and the anthropic pressure are minimal, acquired antibiotic resistance traits are not normally found in bacteria from wildlife, even if the ecological landscape is highly favourable to bacterial circulation among animals. Monitoring antibiotic resistance in wildlife from remote areas could also be a useful tool to evaluate the impact of anthropic pressure.

  14. Tracking acquired antibiotic resistance in commensal bacteria of Galápagos land iguanas: no man, no resistance.

    Science.gov (United States)

    Thaller, Maria Cristina; Migliore, Luciana; Marquez, Cruz; Tapia, Washington; Cedeño, Virna; Rossolini, Gian Maria; Gentile, Gabriele

    2010-02-01

    Antibiotic resistance, evolving and spreading among bacterial pathogens, poses a serious threat to human health. Antibiotic use for clinical, veterinary and agricultural practices provides the major selective pressure for emergence and persistence of acquired resistance determinants. However, resistance has also been found in the absence of antibiotic exposure, such as in bacteria from wildlife, raising a question about the mechanisms of emergence and persistence of resistant strains under similar conditions, and the implications for resistance control strategies. Since previous studies yielded some contrasting results, possibly due to differences in the ecological landscapes of the studied wildlife, we further investigated this issue in wildlife from a remote setting of the Galapagos archipelago. Screening for acquired antibiotic resistance was carried out in commensal enterobacteria from Conolophus pallidus, the terrestrial iguana of Isla Santa Fe, where: i) the abiotic conditions ensure to microbes good survival possibilities in the environment; ii) the animal density and their habits favour microbial circulation between individuals; and iii) there is no history of antibiotic exposure and the impact of humans and introduced animal species is minimal except for restricted areas. Results revealed that acquired antibiotic resistance traits were exceedingly rare among bacteria, occurring only as non-dominant strains from an area of minor human impact. Where both the exposure to antibiotics and the anthropic pressure are minimal, acquired antibiotic resistance traits are not normally found in bacteria from wildlife, even if the ecological landscape is highly favourable to bacterial circulation among animals. Monitoring antibiotic resistance in wildlife from remote areas could also be a useful tool to evaluate the impact of anthropic pressure.

  15. Erlotinib is a viable treatment for tumors with acquired resistance to cetuximab

    Science.gov (United States)

    Brand, Toni M; Dunn, Emily F; Iida, Mari; Myers, Rebecca A; Kostopoulos, Kellie T; Li, Chunrong; Peet, Chimera R

    2011-01-01

    The epidermal growth factor receptor (EGFR) is an ubiquitously expressed receptor tyrosine kinase (RTK) and is recognized as a key mediator of tumorigenesis in many human tumors. Currently there are five EGFR inhibitors used in oncology, two monoclonal antibodies (panitumumab and cetuximab) and three tyrosine kinase inhibitors (erlotinib, gefitinib and lapatinib). Both strategies of EGFR inhibition have demonstrated clinical success; however, many tumors remain non-responsive or acquire resistance during therapy. To explore potential molecular mechanisms of acquired resistance to cetuximab we previously established a series of cetuximab-resistant clones by chronically exposing the NCI-H226 NSCLC cell line to escalating doses of cetuximab. Cetuximab-resistant clones exhibited a dramatic increase in the activation of EGFR, HER2 and HER3 receptors as well as increased signaling through the MAP K and AKT pathways. RNAi studies demonstrated dependence of cetuximab-resistant clones on the EGFR signaling network. These findings prompted investigation on whether or not cells with acquired resistance to cetuximab would be sensitive to the EGFR targeted TKI erlotinib. In vitro, erlotinib was able to decrease signaling through the EGFR axis, decrease cellular proliferation and induce apoptosis. To determine if erlotinib could have therapeutic benefit in vivo, we established cetuximab-resistant NCI-H226 mouse xenografts, and subsequently treated them with erlotinib. Mice harboring cetuximab-resistant tumors treated with erlotinib exhibited either a tumor regression or growth delay as compared with vehicle controls. Analysis of the erlotinib treated tumors demonstrated a decrease in cell proliferation and increased rates of apoptosis. The work presented herein suggests that (1) cells with acquired resistance to cetuximab maintain their dependence on EGFR and (2) tumors developing resistance to cetuximab can benefit from subsequent treatment with erlotinib, providing rationale

  16. Failure of Elevating Calcium Induces Oxidative Stress Tolerance and Imparts Cisplatin Resistance in Ovarian Cancer Cells

    OpenAIRE

    Ma, Liwei; Wang, Hongjun; Wang, Chunyan; Su, Jing; Xie, Qi; Xu, Lu; Yu, Yang; Liu, Shibing; Li, Songyan; Xu, Ye; Li, Zhixin

    2016-01-01

    Cisplatin is a commonly used chemotherapeutic drug, used for the treatment of malignant ovarian cancer, but acquired resistance limits its application. There is therefore an overwhelming need to understand the mechanism of cisplatin resistance in ovarian cancer, that is, ovarian cancer cells are insensitive to cisplatin treatment. Here, we show that failure of elevating calcium and oxidative stress tolerance play key roles in cisplatin resistance in ovarian cancer cell lines. Cisplatin induce...

  17. Pre-cold stress increases acid stress resistance and induces amino ...

    African Journals Online (AJOL)

    Pre-cold stress increases acid stress resistance and induces amino acid homeostasis in Lactococcus lactis NZ9000. ... Purpose: To investigate the effects of pre-cold stress treatments on subsequent acid stress resistance ... from 32 Countries:.

  18. Absence of death receptor translocation into lipid rafts in acquired TRAIL-resistant NSCLC cells.

    Science.gov (United States)

    Ouyang, Wen; Yang, Chunxu; Zhang, Simin; Liu, Yu; Yang, Bo; Zhang, Junhong; Zhou, Fuxiang; Zhou, Yunfeng; Xie, Conghua

    2013-02-01

    Resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a major limitation for its clinical use. The mechanisms of TRAIL resistance have been mostly studied in the context of cell lines that are intrinsically resistant to TRAIL. However, little is known about the molecular alterations that contribute to the development of acquired resistance during treatment with TRAIL. In this study, we established H460R, an isogenic cell line with acquired TRAIL resistance, from the TRAIL‑sensitive human lung cancer cell line H460 to investigate the mechanisms of acquired resistance. The acquired TRAIL‑resistant H460R cells remained sensitive to cisplatin. The mRNA and protein expression levels of death receptor 4 (DR4) and death receptor 5 (DR5) were not altered in either of the TRAIL-treated cell lines. Nevertheless, tests in which the DR4 or DR5 gene was overexpressed or silenced suggest that death receptor expression is necessary but not sufficient for TRAIL‑induced apoptosis. Compared with parental TRAIL-sensitive H460 cells, H460R cells showed a decreased TRAIL-induced translocation of DR4/DR5 into lipid rafts. Further studies showed that nystatin partially prevented lipid raft aggregation and DR4 and DR5 clustering and reduced apoptosis in H460 cells again. Analysis of apoptotic molecules showed that more pro-caspase-8, FADD, caspase-3 and Bid, but less cFLIP in H460 cells than in H460R cells. Our findings suggest that the lack of death receptor redistribution negatively impacts DISC assembly in lipid rafts, which at least partially leads to the development of acquired resistance to TRAIL in H460R cells.

  19. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance

    DEFF Research Database (Denmark)

    Petersen, M.; Brodersen, P.; Naested, H.

    2000-01-01

    Transposon inactivation of Arabidopsis MAP kinase 4 produced the mpk4 mutant exhibiting constitutive systemic acquired resistance (SAR) including elevated salicylic acid (SA) revels, increased resistance to virulent pathogens, and constitutive pathogenesis-related gene expression shown by Northern...... of NPR1. PDF1.2 and THI2.1 gene induction by jasmonate was blocked in mpk4 expressing NahG, suggesting that MPK4 is required for jasmonic acid-responsive gene expression....

  20. Prevalence of Methicillin Resistant Staphylococcus aureus in pyogenic community and hospital acquired skin and soft tissues infections

    International Nuclear Information System (INIS)

    Ahmad, M. K.; Asrar, A.

    2014-01-01

    Objective: To determine the percentage and frequency of Methicillin Resistant Staphylococcus aureus in community and hospital-acquired pyogenic skin and soft tissue infections. Methods: The descriptive cross-sectional study was conducted at the Dermatology Department of Combined Military Hospital, Abbottabad, from June 2009 to March 2010, and comprised 144 community-acquired and 54 hospital-acquired skin and soft tissue infections. Pus swabs from the infected lesions one from each individual were sent to laboratory for culture and sensitivity tests. Methicillin resistance was detected by 1 (mu) g oxacillin disk. Organisms were labelled methicillin-resistant once the inhibition zone for oxocillin was less than 10 mm. Data analysis was done by using SPSS 20. Results: Of the 198 patients in the study, 98(49.5%) were males and 100(50.5%) were females, with an overall mean age of 33.7+-14.8144 years. There were 144(72.72%) community-acquired infections and 54(27.27%) had hospital-acquired infections. Community-acquired Methicillin Resistant Staphylococcus aureus numbered 40(27.8%) and hospital-acquired ones numbered 26(48.1%). Conclusion: Prevalence of Methicillin Resistant Staphylococcus aureus in community and hospital-acquired pyogenic skin and soft tissue infections was high. (author)

  1. Presence and mechanisms of acquired antimicrobial resistance in Belgian Brachyspira hyodysenteriae isolates belonging to different clonal complexes.

    Science.gov (United States)

    Mahu, M; Pasmans, F; Vranckx, K; De Pauw, N; Vande Maele, L; Vyt, Philip; Vandersmissen, Tamara; Martel, A; Haesebrouck, F; Boyen, F

    2017-08-01

    Swine dysentery (SD) is an economically important disease for which antimicrobial treatment still occupies an important place to control outbreaks. However, acquired antimicrobial resistance is increasingly observed in Brachyspira hyodysenteriae. In this study, the Minimal Inhibitory Concentrations (MIC) of six antimicrobial compounds for 30 recent Belgian B. hyodysenteriae isolates were determined using a broth microdilution method. In addition, relevant regions of the 16S rRNA, 23S rRNA and the L3 protein encoding genes were sequenced to reveal mutations associated with acquired resistance. Finally, a phylogeny was reconstructed using minimal spanning tree analysis of multi locus sequence typing of the isolates. For lincomycin, doxycycline, tylosin and tylvalosin, at least 70% of the isolates did not belong to the wild-type population and were considered to have acquired resistance. For valnemulin and tiamulin, this was over 50%. In all isolates with acquired resistance to doxycycline, the G1058C mutation was present in their 16S rRNA gene. All isolates showing acquired resistance to lincomycin and both macrolides displayed the A2058T mutation in their 23S rRNA gene. Other mutations in this gene and the N148S mutation in the L3 protein were present in both wild-type isolates and isolates considered to have acquired resistance. Multi locus sequence analysis revealed a previously undescribed clonal complex, with 4 novel sequence types in which the majority of isolates showed acquired resistance to all tested antimicrobial products. In conclusion, acquired antimicrobial resistance is widespread among Belgian B. hyodysenteriae isolates. The emergence of multi-resistant clonal complexes can pose a threat to swine industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The Genomic Basis of Intrinsic and Acquired Antibiotic Resistance in the Genus Serratia

    Directory of Open Access Journals (Sweden)

    Luisa Sandner-Miranda

    2018-05-01

    Full Text Available Serratia marcescens, a member of the Enterobacteriaceae family, was long thought to be a non-pathogenic bacterium prevalent in environmental habitats. Together with other members of this genus, it has emerged in recent years as an opportunistic nosocomial pathogen causing various types of infections. One important feature of pathogens belonging to this genus is their intrinsic and acquired resistance to a variety of antibiotic families, including β-lactam, aminoglycosides, quinolones and polypeptide antibiotics. The aim of this study was to elucidate which genes participate in the intrinsic and acquired antibiotic resistance of this genus in order to determine the Serratia genus resistome. We performed phylogenomic and comparative genomic analyses using 32 Serratia spp. genomes deposited in the NCBI GenBank from strains isolated from different ecological niches and different lifestyles. S. marcescens strain SmUNAM836, which was previously isolated from a Mexican adult with obstructive pulmonary disease, was included in this study. The results show that most of the antibiotic resistance genes (ARGs were found on the chromosome, and to a lesser degree, on plasmids and transposons acquired through horizontal gene transfer. Four strains contained the gyrA point mutation in codon Ser83 that confers quinolone resistance. Pathogenic and environmental isolates presented a high number of ARGs, especially genes associated with efflux systems. Pathogenic strains, specifically nosocomial strains, presented more acquired resistance genes than environmental isolates. We may conclude that the environment provides a natural reservoir for antibiotic resistance, which has been underestimated in the medical field.

  3. The Genomic Basis of Intrinsic and Acquired Antibiotic Resistance in the Genus Serratia

    Science.gov (United States)

    Sandner-Miranda, Luisa; Vinuesa, Pablo; Cravioto, Alejandro; Morales-Espinosa, Rosario

    2018-01-01

    Serratia marcescens, a member of the Enterobacteriaceae family, was long thought to be a non-pathogenic bacterium prevalent in environmental habitats. Together with other members of this genus, it has emerged in recent years as an opportunistic nosocomial pathogen causing various types of infections. One important feature of pathogens belonging to this genus is their intrinsic and acquired resistance to a variety of antibiotic families, including β-lactam, aminoglycosides, quinolones and polypeptide antibiotics. The aim of this study was to elucidate which genes participate in the intrinsic and acquired antibiotic resistance of this genus in order to determine the Serratia genus resistome. We performed phylogenomic and comparative genomic analyses using 32 Serratia spp. genomes deposited in the NCBI GenBank from strains isolated from different ecological niches and different lifestyles. S. marcescens strain SmUNAM836, which was previously isolated from a Mexican adult with obstructive pulmonary disease, was included in this study. The results show that most of the antibiotic resistance genes (ARGs) were found on the chromosome, and to a lesser degree, on plasmids and transposons acquired through horizontal gene transfer. Four strains contained the gyrA point mutation in codon Ser83 that confers quinolone resistance. Pathogenic and environmental isolates presented a high number of ARGs, especially genes associated with efflux systems. Pathogenic strains, specifically nosocomial strains, presented more acquired resistance genes than environmental isolates. We may conclude that the environment provides a natural reservoir for antibiotic resistance, which has been underestimated in the medical field.

  4. Acquired resistance to 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin) in glioblastoma cells.

    Science.gov (United States)

    Gaspar, Nathalie; Sharp, Swee Y; Pacey, Simon; Jones, Chris; Walton, Michael; Vassal, Gilles; Eccles, Suzanne; Pearson, Andrew; Workman, Paul

    2009-03-01

    Heat shock protein 90 (HSP90) inhibitors, such as 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin), which is currently in phase II/phase III clinical trials, are promising new anticancer agents. Here, we explored acquired resistance to HSP90 inhibitors in glioblastoma (GB), a primary brain tumor with poor prognosis. GB cells were exposed continuously to increased 17-AAG concentrations. Four 17-AAG-resistant GB cell lines were generated. High-resistance levels with resistance indices (RI = resistant line IC(50)/parental line IC(50)) of 20 to 137 were obtained rapidly (2-8 weeks). After cessation of 17-AAG exposure, RI decreased and then stabilized. Cross-resistance was found with other ansamycin benzoquinones but not with the structurally unrelated HSP90 inhibitors, radicicol, the purine BIIB021, and the resorcinylic pyrazole/isoxazole amide compounds VER-49009, VER-50589, and NVP-AUY922. An inverse correlation between NAD(P)H/quinone oxidoreductase 1 (NQO1) expression/activity and 17-AAG IC(50) was observed in the resistant lines. The NQO1 inhibitor ES936 abrogated the differential effects of 17-AAG sensitivity between the parental and resistant lines. NQO1 mRNA levels and NQO1 DNA polymorphism analysis indicated different underlying mechanisms: reduced expression and selection of the inactive NQO1*2 polymorphism. Decreased NQO1 expression was also observed in a melanoma line with acquired resistance to 17-AAG. No resistance was generated with VER-50589 and NVP-AUY922. In conclusion, low NQO1 activity is a likely mechanism of acquired resistance to 17-AAG in GB, melanoma, and, possibly, other tumor types. Such resistance can be overcome with novel HSP90 inhibitors.

  5. Foliar application of systemic acquired resistance (SAR) inducers for ...

    African Journals Online (AJOL)

    nbuensanteai

    2013-08-14

    Aug 14, 2013 ... induced by chitosan and BTH were involved in defense mechanism, reflecting the strong direct positive effect that chitosan ... to control plant diseases based on the systemic acquired resistance ... salicylic acid (SA) as a signal molecule and is associated ... treated plants for SAR relating chemical analyses.

  6. The changing face of community-acquired methicillin-resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    P Kale

    2016-01-01

    Full Text Available Methicillin-resistant Staphylococcus aureus (MRSA is an important cause of infection, both in hospitalised patients with significant healthcare exposure and in patients without healthcare risk factors. Community-acquired methicillin-resistant S. aureus (CA-MRSA are known for their rapid community transmission and propensity to cause aggressive skin and soft tissue infections and community-acquired pneumonia. The distinction between the healthcare-associated (HA-MRSA and CA-MRSA is gradually fading owing to the acquisition of multiple virulence factors and genetic elements. The movement of CA-MRSA strains into the nosocomial setting limits the utility of using clinical risk factors alone to designate community or HA status. Identification of unique genetic characteristics and genotyping are valuable tools for MRSA epidemiological studies. Although the optimum pharmacotherapy for CA-MRSA infections has not been determined, many CA-MRSA strains remain broadly susceptible to several non-β-lactam antibacterial agents. This review aimed at illuminating the characteristic features of CA-MRSA, virulence factors, changing clinical settings and molecular epidemiology, insurgence into the hospital settings and therapy with drug resistance.

  7. Acquired resistance to EGFR inhibitors: mechanisms and prevention strategies

    International Nuclear Information System (INIS)

    Viloria-Petit, Alicia M.; Kerbel, Robert S.

    2004-01-01

    Potent and specific, or relatively specific, inhibitors of epidermal growth factor receptor (EGFR) signaling, including monoclonal antibodies and small molecular weight compounds, have been successfully developed. Both types of agent have been found to have significant antitumor activity, especially when used in combination with radio- hormone- and chemotherapy in preclinical studies. Because of the potentiation of the conventional drug activity in these combination settings, inhibitors of EGFR signaling have often been referred to as sensitizers for chemotherapy or radiation, as well as drug resistance reversal agents. Phase II clinical trials in head-and-neck as well as lung cancer suggested this concept of chemosensitization might translate into the clinic, but this remains to be definitively proven in randomized, double-blind Phase III trials. Given the extensive preclinical literature on EGFR blocking drugs and the advanced clinical development of such agents, it is surprising that the possibility of development of acquired resistance to the EGFR inhibitors themselves, a common clinical problem with virtually all other currently used anticancer drugs, remains a largely unexplored subject of investigation. Here we summarize some of the possible mechanisms that can result in acquired resistance to EGFR-targeting drugs. Alternative combination therapies to circumvent and delay this problem are suggested

  8. Antibiotic resistance patterns of pediatric community-acquired urinary infections

    Directory of Open Access Journals (Sweden)

    Eliana Biondi Medeiros Guidoni

    Full Text Available Knowledge about antimicrobial resistance patterns of the etiological agents of urinary tract infections (UTIs is essential for appropriate therapy. Urinary isolates from symptomatic UTI cases attended at Santa Casa University Hospital of São Paulo from August 1986 to December 1989 and August 2004 to December 2005 were identified by conventional methods. Antimicrobial resistance testing was performed by Kirby Bauer's disc diffusion method. Among the 257 children, E. coli was found in 77%. A high prevalence of resistance was observed against ampicillin and TMP/SMX (55% and 51%. The antibiotic resistance rates for E. coli were: nitrofurantoin (6%, nalidixic acid (14%, 1st generation cephalosporin (13%, 3rd generation cephalosporins (5%, aminoglycosides (2%, norfloxacin (9% and ciprofloxacin (4%. We found that E. coli was the predominant bacterial pathogen of community-acquired UTIs. We also detected increasing resistance to TMP/SMX among UTI pathogens in this population.

  9. Pattern of secondary acquired drug resistance to antituberculosis drug in Mumbai, India--1991-1995.

    Science.gov (United States)

    Chowgule, R V; Deodhar, L

    1998-01-01

    A retrospective observational study was conducted to find out whether secondary acquired drug resistance to isoniazid and ethambutol is high and to rifamycin and pyrazinamide is low, as is commonly believed in India. There were 2033 patients, whose sputum samples (6099) were reviewed from a specimen registry of the microbiology laboratory for the years 1991 to 1995. Of these, 521 (25.6%) patients [335 males and 186 females; age ranged from 11 to 75 years] had sputum positive culture and sensitivity for acid-fast bacilli (AFB). The drug resistance patterns in our study were: isoniazid (H) 15%, rifamycin (R) 66.8%, pyrazinamide (Z) 72.2%, ethambutol (E) 8.4%, streptomycin (S) 53.6%, cycloserine (C) 39.2% kanamycin (K) 25.1% and ethionamide (Eth) 65.3%. The resistance to streptomycin showed a significant fall over a year while there was a rise in resistance to cycloserine and kanamycin which is significant. The rate of secondary acquired resistance of isoniazid and ethambutol was low, and the rate of secondary acquired resistance to rifamycin and pyrazinamide was high, which is contarary to the common belief regarding these drugs in India. This implies that isoniazid is still a valuable drug in the treatment of multidrug resistance in India.

  10. Mechanisms of Acquired Resistance to Trastuzumab Emtansine in Breast Cancer Cells.

    Science.gov (United States)

    Li, Guangmin; Guo, Jun; Shen, Ben-Quan; Bumbaca Yadav, Daniela; Sliwkowski, Mark X; Crocker, Lisa M; Lacap, Jennifer A; Lewis Phillips, Gail D

    2018-04-25

    The receptor tyrosine kinase HER2 is overexpressed in approximately 20% of breast cancer, and its amplification is associated with reduced survival. Trastuzumab emtansine (Kadcyla®, T-DM1), an antibody-drug conjugate that is comprised of trastuzumab covalently linked to the anti-mitotic agent DM1 through a stable linker, was designed to selectively deliver DM1 to HER2-overexpressing tumor cells. T-DM1 is approved for the treatment of patients with HER2-positive metastatic breast cancer following progression on trastuzumab and a taxane. Despite the improvement in clinical outcome, many patients who initially respond to T-DM1 treatment eventually develop progressive disease. The mechanisms that contribute to T-DM1 resistance are not fully understood. To this end, we developed T-DM1-resistant in vitro models to examine the mechanisms of acquired T-DM1 resistance. We demonstrate that decreased HER2 and up-regulation of MDR1 contribute to T-DM1 resistance in KPL-4 T-DM1 resistant cells. In contrast, both loss of SLC46A3 and PTEN deficiency play a role in conferring resistance in BT-474M1 T-DM1 resistant cells. Our data suggest that these two cell lines acquire resistance through distinct mechanisms. Furthermore, we show that the KPL-4 T-DM1 resistance can be overcome by treatment with an inhibitor of MDR1, whereas a PI3K inhibitor can rescue PTEN loss-induced resistance in T-DM1-resistant BT-474M1 cells. Our results provide a rationale for developing therapeutic strategies to enhance T-DM1 clinical efficacy by combining T-DM1 and other inhibitors that target signaling transduction or resistance pathways. Copyright ©2018, American Association for Cancer Research.

  11. Targeting glucosylceramide synthase induction of cell surface globotriaosylceramide (Gb3) in acquired cisplatin-resistance of lung cancer and malignant pleural mesothelioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, Andreas, E-mail: andreas.tyler@medbio.umu.se [Department of Medical Biosciences, Umeå University, S-901 85 Umea (Sweden); Johansson, Anders [Department of Odontology, Umeå University, S-901 85 Umea (Sweden); Karlsson, Terese [Department of Radiation Sciences, Oncology, S-901 85 Umea (Sweden); Gudey, Shyam Kumar; Brännström, Thomas; Grankvist, Kjell; Behnam-Motlagh, Parviz [Department of Medical Biosciences, Umeå University, S-901 85 Umea (Sweden)

    2015-08-01

    Background: Acquired resistance to cisplatin treatment is a caveat when treating patients with non-small cell lung cancer (NSCLC) and malignant pleural mesothelioma (MPM). Ceramide increases in response to chemotherapy, leading to proliferation arrest and apoptosis. However, a tumour stress activation of glucosylceramide synthase (GCS) follows to eliminate ceramide by formation of glycosphingolipids (GSLs) such as globotriaosylceramide (Gb3), the functional receptor of verotoxin-1. Ceramide elimination enhances cell proliferation and apoptosis blockade, thus stimulating tumor progression. GSLs transactivate multidrug resistance 1/P-glycoprotein (MDR1) and multidrug resistance-associated protein 1 (MRP1) expression which further prevents ceramide accumulation and stimulates drug efflux. We investigated the expression of Gb3, MDR1 and MRP1 in NSCLC and MPM cells with acquired cisplatin resistance, and if GCS activity or MDR1 pump inhibitors would reduce their expression and reverse cisplatin-resistance. Methods: Cell surface expression of Gb3, MDR1 and MRP1 and intracellular expression of MDR1 and MRP1 was analyzed by flow cytometry and confocal microscopy on P31 MPM and H1299 NSCLC cells and subline cells with acquired cisplatin resistance. The effect of GCS inhibitor PPMP and MDR1 pump inhibitor cyclosporin A for 72 h on expression and cisplatin cytotoxicity was tested. Results: The cisplatin-resistant cells expressed increased cell surface Gb3. Cell surface Gb3 expression of resistant cells was annihilated by PPMP whereas cyclosporin A decreased Gb3 and MDR1 expression in H1299 cells. No decrease of MDR1 by PPMP was noted in using flow cytometry, whereas a decrease of MDR1 in H1299 and H1299res was indicated with confocal microscopy. No certain co-localization of Gb3 and MDR1 was noted. PPMP, but not cyclosporin A, potentiated cisplatin cytotoxicity in all cells. Conclusions: Cell surface Gb3 expression is a likely tumour biomarker for acquired cisplatin

  12. A mechanism of acquired resistance to complement-mediated lysis by Entamoeba histolytica.

    Science.gov (United States)

    Gutiérrez-Kobeh, L; Cabrera, N; Pérez-Montfort, R

    1997-04-01

    Some Entamoeba histolytica strains resist complement-mediated lysis by serum. Susceptible and resistant strains activate the complement system equivalently, but resistant amebas evade killing by membrane attack complexes. Our objective was to determine the mechanism by which trophozoites of E. histolytica resist lysis by human serum. Amebas were made resistant to lysis by incubation with increasing concentrations of normal human serum. The possibility that resistant cells ingest membrane attack complexes was explored by subcellular fractionation of susceptible and resistant trophozoites treated with sublytic concentrations of human serum containing radiolabeled C9. In both cases, most of the label was in the fractions containing plasma membrane. The susceptible strain consistently showed more label associated with these fractions than the resistant strain. Thus, the possibility that the membrane attack complexes were released to the medium was explored. Both resistant and susceptible trophozoites release to the medium similar amounts of material excluded by Sepharose CL-2B in the presence or absence of normal human serum. Labeled C9 elutes together with the main bulk of proteins from the medium: this indicates that it is not in vesicles or high molecular weight aggregates. Coincubation of susceptible amebas with lysates of resistant trophozoites confers resistance to susceptible cells within 30 min. Resistance to lysis by serum can also be acquired by susceptible amebas after coincubation with lysates from human erythrocytes or after feeding them with whole human red blood cells. Resistant but not susceptible trophozoites show intense immunofluorescent staining on their surface with anti-human erythrocytic membrane antibody. These results suggest that amebas acquire resistance to lysis by serum by incorporating into their membranes complement regulatory proteins.

  13. Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells

    DEFF Research Database (Denmark)

    Haaber, Jakob Krause; Leisner, Jørgen; Cohn, Marianne Thorup

    2016-01-01

    Prophages are quiescent viruses located in the chromosomes of bacteria. In the human pathogen, Staphylococcus aureus, prophages are omnipresent and are believed to be responsible for the spread of some antibiotic resistance genes. Here we demonstrate that release of phages from a subpopulation of S....... aureus cells enables the intact, prophage-containing population to acquire beneficial genes from competing, phage-susceptible strains present in the same environment. Phage infection kills competitor cells and bits of their DNA are occasionally captured in viral transducing particles. Return...... of such particles to the prophage-containing population can drive the transfer of genes encoding potentially useful traits such as antibiotic resistance. This process, which can be viewed as ‘auto-transduction’, allows S. aureus to efficiently acquire antibiotic resistance both in vitro and in an in vivo virulence...

  14. Convergent Akt activation drives acquired EGFR inhibitor resistance in lung cancer

    DEFF Research Database (Denmark)

    Jacobsen, Kirstine; Bertran-Alamillo, Jordi; Molina, Miguel Angel

    2017-01-01

    Non-small-cell lung cancer patients with activating epidermal growth factor receptor (EGFR) mutations typically benefit from EGFR tyrosine kinase inhibitor treatment. However, virtually all patients succumb to acquired EGFR tyrosine kinase inhibitor resistance that occurs via diverse mechanisms....

  15. Inhibition of BMP signaling overcomes acquired resistance to cetuximab in oral squamous cell carcinomas.

    Science.gov (United States)

    Yin, Jinlong; Jung, Ji-Eun; Choi, Sun Il; Kim, Sung Soo; Oh, Young Taek; Kim, Tae-Hoon; Choi, Eunji; Lee, Sun Joo; Kim, Hana; Kim, Eun Ok; Lee, Yu Sun; Chang, Hee Jin; Park, Joo Yong; Kim, Yeejeong; Yun, Tak; Heo, Kyun; Kim, Youn-Jae; Kim, Hyunggee; Kim, Yun-Hee; Park, Jong Bae; Choi, Sung Weon

    2018-02-01

    Despite expressing high levels of the epidermal growth factor receptor (EGFR), a majority of oral squamous cell carcinoma (OSCC) patients show limited response to cetuximab and ultimately develop drug resistance. However, mechanism underlying cetuximab resistance in OSCC is not clearly understood. Here, using a mouse orthotopic xenograft model of OSCC, we show that bone morphogenic protein-7-phosphorylated Smad-1, -5, -8 (BMP7-p-Smad1/5/8) signaling contributes to cetuximab resistance. Tumor cells isolated from the recurrent cetuximab-resistant xenograft models exhibited low EGFR expression but extremely high levels of p-Smad1/5/8. Treatment with the bone morphogenic protein receptor type 1 (BMPRI) inhibitor, DMH1 significantly reduced cetuximab-resistant OSCC tumor growth, and combined treatment of DMH1 and cetuximab remarkably reduced relapsed tumor growth in vivo. Importantly, p-Smad1/5/8 level was elevated in cetuximab-resistant patients and this correlated with poor prognosis. Collectively, our results indicate that the BMP7-p-Smad1/5/8 signaling is a key pathway to acquired cetuximab resistance, and demonstrate that combination therapy of cetuximab and a BMP signaling inhibitor as potentially a new therapeutic strategy for overcoming acquired resistance to cetuximab in OSCC. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. P-glycoprotein confers acquired resistance to 17-DMAG in lung cancers with an ALK rearrangement

    International Nuclear Information System (INIS)

    Kim, Hee Joung; Lee, Kye Young; Kim, Young Whan; Choi, Yun Jung; Lee, Jung-Eun; Choi, Chang Min; Baek, In-Jeoung; Rho, Jin Kyung; Lee, Jae Cheol

    2015-01-01

    Because anaplastic lymphoma kinase (ALK) is dependent on Hsp90 for protein stability, Hsp90 inhibitors are effective in controlling growth of lung cancer cells with ALK rearrangement. We investigated the mechanism of acquired resistance to 17-(Dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG), a geldanamycin analogue Hsp90 inhibitor, in H3122 and H2228 non-small cell lung cancer cell lines with ALK rearrangement. Resistant cell lines (H3122/DR-1, H3122/DR-2 and H2228/DR) were established by repeated exposure to increasing concentrations of 17-DMAG. Mechanisms for resistance by either NAD(P)H/quinone oxidoreductase 1 (NQO1), previously known as a factor related to 17-DMAG resistance, or P-glycoprotein (P-gp; ABCB1/MDR1) were queried using RT-PCR, western blot analysis, chemical inhibitors, the MTT cell proliferation/survival assay, and cellular efflux of rhodamine 123. The resistant cells showed no cross-resistance to AUY922 or ALK inhibitors, suggesting that ALK dependency persists in cells with acquired resistance to 17-DMAG. Although expression of NQO1 was decreased in H3122/DR-1 and H3122/DR-2, NQO1 inhibition by dicumarol did not affect the response of parental cells (H2228 and H3122) to 17-DMAG. Interestingly, all resistant cells showed the induction of P-gp at the protein and RNA levels, which was associated with an increased efflux of the P-gp substrate rhodamine 123 (Rho123). Transfection with siRNA directed against P-gp or treatment with verapamil, an inhibitor of P-gp, restored the sensitivity to the drug in all cells with acquired resistance to 17-DMAG. Furthermore, we also observed that the growth-inhibitory effect of 17-DMAG was decreased in A549/PR and H460/PR cells generated to over-express P-gp by long-term exposure to paclitaxel, and these cells recovered their sensitivity to 17-DMAG through the inhibition of P-gp. P-gp over-expression is a possible mechanism of acquired resistance to 17-DMAG in cells with ALK rearrangement. The online

  17. The heat shock protein/chaperone network and multiple stress resistance

    KAUST Repository

    Jacob, Pierre; Hirt, Heribert; Bendahmane, Abdelhafid

    2016-01-01

    Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multi-stress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone

  18. The heat shock protein/chaperone network and multiple stress resistance

    KAUST Repository

    Jacob, Pierre

    2016-11-15

    Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multi-stress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone

  19. Radiation-resistant acquired immunity of vaccinated mice to Schistosoma mansoni

    International Nuclear Information System (INIS)

    Aitken, R.; Coulson, P.S.; Dixon, B.; Wilson, R.A.

    1987-01-01

    Vaccination of mice with attenuated cercariae of Schistosoma mansoni induces specific acquired resistance to challenge infection. This resistance is immunologically-mediated, possibly via a delayed-type hypersensitivity. Studies of parasite migration have shown that the protective mechanism operates most effectively in the lungs of vaccinated mice. We have probed the mechanism by exposing mice to 500 rads of gamma radiation before challenge infection. Our results show that the effector mechanism operative against challenge larvae is resistant to radiation. In contrast, classical immune responses are markedly suppressed by the same treatment. While leukocyte populations in the blood fall dramatically after irradiation, numbers of cells recoverable by bronchoalveolar lavage are unaffected. We suggest that vaccination with attenuated cercariae establishes populations of sensitized cells in the lungs which trigger the mechanism of resistance when challenge schistosomula migrate through pulmonary capillary beds. Although the cells may be partially disabled by irradiation, they remain responsive to worm antigens and thereby capable of initiating the elimination mechanism. This hypothesis would explain the radiation resistance of vaccine-induced immunity to S. mansoni

  20. Long-term persistence of acquired resistance to 5-fluorouracil in the colon cancer cell line SW620

    Energy Technology Data Exchange (ETDEWEB)

    Tentes, I.K., E-mail: itentes@med.duth.gr [Department of Biochemistry, Medical School, Democritus University of Thrace, 6th km Alexandroupolis-Komotini (Dragana), 68100 Alexandroupolis (Greece); Schmidt, W.M. [Center for Anatomy and Cell Biology, Waehringer Strasse 13, 1090 Vienna (Austria); Krupitza, G. [Institute of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Steger, G.G.; Mikulits, W. [Department of Medicine I, Medical University of Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Kortsaris, A. [Department of Biochemistry, Medical School, Democritus University of Thrace, 6th km Alexandroupolis-Komotini (Dragana), 68100 Alexandroupolis (Greece); Mader, R.M. [Department of Medicine I, Medical University of Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria)

    2010-11-15

    Treatment resistance to antineoplastic drugs represents a major clinical problem. Here, we investigated the long-term stability of acquired resistance to 5-fluorouracil (FU) in an in vitro colon cancer model, using four sub-clones characterised by increasing FU-resistance derived from the cell line SW620. The resistance phenotype was preserved after FU withdrawal for 15 weeks ({approx} 100 cell divisions) independent of the established level of drug resistance and of epigenetic silencing. Remarkably, resistant clones tolerated serum deprivation, adopted a CD133{sup +} CD44{sup -} phenotype, and further exhibited loss of membrane-bound E-cadherin together with predominant nuclear {beta}-catenin localisation. Thus, we provide evidence for a long-term memory of acquired drug resistance, driven by multiple cellular strategies (epithelial-mesenchymal transition and selective propagation of CD133{sup +} cells). These resistance phenomena, in turn, accentuate the malignant phenotype.

  1. Adaptive evolution of Escherichia coli to Ciprofloxacin in controlled stress environments: emergence of resistance in continuous and step-wise gradients

    Science.gov (United States)

    Deng, J.; Zhou, L.; Dong, Y.; Sanford, R. A.; Shechtman, L. A.; Alcalde, R.; Werth, C. J.; Fouke, B. W.

    2017-12-01

    Microorganisms in nature have evolved in response to a variety of environmental stresses, including gradients in pH, flow and chemistry. While environmental stresses are generally considered to be the driving force of adaptive evolution, the impact and extent of any specific stress needed to drive such changes has not been well characterized. In this study, a microfluidic diffusion chamber (MDC) and a batch culturing system were used to systematically study the effects of continuous versus step-wise stress increments on adaptation of E. coli to the antibiotic ciprofloxacin. In the MDC, a diffusion gradient of ciprofloxacin was established across a microfluidic well array to microscopically observe changes in Escherichia coli strain 307 replication and migration patterns that would indicate emergence of resistance due to genetic mutations. Cells recovered from the MDC only had resistance of 50-times the original minimum inhibition concentration (MICoriginal) of ciprofloxacin, although minimum exposure concentrations were over 80 × MICoriginal by the end of the experiment. In complementary batch experiments, E. coli 307 were exposed to step-wise daily increases of ciprofloxacin at rates equivalent to 0.1×, 0.2×, 0.4× or 0.8× times MICoriginal/day. Over a period of 18 days, E. coli cells were able to acquire resistance of up to 225 × MICoriginal, with exposure to ciprofloxacin concentration up to only 14.9 × MIC­original. The different levels of acquired resistance in the continuous MDC versus step-wise batch increment experiments suggests that the intrinsic rate of E. coli adaptation was exceeded in the MDC, while the step-wise experiments favor adaptation to the highest ciprofloxacin experiments. Genomic analyses of E. coli DNA extracted from the microfluidic cell and batch cultures indicated four single nucleotide polymorphism (SNP) mutations of amino acid 82, 83 and 87 in the gyrA gene. The progression of adaptation in the step-wise increments of

  2. Toxic shock syndrome due to community-acquired methicillin-resistant Staphylococcus aureus infection: Two case reports and a literature review in Japan.

    Science.gov (United States)

    Sada, Ryuichi; Fukuda, Saori; Ishimaru, Hiroyasu

    2017-01-01

    Community-acquired methicillin-resistant Staphylococcus aureus has been spreading worldwide, including in Japan. However, few cases of toxic shock syndrome caused by Community-acquired methicillin-resistant Staphylococcus aureus have been reported in Japan. We report 2 cases, in middle-aged women, of toxic shock syndrome due to Community-acquired methicillin-resistant Staphylococcus aureus via a vaginal portal of entry. The first patient had used a tampon and the second patient had vaginitis due to a cleft narrowing associated with vulvar lichen sclerosus. Both patients were admitted to our hospital with septic shock and severe acute kidney injury and subsequently recovered with appropriate antibiotic treatment. In our review of the literature, 8 cases of toxic shock syndrome caused by Community-acquired methicillin-resistant Staphylococcus aureus were reported in Japan. In these 8 cases, the main portals of entry were the skin and respiratory tract; however, the portal of entry of Community-acquired methicillin-resistant Staphylococcus aureus from a vaginal lesion has not been reported in Japan previously.

  3. Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation--diversity, ductility, and destiny.

    Science.gov (United States)

    Suda, Kenichi; Mizuuchi, Hiroshi; Maehara, Yoshihiko; Mitsudomi, Tetsuya

    2012-12-01

    Lung cancers that harbor somatic activating mutations in the gene for the epidermal growth factor receptor (EGFR) depend on mutant EGFR for their proliferation and survival; therefore, lung cancer patients with EGFR mutations often dramatically respond to orally available EGFR tyrosine kinase inhibitors (TKIs). However, emergence of acquired resistance is virtually inevitable, thus limiting improvement in patient outcomes. To elucidate and overcome this acquired resistance, multidisciplinary basic and clinical investigational approaches have been applied, using in vitro cell line models or samples obtained from lung cancer patients treated with EGFR-TKIs. These efforts have revealed several acquired resistance mechanisms and candidates, including EGFR secondary mutations (T790M and other rare mutations), MET amplification, PTEN downregulation, CRKL amplification, high-level HGF expression, FAS-NFκB pathway activation, epithelial-mesenchymal transition, and conversion to small cell lung cancer. Interestingly, cancer cells harbor potential destiny and ductility together in acquiring resistance to EGFR-TKIs, as shown in in vitro acquired resistance models. Molecular mechanisms of "reversible EGFR-TKI tolerance" that occur in early phase EGFR-TKI exposure have been identified in cell line models. Furthermore, others have reported molecular markers that can predict response to EGFR-TKIs in clinical settings. Deeper understanding of acquired resistance mechanisms to EGFR-TKIs, followed by the development of molecular target drugs that can overcome the resistance, might turn this fatal disease into a chronic disorder.

  4. Mechanisms of acquired resistance to EGFR-tyrosine kinase inhibitor in Korean patients with lung cancer

    International Nuclear Information System (INIS)

    Ji, Wonjun; Lee, Dae Ho; Lee, Jae Cheol; Choi, Chang-Min; Rho, Jin Kyung; Jang, Se Jin; Park, Young Soo; Chun, Sung-Min; Kim, Woo Sung; Lee, Jung-Shin; Kim, Sang-We

    2013-01-01

    Despite an initial good response to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI), resistance to treatment eventually develops. Although several resistance mechanisms have been discovered, little data exist regarding Asian patient populations. Among patients at a tertiary referral hospital in Korea who initially responded well to gefitinib and later acquired resistance to treatment, we selected those with enough tissues obtained before EGFR-TKI treatment and after the onset of resistance to examine mutations by mass spectrometric genotyping technology (Asan-Panel), MET amplification by fluorescence in situ hybridization (FISH), and analysis of AXL status, epithelial-to-mesenchymal transition (EMT) and neuroendocrine markers by immunohistochemistry. Twenty-six patients were enrolled, all of whom were diagnosed with adenocarcinoma with EGFR mutations (19del: 16, L858R: 10) except one (squamous cell carcinoma with 19del). Secondary T790M mutation was detected in 11 subjects (42.3%) and four of these patients had other co-existing resistance mechanisms; increased AXL expression was observed in 5/26 patients (19.2%), MET gene amplification was noted in 3/26 (11.5%), and one patient acquired a mutation in the phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA) gene. None of the patients exhibited EMT; however, increased CD56 expression suggesting neuroendocrine differentiation was observed in two patients. Interestingly, conversion from L858R-mutant to wild-type EGFR occurred in one patient. Seven patients (26.9%) did not exhibit any known resistance mechanisms. Patients with a T790M mutation showed a more favorable prognosis. The mechanisms and frequency of acquired EGFR-TKI resistance in Koreans are comparable to those observed in Western populations; however, more data regarding the mechanisms that drive EGFR-TKI resistance are necessary

  5. Community-acquired methicillin-resistant Staphylococcus aureus: community transmission, pathogenesis, and drug resistance.

    Science.gov (United States)

    Yamamoto, Tatsuo; Nishiyama, Akihito; Takano, Tomomi; Yabe, Shizuka; Higuchi, Wataru; Razvina, Olga; Shi, Da

    2010-08-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is able to persist not only in hospitals (with a high level of antimicrobial agent use) but also in the community (with a low level of antimicrobial agent use). The former is called hospital-acquired MRSA (HA-MRSA) and the latter community-acquired MRSA (CA-MRSA). It is believed MRSA clones are generated from S. aureus through insertion of the staphylococcal cassette chromosome mec (SCCmec), and outbreaks occur as they spread. Several worldwide and regional clones have been identified, and their epidemiological, clinical, and genetic characteristics have been described. CA-MRSA is likely able to survive in the community because of suitable SCCmec types (type IV or V), a clone-specific colonization/infection nature, toxin profiles (including Pantone-Valentine leucocidin, PVL), and narrow drug resistance patterns. CA-MRSA infections are generally seen in healthy children or young athletes, with unexpected cases of diseases, and also in elderly inpatients, occasionally surprising clinicians used to HA-MRSA infections. CA-MRSA spreads within families and close-contact groups or even through public transport, demonstrating transmission cores. Re-infection (including multifocal infection) frequently occurs, if the cores are not sought out and properly eradicated. Recently, attention has been given to CA-MRSA (USA300), which originated in the US, and is growing as HA-MRSA and also as a worldwide clone. CA-MRSA infection in influenza season has increasingly been noted as well. MRSA is also found in farm and companion animals, and has occasionally transferred to humans. As such, the epidemiological, clinical, and genetic behavior of CA-MRSA, a growing threat, is focused on in this study.

  6. Thermal stress resistance of ion implanted sapphire crystals

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Jamieson, D.N.; Szymanski, R.; Orlov, A.V.; Williams, J.S.; Conway, M.

    1999-01-01

    Monocrystals of sapphire have been subjected to ion implantation with 86 keV Si - and 80 keV Cr - ions to doses in the range of 5x10 14 -5x10 16 cm -2 prior to thermal stress testing in a pulsed plasma. Above a certain critical dose ion implantation is shown to modify the near-surface structure of samples by introducing damage, which makes crack nucleation easier under the applied stress. The effect of ion dose on the stress resistance is investigated and the critical doses which produce a noticeable change in the stress resistance are determined. The critical dose for Si ions is shown to be much lower than that for Cr - ions. However, for doses exceeding 2x10 16 cm -2 the stress resistance parameter decreases to approximately the same value for both implants. The size of the implantation-induced crack nucleating centers and the density of the implantation-induced defects are considered to be the major factors determining the stress resistance of sapphire crystals irradiated with Si - and Cr - ions

  7. Toxic shock syndrome due to community-acquired methicillin-resistant Staphylococcus aureus infection: Two case reports and a literature review in Japan

    OpenAIRE

    Sada, Ryuichi; Fukuda, Saori; Ishimaru, Hiroyasu

    2017-01-01

    Community-acquired methicillin-resistant Staphylococcus aureus has been spreading worldwide, including in Japan. However, few cases of toxic shock syndrome caused by Community-acquired methicillin-resistant Staphylococcus aureus have been reported in Japan. We report 2 cases, in middle-aged women, of toxic shock syndrome due to Community-acquired methicillin-resistant Staphylococcus aureus via a vaginal portal of entry. The first patient had used a tampon and the second patient had vaginitis ...

  8. Prevalence of methicillin-resistant Staphylococcus aureus (MRSA in community-acquired primary pyoderma

    Directory of Open Access Journals (Sweden)

    Patil Rahul

    2006-01-01

    Full Text Available Background: Although prevalence of MRSA strains is reported to be increasing, there are no studies of their prevalence in community-acquired primary pyodermas in western India. Aims: This study aimed at determining the prevalence of MRSA infection in community-acquired primary pyodermas. Methods: Open, prospective survey carried out in a tertiary care hospital in Mumbai. Materials and Methods: Eighty-six patients with primary pyoderma, visiting the dermatology outpatient, were studied clinically and microbiologically. Sensitivity testing was done for vancomycin, sisomycin, gentamicin, framycetin, erythromycin, methicillin, cefazolin, cefuroxime, penicillin G and ciprofloxacin. Phage typing was done for MRSA positive strains. Results : The culture positivity rate was 83.7%. Staphylococcus aureus was isolated in all cases except two. Barring one, all strains of Staphylococcus were sensitive to methicillin. Conclusions: Methicillin resistance is uncommon in community-acquired primary pyodermas in Mumbai. Treatment with antibacterials active against MRSA is probably unwarranted for community-acquired primary pyodermas.

  9. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways

    Science.gov (United States)

    Bergsma, Alexis L.; Senchuk, Megan M.; Van Raamsdonk, Jeremy M.

    2016-01-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage. PMID:27053445

  10. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways.

    Science.gov (United States)

    Dues, Dylan J; Andrews, Emily K; Schaar, Claire E; Bergsma, Alexis L; Senchuk, Megan M; Van Raamsdonk, Jeremy M

    2016-04-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage.

  11. Prevalence and resistance pattern of Moraxella catarrhalis in community-acquired lower respiratory tract infections

    Directory of Open Access Journals (Sweden)

    Shaikh SBU

    2015-07-01

    Full Text Available Safia Bader Uddin Shaikh, Zafar Ahmed, Syed Ali Arsalan, Sana Shafiq Department of Pulmonology, Liaquat National Hospital, Karachi, Pakistan Introduction: Moraxella catarrhalis previously considered as commensal of upper respiratory tract has gained importance as a pathogen responsible for respiratory tract infections. Its beta-lactamase-producing ability draws even more attention toward its varying patterns of resistance. Methods: This was an observational study conducted to evaluate the prevalence and resistance pattern of M. catarrhalis. Patients aged 20–80 years admitted in the Department of Chest Medicine of Liaquat National Hospital from March 2012 to December 2012 were included in the study. Respiratory samples of sputum, tracheal secretions, and bronchoalveolar lavage were included, and their cultures were followed. Results: Out of 110 respiratory samples, 22 showed positive cultures for M. catarrhalis in which 14 were males and eight were females. Ten samples out of 22 showed resistance to clarithromycin, and 13 samples out of 22 displayed resistance to erythromycin, whereas 13 showed resistance to levofloxacin. Hence, 45% of the cultures showed resistance to macrolides so far and 59% showed resistance to quinolones. Conclusion: Our study shows that in our environment, M. catarrhalis may be resistant to macrolides and quinolones; hence, these should not be recommended as an alternative treatment in community-acquired lower respiratory tract infections caused by M. catarrhalis. However, a study of larger sample size should be conducted to determine if the recommendations are required to be changed. Keywords: community-acquired lower respiratory tract infections or pneumonia, M. catarrhalis, antibiotic resistance, gram-negative diplococcic, Pakistan

  12. Antibacterial resistance patterns of pediatric community-acquired urinary infection: Overview.

    Science.gov (United States)

    Konca, Capan; Tekin, Mehmet; Uckardes, Fatih; Akgun, Sadik; Almis, Habip; Bucak, Ibrahim Hakan; Genc, Yeliz; Turgut, Mehmet

    2017-03-01

    Urinary tract infection (UTI) is common in children. The aim of this study was therefor to construct a guide for the empirical antibiotic treatment of community-acquired UTI by investigating the etiology and antimicrobial resistance patterns of uropathogens and analyzing the epidemiological and clinical patient characteristics. A total of 158 children with positive urine culture were included in the study. Antibiotic susceptibility testing was performed with Vitek 2 Compact for 28 commonly used antimicrobials. Mean age was 3.36 ± 3.38 years (range, 45 days-15 years). Escherichia coli (60.1%), and Klebsiella spp. (16.5%) were the most common uropathogens. For all Gram-negative isolates, a high level of resistance was found against ampicillin/sulbactam (60.1%), trimethoprim/sulfamethoxazole (44.2%), cefazolin (36.2%), cefuroxime sodium (33.5%), and amoxicillin/clavulanate (31.5%). A low level of resistance was noted against cefepime (8.7%), ertapenem (4.6%), norfloxacin (1.3%), and meropenem (0.7%). There was no resistance against amikacin. There is high antibiotic resistance in children with UTI. The patterns of uropathogen antimicrobial resistance vary in susceptibility to antimicrobials depending on region and time. Thus, the trends of antibiotic susceptibility patterns should be analyzed periodically to select the appropriate regimen for UTI treatment. © 2016 Japan Pediatric Society.

  13. Stress Response and Artemisinin Resistance in Malaria Parasite

    Science.gov (United States)

    2017-07-01

    AWARD NUMBER: W81XWH-16-1-0241 TITLE: Stress Response and Artemisinin Resistance in Malaria Parasite PRINCIPAL INVESTIGATOR: Juan C. Pizarro...SUBTITLE Stress Response and Artemisinin Resistance in Malaria Parasite 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0241 5c. PROGRAM ELEMENT...13. SUPPLEMENTARY NOTES 14. ABSTRACT In malaria , drug resistance is a major treat to disease control efforts. Unfortunately, there is a significant

  14. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst conversion...

  15. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of... catalyst conversion efficiency for Phase 1 engines. The thermal stress is imposed on the test catalyst by...

  16. The heat-shock protein/chaperone network and multiple stress resistance.

    Science.gov (United States)

    Jacob, Pierre; Hirt, Heribert; Bendahmane, Abdelhafid

    2017-04-01

    Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multistress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat-shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone 'client proteins', many are primary metabolism enzymes and signal transduction components with essential roles for the proper functioning of a cell. HSPs/chaperones are controlled by the action of diverse heat-shock factors, which are recruited under stress conditions. In this review, we give an overview of the regulation of the HSP/chaperone network with a focus on Arabidopsis thaliana. We illustrate the role of HSPs/chaperones in regulating diverse signalling pathways and discuss several basic principles that should be considered for engineering multiple stress resistance in crops through the HSP/chaperone network. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Vorinostat-induced autophagy switches from a death-promoting to a cytoprotective signal to drive acquired resistance.

    Science.gov (United States)

    Dupéré-Richer, D; Kinal, M; Ménasché, V; Nielsen, T H; Del Rincon, S; Pettersson, F; Miller, W H

    2013-02-07

    Histone deacetylase inhibitors (HDACi) have shown promising activity against hematological malignancies in clinical trials and have led to the approval of vorinostat for the treatment of cutaneous T-cell lymphoma. However, de novo or acquired resistance to HDACi therapy is inevitable, and their molecular mechanisms are still unclear. To gain insight into HDACi resistance, we developed vorinostat-resistant clones from the hematological cell lines U937 and SUDHL6. Although cross-resistant to some but not all HDACi, the resistant cell lines exhibit dramatically increased sensitivity toward chloroquine, an inhibitor of autophagy. Consistent with this, resistant cells growing in vorinostat show increased autophagy. Inhibition of autophagy in vorinostat-resistant U937 cells by knockdown of Beclin-1 or Lamp-2 (lysosome-associated membrane protein 2) restores sensitivity to vorinostat. Interestingly, autophagy is also activated in parental U937 cells by de novo treatment with vorinostat. However, in contrast to the resistant cells, inhibition of autophagy decreases sensitivity to vorinostat. These results indicate that autophagy can switch from a proapoptotic signal to a prosurvival function driving acquired resistance. Moreover, inducers of autophagy (such as mammalian target of rapamycin inhibitors) synergize with vorinostat to induce cell death in parental cells, whereas the resistant cells remain insensitive. These data highlight the complexity of the design of combination strategies using modulators of autophagy and HDACi for the treatment of hematological malignancies.

  18. Genome-wide association analysis of oxidative stress resistance in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Allison L Weber

    Full Text Available Aerobic organisms are susceptible to damage by reactive oxygen species. Oxidative stress resistance is a quantitative trait with population variation attributable to the interplay between genetic and environmental factors. Drosophila melanogaster provides an ideal system to study the genetics of variation for resistance to oxidative stress.We used 167 wild-derived inbred lines of the Drosophila Genetic Reference Panel for a genome-wide association study of acute oxidative stress resistance to two oxidizing agents, paraquat and menadione sodium bisulfite. We found significant genetic variation for both stressors. Single nucleotide polymorphisms (SNPs associated with variation in oxidative stress resistance were often sex-specific and agent-dependent, with a small subset common for both sexes or treatments. Associated SNPs had moderately large effects, with an inverse relationship between effect size and allele frequency. Linear models with up to 12 SNPs explained 67-79% and 56-66% of the phenotypic variance for resistance to paraquat and menadione sodium bisulfite, respectively. Many genes implicated were novel with no known role in oxidative stress resistance. Bioinformatics analyses revealed a cellular network comprising DNA metabolism and neuronal development, consistent with targets of oxidative stress-inducing agents. We confirmed associations of seven candidate genes associated with natural variation in oxidative stress resistance through mutational analysis.We identified novel candidate genes associated with variation in resistance to oxidative stress that have context-dependent effects. These results form the basis for future translational studies to identify oxidative stress susceptibility/resistance genes that are evolutionary conserved and might play a role in human disease.

  19. Alloy SCR-3 resistant to stress corrosion cracking

    International Nuclear Information System (INIS)

    Kowaka, Masamichi; Fujikawa, Hisao; Kobayashi, Taiki

    1977-01-01

    Austenitic stainless steel is used widely because the corrosion resistance, workability and weldability are excellent, but the main fault is the occurrence of stress corrosion cracking in the environment containing chlorides. Inconel 600, most resistant to stress corrosion cracking, is not necessarily safe under some severe condition. In the heat-affected zone of SUS 304 tubes for BWRs, the cases of stress corrosion cracking have occurred. The conventional testing method of stress corrosion cracking using boiling magnesium chloride solution has been problematical because it is widely different from actual environment. The effects of alloying elements on stress corrosion cracking are remarkably different according to the environment. These effects were investigated systematically in high temperature, high pressure water, and as the result, Alloy SCR-3 with excellent stress corrosion cracking resistance was found. The physical constants and the mechanical properties of the SCR-3 are shown. The states of stress corrosion cracking in high temperature, high pressure water containing chlorides and pure water, polythionic acid, sodium phosphate solution and caustic soda of the SCR-3, SUS 304, Inconel 600 and Incoloy 800 are compared and reported. (Kako, I.)

  20. Investigating the effects of ABC transporter-based acquired drug resistance mechanisms at the cellular and tissue scale.

    Science.gov (United States)

    Liu, Cong; Krishnan, J; Xu, Xiao Yun

    2013-03-01

    In this paper we systematically investigate the effects of acquired drug resistance at the cellular and tissue scale, with a specific focus on ATP-binding cassette (ABC) transporter-based mechanisms and contrast this with other representative intracellular resistance mechanisms. This is done by developing in silico models wherein the drug resistance mechanism is overlaid on a coarse-grained description of apoptosis; these cellular models are coupled with interstitial drug transport, allowing for a transparent examination of the effect of acquired drug resistances at the tissue level. While ABC transporter-mediated resistance mechanisms counteract drug effect at the cellular level, its tissue-level effect is more complicated, revealing unexpected trends in tissue response as drug stimuli are systematically varied. Qualitatively different behaviour is observed in other drug resistance mechanisms. Overall the paper (i) provides insight into the tissue level functioning of a particular resistance mechanism, (ii) shows that this is very different from other resistance mechanisms of an apparently similar type, and (iii) demonstrates a concrete instance of how the functioning of a negative feedback based cellular adaptive mechanism can have unexpected higher scale effects.

  1. Primary and acquired resistance to biologic therapies in gastrointestinal cancers.

    Science.gov (United States)

    Lubner, Sam J; Uboha, Nataliya V; Deming, Dustin A

    2017-06-01

    Improvements in the understanding of cancer biology have led to therapeutic advances in the treatment of gastrointestinal cancers. Drugs which target the vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) pathways have led the way in colon cancer. Monoclonal antibodies (mAbs) such as bevacizumab, ramucirumab, cetuximab, and panitumumab, have improved progression free survival and overall survival (OS) for colorectal cancers and were quickly adopted. Human epidermal growth factor receptor 2 (HER2) has demonstrated significant benefit for gastroesophageal cancers and in the setting of HER2 amplification, trastuzumab in combination with chemotherapy has become the standard of care. However, responses have not been as durable nor as robust as once hoped. Mechanisms of resistance for each of these biologic compounds have been hypothesized and are in the process of being better elucidated. This review will approach the innate and acquired mechanisms of resistance of the above compounds. Additionally, we will explore some ongoing clinical trials to capitalize on the mechanisms of resistance in the hopes of retaining the promise of targeting these pathways.

  2. Emotions and stress increase respiratory resistance in asthma.

    Science.gov (United States)

    Ritz, T; Steptoe, A; DeWilde, S; Costa, M

    2000-01-01

    Clinical reports suggest that various emotions and types of stress can precipitate asthmatic symptoms, but there is little experimental evidence to substantiate this claim. We studied the impact of different emotional states and stress on respiratory resistance in asthmatic and nonasthmatic individuals. Participants (24 asthmatic and 24 nonasthmatic patients) viewed short film sequences selected to induce anxiety, anger, depression, elation, happiness, contentment, or a neutral affective state and completed two stressful tasks, mental arithmetic to induce active coping efforts and viewing of medical slides to induce passive coping efforts. Oscillatory resistance, heart rate, blood pressure, baroreflex sensitivity, skin conductance level, respiration rate and volume, and self-reported affective state were measured throughout the session. Uniform increases in oscillatory resistance were found in all emotional states compared with the neutral state and during mental arithmetic in both groups. Asthmatic patients showed stronger reactions to the medical slides than healthy control subjects, with significant increases in oscillatory resistance, blood pressure, skin conductance level, and minute volume, as well as higher levels of self-reported depression, arousal, and shortness of breath. Changes in oscillatory resistance were inconsistently correlated with other physiological indices. Various emotional states and stress increase oscillatory resistance largely independently of concurrent increases in autonomic or ventilatory activity. The particular sensitivity of asthmatics to passive coping demand requires additional research.

  3. Acquiring a Pet Dog Significantly Reduces Stress of Primary Carers for Children with Autism Spectrum Disorder: A Prospective Case Control Study

    Science.gov (United States)

    Wright, H. F.; Hall, S.; Hames, A.; Hardiman, J.; Mills, R.; Mills, D. S.

    2015-01-01

    This study describes the impact of pet dogs on stress of primary carers of children with Autism Spectrum Disorder (ASD). Stress levels of 38 primary carers acquiring a dog and 24 controls not acquiring a dog were sampled at: Pre-intervention (17 weeks before acquiring a dog), post-intervention (3-10 weeks after acquisition) and follow-up…

  4. A Case of Acquired Rifampin Resistance in Mycobacterium bovis Bacillus Calmette-Guérin-Induced Cystitis: Necessity for Treatment Guidelines

    Directory of Open Access Journals (Sweden)

    Joyce N Wolfe

    2006-01-01

    Full Text Available A case of presumed bacillus Calmette-Guérin (BCG cystitis in an elderly female patient following direct intravesical BCG instillation treatment for papillary transitional cell carcinoma is reported. The organism cultured from urine samples was eventually identified as a rifampin-resistant Mycobacterium bovis BCG isolate. Because the patient had received rifampin monotherapy during the course of treatment for presumed BCG disease, the clinical picture favoured acquired rifampin resistance. Sequencing of the target gene for rifampin (rpoB confirmed a known mutation responsible for conferring high levels of resistance to both rifampin and rifabutin (Ser531Tyr. To the authors' knowledge, this is the first reported case of M bovis BCG disease in a non-HIV patient where the organism had acquired drug resistance to rifampin, and the second reported case of M bovis BCG that had acquired drug resistance. The present case demonstrates the necessity to re-evaluate appropriate guidelines for the effective treatment of BCG disease.

  5. Transgenic crops with an improved resistance to biotic stresses. A review

    Directory of Open Access Journals (Sweden)

    Tohidfar, M.

    2015-01-01

    Full Text Available Introduction. Pests, diseases and weeds (biotic stresses are significant limiting factors for crop yield and production. However, the limitations associated with conventional breeding methods necessitated the development of alternative methods for improving new varieties with higher resistance to biotic stresses. Molecular techniques have developed applicable methods for genetic transformation of a wide range of plants. Genetic engineering approach has been demonstrated to provide enormous options for the selection of the resistance genes from different sources to introduce them into plants to provide resistance against different biotic stresses. Literature. In this review, we focus on strategies to achieve the above mentioned objectives including expression of insecticidal, antifungal, antibacterial, antiviral resistance and herbicide detoxification for herbicide resistance. Conclusion. Regardless of the concerns about commercialization of products from genetically modified (GM crops resistant to biotic stresses, it is observed that the cultivation area of these crops is growing fast each year. Considering this trend, it is expected that production and commercialization of GM crops resistant to biotic stresses will continue to increase but will also extend to production of crops resistant to abiotic stresses (e.g. drought, salinity, etc. in a near future.

  6. A critical role for Arabidopsis MILDEW RESISTANCE LOCUS O2 in systemic acquired resistance.

    Science.gov (United States)

    Gruner, Katrin; Zeier, Tatyana; Aretz, Christina; Zeier, Jürgen

    2018-04-16

    Members of the MILDEW RESISTANCE LOCUS O (MLO) gene family confer susceptibility to powdery mildews in different plant species, and their existence therefore seems to be disadvantageous for the plant. We recognized that expression of the Arabidopsis MLO2 gene is induced after inoculation with the bacterial pathogen Pseudomonas syringae, promoted by salicylic acid (SA) signaling, and systemically enhanced in the foliage of plants exhibiting systemic acquired resistance (SAR). Importantly, distinct mlo2 mutant lines were unable to systemically increase resistance to bacterial infection after inoculation with P. syringae, indicating that the function of MLO2 is necessary for biologically-induced SAR in Arabidopsis. Our data also suggest that the close homolog MLO6 has a supportive but less critical role in SAR. In contrast to SAR, basal resistance to bacterial infection was not affected in mlo2. Remarkably, SAR-defective mlo2 mutants were still competent in systemically increasing the levels of the SAR-activating metabolites pipecolic acid (Pip) and SA after inoculation, and to enhance SAR-related gene expression in distal plant parts. Furthermore, although MLO2 was not required for SA- or Pip-inducible defense gene expression, it was essential for the proper induction of disease resistance by both SAR signals. We conclude that MLO2 acts as a critical downstream component in the execution of SAR to bacterial infection, being required for the translation of elevated defense responses into disease resistance. Moreover, our data suggest a function for MLO2 in the activation of plant defense priming during a P. syringae challenge. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Radiation response of human lung cancer cells with inherent and acquired resistance to cisplatin

    International Nuclear Information System (INIS)

    Twentyman, P.R.; Wright, K.A.; Rhodes, T.

    1991-01-01

    We have derived sublines of three human lung cancer cell lines with acquired resistance to cisplatin. The cisplatin resistant sublines of NCI-H69 (small cell), COR-L23 (large cell), and MOR (adenocarcinoma) show 5.3 fold, 3.1 fold, and 3.8 fold resistance, respectively, determined in a 6-day MTT assay. Although the parent lines show a wide range of glutathione content per cell, the sublines each show similar values to their corresponding parent line. Radiation response curves have been obtained using a soft agar clonogenic assay. Values obtained for the parent lines (95% CL in parentheses) were: NCI-H69: Do = 0.99 Gy (0.87-1.16), n = 2.9 (1.6-5.2), GSH = 14 ng/10(4) cells; COR-L23: Do = 1.23 Gy (1.05-1.49), n = 1.3 (0.7-2.2), GSH = 47 ng/10(4) cells; MOR: Do = 1.66 Gy (1.48-1.88), n = 3.0 (1.9-4.8), GSH = 86 ng/10(4) cells. The cisplatin resistant variants of NCI-H69 and COR-L23 showed 31% and 63% increases, respectively, in Do compared to their parent lines, whereas no change in radiation response was seen in MOR. In this panel of lines, therefore, although there is a correlation between glutathione content and radiosensitivity of the parent cell lines, acquired resistance to cisplatin is not accompanied by increased glutathione content. However, two of the three cisplatin resistant lines do show a significantly reduced radiosensitivity

  8. Early resistance change and stress/electromigrationmodeling in aluminium interconnects

    NARCIS (Netherlands)

    Petrescu, V.; Mouthaan, A.J.; Schoenmaker, W.

    1997-01-01

    A complete description for early resistance change and two dimensional simulation of mechanical stress evolution in confined Al interconnects, related to the electromigration, is given in this paper. The model, combines the stress/ vacancy concentration evolution with the early resistance change of

  9. Sym004, a Novel EGFR Antibody Mixture, Can Overcome Acquired Resistance to Cetuximab1

    Science.gov (United States)

    Iida, Mari; Brand, Toni M; Starr, Megan M; Li, Chunrong; Huppert, Evan J; Luthar, Neha; Pedersen, Mikkel W; Horak, Ivan D; Kragh, Michael; Wheeler, Deric L

    2013-01-01

    The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in a variety of human cancers. Cetuximab is an anti-EGFR monoclonal antibody that has been approved for head and neck and colorectal cancer treatment, but many patients treated with cetuximab don't respond or eventually acquire resistance. To determine how tumor cells acquire resistance to cetuximab, we previously developed a model of acquired resistance using the non-small cell lung cancer line NCI-H226. These cetuximab-resistant (CtxR) cells exhibit increased steady-state EGFR expression secondary to alterations in EGFR trafficking and degradation and, further, retained dependence on EGFR signaling for enhanced growth potential. Here, we examined Sym004, a novel mixture of antibodies directed against distinct epitopes on the extracellular domain of EGFR, as an alternative therapy for CtxR tumor cells. Sym004 treatment of CtxR clones resulted in rapid EGFR degradation, followed by robust inhibition of cell proliferation and down-regulation of several mitogen-activated protein kinase pathways. To determine whether Sym004 could have therapeutic benefit in vivo, we established de novo CtxR NCI-H226 mouse xenografts and subsequently treated CtxR tumors with Sym004. Sym004 treatment of mice harboring CtxR tumors resulted in growth delay compared to mice continued on cetuximab. Levels of total and phospho-EGFR were robustly decreased in CtxR tumors treated with Sym004. Immunohistochemical analysis of these Sym004-treated xenograft tumors further demonstrated decreased expression of Ki67, and phospho-rpS6, as well as a modest increase in cleaved caspase-3. These results indicate that Sym004 may be an effective targeted therapy for CtxR tumors. PMID:24204198

  10. Multidrug-Resistant CTX-M-(15, 9, 2)- and KPC-2-Producing Enterobacter hormaechei and Enterobacter asburiae Isolates Possessed a Set of Acquired Heavy Metal Tolerance Genes Including a Chromosomal sil Operon (for Acquired Silver Resistance).

    Science.gov (United States)

    Andrade, Leonardo N; Siqueira, Thiago E S; Martinez, Roberto; Darini, Ana Lucia C

    2018-01-01

    Bacterial resistance to antibiotics is concern in healthcare-associated infections. On the other hand, bacterial tolerance to other antimicrobials, like heavy metals, has been neglected and underestimated in hospital pathogens. Silver has long been used as an antimicrobial agent and it seems to be an important indicator of heavy metal tolerance. To explore this perspective, we searched for the presence of acquired silver resistance genes ( sil operon: silE, silS, silR, silC, silF, silB, silA , and silP ) and acquired extended-spectrum cephalosporin and carbapenem resistance genes ( bla CTX-M and bla KPC ) in Enterobacter cloacae Complex (EcC) ( n = 27) and Enterobacter aerogenes ( n = 8) isolated from inpatients at a general hospital. Moreover, the genetic background of the silA (silver-efflux pump) and the presence of other acquired heavy metal tolerance genes, pcoD (copper-efflux pump), arsB (arsenite-efflux pump), terF (tellurite resistance protein), and merA (mercuric reductase) were also investigated. Outstandingly, 21/27 (78%) EcC isolates harbored silA gene located in the chromosome. Complete sil operon was found in 19/21 silA -positive EcC isolates. Interestingly, 8/20 (40%) E. hormaechei and 5/6 (83%) E. asburiae co-harbored silA/pcoD genes and bla CTX-M-(15,2,or9) and/or bla KPC-2 genes. Frequent occurrences of arsB, terF , and merA genes were detected, especially in silA/pcoD -positive, multidrug-resistant (MDR) and/or CTX-M-producing isolates. Our study showed co-presence of antibiotic and heavy metal tolerance genes in MDR EcC isolates. In our viewpoint, there are few studies regarding to bacterial heavy metal tolerance and we call attention for more investigations and discussion about this issue in different hospital pathogens.

  11. Multidrug-Resistant CTX-M-(15, 9, 2- and KPC-2-Producing Enterobacter hormaechei and Enterobacter asburiae Isolates Possessed a Set of Acquired Heavy Metal Tolerance Genes Including a Chromosomal sil Operon (for Acquired Silver Resistance

    Directory of Open Access Journals (Sweden)

    Leonardo N. Andrade

    2018-03-01

    Full Text Available Bacterial resistance to antibiotics is concern in healthcare-associated infections. On the other hand, bacterial tolerance to other antimicrobials, like heavy metals, has been neglected and underestimated in hospital pathogens. Silver has long been used as an antimicrobial agent and it seems to be an important indicator of heavy metal tolerance. To explore this perspective, we searched for the presence of acquired silver resistance genes (sil operon: silE, silS, silR, silC, silF, silB, silA, and silP and acquired extended-spectrum cephalosporin and carbapenem resistance genes (blaCTX−M and blaKPC in Enterobacter cloacae Complex (EcC (n = 27 and Enterobacter aerogenes (n = 8 isolated from inpatients at a general hospital. Moreover, the genetic background of the silA (silver-efflux pump and the presence of other acquired heavy metal tolerance genes, pcoD (copper-efflux pump, arsB (arsenite-efflux pump, terF (tellurite resistance protein, and merA (mercuric reductase were also investigated. Outstandingly, 21/27 (78% EcC isolates harbored silA gene located in the chromosome. Complete sil operon was found in 19/21 silA-positive EcC isolates. Interestingly, 8/20 (40% E. hormaechei and 5/6 (83% E. asburiae co-harbored silA/pcoD genes and blaCTX−M−(15,2,or9 and/or blaKPC−2 genes. Frequent occurrences of arsB, terF, and merA genes were detected, especially in silA/pcoD-positive, multidrug-resistant (MDR and/or CTX-M-producing isolates. Our study showed co-presence of antibiotic and heavy metal tolerance genes in MDR EcC isolates. In our viewpoint, there are few studies regarding to bacterial heavy metal tolerance and we call attention for more investigations and discussion about this issue in different hospital pathogens.

  12. Monoterpenes Support Systemic Acquired Resistance within and between Plants.

    Science.gov (United States)

    Riedlmeier, Marlies; Ghirardo, Andrea; Wenig, Marion; Knappe, Claudia; Koch, Kerstin; Georgii, Elisabeth; Dey, Sanjukta; Parker, Jane E; Schnitzler, Jörg-Peter; Vlot, A Corina

    2017-06-01

    This study investigates the role of volatile organic compounds in systemic acquired resistance (SAR), a salicylic acid (SA)-associated, broad-spectrum immune response in systemic, healthy tissues of locally infected plants. Gas chromatography coupled to mass spectrometry analyses of SAR-related emissions of wild-type and non-SAR-signal-producing mutant plants associated SAR with monoterpene emissions. Headspace exposure of Arabidopsis thaliana to a mixture of the bicyclic monoterpenes α-pinene and β-pinene induced defense, accumulation of reactive oxygen species, and expression of SA- and SAR-related genes, including the SAR regulatory AZELAIC ACID INDUCED1 ( AZI1 ) gene and three of its paralogs. Pinene-induced resistance was dependent on SA biosynthesis and signaling and on AZI1 Arabidopsis geranylgeranyl reductase1 mutants with reduced monoterpene biosynthesis were SAR-defective but mounted normal local resistance and methyl salicylate-induced defense responses, suggesting that monoterpenes act in parallel with SA The volatile emissions from SAR signal-emitting plants induced defense in neighboring plants, and this was associated with the presence of α-pinene, β-pinene, and camphene in the emissions of the "sender" plants. Our data suggest that monoterpenes, particularly pinenes, promote SAR, acting through ROS and AZI1 , and likely function as infochemicals in plant-to-plant signaling, thus allowing defense signal propagation between neighboring plants. © 2017 American Society of Plant Biologists. All rights reserved.

  13. Progranulin causes adipose insulin resistance via increased autophagy resulting from activated oxidative stress and endoplasmic reticulum stress.

    Science.gov (United States)

    Guo, Qinyue; Xu, Lin; Li, Huixia; Sun, Hongzhi; Liu, Jiali; Wu, Shufang; Zhou, Bo

    2017-01-31

    Progranulin (PGRN) has recently emerged as an important regulator for insulin resistance. However, the direct effect of progranulin in adipose insulin resistance associated with the autophagy mechanism is not fully understood. In the present study, progranulin was administered to 3T3-L1 adipocytes and C57BL/6 J mice with/without specific inhibitors of oxidative stress and endoplasmic reticulum stress, and metabolic parameters, oxidative stress, endoplasmic reticulum stress and autophagy markers were assessed. Progranulin treatment increased iNOS expression, NO synthesis and ROS generation, and elevated protein expressions of CHOP, GRP78 and the phosphorylation of PERK, and caused a significant increase in Atg7 and LC3-II protein expression and a decreased p62 expression, and decreased insulin-stimulated tyrosine phosphorylation of IRS-1 and glucose uptake, demonstrating that progranulin activated oxidative stress and ER stress, elevated autophagy and induced insulin insensitivity in adipocytes and adipose tissue of mice. Interestingly, inhibition of iNOS and ER stress both reversed progranulin-induced stress response and increased autophagy, protecting against insulin resistance in adipocytes. Furthermore, the administration of the ER stress inhibitor 4-phenyl butyric acid reversed the negative effect of progranulin in vivo. Our findings showed the clinical potential of the novel adipokine progranulin in the regulation of insulin resistance, suggesting that progranulin might mediate adipose insulin resistance, at least in part, by inducing autophagy via activated oxidative stress and ER stress.

  14. New Real-Time PCR Assays for Detection of Inducible and Acquired Clarithromycin Resistance in the Mycobacterium abscessus Group.

    Science.gov (United States)

    Shallom, Shamira J; Moura, Natalia S; Olivier, Kenneth N; Sampaio, Elizabeth P; Holland, Steven M; Zelazny, Adrian M

    2015-11-01

    Members of the Mycobacterium abscessus group (MAG) cause lung, soft tissue, and disseminated infections. The oral macrolides clarithromycin and azithromycin are commonly used for treatment. MAG can display clarithromycin resistance through the inducible erm(41) gene or via acquired mutations in the rrl (23S rRNA) gene. Strains harboring a truncation or a T28C substitution in erm(41) lose the inducible resistance trait. Phenotypic detection of clarithromycin resistance requires extended incubation (14 days), highlighting the need for faster methods to detect resistance. Two real-time PCR-based assays were developed to assess inducible and acquired clarithromycin resistance and tested on a total of 90 clinical and reference strains. A SYBR green assay was designed to distinguish between a full-length and truncated erm(41) gene by temperature shift in melting curve analysis. Single nucleotide polymorphism (SNP) allele discrimination assays were developed to distinguish T or C at position 28 of erm(41) and 23S rRNA rrl gene mutations at position 2058 and/or 2059. Truncated and full-size erm(41) genes were detected in 21/90 and 69/90 strains, respectively, with 64/69 displaying T at nucleotide position 28 and 5/69 containing C at that position. Fifteen isolates showed rrl mutations conferring clarithromycin resistance, including A2058G (11 isolates), A2058C (3 isolates), and A2059G (1 isolate). Targeted sequencing and phenotypic assessment of resistance concurred with molecular assay results. Interestingly, we also noted cooccurring strains harboring an active erm(41), inactive erm(41), and/or acquired mutational resistance, as well as slowly growing MAG strains and also strains displaying an inducible resistance phenotype within 5 days, long before the recommended 14-day extended incubation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Trend and seasonality of community-acquired Escherichia coli antimicrobial resistance and its dynamic relationship with antimicrobial use assessed by ARIMA models.

    Science.gov (United States)

    Asencio Egea, María Ángeles; Huertas Vaquero, María; Carranza González, Rafael; Herráez Carrera, Óscar; Redondo González, Olga; Arias Arias, Ángel

    2017-12-04

    We studied the trend and seasonality of community-acquired Escherichia coli resistance and quantified its correlation with the previous use of certain antibiotics. A time series study of resistant community-acquired E. coli isolates and their association with antibiotic use was conducted in a Primary Health Care Area from 2008 to 2012. A Poisson regression model was constructed to estimate the trend and seasonality of E. coli resistance. A significant increasing trend in mean E. coli resistance to cephalosporins, aminoglycosides and nitrofurantoin was observed. Seasonal resistance to ciprofloxacin and amoxicillin-clavulanic acid was significantly higher in autumn-winter. There was a delay of 7, 10 and 12 months between the use of cotrimoxazole (P<0.038), fosfomycin (P<0.024) and amoxicillin-clavulanic acid (P<0.015), respectively, and the occurrence of E. coli resistance. An average delay of 10 months between the previous use of amoxicillin-clavulanic acid, cotrimoxazole and fosfomycin and the appearance of resistant community-acquired E. coli strains was detected. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  16. Design of two molecular methodologies for the rapid identification of Colombian community-acquired methicillin-resistant Staphylococcus aureus isolates

    OpenAIRE

    Escobar, Javier Antonio; Gómez, Ingrid Tatiana; Murillo, Martha Johanna; Castro, Betsy Esperanza; Chavarro, Bibiana; Márquez, Ricaurte Alejandro; Vanegas, Natasha

    2012-01-01

    Introduction. Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) infections are found with increasing the frequency, both in healthy individuals in the community and in hospitalized patients. In Colombia and the Andean region, CA-MRSA isolates have a genetic background that is related to the pandemic USA300 clone. Objective. Two molecular methods are designed and standardized for the rapid differentiation of Colombian community-acquired and hospital-acquired methicillin-...

  17. The Wnt signalling pathway is upregulated in an in vitro model of acquired tamoxifen resistant breast cancer

    International Nuclear Information System (INIS)

    Loh, Yan Ni; Hedditch, Ellen L; Baker, Laura A; Jary, Eve; Ward, Robyn L; Ford, Caroline E

    2013-01-01

    Acquired resistance to Tamoxifen remains a critical problem in breast cancer patient treatment, yet the underlying causes of resistance have not been fully elucidated. Abberations in the Wnt signalling pathway have been linked to many human cancers, including breast cancer, and appear to be associated with more metastatic and aggressive types of cancer. Here, our aim was to investigate if this key pathway was involved in acquired Tamoxifen resistance, and could be targeted therapeutically. An in vitro model of acquired Tamoxifen resistance (named TamR) was generated by growing the estrogen receptor alpha (ER) positive MCF7 breast cancer cell line in increasing concentrations of Tamoxifen (up to 5 uM). Alterations in the Wnt signalling pathway and epithelial to mesenchymal transition (EMT) in response to Tamoxifen and treatment with the Wnt inhibitor, IWP-2 were measured via quantitative RT-PCR (qPCR) and TOP/FOP Wnt reporter assays. Resistance to Tamoxifen, and effects of IWP-2 treatment were determined by MTT proliferation assays. TamR cells exhibited increased Wnt signalling as measured via the TOP/FOP Wnt luciferase reporter assays. Genes associated with both the β-catenin dependent (AXIN2, MYC, CSNK1A1) and independent arms (ROR2, JUN), as well as general Wnt secretion (PORCN) of the Wnt signalling pathway were upregulated in the TamR cells compared to the parental MCF7 cell line. Treatment of the TamR cell line with human recombinant Wnt3a (rWnt3a) further increased the resistance of both MCF7 and TamR cells to the anti-proliferative effects of Tamoxifen treatment. TamR cells demonstrated increased expression of EMT markers (VIM, TWIST1, SNAI2) and decreased CDH1, which may contribute to their resistance to Tamoxifen. Treatment with the Wnt inhibitor, IWP-2 inhibited cell proliferation and markers of EMT. These data support the role of the Wnt signalling pathway in acquired resistance to Tamoxifen. Further research into the mechanism by which activated Wnt

  18. Psychological stress impairs short-term muscular recovery from resistance exercise.

    Science.gov (United States)

    Stults-Kolehmainen, Matthew A; Bartholomew, John B

    2012-11-01

    The primary aim of this study was to determine whether chronic mental stress moderates recovery of muscular function, perceived energy, fatigue, and soreness in the first hour after a bout of strenuous resistance exercise. Thirty-one undergraduate resistance training students (age = 20.26 ± 1.34 yr) completed the Perceived Stress Scale and Undergraduate Stress Questionnaire (USQ; a measure of life event stress) and completed fitness testing. After 5 to 14 d of recovery, they performed an acute heavy-resistance exercise protocol (10-repetition maximum (RM) leg press test plus six sets: 80%-100% of 10 RM). Maximal isometric force (MIF) was assessed before exercise, after exercise, and at 20, 40, and 60 min postexercise. Participants also reported their levels of perceived energy, fatigue, and soreness. Recovery data were analyzed with hierarchical linear modeling growth curve analysis. Life event stress significantly moderated linear (P = 0.013) and squared (P = 0.05) recovery of MIF. This relationship held even when the model was adjusted for fitness, workload, and training experience. Likewise, perceived stress moderated linear recovery of MIF (P = 0.023). Neither USQ nor Perceived Stress Scale significantly moderated changes in energy, fatigue, or soreness. Life event stress and perceived stress both moderated the recovery of muscular function, but not psychological responses, in the first hour after strenuous resistance exercise.

  19. Identification of genes differentially expressed in association with acquired cisplatin resistance

    Science.gov (United States)

    Johnsson, A; Zeelenberg, I; Min, Y; Hilinski, J; Berry, C; Howell, S B; Los, G

    2000-01-01

    The goal of this study was to identify genes whose mRNA levels are differentially expressed in human cells with acquired cisplatin (cDDP) resistance. Using the parental UMSCC10b head and neck carcinoma cell line and the 5.9-fold cDDP-resistant subline, UMSCC10b/Pt-S15, two suppressive subtraction hybridization (SSH) cDNA libraries were prepared. One library represented mRNAs whose levels were increased in the cDDP resistant variant (the UP library), the other one represented mRNAs whose levels were decreased in the resistant cells (the DOWN library). Arrays constructed with inserts recovered from these libraries were hybridized with SSH products to identify truly differentially expressed elements. A total of 51 cDNA fragments present in the UP library and 16 in the DOWN library met the criteria established for differential expression. The sequences of 87% of these cDNA fragments were identified in Genbank. Among the mRNAs in the UP library that were frequently isolated and that showed high levels of differential expression were cytochrome oxidase I, ribosomal protein 28S, elongation factor 1α, α-enolase, stathmin, and HSP70. The approach taken in this study permitted identification of many genes never before linked to the cDDP-resistant phenotype. © 2000 Cancer Research Campaign PMID:10993653

  20. A shift to organismal stress resistance in programmed cell death mutants.

    Directory of Open Access Journals (Sweden)

    Meredith E Judy

    Full Text Available Animals have many ways of protecting themselves against stress; for example, they can induce animal-wide, stress-protective pathways and they can kill damaged cells via apoptosis. We have discovered an unexpected regulatory relationship between these two types of stress responses. We find that C. elegans mutations blocking the normal course of programmed cell death and clearance confer animal-wide resistance to a specific set of environmental stressors; namely, ER, heat and osmotic stress. Remarkably, this pattern of stress resistance is induced by mutations that affect cell death in different ways, including ced-3 (cell death defective mutations, which block programmed cell death, ced-1 and ced-2 mutations, which prevent the engulfment of dying cells, and progranulin (pgrn-1 mutations, which accelerate the clearance of apoptotic cells. Stress resistance conferred by ced and pgrn-1 mutations is not additive and these mutants share altered patterns of gene expression, suggesting that they may act within the same pathway to achieve stress resistance. Together, our findings demonstrate that programmed cell death effectors influence the degree to which C. elegans tolerates environmental stress. While the mechanism is not entirely clear, it is intriguing that animals lacking the ability to efficiently and correctly remove dying cells should switch to a more global animal-wide system of stress resistance.

  1. Update on HIV-1 acquired and transmitted drug resistance in Africa.

    Science.gov (United States)

    Ssemwanga, Deogratius; Lihana, Raphael W; Ugoji, Chinenye; Abimiku, Alash'le; Nkengasong, John; Dakum, Patrick; Ndembi, Nicaise

    2015-01-01

    The last ten years have witnessed a significant scale-up and access to antiretroviral therapy in Africa, which has improved patient quality of life and survival. One major challenge associated with increased access to antiretroviral therapy is the development of antiretroviral resistance due to inconsistent drug supply and/or poor patient adherence. We review the current state of both acquired and transmitted drug resistance in Africa over the past ten years (2001-2011) to identify drug resistance associated with the different drug regimens used on the continent and to help guide affordable strategies for drug resistance surveillance. A total of 161 references (153 articles, six reports and two conference abstracts) were reviewed. Antiretroviral resistance data was available for 40 of 53 African countries. A total of 5,541 adult patients from 99 studies in Africa were included in this analysis. The pooled prevalence of drug resistance mutations in Africa was 10.6%, and Central Africa had the highest prevalence of 54.9%. The highest prevalence of nucleoside reverse transcriptase inhibitor mutations was in the west (55.3%) and central (54.8%) areas; nonnucleoside reverse transcriptase inhibitor mutations were highest in East Africa (57.0%) and protease inhibitors mutations highest in Southern Africa (16.3%). The major nucleoside reverse transcriptase inhibitor mutation in all four African regions was M184V. Major nonnucleoside reverse transcriptase inhibitor as well as protease inhibitor mutations varied by region. The prevalence of drug resistance has remained low in several African countries although the emergence of drug resistance mutations varied across countries. Continued surveillance of antiretroviral therapy resistance remains crucial in gauging the effectiveness of country antiretroviral therapy programs and strategizing on effective and affordable strategies for successful treatment.

  2. Overcoming acquired drug resistance in colorectal cancer cells by targeted delivery of 5-FU with EGF grafted hollow mesoporous silica nanoparticles

    Science.gov (United States)

    Chen, Lijue; She, Xiaodong; Wang, Tao; He, Li; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2015-08-01

    Acquired drug resistance (ADR) can be developed in colorectal cancer cells after 5-fluorouracil (5-FU) treatment and diminish the effectiveness of chemotherapy. In this work, acquired 5-FU resistance in the colorectal cancer cell line SW480 was obtained with the up-regulation of dihydropyrimidine dehydrogenase (DPYD) gene expression which can convert 5-FU to its inactive metabolite. To overcome ADR in colorectal cancer, hollow mesoporous silica nanoparticles (HMSNs) grafted with epidermal growth factor (EGF) were used as nanocarriers to deliver 5-FU to colorectal cancer cells with acquired drug resistance. The effect and mechanism of 5-FU loaded EGF grafted HMSNs (EGF-HMSNs-5-FU) in overcoming acquired drug resistance in SW480/ADR cells were studied. The EGF-HMSNs were demonstrated to be specifically internalized in EGFR overexpressed SW480/ADR cells via a receptor-mediated endocytosis and can escape from endo-lysosomes. The EGF-HMSNs-5-FU exhibited much higher cytotoxicity on SW480/ADR cells than HMSNs-5-FU and free 5-FU while the plain HMSNs did not show significant cytotoxicity. The mechanism of EGF-HMSNs-5-FU in overcoming drug resistance in SW480/ADR cells could be attributed to the specific internalization of EGF-HMSNs-5-FU in EGFR overexpressed cells which can lead to high intracellular drug accumulation and cause cell death through S phase arrest.Acquired drug resistance (ADR) can be developed in colorectal cancer cells after 5-fluorouracil (5-FU) treatment and diminish the effectiveness of chemotherapy. In this work, acquired 5-FU resistance in the colorectal cancer cell line SW480 was obtained with the up-regulation of dihydropyrimidine dehydrogenase (DPYD) gene expression which can convert 5-FU to its inactive metabolite. To overcome ADR in colorectal cancer, hollow mesoporous silica nanoparticles (HMSNs) grafted with epidermal growth factor (EGF) were used as nanocarriers to deliver 5-FU to colorectal cancer cells with acquired drug resistance. The

  3. Risk Factors for Acquired Rifamycin and Isoniazid Resistance: A Systematic Review and Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Neesha Rockwood

    Full Text Available Studies looking at acquired drug resistance (ADR are diverse with respect to geographical distribution, HIV co-infection rates, retreatment status and programmatic factors such as regimens administered and directly observed therapy. Our objective was to examine and consolidate evidence from clinical studies of the multifactorial aetiology of acquired rifamycin and/or isoniazid resistance within the scope of a single systematic review. This is important to inform policy and identify key areas for further studies.Case-control and cohort studies and randomised controlled trials that reported ADR as an outcome during antitubercular treatment regimens including a rifamycin and examined the association of at least 1 risk factor were included. Post hoc, we carried out random effects Mantel-Haenszel weighted meta-analyses of the impact of 2 key risk factors 1 HIV and 2 baseline drug resistance on the binary outcome of ADR. Heterogeneity was assessed used I2 statistic. As a secondary outcome, we calculated median cumulative incidence of ADR, weighted by the sample size of the studies.Meta-analysis of 15 studies showed increased risk of ADR with baseline mono- or polyresistance (RR 4.85 95% CI 3.26 to 7.23, heterogeneity I2 58%, 95% CI 26 to 76%. Meta-analysis of 8 studies showed that HIV co-infection was associated with increased risk of ADR (RR 3.02, 95% CI 1.28 to 7.11; there was considerable heterogeneity amongst these studies (I2 81%, 95% CI 64 to 90%. Non-adherence, extrapulmonary/disseminated disease and advanced immunosuppression in HIV co-infection were other risk factors noted. The weighted median cumulative incidence of acquired multi drug resistance calculated in 24 studies (assuming whole cohort as denominator, regardless of follow up DST was 0.1% (5th to 95th percentile 0.07 to 3.2%.Baseline drug resistance and HIV co-infection were significant risk factors for ADR. There was a trend of positive association with non-adherence which is likely

  4. Bacteriology of hospital-acquired infection and antibiotic resistance in a hospital university of Bushehr Port Fatemeh Zahra (s in 2002-2003

    Directory of Open Access Journals (Sweden)

    Katayoon Vahdat

    2005-02-01

    Full Text Available Nosocomial infection is an increasing problem. The global problem of antimicrobial resistance is particularly pressing in developing countries, where the infectious disease burden is high and cost constraints prevent the widespread application of newer, more expensive agents. In a prospective study, 203 consecutive cases with hospital-acquired infection in a university hospital in Bushehr port were evaluated. The most common hospital-acquired infection was urinary (76 cases, conjunctivitis (16 cases, bacteremia (8 cases, meningitis (5 cases, wound (3 cases, empyema (2 cases and peritonitis (1 case. The patients with hospital-acquired infection were from surgical and internal medicine I.C.Us (53.2% & 15.6%, respectively. The most frequent isolated organisms were Pseudomonas aeruginosa (25.6%, Acinetobacter baumannii (19.7%, E. coli (13.3%, Klebsiella pneumoniae (11.3%, Staphylococcus aureus (8.4%, Staphylococcus epidermidis (7.9%, Enterobacter species (7%, Streptococcus species (6.4%, and Proteus mirabilis (0.5%. The most resistant organisms to antimicrobial agents were Acinetobacter baumannii and Pseudomonas aeruginosa 97 & 93.3% of these bacteria were resistant to third generation cephalosporins. The isolated Staphylococcal species were resistant to amikacin (94%. In conclusion, gram negative bacteria were the most common etiologic agent of hospital-acquired infection and had a high level of resistance to amikacin and third generation cephalosporins. Therefore, new therapeutic strategies should be designed to combat these microorganisms.

  5. Prevalence of quinolone resistance mechanisms in Enterobacteriaceae producing acquired AmpC β-lactamases and/or carbapenemases in Spain.

    Science.gov (United States)

    Machuca, Jesús; Agüero, Jesús; Miró, Elisenda; Conejo, María Del Carmen; Oteo, Jesús; Bou, Germán; González-López, Juan José; Oliver, Antonio; Navarro, Ferran; Pascual, Álvaro; Martínez-Martínez, Luis

    2017-10-01

    Quinolone resistance in Enterobacteriaceae species has increased over the past few years, and is significantly associated to beta-lactam resistance. The aim of this study was to evaluate the prevalence of chromosomal- and plasmid-mediated quinolone resistance in acquired AmpC β-lactamase and/or carbapenemase-producing Enterobacteriaceae isolates. The presence of chromosomal- and plasmid-mediated quinolone resistance mechanisms [mutations in the quinolone resistance determining region (QRDR) of gyrA and parC and qnr, aac(6')-Ib-cr and qepA genes] was evaluated in 289 isolates of acquired AmpC β-lactamase- and/or carbapenemase-producing Enterobacteriaceae collected between February and July 2009 in 35 Spanish hospitals. Plasmid mediated quinolone resistance (PMQR) genes were detected in 92 isolates (31.8%), qnr genes were detected in 83 isolates (28.7%), and the aac(6')-Ib-cr gene was detected in 20 isolates (7%). qnrB4 gene was the most prevalent qnr gene detected (20%), associated, in most cases, with DHA-1. Only 14.6% of isolates showed no mutations in gyrA or parC with a ciprofloxacin MIC of 0.5mg/L or higher, whereas PMQR genes were detected in 90% of such isolates. qnrB4 gene was the most prevalent PMQR gene detected, and was significantly associated with acquired AmpC β-lactamase DHA-1. PMQR determinants in association with other chromosomal-mediated quinolone resistance mechanisms, different to mutations in gyrA and parC (increased energy-dependent efflux, altered lipopolysaccharide or porin loss), could lead to ciprofloxacin MIC values that exceed breakpoints established by the main international committees to define clinical antimicrobial susceptibility breakpoints. Copyright © 2016 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  6. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways

    OpenAIRE

    Dues, Dylan J.; Andrews, Emily K.; Schaar, Claire E.; Bergsma, Alexis L.; Senchuk, Megan M.; Van Raamsdonk, Jeremy M.

    2016-01-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxi...

  7. Increasing trend of community-acquired methicillin-resistant: Staphylococcal carriers: An alarming bell for urgent measures

    Directory of Open Access Journals (Sweden)

    Poongodi Lakshmi Santhana Kumarasamy

    2015-01-01

    Full Text Available Background: An increase in the incidence of infections caused by community-associated-methicillin resistant Staphylococcus aureus (MRSA has been reported. Hence, the knowledge of resistance pattern of these isolates is a precondition for alleviating emerging antibiotic resistance and devising better treatment strategies Aim: To find out the prevalence of community-acquired methicillin-resistant staphylococcal strains from nasal carriers. Materials and Methods: A total of 352 nasal swabs collected during routine health checkup were analyzed. Results: Of the 58 (16% staphylococci isolated, 32 (55% were S. aureus and 26 (45% were coagulase-negative staphylococci (CoNS. Methicillin resistance was observed in 7 (22% of staphylococci aureus and 11 (42% of CoNS. "D test" was positive in 1 (14% MRSA, 2 (8% methicillin-susceptible S. aureus and 2 (8% methicillin resistant-CoNS. Conclusion: Effective implementation of the antibiotic policy along with measures like hand wash, isolation of patients will reduce the incidence of resistance.

  8. Farmers’ Perceptions and Knowledge of Cattle Adaptation to Heat Stress and Tick Resistance in the Eastern Cape, South Africa

    Directory of Open Access Journals (Sweden)

    C. L. F. Katiyatiya

    2014-11-01

    Full Text Available The objective of this study was to determine the perceptions and knowledge of farmers of heat stress and tick resistance in cattle. A cross-sectional survey was conducted and 110 farmers in four villages in the sour and sweet velds of the Eastern Cape Province, South Africa were interviewed. The associations among area (municipality, gender, age, level of education, employment and religion were computed using Chi-square tests. The majority of the respondents had on average 4 bulls, 4 cows, 4 heifers, 4 calves, and 4 oxen. Milk was considered as the major (28.3% reason for keeping cattle. Most farmers owned non-descript (72.6%, and Nguni (45.3% cattle because of their heat tolerance (54.7%, tick resistance (54.7%, and milking ability (28.2% traits. Excessive panting (56.6% and disease transmission (76% were regarded as the major effects of heat stress and tick infestation in cattle, respectively. About 50% of the respondents agreed that hair length influences tick resistance and 47.17% considered coat colour when acquiring cattle. In the sampled areas, ticks were prevalent in the summer season (93%, and 77.36% of the respondents use acaricides every fortnight. Gall sickness was reported to be a major problem in the cattle herds by 36.79% of the respondents. Our results showed that farmers in the two municipalities had knowledge of cattle adaptation to heat stress and tick resistance.

  9. [Regulating acid stress resistance of lactic acid bacteria--a review].

    Science.gov (United States)

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2014-07-04

    As cell factories, lactic acid bacteria are widely used in food, agriculture, pharmaceutical and other industries. Acid stress is one the important survival challenges encountered by lactic acid bacteria both in fermentation process and in the gastrointestinal tract. Recently, the development of systems biology and metabolic engineering brings unprecedented opportunity for further elucidating the acid tolerance mechanisms and improving the acid stress resistance of lactic acid bacteria. This review addresses physiological mechanisms of lactic acid bacteria during acid stress. Moreover, strategies to improve the acid stress resistance of lactic acid were proposed.

  10. Environmental Maternal Effects Mediate the Resistance of Maritime Pine to Biotic Stress

    Science.gov (United States)

    Vivas, María; Zas, Rafael; Sampedro, Luis; Solla, Alejandro

    2013-01-01

    The resistance to abiotic stress is increasingly recognised as being impacted by maternal effects, given that environmental conditions experienced by parent (mother) trees affect stress tolerance in offspring. We hypothesised that abiotic environmental maternal effects may also mediate the resistance of trees to biotic stress. The influence of maternal environment and maternal genotype and the interaction of these two factors on early resistance of Pinus pinaster half-sibs to the Fusarium circinatum pathogen was studied using 10 mother genotypes clonally replicated in two contrasting environments. Necrosis length of infected seedlings was 16% shorter in seedlings grown from favourable maternal environment seeds than in seedlings grown from unfavourable maternal environment seeds. Damage caused by F. circinatum was mediated by maternal environment and maternal genotype, but not by seed mass. Mechanisms unrelated to seed provisioning, perhaps of epigenetic nature, were probably involved in the transgenerational plasticity of P. pinaster, mediating its resistance to biotic stress. Our findings suggest that the transgenerational resistance of pines due to an abiotic stress may interact with the defensive response of pines to a biotic stress. PMID:23922944

  11. Environmental maternal effects mediate the resistance of maritime pine to biotic stress.

    Directory of Open Access Journals (Sweden)

    María Vivas

    Full Text Available The resistance to abiotic stress is increasingly recognised as being impacted by maternal effects, given that environmental conditions experienced by parent (mother trees affect stress tolerance in offspring. We hypothesised that abiotic environmental maternal effects may also mediate the resistance of trees to biotic stress. The influence of maternal environment and maternal genotype and the interaction of these two factors on early resistance of Pinus pinaster half-sibs to the Fusarium circinatum pathogen was studied using 10 mother genotypes clonally replicated in two contrasting environments. Necrosis length of infected seedlings was 16% shorter in seedlings grown from favourable maternal environment seeds than in seedlings grown from unfavourable maternal environment seeds. Damage caused by F. circinatum was mediated by maternal environment and maternal genotype, but not by seed mass. Mechanisms unrelated to seed provisioning, perhaps of epigenetic nature, were probably involved in the transgenerational plasticity of P. pinaster, mediating its resistance to biotic stress. Our findings suggest that the transgenerational resistance of pines due to an abiotic stress may interact with the defensive response of pines to a biotic stress.

  12. Drug resistance in community-acquired respiratory tract infections: role for an emerging antibacterial

    Directory of Open Access Journals (Sweden)

    Lorenzo Aguilar

    2010-06-01

    Full Text Available Lorenzo Aguilar1, María-José Giménez1, José Barberán21Microbiology Department, School of Medicine, University Complutense, Madrid; 2Infectious Diseases Department, Hospital Central de la Defensa Gomez Ulla, Madrid, SpainAbstract: The nasopharynx is the ecological niche where evolution towards resistance occurs in respiratory tract isolates. Dynamics of different bacterial populations in antibiotic-free multibacterial niches are the baseline that antibiotic treatments can alter by shifting the competitive balance in favor of resistant populations. For this reason, antibiotic resistance is increasingly being considered to be an ecological problem. Traditionally, resistance has implied the need for development of new antibiotics for which basic efficacy and safety data are required prior to licensing. Antibiotic development is mainly focused on demonstrating clinical efficacy and setting susceptibility breakpoints for efficacy prediction. However, additional information on pharmacodynamic data predicting absence of selection of resistance and of resistant subpopulations, and specific surveillance on resistance to core antibiotics (to detect emerging resistances and its link with antibiotic consumption in the community are valuable data in defining the role of a new antibiotic, not only from the perspective of its therapeutic potential but also from the ecologic perspective (countering resistances to core antibiotics in the community. The documented information on cefditoren gleaned from published studies in recent years is an example of the role for an emerging oral antibacterial facing current antibiotic resistance in community-acquired respiratory tract infections.Keywords: respiratory tract infection, antibiotic resistance, cefditoren, community

  13. Individual’s Resistance to Social Crises is Acquired in Childhood

    Directory of Open Access Journals (Sweden)

    Burvytė Sigita

    2011-12-01

    Full Text Available Objective: the development of person’s resistance to crises. The aim of the study is to revealthe importance of childhood experience to the person, by acquiring resistance to crises; theneed of pedagogical help in overcoming adaptation difficulties of the first-year pupil at school.The analysis of pedagogical, psychological, philosophical literature; the analysis of empiricalresearch and statistic data; as well as the method of observation were used in the current study.Though 60 percent of preparation possibilities for life are realised until the beginning of the firstgrade, the analysis of various authors’ research, quantitative analysis and observation of firstyearpupils in the schools of Vilnius, allow us to conclude that the main reason for a difficultadaptation of first-year pupils is the prevailing belief, that individuals’ preparation for life beginsat school. Educational system is based on rendering of the knowledge rather than the developmentof thinking ability and universal recognition of the environment. Inactivated brain during infancyand early childhood reduces the possibility of mastering information provided at school, andusing it in life. Family is the basis, which provides the feeling of safety, which instils real values,which creates the conditions of developing resistance to social changes, and various adaptationalskills, which are particularly necessary in the contemporary changing society. Extra attentionshould be paid to the education of parents and preparation for responsible parenthood.

  14. Acquired EGFR L718V mutation mediates resistance to osimertinib in non-small cell lung cancer but retains sensitivity to afatinib.

    Science.gov (United States)

    Liu, Yutao; Li, Yan; Ou, Qiuxiang; Wu, Xue; Wang, Xiaonan; Shao, Yang W; Ying, Jianming

    2018-04-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are promising targeted therapies for EGFR-mutated non-small-cell lung cancer (NSCLC) patients. However, acquired resistance inevitably develops. Comprehensive and dynamic companion genomic diagnosis can gain insights into underlying resistance mechanisms, thereby help oncologists and patients to make informed decision on the potential benefit of the treatment. A 67-year-old male who was initially diagnosed of EGFR L858R-mediated NSCLC received multiple lines of chemotherapy and EGFR TKI therapies after surgery. The EGFR mutational status of individual metastatic lesion was determined by genetic testing of the tumor tissue biopsies using next generation sequencing (NGS) throughout the patient's clinical course. An acquired potentially drug-resistant EGFR mutation was functionally validated in vitro and its sensitivity to different EGFR TKIs was assessed simultaneously. We have identified distinct resistance mechanisms to EGFR blockade in different metastatic lung lesions. Acquired EGFR T790M was first detected that leads to the resistance to the gefitinib treatment. Consequently, osimertinib was administrated and the response lasted until disease progressed. We identified a newly acquired EGFR L718V mutation in one lesion in conjunction with L858R, but not T790M, which showed stable disease on the following erlotinib treatment, while EGFR C797S together with L858R/T790M was detected in the other lesion that continuously progressed. In vitro functional studies demonstrated that EGFR-L858R/L718V confers resistance to osimertinib, but retains sensitivity to the second generation TKI afatinib. We reported that distinct resistance mechanisms could arise in different metastases within the same patient in response to EGFR blockade. We also demonstrated in vitro that EGFR L718V mutation mediates resistance to osimertinib, but retains sensitivity to afatinib. We evidenced that dynamic companion genomic

  15. The role of endoplasmic reticulum stress in hippocampal insulin resistance.

    Science.gov (United States)

    Sims-Robinson, Catrina; Bakeman, Anna; Glasser, Rebecca; Boggs, Janet; Pacut, Crystal; Feldman, Eva L

    2016-03-01

    Metabolic syndrome, which includes hypertension, hyperglycemia, obesity, insulin resistance, and dyslipidemia, has a negative impact on cognitive health. Endoplasmic reticulum (ER) stress is activated during metabolic syndrome, however it is not known which factor associated with metabolic syndrome contributes to this stress. ER stress has been reported to play a role in the development of insulin resistance in peripheral tissues. The role of ER stress in the development of insulin resistance in hippocampal neurons is not known. In the current study, we investigated ER stress in the hippocampus of 3 different mouse models of metabolic syndrome: the C57BL6 mouse on a high fat (HF) diet; apolipoprotein E, leptin, and apolipoprotein B-48 deficient (ApoE 3KO) mice; and the low density lipoprotein receptor, leptin, and apolipoprotein B-48 deficient (LDLR 3KO) mice. We demonstrate that ER stress is activated in the hippocampus of HF mice, and for the first time, in ApoE 3KO mice, but not LDLR 3KO mice. The HF and ApoE 3KO mice are hyperglycemic; however, the LDLR 3KO mice have normal glycemia. This suggests that hyperglycemia may play a role in the activation of ER stress in the hippocampus. Similarly, we also demonstrate that impaired insulin signaling is only present in the HF and ApoE 3KO mice, which suggests that ER stress may play a role in insulin resistance in the hippocampus. To confirm this we pharmacologically induced ER stress with thapsigargin in human hippocampal neurons. We demonstrate for the first time that thapsigargin leads to ER stress and impaired insulin signaling in human hippocampal neurons. Our results may provide a potential mechanism that links metabolic syndrome and cognitive health. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Development and characterization of a hydrogen peroxide-resistant cholangiocyte cell line: A novel model of oxidative stress-related cholangiocarcinoma genesis

    Energy Technology Data Exchange (ETDEWEB)

    Thanan, Raynoo [Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Techasen, Anchalee [Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Hou, Bo [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 (Japan); Jamnongkan, Wassana; Armartmuntree, Napat [Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Yongvanit, Puangrat, E-mail: puangrat@kku.ac.th [Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Murata, Mariko, E-mail: mmurata@doc.medic.mie-u.ac.jp [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 (Japan)

    2015-08-14

    immortalized cholangiocytes. • The resistance was acquired by daily treatment of low H{sub 2}O{sub 2} (25 μM) for 15 passages. • The cells highly expressed catalase, SODs and DNMT1 with rapid cell proliferation. • Pseudopodia and the loss of cell-to-cell adhesion appeared by 100 μM H{sub 2}O{sub 2} treatment. • The resistant cells can be used as a model of oxidative stress-related carcinogenesis.

  17. Acquired resistance to chlorhexidine - is it time to establish an 'antiseptic stewardship' initiative?

    Science.gov (United States)

    Kampf, G

    2016-11-01

    Chlorhexidine digluconate (CHG) is an antimicrobial agent used for different types of applications in hand hygiene, skin antisepsis, oral care, and patient washing. Increasing use raises concern regarding development of acquired bacterial resistance. Published data from clinical isolates with CHG minimum inhibitory concentrations (MICs) were reviewed and compared to epidemiological cut-off values to determine resistance. CHG resistance is rarely found in Escherichia coli, Salmonella spp., Staphylococcus aureus or coagulase-negative staphylococci. In Enterobacter spp., Pseudomonas spp., Proteus spp., Providencia spp. and Enterococcus spp., however, isolates are more often CHG resistant. CHG resistance may be detected in multi-resistant isolates such as extremely drug-resistant Klebsiella pneumoniae. Isolates with a higher MIC are often less susceptible to CHG for disinfection. Although cross-resistance to antibiotics remains controversial, some studies indicate that the overall exposure to CHG increases the risk for resistance to some antibiotic agents. Resistance to CHG has resulted in numerous outbreaks and healthcare-associated infections. On an average intensive care unit, most of the CHG exposure would be explained by hand hygiene agents when liquid soaps or alcohol-based hand rubs contain CHG. Exposure to sub-lethal CHG concentration may enhance resistance in Acinetobacter spp., K. pneumoniae, and Pseudomonas spp., all species well known for emerging antibiotic resistance. In order to reduce additional selection pressure in nosocomial pathogens it seems to make sense to restrict the valuable agent CHG to those indications with a clear patient benefit and to eliminate it from applications without any benefit or with a doubtful benefit. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  18. Risk factors for hospital-acquired bacteremia due to carbapenem-resistant Pseudomonas aeruginosa in a Colombian hospital.

    Science.gov (United States)

    Valderrama, Sandra Liliana; González, Pedro Felipe; Caro, María Alejandra; Ardila, Natalia; Ariza, Beatriz; Gil, Fabián; Álvarez, Carlos

    2016-02-23

    Bacteremia due to Pseudomonas aeruginosa resistant to carbapenems is a public health problem due to the limitations it places on therapeutic options, as well as the increased time patients must spend in hospital, costs and the risk of mortality.  To evaluate the risk factors for presentation of bacteremia due to carbapenem-resistant P. aeruginosa acquired in the Hospital Universitario San Ignacio between January 2008 and June 2014.  This was a case control study in which the case patients presented bacteremia due to P. aeruginosa resistant to carbapenems and the control group included patients with P. aeruginosa susceptible to this group of antibiotics. Variables such as the previous use of meropenem and ertapenem, immunosuppression and neoplasia were measured. Mortality and duration of hospital were also described.  In all, 168 patients were evaluated, of which 42 were cases and 126 controls. Using a multivariate model, the risk factors related to bacteremia due to carbapenem-resistant P. aeruginosa acquired in hospital were the following: use of parenteral nutrition (OR=8.28; 95% CI: 2.56-26.79; p=0); use of meropenem (OR=1.15; 95% CI: 1.03-1.28; p=0.01); and use of ciprofloxacin (OR=81.99; 95% CI: 1.14-5884; p=0.043).  In order to prevent the emergence of carbapenem-resistant P. aeruginosa, antimicrobial control programs should be strengthened by promoting the prudent administration of carbapenems and quinolones. The correct use of parenteral nutrition should also be monitored.

  19. Early resistance change and stress/electromigration evolution in near bamboo interconnects

    NARCIS (Netherlands)

    Petrescu, V.; Mouthaan, A.J.; Dima, G.; Govoreanu, B.; Mitrea, O.; Profirescu, M.

    1997-01-01

    A complete description for early resistance change and mechanical stress evolution in near-bamboo interconnects, related to the electromigration, is given in this paper. The proposed model, for the first time, combines the stress/vacancy concentration evolution with the early resistance change of

  20. Fitness of Leishmania donovani parasites resistant to drug combinations.

    Directory of Open Access Journals (Sweden)

    Raquel García-Hernández

    2015-04-01

    Full Text Available Drug resistance represents one of the main problems for the use of chemotherapy to treat leishmaniasis. Additionally, it could provide some advantages to Leishmania parasites, such as a higher capacity to survive in stress conditions. In this work, in mixed populations of Leishmania donovani parasites, we have analyzed whether experimentally resistant lines to one or two combined anti-leishmanial drugs better support the stress conditions than a susceptible line expressing luciferase (Luc line. In the absence of stress, none of the Leishmania lines showed growth advantage relative to the other when mixed at a 1:1 parasite ratio. However, when promastigotes from resistant lines and the Luc line were mixed and exposed to different stresses, we observed that the resistant lines are more tolerant of different stress conditions: nutrient starvation and heat shock-pH stress. Further to this, we observed that intracellular amastigotes from resistant lines present a higher capacity to survive inside the macrophages than those of the control line. These results suggest that resistant parasites acquire an overall fitness increase and that resistance to drug combinations presents significant differences in their fitness capacity versus single-drug resistant parasites, particularly in intracellular amastigotes. These results contribute to the assessment of the possible impact of drug resistance on leishmaniasis control programs.

  1. Selinexor is effective in acquired resistance to ibrutinib and synergizes with ibrutinib in chronic lymphocytic leukemia.

    Science.gov (United States)

    Hing, Zachary A; Mantel, Rose; Beckwith, Kyle A; Guinn, Daphne; Williams, Erich; Smith, Lisa L; Williams, Katie; Johnson, Amy J; Lehman, Amy M; Byrd, John C; Woyach, Jennifer A; Lapalombella, Rosa

    2015-05-14

    Despite the therapeutic efficacy of ibrutinib in chronic lymphocytic leukemia (CLL), complete responses are infrequent, and acquired resistance to Bruton agammaglobulinemia tyrosine kinase (BTK) inhibition is being observed in an increasing number of patients. Combination regimens that increase frequency of complete remissions, accelerate time to remission, and overcome single agent resistance are of considerable interest. We previously showed that the XPO1 inhibitor selinexor is proapoptotic in CLL cells and disrupts B-cell receptor signaling via BTK depletion. Herein we show the combination of selinexor and ibrutinib elicits a synergistic cytotoxic effect in primary CLL cells and increases overall survival compared with ibrutinib alone in a mouse model of CLL. Selinexor is effective in cells isolated from patients with prolonged lymphocytosis following ibrutinib therapy. Finally, selinexor is effective in ibrutinib-refractory mice and in a cell line harboring the BTK C481S mutation. This is the first report describing the combined activity of ibrutinib and selinexor in CLL, which represents a new treatment paradigm and warrants further evaluation in clinical trials of CLL patients including those with acquired ibrutinib resistance. © 2015 by The American Society of Hematology.

  2. Histological transformation after acquired resistance to epidermal growth factor tyrosine kinase inhibitors.

    Science.gov (United States)

    Shao, Yi; Zhong, Dian-Sheng

    2018-04-01

    Non-small-cell lung cancer patients with sensitive epidermal growth factor receptor mutations generally respond well to tyrosine kinase inhibitors (TKIs). However, acquired resistance will eventually develop place after 8-16 months. Several mechanisms contribute to the resistance including T790M mutation, c-Met amplification, epithelial mesenchymal transformation and PIK3CA mutation; however, histological transformation is a rare mechanism. The patterns and mechanisms underlying histological transformation need to be explored. We searched PubMed, EMBASE and search engines Google Scholar, Medical Matrix for literature related to histological transformation. Case reports, cases series, and clinical and basic medical research articles were reviewed. Sixty-one articles were included in this review. Cases of transformation to small-cell lung cancer, squamous cell carcinoma, large-cell neuroendocrine carcinoma and sarcoma after TKI resistance have all been reported. As the clinical course differed dramatically between cases, a new treatment scheme needs to be recruited. The mechanisms underlying histological transformation have not been fully elucidated and probably relate to cancer stem cells, driver genetic alterations under selective pressure or the heterogeneity of the tumor. When TKI resistance develops, we recommend that patients undergo a second biopsy to determine the reason, guide the next treatment and predict the prognosis.

  3. The human microbiota: novel targets for hospital-acquired infections and antibiotic resistance.

    Science.gov (United States)

    Pettigrew, Melinda M; Johnson, J Kristie; Harris, Anthony D

    2016-05-01

    Hospital-acquired infections are increasing in frequency due to multidrug resistant organisms (MDROs), and the spread of MDROs has eroded our ability to treat infections. Health care professionals cannot rely solely on traditional infection control measures and antimicrobial stewardship to prevent MDRO transmission. We review research on the microbiota as a target for infection control interventions. We performed a literature review of key research findings related to the microbiota as a target for infection control interventions. These data are summarized and used to outline challenges, opportunities, and unanswered questions in the field. The healthy microbiota provides protective functions including colonization resistance, which refers to the microbiota's ability to prevent colonization and/or expansion of pathogens. Antibiotic use and other exposures in hospitalized patients are associated with disruptions of the microbiota that may reduce colonization resistance and select for antibiotic resistance. Novel methods to exploit protective mechanisms provided by an intact microbiota may provide the key to preventing the spread of MDROs in the health care setting. Research on the microbiota as a target for infection control has been limited. Epidemiologic studies will facilitate progress toward the goal of manipulating the microbiota for control of MDROs in the health care setting. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Combination therapy of apatinib with icotinib for primary acquired icotinib resistance in patients with advanced pulmonary adenocarcinoma with EGFR mutation.

    Science.gov (United States)

    Xia, Pinghui; Cao, Jinlin; Lv, Xiayi; Wang, Luming; Lv, Wang; Hu, Jian

    2018-05-01

    Multi-targeted agents represent the next generation of targeted therapies for solid tumors, and patients with acquired resistance to EGFR-tyrosine kinase inhibitors (TKIs) may also benefit from their combination with TKI therapy. Third-generation targeted drugs, such as osimertinib, are very expensive, thus a more economical solution is required. The aim of this study was to explore the use of apatinib combined with icotinib therapy for primary acquired resistance to icotinib in three patients with advanced pulmonary adenocarcinoma with EGFR mutations. We achieved favorable oncologic outcomes in all three patients, with progression-free survival of four to six months. Unfortunately, the patients ultimately had to cease combination therapy because of intolerable adverse effects of hand and foot syndrome and oral ulcers. Combination therapy of apatinib with icotinib for primary acquired resistance to icotinib may be an option for patients with advanced pulmonary adenocarcinoma with EGFR mutations, but physicians must also be aware of the side effects caused by such therapy. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  5. Impact of amoxicillin therapy on resistance selection in patients with community-acquired lower respiratory tract infections

    DEFF Research Database (Denmark)

    Malhotra-Kumar, Surbhi; Van Heirstraeten, Liesbet; Coenen, Samuel

    2016-01-01

    OBJECTIVES: To determine the effect of amoxicillin treatment on resistance selection in patients with community-acquired lower respiratory tract infections in a randomized, placebo-controlled trial. METHODS: Patients were prescribed amoxicillin 1 g, three times daily (n = 52) or placebo (n = 50) ...

  6. The spatiotemporal system dynamics of acquired resistance in an engineered microecology.

    Science.gov (United States)

    Datla, Udaya Sree; Mather, William H; Chen, Sheng; Shoultz, Isaac W; Täuber, Uwe C; Jones, Caroline N; Butzin, Nicholas C

    2017-11-22

    Great strides have been made in the understanding of complex networks; however, our understanding of natural microecologies is limited. Modelling of complex natural ecological systems has allowed for new findings, but these models typically ignore the constant evolution of species. Due to the complexity of natural systems, unanticipated interactions may lead to erroneous conclusions concerning the role of specific molecular components. To address this, we use a synthetic system to understand the spatiotemporal dynamics of growth and to study acquired resistance in vivo. Our system differs from earlier synthetic systems in that it focuses on the evolution of a microecology from a killer-prey relationship to coexistence using two different non-motile Escherichia coli strains. Using empirical data, we developed the first ecological model emphasising the concept of the constant evolution of species, where the survival of the prey species is dependent on location (distance from the killer) or the evolution of resistance. Our simple model, when expanded to complex microecological association studies under varied spatial and nutrient backgrounds may help to understand the complex relationships between multiple species in intricate natural ecological networks. This type of microecological study has become increasingly important, especially with the emergence of antibiotic-resistant pathogens.

  7. High hydrostatic pressure resistance of Campylobacter jejuni after different sublethal stresses.

    Science.gov (United States)

    Sagarzazu, N; Cebrián, G; Condón, S; Mackey, B; Mañas, P

    2010-07-01

    To study the development of resistance responses in Campylobacter jejuni to high hydrostatic pressure (HHP) treatments after the exposure to different stressful conditions that may be encountered in food-processing environments, such as acid pH, elevated temperatures and cold storage. Campylobacter jejuni cells in exponential and stationary growth phase were exposed to different sublethal stresses (acid, heat and cold shocks) prior to evaluate the development of resistance responses to HHP. For exponential-phase cells, neither of the conditions tested increased nor decreased HHP resistance of C. jejuni. For stationary-phase cells, acid and heat adaptation-sensitized C. jejuni cells to the subsequent pressure treatment. On the contrary, cold-adapted stationary-phase cells developed resistance to HHP. Whereas C. jejuni can be classified as a stress sensitive micro-organism, our findings have demonstrated that it can develop resistance responses under different stressing conditions. The resistance of stationary phase C. jejuni to HHP was increased after cells were exposed to cold temperatures. The results of this study contribute to a better knowledge of the physiology of C. jejuni and its survival to food preservation agents. Results here presented may help in the design of combined processes for food preservation based on HHP technology. © 2009 The Authors. Journal compilation © 2009 The Society for Applied Microbiology.

  8. Evasion of Apoptosis as a Cellular Stress Response in Cancer

    Directory of Open Access Journals (Sweden)

    Simone Fulda

    2010-01-01

    Full Text Available One of the hallmarks of human cancers is the intrinsic or acquired resistance to apoptosis. Evasion of apoptosis can be part of a cellular stress response to ensure the cell's survival upon exposure to stressful stimuli. Apoptosis resistance may contribute to carcinogenesis, tumor progression, and also treatment resistance, since most current anticancer therapies including chemotherapy as well as radio- and immunotherapies primarily act by activating cell death pathways including apoptosis in cancer cells. Hence, a better understanding of the molecular mechanisms regarding how cellular stress stimuli trigger antiapoptotic mechanisms and how this contributes to tumor resistance to apoptotic cell death is expected to provide the basis for a rational approach to overcome apoptosis resistance mechanisms in cancers.

  9. Oxidative stress resistance in Porphyromonas gingivalis

    Science.gov (United States)

    Henry, Leroy G; McKenzie, Rachelle ME; Robles, Antonette; Fletcher, Hansel M

    2012-01-01

    Porphyromonas gingivalis, a black-pigmented, Gram-negative anaerobe, is an important etiologic agent of periodontal disease. The harsh inflammatory condition of the periodontal pocket implies that this organism has properties that will facilitate its ability to respond and adapt to oxidative stress. Because the stress response in the pathogen is a major determinant of its virulence, a comprehensive understanding of its oxidative stress resistance strategy is vital. We discuss multiple mechanisms and systems that clearly work in synergy to defend and protect P. gingivalis against oxidative damage caused by reactive oxygen species. The involvement of multiple hypothetical proteins and/or proteins of unknown function in this process may imply other unique mechanisms and potential therapeutic targets. PMID:22439726

  10. Neurosis of acquired helplessness and role of hypoxia in the formation of this disorder in rats.

    Science.gov (United States)

    Vvedenskaya, O Yu; Avrushchenko, M A; Bol'shakova, T D; Khitrov, N K; Moroz, V V

    2003-04-01

    Acquisition of instrumental defense response with pain reinforcement uncertainty (25% reinforcement) induced the development of acquired helplessness in 50% rats. Acquired helplessness is characterized by the absence of responses to conditioned (light) and unconditioned stimuli (pain), minor response of plasma corticosterone to learning, gas markers of circulatory cerebral hypoxia (Delta A/V pO2 carotid artery/jugular vein), low sensitivity to severe hypobaric conditions, and high resistance of Purkinje cells in the cerebellum. Piracetam improved learning and prevented the development of acquired helplessness. Local changes in cerebral blood flow and energy deficit in neurons responsible for emotional stress during acquired helplessness impair adaptive capacity, but reduce energy consumption and protect neuronal structures.

  11. Mechanisms of Acquired Resistance to ALK Inhibitors and the Rationale for Treating ALK-positive Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Isozaki, Hideko [Department of Clinical Pharmaceutics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558 (Japan); Takigawa, Nagio, E-mail: ntakigaw@gmail.com [Department of General Internal Medicine 4, Kawasaki Medical School, Okayama 700-8505 (Japan); Kiura, Katsuyuki [Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama 700-8558 (Japan)

    2015-04-30

    The discovery of an echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion gene led to improved clinical outcomes in patients with lung cancer after the development of the first ALK-targeting agent, crizotinib. Some second-generation ALK tyrosine kinase inhibitors (TKIs), which might be more potent than crizotinib or effective on crizotinib-resistant patients, have been developed. Although these ALK-TKIs show an excellent response initially, most patients eventually acquire resistance. Therefore, careful consideration of the resistance mechanisms might lead to superior therapeutic strategies. Here, we summarize the history of ALK-TKIs and their underlying resistance mechanisms in both the preclinical and clinical settings. In addition, we discuss potential future treatment strategies in ALK-TKI-naïve and -resistant patients with lung cancer harboring the EML4-ALK fusion gene.

  12. Resistance of functional Lactobacillus plantarum strains against food stress conditions.

    Science.gov (United States)

    Ferrando, Verónica; Quiberoni, Andrea; Reinhemer, Jorge; Suárez, Viviana

    2015-06-01

    The survival of three Lactobacillus plantarum strains (Lp 790, Lp 813 and Lp 998) with functional properties was studied taking into account their resistance to thermal, osmotic and oxidative stress factors. Stress treatments applied were: 52 °C-15 min (Phosphate Buffer pH 7, thermal shock), H2O2 0.1% (p/v) - 30 min (oxidative shock) and NaCl aqueous solution at 17, 25 and 30% (p/v) (room temperature - 1 h, osmotic shock). The osmotic stress was also evaluated on cell growth in MRS broth added of 2, 4, 6, 8 and 10% (p/v) of NaCl, during 20 h at 30 °C. The cell thermal adaptation was performed in MRS broth, selecting 45 °C for 30 min as final conditions for all strains. Two strains (Lp 813 and Lp 998) showed, in general, similar behaviour against the three stress factors, being clearly more resistant than Lp 790. An evident difference in growth kinetics in presence of NaCl was observed between Lp 998 and Lp 813, Lp998 showing a higher optical density (OD570nm) than Lp 813 at the end of the assay. Selected thermal adaptation improved by 2 log orders the thermal resistance of both strains, but cell growth in presence of NaCl was enhanced only in Lp 813. Oxidative resistance was not affected with this thermal pre-treatment. These results demonstrate the relevance of cell technological resistance when selecting presumptive "probiotic" cultures, since different stress factors might considerably affect viability or/and performance of the strains. The incidence of stress conditions on functional properties of the strains used in this work are currently under research in our group. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Abiotic stresses affect Trichoderma harzianum T39-induced resistance to downy mildew in grapevine.

    Science.gov (United States)

    Roatti, Benedetta; Perazzolli, Michele; Gessler, Cesare; Pertot, Ilaria

    2013-12-01

    Enhancement of plant defense through the application of resistance inducers seems a promising alternative to chemical fungicides for controlling crop diseases but the efficacy can be affected by abiotic factors in the field. Plants respond to abiotic stresses with hormonal signals that may interfere with the mechanisms of induced systemic resistance (ISR) to pathogens. In this study, we exposed grapevines to heat, drought, or both to investigate the effects of abiotic stresses on grapevine resistance induced by Trichoderma harzianum T39 (T39) to downy mildew. Whereas the efficacy of T39-induced resistance was not affected by exposure to heat or drought, it was significantly reduced by combined abiotic stresses. Decrease of leaf water potential and upregulation of heat-stress markers confirmed that plants reacted to abiotic stresses. Basal expression of defense-related genes and their upregulation during T39-induced resistance were attenuated by abiotic stresses, in agreement with the reduced efficacy of T39. The evidence reported here suggests that exposure of crops to abiotic stress should be carefully considered to optimize the use of resistance inducers, especially in view of future global climate changes. Expression analysis of ISR marker genes could be helpful to identify when plants are responding to abiotic stresses, in order to optimize treatments with resistance inducers in field.

  14. Circumvention of camptothecin-induced resistance during the adaptive cellular stress response.

    Science.gov (United States)

    Tiligada, Ekaterini; Papamichael, Konstantinos; Vovou, Ioanna; Delitheos, Andreas

    2006-01-01

    Camptothecin-11 (CPT-11) induces the adaptive stress response in yeast, conferring resistance via not fully characterized mechanisms. This study aimed at exploring, pharmacologically, the mechanisms underlying the CPT-11-induced resistance in yeast. Post-logarithmic yeast cultures were submitted to heat shock following preconditioning with suramin and with CPT-11, either alone or in combination with suramin, cycloheximide, sodium molybdate, okadaic acid, or verapamil. The stress response was evaluated by determining cell viability after heat shock. Preconditioning with CPT-11 or suramin conferred thermotolerance to yeast cells. Co-administration of CPT-11 with suramin, cycloheximide or okadaic acid reversed the CPT-11-induced thermotolerant phenotype, while sodium molybdate and verapamil had no effect on CPT-11-induced resistance. The antagonistic effect of the thermotolerance-inducers and the possible contribution of topoisomerase II activity and post-translational modifications mediated by the phosphatases PP1/2A in CPT-11-induced resistance may have important implications on the acquisition of resistance to stress in eukaryotic cells.

  15. Mono- and Digalactosyldiacylglycerol Lipids Function Nonredundantly to Regulate Systemic Acquired Resistance in Plants

    Directory of Open Access Journals (Sweden)

    Qing-ming Gao

    2014-12-01

    Full Text Available Summary: The plant galactolipids monogalactosyldiacylglycerol (MGDG and digalactosyldiacylglycerol (DGDG have been linked to the anti-inflammatory and cancer benefits of a green leafy vegetable diet in humans due to their ability to regulate the levels of free radicals like nitric oxide (NO. Here, we show that DGDG contributes to plant NO as well as salicylic acid biosynthesis and is required for the induction of systemic acquired resistance (SAR. In contrast, MGDG regulates the biosynthesis of the SAR signals azelaic acid (AzA and glycerol-3-phosphate (G3P that function downstream of NO. Interestingly, DGDG is also required for AzA-induced SAR, but MGDG is not. Notably, transgenic expression of a bacterial glucosyltransferase is unable to restore SAR in dgd1 plants even though it does rescue their morphological and fatty acid phenotypes. These results suggest that MGDG and DGDG are required at distinct steps and function exclusively in their individual roles during the induction of SAR. : The galactolipids monogalactosyldiacylglycerol (MGDG and digalactosyldiacylglycerol (DGDG constitute ∼80% of total membrane lipids in plants. Gao et al. now show that these galactolipids function nonredundantly to regulate systemic acquired resistance (SAR. Furthermore, they show that the terminal galactose on the α-galactose-β-galactose head group of DGDG is critical for SAR.

  16. Increase of resistance to cracking on stress relieving of hardened steel

    International Nuclear Information System (INIS)

    Velichko, V.V.; Zabil'skij, V.V.; Mikheev, G.M.

    1995-01-01

    Regularities of increase of resistance to cracking during stress relieving of hardened low-alloyed steels were studied, using complex of methods. Effect of carbon, stress concentrator radius, duration and temperature of stress relieving was studies in particular. Results of investigating kinetics of change of physicomechanical properties, hydrogen desorption from hardened specimens showed, that increase of resistance to cracking was caused by desorption from grain boundaries of diffusion-mobile hydrogen, formed during hardening. 18 refs., 8 figs

  17. THE STRESS RESISTANCE OF STUDENTS. THE PARADIGM OF SUBJECT PERSONALITY SELF- ORGANIZATION

    Directory of Open Access Journals (Sweden)

    Sergey I. Dyakov

    2016-01-01

    Full Text Available The aim of the investigation is to consider a problem of stress resistance of students in the context of subject self-organization of the personality. Methods. The following methods of research are used: questioning; psychological and diagnostic tests «Tolerance of Uncertainty» (NTN and «Personal Factors of Decisions» (PFD by T. V. Kornilova; original experimental experiences – «Coding», a technique of a self-assessment (scaling and «A locus control». While data processing the methods of mathematical statistics (SPSS 12 package – the correlation analysis of Pearson and the factorial analysis with rotation use a component by «verimax» method are applied. Results and scientific novelty. Types of subjectivity and strategy of stress resistance are allocated. The nature and a role of the emotional and stressful mechanism having information and semantic properties in its basis are disclosed. Communication of irresponsible mechanisms of mentality with the sphere of consciousness in the context of subjectivity of the personality is shown. Mechanisms of emotional and rational self-control of system of mental self-organization of the person are presented. The statistical and qualitative data opening communications between properties of subjectivity and stress resistance of the personality are empirically obtained. Variation of the relations and also types of subjectivity and stress resistance emphasized based on the results of the presented research. Original (author’s methods of studying of subjectivity and factors of stress resistance are presented. Practical significance. The revealed factors of subject self-organization reveal the stress-producing directions of the environment and the relation of the personality to situations of changes and uncertainty: and also indicate subject properties of resistance to stress which need to be developed to increase the level of health of students, to reduce risk of deviance and delinquency of

  18. A viewpoint on considering physiological principles to study stress resistance and resilience with aging.

    Science.gov (United States)

    Miller, Benjamin F; Seals, Douglas R; Hamilton, Karyn L

    2017-09-01

    Adaptation to stress is identified as one of the seven pillars of aging research. Our viewpoint discusses the importance of the distinction between stress resistance and resilience, highlights how integration of physiological principles is critical for further understanding in vivo stress resistance and resilience, and advocates for the use of early warning signs to prevent a tipping point in stress resistance and resilience. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Influence of the clay in the stress cracking resistance of PET

    International Nuclear Information System (INIS)

    Teofilo, Edvania T.; Silva, Emanuela S.; Silva, Suedina M.L.; Rabello, Marcelo S.

    2011-01-01

    The environmental stress cracking resistance in PET and hybrid PET/clay were conducted under stress relaxation test. X-ray diffraction analysis show that was obtained immiscible system. In the absence of aggressive fluids the hybrid exhibited higher relaxation rates than the PET. Already in contact with aggressive fluids showed a similar or lower relaxation rate than the PET, being more resistant. Suggesting that the clay, though not interlayer, interferes with the distribution of the stress cracking agent. Thus, the barrier effect caused by the clay was more significant than the stress concentration caused by it. (author)

  20. Acquired resistance to HSP90 inhibitor 17-AAG and increased metastatic potential are associated with MUC1 expression in colon carcinoma cells.

    Science.gov (United States)

    Liu, Xin; Ban, Li-Li; Luo, Gang; Li, Zhi-Yao; Li, Yun-Feng; Zhou, Yong-Chun; Wang, Xi-Cai; Jin, Cong-Guo; Ye, Jia-Gui; Ma, Ding-Ding; Xie, Qing; Huang, You-Guang

    2016-06-01

    Heat shock protein 90 (HSP90) is a molecular chaperone required for the stability and function of many proteins. The chaperoning of oncoproteins by HSP90 enhances the survival, growth, and invasive potential of cancer cells. HSP90 inhibitors are promising new anticancer agents, in which the benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin (17-AAG) is currently in clinical evaluation. However, the implications of acquired resistance to this class of drug remain largely unexplored. In the present study, we have generated isogenic human colon cancer cell lines that are resistant to 17-AAG by continued culturing in the compound. Cross-resistance was found with another HSP90 inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin. The resistant cells showed obvious morphology changes with a metastatic phenotype and significant increases in migration and adhesion to collagens. Western blotting analysis of epithelial-mesenchymal transition molecular markers found that expression of E-cadherin downregulated, whereas expression of N-cadherin and β-catenin upregulated in the resistant cells. Mucin 1 (MUC1) has been reported to mediate metastasis as well as chemical resistance in many cancers. Here, we found that MUC1 expression was significantly elevated in the acquired drug resistance cells. 17-AAG treatment could decrease MUC1 more in parental cells than in acquired 17-AAG-resistant cells. Further study found that knockdown of MUC1 expression by small interfering RNA could obviously re-sensitize the resistant cells to 17-AAG treatment, and decrease the cell migration and adhesion. These were coupled with a downregulation in N-cadherin and β-catenin. The results indicate that HSP90 inhibitor therapies in colon carcinomas could generate resistance and increase metastatic potential that might mediated by upregulation of MUC1 expression. Findings from this study further our understanding of the potential clinical effects of HSP90-directed therapies in

  1. Loss of activating EGFR mutant gene contributes to acquired resistance to EGFR tyrosine kinase inhibitors in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Keisuke Tabara

    Full Text Available Non-small-cell lung cancer harboring epidermal growth factor receptor (EGFR mutations attains a meaningful response to EGFR-tyrosine kinase inhibitors (TKIs. However, acquired resistance to EGFR-TKIs could affect long-term outcome in almost all patients. To identify the potential mechanisms of resistance, we established cell lines resistant to EGFR-TKIs from the human lung cancer cell lines PC9 and11-18, which harbored activating EGFR mutations. One erlotinib-resistant cell line from PC9 and two erlotinib-resistant cell lines and two gefitinib-resistant cell lines from 11-18 were independently established. Almost complete loss of mutant delE746-A750 EGFR gene was observed in the erlotinib-resistant cells isolated from PC9, and partial loss of the mutant L858R EGFR gene copy was specifically observed in the erlotinib- and gefitinib-resistant cells from 11-18. However, constitutive activation of EGFR downstream signaling, PI3K/Akt, was observed even after loss of the mutated EGFR gene in all resistant cell lines even in the presence of the drug. In the erlotinib-resistant cells from PC9, constitutive PI3K/Akt activation was effectively inhibited by lapatinib (a dual TKI of EGFR and HER2 or BIBW2992 (pan-TKI of EGFR family proteins. Furthermore, erlotinib with either HER2 or HER3 knockdown by their cognate siRNAs also inhibited PI3K/Akt activation. Transfection of activating mutant EGFR complementary DNA restored drug sensitivity in the erlotinib-resistant cell line. Our study indicates that loss of addiction to mutant EGFR resulted in gain of addiction to both HER2/HER3 and PI3K/Akt signaling to acquire EGFR-TKI resistance.

  2. Use of Variogram Parameters in Analysis of Hyperspectral Imaging Data Acquired from Dual-Stressed Crop Leaves

    Directory of Open Access Journals (Sweden)

    Christian Nansen

    2012-01-01

    Full Text Available A detailed introduction to variogram analysis of reflectance data is provided, and variogram parameters (nugget, sill, and range values were examined as possible indicators of abiotic (irrigation regime and biotic (spider mite infestation stressors. Reflectance data was acquired from 2 maize hybrids (Zea mays L. at multiple time points in 2 data sets (229 hyperspectral images, and data from 160 individual spectral bands in the spectrum from 405 to 907 nm were analyzed. Based on 480 analyses of variance (160 spectral bands × 3 variogram parameters, it was seen that most of the combinations of spectral bands and variogram parameters were unsuitable as stress indicators mainly because of significant difference between the 2 data sets. However, several combinations of spectral bands and variogram parameters (especially nugget values could be considered unique indicators of either abiotic or biotic stress. Furthermore, nugget values at 683 and 775 nm responded significantly to abiotic stress, and nugget values at 731 nm and range values at 715 nm responded significantly to biotic stress. Based on qualitative characterization of actual hyperspectral images, it was seen that even subtle changes in spatial patterns of reflectance values can elicit several-fold changes in variogram parameters despite non-significant changes in average and median reflectance values and in width of 95% confidence limits. Such scattered stress expression is in accordance with documented within-leaf variation in both mineral content and chlorophyll concentration and therefore supports the need for reflectance-based stress detection at a high spatial resolution (many hyperspectral reflectance profiles acquired from a single leaf and may be used to explain or characterize within-leaf foraging patterns of herbivorous arthropods.

  3. Naturally occurring dominant drug resistance mutations occur infrequently in the setting of recently acquired hepatitis C.

    Science.gov (United States)

    Applegate, Tanya L; Gaudieri, Silvana; Plauzolles, Anne; Chopra, Abha; Grebely, Jason; Lucas, Michaela; Hellard, Margaret; Luciani, Fabio; Dore, Gregory J; Matthews, Gail V

    2015-01-01

    Direct-acting antivirals (DAAs) are predicted to transform hepatitis C therapy, yet little is known about the prevalence of naturally occurring resistance mutations in recently acquired HCV. This study aimed to determine the prevalence and frequency of drug resistance mutations in the viral quasispecies among HIV-positive and -negative individuals with recent HCV. The NS3 protease, NS5A and NS5B polymerase genes were amplified from 50 genotype 1a participants of the Australian Trial in Acute Hepatitis C. Amino acid variations at sites known to be associated with possible drug resistance were analysed by ultra-deep pyrosequencing. A total of 12% of individuals harboured dominant resistance mutations, while 36% demonstrated non-dominant resistant variants below that detectable by bulk sequencing (that is, Resistance variants (resistance from all classes, with the exception of sofosbuvir. Dominant resistant mutations were uncommonly observed in the setting of recent HCV. However, low-level mutations to all DAA classes were observed by deep sequencing at the majority of sites and in most individuals. The significance of these variants and impact on future treatment options remains to be determined. Clinicaltrials.gov NCT00192569.

  4. Effects of N+ implantation on polysaccharide and osmosis stress resistance of liquorice

    International Nuclear Information System (INIS)

    Wei Shenglin; Wu Lijun; Yu Zengliang

    2007-01-01

    In order to study the effects of N + implantation on osmosis stress resistance of plant, the experiment was taken with liquorice as plant model and 15% PEG as the osmosis stress agent. The results showed that the stem height growth of liquorice increased by 40.2% compared with controls (p + implantation parameters may be useful to increase osmosis stress resistance cultivation of liquorice and to make it mutated with ions beam implantation. (authors)

  5. Effect of cold working on the stress corrosion cracking resistance of nickel-chromium-iron alloys

    International Nuclear Information System (INIS)

    Yonezawa, T.; Onimura, K.

    1987-01-01

    In order to grasp the stress corrosion cracking resistance of cold worked nickel base alloys in PWR primary water, the effect of cold working on the stress corrosion cracking resistance of alloys 600, X-750 and 690, in high temperature water, have been studied. Stress corrosion cracking tests were conducted at 360 0 C (633K) in a simulated PWR primary water for about 12,000 hours (43.2Ms). From the test results, it is concluded that the stress corrosion cracking resistance in the cold worked Alloy 600 at the same applied stress level increases with an increase in cold working ratio, and the cold worked alloys of thermally treated 690 and X-750 have excellent stress corrosion cracking resistance. (Author)

  6. Molecular Basis for Necitumumab Inhibition of EGFR Variants Associated with Acquired Cetuximab Resistance.

    Science.gov (United States)

    Bagchi, Atrish; Haidar, Jaafar N; Eastman, Scott W; Vieth, Michal; Topper, Michael; Iacolina, Michelle D; Walker, Jason M; Forest, Amelie; Shen, Yang; Novosiadly, Ruslan D; Ferguson, Kathryn M

    2018-02-01

    Acquired resistance to cetuximab, an antibody that targets the EGFR, impacts clinical benefit in head and neck, and colorectal cancers. One of the mechanisms of resistance to cetuximab is the acquisition of mutations that map to the cetuximab epitope on EGFR and prevent drug binding. We find that necitumumab, another FDA-approved EGFR antibody, can bind to EGFR that harbors the most common cetuximab-resistant substitution, S468R (or S492R, depending on the amino acid numbering system). We determined an X-ray crystal structure to 2.8 Å resolution of the necitumumab Fab bound to an S468R variant of EGFR domain III. The arginine is accommodated in a large, preexisting cavity in the necitumumab paratope. We predict that this paratope shape will be permissive to other epitope substitutions, and show that necitumumab binds to most cetuximab- and panitumumab-resistant EGFR variants. We find that a simple computational approach can predict with high success which EGFR epitope substitutions abrogate antibody binding. This computational method will be valuable to determine whether necitumumab will bind to EGFR as new epitope resistance variants are identified. This method could also be useful for rapid evaluation of the effect on binding of alterations in other antibody/antigen interfaces. Together, these data suggest that necitumumab may be active in patients who are resistant to cetuximab or panitumumab through EGFR epitope mutation. Furthermore, our analysis leads us to speculate that antibodies with large paratope cavities may be less susceptible to resistance due to mutations mapping to the antigen epitope. Mol Cancer Ther; 17(2); 521-31. ©2017 AACR . ©2017 American Association for Cancer Research.

  7. Interconnection between flowering time control and activation of systemic acquired resistance

    Directory of Open Access Journals (Sweden)

    Zeeshan Zahoor Banday

    2015-03-01

    Full Text Available The ability to avoid or neutralize pathogens is inherent to all higher organisms including plants. Plants recognize pathogens through receptors, and mount resistance against the intruders, with the help of well-elaborated defense arsenal. In response to some local infections, plants develop systemic acquired resistance (SAR, which provides heightened resistance during subsequent infections. Infected tissues generate mobile signalling molecules that travel to the systemic tissues, where they epigenetically modify expression of a set of genes to initiate the manifestation of SAR in distant tissues. Immune responses are largely regulated at transcriptional level. Flowering is a developmental transition that occurs as a result of the coordinated action of large numbers of transcription factors that respond to intrinsic signals and environmental conditions. The plant hormone salicylic acid (SA which is required for SAR activation positively regulates flowering. Certain components of chromatin remodelling complexes that are recruited for suppression of precocious flowering are also involved in suppression of SAR in healthy plants. FLOWERING LOCUS D (FLD, a putative histone demethylase positively regulates SAR manifestation and flowering transition in Arabidopsis. Similarly, incorporation of histone variant H2A.Z in nucleosomes mediated by PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1 (PIE1, an orthologue of yeast chromatin remodelling complex SWR1, concomitantly influences SAR and flowering time. SUMO conjugation and deconjugation mechanisms also similarly affect SAR and flowering in an SA-dependent manner. The evidences suggest a common underlying regulatory mechanism for activation of SAR and flowering in plants.

  8. Glycerol-3-phosphate metabolism in wheat contributes to systemic acquired resistance against Puccinia striiformis f. sp. tritici.

    Directory of Open Access Journals (Sweden)

    Yuheng Yang

    Full Text Available Glycerol-3-phosphate (G3P is a proposed regulator of plant defense signaling in basal resistance and systemic acquired resistance (SAR. The GLY1-encoded glycerol-3-phosphate dehydrogenase (G3PDH and GLI1-encoded glycerol kinase (GK are two key enzymes involved in the G3P biosynthesis in plants. However, their physiological importance in wheat defense against pathogens remains unclear. In this study, quantification analysis revealed that G3P levels were significantly induced in wheat leaves challenged by the avirulent Puccinia striiformis f. sp. tritici (Pst race CYR23. The transcriptional levels of TaGLY1 and TaGLI1 were likewise significantly induced by avirulent Pst infection. Furthermore, knocking down TaGLY1 and TaGLI1 individually or simultaneously with barley stripe mosaic virus-induced gene silencing (BSMV-VIGS inhibited G3P accumulation and compromised the resistance in the wheat cultivar Suwon 11, whereas the accumulation of salicylic acid (SA and the expression of the SA-induced marker gene TaPR1 in plant leaves were altered significantly after gene silencing. These results suggested that G3P contributes to wheat systemic acquired resistance (SAR against stripe rust, and provided evidence that the G3P function as a signaling molecule is conserved in dicots and monocots. Meanwhile, the simultaneous co-silencing of multiple genes by the VIGS system proved to be a powerful tool for multi-gene functional analysis in plants.

  9. Diet-Induced Growth Is Regulated via Acquired Leptin Resistance and Engages a Pomc-Somatostatin-Growth Hormone Circuit

    Directory of Open Access Journals (Sweden)

    Heiko Löhr

    2018-05-01

    Full Text Available Summary: Anorexigenic pro-opiomelanocortin (Pomc/alpha-melanocyte stimulating hormone (αMSH neurons of the hypothalamic melanocortin system function as key regulators of energy homeostasis, also controlling somatic growth across different species. However, the mechanisms of melanocortin-dependent growth control still remain ill-defined. Here, we reveal a thus-far-unrecognized structural and functional connection between Pomc neurons and the somatotropic hypothalamo-pituitary axis. Excessive feeding of larval zebrafish causes leptin resistance and reduced levels of the hypothalamic satiety mediator pomca. In turn, this leads to reduced activation of hypophysiotropic somatostatin (Sst-neurons that express the melanocortin receptor Mc4r, elevated growth hormone (GH expression in the pituitary, and enhanced somatic growth. Mc4r expression and αMSH responsiveness are conserved in Sst-expressing hypothalamic neurons of mice. Thus, acquired leptin resistance and attenuation of pomca transcription in response to excessive caloric intake may represent an ancient mechanism to promote somatic growth when food resources are plentiful. : The melanocortin system controls energy homeostasis and somatic growth, but the underlying mechanisms are elusive. Löhr et al. identify a functional neural circuit in which Pomc neurons stimulate hypothalamic somatostatin neurons, thereby inhibiting hypophyseal growth hormone production. Excessive feeding and acquired leptin resistance attenuate this pathway, allowing faster somatic growth when food resources are rich. Keywords: Pomc neuron, somatostatin neuron, somatic growth, growth hormone, melanocortin system, high-fat diet, obesity, leptin resistance, zebrafish, mouse

  10. Endoplasmic reticulum stress regulates inflammation and insulin resistance in skeletal muscle from pregnant women.

    Science.gov (United States)

    Liong, Stella; Lappas, Martha

    2016-04-15

    Sterile inflammation and infection are key mediators of inflammation and peripheral insulin resistance associated with gestational diabetes mellitus (GDM). Studies have shown endoplasmic reticulum (ER) stress to induce inflammation and insulin resistance associated with obesity and type 2 diabetes, however is paucity of studies investigating the effects of ER stress in skeletal muscle on inflammation and insulin resistance associated with GDM. ER stress proteins IRE1α, GRP78 and XBP-1s were upregulated in skeletal muscle of obese pregnant women, whereas IRE1α was increased in GDM women. Suppression of ER stress, using ER stress inhibitor tauroursodeoxycholic acid (TUDCA) or siRNA knockdown of IRE1α and GRP78, significantly downregulated LPS-, poly(I:C)- or IL-1β-induced production of IL-6, IL-8, IL-1β and MCP-1. Furthermore, LPS-, poly(I:C)- or TNF-α-induced insulin resistance was improved following suppression of ER stress, by increasing insulin-stimulated phosphorylation of IR-β, IRS-1, GLUT-4 expression and glucose uptake. In summary, our inducible obesity and GDM-like models suggests that the development of GDM may be involved in activating ER stress-induced inflammation and insulin resistance in human skeletal muscle. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Life without water: cross-resistance of anhydrobiotic cell line to abiotic stresses

    Science.gov (United States)

    Gusev, Oleg

    2016-07-01

    Anhydrobiosis is an intriguing phenomenon of natural ability of some organisms to resist water loss. The larvae of Polypedilum vanderplanki, the sleeping chironomid is the largest and most complex anhydrobionts known to date. The larvae showed ability to survive variety of abiotic stresses, including outer space environment. Recently cell line (Pv11) derived from the embryonic mass of the chironomid was established. Initially sensitive to desiccation cells, are capable to "induced" anhydrobiosis, when the resistance to desiccation can be developed by pre-treatment of the cells with trehalose followed by quick desiccation. We have further conducted complex analysis of the whole genome transcription response of Pv11 cells to different abiotic stresses, including oxidative stress and irradiation. Comparative analysis showed that the gene set, responsible for formation of desiccation resistance (ARID regions in the genome) is also activated in response to other types of stresses and likely to contribute to general enhancing of the resistance of the cells to harsh environment. We have further demonstrated that the cells are able to protect recombinant proteins from harmful effect of desiccation

  12. Growth on Alpha-Ketoglutarate Increases Oxidative Stress Resistance in the Yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Maria Bayliak

    2017-01-01

    Full Text Available Alpha-ketoglutarate (AKG is an important intermediate in cell metabolism, linking anabolic and catabolic processes. The effect of exogenous AKG on stress resistance in S. cerevisiae cells was studied. The growth on AKG increased resistance of yeast cells to stresses, but the effects depended on AKG concentration and type of stressor. Wild-type yeast cells grown on AKG were more resistant to hydrogen peroxide, menadione, and transition metal ions (Fe2+ and Cu2+ but not to ethanol and heat stress as compared with control ones. Deficiency in SODs or catalases abolished stress-protective effects of AKG. AKG-supplemented growth led to higher values of total metabolic activity, level of low-molecular mass thiols, and activities of catalase and glutathione reductase in wild-type cells compared with the control. The results suggest that exogenous AKG may enhance cell metabolism leading to induction of mild oxidative stress. It turn, it results in activation of antioxidant system that increases resistance of S. cerevisiae cells to H2O2 and other stresses. The presence of genes encoding SODs or catalases is required for the expression of protective effects of AKG.

  13. Frequency of escherichia coli in patients with community acquired urinary tract infection and their resistance pattern against some commonly used anti bacterials

    International Nuclear Information System (INIS)

    Ahmad, W.; Jamshed, F.; Ahmad, W.

    2015-01-01

    Urinary tract infection (UTI) is a very common health problem and Escherichia coli (E coli) are the most common organisms associated with community acquired UTI. Unfortunately these bacteria have developed extensive resistance against most of the commonly used anti-bacterials. The objective of this study was to determine the frequency and resistance pattern of E coli in patients of community acquired UTI in an area in northern part of Pakistan. Methods: Urine specimens were collected from patients who were clinically diagnosed as community acquired UTI. Urine routine examination (Urine RE) was done and samples positive for UTI (Pus cells >10/High Power Field) were included in the study. These samples were inoculated on Eosin Methylene Blue (EMB) agar plates and incubated at 37 degree C for 36 hours. Suspected colonies were then inoculated further on EMB plates for pure cultures of E coli characterized by certain morphological characteristics. IMViC was applied for the confirmation of E coli. In vitro antibiotic susceptibility tests of E coli were performed with standardized commercial susceptibility discs (OXOID). Results: Out of 50 specimens, positive for UTI by urine RE, 20 showed pure growth of E coli on culture (40%). The majority of the isolates (28%; n=14) were from women while only 12% (n=6) were from men. Escherichia coli showed a high rate of resistance towards Ampicillin (90%), Tetracycline (70%), Erythromycin (70%) and Trimethoprim-Sulfamethoxazole (55%). Sparfloxacin showed better results (45%) than ciprofloxacin (50%). Out of 20 E coli isolates, two (10%) were resistant to all the antibacterials except chloramphenicol, eight isolates (40%) showed resistance to six or more than six while 14 (70%) were resistant to four or more than four drugs. Conclusion: Rate of resistance of E coli against commonly used antibacterials was quite high and majority of the strains showed multidrug resistance. (author)

  14. Human neuroblastoma SH-SY5Y cells show increased resistance to hyperthermic stress after differentiation, associated with elevated levels of Hsp72.

    Science.gov (United States)

    Cheng, Lesley; Smith, Danielle J; Anderson, Robin L; Nagley, Phillip

    2011-01-01

    Terminally differentiated neurones in the central nervous system need to be protected from stress. We ask here whether differentiation of progenitor cells to neurones is accompanied by up-regulation of Hsp72, with acquisition of enhanced thermotolerance. Human neuroblastoma SH-SY5Y cells were propagated in an undifferentiated form and subsequently differentiated into neurone-like cells. Thermotolerance tests were carried out by exposure of cells to various temperatures, monitoring nuclear morphology as index of cell death. Abundance of Hsp72 was measured in cell lysates by western immunoblotting. The differentiation of SH-SY5Y cells was accompanied by increased expression of Hsp72. Further, in both cell states, exposure to mild hyperthermic stress (43°C for 30 min) increased Hsp72 expression. After differentiation, SH-SY5Y cells were more resistant to hyperthermic stress compared to their undifferentiated state, correlating with levels of Hsp72. Stable exogenous expression of Hsp72 in SH-SY5Y cells (transfected line 5YHSP72.1, containing mildly elevated levels of Hsp72), led to enhanced resistance to hyperthermic stress. Hsp72 was found to be inducible in undifferentiated 5YHSP72.1 cells; such heat-treated cells displayed enhanced thermotolerance. Treatment of cells with KNK437, a suppressor of Hsp72 induction, resulted in acute thermosensitisation of all cell types tested here. Hsp72 has a major role in the enhanced hyperthermic resistance acquired during neuronal differentiation of SH-SY5Y cells. These findings model the requirement in intact organisms for highly differentiated neurones to be specially protected against thermal stress.

  15. Effects of crystallographic texture on stress-migration resistance in copper thin films

    International Nuclear Information System (INIS)

    Koike, J.; Wada, M.; Sanada, M.; Maruyama, K.

    2002-01-01

    The crystallographic texture of heat-treated Cu thin films and its effects on stress-migration resistance were studied as a function of film thickness within a range of 50-900 nm. All as-deposited films had (111) texture. After heat treatment at 723 K, texture transition from (111) to (100) was observed in films of thickness greater than 300 nm. The (111) texture films after heat treatment showed severe stress migration; in contrast, the (100) texture films showed no noticeable stress migration. The observed stress-migration resistance in the (100) texture films can be attributed to the absence of twins and to lower thermal stress as compared with the (111) texture films

  16. Local cytokine profile and cytological status in children with community-acquired pneumonia arising on the background of the reduced resistance of the organism

    Directory of Open Access Journals (Sweden)

    T. G. Malanicheva

    2017-01-01

    Full Text Available Research objective: to study the features of the cytokine profile and cytological status in children with community-acquired pneumonia, proceeding against a background of reduced resistance of the organism for improving treatment methods. 53 children aged 3 to 7 years were examined. The main group consisted of 30 children with community-acquired pneumonia, which ran against a background of reduced resistance of the body. The comparison group consisted of 23 children with community-acquired pneumonia who had good resistance. Local immunity was studied on the basis of  valuation of cytokine status parameters (tumor necrotic factor-α, interleukin-8, and interferon-γ and cellular composition with an estimate of destructive changes in neutrophils in induced sputum. It was revealed that in the main group of children there is a depression of the neutrophils’ release into the bronchial secretion and a marked increase in the number of neutrophils with maximum signs of destruction of the nucleus and cytoplasm against the background of cytokine status imbalance, manifested in an increase in the content of the tumor necrotic factor-α and a decrease in interleukin-8 and interferon- γ. Inclusion in the traditional therapy of community-acquired pneumonia in children who have a reduced resistance, anti-inflammatory drug fenspiride, eliminates the imbalance of proinflammatory cytokines and increases the release of functionally complete neutrophils in the bronchial secret.

  17. The impact of nosocomially-acquired resistant Pseudomonas aeruginosa infection in a burn unit.

    Science.gov (United States)

    Armour, Alexis D; Shankowsky, Heather A; Swanson, Todd; Lee, Jonathan; Tredget, Edward E

    2007-07-01

    Nosocomially-acquired Pseudomonas aeruginosa remains a serious cause of infection and septic mortality in burn patients. This study was conducted to quantify the impact of nosocomially-transmitted resistant P. aeruginosa in a burn population. Using a TRACS burn database, 48 patients with P. aeruginosa resistant to gentamicin were identified (Pseudomonas group). Thirty-nine were case-matched to controls without resistant P. aeruginosa cultures (control group) for age, total body surface area, admission year, and presence of inhalation injury. Mortality and various morbidity endpoints were examined, as well as antibiotic costs. There was a significantly higher mortality rate in the Pseudomonas group (33% vs. 8%, p products used (packed cells 51.1 +/- 8.0 vs. 21.1 +/- 3.4, p < 0.01; platelets 11.9 +/- 3.0 vs. 1.4 +/- 0.7, p < 0.01) were all significantly higher in the Pseudomonas group. Cost of antibiotics was also significantly higher ($2,658.52 +/- $647.93 vs. $829.22 +/- $152.82, p < 0.01). Nosocomial colonization or infection, or both, of burn patients with aminoglycoside-resistant P. aeruginosa is associated with significantly higher morbidity, mortality, and cost of care. Increased resource consumption did not prevent significantly higher mortality rates when compared with that of control patients. Thus, prevention, identification, and eradication of nosocomial Pseudomonas contamination are critical for cost-effective, successful burn care.

  18. Sex differences in oxidative stress resistance in relation to longevity in Drosophila melanogaster.

    Science.gov (United States)

    Niveditha, S; Deepashree, S; Ramesh, S R; Shivanandappa, T

    2017-10-01

    Gender differences in lifespan and aging are known across species. Sex differences in longevity within a species can be useful to understand sex-specific aging. Drosophila melanogaster is a good model to study the problem of sex differences in longevity since females are longer lived than males. There is evidence that stress resistance influences longevity. The objective of this study was to investigate if there is a relationship between sex differences in longevity and oxidative stress resistance in D. melanogaster. We observed a progressive age-dependent decrease in the activity of SOD and catalase, major antioxidant enzymes involved in defense mechanisms against oxidative stress in parallel to the increased ROS levels over time. Longer-lived females showed lower ROS levels and higher antioxidant enzymes than males as a function of age. Using ethanol as a stressor, we have shown differential susceptibility of the sexes to ethanol wherein females exhibited higher resistance to ethanol-induced mortality and locomotor behavior compared to males. Our results show strong correlation between sex differences in oxidative stress resistance, antioxidant defenses and longevity. The study suggests that higher antioxidant defenses in females may confer resistance to oxidative stress, which could be a factor that influences sex-specific aging in D. melanogaster.

  19. Nasopharyngeal bacterial carriage and antimicrobial resistance in underfive children with community acquired pneumonia

    Directory of Open Access Journals (Sweden)

    Cissy B. Kartasasmita

    2001-12-01

    Full Text Available Lung puncture is the best way to determine the etiology of pneumonia since it yields the highest rate of positive cultures. However, this procedure is difficult, especially for a study in the community. According to WHO, isolates to be tested for antimicrobial resistance in the community should be obtained from nasopharyngeal (NP swabs. Previous studies support the use of NP isolates to determine antimicrobial resistance patterns of isolates from children with pneumonia. The aim of our study was to know the bacterial patterns of the nasopharynx in underfive children with community acquired pneumonia and their antimicrobial resistance. The study was carried out in 4 Primary Health Clinics in Majalaya sub-district, Bandung, Indonesia. All underfives with cough or difficult breathing and classified as having non-severe pneumonia (WHO guidelines, were included in the study. Nasopharyngeal swabs (CDC/WHO Manual were obtained by the doctor, the swabs were placed in Amies transport medium and stored in a sterile jar before taken to the laboratory in the same day. All children were treated with co-trimoxazole. During the nine month study, 698 children with clinical signs of non-severe pneumonia were enrolled. About 25% of the nasopharyngeal specimens yielded bacterial isolates; the two most frequently found were S. pneumoniae and S. epidermidis. The antimicrobial resistance test to co-trimoxazole showed 48.2% S. pneumoniae strain had full resistance and 32.7% showed intermediate resistance to co-trimoxazole. This result is almost similar to other studies from Asian countries. It seems that H. influenzae is not a problem in the study area; however, further studies are needed.

  20. Stress proteins and phytohormones: their role in formation of plant resistance

    International Nuclear Information System (INIS)

    Kosakivska, I.V.

    2005-01-01

    Full text: Using the disc-electrophoresis methods, we have studied protein biosynthesis of different plants, including 11 species of Orchidaceae, some other tropical and subtropical plants, 9 different fruit plants, and 4 cultivars of Triticum aestivum L. under stresses factors such as high and low temperature, clinostating, radioactive irradiation and osmotic shock. Specific and unspecific reactions of plants protein system on stresses were found. De novo synthesis of 35 and 45 kD polypeptides were observed in total and mitochondrial proteins fractions after heat-shock and radioactive irradiation. This suggests that mitochondries participate in formation of plant resistance. Intensive synthesis of ABA revealed as the universal reaction of all studied plants on action of different kinds of stresses. Specific changes in balance of phytohormones were found under different stresses. We observed the correlation between endogenous ABA, IAA and cytokinin level and plant resistance. We also found the interaction between the process of biosynthesis of proteins and phytohormone balance, as well as their direct participation in formation of plant resistance. (author)

  1. The biochar effect: plant resistance to biotic stresses

    Directory of Open Access Journals (Sweden)

    YIGAL ELAD

    2012-01-01

    Full Text Available Biochar (charcoal is the solid co-product of pyrolysis, the thermal degradation of biomass in the absence of oxygen. Pyrolysis also yields gaseous and liquid biofuel products. There is a growing interest worldwide in the pyrolysis platform, for at least four reasons: (i pyrolysis can be a source of renewable biofuels; (ii many biomass waste materials can be treated by pyrolysis and thus converted into a fuel resource; (iii long-term sequestration of carbon dioxide which originated in the atmosphere may result from adding biochar to soil; and (iv biochar soil amendment contributes to improved soil fertility and crop productivity. Currently, however, very little biochar is utilized in agriculture, in part because its agronomic value in terms of crop response and soil health benefits have yet to be quantified, and because the mechanisms by which it improves soil fertility are poorly understood. The positive effects of biochar on crop productivity under conditions of extensive agriculture are frequently attributed to direct effects of biochar-supplied nutrients and to several other indirect effects, including increased water and nutrient retention, improvements in soil pH, increased soil cation exchange capacity, effects on P and S transformations and turnover, neutralization of phytotoxic compounds in the soil, improved soil physical properties, promotion of mycorrhizal fungi, and alteration of soil microbial populations and functions. Yet, the biochar effect is also evident under conditions of intensive production where many of these parameters are not limited. Biochar addition to soil alters microbial populations in the rhizosphere, albeit via mechanisms not yet understood, and may cause a shift towards beneficial microorganism populations that promote plant growth and resistance to biotic stresses. In addition to some scant evidence for biochar-induced plant protection against soilborne diseases, the induction of systemic resistance towards

  2. Tribbles 3 Mediates Endoplasmic Reticulum Stress-Induced Insulin Resistance in Skeletal Muscle

    Science.gov (United States)

    Koh, Ho-Jin; Toyoda, Taro; Didesch, Michelle M.; Lee, Min-Young; Sleeman, Mark W.; Kulkarni, Rohit N.; Musi, Nicolas; Hirshman, Michael F.; Goodyear, Laurie J.

    2013-01-01

    Endoplasmic Reticulum (ER) stress has been linked to insulin resistance in multiple tissues but the role of ER stress in skeletal muscle has not been explored. ER stress has also been reported to increase tribbles 3 (TRB3) expression in multiple cell lines. Here, we report that high fat feeding in mice, and obesity and type 2 diabetes in humans significantly increases TRB3 and ER stress markers in skeletal muscle. Overexpression of TRB3 in C2C12 myotubes and mouse tibialis anterior muscles significantly impairs insulin signaling. Incubation of C2C12 cells and mouse skeletal muscle with ER stressors thapsigargin and tunicamycin increases TRB3 and impairs insulin signaling and glucose uptake, effects reversed in cells overexpressing RNAi for TRB3 and in muscles from TRB3 knockout mice. Furthermore, TRB3 knockout mice are protected from high fat diet-induced insulin resistance in skeletal muscle. These data demonstrate that TRB3 mediates ER stress-induced insulin resistance in skeletal muscle. PMID:23695665

  3. Nasopharyngeal bacterial carriage and antimicrobial resistance in underfive children with community acquired pneumonia

    Directory of Open Access Journals (Sweden)

    Cissy B. Kartasasmita

    2002-09-01

    Full Text Available Pathogens in nasopharynx is a significant risk factor of pneumonia. According to WHO, isolates to be tested for antimicrobial resistance in the community should be obtained from nasopharyngeal (NP swabs. The aim of this study is to know the bacterial patterns of the nasopharynx and cotrimoxazole resistance in under five-year old children with community acquired pneumonia. The study was carried out in 4 primary health clinic (Puskesmas in Majalaya sub-district, Bandung, West Java, Indonesia. All underfive children with cough and/or difficult breathing and classified as having non-severe pneumonia (WHO guidelines were placed in Amies transport medium and stored in a sterile jar, before taken to the laboratory for further examination, in the same day. During this nine month study, 698 children with clinical signs of non-severe pneumonia were enrolled. About 25.4% (177/698 of the nasopharyngeal specimens yielded bacterial isolates; i.e. 120 (67.8% were positive for S pneumoniae, 21 for S epidermidis and alpha streptococcus, 6 for Hafnia alvei, 5 for S aureus, 2 for B catarrhalis, and 1(0.6% for H influenza and Klebsiella, respectively. The antimicrobial resistance test to cotrimoxazole showed that 48.2% of S pneumoniae strain had full resistance and 32.7% showed intermediate resistance to cotrimoxazole. This result is almost similar to the other studies from Asian countries. It seems that H influenza is not a problem in the study area, however, a further study is needed. (Med J Indones 2002; 11: 164-8 Keywords: nasopharyngeal swab, S pneumoniae, cotrimoxazole

  4. Reef corals bleach to resist stress.

    Science.gov (United States)

    Obura, David O

    2009-02-01

    A rationale is presented here for a primary role of bleaching in regulation of the coral-zooxanthellae symbiosis under conditions of stress. Corals and zooxanthellae have fundamentally different metabolic rates, requiring active homeostasis to limit zooxanthellae production and manage translocated products to maintain the symbiosis. The control processes for homeostasis are compromised by environmental stress, resulting in metabolic imbalance between the symbionts. For the coral-zooxanthella symbiosis the most direct way to minimize metabolic imbalance under stress is to reduce photosynthetic production by zooxanthellae. Two mechanisms have been demonstrated that do this: reduction of the chlorophyll concentration in individual zooxanthellae and reduction of the relative biomass of zooxanthellae. Both mechanisms result in visual whitening of the coral, termed bleaching. Arguments are presented here that bleaching provides the final control to minimize physiological damage from stress as an adversity response to metabolic imbalance. As such, bleaching meets the requirements of a stress response syndrome/general adaptive mechanism that is sensitive to internal states rather than external parameters. Variation in bleaching responses among holobionts reflects genotypic and phenotypic differentiation, allowing evolutionary change by natural selection. Thus, reef corals bleach to resist stress, and thereby have some capacity to adapt to and survive change. The extreme thermal anomalies causing mass coral bleaching worldwide lie outside the reaction norms for most coral-zooxanthellae holobionts, revealing the limitations of bleaching as a control mechanism.

  5. Exposure to high hydrostatic pressure rapidly selects for increased RpoS activity and general stress-resistance in Escherichia coli O157:H7.

    Science.gov (United States)

    Vanlint, Dietrich; Rutten, Nele; Govers, Sander K; Michiels, Chris W; Aertsen, Abram

    2013-04-15

    Exposure to high hydrostatic pressure (HHP) is increasingly being used in food preservation as a non-thermal pasteurization process, and its further implementation necessitates a more thorough understanding of bacterial resistance development and intraspecies variability with regard to inactivation by HHP. In this report, we discovered that exposure to high hydrostatic pressure stress can rapidly select for strongly increased RpoS activity in a hypersensitive Escherichia coli O157:H7 strain (ATCC 43888), leading to a simultaneous increase in HHP and heat resistance. Moreover, the level of RpoS activity correlated well with the original hypersensitivity and the extent of acquired HHP resistance, and extremely HHP-resistant mutants of ATCC 43888 clearly incurred a number of additional RpoS-dependent phenotypes. These findings suggest that implementation of novel processing techniques in the food production chain can readily affect the physiology of food-borne pathogens. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Exercise and Prebiotics Produce Stress Resistance: Converging Impacts on Stress-Protective and Butyrate-Producing Gut Bacteria.

    Science.gov (United States)

    Mika, A; Rumian, N; Loughridge, A B; Fleshner, M

    2016-01-01

    The gut microbial ecosystem can mediate the negative health impacts of stress on the host. Stressor-induced disruptions in microbial ecology (dysbiosis) can lead to maladaptive health effects, while certain probiotic organisms and their metabolites can protect against these negative impacts. Prebiotic diets and exercise are feasible and cost-effective strategies that can increase stress-protective bacteria and produce resistance against the detrimental behavioral and neurobiological impacts of stress. The goal of this review is to describe research demonstrating that both prebiotic diets and exercise produce adaptations in gut ecology and the brain that arm the organism against inescapable stress-induced learned helplessness. The results of this research support the novel hypothesis that some of the stress-protective effects of prebiotics and exercise are due to increases in stress-protective gut microbial species and their metabolites. In addition, new evidence also suggests that prebiotic diet or exercise interventions are most effective if given early in life (juvenile-adolescence) when both the gut microbial ecosystem and the brain are plastic. Based on our new understanding of the mechanistic convergence of these interventions, it is feasible to propose that in adults, both interventions delivered in combination may elevate their efficacy to promote a stress-resistant phenotype. © 2016 Elsevier Inc. All rights reserved.

  7. Travel to Asia and traveller's diarrhoea with antibiotic treatment are independent risk factors for acquiring ciprofloxacin-resistant and extended spectrum β-lactamase-producing Enterobacteriaceae-a prospective cohort study.

    Science.gov (United States)

    Reuland, E A; Sonder, G J B; Stolte, I; Al Naiemi, N; Koek, A; Linde, G B; van de Laar, T J W; Vandenbroucke-Grauls, C M J E; van Dam, A P

    2016-08-01

    Travel to (sub)tropical countries is a well-known risk factor for acquiring resistant bacterial strains, which is especially of significance for travellers from countries with low resistance rates. In this study we investigated the rate of and risk factors for travel-related acquisition of extended spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E), ciprofloxacin-resistant Enterobacteriaceae (CIPR-E) and carbapenem-resistant Enterobacteriaceae. Data before and after travel were collected from 445 participants. Swabs were cultured with an enrichment broth and sub-cultured on selective agar plates for ESBL detection, and on plates with a ciprofloxacin disc. ESBL production was confirmed with the double-disc synergy test. Species identification and susceptibility testing were performed with the Vitek-2 system. All isolates were subjected to ertapenem Etest. ESBL and carbapenemase genes were characterized by PCR and sequencing. Twenty-seven out of 445 travellers (6.1%) already had ESBL-producing strains and 45 of 445 (10.1%) travellers had strains resistant to ciprofloxacin before travel. Ninety-eight out of 418 (23.4%) travellers acquired ESBL-E and 130 of 400 (32.5%) travellers acquired a ciprofloxacin-resistant strain. Of the 98 ESBL-E, predominantly Escherichia coli and predominantly blaCTX-M-15, 56% (55/98) were resistant to gentamicin, ciprofloxacin and co-trimoxazole. Multivariate analysis showed that Asia was a high-risk area for ESBL-E as well as CIPR-E acquisition. Travellers with diarrhoea combined with antimicrobial use were significantly at higher risk for acquisition of resistant strains. Only one carbapenemase-producing isolate was acquired, isolated from a participant after visiting Egypt. In conclusion, travelling to Asia and diarrhoea combined with antimicrobial use are important risk factors for acquiring ESBL-E and CIPR-E. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All

  8. Community-acquired necrotizing pneumonia caused by methicillin-resistant Staphylococcus aureus ST30-SCCmecIVc-spat019-PVL positive in San Antonio de Areco, Argentina

    Directory of Open Access Journals (Sweden)

    Silvina Fernández

    2015-03-01

    Full Text Available Community-acquired methicillin-resistant Staphylococcus aureus is the first cause of skin and soft tissue infections, but can also produce severe diseases such as bacteremia, osteomyelitis and necrotizing pneumonia. Some S. aureus lineages have been described in cases of necrotizing pneumonia worldwide, usually in young, previously healthy patients. In this work, we describe a fatal case of necrotizing pneumonia due to community-acquired methicillin-resistant S. aureus clone ST30-SCCmecIVc-spat019-PVL positive in an immunocompetent adult patient.

  9. Plastic responses to four environmental stresses and cross-resistance in a laboratory population of Drosophila melanogaster

    DEFF Research Database (Denmark)

    Bubliy, Oleg A; Kristensen, Torsten Nygård; Kellermann, Vanessa

    2012-01-01

    such as reduction of metabolic rate and accumulation of energy reserves might be involved. 6. The lack of cross-resistance induced by acclimation ⁄ hardening treatments suggests that in an environment with multiple stresses, evolution of shared protective systems associated with plastic responses may be constrained.......1. Acclimation or hardening to one stress in arthropods can lead to a plastic response, which confers increased resistance to other stresses. Such cross-resistance may indicate shared physiological resistance mechanisms and a possibility of joint evolution for resistance traits. 2. In this study...

  10. Carbon-Starvation Induces Cross-Resistance to Thermal, Acid, and Oxidative Stress in Serratia marcescens

    Science.gov (United States)

    Pittman, Joseph R.; Kline, La’Kesha C.; Kenyon, William J.

    2015-01-01

    The broad host-range pathogen Serratia marcescens survives in diverse host and non-host environments, often enduring conditions in which the concentration of essential nutrients is growth-limiting. In such environments, carbon and energy source starvation (carbon-starvation) is one of the most common forms of stress encountered by S. marcescens. Related members of the family Enterobacteriaceae are known to undergo substantial changes in gene expression and physiology in response to the specific stress of carbon-starvation, enabling non-spore-forming cells to survive periods of prolonged starvation and exposure to other forms of stress (i.e., starvation-induced cross-resistance). To determine if carbon-starvation also results in elevated levels of cross-resistance in S. marcescens, both log-phase and carbon-starved cultures, depleted of glucose before the onset of high cell-density stationary-phase, were grown in minimal media at either 30 °C or 37 °C and were then challenged for resistance to high temperature (50 °C), low pH (pH 2.8), and oxidative stress (15 mM H2O2). In general, carbon-starved cells exhibited a higher level of resistance to thermal stress, acid stress, and oxidative stress compared to log-phase cells. The extent of carbon-starvation-induced cross-resistance was dependent on incubation temperature and on the particular strain of S. marcescens. In addition, strain- and temperature-dependent variations in long-term starvation survival were also observed. The enhanced stress-resistance of starved S. marcescens cells could be an important factor in their survival and persistence in many non-host environments and within certain host microenvironments where the availability of carbon sources is suboptimal for growth. PMID:27682115

  11. Carbon-Starvation Induces Cross-Resistance to Thermal, Acid, and Oxidative Stress in Serratia marcescens

    Directory of Open Access Journals (Sweden)

    Joseph R. Pittman

    2015-10-01

    Full Text Available The broad host-range pathogen Serratia marcescens survives in diverse host and non-host environments, often enduring conditions in which the concentration of essential nutrients is growth-limiting. In such environments, carbon and energy source starvation (carbon-starvation is one of the most common forms of stress encountered by S. marcescens. Related members of the family Enterobacteriaceae are known to undergo substantial changes in gene expression and physiology in response to the specific stress of carbon-starvation, enabling non-spore-forming cells to survive periods of prolonged starvation and exposure to other forms of stress (i.e., starvation-induced cross-resistance. To determine if carbon-starvation also results in elevated levels of cross-resistance in S. marcescens, both log-phase and carbon-starved cultures, depleted of glucose before the onset of high cell-density stationary-phase, were grown in minimal media at either 30 °C or 37 °C and were then challenged for resistance to high temperature (50 °C, low pH (pH 2.8, and oxidative stress (15 mM H2O2. In general, carbon-starved cells exhibited a higher level of resistance to thermal stress, acid stress, and oxidative stress compared to log-phase cells. The extent of carbon-starvation-induced cross-resistance was dependent on incubation temperature and on the particular strain of S. marcescens. In addition, strain- and temperature-dependent variations in long-term starvation survival were also observed. The enhanced stress-resistance of starved S. marcescens cells could be an important factor in their survival and persistence in many non-host environments and within certain host microenvironments where the availability of carbon sources is suboptimal for growth.

  12. Analysis of creep effective stress in austenitic heat resistant steel

    International Nuclear Information System (INIS)

    Park, In Duck; Nam, Ki Woo

    2002-01-01

    This paper describes the comparison of calculated effective stress with experimental one in austenitic heat resistant steels, STS310J1TB and STS310S with and without a small amount of Nb and N. Based on a solute atoms diffusion model, contribution from soluble nitrogen to the high-temperature strength was numerically examined for austenitic heat-resisting Fe-Cr-Ni-N(STS310J1TB) and Fe-Cr-Ni(STS310S) alloys. The solute atmosphere dragging stress of dislocation was calculated in optional dislocation velocity of STS310J1TB and STS310S at 650 degree C, 675 degree C and 700 degree C. As a result of the numerical calculation, the solute atmosphere dragging stress of STS310J1TB was about 50 times larger than that of STS310S. When the temperature became high, the maximum value of solute atmosphere dragging stress was small and the velocity of moving dislocation was fast. From the relationship between the dislocation rate and the solute atmosphere dragging stress, the relation of both was proportional and the inclination is about 1 in the level with low velocity of moving dislocation. From above results, the mechanism of dislocation movement in STS310J1TB was the solute atmosphere dragging stress. The solute atmosphere dragging stress, which was calculated from the numerical calculation was close to the effect stress in stress relaxation tests

  13. A horizontally gene transferred copper resistance locus confers hyper‐resistance to antibacterial copper toxicity and enables survival of community acquired methicillin resistant Staphylococcus aureus USA300 in macrophages

    Science.gov (United States)

    Purves, Joanne; Thomas, Jamie; Riboldi, Gustavo P.; Zapotoczna, Marta; Tarrant, Emma; Andrew, Peter W.; Londoño, Alejandra; Planet, Paul J.; Geoghegan, Joan A.; Waldron, Kevin J.

    2018-01-01

    Summary Excess copper is highly toxic and forms part of the host innate immune system's antibacterial arsenal, accumulating at sites of infection and acting within macrophages to kill engulfed pathogens. We show for the first time that a novel, horizontally gene transferred copper resistance locus (copXL), uniquely associated with the SCCmec elements of the highly virulent, epidemic, community acquired methicillin resistant Staphylococcus aureus (CA‐MRSA) USA300, confers copper hyper‐resistance. These genes are additional to existing core genome copper resistance mechanisms, and are not found in typical S. aureus lineages, but are increasingly identified in emerging pathogenic isolates. Our data show that CopX, a putative P1B‐3‐ATPase efflux transporter, and CopL, a novel lipoprotein, confer copper hyper‐resistance compared to typical S. aureus strains. The copXL genes form an operon that is tightly repressed in low copper environments by the copper regulator CsoR. Significantly, CopX and CopL are important for S. aureus USA300 intracellular survival within macrophages. Therefore, the emergence of new S. aureus clones with the copXL locus has significant implications for public health because these genes confer increased resistance to antibacterial copper toxicity, enhancing bacterial fitness by altering S. aureus interaction with innate immunity. PMID:29521441

  14. Increased resistance to a generalist herbivore in a salinity-stressed non-halophytic plant.

    Science.gov (United States)

    Renault, Sylvie; Wolfe, Scott; Markham, John; Avila-Sakar, Germán

    2016-01-01

    Plants often grow under the combined stress of several factors. Salinity and herbivory, separately, can severely hinder plant growth and reproduction, but the combined effects of both factors are still not clearly understood. Salinity is known to reduce plant tissue nitrogen content and growth rates. Since herbivores prefer tissues with high N content, and biochemical pathways leading to resistance are commonly elicited by salt-stress, we hypothesized that plants growing in saline conditions would have enhanced resistance against herbivores. The non-halophyte, Brassica juncea, and the generalist herbivore Trichoplusia ni were used to test the prediction that plants subjected to salinity stress would be both more resistant and more tolerant to herbivory than those growing without salt stress. Plants were grown under different NaCl levels, and either exposed to herbivores and followed by removal of half of their leaves, or left intact. Plants were left to grow and reproduce until senescence. Tissue quality was assessed, seeds were counted and biomass of different organs measured. Plants exposed to salinity grew less, had reduced tissue nitrogen, protein and chlorophyll content, although proline levels increased. Specific leaf area, leaf water content, transpiration and root:shoot ratio remained unaffected. Plants growing under saline condition had greater constitutive resistance than unstressed plants. However, induced resistance and tolerance were not affected by salinity. These results support the hypothesis that plants growing under salt-stress are better defended against herbivores, although in B. juncea this may be mostly through resistance, and less through tolerance. Published by Oxford University Press on behalf of the Annals of Botany Company.

  15. The etiology of oxidative stress in insulin resistance

    Directory of Open Access Journals (Sweden)

    Samantha Hurrle

    2017-10-01

    Full Text Available Insulin resistance is a prevalent syndrome in developed as well as developing countries. It is the predisposing factor for type 2 diabetes mellitus, the most common end stage development of metabolic syndrome in the United States. Previously, studies investigating type 2 diabetes have focused on beta cell dysfunction in the pancreas and insulin resistance, and developing ways to correct these dysfunctions. However, in recent years, there has been a profound interest in the role that oxidative stress in the peripheral tissues plays to induce insulin resistance. The objective of this review is to focus on the mechanism of oxidative species generation and its direct correlation to insulin resistance, to discuss the role of obesity in the pathophysiology of this phenomenon, and to explore the potential of antioxidants as treatments for metabolic dysfunction.

  16. Involvement of p38 mitogen-activated protein kinase in acquired gemcitabine-resistant human urothelial carcinoma sublines

    Directory of Open Access Journals (Sweden)

    Yu-Ting Kao

    2014-07-01

    Full Text Available Resistance to chemotherapeutic drugs is one of the major challenges in the treatment of cancer. A better understanding of how resistance arises and what molecular alterations correlate with resistance is the key to developing novel effective therapeutic strategies. To investigate the underlying mechanisms of gemcitabine (Gem resistance and provide possible therapeutic options, three Gem-resistant urothelial carcinoma sublines were established (NG0.6, NG0.8, and NG1.0. These cells were cross-resistant to arabinofuranosyl cytidine and cisplatin, but sensitive to 5-fluorouracil. The resistant cells expressed lower values of [hENT1 × dCK/RRM1 × RRM2] mRNA ratio. Two adenosine triphosphate-binding cassette proteins ABCD1 as well as multidrug resistance protein 1 were elevated. Moreover, cyclin D1, cyclin-dependent kinases 2 and 4 were upregulated, whereas extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase (MAPK activity were repressed significantly. Administration of p38 MAPK inhibitor significantly reduced the Gem sensitivity in NTUB1 cells, whereas that of an extracellular signal-regulated kinase MAPK inhibitor did not. Furthermore, the Gem-resistant sublines also exhibited higher migration ability. Forced expression of p38 MAPK impaired the cell migration activity and augmented Gem sensitivity in NG1.0 cells. Taken together, these results demonstrate that complex mechanisms were merged in acquiring Gem resistance and provide information that can be important for developing therapeutic targets for treating Gem-resistant tumors.

  17. NVP-BEZ235 overcomes gefitinib-acquired resistance by down-regulating PI3K/AKT/ mTOR phosphorylation

    Directory of Open Access Journals (Sweden)

    Sun ZH

    2015-01-01

    Full Text Available Zhihua Sun,2,* Qiuhui li,1,* Sheng Zhang,1 Jing Chen,1 Lili Huang,3 Jinghua Ren,1 Yu Chang,1 Yichen Liang,1 Gang Wu1 1Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China; 2Oncology department, Xiangyang central Hospital, Xiangyang, Hubei, People’s Republic of China; 3Radiation Oncology Department, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China *These authors contributed equally to this work Background: Patients harboring activating mutations in epidermal growth factor receptors (EGFR are particularly sensitive to EGFR tyrosine kinase inhibitors (TKIs. However, most patients develop an acquired resistance after a period of about 10 months. This study focuses on the therapeutic effect of NVP-BEZ235, a dual inhibitor of phosphatidylinositol- 3-kinase/mammalian target of rapamycin (PI3K/mTOR, in gefitinib-resistant non-small cell lung cancer. Methods: H1975 cell line was validated as a gefitinib-resistant cell model by the nucleotide-sequence analysis. We used the 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay to detect the growth of H1975 cell line in vitro. H1975 cells' migration was detected by the migration assay. Xenograft models were used to investigate the growth of gefitinib-resistant non-small cell lung cancer in vivo. Western blot and immunohistochemical analysis were used to investigate the level of PI3K/protein kinase B(AKT/mTOR signaling pathway proteins. Results: We show that NVP-BEZ235 effectively inhibited the growth of H1975 cells in vivo as well as in vitro. Similarly, H1975 cell migration was reduced by NVP-BEZ235. Further experiments revealed that NVP-BEZ235 attenuated the phosphorylation of PI3K/AKT/mTOR signaling pathway proteins. Conclusion: Taken together, we suggest that NVP-BEZ235 inhibits gefitinib-resistant tumor growth by downregulating PI3K

  18. Experimental evidence for nutrition regulated stress resistance in Drosophila ananassae.

    Directory of Open Access Journals (Sweden)

    Seema Sisodia

    Full Text Available The amount and quality of nutrients consumed by organisms have a strong impact on stress resistance, life-history traits and reproduction. The balance between energy acquisition and expenditure is crucial to the survival and reproductive success of animals. The ability of organisms to adjust their development, physiology or behavior in response to environmental conditions, called phenotypic plasticity, is a defining property of life. One of the most familiar and important examples of phenotypic plasticity is the response of stress tolerance and reproduction to changes in developmental nutrition. Larval nutrition may affect a range of different life-history traits as well as responses to environmental stress in adult.Here we investigate the effect of larval nutrition on desiccation, starvation, chill-coma recovery, heat resistance as well as egg to adult viability, egg production and ovariole number in Drosophila ananassae. We raised larvae on either protein rich diet or carbohydrate rich diet. We found that flies consuming protein rich diet have higher desiccation and heat shock resistance whereas flies developed on carbohydrate rich diet have higher starvation and cold resistance. Egg production was higher in females developed on protein rich diet and we also found trade-off between egg production and Egg to adult viability of the flies. Viability was higher in carbohydrate rich diet. However, sex specific viability was found in different nutritional regimes. Higher Egg production might be due to higher ovariole number in females of protein rich diet.Thus, Drosophila ananassae adapts different stress tolerance and life-history strategies according to the quality of the available diet, which are correlated with phenotypic adjustment at anatomical and physiological levels.

  19. Experimental evidence for nutrition regulated stress resistance in Drosophila ananassae.

    Science.gov (United States)

    Sisodia, Seema; Singh, Bashisth N

    2012-01-01

    The amount and quality of nutrients consumed by organisms have a strong impact on stress resistance, life-history traits and reproduction. The balance between energy acquisition and expenditure is crucial to the survival and reproductive success of animals. The ability of organisms to adjust their development, physiology or behavior in response to environmental conditions, called phenotypic plasticity, is a defining property of life. One of the most familiar and important examples of phenotypic plasticity is the response of stress tolerance and reproduction to changes in developmental nutrition. Larval nutrition may affect a range of different life-history traits as well as responses to environmental stress in adult. Here we investigate the effect of larval nutrition on desiccation, starvation, chill-coma recovery, heat resistance as well as egg to adult viability, egg production and ovariole number in Drosophila ananassae. We raised larvae on either protein rich diet or carbohydrate rich diet. We found that flies consuming protein rich diet have higher desiccation and heat shock resistance whereas flies developed on carbohydrate rich diet have higher starvation and cold resistance. Egg production was higher in females developed on protein rich diet and we also found trade-off between egg production and Egg to adult viability of the flies. Viability was higher in carbohydrate rich diet. However, sex specific viability was found in different nutritional regimes. Higher Egg production might be due to higher ovariole number in females of protein rich diet. Thus, Drosophila ananassae adapts different stress tolerance and life-history strategies according to the quality of the available diet, which are correlated with phenotypic adjustment at anatomical and physiological levels.

  20. Meta-Analysis of Clinical Studies Supports the Pharmacokinetic Variability Hypothesis for Acquired Drug Resistance and Failure of Antituberculosis Therapy

    OpenAIRE

    Pasipanodya, Jotam G.; Srivastava, Shashikant; Gumbo, Tawanda

    2012-01-01

    Laboratory studies have questioned nonadherence as a cause of antituberculosis drug failure and propose that between-patient pharmacokinetic variability may be the cause. This meta-analysis provides clinical evidence that pharmacokinetic variability of isoniazid alone leads to worse microbiological failure, relapse, and acquired drug resistance.

  1. Residual stress effects on the impact resistance and strength of fiber composites

    Science.gov (United States)

    Chamis, C. C.

    1973-01-01

    Equations have been derived to predict degradation effects of microresidual stresses on impact resistance of unidirectional fiber composites. Equations also predict lamination residual stresses in multilayered angle ply composites.

  2. Disseminated cryptococcosis and fluconazole resistant oral candidiasis in a patient with acquired immunodeficiency syndrome (AIDS).

    Science.gov (United States)

    Kothavade, Rajendra J; Oberai, Chetan M; Valand, Arvind G; Panthaki, Mehroo H

    2010-10-28

    Disseminated cryptococcosis and recurrent oral candidiasis was presented in a-heterosexual AIDS patient. Candida tropicalis (C.tropicalis) was isolated from the oral pseudomembranous plaques and Cryptococcus neoformans (C. neoformans) was isolated from maculopapular lesions on body parts (face, hands and chest) and body fluids (urine, expectorated sputum, and cerebrospinal fluid). In vitro drug susceptibility testing on the yeast isolates demonstrated resistance to fluconazole acquired by C. tropicalis which was a suggestive possible root cause of recurrent oral candidiasis in this patient.

  3. Simultaneous analysis of residual stress and stress intensity factor in a resist after UV-nanoimprint lithography based on electron moiré fringes

    International Nuclear Information System (INIS)

    Wang, Qinghua; Kishimoto, Satoshi

    2012-01-01

    In this study, the residual stress in a resist (PAK01) film and the stress intensity factor (SIF) of an induced crack are simultaneously estimated during ultraviolet nanoimprint lithography (UV-NIL) based on electron moiré fringes. A micro grid in a triangular arrangement on the resist film fabricated by UV-NIL is directly used as the model grid. Electron moiré fringes formed by the interference between the fabricated grid and the electron scan beam are used to measure the displacement distribution around the tip of a crack induced by the residual stress in the resist. The SIF of the crack is estimated using a displacement extrapolation method. The residual strain fields and the corresponding residual stress in the resist film far from the crack are determined and analyzed. This method is effective for evaluating the grid quality fabricated by the UV-NIL technique. (paper)

  4. Involvement of ethylene in lesion development and systemic acquired resistance in tobacco during the hypersensitive reaction to tobacco mosaic virus

    NARCIS (Netherlands)

    Knoester, M.; Linthorst, H.J.M.; Bol, J.F.; Loon, L.C. van

    2001-01-01

    Different approaches were taken to investigate the significance of ethylene in lesion development and systemic acquired resistance (SAR) in tobacco (Nicotiana tabacum) reacting hypersensitively to tobacco mosaic virus (TMV). Gaseous ethylene, the ethylene precursor 1-aminocyclopropane-1-carboxylic

  5. Endurance- and Resistance-Trained Men Exhibit Lower Cardiovascular Responses to Psychosocial Stress Than Untrained Men.

    Science.gov (United States)

    Gröpel, Peter; Urner, Maren; Pruessner, Jens C; Quirin, Markus

    2018-01-01

    Evidence shows that regular physical exercise reduces physiological reactivity to psychosocial stress. However, previous research mainly focused on the effect of endurance exercise, with only a few studies looking at the effect of resistance exercise. The current study tested whether individuals who regularly participate in either endurance or resistance training differ from untrained individuals in adrenal and cardiovascular reactivity to psychosocial stress. Twelve endurance-trained men, 10 resistance-trained men, and 12 healthy but untrained men were exposed to a standardized psychosocial stressor, the Trier Social Stress Test. Measurements of heart rate, free salivary cortisol levels, and mood were obtained throughout the test and compared among the three groups. Overall, both endurance- and resistance-trained men had lower heart rate levels than untrained men, indicating higher cardiac performance of the trained groups. Trained men also exhibited lower heart rate responses to psychosocial stress compared with untrained men. There were no significant group differences in either cortisol responses or mood responses to the stressor. The heart rate results are consistent with previous studies indicating reduced cardiovascular reactivity to psychosocial stress in trained individuals. These findings suggest that long-term endurance and resistance trainings may be related to the same cardiovascular benefits, without exhibiting strong effects on the cortisol reactivity to stress.

  6. Community-Acquired Methicillin-Resistant Staphylococcus aureus: The New Face of an Old Foe?

    Science.gov (United States)

    Udo, Edet E.

    2013-01-01

    The burden of infections caused by community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is increasing among different patient populations globally. As CA-MRSA has become established in healthcare facilities, the range of infections caused by them has also increased. Molecular characterization of CA-MRSA isolates obtained from different centers has revealed significant diversity in their genetic backgrounds. Although many CA-MRSA strains are still susceptible to non-β-lactam antibiotics, multiresistance to non-β-lactam agents has emerged in some clones, posing substantial problems for empirical and directed therapy of infections caused by these strains. Some CA-MRSA clones have acquired the capacity to spread locally and internationally. CA-MRSA belonging to ST80-MRSA-IV and ST30-MRSA-IV appear to be the dominant clones in the countries of the Gulf Cooperation Council (GCC). The emergence of pandemic CA-MRSA clones not only limits therapeutic options but also presents significant challenges for infection control. Continued monitoring of global epidemiology and emerging drug resistance data is critical for the effective management of these infections. PMID:24051949

  7. A trade-off between natural and acquired antibody production in a reptile: implications for long-term resistance to disease

    Directory of Open Access Journals (Sweden)

    Franziska C. Sandmeier

    2012-08-01

    Vertebrate immune systems are understood to be complex and dynamic, with trade-offs among different physiological components (e.g., innate and adaptive immunity within individuals and among taxonomic lineages. Desert tortoises (Gopherus agassizii immunised with ovalbumin (OVA showed a clear trade-off between levels of natural antibodies (NAbs; innate immune function and the production of acquired antibodies (adaptive immune function. Once initiated, acquired antibody responses included a long-term elevation in antibodies persisting for more than one year. The occurrence of either (a high levels of NAbs or (b long-term elevations of acquired antibodies in individual tortoises suggests that long-term humoral resistance to pathogens may be especially important in this species, as well as in other vertebrates with slow metabolic rates, concomitantly slow primary adaptive immune responses, and long life-spans.

  8. Update on the prevention and control of community-acquired meticillin-resistant Staphylococcus aureus (CA-MRSA).

    Science.gov (United States)

    Skov, Robert; Christiansen, Keryn; Dancer, Stephanie J; Daum, Robert S; Dryden, Matthew; Huang, Yhu-Chering; Lowy, Franklin D

    2012-03-01

    The rapid dissemination of community-acquired meticillin-resistant Staphylococcus aureus (CA-MRSA) since the early 2000s and the appearance of new successful lineages is a matter of concern. The burden of these infections varies widely between different groups of individuals and in different regions of the world. Estimating the total burden of disease is therefore problematic. Skin and soft-tissue infections, often in otherwise healthy young individuals, are the most common clinical manifestation of these infections. The antibiotic susceptibilities of these strains also vary, although they are often more susceptible to 'traditional' antibiotics than related hospital-acquired strains. Preventing the dissemination of these organisms throughout the general population requires a multifaceted approach, including screening and decolonisation, general hygiene and cleaning measures, antibiotic stewardship programmes and, in the future, vaccination. The current evidence on the prevention and control of CA-MRSA is appraised and summarised in this review. Copyright © 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  9. Bacterial Etiology and Antibiotic Resistance Profile of Community-Acquired Urinary Tract Infections in a Cameroonian City.

    Science.gov (United States)

    Nzalie, Rolf Nyah-Tuku; Gonsu, Hortense Kamga; Koulla-Shiro, Sinata

    2016-01-01

    Introduction. Community-acquired urinary tract infections (CAUTIs) are usually treated empirically. Geographical variations in etiologic agents and their antibiotic sensitivity patterns are common. Knowledge of antibiotic resistance trends is important for improving evidence-based recommendations for empirical treatment of UTIs. Our aim was to determine the major bacterial etiologies of CAUTIs and their antibiotic resistance patterns in a cosmopolitan area of Cameroon for comparison with prescription practices of local physicians. Methods. We performed a cross-sectional descriptive study at two main hospitals in Yaoundé, collecting a clean-catch mid-stream urine sample from 92 patients having a clinical diagnosis of UTI. The empirical antibiotherapy was noted, and identification of bacterial species was done on CLED agar; antibiotic susceptibility testing was performed using the Kirby-Bauer disc diffusion method. Results. A total of 55 patients had samples positive for a UTI. Ciprofloxacin and amoxicillin/clavulanic acid were the most empirically prescribed antibiotics (30.9% and 23.6%, resp.); bacterial isolates showed high prevalence of resistance to both compounds. Escherichia coli (50.9%) was the most common pathogen, followed by Klebsiella pneumoniae (16.4%). Prevalence of resistance for ciprofloxacin was higher compared to newer quinolones. Conclusions. E. coli and K. pneumoniae were the predominant bacterial etiologies; the prevalence of resistance to commonly prescribed antibiotics was high.

  10. Temperature-stress resistance and tolerance along a latitudinal cline in North American Arabidopsis lyrata.

    Directory of Open Access Journals (Sweden)

    Guillaume Wos

    Full Text Available The study of latitudinal gradients can yield important insights into adaptation to temperature stress. Two strategies are available: resistance by limiting damage, or tolerance by reducing the fitness consequences of damage. Here we studied latitudinal variation in resistance and tolerance to frost and heat and tested the prediction of a trade-off between the two strategies and their costliness. We raised plants of replicate maternal seed families from eight populations of North American Arabidopsis lyrata collected along a latitudinal gradient in climate chambers and exposed them repeatedly to either frost or heat stress, while a set of control plants grew under standard conditions. When control plants reached maximum rosette size, leaf samples were exposed to frost and heat stress, and electrolyte leakage (PEL was measured and treated as an estimate of resistance. Difference in maximum rosette size between stressed and control plants was used as an estimate of tolerance. Northern populations were more frost resistant, and less heat resistant and less heat tolerant, but-unexpectedly-they were also less frost tolerant. Negative genetic correlations between resistance and tolerance to the same and different thermal stress were generally not significant, indicating only weak trade-offs. However, tolerance to frost was consistently accompanied by small size under control conditions, which may explain the non-adaptive latitudinal pattern for frost tolerance. Our results suggest that adaptation to frost and heat is not constrained by trade-offs between them. But the cost of frost tolerance in terms of plant size reduction may be important for the limits of species distributions and climate niches.

  11. Targeting the cell stress response of Plasmodium falciparum to overcome artemisinin resistance.

    Directory of Open Access Journals (Sweden)

    Con Dogovski

    2015-04-01

    Full Text Available Successful control of falciparum malaria depends greatly on treatment with artemisinin combination therapies. Thus, reports that resistance to artemisinins (ARTs has emerged, and that the prevalence of this resistance is increasing, are alarming. ART resistance has recently been linked to mutations in the K13 propeller protein. We undertook a detailed kinetic analysis of the drug responses of K13 wild-type and mutant isolates of Plasmodium falciparum sourced from a region in Cambodia (Pailin. We demonstrate that ART treatment induces growth retardation and an accumulation of ubiquitinated proteins, indicative of a cellular stress response that engages the ubiquitin/proteasome system. We show that resistant parasites exhibit lower levels of ubiquitinated proteins and delayed onset of cell death, indicating an enhanced cell stress response. We found that the stress response can be targeted by inhibiting the proteasome. Accordingly, clinically used proteasome inhibitors strongly synergize ART activity against both sensitive and resistant parasites, including isogenic lines expressing mutant or wild-type K13. Synergy is also observed against Plasmodium berghei in vivo. We developed a detailed model of parasite responses that enables us to infer, for the first time, in vivo parasite clearance profiles from in vitro assessments of ART sensitivity. We provide evidence that the clinical marker of resistance (delayed parasite clearance is an indirect measure of drug efficacy because of the persistence of unviable parasites with unchanged morphology in the circulation, and we suggest alternative approaches for the direct measurement of viability. Our model predicts that extending current three-day ART treatment courses to four days, or splitting the doses, will efficiently clear resistant parasite infections. This work provides a rationale for improving the detection of ART resistance in the field and for treatment strategies that can be employed in areas

  12. P-body proteins regulate transcriptional rewiring to promote DNA replication stress resistance.

    Science.gov (United States)

    Loll-Krippleber, Raphael; Brown, Grant W

    2017-09-15

    mRNA-processing (P-) bodies are cytoplasmic granules that form in eukaryotic cells in response to numerous stresses to serve as sites of degradation and storage of mRNAs. Functional P-bodies are critical for the DNA replication stress response in yeast, yet the repertoire of P-body targets and the mechanisms by which P-bodies promote replication stress resistance are unknown. In this study we identify the complete complement of mRNA targets of P-bodies during replication stress induced by hydroxyurea treatment. The key P-body protein Lsm1 controls the abundance of HHT1, ACF4, ARL3, TMA16, RRS1 and YOX1 mRNAs to prevent their toxic accumulation during replication stress. Accumulation of YOX1 mRNA causes aberrant downregulation of a network of genes critical for DNA replication stress resistance and leads to toxic acetaldehyde accumulation. Our data reveal the scope and the targets of regulation by P-body proteins during the DNA replication stress response.P-bodies form in response to stress and act as sites of mRNA storage and degradation. Here the authors identify the mRNA targets of P-bodies during DNA replication stress, and show that P-body proteins act to prevent toxic accumulation of these target transcripts.

  13. [Relationship between phenomenon of acquired activated protein C resistance and antiphospholipid antibodies in patients with systemic lupus erythematosus].

    Science.gov (United States)

    Hu, Y Q; Chen, F P; Xie, Q Z

    2001-10-28

    To determine the occurrence of activated protein C resistance (APCR), to identify APCR is associated with thrombotic events (TEs), and acquired APCR is associated with the presence of antiphospholipid antibodies (APLAs) in 30 patients with systemic lupus erythematosus (SLE). Laboratory tests included dilute Russell's viper venom time assay for LA (dRVVT-LA), ELISA assay for ACL, APC sensitivity ratio, and factor V Leiden were detected by PCR-Mnl/I digestion. Acquired APCR was presented in 14(46.67%) of 30 patients. Factor V Leiden was not found in any patients. The incidence of TEs in the APCR-positive patients was significantly higher than that in the APCR-negative patients (42.85% vs 6.25%, P TEs in the LA-positive patients was also significantly higher than that in the LA-negative patients (50% vs 11.1%, P TEs (P TEs. Acquired APCR may not reflect the interference of LAs with the protein C pathway which may represent a mechanism of LA-associated TEs.

  14. Field and polarity dependence of time-to-resistance increase in Fe–O films studied by constant voltage stress method

    OpenAIRE

    Eriguchi, Koji; Wei, Zhiqiang; Takagi, Takeshi; Ohta, Hiroaki; Ono, Kouichi

    2009-01-01

    Constant voltage stress (CVS) was applied to Fe–O films prepared by a sputtering process to investigate a stress-induced resistance increase leading to a fundamental mechanism for switching behaviors. Under the CVS, an abrupt resistance increase was found for both stress polarities. A conduction mechanism after the resistance increase exhibited non-Ohmic transport. The time-to-resistance increase (tr) under the CVS was revealed to strongly depend on stress voltage as well as the polarity. Fro...

  15. Community-acquired necrotizing pneumonia caused by methicillin-resistant Staphylococcus aureus ST30-SCCmecIVc-spat019-PVL positive in San Antonio de Areco, Argentina.

    Science.gov (United States)

    Fernandez, Silvina; Murzicato, Sofía; Sandoval, Orlando; Fernández-Canigia, Liliana; Mollerach, Marta

    2015-01-01

    Community-acquired methicillin-resistant Staphylococcus aureus is the first cause of skin and soft tissue infections, but can also produce severe diseases such as bacteremia, osteomyelitis and necrotizing pneumonia. Some S. aureus lineages have been described in cases of necrotizing pneumonia worldwide, usually in young, previously healthy patients. In this work, we describe a fatal case of necrotizing pneumonia due to community-acquired methicillin-resistant S. aureus clone ST30-SCCmecIVc-spat019-PVL positive in an immunocompetent adult patient. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Oxidative stress and antioxidant responses to progressive resistance exercise intensity in trained and untrained males

    OpenAIRE

    H Çakır-Atabek; F Özdemir; R Çolak

    2015-01-01

    The relationship between oxidative stress and some exercise components of resistance exercise (e.g. intensity, exercise volume) has not been clearly defined. Additionally, the oxidative stress markers may respond differently in various conditions. This study aims to determine the effects of progressive intensity of resistance exercise (RE) on oxidative stress and antioxidants in trained and untrained men, and also to investigate the possible threshold intensity required to evoke oxidative str...

  17. Exercise, learned helplessness, and the stress-resistant brain.

    Science.gov (United States)

    Greenwood, Benjamin N; Fleshner, Monika

    2008-01-01

    Exercise can prevent the development of stress-related mood disorders, such as depression and anxiety. The underlying neurobiological mechanisms of this effect, however, remain unknown. Recently, researchers have used animal models to begin to elucidate the potential mechanisms underlying the protective effects of physical activity. Using the behavioral consequences of uncontrollable stress or "learned helplessness" as an animal analog of depression- and anxiety-like behaviors in rats, we are investigating factors that could be important for the antidepressant and anxiolytic properties of exercise (i.e., wheel running). The current review focuses on the following: (1) the effect of exercise on the behavioral consequences of uncontrollable stress and the implications of these effects on the specificity of the "learned helplessness" animal model; (2) the neurocircuitry of learned helplessness and the role of serotonin; and (3) exercise-associated neural adaptations and neural plasticity that may contribute to the stress-resistant brain. Identifying the mechanisms by which exercise prevents learned helplessness could shed light on the complex neurobiology of depression and anxiety and potentially lead to novel strategies for the prevention of stress-related mood disorders.

  18. Development of abiotic-stress resistant warm season trufgrasses by proton-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Y. W.; Kim, J. Y.; Jeong, S. H. [Korea Univ., Seoul (Korea, Republic of)

    2007-04-15

    The direct use of mutation is a valuable approach to generate genetic variation in crop species by altering agronomically useful major traits. The proton beam, as a mutagen, was applied to improve resistance traits of Zoysia grass under various abiotic stresses. Proton beam was irradiated to mature dry seeds of Zenith (Zoysia grass), which is well-adapted to Korean climate, using a proton- accelerator with seven different doses (50, 100, 150, 200, 250, 300, 400 Gy). Individual seedling of M1 plant was transplanted from the seed bed and allowed to reach appropriate plant mass. Clones that showed superior growth were chosen and transplanted to pots for further clone propagation and field evaluation. Growth characteristics of turfgrass, such as plant height, leaf length, leaf width, number of tiller were evaluated ninety days after sowing. Although large variation within each dose, noticeable differences were found among different irradiated doses. Most of the mutant clones derived from the irradiation treatment showed more vigorous growth than the control plants. RAPD (Random Amplified Polymorphic DNA) and AFLP (Amplified Fragment Length Polymorphism) methods were conducted to analyze genomic variations associated with proton beam irradiation. In order to establish selection criteria for selection of salt-stress resistance plants, an in vitro method that is able to select salt-stress resistant mutants in liquid media without ambient disturbances. Total 647 predominance clones that were considered as abiotic stress resistant mutants were transplanted to the field for further evaluation.

  19. Arbutin increases Caenorhabditis elegans longevity and stress resistance

    Directory of Open Access Journals (Sweden)

    Lin Zhou

    2017-12-01

    Full Text Available Arbutin (p-hydroxyphenyl-β-D-glucopyranoside, a well-known tyrosinase inhibitor, has been widely used as a cosmetic whitening agent. Although its natural role is to scavenge free radicals within cells, it has also exhibited useful activities for the treatment of diuresis, bacterial infections and cancer, as well as anti-inflammatory and anti-tussive activities. Because function of free radical scavenging is also related to antioxidant and the effects of arbutin on longevity and stress resistance in animals have not yet been confirmed, here the effects of arbutin on Caenorhabditis elegans were investigated. The results demonstrated that optimal concentrations of arbutin could extend lifespan and enhance resistance to oxidative stress. The underlying molecular mechanism for these effects involves decreased levels of reactive oxygen species (ROS, improvement of daf-16 nuclear localization, and up-regulated expression of daf-16 and its downstream targets, including sod-3 and hsp16.2. In this work the roles of arbutin in lifespan and health are studied and the results support that arbutin is an antioxidant for maintaining overall health.

  20. Circumvention of inherent or acquired cytotoxic drug resistance in vitro using combinations of modulating agents.

    Science.gov (United States)

    Cadagan, David; Merry, Stephen

    2013-10-01

    Modulating agents are used to circumvent drug resistance in the clinical setting. However achievable serum concentrations are often lower than those which are optimal in vitro. Combination of modulating agents with non-overlapping toxicities may overcome this obstacle. We have investigated combinations of three modulating agents (quinine, verapamil, and cinnarizine) to circumvent inherent or acquired resistance to the cytotoxic drugs doxorubicin, vincristine and paclitaxel. Dose-response curves to cytotoxic drugs in the presence/absence of modulating agents were determined using colony formation and cell proliferation assays. Doxorubicin accumulation into cell monolayers was measured by fluorescence spectrophotometry. Greater (1.9-fold) sensitisation to particular cytotoxic drugs was observed for certain combinations of modulating agents compared to individual effects. The most effective combination was quinine-plus-verapamil with the cytotoxic drug doxorubicin. This increase in sensitivity was associated with increased doxorubicin accumulation. Such enhanced activity was, however, not observed for all combinations of modulating agents or for all studied cytotoxic drugs. The findings of the present study suggest certain combinations of modulating agents to have a clinical role in circumventing drug resistance. Particular combinations of modulating agents must be carefully chosen to suit particular cytotoxic drug treatments.

  1. Trade-offs with stability modulate innate and mutationally acquired drug-resistance in bacterial dihydrofolate reductase enzymes.

    Science.gov (United States)

    Matange, Nishad; Bodkhe, Swapnil; Patel, Maitri; Shah, Pooja

    2018-06-05

    Structural stability is a major constraint on the evolution of protein sequences. However, under strong directional selection, mutations that confer novel phenotypes but compromise structural stability of proteins may be permissible. During the evolution of antibiotic resistance, mutations that confer drug resistance often have pleiotropic effects on the structure and function of antibiotic-target proteins, usually essential metabolic enzymes. In this study, we show that trimethoprim-resistant alleles of dihydrofolate reductase from Escherichia coli (EcDHFR) harbouring the Trp30Gly, Trp30Arg or Trp30Cys mutations are significantly less stable than the wild type making them prone to aggregation and proteolysis. This destabilization is associated with lower expression level resulting in a fitness cost and negative epistasis with other TMP-resistant mutations in EcDHFR. Using structure-based mutational analysis we show that perturbation of critical stabilizing hydrophobic interactions in wild type EcDHFR enzyme explains the phenotypes of Trp30 mutants. Surprisingly, though crucial for the stability of EcDHFR, significant sequence variation is found at this site among bacterial DHFRs. Mutational and computational analyses in EcDHFR as well as in DHFR enzymes from Staphylococcus aureus and Mycobacterium tuberculosis demonstrate that natural variation at this site and its interacting hydrophobic residues, modulates TMP-resistance in other bacterial DHFRs as well, and may explain the different susceptibilities of bacterial pathogens to trimethoprim. Our study demonstrates that trade-offs between structural stability and function can influence innate drug resistance as well as the potential for mutationally acquired drug resistance of an enzyme. ©2018 The Author(s).

  2. Alcohol dehydrogenase 1 (ADH1) confers both abiotic and biotic stress resistance in Arabidopsis.

    Science.gov (United States)

    Shi, Haitao; Liu, Wen; Yao, Yue; Wei, Yunxie; Chan, Zhulong

    2017-09-01

    Although the transcriptional regulation and upstream transcription factors of AtADH1 in response to abiotic stress are widely revealed, the in vivo roles of AtADH1 remain unknown. In this study, we found that the expression of AtADH1 was largely induced after salt, drought, cold and pathogen infection. Further studies found that AtADH1 overexpressing plants were more sensitive to abscisic acid (ABA) in comparison to wide type (WT), while AtADH1 knockout mutants showed no significant difference compared with WT in ABA sensitivity. Consistently, AtADH1 overexpressing plants showed improved stress resistance to salt, drought, cold and pathogen infection than WT, but the AtADH1 knockout mutants had no significant difference in abiotic and biotic stress resistance. Moreover, overexpression of AtADH1 expression increased the transcript levels of multiple stress-related genes, accumulation of soluble sugars and callose depositions. All these results indicate that AtADH1 confers enhanced resistance to both abiotic and biotic stresses. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Plasticity in behavioural responses and resistance to temperature stress in Musca domestica

    DEFF Research Database (Denmark)

    Kjaersgaard, Anders; Blackenhorn, Wolf U.; Pertoldi, Cino

    2015-01-01

    , at the stressful high temperature Spanish flies flew the furthest and Danish flies the shortest distance. Neither body size nor wing loading affected flight performance, although flies with narrower wings tended to fly further (wing shape effect). Swiss flies were most active in terms of locomotor activity......Organisms can respond to and cope with stressful environments in a number of ways including behavioural, morphological and physiological adjustments. To understand the role of behavioural traits in thermal adaptations we compared heat resistance, locomotor (walking and flying) activity, flight...... performance and morphology of three European populations of Musca domestica (Diptera: Muscidae) originating from different thermal conditions (Spain, Switzerland and Denmark) at benign and stressful high temperatures. Spanish flies showed greater heat resistance than Swiss and Danish flies. Similarly...

  4. Coupled stress-strain and electrical resistivity measurements on copper based shape memory single crystals

    Directory of Open Access Journals (Sweden)

    Gonzalez Cezar Henrique

    2004-01-01

    Full Text Available Recently, electrical resistivity (ER measurements have been done during some thermomechanical tests in copper based shape memory alloys (SMA's. In this work, single crystals of Cu-based SMA's have been studied at different temperatures to analyse the relationship between stress (s and ER changes as a function of the strain (e. A good consistency between ER change values is observed in different experiments: thermal martensitic transformation, stress induced martensitic transformation and stress induced reorientation of martensite variants. During stress induced martensitic transformation (superelastic behaviour and stress induced reorientation of martensite variants, a linear relationship is obtained between ER and strain as well as the absence of hys teresis. In conclusion, the present results show a direct evidence of martensite electrical resistivity anisotropy.

  5. Bacterial Etiology and Antibiotic Resistance Profile of Community-Acquired Urinary Tract Infections in a Cameroonian City

    Directory of Open Access Journals (Sweden)

    Rolf Nyah-tuku Nzalie

    2016-01-01

    Full Text Available Introduction. Community-acquired urinary tract infections (CAUTIs are usually treated empirically. Geographical variations in etiologic agents and their antibiotic sensitivity patterns are common. Knowledge of antibiotic resistance trends is important for improving evidence-based recommendations for empirical treatment of UTIs. Our aim was to determine the major bacterial etiologies of CAUTIs and their antibiotic resistance patterns in a cosmopolitan area of Cameroon for comparison with prescription practices of local physicians. Methods. We performed a cross-sectional descriptive study at two main hospitals in Yaoundé, collecting a clean-catch mid-stream urine sample from 92 patients having a clinical diagnosis of UTI. The empirical antibiotherapy was noted, and identification of bacterial species was done on CLED agar; antibiotic susceptibility testing was performed using the Kirby-Bauer disc diffusion method. Results. A total of 55 patients had samples positive for a UTI. Ciprofloxacin and amoxicillin/clavulanic acid were the most empirically prescribed antibiotics (30.9% and 23.6%, resp.; bacterial isolates showed high prevalence of resistance to both compounds. Escherichia coli (50.9% was the most common pathogen, followed by Klebsiella pneumoniae (16.4%. Prevalence of resistance for ciprofloxacin was higher compared to newer quinolones. Conclusions. E. coli and K. pneumoniae were the predominant bacterial etiologies; the prevalence of resistance to commonly prescribed antibiotics was high.

  6. Effect of heat treatment conditions on stress corrosion cracking resistance of alloy X-750 in high temperature water

    International Nuclear Information System (INIS)

    Yonezawa, Toshio; Onimura, Kichiro; Sakamoto, Naruo; Sasaguri, Nobuya; Susukida, Hiroshi; Nakata, Hidenori.

    1984-01-01

    In order to improve the resistance of the Alloy X-750 in high temperature and high purity water, the authors investigated the influence of heat treatment condition on the stress corrosion cracking resistance of the alloy. This paper describes results of the stress corrosion cracking test and some discussion on the mechanism of the stress corrosion cracking of Alloy X-750 in deaerated high temperature water. The following results were obtained. (1) The stress corrosion cracking resistance of Alloy X-750 in deaerated high temperature water remarkably depended upon the heat treatment condition. The materials solution heat treated and aged within temperature ranges from 1065 to 1100 0 C and from 704 to 732 0 C, respectively, have a good resistance to the stress corrosion cracking in deaerated high temperature water. Especially, water cooling after the solution heat treatment gives an excellent resistance to the stress corrosion cracking in deaerated high temperature water. (2) Any correlations were not observed between the stress corrosion cracking susceptibility of Alloy X-750 in deaerated high temperature water and grain boundary chromium depleted zones, precipitate free zones and the grain boundary segregation of impurity elements and so on. It appears that there are good correlations between the stress corrosion cracking resistance of the alloy in the environment and the kinds, morphology and coherency of precipitates along the grain boundaries. (author)

  7. Hospital-Acquired Methicillin-resistant Staphylococcus aureus Bacteremia Related to Medicare Antibiotic Prescriptions: A State-Level Analysis.

    Science.gov (United States)

    Fukunaga, Bryce T; Sumida, Wesley K; Taira, Deborah A; Davis, James W; Seto, Todd B

    2016-10-01

    Methicillin-resistant Staphylococcus aureus (MRSA) results in almost half of all deaths caused by antibiotic resistant organisms. Current evidence suggests that MRSA infections are associated with antibiotic use. This study examined state-level data to determine whether outpatient antibiotic use was associated with hospital-acquired MRSA (HA-MRSA) infections. The 2013 Centers for Disease Control and Prevention (CDC) Healthcare-Associated Infections Progress Report was used to obtain HA-MRSA infection rates. Data on the number of antibiotic prescriptions with activity towards methicillin-sensitive Staphylococcus aureus (MSSA) at the state level were obtained from the 2013 Medicare Provider Utilization and Payment Data: Part D Prescriber Public Use File. Pearson's correlation coefficient was used to analyze the relationship between the number of antibiotic prescriptions and HA-MRSA infection rates. The average number of HA-MRSA infections was 0.026 per 1000 persons with the highest rates concentrated in Southeastern and Northeastern states. The average number of outpatient prescriptions per capita was 0.74 with the highest rates in Southeastern states. A significant correlation (ρ = 0.64, P resistance.

  8. Effect of Myricetin, Pyrogallol, and Phloroglucinol on Yeast Resistance to Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Vanda Mendes

    2015-01-01

    Full Text Available The health beneficial effects of dietary polyphenols have been attributed to their intrinsic antioxidant activity, which depends on the structure of the compound and number of hydroxyl groups. In this study, the protective effects of pyrogallol, phloroglucinol, and myricetin on the yeast Saccharomyces cerevisiae were investigated. Pyrogallol and myricetin, which have a pyrogallol structure in the B ring, increased H2O2 resistance associated with a reduction in intracellular oxidation and protein carbonylation, whereas phloroglucinol did not exert protective effects. The acquisition of oxidative stress resistance in cells pretreated with pyrogallol and myricetin was not associated with an induction of endogenous antioxidant defences as assessed by the analysis of superoxide dismutase and catalase activities. However, myricetin, which provided greater stress resistance, prevented H2O2-induced glutathione oxidation. Moreover, myricetin increased the chronological lifespan of yeast lacking the mitochondrial superoxide dismutase (Sod2p, which exhibited a premature aging phenotype and oxidative stress sensitivity. These findings show that the presence of hydroxyl groups in the ortho position of the B ring in pyrogallol and myricetin contributes to the antioxidant protection afforded by these compounds. In addition, myricetin may alleviate aging-induced oxidative stress, particularly when redox homeostasis is compromised due to downregulation of endogenous defences present in mitochondria.

  9. Field and polarity dependence of time-to-resistance increase in Fe-O films studied by constant voltage stress method

    International Nuclear Information System (INIS)

    Eriguchi, Koji; Ohta, Hiroaki; Ono, Kouichi; Wei Zhiqiang; Takagi, Takeshi

    2009-01-01

    Constant voltage stress (CVS) was applied to Fe-O films prepared by a sputtering process to investigate a stress-induced resistance increase leading to a fundamental mechanism for switching behaviors. Under the CVS, an abrupt resistance increase was found for both stress polarities. A conduction mechanism after the resistance increase exhibited non-Ohmic transport. The time-to-resistance increase (t r ) under the CVS was revealed to strongly depend on stress voltage as well as the polarity. From a polarity-dependent resistance increase determined by a time-zero measurement, the voltage and polarity-dependent t r were discussed on the basis of field- and structure-enhanced thermochemical reaction mechanisms

  10. Differences in microbiological profile between community-acquired, healthcare-associated and hospital-acquired infections.

    Science.gov (United States)

    Cardoso, Teresa; Ribeiro, Orquídea; Aragão, Irene; Costa-Pereira, Altamiro; Sarmento, António

    2013-01-01

    Microbiological profiles were analysed and compared for intra-abdominal, urinary, respiratory and bloodstream infections according to place of acquisition: community-acquired, with a separate analysis of healthcare-associated, and hospital-acquired. Prospective cohort study performed at a university tertiary care hospital over 1 year. Inclusion criteria were meeting the Centers for Disease Control definition of intra-abdominal, urinary, respiratory and bloodstream infections. A total of 1035 patients were included in the study. More than 25% of intra-abdominal infections were polymicrobial; multi-drug resistant gram-negatives were 38% in community-acquired, 50% in healthcare-associated and 57% in hospital-acquired. E. coli was the most prevalent among urinary infections: 69% in community-acquired, 56% in healthcare-associated and 26% in hospital-acquired; ESBL producers' pathogens were 10% in healthcare-associated and 3% in community-acquired and hospital-acquired. In respiratory infections Streptococcus pneumoniae was the most prevalent in community-acquired (54%) and MRSA in healthcare-associated (24%) and hospital-acquired (24%). A significant association was found between MRSA respiratory infection and hospitalization in the previous year (adjusted OR = 6.3), previous instrumentation (adjusted OR = 4.3) and previous antibiotic therapy (adjusted OR = 5.7); no cases were documented among patients without risk factors. Hospital mortality rate was 10% in community-acquired, 14% in healthcare-associated and 19% in hospital-acquired infection. This study shows that healthcare-associated has a different microbiologic profile than those from community or hospital acquired for the four main focus of infection. Knowledge of this fact is important because the existing guidelines for community-acquired are not entirely applicable for this group of patients.

  11. [Physiological responses of mycorrhizal Pinus massoniana seedlings to drought stress and drought resistance evaluation].

    Science.gov (United States)

    Wang, Yi; Ding, Gui-jie

    2013-03-01

    A greenhouse pot experiment was conducted to study the effects of inoculating Pisolithus tinctorius, Cenococcum geophilum, Cantharellus cibarius, and Suillus luteus on the physiological characteristics of Pinus massoniana seedlings under the conditions of drought stress and re-watering, with the drought resistance of the mycorrhizal seedlings evaluated. Under drought stress, the MDA content and membrane' s relative permeability of P. massoniana seedlings increased, but these two indices in the inoculated (mycorrhizal) seedlings were significantly lower than these in the un-inoculated (control) seedlings. After re-watering, the MDA content and membrane's relative permeability of mycorrhizal seedlings had a rapid decrease, as compared with the control. In the first 21 days of drought stress, the production rate of superoxide radical of the seedlings increased, and the SOD, POD and NR activities of mycorrhizal seedlings increased significantly. With the extending of drought stress, the seedlings after re-watering had different recovery ability. Under the re-watering after 14 days drought stress, the SOD, POD and NR activities recovered. The drought resistance of the mycorrhizal seedlings was in the order of Suillus luteus 1 > Suillus luteus 7 > Cantharellus cibarius > Cenococcum geophilum > Pisolithus tinctorius. The SOD and MDA activities had a greater correlation with the mycorrhizal seedlings drought resistance, being able to be used as the indicators to evaluate the drought resistance of mycorrhizal seedlings.

  12. Shear flow generation by Reynolds stress and suppression of resistive g-modes

    International Nuclear Information System (INIS)

    Sugama, H.; Horton, W.

    1993-08-01

    Suppression of resistive g-mode turbulence by background shear flow generated from a small external flow source and amplified by the fluctuation-induced Reynolds stress is demonstrated and analyzed. The model leads to a paradigm for the low-to-high (L-H) confinement mode transition. To demonstrate the L-H transition model, single-helicity nonlinear fluid simulations using the vorticity equation for the electrostatic potential, the pressure fluctuation equation and the background poloidal flow equation are used in the sheared slab configuration. The relative efficiency of the external flow and the Reynolds stress for producing shear flow depends on the poloidal flow damping parameter ν which is given by neoclassical theory. For large ν, the external flow is a dominant contribution to the total background poloidal shear flow and its strength predicted by the neoclassical theory is not enough to suppress the turbulence significantly. In contrast, for small ν, we show that the fluctuations drive a Reynolds stress that becomes large and suddenly, at some critical point in time, shear flow much larger than the external flow is generated and leads to an abrupt, order unity reduction of the turbulent transport just like that of the L-H transition in tokamak experiments. It is also found that, even in the case of no external flow, the shear flow generation due to the Reynolds stress occurs through the nonlinear interaction of the resistive g-modes and reduces the transport. To supplement the numerical solutions we derive the Landau equation for the mode amplitude of the resistive g-mode taking into account the fluctuation-induced shear flow and analyze the opposite action of the Reynolds stress in the resistive g turbulence compared with the classical shear flow Kelvin-Helmholtz (K-H) driven turbulence

  13. Interpretation of deep directional resistivity measurements acquired in high-angle and horizontal wells using 3-D inversion

    Science.gov (United States)

    Puzyrev, Vladimir; Torres-Verdín, Carlos; Calo, Victor

    2018-05-01

    The interpretation of resistivity measurements acquired in high-angle and horizontal wells is a critical technical problem in formation evaluation. We develop an efficient parallel 3-D inversion method to estimate the spatial distribution of electrical resistivity in the neighbourhood of a well from deep directional electromagnetic induction measurements. The methodology places no restriction on the spatial distribution of the electrical resistivity around arbitrary well trajectories. The fast forward modelling of triaxial induction measurements performed with multiple transmitter-receiver configurations employs a parallel direct solver. The inversion uses a pre-conditioned gradient-based method whose accuracy is improved using the Wolfe conditions to estimate optimal step lengths at each iteration. The large transmitter-receiver offsets, used in the latest generation of commercial directional resistivity tools, improve the depth of investigation to over 30 m from the wellbore. Several challenging synthetic examples confirm the feasibility of the full 3-D inversion-based interpretations for these distances, hence enabling the integration of resistivity measurements with seismic amplitude data to improve the forecast of the petrophysical and fluid properties. Employing parallel direct solvers for the triaxial induction problems allows for large reductions in computational effort, thereby opening the possibility to invert multiposition 3-D data in practical CPU times.

  14. Modeling and Validation of the Ecological Behavior of Wild-Type Listeria monocytogenes and Stress-Resistant Variants.

    Science.gov (United States)

    Metselaar, Karin I; Abee, Tjakko; Zwietering, Marcel H; den Besten, Heidy M W

    2016-09-01

    Listeria monocytogenes exhibits a heterogeneous response upon stress exposure which can be partially attributed to the presence of stable stress-resistant variants. This study aimed to evaluate the impact of the presence of stress-resistant variants of Listeria monocytogenes and their corresponding trade-offs on population composition under different environmental conditions. A set of stress robustness and growth parameters of the wild type (WT) and an rpsU deletion variant was obtained and used to model their growth behavior under combined mild stress conditions and to model their kinetics under single- and mixed-strain conditions in a simulated food chain. Growth predictions for the WT and the rpsU deletion variant matched the experimental data generally well, although some deviations from the predictions were observed. The data highlighted the influence of the environmental conditions on the ratio between the WT and variant. Prediction of performance in the simulated food chain proved to be challenging. The trend of faster growth and lower stress robustness for the WT than for the rpsU variant in the different steps of the chain was confirmed, but especially for the inactivation steps and the time needed to resume growth after an inactivation step, the experimental data deviated from the model predictions. This report provides insights into the conditions which can select for stress-resistant variants in industrial settings and discusses their potential persistence in food processing environments. Listeria monocytogenes exhibits a heterogeneous stress response which can partially be attributed to the presence of genetic variants. These stress-resistant variants survive better under severe conditions but have, on the other hand, a reduced growth rate. To date, the ecological behavior and potential impact of the presence of stress-resistant variants is not fully understood. In this study, we quantitatively assessed growth and inactivation behavior of wild-type L

  15. Experimental Study of Laser - enhanced 5A03 Aluminum Alloy and Its Stress Corrosion Resistance

    Science.gov (United States)

    Wang, Guicheng; Chen, Jing; Pang, Tao

    2018-02-01

    Based on the study of improving the stress corrosion resistance of 5A03 aluminum alloy for ship, this paper mainly studied the tensile test, surface morphology and residual stress under laser shock, high temperature and stress corrosion. It is found that the residual compressive stress and the grain refinement on the surface of the material during the heat strengthening process increase the breaking strength of the sample in the stress corrosion environment. Appropriate high temperature maintenance helps to enhance the effect of deformation strengthening. In the 300°C environment insulation, due to recrystallization of the material, the performance decreased significantly. This study provides an experimental basis for effectively improving the stress corrosion resistance of 5A03 aluminum alloy.

  16. Evaluation of stress corrosion cracking as a function of its resistance to eddy currents

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Hashizume, Hidetoshi

    2009-01-01

    This study discusses the equivalent conductivity, the equivalent width, and the equivalent resistance of stress corrosion cracks from the viewpoint of eddy current testing. Four artificial stress corrosion cracks were prepared for this study, and their eddy current signals were gathered using two absolute pancake probes and two differential type plus point probes. Then their numerical models were evaluated using finite element simulations on the basis of the measured eddy current signals and their profiles revealed by destructive tests. The results of this study revealed that whereas the equivalent conductivity and the equivalent width depend on the exciting frequency utilized, the equivalent resistance of a crack has much less dependency, which agrees well with an earlier report. This study also revealed that the resistance of a crack depends on probe utilized. Larger probes tend to lead to smaller crack resistance. Pancake type probes tend to lead to larger crack resistance than plus point probes. Analyzing the results together with earlier reports indicates that cracks with a large equivalent conductivity tend to have large equivalent width, and supports the validity of assuming the minimum resistance of a stress corrosion crack whereas considering the conductivity and the width individually would not be viable.

  17. Exogenous Salicylic Acid Enhances the Resistance of Wheat Seedlings to Hessian Fly (Diptera: Cecidomyiidae) Infestation Under Heat Stress.

    Science.gov (United States)

    Underwood, Joshua; Moch, John; Chen, Ming-Shun; Zhu, Lieceng

    2014-10-01

    Heat stress exerts significant impact on plant-parasite interactions. Phytohormones, such as salicylic acid (SA), play important roles in plant defense against parasite attacks. Here, we studied the impact of a combination of heat stress and exogenous SA on the resistance of wheat (Triticum aestivum L.) plants to the Hessian fly [Mayetiola destructor (Say)]. We found that the wheat cultivar 'Molly', which contains the resistance gene H13, lost resistance to Hessian fly under heat stress (40°C for 3 and 6 h), and that exogenous application of SA on Molly seedlings right before heat stress can partially prevent the loss of resistance of Molly plants under heat conditions. Our findings have significant implications for understanding the dynamics of plant-insect interactions in the context of heat stress. © 2014 Entomological Society of America.

  18. Uncoupling of oxidative stress resistance and lifespan in long-lived isp-1 mitochondrial mutants in Caenorhabditis elegans.

    Science.gov (United States)

    Dues, Dylan J; Schaar, Claire E; Johnson, Benjamin K; Bowman, Megan J; Winn, Mary E; Senchuk, Megan M; Van Raamsdonk, Jeremy M

    2017-07-01

    Mutations affecting components of the mitochondrial electron transport chain have been shown to increase lifespan in multiple species including the worm Caenorhabditis elegans. While it was originally proposed that decreased generation of reactive oxygen species (ROS) resulting from lower rates of electron transport could account for the observed increase in lifespan, recent evidence indicates that ROS levels are increased in at least some of these long-lived mitochondrial mutants. Here, we show that the long-lived mitochondrial mutant isp-1 worms have increased resistance to oxidative stress. Our results suggest that elevated ROS levels in isp-1 worms cause the activation of multiple stress-response pathways including the mitochondrial unfolded protein response, the SKN-1-mediated stress response, and the hypoxia response. In addition, these worms have increased expression of specific antioxidant enzymes, including a marked upregulation of the inducible superoxide dismutase genes sod-3 and sod-5. Examining the contribution of sod-3 and sod-5 to the oxidative stress resistance in isp-1 worms revealed that loss of either of these genes increased resistance to oxidative stress, but not other forms of stress. Deletion of sod-3 or sod-5 decreased the lifespan of isp-1 worms and further exacerbated their slow physiologic rates. Thus, while deletion of sod-3 and sod-5 genes has little impact on stress resistance, physiologic rates or lifespan in wild-type worms, these genes are required for the longevity of isp-1 worms. Overall, this work shows that the increased resistance to oxidative stress in isp-1 worms does not account for their longevity, and that resistance to oxidative stress can be experimentally dissociated from lifespan. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Primary teachers' knowledge and acquisition of stress relieving strategies.

    Science.gov (United States)

    Cockburn, A D

    1996-09-01

    Over the last 20 years there have been numerous studies of teacher stress but little is known of how teachers acquire coping strategies; their knowledge of those available to them and their opinion of these techniques. A total of 335 Norfolk primary teachers responded to a postal questionnaire providing biographical details; levels of job satisfaction and work related stress; responses to a range of commonly advocated techniques to reduce teacher stress and their opinion on who-if anyone-should take more responsibility for reducing teacher stress. On average the respondents were aware of 35 stress reduction strategies. The most effective strategies were ensuring that one understood what one was about to teach and thorough lesson preparation. A significant proportion of practitioners said that they would not consider seeking expert sources of advice. A total of 89 per cent of practitioners reported that they acquired at least some strategies through their own experience. It was concluded that the issue of teacher stress needs to be considered at governmental, school and individual levels. In the light of some resistance to traditional methods of stress reduction, the implications for initial and in-service training were explored.

  20. Transient heat stress compromises the resistance of wheat (Poales: Poaceae) seedlings to Hessian fly (Diptera: Cecidomyiidae) infestation.

    Science.gov (United States)

    Currie, Yaleaka; Moch, John; Underwood, Joshua; Kharabsheh, Hamzah; Quesenberry, Amy; Miyagi, Risa; Thomas, Carolyn; Boney, Melanie; Woods, Samantha; Chen, Ming-Shun; Zhu, Lieceng

    2014-02-01

    Heat stress exerts a profound impact on the resistance of plants to parasites. In this research, we investigated the impact of an acute transient heat stress on the resistance of the wheat line 'Molly,' which contains the R gene H13, to an avirulent Hessian fly (Mayetiola destructor (Say)) population. We found that a significant portion of Molly seedlings stressed at 40 degrees C for 6 h during or after the initial Hessian fly larval attack became susceptible to otherwise avirulent insects, whereas unstressed control plants remained 100% resistant. Specifically, 77.8, 73.3, 83.3, and 46.7% of plants heat stressed at 0, 6,12, and 24 h, respectively, after the initial larval attack became susceptible. Biochemical analysis revealed that heat stress caused a transient decrease in 12-oxo-phytodienoic acid, but an increase in salicylic acid accumulation in Molly plants. The change in phytohormones after heat stress and Hessian fly infestation was not observed in 'Newton,' a near-isogenic but Hessian fly susceptible wheat line. Instead, heat stress caused a relatively prolonged reduction in palmitoleic acid. The role of phytohormones in heat-induced loss of wheat resistance was discussed.

  1. FLCN and AMPK Confer Resistance to Hyperosmotic Stress via Remodeling of Glycogen Stores.

    Directory of Open Access Journals (Sweden)

    Elite Possik

    2015-10-01

    Full Text Available Mechanisms of adaptation to environmental changes in osmolarity are fundamental for cellular and organismal survival. Here we identify a novel osmotic stress resistance pathway in Caenorhabditis elegans (C. elegans, which is dependent on the metabolic master regulator 5'-AMP-activated protein kinase (AMPK and its negative regulator Folliculin (FLCN. FLCN-1 is the nematode ortholog of the tumor suppressor FLCN, responsible for the Birt-Hogg-Dubé (BHD tumor syndrome. We show that flcn-1 mutants exhibit increased resistance to hyperosmotic stress via constitutive AMPK-dependent accumulation of glycogen reserves. Upon hyperosmotic stress exposure, glycogen stores are rapidly degraded, leading to a significant accumulation of the organic osmolyte glycerol through transcriptional upregulation of glycerol-3-phosphate dehydrogenase enzymes (gpdh-1 and gpdh-2. Importantly, the hyperosmotic stress resistance in flcn-1 mutant and wild-type animals is strongly suppressed by loss of AMPK, glycogen synthase, glycogen phosphorylase, or simultaneous loss of gpdh-1 and gpdh-2 enzymes. Our studies show for the first time that animals normally exhibit AMPK-dependent glycogen stores, which can be utilized for rapid adaptation to either energy stress or hyperosmotic stress. Importantly, we show that glycogen accumulates in kidneys from mice lacking FLCN and in renal tumors from a BHD patient. Our findings suggest a dual role for glycogen, acting as a reservoir for energy supply and osmolyte production, and both processes might be supporting tumorigenesis.

  2. Community-acquired methicillin-resistant Staphylococcus aureus: an emerging pathogen in orthopaedics.

    Science.gov (United States)

    Marcotte, Anthony L; Trzeciak, Marc A

    2008-02-01

    Staphylococcus aureus (S aureus) remains one of the most common pathogens for skin and soft-tissue infections encountered by the orthopaedic surgeon. Community-acquired methicillin-resistant S aureus (CA-MRSA) has become increasingly prevalent, particularly among athletes, children in day care, homeless persons, intravenous drug users, men who have sex with men, military recruits, certain minorities (ie, Alaskan Natives, Native Americans, Pacific Islanders), and prison inmates. Risk factors include antibiotic use within the preceding year, crowded living conditions, compromised skin integrity, contaminated surfaces, frequent skin-to-skin contact, shared items, and suboptimal cleanliness. When a patient presents with a skin or soft-tissue infection, the clinician should determine whether an abscess or other infection needs to be surgically incised and drained. Cultures should be performed. When the patient is a member of an at-risk group or has any of the risk factors for CA-MRSA, beta-lactam antibiotics (eg, methicillin) are no longer a reasonable choice for treatment. Empiric treatment should consist of non-beta-lactam antibiotics active against CA-MRSA.

  3. Acquired activated protein C resistance is associated with lupus anticoagulants and thrombotic events in pediatric patients with systemic lupus erythematosus.

    Science.gov (United States)

    Male, C; Mitchell, L; Julian, J; Vegh, P; Joshua, P; Adams, M; David, M; Andrew, M E

    2001-02-15

    Acquired activated protein C resistance (APCR) has been hypothesized as a possible mechanism by which antiphospholipid antibodies (APLAs) cause thrombotic events (TEs). However, available evidence for an association of acquired APCR with APLAs is limited. More importantly, an association of acquired APCR with TEs has not been demonstrated. The objective of the study was to determine, in pediatric patients with systemic lupus erythematosus (SLE), whether (1) acquired APCR is associated with the presence of APLAs, (2) APCR is associated with TEs, and (3) there is an interaction between APCR and APLAs in association with TEs. A cross-sectional cohort study of 59 consecutive, nonselected children with SLE was conducted. Primary clinical outcomes were symptomatic TEs, confirmed by objective radiographic tests. Laboratory testing included lupus anticoagulants (LAs), anticardiolipin antibodies (ACLAs), APC ratio, protein S, protein C, and factor V Leiden. The results revealed that TEs occurred in 10 (17%) of 59 patients. Acquired APCR was present in 18 (31%) of 58 patients. Acquired APCR was significantly associated with the presence of LAs but not ACLAs. Acquired APCR was also significantly associated with TEs. There was significant interaction between APCR and LAs in the association with TEs. Presence of both APCR and LAs was associated with the highest risk of a TE. Protein S and protein C concentrations were not associated with the presence of APLAs, APCR, or TEs. Presence of acquired APCR is a marker identifying LA-positive patients at high risk of TEs. Acquired APCR may reflect interference of LAs with the protein C pathway that may represent a mechanism of LA-associated TEs. (Blood. 2001;97:844-849)

  4. Community-acquired carbapenem-resistant Acinetobacter baumannii urinary tract infection just after marriage in a renal transplant recipient.

    Science.gov (United States)

    Solak, Y; Atalay, H; Turkmen, K; Biyik, Z; Genc, N; Yeksan, M

    2011-12-01

    Urinary tract infection (UTI) is common in renal transplant recipients and may worsen allograft and patient survival. Many risk factors such as age, female gender, immunosuppression, comorbidity, deceased-donor kidney transplantation, and uretheral catheterization are involved in development of UTI. Acinetobacter baumannii has rarely been reported as a causative agent for development of UTI. Here, we present an unusual case of a renal transplant recipient who developed community-acquired carbapenem-resistent A. baumannii UTI. © 2011 John Wiley & Sons A/S.

  5. Association of Oxidative Stress and Obesity with Insulin Resistance in Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Das, P; Biswas, S; Mukherjee, S; Bandyopadhyay, S K

    2016-01-01

    Oxidative stress occurs due to delicate imbalance between pro-oxidant and anti oxidant forces in our system. It has been found to be associated with many morbidities but its association with obesity and insulin resistance is still controversial. Here in our study we examined 167 patients of recent onset type 2 diabetes mellitus and 60 age sex matched non-diabetic control. Body Mass Index (BMI), abdominal circumference, fasting blood glucose, serum insulin and plasma Malondealdehyde (MDA, marker for oxidative stress) were measured in them. On the basis of BMI, subjects were divided into obese (BMI≥25) and non obese (BMIobese and non-obese sub groups. Insulin resistance score showed positive correlation with BMI, abdominal circumference, and plasma MDA, strength of association being highest with abdominal circumference. Plasma MDA was found to have positive correlation with physical parameters. Study concludes that, obesity mainly central type may predispose to insulin resistance and oxidative stress may be a crucial factor in its pathogenesis. Thus, oxidative stress may be the connecting link between obesity and type 2 diabetes mellitus, two on going global epidemics.

  6. Antibiotic resistance in community-acquired urinary tract infections

    African Journals Online (AJOL)

    the treatment of other infections would inevitably lead to the development of resistance. S Afr Med J 1994; 84: 600-602. Antibiotic resistance is a major problem in developing countries.' There are many reasons for this, including antibiotic use in animal feeds, inappropriate prescribing and poor sanitation. Resistance rates in ...

  7. High Prevalence of Multidrug-Resistant Community-Acquired Methicillin-Resistant Staphylococcus aureus at the Largest Veterinary Teaching Hospital in Costa Rica.

    Science.gov (United States)

    Rojas, Irene; Barquero-Calvo, Elías; van Balen, Joany C; Rojas, Norman; Muñoz-Vargas, Lohendy; Hoet, Armando E

    2017-09-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a pathogen associated with severe infections in companion animals present in the community, and it is diagnosed in animals admitted to veterinary hospitals. However, reports that describe the circulation of MRSA in animal populations and veterinary settings in Latin America are scarce. Therefore, the objective of this study was to determine the prevalence and investigate the molecular epidemiology of MRSA in the environment of the largest veterinary teaching hospital in Costa Rica. Preselected contact surfaces were sampled twice within a 6-week period. Antimicrobial resistance, SCCmec type, Panton-Valentine leukocidin screening, USA type, and clonality were assessed in all recovered isolates. Overall, MRSA was isolated from 26.5% (27/102) of the surfaces sampled, with doors, desks, and examination tables most frequently contaminated. Molecular analysis demonstrated a variety of surfaces from different sections of the hospital contaminated by three highly related clones/pulsotypes. All, but one of the isolates were characterized as multidrug-resistant SCCmec type IV-USA700, a strain sporadically described in other countries and often classified as community acquired. The detection and frequency of this unique strain in this veterinary setting suggest Costa Rica has a distinctive MRSA ecology when compared with other countries/regions. The high level of environmental contamination highlights the necessity to establish and enforce standard cleaning and disinfection protocols to minimize further spread of this pathogen and reduce the risk of nosocomial and/or occupational transmission of MRSA.

  8. Survival of Listeria monocytogenes with different antibiotic resistance patterns to food-associated stresses.

    Science.gov (United States)

    Komora, Norton; Bruschi, Carolina; Magalhães, Rui; Ferreira, Vânia; Teixeira, Paula

    2017-03-20

    The ongoing rise of antibiotic resistant microbial pathogens has become one of the major public health threats worldwide. Despite all the effort and actions taken so far, a proliferation of antibiotic resistant (AR) and multi-antibiotic resistant (MAR) strains is still observed, including in foodborne pathogens. This trend has been also noted recently for isolates of Listeria monocytogenes, a species that, although remaining largely sensitive to clinically relevant antimicrobials, has been reported to develop increased tolerance to antibiotics, particularly in isolates recovered from the food-chain. In this study we compared the ability of MAR (n=8), AR (n=18) and antibiotic susceptible (AS, n=11) L. monocytogenes strains from food and clinical origin to survive to different environmental stress conditions, including temperature (58°C), acidic stress (1% v/v lactic acid, pH3.5), and osmotic stress (37% w/v NaCl). The presence of antibiotic active efflux among MAR and AR strains, and its role on L. monocytogenes tolerance to different antimicrobial compounds was also investigated, namely; hydrogen peroxide; organic acids (acetic, citric and lactic); nisin; benzalkonium chloride (BC); and, sodium nitrite. While no significant differences were observed in the survival of the 37 strains exposed to high temperature (58°C), overall the mean logarithmic reduction of clinical strains was statistically lower after acid and salt exposure than that observed for strains of food origin; but both food and clinical strains resistant to two or three antibiotics were significantly less susceptible to acid (lactic acid 1% v/v) and osmotic stresses (37% w/v NaCl) when compared to AS strains. Using the EtBr-agar Cartwheel method, it was possible to detect efflux pumps in three of the 26 MAR and AR isolates, including one control strain; the active efflux in theses isolates was proven to be associated with fluoroquinolone resistance, and possible extrusion of BC and hydrogen peroxide

  9. Geographic variation for climatic stress resistance traits in the sprintail Orchesella cincta

    DEFF Research Database (Denmark)

    Bahrndorff, Simon; Holmstrup, Martin; Petersen, H.

    2006-01-01

    Multiple traits of stress resistance were investigated in the epedaphic springtail Orchesella cincta. Second generation adults from five laboratory populations were compared with respect to resistance to extreme temperatures and desiccation, and traits relevant to climatic adaptation. Populations...... were collected along a 2000-km latitudinal gradient ranging from Denmark to southern Italy and reared under the same standard laboratory conditions. Traits investigated were resistance to high and low temperature, desiccation resistance, body size and water loss rate (WLR). Results showed genetically...... based differences in resistance to high and low temperature, desiccation, WLR, water pool and body size between populations. Individuals from the most northern population had the highest desiccation-and cold shock resistance, and the lowest heat shock resistance. Females were significantly more...

  10. Insulin resistance in H pylori infection and its association with oxidative stress.

    Science.gov (United States)

    Aslan, Mehmet; Horoz, Mehmet; Nazligul, Yasar; Bolukbas, Cengiz; Bolukbas, F Fusun; Selek, Sahbettin; Celik, Hakim; Erel, Ozcan

    2006-11-14

    To determine the insulin resistance (IR) and oxidative status in H pylori infection and to find out if there is any relationship between these parameters and insulin resistance. Fifty-five H pylori positive and 48 H pylori negative patients were enrolled. The homeostasis model assessment (HOMA) was used to assess insulin resistance. Serum total antioxidant capacity (TAC), total oxidant status (TOS) and oxidative stress index (OSI) were determined in all subjects. The total antioxidant capacity was significantly lower in H pylori positive group than in H pylori negative group (1.36 +/- 0.33 and 1.70 +/- 0.50, respectively; P total oxidant status and oxidative stress index were significantly higher in H pylori positive group than in H pylori negative group (6.79 +/- 3.40 and 5.08 +/- 0.95, and 5.42 +/- 3.40 and 3.10 +/- 0.92, respectively; P total antioxidant capacity (r = -0.251, P total oxidant status (r = 0.365, P antioxidant vitamins to H pylori eradication therapy on insulin resistance during H pylori infection.

  11. Non-linear impact of glutathione depletion on C. elegans life span and stress resistance

    Directory of Open Access Journals (Sweden)

    Nadine Urban

    2017-04-01

    Full Text Available The redox environment in cells and organisms is set by low-molecular mass and protein-bound thiols, with glutathione (GSH representing a major intracellular redox buffer. Subtle thiol oxidation elicits signal transduction processes and adaptive responses to cope with stressors, whereas highly oxidizing conditions may provoke cell death. We here tested how thiol depletion affects life span, stress resistance and stress signaling in the model organism Caenorhabditis elegans. Diethyl maleate (DEM, an α,β-unsaturated carbonyl compound that conjugates to GSH and other thiols, decreased C. elegans life span at a concentration of 1 mM. In contrast, low and moderate doses of DEM (10–100 µM increased mean and maximum life span and improved resistance against oxidative stress. DEM-induced life span extension was not detectable in worms deficient in either the FoxO orthologue, DAF-16, or the Nrf2 orthologue, SKN-1, pointing to a collaborative role of the two transcription factors in life span extension induced by thiol depletion. Cytoprotective target genes of DAF-16 and SKN-1 were upregulated after at least 3 days of exposure to 100 µM DEM, but not 1 mM DEM, whereas only 1 mM DEM caused upregulation of egl-1, a gene controlled by a p53-orthologue, CEP-1. In order to test whether depletion of GSH may elicit effects similar to DEM, we suppressed GSH biosynthesis in worms by attenuating γ-glutamylcysteine synthetase (gcs-1 expression through RNAi. The decline in GSH levels elicited by gcs-1 knockdown starting at young adult stage did not impair viability, but increased both stress resistance and life expectancy of the worms. In contrast, gcs-1 knockdown commencing right after hatching impaired nematode stress resistance and rendered young adult worms prone to vulval ruptures during egg-laying. Thus, modest decrease in GSH levels in young adult worms may promote stress resistance and life span, whereas depletion of GSH is detrimental to freshly

  12. Non-linear impact of glutathione depletion on C. elegans life span and stress resistance.

    Science.gov (United States)

    Urban, Nadine; Tsitsipatis, Dimitrios; Hausig, Franziska; Kreuzer, Katrin; Erler, Katrin; Stein, Vanessa; Ristow, Michael; Steinbrenner, Holger; Klotz, Lars-Oliver

    2017-04-01

    The redox environment in cells and organisms is set by low-molecular mass and protein-bound thiols, with glutathione (GSH) representing a major intracellular redox buffer. Subtle thiol oxidation elicits signal transduction processes and adaptive responses to cope with stressors, whereas highly oxidizing conditions may provoke cell death. We here tested how thiol depletion affects life span, stress resistance and stress signaling in the model organism Caenorhabditis elegans. Diethyl maleate (DEM), an α,β-unsaturated carbonyl compound that conjugates to GSH and other thiols, decreased C. elegans life span at a concentration of 1mM. In contrast, low and moderate doses of DEM (10-100µM) increased mean and maximum life span and improved resistance against oxidative stress. DEM-induced life span extension was not detectable in worms deficient in either the FoxO orthologue, DAF-16, or the Nrf2 orthologue, SKN-1, pointing to a collaborative role of the two transcription factors in life span extension induced by thiol depletion. Cytoprotective target genes of DAF-16 and SKN-1 were upregulated after at least 3 days of exposure to 100µM DEM, but not 1mM DEM, whereas only 1mM DEM caused upregulation of egl-1, a gene controlled by a p53-orthologue, CEP-1. In order to test whether depletion of GSH may elicit effects similar to DEM, we suppressed GSH biosynthesis in worms by attenuating γ-glutamylcysteine synthetase (gcs-1) expression through RNAi. The decline in GSH levels elicited by gcs-1 knockdown starting at young adult stage did not impair viability, but increased both stress resistance and life expectancy of the worms. In contrast, gcs-1 knockdown commencing right after hatching impaired nematode stress resistance and rendered young adult worms prone to vulval ruptures during egg-laying. Thus, modest decrease in GSH levels in young adult worms may promote stress resistance and life span, whereas depletion of GSH is detrimental to freshly hatched and developing worms

  13. Aerobic exercise increases resistance to oxidative stress in sedentary older middle-aged adults. A pilot study.

    Science.gov (United States)

    Done, Aaron J; Traustadóttir, Tinna

    2016-12-01

    Older individuals who exercise regularly exhibit greater resistance to oxidative stress than their sedentary peers, suggesting that exercise can modify age-associated loss of resistance to oxidative stress. However, we recently demonstrated that a single bout of exercise confers protection against a subsequent oxidative challenge in young, but not older adults. We therefore hypothesized that repeated bouts of exercise would be needed to increase resistance to an oxidative challenge in sedentary older middle-aged adults. Sedentary older middle-aged men and women (50-63 years, n = 11) participated in an 8-week exercise intervention. Maximal oxygen consumption was measured before and after the intervention. The exercise intervention consisted of three sessions per week, for 45 min at an intensity corresponding to 70-85 % maximal heart rate (HR max ). Resistance to oxidative stress was measured by F 2 -isoprostane response to a forearm ischemia/reperfusion (I/R) trial. Each participant underwent the I/R trial before and after the exercise intervention. The intervention elicited a significant increase in maximal oxygen consumption (VO 2max ) (P exercise intervention (time-by-trial interaction, P = 0.043). Individual improvements in aerobic fitness were associated with greater improvements in the F 2 -isoprostane response (r = -0.761, P = 0.011), further supporting the role of aerobic fitness in resistance to oxidative stress. These data demonstrate that regular exercise with improved fitness leads to increased resistance to oxidative stress in older middle-aged adults and that this measure is modifiable in previously sedentary individuals.

  14. Comparative genomics of community-acquired ST59 methicillin-resistant Staphylococcus aureus in Taiwan: novel mobile resistance structures with IS1216V.

    Directory of Open Access Journals (Sweden)

    Wei-Chun Hung

    Full Text Available Methicillin-resistant Staphylococcus aureus (MRSA with ST59/SCCmecV and Panton-Valentine leukocidin gene is a major community-acquired MRSA (CA-MRSA lineage in Taiwan and has been multidrug-resistant since its initial isolation. In this study, we studied the acquisition mechanism of multidrug resistance in an ST59 CA-MRSA strain (PM1 by comparative genomics. PM1's non-β-lactam resistance was encoded by two unique genetic traits. One was a 21,832-bp composite mobile element structure (MES(PM1, which was flanked by direct repeats of enterococcal IS1216V and was inserted into the chromosomal sasK gene; the target sequence (att was 8 bp long and was duplicated at both ends of MES(PM1. MES(PM1 consisted of two regions: the 5'-end side 12.4-kb region carrying Tn551 (with ermB and Tn5405-like (with aph[3']-IIIa and aadE, similar to an Enterococcus faecalis plasmid, and the 3'-end side 6,587-bp region (MES(cat that carries cat and is flanked by inverted repeats of IS1216V. MES(cat possessed att duplication at both ends and additional two copies of IS1216V inside. MES(PM1 represents the first enterococcal IS1216V-mediated composite transposon emerged in MRSA. IS1216V-mediated deletion likely occurred in IS1216V-rich MES(PM1, resulting in distinct resistance patterns in PM1-derivative strains. Another structure was a 6,025-bp tet-carrying element (MES(tet on a 25,961-bp novel mosaic penicillinase plasmid (pPM1; MES(tet was flanked by direct repeats of IS431, but with no target sequence repeats. Moreover, the PM1 genome was deficient in a copy of the restriction and modification genes (hsdM and hsdS, which might have contributed to the acquisition of enterococcal multidrug resistance.

  15. [Antibiotic therapy of hospital-acquired pneumonia and its pharmacoeconomics].

    Science.gov (United States)

    Kolář, Milan; Htoutou Sedláková, Miroslava; Urbánek, Karel; Uvízl, Radomír; Adamus, Milan; Imwensi, O P

    2016-03-01

    Important hospital-acquired infections include pneumonia, mainly because of the increasing resistance of bacterial pathogens to antimicrobials and the associated potential failure of antibiotic therapy. The present study aimed at determining the most frequent etiological agents of hospital-acquired pneumonia (HAP) and assessing the relationship between 30-day mortality and adequacy of antibiotic therapy. Based on the obtained information, optimal patterns of antibiotic therapy were to be defined, including a pharmacoeconomic perspective. In patients with clinically confirmed HAP, bacterial etiological agents were identified, their susceptibility to antimicrobials was determined and statistical methods were used to assess the relationship between adequacy of antibiotic therapy and 30-day mortality. The study comprised 68 patients with clinically confirmed HAP. The most common etiological agents were strains of Pseudomonas aeruginosa (30.8 %), Klebsiella pneumoniae (23.1 %) and Burkholderia cepacia complex (15.4 %). Gram-negative bacteria accounted for 86.5 % of all bacterial pathogens. The overall mortality reached 42.5 %. In the subgroup of patients with inadequate antibiotic therapy, 30-day mortality was significantly higher (83.3 %) than in the subgroup with adequate therapy (30.0 %; p = 0.002). The risk for 30-day mortality was 2.78 times higher in case of inadequate antibiotic therapy (95%CI: 1.52-5.07). The proportion of Pseudomonas aeruginosa strains was significantly higher in the subgroup of patients with inadequate antibiotic therapy than in those with adequate therapy (67 % vs. 27 %; p = 0.032). Results of the present study suggest a significant relationship between mortality of patients with HAP and ineffective antibiotic therapy due to resistance of the bacterial pathogen. Thus, it is clear that initial antibiotic therapy must be based on qualified assumption of sufficient activity against the most common bacterial pathogens and results of surveillance

  16. Antibiotic resistance in community-acquired urinary tract infections

    African Journals Online (AJOL)

    of community-acquired UTI organisms to amoxycillin and co-trimoxazole was .... Treatment of uncomplicated urinary tract infection in non-pregnant women. Postgrad ... Single-dose antibiotic treatment for symptomatic uri- nary tract infections in ...

  17. Endoplasmic reticulum stress-induced resistance to doxorubicin is reversed by paeonol treatment in human hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Lulu Fan

    Full Text Available BACKGROUND: Endoplasmic reticulum stress (ER stress is generally activated in solid tumors and results in tumor cell anti-apoptosis and drug resistance. Paeonol (Pae, 2-hydroxy-4-methoxyacetophenone, is a natural product extracted from the root of Paeonia Suffruticosa Andrew. Although Pae displays anti-neoplastic activity and increases the efficacy of chemotherapeutic drugs in various cell lines and in animal models, studies related to the effect of Pae on ER stress-induced resistance to chemotherapeutic agents in hepatocellular carcinoma (HCC are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the effect of the endoplasmic reticulum (ER stress response during resistance of human hepatocellular carcinoma cells to doxorubicin. Treatment with the ER stress-inducer tunicamycin (TM before the addition of doxorubicin reduced the rate of apoptosis induced by doxorubicin. Interestingly, co-pretreatment with tunicamycin and Pae significantly increased apoptosis induced by doxorubicin. Furthermore, induction of ER stress resulted in increasing expression of COX-2 concomitant with inactivation of Akt and up-regulation of the pro-apoptotic transcription factor CHOP (GADD153 in HepG2 cells. These cellular changes in gene expression and Akt activation may be an important resistance mechanism against doxorubicin in hepatocellular carcinoma cells undergoing ER stress. However, co-pretreatment with tunicamycin and Pae decreased the expression of COX-2 and levels of activation of Akt as well as increasing the levels of CHOP in HCC cells. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that Pae reverses ER stress-induced resistance to doxorubicin in human hepatocellular carcinoma cells by targeting COX-2 mediated inactivation of PI3K/AKT/CHOP.

  18. Angiotensin II receptor blocker ameliorates stress-induced adipose tissue inflammation and insulin resistance.

    Directory of Open Access Journals (Sweden)

    Motoharu Hayashi

    Full Text Available A strong causal link exists between psychological stress and insulin resistance as well with hypertension. Meanwhile, stress-related responses play critical roles in glucose metabolism in hypertensive patients. As clinical trials suggest that angiotensin-receptor blocker delays the onset of diabetes in hypertensive patients, we investigated the effects of irbesartan on stress-induced adipose tissue inflammation and insulin resistance. C57BL/6J mice were subjected to 2-week intermittent restraint stress and orally treated with vehicle, 3 and 10 mg/kg/day irbesartan. The plasma concentrations of lipid and proinflammatory cytokines [Monocyte Chemoattractant Protein-1 (MCP-1, tumor necrosis factor-α, and interleukin-6] were assessed with enzyme-linked immunosorbent assay. Monocyte/macrophage accumulation in inguinal white adipose tissue (WAT was observed with CD11b-positive cell counts and mRNA expressions of CD68 and F4/80 using immunohistochemistry and RT-PCR methods respectively. The mRNA levels of angiotensinogen, proinflammatory cytokines shown above, and adiponectin in WAT were also assessed with RT-PCR method. Glucose metabolism was assessed by glucose tolerance tests (GTTs and insulin tolerance tests, and mRNA expression of insulin receptor substrate-1 (IRS-1 and glucose transporter 4 (GLUT4 in WAT. Restraint stress increased monocyte accumulation, plasma free fatty acids, expression of angiotensinogen and proinflammatory cytokines including MCP-1, and reduced adiponectin. Irbesartan reduced stress-induced monocyte accumulation in WAT in a dose dependent manner. Irbesartan treatment also suppressed induction of adipose angiotensinogen and proinflammatory cytokines in WAT and blood, and reversed changes in adiponectin expression. Notably, irbesartan suppressed stress-induced reduction in adipose tissue weight and free fatty acid release, and improved insulin tolerance with restoration of IRS-1 and GLUT4 mRNA expressions in WAT. The results

  19. Resistência à Mudança Organizacional e stress no trabalho

    Directory of Open Access Journals (Sweden)

    Antônio Luiz Marques

    2016-03-01

    Full Text Available O objetivo deste trabalho é entender como a mudança organizacional, especificamente a implantação da Avaliação de Desempenho Individual (ADI pelo governo de Minas Gerais, afeta o nível de stress dos servidores. Portanto, neste estudo descritivo e explicativo, um survey foi desenvolvido e questionários padronizados foram aplicados em 679 respondentes, sendo 247 da Secretaria de Estado da Saúde (SES, 248 na Secretaria de Estado da Educação (SEE e 184 da Secretaria de Estado do Planejamento e Gestão (SEPLAG. A análise dos dados indica que a resistência à mudança influencia o stress no trabalho. Ou seja, indivíduos que apresentam níveis mais elevados de aceitação à mudança tendem ter um nível mais baixo de stress global representado pelo desgaste físico e mental. Assim como altos níveis de resistência individual à mudança geram maiores níveis de stress. Os resultados oferecem implicações relevantes para a teoria e para a prática da Gestão de Recursos Humanos.

  20. Influence of the clay in the stress cracking resistance of PET; Influencia de silicatos em camadas na resistencia ao 'stress cracking' do PET

    Energy Technology Data Exchange (ETDEWEB)

    Teofilo, Edvania T. [Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais, Universidade Federal de Campina Grande, PB (Brazil); Silva, Emanuela S.; Silva, Suedina M.L.; Rabello, Marcelo S., E-mail: marcelo@dema.ufcg.edu.b [Unidade Academica de Engenharia de Materiais, Universidade Federal de Campina Grande, PB (Brazil)

    2011-07-01

    The environmental stress cracking resistance in PET and hybrid PET/clay were conducted under stress relaxation test. X-ray diffraction analysis show that was obtained immiscible system. In the absence of aggressive fluids the hybrid exhibited higher relaxation rates than the PET. Already in contact with aggressive fluids showed a similar or lower relaxation rate than the PET, being more resistant. Suggesting that the clay, though not interlayer, interferes with the distribution of the stress cracking agent. Thus, the barrier effect caused by the clay was more significant than the stress concentration caused by it. (author)

  1. Risk Factors for Acquisition of Drug Resistance during Multidrug-Resistant Tuberculosis Treatment, Arkhangelsk Oblast, Russia, 2005–2010

    Science.gov (United States)

    Ershova, Julia; Vlasova, Natalia; Nikishova, Elena; Tarasova, Irina; Eliseev, Platon; Maryandyshev, Andrey O.; Shemyakin, Igor G.; Kurbatova, Ekaterina; Cegielski, J. Peter

    2015-01-01

    Acquired resistance to antituberculosis drugs decreases effective treatment options and the likelihood of treatment success. We identified risk factors for acquisition of drug resistance during treatment for multidrug-resistant tuberculosis (MDR TB) and evaluated the effect on treatment outcomes. Data were collected prospectively from adults from Arkhangelsk Oblast, Russia, who had pulmonary MDR TB during 2005–2008. Acquisition of resistance to capreomycin and of extensively drug-resistant TB were more likely among patients who received 3 effective drugs (9.4% vs. 0% and 8.6% vs. 0.8%, respectively). Poor outcomes were more likely among patients with acquired capreomycin resistance (100% vs. 25.9%), acquired ofloxacin resistance (83.6% vs. 22.7%), or acquired extensive drug resistance (100% vs. 24.4%). To prevent acquired drug resistance and poor outcomes, baseline susceptibility to first- and second-line drugs should be determined quickly, and treatment should be adjusted to contain >3 effective drugs. PMID:25988954

  2. Variation in adult stress resistance does not explain vulnerability to climate change in copper butterflies.

    Science.gov (United States)

    Klockmann, Michael; Wallmeyer, Leonard; Fischer, Klaus

    2017-03-15

    Ongoing climate change is a major threat to biodiversity. However, although many species clearly suffer from ongoing climate change, others benefit from it, for example, by showing range expansions. However, which specific features determine a species' vulnerability to climate change? Phenotypic plasticity, which has been described as the first line of defence against environmental change, may be of utmost importance here. Against this background, we here compare plasticity in stress tolerance in 3 copper butterfly species, which differ arguably in their vulnerability to climate change. Specifically, we investigated heat, cold and desiccation resistance after acclimatization to different temperatures in the adult stage. We demonstrate that acclimation at a higher temperature increased heat but decreased cold tolerance and desiccation resistance. Contrary to our predictions, species did not show pronounced variation in stress resistance, though plastic capacities in temperature stress resistance did vary across species. Overall, our results seemed to reflect population-rather than species-specific patterns. We conclude that the geographical origin of the populations used should be considered even in comparative studies. However, our results suggest that, in the 3 species studied here, vulnerability to climate change is not in the first place determined by stress resistance in the adult stage. As entomological studies focus all too often on adults only, we argue that more research effort should be dedicated to other developmental stages when trying to understand insect responses to environmental change. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  3. Impact of Pathogen Population Heterogeneity and Stress-Resistant Variants on Food Safety.

    Science.gov (United States)

    Abee, T; Koomen, J; Metselaar, K I; Zwietering, M H; den Besten, H M W

    2016-01-01

    This review elucidates the state-of-the-art knowledge about pathogen population heterogeneity and describes the genotypic and phenotypic analyses of persister subpopulations and stress-resistant variants. The molecular mechanisms underlying the generation of persister phenotypes and genetic variants are identified. Zooming in on Listeria monocytogenes, a comparative whole-genome sequence analysis of wild types and variants that enabled the identification of mutations in variants obtained after a single exposure to lethal food-relevant stresses is described. Genotypic and phenotypic features are compared to those for persistent strains isolated from food processing environments. Inactivation kinetics, models used for fitting, and the concept of kinetic modeling-based schemes for detection of variants are presented. Furthermore, robustness and fitness parameters of L. monocytogenes wild type and variants are used to model their performance in food chains. Finally, the impact of stress-resistant variants and persistence in food processing environments on food safety is discussed.

  4. Comparative proteomic responses of two bermudagrass (Cynodon dactylon (L). Pers.) varieties contrasting in drought stress resistance.

    Science.gov (United States)

    Shi, Haitao; Ye, Tiantian; Chan, Zhulong

    2014-09-01

    Drought (water-deficit) stress is a serious environmental problem in plant growth and cultivation. As one of widely cultivated warm-season turfgrass, bermudagrass (Cynodon dactylon (L). Pers.) exhibits drastic natural variation in the drought stress resistance in leaves and stems of different varieties. In this study, proteomic analysis was performed to identify drought-responsive proteins in both leaves and stems of two bermudagrass varieties contrasting in drought stress resistance, including drought sensitive variety (Yukon) and drought tolerant variety (Tifgreen). Through comparative proteomic analysis, 39 proteins with significantly changed abundance were identified, including 3 commonly increased and 2 decreased proteins by drought stress in leaves and stems of Yukon and Tifgreen varieties, 2 differentially regulated proteins in leaves and stems of two varieties after drought treatment, 23 proteins increased by drought stress in Yukon variety and constitutively expressed in Tifgreen variety, and other 3 differentially expressed proteins under control and drought stress conditions. Among them, proteins involved in photosynthesis (PS), glycolysis, N-metabolism, tricarboxylicacid (TCA) and redox pathways were largely enriched, which might be contributed to the natural variation of drought resistance between Yukon and Tifgreen varieties. These studies provide new insights to understand the molecular mechanism underlying bermudagrass response to drought stress. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Origin and evolution of European community-acquired methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Stegger, Marc; Wirth, Thierry; Andersen, Paal S; Skov, Robert L; De Grassi, Anna; Simões, Patricia Martins; Tristan, Anne; Petersen, Andreas; Aziz, Maliha; Kiil, Kristoffer; Cirković, Ivana; Udo, Edet E; del Campo, Rosa; Vuopio-Varkila, Jaana; Ahmad, Norazah; Tokajian, Sima; Peters, Georg; Schaumburg, Frieder; Olsson-Liljequist, Barbro; Givskov, Michael; Driebe, Elizabeth E; Vigh, Henrik E; Shittu, Adebayo; Ramdani-Bougessa, Nadjia; Rasigade, Jean-Philippe; Price, Lance B; Vandenesch, Francois; Larsen, Anders R; Laurent, Frederic

    2014-08-26

    Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) was recognized in Europe and worldwide in the late 1990s. Within a decade, several genetically and geographically distinct CA-MRSA lineages carrying the small SCCmec type IV and V genetic elements and the Panton-Valentine leukocidin (PVL) emerged around the world. In Europe, the predominant CA-MRSA strain belongs to clonal complex 80 (CC80) and is resistant to kanamycin/amikacin and fusidic acid. CC80 was first reported in 1993 but was relatively rare until the late 1990s. It has since been identified throughout North Africa, the Middle East, and Europe, with recent sporadic reports in sub-Saharan Africa. While strongly associated with skin and soft tissue infections, it is rarely found among asymptomatic carriers. Methicillin-sensitive S. aureus (MSSA) CC80 strains are extremely rare except in sub-Saharan Africa. In the current study, we applied whole-genome sequencing to a global collection of both MSSA and MRSA CC80 isolates. Phylogenetic analyses strongly suggest that the European epidemic CA-MRSA lineage is derived from a PVL-positive MSSA ancestor from sub-Saharan Africa. Moreover, the tree topology suggests a single acquisition of both the SCCmec element and a plasmid encoding the fusidic acid resistance determinant. Four canonical SNPs distinguish the derived CA-MRSA lineage and include a nonsynonymous mutation in accessory gene regulator C (agrC). These changes were associated with a star-like expansion into Europe, the Middle East, and North Africa in the early 1990s, including multiple cases of cross-continent imports likely driven by human migrations. With increasing levels of CA-MRSA reported from most parts of the Western world, there is a great interest in understanding the origin and factors associated with the emergence of these epidemic lineages. To trace the origin, evolution, and dissemination pattern of the European CA-MRSA clone (CC80), we sequenced a global collection

  6. Relaxation of stresses in polystyrene–carbon microcomposite resistive layers

    International Nuclear Information System (INIS)

    Łukasik, Andrzej; Sibiński, Maciej; Walczak, Sylwia

    2012-01-01

    This paper presents the investigation results on thermoresistive elements made with a styrene–butadiene–styrene (SBS) modified polystyrene binder and carbon filler. Resistive layers were deposited by screen-printing method onto a polyethylene terephthalate (PET) foil. The temperature–resistance dependence of the examined layers was observed. The carbon filler content was precisely selected to obtain high values of TCR, such as 70,000 ppm/°C, for resistive layers with a SBS-modified polystyrene binder in the temperature range from 24 to 100 °C. Because of high TCR the influence of mechanical stresses, which is unfavorable feature of the examined layers, may be omitted. The highest TCR value and stability of electrical parameters during operation were observed for layers containing 42.9% of carbon filler by mass content. The measurements were carried out with the aid of an infrared camera and an oscilloscope because of very fast changes of resistive elements parameters. The analysis of the obtained results allows to draw conclusions about the carbon layer properties and to determine the stress–relaxation rate of the polymer structures.

  7. Selection of thermal-resistant leavening (Saccharomyces boulardii) through gamma irradiation

    International Nuclear Information System (INIS)

    Neves, Maria Jose; Martins, Flaviano Santos

    2000-01-01

    Yeast cells acquire resistance to a several stress condition when they are previously exposed to a mild form of the same or of a different stress. In this way yeast cells exposure to temperatures higher than the optimum for growth results in a enhancement of the heat shock proteins and accumulation of trehalose. These cells then acquire the ability to survive under more extreme conditions, a phenomenon referred as transitory thermo-tolerance. We decided to test if gamma irradiation can induced a permanent thermo-tolerance in survival cells irradiated. Lyophilized cells of S. boulardii were irradiated with a 60 cobalt source. This cells were plated in solid medium. The survival cells were counted and the trehalose level were determined. In a second step, this survivals cells were incubated in liquid medium then submitted to a lethal heat shock (52 deg C, 15 min). The cells were plated and again grown at 30 deg C. The survival index and the level of trehalose were again determined. The procedure were repeated successively. The strains showed more thermo-resistance and the level of trehalose was increased without linear correlation with the number of viable cells. (author)

  8. Electrical Signaling, Photosynthesis and Systemic Acquired Acclimation

    Directory of Open Access Journals (Sweden)

    Magdalena Szechyńska-Hebda

    2017-09-01

    Full Text Available Electrical signaling in higher plants is required for the appropriate intracellular and intercellular communication, stress responses, growth and development. In this review, we have focus on recent findings regarding the electrical signaling, as a major regulator of the systemic acquired acclimation (SAA and the systemic acquired resistance (SAR. The electric signaling on its own cannot confer the required specificity of information to trigger SAA and SAR, therefore, we have also discussed a number of other mechanisms and signaling systems that can operate in combination with electric signaling. We have emphasized the interrelation between ionic mechanism of electrical activity and regulation of photosynthesis, which is intrinsic to a proper induction of SAA and SAR. In a special way, we have summarized the role of non-photochemical quenching and its regulator PsbS. Further, redox status of the cell, calcium and hydraulic waves, hormonal circuits and stomatal aperture regulation have been considered as components of the signaling. Finally, a model of light-dependent mechanisms of electrical signaling propagation has been presented together with the systemic regulation of light-responsive genes encoding both, ion channels and proteins involved in regulation of their activity. Due to space limitations, we have not addressed many other important aspects of hormonal and ROS signaling, which were presented in a number of recent excellent reviews.

  9. Relationship among Periodontal Disease, Insulin Resistance, Salivary Cortisol, and Stress Levels during Pregnancy.

    Science.gov (United States)

    Seraphim, Ana Paula Castilho Garcia; Chiba, Fernando Yamamoto; Pereira, Renato Felipe; Mattera, Maria Sara de Lima Coutinho; Moimaz, Suzely Adas Saliba; Sumida, Doris Hissako

    2016-01-01

    Pregnancy is a period involving important metabolic changes that enable the maintenance of the mother's health and development of the fetus. This study aimed to assess the relationship among periodontal disease, insulin resistance, salivary cortisol concentration and level of perceived stress in pregnant women. This was a cross-sectional study. The sample comprised 96 pregnant women between the fifth and seventh month of pregnancy registered at the Basic Health Units of the Unified Health System (SUS). The periodontal condition was assessed after obtainment free and informed consent from the participants. Participants were divided into three groups: control subjects with a healthy periodontal condition (CN; n=46), patients with gingivitis (GI; n=26), and patients with periodontitis (PI; n=24). Saliva and blood samples were collected for evaluation of salivary cortisol concentration, glycemia, insulinemia and Homeostasis Model Assessment-Insulin Resistance index. A validated survey for the assessment of perceived stress levels was also performed. PI group showed significantly higher (pperiodontal disease during pregnancy. This study emphasizes the importance of preventing periodontitis in order to avoid insulin resistance and stress during pregnancy since these can cause systemic complications for the mother and the fetus.

  10. The Ablation of Mitochondrial Protein Phosphatase Pgam5 Confers Resistance Against Metabolic Stress.

    Science.gov (United States)

    Sekine, Shiori; Yao, Akari; Hattori, Kazuki; Sugawara, Sho; Naguro, Isao; Koike, Masato; Uchiyama, Yasuo; Takeda, Kohsuke; Ichijo, Hidenori

    2016-03-01

    Phosphoglycerate mutase family member 5 (PGAM5) is a mitochondrial protein phosphatase that has been reported to be involved in various stress responses from mitochondrial quality control to cell death. However, its roles in vivo are largely unknown. Here, we show that Pgam5-deficient mice are resistant to several metabolic insults. Under cold stress combined with fasting, Pgam5-deficient mice better maintained body temperature than wild-type mice and showed an extended survival rate. Serum triglycerides and lipid content in brown adipose tissue (BAT), a center of adaptive thermogenesis, were severely reduced in Pgam5-deficient mice. Moreover, although Pgam5 deficiency failed to maintain proper mitochondrial integrity in BAT, it reciprocally resulted in the dramatic induction of fibroblast growth factor 21 (FGF21) that activates various functions of BAT including thermogenesis. Thus, the enhancement of lipid metabolism and FGF21 may contribute to the cold resistance of Pgam5-deficient mice under fasting condition. Finally, we also found that Pgam5-deficient mice are resistant to high-fat-diet-induced obesity. Our study uncovered that PGAM5 is involved in the whole-body metabolism in response to stresses that impose metabolic challenges on mitochondria.

  11. Role of major histocompatibility complex class II in resistance of mice to naturally acquired infection with Syphacia obvelata

    Science.gov (United States)

    Stewart, Patricia W.; Chapes, Stephen K.

    2003-01-01

    Genetics plays a substantial role in host resistance in many host-parasite interactions. We examined the prevalence of naturally acquired infection with Syphacia obvelata in a number of mouse strains housed in a non-barrier facility. These mice, which included cross-bred and congenic, inbred strains on various genetic backgrounds, differ in the loci for the immune function genes--major histocompatibility complex class II (MHCII), toll-like receptor 4 (Tlr4), and solute carrier family 11, member 1 (Slc11a1)--which allowed comparisons of the impact of these genes on resistance to pinworm infection. Male and female mice of various ages were sampled over an 18-month period; infection was determined by use of the cellophane tape test. Results indicated that mice that were MHCII+/+ had a significantly lower prevalence of infection than did mice that were MHCII-/-. Differences were not seen between male and female mice. Although MHCII+/+ mice had an age-associated decrease in infection prevalence, such decrease was not seen in MHCII-/- mice. In contrast, infection prevalence in mice with the normal Tlr4 gene (Tlr4(LPS-n/LPS-n)) gene did not differ significantly compared with that in mice that were homozygous for either the point mutation (Tlr4(LPS-d/LPS-d)) or deletion (Tlr4(LPS-del/LPS-del)) of that gene. Likewise, the presence (Sle11a1r/r) or absence (Slc11a1s/s) of functional alleles for Slc11a1 had no effect on the prevalence of infection with S. obvelata. In conclusion, presence of MHCII, but not Tlr4 or Slc11a1 significantly influences prevalence of naturally acquired infection with S. obvelata. These data justify further comprehensive analyses of the immune components that are involved in pinworm resistance.

  12. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance.

    Science.gov (United States)

    Park, Sang-Wook; Kaimoyo, Evans; Kumar, Dhirendra; Mosher, Stephen; Klessig, Daniel F

    2007-10-05

    In plants, the mobile signal for systemic acquired resistance (SAR), an organism-wide state of enhanced defense to subsequent infections, has been elusive. By stimulating immune responses in mosaic tobacco plants created by grafting different genetic backgrounds, we showed that the methyl salicylate (MeSA) esterase activity of salicylic acid-binding protein 2 (SABP2), which converts MeSA into salicylic acid (SA), is required for SAR signal perception in systemic tissue, the tissue that does not receive the primary (initial) infection. Moreover, in plants expressing mutant SABP2 with unregulated MeSA esterase activity in SAR signal-generating, primary infected leaves, SAR was compromised and the associated increase in MeSA levels was suppressed in primary infected leaves, their phloem exudates, and systemic leaves. SAR was also blocked when SA methyl transferase (which converts SA to MeSA) was silenced in primary infected leaves, and MeSA treatment of lower leaves induced SAR in upper untreated leaves. Therefore, we conclude that MeSA is a SAR signal in tobacco.

  13. The small molecule triclabendazole decreases the intracellular level of cyclic AMP and increases resistance to stress in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Yong Joo Lee

    Full Text Available The Ras-adenylyl cyclase-protein kinase A nutrient-sensing pathway controls metabolism, proliferation and resistance to stress in Saccharomyces cerevisiae. The genetic disruption of this pathway increases resistance to a variety of stresses. We show here that the pharmacological inhibition of this pathway by the drug triclabendazole increases resistance to oxidants, heat stress and extends the chronological life. Evidence is presented that triclabendazole decreases the intracellular level of cyclic AMP by inhibiting adenylyl cyclase and triggers the parallel rapid translocation of the stress-resistance transcription factor Msn2 from the cytosol into the nucleus, as deduced from experiments employing a strain in which MSN2 is replaced with MSN2-GFP (GFP, green fluorescent protein. Msn2 and Msn4 are responsible for activating the transcription of numerous genes that encode proteins that protect cells from stress. The results are consistent with triclabendazole either inhibiting the association of Ras with adenylyl cyclase or directly inhibiting adenylyl cyclase, which in turn triggers Msn2/4 to enter the nucleus and activate stress-responsible element gene expression.

  14. A Mutator Phenotype Promoting the Emergence of Spontaneous Oxidative Stress-Resistant Mutants in Campylobacter jejuni.

    Science.gov (United States)

    Dai, Lei; Sahin, Orhan; Tang, Yizhi; Zhang, Qijing

    2017-12-15

    Campylobacter jejuni is a leading cause of foodborne illnesses worldwide. As a microaerophilic organism, C. jejuni must be able to defend against oxidative stress encountered both in the host and in the environment. How Campylobacter utilizes a mutation-based mechanism for adaptation to oxidative stress is still unknown. Here we present a previously undescribed phenotypic and genetic mechanism that promotes the emergence of oxidative stress-resistant mutants. Specifically, we showed that a naturally occurring mutator phenotype, resulting from a loss of function mutation in the DNA repair enzyme MutY, increased oxidative stress resistance (OX R ) in C. jejuni We further demonstrated that MutY malfunction did not directly contribute to the OX R phenotype but increased the spontaneous mutation rate in the peroxide regulator gene perR , which functions as a repressor for multiple genes involved in oxidative stress resistance. Mutations in PerR resulted in loss of its DNA binding function and derepression of PerR-controlled oxidative stress defense genes, thereby conferring an OX R phenotype and facilitating Campylobacter survival under oxidative stress. These findings reveal a new mechanism that promotes the emergence of spontaneous OX R mutants in bacterial organisms. IMPORTANCE Although a mutator phenotype has been shown to promote antibiotic resistance in many bacterial species, little is known about its contribution to the emergence of OX R mutants. This work describes the link between a mutator phenotype and the enhanced emergence of OX R mutants as well as its underlying mechanism involving DNA repair and mutations in PerR. Since DNA repair systems and PerR are well conserved in many bacterial species, especially in Gram positives, the same mechanism may operate in multiple bacterial species. Additionally, we developed a novel method that allows for rapid quantification of spontaneous OX R mutants in a bacterial population. This method represents a technical

  15. On the role of salicylic acid in plant responses to environmental stresses

    DEFF Research Database (Denmark)

    Hernández, José A.; Diaz-Vivancos, Pedro; Barba Espin, Gregorio

    2017-01-01

    (NPR1), which is one of the few known redox-regulated proteins in plants. Different synthetic chemicals are able to mimic the ability of SA to activate resistance to various stresses, both biotic and abiotic, in plants with agronomic interest. Among these chemicals, 2,6-dichloroisonicotinic acid (INA......Salicylic acid (SA) is a plant hormone more commonly known by its role in human medicine than in the field of plant physiology. However, in the last two decades, SA has been described as an important signalling molecule in plants regulating growth, development and response to a wide number...... of biotic and abiotic stresses. Indeed, actually, it is well known that SA is a key signalling molecule involved in systemic acquired resistance (SAR), and recent works reported a role for SA in the response to salt or drought stresses. The precise mode of the stress hormone SA action is unclear, although...

  16. Herbal supplement extends life span under some environmental conditions and boosts stress resistance.

    Directory of Open Access Journals (Sweden)

    Bryant Villeponteau

    Full Text Available Genetic studies indicate that aging is modulated by a great number of genetic pathways. We have used Drosophila longevity and stress assays to test a multipath intervention strategy. To carry out this strategy, we supplemented the flies with herbal extracts (SC100 that are predicted to modulate the expression of many genes involved in aging and stress resistance, such as mTOR, NOS, NF-KappaB, and VEGF. When flies were housed in large cages with SC100 added, daily mortality rates of both male and female flies were greatly diminished in mid to late life. Surprisingly, SC100 also stabilized midlife mortality rate increases so as to extend the maximum life span substantially beyond the limits previously reported for D. melanogaster. Under these conditions, SC100 also promoted robust resistance to partial starvation stress and to heat stress. Fertility was the same initially in both treated and control flies, but it became significantly higher in treated flies at older ages as the fertility of control flies declined. Mean and maximum life spans of flies in vials at the same test site were also extended by SC100, but the life spans were short in absolute terms. In contrast, at an independent test site where stress was minimized, the flies exhibited much longer mean life spans, but the survival curves became highly rectangular and the effects of SC100 on both mean and maximum life spans declined greatly or were abolished. The data indicate that SC100 is a novel herbal mix with striking effects on enhancing Drosophila stress resistance and life span in some environments, while minimizing mid to late life mortality rates. They also show that the environment and other factors can have transformative effects on both the length and distribution of survivorship, and on the ability of SC100 to extend the life span.

  17. Selection for increased desiccation resistance in Drosophila melanogaster: Additive genetic control and correlated responses for other stresses

    International Nuclear Information System (INIS)

    Hoffmann, A.A.; Parsons, P.A.

    1989-01-01

    Previously we found that Drosophila melanogaster lines selected for increased desiccation resistance have lowered metabolic rate and behavioral activity levels, and show correlated responses for resistance to starvation and a toxic ethanol level. These results were consistent with a prediction that increased resistance to many environmental stresses may be genetically correlated because of a reduction in metabolic energy expenditure. Here we present experiments on the genetic basis of the selection response and extend the study of correlated responses to other stresses. The response to selection was not sex-specific and involved X-linked and autosomal genes acting additively. Activity differences contributed little to differences in desiccation resistance between selected and control lines. Selected lines had lower metabolic rates than controls in darkness when activity was inhibited. Adults from selected lines showed increased resistance to a heat shock, 60 Co-gamma-radiation, and acute ethanol and acetic acid stress. The desiccation, ethanol and starvation resistance of isofemale lines set up from the F2s of a cross between one of the selected and one of the control lines were correlated. Selected and control lines did not differ in ether-extractable lipid content or in resistance to acetone, ether or a cold shock

  18. Sepse por Staphylococus aureus resistente à meticilina adquirida na comunidade no sul do Brasil Sepsis due to community-acquired methicillin-resistant Staphylococcus aureus in southern Brazil

    Directory of Open Access Journals (Sweden)

    Luciane Cristina Gelatti

    2009-08-01

    Full Text Available Staphylococcus aureus resistente à meticilina foi inicialmente descrito como um típico microrganismo adquirido em infecções nosocomiais. No entanto, nos últimos anos Staphylococcus aureus resistente à meticilina adquirido na comunidade é causa de infecções de pele e tecidos moles, mas infecções graves como pneumonia e sepse podem ocorrer. Este relato descreve um caso de sepse em criança, complicado com pneumonia secundária a lesão em partes moles por Staphylococcus aureus resistente à meticilina adquirido na comunidade no Sul do Brasil. O paciente foi atendido em Unidade de Emergência com história de ferimento provocado por trauma em membro inferior que evoluiu para celulite, pneumonia e sepse.Methicillin-resistant Staphylococcus aureus was initially described as a typical microorganism acquired in nosocomial infections. However, over recent years, community-acquired methicillin-resistant Staphylococcus aureus has been a cause of skin and soft-tissue infections. Serious infections such as pneumonia and sepsis can also occur. This report describes a case of sepsis in a child that was complicated by pneumonia secondary to soft tissue lesions that were due to community-acquired methicillin-resistant Staphylococcus aureus in southern Brazil. The patient was attended at the Emergency Unit with a history of injury caused by lower-limb trauma that evolved to cellulitis, pneumonia and sepsis.

  19. An Acquired HER2T798I Gatekeeper Mutation Induces Resistance to Neratinib in a Patient with HER2 Mutant-Driven Breast Cancer.

    Science.gov (United States)

    Hanker, Ariella B; Brewer, Monica Red; Sheehan, Jonathan H; Koch, James P; Sliwoski, Gregory R; Nagy, Rebecca; Lanman, Richard; Berger, Michael F; Hyman, David M; Solit, David B; He, Jie; Miller, Vincent; Cutler, Richard E; Lalani, Alshad S; Cross, Darren; Lovly, Christine M; Meiler, Jens; Arteaga, Carlos L

    2017-06-01

    We report a HER2 T798I gatekeeper mutation in a patient with HER2 L869R -mutant breast cancer with acquired resistance to neratinib. Laboratory studies suggested that HER2 L869R is a neratinib-sensitive, gain-of-function mutation that upon dimerization with mutant HER3 E928G , also present in the breast cancer, amplifies HER2 signaling. The patient was treated with neratinib and exhibited a sustained partial response. Upon clinical progression, HER2 T798I was detected in plasma tumor cell-free DNA. Structural modeling of this acquired mutation suggested that the increased bulk of isoleucine in HER2 T798I reduces neratinib binding. Neratinib blocked HER2-mediated signaling and growth in cells expressing HER2 L869R but not HER2 L869R/T798I In contrast, afatinib and the osimertinib metabolite AZ5104 strongly suppressed HER2 L869R/T798I -induced signaling and cell growth. Acquisition of HER2 T798I upon development of resistance to neratinib in a breast cancer with an initial activating HER2 mutation suggests HER2 L869R is a driver mutation. HER2 T798I -mediated neratinib resistance may be overcome by other irreversible HER2 inhibitors like afatinib. Significance: We found an acquired HER2 gatekeeper mutation in a patient with HER2 -mutant breast cancer upon clinical progression on neratinib. We speculate that HER2 T798I may arise as a secondary mutation following response to effective HER2 tyrosine kinase inhibitors (TKI) in other cancers with HER2 -activating mutations. This resistance may be overcome by other irreversible HER2 TKIs, such as afatinib. Cancer Discov; 7(6); 575-85. ©2017 AACR. This article is highlighted in the In This Issue feature, p. 539 . ©2017 American Association for Cancer Research.

  20. NH4+ protects tomato plants against Pseudomonas syringae by activation of systemic acquired acclimation.

    Science.gov (United States)

    Fernández-Crespo, Emma; Scalschi, Loredana; Llorens, Eugenio; García-Agustín, Pilar; Camañes, Gemma

    2015-11-01

    NH4 (+) nutrition provokes mild toxicity by enhancing H2O2 accumulation, which acts as a signal activating systemic acquired acclimation (SAA). Until now, induced resistance mechanisms in response to an abiotic stimulus and related to SAA were only reported for exposure to a subsequent abiotic stress. Herein, the first evidence is provided that this acclimation to an abiotic stimulus induces resistance to later pathogen infection, since NH4 (+) nutrition (N-NH4 (+))-induced resistance (NH4 (+)-IR) against Pseudomonas syringae pv tomato DC3000 (Pst) in tomato plants was demonstrated. N-NH4 (+) plants displayed basal H2O2, abscisic acid (ABA), and putrescine (Put) accumulation. H2O2 accumulation acted as a signal to induce ABA-dependent signalling pathways required to prevent NH4 (+) toxicity. This acclimatory event provoked an increase in resistance against later pathogen infection. N-NH4 (+) plants displayed basal stomatal closure produced by H2O2 derived from enhanced CuAO and rboh1 activity that may reduce the entry of bacteria into the mesophyll, diminishing the disease symptoms as well as strongly inducing the oxidative burst upon Pst infection, favouring NH4 (+)-IR. Experiments with inhibitors of Put accumulation and the ABA-deficient mutant flacca demonstrated that Put and ABA downstream signalling pathways are required to complete NH4 (+)-IR. The metabolic profile revealed that infected N-NH4 (+) plants showed greater ferulic acid accumulation compared with control plants. Although classical salicylic acid (SA)-dependent responses against biotrophic pathogens were not found, the important role of Put in the resistance of tomato against Pst was demonstrated. Moreover, this work revealed the cross-talk between abiotic stress acclimation (NH4 (+) nutrition) and resistance to subsequent Pst infection. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. The Ablation of Mitochondrial Protein Phosphatase Pgam5 Confers Resistance Against Metabolic Stress

    Directory of Open Access Journals (Sweden)

    Shiori Sekine

    2016-03-01

    Full Text Available Phosphoglycerate mutase family member 5 (PGAM5 is a mitochondrial protein phosphatase that has been reported to be involved in various stress responses from mitochondrial quality control to cell death. However, its roles in vivo are largely unknown. Here, we show that Pgam5-deficient mice are resistant to several metabolic insults. Under cold stress combined with fasting, Pgam5-deficient mice better maintained body temperature than wild-type mice and showed an extended survival rate. Serum triglycerides and lipid content in brown adipose tissue (BAT, a center of adaptive thermogenesis, were severely reduced in Pgam5-deficient mice. Moreover, although Pgam5 deficiency failed to maintain proper mitochondrial integrity in BAT, it reciprocally resulted in the dramatic induction of fibroblast growth factor 21 (FGF21 that activates various functions of BAT including thermogenesis. Thus, the enhancement of lipid metabolism and FGF21 may contribute to the cold resistance of Pgam5-deficient mice under fasting condition. Finally, we also found that Pgam5-deficient mice are resistant to high-fat-diet-induced obesity. Our study uncovered that PGAM5 is involved in the whole-body metabolism in response to stresses that impose metabolic challenges on mitochondria.

  2. Stress corrosion cracking resistance of aluminum alloy 7000 series after two-step aging

    Directory of Open Access Journals (Sweden)

    Jegdić Bore V.

    2015-01-01

    Full Text Available The effect of one step-and a new (short two-step aging on the resistance to stress corrosion cracking of an aluminum alloy 7000 series was investigated, using slow strain rate test and fracture mechanics method. Aging level in the tested alloy was evaluated by means of scanning electron microscopy and measurements of electrical resistivity. It was shown that the alloy after the new two-step aging is significantly more resistant to stress corrosion cracking. Values of tensile properties and fracture toughness are similar for both thermal states. Processes that take place at the crack tip have been considered. The effect of the testing solution temperature on the crack growth rate on the plateau was determined. Two values of the apparent activation energy were obtained. These values correspond to different processes that control crack growth rate on the plateau at higher and lower temperatures. [Projekat Ministarstva nauke Republike Srbije, br. TR 34028 i br. TR 34016

  3. Enhanced B-Raf-mediated NRF2 gene transcription and HATs-mediated NRF2 protein acetylation contributes to ABCC1-mediated chemoresistance and glutathione-mediated survival in acquired topoisomerase II poison-resistant cancer cells.

    Science.gov (United States)

    Chen, Huang-Hui; Chang, Hsin-Huei; Chang, Jang-Yang; Tang, Ya-Chu; Cheng, Yung-Chi; Lin, Li-Mei; Cheng, Shu-Ying; Huang, Chih-Hsiang; Sun, Man-Wu; Chen, Chiung-Tong; Kuo, Ching-Chuan

    2017-12-01

    Nuclear factor erythroid-2-related factor 2 (NRF2) mainly regulates transcriptional activation through antioxidant-responsive elements (AREs) present in the promoters of NRF2 target genes. Recently, we found that NRF2 was overexpressed in a KB-derived drug-resistant cancer cell panel. In this panel, KB-7D cells, which show acquired resistance to topoisomerase II (Top II) poisons, exhibited the highest NRF2 activation. To investigate whether NRF2 directly contributed to acquired resistance against Top II poisons, we manipulated NRF2 by genetic and pharmacological approaches. The result demonstrated that silencing of NRF2 by RNA interference increased the sensitivity and treatment with NRF2 activator decreased the sensitivity of KB and KB-7D cells toward Top II poisons. Further, increased B-Raf-mediated NRF2 gene transcription and HATs-mediated NRF2 protein acetylation activated NRF2 signaling in KB-7D cells. Moreover, increased binding of NRF2 to an ARE in the promoter of ATP-binding cassette subfamily C member 1 (ABCC1) directly contributed to Top II poison resistance. In addition, activation of NRF2 increased glutathione level and antioxidant capacity in KB-7D cells compared with that in KB cells; moreover, high glutathione level provided survival advantage to KB-7D cells. Our study is the first to show that aberrant NRF2 activation is via increased B-Raf-mediated NRF2 gene transcription and HATs-mediated NRF2 protein acetylation, which increases the acquired resistance and promote the survival of Top II poison-resistant cancer cells. Importantly, NRF2 downstream effectors ABCC1 and glutathione directly contribute to acquired resistance and survival, respectively. These results suggest that blockade of NRF2 signaling may enhance therapeutic efficacy and reduce the survival of Top II poison-refractory tumors in clinical. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Comparison of white spot syndrome virus infection resistance between Exopalaemon carinicauda and Litopenaeus vannamei under different salinity stresses

    Science.gov (United States)

    Ge, Qianqian; Yu, Ge; Sun, Ming; Li, Jitao; Li, Jian

    2017-12-01

    Exopalaemon carinicauda is one of the important economic shrimp species in China, and can tolerate a wide range of salinities. However, its disease resistance remains to be unclear in comparison with other shrimp species under salinity stress. In this study, the resistance to white spot syndrome virus (WSSV) of E. carinicauda and Litopenaeus vannamei was determined by comparing their hemocyanin (Hc) and phenoloxidase (PO) activities under different salinity stresses. In E. carinicauda, the PO activity and Hc gene transcript abundance showed a coherent pattern of increase and decrease while Hc content showed a slightly decrease with Vibrio anguillarum and WSSV infections. For both E. carinicauda and L. vannamei under salinity stress, the PO activity showed a positive correlation with the salinity while the Hc content and expression level of its gene increased significantly in salinities of 5, 15 and 25 g L-1. The survival rate of E. carinicauda with WSSV infection was higher than that of L. vannamei in the first 24 h under different salinity stresses. Drastic mortality of E.carinicauda and L. vannamei appeared at 48 h and 3 h post-injection, respectively. Furthermore, compared with L. vannamei, E. carinicauda displayed higher PO activity, Hc content and abundance of Hc gene mRNA. The results collectively indicated that Hc and PO have obviously functional connection in resisting pathogens and tolerating salinity stress, and PO activity and Hc gene mRNA abundance may reflect the resistance of shrimp to disease. E. carinicauda has higher level of immune potential than L. vannamei, suggesting its greater capacity in resisting pathogens under salinity stresses.

  5. Changing prevalence and antibiotic drug resistance pattern of pathogens seen in community-acquired pediatric urinary tract infections at a tertiary care hospital of North India

    Directory of Open Access Journals (Sweden)

    Vrushali Patwardhan

    2017-01-01

    Conclusion: Although E. coli remains the prime pathogen in pediatric UTI, the prevalence of resistance has dramatically increased over the 5-year study period. Our study highlights the emergence of community-acquired ESBL-producing uropathogens in children proclaiming treatment challenges.

  6. AsrR is an oxidative stress sensing regulator modulating Enterococcus faecium opportunistic traits, antimicrobial resistance, and pathogenicity.

    Directory of Open Access Journals (Sweden)

    François Lebreton

    Full Text Available Oxidative stress serves as an important host/environmental signal that triggers a wide range of responses in microorganisms. Here, we identified an oxidative stress sensor and response regulator in the important multidrug-resistant nosocomial pathogen Enterococcus faecium belonging to the MarR family and called AsrR (antibiotic and stress response regulator. The AsrR regulator used cysteine oxidation to sense the hydrogen peroxide which results in its dissociation to promoter DNA. Transcriptome analysis showed that the AsrR regulon was composed of 181 genes, including representing functionally diverse groups involved in pathogenesis, antibiotic and antimicrobial peptide resistance, oxidative stress, and adaptive responses. Consistent with the upregulated expression of the pbp5 gene, encoding a low-affinity penicillin-binding protein, the asrR null mutant was found to be more resistant to β-lactam antibiotics. Deletion of asrR markedly decreased the bactericidal activity of ampicillin and vancomycin, which are both commonly used to treat infections due to enterococci, and also led to over-expression of two major adhesins, acm and ecbA, which resulted in enhanced in vitro adhesion to human intestinal cells. Additional pathogenic traits were also reinforced in the asrR null mutant including greater capacity than the parental strain to form biofilm in vitro and greater persistance in Galleria mellonella colonization and mouse systemic infection models. Despite overexpression of oxidative stress-response genes, deletion of asrR was associated with a decreased oxidative stress resistance in vitro, which correlated with a reduced resistance to phagocytic killing by murine macrophages. Interestingly, both strains showed similar amounts of intracellular reactive oxygen species. Finally, we observed a mutator phenotype and enhanced DNA transfer frequencies in the asrR deleted strain. These data indicate that AsrR plays a major role in antimicrobial

  7. Correlation of oxidative stress in patients with HBV-induced liver disease with HBV genotypes and drug resistance mutations.

    Science.gov (United States)

    Xianyu, Jianbo; Feng, Jiafu; Yang, Yuwei; Tang, Jie; Xie, Gang; Fan, Lingying

    2018-05-01

    This study aims to explore the correlation of oxidative stress (OxS) in patients with chronic hepatitis B (CHB) and the disease severity with HBV genotypes and drug resistance mutations. A total of 296 patients with CHB were enrolled into the study. PCR-reverse dot-blot hybridization was used to detect the HBV genotypes (B, C, and D) and the drug resistance-causing HBV mutant genes. In addition, the total oxidative stress (TOS) and total antioxidant status (TAS) were determined, and oxidative stress index (OSI) was calculated and compared. Serum levels of TOS and OSI, the B/C ratio, and drug resistance mutation rate were increased along with the elevated disease severity degree (CHBHBV mutation had higher serum TOS and OSI levels, while lower serum TAS levels (P HBV-induced liver disease, and the damage degree is correlated with the HBV genotype and drug resistance mutation. Oxidative stress might be a useful indicator of the progression of HBV-induced liver disease in patients. Copyright © 2018. Published by Elsevier Inc.

  8. Insulin resistance in non-obese women with polycystic ovary syndrome: relation to byproducts of oxidative stress.

    Science.gov (United States)

    Macut, D; Simic, T; Lissounov, A; Pljesa-Ercegovac, M; Bozic, I; Djukic, T; Bjekic-Macut, J; Matic, M; Petakov, M; Suvakov, S; Damjanovic, S; Savic-Radojevic, A

    2011-07-01

    To get more insight into molecular mechanisms underlying oxidative stress and its link with insulin resistance, oxidative stress parameters, as well as, antioxidant enzyme activities were studied in young, non-obese women with polycystic ovary syndrome (PCOS). Study was performed in 34 PCOS women and 23 age and body mass index (BMI)-matched healthy controls. Plasma nitrotyrosine and malondialdehyde (MDA), representative byproducts of protein and lipid oxidative damage, were determined by enzyme immunoassay. Antioxidant enzyme activities, superoxide dismutase (SOD) and glutathione peroxidase (GPX) were studied spectrophotometrically. Insulin resistance was calculated using homeostasis assessment model (HOMA-IR). Plasma nitrotyrosine and MDA were increased, but only nitrotyrosine was significantly higher (p PCOS women compared to controls. Uric acid (surrogate marker of × antine oxidase) was also significantly elevated in PCOS (p PCOS and controls. Indices of insulin resistance (insulin and HOMAIR) were significantly higher in PCOS group and positively correlated with level of MDA (r = 0.397 and r = 0.523, respectively; p insulin resistance could be responsible for the existence of subtle form of oxidative stress in young, nonobese PCOS women. Hence, presence of insulin resistance, hyperinsulinemia and oxidative damage are likely to accelerate slow development of cardiovascular disease in PCOS. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  9. [Cellular composition of lymphoid nodules in the trachea wall in rats with different resistance to emotional stress in a model of hemorrhagic stroke].

    Science.gov (United States)

    Klyueva, L A

    2017-01-01

    To reveal regularities of changes in cellular composition of lymphoid nodules in the tracheal wall in male Wistar rats resistant and not resistant to emotional stress in a model of hemorrhagic stroke. Lymphoid formations of the tracheal wall (an area near the bifurcation of the organ) were investigated in 98 male Wistar rats using histological methods. Significant changes in the cellular composition of lymphoid nodules were found. The pattern of changes depends on the stress resistance of rats and the period of the experiment. The active cell destruction in lymphoid nodules was noted both in stress resistant and stress susceptible animals. The changes in the structure of lymphoid nodules found in the experimental hemorrhagic stroke suggest a decrease in the local immune resistance, which is most pronounced in rats not resistant to stress, that may contribute to the development of severe inflammatory complications of stroke such as pneumonia.

  10. High rate of mutation K103N causing resistance to nevirapine in Indian children with acquired immunodeficiency syndrome

    Directory of Open Access Journals (Sweden)

    Sehgal S

    2008-01-01

    Full Text Available In north India the number of paediatric cases with acquired immunodeficiency syndrome (AIDS is on the rise. Most drug combinations used for treatment of AIDS incorporate nevirapine, resistance to which develops very fast if given singly or because of unplanned interruptions. This paper investigates presence of mutations at codon 103 and codon 215 of the HIV pol gene causing resistance to nevirapine and zidovudine (AZT respectively in 25 children with AIDS. Mutations T215Y and K103N were detected by a nested cum amplification refractory mutation system polymerase chain reaction (ARMS PCR and the results were confirmed by direct sequencing in five randomly selected cases. Nineteen patients had received nevirapine containing regimen and six were drug naive. Mutation K103N was observed in 56% (14/25 of the children while mutation T215Y was found in none. Two of the six drug naοve children also showed K103N mutation. Thus, Indian children drug naοve or treated with nevirapine containing regimens show a high rate of mutation conferring resistance to nevirapine which calls for a judicious use of nevirapine both in antenatal and postnatal setting.

  11. Endomembrane Ca2+-AtPases play a significant role in virus-induced adaptation to oxidative stress

    DEFF Research Database (Denmark)

    Shabala, Sergey; Bækgaard, Lone; Shabala, Lana

    2011-01-01

    Although the role of Ca2+ influx channels in oxidative stress signaling and cross-tolerance in plants is well established, little is known about the role of active Ca2+ efflux systems in this process. In our recent paper,17 we reported Potato Virus X (PVX)-induced acquired resistance to oxidative...... in adaptive responses to oxidative stress by removing excessive Ca2+ from the cytosol, and that their functional expression is significantly altered in PVX-inoculated plants. These findings highlight the crucial role of Ca2+ efflux systems in acquired tolerance to oxidative stress and open up prospects...... stress in Nicotiana benthamiana and showed the critical role of plasma membrane Ca2+/H+ exchangers in this process. The current study continues this research. Using biochemical and electrophysiological approaches, we reveal that both endomembrane P2A and P2B Ca2+-ATPases play significant roles...

  12. Transgenic plants: resistance to abiotic and biotic stresses

    Directory of Open Access Journals (Sweden)

    Akila Wijerathna-Yapa

    2017-06-01

    Full Text Available Today’s crop breeding combined with improved agricultural management has brought substantial increases in food production. But irrigation, fertilizers pest management requires a high energy input that creates a drain on the already scare fossil fuels. It is thus clear that different strategy has to be adopted to increase crop productivity further to meet the needs of rapidly increasing world population. Crop breeders are endeavoring to meet this challenge by developing crops with higher yield, better resistance to pest, disease and weedicides, tolerance to various stress conditions.

  13. Impact of thermal stress on evolutionary trajectories of pathogen resistance in three-spined stickleback (Gasterosteus aculeatus).

    Science.gov (United States)

    Schade, Franziska M; Shama, Lisa N S; Wegner, K Mathias

    2014-07-26

    Pathogens are a major regulatory force for host populations, especially under stressful conditions. Elevated temperatures may enhance the development of pathogens, increase the number of transmission stages, and can negatively influence host susceptibility depending on host thermal tolerance. As a net result, this can lead to a higher prevalence of epidemics during summer months. These conditions also apply to marine ecosystems, where possible ecological impacts and the population-specific potential for evolutionary responses to changing environments and increasing disease prevalence are, however, less known. Therefore, we investigated the influence of thermal stress on the evolutionary trajectories of disease resistance in three marine populations of three-spined sticklebacks Gasterosteus aculeatus by combining the effects of elevated temperature and infection with a bacterial strain of Vibrio sp. using a common garden experiment. We found that thermal stress had an impact on fish weight and especially on survival after infection after only short periods of thermal acclimation. Environmental stress reduced genetic differentiation (QST) between populations by releasing cryptic within-population variation. While life history traits displayed positive genetic correlations across environments with relatively weak genotype by environment interactions (GxE), environmental stress led to negative genetic correlations across environments in pathogen resistance. This reversal of genetic effects governing resistance is probably attributable to changing environment-dependent virulence mechanisms of the pathogen interacting differently with host genotypes, i.e. GPathogenxGHostxE or (GPathogenxE)x(GHostxE) interactions, rather than to pure host genetic effects, i.e. GHostxE interactions. To cope with climatic changes and the associated increase in pathogen virulence, host species require wide thermal tolerances and pathogen-resistant genotypes. The higher resistance we found

  14. Shear flow generation by Reynolds stress and suppression of resistive g modes

    International Nuclear Information System (INIS)

    Sugama, H.; Horton, W.

    1993-01-01

    The authors have investigated suppression of the resistive g mode turbulence by background shear flow produced by the external source and by the fluctuation-induced Reynolds stress. For that purpose, the authors used the model consisting of the equations describing the electrostatic potential φ≡(φ 0 +φ) and the pressure fluctuation p of the resistive g mode, and the equation for the background poloidal flow. They have done the single-helicity nonlinear simulations using the model equations in the sheared slab configuration. They find that, in the nonlinear turbulent regime, significant suppression of the turbulent transport is realized only when the shear flow v' E exceeds that which makes the fastest-growing linear modes marginally stable. With the shear flow which decreases the fastest linear growth rates by about a half, the turbulent transport in the saturated state is about the same as in the case of no shear flow. As seen from the equation for the background flow v E , the relative efficiency of the external flow and the Reynolds stress for producing shear flow depends on the parameter ν. For large ν, the external flow is a dominant contribution to the total background poloidal shear flow although its strength predicted by the neoclassical theory is not enough to suppress the turbulence significantly. On the other hand, for small ν, they observe that, as the fluctuations grow, the Reynolds stress becomes large and suddenly at some critical point in time shear flow much larger than the external one is generated and leads to the significant reduction of the turbulent transport just like that of the L-H transition in tokamak experiments. It is remarkable that the Reynolds stress due to the resistive g mode fluctuations works not as a conventional viscosity term weakening the shear flow but as a negative viscosity term enhancing it

  15. Nuclear HER4 mediates acquired resistance to trastuzumab and is associated with poor outcome in HER2 positive breast cancer

    Science.gov (United States)

    Nafi, Siti Norasikin Mohd; Generali, Daniele; Kramer-Marek, Gabriela; Gijsen, Merel; Strina, Carla; Cappelletti, Mariarosa; Andreis, Daniele; Haider, Syed; Li, Ji-Liang; Bridges, Esther; Capala, Jacek; Ioannis, Roxanis; Harris, Adrian L; Kong, Anthony

    2014-01-01

    The role of HER4 in breast cancer is controversial and its role in relation to trastuzumab resistance remains unclear. We showed that trastuzumab treatment and its acquired resistance induced HER4 upregulation, cleavage and nuclear translocation. However, knockdown of HER4 by specific siRNAs increased trastuzumab sensitivity and reversed its resistance in HER2 positive breast cancer cells. Preventing HER4 cleavage by a γ-secretase inhibitor and inhibiting HER4 tyrosine kinase activity by neratinib decreased trastuzumab-induced HER4 nuclear translocation and enhanced trastuzumab response. There was also increased nuclear HER4 staining in the tumours from BT474 xenograft mice and human patients treated with trastuzumab. Furthermore, nuclear HER4 predicted poor clinical response to trastuzumab monotherapy in patients undergoing a window study and was shown to be an independent poor prognostic factor in HER2 positive breast cancer. Our data suggest that HER4 plays a key role in relation to trastuzumab resistance in HER2 positive breast cancer. Therefore, our study provides novel findings that HER4 activation, cleavage and nuclear translocation influence trastuzumab sensitivity and resistance in HER2 positive breast cancer. Nuclear HER4 could be a potential prognostic and predictive biomarker and understanding the role of HER4 may provide strategies to overcome trastuzumab resistance in HER2 positive breast cancer. PMID:25153719

  16. Multidrug-Resistant Candida

    DEFF Research Database (Denmark)

    Arendrup, Maiken Cavling; Patterson, Thomas F

    2017-01-01

    Invasive Candida infections remain an important cause of morbidity and mortality, especially in hospitalized and immunocompromised or critically ill patients. A limited number of antifungal agents from only a few drug classes are available to treat patients with these serious infections. Resistance...... can be either intrinsic or acquired. Resistance mechanisms are not exchanged between Candida; thus, acquired resistance either emerges in response to an antifungal selection pressure in the individual patient or, more rarely, occur due to horizontal transmission of resistant strains between patients....... Although multidrug resistance is uncommon, increasing reports of multidrug resistance to the azoles, echinocandins, and polyenes have occurred in several Candida species, most notably Candida glabrata and more recently Candida auris. Drivers are overall antifungal use, subtherapeutic drug levels at sites...

  17. Acquired resistance L747S mutation in an epidermal growth factor receptor-tyrosine kinase inhibitor-naïve patient: A report of three cases.

    Science.gov (United States)

    Yamaguchi, Fumihiro; Fukuchi, Kunihiko; Yamazaki, Yohei; Takayasu, Hiromi; Tazawa, Sakiko; Tateno, Hidetsugu; Kato, Eisuke; Wakabayashi, Aya; Fujimori, Mami; Iwasaki, Takuya; Hayashi, Makoto; Tsuchiya, Yutaka; Yamashita, Jun; Takeda, Norikazu; Kokubu, Fumio

    2014-02-01

    The purpose of the present study was to report cases of epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-naïve patients carrying a mutation associated with acquired resistance to the drug. Gene alterations in 77 lung carcinoma patients were analyzed by collecting and studying curette lavage fluid at the time of diagnosis. PCRs were performed to amplify mutation hotspot regions in EGFR genes. The PCR products were direct-sequenced and the mutations confirmed by resequencing using different primers. Case 1 was a 78-year-old Japanese male diagnosed with stage IB lung adenocarcinoma who was found to have two EGFR mutations, G719S and L747S. Case 2 was a 73-year-old Japanese male diagnosed with stage IV squamous cell lung carcinoma and bone metastasis who had the EGFR mutation, L747S. Case 3 was an 82-year-old Japanese male diagnosed with hyponatremia due to inappropriate secretion of antidiuretic hormone and stage IIIB small cell lung carcinoma (SCLC) who had the EGFR mutation, L747S. Thus, the EGFR mutation L747S associated with acquired EGFR-TKI resistance was detected in two non-small cell lung carcinoma (NSCLC) patients and one SCLC patient, none of whom had ever received EGFR-TKI. The patients were current smokers with stages at diagnosis ranging from IB to IV, and their initial tumors contained resistant clones carrying L747S. L747S may be associated with primary resistance. To the best of our knowledge, this study is the first report of an EGFR mutation associated with resistance to EGFR-TKI in SCLC patients. The early detection of EGFR-TKI resistance mutations may be beneficial in making treatment decisions for lung carcinoma patients, including those with SCLC.

  18. Susceptibility patterns and the role of extracellular DNA in Staphylococcus epidermidis biofilm resistance to physico-chemical stress exposure.

    Science.gov (United States)

    Olwal, Charles Ochieng'; Ang'ienda, Paul Oyieng'; Onyango, David Miruka; Ochiel, Daniel Otieno

    2018-05-02

    Over 65% of human infections are ascribed to bacterial biofilms that are often highly resistant to antibiotics and host immunity. Staphylococcus epidermidis is the predominant cause of recurrent nosocomial and biofilm-related infections. However, the susceptibility patterns of S. epidermidis biofilms to physico-chemical stress induced by commonly recommended disinfectants [(heat, sodium chloride (NaCl), sodium hypochlorite (NaOCl) and hydrogen peroxide (H 2 O 2 )] in domestic and human healthcare settings remains largely unknown. Further, the molecular mechanisms of bacterial biofilms resistance to the physico-chemical stresses remain unclear. Growing evidence demonstrates that extracellular DNA (eDNA) protects bacterial biofilms against antibiotics. However, the role of eDNA as a potential mechanism underlying S. epidermidis biofilms resistance to physico-chemical stress exposure is yet to be understood. Therefore, this study aimed to evaluate the susceptibility patterns of and eDNA release by S. epidermidis biofilm and planktonic cells to physico-chemical stress exposure. S. epidermidis biofilms exposed to physico-chemical stress conditions commonly recommended for disinfection [heat (60 °C), 1.72 M NaCl, solution containing 150 μL of waterguard (0.178 M NaOCl) in 1 L of water or 1.77 M H 2 O 2 ] for 30 and 60 min exhibited lower log reductions of CFU/mL than the corresponding planktonic cells (p chemical stress induced by the four commonly recommended disinfectants than the analogous planktonic cells. Further, S. epidermidis biofilms enhanced eDNA release in response to the sub-lethal heat and oxidative stress exposure than the corresponding planktonic cells suggesting a role of eDNA in biofilms resistance to the physico-chemical stresses.

  19. Natural resistance to ascorbic acid induced oxidative stress is mainly mediated by catalase activity in human cancer cells and catalase-silencing sensitizes to oxidative stress

    Directory of Open Access Journals (Sweden)

    Klingelhoeffer Christoph

    2012-05-01

    Full Text Available Abstract Background Ascorbic acid demonstrates a cytotoxic effect by generating hydrogen peroxide, a reactive oxygen species (ROS involved in oxidative cell stress. A panel of eleven human cancer cell lines, glioblastoma and carcinoma, were exposed to serial dilutions of ascorbic acid (5-100 mmol/L. The purpose of this study was to analyse the impact of catalase, an important hydrogen peroxide-detoxifying enzyme, on the resistance of cancer cells to ascorbic acid mediated oxidative stress. Methods Effective concentration (EC50 values, which indicate the concentration of ascorbic acid that reduced the number of viable cells by 50%, were detected with the crystal violet assay. The level of intracellular catalase protein and enzyme activity was determined. Expression of catalase was silenced by catalase-specific short hairpin RNA (sh-RNA in BT-20 breast carcinoma cells. Oxidative cell stress induced apoptosis was measured by a caspase luminescent assay. Results The tested human cancer cell lines demonstrated obvious differences in their resistance to ascorbic acid mediated oxidative cell stress. Forty-five percent of the cell lines had an EC50 > 20 mmol/L and fifty-five percent had an EC50 50 of 2.6–5.5 mmol/L, glioblastoma cells were the most susceptible cancer cell lines analysed in this study. A correlation between catalase activity and the susceptibility to ascorbic acid was observed. To study the possible protective role of catalase on the resistance of cancer cells to oxidative cell stress, the expression of catalase in the breast carcinoma cell line BT-20, which cells were highly resistant to the exposure to ascorbic acid (EC50: 94,9 mmol/L, was silenced with specific sh-RNA. The effect was that catalase-silenced BT-20 cells (BT-20 KD-CAT became more susceptible to high concentrations of ascorbic acid (50 and 100 mmol/L. Conclusions Fifty-five percent of the human cancer cell lines tested were unable to protect themselves

  20. Haemophilus parasuis CpxRA two-component system confers bacterial tolerance to environmental stresses and macrolide resistance.

    Science.gov (United States)

    Cao, Qi; Feng, Fenfen; Wang, Huan; Xu, Xiaojuan; Chen, Huanchun; Cai, Xuwang; Wang, Xiangru

    2018-01-01

    Haemophilus parasuis is an opportunistic pathogen localized in the upper respiratory tracts of pigs, its infection begins from bacterial survival under complex conditions, like hyperosmosis, oxidative stress, phagocytosis, and sometimes antibiotics as well. The two-component signal transduction (TCST) system serves as a common stimulus-response mechanism that allows microbes to sense and respond to diverse environmental conditions via a series of phosphorylation reactions. In this study, we investigated the role of TCST system CpxRA in H. parasuis in response to different environmental stimuli by constructing the ΔcpxA and ΔcpxR single deletion mutants as well as the ΔcpxRA double deletion mutant from H. parasuis serotype 4 isolate JS0135. We demonstrated that H. parasuis TCST system CpxRA confers bacterial tolerance to stresses and bactericidal antibiotics. The CpxR was found to play essential roles in mediating oxidative stress, osmotic stresses and alkaline pH stress tolerance, as well as macrolide resistance (i.e. erythromycin), but the CpxA deletion did not decrease bacterial resistance to abovementioned stresses. Moreover, we found via RT-qPCR approach that HAPS_RS00160 and HAPS_RS09425, both encoding multidrug efflux pumps, were significantly decreased in erythromycin challenged ΔcpxR and ΔcpxRA mutants compared with wild-type strain JS0135. These findings characterize the role of the TCST system CpxRA in H. parasuis conferring stress response tolerance and bactericidal resistance, which will deepen our understanding of the pathogenic mechanism in H. parasuis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Utilizing Genetic Resources and Precision Agriculture to Enhance Resistance to Biotic and Abiotic Stress in Watermelon

    Directory of Open Access Journals (Sweden)

    Mihail KANTOR

    2018-03-01

    Full Text Available Originally from Africa, watermelon is a staple crop in South Carolina and rich source of important phytochemicals that promote human health. As a result of many years of domestication and selection for desired fruit quality, modern watermelon cultivars are susceptible to biotic and abiotic stress. The present review discusses how genetic selection and breeding combined with geospatial technologies (precision agriculture may help enhance watermelon varieties for resistance to biotic and abiotic stress. Gene loci identified and selected in undomesticated watermelon accessions are responsible for resistance to diseases, pests and abiotic stress. Vegetable breeding programs use traditional breeding methodologies and genomic tools to introduce gene loci conferring biotic or abiotic resistance into the genome background of elite watermelon cultivars. This continuous approach of collecting, evaluating and identifying useful genetic material is valuable for enhancing genetic diversity and tolerance and combined with precision agriculture could increase food security in the Southeast.

  2. 2-deoxy-D-glucose-induced metabolic stress enhances resistance to Listeria monocytogenes infection in mice

    Science.gov (United States)

    Miller, E. S.; Bates, R. A.; Koebel, D. A.; Fuchs, B. B.; Sonnenfeld, G.

    1998-01-01

    Exposure to different forms of psychological and physiological stress can elicit a host stress response, which alters normal parameters of neuroendocrine homeostasis. The present study evaluated the influence of the metabolic stressor 2-deoxy-D-glucose (2-DG; a glucose analog, which when administered to rodents, induces acute periods of metabolic stress) on the capacity of mice to resist infection with the facultative intracellular bacterial pathogen Listeria monocytogenes. Female BDF1 mice were injected with 2-DG (500 mg/kg b. wt.) once every 48 h prior to, concurrent with, or after the onset of a sublethal dose of virulent L. monocytogenes. Kinetics of bacterial growth in mice were not altered if 2-DG was applied concurrently or after the start of the infection. In contrast, mice exposed to 2-DG prior to infection demonstrated an enhanced resistance to the listeria challenge. The enhanced bacterial clearance in vivo could not be explained by 2-DG exerting a toxic effect on the listeria, based on the results of two experiments. First, 2-DG did not inhibit listeria replication in trypticase soy broth. Second, replication of L. monocytogenes was not inhibited in bone marrow-derived macrophage cultures exposed to 2-DG. Production of neopterin and lysozyme, indicators of macrophage activation, were enhanced following exposure to 2-DG, which correlated with the increased resistance to L. monocytogenes. These results support the contention that the host response to 2-DG-induced metabolic stress can influence the capacity of the immune system to resist infection by certain classes of microbial pathogens.

  3. The Role of Oxidative Stress in the Longevity and Insecticide Resistance Phenotype of the Major Malaria Vectors Anopheles arabiensis and Anopheles funestus.

    Science.gov (United States)

    Oliver, Shüné V; Brooke, Basil D

    2016-01-01

    Oxidative stress plays numerous biological roles, both functional and pathological. The role of oxidative stress in various epidemiologically relevant biological traits in Anopheles mosquitoes is not well established. In this study, the effects of oxidative stress on the longevity and insecticide resistance phenotype in the major malaria vector species An. arabiensis and An. funestus were examined. Responses to dietary copper sulphate and hydrogen peroxide were used as proxies for the oxidative stress phenotype by determining the effect of copper on longevity and hydrogen peroxide lethal dose. Glutathione peroxidase and catalase activities were determined colorimetrically. Oxidative burden was quantified as protein carbonyl content. Changes in insecticide resistance phenotype were monitored by WHO bioassay. Insecticide resistant individuals showed an increased capacity for coping with oxidative stress, mediated by increased glutathione peroxidase and catalase activity. This effect was observed in both species, as well as in laboratory strains and F1 individuals derived from wild-caught An. funestus mothers. Phenotypic capacity for coping with oxidative stress was greatest in strains with elevated Cytochrome P450 activity. Synergism of oxidative stress defence enzymes by dietary supplementation with haematin, 3-Amino-1, 2, 4-triazole and Sodium diethyldithiocarbamate significantly increased pyrethroid-induced mortality in An. arabiensis and An. funestus. It is therefore concluded that defence against oxidative stress underlies the augmentation of the insecticide resistance phenotype associated with multiple blood-feeding. This is because multiple blood-feeding ultimately leads to a reduction of oxidative stress in insecticide resistant females, and also reduces the oxidative burden induced by DDT and pyrethroids, by inducing increased glutathione peroxidase activity. This study highlights the importance of oxidative stress in the longevity and insecticide resistance

  4. Inclusion of copepod Acartia tonsa nauplii in the feeding of Centropomus undecimalis larvae increases stress resistance

    Directory of Open Access Journals (Sweden)

    Wanessa de Melo-Costa

    2015-09-01

    Full Text Available This research represents the first result of studies of the common snook Centropomus undecimalis larvae from broodstock matured in captivity in Brazil. The aim of this study was to evaluate if the inclusion of Acartia tonsa nauplii improves stress resistance of common snook larvae. The larvae were fed with: rotifers Brachionus plicatilis (10 to 15 mL-1; A. tonsa nauplii (0.25 to 0.5 mL-1 and rotifers (5 to 7.5 mL-1, and A. tonsa nauplii (0.12 to 0.25 mL-1. The average percentage of survival of the treatments was 11.9%. At 20 days of age, larvae were subjected to thermal stress. Subsequently, the stress resistance was evaluated. Common snook larvae fed B. plicatilis+A. tonsa reached a higher weight and length (7.5 ± 0.00 mg and 9.1 ± 0.23 mm, respectively and resisted more heat stress (87.4% than larvae fed other foods, indicating that the feed mixture is satisfactory as a starter diet for larvae of common snook. However, more research is needed to confirm these results.

  5. Insulin resistance and its possible personal stress moderators

    Directory of Open Access Journals (Sweden)

    Oleg G. Motovilin

    2017-08-01

    Full Text Available Background. Recently, insulin resistance (IR has been actively investigated by experts in various fields. Here we aim to study the effect of stress on the development of IR. Objective. To study the associations between IR and personal stress moderators (self-attitude, locus of control and coping strategies as well as the related performance lifestyles. Methods. The study included 63 patients (16 men; mean age, 48.2 ± 11.7 years. Of these participants, 26 were diagnosed with type 2 diabetes mellitus, 10 with impaired glucose tolerance, 6 with impaired fasting glucose and 21 with normal glucose tolerance. The levels of HbA1c and IR ratio were determined using HOMA. Well-known psychological assessment questionnaires were used to assess the effect of personal stress moderators. Results. There was a significant relationship between IR and personal stress moderators. A positive self-attitude was associated with a lower risk of IR (p < 0.05, which can be explained by a decrease in the risk of developing stress. Assertive coping strategies were most pronounced in subjects with a low level of IR (p < 0.05. Personal characteristics also determined an individual’s lifestyle, which may have an impact on the increase in IR. There was an association between high levels of IR and unhealthy alimentary preferences (p < 0.05. Such preferences were also associated with personal characteristics, such as external locus of control, less positive self-attitude and passive coping strategies (p < 0.05. People with high IR rarely engage in a regular physical activity; there was a direct correlation between the frequency of physical activity and assertive coping strategies (p < 0.01. Married participants had high levels of IR (p < 0.05. Conclusion. There were significant relationships between IR and personal stress moderators, such as self-attitude and coping strategies. Besides the direct effects on stress levels, personality traits may also indirectly increase the

  6. Effect of aspartic acid and glutamate on metabolism and acid stress resistance of Acetobacter pasteurianus.

    Science.gov (United States)

    Yin, Haisong; Zhang, Renkuan; Xia, Menglei; Bai, Xiaolei; Mou, Jun; Zheng, Yu; Wang, Min

    2017-06-15

    Acetic acid bacteria (AAB) are widely applied in food, bioengineering and medicine fields. However, the acid stress at low pH conditions limits acetic acid fermentation efficiency and high concentration of vinegar production with AAB. Therefore, how to enhance resistance ability of the AAB remains as the major challenge. Amino acids play an important role in cell growth and cell survival under severe environment. However, until now the effects of amino acids on acetic fermentation and acid stress resistance of AAB have not been fully studied. In the present work the effects of amino acids on metabolism and acid stress resistance of Acetobacter pasteurianus were investigated. Cell growth, culturable cell counts, acetic acid production, acetic acid production rate and specific production rate of acetic acid of A. pasteurianus revealed an increase of 1.04, 5.43, 1.45, 3.30 and 0.79-folds by adding aspartic acid (Asp), and cell growth, culturable cell counts, acetic acid production and acetic acid production rate revealed an increase of 0.51, 0.72, 0.60 and 0.94-folds by adding glutamate (Glu), respectively. For a fully understanding of the biological mechanism, proteomic technology was carried out. The results showed that the strengthening mechanism mainly came from the following four aspects: (1) Enhancing the generation of pentose phosphates and NADPH for the synthesis of nucleic acid, fatty acids and glutathione (GSH) throughout pentose phosphate pathway. And GSH could protect bacteria from low pH, halide, oxidative stress and osmotic stress by maintaining the viability of cells through intracellular redox equilibrium; (2) Reinforcing deamination of amino acids to increase intracellular ammonia concentration to maintain stability of intracellular pH; (3) Enhancing nucleic acid synthesis and reparation of impaired DNA caused by acid stress damage; (4) Promoting unsaturated fatty acids synthesis and lipid transport, which resulted in the improvement of cytomembrane

  7. Multiple roles of putrescine and spermidine in stress resistance and virulence of Salmonella enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Cartas Espinel, Irene; Guerra, Priscila Regina; Jelsbak, Lotte

    2016-01-01

    . Typhimurium virulence is the ability to survive and replicate inside macrophages and resisting the antimicrobial attacks in the form of oxidative and nitrosative stress elicited from these cells. In the present study, we have investigated the role of polyamines in intracellular survival and systemic...... infections of mice. Using a S. Typhimurium mutant defective for putrescine and spermidine biosynthesis, we show that polyamines are essential for coping with reactive nitrogen species, possibly linking polyamines to increased intracellular stress resistance. However, using a mouse model defective for nitric...

  8. SABP2, a methyl salicylate esterase is required for the systemic acquired resistance induced by acibenzolar-S-methyl in plants.

    Science.gov (United States)

    Tripathi, Diwaker; Jiang, Yu-Lin; Kumar, Dhirendra

    2010-08-04

    Tobacco SABP2, a 29kDa protein catalyzes the conversion of methyl salicylic acid (MeSA) into salicylic acid (SA) to induce SAR. Pretreatment of plants with acibenzolar-S-methyl (ASM), a functional analog of salicylic acid induces systemic acquired resistance (SAR). Data presented in this paper suggest that SABP2 catalyzes the conversion of ASM into acibenzolar to induce SAR. Transgenic SABP2-silenced tobacco plants when treated with ASM, fail to express PR-1 proteins and do not induce robust SAR expression. When treated with acibenzolar, full SAR is induced in SABP2-silenced plants. These results show that functional SABP2 is required for ASM-mediated induction of resistance. Copyright (c) 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Stressful life events are associated with insulin resistance among Chinese immigrant women in the United States

    Directory of Open Access Journals (Sweden)

    Carolyn Y. Fang

    2015-01-01

    Conclusions: This is one of the first studies to examine the associations between psychosocial stress and insulin resistance in Chinese immigrant women. These findings contribute to a growing body of literature on stress and diabetes risk in an immigrant population.

  10. OxyR-activated expression of Dps is important for Vibrio cholerae oxidative stress resistance and pathogenesis.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Xia

    Full Text Available Vibrio cholerae is the causative agent of cholera, a dehydrating diarrheal disease. This Gram-negative pathogen is able to modulate its gene expression in order to combat stresses encountered in both aquatic and host environments, including stress posed by reactive oxygen species (ROS. In order to further the understanding of V. cholerae's transcriptional response to ROS, we performed an RNA sequencing analysis to determine the transcriptional profile of V. cholerae when exposed to hydrogen hydroperoxide. Of 135 differentially expressed genes, VC0139 was amongst the genes with the largest induction. VC0139 encodes a protein homologous to the DPS (DNA-binding protein from starved cells protein family, which are widely conserved and are implicated in ROS resistance in other bacteria. Using a promoter reporter assay, we show that during exponential growth, dps is induced by H2O2 in a manner dependent on the ROS-sensing transcriptional regulator, OxyR. Upon entry into stationary phase, the major stationary phase regulator RpoS is required to transcribe dps. Deletion of dps impaired V. cholerae resistance to both inorganic and organic hydroperoxides. Furthermore, we show that Dps is involved in resistance to multiple environmental stresses. Finally, we found that Dps is important for V. cholerae adult mouse colonization, but becomes dispensable in the presence of antioxidants. Taken together, our results suggest that Dps plays vital roles in both V. cholerae stress resistance and pathogenesis.

  11. The Role of Oxidative Stress in the Longevity and Insecticide Resistance Phenotype of the Major Malaria Vectors Anopheles arabiensis and Anopheles funestus.

    Directory of Open Access Journals (Sweden)

    Shüné V Oliver

    Full Text Available Oxidative stress plays numerous biological roles, both functional and pathological. The role of oxidative stress in various epidemiologically relevant biological traits in Anopheles mosquitoes is not well established. In this study, the effects of oxidative stress on the longevity and insecticide resistance phenotype in the major malaria vector species An. arabiensis and An. funestus were examined. Responses to dietary copper sulphate and hydrogen peroxide were used as proxies for the oxidative stress phenotype by determining the effect of copper on longevity and hydrogen peroxide lethal dose. Glutathione peroxidase and catalase activities were determined colorimetrically. Oxidative burden was quantified as protein carbonyl content. Changes in insecticide resistance phenotype were monitored by WHO bioassay. Insecticide resistant individuals showed an increased capacity for coping with oxidative stress, mediated by increased glutathione peroxidase and catalase activity. This effect was observed in both species, as well as in laboratory strains and F1 individuals derived from wild-caught An. funestus mothers. Phenotypic capacity for coping with oxidative stress was greatest in strains with elevated Cytochrome P450 activity. Synergism of oxidative stress defence enzymes by dietary supplementation with haematin, 3-Amino-1, 2, 4-triazole and Sodium diethyldithiocarbamate significantly increased pyrethroid-induced mortality in An. arabiensis and An. funestus. It is therefore concluded that defence against oxidative stress underlies the augmentation of the insecticide resistance phenotype associated with multiple blood-feeding. This is because multiple blood-feeding ultimately leads to a reduction of oxidative stress in insecticide resistant females, and also reduces the oxidative burden induced by DDT and pyrethroids, by inducing increased glutathione peroxidase activity. This study highlights the importance of oxidative stress in the longevity and

  12. Seasonal water stress and the resistance of Pinus yunnanensis to a bark-beetle-associated fungus.

    Science.gov (United States)

    Salle, Aurelien; Ye, Hui; Yart, Annie; Lieutier, François

    2008-05-01

    We examined the influence of seasonal water stress on the resistance of Pinus yunnanensis (Franch.) to inoculation with Leptographium yunnanense, a pathogenic fungus associated with the aggressive bark beetle, Tomicus n. sp. Experiments took place between October 1997 and November 1999 in two plots located at the top and at the foot of a hill in Shaogiu, China, a region characterized by dry winters and wet summers. Following isolated and mass fungal inoculations, we observed the reaction zone length, fungal growth in the phloem, and the occlusion, blue-staining and specific hydraulic conductivity of the sapwood. Measurements of soil and needle water contents and predawn needle water potentials confirmed that trees were subject to mild water stress during winter, especially at the drier hilltop site. Measures of tree resistance to fungal infection of phloem and sapwood were congruent and indicated that trees were most susceptible to inoculation during the wet summer, especially at the lower-elevation plot. Specific hydraulic conductivity decreased after inoculation in summer. The results indicate that mild seasonal water stress is not likely responsible for the recent extensive damage to young P. yunnanensis stands by Tomicus n. sp. in the vicinity of our study plots. Rather, the results suggest that mild water stress enhances tree resistance to fungal pathogens associated with Tomicus n. sp.

  13. Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation?

    Science.gov (United States)

    Kashef, Nasim; Hamblin, Michael R

    2017-03-01

    Infections have been a major cause of disease throughout the history of humans on earth. With the introduction of antibiotics, it was thought that infections had been conquered. However, bacteria have been able to develop resistance to antibiotics at an exponentially increasing rate. The growing threat from multi-drug resistant organisms calls for intensive action to prevent the emergence of totally resistant and untreatable infections. Novel, non-invasive, non-antibiotic strategies are needed that act more efficiently and faster than current antibiotics. One promising alternative is antimicrobial photodynamic inactivation (APDI), an approach that produces reactive oxygen species when dyes and light are combined. So far, it has been questionable if bacteria can develop resistance against APDI. This review paper gives an overview of recent studies concerning the susceptibility of bacteria towards oxidative stress, and suggests possible mechanisms of the development of APDI-resistance that should at least be addressed. Some ways to potentiate APDI and also to overcome future resistance are suggested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Development of stress corrosion cracking resistant welds of 321 stainless steel by simple surface engineering

    Science.gov (United States)

    Mankari, Kamal; Acharyya, Swati Ghosh

    2017-12-01

    We hereby report a simple surface engineering technique to make AISI grade 321 stainless steel (SS) welds resistant to stress corrosion cracking (SCC) in chloride environment. Heat exchanger tubes of AISI 321 SS, welded either by (a) laser beam welding (LBW) or by (b) metal inert gas welding (MIG) were used for the study. The welds had high magnitude of tensile residual stresses and had undergone SCC in chloride environment while in service. The welds were characterized using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). Subsequently, the welded surfaces were subjected to buffing operation followed by determination of residual stress distribution and surface roughness by XRD and surface profilometer measurements respectively. The susceptibility of the welds to SCC was tested in buffed and un-buffed condition as per ASTM G-36 in boiling MgCl2 for 5 h and 10 h, followed by microstructural characterization by using optical microscope and FESEM. The results showed that the buffed surfaces (both welds and base material) were resistant to SCC even after 10 h of exposure to boiling MgCl2 whereas the un-buffed surfaces underwent severe SCC for the same exposure time. Buffing imparted high magnitude of compressive stresses on the surface of stainless steel together with reduction in its surface roughness and reduction in plastic strain on the surface which made the welded surface, resistant to chloride assisted SCC. Buffing being a very simple, portable and economic technique can be easily adapted by the designers as the last step of component fabrication to make 321 stainless steel welds resistant to chloride assisted SCC.

  15. Bacterial Aetiology and Antibiotic Resistance Pattern of Community-Acquired Urinary Tract Infections in Children in a Tertiary Care Hospital in Bangladesh

    Directory of Open Access Journals (Sweden)

    Lazina Sharmin

    2017-09-01

    Full Text Available Background: Urinary tract infections (UTIs in children are among the most common bacterial infections. Community-acquired urinary tract infections (CAUTI are often treated empirically with broad-spectrum antibiotics. Pattern of aetiologic agents and their antibiotic sensitivity may vary according to geographical and regional location. So, knowledge of antibiotic resistance trends is important for improving evidence-based recommendations for empirical treatment of UTIs. Objectives: To determine the common bacterial aetiologies of CAUTIs and their antibiotic resistance patterns in a tertiary care hospital, Savar. Materials and Methods: This cross-sectional descriptive study was conducted at Enam Medical College Hospital, Savar from May 2016 to April 2017. We collected clean-catch mid-stream urine samples from 257 patients having clinical diagnosis of UTI and submitted to the clinical microbiology laboratory for culture and sensitivity. Results: A total of 120 (46.7% samples were positive for bacterial growth. Escherichia coli (79% was the most common pathogen, followed by Klebsiella spp. (14%. Bacterial isolates showed high prevalence of resistance to multiple antibiotics. Resistance against amoxicillin/clavulanic acid, co-trimoxazole and ciprofloxacin was higher compared to newer quinolones and aminoglycosides. Conclusion: Esch. coli and Klebsiella spp. were the predominant bacterial pathogens. The resistance pattern to commonly prescribed antibiotics was quite high and alarming.

  16. Total resistance of native bacteria as an indicator of changes in the water environment

    Energy Technology Data Exchange (ETDEWEB)

    Harnisz, Monika [Department of Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn (Poland)

    2013-03-15

    This study analyzes changes in the total (intrinsic and acquired) resistance of autochthonous bacteria in a river which is a receiver of treated wastewater. In the analyzed samples, tetracycline contamination levels were low and characteristic of surface water bodies. An increase in the populations of tetracycline-resistant and fluoroquinolone-resistant microorganisms was noted in downstream river water samples in comparison with upstream river water samples, but the above trend was not observed in bacteria resistant to macrolides and β-lactams. The counts of doxycycline-resistant bacteria (DOX{sup R}) were significantly correlated with doxycycline levels. The minimum inhibitory concentrations (MICs) for doxycycline in DOX{sup R} isolates were higher in downstream river water than in upstream river water samples. The discharge of treated wastewater had no effect on the multi-drug resistance of oxytetracycline-resistant and doxycycline-resistant isolates. The results of the experiment indicate that the presence of doxycycline-resistant bacteria is a robust indicator of anthropogenic stress in river water. -- Highlights: ► The total resistance of native bacteria in river which is a receiver of treated wastewater was analyzed. ► Tetracyclines contamination levels were low. ► The counts of doxycycline-resistant bacteria were correlated with doxycycline levels. -- The presence of doxycycline-resistant bacteria in rivers can be a robust indicator of anthropogenic stress.

  17. Total resistance of native bacteria as an indicator of changes in the water environment

    International Nuclear Information System (INIS)

    Harnisz, Monika

    2013-01-01

    This study analyzes changes in the total (intrinsic and acquired) resistance of autochthonous bacteria in a river which is a receiver of treated wastewater. In the analyzed samples, tetracycline contamination levels were low and characteristic of surface water bodies. An increase in the populations of tetracycline-resistant and fluoroquinolone-resistant microorganisms was noted in downstream river water samples in comparison with upstream river water samples, but the above trend was not observed in bacteria resistant to macrolides and β-lactams. The counts of doxycycline-resistant bacteria (DOX R ) were significantly correlated with doxycycline levels. The minimum inhibitory concentrations (MICs) for doxycycline in DOX R isolates were higher in downstream river water than in upstream river water samples. The discharge of treated wastewater had no effect on the multi-drug resistance of oxytetracycline-resistant and doxycycline-resistant isolates. The results of the experiment indicate that the presence of doxycycline-resistant bacteria is a robust indicator of anthropogenic stress in river water. -- Highlights: ► The total resistance of native bacteria in river which is a receiver of treated wastewater was analyzed. ► Tetracyclines contamination levels were low. ► The counts of doxycycline-resistant bacteria were correlated with doxycycline levels. -- The presence of doxycycline-resistant bacteria in rivers can be a robust indicator of anthropogenic stress

  18. Effect of storage on radiation and antibiotic acquired stability in bacilli

    International Nuclear Information System (INIS)

    Tawfik, Z.S.

    1991-01-01

    The properties of two highly radioresistant bacterial strains namely B. laterosporous and B. firmus isolated, three years ago, from the water shielding the industrial Co-60 source of NCRRT Egypt were studied. The results showed that the studied isolates had lost their resistance to gamma irradiation as compared with their properties acquired at the time of isolation. The sensitivity test of these isolates to some antibiotics and sulpha drugs was also investigated, and was compared with tests performed on the same species isolated from tap water. The pronounced resistance of these isolates to some antibiotics acquired three years ago, had been lost by storage except for the case of the drug chemotrim. The results indicated that the acquired resistivity to both gamma irradiation and antibiotics due to the chronic exposure to gamma radiation is not stable. It is concluded that the genes controlling both phenomena, in the studied strains, fall into broad categories and the case might be a repair mechanism in the DNA during successive reproduction.2 fig., 2 tab

  19. Acquired resistance to cetuximab is associated with the overexpression of Ras family members and the loss of radiosensitization in head and neck cancer cells

    International Nuclear Information System (INIS)

    Saki, Mohammad; Toulany, Mahmoud; Rodemann, H. Peter

    2013-01-01

    Purpose: Cetuximab in combination with radiation therapy is used to treat patients with head and neck squamous cell carcinoma (HNSCC). In the present study, the mechanism of acquired resistance to cetuximab in HNSCC cells was investigated in vitro. Material and methods: The HNSCC cell lines UT5 and SAS and UT5 cells with acquired resistance to cetuximab (UT5R9) were used. The radiotoxicity potentials of cetuximab and inhibitors of PI3K, MAPK and farnesylation were tested using a clonogenic survival assay. Western blotting was used to evaluate protein expression. The levels of EGFR ligands were detected by ELISA. Results: Cetuximab inhibited proliferation and induced radiosensitization in UT5 cells but not in SAS cells. In comparison with UT5 cells, cetuximab-resistant SAS cells markedly overexpressed the K-Ras, H-Ras and N-Ras proteins, as detected by Western blotting. Resistance in UT5R9 cells was associated with the overexpression of the K-Ras, H-Ras and N-Ras proteins as well as an increase in the autocrine production of the EGFR ligands amphiregulin and transforming growth factor α (TGFα). UT5R9 cells were significantly more radioresistant than UT5 cells. Radioresistant UT5R9 cells were not radiosensitized by cetuximab, but knocking down H-RAS and N-RAS with siRNA and targeting Ras farnesylation using the farnesyltransferase inhibitor lonafarnib induced radiosensitization in these cells. Targeting PI3K and MEK revealed that the activation of the PI3K/Akt pathway but not the MAPK/ERK pathway is associated with radioresistance in UT5R9 cells. Conclusion: Targeting Ras and PI3K activity improves the outcome of irradiation in cetuximab-resistant HNSCC cell lines in vitro

  20. The comparative development of elevated resistance to macrolides in community-acquired pneumonia caused by Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Yayan J

    2014-10-01

    Full Text Available Josef Yayan Department of Internal Medicine, Division of Pulmonary, Allergy and Sleep Medicine, Saarland University Medical Center, Homburg/Saar, Germany Background: Community-acquired pneumonia (CAP is an acute inflammation of the lungs, which is often caused by Streptococcus pneumoniae. CAP is the leading cause of death by infectious disease in industrialized countries. Therefore, an immediate and effective antibiotic therapy is of great importance for the nonfatal outcome of the disease. The literature contains increasing data about the development of resistance to antibiotics that are used for the treatment of CAP caused by S. pneumoniae; this article also examines the possible development of resistance to antibiotics in S. pneumoniae in recent years.Methods: Within the study period of 2004–2014, all hospital charts from patients with CAP caused by S. pneumoniae were collected from the Department of Internal Medicine, Saarland University Medical Center, Homburg/Saar, Germany. The tracheal secretions of S. pneumoniae in CAP patients were obtained by bronchoalveolar lavage; bronchial aspirates were obtained through flexible bronchoscopy and directly from sputum, and blood cultures were examined microbiologically for microorganisms.Results: From a total of 100 patients with CAP caused by S. pneumoniae, 23 (53.49% [34.78% female], 95% confidence interval, 38.58–68.4 patients with a mean age of 59.78±15.77 years met the inclusion criteria of this investigation. These patients were compared to a total of 20 (46.51% [35% female], 95% confidence interval, 31.6–61.42 patients with a mean age of 58.9±13.36 years with CAP who were infested with S. pneumoniae. In the latter group, the streptococcal antigen was detected in pulmonary aspirations by bronchoscopy or in urine using polymerase chain reaction and a rapid pneumococcal test. Penicillin G and vancomycin had a high rate of sensitivity on the antibiogram for S. pneumoniae, which was

  1. Ion beam modification of thermal stress resistance of MgO single crystals with different crystallographic faces

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Otsuka, P.H.; Williams, J.S.; Conway, M.J.

    2000-01-01

    Ion beam modification of thermal shock stress resistance of MgO single crystals with various crystallographic faces is investigated. The most stable crystal faces in terms of stress and damage resistance are established. Ion implantation is shown to reduce the temperature threshold of fracture for all crystal faces tested. The (111) face is demonstrated to be of highest stability compared to (110) and (100) faces in both implanted and unimplanted crystals. At the same time ion implantation substantially increases the microcrack density for all the faces tested and reduces the degree of fracture damage following thermal shock. The theoretical resistance parameters for various crystal faces are calculated using the continuum mechanics approach. The results are discussed on the basis of fracture mechanics principles and the effect of the implantation-induced lattice damage on crack nucleation

  2. Antimicrobial resistance of thermophilic Campylobacter

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Engberg, J.

    2001-01-01

    Campylobacter has become the leading cause of zoonotic enteric infections in developed and developing countries world-wide. Antimicrobial resistance has emerged among Campylobacter mainly as a consequence of the use of antimicrobial agents in food animal production. Resistance to drugs of choice...... for the treatment of infections, macrolides and fluoroquinolones has emerged as a clinical problem and interventions to reduce this are recommended. Resistance to fluoroquinolones and macrolides is mediated by chromosomal mutations. Resistance to other relevant antimicrobial agents, mediated by acquired resistance...... genes, has not become widespread so far. However, resistance genes originating from both Gram-positive and Gram-negative bacterial species have been found, showing the potential for acquired resistance to emerge in Campylobacter....

  3. Assessing emotional status following acquired brain injury: the clinical potential of the depression, anxiety and stress scales.

    Science.gov (United States)

    Ownsworth, Tamara; Little, Trudi; Turner, Ben; Hawkes, Anna; Shum, David

    2008-10-01

    To investigate the clinical potential of the Depression, Anxiety and Stress Scales (DASS 42) and its shorter version (DASS 21) for assessing emotional status following acquired brain injury. Participants included 23 individuals with traumatic brain injury (TBI), 25 individuals with brain tumour and 29 non-clinical controls. Investigations of internal consistency, test-re-test reliability, theory-consistent differences, sensitivity to change and concurrent validity were conducted. Internal consistency of the DASS was generally acceptable (r > 0.70), with the exception of the anxiety scale for the TBI sample. Test-re-test reliability (1-3 weeks) was sound for the depression scale (r > 0.75) and significant but comparatively lower for other scales (r = 0.60-0.73, p scale (p DASS in the context of hospital discharge was demonstrated for depression and stress (p 0.05). Concurrent validity with the Hospital Anxiety and Depression Scale was significant for all scales of the DASS (p DASS following ABI, further research examining the factor structure of existing and modified versions of the DASS is recommended.

  4. Principles of Antibiotic Management of Community-Acquired Pneumonia.

    Science.gov (United States)

    Bender, Michael T; Niederman, Michael S

    2016-12-01

    Community-acquired pneumonia (CAP) encompasses a broad spectrum of disease severity and may require outpatient, inpatient, or intensive care management. Successful treatment hinges on expedient delivery of appropriate antibiotic therapy tailored to both the likely offending pathogens and the severity of disease. This review summarizes key principles in starting treatment and provides recommended empiric therapy regimens for each site of care. In addition, we discuss the antimicrobial and anti-inflammatory role macrolides play in CAP, as well as specific information for managing individual CAP pathogens such as community-acquired methicillin-resistant Staphylococcus aureus and drug-resistant Streptococcus pneumoniae . We also examine several novel antibiotics being developed for CAP and review the evidence guiding duration of therapy and current best practices for the transition of hospitalized patients from intravenous antibiotics to oral therapy. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  5. Antibiotic resistant enterococci—Tales of a drug resistance gene trafficker

    DEFF Research Database (Denmark)

    Werner, Guido; Coque, Teresa M.; Franz, Charles M.A.P.

    2013-01-01

    Enterococci have been recognized as important hospital-acquired pathogens in recent years, and isolates of E. faecalis and E. faecium are the third- to fourth-most prevalent nosocomial pathogen worldwide. Acquired resistances, especially against penicilin/ampicillin, aminoglycosides (high-level) ...

  6. Short-term stress enhances cellular immunity and increases early resistance to squamous cell carcinoma.

    Science.gov (United States)

    Dhabhar, Firdaus S; Saul, Alison N; Daugherty, Christine; Holmes, Tyson H; Bouley, Donna M; Oberyszyn, Tatiana M

    2010-01-01

    In contrast to chronic/long-term stress that suppresses/dysregulates immune function, an acute/short-term fight-or-flight stress response experienced during immune activation can enhance innate and adaptive immunity. Moderate ultraviolet-B (UV) exposure provides a non-invasive system for studying the naturalistic emergence, progression and regression of squamous cell carcinoma (SCC). Because SCC is an immunoresponsive cancer, we hypothesized that short-term stress experienced before UV exposure would enhance protective immunity and increase resistance to SCC. Control and short-term stress groups were treated identically except that the short-term stress group was restrained (2.5h) before each of nine UV-exposure sessions (minimum erythemal dose, 3-times/week) during weeks 4-6 of the 10-week UV exposure protocol. Tumors were measured weekly, and tissue collected at weeks 7, 20, and 32. Chemokine and cytokine gene expression was quantified by real-time PCR, and CD4+ and CD8+ T cells by flow cytometry and immunohistochemistry. Compared to controls, the short-term stress group showed greater cutaneous T-cell attracting chemokine (CTACK)/CCL27, RANTES, IL-12, and IFN-gamma gene expression at weeks 7, 20, and 32, higher skin infiltrating T cell numbers (weeks 7 and 20), lower tumor incidence (weeks 11-20) and fewer tumors (weeks 11-26). These results suggest that activation of short-term stress physiology increased chemokine expression and T cell trafficking and/or function during/following UV exposure, and enhanced Type 1 cytokine-driven cell-mediated immunity that is crucial for resistance to SCC. Therefore, the physiological fight-or-flight stress response and its adjuvant-like immuno-enhancing effects, may provide a novel and important mechanism for enhancing immune system mediated tumor-detection/elimination that merits further investigation.

  7. Systematically Altering Bacterial SOS Activity under Stress Reveals Therapeutic Strategies for Potentiating Antibiotics.

    Science.gov (United States)

    Mo, Charlie Y; Manning, Sara A; Roggiani, Manuela; Culyba, Matthew J; Samuels, Amanda N; Sniegowski, Paul D; Goulian, Mark; Kohli, Rahul M

    2016-01-01

    The bacterial SOS response is a DNA damage repair network that is strongly implicated in both survival and acquired drug resistance under antimicrobial stress. The two SOS regulators, LexA and RecA, have therefore emerged as potential targets for adjuvant therapies aimed at combating resistance, although many open questions remain. For example, it is not well understood whether SOS hyperactivation is a viable therapeutic approach or whether LexA or RecA is a better target. Furthermore, it is important to determine which antimicrobials could serve as the best treatment partners with SOS-targeting adjuvants. Here we derived Escherichia coli strains that have mutations in either lexA or recA genes in order to cover the full spectrum of possible SOS activity levels. We then systematically analyzed a wide range of antimicrobials by comparing the mean inhibitory concentrations (MICs) and induced mutation rates for each drug-strain combination. We first show that significant changes in MICs are largely confined to DNA-damaging antibiotics, with strains containing a constitutively repressed SOS response impacted to a greater extent than hyperactivated strains. Second, antibiotic-induced mutation rates were suppressed when SOS activity was reduced, and this trend was observed across a wider spectrum of antibiotics. Finally, perturbing either LexA or RecA proved to be equally viable strategies for targeting the SOS response. Our work provides support for multiple adjuvant strategies, while also suggesting that the combination of an SOS inhibitor with a DNA-damaging antibiotic could offer the best potential for lowering MICs and decreasing acquired drug resistance. IMPORTANCE Our antibiotic arsenal is becoming depleted, in part, because bacteria have the ability to rapidly adapt and acquire resistance to our best agents. The SOS pathway, a widely conserved DNA damage stress response in bacteria, is activated by many antibiotics and has been shown to play central role in

  8. High viscosity and anisotropy characterize the cytoplasm of fungal dormant stress resistant spores

    NARCIS (Netherlands)

    Dijksterhuis, J.; Nijsse, J.; Hoekstra, F.A.; Golovina, E.A.

    2007-01-01

    Ascospores of the fungus Talaromyces macrosporus are dormant and extremely stress resistant, whereas fungal conidia¿the main airborne vehicles of distribution¿are not. Here, physical parameters of the cytoplasm of these types of spores were compared. Cytoplasmic viscosity and level of anisotropy as

  9. Changing prevalence and antibiotic drug resistance pattern of pathogens seen in community-acquired pediatric urinary tract infections at a tertiary care hospital of North India.

    Science.gov (United States)

    Patwardhan, Vrushali; Kumar, Dinesh; Goel, Varun; Singh, Sarman

    2017-01-01

    The aim and objective of this study was to assess the temporal changes in the microbiological profiles and antimicrobial resistance patterns of uropathogens in pediatric community-acquired UTI. This is a retrospective analysis of data collected over a Scattered period of 5 years. The baseline data collected were from January to December 2009, and the second period considered for comparison was from January to December 2014. Urine specimens from children (Antibiotic sensitivity was put up by Kirby-Bauer disc diffusion method as per the Clinical and Laboratory Standard Institute guidelines. In the year 2009, 340 of 2104 (16.15%) urine specimens yielded significant colony count, whereas in 2014, it was 407 of 2212 (18.39%) ( P = 0.051). Escherichia coli was the predominant pathogen and was significantly more prevalent in girls than in boys ( P resistance to ampicillin (from 40.29% to 58.72%), amoxyclav (from 26.17% to 40.54%), nitrofurantoin (from 28.82% to 39.06%), and norfloxacin (from 30% to 41.42%). However, the maximum increase in the resistance was noted for co-trimoxazole from 35.58% in 2009 to 63.39% in 2014 ( P = 0.0000058). The prevalence of extended-spectrum beta-lactamases (ESBLs) has also significantly increased from 21.7% to 33.16% ( P = 0.0045). Although E. coli remains the prime pathogen in pediatric UTI, the prevalence of resistance has dramatically increased over the 5-year study period. Our study highlights the emergence of community-acquired ESBL-producing uropathogens in children proclaiming treatment challenges.

  10. QseC Mediates Osmotic Stress Resistance and Biofilm Formation in Haemophilus parasuis

    Directory of Open Access Journals (Sweden)

    Lvqin He

    2018-02-01

    Full Text Available Haemophilus parasuis is known as a commensal organism discovered in the upper respiratory tract of swine where the pathogenic bacteria survive in various adverse environmental stress. QseC, a histidine protein kinase of the two-component regulatory systems CheY/QseC, is involved in the environmental adaptation in bacteria. To investigate the role of QseC in coping with the adverse environment stresses and survive in the host, we constructed a qseC mutant of H. parasuis serovar 13 strain (ΔqseC, MY1902. In this study, we found that QseC was involved in stress tolerance of H. parasuis, by the ΔqseC exhibited a decreased resistance to osmotic pressure, oxidative stress, and heat shock. Moreover, the ΔqseC weakened the ability to take up iron and biofilm formation. We also found that the QseC participate in sensing the epinephrine in environment to regulate the density of H. parasuis.

  11. Functional cooperation between HIF-1α and c-Jun in mediating primary and acquired resistance to gefitinib in NSCLC cells with activating mutation of EGFR.

    Science.gov (United States)

    Meng, Shuyan; Wang, Guorui; Lu, Yang; Fan, Zhen

    2018-07-01

    Hypoxia-inducible factor 1 (HIF-1) and activator protein 1 (AP-1) are important transcription factors regulating expression of genes involved in cell survival. HIF-1α and c-Jun are key components of HIF-1 and AP-1, respectively, and are regulated by epidermal growth factor receptor (EGFR)-mediated cell signaling and tumor microenvironmental cues. The roles of HIF-1α and c-Jun in development of resistance to EGFR tyrosine kinase inhibitor (TKI) in non-small cell lung cancer (NSCLC) with activating mutation of EGFR have not been explored. In this study, we investigated the roles of HIF-1α and c-Jun in mediating primary and acquired resistance to gefitinib in NSCLC cells with activating mutation of EGFR. Changes in HIF-1α protein and in total and phosphorylated c-Jun levels in relation to changes in total and phosphorylated EGFR levels before and after gefitinib treatment were measured using Western blot analysis in NSCLC cells sensitive or resistant to gefitinib. The impact of overexpression of a constitutively expressed HIF-1α (HIF-1α/ΔODD) or a constitutively active c-Jun upstream regulator (SEK1 S220E/T224D mutant) on cell response to gefitinib was also examined. The effect of pharmacological inhibition of SEK1-JNK-c-Jun pathway on cell response to gefitinib was evaluated. Downregulation of HIF-1α and total and phosphorylated c-Jun levels correlated with cell inhibitory response to gefitinib better than decrease in phosphorylated EGFR did in NSCLC cells with intrinsic or acquired resistance to gefitinib. Overexpression of HIF-1α/ΔODD or SEK1 S220E/T224D mutant conferred resistance to gefitinib. There exists a positive feed-forward regulation loop between HIF-1 and c-Jun. The JNK inhibitor SP600125 sensitized gefitinib-resistant NSCLC cells to gefitinib. HIF-1α and c-Jun functionally cooperate in development of resistance to gefitinib in NSCLC cells. The translational value of inhibiting HIF-1α/c-Jun cooperation in overcoming resistance to EGFR TKI

  12. Infectious caused by community-acquired Methicillin-Resistant Staphylococcus aureus (CA-MRSA: three-years experience of an universitary hospital in Rome

    Directory of Open Access Journals (Sweden)

    Anna Altieri

    2010-06-01

    Full Text Available To date methicillin-resistant Staphylococcus aureus (MRSA is one of the most common pathogens causing nosocomial infections(1. In Europe the proportion of MRSA is increasing sharply and the distribution varies from country to country. In recent years there has, in various parts of the world, the emergence of infection with strains of S. aureus methicillin-resistant community-acquired (CA-MRSA than those circulating in hospitals(2. These strains contain a gene that confers resistance to methicillin (mec A SSC mec IV which is usually associated with the gene for Leukocidin Panton Valentine (PVL toxin responsible for necrosis of skin and soft tissue (3. In 2006-2008, at the Laboratory of Bacteriology PolyclinicTor Vergata,were isolated a total of 738 strains of S. aureus from biological samples of different nature (oral, vaginal secretions, wound swab, secreted headset, etc ... of patients related to our surgeries.The identification and study of drug sensitivity of strains were performed with the automatic VITEK2 (bioMérieux. Of the 738 strains of S. aureus identified 212 (28.7% were resistant to methicillin (MRSA, with an increasing trend over the years: 46 isolates, respectively, in 2006, 76 in 2007 and 90 in 2008. The highest frequency of MRSA (varying between 85% and 95% was detected in wound swabs from the dispensary and diabetes (diabetic foot.

  13. Patients' Hand Washing and Reducing Hospital-Acquired Infection.

    Science.gov (United States)

    Haverstick, Stacy; Goodrich, Cara; Freeman, Regi; James, Shandra; Kullar, Rajkiran; Ahrens, Melissa

    2017-06-01

    Hand hygiene is important to prevent hospital-acquired infections. Patients' hand hygiene is just as important as hospital workers' hand hygiene. Hospital-acquired infection rates remain a concern across health centers. To improve patients' hand hygiene through the promotion and use of hand washing with soap and water, hand sanitizer, or both and improve patients' education to reduce hospital-acquired infections. In August 2013, patients in a cardiothoracic postsurgical step-down unit were provided with individual bottles of hand sanitizer. Nurses and nursing technicians provided hand hygiene education to each patient. Patients completed a 6-question survey before the intervention, at hospital discharge and 1, 2, and 3 months after the intervention. Hospital-acquired infection data were tracked monthly by infection prevention staff. Significant correlations were found between hand hygiene and rates of infection with vancomycin-resistant enterococci ( P = .003) and methicillin-resistant Staphylococcus aureus ( P = .01) after the intervention. After the implementation of hand hygiene interventions, rates of both infections declined significantly and patients reported more staff offering opportunities for and encouraging hand hygiene. This quality improvement project demonstrates that increased hand hygiene compliance by patients can influence infection rates in an adult cardiothoracic step-down unit. The decreased infection rates and increased compliance with hand hygiene among the patients may be attributed to the implementation of patient education and the increased accessibility and use of hand sanitizer. ©2017 American Association of Critical-Care Nurses.

  14. Sulfur amino acid metabolism in doxorubicin-resistant breast cancer cells

    International Nuclear Information System (INIS)

    Ryu, Chang Seon; Kwak, Hui Chan; Lee, Kye Sook; Kang, Keon Wook; Oh, Soo Jin; Lee, Ki Ho; Kim, Hwan Mook; Ma, Jin Yeul; Kim, Sang Kyum

    2011-01-01

    Although methionine dependency is a phenotypic characteristic of tumor cells, it remains to be determined whether changes in sulfur amino acid metabolism occur in cancer cells resistant to chemotherapeutic medications. We compared expression/activity of sulfur amino acid metabolizing enzymes and cellular levels of sulfur amino acids and their metabolites between normal MCF-7 cells and doxorubicin-resistant MCF-7 (MCF-7/Adr) cells. The S-adenosylmethionine/S-adenosylhomocysteine ratio, an index of transmethylation potential, in MCF-7/Adr cells decreased to ∼ 10% relative to that in MCF-7 cells, which may have resulted from down-regulation of S-adenosylhomocysteine hydrolase. Expression of homocysteine-clearing enzymes, such as cystathionine beta-synthase, methionine synthase/methylene tetrahydrofolate reductase, and betaine homocysteine methyltransferase, was up-regulated in MCF-7/Adr cells, suggesting that acquiring doxorubicin resistance attenuated methionine-dependence and activated transsulfuration from methionine to cysteine. Homocysteine was similar, which is associated with a balance between the increased expressions of homocysteine-clearing enzymes and decreased extracellular homocysteine. Despite an elevation in cysteine, cellular GSH decreased in MCF-7/Adr cells, which was attributed to over-efflux of GSH into the medium and down-regulation of the GSH synthesis enzyme. Consequently, MCF-7/Adr cells were more sensitive to the oxidative stress induced by bleomycin and menadione than MCF-7 cells. In conclusion, our results suggest that regulating sulfur amino acid metabolism may be a possible therapeutic target for chemoresistant cancer cells. These results warrant further investigations to determine the role of sulfur amino acid metabolism in acquiring anticancer drug resistance in cancer cells using chemical and biological regulators involved in sulfur amino acid metabolism. - Research highlights: → MCF-7/Adr cells showed decreases in cellular GSH

  15. Antibiotic resistance patterns of pediatric community-acquired urinary infections

    OpenAIRE

    Guidoni, Eliana Biondi Medeiros; Berezin, Eitan N.; Nigro, Stanley; Santiago, Nataly A; Benini, Vanda; Toporovski, Julio

    2008-01-01

    Knowledge about antimicrobial resistance patterns of the etiological agents of urinary tract infections (UTIs) is essential for appropriate therapy. Urinary isolates from symptomatic UTI cases attended at Santa Casa University Hospital of São Paulo from August 1986 to December 1989 and August 2004 to December 2005 were identified by conventional methods. Antimicrobial resistance testing was performed by Kirby Bauer's disc diffusion method. Among the 257 children, E. coli was found in 77%. A h...

  16. Coral thermal tolerance: tuning gene expression to resist thermal stress.

    Directory of Open Access Journals (Sweden)

    Anthony J Bellantuono

    Full Text Available The acclimatization capacity of corals is a critical consideration in the persistence of coral reefs under stresses imposed by global climate change. The stress history of corals plays a role in subsequent response to heat stress, but the transcriptomic changes associated with these plastic changes have not been previously explored. In order to identify host transcriptomic changes associated with acquired thermal tolerance in the scleractinian coral Acropora millepora, corals preconditioned to a sub-lethal temperature of 3°C below bleaching threshold temperature were compared to both non-preconditioned corals and untreated controls using a cDNA microarray platform. After eight days of hyperthermal challenge, conditions under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant maintained Symbiodinium density, a clear differentiation in the transcriptional profiles was revealed among the condition examined. Among these changes, nine differentially expressed genes separated preconditioned corals from non-preconditioned corals, with 42 genes differentially expressed between control and preconditioned treatments, and 70 genes between non-preconditioned corals and controls. Differentially expressed genes included components of an apoptotic signaling cascade, which suggest the inhibition of apoptosis in preconditioned corals. Additionally, lectins and genes involved in response to oxidative stress were also detected. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments; that is, differences in expression magnitude were more apparent than differences in the identity of genes differentially expressed. Our work revealed a transcriptomic signature underlying the tolerance associated with coral thermal history, and suggests that understanding the molecular mechanisms behind physiological acclimatization would be critical for the modeling of reefs

  17. Effects of simulated microgravity on surfactant and water balance of lung in animals with different resistance to stress

    Science.gov (United States)

    Bryndina, Irina; Vasilieva, Natalia

    Weightlessness is accompanied by redistribution of blood flow in lung, changes of lung volumes and gas exchange (Prisk et al., 2002; Grigoriev, Baranov, 2003). On the other hand, it is known that microgravity is considered as a kind of moderate stress (Grigoriev et al., 2004). Stress response may differ in animals resistant or vulnerable to stress (Sudakov, 2007). To study the effects of simulated microgravity upon lung, we used 20 male albino rats tested for behavior in the "open field" and than divided into active (stress resistant - SR ) and passive (stress vulnerable - CV) groups. Two mouse lines were used with similar goal - C57Bl/6 and BALB/c mice (n=16). According to data obtained earlier, BALB/c mice referred as more stress vulnerable, in contrast to C57BL/6 mice, which are considered to be relatively stress resistant (Flint et al., 2007). We have previously shown that changes in lung surfactant system after psychosocial stress or long-term immobilization are less pronounced in stress resistant rats (Vasilieva, Bryndina, 2012). The aim of this work is to study the properties and biochemical composition of pulmonary surfactant and lung water balance in rats and mice with different stress resistance in antiorthostatic suspension (AOS) of short and long duration. Simulated microgravity was reproduced according to procedure of Ilyin-Novikov in modification of Morey-Holton. The duration of exposure was 10 days for rats and 30 days for mice. The properties of pulmonary surfactant were assessed by the evaluation of surface activity (surface tension - ST), the content of total phospholipids (PL) and their fractions. Simultaneously we calculated the gravimetric water balance indices: lung coefficient, "dry residue" and wet-to-dry ratio. Total and extravascular lung fluid and pulmonary blood supply were estimated as well. The experiments demonstrated that there was a decrease of surface tension of surfactant films after 10-day AOS in both groups of rats (to a greater

  18. Effect of Trinexapac-ethyl on Increased Resistance to Drought Stress in Wheatgrass (Agropyron desertorum L.

    Directory of Open Access Journals (Sweden)

    mohamad hossein sheikh mohamadi

    2017-10-01

    Full Text Available Introduction: Drought is one of the most detrimental abiotic stresses for turfgrass growth across a wide range of geographic locations. Most cool-season grass species are not well adapted to extended periods of drought, particularly during summer months. Decline in turf quality caused by drought stress is a major concern in turfgrass culture. Therefore, developing management practices for improving drought resistance of turfgrasses has become essential in arid and semi-arid regions, especially during water use restriction. One strategy to improve plant drought resistance is to promote drought avoidance by reducing water loss during drought, which may be achieved by slowing growth rate of shoots and lowering leaf area canopy to reduce demand for water. Application of growth regulators is one of the methods for increasing resistance of plants to biotic and abiotic stresses. Trinexapac-ethyl (TE is one of the most widely used PGRs in the management of cool-season and warm-season turfgrass species. TE absorbed quickly by foliage and slow cell elongation through inhibiting of converting one form of gibberellic acid (GA20 to another (GA1. Most studies conducted under non-stressed conditions found that TE application increased chlorophyll content, turf quality, turf density and reduced shoot extension rate. We hypothesized that TE may influence plant tolerance to drought stress. Limited available data─ as reported in the above referred studies─ suggest that TE application may be beneficial for plant tolerance to stresses, but the effectiveness varies with turfgrass species, dose and duration of TE treatment, and type of stress. The main aim of this research is to evaluate the effect of Trinexapac-ethyl on increased resistance to drought stress in wheatgrass. Materials and Methods: Wheatgrass (Agropyron desertorum L. was used in this study. This study was conducted in field conditions at Isfahan University of Technology, Isfahan, Iran.. Wheatgrass

  19. Insight into the heat resistance of fish via blood: Effects of heat stress on metabolism, oxidative stress and antioxidant response of olive flounder Paralichthys olivaceus and turbot Scophthalmus maximus.

    Science.gov (United States)

    Lu, Yunliang; Wu, Zhihao; Song, Zongcheng; Xiao, Peng; Liu, Ying; Zhang, Peijun; You, Feng

    2016-11-01

    High temperature has direct confinement on fish survival and growth, especially under the background of global warming. Selection of fish line with heat resistance is an important means to address this problem. In the present study, we analyzed the difference in heat resistance between families of olive flounder Paralichthys olivaceus and turbot Scophthalmus maximus, two flatfish species occupying slightly different thermal niches. Then the chosen families were tested to determine their differential response to heat stress (ΔT = +8 °C and +12 °C) in blood, including anaerobic metabolism (lactate), oxidative stress (lipid peroxidation and protein carbonylation) and antioxidant enzymes. Results showed a difference in heat resistance between families of the two species. Among the chosen parameters, growth traits had a significant effect on contents of lactate and malondialdehyd (MDA), and activities of catalase (CAT) and glutathione S-transferase in flounder (P heat-sensitive family of each species, levels of all studied parameters were lower and more stable in heat-resistant families after heat stress. What's more, heat resistance of fish significantly influenced contents of lactate and MDA and activity of CAT in flounder (P heat-resistance, being potentially valuable in fish breeding. However, these markers should be applied with more caution when there is a growth discrepancy between fish families. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. WAYS OF ACQUIRING FLYING PHOBIA.

    Science.gov (United States)

    Schindler, Bettina; Vriends, Noortje; Margraf, Jürgen; Stieglitz, Rolf-Dieter

    2016-02-01

    The few studies that have explored how flying phobia is acquired have produced contradictory results. We hypothesized that classical conditioning plays a role in acquiring flying phobia and investigated if vicarious (model) learning, informational learning through media, and experiencing stressful life events at the time of onset of phobia also play a role. Thirty patients with flying phobia and thirty healthy controls matched on age, sex, and education were interviewed with the Mini-DIPS, the short German version of the Anxiety Disorders Interview Schedule (DSM-IV diagnostic criteria) and the Fear-of-Flying History Interview. Fifty Percent of patients with flying phobia and 53% of healthy controls reported frightening events in the air. There was no significant difference between the two samples. Thus there were not more classical conditioning events for patients with flying phobia. There also was no significant difference between the two samples for vicarious (model) learning: 37% of flying phobia patients and 23% of healthy controls felt influenced by model learning. The influence of informational learning through media was significantly higher for the clinical sample (70%) than for the control group (37%). Patients with flying phobia experienced significantly more stressful life events in the period of their frightening flight experience (60%) than healthy controls (19%). Frightening experiences while flying are quite common, but not everybody develops a flying phobia. Stressful life events and other factors might enhance conditionability. Informational learning through negative media reports probably reinforces the development of flying phobia. Clinical implications are discussed. © 2015 Wiley Periodicals, Inc.

  1. Oxidative stress and antioxidant responses to progressive resistance exercise intensity in trained and untrained males

    Directory of Open Access Journals (Sweden)

    H Çakır-Atabek

    2015-11-01

    Full Text Available The relationship between oxidative stress and some exercise components of resistance exercise (e.g. intensity, exercise volume has not been clearly defined. Additionally, the oxidative stress markers may respond differently in various conditions. This study aims to determine the effects of progressive intensity of resistance exercise (RE on oxidative stress and antioxidants in trained and untrained men, and also to investigate the possible threshold intensity required to evoke oxidative stress. RE trained (N=8 and untrained (N=8 men performed the leg extension RE at progressive intensities standardized for total volume: 1x17 reps at 50% of one-repetition maximum (1RM; 1x14 reps at 60% of 1RM; 1x12 reps at 70% of 1RM; 2x5 reps at 80% of 1RM; and 3x3 reps at 90% of 1RM. Blood samples were drawn before (PRE and immediately after each intensity, and after 30 minutes, 60 minutes and 24 hours following the RE. Lipid-hydroperoxide (LHP significantly increased during the test and then decreased during the recovery in both groups (p0.05. Standardized volume of RE increased oxidative stress responses. Our study suggests that lower intensity (50% is enough to increase LHP, whereas higher intensity (more than 80% is required to evoke protein oxidation.

  2. Low Temperature-Induced 30 (LTI30 positively regulates drought stress resistance in Arabidopsis: effect on abscisic acid sensitivity and hydrogen peroxide accumulation

    Directory of Open Access Journals (Sweden)

    Haitao eShi

    2015-10-01

    Full Text Available As a dehydrin belonging to group II late embryogenesis abundant protein (LEA family, Arabidopsis Low Temperature-Induced 30 (LTI30/XERO2 has been shown to be involved in plant freezing stress resistance. However, the other roles of AtLTI30 remain unknown. In this study, we found that the expression of AtLTI30 was largely induced by drought stress and abscisic acid (ABA treatments. Thereafter, AtLTI30 knockout mutants and overexpressing plants were isolated to investigate the possible involvement of AtLTI30 in ABA and drought stress responses. AtLTI30 knockout mutants were less sensitive to ABA-mediated seed germination, while AtLTI30 overexpressing plants were more sensitive to ABA compared with wild type (WT. Consistently, the AtLTI30 knockout mutants displayed decreased drought stress resistance, while the AtLTI30 overexpressing plants showed improved drought stress resistance compared with WT, as evidenced by a higher survival rate and lower leaf water loss than WT after drought stress. Moreover, manipulation of AtLTI30 expression positively regulated the activities of catalases (CATs and endogenous proline content, as a result, negatively regulated drought stress-triggered hydrogen peroxide (H2O2 accumulation. All these results indicate that AtLTI30 is a positive regulator of plant drought stress resistance, partially through the modulation of ABA sensitivity, H2O2 and proline accumulation.

  3. Bioethanol strains of Saccharomyces cerevisiae characterised by microsatellite and stress resistance

    Directory of Open Access Journals (Sweden)

    Vanda Renata Reis

    Full Text Available Abstract Strains of Saccharomyces cerevisiae may display characteristics that are typical of rough-type colonies, made up of cells clustered in pseudohyphal structures and comprised of daughter buds that do not separate from the mother cell post-mitosis. These strains are known to occur frequently in fermentation tanks with significant lower ethanol yield when compared to fermentations carried out by smooth strains of S. cerevisiae that are composed of dispersed cells. In an attempt to delineate genetic and phenotypic differences underlying the two phenotypes, this study analysed 10 microsatellite loci of 22 S. cerevisiae strains as well as stress resistance towards high concentrations of ethanol and glucose, low pH and cell sedimentation rates. The results obtained from the phenotypic tests by Principal-Component Analysis revealed that unlike the smooth colonies, the rough colonies of S. cerevisiae exhibit an enhanced resistance to stressful conditions resulting from the presence of excessive glucose and ethanol and high sedimentation rate. The microsatellite analysis was not successful to distinguish between the colony phenotypes as phenotypic assays. The relevant industrial strain PE-2 was observed in close genetic proximity to rough-colony although it does not display this colony morphology. A unique genetic pattern specific to a particular phenotype remains elusive.

  4. Stress-reaction during hypokinesia and its effect on total resistance of the animal body

    International Nuclear Information System (INIS)

    Chernov, I.P.

    1980-01-01

    In the experiments on rats, shown has been that three-phase stress-reaction develops during the hypokinetic syndrome formation. This reaction is confirmed by specific changes of general state of the organism, body mass and by the activity of hypothalamic-hypophysial-adrenal system evaluated by oscillations of relative mass of pituitary body and adrenal glands and by karyometry of neuron of the hypothalamus arcuate nuclear and cells of zona fasciculata of adrenal glands. The hypokinetic stress affects the total resistance of the body, its sensitivity to gamma-irradiation in the dose of 800 rad. On the definite stage of development the hypokinetic stress forms the state of heightened ''cross'' stability

  5. Does plant-Microbe interaction confer stress tolerance in plants: A review?

    Science.gov (United States)

    Kumar, Akhilesh; Verma, Jay Prakash

    2018-03-01

    The biotic and abiotic stresses are major constraints for crop yield, food quality and global food security. A number of parameters such as physiological, biochemical, molecular of plants are affected under stress condition. Since the use of inorganic fertilizers and pesticides in agriculture practices cause degradation of soil fertility and environmental pollutions. Hence it is necessary to develop safer and sustainable means for agriculture production. The application of plant growth promoting microbes (PGPM) and mycorrhizal fungi enhance plant growth, under such conditions. It offers an economically fascinating and ecologically sound ways for protecting plants against stress condition. PGPM may promote plant growth by regulating plant hormones, improve nutrition acquisition, siderophore production and enhance the antioxidant system. While acquired systemic resistance (ASR) and induced systemic resistance (ISR) effectively deal with biotic stress. Arbuscular mycorrhiza (AM) enhance the supply of nutrients and water during stress condition and increase tolerance to stress. This plant-microbe interaction is vital for sustainable agriculture and industrial purpose, because it depends on biological processes and replaces conventional agriculture practices. Therefore, microbes may play a key role as an ecological engineer to solve environmental stress problems. So, it is a feasible and potential technology in future to feed global population at available resources with reduced impact on environmental quality. In this review, we have attempted to explore about abiotic and biotic stress tolerant beneficial microorganisms and their modes of action to enhance the sustainable agricultural production. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Resistance to Aspergillus flavus in maize and peanut: Molecular biology, breeding, environmental stress, and future perspectives

    Directory of Open Access Journals (Sweden)

    Jake C. Fountain

    2015-06-01

    Full Text Available The colonization of maize (Zea mays L. and peanut (Arachis hypogaea L. by the fungal pathogen Aspergillus flavus results in the contamination of kernels with carcinogenic mycotoxins known as aflatoxins leading to economic losses and potential health threats to humans. The regulation of aflatoxin biosynthesis in various Aspergillus spp. has been extensively studied, and has been shown to be related to oxidative stress responses. Given that environmental stresses such as drought and heat stress result in the accumulation of reactive oxygen species (ROS within host plant tissues, host-derived ROS may play an important role in cross-kingdom communication between host plants and A. flavus. Recent technological advances in plant breeding have provided the tools necessary to study and apply knowledge derived from metabolomic, proteomic, and transcriptomic studies in the context of productive breeding populations. Here, we review the current understanding of the potential roles of environmental stress, ROS, and aflatoxin in the interaction between A. flavus and its host plants, and the current status in molecular breeding and marker discovery for resistance to A. flavus colonization and aflatoxin contamination in maize and peanut. We will also propose future directions and a working model for continuing research efforts linking environmental stress tolerance and aflatoxin contamination resistance in maize and peanut.

  7. Variation in Resistance of Natural Isolates of Escherichia coli O157 to High Hydrostatic Pressure, Mild Heat, and Other Stresses

    Science.gov (United States)

    Benito, Amparo; Ventoura, Georgia; Casadei, Maria; Robinson, Tobin; Mackey, Bernard

    1999-01-01

    Strains of Escherichia coli O157 isolated from patients with clinical cases of food-borne illness and other sources exhibited wide differences in resistance to high hydrostatic pressure. The most pressure-resistant strains were also more resistant to mild heat than other strains. Strain C9490, a representative pressure-resistant strain, was also more resistant to acid, oxidative, and osmotic stresses than the pressure-sensitive strain NCTC 12079. Most of these differences in resistance were observed only in stationary-phase cells, the only exception being acid resistance, where differences were also apparent in the exponential phase. Membrane damage in pressure-treated cells was revealed by increased uptake of the fluorescent dyes ethidium bromide and propidium iodide. When strains were exposed to the same pressure for different lengths of time, the pressure-sensitive strains took up stain sooner than the more resistant strain, which suggested that the differences in resistance may be related to susceptibility to membrane damage. Our results emphasize the importance of including stress-resistant strains of E. coli O157 when the efficacy of a novel or mild food preservation treatment is tested. PMID:10103251

  8. Severely Heat Injured Survivors of E. coli O157:H7 ATCC 43888 Display Variable and Heterogeneous Stress Resistance Behavior

    Science.gov (United States)

    Gayán, Elisa; Govers, Sander K.; Michiels, Chris W.; Aertsen, Abram

    2016-01-01

    Although minimal food processing strategies aim to eliminate foodborne pathogens and spoilage microorganisms through a combination of mild preservation techniques, little is actually known on the resistance behavior of the small fraction of microorganisms surviving an inimical treatment. In this study, the conduct of severely heat stressed survivors of E. coli O157:H7 ATCC 43888, as an indicator for the low infectious dose foodborne enterohemorrhagic strains, was examined throughout their resuscitation and outgrowth. Despite the fact that these survivors were initially sublethally injured, they were only marginally more sensitive to a subsequent heat treatment and actually much more resistant to a subsequent high hydrostatic pressure (HHP) shock in comparison with unstressed control cells. Throughout further resuscitation, however, their initial HHP resistance rapidly faded out, while their heat resistance increased and surpassed the initial heat resistance of unstressed control cells. Results also indicated that the population eventually emerging from the severely heat stressed survivors heterogeneously consisted of both growing and non-growing cells. Together, these observations provide deeper insights into the particular behavior and heterogeneity of stressed foodborne pathogens in the context of food preservation. PMID:27917163

  9. Severely heat injured survivors of E. coli O157:H7 ATCC 43888 display variable and heterogeneous stress resistance behavior

    Directory of Open Access Journals (Sweden)

    Elisa Gayán

    2016-11-01

    Full Text Available Although minimal food processing strategies aim to eliminate foodborne pathogens and spoilage microorganisms through a combination of mild preservation techniques, little is actually known on the resistance behavior of the small fraction of microorganisms surviving an inimical treatment. In this study, the conduct of severely heat stressed survivors of E. coli O157:H7 ATCC 43888, as an indicator for the low infectious dose foodborne enterohaemorrhagic strains, was examined throughout their resuscitation and outgrowth. Despite the fact that these survivors were initially sublethally injured, they were only marginally more sensitive to a subsequent heat treatment and actually much more resistant to a subsequent high hydrostatic pressure (HHP shock in comparison with unstressed control cells. Throughout further resuscitation, however, their initial HHP resistance rapidly faded out, while their heat resistance increased and surpassed the initial heat resistance of unstressed control cells. Results also indicated that the population eventually emerging from the severely heat stressed survivors heterogeneously consisted of both growing and non-growing persister-like cells. Together, these observations provide deeper insights into the particular behavior and heterogeneity of stressed foodborne pathogens in the context of food preservation.

  10. Influence of neighboring plants on shading stress resistance and recovery of eelgrass, Zostera marina L.

    Directory of Open Access Journals (Sweden)

    Camilla Gustafsson

    Full Text Available Stressful environments may enhance the occurrence of facilitative interspecific interactions between plants. In several regions, Zostera marina occurs in mixed assemblages. However, the potential effects of plant diversity on stress responses and stability properties of Z. marina are poorly understood. We investigated the resistance and recovery of Z. marina subjected to shading (1 mo in a field experiment lasting 2.5 mo. We shaded Z. marina planted in mono- and polycultures (Potamogeton perfoliatus, P. pectinatus, P. filiformis in a factorial design (Shading×Richness at 2 m depth. We estimated the resistance and recovery of Z. marina by measuring four response variables. Polyculture Z. marina lost proportionally less biomass than monocultures, thus having a greater resistance to shading. In contrast, after a 1 mo recovery period, monocultures exhibited higher biomass gain, and a faster recovery than polycultures. Our results suggest that plant species richness enhances the resistance of Z. marina through facilitative mechanisms, while the faster recovery in monocultures is possibly due to interspecific competition. Our results highlight the need of a much better understanding of the effects of interspecific interactions on ecosystem processes in mixed seagrass meadows, and the preservation of diverse plant assemblages to maintain ecosystem functioning.

  11. Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance

    DEFF Research Database (Denmark)

    Schneeberger, Marc; Dietrich, Marcelo O; Sebastián, David

    2013-01-01

    Mitofusin 2 (MFN2) plays critical roles in both mitochondrial fusion and the establishment of mitochondria-endoplasmic reticulum (ER) interactions. Hypothalamic ER stress has emerged as a causative factor for the development of leptin resistance, but the underlying mechanisms are largely unknown....

  12. Correlation of EPO resistance with oxidative stress response and inflammatory response in patients with maintenance hemodialysis

    Directory of Open Access Journals (Sweden)

    Xiao-Hui Yan

    2017-08-01

    Full Text Available Objective: To study the correlation of erythropoietin (EPO resistance with oxidative stress response and inflammatory response in patients with maintenance hemodialysis. Methods: A total of 184 patients with end-stage renal disease who received maintenance hemodialysis in Shaanxi Provincial People’s Hospital between March 2015 and October 2016 were selected as dialysis group, 102 volunteers who received physical examination in Shaanxi Provincial People’s Hospital during the same period were selected as control group, the EPO resistance index was assessed, the median was calculated, and serum oxidative stress and inflammatory response indexes were detected. Results: Serum T-AOC, SOD and CAT levels in dialysis group were significantly lower than those in control group while MDA, AOPP, IFN-γ, HMGB-1, ICAM-1, IL-4 and IL-10 levels were significantly higher than those in control group; serum T-AOC, SOD and CAT levels in patients with high ERI were significantly lower than those in patients with low ERI while MDA, AOPP, IFN-γ, HMGB-1, ICAM-1, IL-4 and IL-10 levels were significantly higher than those in patients with low ERI. Conclusion: The degree of EPO resistance in patients with maintenance hemodialysis is closely related to the activation of oxidative stress response and inflammatory response.

  13. Ribosomal mutations promote the evolution of antibiotic resistance in a multidrug environment.

    Science.gov (United States)

    Gomez, James E; Kaufmann-Malaga, Benjamin B; Wivagg, Carl N; Kim, Peter B; Silvis, Melanie R; Renedo, Nikolai; Ioerger, Thomas R; Ahmad, Rushdy; Livny, Jonathan; Fishbein, Skye; Sacchettini, James C; Carr, Steven A; Hung, Deborah T

    2017-02-21

    Antibiotic resistance arising via chromosomal mutations is typically specific to a particular antibiotic or class of antibiotics. We have identified mutations in genes encoding ribosomal components in Mycobacterium smegmatis that confer resistance to several structurally and mechanistically unrelated classes of antibiotics and enhance survival following heat shock and membrane stress. These mutations affect ribosome assembly and cause large-scale transcriptomic and proteomic changes, including the downregulation of the catalase KatG, an activating enzyme required for isoniazid sensitivity, and upregulation of WhiB7, a transcription factor involved in innate antibiotic resistance. Importantly, while these ribosomal mutations have a fitness cost in antibiotic-free medium, in a multidrug environment they promote the evolution of high-level, target-based resistance. Further, suppressor mutations can then be easily acquired to restore wild-type growth. Thus, ribosomal mutations can serve as stepping-stones in an evolutionary path leading to the emergence of high-level, multidrug resistance.

  14. Assessment of Stress Corrosion Cracking Resistance of Activated Tungsten Inert Gas-Welded Duplex Stainless Steel Joints

    Science.gov (United States)

    Alwin, B.; Lakshminarayanan, A. K.; Vasudevan, M.; Vasantharaja, P.

    2017-12-01

    The stress corrosion cracking behavior of duplex stainless steel (DSS) weld joint largely depends on the ferrite-austenite phase microstructure balance. This phase balance is decided by the welding process used, heat input, welding conditions and the weld metal chemistry. In this investigation, the influence of activated tungsten inert gas (ATIG) and tungsten inert gas (TIG) welding processes on the stress corrosion cracking (SCC) resistance of DSS joints was evaluated and compared. Boiling magnesium chloride (45 wt.%) environment maintained at 155 °C was used. The microstructure and ferrite content of different weld zones are correlated with the outcome of sustained load, SCC test. Irrespective of the welding processes used, SCC resistance of weld joints was inferior to that of the base metal. However, ATIG weld joint exhibited superior resistance to SCC than the TIG weld joint. The crack initiation and final failure were in the weld metal for the ATIG weld joint; they were in the heat-affected zone for the TIG weld joint.

  15. Stathmin Mediates Hepatocyte Resistance to Death from Oxidative Stress by down Regulating JNK

    Science.gov (United States)

    Zhao, Enpeng; Amir, Muhammad; Lin, Yu; Czaja, Mark J.

    2014-01-01

    Stathmin 1 performs a critical function in cell proliferation by regulating microtubule polymerization. This proliferative function is thought to explain the frequent overexpression of stathmin in human cancer and its correlation with a bad prognosis. Whether stathmin also functions in cell death pathways is unclear. Stathmin regulates microtubules in part by binding free tubulin, a process inhibited by stathmin phosphorylation from kinases including c-Jun N-terminal kinase (JNK). The involvement of JNK activation both in stathmin phosphorylation, and in hepatocellular resistance to oxidative stress, led to an examination of the role of stathmin/JNK crosstalk in oxidant-induced hepatocyte death. Oxidative stress from menadione-generated superoxide induced JNK-dependent stathmin phosphorylation at Ser-16, Ser-25 and Ser-38 in hepatocytes. A stathmin knockdown sensitized hepatocytes to both apoptotic and necrotic cell death from menadione without altering levels of oxidant generation. The absence of stathmin during oxidative stress led to JNK overactivation that was the mechanism of cell death as a concomitant knockdown of JNK1 or JNK2 blocked death. Hepatocyte death from JNK overactivation was mediated by the effects of JNK on mitochondria. Mitochondrial outer membrane permeabilization occurred in stathmin knockdown cells at low concentrations of menadione that triggered apoptosis, whereas mitochondrial β-oxidation and ATP homeostasis were compromised at higher, necrotic menadione concentrations. Stathmin therefore mediates hepatocyte resistance to death from oxidative stress by down regulating JNK and maintaining mitochondrial integrity. These findings demonstrate a new mechanism by which stathmin promotes cell survival and potentially tumor growth. PMID:25285524

  16. Stathmin mediates hepatocyte resistance to death from oxidative stress by down regulating JNK.

    Directory of Open Access Journals (Sweden)

    Enpeng Zhao

    Full Text Available Stathmin 1 performs a critical function in cell proliferation by regulating microtubule polymerization. This proliferative function is thought to explain the frequent overexpression of stathmin in human cancer and its correlation with a bad prognosis. Whether stathmin also functions in cell death pathways is unclear. Stathmin regulates microtubules in part by binding free tubulin, a process inhibited by stathmin phosphorylation from kinases including c-Jun N-terminal kinase (JNK. The involvement of JNK activation both in stathmin phosphorylation, and in hepatocellular resistance to oxidative stress, led to an examination of the role of stathmin/JNK crosstalk in oxidant-induced hepatocyte death. Oxidative stress from menadione-generated superoxide induced JNK-dependent stathmin phosphorylation at Ser-16, Ser-25 and Ser-38 in hepatocytes. A stathmin knockdown sensitized hepatocytes to both apoptotic and necrotic cell death from menadione without altering levels of oxidant generation. The absence of stathmin during oxidative stress led to JNK overactivation that was the mechanism of cell death as a concomitant knockdown of JNK1 or JNK2 blocked death. Hepatocyte death from JNK overactivation was mediated by the effects of JNK on mitochondria. Mitochondrial outer membrane permeabilization occurred in stathmin knockdown cells at low concentrations of menadione that triggered apoptosis, whereas mitochondrial β-oxidation and ATP homeostasis were compromised at higher, necrotic menadione concentrations. Stathmin therefore mediates hepatocyte resistance to death from oxidative stress by down regulating JNK and maintaining mitochondrial integrity. These findings demonstrate a new mechanism by which stathmin promotes cell survival and potentially tumor growth.

  17. Association of abdominal obesity, insulin resistance, and oxidative stress in adipose tissue in women with polycystic ovary syndrome.

    Science.gov (United States)

    Chen, Li; Xu, Wen Ming; Zhang, Dan

    2014-10-01

    To study the expression of insulin signaling-related genes and oxidative stress markers in the visceral adipose tissue obtained from polycystic ovary syndrome (PCOS) patients and healthy control subjects and to investigate the relationships among abdominal obesity, insulin resistance, and oxidative stress at the tissue level. Case-control study. University teaching hospital. In total, 30 PCOS patients and 30 healthy control subjects, who underwent laparoscopic surgery, were included in the study. Abdominal obesity was defined based on waist circumference (WC). The homeostasis model index was used to assess insulin resistance (HOMA-IR). Gene expression of glucose transporter 4 (GLUT4) and insulin receptor substrate 1 (IRS1) in visceral adipose tissue (VAT) and the parameters of oxidative stress, such as superoxide dismutase, enzyme glutathione reductase, and dimethylarginine, were measured, and the expression of protein oxidative damage product 3-nitro-tyrosine residues (nitrotyrosine) in VAT was identified with the use of immunohistochemistry. PCOS was associated with lower expression of GLUT4 and IRS1 and a higher level of oxidative stress in VAT, which was strongly correlated with WC and HOMA-IR. Presence of abdominal obesity further intensified the correlations observed in our measurements. The nitrotyrosine expression in VAT was stronger in PCOS patients. The strong correlation of insulin resistance with oxidative stress at the VAT level suggests that local oxidative stress and abnormalities of insulin signaling in adipose tissue play critical roles in the pathogenesis of PCOS. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  18. Baicalein modulates stress-resistance and life span in C. elegans via SKN-1 but not DAF-16.

    Science.gov (United States)

    Havermann, Susannah; Humpf, Hans-Ulrich; Wätjen, Wim

    2016-09-01

    The flavonoid baicalein has been demonstrated to be an activator of the transcription factor Nrf2 in mammalian cell lines. We show that it further modulates the Nrf2 homolog SKN-1 in Caenorhabditis elegans and by this pathway mediates beneficial effects in the nematode: baicalein enhances the resistance of C. elegans against lethal thermal and sodium arsenite stress and dose-dependently prolongs the life span of the nematode. Using RNA interference against SKN-1 we were able to show that the induction of longevity and the enhanced stress-resistance were dependent on this transcription factor. DAF-16 (homolog to mammalian FOXO) is another pivotal aging-related transcription factor in the nematode. We demonstrate that DAF-16 does not participate in the beneficial effects of baicalein: since baicalein causes no increase in the nuclear translocation of DAF-16 (DAF-16::GFP expressing strain, incubation time: 1h) and it still induces longevity even in a DAF-16 loss-of-function strain, we conclude, that baicalein increases stress-resistance and life span in C. elegans via SKN-1 but not DAF-16. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Effect of respiration and manganese on oxidative stress resistance of Lactobacillus plantarum WCFS1

    NARCIS (Netherlands)

    Watanabe, M.; Veen, van der S.; Nakajima, H.; Abee, T.

    2012-01-01

    Lactobacillus plantarum is a facultatively anaerobic bacterium that can perform respiration under aerobic conditions in the presence of haem, with vitamin K2 acting as a source of menaquinone. We investigated growth performance and oxidative stress resistance of Lb. plantarum WCFS1 cultures grown in

  20. ONC201 activates ER stress to inhibit the growth of triple-negative breast cancer cells.

    Science.gov (United States)

    Yuan, Xun; Kho, Dhonghyo; Xu, Jing; Gajan, Ambikai; Wu, Kongming; Wu, Gen Sheng

    2017-03-28

    ONC201 was previously identified as a first-in-class antitumor agent and small-molecule inducer of the TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) gene that induces apoptosis in cancer cells. ONC201 has a safety profile and is currently in phase II clinical trials for the treatment of various malignancies. In the current study, we examine the effect of ONC201 on triple-negative breast cancer cells (TNBC), a subtype of breast cancer that is sensitive to TRAIL. We find that ONC201 inhibits the growth of TNBC cells including TNBC cells that have developed acquired TRAIL resistance. However, TNBC cells that have developed acquired ONC201 resistance are cross-resistant to TRAIL. Mechanistically, ONC201 triggers an integrated stress response (ISR) involving the activation of the transcription factor ATF4. Knockdown of ATF4 impairs ONC201-induced apoptosis of TNBC cells. Importantly, the activation of ATF4 is compromised in ONC201-resistant TNBC cells. Thus, our results indicate that ONC201 induces an ISR to cause TNBC cell death and suggest that TNBC patients may benefit from ONC201-based therapies.

  1. Calculation of Local Stress and Fatigue Resistance due to Thermal Stratification on Pressurized Surge Line Pipe

    Science.gov (United States)

    Bandriyana, B.; Utaja

    2010-06-01

    Thermal stratification introduces thermal shock effect which results in local stress and fatique problems that must be considered in the design of nuclear power plant components. Local stress and fatique calculation were performed on the Pressurize Surge Line piping system of the Pressurize Water Reactor of the Nuclear Power Plant. Analysis was done on the operating temperature between 177 to 343° C and the operating pressure of 16 MPa (160 Bar). The stagnant and transient condition with two kinds of stratification model has been evaluated by the two dimensional finite elements method using the ANSYS program. Evaluation of fatigue resistance is developed based on the maximum local stress using the ASME standard Code formula. Maximum stress of 427 MPa occurred at the upper side of the top half of hot fluid pipe stratification model in the transient case condition. The evaluation of the fatigue resistance is performed on 500 operating cycles in the life time of 40 years and giving the usage value of 0,64 which met to the design requirement for class 1 of nuclear component. The out surge transient were the most significant case in the localized effects due to thermal stratification.

  2. Universal stress proteins are important for oxidative and acid stress resistance and growth of Listeria monocytogenes EGD-e in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Christa Seifart Gomes

    Full Text Available BACKGROUND: Pathogenic bacteria maintain a multifaceted apparatus to resist damage caused by external stimuli. As part of this, the universal stress protein A (UspA and its homologues, initially discovered in Escherichia coli K-12 were shown to possess an important role in stress resistance and growth in several bacterial species. METHODS AND FINDINGS: We conducted a study to assess the role of three homologous proteins containing the UspA domain in the facultative intracellular human pathogen Listeria monocytogenes under different stress conditions. The growth properties of three UspA deletion mutants (Δlmo0515, Δlmo1580 and Δlmo2673 were examined either following challenge with a sublethal concentration of hydrogen peroxide or under acidic conditions. We also examined their ability for intracellular survival within murine macrophages. Virulence and growth of usp mutants were further characterized in invertebrate and vertebrate infection models. Tolerance to acidic stress was clearly reduced in Δlmo1580 and Δlmo0515, while oxidative stress dramatically diminished growth in all mutants. Survival within macrophages was significantly decreased in Δlmo1580 and Δlmo2673 as compared to the wild-type strain. Viability of infected Galleria mellonella larvae was markedly higher when injected with Δlmo1580 or Δlmo2673 as compared to wild-type strain inoculation, indicating impaired virulence of bacteria lacking these usp genes. Finally, we observed severely restricted growth of all chromosomal deletion mutants in mice livers and spleens as compared to the load of wild-type bacteria following infection. CONCLUSION: This work provides distinct evidence that universal stress proteins are strongly involved in listerial stress response and survival under both in vitro and in vivo growth conditions.

  3. Variation in Resistance of Natural Isolates of Escherichia coli O157 to High Hydrostatic Pressure, Mild Heat, and Other Stresses

    OpenAIRE

    Benito, Amparo; Ventoura, Georgia; Casadei, Maria; Robinson, Tobin; Mackey, Bernard

    1999-01-01

    Strains of Escherichia coli O157 isolated from patients with clinical cases of food-borne illness and other sources exhibited wide differences in resistance to high hydrostatic pressure. The most pressure-resistant strains were also more resistant to mild heat than other strains. Strain C9490, a representative pressure-resistant strain, was also more resistant to acid, oxidative, and osmotic stresses than the pressure-sensitive strain NCTC 12079. Most of these differences in resistance were o...

  4. Effect of doxazosin on stress reactivity and the ability to resist smoking.

    Science.gov (United States)

    Verplaetse, Terril L; Weinberger, Andrea H; Oberleitner, Lindsay M; Smith, Kathryn Mz; Pittman, Brian P; Shi, Julia M; Tetrault, Jeanette M; Lavery, Meaghan E; Picciotto, Marina R; McKee, Sherry A

    2017-07-01

    Preclinical findings support a role for α1-adrenergic antagonists in reducing nicotine-motivated behaviors, but these findings have yet to be translated to humans. The current study evaluated whether doxazosin would attenuate stress-precipitated smoking in the human laboratory. Using a well-validated laboratory analogue of smoking-lapse behavior, this pilot study evaluated whether doxazosin (4 and 8 mg/day) versus placebo attenuated the effect of stress (vs neutral imagery) on tobacco craving, the ability to resist smoking and subsequent ad-libitum smoking in nicotine-deprived smokers ( n=35). Cortisol, adrenocorticotropin, norepinephrine, epinephrine, and physiologic reactivity were assessed. Doxazosin (4 and 8 mg/day vs placebo) decreased cigarettes per day during the 21-day titration period. Following titration, doxazosin (4 and 8 mg/day vs placebo) decreased tobacco craving. During the laboratory session, doxazosin (8 mg/day vs placebo) further decreased tobacco craving following stress versus neutral imagery. Doxazosin increased the latency to start smoking following stress, and reduced the number of cigarettes smoked. Dosage of 8 mg/day doxazosin increased or normalized cortisol levels following stress imagery and decreased cortisol levels following neutral imagery. These preliminary findings support a role for the noradrenergic system in stress-precipitated smoking behavior, and support further development of doxazosin as a novel pharmacotherapeutic treatment strategy for smoking cessation.

  5. Bioethanol strains of Saccharomyces cerevisiae characterised by microsatellite and stress resistance.

    Science.gov (United States)

    Reis, Vanda Renata; Antonangelo, Ana Teresa Burlamaqui Faraco; Bassi, Ana Paula Guarnieri; Colombi, Débora; Ceccato-Antonini, Sandra Regina

    Strains of Saccharomyces cerevisiae may display characteristics that are typical of rough-type colonies, made up of cells clustered in pseudohyphal structures and comprised of daughter buds that do not separate from the mother cell post-mitosis. These strains are known to occur frequently in fermentation tanks with significant lower ethanol yield when compared to fermentations carried out by smooth strains of S. cerevisiae that are composed of dispersed cells. In an attempt to delineate genetic and phenotypic differences underlying the two phenotypes, this study analysed 10 microsatellite loci of 22 S. cerevisiae strains as well as stress resistance towards high concentrations of ethanol and glucose, low pH and cell sedimentation rates. The results obtained from the phenotypic tests by Principal-Component Analysis revealed that unlike the smooth colonies, the rough colonies of S. cerevisiae exhibit an enhanced resistance to stressful conditions resulting from the presence of excessive glucose and ethanol and high sedimentation rate. The microsatellite analysis was not successful to distinguish between the colony phenotypes as phenotypic assays. The relevant industrial strain PE-2 was observed in close genetic proximity to rough-colony although it does not display this colony morphology. A unique genetic pattern specific to a particular phenotype remains elusive. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  6. Effect of vitamin D on stress-induced hyperglycaemia and insulin resistance in critically ill patients.

    Science.gov (United States)

    Alizadeh, N; Khalili, H; Mohammadi, M; Abdollahi, A; Ala, S

    2016-05-01

    Effects of vitamin D supplementation on the glycaemic indices and insulin resistance in diabetic and non-diabetic patients were studied. In this study, effects of vitamin D supplementation on stress-induced hyperglycaemia and insulin resistance were evaluated in non-diabetic surgical critically ill patients. Adult surgical patients with stress-induced hyperglycaemia within the first 24 h of admission to the ICU were recruited. The patients randomly assigned to receive either vitamin D or placebo. Patients in the vitamin D group received a single dose of 600,000 IU vitamin D3 as intramuscular injection at time of recruitment. Besides demographic and clinical characteristics of the patients, plasma glucose, insulin, 25(OH) D and adiponectin levels were measured at the time of ICU admission and day 7. Homoeostasis model assessment for insulin resistance (HOMA-IR) and homestasis model assessment adiponectin (HOMA-AD) ratio were considered at the times of assessment. Comparing with the baseline, plasma 25(OH) D level significantly increased in the subjects who received vitamin D (p = 0.04). Improvement in fasting plasma glucose levels was detected in day 7 of the study compared with the baseline status in both groups. HOMA-IR showed a decrement pattern in vitamin D group (p = 0.09). Fasting plasma adiponectin levels increased significantly in the vitamin D group (p = 0.007), but not in the placebo group (p = 0.38). Finally, changes in HOMA-AD ratio were not significant in the both groups. Vitamin D supplementation showed positive effect on plasma adiponectin level, as a biomarker of insulin sensitivity in surgical critically ill patients with stress-induced hyperglycaemia. However, effects of vitamin D supplementation on HOMA-IR and HOMA-AD as indicators of insulin resistance were not significant. © 2016 John Wiley & Sons Ltd.

  7. Leptin and Leptin Resistance in the Pathogenesis of Obstructive Sleep Apnea: A Possible Link to Oxidative Stress and Cardiovascular Complications

    Directory of Open Access Journals (Sweden)

    Slava Berger

    2018-01-01

    Full Text Available Obesity-related sleep breathing disorders such as obstructive sleep apnea (OSA and obesity hypoventilation syndrome (OHS cause intermittent hypoxia (IH during sleep, a powerful trigger of oxidative stress. Obesity also leads to dramatic increases in circulating levels of leptin, a hormone produced in adipose tissue. Leptin acts in the hypothalamus to suppress food intake and increase metabolic rate. However, obese individuals are resistant to metabolic effects of leptin. Leptin also activates the sympathetic nervous system without any evidence of resistance, possibly because these effects occur peripherally without a need to penetrate the blood-brain barrier. IH is a potent stimulator of leptin expression and release from adipose tissue. Hyperleptinemia and leptin resistance may upregulate generation of reactive oxygen species, increasing oxidative stress and promoting inflammation. The current review summarizes recent data on a possible link between leptin and oxidative stress in the pathogenesis of sleep breathing disorders.

  8. Attenuation of iron-binding proteins in ARPE-19 cells reduces their resistance to oxidative stress.

    Science.gov (United States)

    Karlsson, Markus; Kurz, Tino

    2016-09-01

    Oxidative stress-related damage to retinal pigment epithelial (RPE) cells is an important feature in the development of age-related macular degeneration. Iron-catalysed intralysosomal production of hydroxyl radicals is considered a major pathogenic factor, leading to lipofuscin formation with ensuing depressed cellular autophagic capacity, lysosomal membrane permeabilization and apoptosis. Previously, we have shown that cultured immortalized human RPE (ARPE-19) cells are extremely resistant to exposure to bolus doses of hydrogen peroxide and contain considerable amounts of the iron-binding proteins metallothionein (MT), heat-shock protein 70 (HSP70) and ferritin (FT). According to previous findings, autophagy of these proteins depresses lysosomal redox-active iron. The aim of this study was to investigate whether up- or downregulation of these proteins would affect the resistance of ARPE-19 cells to oxidative stress. The sensitivity of ARPE-19 cells to H2 O2 exposure was tested following upregulation of MT, HSP70 and/or FT by pretreatment with ZnSO4 , heat shock or FeCl3 , as well as siRNA-mediated downregulation of the same proteins. Upregulation of MT, HSP70 and FT did not improve survival following exposure to H2 O2 . This was interpreted as existence of an already maximal protection. Combined siRNA-mediated attenuation of both FT chains (H and L), or simultaneous downregulation of all three proteins, made the cells significantly more susceptible to oxidative stress confirming the importance of iron-binding proteins. The findings support our hypothesis that the oxidative stress resistance exhibited by RPE cells may be explained by a high autophagic influx of iron-binding proteins that would keep levels of redox-active lysosomal iron low. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  9. Use of anabolic androgenic steroids produces greater oxidative stress responses to resistance exercise in strength-trained men

    Directory of Open Access Journals (Sweden)

    Hamid Arazi

    Full Text Available The aim of this study was to determine the effect of anabolic androgenic steroids (AAS use on oxidative stress responses to a single session of resistance exercise in strength-trained men. Twenty-three strength trained men, with 11 self-reporting regular AAS use and 12 self-reporting never taking AAS (NAAS volunteered to participate in this study. Blood draws were obtained pre and post resistance exercise in order to evaluate changes in oxidative stress biomarkers levels (i.e., 8-hydroxy-2-deoxyguanosine [8-OHdG], malondialdehyde [MDA], and nitric oxide [NO], antioxidant defense systems (i.e., glutathione peroxidase [GPx] and catalase [CAT], and glucose (GLU levels. The AAS users had higher level of 8-OHdG (77.3 ± 17 vs. 57.7 ± 18.2 ng/mg, MDA (85.6 ± 17.8 vs. 52.3 ± 15.1 ng/mL, and GPx (9.1 ± 2.3 vs. 7.1 ± 1.3 mu/mL compared to NAAS at pre exercise (p < 0.05. Both the experimental groups showed increases in 8-OHdG (p = 0.001, MDA (p = 0.001, GPx (p = 0.001, NO (p = 0.04, CAT (p = 0.02 and GLU (p = 0.001 concentrations after resistance exercise, and the AAS group indicated significant differences in 8-OHdG (p = 0.02 and MDA (p = 0.05 concentrations compared with NAAS users at post exercise. In conclusion, use of AAS is associated with alterations in immune function resulting in oxidative stress, and cell damage; however, high-intensity resistance exercise could increase greater oxidative stress biomarkers in strength-trained men. Keywords: ROS, Strength exercise, Anabolic

  10. Effects of Caenorhabditis elegans sgk-1 mutations on lifespan, stress resistance, and DAF-16/FoxO regulation.

    Science.gov (United States)

    Chen, Albert Tzong-Yang; Guo, Chunfang; Dumas, Kathleen J; Ashrafi, Kaveh; Hu, Patrick J

    2013-10-01

    The AGC family serine-threonine kinases Akt and Sgk are similar in primary amino acid sequence and in vitro substrate specificity, and both kinases are thought to directly phosphorylate and inhibit FoxO transcription factors. In the nematode Caenorhabditis elegans, it is well established that AKT-1 controls dauer arrest and lifespan by regulating the subcellular localization of the FoxO transcription factor DAF-16. SGK-1 is thought to act similarly to AKT-1 in lifespan control by phosphorylating and inhibiting the nuclear translocation of DAF-16/FoxO. Using sgk-1 null and gain-of-function mutants, we now provide multiple lines of evidence indicating that AKT-1 and SGK-1 influence C. elegans lifespan, stress resistance, and DAF-16/FoxO activity in fundamentally different ways. Whereas AKT-1 shortens lifespan, SGK-1 promotes longevity in a DAF-16-/FoxO-dependent manner. In contrast to AKT-1, which reduces resistance to multiple stresses, SGK-1 promotes resistance to oxidative stress and ultraviolet radiation but inhibits thermotolerance. Analysis of several DAF-16/FoxO target genes that are repressed by AKT-1 reveals that SGK-1 represses a subset of these genes while having little influence on the expression of others. Accordingly, unlike AKT-1, which promotes the cytoplasmic sequestration of DAF-16/FoxO, SGK-1 does not influence DAF-16/FoxO subcellular localization. Thus, in spite of their similar in vitro substrate specificities, Akt and Sgk influence longevity, stress resistance, and FoxO activity through distinct mechanisms in vivo. Our findings highlight the need for a re-evaluation of current paradigms of FoxO regulation by Sgk. © 2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  11. Oxidative Stress in Patients with Drug Resistant Partial Complex Seizure

    Directory of Open Access Journals (Sweden)

    Lourdes Lorigados Pedre

    2018-06-01

    Full Text Available Oxidative stress (OS has been implicated as a pathophysiological mechanism of drug-resistant epilepsy, but little is known about the relationship between OS markers and clinical parameters, such as the number of drugs, age onset of seizure and frequency of seizures per month. The current study’s aim was to evaluate several oxidative stress markers and antioxidants in 18 drug-resistant partial complex seizure (DRPCS patients compared to a control group (age and sex matched, and the results were related to clinical variables. We examined malondialdehyde (MDA, advanced oxidation protein products (AOPP, advanced glycation end products (AGEs, nitric oxide (NO, uric acid, superoxide dismutase (SOD, glutathione, vitamin C, 4-hydroxy-2-nonenal (4-HNE and nitrotyrosine (3-NT. All markers except 4-HNE and 3-NT were studied by spectrophotometry. The expressions of 4-HNE and 3-NT were evaluated by Western blot analysis. MDA levels in patients were significantly increased (p ≤ 0.0001 while AOPP levels were similar to the control group. AGEs, NO and uric acid concentrations were significantly decreased (p ≤ 0.004, p ≤ 0.005, p ≤ 0.0001, respectively. Expressions of 3-NT and 4-HNE were increased (p ≤ 0.005 similarly to SOD activity (p = 0.0001, whereas vitamin C was considerably diminished (p = 0.0001. Glutathione levels were similar to the control group. There was a positive correlation between NO and MDA with the number of drugs. The expression of 3-NT was positively related with the frequency of seizures per month. There was a negative relationship between MDA and age at onset of seizures, as well as vitamin C with seizure frequency/month. We detected an imbalance in the redox state in patients with DRCPS, supporting oxidative stress as a relevant mechanism in this pathology. Thus, it is apparent that some oxidant and antioxidant parameters are closely linked with clinical variables.

  12. Acute periostitis in early acquired syphilis simulating shin splints in a jogger.

    Science.gov (United States)

    Meier, J L; Mollet, E

    1986-01-01

    Acute periostitis affecting the long bones is a characteristic but uncommon manifestation of syphilis in the adult with an early acquired infection. This report describes the history of a jogger who developed acute localized periostitis of the shaft of both tibiae during the early stage of acquired syphilis. Symptomatology was initially attributed to the medial tibial stress syndrome.

  13. The DAF-16 FOXO transcription factor regulates natc-1 to modulate stress resistance in Caenorhabditis elegans, linking insulin/IGF-1 signaling to protein N-terminal acetylation.

    Science.gov (United States)

    Warnhoff, Kurt; Murphy, John T; Kumar, Sandeep; Schneider, Daniel L; Peterson, Michelle; Hsu, Simon; Guthrie, James; Robertson, J David; Kornfeld, Kerry

    2014-10-01

    The insulin/IGF-1 signaling pathway plays a critical role in stress resistance and longevity, but the mechanisms are not fully characterized. To identify genes that mediate stress resistance, we screened for C. elegans mutants that can tolerate high levels of dietary zinc. We identified natc-1, which encodes an evolutionarily conserved subunit of the N-terminal acetyltransferase C (NAT) complex. N-terminal acetylation is a widespread modification of eukaryotic proteins; however, relatively little is known about the biological functions of NATs. We demonstrated that loss-of-function mutations in natc-1 cause resistance to a broad-spectrum of physiologic stressors, including multiple metals, heat, and oxidation. The C. elegans FOXO transcription factor DAF-16 is a critical target of the insulin/IGF-1 signaling pathway that mediates stress resistance, and DAF-16 is predicted to directly bind the natc-1 promoter. To characterize the regulation of natc-1 by DAF-16 and the function of natc-1 in insulin/IGF-1 signaling, we analyzed molecular and genetic interactions with key components of the insulin/IGF-1 pathway. natc-1 mRNA levels were repressed by DAF-16 activity, indicating natc-1 is a physiological target of DAF-16. Genetic studies suggested that natc-1 functions downstream of daf-16 to mediate stress resistance and dauer formation. Based on these findings, we hypothesize that natc-1 is directly regulated by the DAF-16 transcription factor, and natc-1 is a physiologically significant effector of the insulin/IGF-1 signaling pathway that mediates stress resistance and dauer formation. These studies identify a novel biological function for natc-1 as a modulator of stress resistance and dauer formation and define a functionally significant downstream effector of the insulin/IGF-1 signaling pathway. Protein N-terminal acetylation mediated by the NatC complex may play an evolutionarily conserved role in regulating stress resistance.

  14. Study on drug resistance of mycobacterium tuberculosis in patients with pulmonary tuberculosis by drug resistance gene detecting

    International Nuclear Information System (INIS)

    Wang Wei; Li Hongmin; Wu Xueqiong; Wang Ansheng; Ye Yixiu; Wang Zhongyuan; Liu Jinwei; Chen Hongbing; Lin Minggui; Wang Jinhe; Li Sumei; Jiang Ping; Feng Bai; Chen Dongjing

    2004-01-01

    To investigate drug resistance of mycobacterium tuberculosis in different age group, compare detecting effect of two methods and evaluate their the clinical application value, all of the strains of mycobacterium tuberculosis were tested for resistance to RFP, INH SM PZA and EMB by the absolute concentration method on Lowenstein-Jensen medium and the mutation of the rpoB, katG, rpsL, pncA and embB resistance genes in M. tuberculosis was tested by PCR-SSCP. In youth, middle and old age group, the rate of acquired drug resistance was 89.2%, 85.3% and 67.6% respectively, the gene mutation rate was 76.2%, 81.3% and 63.2% respectively. The rate of acquired drug resistance and multiple drug resistance in youth group was much higher than those in other groups. The gene mutation was correlated with drug resistance level of mycobacterium tuberculosis. The gene mutation rate was higher in strains isolated from high concentration resistance than those in strains isolated from low concentration resistance. The more irregular treatment was longer, the rate of drug resistance was higher. Acquired drug resistance varies in different age group. It suggested that surveillance of drug resistence in different age group should be taken seriously, especially in youth group. PCR - SSCP is a sensitive and specific method for rapid detecting rpoB, katG, rpsL, pncA and embB genes mutations of MTB. (authors)

  15. SIRT1 attenuates palmitate-induced endoplasmic reticulum stress and insulin resistance in HepG2 cells via induction of oxygen-regulated protein 150

    Science.gov (United States)

    Jung, T.W.; Lee, K.T.; Lee, M.W.; Ka, K.H.

    2012-01-01

    Endoplasmic reticulum (ER) stress has been implicated in the pathology of type 2 diabetes mellitus (T2DM). Although SIRT1 has a therapeutic effect on T2DM, the mechanisms by which SIRT1 ameliorates insulin resistance (IR) remain unclear. In this study, we investigated the impact of SIRT1 on palmitate-induced ER stress in HepG2 cells and its underlying signal pathway. Treatment with resveratrol, a SIRT1 activator significantly inhibited palmitate-induced ER stress, leading to the protection against palmitate-induced ER stress and insulin resistance. Resveratrol and SIRT1 overexpression induced the expression of oxygen-regulated protein (ORP) 150 in HepG2 cells. Forkhead box O1 (FOXO1) was involved in the regulation of ORP150 expression because suppression of FOXO1 inhibited the induction of ORP150 by SIRT1. Our results indicate a novel mechanism by which SIRT1 regulates ER stress by overexpression of ORP150, and suggest that SIRT1 ameliorates palmitate-induced insulin resistance in HepG2 cells via regulation of ER stress.

  16. Transgenerational variations in DNA methylation induced by drought stress in two rice varieties with distinguished difference to drought resistance.

    Directory of Open Access Journals (Sweden)

    Xiaoguo Zheng

    Full Text Available Adverse environmental conditions have large impacts on plant growth and crop production. One of the crucial mechanisms that plants use in variable and stressful natural environments is gene expression modulation through epigenetic modification. In this study, two rice varieties with different drought resistance levels were cultivated under drought stress from tilling stage to seed filling stage for six successive generations. The variations in DNA methylation of the original generation (G0 and the sixth generation (G6 of these two varieties in normal condition (CK and under drought stress (DT at seedling stage were assessed by using Methylation Sensitive Amplification Polymorphism (MSAP method. The results revealed that drought stress had a cumulative effect on the DNA methylation pattern of both varieties, but these two varieties had different responses to drought stress in DNA methylation. The DNA methylation levels of II-32B (sensitive and Huhan-3 (resistant were around 39% and 32%, respectively. Genome-wide DNA methylation variations among generations or treatments accounted for around 13.1% of total MSAP loci in II-32B, but was only approximately 1.3% in Huhan-3. In II-32B, 27.6% of total differentially methylated loci (DML were directly induced by drought stress and 3.2% of total DML stably transmitted their changed DNA methylation status to the next generation. In Huhan-3, the numbers were 48.8% and 29.8%, respectively. Therefore, entrainment had greater effect on Huhan-3 than on II-32B. Sequence analysis revealed that the DML were widely distributed on all 12 rice chromosomes and that it mainly occurred on the gene's promoter and exon region. Some genes with DML respond to environmental stresses. The inheritance of epigenetic variations induced by drought stress may provide a new way to develop drought resistant rice varieties.

  17. Changing prevalence and antibiotic drug resistance pattern of pathogens seen in community-acquired pediatric urinary tract infections at a tertiary care hospital of North India

    OpenAIRE

    Patwardhan, Vrushali; Kumar, Dinesh; Goel, Varun; Singh, Sarman

    2017-01-01

    b>Introduction: Timely treatment of urinary tract infection (UTI) with appropriate antibiotic administration is of immense importance in children to reduce the consequences. Aims and Objectives: The aim and objective of this study was to assess the temporal changes in the microbiological profiles and antimicrobial resistance patterns of uropathogens in pediatric community-acquired UTI. Materials and Methods: This is a retrospective analysis of data collected over a Scattered period of 5...

  18. Novel pharmacotherapy for the treatment of hospital-acquired and ventilator-associated pneumonia caused by resistant gram-negative bacteria.

    Science.gov (United States)

    Kidd, James M; Kuti, Joseph L; Nicolau, David P

    2018-03-01

    Hospital-acquired and ventilator-associated bacterial pneumonia (HABP/VABP) are among the most prevalent infections in hospitalized patients, particularly those in the intensive care unit. Importantly, the frequency of multidrug resistant (MDR) Gram-negative (GN) bacteria as the bacteriologic cause of HABP/VABP is increasing. These include MDR Pseudomonas aeruginosa, Acinetobacter baumannii, and carbapenem resistant Enterobacteriaceae (CRE). Few antibiotics are currently available when such MDR Gram-negatives are encountered and older agents such as polymyxin B, colistin (polymyxin E), and tigecycline have typically performed poorly in HABP/VABP. Areas covered: In this review, the authors summarize novel antibiotics which have reached phase 3 clinical trials including patients with HABP/VABP. For each agent, the spectrum of activity, pertinent pharmacological characteristics, clinical trial data, and potential utility in the treatment of MDR-GN HABP/VABP is discussed. Expert opinion: Novel antibiotics currently available, and those soon to be, will expand opportunities to treat HABP/VABP caused by MDR-GN organisms and minimize the use of more toxic, less effective drugs. However, with sparse clinical data available, defining the appropriate role for each of the new agents is challenging. In order to maximize the utility of these antibiotics, combination therapy and the role of therapeutic drug monitoring should be investigated.

  19. Acquired IFNγ resistance impairs anti-tumor immunity and gives rise to T-cell-resistant melanoma lesions

    Science.gov (United States)

    Sucker, Antje; Zhao, Fang; Pieper, Natalia; Heeke, Christina; Maltaner, Raffaela; Stadtler, Nadine; Real, Birgit; Bielefeld, Nicola; Howe, Sebastian; Weide, Benjamin; Gutzmer, Ralf; Utikal, Jochen; Loquai, Carmen; Gogas, Helen; Klein-Hitpass, Ludger; Zeschnigk, Michael; Westendorf, Astrid M.; Trilling, Mirko; Horn, Susanne; Schilling, Bastian; Schadendorf, Dirk; Griewank, Klaus G.; Paschen, Annette

    2017-01-01

    Melanoma treatment has been revolutionized by antibody-based immunotherapies. IFNγ secretion by CD8+ T cells is critical for therapy efficacy having anti-proliferative and pro-apoptotic effects on tumour cells. Our study demonstrates a genetic evolution of IFNγ resistance in different melanoma patient models. Chromosomal alterations and subsequent inactivating mutations in genes of the IFNγ signalling cascade, most often JAK1 or JAK2, protect melanoma cells from anti-tumour IFNγ activity. JAK1/2 mutants further evolve into T-cell-resistant HLA class I-negative lesions with genes involved in antigen presentation silenced and no longer inducible by IFNγ. Allelic JAK1/2 losses predisposing to IFNγ resistance development are frequent in melanoma. Subclones harbouring inactivating mutations emerge under various immunotherapies but are also detectable in pre-treatment biopsies. Our data demonstrate that JAK1/2 deficiency protects melanoma from anti-tumour IFNγ activity and results in T-cell-resistant HLA class I-negative lesions. Screening for mechanisms of IFNγ resistance should be considered in therapeutic decision-making. PMID:28561041

  20. Enhanced Botrytis cinerea resistance of Arabidopsis plants grown in compost may be explained by increased expression of defense-related genes, as revealed by microarray analysis.

    Directory of Open Access Journals (Sweden)

    Guillem Segarra

    Full Text Available Composts are the products obtained after the aerobic degradation of different types of organic matter waste and can be used as substrates or substrate/soil amendments for plant cultivation. There is a small but increasing number of reports that suggest that foliar diseases may be reduced when using compost, rather than standard substrates, as growing medium. The purpose of this study was to examine the gene expression alteration produced by the compost to gain knowledge of the mechanisms involved in compost-induced systemic resistance. A compost from olive marc and olive tree leaves was able to induce resistance against Botrytis cinerea in Arabidopsis, unlike the standard substrate, perlite. Microarray analyses revealed that 178 genes were differently expressed, with a fold change cut-off of 1, of which 155 were up-regulated and 23 were down-regulated in compost-grown, as against perlite-grown plants. A functional enrichment study of up-regulated genes revealed that 38 Gene Ontology terms were significantly enriched. Response to stress, biotic stimulus, other organism, bacterium, fungus, chemical and abiotic stimulus, SA and ABA stimulus, oxidative stress, water, temperature and cold were significantly enriched, as were immune and defense responses, systemic acquired resistance, secondary metabolic process and oxireductase activity. Interestingly, PR1 expression, which was equally enhanced by growing the plants in compost and by B. cinerea inoculation, was further boosted in compost-grown pathogen-inoculated plants. Compost triggered a plant response that shares similarities with both systemic acquired resistance and ABA-dependent/independent abiotic stress responses.

  1. GigA and GigB are Master Regulators of Antibiotic Resistance, Stress Responses, and Virulence in Acinetobacter baumannii.

    Science.gov (United States)

    Gebhardt, Michael J; Shuman, Howard A

    2017-05-15

    A critical component of bacterial pathogenesis is the ability of an invading organism to sense and adapt to the harsh environment imposed by the host's immune system. This is especially important for opportunistic pathogens, such as Acinetobacter baumannii , a nutritionally versatile environmental organism that has recently gained attention as a life-threatening human pathogen. The emergence of A. baumannii is closely linked to antibiotic resistance, and many contemporary isolates are multidrug resistant (MDR). Unlike many other MDR pathogens, the molecular mechanisms underlying A. baumannii pathogenesis remain largely unknown. We report here the characterization of two recently identified virulence determinants, GigA and GigB, which comprise a signal transduction pathway required for surviving environmental stresses, causing infection and antibiotic resistance. Through transcriptome analysis, we show that GigA and GigB coordinately regulate the expression of many genes and are required for generating an appropriate transcriptional response during antibiotic exposure. Genetic and biochemical data demonstrate a direct link between GigA and GigB and the nitrogen phosphotransferase system (PTS Ntr ), establishing a novel connection between a novel stress response module and a well-conserved metabolic-sensing pathway. Based on the results presented here, we propose that GigA and GigB are master regulators of a global stress response in A. baumannii , and coupling this pathway with the PTS Ntr allows A. baumannii to integrate cellular metabolic status with external environmental cues. IMPORTANCE Opportunistic pathogens, including Acinetobacter baumannii , encounter many harsh environments during the infection cycle, including antibiotic exposure and the hostile environment within a host. While the development of antibiotic resistance in A. baumannii has been well studied, how this organism senses and responds to environmental cues remain largely unknown. Herein, we

  2. Correlation of serum GFAP, S100B and NSE contents with posttraumatic oxidative stress response and insulin resistance in patients with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Bing-Feng Tian

    2018-07-01

    Full Text Available Objective: To study the correlation of serum GFAP, S100B and NSE contents with posttraumatic oxidative stress response and insulin resistance in patients with traumatic brain injury. Methods: A total of 110 patients with traumatic brain injury who were treated in our hospital between January 2015 and December 2016 were collected as the observation group, and 60 healthy subjects who received physical examination in our hospital during the same period were collected as normal control group. Serum GFAP, S100B and NSE levels as well as oxidative stress index and insulin resistance index levels of two groups of subjects were detected, and Pearson test was used to further evaluate the correlation of serum GFAP, S100B and NSE contents with oxidative stress response and insulin resistance in patients with traumatic brain injury. Results: Serum GFAP, S100B and NSE contents of observation group were significantly higher than those of normal control group; serum oxidative stress indexes MDA, MPO and LPO contents were higher than those of normal control group while SOD and TAC contents were lower than those of normal control group; serum insulin resistance indexes GLU, INS and HOMA-IR levels were higher than those of control group. Pearson test showed that serum GFAP, S100B and NSE contents in patients with traumatic brain injury were directly correlated with post-traumatic oxidative stress and insulin resistance. Conclusion: The serum GFAP, S100B and NSE contents increase in patients with traumatic brain injury, and the increase is directly correlated with the oxidative stress and insulin resistance.

  3. Effects of ginger (Zingiber officinale Roscoe supplementation and resistance training on some blood oxidative stress markers in obese men

    Directory of Open Access Journals (Sweden)

    Sirvan Atashak

    2014-06-01

    Full Text Available Excessive adiposity increases oxidative stress, and thus may play a critical role in the pathogenesis and development of obesity-associated comorbidities, in particular atherosclerosis, diabetes mellitus, and arterial hypertension. Improved body composition, through exercise training and diet, may therefore significantly contribute to a reduction in oxidative stress. Further, some foods high in antioxidants (e.g., ginger provide additional defense against oxidation. This study was conducted to assess the effects of ginger (Zingiber officinale Roscoe supplementation and progressive resistance training (PRT on some nonenzymatic blood [total antioxidant capacity (TAC and malondialdehyde (MDA] oxidative stress markers in obese men. Thirty-two obese males (body mass index ≥30, aged 18–30 years were randomized to one of the following four groups: a placebo (PL; n = 8; resistance training plus placebo (RTPL; n = 8; resistance training plus ginger supplementation (RTGI; n = 8; and ginger supplementation only (GI; n = 8. Participants in the RTGI and GI groups consumed 1 g ginger/day for 10 weeks. At the same time, PRT was undertaken by the RTPL and RTGI groups three times/week. Resting blood samples were collected at baseline and at 10 weeks, and analyzed for plasma nonenzymatic TAC and MDA concentration. After the 10-week intervention, we observed significant training × ginger supplementation × resistance training interaction for TAC (p = 0.043 and significant interactions for training × resistance training and training × ginger supplementation for MDA levels (p < 0.05. The results of this study show that 10 weeks of either ginger supplementation or PRT protects against oxidative stress and therefore both of these interventions can be beneficial for obese individuals; however, when combined, the effects cancel each other out.

  4. c-Met Overexpression Contributes to the Acquired Apoptotic Resistance of Nonadherent Ovarian Cancer Cells through a Cross Talk Mediated by Phosphatidylinositol 3-Kinase and Extracellular Signal-Regulated Kinase 1/2

    Directory of Open Access Journals (Sweden)

    Maggie K.S. Tang

    2010-02-01

    Full Text Available Ovarian cancer is the most lethal gynecologic cancer mainly because of widespread peritoneal dissemination and malignant ascites. Key to this is the capacity of tumor cells to escape suspension-induced apoptosis (anoikis, which also underlies their resistance to chemotherapy. Here, we used a nonadherent cell culture model to investigate the molecular mechanisms of apoptotic resistance of ovarian cancer cells that may mimic the chemoresistance found in solid tumors. We found that ovarian cancer cells acquired a remarkable resistance to anoikis and apoptosis induced by exposure to clinically relevant doses of two front-line chemotherapeutic drugs cisplatin and paclitaxel when grown in three-dimensional than monolayer cultures. Inhibition of the hepatocyte growth factor (HGF receptor c-Met, which is frequently overexpressed in ovarian cancer, by a specific inhibitor or small interfering RNA blocked the acquired anoikis resistance and restored chemosensitivity in three-dimensional not in two-dimensional cultures. These effects were found to be dependent on both phosphatidylinositol 3-kinase (PI3K/Akt and extracellular signal-regulated kinase (ERK 1/2 signaling pathways. Inhibitors of PI3K/Akt abrogated ERK1/2 activation and its associated anoikis resistance in response to HGF, suggesting a signaling relay between these two pathways. Furthermore, we identified a central role of Ras as a mechanism of this cross talk. Interestingly, Ras did not lie upstream of PI3K/Akt, whereas PI3K/Akt signaling to ERK1/2 involved Ras. These findings shed new light on the apoptotic resistance mechanism of nonadherent ovarian cancer ascites cells and may have important clinical implications.

  5. Stress corrosion of nickel alloys: influence of metallurgical, chemical and physicochemical parameters

    International Nuclear Information System (INIS)

    Gras, J.M.; Pinard-Legry, G.

    1997-01-01

    Stress corrosion of nickel alloys (alloys 600, X-750, 182, 82..)is the main problem of corrosion in PWR type reactors. This article gives the main knowledge about this question, considering particularly the influence of the mechanical, microstructural and physicochemical factors on cracks under stress of the alloy 600 in water at high temperature. The acquired knowledge allows nowadays to better anticipate and control the phenomenon. On the industrial point of view, they have allowed to improve the resistance of in service or future materials. While a lot of advances have been carried out in the understanding of the influence of parameters, several uncertainties still remain concerning the corrosion mechanism and the part of some factors. (O.M.)

  6. Theoretical Research on Thermal Shock Resistance of Ultra-High Temperature Ceramics Focusing on the Adjustment of Stress Reduction Factor

    Directory of Open Access Journals (Sweden)

    Daining Fang

    2013-02-01

    Full Text Available The thermal shock resistance of ceramics depends on not only the mechanical and thermal properties of materials, but also the external constraint and thermal condition. So, in order to study the actual situation in its service process, a temperature-dependent thermal shock resistance model for ultra-high temperature ceramics considering the effects of the thermal environment and external constraint was established based on the existing theory. The present work mainly focused on the adjustment of the stress reduction factor according to different thermal shock situations. The influences of external constraint on both critical rupture temperature difference and the second thermal shock resistance parameter in either case of rapid heating or cooling conditions had been studied based on this model. The results show the necessity of adjustment of the stress reduction factor in different thermal shock situations and the limitations of the applicable range of the second thermal shock resistance parameter. Furthermore, the model was validated by the finite element method.

  7. Influence of stress on creep deformation properties of 9-12Cr ferritic creep resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, K.; Sawada, K.; Kushima, H. [National Institute for Materials Science (Japan)

    2008-07-01

    Creep deformation property of 9-12Cr ferritic creep resistant steels was investigated. With decrease in stress, a magnitude of creep strain at the onset of accelerating creep stage decreased from about 2% in the short-term to less than 1% in the longterm. A time to 1% total strain was observed in the transient creep stage in the short term regime, however, it shifted to the accelerating creep stage in the long-term regime. Life fraction of the times to 1% creep strain and 1% total strain tended to increase with decrease in stress. Difference in stress dependence of the minimum creep rate was observed in the high- and low-stress regimes with a boundary condition of 50% of 0.2% offset yield stress. Stress dependence of the minimum creep rate in the high stress regime was equivalent to a strain rate dependence of the flow stress evaluated by tensile test, and a magnitude of stress exponent, n, in the high stress regime decreased with increase in temperature from 20 at 550 C to 10 at 700 C. On the other hand, n value in the low stress regime was about 5, and creep deformation in the low stress regime was considered to be controlled by dislocation climb. Creep rupture life was accurately predicted by a region splitting method by considering a change in stress dependence of creep deformation. (orig.)

  8. [Ceftaroline fosamil in community-acquired and nosocomial pneumonia].

    Science.gov (United States)

    Calbo, Esther; Zaragoza, Rafael

    2014-03-01

    Community-acquired pneumonia (CAP) is a common infection in developed countries and causes a large number of hospital admissions and deaths. In recent years, the incidence of this disease has increased, caused by progressive population aging. Following the introduction of the conjugate vaccine against Streptococcus pneumoniae, there have been significant epidemiological changes that require close monitoring because of the possible emergence of new patterns of resistance. This article aims to review the role of ceftaroline fosamil, a new parenteral cephalosporin with antibacterial activity against Gram-negative and Gram-positive pathogens, in the treatment of pneumonia. Several in vitro and in vivo studies have shown the efficacy of ceftaroline fosamil against penicillin-resistant S. pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA). Additionally, ceftaroline has shown similar efficacy and safety to ceftriaxone in the treatment of community-acquired pneumonia with severe prognosis (prognostic severity index III and IV) in two phase III clinical trials. Although a non-inferiority design was used for these clinical trials, some data suggest a superior efficacy of ceftaroline, with earlier clinical response and higher cure rate in infections caused by S. pneumoniae, making this drug particularly interesting for critically-ill patients admitted to the intensive care unit. Ceftaroline may also be considered for empirical and directed treatment of MRSA pneumonia. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  9. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance.

    Science.gov (United States)

    Ene, Iuliana V; Walker, Louise A; Schiavone, Marion; Lee, Keunsook K; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A R; Munro, Carol A; Brown, Alistair J P

    2015-07-28

    The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. The C. albicans cell wall is the first line of defense against external insults, the site of immune recognition by the host, and an attractive target for antifungal therapy. Its tensile strength is conferred by

  10. Overexpression of CD44 accompanies acquired tamoxifen resistance in MCF7 cells and augments their sensitivity to the stromal factors, heregulin and hyaluronan

    Directory of Open Access Journals (Sweden)

    Hiscox Stephen

    2012-10-01

    Full Text Available Abstract Background Acquired resistance to endocrine therapy in breast cancer is a significant problem with relapse being associated with local and/or regional recurrence and frequent distant metastases. Breast cancer cell models reveal that endocrine resistance is accompanied by a gain in aggressive behaviour driven in part through altered growth factor receptor signalling, particularly involving erbB family receptors. Recently we identified that CD44, a transmembrane cell adhesion receptor known to interact with growth factor receptors, is upregulated in tamoxifen-resistant (TamR MCF7 breast cancer cells. The purpose of this study was to explore the consequences of CD44 upregulation in an MCF7 cell model of acquired tamoxifen resistance, specifically with respect to the hypothesis that CD44 may influence erbB activity to promote an adverse phenotype. Methods CD44 expression in MCF7 and TamR cells was assessed by RT-PCR, Western blotting and immunocytochemistry. Immunofluorescence and immunoprecipitation studies revealed CD44-erbB associations. TamR cells (± siRNA-mediated CD44 suppression or MCF7 cells (± transfection with the CD44 gene were treated with the CD44 ligand, hyaluronon (HA, or heregulin and their in vitro growth (MTT, migration (Boyden chamber and wound healing and invasion (Matrigel transwell migration determined. erbB signalling was assessed using Western blotting. The effect of HA on erbB family dimerisation in TamR cells was determined by immunoprecipitation in the presence or absence of CD44 siRNA. Results TamR cells overexpressed CD44 where it was seen to associate with erbB2 at the cell surface. siRNA-mediated suppression of CD44 in TamR cells significantly attenuated their response to heregulin, inhibiting heregulin-induced cell migration and invasion. Furthermore, TamR cells exhibited enhanced sensitivity to HA, with HA treatment resulting in modulation of erbB dimerisation, ligand-independent activation of erbB2

  11. Overexpression of CD44 accompanies acquired tamoxifen resistance in MCF7 cells and augments their sensitivity to the stromal factors, heregulin and hyaluronan

    International Nuclear Information System (INIS)

    Hiscox, Stephen; Gee, Julia; Baruha, Bedanta; Smith, Chris; Bellerby, Rebecca; Goddard, Lindy; Jordan, Nicola; Poghosyan, Zaruhi; Nicholson, Robert I; Barrett-Lee, Peter

    2012-01-01

    Acquired resistance to endocrine therapy in breast cancer is a significant problem with relapse being associated with local and/or regional recurrence and frequent distant metastases. Breast cancer cell models reveal that endocrine resistance is accompanied by a gain in aggressive behaviour driven in part through altered growth factor receptor signalling, particularly involving erbB family receptors. Recently we identified that CD44, a transmembrane cell adhesion receptor known to interact with growth factor receptors, is upregulated in tamoxifen-resistant (TamR) MCF7 breast cancer cells. The purpose of this study was to explore the consequences of CD44 upregulation in an MCF7 cell model of acquired tamoxifen resistance, specifically with respect to the hypothesis that CD44 may influence erbB activity to promote an adverse phenotype. CD44 expression in MCF7 and TamR cells was assessed by RT-PCR, Western blotting and immunocytochemistry. Immunofluorescence and immunoprecipitation studies revealed CD44-erbB associations. TamR cells (± siRNA-mediated CD44 suppression) or MCF7 cells (± transfection with the CD44 gene) were treated with the CD44 ligand, hyaluronon (HA), or heregulin and their in vitro growth (MTT), migration (Boyden chamber and wound healing) and invasion (Matrigel transwell migration) determined. erbB signalling was assessed using Western blotting. The effect of HA on erbB family dimerisation in TamR cells was determined by immunoprecipitation in the presence or absence of CD44 siRNA. TamR cells overexpressed CD44 where it was seen to associate with erbB2 at the cell surface. siRNA-mediated suppression of CD44 in TamR cells significantly attenuated their response to heregulin, inhibiting heregulin-induced cell migration and invasion. Furthermore, TamR cells exhibited enhanced sensitivity to HA, with HA treatment resulting in modulation of erbB dimerisation, ligand-independent activation of erbB2 and EGFR and induction of cell migration

  12. Molecular pathways associated with stress resilience and drug resistance in the chronic mild stress rat model of depression: a gene expression study

    DEFF Research Database (Denmark)

    Bergström, Anders; Jayatissa, Magdalena Niepsuj; Andersen, Thomas Thykjær

    2007-01-01

    The current antidepressant drugs are ineffective in 30 to 40% of the treated patients; hence, the pathophysiology of the disease needs to be further elucidated. We used the chronic mild stress (CMS) paradigm to induce anhedonia, a core symptom of major depression, in rats. A fraction of the animals...... exposed to CMS is resistant to the development of anhedonia; they are CMS resilient. In the CMS-sensitive animals, the induced anhedonic state is reversed in 50% of the animals when treating with escitalopram, whereas the remaining animals are treatment resistant. We used the microarray and the real...

  13. [Effect of K-ATP channel opener-pinacidil on the liver mitochondria function in rats with different resistance to hypoxia during stress].

    Science.gov (United States)

    Tkachenko, H M; Kurhaliuk, N M; Vovkanych, L S

    2004-01-01

    We have examined the influence of ATP-sensitive potassium (KATP) channel opener pinacidil (0.06 mg/kg) and inhibitor glibenclamide (1 mg/kg) on the changes of energy metabolism in the liver of rats under the stress conditions. The rats were divided in two groups with high and low resistance to hypoxia. The stress was modeled by placing the rats in a cage filled with water and closed with a net. The distance from water to the net was only 5 cm. The effects of KATP opener pinacidil (0.06 mg/kg) and inhibitor glibenclamide (1 mg/kg) on ADP-stimulating mitochondrial respiration by Chance, calcium capacity of organellas and processes of lipid peroxidation in the liver of rats with different resistance to hypoxia under the stress condition have been investigated. We have used the next substrates of oxidation: 0.35 mM succinate and 1 mM alpha-ketoglutarate. The additional analyses were conducted with the use of inhibitors: mitochondrial enzyme complex I 10 mM rotenone and succinate dehydrohenase 2 mM malonic acid. It was shown that the stress condition evoked the succinate oxidation and the decrease of alpha-ketoglutarate efficacy, the increase of calcium mitochondrial capacity and the intensification of lipid peroxidation processes. Under the presence of succinate, the increase of O2 uptake with simultaneous decrease of ADP/O ratio in rats with high resistance under stress was observed. Simultaneously, oxidation of alpha-ketoglutarate, a NAD-dependent substrate, was inhibited. Pinacidil caused the reorganization of mitochondrial energy metabolism in favour of NAD-dependent oxidation and the improvment of the protection against stress. The decrease of the efficacy of mitochondrial energy processes functioning was shown in animals with low resistance to hypoxia. KATP channel opener pinacidil has a protective effect on the processes of mitochondrial liver energy support under stress. These changes deal with the increase of alpha-ketoglutarate oxidation (respiratory rate and

  14. The role of oxidative stress in the development of cisplatin resistance in epithelial ovarian cancer.

    Science.gov (United States)

    Belotte, Jimmy; Fletcher, Nicole M; Awonuga, Awoniyi O; Alexis, Mitchell; Abu-Soud, Husam M; Saed, Mohammed G; Diamond, Michael P; Saed, Ghassan M

    2014-04-01

    To investigate the role of oxidative stress in the development of cisplatin resistance in epithelial ovarian cancer (EOC). Two parent EOC cell lines (MDAH-2774 and SKOV-3) and their chemoresistant counterparts (cisplatin, 50 µmol/L) were used. Total RNA was extracted and subjected to real-time reverse transcriptase polymerase chain reaction to evaluate the expression of glutathione reductase (GSR) and inducible nitric oxide synthase (iNOS), as well as nitrate/nitrite levels. Analysis of variance was used for main effects and Tukey for post hoc analysis at P nitrate/nitrite levels were significantly higher in SKOV-3 cisplatin resistant cells while iNOS mRNA levels were significantly higher in MDAH-2774 cisplatin resistant cells (P < .05). Our data suggest that the development of cisplatin resistance tilts the balance toward a pro-oxidant state in EOC.

  15. Systemic resistance induced by rhizosphere bacteria

    NARCIS (Netherlands)

    Loon, L.C. van; Bakker, P.A.H.M.; Pieterse, C.M.J.

    1998-01-01

    Nonpathogenic rhizobacteria can induce a systemic resistance in plants that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). Rhizobacteria-mediated induced systemic resistance (ISR) has been demonstrated against fungi, bacteria, and viruses in Arabidopsis, bean,

  16. Alterations in neuronal morphology in infralimbic cortex predict resistance to fear extinction following acute stress

    Directory of Open Access Journals (Sweden)

    Kelly M. Moench

    2016-06-01

    Full Text Available Dysfunction in corticolimbic circuits that mediate the extinction of learned fear responses is thought to underlie the perseveration of fear in stress-related psychopathologies, including post-traumatic stress disorder. Chronic stress produces dendritic hypertrophy in basolateral amygdala (BLA and dendritic hypotrophy in medial prefrontal cortex, whereas acute stress leads to hypotrophy in both BLA and prelimbic cortex. Additionally, both chronic and acute stress impair extinction retrieval. Here, we examined the effects of a single elevated platform stress on extinction learning and dendritic morphology in infralimbic cortex, a region considered to be critical for extinction. Acute stress produced resistance to extinction, as well as dendritic retraction in infralimbic cortex. Spine density on apical and basilar terminal branches was unaffected by stress. However, animals that underwent conditioning and extinction had decreased spine density on apical terminal branches. Thus, whereas dendritic morphology in infralimbic cortex appears to be particularly sensitive to stress, changes in spines may more sensitively reflect learning. Further, in stressed rats that underwent conditioning and extinction, the level of extinction learning was correlated with spine densities, in that rats with poorer extinction retrieval had more immature spines and fewer thin spines than rats with better extinction retrieval, suggesting that stress may have impaired learning-related spine plasticity. These results may have implications for understanding the role of medial prefrontal cortex in learning deficits associated with stress-related pathologies.

  17. Methicillin-resistant Staphylococcus aureus (MRSA)

    Science.gov (United States)

    Methicillin-resistant Staphylococcus aureus; Hospital-acquired MRSA (HA-MRSA); Staph - MRSA; Staphylococcal - MRSA ... Centers for Disease Control and Prevention website. Methicillin-resistant Staphylococcus aureus (MRSA). www.cdc.gov/mrsa/index.html . Updated ...

  18. Biosynthesis of vitamin C by yeast leads to increased stress resistance.

    Directory of Open Access Journals (Sweden)

    Paola Branduardi

    Full Text Available BACKGROUND: In industrial large scale bio-reactions micro-organisms are generally exposed to a variety of environmental stresses, which might be detrimental for growth and productivity. Reactive oxygen species (ROS play a key role among the common stress factors--directly--through incomplete reduction of O(2 during respiration, or indirectly--caused by other stressing factors. Vitamin C or L-ascorbic acid acts as a scavenger of ROS, thereby potentially protecting cells from harmful oxidative products. While most eukaryotes synthesize ascorbic acid, yeast cells produce erythro-ascorbic acid instead. The actual importance of this antioxidant substance for the yeast is still a subject of scientific debate. METHODOLOGY/PRINCIPAL FINDINGS: We set out to enable Saccharomyces cerevisiae cells to produce ascorbic acid intracellularly to protect the cells from detrimental effects of environmental stresses. We report for the first time the biosynthesis of L-ascorbic acid from D-glucose by metabolically engineered yeast cells. The amount of L-ascorbic acid produced leads to an improved robustness of the recombinant cells when they are subjected to stress conditions as often met during industrial fermentations. Not only resistance against oxidative agents as H(2O(2 is increased, but also the tolerance to low pH and weak organic acids at low pH is increased. CONCLUSIONS/SIGNIFICANCE: This platform provides a new tool whose commercial applications may have a substantial impact on bio-industrial production of Vitamin C. Furthermore, we propose S. cerevisiae cells endogenously producing vitamin C as a cellular model to study the genesis/protection of ROS as well as genotoxicity.

  19. Spread of community-acquired meticillin-resistant Staphylococcus aureus skin and soft-tissue infection within a family: implications for antibiotic therapy and prevention.

    LENUS (Irish Health Repository)

    Amir, N H

    2010-04-01

    Outbreaks or clusters of community-acquired meticillin-resistant Staphylococcus aureus (CA-MRSA) within families have been reported. We describe a family cluster of CA-MRSA skin and soft-tissue infection where CA-MRSA was suspected because of recurrent infections which failed to respond to flucloxacillin. While the prevalence of CA-MRSA is low worldwide, CA-MRSA should be considered in certain circumstances depending on clinical presentation and risk assessment. Surveillance cultures of family contacts of patients with MRSA should be considered to help establish the prevalence of CA-MRSA and to inform the optimal choice of empiric antibiotic treatment.

  20. Detection of T790M, the acquired resistance EGFR mutation, by tumor biopsy versus noninvasive blood-based analyses

    Science.gov (United States)

    Sundaresan, Tilak K.; Sequist, Lecia V.; Heymach, John V.; Riely, Gregory J.; Jänne, Pasi A.; Koch, Walter H.; Sullivan, James P.; Fox, Douglas B.; Maher, Robert; Muzikansky, Alona; Webb, Andrew; Tran, Hai T.; Giri, Uma; Fleisher, Martin; Yu, Helena A.; Wei, Wen; Johnson, Bruce E.; Barber, Thomas A.; Walsh, John R.; Engelman, Jeffrey A.; Stott, Shannon L.; Kapur, Ravi; Maheswaran, Shyamala; Toner, Mehmet

    2015-01-01

    Purpose The T790M gatekeeper mutation in the Epidermal Growth Factor Receptor (EGFR) is acquired by some EGFR-mutant non-small cell lung cancers (NSCLC) as they become resistant to selective tyrosine kinase inhibitors (TKIs). As third generation EGFR TKIs that overcome T790M-associated resistance become available, noninvasive approaches to T790M detection will become critical to guide management. Experimental Design As part of a multi-institutional Stand-Up-To-Cancer collaboration, we performed an exploratory analysis of 40 patients with EGFR-mutant tumors progressing on EGFR TKI therapy. We compared the T790M genotype from tumor biopsies with analysis of simultaneously collected circulating tumor cells (CTC) and circulating tumor DNA (ctDNA). Results T790M genotypes were successfully obtained in 30 (75%) tumor biopsies, 28 (70%) CTC samples and 32 (80%) ctDNA samples. The resistance-associated mutation was detected in 47–50% of patients using each of the genotyping assays, with concordance among them ranging from 57–74%. While CTC- and ctDNA-based genotyping were each unsuccessful in 20–30% of cases, the two assays together enabled genotyping in all patients with an available blood sample, and they identified the T790M mutation in 14 (35%) patients in whom the concurrent biopsy was negative or indeterminate. Conclusion Discordant genotypes between tumor biopsy and blood-based analyses may result from technological differences, as well as sampling different tumor cell populations. The use of complementary approaches may provide the most complete assessment of each patient’s cancer, which should be validated in predicting response to T790M-targeted inhibitors. PMID:26446944

  1. Functional Genomic Screening Reveals Core Modulators of Echinocandin Stress Responses in Candida albicans

    Directory of Open Access Journals (Sweden)

    Tavia Caplan

    2018-05-01

    Full Text Available Summary: Candida albicans is a leading cause of death due to fungal infection. Treatment of systemic candidiasis often relies on echinocandins, which disrupt cell wall synthesis. Resistance is readily acquired via mutations in the drug target gene, FKS1. Both basal tolerance and resistance to echinocandins require cellular stress responses. We performed a systematic analysis of 3,030 C. albicans mutants to define circuitry governing cellular responses to echinocandins. We identified 16 genes for which deletion or transcriptional repression enhanced echinocandin susceptibility, including components of the Pkc1-MAPK signaling cascade. We discovered that the molecular chaperone Hsp90 is required for the stability of Pkc1 and Bck1, establishing key mechanisms through which Hsp90 mediates echinocandin resistance. We also discovered that perturbation of the CCT chaperonin complex causes enhanced echinocandin sensitivity, altered cell wall architecture, and aberrant septin localization. Thus, we provide insights into the mechanisms by which cellular chaperones enable crucial responses to echinocandin-induced stress. : Caplan et al. screen 3,030 Candida albicans mutants to define circuitry governing cellular responses to echinocandins, the first-line therapy for systemic candidiasis. They reveal that the molecular chaperone Hsp90 is required for stability of Pkc1 and Bck1 and that the CCT chaperonin complex is a key modulator of echinocandin susceptibility. Keywords: fungal pathogen, Candida albicans, echinocandins, Hsp90, Pkc1, CCT complex, client protein, stress response, functional genomic screen, drug resistance

  2. Ion beam modification of thermal stress resistance of MgO single crystals with different crystallographic faces

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Otsuka, P.H.; Jamieson, D.N.; Williams, J.S.; Conway, M.

    1999-01-01

    Ion beam modification of thermal shock stress and damage resistance of MgO single crystals with various crystallographic faces is investigated. The most stable crystal faces in terms of stress and damage resistance are established. Ion implantation is shown to reduce the temperature threshold of fracture for all crystal faces tested. The (111) face is demonstrated to be of highest stability compared to (110) and (100) faces in both implanted and unimplanted crystals. At the same time ion implantation substantially increases the microcrack density for the faces tested and reduces the degree of fracture damage following thermal shock. The microcrack density is found to be highest in the crystals with (110) face in comparison with the (001) and (111) faces. The effect is analysed using fracture mechanics principles and discussed in terms of the implantation-induced lattice damage

  3. [Variability of hemodynamic parameters and resistance to stress damage in rats of different strains].

    Science.gov (United States)

    Belkina, L M; Popkova, E V; Lakomkin, V L; Kirillina, T N; Zhukova, A G; Sazontova, T G; Usacheva, M A; Kapel'ko, V I

    2006-02-01

    Total power of heart rate variability and baroreflex sensitivity were significantly smaller in the August rats than in the Wistar rats, but adrenal and plasma catecholamine contents were considerably higher in the former ones. 1 hour after stress (30 min in cold water), plasma catecholamine was increased 2-fold in Wistar rats, while in August rats the adrenaline concentration increased only by 58% and the were no changes in noradrenaline content. At the same time, activation of catecholamine metabolism in the adrenal glands was similar in both groups. The oxidative stress induced by hydrogen peroxide depressed the contractile function of isolated heart in the August rats to a smaller extent as compared to Wistar rats, control ones and after the cold-water stress. This effect correlated with more pronounced stability ofantioxidant enzymes in the August rats. It seems that the greater resistance to stress damage in the August rats is mediated by enhanced power of defense mechanisms both at systemic and cellular levels.

  4. The DAF-16 FOXO transcription factor regulates natc-1 to modulate stress resistance in Caenorhabditis elegans, linking insulin/IGF-1 signaling to protein N-terminal acetylation.

    Directory of Open Access Journals (Sweden)

    Kurt Warnhoff

    2014-10-01

    Full Text Available The insulin/IGF-1 signaling pathway plays a critical role in stress resistance and longevity, but the mechanisms are not fully characterized. To identify genes that mediate stress resistance, we screened for C. elegans mutants that can tolerate high levels of dietary zinc. We identified natc-1, which encodes an evolutionarily conserved subunit of the N-terminal acetyltransferase C (NAT complex. N-terminal acetylation is a widespread modification of eukaryotic proteins; however, relatively little is known about the biological functions of NATs. We demonstrated that loss-of-function mutations in natc-1 cause resistance to a broad-spectrum of physiologic stressors, including multiple metals, heat, and oxidation. The C. elegans FOXO transcription factor DAF-16 is a critical target of the insulin/IGF-1 signaling pathway that mediates stress resistance, and DAF-16 is predicted to directly bind the natc-1 promoter. To characterize the regulation of natc-1 by DAF-16 and the function of natc-1 in insulin/IGF-1 signaling, we analyzed molecular and genetic interactions with key components of the insulin/IGF-1 pathway. natc-1 mRNA levels were repressed by DAF-16 activity, indicating natc-1 is a physiological target of DAF-16. Genetic studies suggested that natc-1 functions downstream of daf-16 to mediate stress resistance and dauer formation. Based on these findings, we hypothesize that natc-1 is directly regulated by the DAF-16 transcription factor, and natc-1 is a physiologically significant effector of the insulin/IGF-1 signaling pathway that mediates stress resistance and dauer formation. These studies identify a novel biological function for natc-1 as a modulator of stress resistance and dauer formation and define a functionally significant downstream effector of the insulin/IGF-1 signaling pathway. Protein N-terminal acetylation mediated by the NatC complex may play an evolutionarily conserved role in regulating stress resistance.

  5. The correlation of insulin resistance with the cerebral injury and stress reaction in patients with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Zhan Lan

    2017-04-01

    Full Text Available Objective: To study the correlation of insulin resistance with the cerebral injury and stress reaction in patients with traumatic brain injury (TBI. Methods: 78 patients who were diagnosed with acute traumatic brain injury in our hospital between May 2014 and August 2016 were selected as the TBI group, and 90 healthy volunteers who received physical examination during the same period were selected as the control group. The peripheral blood was collected to detect glucose, insulin and nerve injury marker molecules, stress hormones as well as oxidative stress reaction products, and the insulin resistance index (HOMA-IR was calculated. Results: The HOMA-IR index of TBI group was significantly higher than that of control group (P<0.05; serum neuron-specific enolase (NSE, ubiquitin carboxy-terminal hydrolase L1 (UCH-L1, S100β, myelin basic protein (MBP, glucagon, growth hormone, cortisol, malondialdehyde (MDA and 8-hydroxy-deoxyguanosine (8-OHdGlevels of TBI group were significantly higher than those of control group (P<0.05; serum NSE, UCH-L1, S100β, MBP, glucagon, growth hormone, cortisol, MDA and 8-OHdG levels of patients with high HOMA-IR were significantly higher than those of patients with low HOMA-IR (P<0.05. Conclusion: The insulin resistance increases significantly in patients with traumatic brain injury, and is closely related to the degree of cerebral injury and stress reaction.

  6. Cisplatin resistance in non-small cell lung cancer cells is associated with an abrogation of cisplatin-induced G2/M cell cycle arrest.

    Directory of Open Access Journals (Sweden)

    Navin Sarin

    Full Text Available The efficacy of cisplatin-based chemotherapy in cancer is limited by the occurrence of innate and acquired drug resistance. In order to better understand the mechanisms underlying acquired cisplatin resistance, we have compared the adenocarcinoma-derived non-small cell lung cancer (NSCLC cell line A549 and its cisplatin-resistant sub-line A549rCDDP2000 with regard to cisplatin resistance mechanisms including cellular platinum accumulation, DNA-adduct formation, cell cycle alterations, apoptosis induction and activation of key players of DNA damage response. In A549rCDDP2000 cells, a cisplatin-induced G2/M cell cycle arrest was lacking and apoptosis was reduced compared to A549 cells, although equitoxic cisplatin concentrations resulted in comparable platinum-DNA adduct levels. These differences were accompanied by changes in the expression of proteins involved in DNA damage response. In A549 cells, cisplatin exposure led to a significantly higher expression of genes coding for proteins mediating G2/M arrest and apoptosis (mouse double minute 2 homolog (MDM2, xeroderma pigmentosum complementation group C (XPC, stress inducible protein (SIP and p21 compared to resistant cells. This was underlined by significantly higher protein levels of phosphorylated Ataxia telangiectasia mutated (pAtm and p53 in A549 cells compared to their respective untreated control. The results were compiled in a preliminary model of resistance-associated signaling alterations. In conclusion, these findings suggest that acquired resistance of NSCLC cells against cisplatin is the consequence of altered signaling leading to reduced G2/M cell cycle arrest and apoptosis.

  7. Community-acquired multidrug-resistant Gram-negative bacterial infective endocarditis.

    Science.gov (United States)

    Naha, Sowjanya; Naha, Kushal; Acharya, Vasudev; Hande, H Manjunath; Vivek, G

    2014-08-05

    We describe two cases of bacterial endocarditis secondary to multidrug-resistant Gram-negative organisms. In both cases, the diagnosis was made in accordance with the modified Duke's criteria and confirmed by histopathological analysis. Furthermore, in both instances there were no identifiable sources of bacteraemia and no history of contact with hospital or other medical services prior to the onset of symptoms. The patients were managed in similar fashion with prolonged broad-spectrum antibiotic therapy and surgical intervention and made complete recoveries. These cases highlight Gram-negative organisms as potential agents for endocarditis, as well as expose the dissemination of such multidrug-resistant bacteria into the community. The application of an integrated medical and surgical approach and therapeutic dilemmas encountered in managing these cases are described. 2014 BMJ Publishing Group Ltd.

  8. PI3Kδ inhibitor idelalisib in combination with BTK inhibitor ONO/GS-4059 in diffuse large B cell lymphoma with acquired resistance to PI3Kδ and BTK inhibitors.

    Directory of Open Access Journals (Sweden)

    Anella Yahiaoui

    Full Text Available Activated B-cell-like diffuse large B-cell lymphoma relies on B-cell receptor signaling to drive proliferation and survival. Downstream of the B-cell receptor, the key signaling kinases Bruton's tyrosine kinase and phosphoinositide 3-kinase δ offer opportunities for therapeutic intervention by agents such as ibrutinib, ONO/GS-4059, and idelalisib. Combination therapy with such targeted agents could provide enhanced efficacy due to complimentary mechanisms of action. In this study, we describe both the additive interaction of and resistance mechanisms to idelalisib and ONO/GS-4059 in a model of activated B-cell-like diffuse large B-cell lymphoma. Significant tumor regression was observed with a combination of PI3Kδ and Bruton's tyrosine kinase inhibitors in the mouse TMD8 xenograft. Acquired resistance to idelalisib in the TMD8 cell line occurred by loss of phosphatase and tensin homolog and phosphoinositide 3-kinase pathway upregulation, but not by mutation of PIK3CD. Sensitivity to idelalisib could be restored by combining idelalisib and ONO/GS-4059. Further evaluation of targeted inhibitors revealed that the combination of idelalisib and the phosphoinositide-dependent kinase-1 inhibitor GSK2334470 or the AKT inhibitor MK-2206 could partially overcome resistance. Characterization of acquired Bruton's tyrosine kinase inhibitor resistance revealed a novel tumor necrosis factor alpha induced protein 3 mutation (TNFAIP3 Q143*, which led to a loss of A20 protein, and increased p-IκBα. The combination of idelalisib and ONO/GS-4059 partially restored sensitivity in this resistant line. Additionally, a mutation in Bruton's tyrosine kinase at C481F was identified as a mechanism of resistance. The combination activity observed with idelalisib and ONO/GS-4059, taken together with the ability to overcome resistance, could lead to a new therapeutic option in activated B-cell-like diffuse large B-cell lymphoma. A clinical trial is currently underway to

  9. Overexpression of the dual-specificity phosphatase MKP-4/DUSP-9 protects against stress-induced insulin resistance

    DEFF Research Database (Denmark)

    Emanuelli, Brice; Eberlé, Delphine; Suzuki, Ryo

    2008-01-01

    , improved glucose intolerance, decreased expression of gluconeogenic and lipogenic genes, and reduced hepatic steatosis. Thus, MKP-4 has a protective effect against the development of insulin resistance through its ability to dephosphorylate and inactivate crucial mediators of stress-induced insulin...

  10. Age-related and sex-specific differences in proteasome activity in individual Drosophila flies from wild type, longevity-selected and stress resistant strains

    DEFF Research Database (Denmark)

    Hansen, Tina Østergaard; Sarup, Pernille Merete; Loeschcke, Volker

    2012-01-01

    with that in C1 males. However, in longevity-selected LS1 flies the proteasome activity was significantly lower compared to C1 flies, but the sex differences were maintained to some extent. Five other stress resistant lines also had significantly reduced proteasome activity in both sexes. During ageing...... and that increased lifespan and stress resistance lead to a reduction in proteasome activity and recession of the age-related decline observed in control females....

  11. Nasal carriage of a single clone of community-acquired methicillin-resistant Staphylococcus aureus among kindergarten attendees in northern Taiwan

    Directory of Open Access Journals (Sweden)

    Lee Shih-Yi

    2007-06-01

    Full Text Available Abstract Background: To evaluate the prevalence and microbiological characterization of community-acquired (CA methicillin-resistant Staphylococcus aureus (MRSA nasal carriage in a kindergarten. Methods: Point prevalence study. Nasal swabs were collected from healthy children younger than 7 years of age who were attending a kindergarten in Taipei, Taiwan. A parent questionnaire regarding MRSA risk factors was administered simultaneously. All CA-MRSA colonization isolates were archived for subsequent antimicrobial susceptibility and molecular typing. Results: Of the 68 children who participated in the study, 17 (25% had S. aureus isolated from nasal swabs. Nine (13.2% of the 68 children had CA-MRSA carriage, and none of them had any identified risk factors. Antimicrobial susceptibility testing revealed all of the 9 CA-MRSA colonization isolates had uniformly high resistance (100% to both clindamycin and erythromycin, the macrolide-lincosamide-streptogramin-constitutive phenotype and the ermB gene. Pulsed-field gel electrophoresis revealed 8 (88.9% of 9 CA-MRSA colonization isolates were genetically related and multilocus sequence typing revealed all isolates had sequence type 59. All of the colonization isolates carried the staphylococcal cassette chromosome mec type IV, but none were positive for the Panton-Valentine leukocidin genes. Conclusion: The results of this study suggest that a single predominant CA-MRSA colonization strain featuring high clindamycin resistance circulated in this kindergarten. Additionally, due to the established transmissibility of colonization isolates, the high prevalence of nasal carriage of CA-MRSA among healthy attendees in kindergartens may indicate the accelerated spread of CA-MRSA in the community.

  12. Overexpression of miR529a confers enhanced resistance to oxidative stress in rice (Oryza sativa L.).

    Science.gov (United States)

    Yue, Erkui; Liu, Zhen; Li, Chao; Li, Yu; Liu, Qiuxiang; Xu, Jian-Hong

    2017-07-01

    Overexpressing miR529a can enhance oxidative stress resistance by targeting OsSPL2 and OsSPL14 genes that can regulate the expression of their downstream SOD and POD related genes. MicroRNAs are involved in the regulation of plant developmental and physiological processes, and their expression can be altered when plants suffered environment stresses, including salt, oxidative, drought and Cadmium. The expression of microRNA529 (miR529) can be induced under oxidative stress. However, its biological function under abiotic stress responses is still unclear. In this study, miR529a was overexpressed to investigate the function of miR529a under oxidative stress in rice. Our results demonstrated that the expression of miR529a can be induced by exogenous H 2 O 2 , and overexpressing miR529a can increase plant tolerance to high level of H 2 O 2 , resulting in increased seed germination rate, root tip cell viability, reduced leaf rolling rate and chlorophyll retention. The expression of oxidative stress responsive genes and the activities of superoxide dismutase (SOD) and peroxidase (POD) were increased in miR529a overexpression plant, which could help to reduce redundant reactive oxygen species (ROS). Furthermore, only OsSPL2 and OsSPL14 were targeted by miR529a in rice seedlings, repressing their expression in miR529aOE plants could lead to strengthen plant tolerance to oxidation stress. Our study provided the evidence that overexpression of miR529a could strengthen oxidation resistance, and its target genes OsSPL2 and OsSPL14 were responsible for oxidative tolerance, implied the manipulation of miR529a and its target genes regulation on H 2 O 2 related response genes could improve oxidative stress tolerance in rice.

  13. Effect of Crack Tip Stress Concentration Factor on Fracture Resistance in Vacuum Environment

    Science.gov (United States)

    2015-01-20

    indicate: (1) in all alloys, the fracture resistance is highest for blunt-notches (smaller Kt), and is lowest for fatigue -sharpened precracked...paths are transgranular and the fracture mode is ductile void coalescence in all cases, irrespective of the stress concentration factor. 20-01-2015...because of corrosion and/or various loading conditions such as fatigue , fretting, abrasion, etc. Also, the geometry of the structure may cause an

  14. Selection of thermal-resistant leavening (Saccharomyces boulardii) through gamma irradiation; Selecao de linhagens termotolerantes de levedura (Saccharomyces boulardii) atraves da irradiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Maria Jose; Martins, Flaviano Santos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)

    2000-07-01

    Yeast cells acquire resistance to a several stress condition when they are previously exposed to a mild form of the same or of a different stress. In this way yeast cells exposure to temperatures higher than the optimum for growth results in a enhancement of the heat shock proteins and accumulation of trehalose. These cells then acquire the ability to survive under more extreme conditions, a phenomenon referred as transitory thermo-tolerance. We decided to test if gamma irradiation can induced a permanent thermo-tolerance in survival cells irradiated. Lyophilized cells of S. boulardii were irradiated with a {sup 60} cobalt source. This cells were plated in solid medium. The survival cells were counted and the trehalose level were determined. In a second step, this survivals cells were incubated in liquid medium then submitted to a lethal heat shock (52 deg C, 15 min). The cells were plated and again grown at 30 deg C. The survival index and the level of trehalose were again determined. The procedure were repeated successively. The strains showed more thermo-resistance and the level of trehalose was increased without linear correlation with the number of viable cells. (author)

  15. Targeting the HER family with Pan-HER effectively overcomes resistance to cetuximab

    Science.gov (United States)

    Iida, Mari; Bahrar, Harsh; Brand, Toni M; Pearson, Hannah E; Coan, John P; Orbuch, Rachel A; Flanigan, Bailey G; Swick, Adam D; Prabakaran, Prashanth; Lantto, Johan; Horak, Ivan D.; Kragh, Michael; Salgia, Ravi; Kimple, Randy J; Wheeler, Deric L

    2016-01-01

    Cetuximab, an antibody against the Epidermal Growth Factor Receptor (EGFR) has shown efficacy in treating head and neck squamous cell carcinoma (HNSCC), metastatic colorectal cancer and non-small cell lung cancer (NSCLC). Despite the clinical success of cetuximab, many patients do not respond to cetuximab. Furthermore, virtually all patients who do initially respond become refractory, highlighting both intrinsic and acquired resistance to cetuximab as significant clinical problems. To understand mechanistically how cancerous cells acquire resistance, we previously developed models of acquired resistance using the H226 NSCLC and UM-SCC1 HNSCC cell lines. Cetuximab-resistant clones showed a robust upregulation and dependency on the HER family receptors EGFR, HER2 and HER3. Here, we examined Pan-HER, a mixture of six antibodies targeting these receptors on cetuximab-resistant clones. In cells exhibiting acquired or intrinsic resistance to cetuximab, Pan-HER treatment decreased all three receptors’ protein levels and down-stream activation of AKT and MAPK. This correlated with decreased cell proliferation in cetuximab-resistant clones. To determine whether Pan-HER had a therapeutic benefit in vivo, we established de novo cetuximab-resistant mouse xenografts and treated resistant tumors with Pan-HER. This regimen resulted in a superior growth delay of cetuximab-resistant xenografts compared to mice continued on cetuximab. Furthermore, intrinsically cetuximab-resistant HNSCC patient-derived xenograft tumors treated with Pan-HER exhibited significant growth delay compared to vehicle/cetuximab controls. These results suggest that targeting HER family receptors simultaneously with Pan-HER is a promising treatment strategy for tumors displaying intrinsic or acquired resistance to cetuximab. PMID:27422810

  16. Bmi1 confers resistance to oxidative stress on hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Shunsuke Nakamura

    Full Text Available The polycomb-group (PcG proteins function as general regulators of stem cells. We previously reported that retrovirus-mediated overexpression of Bmi1, a gene encoding a core component of polycomb repressive complex (PRC 1, maintained self-renewing hematopoietic stem cells (HSCs during long-term culture. However, the effects of overexpression of Bmi1 on HSCs in vivo remained to be precisely addressed.In this study, we generated a mouse line where Bmi1 can be conditionally overexpressed under the control of the endogenous Rosa26 promoter in a hematopoietic cell-specific fashion (Tie2-Cre;R26Stop(FLBmi1. Although overexpression of Bmi1 did not significantly affect steady state hematopoiesis, it promoted expansion of functional HSCs during ex vivo culture and efficiently protected HSCs against loss of self-renewal capacity during serial transplantation. Overexpression of Bmi1 had no effect on DNA damage response triggered by ionizing radiation. In contrast, Tie2-Cre;R26Stop(FLBmi1 HSCs under oxidative stress maintained a multipotent state and generally tolerated oxidative stress better than the control. Unexpectedly, overexpression of Bmi1 had no impact on the level of intracellular reactive oxygen species (ROS.Our findings demonstrate that overexpression of Bmi1 confers resistance to stresses, particularly oxidative stress, onto HSCs. This thereby enhances their regenerative capacity and suggests that Bmi1 is located downstream of ROS signaling and negatively regulated by it.

  17. The increasing importance of community-acquired methicillin-resistant Staphylococcus aureus infections.

    Science.gov (United States)

    Agostino, Jason W; Ferguson, John K; Eastwood, Keith; Kirk, Martyn D

    2017-11-06

    To identify groups at risk of methicillin-resistant Staphylococcus aureus (MRSA) infection, patterns of antimicrobial resistance, and the proportion of patients with MRSA infections but no history of recent hospitalisation. Case series of 39 231 patients with S. aureus isolates from specimens processed by the Hunter New England Local Health District (HNELHD) public pathology provider during 2008-2014. Proportion of MRSA infections among people with S. aureus isolates; antimicrobial susceptibility of MRSA isolates; origin of MRSA infections (community- or health care-associated); demographic factors associated with community-associated MRSA infections. There were 71 736 S. aureus-positive specimens during the study period and MRSA was isolated from 19.3% of first positive specimens. Most patients (56.9%) from whom MRSA was isolated had not been admitted to a public hospital in the past year. Multiple regression identified that patients with community-associated MRSA were more likely to be younger (under 40), Indigenous Australians (odds ratio [OR], 2.6; 95% CI, 2.3-2.8), or a resident of an aged care facility (OR, 4.7; 95% CI, 3.8-5.8). The proportion of MRSA isolates that included the dominant multi-resistant strain (AUS-2/3-like) declined from 29.6% to 3.4% during the study period (P resistant strain decreased, new strategies for controlling infections in the community are needed to reduce the prevalence of non-multi-resistant strains.

  18. Contribution to surface physicochemical factors to stress corrosion resistance in stainless steels

    International Nuclear Information System (INIS)

    Gras, Jean-Marie

    1974-01-01

    The author of this research thesis first presents and discusses the various aspects of stress corrosion cracking of Fe-Cr-Ni alloys of high purity: experimental conditions (alloy elaboration, sample preparation), corrosion results (Schaeffer diagram, crack morphology, intergranular corrosion), influence of addition elements in ferritic alloys. He reports an electrochemical study of stainless steels in magnesium chloride (experimental conditions, influence of metallurgic and environmental parameters on polarization resistance, current-voltage curves), and an analytical study of layers formed in the magnesium chloride

  19. Loss of Oca2 disrupts the unfolded protein response and increases resistance to endoplasmic reticulum stress in melanocytes.

    Science.gov (United States)

    Cheng, Tsing; Orlow, Seth J; Manga, Prashiela

    2013-11-01

    Accumulation of proteins in the endoplasmic reticulum (ER) typically induces stress and initiates the unfolded protein response (UPR) to facilitate recovery. If homeostasis is not restored, apoptosis is induced. However, adaptation to chronic UPR activation can increase resistance to subsequent acute ER stress. We therefore investigated adaptive mechanisms in Oculocutaneous albinism type 2 (Oca2)-null melanocytes where UPR signaling is arrested despite continued tyrosinase accumulation leading to resistance to the chemical ER stressor thapsigargin. Although thapsigargin triggers UPR activation, instead of Perk-mediated phosphorylation of eIF2α, in Oca2-null melanocytes, eIF2α was rapidly dephosphorylated upon treatment. Dephosphorylation was mediated by the Gadd34-PP1α phosphatase complex. Gadd34-complex inhibition blocked eIF2α dephosphorylation and significantly increased Oca2-null melanocyte sensitivity to thapsigargin. Thus, Oca2-null melanocytes adapt to acute ER stress by disruption of pro-apoptotic Perk signaling, which promotes cell survival. This is the first study to demonstrate rapid eIF2α dephosphorylation as an adaptive mechanism to ER stress. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Flurbiprofen ameliorated obesity by attenuating leptin resistance induced by endoplasmic reticulum stress.

    Science.gov (United States)

    Hosoi, Toru; Yamaguchi, Rie; Noji, Kikuko; Matsuo, Suguru; Baba, Sachiko; Toyoda, Keisuke; Suezawa, Takahiro; Kayano, Takaaki; Tanaka, Shinpei; Ozawa, Koichiro

    2014-03-01

    Endoplasmic reticulum (ER) stress, caused by the accumulation of unfolded proteins, is involved in the development of obesity. We demonstrated that flurbiprofen, a nonsteroidal anti-inflammatory drug (NSAID), exhibited chaperone activity, which reduced protein aggregation and alleviated ER stress-induced leptin resistance, characterized by insensitivity to the actions of the anti-obesity hormone leptin. This result was further supported by flurbiprofen attenuating high-fat diet-induced obesity in mice. The other NSAIDs tested did not exhibit such effects, which suggested that this anti-obesity action is mediated independent of NSAIDs. Using ferriteglycidyl methacrylate beads, we identified aldehyde dehydrogenase as the target of flurbiprofen, but not of the other NSAIDs. These results suggest that flurbiprofen may have unique pharmacological properties that reduce the accumulation of unfolded proteins and may represent a new class of drug for the fundamental treatment of obesity.

  1. The Gut as Reservoir of Antibiotic Resistance: Microbial Diversity of Tetracycline Resistance in Mother and Infant

    DEFF Research Database (Denmark)

    de Vries, Lisbeth Elvira; Valles, Yvonne; Agersø, Yvonne

    2011-01-01

    The microbiota in the human gastrointestinal tract (GIT) is highly exposed to antibiotics, and may be an important reservoir of resistant strains and transferable resistance genes. Maternal GIT strains can be transmitted to the offspring, and resistances could be acquired from birth. This is a ca...

  2. Isoxanthohumol, a constituent of hop (Humulus lupulus L.), increases stress resistance in Caenorhabditis elegans dependent on the transcription factor DAF-16.

    Science.gov (United States)

    Büchter, Christian; Havermann, Susannah; Koch, Karoline; Wätjen, Wim

    2016-02-01

    The flavanone isoxanthohumol (IX) has gained attention as antioxidative and chemopreventive agent, but the molecular mechanism of action remains unclear. We investigated effects of this secondary plant compound in vivo using the model organism Caenorhabditis elegans. Adult C. elegans nematodes were incubated with IX, and then, the stress resistance was analysed in the SYTOX assay; lifespan was monitored by touch-provoked movement method, the amount of reactive oxygen species (ROS) was measured in the DCF assay, and the nuclear localisation of the transcription factor DAF-16 was analysed by using a transgenic strain. By the use of a DAF-16 loss-of-function strain, we analysed whether the effects are dependent on DAF-16. IX increases the resistance of the nematode against thermal stress. Additionally, a reduction in ROS in vivo was caused by IX. Since the flavanone only has a marginal radical-scavenging capacity (TEAC assay), we suggest that IX mediates its antioxidative effects indirectly via activation of DAF-16 (homologue to mammalian FOXO proteins). The nuclear translocation of this transcription factor is increased by IX. In the DAF-16-mutated strain, the IX-mediated increase in stress resistance was completely abolished; furthermore, an increased formation of ROS and a reduced lifespan was mediated by IX. IX or a bacterial metabolite of IX causes antioxidative effects as well as an increased stress resistance in C. elegans via activation of DAF-16. The homologous pathway may have implications in the molecular mechanism of IX in mammals.

  3. High carotenoids content can enhance resistance of selected Pinctada fucata families to high temperature stress.

    Science.gov (United States)

    Meng, Zihao; Zhang, Bo; Liu, Baosuo; Li, Haimei; Fan, Sigang; Yu, Dahui

    2017-02-01

    Carotenoids are a class of natural antioxidants widely found in aquatic, and they have significant effects on the growth, survival, and immunity of these organisms. To investigate the mechanisms of carotenoids in high temperature resistance, we observed the immune response of selected pearl oyster Pinctada fucata (Akoya pearl oyster) families with different carotenoids contents to high temperature stress. The results indicated that the survival rate (SR) of P. fucata decreased significantly with increase in temperature from 26 °C to 34 °C and with the decrease of total carotenoids content (TCC); when the TCC was higher, the SR tended to be higher. TCC and total antioxidant capacity (TAC) decreased significantly at 30 °C with increasing stress time. Correlation analysis indicated that TAC was positively and linearly correlated with TCC, and SR was S-type correlated with TCC and TAC. Immune analysis indicated that levels of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) in selected families (with higher TCC) under temperature stress (at 30 °C) were generally significantly lower than in the control group (with lowest TCC) and from 0 to 96 h, the levels of each of these substances varied significantly. Levels of SOD, CAT, and MDA within each family first rose from 0 to 3 h, then decreased to their lowest point after 24 h, and then rose again to their highest levels at 96 h. When TCC was higher, the levels of SOD, CAT, and MDA tended to be lower. These findings indicated that carotenoids play an important role in improving survival rates of P. fucata under high temperature stress by enhancing animals' antioxidant system, and could serve as an index for breeding stress-resistant lines in selective breeding practices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Shear flow generation and turbulence suppression by resistive ballooning and resistive interchange modes

    International Nuclear Information System (INIS)

    Guzdar, P.N.; Drake, J.F.

    1993-01-01

    The generation of shear flow by resistive ballooning modes and resistive interchange modes is compared and contrasted using a 3-D fluid code. The resistive ballooning modes give rise to poloidally asymmetric transport and hence drive poloidal rotation due to the Reynold's Stress as well as the anomalous Stringer/Winsor mechanism. On the other hand the resistive interchange mode can drive shear flow only through the Reynold's Stress. The studies show that if the self-consistent sheared flow is suppressed, the resistive ballooning modes give rise to a larger anomalous transport than produced by the resistive interchange modes. Furthermore the shear flow generated by the resistive ballooning modes is larger than that driven by the resistive interchange modes due to the combined effect of the dual mechanisms stated earlier. As a consequence strong suppression of the fluctuations as well as reduction of the transport occurs for resistive ballooning modes. On the other hand, for the resistive interchange modes the level of fluctuation as well as the anomalous transport is not reduced by the self consistent shear flow generated by the Reynold's Stress. This latter result is in agreement with some earlier 3-D simulation of resistive interchange modes

  5. Effects of Ultrasonic Nanocrystal Surface Modification on the Residual Stress, Microstructure, and Corrosion Resistance of 304 Stainless Steel Welds

    Science.gov (United States)

    Ye, Chang; Telang, Abhishek; Gill, Amrinder; Wen, Xingshuo; Mannava, Seetha R.; Qian, Dong; Vasudevan, Vijay K.

    2018-03-01

    In this study, ultrasonic nanocrystal surface modification (UNSM) of 304 stainless steel welds was carried out. UNSM effectively eliminates the tensile stress generated during welding and imparts beneficial compressive residual stresses. In addition, UNSM can effectively refine the grains and increase hardness in the near-surface region. Corrosion tests in boiling MgCl2 solution demonstrate that UNSM can significantly improve the corrosion resistance due to the compressive residual stresses and changes in the near-surface microstructure.

  6. Endogenous cytokinin overproduction modulates ROS homeostasis and decreases salt stress resistance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yanping eWang

    2015-11-01

    Full Text Available Cytokinins in plants are crucial for numerous biological processes, including seed germination, cell division and differentiation, floral initiation and adaptation to abiotic stresses. The salt stress can promote reactive oxygen species (ROS production in plants which are highly toxic and ultimately results in oxidative stress. However, the correlation between endogenous cytokinin production and ROS homeostasis in responding to salt stress is poorly understood. In this study, we analyzed the correlation of overexpressing the cytokinin biosynthetic gene AtIPT8 (adenosine phosphate-isopentenyl transferase 8 and the response of salt stress in Arabidopsis. Overproduction of cytokinins, which was resulted by the inducible overexpression of AtIPT8, significantly inhibited the primary root growth and true leaf emergence, especially under the conditions of exogenous salt, glucose and mannitol treatments. Upon cytokinin overproduction, the salt stress resistance was declined, and resulted in less survival rates and chlorophyll content. Interestingly, ROS production was obviously increased with the salt treatment, accompanied by endogenously overproduced cytokinins. The activities of CAT and SOD, which are responsible for scavenging ROS, were also affected. Transcription profiling revealed that the differential expressions of ROS-producing and scavenging related genes, the photosynthesis-related genes and stress responsive genes were existed in transgenic plants of overproducing cytokinins. Our results suggested that broken in the homeostasis of cytokinins in plant cells could modulate the salt stress responses through a ROS-mediated regulation in Arabidopsis.

  7. Experimental Measurement of In Situ Stress

    Science.gov (United States)

    Tibbo, Maria; Milkereit, Bernd; Nasseri, Farzine; Schmitt, Douglas; Young, Paul

    2016-04-01

    The World Stress Map data is determined by stress indicators including earthquake focal mechanisms, in situ measurement in mining, oil and gas boreholes as well as the borehole cores, and geologic data. Unfortunately, these measurements are not only infrequent but sometimes infeasible, and do not provide nearly enough data points with high accuracy to correctly infer stress fields in deep mines around the world. Improvements in stress measurements of Earth's crust is fundamental to several industries such as oil and gas, mining, nuclear waste management, and enhanced geothermal systems. Quantifying the state of stress and the geophysical properties of different rock types is a major complication in geophysical monitoring of deep mines. Most stress measurement techniques involve either the boreholes or their cores, however these measurements usually only give stress along one axis, not the complete stress tensor. The goal of this project is to investigate a new method of acquiring a complete stress tensor of the in situ stress in the Earth's crust. This project is part of a comprehensive, exploration geophysical study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, and focuses on two boreholes located in this mine. These boreholes are approximately 400 m long with NQ diameters and are located at depths of about 1300 - 1600 m and 1700 - 2000 m. Two borehole logging surveys were performed on both boreholes, October 2013 and July 2015, in order to perform a time-lapse analysis of the geophysical changes in the mine. These multi-parameter surveys include caliper, full waveform sonic, televiewer, chargeability (IP), and resistivity. Laboratory experiments have been performed on borehole core samples of varying geologies from each borehole. These experiments have measured the geophysical properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. The apparatus' used for this project are geophysical imaging cells capable

  8. The Cytochrome bd Oxidase of Porphyromonas gingivalis Contributes to Oxidative Stress Resistance and Dioxygen Tolerance.

    Directory of Open Access Journals (Sweden)

    Julia Leclerc

    Full Text Available Porphyromonas gingivalis is an etiologic agent of periodontal disease in humans. The disease is associated with the formation of a mixed oral biofilm which is exposed to oxygen and environmental stress, such as oxidative stress. To investigate possible roles for cytochrome bd oxidase in the growth and persistence of this anaerobic bacterium inside the oral biofilm, mutant strains deficient in cytochrome bd oxidase activity were characterized. This study demonstrated that the cytochrome bd oxidase of Porphyromonas gingivalis, encoded by cydAB, was able to catalyse O2 consumption and was involved in peroxide and superoxide resistance, and dioxygen tolerance.

  9. Global Fluoroquinolone Resistance Epidemiology and Implictions for Clinical Use

    Science.gov (United States)

    Dalhoff, Axel

    2012-01-01

    This paper on the fluoroquinolone resistance epidemiology stratifies the data according to the different prescription patterns by either primary or tertiary caregivers and by indication. Global surveillance studies demonstrate that fluoroquinolone resistance rates increased in the past years in almost all bacterial species except S. pneumoniae and H. influenzae, causing community-acquired respiratory tract infections. However, 10 to 30% of these isolates harbored first-step mutations conferring low level fluoroquinolone resistance. Fluoroquinolone resistance increased in Enterobacteriaceae causing community acquired or healthcare associated urinary tract infections and intraabdominal infections, exceeding 50% in some parts of the world, particularly in Asia. One to two-thirds of Enterobacteriaceae producing extended spectrum β-lactamases were fluoroquinolone resistant too. Furthermore, fluoroquinolones select for methicillin resistance in Staphylococci. Neisseria gonorrhoeae acquired fluoroquinolone resistance rapidly; actual resistance rates are highly variable and can be as high as almost 100%, particularly in Asia, whereas resistance rates in Europe and North America range from 30% in established sexual networks. In general, the continued increase in fluoroquinolone resistance affects patient management and necessitates changes in some guidelines, for example, treatment of urinary tract, intra-abdominal, skin and skin structure infections, and traveller's diarrhea, or even precludes the use in indications like sexually transmitted diseases and enteric fever. PMID:23097666

  10. Prevalence and invasiveness of community-acquired methicillin-resistant Staphylococcus aureus: A meta-analysis

    Directory of Open Access Journals (Sweden)

    Shipeng Li

    2014-01-01

    Full Text Available Background: Reports suggest that the prevalence of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA has increased, and that CA-MRSA is more virulent than healthcare-associated (HA-MRSA. Aims: The aim of this study is to gain a better understanding of the invasiveness and prevalence of CA-MRSA in patients; we systematically reviewed the literature by conducting a meta-analysis. Materials and Methods: We searched the MEDLINE and PUBMED databases from the year these databases were established to January 2013. Results: The pooled CA-MRSA prevalence among 50,737 patients from 33 studies was 39.0% (range, 30.8-47.8%. The pooled CA-MRSA prevalence rates among pediatric and adult patients with MRSA infection were 50.2% (range, 37.5-62.8% and 42.3% (range, 16.4-73.3%, respectively. The pooled CA-MRSA prevalence rates of MRSA-infected patients in Asia, Europe, and North America were 23.1% (range, 12.0-39.8%, 37.4% (range, 21.1-56.4%, and 47.4% (range, 35.8-59.4%, respectively. Using the random effects model, we determined that the pooled odds ratio of invasive infections in CA- and HA-MRSA was 0.30 (95% confidence interval: 0.08-1.10; P = 0.07, test for heterogeneity P < 0.00001. Conclusions: The prevalence of CA-MRSA in MRSA infection varied with area and population. No difference in the ability to cause invasive infections was found between CA- and HA-MRSA. This finding challenges the view that CA-MRSA is more virulent than HA-MRSA.

  11. Acquirement of true stress-strain curve using true fracture strain obtained by tensile test and FE analysis

    International Nuclear Information System (INIS)

    Lee, Kyoung Yoon; Kim, Tae Hyung; Lee, Hyung Yil

    2009-01-01

    In this work, we predict a true fracture strain using load-displacement curves from tensile test and Finite Element Analysis (FEA), and suggest a method for acquiring true Stress-Strain (SS) curves by predicted fracture strain. We first derived the true SS curve up to necking point from load-displacement curve. As the beginning, the posterior necking part of true SS curve is linearly extrapolated with the slope at necking point. The whole SS curve is then adopted for FE simulation of tensile test. The Bridgman factor or suitable plate correction factors are applied to pre and post FEA. In the load-true strain curve from FEA, the true fracture strain is determined as the matching point to test fracture load. The determined true strain is validated by comparing with test fracture strain. Finally, we complete the true SS curve by combining the prior necking part and linear part, the latter of which connects necking and predicted fracture points.

  12. Acquirement of true stress-strain curve using true fracture strain obtained by tensile test and FE analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyoung Yoon; Kim, Tae Hyung; Lee, Hyung Yil [Sogang University, Seoul (Korea, Republic of)

    2009-07-01

    In this work, we predict a true fracture strain using load-displacement curves from tensile test and Finite Element Analysis (FEA), and suggest a method for acquiring true Stress-Strain (SS) curves by predicted fracture strain. We first derived the true SS curve up to necking point from load-displacement curve. As the beginning, the posterior necking part of true SS curve is linearly extrapolated with the slope at necking point. The whole SS curve is then adopted for FE simulation of tensile test. The Bridgman factor or suitable plate correction factors are applied to pre and post FEA. In the load-true strain curve from FEA, the true fracture strain is determined as the matching point to test fracture load. The determined true strain is validated by comparing with test fracture strain. Finally, we complete the true SS curve by combining the prior necking part and linear part, the latter of which connects necking and predicted fracture points.

  13. Acquirement of True Stress-strain Curve Using True Fracture Strain Obtained by Tensile Test and FE Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyoung Yoon; Lee, Hyung Yil [Sogang University, Seoul (Korea, Republic of); Kim, Tae Hyung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    In this work, we predict a true fracture strain using load-displacement curves from tensile test and finite element analysis (FEA), and suggest a method for acquiring true stress-strain (SS) curves by predicted fracture strain. We first derived the true SS curve up to necking point from load-displacement curve. As the beginning, the posterior necking part of true SS curve is linearly extrapolated with the slope at necking point. The whole SS curve is then adopted for FE simulation of tensile test. The Bridgman factor or suitable plate correction factors are applied to pre and post FEA. In the load-true strain curve from FEA, the true fracture strain is determined as the matching point to test fracture load. The determined true strain is validated by comparing with test fracture strain. Finally, we complete the true SS curve by combining the prior necking part and linear part, the latter of which connects necking and predicted fracture points.

  14. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance.

    Science.gov (United States)

    Ali, Sajad; Ganai, Bashir Ahmad; Kamili, Azra N; Bhat, Ajaz Ali; Mir, Zahoor Ahmad; Bhat, Javaid Akhter; Tyagi, Anshika; Islam, Sheikh Tajamul; Mushtaq, Muntazir; Yadav, Prashant; Rawat, Sandhya; Grover, Anita

    Pathogenesis-related (PR) proteins and antimicrobial peptides (AMPs) are a group of diverse molecules that are induced by phytopathogens as well as defense related signaling molecules. They are the key components of plant innate immune system especially systemic acquired resistance (SAR), and are widely used as diagnostic molecular markers of defense signaling pathways. Although, PR proteins and peptides have been isolated much before but their biological function remains largely enigmatic despite the availability of new scientific tools. The earlier studies have demonstrated that PR genes provide enhanced resistance against both biotic and abiotic stresses, which make them one of the most promising candidates for developing multiple stress tolerant crop varieties. In this regard, plant genetic engineering technology is widely accepted as one of the most fascinating approach to develop the disease resistant transgenic crops using different antimicrobial genes like PR genes. Overexpression of PR genes (chitinase, glucanase, thaumatin, defensin and thionin) individually or in combination have greatly uplifted the level of defense response in plants against a wide range of pathogens. However, the detailed knowledge of signaling pathways that regulates the expression of these versatile proteins is critical for improving crop plants to multiple stresses, which is the future theme of plant stress biology. Hence, this review provides an overall overview on the PR proteins like their classification, role in multiple stresses (biotic and abiotic) as well as in various plant defense signaling cascades. We also highlight the success and snags of transgenic plants expressing PR proteins and peptides. Copyright © 2018 Elsevier GmbH. All rights reserved.

  15. The GATA transcription factor egl-27 delays aging by promoting stress resistance in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Xiao Xu

    Full Text Available Stress is a fundamental aspect of aging, as accumulated damage from a lifetime of stress can limit lifespan and protective responses to stress can extend lifespan. In this study, we identify a conserved Caenorhabditis elegans GATA transcription factor, egl-27, that is involved in several stress responses and aging. We found that overexpression of egl-27 extends the lifespan of wild-type animals. Furthermore, egl-27 is required for the pro-longevity effects from impaired insulin/IGF-1 like signaling (IIS, as reduced egl-27 activity fully suppresses the longevity of worms that are mutant for the IIS receptor, daf-2. egl-27 expression is inhibited by daf-2 and activated by pro-longevity factors daf-16/FOXO and elt-3/GATA, suggesting that egl-27 acts at the intersection of IIS and GATA pathways to extend lifespan. Consistent with its role in IIS signaling, we found that egl-27 is involved in stress response pathways. egl-27 expression is induced in the presence of multiple stresses, its targets are significantly enriched for many types of stress genes, and altering levels of egl-27 itself affects survival to heat and oxidative stress. Finally, we found that egl-27 expression increases between young and old animals, suggesting that increased levels of egl-27 in aged animals may act to promote stress resistance. These results identify egl-27 as a novel factor that links stress and aging pathways.

  16. Antibiotic Resistance in Pediatric Urinary Tract Infections.

    Science.gov (United States)

    Stultz, Jeremy S; Doern, Christopher D; Godbout, Emily

    2016-12-01

    Urinary tract infections (UTIs) are a common problem in pediatric patients. Resistance to common antibiotic agents appears to be increasing over time, although resistance rates may vary based on geographic region or country. Prior antibiotic exposure is a pertinent risk factor for acquiring resistant organisms during a first UTI and recurrent UTI. Judicious prescribing of antibiotics for common pediatric conditions is needed to prevent additional resistance from occurring. Complex pediatric patients with histories of hospitalizations, prior antibiotic exposure, and recurrent UTIs are also at high risk for acquiring UTIs due to extended spectrum beta-lactamase-producing organisms. Data regarding the impact of in vitro antibiotic susceptibility testing interpretation on UTI treatment outcomes is lacking.

  17. Preventive effect of curcumin on inflammation, oxidative stress and insulin resistance in high-fat fed obese rats.

    Science.gov (United States)

    Maithilikarpagaselvi, Nachimuthu; Sridhar, Magadi Gopalakrishna; Swaminathan, Rathinam Palamalai; Sripradha, Ramalingam

    2016-06-01

    The present study investigated the beneficial effects of curcumin on inflammation, oxidative stress and insulin resistance in high-fat fed male Wistar rats. Five-month-old male Wistar rats (n=20) were divided into two groups (10 rats in each group). Among the two groups, one group received 30 % high-fat diet (HFD) and another group received 30 % HFD with curcumin (200 mg/kg body weight). Food intake, body weight and biochemical parameters were measured at the beginning and at the end of the study. After 10 weeks, oxidative stress parameters in skeletal muscle and hepatic triacylglycerol (TAG) content were estimated. Histological examinations of the liver samples were performed at the end of the experiment. High-fat feeding caused increase in body weight, liver and adipose tissue mass. Rats fed with HFD showed increased levels of fasting plasma glucose, insulin, Homeostasis Model Assessment for Insulin resistance (HOMA-IR), total cholesterol (TC), TAG, very low density lipoprotein cholesterol (VLDL-c) and decreased high-density lipoprotein cholesterol (HDL-c). There was also increase in the plasma inflammatory markers [tumor necrosis factor-α (TNF-α), C-reactive protein (CRP)] and skeletal muscle oxidative stress parameters [malondialdehyde (MDA), total oxidant status (TOS)] in these rats. In addition, high-fat feeding increased liver TAG content and caused fat accumulation in the liver. Treatment with curcumin significantly reduced body weight, relative organ weights (liver, adipose tissue), glucose, insulin and HOMA-IR. Curcumin supplementation decreased plasma levels of TC, TAG, VLDL-c, TNF-α and increased HDL-c. Administration of curcumin also reduced MDA, TOS in skeletal muscle, hepatic TAG content and liver fat deposition. Curcumin supplementation improved HFD-induced dyslipidemia, oxidative stress, inflammation and insulin resistance.

  18. Chemotherapeutics-resistance "arms" race: An update on mechanisms involved in resistance limiting EGFR inhibitors in lung cancer.

    Science.gov (United States)

    Singh, Pankaj Kumar; Silakari, Om

    2017-10-01

    Clinical reports suggest that EGFR-mutated lung cancer usually respond significantly towards small molecule tyrosine kinase inhibitors. Same studies also report the eventual development of acquired resistance within a median time interval of 9 to 14months. One of the major mechanisms involved in this acquired resistance was found to be a secondary point mutation at gate-keeper residue, EGFR T790M. However, there are other recent studies which disclose the role of few other novel key players such as, ZEB1, TOPK etc., in the development of tolerance towards the EGFR TKI's, along with other commonly known mechanisms, such as amplification of signalling pathways such as, c-MET, Erbb2, AXL, additional acquired secondary mutations (PIK3CA, BRAF), or phenotypic transformation (small cell or epithelial to mesenchymal transitions). Interestingly, a recent study showed development of resistance via another point mutation, C797S, in case of tumors which were previously resistant and were administered agents capable of overcoming T790M gatekeeper mutation based resistance. Thus, raising serious concern over the direction of drug development involving tyrosine kinases such as EGFR. Current approaches focussing on development of third generation inhibitors, dual inhibitors or inhibitors of HSP90 have shown significant activity but do not answer the long term question of resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Efficacy of a hospital-wide environmental cleaning protocol on hospital-acquired methicillin-resistant Staphylococcus aureus rates.

    Science.gov (United States)

    Watson, Paul Andrew; Watson, Luke Robert; Torress-Cook, Alfonso

    2016-07-01

    Environmental contamination has been associated with over half of methicillin-resistant Staphylococcus aureus (MRSA) outbreaks in hospitals. We explored if a hospital-wide environmental and patient cleaning protocol would lower hospital acquired MRSA rates and associated costs. This study evaluates the impact of implementing a hospital-wide environmental and patient cleaning protocol on the rate of MRSA infection and the potential cost benefit of the intervention. A retrospective, pre-post interventional study design was used. The intervention comprised a combination of enhanced environmental cleaning of high touch surfaces, daily washing of patients with benzalkonium chloride, and targeted isolation of patients with active infection. The rate of MRSA infection per 1000 patient days (PD) was compared with the rate after the intervention (Steiros Algorithm ® ) was implemented. A cost-benefit analysis based on the number of MRSA infections avoided was conducted. The MRSA rates decreased by 96% from 3.04 per 1000 PD to 0.11 per 1000 PD ( P reduction in MRSA infections, avoided an estimated $1,655,143 in healthcare costs. Implementation of this hospital-wide protocol appears to be associated with a reduction in the rate of MRSA infection and therefore a reduction in associated healthcare costs.

  20. Spread and change in stress resistance of Shiga toxin-producing Escherichia coli O157 on fungal colonies.

    Science.gov (United States)

    Lee, Ken-Ichi; Kobayashi, Naoki; Watanabe, Maiko; Sugita-Konishi, Yoshiko; Tsubone, Hirokazu; Kumagai, Susumu; Hara-Kudo, Yukiko

    2014-11-01

    To elucidate the effect of fungal hyphae on the behaviour of Shiga toxin-producing Escherichia coli (STEC) O157, the spread and change in stress resistance of the bacterium were evaluated after coculture with 11 species of food-related fungi including fermentation starters. Spread distances of STEC O157 varied depending on the co-cultured fungal species, and the motile bacterial strain spread for longer distances than the non-motile strain. The population of STEC O157 increased when co-cultured on colonies of nine fungal species but decreased on colonies of Emericella nidulans and Aspergillus ochraceus. Confocal scanning microscopy visualization of green fluorescent protein-tagged STEC O157 on fungal hyphae revealed that the bacterium colonized in the water film that existed on and between hyphae. To investigate the physiological changes in STEC O157 caused by co-culturing with fungi, the bacterium was harvested after 7 days of co-culturing and tested for acid resistance. After co-culture with eight fungal species, STEC O157 showed greater acid resistance compared to those cultured without fungi. Our results indicate that fungal hyphae can spread the contamination of STEC O157 and can also enhance the stress resistance of the bacteria. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  1. Antimicrobial Resistance in Invasive Bacterial Infections in Hospitalized Children, Cambodia, 2007-2016.

    Science.gov (United States)

    Fox-Lewis, Andrew; Takata, Junko; Miliya, Thyl; Lubell, Yoel; Soeng, Sona; Sar, Poda; Rith, Kolthida; McKellar, Gregor; Wuthiekanun, Vanaporn; McGonagle, Erin; Stoesser, Nicole; Moore, Catrin E; Parry, Christopher M; Turner, Claudia; Day, Nicholas P J; Cooper, Ben S; Turner, Paul

    2018-05-01

    To determine trends, mortality rates, and costs of antimicrobial resistance in invasive bacterial infections in hospitalized children, we analyzed data from Angkor Hospital for Children, Siem Reap, Cambodia, for 2007-2016. A total of 39,050 cultures yielded 1,341 target pathogens. Resistance rates were high; 82% each of Escherichia coli and Klebsiella pneumoniae isolates were multidrug resistant. Hospital-acquired isolates were more often resistant than community-acquired isolates; resistance trends over time were heterogeneous. K. pneumoniae isolates from neonates were more likely than those from nonneonates to be resistant to ampicillin-gentamicin and third-generation cephalosporins. In patients with community-acquired gram-negative bacteremia, third-generation cephalosporin resistance was associated with increased mortality rates, increased intensive care unit admissions, and 2.26-fold increased healthcare costs among survivors. High antimicrobial resistance in this setting is a threat to human life and the economy. In similar low-resource settings, our methods could be reproduced as a robust surveillance model for antimicrobial resistance.

  2. The Escherichia coli Cpx envelope stress response regulates genes of diverse function that impact antibiotic resistance and membrane integrity.

    Science.gov (United States)

    Raivio, Tracy L; Leblanc, Shannon K D; Price, Nancy L

    2013-06-01

    The Cpx envelope stress response mediates adaptation to stresses that cause envelope protein misfolding. Adaptation is partly conferred through increased expression of protein folding and degradation factors. The Cpx response also plays a conserved role in the regulation of virulence determinant expression and impacts antibiotic resistance. We sought to identify adaptive mechanisms that may be involved in these important functions by characterizing changes in the transcriptome of two different Escherichia coli strains when the Cpx response is induced. We show that, while there is considerable strain- and condition-specific variability in the Cpx response, the regulon is enriched for proteins and functions that are inner membrane associated under all conditions. Genes that were changed by Cpx pathway induction under all conditions were involved in a number of cellular functions and included several intergenic regions, suggesting that posttranscriptional regulation is important during Cpx-mediated adaptation. Some Cpx-regulated genes are centrally involved in energetics and play a role in antibiotic resistance. We show that a number of small, uncharacterized envelope proteins are Cpx regulated and at least two of these affect phenotypes associated with membrane integrity. Altogether, our work suggests new mechanisms of Cpx-mediated envelope stress adaptation and antibiotic resistance.

  3. GLP-1 responses are heritable and blunted in acquired obesity with high liver fat and insulin resistance

    DEFF Research Database (Denmark)

    Matikainen, Niina; Bogl, Leonie H; Hakkarainen, Antti

    2014-01-01

    OBJECTIVE Impaired incretin response represents an early and uniform defect in type 2 diabetes, but the contributions of genes and the environment are poorly characterized. RESEARCH DESIGN AND METHODS We studied 35 monozygotic (MZ) and 75 dizygotic (DZ) twin pairs (discordant and concordant for o...... Whereas the GLP-1 response to the OGTT is heritable, an acquired unhealthy pattern of obesity characterized by liver fat accumulation and insulin resistance is closely related to impaired GLP-1 response in young adults....... under the curve was 67% (95% CI 45-80). Cotwins from weight-concordant MZ and DZ pairs and weight-discordant MZ pairs but concordant for liver fat content demonstrated similar glucose, insulin, and incretin profiles after the OGTT and meal tests. In contrast, higher insulin responses and blunted 60-min...... GLP-1 responses during the OGTT were observed in the heavier as compared with leaner MZ cotwins discordant for BMI, liver fat, and insulin sensitivity. Blunted GLP-1 response to OGTT was observed in heavier as compared with leaner DZ cotwins discordant for obesity and insulin sensitivity. CONCLUSIONS...

  4. Investigation of the Use of Laser Shock Peening for Enhancing Fatigue and Stress Corrosion Cracking Resistance of Nuclear Energy Materials

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Vijay K. [Univ. of Cincinnati, OH (United States); Jackson, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Teysseyre, Sebastien [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alexandreanu, Bogdan [Argonne National Lab. (ANL), Argonne, IL (United States); Chen, Yiren [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-07

    The objective of this project, which includes close collaboration with scientists from INL and ANL, is to investigate and demonstrate the use of advanced mechanical surface treatments like laser shock peening (LSP) and ultrasonic nanocrystal surface modification (UNSM) and establish baseline parameters for enhancing the fatigue properties and SCC resistance of nuclear materials like nickel-based alloy 600 and 304 stainless steel. The research program includes the following key elements/tasks: 1) Procurement of Alloy 600 and 304 SS, heat treatment studies; 2) LSP and UNSM processing of base metal and welds/HAZ of alloys 600 and 304; (3) measurement and mapping of surface and sub-surface residual strains/stresses and microstructural changes as a function of process parameters using novel methods; (4) determination of thermal relaxation of residual stresses (macro and micro) and microstructure evolution with time at high temperatures typical of service conditions and modeling of the kinetics of relaxation; (5) evaluation of the effects of residual stress, near surface microstructure and temperature on SCC and fatigue resistance and associated microstructural mechanisms; and (6) studies of the effects of bulk and surface grain boundary engineering on improvements in the SCC resistance and associated microstructural and cracking mechanisms

  5. The Complete Genome and Phenome of a Community-Acquired Acinetobacter baumannii

    Science.gov (United States)

    Farrugia, Daniel N.; Elbourne, Liam D. H.; Hassan, Karl A.; Eijkelkamp, Bart A.; Tetu, Sasha G.; Brown, Melissa H.; Shah, Bhumika S.; Peleg, Anton Y.; Mabbutt, Bridget C.; Paulsen, Ian T.

    2013-01-01

    Many sequenced strains of Acinetobacter baumannii are established nosocomial pathogens capable of resistance to multiple antimicrobials. Community-acquired A. baumannii in contrast, comprise a minor proportion of all A. baumannii infections and are highly susceptible to antimicrobial treatment. However, these infections also present acute clinical manifestations associated with high reported rates of mortality. We report the complete 3.70 Mbp genome of A. baumannii D1279779, previously isolated from the bacteraemic infection of an Indigenous Australian; this strain represents the first community-acquired A. baumannii to be sequenced. Comparative analysis of currently published A. baumannii genomes identified twenty-four accessory gene clusters present in D1279779. These accessory elements were predicted to encode a range of functions including polysaccharide biosynthesis, type I DNA restriction-modification, and the metabolism of novel carbonaceous and nitrogenous compounds. Conversely, twenty genomic regions present in previously sequenced A. baumannii strains were absent in D1279779, including gene clusters involved in the catabolism of 4-hydroxybenzoate and glucarate, and the A. baumannii antibiotic resistance island, known to bestow resistance to multiple antimicrobials in nosocomial strains. Phenomic analysis utilising the Biolog Phenotype Microarray system indicated that A. baumannii D1279779 can utilise a broader range of carbon and nitrogen sources than international clone I and clone II nosocomial isolates. However, D1279779 was more sensitive to antimicrobial compounds, particularly beta-lactams, tetracyclines and sulphonamides. The combined genomic and phenomic analyses have provided insight into the features distinguishing A. baumannii isolated from community-acquired and nosocomial infections. PMID:23527001

  6. New Fks hot spot for acquired echinocandin resistance in Saccharomyces cerevisiae and its contribution to intrinsic resistance of Scedosporium species.

    Science.gov (United States)

    Johnson, Michael E; Katiyar, Santosh K; Edlind, Thomas D

    2011-08-01

    Echinocandins represent a new antifungal group with potent activity against Candida species. These lipopeptides inhibit the synthesis of β-1,3-glucan, the major cell wall polysaccharide. Acquired resistance or reduced echinocandin susceptibility (RES) is rare and associated with mutations in two "hot spot" regions of Fks1 or Fks2, the probable β-1,3-glucan synthases. In contrast, many fungi demonstrate intrinsic RES for reasons that remain unclear. We are using Saccharomyces cerevisiae to understand the basis for RES by modeling echinocandin-Fks interaction. Previously characterized mutations confer cross-RES; we screened for mutations conferring differential RES, implying direct interaction of that Fks residue with a variable echinocandin side chain. One mutant (in an fks1Δ background) exhibited ≥16-fold micafungin and anidulafungin versus caspofungin RES. Sequencing identified a novel Fks2 mutation, W714L/Y715N. Equivalent W695L/Y696N and related W695L/F/C mutations in Fks1 generated by site-directed mutagenesis and the isolation of a W695L-equivalent mutation in Candida glabrata confirmed the role of the new "hot spot 3" in RES. Further mutagenesis expanded hot spot 3 to Fks1 residues 690 to 700, yielding phenotypes ranging from cross-RES to differential hypersusceptibility. Fks1 sequences from intrinsically RES Scedosporium species revealed W695F-equivalent substitutions; Fks1 hybrids expressing Scedosporium prolificans hot spot 3 confirmed that this substitution imparts RES.

  7. New Fks Hot Spot for Acquired Echinocandin Resistance in Saccharomyces cerevisiae and Its Contribution to Intrinsic Resistance of Scedosporium Species▿

    Science.gov (United States)

    Johnson, Michael E.; Katiyar, Santosh K.; Edlind, Thomas D.

    2011-01-01

    Echinocandins represent a new antifungal group with potent activity against Candida species. These lipopeptides inhibit the synthesis of β-1,3-glucan, the major cell wall polysaccharide. Acquired resistance or reduced echinocandin susceptibility (RES) is rare and associated with mutations in two “hot spot” regions of Fks1 or Fks2, the probable β-1,3-glucan synthases. In contrast, many fungi demonstrate intrinsic RES for reasons that remain unclear. We are using Saccharomyces cerevisiae to understand the basis for RES by modeling echinocandin-Fks interaction. Previously characterized mutations confer cross-RES; we screened for mutations conferring differential RES, implying direct interaction of that Fks residue with a variable echinocandin side chain. One mutant (in an fks1Δ background) exhibited ≥16-fold micafungin and anidulafungin versus caspofungin RES. Sequencing identified a novel Fks2 mutation, W714L/Y715N. Equivalent W695L/Y696N and related W695L/F/C mutations in Fks1 generated by site-directed mutagenesis and the isolation of a W695L-equivalent mutation in Candida glabrata confirmed the role of the new “hot spot 3” in RES. Further mutagenesis expanded hot spot 3 to Fks1 residues 690 to 700, yielding phenotypes ranging from cross-RES to differential hypersusceptibility. Fks1 sequences from intrinsically RES Scedosporium species revealed W695F-equivalent substitutions; Fks1 hybrids expressing Scedosporium prolificans hot spot 3 confirmed that this substitution imparts RES. PMID:21576441

  8. ASSESSMENT OF CRACKING RESISTANCE OF CELLULAR CONCRETE PRODUCTS UNDER MOISTURE AND CARBONISATION DEFORMATIONS WITH STRESS RELAXATION

    Directory of Open Access Journals (Sweden)

    Sh. I. Apkarov

    2017-01-01

    Full Text Available Objectives. On the basis of the experimental, theoretical and field studies, an engineering calculation method was developed for assessing the cracking resistance of external enclosing constructions made of cellular concrete, with the maximum gradient development of moisture and carbonisation forced deformations along their thickness, taking into account the relaxation of the shrinkage stresses. In this regard, the aim of the work is to provide technological measures at the manufacturing stage in order to increase the operational cracking resistance of the construction's outer surface layers by reducing the moisture and carbonation shrinkage of cellular concrete by introducing a large or fine porous aggregate in calculated amounts.Methods. A number of analytical equations were applied to establish the dependence of the shrinkage of heavy concrete of conventional hardness on the amount of aggregate introduced and its elasticity modulus, water-cement ratio and cement consumption, as well as the concrete's moisture content.Results. Knowing the volumes of the structural aggregate and the cellular concrete mass, as well as their modulus of elasticity, the shrinkage reduction factor of the cellular concrete was calculated with the addition of a lightweight porous aggregate. Subsequently, the shrinkage deformations of concrete in the surface layer of the outer enclosing construction, maximising crack resistance due to moisture exchange and carbonation influences under operating conditions, were defined, taking into account the relaxation of tensile stresses due to creep of concrete.Conclusion. Theoretical calculations, based on the recommended method of assessing the cracking resistance of cellular concrete enclosing constructions under moisture exchange and carbonisation processes, taking into account the relaxation of shrinkage stresses, showed that in order to exclude the appearance of cracks in wall panels 280 mm thick made of 700 kg/m3 gas ash

  9. [Cetuximab in combination with icotinib overcomes the acquired resistance caused by EGFR T790M mutation in non-small cell lung cancer].

    Science.gov (United States)

    Wang, Meng; Zhang, Lianmin; Zhao, Xiaoliang; Liu, Jun; Chen, Yulong; Wang, Changli

    2014-09-01

    The aim of this study was to investigate the effects of combination of icotinib and cetuximab on the acquired drug resistance caused by T790M mutation of EGFR in NSCLC, and provide experimental evidence for rational treatment of NSCLC. The effects of these two agents on cell proliferation, apoptosis, and EGFR-dependent signaling were evaluated using 3-(4, 5-dimethylthiazol-2-yl)- 5-diphenyltetrazolium bromide (MTT) assay, annexin V staining, and Western blotting. The expression of molecular markers of tumor proliferation PCNA and Ki-67 protein was further examined by immunohistochemistry, and the expression of EGFR-signaling-related proteins in tissue sections taken from H1975 tumor xenografts was assessed by Western blot assay. Sensitivity to EGFR inhibitors was detected in human H1975 tumor xenograft in nude mice. The in vitro experiment showed that the proliferative ability of H1975 cells was inhibited in a dose-dependent manner, along with the increasing doses of cetuximab and icotinib, and the combination of cetuximab with icotinib resulted in a more pronounced growth inhibition of the H1975 cells. The apoptosis rate of H1975 cells after treatment with 0.5 µmol/L icotinib and 1 µg/ml cetuximab was (22.03 ± 2.41)% and that after treatment with 5 µmol/L icotinib and 10 µg/ml cetuximab was (42.75 ± 2.49)%, both were significantly higher than that after treatment with the same dose of icotinib or cetuximab alone (P icotinib treatment, but (30.8 ± 2.0) mm(3) in the cetuximab treatment group and 0 mm(3) in the cetuximab combined with icotinib group. There was a significantly decreased expression of Ki-67 and PCNA proteins and down-regulation of phosphorylation of EGFR signaling-related proteins in the cetuximab combined with icotinib group. The combination of icotinib with cetuximab can exert synergistic inhibitory effect on the acquired drug resistance caused by T790M mutation of EGFR in NSCLC H1975 cells, interrupts the EGFR-downstream signaling pathway

  10. Thermotolerance, oxidative stress, apoptosis, heat-shock proteins and damages to reproductive cells of insecticide-susceptible and -resistant strains of the diamondback moth Plutella xylostella.

    Science.gov (United States)

    Zhang, L J; Chen, J L; Yang, B L; Kong, X G; Bourguet, D; Wu, G

    2017-08-01

    In this study, we investigated thermotolerance, several physiological responses and damage to reproductive cells in chlorpyrifos-resistant (Rc) and -susceptible (Sm) strains of the diamondback moth, Plutella xylostella subjected to heat stress. The chlorpyrifos resistance of these strains was mediated by a modified acetylcholinesterase encoded by an allele, ace1R, of the ace1 gene. Adults of the Rc strain were less heat resistant than those of the Sm strain; they also had lower levels of enzymatic activity against oxidative damage, higher reactive oxygen species contents, weaker upregulation of two heat shock protein (hsp) genes (hsp69s and hsp20), and stronger upregulation of two apoptotic genes (caspase-7 and -9). The damage to sperm and ovary cells was greater in Rc adults than in Sm adults and was temperature sensitive. The lower fitness of the resistant strain, compared with the susceptible strain, is probably due to higher levels of oxidative stress and apoptosis, which also have deleterious effects on several life history traits. The greater injury observed in conditions of heat stress may be due to both the stronger upregulation of caspase genes and weaker upregulation of hsp genes in resistant than in susceptible individuals.

  11. Leucine supplementation improves acquired growth hormone resistance in rats with protein-energy malnutrition.

    Science.gov (United States)

    Gao, Xuejin; Tian, Feng; Wang, Xinying; Zhao, Jie; Wan, Xiao; Zhang, Li; Wu, Chao; Li, Ning; Li, Jieshou

    2015-01-01

    -CON group. Our data are the first to demonstrate that long-term supplementation with leucine improved acquired growth hormone resistance in rats with protein-energy malnutrition. Leucine might promote skeletal muscle protein synthesis by regulating downstream anabolic signaling transduction.

  12. Melatonin Modulates Neuronal Cell Death Induced by Endoplasmic Reticulum Stress under Insulin Resistance Condition.

    Science.gov (United States)

    Song, Juhyun; Kim, Oh Yoen

    2017-06-10

    Insulin resistance (IR) is an important stress factor in the central nervous system, thereby aggravating neuropathogenesis and triggering cognitive decline. Melatonin, which is an antioxidant phytochemical and synthesized by the pineal gland, has multiple functions in cellular responses such as apoptosis and survival against stress. This study investigated whether melatonin modulates the signaling of neuronal cell death induced by endoplasmic reticulum (ER) stress under IR condition using SH-SY5Y neuroblastoma cells. Apoptosis cell death signaling markers (cleaved Poly [ADP-ribose] polymerase 1 (PARP), p53, and Bax) and ER stress markers (phosphorylated eIF2α (p-eIF2α), ATF4, CHOP, p-IRE1 , and spliced XBP1 (sXBP1)) were measured using reverse transcription-PCR, quantitative PCR, and western blottings. Immunofluorescence staining was also performed for p-ASK1 and p-IRE1 . The mRNA or protein expressions of cell death signaling markers and ER stress markers were increased under IR condition, but significantly attenuated by melatonin treatment. Insulin-induced activation of ASK1 ( p-ASK1 ) was also dose dependently attenuated by melatonin treatment. The regulatory effect of melatonin on neuronal cells under IR condition was associated with ASK1 signaling. In conclusion, the result suggested that melatonin may alleviate ER stress under IR condition, thereby regulating neuronal cell death signaling.

  13. Association between markers of systemic inflammation, oxidative stress, lipid profiles, and insulin resistance in pregnant women

    Directory of Open Access Journals (Sweden)

    Zatollah Asemi

    2013-05-01

    Full Text Available BACKGROUND: Increased levels of pro-inflammatory factors, markers of oxidative stress and lipid profiles are known to be associated with several complications. The aim of this study was to determine the association of markers of systemic inflammation, oxidative stress and lipid profiles with insulin resistance in pregnant women in Kashan, Iran. METHODS: In a cross-sectional study, serum high sensitivity C-reactive protein (hs-CRP, tumor necrosis factor-alpha (TNF-α, fasting plasma glucose (FPG, serum insulin, 8-oxo-7, 8-dihydroguanine (8-oxo-G, total cholesterol, triglyceride, HDL-cholesterol, and plasma total antioxidant capacity (TAC were measured among 89 primigravida singleton pregnant women aged 18-30 years at 24-28 weeks of gestation. Pearson’s correlation and multiple linear regressions were used to assess their relationships with homeostatic model assessment of insulin resistance (HOMA-IR. RESULTS: We found that among biochemical indicators of pregnant women, serum hs-CRP and total cholesterol levels were positively correlated with HOMA-IR (β = 0.05, P = 0.006 for hs-CRP and β = 0.006, P = 0.006 for total cholesterol. These associations remained significant even after mutual effect of other biochemical indicators were controlled (β = 0.04, P = 0.01 for hs-CRP and β = 0.007, P = 0.02 for total cholesterol. Further adjustment for body mass index made the association of hs-CRP and HOMA-IR disappeared; however, the relationship for total cholesterol remained statistically significant. CONCLUSION: Our findings showed that serum total cholesterol is independently correlated with HOMA-IR score. Further studies are needed to confirm our findings. Keywords: Inflammation, Oxidative Stress, Insulin Resistance, Pregnancy

  14. Infection control implications of heterogeneous resistance mechanisms in carbapenem-resistant Enterobacteriaceae (CRE).

    Science.gov (United States)

    Goodman, K E; Simner, P J; Tamma, P D; Milstone, A M

    2016-01-01

    The Centers for Disease Control and Prevention (CDC) defines carbapenem-resistant Enterobacteriaceae (CRE) based upon a phenotypic demonstration of carbapenem resistance. However, considerable heterogeneity exists within this definitional umbrella. CRE may mechanistically differ by whether they do or do not produce carbapenemases. Moreover, patients can acquire CRE through multiple pathways: endogenously through antibiotic selective pressure on intestinal microbiota, exogenously through horizontal transmission or through a combination of these factors. Some evidence suggests that non-carbapenemase-producing CRE may be more frequently acquired by antibiotic exposure and carbapenemase-producing CRE via horizontal transmission, but definitive data are lacking. This review examines types of CRE resistance mechanisms, antibiotic exposure and horizontal transmission pathways of CRE acquisition, and the implications of these heterogeneities to the development of evidence-based CRE healthcare epidemiology policies. In our Expert Commentary & Five-Year View, we outline specific nosocomial CRE knowledge gaps and potential methodological approaches for their resolution.

  15. Emergence of community-acquired methicillin-resistant Staphylococcus aureus in an Iranian referral paediatric hospital.

    Science.gov (United States)

    Mamishi, S; Mahmoudi, S; Bahador, A; Matini, H; Movahedi, Z; Sadeghi, R H; Pourakbari, B

    2015-01-01

    The epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) in hospitals has been changed in recent years due to the arrival of community-associated MRSA (CA-MRSA) strains into healthcare settings. The aim of this study is to investigate the distribution of staphylococcal cassette chromosome mec (SCCmec) type V as well as SCCmec IV subtypes, which have been associated with community-acquired infection among healthcare-associated MRSA (HA-MRSA) isolates. Antimicrobial susceptibility, SCCmec type, spa type and the presence of Panton-Valentine leukocidin (PVL) genes were determined for all HA-MRSA isolates in an Iranian referral hospital. In this study of 48 HA-MRSA isolates, 13 (27%), three (6.2%), five (10.4%) and one (2%) belonged to SCCmec subtypes IVa, IVb, IVc and IVd, respectively. Only two isolates (4.2%) belonged to SCCmec types V Notably, one isolate was found to harbour concurrent SCCmec subtypes IVb and IVd. MRSA containing SCCmec subtype IVb, IVc and IVd as well as type V isolates were all susceptible to chloramphenicol, clindamycin and rifampicin, while the sensitivity to these antibiotics was lower among MRSA containing SCCmec subtype IVa. The most frequently observed spa ttype was t037, accounting for 88% (22/25). Three other spa type was t002, t1816 and t4478. Large reservoirs of MRSA containing type IV subtypes and type V now exist in patients in this Iranian hospital. Therefore, effective infection control management in order to control the spread of CA-MRSA is highly recommended.

  16. Exosomes from adriamycin-resistant breast cancer cells transmit drug resistance partly by delivering miR-222.

    Science.gov (United States)

    Yu, Dan-Dan; Wu, Ying; Zhang, Xiao-Hui; Lv, Meng-Meng; Chen, Wei-Xian; Chen, Xiu; Yang, Su-Jin; Shen, Hongyu; Zhong, Shan-Liang; Tang, Jin-Hai; Zhao, Jian-Hua

    2016-03-01

    Breast cancer (BCa) is one of the major deadly cancers in women. However, treatment of BCa is still hindered by the acquired-drug resistance. It is increasingly reported that exosomes take part in the development, metastasis, and drug resistance of BCa. However, the specific role of exosomes in drug resistance of BCa is poorly understood. In this study, we investigate whether exosomes transmit drug resistance through delivering miR-222. We established an adriamycin-resistant variant of Michigan Cancer Foundation-7 (MCF-7) breast cancer cell line (MCF-7/Adr) from a drug-sensitive variant (MCF-7/S). Exosomes were isolated from cell supernatant by ultracentrifugation. Cell viability was assessed by MTT assay and apoptosis assay. Individual miR-222 molecules in BCa cells were detected by fluorescence in situ hybridization (FISH). Then, FISH was combined with locked nucleic acid probes and enzyme-labeled fluorescence (LNA-ELF-FISH). Individual miR-222 could be detected as bright photostable fluorescent spots and then the quantity of miR-222 per cell could be counted. Stained exosomes were taken in by the receipt cells. MCF-7/S acquired drug resistance after co-culture with exosomes from MCF-7/Adr (A/exo) but did not after co-culture with exosomes from MCF-7/S (S/exo). The quantity of miR-222 in A/exo-treated MCF-7/S was significantly greater than in S/exo-treated MCF-7/S. MCF-7/S transfected with miR-222 mimics acquired adriamycin resistance while MCF-7/S transfected with miR-222 inhibitors lost resistance. In conclusion, exosomes are effective in transmitting drug resistance and the delivery of miR-222 via exosomes may be a mechanism.

  17. METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS (MRSA ...

    African Journals Online (AJOL)

    Nosocomial infections caused by methicillin-resistant strains of Staphylococcus aureus often pose therapeutic dilemma to the clinicians because of the multi resistant nature of these strains of Staphylococcus aureus. Outbreaks of both nosocomial and community acquired infections are also frequent and difficult to control.

  18. Skin conductance biofeedback training in adults with drug-resistant temporal lobe epilepsy and stress-triggered seizures: a proof-of-concept study.

    Science.gov (United States)

    Micoulaud-Franchi, Jean-Arthur; Kotwas, Iliana; Lanteaume, Laura; Berthet, Christelle; Bastien, Mireille; Vion-Dury, Jean; McGonigal, Aileen; Bartolomei, Fabrice

    2014-12-01

    The present proof-of-concept study investigated the feasibility of skin conductance biofeedback training in reducing seizures in adults with drug-resistant temporal lobe epilepsy (TLE), whose seizures are triggered by stress. Skin conductance biofeedback aims to increase levels of peripheral sympathetic arousal in order to reduce cortical excitability. This might seem somewhat counterintuitive, since such autonomic arousal may also be associated with increased stress and anxiety. Thus, this sought to verify that patients with TLE and stress-triggered seizures are not worsened in terms of stress, anxiety, and negative emotional response to this nonpharmacological treatment. Eleven patients with drug-resistant TLE with seizures triggered by stress were treated with 12 sessions of biofeedback. Patients did not worsen on cognitive evaluation of attentional biases towards negative emotional stimuli (P>.05) or on psychometric evaluation with state anxiety inventory (P = .059); in addition, a significant improvement was found in the Negative Affect Schedule (P = .014) and in the Beck Depression Inventory (P = .009). Biofeedback training significantly reduced seizure frequency with a mean reduction of -48.61% (SD = 27.79) (P = .005). There was a correlation between the mean change in skin conductance activity over the biofeedback treatment and the reduction of seizure frequency (r(11) = .62, P = .042). Thus, the skin conductance biofeedback used in the present study, which teaches patients to achieve an increased level of peripheral sympathetic arousal, was a well-tolerated nonpharmacological treatment. Further, well-controlled studies are needed to confirm the therapeutic value of this nonpharmacological treatment in reducing seizures in adults with drug-resistant TLE with seizures triggered by stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Roles of oxidative stress, adiponectin, and nuclear hormone receptors in obesity-associated insulin resistance and cardiovascular risk.

    Science.gov (United States)

    Matsuda, Morihiro; Shimomura, Iichiro

    2014-08-01

    Obesity leads to the development of type 2 diabetes mellitus, which is a strong risk factor for cardiovascular disease. A better understanding of the molecular basis of obesity will lead to the establishment of effective prevention strategies for cardiovascular diseases. Adipocytes have been shown to generate a variety of endocrine factors termed adipokines/adipocytokines. Obesity-associated changes to these adipocytokines contribute to the development of cardiovascular diseases. Adiponectin, which is one of the most well-characterized adipocytokines, is produced exclusively by adipocytes and exerts insulin-sensitizing and anti-atherogenic effects. Obese subjects have lower levels of circulating adiponectin, and this is recognized as one of the factors involved in obesity-induced insulin resistance and atherosclerosis. Another pathophysiological feature of obesity may involve the low-grade chronic inflammation in adipose tissue. This inflammatory process increases oxidative stress in adipose tissue, which may affect remote organs, leading to the development of diabetes, hypertension, and atherosclerosis. Nuclear hormone receptors (NRs) regulate the transcription of the target genes in response to binding with their ligands, which include metabolic and nutritional substrates. Among the various NRs, peroxisome proliferator-activated receptor γ promotes the transcription of adiponectin and antioxidative enzymes, whereas mineralocorticoid receptor mediates the effects of aldosterone and glucocorticoid to induce oxidative stress in adipocytes. It is hypothesized that both play crucial roles in the pathophysiology of obesity-associated insulin resistance and cardiovascular diseases. Thus, reduced adiponectin and increased oxidative stress play pathological roles in obesity-associated insulin resistance to increase the cardiovascular disease risk, and various NRs may be involved in this pathogenesis.

  20. Characteristics and specificity of acquired immunologic memory to Mycobacterium tuberculosis infection

    International Nuclear Information System (INIS)

    Orme, I.M.

    1988-01-01

    The results herein show that mice infected with Mycobacterium tuberculosis and then exposed to a protracted course of isoniazid chemotherapy possess a heightened state of acquired resistance to subsequent challenge with the homologous organism. Our results provide the first evidence, moreover, that this resistance is mediated by a long-lived, cyclophosphamide- and irradiation-resistant L3T4+ Lyt-2- lymphocyte capable of giving rise to an accelerated re-emergence of resistance in the animal upon rechallenge. Evidence is also provided to show that triggering of this memory-immune T cell population in the re-challenged host was associated with the rapid emergence of non-specific resistance to secondary bacterial infection; however, the accelerated emergence of this population was only observed if the challenge inoculum consisted of the living organism. The relevance of this latter finding to strategies for vaccine development is discussed

  1. Characterization of acquired paclitaxel resistance of breast cancer cells and involvement of ABC transporters

    International Nuclear Information System (INIS)

    Němcová-Fürstová, Vlasta; Kopperová, Dana; Balušíková, Kamila; Ehrlichová, Marie; Brynychová, Veronika; Václavíková, Radka; Daniel, Petr; Souček, Pavel; Kovář, Jan

    2016-01-01

    Development of taxane resistance has become clinically very important issue. The molecular mechanisms underlying the resistance are still unclear. To address this issue, we established paclitaxel-resistant sublines of the SK-BR-3 and MCF-7 breast cancer cell lines that are capable of long-term proliferation in 100 nM and 300 nM paclitaxel, respectively. Application of these concentrations leads to cell death in the original counterpart cells. Both sublines are cross-resistant to doxorubicin, indicating the presence of the MDR phenotype. Interestingly, resistance in both paclitaxel-resistant sublines is circumvented by the second-generation taxane SB-T-1216. Moreover, we demonstrated that it was not possible to establish sublines of SK-BR-3 and MCF-7 cells resistant to this taxane. It means that at least the tested breast cancer cells are unable to develop resistance to some taxanes. Employing mRNA expression profiling of all known human ABC transporters and subsequent Western blot analysis of the expression of selected transporters, we demonstrated that only the ABCB1/PgP and ABCC3/MRP3 proteins were up-regulated in both paclitaxel-resistant sublines. We found up-regulation of ABCG2/BCRP and ABCC4 proteins only in paclitaxel-resistant SK-BR-3 cells. In paclitaxel-resistant MCF-7 cells, ABCB4/MDR3 and ABCC2/MRP2 proteins were up-regulated. Silencing of ABCB1 expression using specific siRNA increased significantly, but did not completely restore full sensitivity to both paclitaxel and doxorubicin. Thus we showed a key, but not exclusive, role for ABCB1 in mechanisms of paclitaxel resistance. It suggests the involvement of multiple mechanisms in paclitaxel resistance in tested breast cancer cells. - Highlights: • Expression of all ABC transporters in paclitaxel-resistant sublines of SK-BR-3 and MCF-7 cells was analyzed. • SK-BR-3 and MCF-7 cells are unable to develop resistance to some taxanes. • Some taxanes are able to overcome developed resistance to

  2. Characterization of acquired paclitaxel resistance of breast cancer cells and involvement of ABC transporters

    Energy Technology Data Exchange (ETDEWEB)

    Němcová-Fürstová, Vlasta, E-mail: vlasta.furstova@lf3.cuni.cz [Division of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague (Czech Republic); Kopperová, Dana; Balušíková, Kamila [Division of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague (Czech Republic); Ehrlichová, Marie; Brynychová, Veronika; Václavíková, Radka [Toxicogenomics Unit, National Institute of Public Health, Prague (Czech Republic); Daniel, Petr [Division of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague (Czech Republic); Souček, Pavel [Toxicogenomics Unit, National Institute of Public Health, Prague (Czech Republic); Kovář, Jan [Division of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague (Czech Republic)

    2016-11-01

    Development of taxane resistance has become clinically very important issue. The molecular mechanisms underlying the resistance are still unclear. To address this issue, we established paclitaxel-resistant sublines of the SK-BR-3 and MCF-7 breast cancer cell lines that are capable of long-term proliferation in 100 nM and 300 nM paclitaxel, respectively. Application of these concentrations leads to cell death in the original counterpart cells. Both sublines are cross-resistant to doxorubicin, indicating the presence of the MDR phenotype. Interestingly, resistance in both paclitaxel-resistant sublines is circumvented by the second-generation taxane SB-T-1216. Moreover, we demonstrated that it was not possible to establish sublines of SK-BR-3 and MCF-7 cells resistant to this taxane. It means that at least the tested breast cancer cells are unable to develop resistance to some taxanes. Employing mRNA expression profiling of all known human ABC transporters and subsequent Western blot analysis of the expression of selected transporters, we demonstrated that only the ABCB1/PgP and ABCC3/MRP3 proteins were up-regulated in both paclitaxel-resistant sublines. We found up-regulation of ABCG2/BCRP and ABCC4 proteins only in paclitaxel-resistant SK-BR-3 cells. In paclitaxel-resistant MCF-7 cells, ABCB4/MDR3 and ABCC2/MRP2 proteins were up-regulated. Silencing of ABCB1 expression using specific siRNA increased significantly, but did not completely restore full sensitivity to both paclitaxel and doxorubicin. Thus we showed a key, but not exclusive, role for ABCB1 in mechanisms of paclitaxel resistance. It suggests the involvement of multiple mechanisms in paclitaxel resistance in tested breast cancer cells. - Highlights: • Expression of all ABC transporters in paclitaxel-resistant sublines of SK-BR-3 and MCF-7 cells was analyzed. • SK-BR-3 and MCF-7 cells are unable to develop resistance to some taxanes. • Some taxanes are able to overcome developed resistance to

  3. Oxidative stress responses to a graded maximal exercise test in older adults following explosive-type resistance training

    DEFF Research Database (Denmark)

    Ceci, R.; Beltran Valls, M.R.; Duranti, G.

    2014-01-01

    We recently demonstrated that low frequency, moderate intensity, explosive-type resistance training (EMRT) is highly beneficial in elderly subjects towards muscle strength and power, with a systemic adaptive response of anti-oxidant and stress-induced markers. In the present study, we aimed to ev...

  4. Studies on a morphologically distinct colchicine-resistance variant of Entamoeba sp.

    Science.gov (United States)

    Injeyan, H; Huebner, E; Meerovitch, E

    1979-05-01

    Colchicine has a temperature-dependent cytotoxic effect on Entamoeba sp. (Laredo isolate) that is most apparent when the drug is applied during the initiation of cultures at a concentration of 7.5 mM or higher. Continued transfer of cultures in medium containing progressively increasing concentrations of colchicine has resulted in a variant that grows prolifically in the presence of colchicine (7.5 mM) with a generation time comparable to that of the parent stock, Comparison of a number of parameters of the 2 variants revealed that colchicine resistance was accompanied by a change in cell shape, a reduced membrane permeability, which could partially be overcome by the addition of dimethyl sulfoxide (DMSO), and a reduced tolerance to osmotic stress. However, the parent strain and resistant variant were equally susceptible to cycloheximide and puromycin suggesting that the acquired colchicine resistance may not be explained on the basis of an entirely unspecific generalized reduced ability for drug uptake. Colchicine resistance and altered structure were found to be stable over a long period of time. The possible interdependence of these 2 parameters and their relation to cell motility in Entamoeba sp. are discussed.

  5. Community-acquired pneumonia caused by methicillin-resistant Staphylococcus aureus in critically-ill patients: systematic review

    Directory of Open Access Journals (Sweden)

    Nuria Carballo

    2017-03-01

    Full Text Available Introduction: Community-acquired pneumonia (CAP is associated with high morbidity and mortality rates. Despite methicillin-resistant Staphylococcus aureus (MRSA having often been associated with nosocomial pneumonia, the condition of some MRSA CAP patients is severe enough to warrant their being admitted to ICU. Objective: The purpose of this study is to conduct a systematic review of the literature on antibiotic treatment of MRSA CAP in critically-ill patients. Material and methods: An online search was conducted for locating articles on MRSA CAP in critically ill patients. Relevant publications were identified in PUBMED, the BestPractice database, UpToDate database and the Cochrane Library for articles published in English within the December 2001 - April 2016 time frame. Results: A total of 70 articles were found to have been published, 13 (18.8% having been included and 57 (81.4% excluded. Cohort studies were predominant, having totaled 16 in number (20.7% as compared to one sole cross-sectional study (3.5%. Conclusions: The experience in the treatment of MRSA CAP in patients requiring admission to ICU is quite limited. Vancomycin or linezolid seem to be the treatments of choice for MRSA CAP, although there not be any specific recommendation in this regard. It may be useful to use alternative routes, such as administration via aerosolized antibiotics, continuous infusion or in association with other antibiotics.

  6. Plasmids in Gram negatives: molecular typing of resistance plasmids.

    Science.gov (United States)

    Carattoli, Alessandra

    2011-12-01

    A plasmid is defined as a double stranded, circular DNA molecule capable of autonomous replication. By definition, plasmids do not carry genes essential for the growth of host cells under non-stressed conditions but they have systems which guarantee their autonomous replication also controlling the copy number and ensuring stable inheritance during cell division. Most of the plasmids confer positively selectable phenotypes by the presence of antimicrobial resistance genes. Plasmids evolve as an integral part of the bacterial genome, providing resistance genes that can be easily exchanged among bacteria of different origin and source by conjugation. A multidisciplinary approach is currently applied to study the acquisition and spread of antimicrobial resistance in clinically relevant bacterial pathogens and the established surveillance can be implemented by replicon typing of plasmids. Particular plasmid families are more frequently detected among Enterobacteriaceae and play a major role in the diffusion of specific resistance genes. For instance, IncFII, IncA/C, IncL/M, IncN and IncI1 plasmids carrying extended-spectrum beta-lactamase genes and acquired AmpC genes are currently considered to be "epidemic resistance plasmids", being worldwide detected in Enterobacteriaceae of different origin and sources. The recognition of successful plasmids is an essential first step to design intervention strategies preventing their spread. Copyright © 2011 Elsevier GmbH. All rights reserved.

  7. Hexavalent chromium, a lung carcinogen, confers resistance to thermal stress and interferes with heat shock protein expression in human bronchial epithelial cells.

    Science.gov (United States)

    Abreu, Patrícia L; Cunha-Oliveira, Teresa; Ferreira, Leonardo M R; Urbano, Ana M

    2018-03-16

    Exposure to hexavalent chromium [Cr(VI)], a lung carcinogen, triggers several types of cellular stresses, namely oxidative, genotoxic and proteotoxic stresses. Given the evolutionary character of carcinogenesis, it is tempting to speculate that cells that survive the stresses produced by this carcinogen become more resistant to subsequent stresses, namely those encountered during neoplastic transformation. To test this hypothesis, we determined whether pre-incubation with Cr(VI) increased the resistance of human bronchial epithelial cells (BEAS-2B cells) to the antiproliferative action of acute thermal shock, used here as a model for stress. In line with the proposed hypothesis, it was observed that, at mildly cytotoxic concentrations, Cr(VI) attenuated the antiproliferative effects of both cold and heat shock. Mechanistically, Cr(VI) interfered with the expression of two components of the stress response pathway: heat shock proteins Hsp72 and Hsp90α. Specifically, Cr(VI) significantly depleted the mRNA levels of the former and the protein levels of the latter. Significantly, these two proteins are members of heat shock protein (Hsp) families (Hsp70 and Hsp90, respectively) that have been implicated in carcinogenesis. Thus, our results confirm and extend previous studies showing the capacity of Cr(VI) to interfere with the expression of stress response components.

  8. Mechanisms and circumvention of cellular resistance to cisplatin.

    NARCIS (Netherlands)

    Hospers, Geesiena Alberdina Petronella

    1989-01-01

    Cisplatin (CDDP) is an active cytostatic agent. A limitation to its effectiveness initially or appearing during cystatic treatment is the occurrence of resistance. This thesis describes mechanisms wich are responsible for acquired cellular CDDP resistance. To investigate cellular CDDP resistance, a

  9. Estimating the future burden of multidrug-resistant and extensively drug-resistant tuberculosis in India, the Philippines, Russia, and South Africa: a mathematical modelling study.

    Science.gov (United States)

    Sharma, Aditya; Hill, Andrew; Kurbatova, Ekaterina; van der Walt, Martie; Kvasnovsky, Charlotte; Tupasi, Thelma E; Caoili, Janice C; Gler, Maria Tarcela; Volchenkov, Grigory V; Kazennyy, Boris Y; Demikhova, Olga V; Bayona, Jaime; Contreras, Carmen; Yagui, Martin; Leimane, Vaira; Cho, Sang Nae; Kim, Hee Jin; Kliiman, Kai; Akksilp, Somsak; Jou, Ruwen; Ershova, Julia; Dalton, Tracy; Cegielski, Peter

    2017-07-01

    Multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis are emerging worldwide. The Green Light Committee initiative supported programmatic management of drug-resistant tuberculosis in 90 countries. We used estimates from the Preserving Effective TB Treatment Study to predict MDR and XDR tuberculosis trends in four countries with a high burden of MDR tuberculosis: India, the Philippines, Russia, and South Africa. We calibrated a compartmental model to data from drug resistance surveys and WHO tuberculosis reports to forecast estimates of incident MDR and XDR tuberculosis and the percentage of incident MDR and XDR tuberculosis caused by acquired drug resistance, assuming no fitness cost of resistance from 2000 to 2040 in India, the Philippines, Russia, and South Africa. The model forecasted the percentage of MDR tuberculosis among incident cases of tuberculosis to increase, reaching 12·4% (95% prediction interval 9·4-16·2) in India, 8·9% (4·5-11·7) in the Philippines, 32·5% (27·0-35·8) in Russia, and 5·7% (3·0-7·6) in South Africa in 2040. It also predicted the percentage of XDR tuberculosis among incident MDR tuberculosis to increase, reaching 8·9% (95% prediction interval 5·1-12·9) in India, 9·0% (4·0-14·7) in the Philippines, 9·0% (4·8-14·2) in Russia, and 8·5% (2·5-14·7) in South Africa in 2040. Acquired drug resistance would cause less than 30% of incident MDR tuberculosis during 2000-40. Acquired drug resistance caused 80% of incident XDR tuberculosis in 2000, but this estimate would decrease to less than 50% by 2040. MDR and XDR tuberculosis were forecast to increase in all four countries despite improvements in acquired drug resistance shown by the Green Light Committee-supported programmatic management of drug-resistant tuberculosis. Additional control efforts beyond improving acquired drug resistance rates are needed to stop the spread of MDR and XDR tuberculosis in countries with a high burden of MDR

  10. Resistance to treatment in gastrointestinal stromal tumours: What radiologists should know

    International Nuclear Information System (INIS)

    Tirumani, S.H.; Jagannathan, J.P.; Hornick, J.L.; Ramaiya, N.H.

    2013-01-01

    Gastrointestinal stromal tumour resistance to treatment with imatinib occurs due to pre-existing or acquired mutations. Computed tomography and positron-emission tomography play an essential role in prompt recognition of resistance to treatment. Primary resistance to treatment, which is encountered in the first 6 months of treatment, is associated with specific mutations. Imaging of these tumours shows no anatomical or metabolic response to treatment. Secondary resistance to treatment, which develops after an initial response, is associated with a variety of mutations acquired after the start of treatment. Imaging findings of secondary resistance are of disease progression

  11. Whole genome analysis of linezolid resistance in Streptococcus pneumoniae reveals resistance and compensatory mutations

    Directory of Open Access Journals (Sweden)

    Légaré Danielle

    2011-10-01

    Full Text Available Abstract Background Several mutations were present in the genome of Streptococcus pneumoniae linezolid-resistant strains but the role of several of these mutations had not been experimentally tested. To analyze the role of these mutations, we reconstituted resistance by serial whole genome transformation of a novel resistant isolate into two strains with sensitive background. We sequenced the parent mutant and two independent transformants exhibiting similar minimum inhibitory concentration to linezolid. Results Comparative genomic analyses revealed that transformants acquired G2576T transversions in every gene copy of 23S rRNA and that the number of altered copies correlated with the level of linezolid resistance and cross-resistance to florfenicol and chloramphenicol. One of the transformants also acquired a mutation present in the parent mutant leading to the overexpression of an ABC transporter (spr1021. The acquisition of these mutations conferred a fitness cost however, which was further enhanced by the acquisition of a mutation in a RNA methyltransferase implicated in resistance. Interestingly, the fitness of the transformants could be restored in part by the acquisition of altered copies of the L3 and L16 ribosomal proteins and by mutations leading to the overexpression of the spr1887 ABC transporter that were present in the original linezolid-resistant mutant. Conclusions Our results demonstrate the usefulness of whole genome approaches at detecting major determinants of resistance as well as compensatory mutations that alleviate the fitness cost associated with resistance.

  12. Cutaneous community-acquired methicillin-resistant Staphylococcus aureus infection in participants of athletic activities.

    Science.gov (United States)

    Cohen, Philip R

    2005-06-01

    Cutaneous community-acquired methicillin-resistant Staphylococcus aureus (CAMRSA) has been identified in otherwise healthy individuals either with or without methicillin-resistant S. aureus (MRSA)-associated risk factors who participate in athletic activities. The purpose of this study was to describe the clinical features of CAMRSA skin infection that occurred in university student athletes, evaluate the potential mechanisms for the transmission of MRSA infection of the skin in participants of athletic activities, and review the measures for preventing the spread of cutaneous CAMRSA infection in athletes. A retrospective chart review of the student athletes from the University of Houston whose skin lesions were evaluated at the Health Center and grew MRSA was performed. The clinical characteristics and the postulated mechanisms of cutaneous MRSA infection in the athletes were compared with those previously published in reports of CAMRSA skin infection outbreaks in other sports participants. Cutaneous CAMRSA infection occurred in seven student athletes (four women and three men) who were either weight lifters (three students) or members of a varsity sports team: volleyball (two women), basketball (one woman), and football (one man). The MRSA skin infection presented as solitary or multiple, tender, erythematous, fluctuant abscesses with surrounding cellulitis. The lesions were most frequently located in the axillary region (three weight lifters), on the buttocks (two women), or on the thighs (two women). The drainage from all of the skin lesions grew MRSA, which was susceptible to clindamycin, gentamicin, rifampin, trimethoprim/sulfamethoxazole, and vancomycin; five of the isolates were also susceptible to ciprofloxacin and levofloxacin. All of the bacterial strains were resistant to erythromycin, oxacillin, and penicillin. The cutaneous MRSA infections persisted or worsened in the six athletes who were empirically treated for methicillin-sensitive S. aureus at

  13. Characteristic of the Oxidative Stress in Blood of Patients in Dependence of Community-Acquired Pneumonia Severity.

    Science.gov (United States)

    Muravlyova, Larissa; Molotov-Luchankiy, Vilen; Bakirova, Ryszhan; Klyuyev, Dmitriy; Demidchik, Ludmila; Lee, Valentina

    2016-03-15

    At the present time the alternation of the oxidative metabolism is considered as one of the leading pathogenic mechanisms in the development and progression of community-acquired pneumonia (CAP). However the nature and direction of the oxidative protein changes in CAP patient's blood had been almost unexplored. To define oxidative and modified proteins in erythrocytes and blood plasma of CAP patients. Blood plasma and erythrocytes obtained from: 42 patients with moderate severity pneumonia, 12 patients with grave severity pneumonia and 32 healthy volunteers. Content of advanced oxidation protein products, malondialdehyde and reactive carbonyl derivatives were estimated as indicators of the oxidative stress and oxidative damage of proteins. In patients with grave severity the level of oxidative proteins and MDA in erythrocytes exceeded both: control values and similar meanings in CAP patients with moderate severity. The further growth of MDA in this group patients' blood plasma was observed, but the level of oxidative proteins decreased in comparison with those in CAP patients with moderate severity. To sum up, our derived data show, that injury of erythrocytes' redox-status and blood plasma components plays an essential role in development and progression CAP.

  14. Approaches to drug resistance in solid tumors : with emphasis on lung cancer

    NARCIS (Netherlands)

    Bakker, Marleen

    2005-01-01

    De novo or acquired resistance of tumor cells to anticancer agents remains a major problem for the therapeutic efficacy of chemotherapeutic drugs. Most solid tumors are intrinsically insensitive or acquire resistance after initial response to chemotherapy. Different mechanisms seem to play a role in

  15. Radiological findings of community-acquired methicillin-resistant and methicillin-susceptible staphylococcus aureus pediatric pneumonia in Hawaii

    International Nuclear Information System (INIS)

    Erdem, Guliz; Bergert, Lora; Len, Kyra; Melish, Marian; Kon, Kevin; DiMauro, Robert

    2010-01-01

    Community-acquired Staphylococcus aureus (CA-SA) infections are common among pediatric patients in Hawaii. We wanted to characterize the radiological features of methicillin-susceptible (CA-MSSA) and methicillin-resistant (CA-MRSA) staphylococcal pneumonia in Hawaiian children. We retrospectively reviewed medical records and imaging studies of children with SA pneumonia identified from 1996 through 2007. Of 40 children, 26 (65%) had CA-MRSA pneumonia and 14 patients (35%) had CA-MSSA pneumonia. CA-MRSA patients were significantly younger than CA-MSSA patients (65% younger than 1 year vs. 36% older). In a majority (62%) of CA-MRSA patients, the consolidation was unilateral; in most of the CA-MSSA cases (79%), the consolidation was bilateral. Fifty percent of the patients with CA-MRSA and 21% of those with CA-MSSA had pneumatoceles (P = 0.1). CA-MRSA patients more commonly had pleural effusions (85% vs. 64% for CA-MSSA) and pleural thickening (50% vs. 36% for CA-MSSA). This case series describes the radiologic characteristics of CA-MRSA and CA-MSSA pneumonia in children in a highly endemic area. We found that CA-MRSA pneumonias are unilateral in a majority of pediatric pneumonia cases, are more common in children 1 year or younger, and have higher rates of complications in comparison to CA-MSSA patients. (orig.)

  16. Radiological findings of community-acquired methicillin-resistant and methicillin-susceptible staphylococcus aureus pediatric pneumonia in Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Erdem, Guliz; Bergert, Lora; Len, Kyra; Melish, Marian [University of Hawaii, John A. Burns School of Medicine, Department of Pediatrics, Honolulu, HI (United States); Kon, Kevin; DiMauro, Robert [Kapiolani Medical Center for Women and Children, Department of Radiology, Honolulu, HI (United States)

    2010-11-15

    Community-acquired Staphylococcus aureus (CA-SA) infections are common among pediatric patients in Hawaii. We wanted to characterize the radiological features of methicillin-susceptible (CA-MSSA) and methicillin-resistant (CA-MRSA) staphylococcal pneumonia in Hawaiian children. We retrospectively reviewed medical records and imaging studies of children with SA pneumonia identified from 1996 through 2007. Of 40 children, 26 (65%) had CA-MRSA pneumonia and 14 patients (35%) had CA-MSSA pneumonia. CA-MRSA patients were significantly younger than CA-MSSA patients (65% younger than 1 year vs. 36% older). In a majority (62%) of CA-MRSA patients, the consolidation was unilateral; in most of the CA-MSSA cases (79%), the consolidation was bilateral. Fifty percent of the patients with CA-MRSA and 21% of those with CA-MSSA had pneumatoceles (P = 0.1). CA-MRSA patients more commonly had pleural effusions (85% vs. 64% for CA-MSSA) and pleural thickening (50% vs. 36% for CA-MSSA). This case series describes the radiologic characteristics of CA-MRSA and CA-MSSA pneumonia in children in a highly endemic area. We found that CA-MRSA pneumonias are unilateral in a majority of pediatric pneumonia cases, are more common in children 1 year or younger, and have higher rates of complications in comparison to CA-MSSA patients. (orig.)

  17. The role of the Staphylococcal VraTSR regulatory system on vancomycin resistance and vanA operon expression in vancomycin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Qureshi, Nadia K; Yin, Shaohui; Boyle-Vavra, Susan

    2014-01-01

    Vancomycin is often the preferred treatment for invasive methicillin-resistant Staphylococcus aureus (MRSA) infection. With the increase in incidence of MRSA infections, the use of vancomycin has increased and, as feared, isolates of vancomycin-resistant Staphylococcus aureus (VRSA) have emerged. VRSA isolates have acquired the entercoccal vanA operon contained on transposon (Tn) 1546 residing on a conjugal plasmid. VraTSR is a vancomycin and β-lactam-inducible three-component regulatory system encoded on the S. aureus chromosome that modulates the cell-wall stress response to cell-wall acting antibiotics. Mutation in vraTSR has shown to increase susceptibility to β-lactams and vancomycin in clinical VISA strains and in recombinant strain COLVA-200 which expresses a plasmid borne vanA operon. To date, the role of VraTSR in vanA operon expression in VRSA has not been demonstrated. In this study, the vraTSR operon was deleted from the first clinical VRSA strain (VRS1) by transduction with phage harvested from a USA300 vraTSR operon deletion strain. The absence of the vraTSR operon and presence of the vanA operon were confirmed in the transductant (VRS1Δvra) by PCR. Broth MIC determinations, demonstrated that the vancomycin MIC of VRS1Δvra (64 µg/ml) decreased by 16-fold compared with VRS1 (1024 µg/ml). The effect of the vraTSR operon deletion on expression of the van gene cluster (vanA, vanX and vanR) was examined by quantitative RT-PCR using relative quantification. A 2-5-fold decreased expression of the vanA operon genes occured in strain VRS1Δvra at stationary growth phase compared with the parent strain, VRS1. Both vancomycin resistance and vancomycin-induced expression of vanA and vanR were restored by complementation with a plasmid harboring the vraTSR operon. These findings demonstrate that expression in S. aureus of the horizontally acquired enterococcal vanA gene cluster is enhanced by the staphylococcal three-component cell wall stress regulatory

  18. Non-Escherichia coli versus Escherichia coli community-acquired urinary tract infections in children hospitalized in a tertiary center: relative frequency, risk factors, antimicrobial resistance and outcome.

    Science.gov (United States)

    Marcus, Nir; Ashkenazi, Shai; Yaari, Arnon; Samra, Zmira; Livni, Gilat

    2005-07-01

    Currently hospitalization for children with urinary tract infections (UTIs) is reserved for severe or complicated cases. Changes may have taken place in the characteristics and causative uropathogens of hospital-treated community-acquired UTI. To study children hospitalized in a tertiary center with community-acquired UTI, compare Escherichia coli and non-E. coli UTI, define predictors for non-E. coli UTI and elucidate the appropriate therapeutic approach. A prospective clinical and laboratory study from 2001 through 2002 in a tertiary pediatric medical center. Patients were divided by results of the urine culture into E. coli and non-E. coli UTI groups, which were compared. Of 175 episodes of culture-proved UTI, 70 (40%) were caused by non-E. coli pathogens. Non-E. coli UTI was more commonly found in children who were male (P = 0.005), who had underlying renal abnormalities (P = 0.0085) and who had received antibiotic therapy in the prior month (P = 0.0009). Non-E. coli uropathogens were often resistant to antibiotics usually recommended for initial therapy for UTI, including cephalosporins and aminoglycosides; 19% were initially treated with inappropriate empiric intravenous antibiotics (compared with 2% for E. coli UTI, P = 0.0001), with a longer hospitalization. Current treatment routines are often inappropriate for hospitalized children with non-E. coli UTI, which is relatively common in this population. The defined risk factors associated with non-E. coli UTIs and its antimicrobial resistance patterns should be considered to improve empiric antibiotic therapy for these infections.

  19. Effect of T-stress on the cleavage crack growth resistance resulting from plastic flow

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1998-01-01

    Crack growth is studied numerically for cases where fracture occurs by atomic separation, sc that the length scale of the fracture process is typically much smaller than the dislocation spacing. Thus, the crack growth mechanism is brittle, but due to plastic flow at some distance from the crack tip......, the materials show crack growth resistance. It is shown here that the resistance is strongly dependent on the value of the non-singular T-stress, acting parallel to the crack plane. The numerical technique employed makes use of a thin dislocation-free strip of elastic material inside which the crack propagates......, with the material outside described by continuum plasticity. Thus the width of the strip is a material length scale comparable to the dislocation spacing or the dislocation cell size....

  20. Intra-species Genomic and Physiological Variability Impact Stress Resistance in Strains of Probiotic Potential.

    Science.gov (United States)

    Arnold, Jason W; Simpson, Joshua B; Roach, Jeffrey; Kwintkiewicz, Jakub; Azcarate-Peril, M Andrea

    2018-01-01

    Large-scale microbiome studies have established that most of the diversity contained in the gastrointestinal tract is represented at the strain level; however, exhaustive genomic and physiological characterization of human isolates is still lacking. With increased use of probiotics as interventions for gastrointestinal disorders, genomic and functional characterization of novel microorganisms becomes essential. In this study, we explored the impact of strain-level genomic variability on bacterial physiology of two novel human Lactobacillus rhamnosus strains (AMC143 and AMC010) of probiotic potential in relation to stress resistance. The strains showed differences with known probiotic strains ( L. rhamnosus GG, Lc705, and HN001) at the genomic level, including nucleotide polymorphisms, mutations in non-coding regulatory regions, and rearrangements of genomic architecture. Transcriptomics analysis revealed that gene expression profiles differed between strains when exposed to simulated gastrointestinal stresses, suggesting the presence of unique regulatory systems in each strain. In vitro physiological assays to test resistance to conditions mimicking the gut environment (acid, alkali, and bile stress) showed that growth of L. rhamnosus AMC143 was inhibited upon exposure to alkaline pH, while AMC010 and control strain LGG were unaffected. AMC143 also showed a significant survival advantage compared to the other strains upon bile exposure. Reverse transcription qPCR targeting the bile salt hydrolase gene ( bsh ) revealed that AMC143 expressed bsh poorly (a consequence of a deletion in the bsh promoter and truncation of bsh gene in AMC143), while AMC010 had significantly higher expression levels than AMC143 or LGG. Insertional inactivation of the bsh gene in AMC010 suggested that bsh could be detrimental to bacterial survival during bile stress. Together, these findings show that coupling of classical microbiology with functional genomics methods for the

  1. Intra-species Genomic and Physiological Variability Impact Stress Resistance in Strains of Probiotic Potential

    Directory of Open Access Journals (Sweden)

    Jason W. Arnold

    2018-02-01

    Full Text Available Large-scale microbiome studies have established that most of the diversity contained in the gastrointestinal tract is represented at the strain level; however, exhaustive genomic and physiological characterization of human isolates is still lacking. With increased use of probiotics as interventions for gastrointestinal disorders, genomic and functional characterization of novel microorganisms becomes essential. In this study, we explored the impact of strain-level genomic variability on bacterial physiology of two novel human Lactobacillus rhamnosus strains (AMC143 and AMC010 of probiotic potential in relation to stress resistance. The strains showed differences with known probiotic strains (L. rhamnosus GG, Lc705, and HN001 at the genomic level, including nucleotide polymorphisms, mutations in non-coding regulatory regions, and rearrangements of genomic architecture. Transcriptomics analysis revealed that gene expression profiles differed between strains when exposed to simulated gastrointestinal stresses, suggesting the presence of unique regulatory systems in each strain. In vitro physiological assays to test resistance to conditions mimicking the gut environment (acid, alkali, and bile stress showed that growth of L. rhamnosus AMC143 was inhibited upon exposure to alkaline pH, while AMC010 and control strain LGG were unaffected. AMC143 also showed a significant survival advantage compared to the other strains upon bile exposure. Reverse transcription qPCR targeting the bile salt hydrolase gene (bsh revealed that AMC143 expressed bsh poorly (a consequence of a deletion in the bsh promoter and truncation of bsh gene in AMC143, while AMC010 had significantly higher expression levels than AMC143 or LGG. Insertional inactivation of the bsh gene in AMC010 suggested that bsh could be detrimental to bacterial survival during bile stress. Together, these findings show that coupling of classical microbiology with functional genomics methods for the

  2. Dietary supplementation of yeast (Saccharomyces cerevisiae) improves growth, stress tolerance, and disease resistance in juvenile Nile tilapia (Oreochromis niloticus)

    DEFF Research Database (Denmark)

    Abass, David Attim; Obirikorang, Kwasi Adu; Campion, Benjamin Betey

    2018-01-01

    resistance in juvenile (body mass ~ 21 g) Nile tilapia (Oreochromis niloticus). Fish were randomly distributed in groups of 20 into 12 1-m³ hapas and fed isoenergetic (~ 17 kJ g⁻¹ gross energy) and isonitrogenous (~ 300 g kg⁻¹ crude protein) diets at 3% of their bulk weight daily. Specific growth rates were...... as an additive in Nile tilapia diets has beneficial impacts on growth, stress tolerance, and disease resistance...

  3. Positron emission tomography of tumour [{sup 18}F]fluoroestradiol uptake in patients with acquired hormone-resistant metastatic breast cancer prior to oestradiol therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kruchten, Michel van; Schroeder, Carolien P.; Vries, Elisabeth G.E. de; Hospers, Geke A.P. [University of Groningen, Department of Medical Oncology, University Medical Centre Groningen (Netherlands); Glaudemans, Andor W.J.M.; Vries, Erik F.J. de [University of Groningen, Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen (Netherlands)

    2015-10-15

    Whereas anti-oestrogen therapy is widely applied to treat oestrogen receptor (ER) positive breast cancer, paradoxically, oestrogens can also induce tumour regression. Up-regulation of ER expression is a marker for oestrogen hypersensitivity. We, therefore, performed an exploratory study to evaluate positron emission tomography (PET) with the tracer 16α-[{sup 18}F]fluoro-17β-oestradiol ({sup 18}F-FES) as potential marker to select breast cancer patients for oestradiol therapy. Eligible patients had acquired endocrine-resistant metastatic breast cancer that progressed after ≥2 lines of endocrine therapy. All patients had prior ER-positive histology. Treatment consisted of oestradiol 2 mg, three times daily, orally. Patients underwent {sup 18}F-FES-PET/CT imaging at baseline. Tumour {sup 18}F-FES-uptake was quantified for a maximum of 20 lesions and expressed as maximum standardised uptake value (SUV{sub max}). CT-scan was repeated every 3 months to evaluate treatment response. Clinical benefit was defined as time to radiologic or clinical progression ≥24 weeks. {sup 18}F-FES uptake, quantified for 255 lesions in 19 patients, varied greatly between lesions (median 2.8; range 0.6-24.3) and between patients (median 2.5; range 1.1-15.5). Seven (37 %) patients experienced clinical benefit of oestrogen therapy, eight progressed (PD), and four were non-evaluable due to side effects. The positive and negative predictive value (PPV/NPV) of {sup 18}F-FES-PET for response to treatment were 60 % (95 % CI: 31-83 %) and 80 % (95 % CI: 38-96 %), respectively, using SUV{sub max} >1.5. {sup 18}F-FES-PET may aid identification of patients with acquired antihormone resistant breast cancer that are unlikely to benefit from oestradiol therapy. (orig.)

  4. Testing of SNS-032 in a Panel of Human Neuroblastoma Cell Lines with Acquired Resistance to a Broad Range of Drugs12

    Science.gov (United States)

    Löschmann, Nadine; Michaelis, Martin; Rothweiler, Florian; Zehner, Richard; Cinatl, Jaroslav; Voges, Yvonne; Sharifi, Mohsen; Riecken, Kristoffer; Meyer, Jochen; von Deimling, Andreas; Fichtner, Iduna; Ghafourian, Taravat; Westermann, Frank; Cinatl, Jindrich

    2013-01-01

    Novel treatment options are needed for the successful therapy of patients with high-risk neuroblastoma. Here, we investigated the cyclin-dependent kinase (CDK) inhibitor SNS-032 in a panel of 109 neuroblastoma cell lines consisting of 19 parental cell lines and 90 sublines with acquired resistance to 14 different anticancer drugs. Seventy-three percent of the investigated neuroblastoma cell lines and all four investigated primary tumor samples displayed concentrations that reduce cell viability by 50% in the range of the therapeutic plasma levels reported for SNS-032 (<754 nM). Sixty-two percent of the cell lines and two of the primary samples displayed concentrations that reduce cell viability by 90% in this concentration range. SNS-032 also impaired the growth of the multidrug-resistant cisplatin-adapted UKF-NB-3 subline UKF-NB-3rCDDP1000 in mice. ABCB1 expression (but not ABCG2 expression) conferred resistance to SNS-032. The antineuroblastoma effects of SNS-032 did not depend on functional p53. The antineuroblastoma mechanism of SNS-032 included CDK7 and CDK9 inhibition-mediated suppression of RNA synthesis and subsequent depletion of antiapoptotic proteins with a fast turnover rate including X-linked inhibitor of apoptosis (XIAP), myeloid cell leukemia sequence 1 (Mcl-1), baculoviral IAP repeat containing 2 (BIRC2; cIAP-1), and survivin. In conclusion, CDK7 and CDK9 represent promising drug targets and SNS-032 represents a potential treatment option for neuroblastoma including therapy-refractory cases. PMID:24466371

  5. [Effect and mechanism of endoplasmic reticulum stress on cisplatin resistance in ovarian carcinoma].

    Science.gov (United States)

    Tian, Jing; Hu, Xiaoming; Qu, Quanxin

    2014-05-01

    The study intended to investigate the effect and mechanism of endoplasmic reticulum stress on cisplatin resistance in ovarian carcinoma. RT-PCR and Western blot were used to test the expression of mTOR and Beclin1 mRNA and protein in ovarian cancer SKOV3 cells after saquinavir induction. MTT assay was used to analyze the influence of saquinavir on cisplatin sensitivity in SKOV3 cells. The IC50 of SKOV3 cells was (5.490 ± 1.148) µg/ml. After induced by Saquinavair 10 µmol/L and 20 µmol/L, the IC50 of SKOV3 cells was increased to (11.199 ± 0.984) µg/ml and (14.906 ± 2.015) µg/ml, respectively. It suggested that the sensitivity of ovarian cancer cells to cisplatin was decreased significantly (P = 0.001). The expression of mTOR and Beclin1 mRNA and protein was significantly different among the five groups: the (Saquinavair+DDP) group of, Saquinavair group, LY294002 group, DDP group and control group (P cisplatin sensitivity in the SKOV3 cells after Saquinavir induced ER stress (P cisplatin in SKOV3 cells. The mechanism of the decrease of sensitivity to cisplatin in SKOV3 cells may be that ERS regulates cell autophagy through the mTOR and Beclin1 pathways. ERS of tumor cells and autophagy may become a new target to improve the therapeutic effect of chemotherapy and to reverse the drug resistance in tumor treatment.

  6. Aluminum resistance transcription factor 1 (ART1) contributes to natural variation in rice aluminum resistance

    Science.gov (United States)

    Transcription factors (TFs) mediate stress resistance indirectly via physiological mechanisms driven by the array of genes they regulate. Therefore, when studying TF-mediated stress resistance, it is important to understand how TFs interact with different genetic backgrounds. Here, we fine-mapped th...

  7. Stress-enhanced fear learning in rats is resistant to the effects of immediate massed extinction

    Science.gov (United States)

    Long, Virginia A.; Fanselow, Michael S.

    2014-01-01

    Enhanced fear learning occurs subsequent to traumatic or stressful events and is a persistent challenge to the treatment of post-traumatic stress disorder (PTSD). Facilitation of learning produced by prior stress can elicit an exaggerated fear response to a minimally aversive event or stimulus. Stress-enhanced fear learning (SEFL) is a rat model of PTSD; rats previously exposed to the SEFL 15 electrical shocks procedure exhibit several behavioral responses similar to those seen in patients with PTSD. However, past reports found that SEFL is not mitigated by extinction (a model of exposure therapy) when the spaced extinction began 24 h after stress. Recent studies found that extinction from 10 min to 1 h subsequent to fear conditioning “erased” learning, whereas later extinction, occurring from 24 to 72 h after conditioning did not. Other studies indicate that massed extinction is more effective than spaced procedures. Therefore, we examined the time-dependent nature of extinction on the stress-induced enhancement of fear learning using a massed trial’s procedure. Experimental rats received 15 foot shocks and were given either no extinction or massed extinction 10 min or 72 h later. Our present data indicate that SEFL, following traumatic stress, is resistant to immediate massed extinction. Experimental rats showed exaggerated new fear learning regardless of when extinction training occurred. Thus, post-traumatic reactivity such as SEFL does not seem responsive to extinction treatments. PMID:22176467

  8. Contribution of the drought tolerance-related Stress-responsive NAC1 transcription factor to resistance of barley to Ramularia leaf spot

    Science.gov (United States)

    MCGRANN, GRAHAM R D; STEED, ANDREW; BURT, CHRISTOPHER; GODDARD, RACHEL; LACHAUX, CLEA; BANSAL, ANURADHA; CORBITT, MARGARET; GORNIAK, KALINA; NICHOLSON, PAUL; BROWN, JAMES K M

    2015-01-01

    NAC proteins are plant transcription factors that are involved in tolerance to abiotic and biotic stresses, as well as in many developmental processes. Stress-responsive NAC1 (SNAC1) transcription factor is involved in drought tolerance in barley and rice, but has not been shown previously to have a role in disease resistance. Transgenic over-expression of HvSNAC1 in barley cv. Golden Promise reduced the severity of Ramularia leaf spot (RLS), caused by the fungus Ramularia collo-cygni, but had no effect on disease symptoms caused by Fusarium culmorum, Oculimacula yallundae (eyespot), Blumeria graminis f. sp. hordei (powdery mildew) or Magnaporthe oryzae (blast). The HvSNAC1 transcript was weakly induced in the RLS-susceptible cv. Golden Promise during the latter stages of R. collo-cygni symptom development when infected leaves were senescing. Potential mechanisms controlling HvSNAC1-mediated resistance to RLS were investigated. Gene expression analysis revealed no difference in the constitutive levels of antioxidant transcripts in either of the over-expression lines compared with cv. Golden Promise, nor was any difference in stomatal conductance or sensitivity to reactive oxygen species-induced cell death observed. Over-expression of HvSNAC1 delayed dark-induced leaf senescence. It is proposed that mechanisms controlled by HvSNAC1 that are involved in tolerance to abiotic stress and that inhibit senescence also confer resistance to R. collo-cygni and suppress RLS symptoms. This provides further evidence for an association between abiotic stress and senescence in barley and the development of RLS. PMID:25040333

  9. Chronic Iron Limitation Confers Transient Resistance to Oxidative Stress in Marine Diatoms.

    Science.gov (United States)

    Graff van Creveld, Shiri; Rosenwasser, Shilo; Levin, Yishai; Vardi, Assaf

    2016-10-01

    Diatoms are single-celled, photosynthetic, bloom-forming algae that are responsible for at least 20% of global primary production. Nevertheless, more than 30% of the oceans are considered "ocean deserts" due to iron limitation. We used the diatom Phaeodactylum tricornutum as a model system to explore diatom's response to iron limitation and its interplay with susceptibility to oxidative stress. By analyzing physiological parameters and proteome profiling, we defined two distinct phases: short-term (chronic (>5 d, phase II) iron limitation. While at phase I no significant changes in physiological parameters were observed, molecular markers for iron starvation, such as Iron Starvation Induced Protein and flavodoxin, were highly up-regulated. At phase II, down-regulation of numerous iron-containing proteins was detected in parallel to reduction in growth rate, chlorophyll content, photosynthetic activity, respiration rate, and antioxidant capacity. Intriguingly, while application of oxidative stress to phase I and II iron-limited cells similarly oxidized the reduced glutathione (GSH) pool, phase II iron limitation exhibited transient resistance to oxidative stress, despite the down regulation of many antioxidant proteins. By comparing proteomic profiles of P. tricornutum under iron limitation and metatranscriptomic data of an iron enrichment experiment conducted in the Pacific Ocean, we propose that iron-limited cells in the natural environment resemble the phase II metabolic state. These results provide insights into the trade-off between optimal growth rate and susceptibility to oxidative stress in the response of diatoms to iron quota in the marine environment. © 2016 American Society of Plant Biologists. All Rights Reserved.

  10. Cafeteria diet induces obesity and insulin resistance associated with oxidative stress but not with inflammation: improvement by dietary supplementation with a melon superoxide dismutase.

    Science.gov (United States)

    Carillon, Julie; Romain, Cindy; Bardy, Guillaume; Fouret, Gilles; Feillet-Coudray, Christine; Gaillet, Sylvie; Lacan, Dominique; Cristol, Jean-Paul; Rouanet, Jean-Max

    2013-12-01

    Oxidative stress is involved in obesity. However, dietary antioxidants could prevent oxidative stress-induced damage. We have previously shown the preventive effects of a melon superoxide dismutase (SODB) on oxidative stress. However, the mechanism of action of SODB is still unknown. Here, we evaluated the effects of a 1-month curative supplementation with SODB on the liver of obese hamsters. Golden Syrian hamsters received either a standard diet or a cafeteria diet composed of high-fat, high-sugar, and high-salt supermarket products, for 15 weeks. This diet resulted in insulin resistance and in increased oxidative stress in the liver. However, inflammatory markers (IL-6, TNF-α, and NF-κB) were not enhanced and no liver steatosis was detected, although these are usually described in obesity-induced insulin resistance models. After the 1-month supplementation with SODB, body weight and insulin resistance induced by the cafeteria diet were reduced and hepatic oxidative stress was corrected. This could be due to the increased expression of the liver antioxidant defense proteins (manganese and copper/zinc superoxide dismutase, catalase, and glutathione peroxidase). Even though no inflammation was detected in the obese hamsters, inflammatory markers were decreased after SODB supplementation, probably through the reduction of oxidative stress. These findings suggest for the first time that SODB could exert its antioxidant properties by inducing the endogenous antioxidant defense. The mechanisms underlying this induction need to be further investigated. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. [Perception, processing of visual information and resistance to emotional stresses in athletes of different ages].

    Science.gov (United States)

    Korobeĭnikova, L H; Makarchuk, M Iu

    2013-01-01

    Among the numerous studies devoted to the study of perception and information processing, no data available on the effects of age on these processes. In this paper we studied the influence of psycho-emotional stress and different levels of stress on the mental processes of perception and information processing in highly skilled athletes divided into two groups. The first group included the athletes aged 19-24 years (12 athletes, members of the Ukrainian team in Greco-Roman wrestling), the second group included the athletes aged 27-31 years (7 highly skilled athletes, members of the Ukrainian team in Greco-Roman wrestling). We revealed that the athletes of the first group had higher productivity and better visual perception and visual information processing efficiency, compared with athletes from the second group. This observation suggests a dependency of cognitive component of perception and information processing on the age of the athletes. Sportsmen from the second group had higher stress resistance compared to the older age group.

  12. Resistance to oxidative stress induced by paraquat correlates well with both decreased and increased lifespan in Drosophila melanogaster

    NARCIS (Netherlands)

    Vermeulen, CJ; Van De Zande, L; Bijlsma, R

    2005-01-01

    There is increasing support for the notion that genetic variation for lifespan, both within and between species, is correlated with variation in the efficiency of the free radical scavenging system and the ability to withstand oxidative stress. In Drosophila, resistance to dietary paraquat, a free

  13. Comparative genomics of multidrug resistance in Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Pierre-Edouard Fournier

    2006-01-01

    Full Text Available Acinetobacter baumannii is a species of nonfermentative gram-negative bacteria commonly found in water and soil. This organism was susceptible to most antibiotics in the 1970s. It has now become a major cause of hospital-acquired infections worldwide due to its remarkable propensity to rapidly acquire resistance determinants to a wide range of antibacterial agents. Here we use a comparative genomic approach to identify the complete repertoire of resistance genes exhibited by the multidrug-resistant A. baumannii strain AYE, which is epidemic in France, as well as to investigate the mechanisms of their acquisition by comparison with the fully susceptible A. baumannii strain SDF, which is associated with human body lice. The assembly of the whole shotgun genome sequences of the strains AYE and SDF gave an estimated size of 3.9 and 3.2 Mb, respectively. A. baumannii strain AYE exhibits an 86-kb genomic region termed a resistance island--the largest identified to date--in which 45 resistance genes are clustered. At the homologous location, the SDF strain exhibits a 20 kb-genomic island flanked by transposases but devoid of resistance markers. Such a switching genomic structure might be a hotspot that could explain the rapid acquisition of resistance markers under antimicrobial pressure. Sequence similarity and phylogenetic analyses confirm that most of the resistance genes found in the A. baumannii strain AYE have been recently acquired from bacteria of the genera Pseudomonas, Salmonella, or Escherichia. This study also resulted in the discovery of 19 new putative resistance genes. Whole-genome sequencing appears to be a fast and efficient approach to the exhaustive identification of resistance genes in epidemic infectious agents of clinical significance.

  14. Comparative Genomics of Multidrug Resistance in Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Acinetobacter baumannii is a species of nonfermentative gram-negative bacteria commonly found in water and soil. This organism was susceptible to most antibiotics in the 1970s. It has now become a major cause of hospital-acquired infections worldwide due to its remarkable propensity to rapidly acquire resistance determinants to a wide range of antibacterial agents. Here we use a comparative genomic approach to identify the complete repertoire of resistance genes exhibited by the multidrug-resistant A. baumannii strain AYE, which is epidemic in France, as well as to investigate the mechanisms of their acquisition by comparison with the fully susceptible A. baumannii strain SDF, which is associated with human body lice. The assembly of the whole shotgun genome sequences of the strains AYE and SDF gave an estimated size of 3.9 and 3.2 Mb, respectively. A. baumannii strain AYE exhibits an 86-kb genomic region termed a resistance island-the largest identified to date-in which 45 resistance genes are clustered. At the homologous location, the SDF strain exhibits a 20 kb-genomic island flanked by transposases but devoid of resistance markers. Such a switching genomic structure might be a hotspot that could explain the rapid acquisition of resistance markers under antimicrobial pressure. Sequence similarity and phylogenetic analyses confirm that most of the resistance genes found in the A. baumannii strain AYE have been recently acquired from bacteria of the genera Pseudomonas, Salmonella, or Escherichia. This study also resulted in the discovery of 19 new putative resistance genes. Whole-genome sequencing appears to be a fast and efficient approach to the exhaustive identification of resistance genes in epidemic infectious agents of clinical significance.

  15. Genetically influenced resistance to stress and disease in salmonids in relation to present-day breeding practice - a short review

    Directory of Open Access Journals (Sweden)

    Jan Mendel

    2018-01-01

    Full Text Available While intensive fish production has many advantages, it also has a number of drawbacks as regards disease and stress. To date, there has been no conclusive review of disease resistance at Czech fish farms. The aim of the study was to describe briefly the existing salmonid breeding practice in the Czech Republic and to point out the trends and new possibilities gaining ground around Europe. However, the present situation in the Czech stocks is not rare at all and therefore it is used here as a model example representing numerous breeding practices in Europe. Stress and disease resistance in fish is polygenic and quantitative, making selection for such traits difficult. In recent years, however, fish breeding methods have developed rapidly, with the use of genetic analysis tools, for example, now allowing much greater selection accuracy. Gradual progress in understanding the importance of individual genetic markers offers many new options that can be utilised in breeding practice. New selection methods, such as quantitative trait loci (QTLs and genomic selection, are increasingly employed in European aquaculture. Next generation sequencing techniques now help in the finding of new and promising QTLs that can be used in assisted selection. This review maps the current progress in improving salmonid resistance to stress and disease in aquaculture and at the same time provides the breeders with a short overview of the latest tools of genetically controlled breeding and of the newest products available at the European market.

  16. Overexpressing the Sedum alfredii Cu/Zn Superoxide Dismutase Increased Resistance to Oxidative Stress in Transgenic Arabidopsis

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2017-06-01

    Full Text Available Superoxide dismutase (SOD is a very important reactive oxygen species (ROS-scavenging enzyme. In this study, the functions of a Cu/Zn SOD gene (SaCu/Zn SOD, from Sedum alfredii, a cadmium (Cd/zinc/lead co-hyperaccumulator of the Crassulaceae, was characterized. The expression of SaCu/Zn SOD was induced by Cd stress. Compared with wild-type (WT plants, overexpression of SaCu/Zn SOD gene in transgenic Arabidopsis plants enhanced the antioxidative defense capacity, including SOD and peroxidase activities. Additionally, it reduced the damage associated with the overproduction of hydrogen peroxide (H2O2 and superoxide radicals (O2•-. The influence of Cd stress on ion flux across the root surface showed that overexpressing SaCu/Zn SOD in transgenic Arabidopsis plants has greater Cd uptake capacity existed in roots. A co-expression network based on microarray data showed possible oxidative regulation in Arabidopsis after Cd-induced oxidative stress, suggesting that SaCu/Zn SOD may participate in this network and enhance ROS-scavenging capability under Cd stress. Taken together, these results suggest that overexpressing SaCu/Zn SOD increased oxidative stress resistance in transgenic Arabidopsis and provide useful information for understanding the role of SaCu/Zn SOD in response to abiotic stress.

  17. In-season heat stress compromises postharvest quality and low-temperature sweetening resistance in potato (Solanum tuberosum L.).

    Science.gov (United States)

    Zommick, Daniel H; Knowles, Lisa O; Pavek, Mark J; Knowles, N Richard

    2014-06-01

    The effects of soil temperature during tuber development on physiological processes affecting retention of postharvest quality in low-temperature sweetening (LTS) resistant and susceptible potato cultivars were investigated. 'Premier Russet' (LTS resistant), AO02183-2 (LTS resistant) and 'Ranger Russet' (LTS susceptible) tubers were grown at 16 (ambient), 23 and 29 °C during bulking (111-164 DAP) and maturation (151-180 DAP). Bulking at 29 °C virtually eliminated yield despite vigorous vine growth. Tuber specific gravity decreased as soil temperature increased during bulking, but was not affected by temperature during maturation. Bulking at 23 °C and maturation at 29 °C induced higher reducing sugar levels in the proximal (basal) ends of tubers, resulting in non-uniform fry color at harvest, and abolished the LTS-resistant phenotype of 'Premier Russet' tubers. AO02183-2 tubers were more tolerant of heat for retention of LTS resistance. Higher bulking and maturation temperatures also accelerated LTS and loss of process quality of 'Ranger Russet' tubers, consistent with increased invertase and lower invertase inhibitor activities. During LTS, tuber respiration fell rapidly to a minimum as temperature decreased from 9 to 4 °C, followed by an increase to a maximum as tubers acclimated to 4 °C; respiration then declined over the remaining storage period. The magnitude of this cold-induced acclimation response correlated directly with the extent of buildup in sugars over the 24-day LTS period and thus reflected the effects of in-season heat stress on propensity of tubers to sweeten and lose process quality at 4 °C. While morphologically indistinguishable from control tubers, tubers grown at elevated temperature had different basal metabolic (respiration) rates at harvest and during cold acclimation, reduced dormancy during storage, greater increases in sucrose and reducing sugars and associated loss of process quality during LTS, and reduced ability to improve

  18. Correlation of serum vitamin E content with insulin resistance and oxidative stress response in patients with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Jun Li

    2017-08-01

    Full Text Available Objective: To study the correlation of serum vitamin E content with insulin resistance and oxidative stress response in patients with type 2 diabetes mellitus. Methods: Patients who were diagnosed with type 2 diabetes mellitus in Xining Second People’s Hospital between February 2016 and February 2017 were selected as T2DM group, healthy volunteers who received physical examination during the same period were selected as control group, oral glucose tolerance test was conducted to detect insulin resistance indexes, and fasting venous blood was collected to detect oxidative stress indicators. Results: Serum VitE, 2 h-Ins, 2 h-CP, Trx, Txnip, SOD and GSH-Px levels of T2DM group were significantly lower than those of control group while F-Ins, F-CP, MDA, AOPP, 8-OHdG, AGEs and LOX-1 levels were significantly higher than those of control group; serum VitE level in T2DM patients was positively correlated with serum 2 h-Ins, 2 h-CP, Trx, Txnip, SOD and GSH-Px levels, and negatively correlated with serum F-Ins, F-CP, MDA, AOPP, 8-OHdG, AGEs and LOX-1 levels. Conclusion: The decrease of serum vitamin E in patients with type 2 diabetes mellitus can lead to the aggravation of insulin resistance and the activation of oxidative stress response.

  19. Evaluation of drought stress tolerance in promising lines of chickpea (Cicer arietinum L. using drought resistance indices

    Directory of Open Access Journals (Sweden)

    Akbar Shabani

    2018-06-01

    Full Text Available Introduction Chickpea (Cicer arietinum L. is an annual grain legume or “pulse crop” that is 2th legume after soybean in the world and was cultivated in 60 country. Legume, spatially chickpea is the most important tolerant crop in arid and semi-arid country in western of Asia such as Iran. Chickpea can growth in poor soil and undesirable environment conditions. Drought is an important factors that influencing chickpea production and quality. As area of cultivation is in dryland conditions thus aim of researches is reach to tolerant genotypes. The objective of current study was to evaluate the genetic variation and drought resistance advanced genotypes in chickpea Materials and methods For investigation of genetic variation and drought resistance, 64 advanced genotypes were evaluated in a simple latis (LD with two replications under normal and drought stress conditions in deputy of Dryland Agricultural Research Institute of Kermanshah during 2013-2014 cropping season. Plant spacing was as plots with four rows in 4 m in length, 30 cm apart. The seed were sowed in row with 10 cm distance and the seeding rate was 33 seeds per m2 for all plots. At maturity stage after separation of border effects from each plot, grain yield was measured. Statistical analysis was performed using SAS, SPSS and STATISTICA packages. some drought resistance indices such as mean productivity (MP, geometric mean productivity (GMP, harmonic mean (HAM, stress tolerance index (STI, stress susceptibility index (SSI, yield index (YI, K1 and K2 were measured based on yield in both conditions. Also we used stress tolerance score (STS method for selection genotypes according to all indices. Results and discussion Study on correlation between Yp, Ys and drought resistance indices showed that Yp and Ys had positive and significant correlated with MP, GMP, STI, YI, HAM, K1 and K2 thus these indices were the most suitable drought tolerance criteria for screening of chickpea

  20. Resisting Mind Control.

    Science.gov (United States)

    Anderson, Susan M.; Zimbardo, Philip G.

    1980-01-01

    Provides conceptual analyses of mind control techniques along with practical advice on how to resist these techniques. The authors stress that effective mind control stems more from everyday social relations than from exotic technological gimmicks. Suggestions are given for resisting persuasion, resisting systems, and challenging the system.…

  1. Resistance exercise attenuates skeletal muscle oxidative stress, systemic pro-inflammatory state, and cachexia in Walker-256 tumor-bearing rats.

    Science.gov (United States)

    Padilha, Camila Souza; Borges, Fernando Henrique; Costa Mendes da Silva, Lilian Eslaine; Frajacomo, Fernando Tadeu Trevisan; Jordao, Alceu Afonso; Duarte, José Alberto; Cecchini, Rubens; Guarnier, Flávia Alessandra; Deminice, Rafael

    2017-09-01

    The aim of this study was to investigate the effects of resistance exercise training (RET) on oxidative stress, systemic inflammatory markers, and muscle wasting in Walker-256 tumor-bearing rats. Male (Wistar) rats were divided into 4 groups: sedentary controls (n = 9), tumor-bearing (n = 9), exercised (n = 9), and tumor-bearing exercised (n = 10). Exercised and tumor-bearing exercised rats were exposed to resistance exercise of climbing a ladder apparatus with weights tied to their tails for 6 weeks. The physical activity of control and tumor-bearing rats was confined to the space of the cage. After this period, tumor-bearing and tumor-bearing exercised animals were inoculated subcutaneously with Walker-256 tumor cells (11.0 × 10 7 cells in 0.5 mL of phosphate-buffered saline) while control and exercised rats were injected with vehicle. Following inoculation, rats maintained resistance exercise training (exercised and tumor-bearing exercised) or sedentary behavior (control and tumor-bearing) for 12 more days, after which they were euthanized. Results showed muscle wasting in the tumor-bearing group, with body weight loss, increased systemic leukocytes, and inflammatory interleukins as well as muscular oxidative stress and reduced mTOR signaling. In contrast, RET in the tumor-bearing exercised group was able to mitigate the reduced body weight and muscle wasting with the attenuation of muscle oxidative stress and systemic inflammatory markers. RET also prevented loss of muscle strength associated with tumor development. RET, however, did not prevent the muscle proteolysis signaling via FBXO32 gene messenger RNA expression in the tumor-bearing group. In conclusion, RET performed prior tumor implantation prevents cachexia development by attenuating tumor-induced systemic pro-inflammatory condition with muscle oxidative stress and muscle damage.

  2. Neratinib resistance and cross-resistance to other HER2-targeted drugs due to increased activity of metabolism enzyme cytochrome P4503A4

    OpenAIRE

    Breslin, Susan; Lowry, Michelle C; O'Driscoll, Lorraine

    2017-01-01

    Background: Neratinib is in Phase 3 clinical trials but, unfortunately, the development of resistance is inevitable. Here, we investigated the effects of acquired neratinib resistance on cellular phenotype and the potential mechanism of this resistance. Methods: Neratinib-resistant variants of HER2-positive breast cancer cells were developed and their cross-resistance investigated using cytotoxicity assays. Similarly, sensitivity of trastuzumab-resistant and lapatinib-resistant cells to nerat...

  3. Chronic Iron Limitation Confers Transient Resistance to Oxidative Stress in Marine Diatoms1

    Science.gov (United States)

    Graff van Creveld, Shiri; Rosenwasser, Shilo; Vardi, Assaf

    2016-01-01

    Diatoms are single-celled, photosynthetic, bloom-forming algae that are responsible for at least 20% of global primary production. Nevertheless, more than 30% of the oceans are considered “ocean deserts” due to iron limitation. We used the diatom Phaeodactylum tricornutum as a model system to explore diatom’s response to iron limitation and its interplay with susceptibility to oxidative stress. By analyzing physiological parameters and proteome profiling, we defined two distinct phases: short-term (5 d, phase II) iron limitation. While at phase I no significant changes in physiological parameters were observed, molecular markers for iron starvation, such as Iron Starvation Induced Protein and flavodoxin, were highly up-regulated. At phase II, down-regulation of numerous iron-containing proteins was detected in parallel to reduction in growth rate, chlorophyll content, photosynthetic activity, respiration rate, and antioxidant capacity. Intriguingly, while application of oxidative stress to phase I and II iron-limited cells similarly oxidized the reduced glutathione (GSH) pool, phase II iron limitation exhibited transient resistance to oxidative stress, despite the down regulation of many antioxidant proteins. By comparing proteomic profiles of P. tricornutum under iron limitation and metatranscriptomic data of an iron enrichment experiment conducted in the Pacific Ocean, we propose that iron-limited cells in the natural environment resemble the phase II metabolic state. These results provide insights into the trade-off between optimal growth rate and susceptibility to oxidative stress in the response of diatoms to iron quota in the marine environment. PMID:27503604

  4. Linking Alzheimer's disease to insulin resistance: the FoxO response to oxidative stress.

    Science.gov (United States)

    Manolopoulos, K N; Klotz, L-O; Korsten, P; Bornstein, S R; Barthel, A

    2010-11-01

    Oxidative stress is an important determinant not only in the pathogenesis of Alzheimer's disease (AD), but also in insulin resistance (InsRes) and diabetic complications. Forkhead box class O (FoxO) transcription factors are involved in both insulin action and the cellular response to oxidative stress, thereby providing a potential integrative link between AD and InsRes. For example, the expression of intra- and extracellular antioxidant enzymes, such as manganese-superoxide dismutase and selenoprotein P, is regulated by FoxO proteins, as is the expression of important hepatic enzymes of gluconeogenesis. Here, we review the molecular mechanisms involved in the pathogenesis of AD and InsRes and discuss the function of FoxO proteins in these processes. Both InsRes and oxidative stress may promote the transcriptional activity of FoxO proteins, resulting in hyperglycaemia and a further increased production of reactive oxygen species (ROS). The consecutive activation of c-Jun N-terminal kinases and inhibition of Wingless (Wnt) signalling may result in the formation of β-amyloid plaques and τ protein phosphorylation. Wnt inhibition may also result in a sustained activation of FoxO proteins with induction of apoptosis and neuronal loss, thereby completing a vicious circle from oxidative stress, InsRes and hyperglycaemia back to the formation of ROS and consecutive neurodegeneration. In view of their central function in this model, FoxO proteins may provide a potential molecular target for the treatment of both InsRes and AD.

  5. Stiffness and frictional resistance of a superelastic nickel-titanium orthodontic wire with low-stress hysteresis.

    Science.gov (United States)

    Liaw, Yu-Cheng; Su, Yu-Yu M; Lai, Yu-Lin; Lee, Shyh-Yuan

    2007-05-01

    Stress-induced martensite formation with stress hysteresis that changes the elasticity and stiffness of nickel-titanium (Ni-Ti) wire influences the sliding mechanics of archwire-guided tooth movement. This in-vitro study investigated the frictional behavior of an improved superelastic Ni-Ti wire with low-stress hysteresis. Improved superelastic Ni-Ti alloy wires (L & H Titan, Tomy International, Tokyo, Japan) with low-stress hysteresis were examined by using 3-point bending and frictional resistance tests with a universal test machine at a constant temperature of 35 degrees C, and compared with the former conventional austenitic-active superelastic Ni-Ti wires (Sentalloy, Tomy International). Wire stiffness levels were derived from differentiation of the polynomial regression of the unloading curves, and values for kinetic friction were measured at constant bending deflection distances of 0, 2, 3, and 4 mm, respectively. Compared with conventional Sentalloy wires, the L & H Titan wire had a narrower stress hysteresis including a lower loading plateau and a higher unloading plateau. In addition, L & H Titan wires were less stiff than the Sentalloy wires during most unloading stages. Values of friction measured at deflections of 0, 2, and 3 mm were significantly (P Sentalloy wires at all bending deflections (P <.05). Stress-induced martensite formation significantly reduced the stiffness and thus could be beneficial to decrease the binding friction of superelastic Ni-Ti wires during sliding with large bending deflections. Austenitic-active alloy wires with low-stress hysteresis and lower stiffness and friction offer significant potential for further investigation.

  6. Ectopic expression of a horseradish peroxidase enhances growth rate and increases oxidative stress resistance in hybrid aspen.

    Science.gov (United States)

    Kawaoka, Akiyoshi; Matsunaga, Etsuko; Endo, Saori; Kondo, Shinkichi; Yoshida, Kazuya; Shinmyo, Atsuhiko; Ebinuma, Hiroyasu

    2003-07-01

    We previously demonstrated that overexpression of the horseradish (Armoracia rusticana) peroxidase prxC1a gene stimulated the growth rate of tobacco (Nicotiana tabacum) plants. Here, the cauliflower mosaic virus 35S::prxC1a construct was introduced into hybrid aspen (Populus sieboldii x Populus grandidentata). The growth rate of these transformed hybrid aspen plants was substantially increased under greenhouse conditions. The average stem length of transformed plants was 25% greater than that of control plants. There was no other obvious phenotypic difference between the transformed and control plants. Fast-growing transformed hybrid aspen showed high levels of expression of prxC1a and had elevated peroxidase activities toward guaiacol and ascorbate. However, there was no increase of the endogenous class I ascorbate peroxidase activities in the transformed plants by separate assay and activity staining of native polyacrylamide gel electrophoresis. Furthermore, calli derived from the transformed hybrid aspen grew faster than those from control plants and were resistant to the oxidative stress imposed by hydrogen peroxide. Therefore, enhanced peroxidase activity affects plant growth rate and oxidative stress resistance.

  7. Dysfunction of serotoninergic and dopaminergic neuronal systems in the antidepressant-resistant impairment of social behaviors induced by social defeat stress exposure as juveniles.

    Science.gov (United States)

    Hasegawa, Sho; Miyake, Yuriko; Yoshimi, Akira; Mouri, Akihiro; Hida, Hirotake; Yamada, Kiyofumi; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro

    2018-03-29

    Extensive studies have been performed on the role of monoaminergic neuronal systems in rodents exposed to social defeat stress as adults. In the present study, we investigated the role of monoaminergic neuronal systems in the impairment of social behaviors induced by social defeat stress exposure as juveniles. Juvenile, male C57BL/6J mice were exposed to social defeat stress for 10 consecutive days. From 1 day after the last stress exposure, desipramine, sertraline, and aripiprazole, were administered for 15 days. Social behaviors were assessed at 1 and 15 days after the last stress exposure. Monoamine turnover was determined in specific regions of the brain in the mice exposed to the stress. Stress exposure as juveniles induced the impairment of social behaviors in adolescent mice. In mice that showed the impairment of social behaviors, turnover of the serotonin and dopamine, but not noradrenaline was decreased in specific brain regions. Acute and repeated administration of desipramine, sertraline, and aripiprazole failed to attenuate the impairment of social behaviors, whereas repeated administration of a combination of sertraline and aripiprazole showed additive attenuating effects. These findings suggest that social defeat stress exposure as juveniles induces the treatment-resistant impairment of social behaviors in adolescents through dysfunction in the serotoninergic and dopaminergic neuronal systems. The combination of sertraline and aripiprazole may be used as a new treatment strategy for treatment-resistant stress-related psychiatric disorders in adolescents with adverse juvenile experiences.

  8. [Effects of relic microorganism B. sp. on development, gaseous exchange, spontaneous motor activity, stress resistance and survival of Drosophila melanogaster].

    Science.gov (United States)

    Brushkov, A V; Bezrukov, V V; Griva, G I; Muradian, Kh K

    2011-01-01

    The effect of relic microorganism B. sp., living in severe environment of Siberian permafrost during thousands and millions of years, on development and stress resistance of Drosophila melanogaster has been studied. In manipulating with such objects with practically "eternal life span", molecular carriers of the unprecedented longevity potential and possibilities of their transmission to other biological objects should primarily be addressed. Here we discuss for the first time the influence of B. sp. application on development, survival, stress resistance and the gross physiological predictors of aging rate in D. melanogaster. To establish optimal and toxic doses, wide range of B. sp. concentrations were tested (1-500 million cells of B. sp. per 1 ml of the flies feeding medium). Surprisingly, no toxic effects of B. sp. could be registered even on such a "sensitive" model as the developing larvae. In fact, the rate of development, survival and body mass gradually increased with elevation of B. sp. concentration. The gain of higher body mass within shorter periods of development could indicate enhanced anabolic and/ or declined catabolic effects of B. sp. Higher motor activity and gaseous exchange rates were observed in imagoes developed on the mediums with B. sp. application. Survival of these flies at the heat shock (30 min at 38 degrees C) and ultraviolet irradiation (60 min, 50W UV lamp) was increased, indicating elevated stress resistance, apparently due to stimulation of DNA-repair and chaperone-mediated protection of macromolecules. Further research is clearly warranted to identify more efficient anti-stress and antiaging preparations and schemes of B. sp. application on models of laboratory mammals and human cell cultures.

  9. ANTIBIOTIC RESISTANCE IN THE OPPORTUNISTIC PATHOGEN STENOTROPHOMONAS MALTOPHILIA

    Directory of Open Access Journals (Sweden)

    María Blanca Sánchez

    2015-06-01

    Full Text Available Stenotrophomonas maltophilia is an environmental bacterium found in the soil, associated with plants and animals, and in aquatic environments. It is also an opportunistic pathogen now causing an increasing number of nosocomial infections. The treatment of S. maltophilia is quite difficult given its intrinsic resistance to a number of antibiotics, and because it is able to acquire new resistances via horizontal gene transfer and mutations. Certainly, strains resistant to quinolones, cotrimoxale and/or cephalosporins - antibiotics commonly used to treat S. maltophilia infections - have emerged. The increasing number of available S. maltophilia genomes has allowed the identification and annotation of a large number of antimicrobial and heavy metal resistance genes. Most encode inactivating enzymes and efflux pumps, but information on their role in intrinsic and acquired resistance is limited. Non-typical antibiotic resistance mechanisms that also form part of the intrinsic resistome have been identified via mutant library screening. These include non-typical antibiotic resistance genes, such as bacterial metabolism genes, and non-inheritable resistant phenotypes, such as biofilm formation and persistence. Their relationships with resistance are complex and require further study.

  10. Effects of resistance exercise on the HPA axis response to psychological stress during short-term smoking abstinence in men.

    Science.gov (United States)

    Ho, Jen-Yu; Kraemer, William J; Volek, Jeff S; Vingren, Jakob L; Fragala, Maren S; Flanagan, Shawn D; Maladouangdock, Jesse; Szivak, Tunde K; Hatfield, Disa L; Comstock, Brett A; Dunn-Lewis, Courtenay; Ciccolo, Joseph T; Maresh, Carl M

    2014-03-01

    The purpose of this study was to examine the effects of resistance exercise on the hypothalamic-pituitary-adrenal axis (HPA) response to mental challenge, withdrawal symptoms, urge to smoke, and cognitive stress during 24-hour smoking abstinence. 8 sedentary smokers (mean±SD age: 20.1±1.7y; height: 171.6±10.8cm; body mass: 70.4±12.0kg; smoking history: 2.9±0.8y) completed a 24-hour ad libitum smoking trial (SMO) followed by two 24-hour smoking abstinence trials. During abstinence trials, participants performed six whole body resistance exercises (EX) or a control condition (CON) in the morning, followed by mental challenge tasks in the afternoon. Plasma adrenocorticotropin hormone (ACTH), and salivary and serum cortisol were measured during each visit at rest (REST), and then before (PRE-EX), immediately after (IP-EX), and 30min after exercise (30-EX); and before (PRE-MC), immediately after (IP-MC), and 30min after mental challenge (30-MC). Resistance exercise significantly (p≤0.05) elevated plasma ACTH and serum cortisol at IP-EX during EX compared with SMO and CON trials. Resting ACTH, salivary and serum cortisol concentrations at Pre-MC did not differ between EX and CON trials. The HPA axis response to mental challenge was similar after EX and CON trials. Finally, resistance exercise did not reduce withdrawal symptoms, urge to smoke, or stress. Resistance exercise did not substantially alter resting HPA hormones or the HPA response to mental challenge tasks during 24h of smoking abstinence. © 2013.

  11. Heat treatment of NiCrFe alloy 600 to optimize resistance to intergranular stress corrosion

    Science.gov (United States)

    Steeves, A.F.; Bibb, A.E.

    A process of producing a NiCrFe alloy having a high resistance to stress corrosion cracking comprises heating a NiCrFe alloy to a temperature sufficient to enable the carbon present in the alloy body in the form of carbide deposits to enter into solution, rapidly cooling the alloy body, and heating the cooled body to a temperature between 1100 to 1500/sup 0/F for about 1 to 30 hours.

  12. Caregiver wellbeing: an examination of the coping-appraisel process of caring for individuals with an acquired brain injury

    LENUS (Irish Health Repository)

    2011-12-09

    Objective: Previous literature has demonstrated empirical support for a stress process model of caregiving (Chronister & Chan, 2006). This study examined whether a coping–appraisal stress model helps in our understanding of the experience of caregiving for people with an acquired brain injury.\\r\

  13. Prevalence of Genotypes That Determine Resistance of Staphylococci to Macrolides and Lincosamides in Serbia

    Directory of Open Access Journals (Sweden)

    Milena Mišić

    2017-08-01

    Full Text Available Macrolides, lincosamides, and streptogramins (MLS resistance genes are responsible for resistance to these antibiotics in Staphylococcus infections. The purpose of the study was to analyze the distribution of the MLS resistance genes in community- and hospital-acquired Staphylococcus isolates. The MLS resistance phenotypes [constitutive resistance to macrolide–lincosamide–streptogramin B (cMLSb, inducible resistance to macrolide–lincosamide–streptogramin B (iMLSb, resistance to macrolide/macrolide–streptogramin B (M/MSb, and resistance to lincosamide–streptogramin A/streptogramin B (LSa/b] were determined by double-disc diffusion method. The presence of the MLS resistance genes (ermA, ermB, ermC, msrA/B, lnuA, lnuB, and lsaA were determined by end-point polymerase chain reaction in 179 isolates of staphylococci collected during 1-year period at the Center for Microbiology of Public Health Institute in Vranje. The most frequent MLS phenotype among staphylococcal isolates, both community-acquired and hospital-acquired, was iMLSb (33.4%. The second most frequent was M/MSb (17.6% with statistically significantly higher number of hospital-acquired staphylococcal isolates (p < 0.05. MLS resistance was mostly determined by the presence of msrA/B (35.0% and ermC (20.8% genes. Examined phenotypes were mostly determined by the presence of one gene, especially by msrA/B (26.3% and ermC (14.5%, but 15.6% was determined by a combination of two or more genes. M/MSb phenotype was the most frequently encoded by msrA/B (95.6% gene, LSa/b phenotype by lnuA (56.3% gene, and iMLSb phenotype by ermC (29.4% and ermA (25.5% genes. Although cMLSb phenotype was mostly determined by the presence of ermC (28.9%, combinations of two or more genes have been present too. This pattern was particularly recorded in methicillin-resistant Staphylococcus aureus (MRSA (58.3% and methicillin-resistant coagulase-negative staphylococci (MRCNS (90.9% isolates with c

  14. Biologic Stress, Oxidative Stress, and Resistance to Drugs: What Is Hidden Behind

    Directory of Open Access Journals (Sweden)

    Maria Pantelidou

    2017-02-01

    Full Text Available Stress can be defined as the homeostatic, nonspecific defensive response of the organism to challenges. It is expressed by morphological, biochemical, and functional changes. In this review, we present biological and oxidative stress, as well as their interrelation. In addition to the mediation in biologic stress (central nervous, immune, and hormonal systems and oxidative stress, the effect of these phenomena on xenobiotic metabolism and drug response is also examined. It is concluded that stress decreases drug response, a result which seems to be mainly attributed to the induction of hepatic drug metabolizing enzymes. A number of mechanisms are presented. Structure-activity studies are also discussed. Vitamin E, as well as two synthetic novel compounds, seem to reduce both oxidative and biological stress and, consequently, influence drug response and metabolism.

  15. Stress-induced resistance to the fear memory labilization/reconsolidation process. Involvement of the basolateral amygdala complex.

    Science.gov (United States)

    Espejo, Pablo Javier; Ortiz, Vanesa; Martijena, Irene Delia; Molina, Victor Alejandro

    2016-10-01

    Consolidated memories can enter into a labile state after reactivation followed by a restabilization process defined as reconsolidation. This process can be interfered with Midazolam (MDZ), a positive allosteric modulator of the GABA-A receptor. The present study has evaluated the influence of prior stress on MDZ's interfering effect. We also assessed the influence of both systemic and intra-basolateral amygdala (BLA) infusion of d-cycloserine (DCS), a partial agonist of the NMDA receptors, on the MDZ effect in previously stressed rats. Furthermore, we analyzed the effect of stress on the expression of Zif-268 and the GluN2B sites, two molecular markers of the labilization/reconsolidation process, following reactivation. The results revealed that prior stress resulted into a memory trace that was insensitive to the MDZ impairing effect. Both systemic and intra-BLA DCS administration previous to reactivation restored MDZ's disruptive effect on memory reconsolidation in stressed animals. Further, reactivation enhanced Zif-268 expression in the BLA in control unstressed rats, whereas no elevation was observed in stressed animals. In agreement with the behavioral findings, DCS restored the increased level of Zif-268 expression in the BLA in stressed animals. Moreover, memory reactivation in unstressed animals elevated GluN2B expression in the BLA, thus suggesting that this effect is involved in memory destabilization, whereas stressed animals did not reveal any changes. These findings are consistent with resistance to the MDZ effect in these rats, indicating that stress exposure prevents the onset of destabilization following reactivation. In summary, prior stress limited both the occurrence of the reactivation-induced destabilization and restabilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The effects of RecO deficiency in Lactococcus lactis NZ9000 on resistance to multiple environmental stresses.

    Science.gov (United States)

    Zhang, Mengru; Chen, Jian; Zhang, Juan; Du, Guocheng

    2014-12-01

    Multiple stresses could cause damage to DNA and other macromolecules. RecO, belonging to the family of DNA repair proteins, plays an important part in homologous recombination and replication repair. In order to explore the role of RecO in overcoming multiple stresses, a mutant of recO deletion is constructed in Lactococcus lactis ssp. cremoris NZ9000. Compared with the mutant strain, the original strain L. lactis NZ9000 shows better performance in growth under multiple stresses. The survival rates of the original strain under acid, osmotic and chill stresses are 13.49-, 2.78- and 60.89-fold higher. In our deeper research on fermentation capability under osmotic stress, lactate dehydrogenase activity after 8 h fermentation, maximum lactate acid production, lactate yield and maximum lactate productivity of L. lactis NZ9000 are 1.63-, 1.28-, 1.28- and 1.5-fold higher, respectively. Results indicate that RecO has positively improved the survival of L. lactis NZ9000, protected its key enzymes and enhanced its fermentation efficiencies. Our research confirms the role of RecO in enhancing tolerances to multiple stresses of L. lactis NZ9000, and puts forward the suggestion that RecO could be used in other industrial microorganisms as a new anti-stress component to improve their resistance to various stresses. © 2014 Society of Chemical Industry.

  17. Expression Analysis of Stress-Related Genes in Kernels of Different Maize (Zea mays L.) Inbred Lines with Different Resistance to Aflatoxin Contamination

    Science.gov (United States)

    Jiang, Tingbo; Zhou, Boru; Luo, Meng; Abbas, Hamed K.; Kemerait, Robert; Lee, Robert Dewey; Scully, Brian T.; Guo, Baozhu

    2011-01-01

    This research examined the expression patterns of 94 stress-related genes in seven maize inbred lines with differential expressions of resistance to aflatoxin contamination. The objective was to develop a set of genes/probes associated with resistance to A. flavus and/or aflatoxin contamination. Ninety four genes were selected from previous gene expression studies with abiotic stress to test the differential expression in maize lines, A638, B73, Lo964, Lo1016, Mo17, Mp313E, and Tex6, using real-time RT-PCR. Based on the relative-expression levels, the seven maize inbred lines clustered into two different groups. One group included B73, Lo1016 and Mo17, which had higher levels of aflatoxin contamination and lower levels of overall gene expression. The second group which included Tex6, Mp313E, Lo964 and A638 had lower levels of aflatoxin contamination and higher overall levels of gene expressions. A total of six “cross-talking” genes were identified between the two groups, which are highly expressed in the resistant Group 2 but down-regulated in susceptible Group 1. When further subjected to drought stress, Tex6 expressed more genes up-regulated and B73 has fewer genes up-regulated. The transcript patterns and interactions measured in these experiments indicate that the resistant mechanism is an interconnected process involving many gene products and transcriptional regulators, as well as various host interactions with environmental factors, particularly, drought and high temperature. PMID:22069724

  18. Evaluation of stress and saturation effects on seismic velocity and electrical resistivity - laboratory testing of rock samples

    Science.gov (United States)

    Vilhelm, Jan; Jirků, Jaroslav; Slavík, Lubomír; Bárta, Jaroslav

    2016-04-01

    Repository, located in a deep geological formation, is today considered the most suitable solution for disposal of spent nuclear fuel and high-level waste. The geological formations, in combination with an engineered barrier system, should ensure isolation of the waste from the environment for thousands of years. For long-term monitoring of such underground excavations special monitoring systems are developed. In our research we developed and tested monitoring system based on repeated ultrasonic time of flight measurement and electrical resistivity tomography (ERT). As a test site Bedřichov gallery in the northern Bohemia was selected. This underground gallery in granitic rock was excavated using Tunnel Boring Machine (TBM). The seismic high-frequency measurements are performed by pulse-transmission technique directly on the rock wall using one seismic source and three receivers in the distances of 1, 2 and 3 m. The ERT measurement is performed also on the rock wall using 48 electrodes. The spacing between electrodes is 20 centimeters. An analysis of relation of seismic velocity and electrical resistivity on water saturation and stress state of the granitic rock is necessary for the interpretation of both seismic monitoring and ERT. Laboratory seismic and resistivity measurements were performed. One series of experiments was based on uniaxial loading of dry and saturated granitic samples. The relation between stress state and ultrasonic wave velocities was tested separately for dry and saturated rock samples. Other experiments were focused on the relation between electrical resistivity of the rock sample and its saturation level. Rock samples with different porosities were tested. Acknowledgments: This work was partially supported by the Technology Agency of the Czech Republic, project No. TA 0302408

  19. Neratinib overcomes trastuzumab resistance in HER2 amplified breast cancer.

    Science.gov (United States)

    Canonici, Alexandra; Gijsen, Merel; Mullooly, Maeve; Bennett, Ruth; Bouguern, Noujoude; Pedersen, Kasper; O'Brien, Neil A; Roxanis, Ioannis; Li, Ji-Liang; Bridge, Esther; Finn, Richard; Siamon, Dennis; McGowan, Patricia; Duffy, Michael J; O'Donovan, Norma; Crown, John; Kong, Anthony

    2013-10-01

    Trastuzumab has been shown to improve the survival outcomes of HER2 positive breast cancer patients. However, a significant proportion of HER2-positive patients are either inherently resistant or develop resistance to trastuzumab. We assessed the effects of neratinib, an irreversible panHER inhibitor, in a panel of 36 breast cancer cell lines. We further assessed its effects with or without trastuzumab in several sensitive and resistant breast cancer cells as well as a BT474 xenograft model. We confirmed that neratinib was significantly more active in HER2-amplified than HER2 non-amplified cell lines. Neratinib decreased the activation of the 4 HER receptors and inhibited downstream pathways. However, HER3 and Akt were reactivated at 24 hours, which was prevented by the combination of trastuzumab and neratinib. Neratinib also decreased pHER2 and pHER3 in acquired trastuzumab resistant cells. Neratinib in combination with trastuzumab had a greater growth inhibitory effect than either drug alone in 4 HER2 positive cell lines. Furthermore, trastuzumab in combination with neratinib was growth inhibitory in SKBR3 and BT474 cells which had acquired resistance to trastuzumab as well as in a BT474 xenograft model. Innately trastuzumab resistant cell lines showed sensitivity to neratinib, but the combination did not enhance response compared to neratinib alone. Levels of HER2 and phospho-HER2 showed a direct correlation with sensitivity to neratinib. Our data indicate that neratinib is an effective anti-HER2 therapy and counteracted both innate and acquired trastuzumab resistance in HER2 positive breast cancer. Our results suggest that combined treatment with trastuzumab and neratinib is likely to be more effective than either treatment alone for both trastuzumab-sensitive breast cancer as well as HER2-positive tumors with acquired resistance to trastuzumab.

  20. Overcoming Resistance to Cetuximab with Honokiol, A Small-Molecule Polyphenol.

    Science.gov (United States)

    Pearson, Hannah E; Iida, Mari; Orbuch, Rachel A; McDaniel, Nellie K; Nickel, Kwangok P; Kimple, Randall J; Arbiser, Jack L; Wheeler, Deric L

    2018-01-01

    Overexpression and activation of the EGFR have been linked to poor prognosis in several human cancers. Cetuximab is a mAb against EGFR that is used for the treatment in head and neck squamous cell carcinoma (HNSCC) and metastatic colorectal cancer. Unfortunately, most tumors have intrinsic or will acquire resistance to cetuximab during the course of therapy. Honokiol is a natural compound found in the bark and leaves of the Chinese Magnolia tree and is established to have several anticancer properties without appreciable toxicity. In this study, we hypothesized that combining cetuximab and honokiol treatments could overcome acquired resistance to cetuximab. We previously developed a model of acquired resistance to cetuximab in non-small cell lung cancer H226 cell line. Treatment of cetuximab-resistant clones with honokiol and cetuximab resulted in a robust antiproliferative response. Immunoblot analysis revealed the HER family and their signaling pathways were downregulated after combination treatment, most notably the proliferation (MAPK) and survival (AKT) pathways. In addition, we found a decrease in phosphorylation of DRP1 and reactive oxygen species after combination treatment in cetuximab-resistant clones, which may signify a change in mitochondrial function. Furthermore, we utilized cetuximab-resistant HNSCC patient-derived xenografts (PDX) to test the benefit of combinatorial treatment in vivo There was significant growth delay in PDX tumors after combination treatment with a subsequent downregulation of active MAPK, AKT, and DRP1 signaling as seen in vitro Collectively, these data suggest that honokiol is a promising natural compound in overcoming acquired resistance to cetuximab. Mol Cancer Ther; 17(1); 204-14. ©2017 AACR . ©2017 American Association for Cancer Research.

  1. Surveillance of drug resistance for tuberculosis control: why and how?

    Science.gov (United States)

    Chaulet, P; Boulahbal, F; Grosset, J

    1995-12-01

    The resistance of Mycobacterium tuberculosis to antibiotics, which reflects the quality of the chemotherapy applied in the community, is one of the elements of epidemiological surveillance used in national tuberculosis programmes. Measurement of drug resistance poses problems for biologists in standardization of laboratory methods and quality control. The definition of rates of acquired and primary drug resistance also necessitates standardization in the methods used to collect information transmitted by clinicians. Finally, the significance of the rates calculated depends on the choice of the patients sample on which sensitivity tests have been performed. National surveys of drug resistance therefore require multidisciplinary participation in order to select the only useful indicators: rates of primary resistance and of acquired resistance. These indicators, gathered in representative groups of patients over a long period, are a measurement of the impact of modern chemotherapy regimens on bacterial ecology.

  2. The Campylobacter jejuni Oxidative Stress Regulator RrpB Is Associated with a Genomic Hypervariable Region and Altered Oxidative Stress Resistance.

    Science.gov (United States)

    Gundogdu, Ozan; da Silva, Daiani T; Mohammad, Banaz; Elmi, Abdi; Wren, Brendan W; van Vliet, Arnoud H M; Dorrell, Nick

    2016-01-01

    Campylobacter jejuni is the leading cause of bacterial foodborne diarrhoeal disease worldwide. Despite the microaerophilic nature of the bacterium, C. jejuni can survive the atmospheric oxygen conditions in the environment. Bacteria that can survive either within a host or in the environment like C. jejuni require variable responses to survive the stresses associated with exposure to different levels of reactive oxygen species. The MarR-type transcriptional regulators RrpA and RrpB have recently been shown to play a role in controlling both the C. jejuni oxidative and aerobic stress responses. Analysis of 3,746 C. jejuni and 486 C. coli genome sequences showed that whilst rrpA is present in over 99% of C. jejuni strains, the presence of rrpB is restricted and appears to correlate with specific MLST clonal complexes (predominantly ST-21 and ST-61). C. coli strains in contrast lack both rrpA and rrpB . In C. jejuni rrpB + strains, the rrpB gene is located within a variable genomic region containing the IF subtype of the type I Restriction-Modification ( hsd ) system, whilst this variable genomic region in C. jejuni rrpB - strains contains the IAB subtype hsd system and not the rrpB gene. C. jejuni rrpB - strains exhibit greater resistance to peroxide and aerobic stress than C. jejuni rrpB + strains. Inactivation of rrpA resulted in increased sensitivity to peroxide stress in rrpB + strains, but not in rrpB - strains. Mutation of rrpA resulted in reduced killing of Galleria mellonella larvae and enhanced biofilm formation independent of rrpB status. The oxidative and aerobic stress responses of rrpB - and rrpB + strains suggest adaptation of C. jejuni within different hosts and niches that can be linked to specific MLST clonal complexes.

  3. The Impact of a Universal Decolonization Protocol on Hospital-Acquired Methicillin-Resistant Staphylococcus aureus in a Burn Population.

    Science.gov (United States)

    Johnson, Arthur T; Nygaard, Rachel M; Cohen, Ellie M; Fey, Ryan M; Wagner, Anne Lambert

    Hospital-acquired (HA) methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of HA infections and a significant concern for burn centers. The use of 2% chlorhexidine-impregnated wipes and nasal mupirocin significantly decreases the rate of HA-MRSA in adult intensive care units. The aim of this study was to examine the impact of universal decolonization on the rate of MRSA conversion in an American Burn Association verified adult and pediatric burn center. Universal decolonization protocol consisting of daily chlorhexidine baths and a 5-day course of nasal mupirocin was implemented in the burn unit. MRSA screening both on admission and weekly and contact isolation practices were in place in pre-decolonization and post-decolonization periods. Patient data were analyzed 2 years before and 1 year after implementation of the protocol. The incidence rate of MRSA was significantly decreased after the implementation of the decolonization protocol (11.8 vs 1.0 per 1000 patient days, P burn patients are at greater risk for invasive infection leading to severe complications and death. The prevalence of HA-MRSA at our institution's burn center was significantly decreased after the implementation of a universal decolonization protocol.

  4. Occupational Stress

    OpenAIRE

    Löblová, Klára

    2011-01-01

    The thesis deals with load, stress and related questions of the working life. Work-related stress brings numerous difficulties not only to affected individuals, but as a result also to organizations. The thesis follows symptoms, impacts, somatic and mental aspects of stress, its types and also types of stressors, which cause this problem. It is concentrated on workload as a specific area of work-related stress, individual resistance to the load, factors of workload and work-related stress and...

  5. Brain network reorganization differs in response to stress in rats genetically predisposed to depression and stress-resilient rats.

    Science.gov (United States)

    Gass, N; Becker, R; Schwarz, A J; Weber-Fahr, W; Clemm von Hohenberg, C; Vollmayr, B; Sartorius, A

    2016-12-06

    Treatment-resistant depression (TRD) remains a pressing clinical problem. Optimizing treatment requires better definition of the specificity of the involved brain circuits. The rat strain bred for negative cognitive state (NC) represents a genetic animal model of TRD with high face, construct and predictive validity. Vice versa, the positive cognitive state (PC) strain represents a stress-resilient phenotype. Although NC rats show depressive-like behavior, some symptoms such as anhedonia require an external trigger, i.e. a stressful event, which is similar to humans when stressful event induces a depressive episode in genetically predisposed individuals (gene-environment interaction). We aimed to distinguish neurobiological predisposition from the depressogenic pathology at the level of brain-network reorganization. For this purpose, resting-state functional magnetic resonance imaging time series were acquired at 9.4 Tesla scanner in NC (N=11) and PC (N=7) rats before and after stressful event. We used a graph theory analytical approach to calculate the brain-network global and local properties. There was no difference in the global characteristics between the strains. At the local level, the response in the risk strain was characterized with an increased internodal role and reduced local clustering and efficiency of the anterior cingulate cortex (ACC) and prelimbic cortex compared to the stress-resilient strain. We suggest that the increased internodal role of these prefrontal regions could be due to the enhancement of some of their long-range connections, given their connectivity with the amygdala and other default-mode-like network hubs, which could create a bias to attend to negative information characteristic for depression.

  6. Adrenaline modulates the global transcriptional profile of Salmonella revealing a role in the antimicrobial peptide and oxidative stress resistance responses

    Directory of Open Access Journals (Sweden)

    Williams P

    2008-10-01

    Full Text Available Abstract Background The successful interaction of bacterial pathogens with host tissues requires the sensing of specific chemical and physical cues. The human gut contains a huge number of neurons involved in the secretion and sensing of a class of neuroendocrine hormones called catecholamines. Recently, in Escherichia coli O157:H7, the catecholamines adrenaline and noradrenaline were shown to act synergistically with a bacterial quorum sensing molecule, autoinducer 3 (AI-3, to affect bacterial virulence and motility. We wished to investigate the impact of adrenaline on the biology of Salmonella spp. Results We have determined the effect of adrenaline on the transcriptome of the gut pathogen Salmonella enterica serovar Typhimurium. Addition of adrenaline led to an induction of key metal transport systems within 30 minutes of treatment. The oxidative stress responses employing manganese internalisation were also elicited. Cells lacking the key oxidative stress regulator OxyR showed reduced survival in the presence of adrenaline and complete restoration of growth upon addition of manganese. A significant reduction in the expression of the pmrHFIJKLM antimicrobial peptide resistance operon reduced the ability of Salmonella to survive polymyxin B following addition of adrenaline. Notably, both phenotypes were reversed by the addition of the β-adrenergic blocker propranolol. Our data suggest that the BasSR two component signal transduction system is the likely adrenaline sensor mediating the antimicrobial peptide response. Conclusion Salmonella are able to sense adrenaline and downregulate the antimicrobial peptide resistance pmr locus through the BasSR two component signalling system. Through iron transport, adrenaline may affect the oxidative stress balance of the cell requiring OxyR for normal growth. Both adrenaline effects can be inhibited by the addition of the β-adrenergic blocker propranolol. Adrenaline sensing may provide an environmental

  7. Stress biology and aging mechanisms: toward understanding the deep connection between adaptation to stress and longevity.

    Science.gov (United States)

    Epel, Elissa S; Lithgow, Gordon J

    2014-06-01

    The rate of biological aging is modulated in part by genes interacting with stressor exposures. Basic research has shown that exposure to short-term stress can strengthen cellular responses to stress ("hormetic stress"). Hormetic stress promotes longevity in part through enhanced activity of molecular chaperones and other defense mechanisms. In contrast, prolonged exposure to stress can overwhelm compensatory responses ("toxic stress") and shorten lifespan. One key question is whether the stressors that are well understood in basic models of aging can help us understand psychological stressors and human health. The psychological stress response promotes regulatory changes important in aging (e.g., increases in stress hormones, inflammation, oxidative stress, insulin). The negative effects of severe stress are well documented in humans. Potential positive effects of acute stress (stress resistance) are less studied, especially at the cellular level. Can stress resistance slow the rate of aging in humans, as it does in model organisms? If so, how can we promote stress resistance in humans? We urge a new research agenda embracing the continuum from cellular stress to psychological stress, using basic and human research in tandem. This will require interdisciplinary novel approaches that hold much promise for understanding and intervening in human chronic disease. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Longevity and Stress Resistant Property of 6-Gingerol from Zingiber officinale Roscoe in Caenorhabditis elegans.

    Science.gov (United States)

    Lee, Eun Byeol; Kim, Jun Hyeong; An, Chang Wan; Kim, Yeong Jee; Noh, Yun Jeong; Kim, Su Jin; Kim, Ju-Eun; Shrestha, Abinash Chandra; Ham, Ha-Neul; Leem, Jae-Yoon; Jo, Hyung-Kwon; Kim, Dae-Sung; Moon, Kwang Hyun; Lee, Jeong Ho; Jeong, Kyung Ok; Kim, Dae Keun

    2018-03-14

    In order to discover lifespan-extending compounds made from natural resources, activity-guided fractionation of Zingiber officinale Roscoe (Zingiberaceae) ethanol extract was performed using the Caenorhabditis elegans ( C. elegans ) model system. The compound 6-gingerol was isolated from the most active ethyl acetate soluble fraction, and showed potent longevity-promoting activity. It also elevated the survival rate of worms against stressful environment including thermal, osmotic, and oxidative conditions. Additionally, 6-gingerol elevated the antioxidant enzyme activities of C. elegans , and showed a dose-depend reduction of intracellular reactive oxygen species (ROS) accumulation in worms. Further studies demonstrated that the increased stress tolerance of 6-gingerol-mediated worms could result from the promotion of stress resistance proteins such as heat shock protein (HSP-16.2) and superoxide dismutase (SOD-3). The lipofuscin levels in 6-gingerol treated intestinal worms were decreased in comparison to the control group. No significant 6-gingerol-related changes, including growth, food intake, reproduction, and movement were noted. These results suggest that 6-gingerol exerted longevity-promoting activities independently of these factors and could extend the human lifespan.

  9. Endoplasmic reticulum stress does not contribute to steatohepatitis in obese and insulin-resistant high-fat-diet-fed foz/foz mice.

    Science.gov (United States)

    Legry, Vanessa; Van Rooyen, Derrick M; Lambert, Barbara; Sempoux, Christine; Poekes, Laurence; Español-Suñer, Regina; Molendi-Coste, Olivier; Horsmans, Yves; Farrell, Geoffrey C; Leclercq, Isabelle A

    2014-10-01

    Non-alcoholic fatty liver (steatosis) and steatohepatitis [non-alcoholic steatohepatitis (NASH)] are hepatic complications of the metabolic syndrome. Endoplasmic reticulum (ER) stress is proposed as a crucial disease mechanism in obese and insulin-resistant animals (such as ob/ob mice) with simple steatosis, but its role in NASH remains controversial. We therefore evaluated the role of ER stress as a disease mechanism in foz/foz mice, which develop both the metabolic and histological features that mimic human NASH. We explored ER stress markers in the liver of foz/foz mice in response to a high-fat diet (HFD) at several time points. We then evaluated the effect of treatment with an ER stress inducer tunicamycin, or conversely with the ER protectant tauroursodeoxycholic acid (TUDCA), on the metabolic and hepatic features. foz/foz mice are obese, glucose intolerant and develop NASH characterized by steatosis, inflammation, ballooned hepatocytes and apoptosis from 6 weeks of HFD feeding. This was not associated with activation of the upstream unfolded protein response [phospho-eukaryotic initiation factor 2α (eIF2α), inositol-requiring enzyme 1α (IRE1α) activity and spliced X-box-binding protein 1 (Xbp1)]. Activation of c-Jun N-terminal kinase (JNK) and up-regulation of activating transcription factor-4 (Atf4) and CCAAT/enhancer-binding protein-homologous protein (Chop) transcripts were however compatible with a 'pathological' response to ER stress. We tested this by using intervention experiments. Induction of chronic ER stress failed to worsen obesity, glucose intolerance and NASH pathology in HFD-fed foz/foz mice. In addition, the ER protectant TUDCA, although reducing steatosis, failed to improve glucose intolerance, hepatic inflammation and apoptosis in HFD-fed foz/foz mice. These results show that signals driving hepatic inflammation, apoptosis and insulin resistance are independent of ER stress in obese diabetic mice with steatohepatitis.

  10. Antimicrobial resistance patterns in community acquired urinary tract infections

    International Nuclear Information System (INIS)

    Gilani, S.Y.H; Ahmad, N.; Shah, S.R.A.

    2016-01-01

    Urinary tract infection (UTI) is the most frequent disease for which patients seek medical care. The antimicrobial agents causing UTI and their sensitivity patterns have remarkably changed throughout the world over the past few years. Hence, the present study was designed to explore the uropathogens and their susceptibility to various molecules in our region. Methods: This descriptive cross sectional study was conducted at Medical C Unit of Ayub Teaching Hospital, Abbottabad from January 2015 to January 2016. Patients with clinical features of UTI were evaluated using Urine R/E and Urine culture and sensitivity. Ten antibiotics were checked for susceptibility. Results were analysed using SPSS 17. Results: A total of 630 patients presented with urinary complaints. Of these, 236 patients had more than 8-10 pus cells on urine R/E. They were further evaluated using culture and sensitivity and positive culture was obtained in 75 patients. Of these 34 (45.3%) were males and 41 (54.7%) were females. E Coli was the predominant isolate being present in 49 (65.3%) patients. This was followed by Klebsiella in 9 (12%) patients. Tazobactam-piperacillin and cefoperazone-sulbactam were the most sensitive drugs having overall sensitivity of 96% and 93.3% respectively. The isolates were highly resistant to Fluoroquinolones 77.3% followed by Penicillins 72% and TMP-SMX 69.3%.Conclusion: Antibiotic sensitivity patterns have enormously changed over the past decade. Newer agents are quite efficacious but their use should be highly judicious to prevent the development of resistance to these molecules. (author)

  11. Ancestral genes can control the ability of horizontally acquired loci to confer new traits.

    Directory of Open Access Journals (Sweden)

    H Deborah Chen

    2011-07-01

    Full Text Available Horizontally acquired genes typically function as autonomous units conferring new abilities when introduced into different species. However, we reasoned that proteins preexisting in an organism might constrain the functionality of a horizontally acquired gene product if it operates on an ancestral pathway. Here, we determine how the horizontally acquired pmrD gene product activates the ancestral PmrA/PmrB two-component system in Salmonella enterica but not in the closely related bacterium Escherichia coli. The Salmonella PmrD protein binds to the phosphorylated PmrA protein (PmrA-P, protecting it from dephosphorylation by the PmrB protein. This results in transcription of PmrA-dependent genes, including those conferring polymyxin B resistance. We now report that the E. coli PmrD protein can activate the PmrA/PmrB system in Salmonella even though it cannot do it in E. coli, suggesting that these two species differ in an additional component controlling PmrA-P levels. We establish that the E. coli PmrB displays higher phosphatase activity towards PmrA-P than the Salmonella PmrB, and we identified a PmrB subdomain responsible for this property. Replacement of the E. coli pmrB gene with the Salmonella homolog was sufficient to render E. coli resistant to polymyxin B under PmrD-inducing conditions. Our findings provide a singular example whereby quantitative differences in the biochemical activities of orthologous ancestral proteins dictate the ability of a horizontally acquired gene product to confer species-specific traits. And they suggest that horizontally acquired genes can potentiate selection at ancestral loci.

  12. The Batten disease gene CLN3 confers resistance to endoplasmic reticulum stress induced by tunicamycin

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dan, E-mail: danw@bjmu.edu.cn [Department of Medical Genetics, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Liu, Jing; Wu, Baiyan [Department of Medical Genetics, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Tu, Bo; Zhu, Weiguo [Department of Biochemistry and Molecular Biology, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Luo, Jianyuan, E-mail: jluo@som.umaryland.edu [Department of Medical Genetics, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Department of Medical and Research Technology, School of Medicine, University of Maryland, Baltimore 21201 (United States)

    2014-04-25

    Highlights: • The work reveals a protective properties of CLN3 towards TM-induced apoptosis. • CLN3 regulates expression of the GRP78 and the CHOP in response to the ER stress. • CLN3 plays a specific role in the ERS response. - Abstract: Mutations in CLN3 gene cause juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), an early-onset neurodegenerative disorder that is characterized by the accumulation of ceroid lipofuscin within lysosomes. The function of the CLN3 protein remains unclear and is presumed to be related to Endoplasmic reticulum (ER) stress. To investigate the function of CLN3 in the ER stress signaling pathway, we measured proliferation and apoptosis in cells transfected with normal and mutant CLN3 after treatment with the ER stress inducer tunicamycin (TM). We found that overexpression of CLN3 was sufficient in conferring increased resistance to ER stress. Wild-type CLN3 protected cells from TM-induced apoptosis and increased cell proliferation. Overexpression of wild-type CLN3 enhanced expression of the ER chaperone protein, glucose-regulated protein 78 (GRP78), and reduced expression of the proapoptotic protein CCAAT/-enhancer-binding protein homologous protein (CHOP). In contrast, overexpression of mutant CLN3 or siRNA knockdown of CLN3 produced the opposite effect. Together, our data suggest that the lack of CLN3 function in cells leads to a failure of management in the response to ER stress and this may be the key deficit in JNCL that causes neuronal degeneration.

  13. The Batten disease gene CLN3 confers resistance to endoplasmic reticulum stress induced by tunicamycin

    International Nuclear Information System (INIS)

    Wu, Dan; Liu, Jing; Wu, Baiyan; Tu, Bo; Zhu, Weiguo; Luo, Jianyuan

    2014-01-01

    Highlights: • The work reveals a protective properties of CLN3 towards TM-induced apoptosis. • CLN3 regulates expression of the GRP78 and the CHOP in response to the ER stress. • CLN3 plays a specific role in the ERS response. - Abstract: Mutations in CLN3 gene cause juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), an early-onset neurodegenerative disorder that is characterized by the accumulation of ceroid lipofuscin within lysosomes. The function of the CLN3 protein remains unclear and is presumed to be related to Endoplasmic reticulum (ER) stress. To investigate the function of CLN3 in the ER stress signaling pathway, we measured proliferation and apoptosis in cells transfected with normal and mutant CLN3 after treatment with the ER stress inducer tunicamycin (TM). We found that overexpression of CLN3 was sufficient in conferring increased resistance to ER stress. Wild-type CLN3 protected cells from TM-induced apoptosis and increased cell proliferation. Overexpression of wild-type CLN3 enhanced expression of the ER chaperone protein, glucose-regulated protein 78 (GRP78), and reduced expression of the proapoptotic protein CCAAT/-enhancer-binding protein homologous protein (CHOP). In contrast, overexpression of mutant CLN3 or siRNA knockdown of CLN3 produced the opposite effect. Together, our data suggest that the lack of CLN3 function in cells leads to a failure of management in the response to ER stress and this may be the key deficit in JNCL that causes neuronal degeneration

  14. Translocation of integron-associated resistance in a natural system: Acquisition of resistance determinants by Inc P and Inc W Plasmids from Salmonella enterica Typhimurium DT104

    DEFF Research Database (Denmark)

    Sandvang, Dorthe; Diggle, M.; Platt, D.J.

    2002-01-01

    to determinate the genetic content. Translocation to R751 and R388 was associated with the loss of the indigenous trimethoprim cassette to both plasmids and also acquisition of sulfonamide resistance by R751 and RP4::Tn7, which indicated movement of the 3' terminus of one or both of the DT104 integrons......Salmonella enterica Typhimurium DT104, 961368, a veterinary field isolate that encodes a chromosomal cluster of resistance genes as well as two integrons, was used to study the mobility of resistance cassettes (aadA2 and pse-1) and nonintegron-associated resistance determinants (chloramphenicol...... and tetracycline). A range of natural plasmids was used as targets for the translocation of resistance. Plasmids that acquired resistance from the DT104 chromosome were segregated by conjugation into Escherichia coli K12. Plasmids R751, R388, and RP4::Tn7 acquired several combinations of resistance determinant...

  15. Radiation-resistant asporogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Yano, K [Tokyo Univ. (Japan). Faculty of Agriculture

    1975-09-01

    This paper reports the biological and ecological examinations on the radiation-resistant asporogenic bacteria (mainly concerning Micrococcus radiodurans). Radiation-resistant asporogenic bacteria were isolated from the irradiated areas of the natural world as well as from the general areas and from the Rn waters in the Misasa hot spring. The acquiring of the tolerance to radiation in bacteria was also examined. In addition, the future problems of microbiological treatment with irradiation were mentioned.

  16. Radiation-resistant asporogenic bacteria

    International Nuclear Information System (INIS)

    Yano, Keiji

    1975-01-01

    This paper reports the biological and ecological examinations on the radiation-resistant asporogenic bacteria (mainly concerning Micrococcus radiodurans). Radiation-resistant asporogenic bacteria were isolated from the irradiated areas of the natural world as well as from the general areas and from the Rn waters in the Misasa hot spring. The acquiring of the tolerance to radiation in bacteria was also examined. In addition, the future problems of microbiological treatment with irradiation were mentioned. (Tsukamoto, Y.)

  17. Deciphering the interplay between cysteine synthase and thiol cascade proteins in modulating Amphotericin B resistance and survival of Leishmania donovani under oxidative stress

    Directory of Open Access Journals (Sweden)

    Kuljit Singh

    2017-08-01

    Full Text Available Leishmania donovani is the causative organism of the neglected human disease known as visceral leishmaniasis which is often fatal, if left untreated. The cysteine biosynthesis pathway of Leishmania may serve as a potential drug target because it is different from human host and regulates downstream components of redox metabolism of the parasites; essential for their survival, pathogenicity and drug resistance. However, despite the apparent dependency of redox metabolism of cysteine biosynthesis pathway, the role of L. donovani cysteine synthase (LdCS in drug resistance and redox homeostasis has been unexplored. Herein, we report that over-expression of LdCS in Amphotericin B (Amp B sensitive strain (S1-OE modulates resistance towards oxidative stress and drug pressure. We observed that antioxidant enzyme activities were up-regulated in S1-OE parasites and these parasites alleviate intracellular reactive oxygen species (ROS efficiently by maintaining the reduced thiol pool. In contrast to S1-OE parasites, Amp B sensitive strain (S1 showed higher levels of ROS which was positively correlated with the protein carbonylation levels and negatively correlated with cell viability. Moreover, further investigations showed that LdCS over-expression also augments the ROS-primed induction of LdCS-GFP as well as endogenous LdCS and thiol pathway proteins (LdTryS, LdTryR and LdcTXN in L. donovani parasites; which probably aids in stress tolerance and drug resistance. In addition, the expression of LdCS was found to be up-regulated in Amp B resistant isolates and during infective stationary stages of growth and consistent with these observations, our ex vivo infectivity studies confirmed that LdCS over-expression enhances the infectivity of L. donovani parasites. Our results reveal a novel crosstalk between LdCS and thiol metabolic pathway proteins and demonstrate the crucial role of LdCS in drug resistance and redox homeostasis of Leishmania. Keywords

  18. Prevention of hospital-acquired pneumonia: European perspective.

    Science.gov (United States)

    Bonten, Marc J M

    2003-12-01

    Several preventive measures for VAP have been empirically tested. There is clear evidence that antibiotic-containing preventive strategies, such as SDD and oropharyngeal decontamination, are very effective in different patient populations. Selection of antibiotic resistance remains the major disadvantage of these strategies, however, limiting its applicability in settings with high levels of antibiotic resistance. This probably precludes the use of these strategies in many American settings, but may allow their use in European countries with much lower endemic levels of resistance. There is little evidence that systemic prophylaxis is effective for the prevention of VAP, and initial studies were associated with resistance problems. Of the non antibiotic-containing preventive strategies, subglottic aspiration was effective in several studies, whereas other strategies, such as immunonutrition with glutamine or the semirecumbent patient position, were effective in single studies. All these studies were executed in European ICUs. For these interventions, more data are needed on the generalizability, feasibility, and cost effectiveness. Few data support the use of sucralfate for stress ulcer prophylaxis and modulation of enteral nutrition practices as preventive measures for VAP.

  19. Evidence for different mechanisms of ‘unhooking’ for melphalan and cisplatin-induced DNA interstrand cross-links in vitro and in clinical acquired resistant tumour samples

    International Nuclear Information System (INIS)

    Spanswick, Victoria J; Hartley, John A; Lowe, Helen L; Newton, Claire; Bingham, John P; Bagnobianchi, Alessia; Kiakos, Konstantinos; Craddock, Charles; Ledermann, Jonathan A; Hochhauser, Daniel

    2012-01-01

    DNA interstrand cross-links (ICLs) are critical lesions produced by several cancer chemotherapy agents including platinum drugs and nitrogen mustards. We have previously shown in haematological (multiple myeloma) and solid tumours (ovarian cancer) that clinical sensitivity to such agents can result from a defect in DNA ICL processing leading to their persistence. Conversely, enhanced repair can result in clinical acquired resistance following chemotherapy. The repair of ICLs is complex but it is assumed that the ‘unhooking’ step is common to all ICLs. Using a modification of the single cell gel electrophoresis (Comet) assay we measured the formation and unhooking of melphalan and cisplatin-induced ICLs in cell lines and clinical samples. DNA damage response in the form of γ-H2AX foci formation and the formation of RAD51 foci as a marker of homologous recombination were also determined. Real-time PCR of 84 genes involved in DNA damage signalling pathways was also examined pre- and post-treatment. Plasma cells from multiple myeloma patients known to be clinically resistant to melphalan showed significant unhooking of melphalan-induced ICLs at 48 hours, but did not unhook cisplatin-induced ICLs. In ovarian cancer cells obtained from patients following platinum-based chemotherapy, unhooking of cisplatin-induced ICLs was observed at 48 hours, but no unhooking of melphalan-induced ICLs. In vitro, A549 cells were proficient at unhooking both melphalan and cisplatin-induced ICLs. γ-H2AX foci formation closely followed the formation of ICLs for both drugs, and rapidly declined following the peak of formation. RPMI8226 cells unhooked melphalan, but not cisplatin-induced ICLs. In these cells, although cross-links form with cisplatin, the γ-H2AX response is weak. In A549 cells, addition of 3nM gemcitabine resulted in complete inhibition of cisplatin-induced ICL unhooking but no effect on repair of melphalan ICLs. The RAD51 foci response was both drug and cell line

  20. The transgenerational effects of heat stress in the nematode Caenorhabditis remanei are negative and rapidly eliminated under direct selection for increased stress resistance in larvae.

    Science.gov (United States)

    Sikkink, Kristin L; Ituarte, Catherine M; Reynolds, Rose M; Cresko, William A; Phillips, Patrick C

    2014-12-01

    Parents encountering stress environments can influence the phenotype of their offspring in a form of transgenerational phenotypic plasticity that has the potential to be adaptive if offspring are thereby better able to deal with future stressors. Here, we test for the existence of anticipatory parental effects in the heat stress response in the highly polymorphic nematode Caenorhabditis remanei. Rather providing an anticipatory response, parents subject to a prior heat stress actually produce offspring that are less able to survive a severe heat shock. Selection on heat shock resistance within the larvae via experimental evolution leads to a loss of sensitivity (robustness) to environmental variation during both the parental and larval periods. Whole genome transcriptional analysis of both ancestor and selected lines shows that there is weak correspondence between genetic pathways induced via temperature shifts during parental and larval periods. Parental effects can evolve very rapidly via selection acting directly on offspring. Copyright © 2014 Elsevier Inc. All rights reserved.